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Forewords

Natural Products as Drugs—The Road Ahead

For millennia, natural products, mostly plants, were the only source of drugs. Some of the origi-
nal knowledge has undoubtedly been lost. We know very little about the ancient use of plants in
North and South America, most of Europe, Africa, and Australia. But some of the advanced ancient
civilizations have left us amazing pharmacopeias. Many of the plants described in them have yet
to be explored. The Assyrians (about the second millennium BC to the sixth century BC) have left
us hundreds of tablets and plant lists, which were used by Campbell Thomson (1949) to compile
a detailed Assyrian herbal. The Chinese classic medical pharmacopeia Ben Ts’ao, originally com-
piled around the first century AD and finalized in the sixteenth century AD, details thousands of
prescriptions (Needham, 1978). The plant drugs used in Ancient Egypt (summarized by Von Deines
and Grapow, 1959) are mentioned in many of the papyri. The outstanding herbal by Dioscorides
(died circa AD 90) was one of the most influential drug books over 18 centuries. It summarizes in
detail the existing knowledge on plant drugs in the Middle East and was widely copied by medieval
herbalists (Dioscorides, 1934). Apparently, the well-established herbal use in India was first com-
piled and published by Da Orta (1563)—a Portuguese-Jewish physician who was on the run from
the Inquisition. One can find in these herbals most of the medicinal plants that have been evaluated
over the last century and from which many of the modern drugs have been developed—be they
either the molecules as found in the plant or their synthetic derivatives. And we continue to find new
natural medicinal agents in them. Artemisinin, the very valuable antimalarial drug from a Chinese
plant, is just one of them.

The development of methods for the isolation and structure elucidation of natural products dur-
ing the late nineteenth and over the twentieth century slowly decreased traditional herbal use. Many
naturally occurring bioactive compounds and/or their derivatives have become drugs of central
importance and represent a high percentage of the drugs used today. Antibiotics, hormones, and
statins are well-known examples. Today, treatments that involve the use of plants or plant extracts
are part of “alternative medicine.” However, still a large part of the population in third world coun-
tries relies on herbal products and, surprisingly, in the rest of the world their use is coming back.

Several decades ago, an isolated natural product with proven therapeutic activity could be intro-
duced in the clinic shortly after its isolation. Thus, in the 1920s insulin became a drug within months
after its identification. Various naturally occurring steroids became drugs within a few years after
their discovery in the 1930s and 1940s. The picture has changed. For example, anandamide, a lipid
brain constituent, with a wide spectrum of therapeutic properties as shown by animal trials, has
never been administered to a human being nearly 20 years after its discovery (Devane et al., 1992).
Due to lack of patent protection of most identified molecules of natural origin, few pharmaceuti-
cal companies can afford to spend hundreds of millions on the toxicology and clinical evaluations
needed to get approval. Many useful natural products are lost for medicine.

Treatments with herbal drugs have positive as well as negative aspects. The positive side is
associated with the accumulated knowledge over centuries, or even millennia, of their therapeutic
action. Our knowledge on the activities of these drugs comes from their human use in diseases,
many of which do not have good animal models, and hence modern drugs are difficult to develop. In
some plants, or mixtures of plants, the therapeutic effect may be due to synergism or an “entourage
effect” of several constituents. Again, such plants are mostly lost to medicine. The use of herbal
products as drugs also has its negative aspects. In most countries, the content of the active constitu-
ents of plant drugs sold to the public is unknown. The secondary metabolites, which are the active
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constituents of plant drugs, are notorious in their variability, which depends on the soil, the climate,
the plant pathogens, etc. Hence, a patient can never be sure of the level of the active drug consumed.

Few herbal products have been investigated for their chronic effects. While some medicinal
plants or extracts are used on an acute basis and hence their long-term effects are presumably mostly
negligible, many are consumed on a daily basis for long periods of time and may lead to various
pathologies. This is not the case with most drugs, of either natural or synthetic origin, introduced
over the last few decades, whose effects are followed for years after market introduction by the
companies that have developed them.

Some of the “modern” trends of herbal plant use are not based on traditional use but on premises,
which are unacceptable. Thus, one of the basic rules of homeopathy, a nineteenth-century-invented
method of medicinal plant use, is that dilution of a drug solution leads to better results. When
extreme dilution actually leads to the disappearance of the active molecule in the formulation, the
answer by homeopathic dispensers is that “water retains drug memory”—a statement of question-
able value.

In the United States, the Food and Drug Administration (FDA) has to approve all new drugs sold
to the public. This approval is based on thorough evaluations of pharmacological and clinical data.
An FDA approval is generally accepted in most countries. However, U.S. law does not allow the
FDA to use its criteria for “alternative medicine”—hence in the United States, as well as in many
other countries, regulations as regards herbal drugs are lax.

How do we balance the positive with the negative aspects? There are some obvious steps that
have to be taken to close the gap between plant drugs and extracts and approved drugs based on
detailed pharmacological and clinical investigations:

1. Every batch of a herbal drug on the market should indicate the concentrations of the active
molecule and any possible side effects.

2. Drug regulatory bodies should be given wider responsibility over herbal plant drugs.

3. Therapeutic claims should be based on scientific data.

But the best way to apply the knowledge gathered over millennia is to evaluate and develop it
by modern methods—chemical, pharmacological, and clinical—and thus help to introduce novel,
single molecule drugs based both on ancient practice and on contemporary science.

This volume, edited by Dr. Brahmachari, presents not only an extensive spectrum of chemical
and pharmacological aspects on bioactive natural products and their derivatives, written by leading
researchers in the field, but also a significant amount of what might best be covered under the rubric
of alternative medicine or even functional foodstuffs. The book contains excellent chapters on the
chemistry and the methodologies of production of natural products that could be drug molecules in
their own right. Besides, there are chapters by well-known experts on not only classical fermenta-
tion processes using microorganisms but also on methodologies involved in plant tissue culture and
biosynthetic pathway modulations directed toward the enhancement of natural product production.
Natural products clearly are an important source for future therapeutic options for an array of acute
and chronic diseases, but more research is needed on efficacy, standardization, toxicity, and long-
term effects. This book, by providing state-of-the-art evidence on bioactive natural products, will
obviously help to fill this gap. [ am very happy to recommend this volume to academics, research-
ers, and students interested in understanding the chemistry and pharmacology of bioactive natural
products and their enormous role in the modern drug discovery processes.

Raphael Mechoulam
Hebrew University, Jerusalem, Israel
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Mankind has been utilizing natural products, mostly from plants, for ages as traditional medi-
cines, fragrances, spices, and colorants. Naturally occurring bioactive compounds are still the major
source of lead molecules in modern drug discovery and development. In the last decade, natural
products have gained a renewed interest in the pharmaceutical industry, and as a consequence a
new drive toward the study of bioactive compounds, both directly derived from natural sources
or derived/inspired from those obtained from natural products, has been initiated worldwide. It is
also interesting to recall that human bodies and health are composed of natural products and sup-
ported by everyday intake of natural products, in spite of remarkable renovations occurring in the
individual natural medicinal products and the ways of utilizing them.

The content of this book, well organized by Dr. Brahmachari, comprises wide areas in the natural
resources, their production, bioactive compounds produced by them, and new facts that could lead
to novel methods of creating new medicines. Many readers will find various buried jewels based
on their own specialties. Summarized contents of all chapters are very precisely documented in the
overview in Chapter 1, where the readers will easily find how to reach the chapters of most to inter-
est them. I am very happy to recommend this book without any reservation to graduate and PhD
students of medicinal chemistry as well as to scientists and professionals working in the domain of
bioactive natural products to explore their potential as prospective molecules of medicinal interests.

Takuo Okuda
Okayama University, Japan






Preface

This single volume entitled Chemistry and Pharmacology of Naturally Occurring Bioactive
Compounds is an endeavor to focus on the recent cutting-edge research advances in the field of
bioactive natural products and their significant contributions in the domain of discovery and devel-
opment of new medicinal agents. This book consists of a total of 22 chapters contributed by eminent
researchers from several countries in response to my personal invitation. I am most grateful to the
contributors for their generous and timely response in spite of their busy and tight schedules with
academics, research, and other responsibilities.

Natural products have played a crucial role in modern drug development and still constitute a
prolific source of novel lead compounds, or pharmacophores, for ongoing drug discovery programs.
Natural products present in the plant and animal kingdom offer a huge diversity of chemical struc-
tures, which are the result of biosynthetic processes that have been modulated over the millennia
through genetic effects, and hence the search for bioactive molecules from nature (plants, animals,
microflora) continues to play an important role in fashioning new medicinal entities. With the advent
of modern techniques, particularly the rapid improvements in spectroscopic as well as accompany-
ing advances in high-throughput screening techniques, it has become possible to have an enormous
repository of bioactive natural compounds, thus opening up exciting new opportunities in the field
of new drug development to the pharmaceutical industry. Medicinal chemistry of such bioactive
compounds encompasses a vast area that includes their isolation and characterization from natural
sources, structure modification for optimization of their activity and other physical properties, and
also total and semisynthesis for a thorough scrutiny of structure—activity relationships. It has been
well documented that natural products played a crucial role in modern drug development, especially
for antibacterial and antitumor agents; however, their uses in the treatment of other epidemics such
as AIDS and cardiovascular, cancerous, neurodegradative, infective, and metabolic diseases have
also been extensively explored. The need for leads to solve such health problems threatening the
world population makes all natural sources important for the search of novel molecules, diversified
and unique structural architectures of which inspired scientists to pursue new chemical entities
with completely different structures from known drugs. Researchers around the globe are deeply
engaged in exploring the detailed chemistry and pharmacology of such potent and efficacious natu-
rally occurring bioactive compounds.

This book, which comprises a variety of 22 chapters written by active researchers and leading
experts working in the field of chemistry of biologically active natural products, brings together
an overview of current discoveries and trends in this remarkable field. Chapter 1 presents an over-
view of the book and summarizes the contents of the other chapters so as to offer glimpses of the
subject matter covered to the readers before they go in for a detailed study. Chapters 2 through 22
are devoted to exploring the ongoing chemical and pharmacological advances in naturally occur-
ring organic compounds and describe their spectral and x-ray properties, chemical transformations,
and structure—activity relationships, including mode of action, toxicology, pharmacokinetics, and
metabolism of certain bioactive molecules of medicinal interest.

This timely volume encourages interdisciplinary work among chemists, pharmacologists, biolo-
gists, botanists, and agronomists with an interest in bioactive natural products. It is also an outstand-
ing source of information with regard to the industrial application of natural products for medicinal
purposes. The broad interdisciplinary approach dealt with in this book would surely make the work
much more interesting for scientists deeply engaged in the research and/or use of bioactive natural
products. It will serve not only as a valuable resource for researchers in their own fields to predict

XV



XVi Preface

promising leads for developing pharmaceuticals to treat various ailments and disease manifestations
but also to motivate young scientists to the dynamic field of bioactive natural products research.

Representation of facts and their discussions in each chapter are exhaustive, authoritative, and
deeply informative; hence, the book would serve as a key reference for recent developments in the
frontier research on bioactive natural products and would also be of much utility to scientists work-
ing in this area. I would like to express my sincere thanks once again to all the contributors for the
excellent reviews on the chemistry and pharmacology of bioactive natural products. It is their par-
ticipation that makes my effort to organize such a book possible. Their masterly accounts will surely
provide the readers with a strong awareness of current cutting-edge research approaches being fol-
lowed in some of the promising fields of biologically active natural products.

I would like to express my sincere thanks and deep sense of gratitude to Professor Raphael
Mechoulam, Institute for Drug Research, Medical Faculty, Hebrew University, Israel, and Professor
Takuo Okuda, Okayama University, Japan, for their keen interests in the manuscript and for writing
forewords to the book.

I would also like to express my deep sense of appreciation to all of the editorial and publishing
staff members associated with Taylor & Francis Group/CRC Press, United States, for their keen
interest in publishing the works as well as their all-round help so as to ensure that the highest stan-
dards of publication have been maintained in bringing out this book.

Goutam Brahmachari
Chemistry Department, Visva-Bharati University
Santiniketan, India
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2 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

pharmaceutical potential of natural products in modern drug discovery processes, and covers the
synthesis and semisynthesis of potentially bioactive natural products. It also features chemical
advances in naturally occurring organic compounds describing their chemical transformations
and structure—activity relationships.

This introductory chapter (Chapter 1) presents an overview of the book and summarizes the con-
tents and subject matter of each chapter so as to offer certain glimpses of the coverage of discussion
to the readers before they go for detailed study.

1.2 AN OVERVIEW OF THE BOOK

The present book contains a total of 21 technical chapters—Chapters 2 through 22; this section
summarizes the contents and subject matter of each of these chapters.

1.2.1 CHAPTER 2

In Chapter 2, Tiwari and his group describe the impact of solid-supported cyclization—elimination
strategies toward the development of natural product inspired molecules in drug discovery research.
During the past few years, there has been an increasing demand for natural product inspired drug-
like molecules and their libraries in pharmaceutical industries worldwide, and to meet with this
ever-increasing demand, combinatorial chemistry has emerged as one of the most potential meth-
odologies developed to replace the conventional sequential approach in constructing new drug
candidates within a reasonable time frame, thereby cutting down preclinical development costs
significantly leading to a massive change in the fundamental approach to drug discovery program.
In this present review, the authors have highlighted the practically high-yielding and high-purity
approach for the solid phase combinatorial synthesis of diverse pharmacologically active natural
product inspired molecules through cyclo-release strategy which has become a practical method
mostly for the preparation of small cyclic molecules using a solid-phase synthesis on polymeric sup-
port. The cyclo-release strategy is gaining widespread popularity over the last twenty years because
of its useful feature which minimizes chemical and tethering implications by releasing intact,
desired target molecules in the final step of a reaction. The simultaneous cyclization and release of
a desired product from solid support with adequate purity without adding an extra time-consuming
step is the major advantage of this method. It has recently emerged as an efficient strategy to detect
and to evaluate affinity between the library products and a target molecule as well. The authors
have demonstrated the implication and usefulness of the solid-supported cyclization—elimination
strategy by describing synthetic routes of a handful of pharmaceutically promising natural prod-
uct inspired molecules including epothilone A, fumiquinazoline alkaloid, (S)-zearalenone, tetramic
acids, 1,4-benzodiazepine-2,5-diones, benzodiazepines, diketopiperazines, 1,3-disubstitued quin-
azolinediones, 4-hydroxyquinolin-2(1H)-ones, 4-hydroxy-3-(2"-pyridyl)coumarin, dihydropyrimi-
dones, heterosteroids, imidazoquinazolinones, and many more. The present discussion in Chapter
2 by Tiwari and his group would thus be much helpful to the readers at large and must boost the
ongoing research in this direction.

1.2.2 CHAPTER 3

Chapter 3 by Banik is devoted to the synthesis and biological activities of novel B-lactam com-
pounds; B-lactam nucleus is necessary for the biological activity of a large number of antibiotics.
B-Lactams are four-membered ring compounds, occasionally fused with side chains, unsaturated
groups, heteroatoms, and cyclic ring systems; these are widely used as useful therapeutic agents
against various ailments for many years. Hence, significant attention has been paid by chemists
round the globe to undertake systematic works on novel B-lactam synthesis, based either on new or
established methodologies, or on the chemical manipulation of preexisting groups preserving at the
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2.1 INTRODUCTION

Natural products (NPs) originated from the phenomenon of biodiversity in which the interactions
among organisms and their environment formulate the diverse complex chemical entities within
the organisms are usually responsible for enhancing their survival and competitiveness (Mishra
and Tiwari 2011). Diverse chemical scaffolds of NPs offer promising templates for combinatorial
chemistry since being evolutionarily selected for their ability to display chemical information in
three-dimensional space. The therapeutic areas of infectious diseases and oncology have already
benefited a lot from these numerous drug classes that are able to interact with many specific
targets within the cell, and indeed for many years, they have been the central molecules in the
drug discovery and development processes. Libraries built around such scaffolds thus have the
potential for both lead discovery (against targets unrelated to the original activity of the natu-
ral product) and lead optimization (analogs with improved properties over the natural product)
(Hajduk et al. 2011).

In recent years, the increasing demands for natural product inspired drug-like molecules or
their libraries have stipulated the development of reaction sequences and linking strategies that
allow complex and diverse targets to be constructed efficiently and reliably (Samiulla et al. 2005).
Combinatorial chemistry in this regard is among the most important novel methodologies devel-
oped to replace the sequential approach with the most effective parallel technique, where this
powerful methodology has been found to be helpful to the pharmaceutical companies in developing
new drug candidates within a reasonable time frame (Merrifield 1963), thereby, cutting down pre-
clinical development costs significantly, leading to a massive change in the fundamental approach
to drug discovery program (Atrash and Bradley 1997; Tripathi et al. 2012). However, construc-
tion of conformationally restricted cyclic bioactive molecules is still a challenge for the chemists.
Nowadays, one most attractive and versatile approach is the cyclo-elimination strategy which has
become a practical method mostly for the preparation of small cyclic molecules using a solid-phase
synthesis on polymeric support (Thompson and Ellman 1996).

The cyclo-elimination strategy can minimize the chemical and tethering implications by releas-
ing the intact desired target molecule in the final step of a reaction. The simultaneous cyclization
and release of the product from the solid support with adequate purity without adding an extra
time-consuming step is the major advantage of this method. It has recently emerged as an efficient
strategy to detect and to evaluate affinity between the library products and a target molecule (Eifler-
Lima et al. 2010; Mishra et al. 2012). The present review highlights the practical high-yielding
with high-purity approach for the solid-phase combinatorial synthesis of natural products inspired
diverse pharmacologically active carbo/heterocyclic skeletons using cyclo-release strategy.

2.2 APPLICATION OF CYCLO-RELEASE STRATEGY
TOWARD THE DEVELOPMENT OF NATURAL PRODUCT
INSPIRED MOLECULES IN DRUG RESEARCH

Nature is a true inventor of combinatorial chemistry that generates molecules with all possible
structures which are highly sophisticated and unique in their own (Verdine 1996). A good num-
ber of evolutionarily shaped molecules are historically proven important and effective therapeutic
agents. Collections of natural products exhibit physicochemical property profiles that are favorable
compared to those of drugs and complementary to those provided by synthetic compounds gener-
ated from combinatorial chemistry (Feher and Schmidt 2003; Park and Kurth 2000). Despite these
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advantages, the classical processes to identify discrete new chemical entities from natural product
sources are too inefficient to have survived in many of the current drug discovery programs at
pharmaceutical companies; however, interest in natural products and their analogs as consider-
able sources of pharmaceutical agents has shown recent resilience and has regained importance
(Newman et al. 2003). To capitalize more efficiently on the effective features of naturally occurring
substances, solid-phase cyclo-elimination strategy may serve as a competent platform for natural
product based library production for lead discovery. This approach combines the attractive bio-
logical and physicochemical properties of natural product scaffolds, provided by eons of natural
selection, with the chemical diversity available from parallel synthetic methods. A good number of
promising and biologically relevant compounds are screened under the present discussion so as to
underline the significance of cyclo-release strategy for their effective syntheses.

2.2.1 EPOTHILONE A

Epothilone A, a 16-membered ring macrolide, originally isolated from the bacterium Sorangium
cellulosum, is a new kind of microtubule function inhibitor with an ICy, of 4.4 nM for tubulin
polymerization and cytotoxicity (Hofle et al. 1996). Epothilone A significantly prevents cancer cells
from dividing by interfering with tubulin, and has better efficacy and milder adverse effects than
taxanes (Muhlradt and Sasse 1997).

0O OR O
Epothilone A

The synthesis of epothilone A under the solid-phase condition utilizes olefin metathesis reac-
tion (Nicolaou et al. 1997) and involves the preparation of solid-phase phosphonium salt using
Merrifield-tethered 1,4-butanediol. Treatment with base in the next step affords an ylide that deliv-
ers the TBS-protected olefin on reaction with aldehyde. Desilylation followed by Swern oxidation
of the resulting alcohol affords the solid-phase aldehyde which on aldol condensation with the
delta-keto acid gives a mixture of diastereomers (1:1). The DCC-mediated alcohol coupling yields
corresponding solid-phase ester which on macrocyclization using ring closing metathesis (RCM)
affords a mixture of four diastereomers. Separation of the targeted molecule by HPLC or prepara-
tive layer silica-gel chromatography following desilylation and epoxidation affords naturally occur-
ring epothilone A (Scheme 2.1).

2.2.2 FUMIQUINAZOLINE ALKALOID

Building up and maintaining a high-quality natural product inspired library requires a skill set that
can be achieved easily by using solid-phase cyclo-elimination strategies. For example, total synthe-
sis of cytotoxic fumiquinazoline alkaloid isolated from marine Aspergillus clavatus was investi-
gated by Wang and Ganesan under solid-phase conditions (Wang and Ganesan 2000). Methodology
involves the loading of commercially available Wang resin with Fmoc-L-Trp 1 followed by depro-
tection and coupling with anthranilic acid in the presence of an activating agent EDC (Scheme 2.1).
The acylation of aniline 2 using Fmoc-Gly-Cl affords linear tripeptide 3 which on subsequent
dehydrative cyclization in the presence of triphenylphosphine (10 equivalents) yields oxazine 4.
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SCHEME 2.1 Synthesis of epothilone A through cyclo-release strategy.

Deprotection of the Fmoc group and rearrangement of oxazine 4 affords amidine carboxamide 5. After
washing, the resin on heating in acetonitrile affords fumiquinazoline alkaloid 6 through cyclative
release strategy (Scheme 2.2).

2.2.3 FREIDINGER LACTAM

Peptidomimetics are crucial in the drug development process. In the early 1980s, Freidinger pro-
posed the concept of protected lactam-bridged dipeptides, a milestone in the design of conforma-
tionally constrained peptides (Perdih and Kikelj 2006). These types of compounds, now widely
known as Freidinger lactams, have been of interest to many medicinal and peptide chemists, and
can be synthesized easily under solid-phase conditions via ring closing metathesis (RCM) (Piscopio
etal. 1997, 1998, 1999). Methodology involves the synthesis of 2,4-dinitrobenzenesulfonamide resin
by the reaction of cinnamyl alcohol resin with phenylalanine methyl ester-2,4-dinitrobenzenesul-
fonamide under Mitsunobu condition. Sulfonamide cleavage in the next step followed by acylation
with racemic Boc-allylglycine affords a resin-bound diene which on cyclo-elimination via RCM in
the final step provides the Freidinger lactam as a 1:1 mixture of diastereomers (Scheme 2.3).

2.2.4 MACROCYCLES

Nicolaou et al. have reported the use of Stille coupling for a solid-phase cyclo-elimination process,
where in the solid-phase polystyrene(di-n-butyltin)hydride (PBTH) on addition across the acetyle-
nic bond of 3-butynol affords an E:Z-mixture of alcohols (1:1) which on treatment with iodine yield
vinyl iodide(s). Coupling with glutaric anhydride in the next step delivers a resin-bound acid which
on DCC coupling with either vinyl iodide alcohol or 2-iodobenzyl alcohol affords corresponding
esters. Subsequent treatment with [Pd(PPh,),] resulted in macrocyclization with concomitant cyclo-
elimination from the support (Scheme 2.4).
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SCHEME 2.4 Stille coupling for the synthesis of macrocycles through cyclo-release strategy.

2.2.5 (S)-ZEARALENONE

(S)-Zearalenone, a naturally occurring 14-membered orsellinic acid-type macrolide, exhibits ana-
bolic, uterotropic, and antibacterial activity (Mirocha et al. 1978; Olsen 1985; Stob et al. 1962).

OH O

(0)

HO Z 0

(5)-Zearalenone

This targeted 14-membered orsellinic acid-type macrolide can be synthesized under solid-phase
condition via Stille coupling. For a synthesis of (S)-zearalenone, PBTH on reaction with Weinreb
amide affords a vinyltin conjugate (E:Z = 1:1). A solid-phase (E)-vinyl intermediate is obtained by
the reaction of solid-phase tin chloride (PBTC) with vinyllithium reagent following the deprotection
and oxidation reactions (Nicolaou et al. 1998b). Addition of Grignard reagent to the Weinreb amide
or aldehyde followed by Corey—Kim oxidation affords the corresponding ketone. Desilylation and
subsequent coupling with an iodobenzoic acid gives the Stille precursor, which on subsequent treat-
ment with [Pd(PPh,),] results in cyclo-elimination by delivering (S)-zearalenone after acid-induced
deprotection (Scheme 2.5).

2.2.6 TeTRAMIC ACIDS

The cyclo-elimination strategy finds tremendous application in the synthesis of a wide range
of bioactive cyclic amides. Tetramic acids are an important class of naturally occurring mole-
cules exhibiting various significant biological activities including antibiotic, antiviral, antifungal,
cytotoxic, and enzyme inhibitory activities against bacterial DNA-directed RNA polymerases
(Karwowski et al. 1992; Rinehart and Borders 1963). These nitrogen heterocycles with pyrro-
lidine-2,4-dione moieties are key structural motifs in many natural products of terrestrial and
marine origin (Brodyck 1995; Lang et al. 2006; Wolf et al. 1999). 3-Acyl-2,4-pyrrolidinediones
or 3-aceyl tetramic acids can easily be synthesized under mild solid-phase condition (Raillard
et al. 1999; Romoff et al. 1998; Weber et al. 1998) by loading of Merrifield resin with amino acid
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SCHEME 2.6 Synthesis of tetramic acid through cyclo-release strategy.

ester and subsequent alkylation with an aldehyde to afford solid-phase secondary amine. The sec-
ondary amino group on acylation with a B-ketoester equivalent (i.e., Meldrum’s acid derivatives)
gives the B-keto amide-bound resin which under Beckmann intramolecular C-alkylation delivers
a library of 3-acyl tetramic acids (Scheme 2.6).

Another solid-phase route to tetramic acids using cyclo-elimination Claisen-type condensation
involves the loading of Wang resin with an Fmoc-protected amino acid which on deprotection fol-
lowed by acylation affords corresponding amide. A unidirectional Claisen-like condensation in the
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SCHEME 2.7 Synthesis of tetramic acid through cyclo-elimination Claisen-type condensation.

presence of tetrabutylammonium hydroxide results in cyclo-elimination of the targeted tetramic
acid (Kulkarni and Ganesan 1997, 1998). The base employed can be effectively scavenged by using
Amberlyst A-15 resin (Scheme 2.7).

A three-step solid-phase protocol for the synthesis of 1,3,5-trisubstituted tetramic acids
includes reductive alkylation of a solid-phase o-amino acid with aldehydes (Mattews and
Rivero 1998). Acylation of the resulting secondary amine with either malonic acids or aryl ace-
tic acids affords acyl tertiary amides which on base-promoted cyclo-elimination give tetramic
acids (Scheme 2.8).

2.2.7 MuscoNE AND ITs DERIVATIVES

Muscone, obtained from musk (a glandular secretion) of the male muskdeer Moschus moschi-
ferus, has been used in perfumery and medicine for thousands of years (Fujimoto et al. 2002).
Muscone naturally occurs as (-)-enantiomer consisting of a 15-membered ring ketone with one
methyl substituent in the 3-position (Kamat et al. 2000). A cyclo-elimination based solid-phase
protocol provides an easy access to a muscone library via an intramolecular ketophosphonate-
aldehyde reaction (Nicolaou et al. 1998a). The methodology involves the reaction of Merrifield
resin with 1,4-butanediol followed by the addition of CH,P(O)(OCH;)CI. Treatment of this resin
with n-BuLi followed by the reaction with protected w-hydroxy methyl ester affords a resin-
bound ketophosphonate. Desilylation followed by a DCC-mediated condensation with various
protected w-hydroxy carboxylic acids delivers the corresponding esters. Desilylation and oxi-
dation furnish precursor aldehydes which on treatment with 18-crown-6 in toluene release the
macrocyclic products (Scheme 2.9).

Radio frequency-encoded MICROKANS have been also used in the synthesis of a muscone
library. Claisen-type coupling of the starting solid-phase methylphosphonate with m-olefinic esters
followed by cross olefin metathesis with m-olefinic alcohols affords the solid-phase m-hydroxyl
esters as an E:Z-mixture. Dess—Martin oxidation followed by treatment with crown ether releases
the macrocyclic enones which on subsequent solution phase cuprate addition followed by hydroge-
nation afford d/-muscone library (Scheme 2.10).
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SCHEME 2.10 Synthesis of muscone derivatives through cyclo-elimination strategy.

2.2.8 1,4-BeNzODIAZEPINE-2,5-DIONES

1,4-Benzodiazepine-2,5-diones, the small molecular templates acting as opiate receptor antagonist,
anticonvulsant, glycoprotein mimic and cholecystokinin receptor antagonist (Joseph et al. 2008),
have been synthesized using solid-phase technology. The methodology involves the deprotection
and coupling of Fmoc amino acid-bound Wang resin with Fmoc-protected o-anthranilic acid or
o-nitrobenzoic acid (Mayer et al. 1996). Fmoc deprotection or reduction of the nitro group gives
amido-anthranalate intermediate which on treatment with sodium zerz-butoxide releases the phar-
macophore in high yield (Scheme 2.11).

2.2.9 BENZODIAZEPINE

Benzodiazepine, a psychoactive drug whose core chemical structure arising out of the fusion of
a benzene ring and a diazepine ring, enhances the effect of the neurotransmitter gamma-
aminobutyricacid (GABA) resulting in sedative, hypnotic (sleep inducing), anxiolytic (anti-anxiety),
anticonvulsant, muscle relaxant, and amnesic action (Lader 2008; Olkkola and Ahonen 2008). For
the synthesis of benzodiazepine, DeWitt and coworkers have employed cyclo-elimination strategy
in which the trans-amidation reaction between amino acid resin and 2-aminobenzophenone imines
affords the support-bound imine (DeWitt et al. 1993). Further heating in TFA results in cyclo-
elimination (Scheme 2.12).

2.2.10 DIKETOPIPERAZINES

Diketopiperazines (DKPs), a class of cyclic organic compounds resulting from peptide bond
between two aminoacids to form a lactam, are quite common in nature and have a wide vari-
ety of biological potentials including antitumor, antiviral, antifungal, and antibacterial activ-
ities (Houston et al. 2004; Kowalski and Lipton 1996; Kwon et al. 2000; Martins and Carvalho
2007; Nicholson et al. 2006; Sinha et al. 2004). Synthesis of DKP under solid-phase condition
involves the preparation of an ester-bound resin by esterification of either Tentagel S-OH (Rapp
Polymere) or PAM (Novabiochem) resin with an amino acid in the presence of acyl fluorides gen-
erated in situ from N-protected amino acids by treatment with 1,3-dimethyl-2-fluoropyridinium



Cyclorelease Strategy in NP-Inspired Molecules 19

X
/X
| F
HO,C o) HO,C
NO
NHFmoc ] 0)‘\/ NR,Fmoc 2
l DCC/HOBt R DCC/HOBt l
1
X
R Pyridine 2M Sncl, 0 R,
N __ DMF DMF )S/N
o—o J\( -~ Qo
NHFmoc Ry O NO

l NaO-t-Bu/THF

60°C, 24 h
/X
N
o
FZ
R,—N NH
Ry o
1,4-benzodiazepine-
2,5-diones
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SCHEME 2.12  Synthesis of benzodiazepine through cyclo-elimination strategy.

4-toluenesulfonate (DMFP) and diisoproplethylamine (DIPEA) (Szardenings et al. 1997).
Deprotection followed by reductive alkylation with different aldehydes gives the secondary
amine. N-acylation with Boc-protected amino acids delivers the peptide-bound resin via a double-
coupling method which on deprotection with TFA followed by cyclization under acidic or basic
conditions affords pure DKPs (Scheme 2.13).
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2.2.11 DEMETHOXYFUMITREMORGIN C

Demethoxyfumitremorgin C, a fungal inhibitor of mammalian cell cycle progression at the G,/M
transition (Wang et al. 2000) first isolated from Aspergillus fumigatus, contains both a tetrahydro-
B-carboline and a diketopiperazine. Analogs of this M-phase inhibitor of the mammalian cell cycle
have been synthesized using a solid-phase cyclo-elimination protocol, wherein Wang resin-bound
Fmoc-L-tryptophan after deprotection reacts with senecioaldehyde in TMOF (Hartog et al. 1996;
Loevezijn et al. 1998; Wang and Ganesan 1999). Treatment of imine with Fmoc-proline acid chlo-
ride results in a Pictet—Spengler reaction (Scheme 2.14). Subsequent Fmoc deprotection delivers
demethoxyfumitremorgin C and its trans-epimer (cis:trans = 53:47)

1.20% pipyridine, CH,Cl,

NHFmoc ™ "RcHo, TMOF, CH,Cl,

N
H
l Fmoc-L-ProlCl

20% pyridine, CH,Cl,

Fumitremorgin analog

SCHEME 2.14 Synthesis of fumitremorgin analogs through cyclo-elimination strategy.
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2.2.12 1,3-DisussTITUTED QUINAZOLINEDIONES

The quinazolinedione moiety is an important scaffold embedded in a variety of natural alkaloids
and many biologically active molecules including serotonergic, dopaminergic, and adrenergic
receptor ligands and inhibitors of aldose reductase, lipoxygenase, cyclooxygenase, collagenase,
and carbonic anhydrase (Dreyer and Brenner 1980; Michael 2007; Rivero et al. 2004; Vogtle and
Marzinzik 2004). A simple, reliable, and efficient solid-phase route to 1,3-disubstituted quinazolin-
ediones involves the treatment of chloroform-functionalized polystyrene with a differently substi-
tuted anthranilic acids in the presence of base to afford carbamate-linked resin. This resin is doubly
coupled with a diverse range of primary amines in the presence of PyBOP to deliver anthranilamide
(Smith et al. 1996). Heating these anthranilamides at 125°C releases the 1,3-disubstituted quinazo-
linediones (Scheme 2.15).

2.2.13 4-HyYDROXYQUINOLIN-2(TH)-ONE

Likewise, therapeutically significant 4-hydroxyquinolin-2(1H)-ones have been synthesized under
solid-phase condition using cyclo-elimination protocol, wherein cyanoacetate-functionalized Wang
resin reacts with isatoic anhydride and Et;N in anhydrous DMF to afford a C-acylated intermediate
(Sim et al. 1998). Heating (80°C) this o.-cyano-B-keto ester results in intramolecular ¢frans-amination
releasing the 4-hydroxyquinolin-2(1H)-one (Scheme 2.16).
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SCHEME 2.15 Synthesis of 1,3-disubstituted quinazolinediones through cyclo-elimination strategy.
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SCHEME 2.17  Synthesis of 4-hydroxy-3-(2'-pyridyl)coumarin through cyclo-elimination strategy.

2.2.14 4-Hyproxy-3-(2’-PYRIDYL) COUMARIN

The 1-benzopyran-2-one moiety, a structural core of coumarins, is often found in more complex
natural products and is frequently associated with numerous biological activities including antican-
cer, antifungal, anti-HIV, and anticlotting. Kurth et al. have synthesized a library of 4-hydroxy-3-
(2'-pyridyl)coumarins using the cyclo-elimination protocol (Liu et al. 2006). The strategy begins
with the attachment of 2-pyridylacetic acid to Merrifield resin through an ester bond using Cs,CO,
in DMF in catalytic amount of KI. Treatment of the substrate with LDA in THF at —78°C and the
resulting lithium enolate on reaction with various 2-bromobenzoyl chlorides give C-acylated prod-
ucts which on key intramolecular ipso-substitution step in xylenes at 140°C afford 4-hydroxy-3-(2'-
pyridyl)coumarins (Scheme 2.17).

2.2.15 C-NuUCLEOSIDES

The C-nucleosides are a unique class of nucleosides in which the glycosidic chain is connected to
the pendant heterocyclic base by a C—C bond instead of the C—N bond of the natural nucleosides. As
a result, they are resistant to the chemical and the enzymatic hydrolytic cleavage of the glycosidic
bond (Cai et al. 2004). The C-nucleosides having C—C linkage between the aglycon and the sugar
moiety are known mainly for their anticancer, antiviral, and antileukemic activities (Burchenal
et al. 1976; Robins et al. 1982; Schaeffer et al. 1978). Tripathi Research Group at CDRI utilizes
cyclo-release strategy to achieve glycosyl ureas in rigid form using Wang resin. The methodology
involves the loading of combinatorial scaffold glycosyl amino acid on Siber amide resin in the pres-
ence of DIC/HOBT/TbTU as the coupling agent. Reductive amination and reaction with different
isocynates followed by the removal of polymer support using 2% TFA in CH,Cl, afford glycosyl
ureas in flexible form in good yield. A combinatorial library of glycosyl ureas in rigid form have
been reported via loading of scaffold glycosyl amino acid with Wang resin in the presence of an
appropriate coupling agent, followed by different sets of reactions through the cyclo-release strategy
in high yield and with excellent purity (Scheme 2.18) (Mishra et al. 2003).

These C-nucleosides have been screened for anti-filarial activities and few of them have shown
significant activity. For detailed biological screening, Tripathi and colleagues have successfully
developed an efficient and versatile method for introducing dihydropyrimidinone skeleton on pro-
tected glucofuranose as well galactopyranose derivatives by reacting glycosyl ureas with DBU as
catalyst and TBAB as co-catalyst in 4 A°’MS (Tewari et al. 2002).

2.2.16  O-GLYCOSYLATION

The O-glycosylation typically performed under Lewis acidic conditions is an essential reaction
in the synthesis of oligosaccharides. A majority of the linkers developed for solid-phase peptide
synthesis can seldom be applied directly to oligosaccharide synthesis due to limited stability under
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SCHEME 2.18 Synthesis of C-nucleoside through cyclo-elimination strategy.

glycosylation conditions (Ito and Manabe 1998). Large numbers of modified linkers have been
investigated so far in order to maximize their suitability to solid-phase oligosaccharide synthesis
(James 1999). Ito et al. have reported one such linker that not just tolerates the glycosylation condi-
tions but also can be cleaved easily under mild conditions. Synthesis of the linker commences with
reaction of 4-hydroxy-3-nitrobenzaldehyde and methyl bromoacetate or fert-butyl bromoacetate in
the presence of K,CO; in CH;CN. Subsequent reduction by NaBH, affords alcohols which after
protection as TBS ether and hydrolysis under alkaline conditions afford the free acid. Coupling of
free acid with poly(ethylene-glycol) methyl ether (PEG) using 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide - HCI (WSCDI) and DMAP followed by desilylation using 5% aq. HF in CH,CN or
BF; - OEt, affords the linker-attached PEG 1. Schmidt glycosylation of linker-attached PEG 1 using
imidate 2 in the presence of TMSOT( as promoter affords resin-bound O-glycoside 3 which on
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SCHEME 2.19  O-Glycosylation through glucose-bound linker.
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SCHEME 2.20 O-Glycosylation through mannose-bound linker.

treatment with Sn(SPh),-PhSHEt;N; affords cyclo-released product 4 in 80% yield, without affect-
ing phthalimide and levulinate groups (Scheme 2.19) (Manabe et al. 2000).

Likewise, mannose-bound, linker-attached PEG 5 under cyclo-release conditions affords
hydroxamic acid 6 in 86% yield. The cleavage of sugar from polymer support by using Sml,, a more
powerful reducing reagent, affords lactam 7 along with hydroxamic acid 6, respectively, in 47% and
32% yield (Scheme 2.20).

2.2.17 DIHYDROPYRIMIDONES

Dihydropyrimidones (DHPMs) represent a heterocyclic system of remarkable pharmacological effi-
ciency. More recently, appropriately functionalized DHPMs have emerged as potent calcium chan-
nel blockers, antihypertensive agents, o,,-adrenergic antagonists, mitotic kinesin Eg5 inhibitors, and
neuropeptide Y (NPY) antagonists (Atwal et al. 1991; Falsone and Kappe 2001; Kappe 2000). Kappe
et al. have used solid-phase cyclo-elimination protocol for the synthesis of a variety of interesting
bicyclic scaffolds such as furo-[3,4-d]-pyrimidines, pyrrolo-[3,4-d]-pyrimidines, and pyrimido-[4,5-d]-
pyridazines. The methodology involves the synthesis of a key support-bound ester by rapid, microwave-
assisted acetoacetylation of the hydroxymethylpolystyrene resin with methyl 4-chloroacetoacetate in
1,2-dichlorobenzene to facilitate transesterification involving a highly reactive R-oxoketene interme-
diate. The immobilized 4-chloroacetoacetate precursor on subsequent three-component Biginelli-
type condensation with aromatic aldehydes and urea in the presence of dioxane/con.HCI (catalyst)
affords 6-chloromethyl-functionalized resin-bound dihydropyrimidones which on microwave (MW)
flash heating in sealed vessels at 150°C using DMF as solvent release the corresponding furo-[3,4-d]-
pyrimidines with high purity. Further reaction of resin-bound chloromethyl precursor with primary
amines and hydrazines under MW condition results in the release of pyrrolo-[3,4-d]-pyrimidines and
pyridazino-[4,5-d]-pyrimidines, respectively (Scheme 2.21) (Perez et al. 2002).
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SCHEME 2.21 Synthesis of bicyclic dihydropyrimidones through cyclo-elimination strategy.
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2.2.18 HETEROSTEROIDS

Chen et al. investigated the solid-phase synthesis of heterosteroids, a class of compounds with
physiological significance of the 11-oxoadenocortical hormones (Hong et al. 2000). Polystyrene
amino resin that couples with carboxylic acids in the presence of coupling agents such as DCC,
HOBt, DMAP affords resin-bound amides. This polymer-bound resin, separately on treatment with
Et;OBF, in THF at 0°C for 1 h followed by the subsequent addition of cyclopentadienyl anions,
affords resin-bound fulvene precursors which on reaction with benzoquinones in C¢H, undergo
hetero [6+43] cyclo-addition to afford a library of heterosteroids (Scheme 2.22).

2.2.19 IMIDAZOQUINAZOLINONES

Solid-phase cyclo-elimination strategy through intramolecular nucleophilic substitution is an
attractive route for the preparation of a variety of medicinally important five-, six-, and seven-
membered heterocyclic compounds in high purity. Kundu et al. have synthesized imidazoquin-
azolinones by starting with the coupling of substituted 2-nitro benzoic acid and Fmoc anthranilic
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SCHEME 2.23  Synthesis of imidazoquinazolinones through cyclo-elimination strategy.

acid to the Rink Amide AM resin using DIC/HOBt method duly monitored by a negative Kaiser
test for complete loading. Reduction of the o-nitro group with SnCl,-2H,0 affords an amine
(Grover et al. 2005; Kesarwani et al. 2005). The amine on further treatment with o-nitro benzal-
dehyde followed by reduction with SnCl, - 2H,0O affords the precursor amine. Subsequent cycliza-
tion using cyanogen bromide gives immobilized 2-aminoquinazoline which on treatment with
ammonium hydroxide results in imidazoquinazolinone (Scheme 2.23).

2.3 CONCLUSION

Natural products have long been an excellent source of pharmaceutical drug discovery and develop-
ment. Solid-phase cyclo-elimination strategy not just offers the opportunity of synthesizing natural
products via novel routes, which may be extremely difficult using traditional solution phase methods,
but also tenders the possibility for rapidly synthesizing drug-like molecules without tedious and time-
consuming purification. Solid-supported cyclization—elimination strategies can effectively be utilized
for the synthesis of numerous heterocyclic structures such as indolines, tetrahydroquinolines, hydro-
benzofuranes, and many more that occur frequently in natural products offering a high degree of struc-
tural diversity, and have proven to be broadly useful as therapeutic agents. The results of such studies
have enriched pharmaceutical research both in the area of new lead discovery and in gathering more
information on structure—activity relationship (SAR), thereby strengthening the field of combinatorial
chemistry. Cyclo-elimination strategies have been found to be effective in the construction of libraries
because of the high purity of the final product released from the support backbone. Furthermore, the
simultaneous cyclization and release of product makes the strategy more efficient than simple trace-
less cleavage. Thus, solid-phase synthesis of various natural product inspired heterocycles that have
been reported to date illustrates several different approaches to the challenge of preparing libraries of
bioactive products and allows the synthesis of many novel chemical structures.
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ABBREVIATIONS

DBU 1,8-diazabicyclo[5.4.0]lundec-7-ene
DCC dicyclohexylcarbodiimide

DHPMs  dihydropyrimidones

DIC diisopropylcarbodiimide

DIPEA diisoproplethylamine

DKPs diketopiperazines

DMAP 4-dimethylaminopyridine

DMFP 1,3-dimethyl-2-fluoropyridinium 4-toluenesulfonate

DNA deoxyribonucleic acid

EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
Fmoc fluorenylmethyloxycarbonyl

GABA gamma-aminobutyric acid

HOBt hydroxybenzotriazole
HPLC high-performance liquid chromatography

IC inhibitory concentration
LDA lithium diisopropylamide
MW microwave

NPs natural products

NPY neuropeptide Y

PBTC polystyrene(di-n-butyltin)chloride
PBTH polystyrene(di-n-butyltin)hydride

PEG poly(ethylene-glycol)

PyBOP benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate
RCM ring closing metathesis

RNA ribonucleic acid

TBAB tetra butyl ammonium bromide

TBS tert-butyldimethylsilyl

TMSOTf  trimethylsilyl trifluoromethanesulfonate
WSCDI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

REFERENCES

Atrash B. and M. Bradley. 1997. A pH cleavable linker for zone dimension assays and single bead solution
screens in combinatorial chemistry. J. Chem. Soc. Chem. Commun. 13:97-98.

Atwal K.S., B.N. Swanson, S.E. Unger et al. 1991. Dihydropyrimidine calcium channel blockers.
3’,3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidine-carboxylic acid esters as orally effec-
tive antihypertensive agents. J. Med. Chem. 34:806-811.

Brodyck J.L.R. 1995. Naturally occurring tetramic acids: Structure, isolation, and synthesis. Chem. Rev.
95:1981-2001.

Burchenal J.H., K. Ciovacco, K. Kalaher et al. 1976. Antileukemic effects of pseudoisocytidine, a new syn-
thetic pyrimidine C-nucleoside. Cancer Res. 36:1520-1523.

Cai D.M., MLJ. Li, D.L. Li et al. 2004. Synthesis of C-nucleoside analogues: 2-[2-(Hydroxymethyl)-1, 3-dioxolan-
5-yl]1, 3-thiazole-4-carboxamide and 2-[2-(Mercaptometh-yl)-1, 3-dioxolan-5-yl] 1,3-thiazole-
4-carboxamide. Chin. Chem. Lett. 15:163-166.



28 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

DeWitt S.H., J.S. Kiely, C.J. Stankovic et al. 1993. Diversomers, an approach to nonpeptidek nonoligomeric
chemical diversity. Proc. Natl. Acad. Sci. USA 90:6909-6913.

Dreyer D.L. and R.C. Brenner. 1980. Alkaloids of some Mexican Zanthoxylum species. Photochemistry
19:935-939.

Eifler-Lima V.L., C.S. Graebin, F.T. Uchoa et al. 2010. Highlights in the solid-phase organic synthesis of natu-
ral products and analogues. J. Braz. Chem. Soc. 21:1401-1423.

Falsone E.S. and C.O. Kappe. 2001. The Biginelli dihydropyrimidone synthesis using polyphosphate ester as a
mild and efficient cyclocondensation/dehydration reagent. ARKIVOC (ii):122-134.

Feher M. and J.M. Schmidt. 2003. Property distributions: Differences between drugs, natural products, and
molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43:218-227.

Fujimoto S., K. Yoshikawa, M. Itoh et al. 2002. Synthesis of (R)- and (S)-muscone. Biosci. Biotechnol. Biochem.
66:1389-1392.

Grover R.K., A.P. Kesarwani, G.K. Srivastava et al. 2005. Base catalyzed intramolecular transamidation of
2-aminoquinazoline derivatives on solid phase, Tetrahedron 61:5011-5018.

Hajduk P.J., WR.J.D. Galloway and D.R. Spring. 2011. Drug discovery: A question of library design. Nature
470:42-43.

Hofle G., N. Bedorf, H. Steinmertz et al. 1996. Epothilone A and B-novel 16-membered macrolides with cyto-
toxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. 35:1567-1569.

Hong B.C., Z.Y. Chen and W.H. Chen. 2000. Traceless solid-phase synthesis of heterosteroid framework. Org.
Lett. 2:2647-2649.

Houston D.R., B. Synstad, V.G.H. Eijsink et al. 2004. Structure-based exploration of cyclic dipeptide chitinase
inhibitors. J. Med. Chem. 47:5713-5720.

Ito'Y. and S. Manabe. 1998. Solid-phase oligosaccharide synthesis and related technologies. Curr. Opin. Chem.
Biol. 2:701-708.

James [.LW. 1999. Linkers for solid phase organic synthesis. Tetrahedron 55:4855-4946.
Joseph C.G., K.R. Wilson, M.S. Wood et al. 2008. The 1,4-benzodiazepine-2,5-dione small molecule template
results in melanocortin receptor agonists with nanomolar potencies. J. Med. Chem. 51:1423-1431.
Kamat V.P,, H. Hagiwara, T. Katsumi et al. 2000. Ring closing metathesis directed synthesis of (R)-(—)-Muscone
from (+)-Citronellal. Tetrahedron 56:4397-4403.

Kappe C.0O. 2000. Biologically active dihydripyrimidones of the bignelli-type, a literature survey. Eur: J. Med. Chem.
35:1043-1052.

Karwowski J.P., M. Jackson, R.J. Theriault et al. 1992. Tirandalydigin, a novel tetramic acid of the tiranda-
mycin-streptolydigin type I taxonomy of the producing organism, fermentation and biological activity.
J. Antibiot. 45:1125-1132.

Kesarwani A.P., R.K. Grover, R. Roy et al. 2005. Solid-phase synthesis of imidazoquinazolinone derivatives
with three-point diversity. Tetrahedron 61:629-635.

Kowalski J. and M.A. Lipton. 1996. Solid-phase synthesis of diketopiperazine catalyst containing the unnatural
amino acid (S)-norarginine. Tetrahedron Lett. 37:5839-5840.

Kulkarni B.A. and A. Ganesan. 1997. Ion-exchange resins for combinatorial synthesis: 2.4-pyrrilidinediones by
Dickmann condensation. Angew. Chem. Int. Ed. 36:2454-2455.

Kulkarni B.A. and A. Ganesan. 1998. Solid-phase synthesis of tetramic acids. Tetrahedron Lett. 39:4369-4372.

Kwon O.S., S.H. Park, B.-S. Yun et al. 2000. Cyclo(dehydroala-L-Leu), an a-glucosidase inhibitor from
Penicillium sp. F70614. J. Antibiot. 53:954-958.

Lader M. 2008. Effectiveness of benzodiazepines: Do they work or not? Expert Rev. Neurother. 8:1189-1191.

Lang G., A.LJ. Cole, J.W. Blunt et al. 2006. An unusual oxalylated tetramic acid from the New Zealand
Basidiomycete Chamonixia pachydermis. J. Nat. Prod. 69:151-153.

LiuY., A.D. Mills, and M.J. Kurth. 2006. Solid phase synthesis of 3-(5-arylpyridin-2-yl)-4-hydroxycoumarins.
Tetrahedron Lett. 47:1985-1988.

Loevezijn A., J.H. Maarseveen, and K. Stegman. 1998. Solid-phase synthesis of fumitremorgin, verruculogen,
and tryprostatin analogs based on a cyclization/cleavage strategy. Tetrahedron Lett. 39:4737-4740.

van Maarseveen J.H., J.A.J. den Hartog, V. Engelen et al. 1996. Solid phase ring closing metathesis: Cyclization/
cleavage approach towards a seven membered cyclolefin. Tetrahedron Lett. 37:8249-8252.

Manabe S., Y. Nakahara and Y. Ito. 2000. Novel nitro Wang type linker for polymer support oligosaccharide
synthesis; Polymer supported acceptor. Synlett 1241-1244.

Martins M.B. and I. Carvalho. 2007. Diketopiperazines: Biological activity and synthesis. Tetrahedron 63:9923-9932.

Mattews J. and R.A. Rivero. 1998. Solid-phase synthesis of substituted tetramic acids. J. Org. Chem. 63:4808-4810.

Mayer J.P., J. Zhang, K. Bjergarde et al. 1996. Solid-phase synthesis of 1,4-benzodiazepine-2,5-diones.
Tetrahedron Lett. 37:8081-8084.



Cyclorelease Strategy in NP-Inspired Molecules 29

Merrifield R.B. 1963. Solid phase peptide synthesis I: The synthesis of a tetrapeptide. J. Am. Chem. Soc.
85:2149-2154.

Michael J.P. 2007. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 24:223-246.

Mirocha C. J., S.V. Pathre, J. Behrens et al. 1978. Uterotropic activity of cis and trans isomers of zearalenone
and zearalenol. Appl. Environ. Microbiol. 35:986-987.

Mishra R.C., N. Tewari, K. Arora et al. 2003. DBU-Assisted cyclorelease elimination: Combinatorial synthesis
and y-glutamyl cysteine synthetase and glutathione-S-transeferase modulatory effect of C-nucleoside
analogs. Comb. Chem. High Throughput Screen. 6:37-51.

Mishra B.B. and V.K. Tiwari. 2011. Natural products: An evolving role in future drug discovery. Eur. J. Med.
Chem. 46:4769-4807.

Mishra B.B., D. Kumar, A. Mishra, P.P. Mohapatra and V.K. Tiwari. 2012. Cyclorelease strategy in solid-phase
combinatorial synthesis of heterocyclic skeletons. Adv. Heterocycl. Chem. 107:41-99.

Muhlradt P.F. and F. Sasse. 1997. Epothilone B stabilizes microtubuli of macrophages like taxol without show-
ing taxol-like endotoxin activity. Cancer Res. 57:3344-3346.

Newman D.J., G.M. Cragg and K.M. Snader. 2003. Natural products as sources of new drugs over the period
1981-2002. J. Nat. Prod. 66:1022-1037.

Nicholson B., G.K. Lloyd, B.R. Miller et al. 2006. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evi-
dence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drugs 17:25-31.

Nicolaou K.C., J. Pastor, N. Winssinger et al. 1998a. Solid-phase synthesis of macrocycles by an intramolecular
ketophosphonate reaction. Synthesis of a (dl)-Muscone library. J. Am. Chem. Soc. 120:5132-5133.
Nicolaou K.C., N. Winssinger, J. Pastor et al. 1997. Synthesis of epithiolones A and B in solid and solution

phase. Nature 387:268-272.

Nicolaou K.C., N. Winssinger, J. Pastor et al. 1998b. Solid-phase synthesis of macrocyclic system by cyclo-
releases strategy: Application of the Stille coupling to a synthesis of (S) zearalenone. Angew. Chem. Int.
Ed. 37:2534-2537.

Olkkola K.T. and J. Ahonen. 2008. Midazolam and other benzodiazepines. Handb. Exp. Pharmacol.
182:335-360.

Olsen M. 1985. Inducing effect of testosterone on the hepatic reduction of zearalenone in the female prepuber-
tal rat. Mycotoxin Res.1:51-56.

Park K.-H. and M.J. Kurth. 2000. Cyclo-elimination release strategies applied to solid-phase organic synthesis
in drug discovery. Drugs Fut. 25:1265-1294.

Perdih A. and D. Kikelj. 2006. The application of Freidinger lactams and their analogs in the design of confor-
mationally constrained peptidomimetics. Curr. Med. Chem. 13:1525-1556.

Perez R., T. Beryozkina, O.I. Zbruyev et al. 2002. Traceless solid-phase synthesis of bicyclic dihydropyrimi-
dones using multidirectional cyclization cleavage. J. Comb. Chem. 4:501-510.

Piscopio A.D., J.LE. Miller and K. Koch. 1997. Solid phase heterocyclic synthesis via ring closing metath-
esis: Traceless linking and cyclative cleavage through a carbon-carbon double bond. Tetrahedron Lett.
38:7143-7146.

Piscopio A.D., J.F. Miller and K. Koch. 1998. A second generation solid phase approach to Freidinger lactum:
Application to Fukuyama’s amine synthesis and cyclative release via ring closing metathesis. Tetrahedron
Lett. 39:2667-2670.

Piscopio A.D., J.F. Miller and K. Koch. 1999. Ring closing metathesis in organic synthesis: Evolution of a high
speed, solid phase method for the preparation of 8-turn mimics. Tetrahedron 55:8189-8198.

Raillard S.P., G. Ji, A.D. Mann et al. 1999. Fast scale-up using solid-phase chemistry. Org. Proc. Res. Dev. 3:177-183.

Rinehart K.L. and D. Borders. 1963. Streptolydigin. II. Ydiginic Acid. J. Am. Chem. Soc. 85:4037-4038.

Rivero I.A., K. Espinoza and R. Somanathan. 2004. Synthesis of quinazoline-2,4-dione alkaloids and ana-
logues from Mexican Zanthoxylum species. Molecules 9:609—616.

Robins R.K., P.C. Srivastava, V.L. Narayanan et al. 1982. 2-3-D-ribofuranosylthiazole-4-carboxamide, a novel
potential antitumor agent for lung tumors and metastases. J. Med. Chem. 25:107-108.

Romoff T.T., L. Ma, Y. Wang et al. 1998. Solid-phase synthesis of 3-scyl-2,4-pyrrolidiones (3-acyl tetramic
acids) via mild cyclative cleavage. Synlett 1341-1342.

Samiulla D.S., V.V. Vaidyanathan, P.C. Arun et al. 2005. Rational selection of structurally diverse natural prod-
uct scaffolds with favorable ADME properties for drug discovery. Mol. Divers. 9:131-139.

Schaeffer H.J., L. Beauchamp, P. de-Miranda et al. 1978. 9-(2-Hydroxyethoxymethyl)-guanine activity against
viruses of the herpes group. Nature 272:583-585.

Sim M.M., C.L. Lee and A. Ganesan. 1998. Solid-phase combinatorial synthesis of 4-hydroxyquinolin-2(1H)-
ones. Tetrahedron Lett. 39:6399-6402.



30 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

Sinha S., R. Srivastava, E. De Clercq et al. 2004. Synthesis and antiviral properties of arabino and ribonucleo-
sides of 1,3-dideazaadenine, 4-nitro-1,3-dideazaadenine and diketopiperazine. Nucleos. Nucleot. Nucleic
Acids 23:1815-1824.

Smith A.L., C.G. Thomson and P.D. Leeson. 1996. An efficient solid phase synthetic route to 1,3-disubstituted
2,4(1H,3H)-quinazolinediones suitable for combinatorial synthesis. Bioorg. Med. Chem. Lett. 6:1483—-1486.

Stob M., R.S. Baldwin, J. Tuite et al. 1962. Isolation of an anabolic, uterotrophic compound from corn infected
with Gibberella zeae. Nature 196:1318.

Szardenings A.K., T.S. Burkoth, H.H. Lu et al. 1997. A simple procedure for the solid-phase synthesis of dik-
etopiperazine and diketomorpholine derivatives. Tetrahedron 53:6573—-6593.

Tewari N., R.C. Mishra, V.K. Tiwari and R.P. Tripathi. 2002. DBU catalyzed cyclative amidation reaction: A
convenient synthesis of c-nucleoside analogs. Synlett 11:1779-1782.

Thompson L.A. and J.A. Ellman. 1996. Synthesis and applications of small molecule libraries. Chem. Rev.
96:555-600.

Tripathi R.P.,, R.C. Mishra and V.K. Tiwari. 2012. Solid-phase combinatorial synthesis of carbohydrate-
containing ureas with four point diversity. Trends Carbohydr. Chem. 4(3):28-44.

Verdine G.L. 1996. The combinatorial chemistry of nature. Nature 384:11-13.

Vogtle M.M. and A.L. Marzinzik. 2004. Synthetic approaches towards quinazolines, quinazolinones and quin-
azolinediones on solid phase. Mol. Informat. 23:440-459.

Wang H. and A. Ganesan. 1999. The N-acylimium Pictet-Spengler condensation as a multicomponent combi-
natorial reaction on solid and its application to the synthesis of demethoxyfumitremorgin C analogues.
Org. Lett. 1:1647-1649.

Wang H. and A. Ganesan. 2000. Total synthesis of the fumiquinazoline alkaloids: Solid-phase studies. J. Comb.
Chem. 2:186-194.

Wang H., T. Usui, H. Osada et al. 2000. Synthesis and evaluation of tryprostatin B and demethoxyfumitremor-
gin C analogues. J. Med. Chem. 43:1577-1585.

Weber L., P. laiza, G. Bbringer et al. 1998. Solid-phase synthesis of 3-acetyltetramic acids. Synlertr 1156-1158.

Wolf D., EJ. Schmitz, F. Qiu et al. 1999. Aurantoside C, a new tetramic acid glycoside from the sponge
Homophymia conferta. J. Nat. Prod. 62:170-172.



Synthesis and Biological
Studies of Novel -Lactams*

Bimal K. Banik

CONTENTS
3.1 TREFOQUCTION ..ttt sttt ettt e 31
3.2 BiOlOZICAl ACHIVILIES. .eeueiitieiiitieieetieteetteet ettt ettt ettt ettt ettt b et b et sb e et ebeeteeseenaeenees 32
3.2.1 Antibacterial Activity: Inhibitors of B-Lactamases..........ccccecervererieereeerieereeereeenen. 32
3.2.2 Inhibitors of Various ENZYMES .......cccccceeriiriiriiiiiriiieneeieieeeeeeee e 32
3.2.3 Azetidin-2-ones as Vasopressin V1a Antagonists .........c.cceeveevvereerieneenieneenenneeneennes 32
3.2.4 Hypocholesterolemic and Antihyperglycemic ACtiVIty .......cccccoveevuerienereenenreencnnne. 33
3.2.5  ADUCANCET ACHVIEY ..eetiiuiiriietietietieiie sttt ettt et sttt ettt ettt e et e e sbeetesaeenaeenees 33
3.2.6  ADLIVITAL ACHVIEY ..eoiiitiiiiitieiietieteeet ettt ettt ettt ettt s e e st e saeenees 33
3.3 Synthesis of IMportant B-LacCtams .........cccceirieirieirieirieieieieiee ettt 33
3.4 Concluding REMATKS .....cc.ooiiiiiiiiiiieiieieeee ettt 67
ACKNOWIEAGIMENE ......eouieiieiieiieeeit ettt sttt s b et e a et ebe et esee bt et enaeenees 67
RETETEIICES ...ttt ettt ettt 67

3.1 INTRODUCTION

B-lactam nucleus is necessary for the biological activity of a large number of antibiotics. These
are four-membered ring compounds and occasionally fused with side chains, unsaturated groups,
heteroatoms, and cyclic ring systems. After the discovery of B-lactam antibiotics as useful active
agents, past research has witnessed a remarkable growth in the field of B-lactams chemistry
(Bose et al. 2000a,b, Singh 2004). The need for challenging B-lactam antibiotics as well as effec-
tive B-lactamase inhibitors has prompted synthetic organic and medicinal chemists to synthesize
new functionalized 2-azetidionones. Besides their clinical use as antibiotics, these compounds
have also been used in the preparation of various herterocyclics of biological importance (Bose
et al. 2000a,b Manhas et al. 2000a,b). The use of B-lactams as therapeutic agents for lowering
cholesterol has been demonstrated (Burnett et al. 1994, Clader et al. 1996). Studies on the human
leukocyte elastase inhibitory mechanisms of this class of compounds have also been conducted
(Finke et al. 1995). As a result, significant attention has been paid by chemists to continue work-
ing on novel B-lactam synthesis, based either on new or established methodologies or on the
chemical manipulation of preexisting groups preserving at the four-membered ring.

We present herein a description of some of the most significant contributions on the preparation
of the B-lactam structures published in various journals since 2000. The structural modification
of functional groups linked to the nitrogen N-1, the C-3, or the C-4 carbon atoms is examined.
Moreover, a concise survey of the literature on the biological and pharmacological applications of
the 2-azetidinone compounds is also included.

* This chapter is dedicated to Professor LeMaster for his constant support, encouragement, and interest in our work.
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3.2 BIOLOGICAL ACTIVITIES

In this section, a synthetic survey of the significant biological and pharmacological applications of
B-lactam derivatives is discussed. This has been described in a book edited by Banik (Banik 2010)
and particularly in a similar contribution by Troisi et al. (2010).

3.2.1 ANTIBACTERIAL ACTIVITY: INHIBITORS OF f3-LACTAMASES

The emergence of pathogenic microorganisms resistant to many antibiotics is a crucial clinical
challenge (Cohn 1992, Neu 1992, Davies 1994). The most useful mechanism for resistance to
B-lactams is the ability of bacteria to generate B-lactamases (Yang et al. 1999, Kuzin et al. 2001).
These enzymes hydrolyze the B-lactam ring, thus inactivating the antibiotics. Studies of amino
acid sequence homology have identified four classes of B-lactamase: A, B, C, and D. However,
classes A and C are currently the most common in human disease. A successful treatment in
overcoming the undesired action of these enzymes has been the coadministration of B-lactamase
inhibitors with common B-lactam antibiotics. However, this method has been compromised by
the discovery of new variants of B-lactamases (Belaaouaj et al. 1994, Brun et al. 1994, Sirot
et al. 1994). On this basis, the development of novel B-lactam inhibitors to withstand inactiva-
tion by the diversity of B-lactamases has been considered an ongoing research agenda. Several
monocyclic B-lactams have also been proved to have antibacterial activity with unique mecha-
nisms of action.

3.2.2 INHIBITORS OF VARIOUS ENZYMES

Leukocyte elastase (LE) is expressed by polymorphonuclear (PMN) leukocytes, mainly nutrophils,
which acts to kill engulfed pathogens through an intracellular process (Sternlicht and Werb 1999).
Because LE has the ability to degrade some proteins of the extracellular matrix (ECM), for example,
elastin, fibronectin, and collagens, excess of LE activity has been found in a number of pathological
situations that lead to the impairment of ECM organization (theumatoid arthritis, emphysema, cys-
tic fibrosis, and tumor progression). LE also stimulates the proenzymatic components of matrix
metalloproteinase (MMP)-9 (Sternlicht and Werb 1999) released by the PMN leukocytes and key
to their extravasation (Delclaux 1996, Esparza 2004). A number of (3-lactams, widely used as anti-
microbials, have been shown to act as inhibitors of these serine enzymes. Inhibitors of LE and HLE
have similarities in their structures. Many of them are built on the cephem system and are bicyclic
compounds (clavams and cephalosporins).

Many other representatives of the class of B-lactams have also been found to effectively inhibit
proteases. 2-Azetidinones have also been discovered as novel inhibitors of thrombin, a serine prote-
ase involved in both venous and arterial thrombotic episodes. Analogous compounds have also been
found to display inhibition toward tryptase.

3.2.3 AZETIDIN-2-ONES AS VASOPRESSIN V1A ANTAGONISTS

The neurohypophysical hormones vasopressin and oxytocin exhibit many physiological prop-
erties. They bind to specific membrane receptors belonging to the G protein-coupled receptor
superfamily (Jard et al. 1998). Three pharmacologically active vasopressin receptor subtypes
and one oxytocin receptor have been known (Jard et al. 1998). Vasopressin acts in the cardiovas-
cular system. However, it also works in the central nervous system (CNS). Arginine vasopressin
expresses a neurochemical signal in the brain. Vasopressin, through the vasopressin 1A receptor
(V1a) in particular, can stimulate aggressive behavior of animal and human. It has been dem-
onstrated that specific B-lactam can also work as the essential scaffold of several antagonists
directed to the vasopressin Vla receptor.
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3.2.4 HYPOCHOLESTEROLEMIC AND ANTIHYPERGLYCEMIC ACTIVITY

Atherosclerotic coronary artery disease (CAD) is one of the major causes of death. Reducing
dietary fat and cholesterol is considered the best therapy. But use of effective pharmacological
compounds has led to an increased use of drug therapy to control cholesterol. Serum cholesterol
can be minimized by targeting endogenous cholesterol biosynthesis, promoting hepatic choles-
terol clearance from the plasma, and inhibiting the absorption of dietary and biliary cholesterol.
2-Azetidinones have been studied as important inhibitors of cholesterol absorption. It is interesting
to note that monocyclic B-lactams have been reported for antidiabetic activity, because they can
control hypercholesterolemia.

3.2.5 ANTICANCER ACTIVITY

Recently discovered anticancer monocyclic and bicyclic B-lactam systems (Veinberg et al. 2000)
indicate that azetidin-2-one pharmacophore is of inexhaustible pharmacological potential on
account of the specific ability of its numerous derivatives to inhibit not only bacterial enzymes
but also mammalian serin and cyctein proteases (Finke et al. 1993). As a measure of cytotoxic-
ity, several compounds have been assayed against nine human cancer cell lines (Banik et al. 2003
and subsequent papers in this series). A clan of new B-lactam antibiotics based on N-methylthio-
substituted 2-azetidinones also demonstrated apoptosis-inducing properties against human solid
tumor cell lines such as breast, prostate, and head-and-neck (Smith 2002).

3.2.6 ANTIVIRAL ACTIVITY

Human cytomegalovirus (HCMV) is a crucial member of the herpes virus family. Most infections
are asymptomatic. Severe manifestations of HCMV can also be seen in individuals whose immune
system has been weakened by diseases (cancers and AIDS) (Holwerda 1997, Field 1999, Waxman
and Darke 2000). Due to its critical function in capsid assembly and viral maturation, studies on
HMCYV serine protease has become an attractive target for the clinical development of anti-HMCV
drugs (Deziel and Malenfant 1998).

3.3 SYNTHESIS OF IMPORTANT B-LACTAMS

The results of the experiments carried out with N-(silyl) imine 2 and TIPS-ketene 1 (Bacchi et al.
1998) for the preparation of B-lactam were noteworthy. Under certain conditions, [4 + 2] cyclo-
addition of this imine with TAS-vinylketene gave products in perfect yield; however, in some
instances, a good yield of the [2 + 2] cycloadduct 3 was obtained. This was performed by a reac-
tion without solvent at higher temperature. The operation of unique and different mechanisms for
the two types of cycloadditions—stepwise [2 + 2] for 1 and concerted [4 + 2] for the much more
facile reaction of vinylketene—explained this serious observation. In contrast, both reactions
proceeded by stepwise pathways where the determining rate 67 electrocyclic closure in the [4 + 2]
process occurs far sooner than the 4m electrocyclization involved in the [2 + 2] cycloaddition
reaction of 1 (Scheme 3.1).

o _ 70°C, 20 h O\ SiMes
I Me;Si 140°C, 3 h ——N
C . )lN\ (no solvent)
)J\ 71% 5
%,
(i-Pr)5Si H H Ph (i-Pr)5Si / “Ph
1 2 3

SCHEME 3.1 [2 + 2]-Cycloaddition between N-(silyl) imine 2 and TIPS-ketene 1.
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Ketene-imine cycloaddition is one of the best ways of synthesizing the framework of interest
(Staudinger 1907). Bose et al. demonstrated that penam derivatives formed with the desired ste-
reochemistry if A%-thiazolines were reduced with ketenes and generated in situ from base and acid
chlorides (Bose et al. 1974). However, the compounds were not optically active and the reported
yields were a low 11% when A’-thiazolines such as 5 were used. To overcome the problem, an
attempt to increase the yield in the cycloaddition step via a selenium-A?-thiazoline was reported
afterward. Most importantly, the yields in the cycloadditions reached up to 92%. Four steps, with a
total yield of <20%, were necessary to synthesize the selenium-containing thiazoline. A reductive
demethylselenation step had to be performed after the cycloaddition. Additionally, acid chlorides
were not suitable for the assembly of acyl ketenes 7. Other reports (Yamamoto et al. 1987) sug-
gested Meldrum’s acid derivatives (e.g., 4) as acyl ketene components. The simplicity with which
ketenes were created from derivative 4 was exceptional since a suitable method tolerant of differ-
ent functional groups was required to facilitate the synthesis of optically active B-lactams. There
were no previous reports on cycloadditions between ketenes generated in situ from Meldrum’s acid
derivatives and A’-thiazolines. They reacted under anhydrous and acidic conditions to give the pre-
ferred optically active B-lactams with complete stereoselectivity (Scheme 3.2). The A>-thiazoline
5 was prepared in two steps. It was prepared from commercially available L-cysteine methyl ester
hydrochloride (Almqvist 1998) with an overall yield of >70%. Additionally, the derivatives 4 were
easily synthesized from Meldrum’s acid and acid chlorides in >80% yields (Yamamoto et al. 1987).
No decomposition was detected in all derivatives prepared while stored in the freezer. A series of
penam derivatives were created with aryl-, n-hexyl-, and cyclohexyl substituents. Excellent yields of
the corresponding B-lactams 6a, 6b, 6e, and 6f were accomplished (72%—-93%). However, the yields
were somewhat lower when a methylene group was present between the carbonyl group and the aryl
moiety. Compounds 6¢ and 6d were obtained in 62% and 65% yields, respectively (Scheme 3.2).

The regio and diastereoselectivity of the carbon—carbon bond formation were investigated through
the indium-mediated reaction between the 2,3-azetidinedione (+)-8 and propargyl bromide in aque-
ous tetrahydrofuran at room temperature. The product was obtained with total diastereoselectivity of
the 3-substituted 3-hydroxy-f-lactam. The observed regioselectivity however was very poor (42:58)
in favor of the allenic product. The regiochemical preference was reversed on the indium-promoted
reaction simply by changing the solvent. A saturated aqueous solution of NH,ClI in Tetrahydrofuran
(THF) was used instead of aqueous tetrahydrofuran, with the expected alcohols (+)-9 and (+)-10 being
obtained as a mixture of regioisomers in a ratio of 71:29. This initial result encouraged to find a bet-
ter reagent for this transformation. The optically pure homopropargyl alcohol (+)-9 as single regio

R
A W \\\S
DryHCl@) © o
\\\\ Dry benzene
5°C — Reflux ~—N
0 (0)
CO,Me
5 6 COZME
(0]
Via (6a) R =Ph (81%)

(6b) R = 1-Naphthyl (93%)

R (6¢c) R = CH,-1-Naphthyl (62%)
| (6d) R = CH,-2-Naphthyl (65%)
” (6e) R = Cyclohexyl (72%)
(6f) R = n-Hexyl (80%)
(69) R = Me (38%)

SCHEME 3.2 Synthesis of f-lactams 6a—g.
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and diastereoisomer in a reasonable 70% yield was obtained when the above reaction was mediated
by zinc and conducted in a saturated aqueous solution of NH,Cl in THF at 0°C. Nonetheless, the
yield could not be improved when the zinc-mediated coupling of the 2,3-azetidinedione (+)-8 and
propargyl bromide in anhydrous THF in the presence of solid NH,Cl was carried out. There was no
observed reaction in anhydrous THF when the NH,Cl was suppressed. The change of the solvent
from tetrahydrofuran/NH,Cl (aqueous saturated) to methanol/NH,Cl (aqueous saturated) resulted in
loss of regioselectivity. Similarly, when propargylmagnesium bromide was added to the dione (+)-8,
the homopropargylic alcohol was prepared as a major product. This product contained 15% of the
homoallenic alcohol. The tin-mediated reaction between ketone (+)-8 and propargylbromide in aque-
ous tetrahydrofuran resulted in lack of coupling. On the other hand, when the same experiment was
performed in a saturated aqueous solution of NH,Cl in THF, the homoallenyl alcohol was formed as
major product. Allenylation with propargyl bromide in anhydrous THF using the copper (II)/tin(II) as
the promoter lowered the regioselectivity (34:66) (Yi et al. 1998). Efforts to promote the copper (I1)/
tin(II)-mediated propargylation in Dimethylformamide (DMF) were also demonstrated to be sluggish.
Comparable results were obtained in the metal-mediated Barbier reactions of different N-substituted
azetidine-2,3-diones 8, with propargyl bromide (Scheme 3.3).

The next focus was to identify an allenylation method that proceeds in a regio and diastereose-
lective fashion. Metal-mediated reactions of 2,3-azetidinediones 11 with propargyl bromides with
an aliphatic or an aromatic substituent at the terminal position afforded the homoallenyl alcohol 13
(Scheme 3.4). This result was in contrast to the metal-promoted reaction of propargyl bromide (Isaac
and Chan 1995, Yi et al. 1998). Due to structural differences in the organometallic reagents, the
difference in behavior in different products was attributed. A metallotropic rearrangement between
the propargylmetal and allenylmetal species was speculated. This suggests that both intermediates
were able to react with the 2,3-azetidinediones 11, through a six-membered transition state, leading
to homoallenyl or homopropargylic alcohols (Scheme 3.5) (Isaac and Chan 1995, Yi et al. 1998).

The ester enolate—imine condensation was tested in the liquid phase on model compound 16.
This reaction afforded B-lactam 17 in 71% yield. Relative configuration of 17 was determined by
NOE experiments (Scheme 3.6).

Optically pure substrates starting from (—)-(1R)-tricarbonyl[N-(2-fluorobenzylidene)-4-methoxyaniline]
chromium 18 were reported (Scheme 3.7). Imine 18 was obtained in nearly quantitative yield.
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SCHEME 3.3 Metal-mediated Barbier reactions of different N-substituted azetidine-2,3-diones 8 with

propargyl bromide.
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SCHEME 3.4 Formation of homoallenyl alcohol 13 through metal-mediated Barbier reaction.
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SCHEME 3.5 Plausible metallotropic rearrangement between the propargylmetal and allenylmetal leading
to the formation of homoallenyl or homopropargylic alcohols.

(@) 1.2.2 equiv. of LIHMDS, THF, -78°C, 20 min;
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SCHEME 3.6 Synthesis of f-lactam 17.
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SCHEME 3.7 Optically pure p-lactams starting from (—)-(1R)-tricarbonyl[N-(2-fluorobenzylidene)-
4-methoxyaniline]Jchromium 18.

This was obtained from the corresponding (-)-(1R) benzaldehyde complex (Baldoli et al. 1991). Cis-[3-
lactam 19 was obtained in 94% yield as a single diastereoisomer on [2 + 2] cycloaddition of imine (+)-1
and acetoxyacetyl chloride at 0°C in the presence of Et;N in CH,Cl,. The corresponding cis 3-hydroxy
-lactam 20 was then prepared by treatment of 19 with hydrazine in methanol in 85% yield was pre-
pared, intermediate for the tricyclic structure. The intramolecular displacement of the fluorine atom in
20 was performed by treatment with NaH at room temperature. This reaction produced product 21 as
a single diastereoisomer in 50% yield. Spectroscopic and analytical data were consistent with the tricy-
clic structure. An exposure of 21 to air and sunlight in CH,Cl, solution gave uncomplexed 22. A single
crystal of racemic complex 21 by x-ray confirmed the (Burla et al. 1989) tricyclic structure. The Cr(CO),
group lies on the opposite side of the C-3 and C-4 hydrogens of the B-lactam ring.

Synthesis of -lactams 25a—d at moderate temperature in good yields and excellent stereose-
lectivity (Scheme 3.8, Table 3.1) was achieved using ketene compounds derived from carbohydrate
and different acyclic imines. When triethylamine and the imine were subsequently added at 0°C to
a solution of the acid 23 and 24 in dichloromethane, best results were found. For all compounds,
a ratio of >99:1 was found of the two possible diastereomeric cis products. No trans-configured
product could be observed. The absolute configuration was established by x-ray structure analysis of
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SCHEME 3.8 Synthesis of p-lactams 25a—d.

TABLE 3.1
Preparation of Optically Active f-Lactams Starting
from Furanose Derivative

Compound Yield [%]? drb

R R’
25a @ @ 67 >99:1
25b @ @ow 69 >99:1
25¢ N@ @ 71 599:1
25d N@ @ow 58 >99:1

@ Isolated yield.

25d (Sheldrick 1990). Since there are small variations in the imine structures, an identical (35,4R)-
configuration for 25a—c was expected.

Introduction of chiral groups onto the enamidic structure was achieved by the usual synthetic pro-
cedure (Speckamp and Hiemstra 1985). Enamides 26 were reacted with Mn(OAc), - 2H,0 in glacial
acetic acid (Scheme 3.9). As expected, trans azetidinones 29 were formed. With regard to product
stereochemistry, enamides (obtained from (R)-(+)- and (S)-(-)-phenylethylamine, respectively) gave
no diastereoselective reaction. Enamides obtained from cyclohexyl and naphthylamine gave better
stereochemical results. Consequently, different enamide 26 were prepared, and their reactions with
Mn(III) were investigated. A considerable level of diastereoselection (ca. 80:20 dr) was observed
when the enamide chiral center was linked to a secondary or tertiary carbon as R2. Disappointingly,
the structure of the prevalent oily diastereoisomers could not be determined by either x-ray diffrac-
tion data or normal spectral analysis. However, semiempirical molecular calculations suggested that,
when a stereoselection is detected, the prevailing compound is the diastereoisomer 29”.

Experiments were performed using achiral hydrazones 30a and 30b as well as in sifu-generated ben-
zyloxyketene as model compounds. These reactions in toluene led to the configuration of desired cyclo-
adducts 32a and 32b in 84% and 67% yields, respectively. Differences in nucleophilicity determined the
product distribution (Lassaletta et al. 1996, Fernandez et al. 1998). Additionally a strong influence of the
solvent was recognized. Use of chloroform, CH,Cl,, THF, or Et,O resulted in the formation of complex
mixtures. 1-benzyloxy-3-(pyrrolidin-1-ylimino)-propan-2-one and its dimethyl analog (1,2 adducts to
the ketene) were major products. Formaldehyde SAMP hydrazone 30 (Enders et al. 1996) reacted with



Synthesis of Bioactive B-Lactams 39

(0] Ph

MeO = Ph
Mn(l) MeO H\
_—
N 2

R
o o o \\\\\
R1
26 H
4-exo-trig
o} Ph 0
=
MeO o MeO 2
+
I 2 ,
—— 4 N ‘\\\\\\R VA \\\\\R -
(0} O
R! R1
28 H 58 H
Mn(OAc);
0 Ph 0
OAc )|
Ph t,,
MeO ‘\\\\\ MeO “,
+
—N

2
o) \[\““R o
1 R1
ho H
29’ 297
SCHEME 3.9 Introduction of chiral groups onto enamidic structure.

ketene 31 in a comparable way. The low inductions observed, however, prompted investigation of the
behavior of available hydrazones 30 (Fernandez et al. 1998) which have quaternary residues. The higher
steric hindrance in these reagents resulted in an increase in activity in the cycloaddition method (d.r.
values of 81:19 and 84:16). In some cases, both diastereomers (R, S)—and (S, S)-32e could be separated
by flash chromatography. Using this method afforded a satisfactory 80% yield of the major diastereomer
(R, S)-32 in a single step (Scheme 3.10). Furthermore, the behavior of the C,-symmetric reagent 30 was
investigated. This reagent is of considerable importance because of several reasons. A better stereoselec-
tivity could be expected due to the frequently observed benefits for C,-symmetric auxiliaries (Whitesell
1989). The incidence of two neighboring groups at both sides (C-2 and C-5) of the C—N double bond and
the rigidity present in the 1,3 dioxane rings should impede the planar conformation associated with the
opposing nucleophilic reactivity of the azomethine carbon (Pareja et al. 1999). The parent hydrazine was
prepared from D-mannitol in bulk quantities in a few steps (Defoin et al. 1991).

Cycloaddition of hydrazones 30 to various o-amino-ketenes 33 and (R)-34 was also investigated.
The best results were obtained by using suitable o.-amino acid derivatives and 2-chloro-N-methyl pyri-
dinium iodine in this case for the ketene formation (Amin et al. 1979). With these conditions, adduct
35 was obtained in 93% yield as a 82:18 mixture of diastereomers. As expected, a “matched” double
induction experiment using (R)-34 (Evans and Sjogren 1985) provided the corresponding adduct 36 as
a single diastereoisomer. Moreover, compound 35, which has the opposite S configuration at C-3, was
also obtained in good yield, as a single diastereoisomer from the reaction of 30 with 33 (Scheme 3.10).
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SCHEME 3.10 Diastereosynthesis of f-lactams 25a—d.

o-Acetoxy-B-lactams (37) were hydrolyzed to alcohols (38) in excellent yields. This was done
under very mild conditions (Brieva et al. 1993). Subsequent oxidations were performed by treatment
with DMSO in the presence of phosphorus pentoxide (Palomo et al. 1994). This was conducted to
give o-keto-B-lactams (39) in good yields as shown in Scheme 3.11.

Aldimines would be anticipated to react with ynolates 42 to yield B-lactam enolates. Barrett et al.
(Adlington et al. 1981) and Murai et al. (Kai et al. 1996) reported that phenyl-substituted and silyl-
substituted ynolates were added to aldimines bearing an electron-withdrawing substituent to provide
B-lactams (2:1 adducts) at —60°C and o,3-unsaturated amides, respectively. It was also reported that
lithium ynolates added to N-sulfonyl imines afforded B-lactam 43 (1:1 adducts) at —=78°C (Scheme
3.12) (Shindo et al. 1998). The cycloaddition of the lithium ynolate with the N-2-methoxyethyl imine
was attempted; however, the reaction proceeded very slowly. The N-2-methoxyphenyl (OMP) aldi-
mine as a substrate was then investigated. It was expected that the 2-methoxy group may act as a

~

ACO//II ‘\\\\ R HO//r, ‘\\\\ R 0 R
KOH P4040 \_\‘\
_— —_—
DMSO
—N —N
o N o’ N 7N
PG PG (e} PG
37 38 39

SCHEME 3.11 Formation of a-keto-f-lactams 39.



Synthesis of Bioactive B-Lactams |

SO,Tol o
oV2 Bu

CO,Et - T I
Bu 2 ~ Bu OFEt Ph "

. _ L I .
tert-BuLi L.>_{— | > BuU———0l —g5cosn L
B Br i OLi THF N
" . ar Ph" 43 SO.Tol

SCHEME 3.12 Formation of B-lactam 43 via addition of lithium ynolate to N-sulfonyl imine.
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SCHEME 3.13 Formation of f-lactam 47.

coordination site. The imine 45 was added to a THF solution of the lithium ynolate 44, prepared
from the dibromo ester and tert-BuLi, at —78°C. Notably, the imine disappeared in 2 h at —78°C.
After workup, followed by isolation of the major products, the B-lactam 47 was produced in 79%
yield as a single isomer (Scheme 3.13).

A two-step sequence oxidative hydrolysis of compound 48 was performed without isolation of
the nitrone intermediate 49 (Dirat et al. 1998). B-aminoaldehyde 50 and ketol 51 (Berranger and
Langlois 1995) were isolated after aqueous acidic hydrolysis, in 64% yield. The aldehyde group
in compound 50 was next oxidized into B-urethane acid derivative 52 (Dalcanale and Montanari
1986). Excess of palladium on charcoal was necessary for the deprotection of the benzyloxycar-
bonyl group. Cyclization to -lactam derivative 53 was completed with dicyclohexylcarbodiimide
in acetonitrile (Dalcanale and Montanari 1986). Furthermore, compound 53 has been identified
with B-lactam 55, a synthetic precursor of carpetimycin A (1) (Limori et al. 1983). As a result, treat-
ment of 53 with trimethylsilyl chloride produced a mixture of protected B-lactams 54a and 54b.
Saponification of the ester group in 54a was possible to prepare compound 55. This proved to be
identical in all respects with the compound described by Ohno (Limori et al. 1983) (Scheme 3.14).

The trisubstituted amidines 56 on cycloaddition reaction with ketenes derived from acid chloride
(57a,b), in the presence of triethylamine, afforded exclusively trans-B-lactams (58) in very good
yields (Scheme 3.15). Surprisingly, these B-lactams (58) were found to be very stable since they
also did not undergo any decomposition even after storing for several months at room temperature.

Effect of a variety of imines 59 with ethyl bromoacetate in the presence of indium metal using
anhydrous tetrahydrofuran as the solvent created the -lactams 60 (Scheme 3.16). No reaction was
observed with ferz-butyl bromoacetate and the imine was recovered unchanged from this in 65%
and 48% yields, respectively. However, a small amount of unsaturated ester (8%) was also formed
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SCHEME 3.14 Formation of f-lactam 55.
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SCHEME 3.15 Formation of trans-p-lactams (58).

from the reaction of 6la and ethyl iodoacetate. The formation of the unsaturated ester could be
explained by the decomposition of the imine 61a in the presence of the iodoester, Reformatsky-type
addition to the resulting benzaldehyde and a subsequent elimination reaction (Table 3.2).

In order to estimate the enantioselectivity of the intramolecular alkylation reaction, 2-azetidinone-
4-carboxylic acids obtained after hydrolysis of the corresponding alkyl esters was altered into the
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TABLE 3.2
Preparation of 3-Unsubstituted p-Lactams
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SCHEME 3.17 Preparation of dipeptide derivatives of p-lactams 64 and 65.

dipeptide derivatives 64 and 65 (Scheme 3.17). The stereoselectivity was much higher when CH,CN
was used as solvent than when DMF was used. When the formation of the starting 4-benzyl-2-
azetidinone was induced by Cs,CO,, compared to NaH, the diastereomeric excess was increased by
22%, indicating the importance of the countercation on the observed stereoselectivity. With regard
to the effects of the R, substituent, Leu-derived dipeptides were obtained in a 71:29 ratio (42% d.e.).
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SCHEME 3.18 Transition state model for the conversion of 66 to 67.

In contrast, the reaction of 63 with H-L-Phe-OMe led to the corresponding dipeptides 64 and 65
in a ratio of 50:50. It has been described that N-methyl-N-Boc-(S)-phenylalanine alkyl ester 66 can
be converted into enantiomerically enriched R-methyl derivatives 67 via direct alkylation without
employing any external chiral source. The transition state model of this reaction is shown in
Scheme 3.18 (Kawabata et al. 1994).

The attempted cyclization of compound 71 obtained from 68 following conditions originally
reported by Miller (Miller et al. 1980) failed to produce appreciable B-lactam products. Consequently,
the amounts of DEAD and PPh, were increased. The reaction was attempted in different solvents at
room and high temperature or with heating. TCT-AIiR test was positive in each case. Alternatively,
FT-IR of the beads showed the incidence of a weak signal around 1770 cm™' demonstrating that the
B-lactam was formed. Freshly distilled DEAD (Pansare et al. 1991) in THF promoted cyclization to
73 with high conversion. In a similar way, compound 72 produced 74. At this point, two alternatives
were feasible for product removal from the resin. N—O bond was then cleaved to give B-lactams 75-78)
cleave the N-trityl bond to give 1-hydroxy-P-lactams 77 and 78. The first method was accomplished
using a reductive cleavage with Sml, (Myers et al. 2000). The products were isolated from the solu-
tion after passage through a silica gel column as well as hydrolytic workup. Products 75 and 76 were
achieved in good yields 45% and 52% calculated from the loading of the original trityl-hydroxyl-
amine resin 69). Conversely, acidic cleavage with 5% TFA in CH,CI, for 3 h and aqueous workup gave
compounds 77 and 78 in moderate yields (35%) (Cainelli et al. 1997) (Scheme 3.19).

The '"H-NMR spectrum of the racemic complex 79 shows H(4) and H(6) at 6 4.64 and 5.47 with
a coupling constant of 2.4 Hz and the two nonequivalent CH, protons. Imines 80a, 80b, 80c, and
80d were prepared as yellow crystals by condensation of 79 with 4-fluoroaniline, benzylamine,
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SCHEME 3.19 Preparation of f-lactams 75-78.

aniline, and phenyl hydrazine in good yields (Scheme 3.20). The cycloaddition reactions were exam-
ined between the reactive ketenes generated in sifu from acetoxyacetyl chloride and phenylacetyl
chloride. Treatment of the imine complexes 80a—c with acetoxyacetyl chloride and triethylamine in
dichloromethane as solvent at 0°C led to the cis-B-lactam complexes 81a—c, respectively. Inspection
of the "TH-NMR spectral data of their crude mixtures confirmed that only one stereoisomer had been
formed. The cis disposition of the vicinal methine protons at C(3") and C(4’) in each azetidin-2"-one
ring of the complexes was confirmed easily on the basis of their coupling constants (J¥ 4= 5.4 Hz).
These complexes were separated as single cis-diastereomers following column chromatography and
recrystallization. The above method was extended to imine 80d and the 'H-NMR spectrum of the
crude mixture. This did not show the formation of the corresponding B-lactam complex. Following
distillation, complex 82 was isolated as an orange powder in 50% yield and its '"H-NMR spectrum
showed the presence of the CH;COOCH,CO group and two meta protons in the complexed arene
ring and the two nonequivalent CH, proton singlets of the dioxolane ring. The *C-NMR spectrum
also confirmed the presence of the CH;COOCH,CO group and DEPT. This lack of cycloaddition
[2 + 2] could be explained when considering the presence of the NHPh group attached to the nitro-
gen of the imine in 80d. Probably, the nucleophilicity of the nitrogen lone pair of the imine com-
plex was diminished by the electron-withdrawing effect of the NHPh group attached to it (March
1985). As a result, this did not allow the cycloaddition reaction to the ketene. But, abstraction of
the acidic NH proton by triethylamine occurred, which in turn allowed the reaction with the acid
chloride to proceed, and this route was designed to access complex 82. Phenylacetyl chloride was
then used to produce in situ the corresponding ketene, and the imine complex 80a was allowed to
react. Regardless of several reactions, there was no trace of the corresponding -lactam complexes
detected. It was not easy to predict how phenyl and aryl substituents would behave because its con-
formation may vary. Due to the interactions between the ketene substituents and the substituents
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SCHEME 3.20 Preparation of B-lactams 83.

of the imine complexes, different results were obtained. Complexes 8la—c¢, and 82 were subjected
to decomplexation reactions by exposing their ethereal solutions to air and sunlight. This was con-
tinued until the yellow color of the solutions disappeared. Following purification, the decomplexed
cis-B-lactams 83a—c, and compound 84 were isolated (Scheme 3.20).

The preparation of monobactam like 1,4-bisaryl B-lactams 88 was investigated. The condensa-
tion reaction of 85 was carried out with numerous bisarylimines. These all gave very good results
concerning loading of the lactam resins 86 and purity of the cleaved diazonium salts 87. These
diazonium salts were stable at room temperature and were analyzed by 'H NMR spectroscopy in
d,-MeOH. The B-lactams 88, obtained from diazonium salts 87, were easily separated from yellow
by-products by dissolving in EtOAc/pentane (2:3) and eluting through silica gel. Many substituted
B-lactams 87a were prepared in high purity (84%—-98%). Good-to-excellent diastereomeric excess
(50% to >96%) and reasonable-to-good yields (26%—71%) were also seen. However, this reaction
was challenging; challenging cases were R!' = H and phenyl, where either no product was formed or
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SCHEME 3.21 Preparation of trans-f-lactams 88f,h,j,k.

a product was formed in low yield and purity. This supported that the nucleophilicity of the R-group
is of higher importance than steric hindrance. Optimum results were obtained with tertiary esters.
In the case of phenylic substitution, that reduced the nucleophilicity of the R-position, the corre-
sponding B-lactam was achieved, in low yield. Very good diastereomeric excesses were obtained
from all B-lactams. No change was observed in diastereomeric purity by comparing the 'H NMR
spectra of diazonium salts 87 and lactam 87a. NOE experiments confirmed the frans configuration
of B-lactams 88f, 88h, 88j, and 88k (Scheme 3.21).

Synthetically attractive conversion of R-oxoamides (88) into B-lactams (89) was achieved
(Scheme 3.22) (Akermark et al. 1969). Consequently, the carboxylic acid-containing R-oxoamide
88a (Scheffer and Wang 2001) was treated with a variety of optically pure amines. Irradiation of the
crystalline salts was performed under nitrogen on 5 mg samples squeezed in between Pyrex micro-
scope slides. L-Prolinamide proved to be the best chiral auxiliary. It also produced optically pure
photoproduct 89c¢ at nearly 100% conversion. Interestingly, exceedingly low e.e. was observed in the
case of the 1-phenylethylamine salt. Photolysis of the salts in methanol gave negligible enantiomeric
excesses, for example, 5% e.e. in the case of the L-prolinamide salt that dictates the importance of
the crystalline state to these results.

To aid the formation of the B-lactam, the Staudinger reaction was chosen (Ruhland et al. 1996)
using Wang resin as a solid support. Compound 91 was used as starting material and then deprotected
by treatment with 30% piperidine in DMF to obtain resin 92 (Scheme 3.23). The solid-supported
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SCHEME 3.22 Conversion of R-oxoamides (88) into -lactams (89).
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SCHEME 3.23 Solid-supported synthesis of f-lactams 97.

amine 92 was condensed with 3,4-dimethoxybenzaldehyde 93a (R, = 3,4-dimethoxyphenyl) in
DMF containing 1% acetic acid based on the method developed by Boyd (Boyd et al. 1996) and the
aldimine 94a was produced. Cycloaddition with the ketene achieved in situ from the phenoxyacetyl
chloride 95a (R, = PhO) and Et;N provided the preferred resin-bound B-lactam 96aa. This reaction
sequence was followed using *C gel-phase NMR and FT-IR spectroscopy. Resin-bound [-lactam
96aa was then cleaved. Whereas treatment with aluminum chloride 96a gave 40% yield, the use of
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10% trifluoroacetic acid in dichloromethane was found to be the effective method for the cleavage.
Given that it afforded the B-lactam 97aa as its methyl ester in 78% isolated yield. Subsequently, an
asymmetric version of this solid-phase synthesis was investigated in order to develop a useful proce-
dure for the generation of chiral intermediates for the synthesis of biologically interested B-lactams.
The asymmetric Staudinger reaction was carried out on the solid support between 95d and the dif-
ferent resin-bound aldimines 94a—e and in the presence of triethylamine.

Starting from commercially available (+)-3-carene 98, the cycloaddition of CSI produced the enan-
tiomeric -lactam 99 in a regio and stereoselective reaction. The CSI addition was possible at room
temperature in a respectable yield (76%). There are numerous methods in the literature for the ring
opening of azetidinones (Palomo et al. 2001). Refluxing 99 with ethanol-containing HCI to obtain the
corresponding amino ester (Szakonyi et al. 2000) was attempted. With aqueous HCI, hydrolysis of the
B-lactam of 99 to the amino acid was also attempted (Furet et al. 1999). None of these applied methods
resulted in the expected compounds. It appeared that under highly acidic conditions, the strongly con-
strained carene ring system decomposes. Treatment of the -lactam 99 with di-zers-butyl dicarbonate
formed N-Boc B-lactam 100. Interestingly, this B-lactam was readily opened under mild conditions.
Homochiral N-Boc 3-amino acid 103 in excellent yield (98%) was produced when reaction of 100 with
aqueous LiOH in THF was preformed (Furet et al. 1999). The N-Boc amino ester was prepared in a
different way. This was done by ring opening of N-Boc -lactam 100 in the presence of a catalytic
amount of sodium methoxide in dry methanol. Alternatively, the esterification of N-Boc 3-amino acid
103 with diazomethane in dry diethyl ether produced 102 in excellent yield. N-Boc amino ester 102
was reduced by lithium aluminum hydride to N-methyl amino alcohol 101. This was performed after
the deprotection of 102 to the corresponding amino alcohol 104. B-Amino ester 105 was converted to
-amino acid 106 by refluxing in a dioxane:water = 1:1 mixture (Tamagnan et al. 1996) (Scheme 3.24).

- NH -
6}
98 0
99 H H

100
\%
iv
NHMe NHBoc NHBoc
vii SR
OH COOH
101 4 102 5 COOMe 103 H
viii
NH, NH, NH,
vii Xy
OH COOH
COOMe 106 H

104 H 105 H

Reagents and conditions: (i) CSI, Et,0, 9 h, rt, 76%; (ii) Na,SO3, then KOH; (iii) Boc,0, Et;N, DMAP/THF, rt, 2 h,
82%; (iv) LIOH/H,0, THF, rt, 7 h, 94%; (v) cat. NaOMe/MeOH, rt, 2 h, 89%; (vi) CH,N,/Et,0, rt, 2 h, 98%;
(vii) LIAIH/THF, rt, 2 h, 101: 95%, 104: 85%; (viii) TFA/CH,Cl, rt, 2 h, 96%; (ix) dioxane/H,0, reflux, 48 h, 88%.

SCHEME 3.24 Reactions of (+)-Carene 98.
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SCHEME 3.25 Conversion of f-C-galactosyl formaldehyde 107 or C-ribosyl formaldehyde 109 to the cor-
responding p-lactams.

A chiral C-glycosylimine was generated in CH,Cl,. This was done by mixing the 3-C-galactosyl
formaldehyde 107 (Dondoni and Scherrmann 1994) with an excess of p-methoxybenzylamine
(R! = PMB) (Scheme 3.25). By treatment with resin-supported sulfonyl chloride, the unreacted
alkylamine was easily removed. The resulting heterogeneous mixture was treated with acetoxy
acetyl chloride (R? = Ac) and triethylamine to produce the corresponding acetoxy ketene (Taggi
et al. 2002). After a period of time, the reaction mixture was treated with nucleophilic aminometh-
ylated resin. Simple workup of the resulting suspension and solvent evaporation afforded a mixture
of 4-(C-galactosyl)-B-lactams (3R, 45)-3a and (35, 4R)-3a 108. The conservation of the 3-linkage at
the anomeric carbon of the sugar group and the cis-relationship of the C-3 and C-4 protons of the
B-lactam ring were established by "HNMR analysis. Complete configuration of the latter carbon
atom was appointed by chemical correlation of (3R, 45)-3a. Following the optimized cycloconden-
sation protocol, the C-ribosyl formaldehyde 109 (Dondoni and Scherrmann 1994) was also effec-
tively transformed into the corresponding 110-(C-ribosyl)-f-lactam (3R, 45)-110a (Scheme 3.25).

D-Phenylalanine ethyl ester 111 was reacted with cinnamaldehyde to afford the chiral imine phe-
nylalanine (N-cinnamylidene) ethyl ester 112 in 85% yield (Hakimelahi and Jarrahpour 1989). Reaction
of phthalimidoacetyl chloride with chiral Schiff base 112 and triethylamine produced a single stereo-
isomer B-Lactam 113 in 80% yield (Mukerjee and Singh 1978). 'H NMR was used to confirm the cis-
configuration of 113. Ozonolysis of B-lactam 113 at —78°C provided formyl B-lactam 114 in 90%. The
formyl B-lactam was then reduced to the 4-hydroxymethyl B-lactam 115. This was achieved in 60% yield
by treatment with lithium tri(fert-butoxy)aluminum hydride in dry THF. B-Lactam 116 was obtained
through mesylation of 115 with methanesulfonyl chloride and triethylamine at —=78°C in dichlorometh-
ane. The mesyl B-lactam 116 was treated with 1,5-diazabicyclo[5.4.0] undec-5-ene (DBU) in 9:1 THF-
DMF at reflux temperature for 4 h. 117 was obtained as a yellow solid in 20% yield (Scheme 3.26).

Staudinger-like [2 + 2] cycloaddition of chiral, aliphatic N, N-dialkylhydrazones 120 to R-amino-
ketenes 119 for the synthesis of 3-amino-4-alkylazetidin-2-ones 121 and derivatives was investi-
gated. Hydrazones 120 containing C2-symmetric (2R, SR)-2,5-dimethylpyrrolidine was chosen as
the auxiliary. The excellent stereocontrol and high reactivity observed in cycloadditions to benzy-
loxyketene was very helpful (Fernandez et al. 2002). The N-benzyloxycarbonyl-N-benzylglycine 118
as the source of aminoketene 119 and 2-chloro-N-methyl pyridinium iodide was used as an activat-
ing agent (Scheme 3.27). This selection was based on the previous experience with 4-unsubstituted
derivatives (Fernandez et al. 2000). Cycloadduct 121 in low yields (25%—-50%) resulted from experi-
ments carried out under certain conditions (Et;N, toluene, heat). However, reaction mixture analysis
indicated the formation of a single stereoisomer. Coincidentally, a screening of different reaction
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SCHEME 3.26 Preparation of p-lactam 117.
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SCHEME 3.27 Preparation of f-lactams 121.

conditions revealed the key importance of the base used for ketene generation. Interestingly, replace-
ment of Et;N by hindered (i-Pr),EtN resulted in a significant increase in results. This led to the isola-
tion of the corresponding products 121 in moderate-to-good yields.

The Staudinger [2 + 2] cycloaddition of chiral carbohydrate Schiff base 125 with phthalimi-
doacetyl chloride produced the sugar-based monocyclic B-lactam 127 as a single isomer.
Treatment of protected B-lactam 127 with methylhydrazine provided free amino B-lactam.
Starting material for these studies D-(+)-Galactose 122 was selected. It was converted into
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SCHEME 3.28 Preparation of f-lactam 129.

2,3,4,6-Tetra-O-acetyl-o-D-galactopyranosyl bromide 123. The a-anomer was formed which
is thermodynamically more stable. The bromo group in the acylgalactosyl compound is reactive
and therefore may be easily displaced by an azido group. Accordingly, 2,3,4,6-tetra-O-acetyl-f3-
D-galactopyranosyl azide 124 as a white crystalline substance in 70% yield (Scheme 3.28) was
obtained. The replacement involved inversion of configuration at the anomeric site; thus, the
o-galactopyranosyl halide 123 yields a B-galactosyl azide 124. However, the pyranose ring structure
was retained in the presence of the acyl groups in the acylgalactosyl halide. 2,3,4,6-Tetra-O-acetyl-
B-D-galactopyranosyl amine 126 was obtained in 90% yield when heterogeneous reduction of the
azide group of 124 with Raney Nickel in ethyl acetate under reflux for 2.5 h was performed. The
imine B-D-galactopyranosyl amino-(N-cinnamylidene)-2,3,4,6-tetra-O-acetate 125 was prepared in
quantitative yield. The formation of E-isomer as the predominant product was observed with B-D-
galactopyranosyl imine 125. Compound 125 was treated with phthalimidoacetyl chloride in the
presence of triethylamine to give 1-[(2,3,4,6-Tetra-O-acetyl-f-D-galactopyranosyl)-3-phthalimido-
4-styryl]azetidin-2-one 127 in 75% yield. 1-[(2,3,4,6-Tetra-O-acetyl-B-D-galactopyranosyl-3-
phthalimido-4-formyl]azetidin-2-one 128 in 90% yield was obtained when the ozonolysis of the
styryl group was performed. Reduction of 127 using LiA H(t-OBlu), in dry THF at 0°C yielded
1-[(2,3.4,6-tetra-O-acetyl-f-D-galactopyranosyl)-3-phthalimido-4-hydroxymethyl]-azetidin-2-one
129 in 60% yield (Scheme 3.28).
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SCHEME 3.29 Expansion of aziridine ring to f-lactam using carbon monoxide.

Aziridine ring was expanded to B-lactam using carbon monoxide (Scheme 3.29). The carbon-
ylation reaction was simple in workup and execution. After the complete reaction, the catalyst was
recovered by simple filtration, and washing with benzene for the subsequent cycles. For the carbon-
ylative ring expansion of 1-(1-adamantyl)-2-phenylaziridine, 1-ferfbutyl-2-(biphenyl-4-yl)aziridine,
1-(1-adamantyl)-2-(biphenyl-4-yl)aziridine, and 1-fert-butyl-2-(4-bromophenyl) aziridine, similar
results were observed.

The Staudinger reaction between a ketene derived from optically active acid chloride 133a and
N-benzyl-N-[(1E)-phenylmethylene] amine was conducted in dichloromethane in the presence of
Et;N (Scheme 3.30). Although four diastereomers 134a through 138a are possible, analysis of the
crude reaction mixture by TLC indicated two major products. Importantly, HPLC showed a 99:1
ratio of two peaks. Flash chromatography purification of the crude reaction afforded two diaste-
reomerically pure B-lactams 134a in 51% and 137a in 20% isolated yields (single enantiomers).
These two, respectively, exhibited identical retention times in HPLC. The Cbz group of 134a was
removed to give pyrrolidine 136a as a single diastereomer as evidenced by its simplified '"H NMR.
Additionally, the structure of 134a was x-ray crystal structure. To afford the “proline-derived”
Staudinger product 140, olefin 139 was deprotected and hydrogenated (Donohoe and House 2002).
The structure of 137a was shown to be as indicated by converting it to proline-derived product 142
via the elimination of methanesulfonic acid, by hydrogenation of the resultant double bond of 141,
and removal of the Cbz-protecting group. 'H NMR of 142 was identical to 140.

Being derived from two different compounds (or diastereomers) 134a and 137a, compounds
140 and 142 are therefore enantiomeric to each other. Since 140 and 142 are enantiomeric in
nature, and given the fact that 142 was derived from 137a, B-lactam 137a should have the struc-
ture as shown (Scheme 3.30).

MSO///

O‘/O 1342:R=Cbz;\ Ph= < Ph (51%)
N "] 135a:R=Cbz vV Ph === Ph (0%)

ébz 136a : R=Chz; vV Ph= - Ph (78%)
133a:R;=Ms MsO,

137a:R=Cbz; v Ph= <= Ph (20%)
138a: R=Cbz; v Ph= 111 Ph (0%)

SCHEME 3.30 Involvement of Staudinger reaction in synthesizing p-lactams.
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SCHEME 3.31 Mannich type reaction.

The Mannich reaction was studied using R,R-disubstituted aldehyde 145 as nucleophiles or
donors in this reaction (Scheme 3.31). The quaternary -formyl R-amino acid derivatives were
obtained with excellent yields. Alkyl-, aryl-, benzyl-, and heteroaromatic-substituted aldehydes
were used to make functionalized amino acids. Reactions with aryl-substituted aldehydes are
faster than those of benzyl-substituted ones. The Mannich product 146 was also synthesized in
DMF and NMP with good yield (77%). Compound 146 was converted to B-Lactam 147 very easily
(Scheme 3.32).

Spiro-linked B-lactam-dihydropyridines 149a, 150a, and 151b were prepared (Fraenkel
et al. 1972). Ozonolysis of 149a gave a single diastereoisomer of the monocyclic B-lactam 148.
Hydrogenation of 149a and 149b yielded saturated 2,7-diazaspiro[3.5]nonan-2-ones 150a and 150b
(Scheme 3.33).

A sequence of heterocycle-fused B-lactams under thermal conditions was synthesized (Xu et al.
2001). This was done in order to further investigate the stereochemical process and to prepare bicy-
clic B-lactams. These B-lactams were prepared with different stereosubstitutions. A Staudinger reac-
tion of R-diazoketone 152 with imines 153a—c, respectively, was performed. These reactions were
done under microwave and photoirradiation conditions. 153¢ for N-alkyl and sterically hindered

O
il AN N~ PMP
Q H
: 1.NaClO,, NaH,PO,
2h "///
H CO,Et o CO,Et
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SCHEME 3.32 Conversion of Compound 146 to p-lactam 147.
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SCHEME 3.33 Preparation of spiro-p-lactams.
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SCHEME 3.34 Microwave-assisted synthesis of trans-f-lactams.

imine and trans-f-lactams 154a—c were obtained exclusively under both conditions (Scheme 3.34)
with a series of acyclic imines 153a—c (153a for N-aryl imine; 153b for N-benzyl, nonconjugated
imine). This is in agreement with the results of Podlech et al. (Podlech and Linder 1997, Linder and
Podlech 2001) (Scheme 3.34).
N-p-chlorobenzyl-N-tert-butyl-R-ethoxycarbonyl-R-diazoacetamide 155a treatment with
[RuCl,(pcymene)], (0.5 mol%) in toluene at 70°C under an argon atmosphere afforded N-fert-
butyl-cis-1-ethoxycarbonyl-2-p-chlorophenyl-B-lactam 155b. This B-lactam was produced in
quantitative yield. '"H NMR analysis detected the absence of trans-f-lactam in the crude mixture
but the presence of cis B-lactam. Slow addition of R-diazo compounds and inert atmosphere were
necessary for ruthenium-catalyzed carbenoid transformations. However, it was found that the
[RuCl,-(p-cymene)] 2-catalyzed intramolecular carbenoid C-H insertion reaction could also be
completed without using the slow addition procedure or an inert atmosphere. For example, by heat-
ing a mixture of 155a and [RuCl,(p-cymene)], at 70°C in open atmosphere provided cis-B-lactam
in quantitative yield (Table 3.3, entry 1). "H NMR analysis detected no diazo-coupling products.
Other ruthenium complexes, such as [Ru'(TTP)(CO)] [H,TPP) meso-tetrakis(p-tolyl)porphyrin],
[Ru'(salen)-(PPh,),] (salen) N,N'-bis(2,4-dibromosalicyclidene)-1,2-cyclohexanediamine)], Ru"
(6,6'-Cl, bpy),(H,0),] (CF;S0,), (6,6'-CI12-bpy) 6,6’-dichloro-2,2’-bipyridine), [Ru"(PPh;),-Cl,],
and [Ru(COD)CL]n (COD) 1,8-cyclooctadiene), were unsuccessful in causing catalytic cycliza-
tion of 155a. But [Cp*RuCl,], (Cp*) pentamethylcyclopentadienyl) was determined to catalyze
cyclization of 155a. This method produced cis-lactam 155b exclusively in 96% yield within 2 h.
However, using an open atmosphere, 62% yield at 80% substrate conversion to cis B-lactam after
5 h of reaction was observed. Other solvents such as toluene, CHCl;, CH,Cl,, acetone, EtOAc,
and THF were employed for the cyclization of 155a with >95% yields and complete cis selec-
tivity was accomplished. The reaction depended on the nature of the solvents since no substrate
conversion was observed within 3 h when DMF, CH,CN, and MeOH were used. The results
of the scope of the [RuCl,(p-cymene)]2-catalyzed intramolecular carbenoid C-H insertion were
explored. Similar to 155a, other N-para-Y-substituted benzyl-N-tert-butyl R-diazoacetamides [Y)
H (155a), OMe (157a)] were converted to the corresponding cis-B-lactams. This was done under
the Ru-catalyzed conditions (entries 2 and 3). The catalytic reaction of R-diazoketone 158a was
established to give trans-lactam 158b solely in quantitative yield (entry 4). The Ru-mediated car-
benoid insertion was performed to the methane (tertiary) C-H bond to produce B-lactam 159b in
89% isolated yield (entry 5). No y-lactam due to insertion at the primary C-H bond was detected
by 'H NMR analysis with 1e as substrate. These reactivity preferences (i.e., tertiary C-H > pri-
mary C-H bonds) were related to the systems with [Rh,(CH;CO,),] as catalyst (Padwa et al. 1993).
Using triphenylphosphine (Ph,P) and diethyl azodicarboxylate (DEAD) in 72% yield (Arnold
et al. 1985), conversion of 160 into the corresponding B-lactone 161 was achieved (Scheme 3.35).
No reaction occurred when the B-lactone was combined with 162. Pre-activation of 162 by reac-
tion with trimethyl aluminum produced a dimethylaluminum—hydrazide complex. This method was
helpful to the reaction at the acyl group of B-lactone 161. Consequently, the desired azapeptide 164
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was formed. The azapeptide was then subjected to Mitsunobu conditions (Ph;P, DEAD) to afford
the C-3 benzyl B-lactam azapeptidomimetic 163 in high yield.

The efficiency of cross-metathesis on the solid phase was documented. Its application to the gen-
eration of biologically interesting 3-(aryl)alkenyl-B-lactams was reported. The resin-bound 3-vinyl-
B-lactam 169 (Scheme 3.36) was the key. The resin-bound aniline 166 was deprotected. This was
converted to the aldimine 168 by condensation with aldehyde 167. Next, synthesis of the 3-lactam
ring was performed by a solid-supported Staudinger reaction using Mukaiyama’s reagent as an
acid-activating agent (Delpiccolo et al. 2003). As a result, reaction between crotonic acid and the
corresponding imine 168 effectively gave the supported 3-vinyl-B-lactam 169. Formation of 169
was confirmed by FT-IR and gel-phase *C NMR.
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SCHEME 3.35 Use of Mitsunobu conditions in synthesizing -lactam 163.
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SCHEME 3.36 Application of cross-metathesis on the solid phase in synthesizing p-lactam.
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SCHEME 3.37 Synthesis of optically active bicyclic p-lactams 174 and 175.

Conditions for releasing the 3-vinyl-f-lactam from the support were explored. Treatment of the
resin with 10% trifluoroacetic acid in CH,Cl, for 1 h at room temperature was found to be a very
efficient procedure for the cleavage. It afforded the 3-vinyl-B-lactam 170 in 32% overall isolated
yield. FT-IR of the cleaved resin confirmed quantitative release of the B-lactam.

The optically active bicyclic B-lactams 174 and 175 were synthesized in good yields in a one-
step procedure (Scheme 3.37). Conversion of 4-formyl-1-(w-haloalkyl)-B-lactams 171 into the cor-
responding 4-imidoyl-B-lactams 172 and 173 upon condensation with different primary amines
followed by reduction of the latter azetidin-2-ones 172 and 173 with NaBH, in refluxing methanol
or ethanol produced the product. The corresponding 4-aminomethyl-2-azetidinones were formed as
minor constituents (<20%). This method is new and very elegant in organic synthesis. In literature,
related piperazine annulated -lactams have been prepared either by intramolecular dipolar cyclo-
addition of 4-vinyl-2-azetidinones (Murthy and Hassner 1987) or by cyclization of Boc-protected
4-aminomethyl-1-(2-hydroxyethyl)-B-lactams in a stepwise approach, which involved mesylation,
N-deprotection, base-induced ring closure, and N-protection (Palomo et al. 1997). The method pre-
sented, therefore, contained an efficient alternative for these approaches. Sterically hindering sub-
stituents at the imidoyl nitrogen (R?) rBu, iPr lowered the yields of the products. Due to the steric
hindrance, probably ring closure proceeded slower. The 1,4-diazabicyclo [4.2.0]Joctan-8-ones 174
and 1,5-diazabicyclo [5.2.0]-nonan-9-ones 175 were considered as novel bicyclic B-lactam skeletons.
This was also considered as bicyclic piperazine and 1,4-diazepane derivatives. B-Lactams 174 is very
important due to their structural resemblance to the unsaturated isodethiaazacephems. These act as
potent antibacterial agents (Hwu et al. 1998). Piperazines are used as antifungals, antidepressants,
antivirals, and serotonin receptor (5-HT) antagonists/agonists. Carbon-monosubstituted piperazines
have worked as farnesyl transferase inhibitors and neurokinin-1 antagonists (Berkheij et al. 2005).
Because of their value in psychotherapy (e.g., diazepam, the active compound in Valium), these
types of compounds have received a lot of attention from the scientific community.

Novel optically active B-Lactams were prepared by cycloaddition reaction. The reaction between
176a and an excess of phthalimidoacetyl chloride was performed in the presence of a base. An
excellent yield of B-lactam 177a was obtained as a single diastereoisomer (Scheme 3.38). Good
yields of chloro- and 2,5 dimethoxyphenyl -lactams 177 and 177 were obtained in toluene while
maintaining complete diastereoselectivity. Benzyloxyacetyl chloride led to an 82:12 mixture of dia-
stereoisomeric B-lactams (80%) along with 14% of 178. A decrease in the reaction temperature
favored the synthesis of 177 as a single diastereomer. The behavior of 5,6-dihydropyrazin-2(1H)-
one 176b, with the imine flanked by an aromatic group (R' = 1-naphthyl), was examined in order to
extend the scope of this procedure. The results showed that 176b underwent a highly diastereoselec-
tive Staudinger reaction. Preparation of 3-alkyl/vinyl B-lactams and 3-alkyl/vinyl B-lactams were
not successful under thermodynamic and kinetically controlled conditions (Scheme 3.38).

A mixture of cis- and trans-B-lactams were formed when an excess (3 equivalents) of methoxy- or
benzyloxyacetyl chlorides in dichloromethane was added to a solution of imine 179 containing diiso-
propylethylamine (3.5 equivalents) (Coantic et al. 2007). Under conditions previously described, the
same reaction with acetoxyacetyl chloride produced frans-f-lactam 179 in good yield (Scheme 3.39).
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SCHEME 3.38 Preparation of optically active f-lactam 177.
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SCHEME 3.39 Formation of the mixture of trans-f-lactams 180 and 181.

The selective formation of trans-B-lactam with acetoxyketene is noteworthy. This observation is in
sharp contrast to the poor selectivity observed with alkoxyketenes. A possible cis—trans isomerization
of the 3,4 disubstituted-B-lactams, under the reaction conditions, was ruled out. The formation of pure
trans 183 in 79% yield resulted from the reaction of N-phenylsulfenylimine of pyrrole-2-carboxalde-
hyde 182 with of acetoxyacetyl chloride (Scheme 3.40).

The carbonyl insertion into aziridines to afford -lactams catalyzed by nickel (Chamchaang
and Pinhas 1990), rhodium (Calet et al. 1989), or palladium (Tanner and Somafai 1993) complexes
proceeds with retention of configuration at the carbon atoms of the aziridine ring. As a result of
this process, cis-aziridines produced cis-B-lactams, whereas frans-f-lactams were obtained from
trans-aziridines. Further experimental works demonstrated that different cobalt complexes also
carbonylate aziridines to generate B-lactams. However, these processes proceeded with inversion of
configuration at the site of attack (Piotti and Alper 1996, Davoli et al. 1999). It had been postulated
that when the Co,(CO); or NaCo-(CO), complexes were used as catalysts (Piotti and Alper 1996),
the reaction proceeded via an Sy2-like mechanism. The putative active species, the [Co(CO),]-
ion, opened the aziridine ring by attacking the least-substituted carbon atom, with inversion of
its configuration. Subsequently, an external CO was inserted into the C (attacked)-Co bond of
this intermediate with retention of configuration to afford another open intermediate. In turn, this
method finally underwent a ring closure to render the B-lactam and regenerated the catalyst. It
had also been suggested that path II mechanistic route differed from the above-mentioned one in
the second step—the CO insertion when the cationic component of the [Co(CO),]- anion was a
Lewis acid (Mahadevan et al. 2002). This followed a stepwise process. First, one of the carbonyl
ligands of Co(CO),- inserted into the C(attacked)—Co bond, and second, an extra molecular CO
added to the cobalt atom to regenerate the catalyst following this suggestion. This mechanism was

AcO 2 0
H
P>\ N _AcO O 35equiv. (i-P), NEt A
+ 3equiv. \—< —_——
\ / @] CH,Cly; Ar N
182 40°C;6 h 0
79% yield
OAc
trans 183

SCHEME 3.40 Formation of pure trans-p-lactam 183.
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SCHEME 3.41 Metal-catalyzed carbonyl insertion into aziridines to afford p-lactams.

investigated in a study of a related reaction by density functional theory (DFT) calculations (Molnar
et al. 2003) (Scheme 3.41).

Reformatsky reaction of the imine 189 with ethyl bromodifluoroacetate 190 and ethyl bro-
moacetate 191 was performed in order to determine the influence of the gem-difluoro moiety on
the B lactam/B-aminoester ratio. Previous studies showed that B-lactams and B-aminoesters were
formed in ratios depending upon temperature and time of the reaction (Dardoize et al. 1972, Ross
et al. 2004). Results obtained are presented in Scheme 3.42.

Novel C-4-disubstituted optically active B-lactams were prepared from chiral acid. Intermediates
199a and 199b were prepared by acylation with racemic 2-chloropropionyl chloride (198ab), fol-
lowed by separation of the diastereoisomers using Pmb-L-Phe-OMe (196a) as a starting amino acid
derivative. The absolute configuration of N-chloropropionyl Phe derivatives was assigned. Synthesis
of isomer 199a was done by coupling 196a with enantiomerically pure 2(S)-chloropropionic acid
(197a) in the presence of BOP. This coupling reaction evolved with lower yield than the acylation with
the acyl chloride. Some unwanted racemization of the 2(S)-chloropropionic acid was also observed.
The racemic 2-chloropropionyl chloride (198) was also used for the synthesis of diastereoisomeric
intermediates 199¢ and 199d from H-Pmb-D-Phe-OMe (196b). A unique 3,4-cis -lactam, indicat-
ing the high degree of diastereoselectivity in this reaction (Scheme 3.43), resulting from the base-
promoted cyclization of each diastereoisomer of 199 was observed. Furthermore, 2S-intermediates
afforded the same 35,4S 2-azetidinone, 201a (64%, e.e. > 98%). The 3R,4R B-lactam 201b (66%),
the enantiomer of 201a, resulted from the same cyclization reaction with derivatives 199b and
199d, both having a 2R configuration. These results suggested the enantiocontrol of this reaction
with the construction of the quaternary stereogenic center completely directed by the configuration
of the 2-chloropropionyl group. A comparable 2,3-cis selectivity was observed in a intramolecular
alkylation leading to azetidine-derived amino acids (Sivaprakasam et al. 2006).

Triphenylphosphazene derived from (4-methyloxyphenyl)-azide 202 was used for the prepara-
tion of B-lactam (Scheme 3.44). Azide 202 reacted with triphenylphosphine in 1,2-dichloroethane

/v
N
PMB PMB
| N NHOO
AN N
Br
| N COaEt Zn*,2h AN %o&
—_— — X +
Refluxed THF | X X X
X X N _~
189 N A
190 (X=F) (X=F): 192k/193k: 89/11
191 (X=H) (X=H): 194/195: 100/0

SCHEME 3.42 Involvement of Reformatsky reaction in synthesizing p-lactams.
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SCHEME 3.43 Synthesis of novel C-4-disubstituted optically active f-lactams from chiral acids.

(DCE) to form triphenylphosphazene 203 via the Staudinger—Meyer reaction, triethylamine at -5°C,
and then at room temperature to afford 4-phenoxymethylene-3-lactam 206 in a one-pot procedure.
It is believed that this cascade process involves an aza-Wittig reaction of triphenylphosphazenes 203
with ketene. The reaction required longer reaction time (5 h) and gave 206 in good yield (72%). High
temperature could shorten the first-step reaction time and increase the yield, although the formation
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SCHEME 3.44 Synthesis of B-lactams from triphenylphosphazenes.

of 203 could take place at room temperature. B-lactam 206 in 76% yield under the optimum reaction
conditions was formed in the first step (50°C, 4 h). A variety of aryl azides 202 and aryloxyacetyl
chlorides 204 were investigated using the optimized reaction conditions.

A powerful new MCR based upon the highly strained 2-methyleneaziridine ring system for the
synthesis method of B-lactam has been developed (Hayes et al. 2000). The reaction involves ring
opening of methyleneaziridine 207 at C-3 using a Grignard reagent under Cu(I) catalysis and of the
resultant metalloenamine with electrophile (R?X). By combining this approach to ketimines with
a Staudinger [21 + 2] cycloaddition, it was possible to develop a flexible approach to 1,3,4,4-tet-
rasubstituted B-lactams (Scheme 3.45). There were several crucial features in this sequence. Three
new intermolecular C—C bonds via a “one-pot” process and four points of chemical diversity were
generated with this four-component reaction (4-CR). Furthermore, because it created one quater-
nary center (Denissova and Barriault 2003) as well as one tertiary center, there may be synthetic
value of the products (He and Bode 2008). 207 and three methyleneaziridines were prepared and
used in this study. 1-(4-Methoxybenzyl)-2-methyleneaziridine 207a was prepared in 87% yield.

R
| R\N _Mgcl
N R MgCl, cat. Cul 1\/&
i t --------------- > R
207 208
L TRZX T
o] R ~ \ i
N—n OR?
O==/
<o -
R' [2m+ 2m] . NR
ro 5 " \)K/RZ
R
209 L 210 _

SCHEME 3.45 Synthesis of 1,3,4,4-tetrasubstituted p-lactams.
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SCHEME 3.46 Sodium amide-induced ring closure.

This was obtained from 2,3-dibromopropene and 4-methoxybenzylamine using a sodium amide-
induced ring closure (Scheme 3.46) (Shiers etal. 2004). Aziridine 207a was selected as N-deprotection
of the PMB group. The resultant B-lactam was straightforward (vide infra) (Maruyama et al. 1985).
A similar manner was followed for the preparation of 1-benzyl-2-methyleneaziridine 207b and
1-cyclohexyl-2-methyleneaziridine 207¢. This method finally produced C-4 distinguished B-lactam
209 and 214 (Scheme 3.47).

Reactions of chiral ynamides 215 (Scheme 3.48) (Zificsak et al. 2001, Oppenheimer et al. 2007)
with nitrones provided a direct synthesis of chiral R-amino-f3-lactams 218. This reaction was found
to be highly stereoselective and provided a single optically active B-lactam.

In continuation of our research in this area, we reported stereocontrolled synthesis of novel antican-
cer B-lactams starting from imines, with pendent polyaromatic substituents (Becker and Banik 1998,

1.R" Mg, cat. Cul, THF
2.R?X then AcOH RN s

R
——N
,L 3. R30CH,COCI, Et;N, CH,Cl, .
/ \ 46%-63%
R0 R?
207a (R=PMB) 214
207b (R=Bn)

207c (R=c-Hex)

SCHEME 3.47 Conversion of aziridines to 3-lactams.

; .
Cul) N = NR? =

|‘ ----- 0 @R R | v R

b o L,cu™~> O o CuL,
215 216 217

SCHEME 3.48 Conversion of chiral ynamides 215 directly to amino-f-lactams 218.
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SCHEME 3.49 Microwave-assisted synthesis of trans-p-lactams.

Banik et al. 2003). Although the chemistry of B-lactam as antibiotics is very rich, studies of these
agents as anticancer agents have been investigated very poorly (Finke et al. 1995, Mascaretti et al.
1995, Suffness 1995, Clader et al. 1996, Ruhland et al. 1996, Buynak et al. 1997, Bonneau et al. 1999,
Kidwai et al. 1999, Ghatak et al. 2000, Taggi et al. 2000, Buynak 2004). Despite notable developments
in the development of new anticancer agents, new compounds with less toxicity are required. Based
on our and others work, we realize that novel, less toxic B-lactams can be identified as anticancer
agents that may have increased activity against cancer cells. We have published some of our results
previously. During the course of study on B-lactams, we anticipated that conformationally constrained
analogs of our open chain diamides may increase activity against cancer cell lines (Lin et al. 1996).

Microwave irradiation of 219 and 220 under identical conditions afforded the trans product
221 as the only isomers (Scheme 3.49) (Bose et al. 1991, Georg and Ravikumar 1992, Alcaide and
Vincente-Rodriguez 1999, Perreux and Loupy 2001).

Several of our B-lactams were tested using nine human cancer cell lines with cisplatin.

The structure—activity study revealed B-lactams containing naphthalene and anthracene pyrene
derivatives demonstrated no activity against any of these cancer cell lines. The trans acetoxy phenan-
threne and chrysene derivatives demonstrated reasonable activity. Phenoxy and phthalimido -lactams
were inactive. It is clear that the minimal structural requirement of the aromatic system for cytotox-
icity is at least three aromatic rings in an angular configuration. This is confirmed by the fact that
only phenanthrene and chrysene derivatives demonstrated cytotoxicity against the tumor cell lines.
Interestingly, the presence of the acetoxy group proved to be very crucial for anticancer activity.

The anticancer activity of our racemic B-lactams has prompted us to devise a method for the
preparation of the optically active analogs. Optically active isomer of a racemic compound may
demonstrate better and much selective biological activity. Our goal was to use the glycosides (o~ and [3-)
as the ketene component. We predicted that the absolute stereochemistry of the anomeric center in
the ketene component of the carbohydrate would be the most important. Reaction of the activated
acid 222 with polyaromatic imine 223 in the presence of triethylamine produced a mixture of dia-
stereomeric O-glycosides of trans B-lactams 239 and 226 in the ratio of 45:55. The diasteromers 225
and 226 were separated through column chromatography. Acid-mediated reaction was used to cleave
the anomeric bond and this resulted in the trans-hydroxyl B-lactams (+)-227 and (-)-228 in excellent
yield. The hydroxy compounds were converted to the acetates (+)-229 and (-)-230 (Scheme 3.50).

Cycloaddition of the acid 231 with imine 223 was performed using imine in the presence of
N-methyl-2-chloropyridiniumiodide and triethylamine. NMR analyses of the crude reaction mix-
ture showed the presence of two diasteromeric trans B-lactams 232 and 233 in 60:40 ratios. The
diasteromeric O-glycosides after separation were treated with mild aqueous acid to the hydroxy
compounds 234 and 235 and the resulting alcohols were converted to acetates. The absolute stereo-
chemistry of the trans acetoxy-f-lactam 236 and 237 was confirmed by a comparison with known
trans B-lactam as described earlier (Scheme 3.51). The mechanism of formation of B-lactam via the
Staudinger reaction had been advanced (Bose et al. 1991, Georg and Ravikumar 1992, Alcaide and
Vincente-Rodriguez 1999, Perreux and Loupy 2001).

The cell growth inhibition data confirmed that of the optically active B-lactams 229 and 236 is
extremely active. The results of the mutagenicity assay indicated that these f-lactams demonstrated
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SCHEME 3.50 Synthesis of frans-hydroxyl f-lactams.

a negative response with these tester strains at any concentration in either the presence or absence
of Aroclor-induced rat liver S9, confirming that neither of these compounds demonstrate any
mutagenicity.

Necessary Kkits to identify the interaction of organic compounds with topoisomerases were pur-
chased from TOPOGEN, Inc. These kits contained reagents required for the detection of topoisom-
erase I and IT with DNA markers for the detection of enzymatic action and standard topoisomerase
inhibitors. The activity of the active B-lactam was determined using these systems. However, no
inhibition of either topoisomerase I or topoisomerase II was detected in the HL-60 cancer cell lines
using much higher concentration that were required to inhibit the growth of these cell lines in vitro.
There was no evidence that the active B-lactams showed their cytotoxic activity in sensitive cell
lines through interaction with DNA or DNA-associated enzyme systems.

A few other outstanding researchers also performed significant studies on anticancer B-lactams.
For example, B-lactams 238 to 241 (Scheme 3.52) induced DNA damage, inhibited DNA repli-
cation, and activated the apoptotic death program in human leukemic Jurkat T cells, in a time
and concentration-dependent manner. Importantly, 3-lactam 238 also inhibited proliferation and
induced apoptosis in other human solid tumor cell lines. It was believed that induction of apoptosis
by 238 is associated with the activation of p38 mitogen-activated protein (MAP) kinase, release of
mitochondrial cytochrome c, and activation of the caspases.

They had also found other two B-lactam analogs 242 and 243, both containing a branched-chain
system at C; of the ring, exhibited potent apoptosis-inducing activity (Scheme 3.53).
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SCHEME 3.54 Synthesis of 7a-chloro-3-methyl-1,1-dioxoceph-3-EM-4-carboxylic acid esters.

Veinberg et al. reported synthesis and anticancer properties of 7o-chloro-3-methyl-1,1-
Dioxoceph-3-EM-4-carboxylic acid esters 244 (Scheme 3.54).

Ruf et al. synthesized and tested B-lactams at a concentration of <20 WM in an in vitro screen-
ing method with the following human cancer cell lines: 5637 (urinary bladder carcinoma), RT-4
(urinary bladder carcinoma), A-427 (lung carcinoma), and LCLC-103H (large cell lung carcinoma).

Meegan et al. reported the synthesis of a few of B-lactams and these were evaluated via in vitro
assays which determined their antiproliferative activity in MCF-7 and MDA-MB-231 breast cancer
cell lines. Most of the compounds showed low cytotoxicity. Cytotoxicity values considerably below
that obtained for tamoxifen (13.4%, 10 uM) were observed.

3.4 CONCLUDING REMARKS

In this chapter, most significant developments on the synthesis of B-lactams and their biologi-
cal properties have been addressed. This chapter will help chemists to design and develop new
B-lactams that will provide potential medicinal activities. It is our expectation that novel B-lactams
will be synthesized and tested on different types of medical disorders.
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4.1 INTRODUCTION

Isatin (1H-indole-2,3-dione, indoline-2,3-dione) 1 (Figure 4.1) is a structurally simple natural prod-
uct found in the plants of genus Isatis and in Couropita guianancis aubl (Bergman et al. 1988, Silva
et al. 2001). It has also been found as a metabolic derivative of adrenaline in humans (Chiyanzu et al.
2003, Almeida et al. 2010). Isatin, possessing an indole motif with a ketone and a y-lactam moiety
fused to the benzene ring, has drawn considerable interest to the researchers in the field of organic
synthesis and medicinal chemistry. Isatin undergoes electrophilic aromatic substitutions at positions
C-5 and C-7 of its benzene ring (Silva et al. 2001). N-Alkylations/arylations/acylations, nucleophilic
additions at the carbonyl group, chemoselective reductions, oxidations, and ring expansion are also
reported. The diverse reactivity of isatin has made it a valuable building block for the synthesis of
various other heterocyclic frameworks such as quinolines, indoles, oxindole, and B-lactams, etc.
The chemistry of isatin has been reviewed in the past by Sumpter (1944), Popp (1975), Mesropyan
and Avetisyan (2009), and Silva et al. (2001). Recent literature shows resurgence of interest in the
chemistry and bioactivity of isatin and its derivatives leading to improvement in several already
known reactions and synthesis of many isatin derivatives with different types of biological activity
(Pandeya et al. 2005). Isatin derivatives having antitubercular activity have been reviewed recently
(Aboul-Fadl and Bin-Jubair 2010). This chapter is based on the chemistry of isatin reported from
2000 to 2010. Some examples from early 2011 are also included.

4.2 SYNTHESIS OF ISATINS

Although the review of synthetic methodologies is not the main objective of this review, it would
be useful by way of introduction to give a brief idea about the synthesis of isatins. The classical
methods for the synthesis of isatins are Sandmeyer’s method (Scheme 4.1), the Stolle procedure
(Scheme 4.2), and Gassman procedure (Scheme 4.3), all using aniline as substrate.

FIGURE 4.1 Structure of isatin.
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SCHEME 4.1 Sandmeyer’s method for the synthesis of isatins.
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SCHEME 4.2  Stolle’s method for the synthesis of isatins.
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SCHEME 4.3 Gassman’s method for the synthesis of isatins.

4.2.1 SANDMEYER'S METHOD

A three-component reaction of aniline 2, hydroxylamine hydrochloride, and 2,2,2-trichloroethane-
1,1-diol (chloral hydrate) affords isonitrosoacetanilide 3, which on treatment with sulfuric acid leads
to the formation of isatin 1 (Scheme 4.1) (Sandmeyer 1919). This method is applicable to anilines
bearing both electron-donating and electron-withdrawing groups. The mechanism of this reaction
has been subject of much discussion. Sandmeyer explained the formation of isatin through the imine 4.
Later, the mechanism was elaborated by Piozzi and Favini who proposed the formation of imine 4
from 3 via compounds 5§ and 6. The latter compound was also proposed to be in equilibrium with
compound 7 (Silva et al. 2011a). Recently, the mechanism has been investigated by microreactor-
electrospray ionization mass spectrometry (Silva et al. 2011b).

4.2.2 StoLLE’Ss METHOD

In the Stolle method, aniline and its derivatives react with excess oxalyl chloride to give
N-chlorooxalylanilide which in the presence of Lewis acids (AICl;, BF;-Et,0O, or TiCl,) cyclizes
to isatin (Scheme 4.2). This reaction, however, is not applicable to substrates containing electron-
withdrawing groups (Kurkin et al. 2011). Kurkin and coworkers have reported 30%—-60% yields of
isatins using the Stolle method. Ma and coworkers, however, reported a very poor yield of 5% by
this method (Ma et al. 2003).

4.2.3 GASSMAN’s METHOD

This methodology constitutes the formation of 3-methylthio-2-oxindole from aniline and oxidation
of C-3 methine carbon in it with N-chlorosuccinimide followed by hydrolysis of the chlorinated
intermediate (Scheme 4.3) (Gassman et al. 1977). The reaction is compatible with anilines having
strongly electron-withdrawing and electron-donating groups.

Efforts are still on to improve these three methodologies for the synthesis of isatins and several
variations are reported in literature. Besides these three, some other interesting methodologies have
also been reported in recent literature. Selected examples are discussed in the succeeding paragraphs.

4.2.4 SoOME RECENT SYNTHESES OF ISATINS

Palladium-catalyzed N-heteroannulations of 1-(2-bromoalkyn-1-yl)-2-nitrobenzenes using carbon
monoxide as the ultimate reducing agent have emerged as a viable method for the synthesis of
a variety of indoles. 1-(2-Bromoethynyl)-2-nitrobenzene 10 reacts with carbon monoxide in the
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= i

Pd(OAC),, PPh,

CO (4 atm), MeCN, N
70°C,1h H

10 1 (Yield=35%)

NO,

SCHEME 4.4 Synthesis of isatin by palladium-catalyzed N-heteroannulation of 1-(2-bromoalkyn-1-yl)-2-
nitrobenzene.

CH(OH)CN e
CHO 1. NaHs0,, snCl,,
KCN 0°C, 3 h HOAC, HCl, o
- > MeO NO, _—
MeO NO,  2.H,50, 0°C OMe 50°C,3h MeO N
OMe OMe H
1 12 (Yield =85.5%) 13 (Yield =83.6%)

SCHEME 4.5 Synthesis of 6,7-dimethoxyisatin.

presence of a catalytic amount of palladium diacetate and triphenylphosphine to yield isatin 1.
The starting material in this reaction was completely consumed within 1 h at 70°C (Scheme 4.4)
(Soderberg et al. 2009).

A method for the synthesis of 6,7-dimethoxyisatin 13 involves the formation of the cyanohydrins
12 from 2-nitroveratraldehye 11. The reduction of nitro group in 2-nitro-3,4-dimethoxymandeloni-
trile 12 followed by cyclization affords the product (Scheme 4.5) (Ma et al. 2003).

A one-pot procedure for the synthesis of isatins starting from anilines 2 and 14 by using oxalyl
chloride as acylating agent and H-P zeolite as a reusable catalyst under heterogeneous conditions
provides a simple and efficient method (Scheme 4.6) (Raj et al. 2010). Recently, a one-pot proce-
dure for the synthesis of isatins based on the oxidation of indoles with hypervalent iodine as an
oxidant and indium(III) chloride as a catalyst has been reported (Scheme 4.7) (Yadav et al. 2007).

R H-{ zeolite R
(codl),
NH, - ©

CH,Cl,, 80°C, 12-36 h

=

1and2:R=H 1
14 and 15: R=Me, Cl, F, OMe, 15 (Yield = 48%-79%)
NO,, i-Pr, CO,Me

SCHEME 4.6 Synthesis of isatins by H-p zeolite-catalyzed reactions of anilines with oxalyl chloride.

o}
R! R
A\ InCl,/IBX o
” MeCN-H,0, 80°C H
Rz RZ
16 17

SCHEME 4.7 Synthesis of isatins by indium(IIT)-catalyzed oxidation of indoles with hypervalent iodine.
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4.3 REACTIVITY OF ISATINS

Isatin is a highly reactive molecule and has been exploited in organic synthesis both as an electro-
phile and a nucleophile. As a nucleophile it undergoes electrophilic substitution on the aromatic
ring, substitution at y-lactam nitrogen. The most common reactions of isatin as an electrophile are
nucleophilic additions to the ketone group. Besides this, isatin undergoes oxidation, reduction, and
ring expansion reactions forming different types of heterocyclic compounds, and also ring opening
products. The literature is arranged according to the reactivity of a particular group such as phenyl
ring, ring nitrogen, and ketone group followed by oxidation, reduction, ring opening, and synthesis
of isatin-based spiro-fused heterocycles.

4.3.1 ReaAcTivity oF PHENYL RING

Isatin is known to undergo electrophilic aromatic substitution either at C-5 or C-7. Halogenation of
isatin at C-5 has been achieved by reacting isatin 1 with acidic trichloroisocyanuric acid (TCCA) in
ethyl acetate and sodium bicarbonate affording 5-chloroisatin 35 (Scheme 4.8) (Bhardwaj et al. 2010).
TCCA in sulfuric acid is also reported to form 5-chloroisatin and 5,7-dichloroisatin (Mendonca et al.
2005). TCCA is used as a source of electrophilic chlorine. Acidic media strongly promoted the for-
mation of superelectrophilic species where TCCA is either polyprotonated or protosolvated, causing
more efficient “CI*” transfer to isatin due to the charge—charge repulsion. The reaction of isatin bear-
ing an electron-donating group such as methyl group at C-5 with TCCA in different molar ratios in
sulfuric acid led to the formation of a mixture of chlorinated products (Scheme 4.9) (Silva et al. 2011a).
However, when sulfuric acid was replaced by acetic acid, in order to get milder reaction conditions,
N-chlorinated isatin derivative was formed in different yields depending upon the reaction conditions.
A maximum yield of 82% was obtained when 5-methylisatin 15 reacted with TCCA in 1:2 molar ratios
at 25°C for 1 h.

A palladium-catalyzed ring metathesis by intramolecular aryl-aryl coupling in 20 has led to the
synthesis of novel isatins tethered to eight-membered ring 21 (Scheme 4.10) (Lee et al. 2010).

4.3.2 ReacTivity oF AMIDE NITROGEN

4.3.2.1 N-Alkylation

N-Alkylations of isatins have been achieved either by direct synthesis from N-alkylanilines as shown
in the Gassman procedure or by N-alkylation of isatin (Silva et al. 2001). The simplest N-alkylated
isatin, N-methylisatin 22, is obtained by treating isatin 1 with dimethylsulfate in dil. aqueous
sodium hydroxide (Scheme 4.11) (Silva et al 2001). This method has been employed recently by
Luntha (2009) and Bhardwaj et al. (2010) in the synthesis of various bioactive isatin derivatives
affording the product in quantitative yield.

0 0
R
o TCCA/H,S0, _ N
N EtOAC, N
i 10% NaHCO, H
1 o] 15

TCCA= al_ )J\ _a (Yield =72%)
N N
}\ /g hed
0 N 0
I
Cl

SCHEME 4.8 Chlorination of isatin using TCCA in the presence of H,SO, and EtOAc.
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_ TCCA
[ hso,

o C
18
0 — (Mixture of products)

15
TCCA
R=Me AcOH

19 (Yield =46%-82%)

SCHEME 4.9 Chlorination of isatin using TCCA in the presence of H,SO,, and H,SO, and AcOH.

CO,Me CO,Me
Pd(OAc), (10 mol%)

TBAB (1 equiv.),
K,CO5 (2 equiv.)
N (o}
DMF, 100°C, 50 min
O 0]
R=H (55%), Me (61%),
MeO (65%), Cl (50%) R

20 21 (Yield =50%-65%)

\

SCHEME 4.10 A palladium-catalyzed ring-metathesis in N-substituted isatin.

6]
NaOH ( aq 10%)
0 + MeysSO,
N rt, 1 h
I
H

1 22

SCHEME 4.11 N-Methylation of isatin using dimethylsulfate.

Several other N-alkylated isatins 23 have been obtained by reacting isatin 1 or 5-bromoisatin
15 with alkyl halides using 1.5 equiv. of potassium carbonate in DMF at 80°C (Scheme 4.12)
(Aboul-Fadl et al. 2010). The use of magnesium carbonate in refluxing acetone is also reported in
N-alkylation of isatin-forming products 24 (Scheme 4.13) (Garden et al. 1998, Rekhter 1999).

The reaction of isatin with sodium or calcium hydride in toluene leads to the formation of cor-
responding isatides 25 that reacts with a-halogenated ketones 26 at the NH group and produces
N-alkylated isatin 27 (Scheme 4.14) (Rekhter 2005). Azizian et al. and Schmidt et al. have reported
facile N-alkylation of isatins under microwave irradiation (Azizian et al. 2003, Schmidt et al. 2008).

4.3.2.2 N-Acylation

N-Acyl derivatives of isatin are obtained by acylation of isatin with carboxylic acids anhydrides in the
presence of perchloric acid (Mesropyan and Avetisyan 2009). The formation of N-acetyl-substituted
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0
R i R
R'CH,X, K,CO5, DMF
o]
o} >
o N
N 80°C,4-16h |
g CH,R!
1.R=H 23 (Yield =92%-98%)
15.R=Br
23a.R=H,R'=Ph; b.R=H,R' = alkyl;
¢.R=Br,R'=Ph;d.R=Br, R" = alkyl
SCHEME 4.12 N-Alkylation of isatin and 5-bromoisatin.
0 [0}
0 L» (6]
N MgCO;, Me,CO N
|
H A R
1 R=alkyl group 24
X=Cl,Br, |
SCHEME 4.13 N-Alkylation of isatin.
0 (6}
O + RCOCH,) ——> %o
N~ 26 l\ll
+
M CH,COR
25 27

M=Na, Li; R=Ph, Me

SCHEME 4.14 N-Acylation of isatins in the presence of metal hydrides.

0 0
R R
Ac,0
O ——>» o
N \
1
H R=Br,NO,, COR
15 R'=Me 28

SCHEME 4.15 N-Acylation of isatins using acetic anhydride.

isatins 28 has been reported by treatment of isatins 15 with acid anhydride (Scheme 4.15) (Boechat
etal. 2008, Smitha et al. 2008). Recently, Lesogo and Singh have synthesized N-(diphenylacyl)isatin
30 by reacting isatin 1 with diphenylketene, generated in situ by thermal decomposition of 2-diazo-
1,2-diphenylethanone 29 (Scheme 4.16) (Masutlha and Singh 2012).

4.3.2.3 N-Arylation

N-Phenylisatin 31 has been synthesized by reacting isatin 1 with chlorobenzene 14 in triethylamine
(Scheme 4.17) (Bhragual et al. 2010). N-Arylisatins were obtained earlier from isatin by reaction
with aryl bromides in the presence of cupric oxide (Silva et al. 2001).
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]
DPhH
A8h

N
|

Ar = Ph, 4-MePh COCHAr,
1 29 30

SCHEME 4.16 N-Acylation of isatins using 2-diazo-1,2-diarylethanones.

0]
E;E/g: TEA THF @ig:o
55°C, 8 h N
|
Ph

1 14 R=Cl 31

SCHEME 4.17 N-Arylation of isatin.

4.3.2.4 Reactivity of Amide Nitrogen: Applications in Heterocycle Synthesis

The reactivity of isatin ring nitrogen has been exploited for attaching different types of heterocyclic
moieties to the isatin ring. For example, N-alkylation of isatin 1 with various chloromethylquino-
lines (32a—e) in the presence of potassium fert-butoxide (KO'Bu) in tetrahydrofuran (THF) at 70°C
to afford corresponding N-alkylated derivatives (33a—e) is reported (Scheme 4.18) (Roopan et al.
2010). Unfortunately, the authors have not mentioned about the yield of the products.

Isatin 1 undergoes reaction with ferz-butylbromoacetate 34 in the presence of potassium carbon-
ate to afford the corresponding ester 35, which on treatment with hydroxylamine in the presence
of p-toluenesulfonic acid in methanol gives 3-oxime 36. Transformation of the carboxylic ester
group in oxime 36 by treating it with oxalyl chloride affords compound 37. The reaction of the
latter compound with N-substituted o-phenylenediamine 38 followed by cyclization introduces a
benzimidazolomethyl group onto the nitrogen atom of isatin ring affording product 39 (Scheme
4.19) (Sin et al. 2009). The reaction has been carried out with differently substituted anilines.

(0]
A N
|
32a-e 33a-e CHR
AL . .
(a)R= ~ N ‘2}1 AN i&
P (c)R= (e)R=
N a — —
N Cl N Cl
S s
(b)R=
~ (d)R=
—
N cl N a

SCHEME 4.18 N-Alkylation of isatins by alkyl chlorides containing heterocyclic moieties.
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(0]
%/ \HABr
(0]
34

¢} (0]
K,CO3, MeCN HONH,, TsOH
O —~ = @ 5 O — = (0]
I}l A 2h N MeOH N
.o Kfo Kfo
0 \6 o] \6
35 (Yield = 77%) 36 (Yield = >90%)

1.CF;CO,H, CH,Cl,

NH,
@ 2.(COCl),,
cat. DMF, CH,Cl,
NH(CH,);0Me
38

N— OH

N— OH
4
0 /
N CH,CH,CH,0Me 0
N 1.i-Pr,NEt, CH,Cl, \
\ Yield = (80%-90%)
N 2. ACOH, 120°C K’//O
a
39 (Yield = 80%) 37 (Yield = >95%)

SCHEME 4.19 A multi-step synthesis of 1-substituted isatin-3-oxime.

Also, various O-substituted oximes have been synthesized. Many compounds exhibited antiviral
activity in the BALB/c mouse model of RSV infection following oral dosing.

A [2 + 3]-cycloaddition of propargyl-substituted 3-hydroxy-3-(2-hydroxynaphthalene-1-yl)-
1-prop-2-ynyl-1,3-dihydroindol-2-one 40, synthesized by the Friedel-Crafts alkylation of 2-naph-
thol by isatin, with benzyl azide 41 under CuSO, catalysis furnished 1,4-disubstituted[1,2,3]-triazole
42 regioselectively in one pot in 82% yield (Scheme 4.20) (Ramachary et al. 2007). The cycloaddi-
tion of another isatin 43 bearing N-propargylic substituent with phenylazide 44 in the presence of
CuSO, affords N-(1-phenyl-1,2,3-triazol-4-yl)methylisatin derivative 45 (Scheme 4.21) (Jiang and
Hansen 2011). This compound has been observed as an inhibitor of caspase-3 (ICs, = 21 nM).

The imines 46, obtained from the reaction of isatins 1 and 15 with amines 14, are alkylated
at ring nitrogen using ethylchloroacetate forming N-1-substituted imines 47. Treatment of these
imines with hydrazine transforms the ester group into hydrazide, affording compounds 48 which

OO OH BnN; (1.1 equiv.) OO OH

41
OH
OH >
o CuS0,, Cu o
EtOH (0.15 M)
N r,0.5h N ' Bn

N =— [

= =N

N
40 42 (Yield =829%)

SCHEME 4.20 A [2 + 3]-cycloaddition of 3,3-disubstituted 1-propargyl-2-oxindole with benzyl azide.
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MeO
MeO
/O (0]
/
0 N—S
I 0 PhN, /
N 44 ° °
o} (o] L
CuS0,, Sodium N
N ascorbate, MeOH, rt K(\
—
N— Ph
\\ Nx=
H
43 45 (Yield = 63%)

SCHEME 4.21 A [2 + 3]-cycloaddition of 5-substituted 1-propargylisatin with phenyl azide.
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SCHEME 4.22 A multi-step synthesis of 3-iminoisatins with a (2-mercapto-1,3,4-oxadiazol-5-yl)methyl group.

on treatment with CS, in ethanolic KOH leads to the formation N-(2-mercapto-1,3,4-oxidiazol-5-yl)
methylisatin imines 49 (Scheme 4.22) (Bari et al. 2008).

Thiolactone-isatin hybrids 52 and a tetracyclic side-product 51 were obtained by reacting
N-(bromoalkyl)isatins 23 with potassium salt of thiolactone 50 in N,N-dimethylformamide at 60°C
in low-to-moderate yields (Scheme 4.23) (Hans et al. 2010). The product 52 was a major product in
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SCHEME 4.23 Synthesis of thiolactone-isatin hybrids.

all the cases except in case of N-(I-bromopropyl)isatin where the product ratio was 22:78 (52:51) in
the total yield of 45%. These compounds have been investigated for their antimalarial and antitu-
bercular activity (Hans et al. 2011).

4.3.3 Reactivity or KetoNe GROUP

4.3.3.1 Allylation of Isatin and Its Derivatives

Palladium-catalyzed enantioselective asymmetric allylation of N-methylisatin 22 with allyl alcohol
in the presence of triethylborane provides an efficient route to generate useful 3-allyl-3-hydroxy-
2-oxindole product 53 (Scheme 4.24) (Qiao et al. 2009). The reaction is applicable to differently
substituted isatins and allyl alcohols and the products were obtained in excellent yields (74%—99%)
but moderate enantioselectivity (56%—71%).

Alkylation of N-methylisatin hydrazones 54 is reported in aqueous media promoted by
indium. Treatment of a THF/NH,CI (aqueous saturated) solution of substrate with allyl bromide
in the presence of indium afforded oxindoles 55 and 56, respectively (Scheme 4.25) (Alcaide
et al. 2010).

R? R3 Et3B (3 equiv.)
AN Pd(0AC), (5 mol%)
| o + /VOH >
Ligand (10 mol%)

THF, 30°C, 12 h

22
53 (Yield = 74%-99%)
R'=Me, H, Bn, Ph, Ts, CH,C(Me); (ee=56%-71%)
R?=5-Cl, 5-Me, 5-OMe, 7-Cl, 7-Me

1 |
R3=H, Me, Ph, Bn, 4-MeOPh, 4-CF,Ph (16 examples)

Ligand

SCHEME 4.24 Palladium-catalyzed asymmetric allylation of isatins.
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/\/ Br
THF/NH,CI (sat),
In, rt
R R'=H, R2=COPh Me
NTN 55 (Yield = 78%)
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(0] Rl\
'}’ ,7 N-HN —
Me Br R
/\/
54 - o
THF/NH,Cl (sat), N
In, rt |
Me
R'=R?=Ph 56 (Yield = 64%)

SCHEME 4.25 Allylation of isatin imines.

4.3.3.2 Baylis—Hillman Reaction

The Baylis—Hillman reaction, a carbon—carbon bond forming reaction, which basically involves a
reaction between an aldehyde or ketone and an activated alkene in the presence of a tertiary base,
affords highly functionalized products (Shanmugam et al. 2006, Shanmugam and Vaithyanathan
2008, Singh and Batra 2008). Highly functionalized Baylis—Hillman adducts have been used as
substrates in stereoselective synthesis of a variety of highly functionalized compounds and in natu-
ral product synthesis (Basavaiah et al. 2003, Shanmugam et al. 2006). Isatin and its derivatives are
used as electrophilic components for the Baylis—Hillman reaction due to the presence of a reac-
tive keto-carbonyl group. Isatin and its alkyl, aryl, and acyl derivatives react with alkenes 57 hav-
ing electron-withdrawing groups in the presence of DABCO to yield compound 58 (Scheme 4.26)
(Tables 4.1 and 4.2) (Chung et al. 2002, Garden and Skakle 2002).

Isatin and its N-methyl and N-benzyl derivatives also undergo Baylis—Hillman coupling with
chromene derivatives 59 in methanolic trimethylamine and lead to the formation of the correspond-
ing adducts 60 (Scheme 4.27) (Basavaiah and Rao 2003).

N-Methylisatin 22 serves as an electrophile in the Morita—Baylis—Hillman reaction and reacts
with acrolein 61 and with methyl vinyl ketone 62 in the presence of 10 mol% of phosphinothiourea
63 as a catalyst to afford compounds 64 and 65, respectively, in moderate to good yields but poor
enantioselectivity (Scheme 4.28) (Wang and Wu 2011).

The reaction of N-benzylisatin 23a with methyl vinyl ketone 62 in the presence of cata-
lyst TQO as an efficient catalyst in dichloromethane has led to the formation of a mixture of

o]
EWG DABCO (0.15-0.5 equiv.) HO EWG
o + H/ THF, rt, 1.5 h-21 days
N > o]
|

R=H, allyl, Bn, Ph, COMe
COMe (C-5-bromo), COEt, COP.

58

SCHEME 4.26 The Baylis-Hillman reaction of isatins.
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TABLE 4.1
Synthesis of Baylis—Hillman Adducts of Isatin (1) and Their Alkyl or Aryl
Derivatives

Reagents/Conditions Product Compd No.  Yield (%)
Methyl acrylate 58a 63
DABCO (0.15 equiv.) HO
THF, rt, 5 days CO,Me
(0]
N
I
H
Ethyl acrylate 58b 71
DABCO (0.15 equiv.) HO
THE, rt, 8 days CO,Et
0]
N
I
H
Acrylonitrile 58¢ 69
DABCO (0.15 equiv.)
THE, rt, 4 days HO CN
0
N
|
H
Methyl acrylate 58d 81
DABCO (0.15 equiv.), rt, 21 days HO
CO,Me
o
N
v
Acrylonitrile 58e 81
DABCO (0.15 equiv.) HO
THE, rt, 8 days CN
0]
N
v
Methyl acrylate 58t 50
DABCO (0.15 equiv.) HO
THE, rt, 5 days CO,Me
0]

w-=2

n

(continued)
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TABLE 4.1 (continued)
Synthesis of Baylis—Hillman Adducts of Isatin (1) and Their Alkyl or Aryl
Derivatives

Reagents/Conditions Product Compd No.  Yield (%)
Acrylonitrile 58g 94
DABCO (0.15 equiv) HO
THE, rt, 20 h CN
o]
N
I
Bn
DABCO (0.15 equiv.) 58h 87
THE, rt, 9 days
HO
CO,Me
]
N
I
Ph
Acrylonitrile 58i 79
DABCO (0.15 equiv.) HO
THF, 1t, 25 h CN
]
N
I
Ph

compounds 67a and 67b, resulting from 1:1 and 1:2 molar reaction, respectively, of isatin 23a
with ketone 62 (Scheme 4.29) (Guan et al. 2010).

4.3.3.3 Aldol Reaction

The aldol reaction is a well-known carbon—carbon bond forming reaction. The 3-substituted
3-hydroxy-2-oxindoles resulting from the aldol reactions of isatins are important synthetic interme-
diates for a variety of biologically active alkaloids (Aikawa et al. 2011, Liu et al. 2011). An electro-
aldol reaction of isatin and its N-methyl, N-benzyl, N-acyl, and N-chloro derivatives with cyclic
1,3-diketones 68 in alcohol in an undivided cell results in the formation of substituted 2-(3-hydroxy-
2-0x0-2,3-dihydro-1H-indole-3-yl)cyclohxane-1,3-diones 69 in 70%—85% yields (Scheme 4.30)
(Elinson et al. 2010).

There are many examples of enantioselective organocatalytic aldol reaction of isatins with inacti-
vated carbonyl compounds (Chen et al. 2010a, Aikawa et al. 2011, Allu et al. 2011, Peng et al. 2011).
A representative example is the reaction of N-methylisatin 22 with diphenylphosphite 70 catalyzed
by commercially available cinchona alkaloid 71 resulting in an enantioselective phospho-aldol addi-
tion forming adduct 72 (Scheme 4.31) (Peng et al. 2011).

Isatin and its derivatives also undergo a nitro-aldol reaction known as the Henry reaction with
nitromethane in the presence of diethylamine as a catalyst to form 3-hydroxy-3-nitromethyloxindole
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TABLE 4.2

Synthesis of Baylis—Hillman Adducts of N-Acylisatins

Reagents/Conditions

Methyl acrylate
DABCO (0.2 equiv.)
DM, rt, 120 min

Acrylonitrile
DABCO (0.2 equiv.)
DMEF, rt, 120 min

Methyl acrylate
DABCO (0.2 equiv.)
DMEF, rt, 100 min

Acrylonitrile
DABCO (0.2 equiv.)
DMF, rt, 90 min

Methyl acrylate
DABCO (0.2 equiv.)
DMEF, rt, 180 min

Acrylonitrile
DABCO (0.2 equiv.)
DMEF, rt, 100 min

Product

HO
CO,Me

HO

HO
CO,Me

I
COMe

HO
CN

I
COMe

HO
Co,Me

HO

Compd No.

58;

58k

581

58m

58n

580

Yield (%)
58

70

59

50

55
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TABLE 4.2 (continued)
Synthesis of Baylis—Hillman Adducts of N-Acylisatins

Reagents/Conditions Product Compd No. Yields (%)
Acrylonitrile 58p 52
DABCO (0.2 equiv.) o
DMEF, rt, 90 min CN
(0]
N
COPh
(6}
O R2
R Me;N/MeOH
O + MeOH, rt, 12 h
N'I
R 59R=H, Me 60a—g (Yield = 78%-85%)

60a.R=R'=R=H, 60b.R=R'=Me, R=NO,

60c. R?=H, R'=Bn, R=NO,, 60d. R>=H, R'=Me, R=NO,
60e. R2=Me, R'=Bn, R=NO,, 60f. R”?=H, R'=Me, R=H
60g.R?>=H,R'=Bn,R=H

SCHEME 4.27 The Baylis-Hillman reaction of isatins with chromene derivatives.

S
NH )J\ NH— Ph
>
PPh, HO )L
63 CHO
> —0
THF, 0°C, 0.5 h
61R=H ’]‘
Me
0 o 64 (Yield =82%)
XN (ee=13%)
o t R
=

Me HO )L
61,62
22 63 X COMe
—0
/

Y

THF, 0°C, 12 h "ll
62R=Me Me
65 (Yield =42%)
(ee=20%)

SCHEME 4.28 The Baylis-Hillman reaction of isatins with acrolein and methyl vinyl ketone in the presence of
phosphinothiourea.
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O R

(e}
0 HO I
o \\
o + 66 (TQO) _ o +
I\Il (10 mol%) l}l
Bn 62 DCM, rt, 48 h Bn
R=Me
23a 67a (Yield =57%) 67b (Yield=23%)
(ee =94%)

SCHEME 4.29 The Morita-Baylis-Hillman reaction of N-benzylisatin with methyl vinyl ketone in the pres-
ence of catalyst TQO.
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68 69 (Yield =70%-85%)

69a.R'=R?=R=H; 69b.R'=Me, R?=H, R=Me;
69c.R'=Bn, R?=H, R=Me; 69d.R' =Ac, R?=H, R=Me;
69e. R'=H, R?=Me, R=Me; 69f. R'=H, R?=Cl, R=Me;
69g.R'=R?=H, R=Me; 69h.R'=Me, R?=H, R=H;
69i.R'=H,R?=Cl,R=H

SCHEME 4.30 Electrochemical aldol reaction of isatins with cyclohexane-1,3-diones.

0
?I P(O)(OPh),
—p— 71 (20 mol%)
O + H T OPh ° .~ o
[\Ij OPh DCM, 0°C N
Me 70 (2 equiv.) ,\IAe
22 72 (Yield =69%)
(ee =59%)

SCHEME 4.31 Enantioselective organocatalytic phospho-aldol reaction of N-methylisatin.
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SCHEME 4.32 The Henry reaction of isatin with nitromethane (nitro-aldol reaction).

73 (Scheme 4.32) (Chen et al. 2010b). The nitromethyl adduct is a valuable building block for the
total synthesis of natural products and their analogues because the nitro functionality can easily
be transformed into a variety of functional groups, such as amine, ketone, nitrile oxide, carboxylic
acid, hydrogen, and so on (Liu et al. 2011). Furthermore, asymmetric Henry reaction of isatins offers
direct entry to the chiral 3-substituted 3-hydroxyoxindole.

Direct catalytic asymmetric aldol reaction of ketones with isatin 1 using L-proline derived
bis-amide organocatalysts 74 represents a general approach to 3-alkyl-3-hydroxyoxindoles 75
and 76 with a quaternary stereocenter. The products are obtained in excellent yields (up to 99%)
(Scheme 4.33) (Chen et al. 2007). Isatin 1 also reacts with acetaldehyde in the presence of
organocatalyst 4-hydroxydiaryl prolinol 77 to give aldol adduct 78 in almost quantitative yield
with good enantioselectivity (Scheme 4.34) (Chen et al. 2010).

An efficient vinylogous Mukaiyama aldol reaction of various N-alkylisatins with 2-(trimethylsi-
lyloxy)furan 79 is described in the presence of lanthanum(III) triflates (5 mol%) (Meshram et al. 2011).
In this way, the reaction of isatin 1 proceeds rapidly and affords the corresponding diastereomeric
3-hydroxy-(5-oxo-2,5-dihydrofuran-2-yl)indolin-2-ones 80 and 81 in high yields with good diaste-
reoselectivities (Scheme 4.35).

Me,CO
74a (10 mol%) -
AcOH (20 mol%)
35°C
O
75 (Yield =99%)
0O — (ee =64%)
N
' HO cHycoEt
H MeCOEt .
74b (10 mol%)
1 . (6}
o AcOH (20 mol%) N
Ph -20°C
0 |
o] )—/ /Zk H
N 4 )
H NH Ar 76 (Yield = 98%)
(ee=74%)

74a. Ar=4-MePh
74b. Ar=3,4-Me,Ph

SCHEME 4.33 Asymmetric aldol reactions of isatin with carbonyl compounds in the presence of L-proline
derived bis-amide catalysts.
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SCHEME 4.34 Asymmetric aldol reactions of isatin with acetaldehyde catalyzed by a 4-hydroxydiarylpro-

linol catalyst.
O\OTMS =

(0]

0 79 HO 0 HO, 0
\ o o}
o La(OTf); (5 mol%) o
> 0
N THF, -78°C-20°C > * N
N
| 2-5h | |
H H H
1 80 81
(Yield = 90%)

(threo/erythro =93:7)

SCHEME 4.35 Mukaiyama’s aldol reaction of isatin with 2-(trimethylsilyloxy)furan in the presence of
lanthanum(III) triflate.

4.3.3.4 Isatin-3-Oximes

Isatins react with hydroxylamines to form isatin oximes. Isatin oximes are compounds of biologi-
cal interest (Rad et al. 2010) and their synthesis, chemistry, and biological activity has also been
reviewed (Abele et al. 2003). Liu and coworkers have reported the "N  NMR studies on isatin
oximes (Liu et al. 2010). In a classical method to synthesize isatin-3-oximes, isatins are reacted
with hydroxylamine hydrochloride in 10% aqueous NaOH, NaOH-EtOH, NaOAc, n-PrOH-H,0,
NaOAc-dioxane, Na,CO;-H,0, Na,CO;-EtOH, and H,O. Pinto and coworkers have developed an
efficient methodology for the preparation of isatin 3-oximes under Lewis or Bronsted acid catalysis
in different imidazolium-based ionic liquid solvent (Pinto et al. 2008). The reaction of compounds
82 with hydroxylamine afforded the corresponding 3-oxime 83 (Scheme 4.36). This approach was
proved to be useful even with the phenyl ring bearing an electron-withdrawing group, except when
the substituent was chlorine.

4.3.3.5 Isatin-3-Semicarbazones/Thiosemicarbazones

The reaction of isatins with semicarbazides and thiosemicarbazides are known to form the cor-
responding 3-semicarbazones and 3-thiosemicarbazones, respectively. Thiosemicarbazones consti-
tute a class of compounds which have been found to display numerous biological activities (Pervez
et al. 2007) such as antitumor, antibacterial, antiviral, and antimalarial activities (Konstantinovic
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NH,OH

NOH N NOH
/ Lewis acid or
R N Bronsted acid | XX
| (6} > R I (0]
= N lonic liquid — N
| 135°C |
H H
82 83
R=7-CF;, 7-Cl, 7-I, 7-OMe, 6-OMe, 5-OMe (Yield =12%-639%)

SCHEME 4.36 Synthesis of isatin-3-oximes.

et al. 2008). Their activity is thought to be due to their ability to make chelation with traces of metal
ions present in biological systems (Konstantinovic et al. 2007). The 3-thiosemicarbazones of isatin
have been of interest since 1-methylisatin-3-thiosemicarbazone was found to be active in the treat-
ment of small pox (Rai et al. 2005, Vasta et al. 2005).

Pandeya et al. have reported the synthesis and anticonvulsant activity of 3-semicarbazones
of isatins (Pandeya and Raja 2002). The reaction of isatins with thiosemicarbazide 84 in etha-
nol provided the corresponding isatin-3-thiosemicarbazones 85 (Scheme 4.37) (Chiyanzu et al.
2003). Many isatin-3-(N-aryl)thiosemicarbazones 87 have been also synthesized by the reac-
tion of isatin with N-arylthiosemicarbazides 86 (Scheme 4.38) (Kang et al. 2011). These thi-
osemicarbazones have been observed as potent herpes simplex virus inhibitors. The synthesis
of 3-N,N-diethylthiosemicarbazone 89 has been carried out by reaction of isatin 1 with N,N-
diethylthiosemicarbazide 88 (Scheme 4.39). The Mannich reaction of the compound 89 affords the
1-substituted thiosemicarbazone 90 (Scheme 4.39) (Bal et al. 2005).

Another approach for the synthesis of isatin-3-(N-phenyl)thiosemicarbazone 87 involves the
condensation of isatin C-3 carbonyl with methylhydrazinecarbodithioate 91 forming compound 92
which reacts with aniline to afford the final product 87 (Scheme 4.40) (Pervez et al. 2007).

S

o S N-NH  NH2
R! R! y

EtOH
O + HNHN  NH, —— » 0
\ 45°C I},
|
R? H R?

1,15,16 84 85 (Yield = 40%-98%)

85.R'=R?=H;R'=Me, R?=H; R'=F, R?=H;R'=C|, R?=H;
R'=Br,R*=H; R'=1,R?=H; R'=NO,, R?= H; R'=Me, R?=Me;
R'=Cl,R?=Me

SCHEME 4.37 Synthesis of isatin-3-thiosemicarbazones from isatins.

S
J s
ArHN™ NHNH, )I\
o 86 N—NH  NHAr
/
MeOH
(e} > 0
A5h
N N
I |
H H
1 87

SCHEME 4.38 Synthesis of 3-N-arylthiosemicarbazones from isatin.
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SCHEME 4.39 Formation and Mannich reaction of isatin-3-N, N-diethylthiosemicarbazones.

s s
NN EaiHar
H,N- NH CSzMe N C s ArNH2
m Ar= Ph
1 92 87

SCHEME 4.40 Synthesis of 3-N-phenylthiosemicarbazones from isatin using methylhydrazine carbodothioate.

4.3.3.6 Isatin-3-Hydrazones

Isatin hydrazones are reported to have anticonvulsant activity (Sridhar et al. 2002). Isatin 1 reacts
with hydrazine hydrate in methanol to give the corresponding 3-hydrazone 93 (Scheme 4.41) (Sridhar
and Ramesh 2001, Srinivas et al. 2010). The reaction of isatin 1 with hydrazines 94a—d in acidified
ethanol affords isatin-3-(N-acyl/aroyl)hydrazones 95a—d (Scheme 4.42) (Adibi et al. 2010). Somogyi
has reported the cyclization of isatin-3-(N-acyl)hydrazones forming spiro-fused 1,3,4-oxadiazolines
(Somogyi 2001). The reaction of isatin 1 and 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionohydra-
zide 96 yields isatin-3-(N-acyl)hydrazone 97 (Scheme 4.43) (Nugumanova et al. 2009).

4.3.3.7 Isatin-3-Imines

Isatin imines are well known as building blocks in organic synthesis. The formation of isatin-
3-imines from isatin and some alkyl amines were reported by Piccirilli and Popp by refluxing

O NNH,
N,H,-H,0
O —mmm>»
MeOH ©
N N
: |
H H
1 93 (Yield = 74.5%)

SCHEME 4.41 Preparation of isatin-3-hydrazone from isatin.

6} NNHCOR
H,N-NH-COR o
94
O > le)
EtOH
| ;0" \
H H
1 95

R =pyridin-4-yl, 4-HOPh, Ac, 2-thienyl

SCHEME 4.42 Preparation of isatin-3-(N-acyl)hydrazones from isatin.
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CMey
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$— CH,CH, OH
0 CMes N—NH
/
CMes
O + H,NHNOCH,CH,C OH —> 0
N \
|
H CMe3 H
1 96 97 (Yield = 60.8%)

SCHEME 4.43 Preparation of isatin-3-(N-acyl)hydrazone.

the substrates in ethanol (Piccirilli and Popp 1973). Many isatin imines have been synthesized
since then and evaluated for different kinds of biological activities (Singh et al. 1993a,b). Bari
et al. has used glacial acetic acid in ethanol for the synthesis of isatin imines from the reaction
of isatin and aromatic amines (see Scheme 4.22) (Bari et al. 2008), and Sharma and coworkers
have also utilized this protocol in the synthesis of imines having anticonvulsant activity from
isatin and 2-aminobenzothiazoles (Sharma et al. 2009). Recently, synthesis of some antileish-
manial isatin imines has been reported in aqueous medium (Khan et al. 2008). Our group has
also observed antileishmanial activity in isatin imines (Al-Kahraman et al. 2011). The reaction
of isatin 1 or 5-chloroisatin 15 with 5-amino-8-hydroxy quinoline 98 has been reported recently
to form imines 99 which undergo the Mannich reaction to afford the N-alkylated imines 100
(Scheme 4.44) (Chhajed and Padwal 2010).

OH
N
~
/
o NH, A
R SN R
o + — > 0
= -H,0
rlu N N
|
H OH H
1 RoH 98 929
15.R=Cl
Rz | | | HCHO,
N N N RINH
SIORORS o
0 N
AN
/
N
R /,
0
N
|
CH,R!
100

SCHEME 4.44 Preparation of 3-iminoisatins and their Mannich reaction.
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SCHEME 4.45 Oxidation of isatin to isatoic anhydride using chromic anhydride.

0
R 0 Na H,0
WS Ru(lll)/HCl R CoH
0 + Me S—N -

N N - 30°C, 24 h

| o NH,

H

1 102 103
R=H, Br, Me, NO, (Yield = 919%-93%)

SCHEME 4.46 Oxidation of isatins to anthranilic acids by N-bromo-p-toluenesulfonamide using Ru(III) catalyst.

4.3.4 OXIDATION REACTIONS OF ISATINS: SYNTHESIS OF IsATOIC
ANHYDRIDE AND ANTHRANILIC ACIDS

Oxidation of isatin 1 using either hydrogen peroxide or chromic anhydride yields isatoic anhydride
101 (Scheme 4.45). In the oxidation of isatin to isatoic anhydride, the oxidizing agent selected
should be able to introduce an oxygen atom between the two adjacent carbonyl groups without sub-
stantial decomposition of the ring system (Deligeorgiev et al. 2007).

A mixture of aqueous hydrogen peroxide in acetic or formic acid in the presence of catalytic
amount of sulfuric acid is also used for the oxidation of isatin to isatoic anhydride. Another eco-
nomic and environment-friendly procedure for the oxidation of isatins is through the use of the
urea—hydrogen peroxide complex (percarbamide, H,NCONH, - H,0,) (Deligeorgiev et al. 2007).

Isatin 1 is oxidized to anthranilic acids 103 with the N-bromo-p-tolunesulfonamide 102 or bro-
mamine-T as an oxidant and ruthenium(III) chloride as a catalyst in acidic medium (Scheme 4.46)
(Jagadeesh et al. 2008).

4.3.5 RebucTiON REACTIONS OF ISATINS: SYNTHESIS OF INDOLES AND 2-OXINDOLES

The reduction reactions of isatin under different conditions lead to the formation of indoles and
oxindoles. The reduction of isatin with lithium aluminum hydride in pyridine affords indoles in
moderate yields. The use of THF as a solvent under an inert atmosphere, however, gives better
yields. Chemoselective alkylation of isatin at C-3 or N-1 accompanied by reduction using metal
hydrides leads to the formation of 1- or 3-alkylindoles 104 or 105 (Scheme 4.47) (Silva et al. 2001).
The reduction of 5,6-dibromoisatin 106 using a solution of BH, in THF furnishes 5,6-dibromoindole
107 in 68% yield (Scheme 4.48) (Mollica et al. 2011). N-(3-Chloropropyl)-5-nitroisatin 23 under-
goes reduction on treatment with NaBH, in the presence of ZrCl, to afford N-(3-chloropropyl)-
5-nitroindole 108 (Scheme 4.49) (Torisawa et al. 2001).

It is worth mentioning that indoles are well-known alkaloids that occur frequently in plants and
other natural resources, and several thousands of alkaloids with indole moiety are known to be hav-
ing important pharmacological activities (Jaishree et al. 2009). There are numerous reports in lit-
erature on new synthetic methodologies to construct indole framework (Labo and Prabhakar 2009).

The partial reduction of the y-lactam ring in isatin leads to the formation of oxindoles. Catalytic
reduction of isatin 1 via 3-hydroxyoxindole 109 offers an easy method for the synthesis of oxindole
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SCHEME 4.47 Reduction of isatin to indole derivatives.
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SCHEME 4.48 Reduction of 5,6-dibromoisatin to 5,6-dibromoindole.
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SCHEME 4.49 Reduction of N-alkylisatins to N-alkylindole derivatives.
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SCHEME 4.50 Catalytic reduction of isatin to 2-oxindole.

110 (Scheme 4.50) (Volk and Simig 2003, Porcs-Makkay et al. 2004). The asymmetric hydrogenations
of 5-methylisatin 15 over modified Pt/Al,O; and cinchonidine (CD) 111 catalysts are reported to yield
the corresponding 3-hydroxyoxindole 112 at the low concentration of cinchonidine and bisoxindole
113 at either higher concentration of cinchonidine or cinchonidine in the presence of 100 equiv. of
TFA (Scheme 4.51) (Sonderegger et al. 2004). Oxindoles are obtained from isatin by other methods as
well, which will be discussed separately in the succeeding section on oxindole synthesis.

A tetracyclic 3-hydroxyoxindole 115 has been synthesized from the reaction of isatin 1 with the
Baylis—Hillman adduct 114 (Scheme 4.52) (Lee et al. 2010). The o-bromophenyl ring in N-alkylated
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SCHEME 4.51 Catalytic asymmetric reduction of 5-methylisatin to 3-hydroxy-5-methyl-2-oxindole.
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SCHEME 4.52 Synthesis of 3-hydroxy-2-oxindole with a fused ring system.

97
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Radical anion form Dianion form
SCHEME 4.53 Mechanism of reduction of isatin by voltametric studies.

product 20 undergoes a palladium-catalyzed intramolecular nucleophilic aromatic substitution by
the phenyl ring of isatin forming a tetracyclic product 21. The chemoselective reduction of C-3
carbonyl group by sodium borohydride affords the tetracyclic 3-hydroxyoxindole 115.

Voltametric studies of the reduction of substituted isatins in the aprotic solvent DMF and direct
analogy with benzo and naphthoquinones indicate that the reduction of the O-quinoid-like carbonyl
group of N-methylisatin 22 in aprotic medium occurs via successive one-electron transfers forming
radical anion 116 and dianion 117 (Scheme 4.53) (Yeagley et al. 2011).

It is thus evident that the reduction of isatins serves as a good methodology for the synthesis of
indoles and oxindoles. There are, however, other methods as well for the synthesis of oxindoles
using isatins as substrates. It is, therefore, pertinent to have a separate section on the synthesis of
oxindoles from isatins. The succeeding sections, thus, give a glance of other methodologies for the
synthesis of oxindoles from isatins besides straightforward reduction of the latter.

4.4 SYNTHESIS OF 2-OXINDOLES FROM ISATINS

Oxindoles are well known among different isatin derivatives and are of potential biological inter-
est as antibacterials, kinase inhibitors (Messaoudi et al. 2004), progesterone receptor antagonists
(Fensome et al. 2002), CDK2 inhibitors (Dermatakis et al. 2003), PDE4 inhibitors (Hulme et al.
1998), anti-HIV agents (Kumari et al. 2011), and antitumor agents (Girgis 2009). Oxindoles consti-
tute a common structural motif in various natural products and biologically active compounds such
as alkaloids (Shintani et al. 2006, Chauhan and Chimni 2010, Trost and Zhang 2011). Substituted
3-hydroxy-2-oxindoles are also important core structures found in many natural products and phar-
maceutical compounds (Hanhan et al. 2010). Although the reduction of isatins constitutes the prin-
cipal methodology for the synthesis of oxindoles, there are several other methods for conversion of
isatins into oxindoles, for example, N-Benzylation of isatin 1 followed by treatment with hydrazine
at 140°C affords N-benzyloxindole 118 (Scheme 4.54) (Trost and Zhang 2011).

Reaction of N-acetyl isatins 28 with diethylaminosulfurtrifluoride (DAST) in dichloromethane
at room temperature leads to the formation of N-acetyl-3,3-difluoro-2-oxinoles 119 in 65%-94%
yields (Scheme 4.55) (Boechat et al. 2008).

Ultrasonic irradiation of isatin 1 with two molar equivalents of 2H-indene-1,3-dione 120 in the
presence of p-toluenesulfonic acid in ethanol at 40°C afforded 2,2'-(2-oxindoline-3,3-diyl)bis(2H-
indene-1,3-dione 121 (Scheme 4.56) (Ghahremanzadeh et al. 2011).

o
o 1.NaH, BnBr, DMF . @E/\:O
N 2. NH,NH,, 140°C N
i} Bn
1 118 (Yield=76%)

SCHEME 4.54 Transformation of isatin to N-benzyl-2-oxindole.
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SCHEME 4.55 Transformation of N-acylisatins to N-acyl-3,3-difluoro-2-oxindoles.
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SCHEME 4.56 Reaction of isatin with 2H-indene-1,3-dione by ultrasonic irradiation.
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| |
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SCHEME 4.57 Reaction of isatin with indole forming a 3,3-disubstituted 2-oxindole.

The reaction of isatin 1 with indole 122 in the presence of molecular iodine in isopropanol for 5 min
yielded the 3,3-bis(indol-3-yl)2-oxindole 123 in 98% yield (Scheme 4.57) (Paira et al. 2009). This reac-
tion has also been carried out in the presence of RuCl;.H,O as a catalyst (Messaoudi et al. 2004).

The rhodium-catalyzed addition of arylboronic acids to isatins affords 3-aryl-3-hydroxyindoles.
For example, the reaction of isatins 1 and 2 equiv. of phenyl boronic acid 124 in the presence of a cata-
lyst, generated in situ from 3 mol% of [(C,H,),Rh(acac)] and 7 mol% of P(OPh);, leads to the formation
of 3-hydroxy-3-phenyl-2-oxindole 125 in quantitative yield (Scheme 4.58) (Toullec et al. 2006).

(0} HO
[(C,H4),Rh(acac] (3 mol%)

O + 2PhB(OH),

Y
o

N P(OPh); (7 mol%) N

| Me,CO, A, 4 h |

H H
1 124 125

SCHEME 4.58 Transformation of isatin to 3-hydroxy-3-phenyl-2-oxindole using phenyl boronic acid.
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SCHEME 4.59 Reaction of isatin with indole in the presence of a modified cinchona alkaloid forming
3-hydroxy-3-(indol-3-yl)-2-oxindole.

The nucleophilic addition of indole 122 to the C-3 of the isatin 1 using a bifunctional modified
cinchona alkaloid catalyst 126 transforms isatin 1 to 3-hydroxy-3-(indol-3-yl)-2-oxindole 127
(Scheme 4.59) (Hanhan et al. 2010).

The examples described in this section constitute synthesis of oxindoles either unsubstituted or
substituted at C-3 by another atom(s) or group(s) such as fluorine, hydroxyl group, phenyl group,
or a heteroaryl group(s). However, there are a large number of reports in literature on the synthe-
sis of oxindoles in which C-3 of the oxindoles is spiro-fused to different types of rings. The next
section is thus devoted to the synthesis of spiro-fused oxindoles from isatin and its derivatives.

4.5 SYNTHESIS OF SPIRO-FUSED 2-OXINDOLES

The compounds with spiro-fused cyclic frameworks are attractive synthetic targets owing to their
broad application in the area of medicinal chemistry, their therapeutic value, and because they are
core structures in many natural products. The application of isatins in synthesis of such compounds
have been reviewed recently (Singh and Desta 2012). Since a detail treatment of the topic is beyond
the scope of this chapter; representative examples of applications of isatin and its derivatives in the
synthesis of spiro-oxindoles are described in this section.

The condensation of isatins with 1,3-diamines and with 1,2-diamines leads to the formation of
spiro-fused 2-oxindoles. For example, the condensation of isatins 1, 15, and 22 with 2-aminobenzyl-
amine 128 in methanol has been reported to produce the 2-oxindoles 129 spiro-fused to tetrahydro-
quinazoline (Scheme 4.60) (Bergman et al. 2003). This reaction in refluxing acetic acid, however,
afforded the quinolinone derivatives as a major product together with traces of 129. The reaction of
isatin 1 and an o-diamine 3,4-diaminofurazane 130 affords the product 131 having 2-oxindole ring
spiro-fused to 1,2,5-oxadiazoloimidazolidine (Scheme 4.61) (Gurevich et al. 2010).

(0]
R HN
H,NH,C MeOH R NH
o + _
N rt, 48 h
| HoN N
R! I

R1
1,15,22 128 129

R=R'=H;R=Me, R'=H; R=H, R'=Me (Yield = 65%-68%)

e}

SCHEME 4.60 Synthesis of spiro-tetrahydroquinazoline-oxindoles by the reaction of isatins with
2-aminobenzylamine.
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SCHEME 4.61 Synthesis of spiro-imidazole-oxindole by the reaction of isatin with 3,4-diaminofurazane.
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SCHEME 4.62 A 1:2 molar reaction of isatins with 6-amino-1-methyluracil forming spiro-oxindole derivatives.

A 1:2 molar reaction of isatins 1, 15, and 6-amino-1-methyluracil 132 in the presence of catalytic
amount of p-toluenesulfonic acid afforded 1,1"-dimethyl-1H-spiro[pyrimido[4,5-b]quinoline-5,5'"-
pyrrolo[2,3-d]pyrimidine]-2,2",4,4',6'(1'H,3H,3'H,7'H,10H)-pentaones 133 in good yields (Scheme
4.62) (Dabiri et al. 2008). These products have shown good antibacterial activity against some
Gram-positive and Gram-negative bacteria (Ghahremanzadeh et al. 2008).

A 2:1 molar reaction of 2-hydroxynaphthalene-1,4-dione 134 and isatin 1 in the presence of a cata-
lytic amount of p-toluenesulfonic acid in aqueous medium furnishes spiro[dibenzo[b,i]-xanthene-13,3"-
indoline]-2,5,7,12,14-pentaone 135 in 80% yield (Scheme 4.63) (Bazgir et al. 2008). A series of such
compounds in good yields (75%—82%) have been synthesized from the reactions of N-methylisatin,
N-benzylisatin, 5-bromoisatin, 5-nitroisatin, and N-bromo-5-methylisatin with compound 134.

2o A, 24h

1 134 135 (Yield =80%)

SCHEME 4.63 A 1:2 molar reaction of isatin with 2-hydroxynaphthalene-1,4-dione in the presence of
p-TsOH forming spiro-oxindole derivative.
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N ©\ NH : : “NH
0 CN P o 0 - 0
o 0 o L CN
o + PhMe >0
T 0" N CN
ITI A,32h
H

1 136 137 (Yield =42%) 138
(137:138=57:43)

SCHEME 4.64 A [2 + 3]-cycloaddition reaction of isatin with carbonyl ylide generated in sifu from 3-pheny-
loxirane-2,2-carbonitrile to give spiro-dioxolane-oxindoles.

A [2 + 3]-cycloaddition reaction of carbonyl ylides, generated from epoxide 136 and ketone group
of isatin 1, afforded spiro-fused heterocyclic compounds 137 and 138 in which 1,3-dioxolane ring
was spiro-fused to C-3 of 2-oxindole (Scheme 4.64) (Bentabed-Ababsa et al. 2008). The reaction has
also been carried out with N-methylisatin and 5-chloroisatin using epoxides having 4-methoxyphenyl
group and 4-chlorophenyl group affording products in moderate yields (30%—73%).

When equimolar amounts of methyl benzoylpyruvate 139 and isatin 1 are gently heated in the presence
of N,N,N’,N'-tetramethylguanidine in dioxane, the guanidinium salt of spiro-fused compound 140 was
formed. An acidic hydrolysis of the salt liberated the 3"-benzoyl-4"-hydroxyspiro[indole-3,2"-furan]2,5'(1H)-
dione 141 and the tetramethylguanidinium hydrochloride 142 (Scheme 4.65) (Gein et al. 2010).

o} OH

= OMe
R

0]
R
139
0 Tet thyl M
etramethyl- OH Me e
guanidine — \N/
0 > .

Dioxane Me
\ HN 0 0 HN N
H |
© Me
1 140
140.R = Me (73%), R = F (68%) HCl
141.R = Me (84%), R =F (79%)

=

0
OH
Me HCl  + —
HN N
Me HN 0 0
o)
142 141

SCHEME 4.65 Reaction of isatin with methyl benzoyl pyruvate in the presence of N,N,N,N’-
tetramethylguanidine followed by acidic hydrolysis of the salt.
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0
CN
0 +
N CN
\
R
24 + 143 (10 mol%)
o o CH,Cly, 4 AMS
M 0°C, 14 h ‘
145 R
144 Yield: up to 99%
R = Me, Bn, allyl, MOM ee:up to 97%

SCHEME 4.66 An enantioselective synthesis of spiro-pyran-oxindole by a three-component reaction of
isatin using cupreine as a catalyst.

The first enantioselective two- and three-component reactions via a domino Knoevenagel/
Michael/cyclization sequence with cupreine (CPN) as catalyst have been developed (Chen et al.
2010c). Optically active spiro[4H-pyran-3,3’-oxindoles] 145 were obtained in excellent yields (up to
99%) with good-to-excellent enantioselectivity (up to 97%) in the reaction of isatin 1, malononitrile
143, and pentane-2,4-dione 144 in the presence of cupreine (CPN) as a catalyst (Scheme 4.66).
Similar products have been synthesized by an electrocatalytic reaction of isatin, 1,3-diketones, and
malononitrile under neutral and mild conditions in undivided cell in alcoholic solvent in the pres-
ence of sodium bromide as an electrolyte (Elinson et al. 2007).

A [2 + 3]-cycloaddition of azomethine ylides, generated in situ from the reaction of isatins with amino
acids such as sarcosine and L-proline, serves as a common strategy to synthesize spiro-oxindoles. A
three-component domino reaction of isatin 1, N-methylpiperidin-4-one 146, and N-methylglycine 147
has led to the formation of bis-spiropyrrolidine 148 in moderate yield (Scheme 4.67) (Kumar et al. 2010).

0 (0}
MeNHCH,CO,H
o + 147 g
MeOH
N N
H |

A6-75h
Me
i - 0
] 146 148 (Yield = 43%)
— COOH
I
C— NH,
/ \ Ph
(6] Ph H
0 Ph
NH o
o 4 149 _ 0
MeOH/H,0 (2:1)
N N A, 24h NH
|
H Me N
|
1 146 Me

150 (Yield =36%)

SCHEME 4.67 Three-component reactions of isatin forming spiro-heterocyclic 2-oxindoles.
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A similar reaction using 2-phenylglycine 149 afforded another bis-spiropyrrolidine 150. Other
dipolarophiles used in this methodology are 3-acetyl-2H-chromen-2-ones (Ghandi et al. 2010) and
(E)-3-aryl-1-(thiophen-2-yl)prop-2-en-1-ones (Thangamani 2010).

The reaction of isatin 1 with carbohydrazide in glacial acetic acid afforded hydrazone 160,
which underwent oxidative cyclization to yield 2-oxindole 151 spiro-fused to 1,3,4-oxadiazoline.
Hydrazinolysis of hydrazide chain in product 152 afforded spiro-fused 2-oxindoles 153 (Scheme
4.68) (Islam and Mohsin 2007).

A 3-spirocyclopentene-2-oxindole 155 has been synthesized by reacting the bromoallyl deriva-
tive of 1-methylisatin 154 with methyl acrylate 57 in the presence of Ph,P and K,COj; in toluene
(Scheme 4.69), whereas 3-spiropyrazole-2-oxindole 158 has been synthesized by reacting the bro-
moallyl derivative 156 of 1-methylisatin with diethylazadicarboxylate (DEAD) 157 in the presence
of Me,S/K,CO; in acetonitrile at room temperature (Scheme 4.70) (Selvakumar et al. 2010).

Aldol-addition of acetophenones 159 to isatin 1 affords 3-hydroxy-3-phenacyloxindoles 160 which under-
goes dehydration forming 3-phenacylidene-2-indolinones 161 in quantitative yields. The reactions of com-
pounds 161 with phenylthiourea, phenylhydrazine, and hydrazine resulted in the formation of 2-oxindoles
162-164, spiro-fused to pyrimidine-2-thione, N-phenylpyrazoline, and pyrazoline, respectively (Scheme
4.71) (Ibrahim et al. 2010). Kusanur et al. have reported the formation of (Kusanur et al. 2004) 2-oxindoles
spiro-fused to benzodiazepine by the reaction of isatin—coumarin aldol adduct with o-phenylenediamines.

The isatin imine 165 reacts with mercaptoacetic acid to give 2-oxindole 166 spiro-fused to
3-phenylthiazolidinone (Scheme 4.72) (Mashelkar and Rane 2005). The reactivity of the nitrogen
atom in the 2-oxindole ring of this compound has been further explored to synthesize new products.

0 NNHCONHNH,
H,NNHCONHNH, %
0 0
N gl. AcOH, A N
| |
H H
151
. 5
j Ac,0, A, 4h
NHNH, N
N *( /X NHNHAC
H—N Ac—N
o) H,NNH,H,0 o
At 3-4h
0 o
N N
N I
H H
153 (Yield = 40%) 152

SCHEME 4.68 A multi-step synthesis of spiro-oxadiazoline-oxindole derivative from isatin.

Br
//—COsMe
COMe by, p (10 moloe)
o + ‘ K,COs, PhMe
N 120C,8h
Me Me
154 57 155 (Yield = 46%)

SCHEME 4.69 Synthesis of a spiro-cyclopentene-oxindole derivative from the reaction of bromoallyl deriv-
ative of N-methylisatin with methyl acrylate in the presence of triphenylphosphine.
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CO,Et
N Me,S,K,CO;
+ ‘ ‘ MeCN, rt
N
I
CO,Et
156 157 158 (Yield=73%)

SCHEME 4.70 Synthesis of a spiro-pyrazole-oxindole derivative from the reaction of bromoallyl derivative
of N-methylisatin with DEAD.
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Et,NH
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EtOH X
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H H
1 159 160 (Yield = 65%-76%)
X=H,X=Cl,X=0Me
EtOH
HCl

PhNHCSNH,
EtOH/KOH

O O
161 (Yield = 80%-87%)

162 (Yield = 50%-60%)

PhNHNH, NH,NH,
Et,NH EtOH

163 (Yield = 55%-60%) 164 (Yield = 52%-56%)

SCHEME 4.71 Synthesis of spiro-heterocyclic 2-oxindoles from aldol adducts of isatin.

The reaction of compound 166 with ethyl chloroacetate in the presence of NaH/DMF yielded the
compound 167 which underwent hydrazinolysis to afford the compound 168. This product on fur-
ther condensation with azalactone 169 furnished spirocyclic compound 170.

The reactions of isatin imines with diphenylketene, di-p-tolylketene, and di-p-anisylketene, gen-
erated from the corresponding 2-diazo-1,2-diarylethanone, have been reported to form 2-azetidi-
nones spiro-fused to oxindoles (Singh et al. 1997, Singh and Mmolotsi 2006). Recently, the reactions
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o 0
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o] 0

N o Ph o)
CH,CONH N Zo 169 N
- -~ )
2 _N AcOH, A CH,CONHNH,
Ph 168 (Yield = 90%)

170 (Yield =70%)

SCHEME 4.72 Synthesis and transformation of spiro-thiazolidinone-oxindole from the reaction of
3-N-phenyliminoisatin with mercaptoacetic acid.

NR R
Ar N,
Ar 0 N 6-8h R
Me 50%-80% N o
Me

171 172

173
Ar=Ph, 4-MePh, 4-MeOPh

R=Ph, 4-MePh, 4-CIPh, 4-MeOPh, 4-NO,Ph, 4-EtOPh,
CHMe,, CHPh,, CH(Me)Ph, c-Hex

SCHEME 4.73 Synthesis of spiro-azetidinone-oxindoles by reaction of 3-imono-1-methylisatins with
2-diazo-1,2-diarylethanones.

of diarylketenes, obtained from 2-diazo-1,2-diarylethanones 171, with 3-alkylimino-N-methylindo-
lin-2-ones 172, have been reported to yield spiro-fused 2-azetidinones 173 in good yields (Scheme
4.73), but with poor-to-moderate antibacterial activity (Singh and Luntha 2009). The synthesis of
isatin-derived mono- and bis-spiroazetidinones using the Staudinger reaction has been reported by
Jarrahpour and Khalili (2007). 3-Arylimino-1-methyl-2-indolinones have also been reacted with
dichloroketene to afford the corresponding spiro-fused 2-azetidinones (Azizian et al. 2000).

A TiCl,-catalyzed coupling of 2-acetyl-6-methyl-2,3-dihydro-4H-pyran 174 with isatin 1 results
into a tandem C—C and C-O bonds formation offering a simple methodology for the stereoselec-
tive synthesis of [(1-acetyl-5-methyl-6,8-dioxabicyclo(3.2.1)octane)-7-spiro-3'-(indoline-2"-one)] 175
(Scheme 4.74) (Basavaiah et al. 2005). The reaction has been carried out with isatin, N-alkylisatins,
N-phenylisatin, 5-nitroisatin, and some 1,5-disubstituted isatins in the presence of 20 mol% of cata-
lyst in dichloromethane at room temperature for 6 h to afford the products in 44%—74% yields.

The reaction of isatins with arsonium salts 176 in the presence of K,CO, constitutes a one-
pot approach for highly stereoselective synthesis of 2-oxindoles 177 spiro-fused at its C-3 to a
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SCHEME 4.74 A TiCl,-catalyzed coupling of isatin with 2-acetyl-6-methyl-2,3-dihydro-4H-pyran.
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R H CO,Me
2Ph;As*CH,XBr~ + K2 » R'-N
N MeCN/CHCl, j H
é1 rt, 35-60 min
(Yield = 75%-98%) 0
176 1,15,31
0
K,CO; R
1) — _
N
& CHX
R
1,15,31 A
2PhAs=CHX > 0
N >
A i
B

177. R=R'=H, X=CO,Me; R=Cl, R'=H, X=CO,Me;
R=Br, R'=H, X=C0O,Me; R=NO,, R'=H, X=CO,Me;
R=Me, R'=H, X=CO,Me; R=H, R'=Ph, X=CO,Me;
R=R'=H, X=CN; R=Cl,R"=H, X=CN; R=Br, R'=H, X=CN;
R=NO,, R'=H, X=CN; R=Me, R'=H, X=CN

SCHEME 4.75 Synthesis of spiro-cyclopropane-oxindoles from isatins by reaction with arsonium salts.

cyclopropane ring (Scheme 4.75) (Yu et al. 2010). According to the proposed mechanism, first the
Wittig reaction of isatin 1 and arsonium ylide A, derived from arsonium salt 176 with potassium
carbonate as base, generates 3-alkylideneisatins B. The ylide A then adds across the exocyclic car-
bon—carbon double bond in B to form the product 177.

4.6 RING EXPANSION OF ISATINS TO QUINOLINES

Quinolines constitute an important group of heterocyclic compounds which have been found to pos-
sess useful biological activities such as antimalarial, antibacterial, anti-asthmatic, antihypertensive, and
anti-inflammatory. In addition, quinolines are valuable synthons for the preparation of nano- and meso-
structures with enhanced electronic and photonic functions (Yavari et al. 2010). Quinoline is also known



108 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

CO,H
MeCOPh
lonic liquids N
H,0 - =~
N Ph
178
o CO,H
Me,CO
KOH, EtOH N
(0} =
N MW, 12.5 min. =
) N Me
H
179
1
KOH, EtOH . o
MW, 12.5 min. - _
N
180

SCHEME 4.76 Reaction of isatin with ketones forming quinoline derivatives.

as l-azanaphthalene, 1-benzazine, or benzo[b]pyridine (Khan et al. 2009). Many synthetic routes,
including those from ring expansion of isatins, are well documented for the formation of quinolines.
Isatins undergo ring expansions on reaction with ketones, activated alkynes, and active methylene com-
pounds. For example, the reaction of isatin 1 with acetophenone in the presence of ionic liquids as cata-
lyst affords 2-phenylquinoline-4-carboxylic acid 178 (Scheme 4.76) (Kowsari and Mallakmohammadi
2011). A microwave-assisted synthesis using acetone and cyclohexanone in ethanolic KOH leads to the
formation of 2-methylquinoline-4-carboxylic acid 179 and 180, respectively (Sayed et al. 2005).

The reaction of isatin 1 with dialkylacetylenedicarboxylates 181 in the presence of sodium
O-alkylcarbonodithionates 182 at room temperature produced trialkylquinoline-2,3,4-tricarboxyl-
ates 183 in good yields (Scheme 4.77) (Yavari et al. 2010).

A microwave-assisted reaction of isatin 1 with malonic acid provided quinoline-2-hydroxy-4-
carboxylic acid 184 (Scheme 4.78) (Madapa et al. 2008). The reaction of 5-morpholinosulfonylisatin
185 with ethylacetoacetate in the presence of an alkali afforded quinoline-3,4-dicarboxylic acid 186
(Scheme 4.79) (Madapa et al. 2008).

0 COR S CO,R!
CO,R
MeCN X 2
o + | | + RO SNa* ©
N rt —
b CO,R N CO,R
1 181 182 183 (Yield =82%-92%)
a.R=Me a.R'=Me a.R=R'=Me
b.R=Et b.R'=Et b.R=Me,R'=Et
c.R=Et,R'=Me

SCHEME 4.77 Reaction of isatin with dialkylacetylenedicarboxylates in the presence of sodium
O-alkylcarbondithioate forming quinoline derivatives.
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SCHEME 4.78 Microwave-assisted ring-expansion of isatin to 2-hydroxyquinoline-4-carboxylic acid.
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SCHEME 4.79 Ring-expansion of 5-(morpholinosulfonyl)isatin to a quinoline derivative.

4.7 SUMMARY AND CONCLUSIONS

Isatin, possessing an indole nucleus, is a natural product. It has a ketone group present in the
v-lactam moiety which is condensed to a phenyl ring. Isatin and its derivative have shown diverse
types of reactivities that have been used for the synthesis of different kinds of heterocyclic organic
compounds. During the synthesis of such organic compounds, isatin and its derivatives have been
used both as an electrophilic and as a nucleophilic reagent. When isatin has been used as a nucleo-
philic reagent, the reaction takes place either at position 5 or position 7 of the aromatic part of isatin
and NH of the lactam moiety. The reactions reported include N-alkylation, N-acylation, N-arylation,
and electrophilic aromatic substitutions, etc. N-Alkylation reaction of isatins finds application in
attaching isatins to other heterocyclic moieties. Using isatin as an electrophilic reagent, reactions
of the ketone group with carbon, oxygen, and nitrogen-centered nucleophiles are reported. These
reactions include the Baylis—Hillman reaction, aldol reaction, Henry reaction, reactions forming
isatin oximes, hydrazones, semicarbazones, thiosemicarbazones, and imines, etc. Oxidation, reduc-
tion, and ring-enlargement reactions of isatins are reported. These reactions lead to the synthesis
of heterocyclic compounds such as isatoic anhydride, oxindoles, indole, and quinolines. Isatin and
many of its derivatives have been used as a building block for the synthesis of different types of
spiro-fused heterocyclic compounds. Looking at these reports and the number of reports appearing
in recent literature, it can be inferred that isatins are synthetically and biologically useful molecules
and will continue to attract the attention of researchers in the area of organic synthesis and medici-
nal chemistry.

ABBREVIATIONS
CD cinchonidine
CPN cupreine

DABCO 1,4-diazabicyclo[2.2.2]octane
DCM dichloromethane

DME 1,2-dimethoxyethane

DMF N,N-dimethylformamide
i-PrOH  isopropanol

MW microwave

OTMS trimethylsilyloxy
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TBAB tetrabutylammonium bromide
TCCA trichloroisocyanuric acid
TEA triethylamine

THF tetrahydrofuran

TQO 4-(3-ethyl-4-oxa-1-azatricyclo[4.4.0.0]dec-5-yl)quinoline-6-ol
TsOH p-toluenesulfonic acid
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5.1 INTRODUCTION

Organic carbamates are the stable class of compounds derived from the unstable carbamic acid
(H,N-COOH) by the substitution of amino and acid ends through various kinds of structurally
diverse alkyl/aryl, aryl-alkyl or substituted alkyl/aryl, and aryl-alkyl groups, and are identified by
the presence of the linkage —O—CO-NH- (Adams and Baron 1965; Chaturvedi 2003, 2011, 2012;
Chaturvedi and Ray 2007a,b). When the carbamate linkage is present in a cyclic system, this class
of compounds is referred to as cyclic carbamates (Ager et al. 1996; Arya and Qin 2000; Johnson
and Evans 2000). When the carbamate group is attached to any inorganic atom, either metal or non-
metal, such compounds are referred to as inorganic carbamates (Aoki et al. 2001; Boyle et al. 1992).

The reaction of carbamation of amines has frequently been utilized in the synthesis of organic
carbamates which holds unique applications in the field of pharmaceuticals (Asaka et al. 2003;
Hutchinson 2003; Ray and Chaturvedi 2004; Ray et al. 2005); agrochemicals (pesticides, herbi-
cides, insecticides, fungicides etc.) (Goto et al. 2006; Ma et al. 2006; The Pesticidal Manual 1994);
as intermediates in organic synthesis (Dangerfield et al. 2009; Han et al. 2004; Smith et al. 2005;
Wills et al. 2002); for the protection of amino groups in peptide chemistry (Greene and Wuts 2007,
Kociensiki 2003); as linkers in combinatorial chemistry (Buchstaller 1998; Mayer et al. 1997); etc.
Functionalization of amines as carbamates offers an attractive method for the generation of deriva-
tives, which may have interesting medicinal and biological properties (Alaxander and Cravatt 2005;

17
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Chang et al. 2006; Tully et al. 2006). Organic carbamates have been extensively used as useful
synthons for the synthesis of structurally diverse synthetic intermediates/molecules of biological
significance (Becker et al. 2007; Chedid et al. 2007; Han and Widenhoefer 2006; Nicolaou and
Mathison 2005; Qin et al. 2007). Therefore, considerable interest has been generated in the recent
past for the development of efficient and safe methodologies for carbamate esters synthesis. Our
group has been engaged since the past several years for the development of efficient and safer pro-
tocols for the synthesis of carbamates and related compounds employing diversity of reagents and
catalytic systems (Chaturvedi et al. 2008a,b,c, 2009, 2010, 2011).

Organic carbamates have frequently been employed as demandable pharmaceuticals in the
forms of drugs and prodrugs (Rahmanthullan et al. 2008; Ray and Chaturvedi 2004). In recent
years, several reports have indicated that the carbamate linkage present in between the active phar-
macophores of various structurally diverse molecules increases manifold biological activities of
semisynthetic/synthetic natural/synthetic molecules (Borrel et al. 2005; Chaturvedi 2003; Takaoka
et al. 2004). Furthermore, the role of carbamate linkage has been extensively studied in structurally
diverse natural/semisynthetic molecules against various diseases such as anticancer, antibacterial,
antifungal, antimalarial, antiviral, anti-HIV, anti-estrogenic, antiprogestational, anti-osteoporosis,
anti-inflammatory, antifilarial, antitubercular, antidiabetic, anti-obesity, anticonvulsant, antihel-
minthes, Alzheimer’s disease, CNS and CVS active, etc. (Giannessi et al. 2003; Ishihara et al. 2000;
Kuznetsova et al. 2006; Li et al. 2006; Ouellet et al. 1984; Palomo et al. 2004; Reiss and Vagell
2006; Sharma et al. 2007; Wu and Ojima 2004; Wu and Su 2001; Zega 2005). Some of the impor-
tant biologically active drug molecules bearing carbamates are shown in Figure 5.1.

Physostigmine: Anti-alzheimer drug

(0]
Taxol analogues: Anticancer drugs /—\ )k
/ - =L
F
N N
= Linezolid: Antibacterial drug

! NH, \

Cl

——
Capravirine: Anti-HIV / \
o =N
O/ﬂ\NHCH3
Carbaryl: Insecticide Telithromycin: Antibacterial drug

FIGURE 5.1 Biologically active drug molecules bearing carbamate linkage.
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In recent years, several workers from different parts of the world have incorporated carba-
mates in between the active pharmacophores of structurally diverse natural products and found
that carbamates play a crucial role in increasing the biological activity of these molecules. Several
carbamate derivatives of natural products have emerged as drugs and prodrugs (Chaturvedi et al.
2008a,b,c, 2009, 2010, 2011). It is well reported that manifold anticancer activities of anticancer
drug taxol can be increased by incorporating a variety of carbamates at different positions in
the taxol molecule; some of these taxol derivatives bearing carbamates are in the various phases
of clinical trials (Kuznetsova et al. 2006). Some of the recent molecules in which the exten-
sive role of carbamates have been studied are discodermolide (Shaw et al. 2006), camptothecin
(Wang et al. 2006), podophyllotoxin (Liu et al. 2007), mitomycins (Andez 2009), vitamin D,
(Agoston et al. 2006), geldanamycin (Tian et al. 2004), fumagillin analogues (Fardis et al.
2003), betulinic acid (Santos et al. 2009), amphotericin-B (Sedlak et al. 2008), cephalosporins
(Yoshizawa et al. 2004), doxorubicin (Jeffrey et al. 2006), rapamycin (Wagner et al. 2005), anisomy-
cin (Shi et al. 2005), quiniclidine (Mazurov et al. 2005), phytostigmine (Yu et al. 1997), novobio-
cin (Shen et al. 2004), estradiol (Sharma et al. 2004), cholesterol (Lee et al. 2004), sphingomyelin
(Taguchi et al. 2003), vancomycinn (McComas et al. 2003), marphinan (Peng et al. 2007), rifam-
picin (Combrink et al. 2007), vulmbactin (Bergeron et al. 2009), pregnelone (Slavikova et al.
2009), himbacine (Chackalamannil et al. 2008), iejimalides (Schweitzer et al. 2007), rhazinilam
(Décor et al. 2006), maytansine (Jaracz et al. 2005), calcheamycin (Borrel et al. 2005), combre-
tastanin (Billich et al. 2005), cyclosporin (Jang et al. 2011), duocarmycins (Ashoorzadeh et al.
2011), etc. Besides the above-mentioned molecules, several of other structurally diverse natural/
synthetic molecules have also been reported in recent years wherein carbamates play a crucial
role in improving the biological activity profile compared to the parent molecules. Some of the
important potential carbamates of structurally diverse biologically active anticancer/antibacterial
natural products are depicted in Figures 5.2 and 5.3.

Some of the important potential carbamate derivatives of structurally diverse biologically
active anticancer (Arico-Muendel et al. 2009; Oves et al. 2006; Tripathi et al. 2008; Xu et al.
2009), antibacterial (Asaka et al. 2003; Takashima 2003; Yan et al. 2010), antimalarial (Bova
et al. 2010), antidiabetic (Mizutani et al. 2009), antioxidant (Yekini et al. 2009), anti-inflamma-
tory (Ali et al. 2008), antitubercular (Janin 2007), antiprogestational (Kern et al. 2007), anti-
HIV (Chen et al. 2007), anticoagulant (Franciskovich et al. 2005), antiestrogenic (Ohta et al.
2009), CNS-active (Mazurov et al. 2005) molecules are depicted in Figures 5.2 through 5.5,
respectively. Several of natural, semisynthetic, synthetic lead molecules bearing carbamate
functionality have been discovered in the recent past and are in the various phases of drug
development (Asaka et al. 2003; Giannessi et al. 2003; Hutchinson 2003; Ishihara and Goto
2000; Kuznetsova et al. 2006; Li et al. 2006; Ouellet et al. 1984; Palomo et al. 2004; Ray and
Chaturvedi 2004; Ray et al. 2005; Reiss and Vagell 2006; Sharma et al. 2007; Wu and Ojima
2004; Wu and Su 2001; Zega 2005).

5.2 CLASSIFICATION OF CARBAMATES

Carbamates can be classified mainly into two groups, namely inorganic and organic. Depending
upon the structural variations in the attached moieties, they are further classified as shown in
Figure 5.6.

Our group has already reviewed the role of organic carbamates in anticancer drug discovery
research (Asaka et al. 2003; Hutchinson 2003; Ray and Chaturvedi 2004; Ray et al. 2005). Hence,
the present chapter deals with the recent developments on the role of organic carbamates in a vari-
ety of biologically active natural products/semisynthetic molecules in anticancer drug discovery
research since 2005 onward.
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FIGURE 5.2 Potential anticancer carbamates of various natural products.

5.3 CARBAMATES AS ANTICANCER AGENTS

5.3.1 CarBAMATES OF NATURAL PrODUCTS

5.3.1.1 Carbamates of Fumagillin

The natural antibiotic fumagillin 1 exerts protective effects against endothelial cell proliferation
in vitro and tumor-induced angiogenesis in vivo by inhibition of methionine aminopeptidase-2
(MetAP-2) as well as tumor growth in mice. Prolonged administration of the drug causes weight loss,
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FIGURE 5.3 Potential antibacterial carbamates of various natural products.

and hence the need for structural modification. Replacement of the unsaturated ester chain at C-6 by
an O-(chloroacetyl)carbamoyl moiety resulted in the potent anticancer compound 2 (TNP-470), which
is 50 times more active than fumagillin and devoid of its side effects and was subjected to clinical
trials (Fardis et al. 2003). Replacement of C-4 by benzyloxime moiety and C-6 by ethyl piperazinyl
carbamate of fumagillin resulted in compound 3, which exhibited antiangiogenic effect similar to
TNP-470 on matrigel plug assay and rat corneal micropocket assay (Pyun et al. 2004). Recently,
it has also been observed that replacement of the unsaturated ester chain at C-6 of fumagillin by
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D-valine amide side chain resulted in compound 4 (PPI-2458), demonstrating improved pharmaco-
kinetic profile relative to the earlier clinical candidate TNP-470 and has advanced into phase I clini-
cal studies in non-Hodgkin’s lymphoma and solid cancers (Arico-Muendel et al. 2009) (Figure 5.7).

5.3.1.2 B-Ring Carbamate Analogues of () Rhazinilam

(-)-Rhazinilam (5), a natural compound isolated from Apocynaceae plants, whose tetracyclic
structure possesses an axially chiral phenyl-pyrrole subunit bridged by a nine-membered lactam
ring, was found to have unique antimitotic properties, with in vitro inhibition of both microtubule
assembly and disassembly and the formation of abnormal tubulin spirals. As a consequence of these
tubulin-binding properties, rhazinilam showed in vitro cytotoxicity toward various cancer cell lines
in a low micromolar range; however, no activity was found in vivo. In order to search for more potent
compounds, a series of carbamate analogues of B ring was synthesized. Biphenyl-carbamate ana-
logue 6 (Figure 5.8) was found to be the most active analogue of rhazinilam so far, with a twofold
activity on tubulin compared to rhazinilam itself—however, its in vitro cytotoxicity is still in the
low micromolar range, very close to that of the natural compound (Boudoin et al. 2002). The role of
the B-ring size of rhazinilam on the activity of carbamates was further demonstrated by synthesiz-
ing an 11-membered B-ring carbamate analogue of rhazinilam 7 and it was found that this com-
pound did not show promising activity on tubulin (Décor et al. 2006). A series of phenylpyridine
carbamate analogues 8a—c was synthesized recently but none of the compounds showed promising
activity on tubulin (Bonneau et al. 2007) (Figure 5.8).
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FIGURE 5.5 Biologically potent carbamates of natural/synthetic molecules.

5.3.1.3 Carbamates of Geldanamycin

Geldanamycin (9), a naturally occurring benzoquinone ansamycin isolated from culture broth of
Streptomyces hygroscopicus, binds very tightly to the N-terminal ATPase domain of rHsp90 (Kd =
1.2 uM). Because geldanamycin is too chemically and metabolically unstable to become a drug,
it has been derivatized, mainly on the 17-position of the quinone moiety, leading to a plethora of
17-alkylaminogeldanamycins including 17-allylamino-17-demethoxygeldanamycin 10 (17-AAG)
(Hadden et al. 2006). This latter derivative is a potent inhibitor of Hsp90, and largely as a result of
its excellent in vitro potency, the National Cancer Institute (NCI) has initiated phase I clinical tri-
als in advanced cancer patients. Although, 17-AAG is a very potent Hsp90 inhibitor, it also suffers
from pharmaceutic deficiencies including difficult formulation challenges. Further efforts are being
made in order to improve the pharmacokinetic and pharmacodynamic profile of the drug. In this
approach, fert-butyl carbamates of the 17-amino group of the geldanamycin, that is, 10a and 10b,
have also been synthesized, but both of the compounds have shown poor activity compared to the
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FIGURE 5.8 Carbamates analogues of rhazinilam.

17-amino derivatives (Figure 5.9) (Rastelli et al. 2005). A series of carbamates 11 (11a—d) of
the 17-amino group of the geldanamycin have been synthesized and it was found that compound
11b bearing p-acetoxybenzyl functionality was the most active due to release of 17-AG in the cell
via hydrolysis followed by 1,6-elimination of quinine methide moiety (Brazidec et al. 2004).

5.3.1.4 Carbamates of Vitamin D,

10.,25-Dihydroxyvitamin D5 [10,25-(OH),-D;, 12, Figure 5.10], the most active metabolite of vita-
min D; 13, plays a major role in many biological processes including calcium—phosphorus homeo-
stasis, cell differentiation and proliferation, and immune reactions. However, the mechanisms for
these differential actions have not been clearly defined. In the last two decades, various analogues
of 101,25-(OH),-D; have been developed to improve the biological profile of the natural hormone for
a potential therapeutic application. Some of these derivatives have similar or more potent antiprolif-
erative potential, yet reduced hypercalcemic actions, than the natural hormone. An increasing num-
ber of synthetic vitamin D derivatives are currently in use as drugs for treatment of various human
diseases and new candidates are in human clinical trials (Posner and Kahraman 2003). In recent
years, keeping in view the anticancer activity of vitamin D, analogues, some of the C-3 carbamate/
bis-carbamate derivatives of compound 13 have been synthesized. The most potent analogue to
inhibit the cell proliferation of MCF-7 cells or keratinocytes or to stimulate the HL 60 cell differ-
entiation is the analogue 3-O-carbamoyl-10,,25(0OH),-D; (14a); however, this compound is still less
potent than the parent compound 13 but has lower calcemic effects in vivo (Fernandes et al. 2004).
Novel A-ring homodimeric C-3 carbamate analogues 15a—c have also been synthesized but none
of them have shown promising anticancer activity compared to compound 13 (Oves et al. 2000).

5.3.1.5 Carbamates of Podophyllotoxin

Podophyllotoxin (PPT) 16, one of the well known, naturally occurring aryl tetralin lignans, is
extracted as the main component from the root and rhizomes of Podophyllum species such as
Podophyllum hexadrum and Podophyllum peltatum whose medicinal properties such as cathartic,
antirheumatic, antiviral, and antitumor activity have been well recognized for centuries (Xu et al.
2009). But attempts to use PPT in the treatment of human neoplasia were mostly unsuccessful
due to the complicated side effects such as nausea, vomiting, and damage of normal tissues, etc.
Therefore, PPT has been used as lead compound for drug design to obtain more potent and less toxic
anticancer agents. Extensive structural modifications of podophyllotoxin have been undertaken
which culminated in the clinical introduction of some of the most potent PPT analogues. In order
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FIGURE 5.9 Carbamates of geldanamycin.

search for more potent and less toxic PPT analogues, efforts have been directed to synthesize some
of the carbamate derivatives. A series of 4’-demethylepipodophyllotoxin 4-aminoalkylcarbamate
17 analogues and a second series of C-4 carbamate analogues 18 having lactone ring carbon 13—11
(called retrolactone) have been synthesized and evaluated (Figure 5.11). Compound 17a (IC,, =
0.038 uM) and 18a (IC5, = 0.088 uM) displayed potent cytotoxicity against the L1210 cell line
(10- to 20-fold higher than the anticancer drug etopside) and proved to be strong topoisomerase 11
poisons more potent than etopside (IC5, = 0.83 uM). From preliminary in vivo investigation of both
the compounds (17a and 18a) against P388 leukemia and orthotopically grafted human A549 lung
carcinoma, it appeared that 17a and 18a constitute promising leads for a new class of antitumor
agents (Duca et al. 2005b). Furthermore, a simple series of 43-amino-4"-0-desoxypodophyllotoxin
19 (Figure 5.11) have also been synthesized and their effect on human DNA-topoisomerase II and
antiproliferative activity was evaluated. Compounds 19a-c, 19g, 19j, and 19k (IC,, = 0.14-18 uM)
are topoisomerase II poisons that induce double-stranded breaks in DNA and exhibit increased
cytotoxicity compared to etopside (Duca et al. 2005a).
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Recently, a series of spin-labeled derivatives of deoxypodophyllotoxin (DPPT) has been
synthesized (Figure 5.12) and their in vitro cytotoxic activities against three tumor cell lines
(HL-60, RPMI-8226, A-549) were evaluated. The cytotoxic studies indicated that compounds
20a-h were more potent (IC;, = 0.0087-0.11 uM) than the parent drug etopside and DPPT
(Zhang et al. 2010).

5.3.1.6 Carbamates of Butelin and Butelinic Acid

Betulin 21 is a main component of birch bark and can be synthetically converted to betulinic acid 22
in a two-step procedure, in high yield (Figure 5.13). Both the compounds 21 and 22 are lupane-type
triterpenene, and were reported to display several biological effects including anti-inflammatory,
antiviral, antimalarial, and in particular anticancer. Previous reports revealed that compound 22
is a melanoma-specific cytotoxic agent; however, recent evidence has indicated that 22 possesses a
broader spectrum of cytotoxic activity against other cancer types (Yogeeswari and Sriram 2005).
Moreover, compound 22 has been suggested to induce apoptosis via the activation of caspases,
regardless of cellular p53 gene status and CD95 activation. This apoptosis-inducing ability, the
apparent lack of toxicity on normal cells, and the favorable therapeutic index have made 22 an
attractive and a very promising anticancer agent (Mukherjee et al. 2000).

In recent years, in search for more potent and less toxic compounds from butelin 21 and butelinic
acid 22, and keeping in view the importance of carbamates in drug discovery research, research-
ers have directed their efforts to synthesize their carbamate derivatives (Figure 5.3). A series of
C-3 imidazole carbamates have been synthesized and evaluated for in vitro cytotoxicity activity
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against human cancer cell lines such as HepG,, Jurkat, and HeLa. Of the whole series synthesized
and evaluated, a C-3 imidazole carbamate compound of butelin, that is, 23 (IC;, = 2 uM in HepG,
cells), has shown promising activity than butelinic acid 22 (ICs, = 36.4 uM) (Santos et al. 2009).
Recently, another series of C-2 and C-3 carbamate derivatives along with the N-acylheterocyclic
ring at C-17 of butelinic acid 22 have been synthesized and evaluated for their in vitro cytotoxic
activity (Santos et al. 2010). Most of the compounds of this series have shown better cytotoxicity
profile than butelinic acid. Two of the imidazole and triazole carbamate compounds 24 (ICs, = 1.1
uM) and 25 (IC, = 1.8 uM) were found most promising, being up to 12-fold more potent than betu-
linic acid 22 (ICs, = 21.5 uM) against human PC-3 cell lines.

5.3.1.7 Carbamates of Taxol

Paclitaxel 26 (Taxol, Figure 5.14), a polyoxygenated, naturally occurring diterpene alkaloid, was
first isolated by Wani et al. (1971) from the bark of Taxus brevifolia Nutt., and is considered as one
of the most important and promising anticancer drug mainly used for the treatment of breast and
ovarian cancers. Taxol has also been used for the treatment of skin, lung, head, and neck carcinomas
(Fu et al. 2009). In order to search for more potent compounds, several researchers around the world
have made significant efforts in the generation of structurally diverse semisynthetic analogues of the
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taxol. In this connection, various kinds of carbamate analogues of taxol have also been synthesized,
such as docetaxel 27, TL-00139 28, and RPR-109881A 29, etc. (Figure 5.14) (Breen and Walsh
2010). Docetaxel 27, formed through the replacement of the benzamide group to fert- butyl carba-
mate in taxol, shows a similar spectrum of action compared to taxol but with a fourfold increase in
potency and improved water solubility. However, the improved water solubility of docetaxel reduces
the complexity and side effects of administration in comparison to taxol; clinical trials to establish
the scope of this drug are currently in progress and docetaxel has already been licensed for the
treatment of breast and ovarian cancers. Some of the other potential carbamate derivatives of the
taxol are 28, 29, etc.

5.3.1.8 Carbamates of Staurosporine Derivatives

Staurosporine derivatives are indanocarbazoles alkaloids natural products 30 bearing a sugar
moiety. Recently, a series of carbamate derivatives of the staurosporine derivatives 30 have been
synthesized using an intermediate obtained from aglycone isostere alcohol 31 where one of the
indole nitrogen atom was replaced by carbon and has been sequentially functionalized to generate
carbamate compounds and their kinase-inhibiting activity in various cancer cells such as PKC,
Trka, FGFR, VEGFR, and IRK CDK; (Tripathi et al. 2008) has been tested. One of carbamate
compounds 32 (IC,, = 8 nM) was evaluated to be the most potent in Trka kinase-inhibiting activ-
ity, and majority of compounds have been shown to be 4- to 20-fold more potent than 30 and 31,
respectively (Figure 5.15). Compound 32 has been picked up for further studies.
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5.3.1.9 Carbamates of Mitomycin C

A series of bifunctional DNA interstrand cross-linking agent bis-(carbamate)-8 H-3a-azacyclopent[a]
indene-1-yl derivatives 34a—k (Figure 5.16) were synthesized keeping the basis of the structurally
similar, known antibiotic anticancer drug mitomycin C (MMC) 33, and were evaluated for their
antitumor activity (Kakadiya et al. 2009). The preliminary antitumor studies reveal that these com-
pounds exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human
tumor xenografts in vivo. Furthermore, these compounds have little or no cross resistance to anti-
cancer drugs, either taxol or vinblastine. Remarkably, complete tumor remission in nude mice bear-
ing human breast carcinoma MX-1 xenograft by 34g, 34h was achieved at maximum tolerance
dose with relatively low toxicity. In addition, they can induce DNA interstand cross-linking and
substantial G2/M-phase arrest in human, non-small lung carcinoma H1299 cells and are promising
candidates for preclinical studies.

5.3.2 CARBAMATES OF SYNTHETIC MOLECULES

In continuation of the search for potential anticancer carbamates, a series of a novel class of pyr-
rolidinyl acetylenic thieno-[2,3-d]-pyrimydines 35 (Figure 5.17) has been identified that are potent
and selective inhibitors of both EGFR/ErbB-2 receptor tyrosine kinases (Hubbard et al. 2008).
These compounds are found to display a range of enzyme and cellular potency and also to display
a varying level of covalent modification of the kinases targets. It was found from the various incor-
porations on the pyrrolidine ring of compound 35 that incorporations of carbamates have shown
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FIGURE 5.16 Carbamates of mitomycin C.
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FIGURE 5.17 Carbamates of pyrrolidinyl acetylenic thieno-[2,3-d]-pyrimydines.

potential activity, wherein dimethylaminocarbamate compound 36 was found to be potent in enzy-
matic and cellular assays and also showed good oral exposure to mouse.

Recently, a series of 4-[1H-indazol-5-ylamino]pyrrolo[2,1-f] [1,2.,4]triazine-6-carbamates 37
have been synthesized (Figure 5.18) by Bristol-Mayers Squibb Research Lab., and were evaluated
for their human epidermal growth receptor (HER),/HER, kinase inhibitor activity (Gavai et al.
2009). It was found through structure—activity relationship studies that carbamate compound 38
(BMS-599626) has shown potential activity in HER, and HER, kinases, which was orally effica-
cious in human HER, (GEO, L2987) or HER, (KPL,, N87)-dependent tumor xenograft models at
multiple dose levels. On the basis of its favorable in vitro pharmacology, broad spectrum in vivo
efficacy in multiple tumor models, and a satisfactory pharmacokinetic profile, 38 was utilized in
clinical trials.

Recently, two series of phenyl-N-mustard 9-anilinoacridine conjugates (39a-k, 40a—c) bearing a
AHMA-alkyl carbamate linkers have been synthesized and their in vitro studies revealed that these
derivatives possess significant cytotoxicity, with ICs, in the submicromolar range, in inhibiting
human lymphoblastic leukemia (CCRF-CEM), breast carcinoma (MX-1), colon carcinoma (HCT-116),
and human non-small cell lung cancer (H1299) cell growth (Kapuria et al. 2009). Structure—activity
relationship (SAR) studies show that compounds 39a-k are more potent than 40a—c (Figure 5.19).
The antitumor therapeutic efficacy studies against human tumor xenografts demonstrated that the
newly synthesized carbamate conjugates exhibited potent antitumor efficacy against breast carci-
noma MX-1 and colon carcinoma HCT-16 xenografts. Compounds 39a, 39b, 39e, and 39i were
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FIGURE 5.18 Carbamates of 4-[1 H-indazol-5-ylamino]pyrrolo[2,1-f] [1,2,4]-triazine-6.
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FIGURE 5.19 Carbamates of phenyl-N-mustard 9-anilinoacridine conjugates.

selected for evaluating their antitumor activity in nude mice bearing MX-1 and HCT-116 xenografts.
Interestingly, no tumor relapse was found in mice treated with 39a. Interestingly, no tumor relapse
was found in mice treated with 39a over 129 days. This compound is capable of inducing DNA
interstand cross-linking in human non-small lung cancer cell HI299 in a dose-dependent manner
by modified comet assay and has a long half-life in rat plasma.

Carbamate analogues of 1-O-hexadecyl-sn-3-glycerophophocholine compound 41-44 were syn-
thesized and evaluated for their antiproliferative activity against cancer cells derived from a variety
of tissues (Figure 5.20) (Byun et al. 2010). Although, all of the compounds are antiproliferative,
surprisingly, the carbamates 41 and 42 are more effective against the hormone-independent cell
lines DU145 and PC3 than toward other cancer cell lines. This selectivity was not observed with
the dicarbamate compounds 43 and 44. Cell death induced by compound 42 appeared to be medi-
ated by apoptosis, as assessed by caspase activation and loss of mitochondrial membrane potential.
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FIGURE 5.20 Carbamates of 1-O-hexadecyl-sn-3-glycerophophocholine.



134 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

The in vivo activity of compound 42 was evaluated in a murine prostate cancer xenograft model.
Oral and intravenous administration showed that compound 42 is more effective in inhibiting the
growth of PC3 tumors in Rag2M mice. Thus, this study shows that carbamate compounds 41-44
are a novel class of prostate cancer selective cytotoxic agents.

5.4 CONCLUSIONS

An effort toward the role of incorporation of carbamate functionality into the various kinds of struc-
turally diverse biologically active anticancer natural/semisynthetic/synthetic molecules has been
demonstrated since the year 2005 onward. Among the anticancer natural products, a comprehensive
discussion on the incorporation of carbamate functionality into some of the biologically potent
natural products such as fumagillin, rhazinilam, geldenamycin, vitamin D, podophyllotoxin, bute-
lin, butelinic acid, taxol, staurosporine, mitomycin C, and several synthetically modified carbamate
analogues have been discussed. Several of the natural products bearing carbamate residue have
shown promising anticancer activity such as compounds 2, 3, 4, 6, 17a, 18a, 19a-c, 19g, 19g, 19k,
20a-h, 24, 25, 27, 28, 29, 32, 34g, 34h, and are in the various phases of clinical trials. Among syn-
thetic carbamate analogues of anticancer molecules, compounds 36, 38, 39a, 39b, 39e, 39i, 41, and
42 are in the various phases of the clinical trials. It is greatly anticipated that the present review will
serve as a first-line reference to the organic/medicinal chemists working on the same lines of the
relevant subject and would inevitably boost the ongoing developments in drug discovery research.
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17-AAG  17-allylamino-17-demethoxygeldanamycin
BMS Bristol-Myers Squibb

CNS central nervous system

CVS central vascular system

DPPT deoxypodophyllotoxin
MetAP-2  methionine aminopeptidase-2
MMC mitomycin C

NCI National Cancer Institute
PPT podophyllotoxin

SAR structure—activity relationship
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6.1 INTRODUCTION

The necessity for reducing society’s dependence on imported crude oil has directed researchers’
attention to the use of vegetable biomass not only as a source of energy but also as fine chemicals.
Indeed, some easily isolable biomass components could be used as chemical reagents in the synthe-
sis of novel products with a higher added value, replacing existing chemicals based on petroleum
sources. Among these vegetable components, the essential oils of certain tropical aromatic plants
are attractive materials to be utilized as chemical agents. Being phenolic compounds in nature with
additional functional groups, these compounds appear as attractive renewable precursors in the
construction of new and diverse molecules. Moreover, diversified chemical functionalities of such
phenolics allow the generation of a variety of products with novel structural and skeletal diversity
with a higher added value, for example, pharmacological, biological, and physical properties.
Essential oils (EOs) are highly variable and complex mixtures of constituents that belong
almost exclusively to two distinctive groups with different biogenetic origins; these groups cor-
respond to the terpenic and aromatic (C4-arenes) molecules. The latter are “products of the
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shikimic acid” and less common in EOs. Structurally, the derivatives of this group are divided
into two small subgroups: arylpropane C,-C, derivatives and methylbenzene C4-C, derivatives.
Mainly, the allyl and propenyl phenols are part of the C¢-C, group. Allyl-phenol C,-C; deriva-
tives are characteristic within certain EOs from the Apiaceae family (viz. eugenol, safrole, and
estragole). Their analogous derivatives, propenyl phenol molecules, are usually mixtures of
trans and cis isomers. For example, isoeugenols, anetholes, and isosafroles are mixtures of
isomers E (trans) and Z (cis), whose ratio inclines to the E-isomer, and are thermodynamically
more stable (Figure 6.1).

Some EOs contain C4-C, compounds as vanillin, isovanillin, anisaldehyde, or piperonal
(Figure 6.2). Although the group of aromatic compounds present in EOs is less common than in
the terpenic group, their members play an important practical and scientific role. Furthermore,
some C4-C; compounds (eugenol, E-anethole, and estragole) are major components of the EOs of
certain medicinal plants.

The aim of this chapter is to review existing materials on the utilization of the synthetic potential
of phenolic constituents (Figure 6.3) extracted from some tropical plants, or even some parts of
these tropical plants toward their conversion in new functionalized heterocyclic compounds.

The generation of new libraries of N- and O-heterocyclic compounds can significantly contrib-
ute to the search for promising models for pharmacological studies and to identify potential drugs
effective against parasites, fungal pathogens, cancer cells, among others. Given the diverse
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FIGURE 6.2 Formyl-substituted C,-C; compounds.
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FIGURE 6.3 Utilized phenolic constituents as the synthetic reagents in synthesis of new molecules.

chemical nature of these constituents and prioritizing in the use of raw materials as precursors in
organic synthesis and green methodologies, this chapter is divided into three general parts:

1. Propenyl (allyl) C,-C; phenolic compounds as activated substituted alkenes in [4+2] and
[3+2] cycloaddition processes

2. Formyl-substituted C¢-C, phenolic compounds (piperonal, (iso)vanillins) as aromatic alde-
hydes in [4+2] cycloaddition process (multicomponent imino Diels—Alder reaction) and
multicomponent condensation

3. Bioscreening and in silico calculated physicochemical properties of molecules obtained

6.2 PROPENYL (ALLYL) C,-C; PHENOLIC COMPOUNDS AS ACTIVATED
SUBSTITUTED ALKENES IN [4+2] AND [3+2] CYCLOADDITION PROCESSES

Plants’ cellular machinery is in charge of the generation of the molecular architecture constituting
the basis for science and food, pharmaceutical, agricultural, and cosmetic industries’ technology
development. The importance of substrates obtained from nature is recognized due to ethnobotany,
thanks to the healing properties attained from different plantlets. However, determining the active
principle of these blends obtained from vegetables gives place to the performance of organic and
analytical chemistry. The extracts and EOs are equipped with a high quantity of compounds (small
molecules) derived from cellular metabolism. It has been possible to classify these compounds
in numerous natural product families, including alkaloids, polyketides, lipids, polyphenols, carbo-
hydrates, benzofuranoids, tannins, lignans, benzopyranoids, flavonoids, steroids, amino acids and
peptides, polypyrroles, terpenoids, and simple aromatic compounds (Bruckingham 2000). The lat-
ter compounds are found in high proportion in medicinal and aromatic plants, playing a fundamen-
tal protective role against stress as caused to plants; these compounds can also be used for medical,
food, fragrance, and flavor purposes (Planta Europa 2011).

Analytical tools have been playing a useful role in the isolation and identification of a great variety
of simple aromatic compounds present in EOs (Oprean et al. 2001). Compounds such as propenyl
(allyl) phenols have been determined and structurally characterized as C¢-C; unities. C;-Allyl com-
pound such as eugenol has been obtained in 76.8% of the total oil composition, which is extracted from
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dry clove buds (Eugenia caryophyllus) in yields exceeding 12.7% (Jirovetz et al. 2006). Other two
phenylpropanes of interest are the estragole, isolated from winter tarragon, Artemisia dracunculus L.,
with a percentage of 60%—75% (De Vincenzi et al. 2000), and safrole, obtained from the trunk wood
of Ocotea pretiosa or from the root bark or the fruit of tree Sassafras albidum (Nutall) Nuss, with a
composition of 92.9% and 80.0%, respectively (Hickey 1948). On the other hand, the isomeric isoeu-
genol, anethole, and isosafrole are also found in the nutmeg Myristica fragans in minimal quantities.
Star anise fruits (//licium verum Hook. f.) provide trans-anethole (9.8% extraction yield and 89%-92%
content), while isosafrole is generally obtained by safrole isomerization (Kishore and Kannan 2004).
These oils and their major compounds (Figure 5.1) have shown a wide scope of biological activities
against fungi (Amiri et al. 2008), protozoans (Santoro et al. 2007), cancer cells (Pisano et al. 2007),
platelet aggregation (Tognolini et al. 2007), and stabilization of oxygen reactive species, which cause
oxidative stress (Nenadis et al. 2003; Bortolomeazzi et al. 2007; Scherer and Teixeira 2009).

Because of the highlighted importance of phenylpropanes and their role in nature (Solecka 1997),
their biogenesis has been studied, identifying the shikimate as the starting product, phenylalanine
and tyrosine as intermediate amino acids, the enzymes (PAL and TAL) interacting in the biosyn-
thetic pathway, and posterior lignanic derivatives of C4-C; unities (Naczk and Shahidi 2004; Ferrer
et al. 2008). The most important natural derivatives among the phenylpropanoid unities are the
lignin, stilbenes, chalcones, the flavonoid structures, tannins, and lignans (Ferrer et al. 2008); the
latter compounds have been defined as (C¢-C5), dimers of phenylpropanes and are equally present in
plants as secondary metabolites. The Linum album (Linaceae family), an herbaceous and medicinal
plant, biosynthesizes some important lignans as podophyllotoxin, o/B-peltatin, lariciresinol, and
matairesinol (Figure 6.4) (Smollny et al. 1998). These compounds also present structures with a
privileged topology possessing various biological activities such as anticancer, anti-inflammatory,
antimicrobial, anti-rheumatic, antioxidant, and antifungal (Saleem et al. 2005).

Further important lignans are the phenylpropane dimers, which are set up forming an indane-
type benzo-carbonylic carbon skeleton (Figure 6.5). Some biological properties common to their
monomers (eugenol, anethole, safrole, and asarone) are anxiolytic (Zolyomi et al. 1974), anti-inflam-
matory (Madrigal et al. 2003), and antioxidant (Kozlova et al. 1968). The asarone and anethole
arylindane dimers have been extracted from natural sources such as the psychedelic plant Accorus
calamus and the sponge Spheciospongia vesparia (Bergmann and McAlee 1951).

Due to their natural and biomedical significance, there are a number of reports on the syntheses of
these phenol dimers (Kovacs 1950; Muller et al. 1954). Although the compounds of structures 5 and 6
(Scheme 6.1) have been reported much earlier, researches on their synthesis continue to be common in
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FIGURE 6.4 Lignans identified in linseed essential oil.
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SCHEME 6.1 Different conditions employed in the phenylpropane dimers’ synthesis.

recent literature as well as in the reinvestigation of their biological properties. Among different param-
eters, conventional methods for their syntheses include principally the use of common Bronsted acids as
H,SO, (Angle and Arnaiz 1992), TFA (Farhan et al. 1992), Lewis acids such as FeCl, (Griengl and Foidl
1981), and the well-known heteropolyacids, which promoted the [3+2] cycloaddition reaction of corre-
sponding propenyl C,-C; phenolics 1-4 in yields above 40% (Torviso et al. 2003, 2006) (Scheme 6.1).

There is an ongoing progress in synthetic methodologies for developing such dimeric systems.
Emphasizing on the phenylpropanes structural profits, specially the anethole 1 and isoeugenol 2,
Kouznetsov’s group has developed the construction of carbocyclic lignanic models, derived from
indane as the metanethole 5 and diisoeugenol 6. In this study, an efficient process, prioritizing on the
operational and environmental risks diminution, has been developed. Thus, a solid acid support was
elaborated, employing silica gel and CISO;H. Later, this support was employed as a catalytic agent in
MeCN, favoring the formation of arylindanes. The trans-isoeugenol and trans-anethole were employed
from a commercial source without previous purification under different reaction conditions, exploring
Si0,-O-SO;H in MeCN as the best promotion system for the cycloaddition reaction since the solid
support was recovered and reused without any appreciable loss of catalytic capacity (Kouznetsov and
Merchan Arenas 2009). For dihydro(1H)indene dimers, r-1-ethyl-c-3-(4-methoxyphenyl)-6-
methoxy-#-2-methylindane 5 and r-1-ethyl-5-hydroxy-c-3-(4-hydroxy-5-methoxyphenyl)-6-methoxy-z-
2-methylindane 6, it was also possible to define their stereochemistry; hence, the y-isomers of these
dihydro(1H)indenes were obtained in good yields (Scheme 6.2).

Studying the bark of Machilus thunbergii (Lauraceae family), a small tree, it was possible to
determine the presence of another propenyl phenolic derivative, benzofuran neolignans. These ben-
zofuran derivatives with high structural similarity reflect the isoeugenol as the C4-C; unity. These
compounds, known as licarin A and (-)-acuminatin, exhibited anticancer activity against the cellu-
lar line HL-60 and also potent antioxidant activity (Charlton 1998). In the same way, a benzofuranol
structural analogue, known as salvinal, was extracted from Myristica fragrans (Kwon et al. 2008)
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FIGURE 6.6 Isolated neolignans from Machilus thumbergii and Myristica fragrans.

(Figure 6.6), and its synthesis starting from simpler benzofuranols has already been reported
(Wang et al. 2000).

Benzoquinones and certain phenylpropenes have been reported to be used as building blocks for
the synthesis of benzofuranols analogues; initially, Fe(ClO,); was used as catalyst. However, in the
following years, it was also shown that BF; - OEt,, InCl;, and I, can act as useful anti-selective cata-
lysts to afford diverse substituted trans-2,3-dihydrobenzo[b]furanols 7 (Wang et al. 1991; Juhdsz
et al. 2000; Ohara et al. 2002; Yadav et al. 2003) (Scheme 6.3, routes a and b).

These conventional methods have been modified by Kouznetsov’s group, employing polyethyl-
ene glycols, the media of increasing interest (very particularly, polyethyleneglycol with an average
mass of 400 g/mol, i.e., PEG 400). The [3+2] cycloaddition using PEG 400 was carried out with
benzoquinone and the phenylpropenes, isoeugenol and anethole, in the presence of the Lewis acid,
BF, - OEt,, to obtain the dihydrobenzo[b]furan system (7e,f) (Scheme 6.3, route b) (Kouznetsov et al.
2008b). Polyethylene glycols are considered to be innocuous media, and are generally employed as
vehicles for drug delivery within the organism. For this reason, participation of such a solvent sys-
tem in the cycloaddition reaction between phenylpropenes and benzoquinones is regarded green and
suitable for the construction of trans-2,3-dihydrobenzo[b]furan-5-ols. As well as the carbocyclic
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SCHEME 6.3 Synthesis of 2,3-dihydrobenzofuranols 7 from phenylpropenes and benzoquinones.
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systems, the dihydrobenzofuranols (i.e., dimers of propenyl phenols) synthesis usually affords
anti-stereoisomer as the major [3+2] cycloaddition product.

In continuation to this panorama of secondary metabolites of vegetable species, we may turn
our attention to a different kind of molecules that differ from phenylpropanes and their derivatives.
Antique natural products such as alkaloids still continue to be the leading molecules in organic
synthesis, biochemical studies, theoretical studies, and, obviously, in medicinal chemistry as well.
There are different kinds of alkaloids depending on their structural patterns. However, among them,
the heterocyclic systems based on the quinoline, its reduced analogue 1,2,3,4-tetrahydroquinoline,
and the indole skeleton bear a special interest from the historical perspective; these two heterocyclic
structures have in common the amino acid, L-tryptophan, from which they are biosynthesized.
Quinoline and 1,2,3,4-THQ derivatives are an interesting class of natural compounds; many alkaloids
with this core have been well known for a long time. Some important analogues may be exemplified
as virantmycin (Omura and Nakagawa 1981), dynemicin A (Konishi et al. 1990), and helquino-
line (Asolkara et al. 2004); besides, some quinolines and THQs have also been extracted from
vegetal sources such as Macrorungia longistrobus (Wuonola and Woodward 1976), Haplophyllum
bucharicum, and Euodia roxburghiana with anti-HIV-1 activity (McCormick et al. 1996). In addi-
tion, a number of analogous compounds are also known with broad molecular diversity such as
the pyran (Lyngbya majuscula Gomont) (Nogle and Gerwick 2003) and 2,3-methylendioxy moiety
(Acanthosyris paulo-alvinii Barroso) (Chavez et al. 1997, Michael 2001). Nevertheless, only one
THQ with phenylpropanoid motif has been isolated from natural sources, the Galipea officinalis
Hancock, galipeine (Jacquemond-Collet et al. 1999) (Figure 6.7).

On the other hand, a wide variety of THQs and quinolines have been synthesized, generating a
great molecular diversity that is very important in regard to medicinal chemistry. These scaffolds
are found in many biologically active natural and synthetic products. A large number of reports have
shown that these compounds display different activities including antimalarial (Bendale et al. 2007),
antioxidant (Nishiyama et al. 2003), and anti-inflammatory (Calhoun et al. 1995; Kouznetsov et al.
2009). Three important biological perspectives with an important relationship are the antioxidant
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FIGURE 6.7 Natural (tetrahydro)quinolines from microorganism and plants, the base for synthetic research.
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FIGURE 6.8 Synthetic (tetrahydro)quinolines with biological activity as antioxidant, antitumor, and
anti-Alzheimer.

activity, the AChE inhibition, and antitumor action. Results of various biological studies indi-
cate that the THQ and quinoline backbones in certain chemical entities play an important role in
their beneficial effects against oxidative stress, such as ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-
trimethylquinoline, used as food preservative) (De Koeing 2002) and TMTHQ, a new potential
active compound (Blaszczyk and Skolimowski 2006) (Figure 6.8). THQ and quinoline models have
also been reported to have a protective effect against Alzheimer’s disease. The more classic example
is the molecule tacrine (discarded for its toxicity); and some other diverse molecules are also avail-
able including several functional groups in the THQ backbone (Gauthier 2001). Examples of two
more synthetic lead molecules bearing such scaffold may be cited herein for their potent anticancer
activity: the DNA intercalators DACA and TAS-103—both of them exhibit inhibitory activity against
topoisomerases I/II and are currently undergoing clinical trials (Ewesuedo et al. 2001) (Figure 6.8).

All such molecules are the fundamental prototypes in our study toward the rational construction
of molecular architectures. Numerous methods for the synthesis of THQ and quinoline systems
have been described (Kouznetsov et al. 1998; Sridharan et al. 2011); in one occasion, Kouznetsov
et al. performed the synthesis of such pharmacophore employing y—iminopiperidines 9 and homoal-
lylamines 10 as the intermediates. In a recent work, diverse 3',4’-dihydro-spiro[piperidine-4,2"-(1'H)
quinolines] 11,12 have been synthesized from 1-benzylpiperidin-4-one 8 and anilines. The homoal-
lylic compound 10 was obtained by the Grignard procedure and the final cyclization was carried out
with concentrated H,SO, (Vargas Méndez and Kouznetsov 2007) (Scheme 6.4).

The obtained molecules showed high structural similitude with synthetic antioxidants (ethoxy-
quin and TMTHQ) and the N-benzylpiperidine fragment is a moiety from donepezil. Therefore,
the antioxidant activity and its capacity to inhibit the AChE were evaluated for these molecules.
All compounds showed good Log P and TPSA values (N + O < 4; TPSA = 15.27-35.58 A2; MW =
216-341) that are required to cross the blood—brain barrier (Clark 2003; Lobell et al. 2003). In this
case, all the tested compounds were found to be active as antioxidants and AChE inhibitors; never-
theless, the best AChE inhibitor was the 6-chloro derivative 11e and the best scavenger of ABTS*
was the 6-methyl derivative 11b (Kouznetsov et al. 2010) (Figure 6.9).

Despite the effectiveness of Kouznetsov’s THQ synthesis coupled with several other meth-
ods employed until now, the cycloaddition reactions are the most successful reactions devel-
oped for a rapid construction of these scaffolds; similarly, the acid-catalyzed imino DA reaction
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SCHEME 6.4 Kouznetsov’ synthetic route to the desired 1-H-4-methyl-3,4’-dihydrospiro[piperidine-
4,2'(1’'H)quinolines].
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FIGURE 6.9 More active 1-benzyl-4'-methyl-3’,4"-dihydrospiro[piperidine-4,2'(1'H)quinolines].

(Povarov reaction) between 2-azadienes (N-arylimines) and electron-rich alkenes (mainly,
vinyl enol ethers, and vinyl enamides) in its three-component version is one of the most powerful
synthetic tools for the production of nitrogen-containing, six-membered heterocyclic compounds
(Povarov 1967; Boger and Weinreb 1987; Kouznetsov 2009). Continuing with our studies on the
construction of tetrahydroquinoline scaffolds, the three-component reaction of substituted anilines,
aryl aldehydes, and electron-rich olefins in the presence of different Lewis acid catalysts offered us
the best way to provide molecular diversity to our new natural products analogues. Applying the
Diels—Alder methodology, it was possible to prepare efficiently novel hexahydro oxaisoindolo[2,1-a]
quinoline derivatives 14 from the 2.4-disubstituted 1,2,3,4-tetrahydroquinolines bearing a furan
fragment 13. This new synthetic approach to these molecules was based on the construction of key
precursors bearing a furan fragment, which can easily be prepared from readily available materials
via two different routes (Kouznetsov et al. 2004) (Scheme 6.5).

Other polycyclic quinoline such as the indenoquinoline derivatives are interesting structures due
to their potent antitumoral activity (Byl et al. 1999). The antineoplastic agent TAS-103 that stimu-
lates DNA cleavage by topoisomerases is the most important compound of this family, because it
has a broad spectrum of antitumor activity against many human solid tumor xenografts (De Koeing
2002) (Figure 6.8). Available synthetic procedures to obtain indeno[2,1-c]quinoline derivatives are
based on multistep linear synthesis that are very complex and use poorly accessible starting materi-
als (Anzini 1991). However, using the imino DA reaction between N-arylaldimines and indene as
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SCHEME 6.5 Synthesis of oxaisoindolo[2,1-a]quinoline derivatives via the Diels—Alder reactions.

dienophiles, various groups have reported the synthesis of some tetrahydroindeno[2,1-c]quinoline
derivatives (Borrione 1989).

Based on these facts and according to the research interests on the preparation of bioactive
nitrogen-containing heterocycles (Ochoa Puentes and Kouznetsov 2002), Kouznetsov and cowork-
ers have developed an efficient and general route for the synthesis of new pyridinyl-substituted
indeno[2,1-c]quinoline derivatives 15, closer analogues of the potent anticancer TAS-103, from
commercially available anilines, o-, -, or y-pyridinecarboxyaldehydes and 1H-indene, using a
three-component imino DA cycloaddition as the key ring-forming step. Subsequent treatment of
the 5,6,6a,11b-tetrahydroindeno[2,1-c]quinolines 15 with powdered sulfur gives the corresponding
indeno[2,1-c]quinolones 16 (TAS-103 analogues) (Kouznetsov et al. 2006b, 2009) (Scheme 6.6).

As well as the isoindolo moiety, different structural frameworks can be combined with quinoline
by means of the imino DA reactions (Povarov reaction). Using this synthetic methodology, it was
possible to explore other commercial unconventional and less reactive alkenes than N-vinyl amides
and vinyl ethers. Therefore, based on the few reports of the phenylpropanoid derivatives (trans-
anethole or frans-isoeugenol) such as dienophiles in this cycloaddition (Jossang et al. 1991; Fadel
et al. 2004), attention was paid to the development of new bioactive tetrahydroquinoline derivatives
with anethole or isoeugenol fragments (Juhdsz et al. 2000; Ding et al. 2005). In the same way, the
green reaction parameters such as changing the high values of temperature, long reaction times,
hazardous reagents, solvents, and waste generation were taken into consideration. In this order of
ideas, synthesis of new THQ by improving the reaction conditions with PEG 400 as a perfect and
novel reaction media was carried out. Consequently, the PEG 400 and BF; - OEt, promoted the mul-
ticomponent cycloaddition between anilines, benzaldehyde, and trans-anethole 1 or trans-isoeugenol 2

R1
‘ + Ry R
BF5- OEt, 2 Sg,220°C-240°C
NH, -3 g 220C-200¢
o) MeCN, 70°C P
| 510 h 5-10 min
a-Py, B-Py, y-Py

TAS-103 analogues

SCHEME 6.6 Pyridinyl substituted 7H-indeno[2,1-c]quinoline derivatives via three-component imino
Diels—Alder reaction.
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SCHEME 6.7 Synthesis of new tetrahydroquinoline with the phenylpropanoid moiety in PEG 400.

to give new THQs 17 with the phenylpropanoid moiety in excellent yields (Kouznetsov et al. 2008b)
(Scheme 6.7).

Exploring new conditions for tetrahydroquinoline preparation with potential natural precur-
sors, we found that Cu(OTf), and Zn(OTf), used only in 10 mol% allowed the three-component
condensation reaction to occur at room temperature, between trans-anethole and trans-isoeugenol,
anilines, and benzaldehyde, contrary to our previous results, in the presence of BF;-OEt, in stoi-
chiometric amounts. When copper(I]) triflate was used as a catalyst, GC-MS and HPLC analysis
of the crude reaction showed only one peak. '"H NMR analysis confirmed that the prepared tetrahy-
droquinolines 18 were one unique diastereoisomer, indicating that this is a highly diastereoselective
process (Romero Bohérquez et al. 2011) (Scheme 6.8).

Inspired by these results and also to introduce structural diversity coupled with biological activi-
ties of the resulting compounds, we have expanded our synthetic studies on new tetrahydroquino-
line derivatives unsubstituted at the C-2 position, and to construct this THQ and quinoline topology
including the C-4-anisyl or guaiacoyl motifs, the other face of DA reaction was investigated. The
cationic imino DA[4++2]-cycloaddition reactions (Shono et al. 1982; Katrizky et al. 1997) were
employed in the synthesis of THQ core with anethole and isoeugenol through a simple protocol with
BF; - OEt, as catalyst in MeCN, yielding diverse 3-methyl-4-aryl-1,2,3,4-tetrahydroquinolines, using
readily available starting materials. Reaction between the readily available N-benzylaniline 19 and
the inexpensive formalin (37% formaldehyde in methanol) at 0°C in MeCN afforded smoothly the
cationic intermediates 20; subsequent in situ treatment of 20 with either trans-anethole 1 or trans-
isoeugenol 2 in the presence of one equivalent of BF;- OEt, furnished new N-benzyl-3-methyl-
1,2,3,4-tetrahydroquinolines 21 in moderate-to-good yields (Romero Bohérquez and Kouznetsov
2010). Finally, by using the easily handled system H, and Pd/C in a methanol-dichloromethane
(3:1) mixture, the desired NH-tetrahydroquinolines 22 were obtained in excellent yields (92%—-98%)
(Scheme 6.9).

With the excellent results recompiled until now and the interest if our laboratory on the het-
erocyclic systems, another important ring was introduced in our research. We have evaluated the
significance of indole moiety in several natural and synthetic molecules according to the litera-
ture. Furthermore, other exclusive molecules like spiro-quinoline derivatives (Katrizky et al. 1996)

R, \©\
NH
27 Cu(OTf), (10% mol)
+ F-
MeCN, r.t.

X _Me
R2
R R 18
2 1R,=OMe, Ry=H >1%-99% 73
3 2R,=OH,R;=OMe R, =H, Me, MeO, NO,

SCHEME 6.8 Synthesis of phenylpropanoid-tetrahydroquinoline core promoted by Cu(OTf),.
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FIGURE 6.10 Important natural and synthetic heterocyclic spiro indolic skeletons.

bearing the indole scaffolds (Figure 6.10) occupy an important position in organic and medicinal
chemistry because of their so-called pharmaceutical potentials such as MC4 receptors agonists
(Fisher et al. 2005), antipsychotics (Singer et al. 2005), and protein farnesyltransferase inhibitors,
an important enzyme for the survival of the pathogenic protozoa Plasmodium falciparum (Eastman
et al. 2007). Besides, the C-3-spiro-oxindol framework system is the core structure of many natural
alkaloids (horsfiline, spirotryprostatin A, pretropodine, etc.) and some reported pharmacological
synthetic agents 23—-25 (Naczk and Shahidi 2004).

The importance of THQ, quinoline, and indole cores in regard to their biological activities as dis-
cussed so far make them quite fascinating for their possible inclusion in the rational design of bioac-
tive molecules. Hence, we investigated the reaction between frans-isoeugenol 2 and iminoisatins 26,
derived from isatin and anilines, providing a novel protocol for the preparation of 4'-(4-hydroxy-3-
methoxyphenyl)-3"-methyl-3',4’-dihydro-1’H-spiro[indoline-3,2’-quinolin]-2-ones 27 via BF; - OEt,-
catalyzed imino DA reaction (Povarov reaction) (Kouznetsov et al. 2008a) (Scheme 6.10).

The synthesis of all these alkaloids with the C¢-C; scaffolds via the imino DA reaction revealed
the interesting reactivity of the commercial products, anethole and trans-isoeugenol; these starting
materials are not only commercially available but also inexpensive and easily storable. The easy access
of trans-isoeugenol and anethole could be possible due to their high percentage in natural extracts
and essential oils, principally from clove buds (Eugenia caryophyllus) and star anise (Il/licium verum
Hook. F)) (Tuan and Ilangantilekete 1997), respectively. Hence, Kouznetsov’s group employed the clove
buds and anise stars as raw materials to meet their requirements in the cause of green reaction pro-
tocols that include the use of innocuous media, solid-catalyst recovery, short reaction times, and less
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SCHEME 6.10 Synthesis of the dihydrospiro[indoline-3,2’-quinolin]-2-one derivatives from commercial
isatin, anilines, and trans-isoeugenol.

power consumption (low reaction temperatures). Initially, it was possible to use directly the anise EO
as precursor (without previous purification) and the star anise seeds, transforming the complex essen-
tial oil mixture into a unique THQ molecule with defined stereochemistry. Firstly, the anise essential
oil was extracted by microwave-assisted hydrodistillation technique affording 3% yield from the star
anise dry seeds. The oil obtained was characterized by GC-MS, which showed that the trans-anethole
content was 93% (by weight). This EO, when treated with anilines and benzaldehyde in the presence
of BF; - OEt, catalyst, afforded the THQs in good yields. In the case of anise seeds, there was no need
for extraction with scCO, or hydrodistillation because of the use of a supercritical system; on direct
treatment with the anilines and the benzaldehyde in the hermetic system, the anise seeds generated
the 2,4-diaryl-3-methyl-1,2,3,4-tetrahydroquinolines 28 in situ (Kouznetsov et al. 2007) (Scheme 6.11).

As in the anise study, the only minor drawback was the extraction yield on the hydrodistillation
process. Therefore, is possible to think on the frans-isoeugenol and its role as suitable dienophile
for imino DA reaction as well as to look for a natural source of this phenylpropene. However,
the abundance of this special molecule in plants is reduced (Suhrez et al. 1993; Nakamura et al.
2006; Setzer et al. 2006). For this reason, the principal form to obtain trans-isoeugenol is through
its isomerization under basic conditions from isoeugenol, which is found in higher quantities in
the clove bud EO (Cerveny et al. 1987). Eco-friendly parameters have been employed for the allyl
derivatives’ isomerization including basic support solids (10% KOH/AI,O;) (Srivastava et al. 2003).
In this sense, the natural source of eugenol, that is, aromatic dried flower buds of the tree Syzygium
aromaticum, was processed. Employing conventional warming in the hydrodistillation procedure,
the clove bud essential oil obtained in 11.7% yield indicated the presence of eugenol as the prin-
cipal component (60.5%). This EO was submitted to an isomerization with the modifications of
Jasra’s procedure on the basic heterogeneous catalysts (Srivastava et al. 2003). Under these con-
ditions, it was possible to obtain a crude with cis/trans-isoeugenol as the principal component. The
next step was to take, one more time, a lignan natural model in the synthesis of new aza-lignans.
Within the [4+42] cycloaddition parameters, the BF; - OEt,-catalyzed reaction of the same alkene

Anise seeds
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SCHEME 6.11  Synthesis of new C-4 anisyl-substituted THQs with essential oil and seeds of anise.
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SCHEME 6.12  Synthesis of new heterolignan-like 2,4-diaryl-3-methyl-1,2,3,4-tetrahydroquinolines 29 with
clove bud essential oil.

(isoeugenol), 3,4-methylendioxyaniline, and benzaldehydes was carried out to give a new series of
lignan-like products 29 in 40%—70% yields (Merchan Arenas et al. 2011) (Scheme 6.12).

Therefore, it appeared that the potential of nature can be utilized by extracting some of its principal
compounds (trans-anethole and cis/trans-isoeugenol) by synthetic procedures (Povarov reaction),
that conduces to interesting molecular prototypes—the THQ system. Different functional groups
have been inserted in the final products, exhibiting potent pharmaceutical properties such as antitu-
mor, antioxidant, and anti-Alzheimer’s.

With a new, small molecular library, it was possible to proceed with some biological assays
for the synthesized THQ molecules. Firstly, the capacity of the THQ to inhibit the AChE activ-
ity employing the modified Ellman’s method (Ellman et al. 1961) was compared. Considering
cholinergic hypothesis as reference (Francis et al. 1999), biological assays of the THQ series 17
(Scheme 6.7) was performed—the results indicated the 8-cyano-4-(4-hydroxy-3-methoxyphenyl)-
3-methyl-2-phenyl-1,2,3,4-tetrahydroquinoline as the best AChE inhibitor with a ICs, of 15.35 uM
(Figure 6.11), compared with galanthamine (IC5, = 0.75 uM), the most popular compound used in
Alzheimer therapy (Merchan et al. 2008).

Moreover, the phenylpropanoid-THQ mini-libraries were studied in the growth inhibition of
cancer cellular lines due to their structural similitude with other potential anticancer agents such
as combretastatin A4 (Srivastava et al. 2005; Tron et al. 2006), indanocine (Leoni et al. 2000),
(iso)eugenols, and analogues (Hume et al. 1984; Kozam et al. 1995; Kim et al. 2006; Carrasco
et al. 2008), all of which bear the 4-methoxy-3-hydroxyphenyl moiety in common (Figure 6.12).
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FIGURE 6.11 Cholinergic hypothesis and the THQ-AChE inhibitor.
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FIGURE 6.12 Logic models anticancer agents with guaiacoyl moiety.

Hence, several polyfunctionalized 2,4-DAr-THQs, comp. 17, 18 (Schemes 6.7 and 6.8) DSQs,
and comp. 27 (Scheme 6.10) were tested for their potential human tumor cell growth inhibitory
effect on MCF-7, SKBR-3, PC3, HeLa, and non-tumor cells (primary culture of human dermis
fibroblast—control cells).

Interestingly, almost all tetrahydroquinoline compounds from both groups exhibited moderate
(IC5 = 13.36—15.88 uM) to good (ICs, = 7.99-9.48 uM) cytotoxic activity, being more effective on
breast carcinoma cell line MCF7 (Kouznetsov et al. 2010a).

Given these excellent results with cytotoxic activity, we continued to explore the antitumor
potential of the synthetic 8-substituted THQ derivatives (DM8 and DM12). Thus, the best cancer
cell line growth inhibitor, the 8-NO,-THQ (DM12), was evaluated by its cytotoxic effects in adju-
vant therapy combined with two recognized drugs, paclitaxel and gemcitabine. The results showed
a great synergism of DM8 (8-NH,-THQ) and DM12 when mixed with the anticancer drugs, inten-
sifying their cytotoxic activity on both cell lines at concentrations below 1 pg/mL (Figure 6.13).

NH,
Oy
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OH F
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FIGURE 6.13 Cancer therapeutic drug molecules with DM8 and DM12 in adjuvant therapy.
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During these studies, the compound DM12 was identified as a new perspective and safe agent for
adjuvant therapy (Mufioz et al. 2011).

All these experimental results established the great importance of the rational design of bioac-
tive molecules, keeping in mind the natural models to copy the final product and use the principal
components of aromatic plants as precursors in classic synthetic tools. On the other hand, the appli-
cability of these ideas in the chemical industry can contribute to the preparation of new potential
drugs throughout green chemistry parameters. Thus, our research group has been deeply engaged in
exploring such significant areas with an emphasis on diverse concepts, raw materials, green chem-
istry, bioactivity, organic synthesis, etc. Moreover, another structural core was included, the C¢-C,
fragment, while looking for THQ and quinoline molecules with biological action.

6.3 FORMYL-SUBSTITUTED C,-C, PHENOLIC COMPOUNDS
(PIPERONAL, (ISO)VANILLINS) AS AROMATIC ALDEHYDES IN
[4+2] CYCLOADDITION PROCESS (MULTICOMPONENT IMINO
DIELS-ALDER REACTION) AND MULTICOMPONENT CONDENSATION

EOs are made up of various classes of organic compounds such as terpenes, alcohols, esters, phe-
nols, ketones, and aldehydes, possessing a number of biological activities that include antifungal
(Battinellia et al. 2006), anti-inflammatory (Borrelli et al. 2002), disinfectant (Johnson et al. 1982),
and sedative (Lee and Perez 2003). EOs impart the citrus-like fragrance in plants like Melissa, lem-
ongrass, and Citronella. Formyl phenolic derivatives, such as vanillin, a major constituent of devil’s-
claw (Proboscidea louisianica) essential oil (Riffle et al. 1990, 1991), are released as root exudates or
commonly found in the soil from decomposing plant litter (Whitehead et al. 1982). Furthermore, it
has been proved that vanillin is ubiquitous in soil since it constitutes a degradation product of lignin
(Sjoblad and Bollag 1981). This phenolic aldehyde is known for its antioxidant and antimicrobial
properties and as a food preservative (Fitzgerald et al. 2004; Karathanosa et al. 2007), as well as for
other purposes also, such as a cosmetics and drugs constituent (Davidson and Naidu 2000). Likewise,
piperonal (heliotropin), another formyl phenol found as a minor natural component of vanilla extract,
is a common additive in inexpensive synthetic vanilla flavor and candies (Belay and Poole 1993), and
as an anti-inflammatory stabilizer in pharmaceutical and cosmetic products (Stichm and Baur 2002).

On the other hand, plants from Rutaceae family are studied much due to alkaloids content (Waterman
1975), as alkaloids are pharmacologically important in the development of drug candidates (Salem et al.
2006). Although formyl-substituted phenolic components (piperonal, (iso)vanillins) are not so abundant
within the EOs in comparison to the anetholes and eugenols, they can, thus, play an important role in
generating new chemical libraries, especially in the construction of alkaloids analogues.

Dubamine, a quinoline alkaloid with 2-(benzo[d][1,3]dioxol-5-yl)quinoline structure (Figure
6.14) and the chemical constituent of Haplophyllum dubium (Rutaceae), has been reported to exhibit
antimicrobial activity (Bessonova and Yunusov 1977). Although a number of strategies are known
for the synthesis of this alkaloid employing coupling reactions catalyzed by different metals
(Ali et al. 1992), they do not allow the quinoline system functionalization, which is an important fac-
tor in the discovery and development of a bioactive molecule to be proposed as a leading compound.

Based on these observations, we decided to design and develop new quinoline or piperidine
molecules, analogues of the alkaloid dubamine 31 (Meléndez et al. 2007), as well as some other
analogues of girgensohnine 32 (found in Girgensohnia oppositiflora, unknown bioactivity) (Figure
6.14) (Kouznetsov et al. 2010). Additionally, within all these new structures, the “natural” piperon-
aldehyde and hydroxyphenyl or vanillin frameworks were introduced by means of [4+2] cycloaddi-
tion reactions as depicted in Scheme 6.13.

Final products obtained here, among other quinoline derivatives prepared by similar procedures,
were studied for its antifungal activity (Meléndez Gomez et al. 2008), as they share some struc-
tural characteristics with similar antifungal quinolines reported by our group (Urbina et al. 2000;
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FIGURE 6.14 Structures of alkaloids girgensohnine and dubamine and its natural sources.
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SCHEME 6.13  Synthesis of analogues of alkaloids dubamine 32 and girgensohnine 33 containing the piper-
onal or vanillin frameworks.

Vargas et al. 2003). Furthermore, in a different work, the antiparasitic activity of intermediates 31
was analyzed alone with other tetrahydroquinolines prepared from different aldehyde precursors
(Kouznetsov et al. 2006a, 2007).

As an additional task of our ongoing efforts to introduce natural frameworks in our heterocyclic
structures, employing formyl-substituted phenolic precursors, essentially vanillins, and using them
in multicomponent cyclo-condensation, it was possible to create a new series of hybrid molecules
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FIGURE 6.15 Hybrids of chloroquine reported in literature.

based on the structural characteristics of diverse drugs as the antimalarial chloroquine. These
“double drugs” or molecular hybridization strategies, which utilize new chemical entities with two
(or more than two) different N-heterocyclic skeletons, are valid and perspective approaches to cre-
ate new antimalarial agents (Kouznetsov and Gémez-Barrio 2009; Meunier 2008). These strategies
have the potential to overcome the drug-resistant parasite problem, and wonderful examples such as
trioxaquines or artemisinin-quinine hybrid have been reported (Walsh et al. 2007). Some examples
of such hybrid structures are presented in Figure 6.15 (Musonda et al. 2009; Kumar et al. 2010).

Based on these results, we have been motivated to incorporate the (iso)vanillin moiety, thereby,
synthesizing new series of aminoquinoline-containing dual inhibitors or “double drugs” that would
potentially inhibit hemozoin formation and another target within P. falciparum. Amino side func-
tions were introduced in these compounds by interaction of 4,7-dichloroquinoline (4,7-DCQ) with
refluxing a,m-DAA in excess and absence of solvent, affording DAQ. Finally, the target compounds
CQT were prepared by one-pot three-component reaction of DAQ, formyl phenols (ArCHO), and
o-mercaptoacetic acid in ratios of 1:2.5:2.5, respectively (Scheme 6.14).

Among these compounds, two molecules have shown good pharmacological parameters above
the chloroquine efficacy (Rojas Ruiz et al. 2011) that will be described in Section 6.4.
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SCHEME 6.14 New antimalarial hybrids based on chloroquine and thiazolidin-4-ones incorporating (iso)
vanillin frameworks.
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6.4 BIOSCREENING AND IN SILICO CALCULATED PHYSICOCHEMICAL
PROPERTIES OF MOLECULES OBTAINED

Molecular structure determines every single property of a particular compound. When these
properties interact with the physical environment, they generate the physicochemical properties
(e.g., solubility). Correspondingly, when these properties interact with proteins, they develop the
biochemical properties (metabolism) and at the final point, when these biochemical and physico-
chemical properties interact with the biological systems as a whole, they generate the pharmacoki-
netic and toxicity properties (Kerns and Di 2008) (Figure 6.16).

Nowadays, there is thus a considerable discussion about the importance of optimization of
organic compounds in regard to ADME/Tox properties, combined with their pharmacological prop-
erties (efficacy and selectivity), as directed toward the enhancement of new pharmaceuticals dis-
covery achievements. These properties, commonly termed as drug-like properties after the pivotal
work of Lipinski (2000), are an integral element of drug discovery projects and an important area
of antiparasitic agents’ development, in particular.

Although controlling these properties by means of structural modifications is an organic chem-
ists’ task, the previous detailed analysis of the structure of potentially drug-like compounds may
help to avoid the synthesis and biological assessment of molecules with a low or null activity. In this
sense, we have developed the design and synthesis of new 4-aminoquinoline drug-like molecules
through the systematic analysis of their structures and by incorporating some biologically privileged
scaffolds employing a new “property-based design” strategy (Rojas and Kouznetsov 2011).
Table 6.1 shows how conversely to the chloroquine as reference, the calculations obtained demon-
strate that all analyzed compounds contain high bioavailability properties and fulfill all parameters
established by Lipinski (molecular weight = 269.73-408.91, log P = 2.66—-4.92, nON = 2-6, and
nOHNH = 0-4) (Sridharan et al. 2011). TPSA has been shown to be a good descriptor charac-
terizing drug absorption, including intestinal absorption, bioavailability, Caco-2 permeability,
and blood-brain barrier penetration (Ertl et al. 2000; Chohan et al. 2010). Prediction results
for compounds 39-46 show TPSA values between 63 and 69 A2 confirming their drug-relevant
properties (Table 6.1).

| Pharmacokinetics and toxicity
Excretion, half-life
Bioavailability, LD5,

1, Physicochemical stability
Solubility, permeability

Biochemical properties !
' Metabolism, transport afinity |

Chemical stability o TTEETRRL OISR
:\
\ Physical N~
N’ environment
Proteins

Structural properties

FIGURE 6.16 Molecular structure determines pharmacokinetic and toxicity fundamental properties.
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TABLE 6.1
Calculated Lipinski’s Rule of Five for the 4-Aminoquinoline Bearing Natural-Like
N-Heterocyclic Frameworks

Parameter
Log TPSA? MW

Compound n P (A)  (g/mol) nONP nOHNHc¢ RBN¢ Violations
39 Cl 1 216 63.99 301.7 5 1 4 0
40 H 0 2 243 6399 3158 5 1 5 0

= | Wb

Na Y /
41 cl H o 1 254 6399 315.8 5 1 4 0
42 ) 2 2.09 6399 329.8 5 1 5 0

ANy

N\l " Y /

O

43 cl 1 216 71.53 369.8 6 1 4 0
44 H % 2 243 7153 3838 6 1 5 0

) ™ ON

N O/
45 Cl o 1 3.89 6399 351.8 5 1 4 0
46 H J 2 417 63.99 365.8 5 1 5 0

N\

o @

Chloroquine — 500 2816 3199 3 1 8 1

@j WNM

2 Polar surface area (solubility parameter).
> Number of hydrogen bond acceptors.

¢ Number of hydrogen bond donors.

4" Number of routable bonds.

In order to assess the possible pharmacological properties of hybrids 39-46, a toxicity risk pro-
file evaluation was performed employing the OSIRIS software (Organic Chemistry Portal 2001),
as it may point to the presence of some fragments generally responsible for the irritant, mutagenic,
tumorigenic, or reproductive effects in these molecules (El-Azab et al. 2010). As shown in Table
6.2, with the exception of compounds 45 and 46, all desired products represent low or moderate
biological risks.

Furthermore, we have used the OSIRIS program to predict the compounds’ drug score (Figure
6.17) that clearly indicates the biological potential of the designed 4-aminoquinoline series, demand-
ing for their detailed bioactivity assessments so as to assess their possible use as lead compounds
with a low toxicity risk profile. After a similar in silico structural properties analysis of our formyl
phenolic skeleton containing quinoline hybrids mentioned earlier, we have successfully achieved
the synthesis of two prominent antimalarial agents.

Using chloroquine as 100% of inhibition positive control, it has been evaluated that compounds
47 and 48 (from CQT series, Scheme 6.14) inhibit the growth of Plasmodium berghei ANKA in
infected mice by 80% and 100%, respectively, at the same dose (Ewesuedo et al. 2001); the results
are presented in Table 6.3 (Rojas Ruiz et al. 2011).
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TABLE 6.2
Toxicity Risk Profile for Hybrids of 4-Amino-7-Chloroquinoline and Cyclic Imides
Toxicity Risk
Drug
Compound Structure n  Mutagen Tumor Irritant  Reproductive  Score
39 cl 1 0.45
y 0 ) G G o
% Aty ) L S . 08
Ns 7 /
0)
“ N w0 ! ) D GER s OV
42 A N~ 2 0.77
9 HA/)} Gl G an e
0]
43 al 1 0.65
WO ) G Gan e
N
4 ) H?szi 2 ) D IR s v
NS O/
s AN 4 o ! I D GEB R O
6 ANl 2 ) O I . O
n
0]
Chloroguine - G D R . 7

i
~
T

1) Nonassociated risk; ) moderated risk; ] high risk.
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FIGURE 6.17 Drug-score for the 4-amino-7-chloroquinolinic hybrids 39-46.
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TABLE 6.3
In Vivo Assay (4-Day Suppressive Test) against P. berghei ANKA
Using 10 mg/kg/Day? vs. Distribution Physicochemical Parameters

Tested Comp. % Inhibition  Log P>  Log D;,* LogD,

80 4.46 1.72 3.59
Cl
H
=z N~ N

a7 ©
ntd 3.81 021 0.23
a
H
N
= | \/\H s”>COOH
N~ azm
OMe 100 3.33 1.28 3.13
OH
al
N
N P
48 O
OMe ntd 3.15 0.04 0.05
OH
al
N
& \/\” $”>COOH
N a8 M
76¢ 5.25 3.86 4.95
H a
~
N | /,\/\I.\/S
49 O
ntd 5.07 1.56 1.36
d g d cl
3 NN cooH
N H
S a9m
al rMe 100 3.27 —1.42 1.92
H
e
AN N_M
N | Me
cQ

2 Each group of mice was treated intraperitoneally i.p.

> Theoretical values log P were calculated using commercially available ACD LAB 6.0 program.
¢ Theoretical values log D were calculated using the on line available SPARC V4.5 program.

4" Not tested in vivo assay.

¢ Invivo assay (4-day suppressive test) against P. yoelli (N-67 strain), data from Solomon et al. 2007.
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FIGURE 6.18 Structure of nifurtimox and experimentally evaluated compounds.

The parameters analyzed here demonstrated the high GI track absorption (pH 3—7) and lipophilic
properties of these hybrids. A good correlation between the calculated distribution coefficients at
pH 7.4 and pH 5.2 (log Ds, and log D, , parameters) (Kerns and Di 2008) and the inhibition per-
centages for the tested compounds was observed. Moreover, when compared with similar reported
hybrids 49 (Solomon et al. 2007), these ADME properties are enhanced by replacing the chlorine
atoms over the aryl moiety. Comparing the calculated parameters for the potentially more active
metabolites 47M, 48M, and 49M obtained from the metabolic opening of the thiazolidinone ring of
hybrids 47, 48, and 49 as shown in Table 6.3, it can be confirmed that possible metabolite 48M has
improved lipophilic properties. According to these theoretical values, our most active and lipophilic
compound 48 may have an improved absorption and distribution above the chloroquine, as observed
in its in vivo antimalarial activity, as well as in its in vitro activity against the chloroquine-resistant
Dd2 Plasmodium falciparum strain.

In a different work, a quantitative structure—activity relationship (QSAR) has been undertaken
with an intention of classifying and designing new anti-trypanosomal compounds in a rational way
by means of non-stochastic and stochastic bond-based quadratic indices. A data set of 440 organic
chemicals, 143 with anti-trypanosomal activity and 297 having other clinical uses, were used to
develop QSAR models based on linear discriminant analysis (Castillo-Garit et al. 2010). As an
experiment of virtual lead generation against epimastigote forms of Trypanosoma cruzi, four com-
pounds (FER16, FER32, FER33, and FER132) showed more than 70% of epimastigote inhibition
(Anti-epimastigotes percentage,% AE) at a concentration of 100 pg/mL (86.74%, 78.12%, 88.85%,
and 72.10%, respectively) and two of these chemicals, FER16 (78.22% of AE) and FER33 (81.31%
of AE), also showed good activity at a concentration of 10 pg/mL. At the same concentration, com-
pound FER16 showed a lower value of cytotoxicity (15.44%), and compound FER33 showed a very
low value of 1.37% (Figure 6.18).

Taking into account the results obtained here, it is worth mentioning that these three compounds
can be optimized in forthcoming works, but we consider that compound FER33 is the best candi-
date. Even though none of them proved to be more active than nifurtimox, these results constitute a
step forward in the search for efficient ways to discover new lead anti-trypanosomal agents.

6.5 CONCLUSION AND FUTURE PROSPECTS

The essential oils of diverse tropical aromatic plants are composed of huge second metabolism products
and play an important role in the development of natural sciences. Throughout the history of human civi-
lization, essential oils were used for medicinal, pharmacological, aromatherapy, or culinary purposes.
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Nowadays, it is evident that vegetable biomass including essential oils is not only a source of energy
and food but also a source of fine chemical reagents. The essential oils are highly variable and com-
plex mixtures of constituents and are also isolable and renewable biomass components.

A great advantage of working with essential oils is that most of them are distilled into a single pro-
cess offering valuable constituents quickly. Moreover, some aromatic tropical plants grow fast and give
a large fraction of essential oil (up to 2%—10%). Thus, if you have a plant that yields the highest possible
essential oil, up to 10%, and whose main component (or better, only) content reaches up to 55%, there is
great possibility of using this oil as a reagent in chemical synthesis to obtain new products with a higher
added value, for example, pharmacological, biological, and physical properties. On this basis, interest
in the essential oils as fine chemical reagents will be enhanced in future. Not only aromatic (arenes-C,)
molecules but also other principal constituents of the essential oils (e.g., terpenic compounds) that have
interesting structural motifs, can be used in diverse product preparation.

Chemical diversity of both functionalities, phenolics and terpenes, allows the generation of a
novel structural and skeletal diversity that are present in numerous natural products. With the spot-
light fixed on green synthetic procedures, it would not be surprising to find more utilization of main
components of the essential oils in chemical synthesis under green reaction conditions. We hope
this review helps to inspire readers into further discoveries and innovations in chemical transforma-

tions of the essential oils as inexpensive, available, and renewable reagents.

ABBREVIATIONS

ABTS+- 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation
AcOH acetic acid

AChE acetylcholinesterase

ADME/Tox adsorption, distribution, metabolism, excretion, and toxicity
AE anti-epimastigotes

c cis-configuration

C,-C, methylbenzene

C,-C;4 arylpropane

Caco-2 human epithelial colorectal adenocarcinoma cells
CQ chloroquine

CQT chloroquine thiazolidinone hybrids

DA Diels—Alder

DAA diaminoalkenes

DACA N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide
DAQ diaminoquinoline

2,4-DAr-THQs  2,4-Diaryl-3-methyl-1,2,3,4-tetrahydroquinolines
DCQ dichloroquinoline

DNA deoxyribonucleic acid

DSQs dihydrospiro[indoline-3,2"-quinolin]-2-ones

EOs essential oils

GC-MS gas chromatography-mass spectrometry

HeLa cervical epithelial carcinoma

HIV human immunodeficiency virus

HL-60 human promyelocytic leukemia cells

HPA heteropolyacid

HPLC high-performance liquid chromatography

ICy, half maximal inhibitory concentration

LD, median lethal dose

Log P logarithm of the ratio of the concentrations of the un-ionized solute
MC4 melanocortin receptors
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MCEF-7 breast carcinoma, no overexpression of the HER2/c-erb-2 gene

MeCN acetonitrile

MeOH methanol

min minute

MPA molybdenum phosphoric acid

MW molecular weight

NMR nuclear magnetic resonance

nOHNH hydrogen bond donors (nitrogen or oxygen atoms with one or more hydrogen
atoms)

nON hydrogen bond acceptors (nitrogen or oxygen atoms)

PAL phenylalanine ammonia lyase

PC3 prostate carcinoma

PEG poly ethylene glycol

PhMe toluene

QSAR quantitative structure activity relationship

r reference

r.t. room temperature

scCO, supercritical CO,

SKBR-3 breast carcinoma, overexpresses the HER2/c-erb-2 gene

t trans-configuration

TAL tyrosine ammonia lyase

TAS-103 6-{[2-(Dimethylamino)ethyl]amino}-3-hydroxy-7H-indeno([2,1-c]quinolin-7-one
dihydrochloride

TEAC trolox-equivalent antioxidant capacity

TFA trifluoroacetic acid

THQ tetrahydroquinoline

TMTHQ 2,3,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline

TPA tungsten phosphoric acid

TPSA thermodynamic polar surface area

TsOH p-toluenesulfonic acid
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71 INTRODUCTION

The role of natural products in drug discovery has experienced many changes over the past two
decades, from a decline in participation by pharmaceutical companies in the 1990s to a renais-
sance in recent years. In 2007, Newman and Cragg published a comprehensive review analyzing the
sources of new drugs, covering the period from 1981 to the middle of 2006 (Newman and Cragg
2007). This analysis demonstrated that more than 60% of new drugs are natural products or natural
product—inspired molecules. The potential for finding important new compounds of diverse skele-
tons in the marine environment is tremendous. More than 10,000 compounds have already been dis-
covered from the marine environment. Examples of approved drugs developed from marine natural
products are Ziconotide (Prialt®), Trabectedin (Yondelis®), and Eribulin (Halaven®). Concomitantly
at least 20 marine natural products or derivatives are currently being tested in human trials. In this
review, synthesis and biological activity of two promising azole marine products, namely, largazole
and neopeltolide, will be taken into account.

7.2 SYNTHESIS AND BIOACTIVITY OF LARGAZOLE

Marine cyanobacteria are prolific producers of bioactive secondary metabolites with promising
antitumor activities. In 2008, largazole (1; Figure 7.1) was isolated by Taori et al. from a sample of a
cyanobacterium of the genus Symploca collected from Key Largo, Florida Keys (Taori et al. 2008).
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FIGURE 7.1 Structure of largazole.

TABLE 7.1

Growth Inhibitory Activity (Gl;,) of Natural Product Drugs

Compound MDA-MB231 Gl,, ("M)  NMuMG Gly, (n\M)  U20S Gly, (nM)  NIH3T3 GI, (nM)
1 7.7 122 55 480
Paclitaxel 7.0 5.9 12 6.4
Actinomycin D 0.5 0.3 0.8 0.4
Doxorubicin 310 63 220 47

It possesses a combination of unusual structural features, including a substituted 4-methylthiazoline
fused to a thiazole, a thioester moiety that has not been reported in metabolites from cyanobacteria,
and the 3-hydroxy-7-mercaptohept-4-enoic acid unit.

Largazole was isolated by a bioassay-guided fractionation and potently inhibited the growth of
highly invasive transformed human mammary epithelial cells (MDA-MB-231) (Gl;, = 7.7 nM).
In contrast, nontransformed murine mammary epithelial cells (NMuMG) were less susceptible
(G5, = 122 nM). In addition, 1 showed selectivity for transformed fibroblastic osteosarcoma U20S
cells (G, 55 nM, LCy, 94 nM) over nontransformed fibroblasts NIH3T3 (GI, 480 nM, LCs, > 8 uM).
This remarkable selectivity was not observed for other validated antitumor natural products tested
in parallel (Table 7.1). The growth of cancer cell lines derived from colon (HT29) and neuroblas-
toma (IMR-32) was also strongly inhibited by 1 (GI5,/LCs, 12 nM/22 nM; 16 nM/22 nM). The
results indicated that cancer cells are preferentially targeted by the test compound 1. As a conse-
quence, several research groups have been embarked in the total synthesis of this potential cancer
chemotherapeutic agent.

7.2.1 SYNTHESIS OF LARGAZOLE AND ITS ANALOGS AND EVALUATION OF THEIR BloAcTIVITY

Four month after the publication of its isolation, the first total synthesis of largazole was reported
(Ying et al. 2008a). The synthesis (eight steps, 19% overall yield) involved a macrocyclization
reaction for formation of the strained 16-membered depsipeptide core followed by an olefin cross-
metathesis reaction for installation of the thioester (Scheme 7.1). The deliberate late stage incorpora-
tion of the thioester allowed the access to a series of analogs required to define the biological role of
the thioester, the octanoyl group, and the side chain E-double bond.

Reagents and conditions: (a) (R)-2-methyl cysteine methyl ester hydrochloride, Et;N, EtOH, 50°C,
72 h; (b) TFA, CH,Cl,, 25°C, 1 h; (c) DMAP, CH,Cl,, 25°C, 1 h; (d) 2,4,6-trichlorobenzoyl chloride,
Et;N, THF, 0°C, 1 h; then DMAP, 25°C, 10 h; (e) (i) 0.5 N LiOH, THF, H20, 0°C, 3 h, (ii) TFA,
CH,Cl,, 25°C, 2 h, (iii) HATU, HOA, i-Pr,NEt, CH,Cl,, 25°C, 24 h; (f) thioacetic acid S-but-3-enyl
ester, Grubbs’ second-generation catalyst (50 mol%), toluene, reflux, 4 h; (g) 1-triisopropylsilyloxyl-
3-butene, Grubbs’ second-generation catalyst (30 mol%), toluene, reflux, 3 h; (h) TBAF, THF, 25°C,
1 h; (i) ag. NH;, CH,CN, 25°C, 12-18 h.
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SCHEME 7.1 First total synthesis of largazole (1) and its analogues.

The methylthiazolinethiazole (3) was obtained by condensation reaction between (R)-2-methyl
cysteine methyl ester hydrochloride and thiazole 2 followed by deprotection. Coupling reaction to
the previously obtained thiazolidinethione using Nagao aldol reaction (Nagao et al. 1986, Hodge
and Olivo 2004) provided compound 4. Yamaguchi esterification of alcohol 4 and N-Boc-L-Val
rendered the ester 5 in 99% yield. However, DCC-coupling reaction afforded S in a lower yield
(85%). Attempts to macrocyclization under EDC or FDPP-coupling conditions provided the desired
compound 6 in low yield. In contrast, 6 was obtained in high yield (64% for three steps) using
HATU-HOAL. Finally, olefin cross-methathesis reaction in the presence of Grubbs’ second-genera-
tion catalyst provided largazole in 41% (64% BRSM). Starting from compound 6 and 1, the analogs
7, 8, 9 and 10 were prepared.

The authors suggested that thiol 10 could be generated by metabolism of thioester functionality
in largazole. They showed the structural similarity between FK228 (Li et al. 1996, Yurek-George
et al. 2004, 2007), a histone deacetylase (HDAC) inhibitor, and the thiol 10, and proposed the
hypothesis that largazole inhibits HDACs. Since HDACs I, II and IV are Zn*?-dependent enzymes,
they proposed that thiol group of 10 could chelate the Zn*>. HDACs are a family of enzymes found in
bacteria, fungi, plants, and animals that remove the acetyl group from the e-amino groups of lysine
residues present within the N-terminal extension of the core histones. This has the consequence
that the positive charge density on the N-termini of the core histones increases, thereby strengthen-
ing the interaction with the negatively charged DNA and blocks the access of the transcriptional
machinery to the DNA template (Paris et al. 2008). Histone deacetylation is a mechanism that can
lead to silencing of tumor suppressor genes, and histone deacetylase inhibitors owe their antitumor
action to their ability to reverse some of the aberrant epigenetic states associated with cancer.
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TABLE 7.2
IC;, and Gl;, Values for HDACs and Growth Inhibition (nM)
by Luesch and Hong’s Group

HCT-116-HDAC Hela Nuclear Extract

Compound  HCT-116 Gl;, (nM)  Cellular Assay (nM) HDACs (nM)
1 44 £ 10 51+3 37+ 11
10 38+5 209 + 15 42 +29
9 33+2 50+ 18 52 +£27
6 >10,000 >10,000 >10,000
8 >10,000 >10,000 >10,000

To testify the hypothesis that largazole inhibits HDACsS, the cellular HDAC activity upon treat-
ment with largazole or its analogues in HCT-116 cells were determined. Largazole treatment for 8 h
resulted in a decrease of HDAC activity in a dose—response manner. The ICs, for HDAC inhibition
closely corresponds with its Gl in this cell line (Table 7.2). This correlation suggested that HDAC
is the target responsible for largazole’s antiproliferative effect. Largazole (1) and the thiol analogue
10 exhibited similar cellular activity against HDACs derived from nuclear HeLa extracts as well
as antiproliferative activity. These results substantiated the hypothesis that 10 is the reactive spe-
cies. In addition, compounds 6 and 8 are inactive since they do not chelate with Zn*2. To establish a
preliminary selectivity profile, the authors tested Largazole (1) and 10 against recombinant HDAC1
(class I) and HDACG (class IT). Compound 10 inhibited HDACI activity at low nanomolar concen-
trations and was 150-fold less active against HDAC6. Luesch, Hong and coworkers concluded that
largazole is a class I HDAC inhibitor. In addition, structure—activity relationship (SAR) studies
revealed that the thiol group is the pharmacophore of the natural product.

Few months later, Luesch and Hong published the synthesis of new analogues of Largazole with
linker and macrocycle modifications (Figure 7.2). They reported antiproliferative activity against
HCT-116 colon cancer cells and HDAC inhibitory activity using HeLa nuclear extract, Table 7.3
(Ying et al. 2008b).

SARs suggested that the four-atom linker between the macrocycle, an octanoyl group in the
side chain and the (S)-configuration at the C17 position are critical to HDAC inhibitory effect. In
contrast, the valine residue in the macrocycle can be replaced with alanine without significant loss
of activity.

During 2008 seven more synthesis of largazole were published. Philips and coworkers reported the
synthesis of 1 in eight steps, some SARs, NMR studies and molecular modeling (Nasveschuk et al.
2008). The strategy for the synthesis of largazole involved the introduction of the thioester by cross-
metathesis as the final step and preparation of the macrocycle from fragments 16 and 17 (Scheme 7.2).

Readily accessible analogs, such as 6, 18, ester 19, and ketone 20 (Figure 7.3), as well as synthetic
largazole, were tested against MDA-MB231 cells and nontransformed human mammary epithelial

R Ow ?
. NH N
R ] i /&:\

S
0 O N\j
SM)J\
\/\/\/\n/ n\ H
(0}
R=MeorH
n=2,3or4 Largazole analogues

17Sor 17R

FIGURE 7.2 Largazole analogues reported by Luesch and Hong’s group.
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TABLE 7.3
Cancer Cell Growth and HDAC Inhibition (Gl;, and IC,, in nM)
by Luesch and Hong Group

HCT 116 Growth Inhibition = Hela Nuclear Extract HDACs

Compound (GI50) (nM) (IC50) (nM)
1 6.8 0.6 3213
11 (n=1,R =Me, 179) >10,000 >20,000
12 (n =3, R =Me, 175) 620 +50 7,600 = 900
13 (n =4, R =Me, 175) 2,500 = 600 4,100 =430
14 (n=2,R=H, 175) 212 72 £21
15 (n=2,R =Me, 17R) 3,900 + 450 >20,000
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FIGURE 7.3 Largazole analogs obtained by Phillips and coworkers.

cells (HME). GI;, value of largazole on MDA-MB231 was higher than what was observed in the
Luesch studies and the analogs were inactive (Table 7.4).

NOESY spectra were collected by Phillips group at a variety of mixing times ranging from 150
to 700 ms in order to obtain data about the conformation of largazole. Key transannular and long-
range correlations were used for Monte Carlo conformational searching. The structures generated
for largazole depicted a relatively rigid and flat macrocycle, with the thiol-ester side chain and Val
residue on opposite faces.

Ghosh and Kulkarni completed an enantioselective total synthesis of largazole (1) (Ghosh
and Kulkarni 2008). Remarkable differences in their synthetic strategy with the previous ones
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TABLE 7.4

Gl;, Values against MDA-MB231 and HME
Cells of Largazole and Analogs Synthesized
by Phillips and Coworkers

Compound  MDA-MB231 Gl,, (nM)  HME Gl, (nM)

1 71 >600
6 >600 >600
18 >600 >600
19 >600 >600
20 >600 >600

involve preparation of the methylthiazoline by Kelly’s procedure (You et al. 2003) and assembles
of 3-hydroxy-7-mercaptohept-4-enoic acid derivative to Boc-L-Val. Cramer and coworkers (Seiser
et al. 2008) published the synthesis of largazole using a similar disconnection of the molecule to that
used by Phillips’s group. In this synthetic protocol, the fragment 17 (Scheme 7.2), a B-hydroxy ester,
was obtained using Amano lipase PS resolution. The authors optimized the cross-methathesis reac-
tion and informed that p-nitro-substituted catalyst developed by Grela and coworkers (Michrowska
et al. 2004) shows significantly higher activity and affords largazole in 75% yield with a trans/cis
ratio of 6:1. The antiproliferative activity evaluation of some derivatives against the human epithe-
lial carcinoma cell line A432 and the preadipocyte cell line 3T3L1 was also performed. The inter-
mediate 6, which contains a terminal double bond, and an analog in which the side chain has been
replaced with a C13 alkyl chain, showed no growth-inhibitory activity, even at a concentration of
5 um. The replacement of the thioester functionality with an ester group also led to a complete loss
of activity. The authors have also found that free thiol derivative 10 displayed improved selectivity
relative to that of 1 against the wild-type cells (SI(10) = 9.5; SI(1) = 2.6).

Williams and coworkers also completed an efficient total synthesis of largazole (1) in eight linear
steps and 37% overall yield, and of its active metabolite, the largazole thiol (10), in seven linear steps
(Bowers et al. 2008). The obtained 1 and 10, FK228 and SAHA (Yoshida et al. 1990) have been
evaluated for inhibition of HDACS 1, 2, 3, and 6. As presented in Table 7.5, 10 is an extraordinarily
potent inhibitor of HDACI1 and HDAC2 (K, = 70 pM). The parent natural product largazole itself,
on the other hand, is a comparatively weak HDAC inhibitor with potency approximating that of
the nonselective pharmaceutical product SAHA. There is a significant discrepancy between this
result and what was reported by Taori (Taori et al. 2008). Williams et al. emphasized that even a
trace contamination of 10 liberated under aqueous assay conditions or by trypsin (presents in the
enzyme-coupled reaction) could account for the substantial decrease in enzyme potency observed.
Largazole exhibits submicromolar inhibitory effect on melanoma cell proliferation study, and it has

TABLE 7.5

HDAC Inhibitory Activity (K; nM) of Largazole (1)

and Largazole Thiol (10) as Compared to Pharmaceutical
HDAC Inhibitors by Williams and Coworkers

Compound HDAC1 (nM) HDAC2 (nM) HDAC3 (nM) HDAC6 (nM)

1 20 21 48 >1000
10 0.07 0.07 0.17 25
FK228 0.12 0.14 0.28 35

SAHA 10 10 15 9
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a superior potency (ICs, = 45-315 nM) compared to 10 (IC,, = 360-2600 nM). The authors attrib-
uted the observed inverse difference in cytotoxicity to the superior cell permeability of the thioester
1 as compared to the thiol 10.

Ye and coworkers (Ren et al. 2008) have completed the synthesis of largazole in 5.8% overall
yield from 3-[(tert-butyldimethylsilyl) oxy] propane and fragment 16, obtained using Hantzsch reac-
tion and Pattenden procedure (Pattenden et al. 1993). Doi and coworkers also reported the synthesis
of largazole using Kelly’s method for the formation of the thiazoline and Ishihara’s procedure to
obtain a bisthiazoline (Numajiri et al. 2008). In 2009, the group of Bradner, Williams, and Wiest
(Bowers et al. 2009a) reported the syntheses of an amide isostere of largazole (21; Figure 7.4). They
prepared the enantiomerically pure B-amino acid analog of the (S)-3-hydroxy-7-mercaptohept-4-
enoic acid (22) from a selectively protected aspartic acid derivative. The largazole amide isostere
(21) was found to be inactive against HDACI (ICs, > 3000 nM). The peptide isostere of largazole
thiol (22) was evaluated to be less potent against HDACI by ninefold as compared to the thiol 10.

In 2009, new analogs of largazole were also prepared and assayed against histone deacetylases
(HDACsS) 1, 2, 3, and 6 by Williams and coworkers (Figure 7.5 and Table 7.6) (Bowers et al. 2009b).
From the biological results for 24, 25, and 34, the authors concluded that there are strict stereo-
chemical, and conformation activity relationship between the natural product and its protein targets.
Nevertheless, the single-atom substitutions of the sulfur atoms for oxygen atoms in the oxazoline—
oxazole derivative (26) provided a compound equipotent to largazole itself. Moreover, a significant
increase in potency with pyridine substitution of the thiazole was observed; this compound (28)
possesses subnanomolar activity against Class I HDACs. They demonstrated that the methyl sub-
stituent of the thiazoline ring is nonessential for the dramatic potency of the natural product (see
HDAC inhibition for compound 27).

During 2009, four more reports related to the synthesis of largazole and/or analogs were pub-
lished (Chen et al. 2009, Seiser and Cramer 2009, Wang and Forsyth 2009, Yan and O’Doherty
2009). In 2010, new analogs of largazole were synthesized by Jiang’s group (Zeng et al. 2010).
Structure—activity relationship studies suggested that the geometry of the alkene in the side chain
is critical. While the largazole’s analogs with trans-alkene are potent for the antiproliferative effect,
those with cis-alkene are completely inactive. However, replacement of valine by tyrosine slightly
diminishes the potency, but increases selectivity toward human cancer cells over human normal
cells more than 100-fold. Besides, De Lera’s group reported the synthesis of C-7 modified largazole
analogs (36, 37, 38) and their biological evaluation (Figure 7.6). The compounds showed a potent
inhibition of recombinant HDAC1 and HDAC4 with a marked selectivity for HDACI, for which
they exhibit nanomolar potency (Souto et al. 2010).

In 2010, Luesch and Hong’s group reported new studies of largazole and analogs (Liu et al.
2010). The screening against the National Cancer Institute’s 60 cell lines revealed that largazole
is particularly active against several colon cancer cell types. In addition, they tested largazole and
some synthetic analogs for HDAC inhibition in human HCT116 colon cancer cells. These studies
correlated with grow inhibitory effect. Differential activity of largazole analogs was rationalized by
molecular docking to an HDACI homology model. The authors investigated the aqueous, plasma,
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FIGURE 7.4 Largazole isostere, thiol isostere, and B-aminoacid by Williams and coworkers.
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TABLE 7.6

Biochemical Inhibition of Human HDACs by Williams and Coworkers

Compound  HDACT1 (IC;,, nM)
10 1.2

24 1,200
25 110

26 0.69
27 1.9

28 0.32
29 670

30 270

31 1,000
32 230

33 >30,000
34 77

35 30
SAHA 10

HDAC2 (IC;,, nM)

HDAC3 (IC,,, nM)

HDAC6 (IC;,, nM)

35 3.4 49
3,100 1,900 2,200
800 580 13,000
1.7 1.5 45
4.8 3.8 130
0.86 1.1 29
1,600 960 700
4,100 4,100 >30,000
1,900 1,500 240
290 140 >30,000
>30,000 >30,000 >30,000
120 85 >30,000
82 84 680
26 17 13
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FIGURE 7.6 Largazole analogs developed by de Lera and coworkers.

microsomal, and cellular stability of largazole. It was stable in aqueous solution, but in mouse serum
largazole rapidly converted to the largazole thiol. Experiments of cellular stability in the whole-
cell protein lysate derived from HCT116 cells confirmed that largazole hydrolyzes and generates
the reactive largazole thiol (10). This metabolite was found to bind itself with proteins forming an
adduct that “reprotect” it. The proteins also act as carriers that release the active largazole thiol at
the site of action. The acute toxicity studies in nu/nu mice indicated that largazole is well tolerated
up to the highest concentration tested (50 mg/kg i.p.). The authors concluded that largazole thiol
reaches the tumor and inhibits HDACs showing in vivo efficacy.

Since HDACs have been reported to play certain important roles in osteogenesis, Hong and
Kim’s group investigated in vitro and in vivo osteogenic activity of largazole; the results indicated
that largazole induces the expression of alkaline phosphatase and osteopontin, stimulates bone for-
mation and inhibits bone resorption (Lee et al. 2011). Forsyht and coworkers reported that during
the activation of the C-terminal valine residue for esterification in a synthetic sequence to obtain
largazole, the o-center of valine suffered an unanticipated epimerization to deliver ultimately the
C2-epimer 35 (Figure 7.5) along with largazole (1) (Wang et al. 2011). The compound 35 displayed
more potent activity than 1 in cell viability assays against PC-3 and LNCaP prostate cancer cell line.
In 2011, Ganessan and coworkers published the synthesis of a series of largazole analogs (Figure
7.7) and assessed their inhibitory activity against HDAC and growing of MCF7 cells along with
pharmacokinetic evaluation of these compounds in terms of metabolic stability (Benelkebir et al.
2011). Largazole thiol was evaluated to be highly potent at a picomolar concentration against HDAC
(Table 7.7). Although, analogue 39 was a significantly weaker HDAC inhibitor than largazole thiol,
in the growth inhibition assay the two compounds had similar activity. Compounds 40 and 42 are
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FIGURE 7.7 Largazole analogs developed by Ganessan and coworkers.
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TABLE 7.7
HDAC and MCF7 Gl;, of 1, 10, and
Analogues by Ganessan and Coworkers

Compound  HDAC Inhibition (n\M)  MCF/Gl,, (nM)

1 571 +29 5=x1

10 0.043 +0.026 277 =130
39 172+23 377 £ 62
40 0.17 £0.05 2,458 £ 1,135
41 3.15+£0.35 >10,000

42 0.99 = 0.07 5,902 + 1,698

subnanomolar HDAC inhibitor, but 40, 41, and 42 are poor in growth inhibition compared to lar-
gazole. The authors argued that analogue 39, the weakest HDAC inhibitor in the series, had the best
cell growth due to its increased lipophilicity. Analogues 40—42 are more polar than largazole thiol
and this has a deleterious effect on growth inhibition.

They also investigated the stability of largazole and of the analogues in the presence of mouse
liver homogenate. Largazole itself was highly unstable with a half-life < 5 min. The metabolism
consists of thioester hydrolysis to largazole thiol, which is relatively stable in murine liver homog-
enate with a half-life of 51 min at 37°C. Analog 40 was similar in stability with a half-life of 32 min.
Analogs 41 and 42 had a complex and rapid metabolism with a half-life <5 min.

7.2.2  X-RAy CrystaL STRUCTURE OF COMPLEXED LARGAZOLE THIOL

Christianson and coworkers reported the X-ray crystal structure of HDACS8 complexed with lar-
gazole thiol (Cole et al. 2011). They observed that macrocyclic skeleton undergoes minimal con-
formational changes upon binding to HDACS since its conformation is very similar to that of the
uncomplexed compound reported by Cramer and coworkers (Seiser et al. 2008) and concluded

FIGURE 7.8 X-ray structure of largazole thiol binding to HDAC 8; ideal thiolate-zinc coordination geom-
etry. (Image from Protein Data Bank, accession code 3RQD.)



Promising Azole Marine Products 183

that the thiazoline—thiazole moiety rigidifies the macrocyclic ring with an ideal conformation for
binding to HDACS. In contrast, considerable conformational changes are required by HDACS to
accommodate the binding of the rigid largazole thiol. The most important observation is the coor-
dination of the thiolate-zinc, which is responsible for the exceptional affinity and biological activity
of largazole (Figure 7.8).

The structure of the complex provided the basis for understanding structure—affinity relation-
ships in the previously synthesized largazole derivatives. Structural changes, such as length of the
thiol side chain, a cis configuration of the side-chain olefin, or an R configuration in the macrocycle
side-chain linkage, result in significant affinity losses since they would compromise the ideal Zn?
coordination geometry. In contrast, substitution of the methyl group of the 4-methylthiazoline with
a hydrogen or the L-valine with L-tyrosine, L-alanine, or glycine have not produced loss of affinity
because the methyl group does not contact the protein surface and the L-valine side chain is point-
ing directly out toward solvent, thereby, not influencing directly the enzyme—inhibitor interface.
The thiazole ring is also oriented away from the protein structure toward solvent; so it is possible
that this position could tolerate additional substitution without loss of the activity.

7.3 CHEMISTRY AND BIOACTIVITY OF NEOPELTOLIDE

Neopeltolide (43; Figure 7.9) is a marine natural product that exhibits potent inhibition of in vitro
tumor cell proliferation at nanomolar level and also inhibits the growth of the fungal pathogen
Candida albicans. This compound was isolated from two specimens of a sponge closely related to
the genus Daedalopelta, collected by manned submersible from the northwest coast of Jamaica.
It was isolated and patented by Wright and coworkers in 2004 (Wright et al. 2007a) and then published
in 2007 (Wright et al. 2007b). This sponge belongs to the Neopeltidae family and Lithistida order,
a prolific order with hundreds of compounds isolated from it, which have been reviewed (Bewley
etal. 1998, D’Auria et al. 2002) and many of them have potent bioactivities (Wright 2010). However,
as other products isolated from sponges, the biosynthesis of the neopeltolide could be done by an
epibiotic microorganism. The chemical structure of neopeltolide has a 2,6-cis-tetrahydropyran unit
encircled by a 14-membered macrolactone, with a side chain that includes an oxazole and a terminal
carbamate.

7.3.1 IsoLATION, STRUCTURE ELUCIDATION, AND RELATED COMPOUNDS

The ethanolic extract of 105 g of frozen sponge was partitioned between n-butanol and water. The
n-butanol partition was further fractioned by silica gel chromatography by step gradient of ethyl
acetate in heptane and after reversed-phase HPLC 4.2 mg of neopeltolide was obtained as a colorless
oil, [0, + 24. The planar structure of neopeltolide was proposed from the analysis of its 1D and 2D
NMR data, including 1D gradient- and sensitivity-enhanced TOCSY (ID-DPFGSE-TOCSY) and 2D
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FIGURE 7.9  Structure of neopeltolide proposed by Wright and revised by Panek and Scheidt.
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FIGURE 7.10 Marine products related to neopeltolide.

double-quantum filtered COSY (2D-DQF-COSY). Their relative stereochemistry was assigned on
the basis of analysis of coupling constants, the 2D-NOESY spectrum, and a series of 1D-DPFGSE-
NOE experiments. The investigators reported that the material available of the neopeltolide had not
been enough to determine it absolute stereochemistry. The proposed structure (44), as shown in the
Figure 7.9, was revised (43) when Panek and coworkers first (Youngsaye et al. 2007), and few months
later Scheidt and coworkers (Custar et al. 2008), reported the total synthesis of neopeltolide.

This compound is structurally related to leucascandrolide A (45; Figure 7.10) (D’Ambrosio et al.
1996), a 16-membered macrolide with a tetrahydropyran ring isolated from the calcareous sponge
Leucascandra caveolata collected along the east coast of New Caledonia. Both compounds have
an identical oxazole-bearing side chain. The macrolide portion of neopeltolide shows similarities to
the macrolide ring seen in other marine products as callipeltosides (46) (Figure 7.10) isolated from
the sponge Callipelta (Zampella et al. 1996), lyngbouilloside (47) from Lyngbya bouilloni (Tan
et al. 2002), and the aurisides (48) isolated from the sea hare Dolabella auricularia (Sone et al.
1996). They show 14-membered macrolides with a hemiketal in a C-7 position of the tetrahydro-
pyran ring. Polycavernoside A (49) (Figure 7.10) (Yotsu et al. 2004) that presents a 16-membered
macrolide and a tetrahydropyran ring as found in neopeltolide is a potent toxin isolated from the red
alga Polycavernosa tsudai.

7.3.2  SYNTHESIS OF NEOPELTOLIDE

Since the report of neopeltolide in 2007, 19 papers were published related to its synthesis, 11 total
syntheses and 8 formal syntheses. However, only five articles reported studies related to its bioactiv-
ity (see Table 7.8).

The first total synthesis of neopeltolide was performed by Panek and coworkers (Youngsaye
et al. 2007). They coupled the oxazole side chain by a Still-Gennari olefination between a phos-
phonate derivative of macrolactone and an aldehyde of the oxazole side chain (see Scheme 7.3).
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TABLE 7.8

Articles Published of Neopeltolide

Year Content

2007  Neopeltolide bioactivity patent

Isolation, structure elucidation
and bioactivity

Total synthesis

Total synthesis

2008  Total synthesis

Total synthesis and activity

Macrolactone synthesis

Total synthesis, analogues
and bioactivity

Total synthesis

Total synthesis

Macrolactone synthesis

2009  Total synthesis, analogues
and bioactivity

Macrolactone synthesis

Total synthesis

Macrolactone synthesis

Total synthesis, analogues
and bioactivity

2010  Total synthesis and analogues

Total synthesis

Macrolactone synthesis

Studies of macrolactone
synthesis

2011  Macrolactone synthesis

Principal Author

Amy E. Wright
Amy E. Wright

James S. Panek
Karl A. Scheidt
Eun Lee

Sergey A. Kozmin
Martin E. Maier
Martin E. Maier

Haruhiko Fuwa and Makoto Sasaki
Tan Paterson

Richard E. Taylor

Karl A. Scheidt

Jiyong Hong

Emmanuel Roulland

Jhillu Singh Yadav

Haruhiko Fuwa and Makoto Sasaki

Paul E. Floreancig

Haruhiko Fuwa and Makoto Sasaki
Michael P. Jennings

Gordon J. Florence

Xuegong She

Reference

Wright et al. (2007a)
Wright et al. (2007b)

Youngsaye et al. (2007)
Custar et al. (2008)

Woo et al. (2008)
Ulanovskaya et al. (2008)
Vintonyak and Maier (2008)
Vintonyak et al. (2008)

Fuwa et al. (2008)
Paterson and Miller (2008)
Kartika et al. (2008)
Custar et al. (2009)

Kim et al. (2009)

Guinchard and Roulland (2009)
Yadav et al. (2010)

Fuwa et al. (2009)

Cui et al. (2010)

Fuwa et al. (2010)

Martinez-Solorio and Jennings (2010)
Florence and Cadou (2010)

Yang et al. (2011)
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The total synthesis reported by Scheidt and coworkers (Custar et al. 2008), and the following
total syntheses reported until now (see Table 7.8) disconnect the ester side chain to perform a
convergent synthesis between the macrolactone and the oxazole side chain by Mitsunobu reac-
tion (see Scheme 7.3). In this case the configuration of macrolactone hydroxyl group is inverted.
So, neopeltolide syntheses involve the development of macrolactone and the oxazole side chain
syntheses. The methodology to synthesize the side chain has been widely developed in leucascan-
drolide total syntheses reported previously by Panek (Dakin et al. 2002).

The retrosynthesis of macrolactone (see Scheme 7.4) performed by Panek and coworkers begins
with the lactone disconnection. The macrolactone synthesis was performed using Yamaguchi lac-
tonization. This is the most used methodology of the followings reports, with yields between 44%
and 87%.

An interesting strategy built the macrolactone and the 2,6-cis-tetrahydropyran unit simultane-
ously. Scheidt and coworkers followed this synthetic strategy using a Lewis acid—catalyzed intra-
molecular cyclization (Figure 7.11) developed by them in a previous report (Morris et al. 2005).
They performed a diastereoselective cyclization between the aldehyde and the B-hydroxy dioxi-
none group of ester 52 catalyzed by scandium triflate. Then the dioxinone group in 53 was elimi-
nated by heating at 130°C in DMSO-water to yield the tetrahydropyran containing macrolactone
54. Similar strategy was performed by Lee and coworkers using the Prins reaction (Woo et al.
2008), Figure 7.11. They treated the esters 55 or 56 with triethylsilyl trifluoromethanesulfonate in
acetic acid in the presence of trimethylsilyl acetate and then under basic conditions to yield the
macrolactone and the 2,6-cis-tetrahydropyran. The same synthetic route was performed by Yadav
et al. (2010) to build the neopeltolide macrolide, using S-citronellol as starting material to build
the aldehyde allyl ester 56.

Floreancig and coworkers (Cui et al. 2010) started their synthesis with the construction of the
12-membered macrolactone 58 using Yamaguchi lactonization. Then they formed the 2,6-cis tetra-
hydropyran by an oxidative cyclization protocol using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
as oxidant (Figure 7.12).

Fuwa/Sasaki,She| Grubbs'ring-closing metathesis |
' | Lewis acid intramolecular cyclization |Scheidt

, | Prins macrocyclization |Yadav

’

/

|
|
|
|
|
|
! ’
|

/ /
H :/ /~-—1 Oxidative cyclization | Floreancig
i

8_ 1 OH

e

0. H=
’// AN
Yamaguchi esterification | g | Prins macrocyclization | Lee

Panek, Fuwa/Sasaki, Kosmin, Scheidt, Maier, Paterson,
Hong, Roulland, Jennings, Taylor

Yamaguchi esterification

HO,,

(1) 2,4,6-trichlorobenzoyl chloride, Et3N, (2) DMAP, toluene

SCHEME 7.4 First disconnection in syntheses of the neopeltolide macrolactone.
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55 56
(1) TESOTf (20 equiv), TMSOAC (30 equiv), AcOH (0.01 m), RT, 30 min; (2) K,CO5, MeOH.

FIGURE 7.11 Strategies for simultaneous synthesis of tetrahydropyran nuclei and macrolactone by Scheidt,
Lee and Yadav.

Floreancig

Yamaguchi
—_—

FIGURE 7.12 Synthetic strategy to obtain the macrolactone performed by Floreancig.

Fuwa et al. (2010) performed a second synthesis of the macrolactone, which is shorter and more
efficient than their first one, using Grubbs’ ring-closing metathesis (RCM) to the macrolactoniza-
tion of the tetrahydropyran containing ester 59. The same strategy was performed recently by She
and coworkers (Yang et al. 2011). Florence and coworkers intended a similar approach to the macro-
cyclization by an RCM without the tetrahydropyran being preformed; however, it was unsuccessful
and they obtained a cycloheptene 60 (Florence and Cadou 2010) (see Figure 7.13).

In most cases of the neopeltolide syntheses using Yamaguchi macrocyclization approach, the
tetrahydropyran core is preformed. In these syntheses several methodologies were used to prepare
the tri-substituted 2,6-cistetrahydropyran nuclei as see in Scheme 7.5.

Panek built the tetrahydropyran core using a triflic acid promoted [4 + 2] annulation via oxonium
ion between an allylsilane and an aldehyde. Paterson and Miller (2008) performed a similar route
using a Jacobsen asymmetric hetero Diels—Alder reaction between an aldehyde and a 2-siloxydiene
catalyzed by a chiral tridentate chromium(III) catalyst. Maier and coworkers used an acid-catalyzed
Prins reaction to prepare the tetrahydropyran nuclei from the same aldehyde and a homoallylic
diol (Vintonyak and Maier 2008, Vintonyak et al. 2008). In a similar way, Kosmin and coworkers
(Ulanovskaya et al. 2008) prepared a tetrahydropyran racemic block to build the macrolactone using
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SCHEME 7.5 Tetrahydropyran disconnections in the neopeltolide syntheses.

Prins methodology. Scheidt and coworkers (Custar et al. 2009) proposed a second synthetic plan
using their methodology of Lewis acid—catalyzed intramolecular cyclization to build the tetrahydro-
pyran macrocyclic precursor (see Figure 7.14). Also, they reviewed the different syntheses reported
using the methodology of Prins to synthesize the neopeltolide macrolide (Crane and Scheidt 2010).

Fuwa et al. (2008, 2009) synthesized the 2,4,6-trisubstituted tetrahydropyran of neopeltolide
using a sequence of Suzuki—Miyaura coupling and RCM. Hong and coworkers (Kim et al. 2009)
synthesized the tetrahydropyran nuclei by allylic oxidation, oxa-Michael reaction, and other con-
secutive oxidation with excellent stereoselectivity (d.r. > 20:1) (see Figure 7.15).

Taylor and coworkers (Kartika et al. 2008) performed the tetrahydropyran core via radical
cyclization of B-alkoxyacrylate 61 with AIBN and n-Bu,SnH in refluxing toluene. These condi-
tions afforded 62 in 95% yield as nearly single diastereomer (19:1) (see Figure 7.16). Guinchard
and Roulland (2009) performed a stereoselective formation of the tetrahydropyran core by a



Promising Azole Marine Products 189

. .
\Hkg S . o o OTMS YJ\Q o~ - @
~ ~ ! H/'\/osozrvles TfOH, -78°C - g - 05OsMes
SiMe,Ph

(0]

AN OPMB -
TBSO_ o - O TBSO o = OPMB
B : % Cr(Ill) Catalyst = :
TESO _— g e /
H A\ O ’
+

Maier

\
TBDPSO O =

0 OH OBn
o UL

o)
o -0 o oTBS |
: | (1) Sc(OTf);, CaSO,
H #\O O/

(2) DMSO, 130°C

1Q £O

Kosmin
0 o
(1) TFA :
o] = "0 .
M + | oH | PpTS, toluene | (LioH, THF-H,0 Q
I "/O\‘~ X
MsO X

FIGURE 7.14 Different routes to synthesize tetrahydropyran nuclei by Prins reaction.

Fuwa/Sasaki

O\\P/oph MPMO MPMO
RN
PhO" O
9 | TIPso/\CL\ 212; M TIPSO
— Suzuki-Miyaura 2
meso— /" DUzuRryaure N .
OBOM OBOM OBOM

(1) MnO,, CH,Cl,, 25°C,3 h
(2) Dimethyltriazolium iodide,
(3) MnO,, DBU, MeOH, 4A MS, 25°C, 21 h

FIGURE 7.15 Syntheses of tetrahydropyran nuclei by Fuwa/ Sasaki and by Hong.
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OBn OBn

(1) [CpRu(MeCN);]PFg4, AcOH, acetone
(2) LiBF 4, MeCN, H,0

FIGURE 7.16  Syntheses of tetrahydropyran nuclei by Taylor and Roulland.

TBDPSQ TBDPSO
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AllyIMgBr, Et,0 TFA, Et;SiH
B —— —_—

65 66 67

FIGURE 7.17  Synthesis of tetrahydropyran nuclei by Jennings.

[CpRu(MeCN)3]PF6-catalyzed tandem alkyne-enal coupling/Michael addition sequence. This key
step allowed assemblage of the alkyne 63 with 3-butenal, an “ene” cross-coupling partner.

Martinez-Solorio and Jennings (2010) reported a singular strategy to the formation of the tetra-
hydropyran core (Figure 7.17). They performed a stereoselective reduction of an endocyclic oxocar-
benium cation mediated by the treatment of hemiketal 66 with a Lewis acid. The intermediate 66
derived from a nucleophilic addition of the allyl Grignard reagent to the d-lactone 65.

So far the Maier synthesis of neopeltolide is the most efficient; in the longest linear sequence
this synthesis required 18 steps with an overall yield of 18.7%. The other performed syntheses were
longer or have not proceeded in higher yields: Panek synthesis in 19 steps, 1.3% of overall yield;
Scheidt synthesis in 19 steps, 0.52%; Lee synthesis in 15 steps, 6.7%; Fuwa, Sasaki 2010 synthesis
in 12 steps, 14%; Kozmin synthesis in 15 steps, 5.3% (racemic material); Paterson in 18 steps, 5.8%;
Roulland in 16 steps, 6.2%; and Floreancig in 14 steps, approximately 2% (see Table 7.8).

7.3.3 BioLocicAL AcTIvITY

The first report of Wright et al (2007) describes neopeltolide as a potent inhibitor of the in vitro
proliferation of A-549 human lung adenocarcinoma, NCI-ADR-RES human ovarian sarcoma, and
P388 murine leukemia cell lines with ICs, values of 1.2, 5.1, and 0.56 nM, respectively. On other



Promising Azole Marine Products 191

cells lines such as PANC-1 of pancreatic cancer and DLD-1 of colorectal adenocarcinoma, neopel-
tolide showed strong inhibition of cell proliferation (nanomolar), but it showed a cytostatic activity
rather than cytotoxic. Cell cycle analysis by flow cytometric methods revealed that neopeltolide
causes a block of the cell cycle at G1 at doses of 100 nM in the A549 lung adenocarcinoma cell line.
The preliminary investigation about the action mechanism suggests that it does not act via interac-
tion with tubulin or actin.

They also reported that neopeltolide has potent antifungal activity against Candida albicans.
It showed a growth inhibitory zone of 17 mm when tested at a concentration of 25 pg/disk in
the C. albicans disk diffusion assay and a minimum inhibitory concentration in liquid culture of
0.625 pg/mL. Kosmin and coworkers (Ulanovskaya et al. 2008) synthesized enough neopeltolide
that allowed them to advance into the elucidation of mechanism of action. However, as apparently
arises from the reported synthesis, the study was performed with racemic neopeltolide. They con-
firmed the neopeltolide activity previously reported and also that the structural homolog of neopel-
tolide, leucascandrolide, has similar potent antiproliferative profiles in mammalian cells and yeast.
HCT116 cell line proved to be one of the most sensitive to neopeltolide, which inhibited the growth
of these cells by 90% at 1.0 nM. In contrast, PC3 and A549 cell growth was inhibited only by 60%
at the same concentration.

Looking for the cellular targets of neopeltolide they followed an approach by genetic stud-
ies using an organism with low complexity like yeast. Studies with a wild-type strain of
Sacharomyces cerevisiae showed increased sensitivity to these compounds over 10,000-fold on
agar media containing galactose instead of glucose. Genome-wide yeast deletion screen showed
that these products may antagonize a pathway required for ATP biosynthesis in the absence of
glucose fermentation, such as mitochondrial oxidative phosphorylation. Their studies on inhibi-
tion of oxidative phosphorylation showed that leucascandrolide A and neopeltolide may elicit
their potent antiproliferative activity by blocking one or more complexes in the mitochondrial
electron-transport chain and so the molecules inhibit mitochondrial ATP synthesis. They have
evaluated the activity of the four mitochondrial electron transfer chain complexes in yeast and
mammalian cells and found the identification of cytochrome bcl complex as the principal cellular
target. Cytochrome bcl is a transmembrane protein complex located in the inner mitochondrial
membrane. This multi-subunit enzyme is a central component of the mitochondrial respiratory
electron transport chain. The function of cytochrome bcl is to reduce cytochrome c(Fe**) into
cytochrome c(Fe?*) using the membrane localized ubiquinol. They reported that “leucascandro-
lide A and neopeltolide compare favorably to the most potent inhibitors of cytochrome bcl com-
plex known today, identifying such compounds as a new class of highly useful biochemical tools
for investigation of eukaryotic energy metabolism.”

Maier and coworkers (Vintonyak et al. 2008) performed an efficient synthesis that in the lon-
gest linear sequence required 18 steps and an overall yield of 18.7%. They also synthesized the
5 and 11 epi-diastereomers and five analogues with side-chain modifications as seen in Figure 7.18.
All of these compounds, also the precursor macrolactone and the side chain, were tested for cyto-
toxicity against L929 mouse fibroblasts and human lung carcinoma A549 line cells, as well as for
their inhibitory efficacy on NADH-oxidation in submitochondrial particles of bovine heart. They
showed that the macrolactone alone is not sufficient for biological activity but some modifications
like the 11 epi and 5 epi neopeltolides keep the cytotoxicity activity (ICs, of neopeltolide, 11-epi-,
and 5-epi- were 0.16, 0.9, and 5.6 nM against A549, respectively). The modified side-chain ana-
logues showed that the distance from the oxazole ring to the macrolactone is important, with loss
of activity with shorter chains. The analogue with an E double bond geometry (70) was about
20 times less active; however, the analogue with Z, E double bonds (71) was more active than
neopeltolide itself (against L929 ICs, of neopeltolide was 250 pM and for the Z,E analogue was
160 pM). The correlation of cytotoxicity results and the NADH oxidation assay using submito-
chondrial particles of bovine heart confirm that the mechanism of action of neopeltolide involves
the mitochondrial respiratory chain.



192 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

1o 1<
—0 N
R—O o) A hd

/)\/( ° ° /O
H/ V4 \/ P> 7
\
H o
Wl "~
- "y _OMQ °
N P
d N\ //O 7 X o N

FIGURE 7.18 Neopeltolide analogues synthesized and assayed by Maier and coworkers.

Fuwa et al (2009) assayed synthetic neopeltolide, the originally proposed diastereomer, the
analogues 11-demethoxyneopeltolide and 9-demethylneopeltolide, and some advanced precur-
sors against P388 murine leukemia cells. The cytotoxicity results for neopeltolide, the diaste-
reomers, and the advanced precursors like macrolactone or oxazole side chain agreed with
those previously reported. The 11-demethoxyneopeltolide analogue showed an activity roughly
fourfold lower. However, the 9-demethylneopeltolide is equipotent to or slightly more potent
than neopeltolide; this result is significant because the analogue can be prepared more readily than
neopeltolide.

Scheidt and coworkers (Custar et al. 2009) performed the biological activity of synthetic neopel-
tolide and two diastereomers (one with inverse configurations at 5, 11, and 13 carbons and the other
corresponding with the structure proposed by Wright). Also, the alcohol and ketone forms of the
macrolactone, the side chain, and two analogues of neopeltolide with benzoic or octanoic acid as side
chain were assayed. In this report, they confirmed that the revised structure of neopeltolide is the
active structure; the diastereomer that corresponds to the structure originally proposed by Wright was
approximately 100-fold less active against murine leukemia P388 (0.6 and 42 nM, respectively) and
human breast adenocarcinoma MCF-7 cells line (2.2 and 219 nM, respectively). A surprising result
was that neopeltolide was minimally active or inactive against the four other cell lines tested: rat
adrenal tumor PC12, human cervical carcinoma HeLa, human epidermal carcinoma KB, and human
lung carcinoma A549. In the case of the human lung carcinoma A549 line cells they detected no
dose-dependent growth inhibition in contrast to the previously results reported as a sensitive line cells.
These results showed that neopeltolide exhibits line cells selectivity for its cytotoxic activity. Also the
structure—activity relationship studied with synthetic compounds confirmed that both the macrolide
and the oxazole side chain bound together play a role in mediating the effect of neopeltolide and
neither component on its own is active. The diastereomers assayed were active but less potent than
neopeltolide. The benzoyl ester was the unique analogue that kept similar activity to neopeltolide.

Floreancig and coworkers (Cui et al. 2010) reported the synthesis of four analogues: 9-epi-
neopeltolide, 8,9-dehydroneopeltolide, 8,9-dihydroxyneopeltolide, and 8,9-epoxyneopeltolide.
Despite the initiation of studies having been announced, they have not reported the activity of
these compounds yet.
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74 SUMMARY AND CONCLUSIONS

The recent progress in the synthesis and biology of largazole and analogues has provided signifi-
cant insight into the structural, stereochemical, functional, and conformational aspects for fur-
ther investigations. Preclinical studies have shown that largazole and derivatives are promising
new drugs that could enter into clinical development. Even though neopeltolide showed exciting
activities and efficient syntheses for it were developed, no further studies were reported related to
its biological activity since Scheidt’s report in 2009 (Custar et al. 2009). Thus, contradictions of
neopeltolide activity against some cell lines as well as the extent of its pharmacological potential
remains to be answered.

It is the fact that a large number of investigators have quite been inspired by the unique structural
features of the chemical entities derived from sea in using them as models or scaffolds for synthesis
of promising analogues and lead candidates in drug discovery programs. As a result, a considerable
advance in the area of synthetic methodology has already been derived from marine products and
will flourish in the near future.

ABBREVIATIONS

1D one dimensional

2D two dimensional

4AMS molecular sieves with pore size of four Angstrom
AIBN azobisisobutyronitrile

ATP adenosine triphosphate

Bn benzyl

Boc t-butoxycarbonyl

BOM benzyloxymethyl

BRSM based on recovered starting material
COSY correlation spectroscopy

DBU 1,8-diazabicyclo[5.4.0]Jundec-7-ene
DCC dicyclohexylcarbodiimide

DMAP 4-N,N-dimethylaminopyridine
DMSO dimethylsulfoxide

DNA deoxyribonucleic acid

DPFGSE double pulsed field gradient spin echo
DQF-COSY double quantum filtered-correlation spectroscopy

EDC 1-ethyl-3-(dimethylaminopropyl)carbodiimide

EtOH ethanol

FDPP pentafluorophenyl diphenylphosphinate

GI;, 50% growth inhibition

HATU N-[(dimethylamino)(3H-1,2,3triazolo(4,5-b)pyridin-3-yloxy)methylene]-N-methyl-
methanaminium hexafluorophosphate

HDAC histone deacetylase

HOAt 7-aza-1-hydroxybenzotriazole

LCy, 50% lethal concentration

L-Val L-valine

Mes mesityl or 2,4,6-trimethylphenyl

MOM methoxymethyl

MPM p-metoxyphenymethyl

NADH nicotinamide adenine dinucleotide reduced form

NMR nuclear magnetic resonance

NOESY nuclear overhauser effect spectroscopy
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PMB p-methoxybenzyl

PPTS pyridinium p-toluenesulfonate
RCM ring closing methatesis

RT room temperature

SAHA suberoylanilide hydroxamic acid
TBAF tetrabutylammonium fluoride
TBDPS t-butyldiphenylsilyl

TBS t-butyldimethylsilyl

TESOTf triethylsilyl trifluoromethanesulfonate
Tf trifluoromethanesulfonyl

TFA trifluoroacetyl or trifluoroacetic acid
THF tetrahydrofuran

TIPS triisopropylsilyl

TMS trimethylsilyl

TMSOACc trimethylsilyl acetate

TOCSY total correlation spectroscopy
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8.1 STRUCTURE, NAMING, AND BIOSYNTHESIS OF w-3 FATTY ACIDS

The term omega-3 (®-3 or n-3) is a structural descriptor for a family of polyunsaturated fatty acids
(PUFAs): ®-3 signifies the position of double bond that is closest to the methyl terminus of the acyl
chain. All -3 fatty acids have this double bond on carbon three, counting the methyl carbon as
carbon one (Figure 8.1). Like other fatty acids, m-3 fatty acids have systematic and common names
(Table 8.1), but they are commonly referred to by a shorthand nomenclature that denotes the number
of carbon atoms in the chain, the number of double bonds, and the position of the first double bond
relative to the methyl carbon (Table 8.1). The simplest m-3 fatty acid is a-linolenic acid (18:3m-3).
o-Linolenic acid is synthesized from the ®-6 fatty acid linoleic acid (18:2m-6) by desaturation,
catalyzed by delta-15 desaturase (note that the desaturase enzymes are named according to the first
carbon carrying the newly inserted double bond and counting the carboxyl carbon as carbon num-
ber one) (Figure 8.2). Animals, including humans, do not possess the delta-15 desaturase enzyme
and so cannot synthesize a-linolenic acid. In contrast, plants possess delta-15 desaturase and so are
able to synthesize a-linolenic acid.

Although animals cannot synthesize o-linolenic acid, they can metabolize it by further desatura-
tion and elongation; desaturation occurs at carbon atoms below carbon number nine (counting from
the carboxyl carbon) and mainly occurs in the liver. o.-Linolenic acid can be converted to steari-
donic acid (18:4w-3) by delta-6 desaturase and then stearidonic acid can be elongated to eicosatet-
raenoic acid (20:4-3) (Figure 8.2). This fatty acid can be further desaturated by delta-5 desaturase
to yield eicosapentaenoic acid (20:5®-3; known as EPA) (Figure 8.2). Conversion of o-linolenic acid
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FIGURE 8.1 Generic structure of ®-3 fatty acids.
TABLE 8.1
®-3 Polyunsaturated Fatty Acid Family
Systematic Name Common Name Shorthand Nomenclature
All cis 9, 12, 15-octadecatrienoic acid o-Linolenic acid 18:3m-3
All cis 6,9, 12, 15-octadecatetraenoic acid Stearidonic acid 18:4w-3
All cis 8, 11, 14, 17-eicosatetraenoic acid Eicosatetraenoic acid 20:4m-3
All cis 5, 8, 11, 14, 17-eicosapentaenoic acid Eicosapentaenoic acid 20:5m-3
All cis 7, 10, 13, 16, 19-docosapentaenoic acid Docosapentaenoic acid 22:50-3

(clupanodonic acid)

All cis 4,7, 10, 13, 16, 19-docosahexaenoic acid ~ Docosahexaenoic acid 22:6-3

A15-desaturase
Linoleic acid (18:2(-6) =——— «-Linolenic acid (18:3w-3)
(Plants only)

A6-desaturase
Stearidonic ;éid (18:4w-3)
Elongase
Eicosatetraenoié acid (20:4»-3)
A5-desaturase

v
Eicosapentaenoic acid (EPA; 20:5w-3)

Elongase
Elongase
A6-desaturase
B-oxidation

v

Docosahexaenoic acid (DHA; 22:6w-3)

FIGURE 8.2 Pathway of conversion of linoleic acid to o-linolenic acid and of o-linolenic acid to longer
chain, more unsaturated m-3 fatty acids.

to EPA is in competition with the conversion of linoleic acid to arachidonic acid (20:4®-6) since the
same enzymes are used. The delta-6 desaturase reaction is rate limiting in this pathway. Although
the preferred substrate for delta-6 desaturase is a-linolenic acid, because linoleic acid is much more
prevalent in most human diets than o-linolenic acid, metabolism of ®-6 fatty acids is quantitatively
more important. The activities of delta-6 and delta-5 desaturases are regulated by nutritional status,
hormones, and by feedback inhibition by end products.

The pathway for conversion of EPA to docosahexaenoic acid (22:6®-3; known as DHA) involves
addition of two carbons to EPA to form docosapentaenoic acid (22:5w-3; known as DPA), addition
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of two further carbons to produce 24:5w-3, desaturation at the delta-6 position to form 24:6®-3,
and translocation of 24:6®-3 from the endoplasmic reticulum to peroxisomes where two carbons
are removed by limited B-oxidation to yield DHA. Short-term studies with isotopically labeled
a-linolenic acid and long-term studies using significantly increased intakes of o-linolenic acid have
demonstrated that the conversion to EPA, DPA, and DHA is generally poor in humans, with very
limited conversion all the way to DHA being observed (Arterburn et al. 2006; Burdge and Calder
2006). EPA and DPA can also be synthesized from DHA by retro-conversion due to limited per-
oxisomal (3-oxidation. In this chapter EPA, DPA, and DHA are referred to as very long chain ®-3
PUFAs; they are sometimes referred to as marine ®-3 PUFAs.

8.2 DIETARY SOURCES AND TYPICAL INTAKES OF ®-3 FATTY ACIDS

8.2.1 a-LiNoLENIC AcID FROM PLANT SOURCES

Green leaves contain a significant proportion (typically over 50%) of their fatty acids as o.-linolenic
acid. However, green leaves are not rich sources of fat and so these are not major dietary sources
of fatty acids including o.-linolenic acid. Several seeds and seed oils and some nuts contain signifi-
cant amounts of o-linolenic acid. Linseeds (also called flaxseeds) and their oil typically contain
45%—55% of fatty acids as a-linolenic acid, while soybean oil, rapeseed oil, and walnuts typically
contain 5%—-10% of fatty acids as o.-linolenic acid. Corn oil, sunflower oil, and safflower oil are rich
in the -6 linoleic acid but contain very little a-linolenic acid. Intakes of o-linolenic acid among
Western adults are typically 0.5-2 g/d (British Nutrition Foundation 1999; Burdge and Calder
2006). However, the main PUFA in most Western diets is the ®-6 linoleic acid that is typically
consumed in 5-20-fold greater amounts than o-linolenic acid (British Nutrition Foundation 1999;
Burdge and Calder 20006).

8.2.2 EPA, DPA, anD DHA FROM SEAFOOD

Seafoods are a good source of very long chain ®-3 PUFAs (British Nutrition Foundation 1999).
Fish are often classified into lean fish that store lipid in the liver (e.g., cod) or “fatty” (“oily”) fish that
store lipid in the flesh (e.g., mackerel, herring, salmon, tuna, sardines). Different types of fish con-
tain different amounts of EPA and DHA, and these fatty acids may be present in different ratios
(Table 8.2). These characteristics are partly dependent upon the metabolic characteristics of
the fish and also upon their diet, water temperature, season, etc. Even so, it seems that a single
lean fish meal (e.g., one serving of cod) could provide about 0.2-0.3 g very long chain ®-3 fatty
acids, while a single oily fish meal (e.g., one serving of salmon or mackerel) could provide 1.5-3.0 g

TABLE 8.2
Typical Very Long Chain ®-3 Fatty Acid Contents of Fish

Total Long Chain -3
20:55w-3 22:5w-3 22:6w-3 PUFA per Portion

Seafood g/100 g Food g

Cod 0.08 0.01 0.16 0.30
Haddock 0.05 0.01 0.10 0.19
Plaice 0.16 0.04 0.10 0.39
Herring 0.51 0.11 0.69 1.56
Mackerel 0.71 0.12 1.10 3.09
Salmon 0.50 0.40 1.30 2.20

Trout 0.23 0.09 0.83 2.65
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of these fatty acids (Table 8.2). The latest estimate for fish consumption among adults in the United
Kingdom is approximately 100 g lean fish and approximately 50 g oily fish per week (SACN/COT
2004); similar (and in some countries even lower) intakes are expected in other northern and in
eastern European, North American, and Australasian countries. Lean fish intake is higher than this
in southern European countries and lean and oily fish intake is higher than this in Japan. Average
(mean) intakes of very long chain ®-3 fatty acids among adults in the United Kingdom, in other
northern and in eastern European, North American, and Australasian countries are usually quoted
as approx. 0.15-0.25 g/day (SACN/COT 2004). However, the distribution of intakes is bimodal
due to the presence of oily fish consumers and nonconsumers and a fairly recent estimate of very
long chain ®-3 fatty acid intake among Australian adults gave a median intake of about 0.03 g/day,
compared with a mean intake of about 0.19 mg/day (Meyer et al. 2003). Intakes would be rather
higher in those populations, such as the Japanese, who consume oily fish in greater amounts and
with greater regularity than seen in Europe, North America, and Australasia.

8.2.3 FisH Ous

The oil obtained from oily fish flesh or lean fish livers (e.g., cod liver) is termed “fish oil” and it
is rich in very long chain ®-3 fatty acids. EPA and DHA comprise about 30% of the fatty acids in
a typical preparation of fish oil, which means that a one gram fish oil capsule can provide about
0.3 g of EPA plus DHA. However, the amount of ®-3 fatty acids can vary between fish and fish
oils and so can the relative proportions of the individual very long chain ®-3 PUFAs (EPA, DPA,
and DHA); for example, cod liver oil is richer in EPA than DHA while tuna oil is richer in DHA
than EPA. Encapsulated oil preparations that contain ®-3 fatty acids in higher amounts than
found in standard fish oils are available (“fish oil concentrates”). In fish oil capsules, the fatty
acids are usually present in the form of triacylglycerols, although ®-3 fatty acids are also avail-
able in the phospholipid form (e.g., as krill oil) and as ethyl esters (e.g., in the highly concentrated
pharmaceutical preparation Omacor also known as Lovazza in North America). Clearly capsules
could make a significant contribution to very long chain ®-3 fatty acid intake. Certain algal oils
are particularly rich in DHA, which may comprise as much as 45% of total fatty acids. These
oils may be useful where provision of DHA, but not EPA, is particularly desired, for example, in
infant formulas.

8.3 INCREASED INTAKE OF VERY LONG CHAIN ®-3 FATTY ACIDS
ALTERS THE FATTY ACID COMPOSITION OF PLASMA, CELLS,
AND TISSUES IN HUMANS

Very long chain ®-3 PUFAs consumed in the diet are handled in the same way as other dietary fatty
acids: They are hydrolyzed from triacylglycerols, absorbed into enterocytes, re-esterified back into
triacylglycerols, which are assembled into lipoproteins known as chylomicrons, and then released
into the lymphatic circulation, later entering the bloodstream. Fatty acids from chylomicron triacyl-
glycerols are targeted toward storage in adipose tissue, with those remaining in the remnant particle
being cleared by the liver. Once in the liver fatty acids may be oxidized, metabolized to other fatty
acids, or re-secreted into the bloodstream as a component of liver-derived lipoproteins. These lipo-
proteins form a vehicle for transport of fatty acids between tissues (Figure 8.3). Fatty acids within
cell membranes have a number of functional roles (Miles and Calder 1998). Thus, it is possible to
identify storage, transport, and functional pools of fatty acids including very long chain ®-3 fatty
acids (Figure 8.3).

Different blood plasma lipid pools, cells, and tissues have different and characteristic fatty acid
compositions. These compositions are not only influenced by the availability of different fatty
acids but also by the metabolic characteristics of the particular pool, cell, or tissue. Modification
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FIGURE 8.3 General scheme of whole body handling of dietary fatty acids showing transport, functional,
and storage pools.

of fatty acid profiles has been widely reported after supplementation of the diet with fish oil cap-
sules; such supplementation results in appearance of EPA and DHA in plasma lipids, platelets,
erythrocytes (red blood cells), leukocytes (white blood cells), colonic tissue, cardiac tissue, and in
many other cell and tissue types. The incorporation of EPA and DHA from fish oil capsules partly
displaces ®-6 PUFAs, like arachidonic acid, and occurs in a dose—response fashion. For example,
studies using a range of EPA+DHA intakes from 1 to 6 g/day report near linear relationships
between EPA and DHA intake and the EPA and DHA contents of plasma phospholipids (Blonk
et al. 1990; Harris et al. 1991; Marsen et al. 1992) and of platelet phospholipids (Sanders and
Roshanai 1983). In other studies, incorporation of EPA and DHA into blood neutrophils (Healy
et al. 2000) and of EPA into plasma phospholipids and blood mononuclear cells (Rees et al. 2006)
occurred in a linear dose—response manner (Figure 8.4). In a study combining dose—response and
time—course over 12 months in older male subjects, Katan et al. (1997) reported the fatty acid
compositions of serum cholesteryl esters, erythrocytes, and adipose tissue. This study confirmed
that EPA and DHA are incorporated into circulating lipid pools and into erythrocytes when their
intakes are increased. It also demonstrated EPA and DHA incorporation into adipose tissue, a
storage pool, when their intakes are increased. However, this study also clearly showed that incor-
poration into different pools occurs at different rates and to differing extents (i.e., with different
efficiencies) and may not be related to intake in a strictly linear fashion, at least over the intakes
studied. The study of Katan et al. (1997) showed that near-maximal incorporation of EPA and
DHA into serum cholesteryl esters occurs within 30 days of beginning supplementation, whereas
maximal incorporation into erythrocytes does not occur until sometime between 56 and 182 days.
Yaqoob et al. (2000) reported the time-dependent incorporation of EPA and DHA into blood
mononuclear cells; incorporation of both fatty acids was near-maximal after 4 weeks of supple-
mentation (Figure 8.5). Upon cessation of supplementation EPA in mononuclear cells returned to
starting levels within 8 weeks, while the cells appeared to retain DHA. The same observations of
loss of EPA and selective retention of DHA upon cessation of fish oil supplementation have been
made for erthrocytes (Popp-Snijders et al. 1986) and platelets (von Schacky et al. 1985). Thus,
a significant body of literature reports that EPA and DHA are incorporated into blood, cell and
tissue lipids when their intake is increased.
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FIGURE 8.4 Dose-dependent incorporation of eicosapentaenoic acid into human plasma phospholipids.
Healthy young males supplemented their diet with differing amounts of an EPA-rich oil for a period of 12
weeks. Plasma phospholipids were isolated and their fatty acid composition determined by gas chromatogra-
phy. Data are expressed as mean change in EPA from week O (study entry). (Data from Rees, D. et al., Am. J.
Clin. Nutr., 83, 331, 2006.)
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FIGURE 8.5 Time course of changes in eicosapentaenoic and docosahexaenoic acid contents of human
blood mononuclear cells in subjects consuming fish oil. Healthy subjects supplemented their diet with fish
oil capsules providing 2.1 g EPA plus 1.1 g DHA per day for a period of 12 weeks. Blood mononuclear cell
phospholipids were isolated at 0, 4, 8, and 12 weeks and their fatty acid composition determined by gas chro-
matography. (Data from Yaqoob, P. et al., Eur. J. Clin. Invest., 30, 260, 2000.)

8.4 EXPOSURE TO VERY LONG CHAIN ®-3 FATTY ACIDS
CAN MODIFY CELL FUNCTION

Increasing the m-3 fatty acid content of cells and tissues can modify cell and tissue function through
a variety of mechanisms; these are summarized in Figure 8.6.

8.4.1 ALTERATIONS IN MEMBRANE STRUCTURE AND FUNCTION AND CELL SIGNALING PATHWAYS

Increasing the content of very long chain ®-3 PUFAs in cell membrane phospholipids can lead to
modifications of the physical properties of the membrane such as membrane order (“fluidity”’) and
of the structure of rafts (rafts are membrane microdomains with a particular lipid and fatty acid
makeup, which play a role as platforms for receptor action and for the initiation of intracellular sig-
naling pathways). In turn, changes in membrane order and in raft structure can influence the activity
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FIGURE 8.6 General scheme of the interacting mechanisms whereby very long chain ®-3 fatty acids influ-
ence cell function, physiology, and health.

of membrane proteins including receptors, transporters, ion channels, and signaling enzymes (Miles
and Calder 1998; Yaqoob 2009). As a result of these effects, intracellular signal transduction and
transcription factor activation may be altered and gene expression modified. Transcription factors
reported to be modified by the presence of very long chain ®-3 PUFAs include nuclear factor kB
(important in regulating inflammatory processes), peroxisome proliferator activated receptor-o.
(important in regulating lipid metabolism) and -y (important in regulating lipid metabolism, adipo-
cyte differentiation, insulin sensitivity, and inflammatory processes), and the sterol regulatory ele-
ment binding proteins (important in regulating lipid metabolism) (Jump 2002, 2008; Clarke 2004;
Lapillonne et al. 2004; Deckelbaum et al. 2006).

8.4.2 Errects ON LipiD MEDIATORS

Eicosanoids produced from the ®-6 PUFA arachidonic acid, including various prostaglandins,
thromboxanes, and leukotrienes, have well-established physiological roles in regulation of inflam-
mation, immunity, platelet aggregation, smooth muscle contraction, and renal function (Nicolaou
and Kafatos 2004). Eicosanoids are produced as a result of the action of cyclooxygenase and lipox-
ygenase enzymes. Despite their roles in physiology, excess or inappropriate production of eico-
sanoids is associated with disease processes. For example, cysteinyl-leukotrienes play an important
role in asthma. A range of drugs of varying specificity, for example, cyclooxygenase inhibitors, are
used clinically to suppress the production of eicosanoids from arachidonic acid. Very long chain
-3 PUFAs decrease the production of arachidonic—acid derived eicosanoids and so can impact on
the actions regulated by those mediators (Calder 2008a). The effect of -3 PUFAs on eicosanoid
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synthesis is through several actions. First, when EPA and DHA are incorporated into cell membranes
they displace arachidonic acid, thereby decreasing the availability of the substrate for production of
eicosanoids. Second, EPA is able to inhibit the activity of cyclooxygenase toward arachidonic acid.

In addition to decreasing the production of eicosanoids from arachidonic acid, EPA is a substrate
for the synthesis of alternative eicosanoids, which are typically less potent than those produced
from arachidonic acid (Wada et al. 2007; Calder 2008a). In fact, EPA-derived eicosanoids may
antagonize the action of those produced from arachidonic acid (Tull et al. 2009). Relatively recently
a new family of lipid mediators, termed resolvins, synthesized from both EPA (E-series resolvins)
and DHA (D-series resolvins) have been described. These mediators have been demonstrated in cell
culture and animal feeding studies to be potently anti-inflammatory, inflammation resolving, and
immunomodulatory (Serhan et al. 2000a,b, 2008). Protectin D1, produced from DHA, appears to
have an important role in protecting tissue, including neuronal tissue, from excessive damage in a
variety of experimental situations (Serhan et al. 2002).

8.4.3 REecerTOR-MEDIATED EFFECTS

Oh et al. (2010) reported that the G-protein coupled receptor GPR120, which is able to bind long
chain fatty acids, is highly expressed on adipocytes and on inflammatory macrophages. A GPR120
agonist, GW9508, inhibited inflammatory responsiveness of macrophages, suggesting that GPR120 is
involved in anti-inflammatory signaling. EPA and DHA promoted GPR120-mediated gene activa-
tion in cultured macrophages, and anti-inflammatory effects of DHA did not occur in GPR120
knockdown cells. Oh et al. (2010) also demonstrated that DHA-induced translocation of the glucose
transporter GLUT4 to the surface of cultured adipocytes was abolished by GPR120 knockout, sug-
gesting that GPR120 mediates some of the metabolic actions of DHA. These observations suggest
effects of very long chain w-3 PUFAs that do not involve either their incorporation into cell mem-
brane phospholipids or a modification of lipid mediator production.

8.5 INCREASING INTAKE OF VERY LONG CHAIN ®-3 FATTY ACIDS
HAS HEALTH BENEFITS

Through the mechanisms of action outlined earlier and the resulting modifications of cell and tis-
sue function, very long chain ®-3 fatty acids exert physiological actions. These are summarized in
Table 8.3 where they are linked to certain health or clinical benefits. A number of risk factors for
cardiovascular disease are modified in a beneficial way by increased intake of very long chain ®-3
fatty acids: These include blood pressure (Geleijnse et al. 2002), platelet reactivity and thrombosis
(British Nutrition Foundation 1992), plasma triacylglycerol concentrations (Harris 1996), vascular
function (Nestel et al. 2002), cardiac arrhythmias (von Schacky 2008), heart rate variability (von
Schacky 2008), and inflammation (Calder 2006). As a result, increased very long chain ®-3 fatty
acid intake is associated with a reduced risk of cardiovascular morbidity and mortality (Calder
2004). Indeed, supplementation studies with very long chain ®-3 fatty acids have demonstrated
reduced mortality (Anonymous 1999; Bucher et al. 2002; Marchioli et al. 2002; Studer et al. 2005;
Yokoyama et al. 2007). A number of other, non-cardiovascular, actions of these fatty acids have also
been documented (Table 8.3), suggesting that increased intake of these fatty acids could be of ben-
efit in protecting from or treating many conditions. For example, they have been used successfully
in theumatoid arthritis (Calder 2008b) and, in some studies, in inflammatory bowel diseases (Calder
2008c), and may be useful in other inflammatory conditions (Calder 2006). DHA has an important
structural role in the eye and brain, and its supply early in life when these tissues are developing
is known to be of vital importance in terms of optimizing visual and neurological development
(SanGiovanni et al. 2000a,b). Studies have highlighted the potential for very long chain ®-3 fatty
acids to contribute to enhanced mental development (Helland et al. 2003) and improved childhood
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TABLE 8.3

Summary of the Physiological Roles, Potential Clinical Benefits, and Disease Targets
of Very Long Chain ®-3 Fatty Acids

Physiological Role

Regulation of blood pressure
Regulation of platelet function
Regulation of blood coagulation
Regulation of plasma triacylglycerol
concentrations
Regulation of vascular function
Regulation of cardiac rhythm
Regulation of heart rate

Regulation of inflammation
Regulation of immune function
Regulation of fatty acid and
triacylglycerol metabolism
Regulation of bone turnover
Regulation of insulin sensitivity
Regulation of tumor cell growth
Regulation of visual signaling

Structural component of brain and
central nervous system

Potential Clinical Benefit

Decreased blood pressure

Decreased risk of thrombosis

Decreased risk of thrombosis

Decreased plasma triacylglycerol
concentrations

Improved vascular reactivity

Decreased risk of cardiac arrhythmias

Decreased heart rate; increased heart rate
variability

Decreased inflammation

Improved immune function

Decreased triacylglycerol synthesis and
storage

Maintained bone mass

Improved insulin sensitivity

Decreased tumor cell growth and survival

Optimized visual signaling

Optimized brain development—cognitive
and learning processes

Target

Hypertension; CVD
Thrombosis; CVD
Thrombosis; CVD
Hypertriglyceridemia; CVD

CVD
CVD
CVD

Inflammatory diseases; CVD
Compromised immunity

Weight gain; weight loss; obesity

Osteoporosis

Type-2 diabetes

Some cancers

Poor infant visual development
(especially pre-term)

Poor infant and childhood
cognitive processes and learning

Abbreviation used: CVD, cardiovascular disease.

learning and behavior (Richardson 2004) and to reduce the burden of psychiatric illnesses in adults
(Freeman et al. 20006), although these remain less certain areas of possible action that require more
scientific support. There may also be a role for very long chain w-3 PUFAs, DHA in particular, in
preventing neurodegenerative disease of ageing (Solfrizzi et al. 2010) and the production of protec-
tins, especially protectin D1 (also known as neuroprotectin D1), appears to be crucial for this effect
(Lukiw et al. 2005). The effects of very long chain m-3 PUFAs on health outcomes are likely to be
dose-dependent, but clear dose response data have not been identified in most cases.

8.6 HEALTH EFFECTS OF a-LINOLENIC ACID

The discussion so far has centered upon the fish-derived very long chain ®-3 PUFAs for which
there is much evidence for human health benefit and an increasing understanding of the multiple
mechanisms involved. The major plant ®-3 PUFA, a-linolenic acid, is an essential fatty acid and
may have human health benefits either in its own right or by acting as a precursor for synthesis of
the longer chain more unsaturated derivatives using the pathway shown in Figure 8.2. These pos-
sibilities have been reviewed in some detail elsewhere (Arterburn et al. 2006; Burdge and Calder
2006). Studies in humans using acute ingestion of stable isotopically labeled a-linolenic acid have
demonstrated some conversion to EPA and to DPA, but much more limited conversion to DHA,
although this may be greater in young adult women than in men (Burdge et al. 2002; Burdge and
Wootton 2002), possibly because of upregulation of the delta-6 desaturase by female sex hormones.
Little is known about the extent of a-linolenic acid conversion to EPA and DHA in infancy and
childhood, in the elderly or during pregnancy and lactation, times when synthesis of very long
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chain ®-3 PUFAs might be important or desirable. A number of studies have examined the effect of
chronic (i.e., weeks to months) consumption of increased amounts of o.-linolenic acid. These stud-
ies confirm that increasing o-linolenic acid intake increases the EPA (and DPA) content of plasma
lipids, platelets, leukocytes, and erythrocytes but that DHA content does not increase (Arterburn et al.
2006; Burdge and Calder 2006); clearly these findings are in agreement with the stable isotope
studies. Such studies with a-linolenic acid have demonstrated some effects on cardiovascular risk
factors and on inflammatory markers, but where these are reported they are typically weaker than
the effects achieved from increasing consumption of EPA+DHA, and may be due to the increased
appearance of EPA (Caughey et al. 1996; Zhao et al. 2004).

8.7 CONCLUSIONS

Current intakes of very long chain ®-3 fatty acids EPA and DHA are low in most individuals living
in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish
oil capsules contain these fatty acids too, with a standard 1 g capsule providing about 0.3 g of EPA
plus DHA; more concentrated forms are also available in capsules. Very long chain ®-3 fatty acids
are incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage
(adipose) pools in humans. This incorporation is dose-dependent and follows a kinetic pattern that
is characteristic for each pool. Incorporation is most rapid into blood lipids, followed by platelets
and white cells, followed by erythrocytes. At sufficient levels of incorporation into cells, EPA and
DHA influence the physical nature of cell membranes and membrane protein-mediated responses,
lipid mediator generation, cell signaling, and gene expression in many different cell types. Through
these mechanisms EPA and DHA influence cell and tissue physiology and the way cells and tissues
respond to external signals. In most cases the effects seen are compatible with improvements in
disease biomarker profiles or in health-related outcomes. An important aspect of this is the require-
ment for very long chain -3 fatty acids, especially DHA, in early growth and development of the
brain and visual system, meaning that adequate provision to the fetus and to the newborn infant is
essential. As a result of their effects on cell and tissue physiology, very long chain ®-3 fatty acids
play a role in achieving optimal health and in protection against disease. Long chain ®-3 fatty acids
not only protect against cardiovascular morbidity but also against mortality. In some situations, for
example, rheumatoid arthritis, they may be beneficial as therapeutic agents although a high intake
is required. The plant ®-3 fatty acid, o.-linolenic acid, can be converted to EPA but in humans con-
version to DHA appears to be poor. Effects of a-linolenic acid on human health-related outcomes
appear to be due to conversion to EPA.

ABBREVIATIONS

DHA  docosahexaenoic acid
DPA  docosapentaenoic acid
EPA  eicosapentaenoic acid
PUFA polyunsaturated fatty acid
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9.1 INTRODUCTION

Melanin pigments are heterogeneous biopolymers and are widely distributed in nature. They
are produced by animals, plants, and microorganisms, such as pathogenic fungi and bacteria. In
humans, melanins are present in the skin, hair, eyes, and in other locations of the body, including
the inner ear, and the substantia nigra and the locus coeruleus of the brain (Marsden 1983; Tolleson
2005). Traditionally, the pigments can be classified into brown to black eumelanins and allomela-
nins, and yellow or reddish-brown, sulfur-containing pheomelanins (Nicolaus 1968). Allomelanins
occur in the plant kingdom, e.g., in certain fungi, and in the seeds of some flowering plants, and
are formed by the oxidation of nitrogen-free diphenols, such as catechol, 1,8-dihydroxynaphtalene,
and 7y-glutaminyl-3,4-dihydroxybenzene (Swan 1974; Wheeler and Bell 1988). Eumelanins are
polymers consisting mainly of indole-type units that arise from L-tyrosine or L-DOPA (L-3,4-
dihydroxyphenylalanine) oxidation, whereas pheomelanins are derived from the oxidative polymer-
ization of cysteinyl conjugates of DOPA via benzothiazine intermediates (Prota 1992).

The common and obligatory step of both eumelanogenesis and pheomelanogenesis is tyrosinase-
catalyzed oxidation of L-tyrosine to L-dopaquinone, which can react with the thiol group of cysteine
to produce cysteinyldopa isomers, or can undergo intramolecular cyclization and further oxidation
to dopachrome. The rearrangement of dopachrome (with or without decarboxylation) leads to the
formation of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA).
The two dihydroxyindoles are then oxidized and polymerized to produce eumelanin (Prota et al.
1998; Ito 2003; Ito and Wakamatsu 2006).
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Tyrosinase (monophenol, o-diphenol: oxygen oxidoreductase, EC 1.14.18.1) is the key regulatory
enzyme involved in the biosynthesis of the melanin pigments. This enzyme catalyses the critical
rate-limiting hydroxylation of L-tyrosine to L-DOPA and the oxidation of L-DOPA to its o-qui-
none (Olivares and Solano 2009). In plants and lower organisms, the formation of dopaquinone
is the only step of melanogenesis that is enzymatically controlled, and the pathway then proceeds
spontaneously. In mammalian melanocytes, two tyrosinase-related proteins (TRP-1 and TRP-2)
have been shown to regulate melanogenesis, in addition to tyrosinase (Kuzumaki et al. 1993; del
Marmol and Beerman 1996). TRP-2, now known as dopachrome tautomerase (DCT, EC 5.3.3.12),
catalyses tautomerization of dopachrome to DHICA (Aroca et al. 1990; Tsukamoto et al. 1992).
TRP-1 can oxidize DHICA in mice (Jimenez-Cervantez et al. 1994; Kobayashi et al. 1994), but in
humans this catalytic function of TRP-1 seems to be lost (Boissy et al. 1998) and DHICA may be
further oxidized by tyrosinase (Olivares et al. 2001). It has been suggested that TRP-1 serves as a
type of chaperone necessary for the proper processing and trafficking of tyrosinase (Hearing 2005).
Melanocytes can synthesize both eumelanin and pheomelanin, and the type of melanin produced
depends on the expression and activities of the three melanogenic enzymes as well as on the avail-
ability of tyrosine and cysteine (del Marmol and Beerman 1996; Ito and Wakamatsu 2008; Simon
et al. 2009).

A major determinant of skin and hair pigmentation is the melanocortin-1 receptor (MCIR), a G
protein-coupled receptor that regulates both the quantity and the type of melanin produced (Slominski
et al. 2004; Garcia-Borron et al. 2005). MCIR function is controlled by the agonists o-melanocyte-
stimulating hormone (0:-MSH) and adrenocorticotropic hormone (ACTH), which are produced by
the enzymatic cleavage of proopiomelanocortin (POMC) in skin cells, and by the antagonist, agouti
signaling protein (ASP). Binding of o:-MSH or ACTH to MCIR on melanocytes stimulates the expres-
sion of the melanogenic cascade and eumelanin synthesis, whereas ASP can reverse those effects
and elicit the production of pheomelanin. In mice, over-expression of ASP leads to yellow coat color
(Slominski et al. 2004). Polymorphisms within the MCIR gene are largely responsible for the wide
range of skin and hair color among different ethnic groups (Garcia-Borron et al. 2005).

Neuromelanin, the dark pigment that deposits with age in the catecholaminergic neurons of the
substantia nigra (SN) and the locus coeruleus (LC) of human brain, derives from the metabolism
of catecholamines (dopamine for the SN and norepinephrine for the LC) via the oxidative pathway
(Marsden 1983). Neuromelanin synthesis appears to be driven by an excess of cytosolic catechol-
amines that are not accumulated into synaptic vesicles (Sulzer et al. 2000), but it is not clear whether
neuromelanin formation is an autoxidation process or is enzymatically controlled. Neuromelanin
is the subject of extensive study, mainly due to its postulated role in brain aging and Parkinson’s
disease (Double et al. 1999; Zecca et al. 2001).

Melanin biopolymers possess unique optical, electrical, free radical, and redox properties, and
the ability to bind metal ions and some organic compounds, including drugs and toxins. The phys-
icochemical properties of melanins determine their bioactivity, although biological functions of
melanin pigments are not fully recognized. The present chapter focuses on the photoprotective,
antioxidant, and immunomodulatory activities of melanins.

9.2 STRUCTURAL INVESTIGATION OF MELANIN BIOPOLYMERS BY Py-GC/MS

Since the structure of melanin affects strongly its properties, and hence the bioactivity, structural
studies of melanin pigments are of great importance. However, such investigations are not easy.
The biopolymers are insoluble in most solvents at a wide range of pH and exhibit large heterogene-
ity in structural features resulting both from the nature of melanin precursor(s) and the presence
of some non-melanin components. Moreover, there is no method that allows to split the polymer
into individual monomer units, which is essential for accurate qualitative or quantitative analysis.
Therefore, in contrast to other biologically important polymers, the structure of melanin pigments is
poorly characterized so far. Biosynthetic studies that were carried out in vitro using spectroscopic,
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chromatographic, and mass spectrometric techniques allowed only for the identification of some
monomeric and oligomeric intermediates formed oxidatively from a given melanin precursor at
very early stages of the pigment synthesis (Nicolaus et al. 1964; Prota et al. 1970; Swan 1974;
Allegri et al. 1990; Seraglia et al. 1993; Bertazzo et al. 1995, 1999). The connection mode and the
sequence of such structural subunits in melanin polymer, however, remain unknown. Also, very
little is known about the way, by which non-melanin components are incorporated into the poly-
mer structure.

The two different strategies are used for structural studies of melanin pigments. The first one con-
sists in the direct analysis of the pigment by the use of various, generally spectroscopic techniques,
for which the sample solution is not necessary. The valuable structural information has been acquired
using this approach. For instance, on the basis of infrared (IR) and nuclear magnetic resonance
(NMR) spectra it was possible to detect lipid, glycidic, and proteinaceous components in human
neuromelanin (Zecca et al. 1992, 2000; Aime et al. 1994; Double et al. 2000). Solid state 'H and 3C
NMR spectroscopy was also applied for the characterization of non-melanin components of neu-
romelanin formed in human brain under normal conditions and for the study of the pigment structural
changes occurring in course of Parkinson’s disease (Aime et al. 2000; Fedorow et al. 2005). Using IR
spectroscopy, the interactions between melanins and metal ions were investigated, which allowed for
the identification of the metal binding sites in the biopolymer structure (Bridelli et al. 1999; Bilinska
2001). Electron paramagnetic resonance (EPR) spectroscopy provided evidence on the presence of
stable organic free radicals in melanin structure as well. Furthermore, it was shown that melanin
pigments may be readily distinguishable on the basis of their EPR spectra. Pheomelanins, which con-
tain N-centered semiquinoneimine radicals, have a complex EPR spectrum with hyperfine structure,
whereas eumelanins are characterized by a single-line spectrum due to the presence of O-centered
indolesemiquinone radicals (Sealy et al. 1982; Dzierzg¢ga-Lecznar et al. 1997).

The second strategy used in structural analysis of melanins is based upon the degradative meth-
ods, in which structural information about given pigment is inferred from its characteristic decom-
position products formed under various conditions. In chemical degradation methods, melanins
are treated with strong oxidizing or reducing agents, and the selected degradation products are
determined by high-performance liquid chromatography with electrochemical or spectrophotomet-
ric detection. Pyrrole di- and tricarboxylic acids, obtained by permanganate or hydrogen peroxide
oxidation of melanin in acidic or alkaline medium, are regarded as specific markers of eumelanin-
type pigments. Under the same conditions, pheomelanins yield thiazole or benzothiazole carboxylic
acids. Other chemical markers of pheomelanin-type pigments, i.e., isomeric aminohydroxyphenyl-
alanines and aminohydroxyphenylethylamines, are formed by the reductive hydrolysis of the pig-
ment in hot hydroiodic acid (Di Donato and Napolitano 2003; Ito and Wakamatsu 2003; Panzella
et al. 2006; Greco et al. 2009; Ito et al. 2011). The major disadvantages of chemical degradation
methods are usually insufficient yield of the marker products and a high risk of artifacts caused
by serious alterations in the pigment framework expected to occur under drastic conditions of the
degradation procedures used. Moreover, most of the compounds regarded as chemical markers of
eumelanin and pheomelanin have rather poor structural resemblance to the parent monomer units.

In our laboratory, another degradative method is used for structural characterization and dif-
ferentiation of melanin pigments. The method utilizes pyrolysis in combination with gas chroma-
tography and mass spectrometry (Py-GC/MS). This hyphenated analytical technique is commonly
regarded as a valuable tool for compositional analysis and structural studies of many natural and
synthetic materials, which, like melanins, are insoluble heteropolymers of high molecular mass
(Dworzarnski and Meuzelaar 2000). Structural analysis of melanin by Py-GC/MS proceeds as fol-
lows. Pigment sample is introduced into a pyrolysis device (pyrolyser), where the thermal degrada-
tion of the sample in high temperature (usually above 500°C) takes place with the formation of a
mixture of fragment molecules termed pyrolysate. The volatile pyrolysis products are transferred
by a stream of an inert gas to a gas chromatograph and separated on a capillary column whose
outlet is coupled directly to an ion source of a mass spectrometer. As a result, a chromatogram
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of the pyrolysate (pyrogram) is recorded, and the pyrolysis products are identified on the basis of
their mass spectra. If the pyrolysis and GC/MS conditions are properly chosen, the pyrolysate is
dominated by the thermal degradation products that retain the characteristic structure of the parent
monomer units, from which they arose. Such products are referred to as the pyrolytic markers of the
pigment of given type. A fast transfer of the pyrolysate away from a hot pyrolysis zone directly into
GC injector port, and appropriate temperature of the sample degradation, prevents the formation
of secondary pyrolysis products, thereby discarding the misinterpretation of experimental results.
Hence, the risk of possible artifacts is very low. Other advantages of the Py-GC/MS method include
high sensitivity, specificity and speed, and a very small amount of the sample, from which struc-
tural information can be obtained. Furthermore, a single analysis may provide information about
the structure of different parts of a pigment, including its non-melanin components, and no sample
pretreatment is usually required for this purpose.

To establish the pyrolytic markers that could be applied for structural investigations of natural
melanins, it was necessary to pyrolyze standard pigments of eumelanin and pheomelanin-type,
derived oxidatively from various compounds that are thought to be the precursors of naturally
occurring pigments. The exemplary pyrograms of eumelanins synthesized in our laboratory are
shown in Figure 9.1A and B. Regardless of the eumelanin precursor used, the most characteristic
pyrolysis products were identified as pyrrole and indole, and their alkyl derivatives (Dzierzgga-
Lecznar et al. 2002). The compounds are indicative of the monomer units formed during eumelanin
synthesis by the cyclization of alanyl or ethylamine side chain of the catechol moiety of the pigment
precursor. Another pyrolysis product characteristic of eumelanin-type pigments, especially those
synthesized from catecholamines, is an intact catechol (1,2-benzenediol). As shown in Figure 9.1C,
the pyrolytic pattern of a pheomelanin-type pigment is completely different, compared with that of
any eumelanin. The pyrolysates of pheomelanins are dominated by the heterocyclic compounds that
contain a benzene ring fused to a 1,4-thiazine or 1,3-thiazole ring. The same compounds are also
substantial constituents of the pyrolysates of eumelanin/pheomelanin copolymers (Figure 9.1D),
and the yields of their formation were found to be correlated to the pigment pheomelanin contents
(Dzierzega-Lecznar et al. 2002). Benzothiazine and benzothiazole derivatives are the thermal deg-
radation products of the pigment monomers formed by the cyclization of cysteinyl side chain of
the pigment precursor during its oxidative polymerization. Since the heterocyclic ring closure by
the non-sulfur containing side chain of a pheomelanin precursor may also occur, the pyrolysate of
pure pheomelanin often contains trace amounts of pyrrole, pyridine, or indole derivatives. There
is also a group of products that are always formed during the thermal degradation of melanin pig-
ments, irrespective of their structural type. This group includes benzene, toluene, styrene, phenol,
and their alkyl derivatives (Dzierzgga-Lecznar et al. 2002). However, since their relative contents in
eumelanin pyrolysates are much more higher compared with those of pheomelanins, they are num-
bered among the eumelanin markers. The most probable source of such products is “uncyclized”
monomers, i.e., catechol-type structural units, for which side chains have not been converted into
the corresponding heterocyclic rings. When “uncyclized” units are incorporated into a pheomelanin
structure, the pigment pyrolysate contains additionally substantial amounts of sulfur-containing
low molecular weight gases, such as hydrogen sulfide, carbonyl sulfide, and methanethiol. All the
earlier discussed pyrolytic markers of melanin pigments are shown in Figure 9.2.

Py-GC/MS method has been successfully applied for the structural studies of natural melanins,
isolated from as diverse biological sources as bacteria, soil fungi, insects, bird feathers or human
hair, skin or brain tissue (Dworzanski 1983; Dworzanski and Debowski 1985; Zecca et al. 1992;
Chodurek et al. 1998; Latocha et al. 2000; Dzierz¢ga-Lecznar et al. 2004, 2006; Stgpien et al.
2009; Gomez-Marin and Sanchez 2010). It was found that the technique allows rapid and effi-
cient differentiation of melanin type and may be used as an alternative to the methods based on
chemical degradation in this respect. Figure 9.3 displays some of the pyrograms obtained in our
laboratory. Commercially available melanin isolated from ink sacs of a cuttlefish Sepia officinalis
is commonly recommended as eumelanin standard for comparative structural studies of melanin
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FIGURE 9.1 Reconstructed total ion current chromatograms of the thermal degradation products of syn-

thetic melanin pigments: (A) eumelanin from tyrosine, (B) eumelanin from dopamine, (C) pheomelanin
from 5-S-cysteinylDOPA, and (D) mixed-type melanin (eumelanin/pheomelanin copolymer from dopamine/
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pigments. Indeed, as shown in Figure 9.3A, its pyrolytic profile is typical for eumelanins with lit-
tle incorporation of “uncyclized” monomer units. On the basis of the presence of benzothiazole
and benzothiazine in the pyrolytic profile shown in Figure 9.3B, the melanin responsible for the
body color of the yellow strain of Drosophila melanogaster flies was classified as a pheomelanin-
containing pigment. The pyrogram shown in Figure 9.3C is dominated by the markers of indole-
and catechol-type eumelanin units but contains also some amounts of the derivatives with thiazole
ring. Such pyrolytic pattern indicates that the pigment (in this case isolated from the cultured human
melanocytes derived from moderately pigmented skin) is eumelanin with little incorporation of
pheomelanin-type units. Figure 9.3D displays the pyrogram of neuromelanin obtained post mortem
from the human substantia nigra. The lack of the pheomelanin markers led us to conclude that no
heterocyclic pheomelanin-type units are incorporated into the pigment structure, contrary to the
results obtained by chemical degradation. Our Py-GC/MS studies on substantia nigra neuromela-
nin provided also valuable information about non-melanin components of this unique and the most
mysterious melanin pigment. The most abundant pyrolysis product of the pigment was identified as
limonene. Accordingly, we have concluded that human neuromelanin is tightly associated with an
isoprenoid-type compound (Dzierzgga-Lecznar et al. 2004). Shortly afterward, the compound was
identified as dolichol (Fedorow et al. 2005).

The detection of eumelanin or pheomelanin markers in the pyrolysate is necessary to classify
the analyzed pigment into the corresponding structural type or to confirm the presence of a phe-
omelanin component in a mixed-type polymer. It should be noted, however, that both the kind and
the relative content of all the pyrolysis products formed is a fingerprint feature of given pigment,
and thus may be used to follow its structural changes caused by various factors (Ste¢pien et al. 1989;
Chodurek et al. 2003; Dzierzgga-Lecznar et al. 2003).

Analytical possibilities of Py-GC/MS method with regard to non-melanin constituents of the
pigment can be enhanced by conducting pyrolysis in the presence of a derivatizing agent. Such
an approach allows determination of more polar and thus thermally instable breakdown prod-
ucts that cannot be detected under conventional conditions. In our experiments, we often use a
methanolic solution of tetramethylammonium hydroxide (TMAH) for this purpose. The products
generated in the presence of TMAH are a result of various chemical reactions taking place in the
pyrolyser, such as pyrolytic bond cleavage, thermally assisted base hydrolysis, and methylation
of functional groups (Stepien et al. 2009). Pyrolysis in the presence of TMAH (often termed as
thermochemolysis or thermally assisted hydrolysis and methylation) allowed us to confirm the
presence of a proteinaceous component in the substantia nigra neuromelanin and provide evi-
dence that at least part of the lipid component is chemically bound to the pigment macromolecule
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FIGURE 9.3 Reconstructed total ion current chromatograms of the thermal degradation products of natural
melanin pigments isolated from (A) ink sacs of Sepia officinalis, (B) yellow strain of Drosophila melanogaster,
(C) cultured human melanocytes from moderately pigmented skin, and (D) human brain (substantia nigra).
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(Dzierzega-Lecznar et al. 2004, 2006). Simultaneously, major constituents of the latter com-
ponent were identified as saturated and monounsaturated fatty acids with straight chains com-
posed of 14—18 carbon atoms. TMAH thermochemolysis was also found to be useful to assess the
purity of melanin pigment isolated from human melanoma for further in vitro studies (Chodurek
et al. 2008). Adsorption of various tissue impurities on melanin surface is a serious problem that
often arises during the pigment isolation from biological material. Furthermore, rich and com-
plex sample matrix may restrict the sensitivity of Py-GC/MS method, especially with respect to
the pheomelanin markers. This may lead to the false negative conclusion regarding the presence of
a pheomelanin component in a mixed-type pigment with little incorporation of pheomelanin-type
units. Very recently, we have developed a method that allows us to overcome this problem and, on
the other hand, may be used for accurate quantitation of a pheomelanin content in any natural mela-
nin pigment. The method is based on the analysis of the pyrolytic markers of pheomelanin units
with the use of a triple quadrupole tandem mass spectrometer operating in a multiple reaction moni-
toring (MRM) mode, which offers an extremely specific and sensitive identification of the target
molecule by simultaneous measuring of its characteristic precursor and product ion pair(s) (MRM
transitions). Using that approach we were able to detect and quantitate the pheomelanin component,
which accounted for 0.05% of the total pigment units (Dzierzgga-Lecznar et al. 2012).

9.3 PHOTOPROTECTIVE AND ANTIOXIDANT FUNCTIONS OF MELANINS

Excessive exposure to solar ultraviolet radiation is an essential etiological factor for skin cancer.
UV radiation, directly or indirectly (through the generation of reactive oxygen species, ROS) causes
damage to DNA, proteins, and lipids, and this effect eventually induces gene mutation, inflamma-
tion, and immunosuppression (Halliday 2005; Ibrahim and Brown 2008). Cutaneous pigmenta-
tion afforded by melanocytes is the main photoprotective mechanism in human skin. Epidermal
melanocytes, localized at the basal layer of the epidermis, synthesize melanin within melano-
somes and transfer melanized melanosomes to adjacent keratinocytes via their elongated dendrites.
Melanosomes accumulate in the perinuclear area of keratinocytes as supranuclear “caps” that pro-
tect nuclear DNA from impinging UV rays (Brenner and Hearing 2008). It is generally accepted
that melanosomal melanin acts as a natural sunscreen that, by absorbing and scattering solar radia-
tion, limits its penetration through the epidermis (Ortonne 2002; Kadekaro et al. 2003). The energy
of the absorbed photons is rapidly and efficiently converted into heat within the melanin polymer,
and as a result, the risk of potentially damaging photochemical reactions is significantly reduced
(Meredith and Sarna 2006). Antioxidant properties of melanins may also play an important role in
photoprotection. /n vitro melanins have the ability to quench excited states of photosensitizing dye
molecules and singlet oxygen and scavenge reactive radicals (Meredith and Sarna 2006). They react
with the hydroxyl radical and superoxide radical anion and can compete effectively with superoxide
dismutase in scavenging of O,"~ (Geremia et al. 1984; Korytowski et al. 1986; Sarna et al. 1986).

Epidemiological and experimental data strongly support the photoprotective role of melanin.
Dark skin, which contains numerous large, heavily melanized melanosomes, enriched in eumelanin
and distributed individually in keratinocytes, is better protected against UV-induced damage than
fair skin, in which smaller, poorly melanized melanosomes tend to form cluster (Hennessy et al.
2005; Brenner and Hearing 2008). Indeed, a distinct correlation between constitutive pigmenta-
tion of the skin and the resistance to UV-induced erythema and sunburn is usually observed (Rees
2004), and individuals with high melanin content are less susceptible to skin photoaging (Wlaschek
et al. 2001). Furthermore, the incidence of sun-induced skin cancers, including melanoma, is higher
in individuals with fair skin and poor ability to tan than in individuals who have dark skin and a
good tanning ability (Armstrong and Kricker 2001; Bishop and Bishop 2005).

Several studies have examined a correlation between melanin content and the level of DNA
damage after exposure to UV radiation. Comparison of DNA photoproducts yield in UVB-
irradiated human melanocytes with a high and a low melanin content revealed that DNA from
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lightly pigmented melanocytes contained significantly higher numbers of cyclobutane pyrimidine
dimers and 6-4 photoproducts than did DNA from heavily pigmented melanocytes (Barker et al.
1995; Smit et al. 2001). Furthermore, increasing melanin content in cultured melanocytes by raising
the concentration of tyrosine in the culture medium reduced the formation of DNA photoproduct
in response to UV (Smit et al. 2001). Exposure of cultures of melanocytes derived from different
skin types resulted in the induction of the highest levels of DNA photoproducts in melanocytes with
the least eumelanin content (Hauser et al. 2006). Similarly, an inverse correlation between melanin
content and the extent of UVA/UVB-induced DNA damage was demonstrated in the epidermis of
individuals with diverse constitutive skin pigmentation (Tadokoro et al. 2003; Del Bino et al. 2006;
Yamaguchi et al. 2006). In addition, it was found that pigmentation induced by repeated UV irradia-
tion protected human skin against subsequent DNA damage following UV exposure (Yamaguchi
et al. 2008). In cultured melanocytes, melanin was also shown to offer protection against UVA-
induced membrane damage (Kwam and Dahle 2003).

The fundamental role of melanin in the protection against harmful effects of solar radiation is not
limited to the skin. In the human eye melanin is found in uveal melanocytes located in the choroid and
in the stroma of the iris and cilliary body, and in the pigment epithelial cells, especially in the retinal
pigment epithelium (RPE). Melanin in RPE is mainly eumelanin, whereas in uveal melanocytes phe-
omelanin is often present in addition to eumelanin (Prota et al. 1998; Liu et al. 2005a). In melanocytes
from eyes with dark-colored irides, the amount of melanin and the ratio of eumelanin to pheomelanin
is greater than that from eyes with light-colored irides (Wielgus and Sarna 2005; Wakamatsu et al.
2008). It is believed that iridal melanin protects the ocular cells and tissues from deleterious effect
of both UV radiation and visible light acting mainly as a photoscreen, whereas melanin located in
the posterior segment of the eye acts as an antioxidant (Hu et al. 2008). The abilities of human RPE
melanin and choroidal melanin to scavenge ROS and protect the retina from oxidative damage were
documented in a variety of model systems (Hu et al. 2002; Peters et al. 2006; Wang et al. 2006).

Melanin seems to protect the eye against several ocular diseases that can cause blindness, includ-
ing uveal melanoma and age-related macular degeneration (AMD). Epidemiologic data suggest that
the light-colored eye is at higher risk for the occurrence of uveal melanoma (Hu et al. 2005), and
meta-analysis (based on 1732 cases) demonstrated that a blue or gray iris is a statistically significant
risk factor for the development of uveal melanoma (Weis et al. 2006). Several studies have also
revealed an association between light-colored irides and the occurrence or progress of AMD, sug-
gesting that melanin may be protective against AMD development (Friedman et al. 1999; Mitchell
et al. 2002; Nicolas et al. 2003).

Melanins may play an important role in the process of lipid peroxidation in biological membranes.
It was observed that RPE of pigmented animals was much more resistant to lipid photooxidation
than that of albino animals. This finding was attributed to the presence of melanin-containing mela-
nosomes in the pigmented tissue, because the activity of antioxidants such as superoxide dismutase,
glutathione peroxidase, and ¢i-tocopherol in the albinos was not lower than that in the pigmented
RPE (Sakina et al. 1985). The inhibition action of isolated eye melanosomes on lipid photooxidation
was also demonstrated (Ostrovsky et al. 1987). Kvam and Dahle (2003) found an apparent protec-
tion from UVA-induced lipid peroxidation and membrane damage in epidermal melanocytes with
high melanin content.

Porgbska-Budny et al. (1992) examined the effects of synthetic eumelanins derived from various
precursors on cardiolipin peroxidation in UV-irradiated liposome membranes and found that the
extent of inhibition depends on the type and concentration of melanin polymers. The study dem-
onstrated that the contribution of optical screening effects of melanins to inhibit lipoperoxidation
is not higher than 15% for the most active melanin, and that there is a simple correlation between
scavenging of superoxide anion radical by melanins and their ability to inhibit cardiolipin peroxida-
tion (Porgbska-Budny et al. 1992).

Melanin polymers are thought to be redox systems and electron transfer agents, which are able to
interact quite efficiently with oxidizing and reducing radicals, including superoxide anion radical.
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The interaction of melanin with such radicals can be explained by the o-hydroquinone and o-quinone
nature of the pigment subunits, which can act as electron donors and acceptors, respectively
(Meredith and Sarna 2006). Consistently, reactions of superoxide anion radical with melanins may
involve its oxidation to molecular oxygen or its reduction to hydrogen peroxide, and the oxidation/
reduction ratio depends on the type of melanin (Korytowski et al. 1986). Induction of transient free
radicals in melanins during illumination with UV light seems to be especially important in photo-
protection. Photo-induced free radicals of melanin have high reactivity and may effectively partici-
pate in various redox reactions, in particular in the reduction of oxygen. On the basis of the effect
of catalase and superoxide dismutase, it was proposed that photo-induced radicals of melanin were
involved in reduction of oxygen to hydrogen peroxide via a superoxide intermediate (Sarna 1992).
The antioxidant efficiency of melanins in lipid photooxidation appears to be related to the levels of
intrinsic and photo-induced free radical centers in the melanin polymer, as well as to accessibility
of these centers for active species formed during irradiation of lipids (Stgpien et al. 1992). It was
shown that melanin—copper complexes inhibited UV-induced lecithin peroxidation less effectively
than copper-free melanins derived from the same precursors (Stgpien et al. 1992).

The ability of melanin to bind metal ions is one of the most characteristic features of the pigment.
It has been found that melanins, both in vivo and in vitro, can accumulate substantial amounts of
various metals, including redox-active metal ions (Larson and Tjalve 1978; Fogarty and Tobin 1996;
Hong and Simon 2005; Liu et al. 2005b). Neuromelanin localized in the pigmented neurons of the
substantia nigra has particularly strong chelating ability for iron and is believed to protect neurons
against iron-induced oxidative stress. High and low affinity binding sites for iron have been identi-
fied on neuromelanin. The former sites can sequester redox active iron, thereby preventing the for-
mation of hydroxyl radicals. In the presence of high iron levels, neuromelanin accumulates iron in
low affinity binding sites. Under physiological conditions, the pigment appears to be only partially
saturated with iron (Zecca et al. 2002; Double et al. 2003; Zucca et al. 2004, 2006).

Several studies indicate that natural neuromelanin and its synthetic model, dopamine-melanin,
may affect the process of lipid peroxidation. DA-melanin has been found to potentiate lipid per-
oxidation in rat cerebral cortex homogenates after addition of iron (Ben-Shachar et al. 1991). On
the other hand, DA-melanin and neuromelanin isolated from human substantia nigra have been
shown to inhibit Fe(II)—or Fe(II)/ascorbate—initiated lipid peroxidation in lecithin and cardiolipin
liposomes, and in methyl linoleate aqueous dispersions (Porgbska-Budny et al. 1992; Stepien and
Wilczok 1994; Korytowski et al. 1995). Furthermore, it was demonstrated that pure pheomelanin
(CysDA-melanin) and mixed type melanin (DA/CysDA-melanin) significantly suppressed oxidation
of linoleic acid and liposomal lecithin induced by Fe(II)/ascorbate, although the inhibitory effect of
CysDA-melanin was lower than that of DA/CysDA-melanin and DA-melanin (Wilczok et al. 1999).

Several mechanisms have been proposed to explain antioxidative activity of melanins, includ-
ing scavenging ROS and inhibition of iron-catalyzed free radical decomposition of hydrogen
peroxide and lipid hydroperoxides as a result of sequestration of redox-active iron ions by the pig-
ment (Por¢bska-Budny et al. 1992; Korytowski et al. 1995; Zargba et al. 1995). We have found
that DA-melanin is capable of reducing linoleic acid hydroperoxide to its more stable hydroxyl
derivative, both in the absence and in the presence of ferrous ions (Stegpien et al. 1998). The ability
of DA/CysDA-melanin and CysDA-melanin to reduce the fatty acid hydroperoxide to the corre-
sponding alcohol was also documented (Wilczok et al. 1999). The reductive inactivation of lipid
hydroperoxides is known to prevent hydroperoxide-dependent secondary lipid peroxidation. Our
results suggest that melanins can act as chain-breaking antioxidants. It has also been reported that
DA-melanin is capable of suppressing the yield of hydroxyl radicals generated via Fenton reaction,
but after saturation with ferric ions it promotes the formation of hydroxyl radicals by redox activation
of the ions (Zargba et al. 1995). It seems that the amount of iron bound to melanin may determine
whether the pigment acts as an antioxidant blocking redox active metal ions or whether it promotes
the formation of cytotoxic radicals in the presence of excess iron. Similar mechanism has been proposed
to explain protective or cytotoxic activity of human neuromelanin. Saturation of iron-chelating sites
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of neuromelanin may generate oxidative stress inducing a cascade of events ultimately leading to
neuronal death (Zucca et al. 2004, 2006).

Melanin pigments are also able to interact with reactive nitrogen species (RNS). Wang and
Casadevall (1994) reported that melanized Cryptococcus neoformans cells exposed to sodium
nitrite in acidic media (in which nitrite generates nitrogen dioxide radical and other RNS) show
significantly higher survival than non-melanized cells, suggesting that melanin could protect cells
against nitrogen-derived oxidants. Reszka et al. (1998) demonstrated generation of large amounts of
melanin radicals in synthetic DOPA-melanin by lactoperoxidase (LPO)/hydrogen peroxide/nitrite
system and proposed the mechanism involving oxidation of nitrite by LPO/H,0, to nitrogen dioxide
radical, which reacts with melanin and oxidizes its hydroquinone groups to semiquinones. At the
same time ‘NO, undergoes reduction back to nitrite. This process appears to be remarkably efficient,
indicating a high ‘NO, radical scavenging capacity of the melanin (Reszka et al. 1998). Interactions
of melanins with *"NO, were confirmed by pulse radiolysis method (Rézanowska et al. 1999). Our
study has shown the ability of melanins to interact with peroxynitrite, a powerful oxidant and nitrat-
ing agent, which is formed by the nearly diffusion-limited reaction between nitric oxide and super-
oxide radical anion. We have found that DA-melanin markedly inhibited peroxynitrite-mediated
nitration of free tyrosine, oxidative loss of tryptophan residues in bovine serum albumin and Ca?*-
ATPase inactivation. In the presence of bicarbonate, this inhibitory effect was lower for nitration
and insignificant for oxidative protein modifications. These results suggest that DA-melanin can
protect against nitrating and oxidizing action of peroxynitrite but is a worse protector against the
peroxynitrite-CO, adduct (Stgpien et al. 2000b). CysDA-melanin and DA/CysDA copolymers also
significantly reduced the formation of 3-nitrotyrosine, and this inhibitory effect depends on the type
and concentration of melanin polymer. It was found that incorporation of CysDA-derived units into
melanin attenuated its protective effect on tyrosine nitration induced by peroxynitrite. In the pres-
ence of bicarbonate, the melanins also inhibited 3-nitrotyrosine formation in concentration-depen-
dent manner, although the extent of inhibition was lower than that in the absence of bicarbonate.
DA-melanin and CysDA-melanin was shown to inhibit peroxynitrite-induced linoleic acid oxida-
tion, both in the absence and in the presence of bicarbonate (Stgpien et al. 2000a). As peroxynitrite
is proposed to be a mediator of neurotoxic processes associated with Parkinson’s disease, a protec-
tive effect of neuromelanin against peroxynitrite may be of physiological importance.

9.4 RADIOPROTECTIVE PROPERTIES OF MELANINS

The observations of the resistance of the melanized fungi to gamma radiation in the highly radio-
active environment inside the damaged nuclear reactor in Chernobyl (Mironenko et al. 2000) and
cooling pool water in nuclear reactors (Mal’tsev et al. 1996) have drawn attention to potential radio-
protective properties of melanin pigments. Dadachova et al. (2007) have found that ionizing radia-
tion changes electron-transfer properties of melanin and enhances the growth of melanized fungi,
indicating the capacity of melanin to transduce the energy of ionizing radiation in living cells.
Interestingly, the increase of melanin ability to transfer electrons was independent of the energy of
the incident photons. It has been shown that radioprotective efficacy of melanins depends on their
chemical composition, stable free radical content, and a spherical spatial arrangement (Dadachova
et al. 2008; Schweitzer et al. 2009). It has been suggested that the mechanism of the radioprotective
action of melanin involves the physical interaction between the pigment and the recoil electrons
generated by Compton scattering of incident photons. Controlled dissipation of high-energy recoil
electrons by melanin prevents secondary ionizations and the generation of damaging free radical
species (Schweitzer et al. 2009).

Recently, it has been postulated that internally administered melanin could protect humans
against ionization radiation (Howell et al. 2008). Schweitzer et al. (2010) described the use of mela-
nin for the protection of bone marrow during external beam radiation therapy or radioimmuno-
therapy of cancer. The silica nanoparticles coated with DOPA- and/or 5-S-cysteinyl-DOPA-melanin
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injected intravenously to melanoma tumor-bearing nude mice reduced the susceptibility of treated
animals to the myelotoxic effects of therapeutic radiation. The study has shown that intravenously
administered nanoparticles can be used as carriers for delivery of melanin into the bone marrow,
where they would protect hematopoietic cells against ionizing radiation and would permit adminis-
tration of significantly higher and efficient doses of radiation (Schweitzer et al. 2010).

9.5 IMMUNOMODULATORY ACTIVITY OF MELANINS

9.5.1 MICROBIAL MELANINS

Certain human pathogenic fungi and bacteria are able to produce melanin pigments, and a large
body of evidence indicates a role for melanization in microbial virulence (reviewed by Jacobson
2000; Langfelder et al. 2003; Nosanchuk and Casadevall 2003). The contribution of melanin to
virulence has been most extensively studied for C. neoformans, a yeast-like fungus that often
causes opportunistic infections in immunocompromised individuals. C. neoformans expresses lac-
case (CNLAC1) (Williamson 1994), which can catalyze melanin synthesis from exogenous sub-
strates, such as L-DOPA, catecholamines or homogentisic acid in vitro (Wang and Casadevall 1996;
Garcia-Rivera et al. 2005; Frases et al. 2007). Melanization of C. neoformans during infection in
rodents and in human brain tissue has been demonstrated (Nosanchuk et al. 1999, 2000; Rosas et al.
2000). In C. neoformans, like in other pathogenic fungi, melanin is deposited in the outer layer of
the cell wall (Wang and Casadevall 1996). Analysis of the microstructure of cell wall-associated
melanin revealed that the pigment is composed of two to five layers of melanin particles arranged
in a concentric manner (Eisenman et al. 2005). Such a localization and arrangement of melanin
granules forms a physical barrier, which protects the fungal cell against a variety of lethal insults,
including oxidative injury. Indeed, melanized cryptococcal cells were shown to be more resistant to
killing by oxidants than non-melanized cells (Nosanchuk and Casadevall 2003). Melanin-deficient
mutant strains of C. neoformans are less invasive and survive poorly in the spleen, liver, or brain of
infected animals, compared to pigmented wild-type strains (Kwon-Chung et al. 1982; Kwon-Chung
and Rodes 1986; Salas et al. 1996). Melanization protects cryptococcal cells against killing by mac-
rophages in vitro and impedes macrophage phagocytosis of encapsulated C. neoformans in vitro
and in a murine lung infection model (Wang et al. 1995; Mednick et al. 2005). In addition to reactive
oxygen species, phagocytic cells can produce antimicrobial peptides, and melanized C. neoformans
cells were shown to be less susceptible to the toxic effects of neutrophil defensin and other cationic
antimicrobial peptides compared to non-melanized cells (Doering et al. 1999). Melanization of
C. neoformans cells also reduces their susceptibilities to amphotericin B and caspofungin (van
Duin et al. 2002; Ikeda et al. 2003). It has been suggested that the cell wall melanin binds these anti-
fungal drugs, thereby preventing them from reaching their target sites (Ikeda et al. 2003; Nosanchuk
and Casadevall 2006).

Further evidence for the contribution of melanin pigments to virulence has been provided by
studies of the human fungal pathogens Aspergillus fumigatus and Exophiala (Wangiella) derma-
titidis. A. fumigatus synthesizes melanin from 1,8-dihydroxynaphtalene via the polyketide pathway
during its conidial stage of growth (Langfelder et al. 2003). Conidia from an albino mutant strain
of A. fumigatus were found to be more susceptible to killing by oxidants and by human monocytes
in vitro and less lethal in a murine infection than conidia from melanized strains (Jahn et al. 1997).
Moreover, targeted mutation of the A. fumigatus albl gene, encoding a polyketide synthase, results
in a non-pigmented strain with reduced virulence to mice compared to strains with intact expression
of the enzyme (Tsai et al. 1998). Elimination of melanin production by E. dermatitidis was associ-
ated with diminished ability to produce invasive hyphal forms, enhanced susceptibility to neutro-
phil killing, and reduced virulence in mouse models of infection (Dixon et al. 1992; Schnitzler et al.
1999; Feng et al. 2001). Increased resistance to phagocytosis has been observed for the melanized
fungal pathogens Paracoccidioides brasilliensis (da Silva et al. 2006) and Sporothrix schenckii
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(Romero-Martinez et al. 2000) and the melanotic bacteria Burkholderia cepacia (Saini et al. 1999)
and Proteus mirabilis (Agodi et al. 1996). Melanin produced by an epidemic strain of B. cepacia has
the capacity to scavenge superoxide anion produced by monocytes during oxygen burst (Zughaier
et al. 1999). B. cepacia is able not only to survive phagocytosis, but also to proliferate within the
phagocytes (alveolar macrophages) (Saini et al. 1999).

The data presented above show that melanins contribute to virulence by protecting microbial
cells against host defense mechanisms. However, there is also evidence that microbial melanins
have immunomodulatory properties and can affect inflammatory and immune responses to infec-
tion. Intracerebral infection of mice with an albino strain of C. neoformans resulted in minimal
tissue damage and triggered production of tumor necrosis factor alpha (TNF-0) and interleukin
(IL)-12 and IL-1P, whereas a revertant melanotic strain caused massive CNS tissue damage and
inhibited the cytokine response (Barluzzi et al. 2000). Melanin production by C. neoformans
has been found to be an important determinant of the pathogen ability to induce a pulmonary
inflammatory response in mice (Huffnagle et al. 1995; Mednick et al. 2005). Compared to a non-
melanized strain of C. neoformans, infection with melanized cells resulted in higher levels of IL-4
and monocyte chemoattractant protein-1 and increased the numbers of infiltrating leukocytes early
after infection (Mednick et al. 2005). In vitro studies have shown that melanin particles (“ghosts™)
isolated from C. neoformans cells and A. niger conidia are able to activate the complement cascade
via the alternative pathway. Immunofluorescence analysis of lungs from mice injected intratrache-
ally with C. neoformans-derived melanin demonstrated deposition of complement C3 fragments
onto melanin ghosts, indicating that melanin can activate the complement system in vivo (Rosas
et al. 2002). The finding suggests a potential mechanism by which melanin could induce an inflam-
matory response.

Fungal melanins have been shown to be immunogenic. Mice immunized with melanin from
C. neoformans cells generate specific anti-melanin antibodies that can inhibit fungal growth
(Nosanchuk et al. 1998; Rosas et al. 2001). It was also demonstrated that sera from patients with
chromoblastomycosis reacted with melanin from the fungus Fonsecaea pedrosoi, indicating that
anti-melanin antibodies are produced during human infections (Alviano et al. 2004). It has been
postulated that fungal melanins belong to the T cell-independent antigens, which can induce an
immunological response by binding directly to the immunoglobulin-like receptors on the surface of
B lymphocytes (Nosanchuk et al. 1998).

9.5.2 HuUMAN MELANINS

A large body of evidence suggests that human epidermal melanocytes are an integral part of the
skin immune system and can be considered immunocompetent cells. These melanin-producing
cells express major histocompatibility complex class II molecules and adhesion molecules, such as
vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecules (ICAM-1 and
CD40) (Smit et al. 1993; Lu et al. 2002). Melanocytes can phagocytize microorganisms (Le Poole
et al. 1993b) and may be capable of antigen processing and presentation (Le Poole et al. 1993a).
In addition, they constitutively produce several cytokines, including the proinflammatory interleu-
kins IL-1 and IL-6 (Mattei et al. 1994; Swope et al. 1994). The melanin pigment itself can act as
a physical barrier against microorganisms (Mackintosh 2001), and it can also bind and neutralize
bacterial-derived toxins, including the botulinum A (Ishikawa et al. 2000). Furthermore, reactive
quinone intermediates and hydrogen peroxide generated during melanin synthesis exert strong anti-
microbial activity (Plonka et al. 2009).

Recently, human melanocytes have been shown to express functional toll-like receptors (TLRs),
key components of the innate immune response against invading microbial pathogenes (Ahn et al.
2008b; Yu et al. 2009; Jin and Kang 2010). TLRs recognize constituents of microbial cell walls
or pathogen-specific nucleic acids, and activate intracellular signaling cascades leading to the
induction of inflammatory cytokines and chemokines. In addition to the role in the innate immune
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response, TLRs are known to link the innate and adaptive immune systems (Doyle and O’Neill 2006;
Hari et al. 2010). In melanocytes, TLRs 2—4, 7, and 9 respond to their ligands by activating NF-xB
(nuclear factor kappa light chain enhancer of activated B cells) and/or p38 MAPK (mitogen-
activated protein kinase) signaling pathway (Ahn et al. 2008a,b; Yu et al. 2009).

Melanocytes could also act as regulators of the skin immune response by producing and releasing
several immunosuppressive molecules, including POMC-derived ACTH and o-MSH (Slominski
et al. 2000), cortisol, corticosterone, and other steroids (Slominski et al. 1999, 2005). In particu-
lar, .-MSH has a powerful antiinflammatory potential and affects various pathways implicated in
the regulation of inflammation (Brzoska et al. 2008). Furthermore, intermediates of melanogen-
esis, especially L-DOPA and/or products of its oxidation, can act as potent immunosuppressors.
It has been demonstrated that L-DOPA inhibits lymphocyte proliferation and abolishes production
of proinflammatory cytokines by activated lymphocytes (Slominski and Goodman-Snitkoff 1992;
Slominski et al. 2009).

Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, is a known
ligand for TRL4 and elicits a variety of inflammatory responses (Hari et al. 2010). /n vitro studies
have shown that stimulation of epidermal melanocytes with LPS enhances the expression of IL-6,
IL-8, and several chemokines (CCL2, CCL3, and CCLS5) (Yu et al. 2009) and induces the release
of IL-1PB and TNF-o from the cells (Tam and Stepier 2011). It was also found that cultured mela-
nocytes are able to express inducible nitric oxide synthase (iNOS) and produce nitric oxide (NO)
in response to proinflammatory cytokines and/or LPS (Rocha and Guillo 2001; Fecker et al. 2002).
NO is thought to be an important mediator of inflammatory and immune responses in human skin
(Bruch-Gerharz et al. 1998). These data suggest that NO, inflammatory cytokines, and chemokines
released by melanocytes could affect melanocytes themselves or/and other cells of the epidermis,
contributing to a local immune response.

A role of melanin in the induction of inflammatory mediators by epidermal melanocytes has not
been established yet. We have compared IL-8 and NO production in LPS-stimulated melanocytes
with different melanin contents (Stgpien and Tam 2009; Tam and Stgpieri 2010). Normal human epi-
dermal melanocytes, derived from lightly (HEMn-LP) and darkly pigmented (HEMn-DP) neonatal
foreskin, were used in the study. It was found that HEMn-DP released the larger amount of IL-8
than HEMn-LP upon stimulation with LPS (Figure 9.4). In contrast, lightly pigmented melanocytes
produced more NO than their heavily pigmented counterparts (Figure 9.5). Moreover, darkly pig-
mented melanocytes did not respond to low concentrations of LPS. The results suggest immuno-
modulatory properties of melanin in epidermal melanocytes.
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FIGURE 9.4 Effect of LPS on IL-8 secretion by human melanocytes. Human lightly (LP) and darkly (DP)
pigmented epidermal melanocytes were incubated for 48 h with LPS. The cytokine secretion levels were
assayed in the supernatants by ELISA. Data represent mean values + SD. *P < 0.05 LP vs. DP.
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FIGURE 9.5 Induction of nitric oxide synthase (NOS) activity in human melanocytes. Human lightly (LP)
and darkly (DP) pigmented epidermal melanocytes were incubated for 24 h with LPS. The intracellular formation
of thiazolofluorescein, an indicator of NOS activity, was measured fluorimetrically (A,, = 485 nm, A, = 535 nm).
Data represent mean values = SD. *P < 0.05 LP vs. DP.

Recent studies have demonstrated that LPS increases melanin synthesis in human melanocytes
and induces pigmentation of cultured skin (Ahn et al. 2008a; Jin and Kang 2010). NO and other
mediators of inflammation, such as histamine and eicosanoids, have also been shown to stimulate
melanogenesis (Romero-Graillet et al. 1997; Sasaki et al. 2000; Slominski et al. 2004). Furthermore,
postinflammatory hyperpigmentation of the skin is frequently observed in clinical practice (Pandya
and Guevara 2000; Brajac et al. 2009). These data indicate that epidermal melanocytes can modu-
late their pigmentation in response to inflammatory conditions. As intermediates of melanogenesis
are able to inhibit activity of immune cells (Slominski and Goodman-Snitkoff, 1992; Slominski
et al. 2009), the process of melanogenesis could have immunomodulatory functions. Interestingly,
inhibition of melanogenesis has been proposed as an adjuvant strategy in the treatment of melanotic
melanomas (Slominski et al. 1998, 2009).

Recently, a proinflammatory role for human neuromelanin has been proposed. The study by
Wilms et al. (2003) demonstrated that neuromelanin, isolated from the human substantia nigra,
was able to activate rat microglia in vitro with the subsequent release of NO and the proinflamma-
tory cytokines IL-6 and TNF-a. The process involved NF-xB and p38 MAPK activation by neu-
romelanin. Further studies have shown that neuromelanin particles are phagocytized and degraded
by microglia in vitro and induce microglial activation and ensuing production of reactive oxygen
species, such as superoxide anion and hydrogen peroxide, in addition to proinflammatory factors
(Zhang et al. 2011). The ability of extracellular neuromelanin to activate microglia has been con-
firmed in vivo. Human neuromelanin injected into rat substantia nigra induced an acute and strong
inflammatory microglial activation and degeneration of dopaminergic neurons (Zecca et al. 2008;
Zhang et al. 2011). It has been suggested that chronic activation of microglia in the human substan-
tia nigra by extracellular neuromelanin released from degenerated dopaminergic neurons plays an
important role in the progression of Parkinson’s disease (Wilms et al. 2003; Zecca et al. 2006, 2008;
Zhang et al. 2011). Insoluble extraneuronal neuromelanin undergoes a slow degradation process,
and thus can exist in the extracellular space of Parkinsonian brain in large amounts and for long
periods. These findings may be highly relevant to the development of novel therapeutic strategies in
Parkinson’s disease.

Recent data suggest that extracellular neuromelanin not only causes local inflammation, but may
be the initial trigger for an adaptive autoimmune response via activation of dendritic cells. It has
been shown that murine dendritic cells treated with neuromelanin from human subjects recognized
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and effectively phagocytized the pigment. Neuromelanin-activated dendritic cells were able to
secrete the proinflammatory cytokines (IL-6 and TNF-o) and trigger T cell proliferation in a mixed
lymphocyte reaction, showing that dendritic cell activation was functional to induce a primary
T cell response (Oberlidnder et al. 2011).

9.5.3 SYNTHETIC MELANINS

So far, reports on theimmunomodulatory properties of synthetic melanins are scarce. Mohagheghpour
et al. (2000) examined the cytokine regulatory activity of synthetic melanins produced either by
autooxidation of L-DOPA or by tyrosinase-catalyzed oxidation of the dipeptide glycyl-L-tyrosine.
They found that both melanins effectively and reversibly suppressed TNF production by LPS-
stimulated human peripheral blood monocytes. In addition to TNF, synthetic DOPA-melanin inhib-
ited the release of IL-1pB, IL-6, and IL-10 from activated monocytes. The melanin was also able to
suppress IL-6 production by IL-l1c-stimulated human lung fibroblasts and umbilical vein endo-
thelial cells. In contrast, GM-CSF (granulocyte-macrophage colony-stimulating factor) production
by LPS-stimulated monocytes was enhanced by DOPA-melanin treatment (Mohagheghpour et al.
2000). The complementary in vivo experiments showed that LPS-stimulated increase in the release
of TNF-o was reduced when test animals (BALB/c mice) were injected concomitantly with LPS
and DOPA-melanin (Mohagheghpour 2001).

It was reported that synthetic soluble melanins derived from L-tyrosine, L-DOPA, or catechol-
amines inhibited the replication of human immunodeficiency virus type 1 in human lymphoblastoid
cell lines and blocked syncytium formation and cytopathic effects of the virus in vitro (Montefiori
et al. 1990; Montefiori and Zhou 1991; Sidibe et al. 1996).

Despite the limited data from in vitro and in vivo studies, the synthetic melanins have been pos-
tulated to be used in the treatment and prevention of diseases that are associated with uncontrolled
cytokine production, in particular TNF-o., IL-1, and IL-6 (Berliner et al. 1998; Mohagheghpour
et al. 2000; Mohagheghpour 2001). It is predicted that the administration of synthetic melanin
in an amount sufficient to modulate the immune response might provide a therapeutic benefit to
the patients with rheumatoid arthritis, atherosclerosis, wasting syndrome associated with acquired
immunodeficiency syndrome (AIDS), Parkinson’s disease, psoriasis, and cancer (e.g., myeloma)
(Garger and Neidleman 2001; Barcia et al. 2003; Danese et al. 2006).

9.5.4 PLANT MELANINS

Many botanicals traditionally used to enhance immune functions in humans have been reported to
contain melanin or “melanin-like” material. There is some evidence that melanin may be one of
the factors responsible for the immunomodulating properties of various plant products. The immu-
nological activity has been reported for the melanin pigments isolated from grape pits (Avramidis
et al. 1998), green or black tea leaves (Sava et al. 2001), seeds of black cumin (Nigella sativa L.)
(El-Obeid et al. 2006a), Echinacea species, American ginseng, and alfalfa sprouts (Pugh et al.
2005). Furthermore, potentially immune active “melanin-like” material may also be extracted from
lour, black walnut, ginger, shiitake mushroom, and many other botanicals (Pasco et al. 2005; Pugh
et al. 2005; Kumar and Deepak 2007).

The activity of extracted melanin varies substantially within botanicals and depends on the aver-
age size of melanin particles in the pigment preparation (Pugh et al. 2005). Also the methods used for
the extraction and purification of plant melanins may affect biological activity of the pigments. The
commonly used procedures for melanin isolation are based on alkaline extraction at high tempera-
ture and repeated precipitation with a strong acid. Such a harsh treatment may lead to the degradation
of the pigment and hence complete loss of its immunomodulating properties. Moreover, melanin
isolated in that way may be contaminated with tissue lipids, carbohydrates, proteins, or nucleic acids.
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More gentle method with the use of a weak base at room temperature was applied by Hung et al. (2002)
for the isolation of biologically active melanin from tea leaves. The most efficient isolation procedure
for plant melanin has been developed by Pasco et al. (2005). The method is based on the pigment
extraction with aqueous phenol, and gives immune active melanin of a very high purity.

The ability of plant melanins to modulate the immune response was described for the first time by
Avramidis et al. (1998). They demonstrated the inhibitory effect of orally administered melanin isolated
from grape pits on adjuvant induced disease (AID) in rats. Melanin treatment led to the normalization
of serum levels of proinflammatory cytokines IL-1, IL-6, and TNF-c. elevated in AID and to the inhibi-
tion of the subpopulation of Th1 lymphocytes responsible for cellular immune response. Unlike grape
melanin, most plant melanins can stimulate immune responses. It is believed that orally administered
melanin, detected by Peyer’s patches of the gut-associated lymphoid tissue (GALT), has the ability
to activate the immune effector cells through the TLR-dependent pathway, leading to the production
of a number of proinflammatory cytokines, via NF-xB activation (Pugh et al. 2005; El-Obeid et al.
2006b; Oberg et al. 2009). Indeed, Pugh et al. (2005) reported that melanins isolated from Echinacea,
alfalfa sprouts, and American ginseng were able to activate the cultured monocytes through the TLR2-
dependent process. The activated cells substantially increased IL-1B secretion in a dose-dependent
manner. Furthermore, in vivo experiments showed that oral intake of melanin derived from Echinacea
species by mice enhanced the production of IL-6 in Peyer’s patch cells and IFN-y in spleen cells. The
studies of El-Obeid et al. (2006a,b) support the concept that herbal melanins have a direct modulatory
effect on cytokine production. It was shown that melanin extracted from Nigella sativa L. induced
TNF-o and IL-6 expression, at both mRNA and protein levels, by the human monocytes, monocytic
cell lines and peripheral blood mononuclear cells, and IL-8 production by TLR4-transfected cell lines.
However, it has been suggested that cytokine induction by the melanin proceeds via TLR4 rather than
TLR2-dependent signaling pathway (El-Obeid et al. 2006b). This suggestion has been supported by the
recent findings that melanin isolated from Nigella sativa L. induces the production of IL-8 and IL-6 via
TLR4-dependent activation of the NF-xB signaling pathway (Oberg et al. 2009).

Plant melanins have also been suggested to induce the humoral immunity. Sava et al. (2001)
reported that the “melanin-like” material isolated from black tea stimulated B-lymphocytes in mice
in a dose-dependent manner. Furthermore, it was found that Echinacea melanin administered orally
to mice enhanced the release of immunoglobulin A from Peyer’s patch cells (Pugh et al. 2005).

In light of the results obtained to date, it can be concluded that melanin pigments extracted
from plants possess immunomodulatory activities by stimulating both cell-mediated and humoral
immunity. Although it is unlikely that high molecular weight melanin would be absorbed after
oral administration, it is possible that it could exert a therapeutic immune enhancing effect by the
direct interaction with the mucosal immune system of the gastrointestinal tract (Pugh et al. 2005).
Accordingly, plant melanins could be used as dietary pharmaceuticals, and could contribute to
future immunotherapies of disorders associated with imbalanced cytokine production (e.g., allergy
and autoimmune diseases) and cancer. Obviously, the activity of melanin extracts will be several
orders of magnitude more than that of consumed botanicals. Therefore, it is very important to evalu-
ate the biological properties of a particular product very carefully, before any suggestions for its use
in a clinical practice is made. Special attention should be paid to microbial purity of plant melanin
extracts, since it has been reported that bacterial lipopolysaccharides and lipoproteins may con-
tribute to the immune enhancing activity of some botanicals (Pugh et al. 2008; Tamta et al. 2008).

9.6 CONCLUSIONS

Although melanin pigments are the subject of research for decades, interest in them has not dimin-
ished. On the contrary, each year brings new information that allows us to look at these unique
biopolymers more broadly than just through the prism of their role in the coloration of living organ-
isms, including humans. As bioactive compounds, melanins may have potential pharmacologi-
cal importance regarding serious health problems like melanoma or neurodegenerative disorders.
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It seems only a matter of time before new, effective therapeutic strategies, based on antioxidant
and immunomodulatory properties of melanins, or their ability to bind drugs, are developed. Such
therapies could use both endogenous and exogenous pigments, e.g., synthetic or derived from natu-
ral plant products or botanicals modified by genetic engineering.

For now, the practical use of melanin pigments is limited mostly to cosmetology. Natural or
synthetic melanins or melanin precursors, modified so that they are soluble in aqueous cosmetic
buffers at physiological pH and temperature, may be ingredients of face and hand creams, lotions,
anti-ageing ointments or foundation make-ups, acting as a screen and antioxidant for the protection
against photo-induced skin damages (Herlihy 1985; Pawelek and Platt 1998). Melanin pigments are
also recommended as a component of optical lenses for use in sunglasses and other special purpose
glasses (Sigimura et al. 2010). The development of nanotechnology offers new opportunities to use
melanin bioactivity. For instance, melanin-coated nanospheres are considered as a novel approach
to the protection of bone marrow in cancer radiotherapy.

ABBREVIATIONS

o-MSH a-melanocyte-stimulating hormone
ACTH adrenocorticotropic hormone

AID adjuvant-induced disease

AIDS acquired immunodeficiency syndrome
AMD age-related macular degeneration

ASP agouti signaling protein

CysDA cysteinyldopamine

DA dopamine

DHI 5,6-dihydroxyindole

DHICA 5,6-dihydroxyindole-2-carboxylic acid
EPR electron paramagnetic resonance
GALT gut-associated lymphoid tissue
GM-CSF granulocyte-macrophage colony-stimulating factor

HEMn-DP human epidermal melanocytes darkly pigmented
HEMn-LP human epidermal melanocytes lightly pigmented

ICAM-1 intercellular adhesion molecule-1

IL interleukin

iNOS inducible nitric oxide synthase

IR infrared spectroscopy

LC locus coeruleus

L-DOPA L-3,4-dihydroxyphenylalanine

LPO lactoperoxidase

LPS lipopolysaccharide

MAPK mitogen-activated protein kinase

MCIR melanocortin-1 receptor

MRM multiple reaction monitoring

NF-xB nuclear factor kappa light chain enhancer of activated B cells
NMR nuclear magnetic resonance

NO nitric oxide

NOS nitric oxide synthase

POMC proopiomelanocortin

Py-GC/MS pyrolysis coupled with gas chromatography and mass spectrometry
RNS reactive nitrogen species

ROS reactive oxygen species

RPE retinal pigment epithelium
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SN substantia nigra

TLR toll-like receptor

TMAH tetramethylammonium hydroxide
TNF-o tumor necrosis factor alpha

TRP tyrosinase-related protein

uv ultraviolet

VCAM-1 vascular cell adhesion molecule-1
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10.1 INTRODUCTION

Oxyprenylated secondary metabolites have been regarded, for several years, merely as biosynthetic
intermediates of C-prenylated compounds and only in the last decade were characterized as phy-
tochemicals able to exert interesting and effective biological activities. Considering the length of
the carbon chain attached to the oxygen atom, three types of prenyloxy skeletons can be identified:
those having 5 (isopentenyl), 10 (geranyl), or 15 (farnesyl) carbon atoms. Isopentenyloxy and gera-
nyloxy chains are quite abundant in nature, while farnesyloxy ones are by far less common. The
skeleton may consist only of carbon and hydrogen or may contain oxygen atoms, usually in the form
of alcohols, ethers, carboxylic acids, or ketone functionalities, and less frequently nitrogen and halo-
gen atoms. To date, about 350 oxyprenylated derivatives were isolated from natural sources, mainly
plants, fungi, and bacteria, including marine organisms, and shown to exert a variety of valuable
and promising biological activities. In the last 5 years, several new phytochemical and pharmaco-
logical data about the title secondary metabolites were reported in the literature. The aim of this

239



240 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

review is to make a survey of the most recently published data and properties of these important
and interesting class of natural products, some of which have been obtained from plants that have
long been used for proven or supposed medical properties, according to some ancient ethnomedical
traditions.

10.2 O-GERANYL DERIVATIVES

10.2.1 ANTHRAQUINONES

The genus Vismia is nowadays well recognized among the most important sources of geranyloxy
anthranoids. In 2008, Mbaveng and coworkers isolated 3-geranyloxy-6-methyl-1,8-dihydroxyanthra-
quinone (1) from the leaves, stem bark, and roots of Vismia guineensis (Linn.) Choisy (Guttiferae)
(Figure 10.1) (Mbaveng et al. 2008). The investigators tested antimicrobial activity of 1 and found
it to have slight activity on Mycobacterium smegmatis (MIC = 39.06 ug/mL) and M. tuberculosis
(MIC =78.12 ug/mL). This compound (1) has also recently been isolated from Cratoxylum glaucum
Korth. and C. arborescens (Vahl) Blume (Guttiferae) (Sim et al. 2011).

Two anthranoid dimers, named febriquinone (2) and adamabianthrone (3) (Figure 10.2), were
isolated by Tsaffack and coworkers from the roots of Psorospermum febrifugum Spach and from
the barks of P. adamauense Engl. (Guttiferae) together with known anthraquinones like bianthrone
Al, vismione D, 3-geranyloxyemodinanthrone, and 3-geranyloxy-1,8-dihydroxy-6-methylanthra-
quinone (Tsaffack et al. 2009). The new isolates 2 and 3 showed fairly good antimicrobial activities
on both Gram (+) and Gram (-) bacteria. In particular, febriquinone (2) exhibited an appreciable
effect on Bacillus cereus (MIC = 9.76 ug/mL) and Staphylococcus faecalis (MIC = 9.76 ug/mL).

10.2.2 CINNAMIC ACIDS

The most part of the reported data about oxyprenylated cinnamic acids concerns 4'-geranyloxy-
ferulic acid (GOFA; 4) (Figure 10.3). This compound (4) was isolated for the first time in 1966 from
Acronychia baueri Schott (Fam. Rutaceae) (Prager and Thregold 1966).

In 2008, Tanaka and coworkers reported that a novel aminoacidic prodrug of GOFA, namely,
3-(4'-geranyloxy-3"-methoxyphenyl)-L-alanyl-L-proline (GAP; 5) (Figure 10.4) was able to exert
promising protective effect against colon carginogenesis in mice (Miyamoto et al. 2008).

This prodrug was conceived in such a way to be enzymatically cleaved once having reached
the large bowel by the intestinal angiotensin converting enzyme (ACE) located in high con-
centrations in the brush border of colonocytes (Curini et al. 2005). The inhibitory effects of
GAP (5) on colon carcinogenesis were investigated using male CDI (ICR), firstly treated with
a single intraperitoneal injection of azoxymethane (AOM) (10 mg/kg body weight) to induce
colon cancer, and then administered with a 1% (w/v) solution of dextrane sodium sulfate (DSS) in
drinking water for 7 days to promote the growth of neoplastic lesions. After 2 weeks of feeding
basal diet, animals were given a diet containing GAP at two different concentrations, 0.01% and
0.05%, respectively, for 17 weeks. At the end of the study, animals were sacrificed and biological
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FIGURE 10.1  Structure of 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (1).
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parameters relevant to cancer were measured. The development and the growth of colonic adeno-
carcinoma were significantly inhibited by GAP dietary feeding administration at the dose levels
of 0.01% [60% incidence (P < 0.05)] and 0.05% [53% incidence (P < 0.05)]. These values were in
both cases higher than those obtained for the AOM/DSS treated group of animals [95% incidence
(P < 0.05)]. GAP feeding also provided lower indices of mitosis with respect to AOM/DSS only
treated group. Finally, the two groups treated with GAP showed a great decrease of 8-hydroxy-
2'-deoxyguanosine (8-OHdG)-positive cells, a decrease of urinary level of this metabolite, and
an increase of immunoreactivity of an inducible form of heme oxygenase 1 (HO-1) in the colonic
mucosa. It has to be kept in mind that both of these are indices of the oxidative stress and dam-
age induced during inflammatory-based cancer growth and development. A similar approach was
used for the synthesis and pharmacological assays of another prodrug of GOFA, namely, the one
obtained by its inclusion into B-cyclodextrin (B-CD) (Tanaka et al. 2010). The complex GOFA/
B-CD was rapidly synthesized by dissolving the parent acid in a suspension of 3-CD in acetone
at room temperature followed by evaporation of the solvent under vacuum to dryness. A pharma-
cological animal model similar to that described earlier was used to investigate the dietary feed-
ing chemopreventive properties of this other prodrug. To this aim, animals were administered
GOFA/B-CD at two dose levels (100 and 500 ppm, respectively). At the end of the study, the
development of colonic adenocarcinoma was significantly inhibited by feeding with GOFA/B-CD
at dose levels of 100 ppm (63% reduction, P < 0.05) and 500 ppm (83% reduction, P < 0.001),
when compared to the AOM/DSS group. The dietary administration with GOFA/B-CD inhib-
ited colonic inflammation and also modulated proliferation, apoptosis, and expression of several
pro-inflammatory cytokines, such as nuclear factor-kappa B (NF-kB), tumor necrosis factor-o
(TNF-a), Stat3, NF-E2-related factor 2 (Nrf2), interleukin (IL)-6, and IL-1B, all induced during
adenocarcinomas development and growth. In particular, NF-kB decreased by 38.6% (P < 0.001)
and 49.4% (P < 0.001), Nrf2 by 32.2% (P < 0.01) and 51.4% (P < 0.01), TNF-o. by 21.7% (P < 0.05)
and 43.8% (P < 0.05), Stat3 by 48.6% (P < 0.001) and 57.0% (P < 0.001), IL-1B3 by 42.4% (P <
0.001) and 49.2% (P < 0.001), and finally IL-6 by 31.4% (P < 0.001) and 41.6% (P < 0.001) when
tested at the dose of 100 and 500 ppm, respectively.

GOFA (4) was shown to be an efficient anti-inflammatory agent (Epifano et al. 2007). In order to
get further insights into these biological properties and to have pharmacologically active products
designed in such a way to have a synergistic anti-inflammatory effects by means of chemical or
enzymatic hydrolysis (e.g., lipases), Epifano and coworkers synthesized a series of esters in which
the acid portion was represented by GOFA while the alcoholic one originated from natural, semi-
synthetic, or synthetic already known as in vitro and in vivo anti-inflammatory agents, both portions
being able to potentially ensure such kind of effect. The pharmacological activity of the synthesized
esters was evaluated using the Croton oil ear test in mice as a model of acute inflammation (Epifano
et al. 2007). Each derivative was administered at the dose of 0.30 umol/cm?, and indomethacin
at the same concentration was used as the control. GOFA induced a 41% edema inhibition, being
slightly less active than indomethacin, which reduced the response by 62%. Among the eleven esters
synthesized, three, the alcoholic portion of which was represented by paracetamol, guaiacol, and
hydroquinone (Figure 10.5), showed effects ranging from 49% to 57% edema inhibition signifi-
cantly higher than the parent acid and comparable to that of indomethacin, even though their phenol
precursors were inactive (4%—13% inhibition).

The same group of compounds, as described previously, was tested for their antibacterial activity as
well as inhibitory activity toward biofilm formation against two main oral pathogens, Porphyromonas
gingivalis and Streptococcus mutans (Bodet et al. 2008). GOFA itself at the dose of 31.3 pg/mL (78.1
UM) led to an inhibition of biofilm formation by P. gingivalis of about 80%. Some of the esters how-
ever were seen to be more active than the parent acid. Guaiacol ester (6b) (Figure 10.5) was able to
inhibit the biofilm formation of this latter microorganism at the lowest concentration tested (8.6 UM,
P <0.05). Also esters having 2-hydroxynaphtoquinone (7) and methyl vanillate (8) (Figure 10.6) as the
alcoholic portions, showed an appreciable activity, although lower than GOFA.
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FIGURE 10.6 Structure of GOFA esters with 2-hydroxynaphtoquinone (7) and methyl vanillate (8).
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GOFA and its three aforementioned esters (6a, 6b, and 6¢) were able to reduce the growth of
P. gingivalis, and this effect may be correlated with their capacity to inhibit biofilm formation.
However, none of these compounds caused a significant decrease in viability of P. gingivalis, allow-
ing the authors to hypothesize that the antibacterial effect could be bacteriostatic rather than bac-
tericidal (Bodet et al. 2008). The earlier cited products were then tested as inhibitory agents of
biofilm formation by S. mutans. GOFA at the lowest concentration tested (3.9 pg/mL; 9.8 uM) still
had a significant inhibition of biofilm formation. The three ester derivatives, although able to reduce
biofilm formation by S. mutans to some extent, were less effective than the parent molecule (Bodet
et al. 2008).

The in vivo neuroprotective effects of GOFA were studied by Genovese and coworkers in 2009
using the mouse maximal electroshock-induced seizure model (MES-test) (Genovese et al. 2009).
The MES-test was performed at different pre-treatment times (5, 15, 30, 60, and 120 min) using
a group of eight animals after systemic intraperitoneal administration of GOFA at a dose of
300 mg/kg. Results obtained indicated that this prenyloxycinnamic acid was effective in protecting
the animals against MES-induced seizures. In particular, the maximum anticonvulsant effect was
obtained in the range 15-30 min after intraperitoneal administration, revealing absence of seizures
in 7 of 8 and 6 of 8 animals, respectively. This effect tended to decrease with increasing time, being
2 of 8 animals and completely lacking (0 of 8 animals) after 60 and 120 min, respectively. The
recorded EDy at 15 min was 224.1 = 10.7 mg/kg (P < 0.05).

For what concerns the mechanism of action of GOFA, until 2007 the only data at disposition
was its capacity to inhibit cyclooxygenase-2 (COX-2) and the inducible form of nitric oxide syn-
thase (INOS) (Curini et al. 2006). Trying to get further insights, in 2007 Epifano and coworkers
tested GOFA as in vitro inhibitors of prenyltransferases, known to play a pivotal role in the patho-
genesis of several types of cancers (Epifano et al. 2007). At a concentration of 100 uM, GOFA
selectively inhibited geranylgeranyl transferase I (GGTase 1) (72.4%) while it was ineffective on
farnesyl transferase (FTase) (12.7%). Genovese and coworkers investigated the efficacy of GOFA
as activator of PPARs (Genovese et al. 2010). In the first series of experiments, GOFA was
found to activate PPARo, PPAR[/S, and PPARY, the efficacy and selectivity being greater for
PPARP/S. In order to reveal the effect of GOFA on PPARs /9, in a subsequent series of experi-
ments, the investigators used wild-type mouse keratinocytes in which the activation of PPARs
B/d by selective ligands was known to evoke a significant increase in the expression of mRNA
encoding Angptl4 gene and PPARs B/3-null cells. Culturing wild-type mouse keratinocytes with
GOFA at a concentration of 10 uM led to a modest increase in the expression of Angpt/4 mRNA,
an effect that was not found in PPARs [/6-null cells. At a concentration of 100 uM, GOFA
caused a marked increase in the expression of Angptl4 mRNA comparable to that observed
with GW0742, used as reference drug, and this change was still not observed in PPARs 3/8-null
keratinocytes. Proliferation effects under the influence of GOFA were investigated in the human
epithelial carcinoma cell line A431. Inhibition of cell growth was observed after 72 h following
treatment with 100 UM GOFA, a result similar to that observed with GW0742. To determine if
the observed inhibition of cell proliferation by GOFA was mediated by PPARs /9, cell prolif-
eration was examined in wild-type and PPARs [3/86-null mouse primary keratinocytes. Ligand
activation of PPARs B/d with 1 uM GW0742 caused inhibition of cell proliferation in wild-type
keratinocytes after 48 and 72 h of culture, and this effect was not found in similarly treated
PPARs [/8-null mouse primary keratinocytes. No changes in cell proliferation were recorded
in keratinocytes following treatment with 25 UM GOFA. However, inhibition of cell prolifera-
tion was found in wild-type keratinocytes after 24 h of treatment with 100 uM GOFA and this
effect was not observed in similarly treated PPARs B/d-null keratinocytes. Moreover, inhibition
of cell proliferation was found in primary keratinocytes lacking expression of PPARs (/8. Thus,
the authors made the hypothesis that the inhibitory effects of GOFA may be influenced by other
PPARs B/8-independent mechanisms.
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FIGURE 10.7 Structure of auraptene (9).

10.2.3 COUMARINS

The pharmacological profile of one of the most abundant geranyloxycoumarin in nature, namely,
auraptene (9) (Figure 10.7), has recently been reviewed (Genovese and Epifano 2011).

In addition to the reported data, it was found that auraptene (9), extracted from seeds of Zosima
absinthifolia Link (Apiaceae), had a weak antifungal effect against the phytopathogenic fungus
Sclerotinia sclerotiorum (30%), but a strong herbicide effect, being able, at a dose of 0.1 mg/mL, to
entirely stunt seed germination and root and shoot growth in lettuce (Razavi et al. 2010). Recently,
De Medina and coworkers shed light on the biological mechanism of action of auraptene (9), find-
ing that this geranyloxycoumarin was able to inhibit acylCoA cholesterol acyltransferase and to
modulate both estrogen receptors (ERs) oo and B with binding affinity values of 7.8 and 7.9 uM,
respectively (De Medina et al. 2010). Moreover, auraptene was able to modulate the transcription of
both ERs via an ER-dependent reporter gene. The recorded effects correlated well with the control
of growth and metastatic capacities of tumor cells. Like auraptene, geranyloxycoumarins and fura-
nocoumarins are typically contained in edible Citrus fruits. The recent works by Dugo and cowork-
ers allowed us to depict in more detail the geranyloxy- and furanocoumarins profile of Citrus fruits
(Dugo et al. 2009; Costa et al. 2010).

10.2.4 KETONES

Oxyprenylated acetophenones were isolated for the first time from two Melicope spp., namely,
M. obscura (Cordem) T.G. Hartley and M. obtusifolia ssp. obtusifolia var. arborea (Coode) T.G. Hartley
(Andersen et al. 2007). These are 2,6-dihydroxy-4-geranyloxyacetophenone (10a), 4-geranyloxy-
2,6,B-trihydroxyacetophenone (10b), 2,6-dihydroxy-4-geranyloxy-3-isopentenylacetophenone
(10c¢), and 4-geranyloxy-3-isopentenyl-2,6,3-trihydroxyacetophenone (10d) (Figure 10.8).
Chemotaxonomic studies allowed us to reveal that these secondary metabolites could be regarded
as markers of the Rutaceae subfamily Rutoideae, tribe Xanthoxyleae. The chemical synthesis of the
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10a: R'=CHs, R?=H
10b:R'=CH,0H, R?=H
10c: R'=CHs, R?=Isopentenyl
10d: R' =CH,OH, R?=lIsopentenyl
FIGURE 10.8 Structure of 2,6-dihydroxy-4-geranyloxyacetophenone (10a), 4-geranyloxy-2,6,B-

trihydroxyacetophenone (10b), 2,6-dihydroxy-4-geranyloxy-3-isopentenylacetophenone (10c), and 4-geranyloxy-
3-isopentenyl-2,6,3-trihydroxyacetophenone (10d).
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FIGURE 10.10  Structures of 4-gerayloxy-2,6-dihydroxybenzophenone (12a), 4-geranyloxy-1-(2-methylpro-
panoyl)phloroglucinol (12b), and 4-geranyloxy-1-(2-methylbutanoyl)phloroglucinol (12c¢).

earlier listed acetophenones as well as of other two naturally occurring ones (11a and 11b) (Figure 10.9)
was recently reported by Xia et al. (2010).

Oxyprenylated phloroglucinol derivatives were isolated from the apolar extract of Hyperichum
densiflorum Pusch. (Clusiaceae) (Henry et al. 2009). These were identified as 4-gerayloxy-
2,6-dihydroxybenzophenone (12a), 4-geranyloxy-1-(2-methylpropanoyl)phloroglucinol (12b), and
4-geranyloxy-1-(2-methylbutanoyl)phloroglucinol (12¢) (Figure 10.10).

These isolates (12a—c) were evaluated for a series of biological activities, including antitumor,
anti-inflammatory, antioxidant, and antibacterial ones. All the compounds exhibited an apprecia-
ble in vitro growth inhibitory effect against a panel of human cancer cell lines, while showing
a moderate anti-inflammatory activity, measured as COX-1 and COX-2 inhibition. 4-Geranyloxy-
2,6-dihydroxybenzophenone (12a) revealed a good antioxidant effect (70% of reduction in lipid
peroxidation test), while 4-geranyloxy-1-(2-methylpropanoyl)phloroglucinol (12b) and 4-geranyloxy-
1-(2-methylbutanoyl)phloroglucinol (12¢) recorded a worse effect in the same test. Finally, all these
ketones showed a very good antibacterial activity against methicillin-resistant Staphylococcus
aureus with ICs,, values of 0.87, 1.14, and 1.80 pg/mL, respectively.

10.2.5 QUINONES

A novel oxygeranylated 1,4-naphtoquinone, 7-geranyloxy-5-hydroxy-2-methoxy-6-methyl-1,4-
napthoquinone, named flaviogeranin (13) (Figure 10.11) was isolated by Hayakawa and coworkers
in 2010 from Streptomyces spp. strain RAC 226 (Hayakawa et al. 2010); the compound was tested
as neuroprotective agent and exhibited very good activity. In fact, this quinone derivative was able
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FIGURE 10.11  Structure of flaviogeranin (13).
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FIGURE 10.12  Structure of geranyloxyxanthones (14a—c) from Cratoxylum cochinchinense.

to prevent neuronal cell death in C6 cells exposed to 100 mM glutamate (ECy, = 8.6 nM) and
suppressed death in N18-RE-105 rat primary retina-mouse neuroblastoma hybrid cells exposed to
glutamate 10 mM (ECy, = 360 nM).

10.2.6 XANTHONES

Three novel oxygeranylated xanthones (14a—c) were isolated in 2009 by Bonnak and coworkers
from the resin and green fruits of the Thai plant Cratoxylum cochinchinense Blume (Guttiferae)
(Figure 10.12) (Bonnak et al. 2009). When tested as antimicrobial agents, all the isolates exhib-
ited a significant activity against Pseudomonas aeruginosa (MIC = 4.7 ng/mL). Scanning electron
microscopy studies revealed that they exerted this effect probably by interfering with the de novo
formation of bacterial wall.

10.3 O-ISOPENTENYL DERIVATIVES
10.3.1 ALKALOIDS

Several isopentenyloxy alkaloids are reported to be isolated from different plants. The South African
shrub Tecla gerrardi 1. Verd., commonly known as flaky cherry-orange (Rutaceae: Toddalioidae), pro-
vided an acridone alkaloid named tegerrardin B [(3-hydroxy-N-methyl-1-(y;y-dimethylallyloxy)acridone]
(15a) that was characterized for the first time in nature, together with the already described furoquino-
line alkaloids evoxine (15b) and 7-isopentenyloxy-y-fagarine (15¢) (Figure 10.13) (Waffo et al. 2007).
Among the isolates, evoxine (15b) showed a mild antimalarial activity against Plasmodium
falciparum strain CQS DI0, recording an IC,, value of 24.5 uM. The first evidence of the
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FIGURE 10.13  Structure of tegerrardin B (15a), evoxine (15b), and 7-isopentenyloxy-y-fagarine (15c).

isolation of chlorinated oxyprenylated furoquinoline alkaloids was given almost in the mean time
but independently by two different research groups. Cao and coworkers extracted and purified
7-(2"-hydroxy-3’-chloroisopentenyloxy)-4,8-dimethoxyfuroquinoline (16a) and 6-(2'-hydroxy-
3’-chloroisopentenyloxy)-4,7-dimethoxyfuroquinoline (16b) from the aerial parts of Monnieria
trifolia (L.) Kuntze (Rutaceae) together with the known alkaloids 7-isopentenyloxy-y-fagarine and
tecleamatalesine B (16¢) (Figure 10.14) (Cao et al. 2008).

Tested as anticancer agents in vitro on A2780 human ovarian cancer cell line, all these sec-
ondary metabolites showed a weak activity. The absolute configuration of 6-(2’-hydroxy-3'-
chloroisopentenyloxy)-4,7-dimethoxyfuroquinoline (16b), isolated from the leaves of the ornamental
shrub Choisya ternata H.B. & K., commonly known as Mexican orange, was then determined
by Boyd and coworkers (Boyd et al. 2007). Finally in 2008, Varamini and coworkers extracted
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FIGURE 10.14 Structure of 7-(2"-hydroxy-3'-chloroisopentenyloxy)-4,8-dimethoxyfuroquinoline (16a),
6-(2’-hydroxy-3'-chloroisopentenyloxy)-4,7-dimethoxyfuroquinoline (16b), and tecleamatalesine B (16c¢).
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7-isopentenyloxy-y-fagarine from Haplophyllum canaliculatum Boiss (Rutaceae) by means of a
bioassay guided fractionation; the authors showed also that this alkaloid exerted in vitro an appre-
ciable antitumor effect against Raji (ICs, = 1.50 ug/mL) and MCF-7 cells (IC;, = 15.50 pug/mL)
(Varamini et al. 2008). Flow cytometry analysis performed with 7-isopentenyloxy-y-fagarine also
revealed that it was able to arrest the cell cycle at the sub-Gl phase in Raji and Jurkat cells in a
dose-dependent manner.

10.3.2 CHALCONES

Reddy and coworkers in 2008 extracted and structurally characterized a novel chalcone, namely,
2,3-dimethoxy-4"-isopentenyloxy-2'-hydroxychalcone (17) from the root bark of Dalbergia sissoo
Roxb. (Figure 10.15) (Reddy et al. 2008).

Another chalcone named xinjiachalcone A (18) became part of the well-known secondary
metabolites profile of licorice, having been isolated by Iwasaki and coworkers in 2009 (Figure 10.16)
(Iwasaki et al. 2009).

The rare chalcone 4-hydroxycordoin (19; Figure 10.17) isolated from Lonchocarpus neu-
roscapha Benth. (Fabaceae) was recently investigated from a pharmacological point of view
by Grenier and coworkers (Feldman et al. 2011; Messier et al. 2011). The authors showed that
this compound exerted beneficial antibacterial effect against known periodontopathogens like
Prevotella intermedia (MIC = 2.50 ug/mL), Porphyromonas gingivalis (MIC = 5.0 ug/mL), and
Fusobacterium nucleatum (MIC = 40.0 ug/mL). Moreover, 4-hydroxycordoin at concentrations
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FIGURE 10.15 Structure of 2,3-dimethoxy-4'-isopentenyloxy-2'-hydroxychalcone (17).
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FIGURE 10.16  Structure of xinjiachalcone A (18).
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FIGURE 10.17  Structure of 4-hydroxycordoin (19).
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of 1.0 and 5.0 pg/mL prevented the adhesion of P. gingivalis to the oral mucosa by 31% and 63%,
respectively. In the same context, this chalcone was seen to markedly decrease the production of
cytokines like IL-1B, TNF-a, and IL-6; and chemokines like IL-8 and CCL5 as well as of PGE,
by LPS-stimulated macrophages. Finally, the same research group found that 4-hydroxycor-
doin exerted significant inhibitory effects on two main virulence factors of the fungus Candida
albicans: biofilm formation (>85% at a concentration of 20 pg/mL) and yeast-hyphal transition
(50-200 pg/mL).

10.3.3 CiNNAMIC AcIDS

Boropinic acid (20) is an isopentenyloxy cinnamic acid isolated in 2000 by Ito and coworkers
from the leaves of the Australian plant Boronia pinnata Sm. (Rutaceae) (Figure 10.18) (Epifano
et al. 2007).

Deepening the knowledge about inhibitory properties of this ferulic acid derivative against
Helicobacter pylori, Touati and coworkers found that boropinic acid was active also in vivo, reduc-
ing the gastric mucosa colonization by H. pylori strain SS1 using the murine model of infection
of C57BL/6 mice (Touati et al. 2009). The same research group found that boropinic acid exerted
a topical anti-inflammatory effect, using the Croton oil-induced ear edema in mice as a model of
acute inflammation, equal to the known LOX inhibitor nordihydroguaiaretic acid and about half of
that of the NSAID indomethacin (Epifano et al. 2011). The structurally related isopentenyloxy-p-
coumaric acid (21) (Figure 10.19), extracted from Esenbeckia hieronimi (Rutaceae), showed in vivo
neuroprotective time and dose-dependent effects using the mouse maximal electroshock-induced
seizures as a model of epilepsy (Genovese et al. 2009).

10.3.4 COUMARINS

Oxyprenylated coumarins are among the most abundant prenyloxyphenylpropanoids occurring in
nature. During the bioassay guided fractionation of the ethyl acetate extract of the leaves of Melicope
vitiflora (F. Muell) T.G. Hartley (Rutaceae), O’Donnell and coworkers isolated 7-isopentenyloxycou-
marin (22a) and two structurally related products deriving from the oxidation of one of the methyl
group of the O-side chain, namely, 7-(3'-carboxybutoxy)coumarin (22b) and 7-(3’-carboxybutenoxy)
coumarin (22¢) (Figure 10.20) (O’Donnell et al. 2009).
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FIGURE 10.18 Structure of boropinic acid (20).
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FIGURE 10.19 Structure of isopentenyloxy-p-coumaric acid (21).
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FIGURE 10.20 Structure of 7-isopentenyloxycoumarin (22a), 7-(3’-carboxybutoxy)coumarin (22b), and
7-(3'-carboxybutenoxy)coumarin (22c).

In 2010, Razavi and coworkers isolated and structurally characterized from the n-hexane extract
of the seeds of the Caucasian plant Zosima absinthifolia (Vent.) Link. (Apiaceae) imperatorin
(23; Figure 10.21) and 7-isopentenyloxycoumarin (22a) (Razavi et al. 2010).

When tested as in vitro antifungal agents against the phytopathogenic fungus Sclerotinia sclero-
tiorum, both compounds exhibited a good level of activity, the effect of imperatorin being more
pronounced. In fact, this latter product at the dose of 1 mg/mL was able to completely inhibit the
growth of mycelia, while the activity of 7-isopentenyloxycoumarin (22a) was by far less (about 25%
compared to imperatorin 23). On the other hand, when tested as herbicides against lettuce seeds
growth and development, 7-isopentenyloxycoumarin performed better than imperatorin being able
to completely prevent the germination, root, and shoot growth. Studying the biotransformation of
imperatorin to isoimperatorin (24; Figure 10.22) by the phytopathogenic fungus Glomerella cingu-
lata, Marumoto and Miyazawa found that for the latter coumarin a cleavage of the lactone ring and
a reduction of the conjugated double bond, yielding 6,7-furano-5-isopentenyloxydihydrocoumaric
acid (25; Figure 10.23) occurred (Marumoto and Miyazawa 2010).

FIGURE 10.21 Structure of imperatorin (23).
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FIGURE 10.22 Structure of isoimperatorin (24).
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FIGURE 10.23 Structure of 6,7-furano-5-isopentenyloxydihydrocoumarin acid (25).
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FIGURE 10.24 Structure of xanthotoxol (26).

The isomeric imperatorin was on the other hand dealkylated in quantitative yield to xanthotoxol
(26; Figure 10.24).

Both products were investigated for their ability to inhibit in vitro the B-secretase (BACEI) result-
ing however in a very low activity for both coumarins. The first example of a double isopentenyloxy
coumarin was recently reported by Fukuda et al. (2011). The authors isolated marianin A (27; Figure
10.25) from the culture extract of the fungus Mariannaea camptospora strain TAMA 118.

Marianin A (27) showed only a marginal antimicrobial activity against Micrococcus luteus
(MIC = 15 pg/mL) and no activity on Escherichia coli and Candida albicans. The same pattern
was recorded when marianin A was tested in vitro as growth inhibitory agent of cancer cell lines
being the IC, values of 34.0 and 39.0 uM on HeLa and MCF7 cells, respectively. Finally 7-isopen-
tenyloxycoumarin was seen to exert both in vitro and in vivo remarkable neuroprotective effects. In
the first case, this coumarin protected (50%) neuronal cells from cell death induced by glutamate
(Epifano et al. 2008) while in vivo 7-isopentenyloxycoumarin showed a significant protection in
animals of epileptic seizures induced by electroshock at different times (15-120 min) (Genovese
et al. 2009).

CH,
CHs 0/\)\CH3
CH, X
Hsc)\/\o o o
(27)

FIGURE 10.25 Structure of marianin A (27).
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10.3.5 FrAavoNoOIDS

Few novel isopentenyloxyflavonoids were discovered in the last 5 years. The methanol extract of the
leaves of Melicope triphylla Merr. (Rutaceae), commonly known as Awadan, a shrub from south
eastern Asia, afforded three flavones, namely, 3,5-dihydroxy-7-isopentenyloxy-8-methoxy-3"4'-
mehtylenedioxyflavone (28a), 5-hydroxy-3-isopentenyloxy-7-methoxy-3',4"-mehtylenedioxyflavone
(28b), and 5-hydroxy-7-isopentenyloxy-3,8-dimethoxy-3'4’-mehtylenedioxyflavone (28¢) (Figure 10.26)
(Higa et al. 2010).

M. brandisiana Kurz (Leguminosae) afforded two novel isoflavones, namely, 4"-isopentenyloxy-
5,7,2",5-tetramethoxyisoflavone (29a) and 74-diisopentenyloxygenistein (29b) (Figure 10.27)
(Pancharoen et al. 2008).

Compounds 29a and 29b were isolated by Pancharoen and coworkers from the hexane extract of the
flowers of the aforementioned plant. Anotherisoflavone 7-isopentenyloxy-5-hydroxy-4"-methoxyisoflavone
(30; Figure 10.28) was isolated from the roots of Dalbergia sissoo Roxb. (Reddy et al. 2008).

o/\
0}
OMe

MeO

OMe

OMe

OH (e}
(28¢)

FIGURE 10.26 Structure of 3,5-dihydroxy-7-isopentenyloxy-8-methoxy-3',4’-mehtylenedioxyflavone (28a),
5-hydroxy-3-isopentenyloxy-7-methoxy-3',4’-mehtylenedioxyflavone (28b), and 5-hydroxy-7-isopentenyloxy-
3,8-dimethoxy-3',4"-mehtylenedioxyflavone (28c).
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FIGURE 10.27 Structure of 4-isopentenyloxy-5,7,2",5"-tetramethoxyisoflavone (29a) and 7,4-diisopenteny-

loxygenistein (29b).
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FIGURE 10.28 Structure of 7-isopentenyloxy-5-hydroxy-4’-methoxyisoflavone (30).

10.3.6 PHTALIDES

Novel skeletons structurally related to isopentenyloxyphenylpropanoids were discovered during the
last 5 years. This is the case of phtalides; for example, 6-isopentenyloxy-4-methoxy-5-methylphtalide
(31; Figure 10.29) was extracted and characterized by Demuner and coworkers in 2006 from the
phytopathogenic fungus Nimbya alternantherae (Demuner et al. 2006). The authors revealed that
the compound (31) acted as an herbicide being an inhibitor of the photosynthetic process in spinach
thylakoids. In particular, it was able to uncouple ATP production.

CH,
HsC

OMe
(31)

FIGURE 10.29 Structure of 6-isopentenyloxy-4-methoxy-5-methylphtalide (31).
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10.4 PERSPECTIVES AND CONCLUSIONS

Only in the last 15 years naturally occurring secondary metabolites containing an O-prenyl side
chain have been recognized as interesting and valuable biologically active phytochemicals. For
these reasons, research on these secondary metabolites is a field of current and growing interest.
Many of the previously (Epifano et al. 2007) and herein described oxyprenylated derivatives have
been found in plants belonging to the family of Rutaceae and to a lesser extent in the families of
Apiaceae, Guttiferae, Leguminosae, and few others. A peculiar feature of prenyloxy natural prod-
ucts is the low concentration at which in many cases they can be extracted and isolated from plant
sources. This may be the main reason why these classes of natural compounds have not been fully
considered about their pharmacological properties. Recently, the development of new high yield-
ing procedures made possible the synthesis of some of these compounds in quantities more than
sufficient to carry out more detailed studies on their pharmacological properties. Results of these
investigations suggest that these secondary metabolites may represent in the next future a new fron-
tier and a challenge for the development of novel anticancer, anti-inflammatory, neuroprotective,
and antimicrobial compounds. On the basis of already reported (Epifano et al., 2007) and herein
cited data about the synthesis and pharmacology of oxyprenylated derivatives, it is hopeful that in
the next future more studies could be performed aimed at the search for prenyloxy phytochemicals
from novel natural sources, to develop new environment friendly, cheap, and high yielding synthetic
routes to obtain these compounds in large amounts and finally to get further insights and to depict
in more detail their biological profile and mechanism of action.

ABBREVIATIONS

ACE angiotensin converting enzyme
AOM azoxymethane

ATP adenosine triphosphate

BACE B-secretase

CCL chemokine (C—C motif) ligand
B-CD B-cyclodextrin

CoA coenzyme A

COX cyclooxygenase

DSS dextrane sodium sulfate

ED effective dose

ER estrogen receptor

FTase farnesyl transferase

GAP 3-(4’-geranyloxy-3'-methoxyphenyl)-L-alanyl-L-proline
GGTase geranylgeranyl transferase

GOFA 4’-geranyloxyferulic acid

HO-1 heme oxygenase 1

IC inhibitory concentration

IL interleukin

LOX lipoxygenase

LPS lipopolysaccharide

MES maximal electroshock-induced seizure
MIC minimum inhibitory concentration
NF-kB nuclear factor-kappa B

NOS nitric oxide synthase

Nrf2 NF-E2-related factor 2

NSAID non steroidal anti-inflammatory drug

8-OHdG 8-hydroxy-2'-deoxyguanosine
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PG prostaglandin

PPAR peroxisome proliferator-activated receptor
RNA ribonucleic acid

TNF-o tumor necrosis factor-o.
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11.1  INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia in elderly people and the fifth
leading cause of death for people who are 65 years or older (Alz. Assoc. Facts and Figures 2011).
Neuropathologically, depositions of amyloid beta (AP) plaques in the brain interstitial and phos-
phorylation of microtubule-associated protein tau (MAPT) within axons are the hallmarks of AD
(Hardy and Selkoe 2002). AP peptide, which is the proteolytic cleaved product of the transmembrane
amyloid precursor protein (APP), is released by enzymatic cleavage by several secretase enzymes. APP
is first cleaved by [-secretase (or BACE-I) to produce sAPPJ and a 99 amino acid fragment, which is
further cleaved by y-secretase to produce AP peptides (39—44 amino acids residue) (Sambamurti et al.
2002). Alternatively, APP can also be cleaved by another enzyme, o.-secretase, to produce sAPPo and
a 83 amino acid residue fragment (C83), which is further cleaved by y-secretase to produce P3 frag-
ment and precludes AP production (Lahiri et al. 2003; Marlow et al. 2003). Decreasing the levels of
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FIGURE 11.1 Schematic showing APP processing pathways by different secretase enzymes. In the left of
the figure, APP is sequentially cleaved by o-secretase and y-secretase enzymes to produce sAPPo and P3
fragment. Please note, o.-secretase cleaves APP within its A domain and hence, precludes production of AR
peptides. In normal cells, APP is cleaved mainly by o-secretase pathway. In contrast to o.-secretase pathway,
APP can be cleaved by B-secretase enzyme and y-secretase complex to produce sAPPP, carboxyl-truncated
fragments (not shown in the figure), and AP peptides (right side of the figure). APP cleavage by B-secretase is
considered as a “minor” pathway except for some genetic conditions. APP pathway can be a target of several
drugs and agents, including curcumin, the focus of this review.

APP and the activities of BACE-I and y-secretase has already been identified as potential therapeu-
tic strategies for the treatment of AD (Lahiri et al. 2007a; Imbimbo and Giardina 2011; Vassar and
Kandalepas 2011). The schematic diagram in Figure 11.1 shows the major APP processing pathways.

It has been postulated that deposited AP peptides initiate inflammatory responses in the brain.
Deposited A can activate microglia, and the interaction between the latter and AP can produce reac-
tive oxygen species and several cytokines, leading to neuronal damage (Ray and Lahiri 2009). Once
neuroinflammation is set, several events can take place, including the activation of the proinflamma-
tory transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cell (NFkB). In the
resting condition, NFxB stays within the cytoplasm of the cell binding with an inhibitor protein IkB.
Once activated, NFxB is detached from the inhibitor molecule, enters the nucleus, and binds to and
activates several proinflammatory genes. Further, NFkB can activate several genes directly related
to the pathology of AD such as APP, presenilin-1, and BACE-1, leading to more AP production (for
review see Ray and Lahiri 2009). Hence, apart from APP, BACE-1, and tau, regulation of NFkB acti-
vation is also being considered a rational strategy for therapeutic intervention in AD.

In addition to therapeutic interventions, preventive strategies for AD have also become a
topic of research interest in recent years (Lahiri 2006; Camins et al. 2010; Frisardi et al. 2010).
Epidemiological reports suggest that the elderly Indian populace have ~4.4-fold less incidence of
AD when compared to a reference American populace (Chandra et al. 2001), and risk factors for AD
(such as presence of APOE €4 allele) also differ geographically (Murrell et al. 2006). Further, preva-
lence of AD in some Mediterranean countries was reported to be smaller than other European coun-
tries (Benedetti et al. 2002). Taken together, these facts suggest a strong environmental component for
the development of dementias like AD (Lahiri et al. 2007b). Although nutritional components can
be correlated with the etiology of AD, an extensive study with specific nutritional components, and
how those can prevent AD, is mostly lacking.

Our laboratory is working to identify potential nutritional components to prevent and/or delay the
onset/progression of AD (Ray et al. 2011b,c). In this chapter, we will discuss the potential preventive
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and/or curative roles of one of the plant-derived polyphenols, curcumin (diferuloylmethane), in AD.
Curcumin exerts pleiotropic effects and has been reported to be effective in various disorders
including cancer and neurodegenerative diseases (Aggarwal et al. 2006; Begum et al. 2008). By
suppressing the activation of NFxB, defibrilling AP plaques, preserving neurons, upregulating neu-
rotrophic factors, and facilitating neurogenesis, curcumin can emerge as a potential therapeutic/
preventive agent in the treatment of several neurodegenerative disorders including AD.

(Chemical structure of curcumin)

11.2 ROLE OF CURCUMIN IN NEURODEGENERATIVE DISEASES

Curcumin has been shown to exhibit beneficial activity against various neurological diseases, includ-
ing AD (Lim et al. 2001), multiple sclerosis (Natarajan and Bright 2002), Parkinson’s disease (PD)
(Zbarsky et al. 2005), epilepsy (Sumanont et al. 2006), cerebral injury (Ghoneim et al. 2002), schizo-
phrenia (Bishnoi et al. 2008), spongiform encephalopathy (Creutzfeldt—Jakob disease) (Hafner-
Bratkovic et al. 2008), neuropathic pain (Sharma et al. 2006), and depression (Xu et al. 2005).

Before going into detail about the role of curcumin in modifying disease pathology as seen in
AD, it is imperative to describe, in brief, the role of inflammation in AD pathology.

11.2.1  INFLAMMATION AND AD

The brain needs a constant supply of oxygen, as it consumes 20% of the body’s oxygen despite
having only 2% of the total body weight. With normal aging, the brain spontaneously accumulates
several metal ions such as iron (Fe), zinc (Zn), and copper (Cu). However, the brain contains a rich
amount of antioxidants that control and prevent the harmful reactive oxygen species (ROS) gener-
ated via Fenton chemistry that involves redox-active metal-ion reduction and activation of molecular
oxygen (Smith et al. 1998).

Neuroinflammation plays a major role in the pathogenesis of many neurodegenerative diseases
including AD. Although AP has been considered a key player in inducing AD pathogenesis (Walsh
et al. 2002; Walsh and Selkoe 2004), it is not clear whether AP plaques and neurofibrillary tangles
(NFT) are causative for AD. These doubts are fueled by a recent finding that the AP plaque burden
poorly correlates with the progression and severity of dementia in AD. Moreover, transgenic animals
that develop widespread A plaque deposition in response to overexpression of APP mutations show
only slight cognitive deficits (Braak and Braak 1998; Davis and Laroche 2003). It has also been
shown that formation of NFT may more closely correlate with the decline in cognitive skills, but
seem to occur as a late event subsequent to AP accumulation. However, some studies suggest that pro-
tofibrils and oligomers of AR 1-40 and AP 1-42, rather than the aggregated AP plaques, contribute
to early dendritic and synaptic injury and thus contribute to neuronal dysfunction (Walsh et al. 2002).

While minor signs of neuroinflammation can be found in the normal aging brain, the AD brain
faces a much stronger activation of inflammatory systems, indicating an increasing amount of
immunostimulation present. A significant body of evidence suggests that AP peptides play a pivotal
role as inducers of neuroinflammation.

AR itself has been shown to induce a local inflammatory type response, and fibrillar AP can bind
to the complement factor C1 and hence potentially activate the classical complement pathway in an
antibody-independent fashion (Rogers et al. 1992). Such activated complement factors could play
an important role in the local recruitment and activation of microglial cells expressing the comple-
ment receptors CR3 and CR4 (Rozemuller et al. 1989). In vitro studies are also consistent with
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immunohistochemical data in AD brains, showing a weak immunostaining for early complement
components in diffuse plaques that are composed of non- or low-grade fibrillar AR (Eikelenboom
and Veerhuis 1996). Several studies indicate that extracellular deposition of AP in AD brains is one
of the main triggers of inflammation. For example, A activates microglia by binding to the recep-
tor for advanced glycation end products (RAGE) (Yan et al. 1995) and to other scavenger receptors
(Paresce et al. 1996). Moreover, the LPS receptor, CD14 also interacts with fibrillar AP (Fassbender
et al. 2004), and microglia can kill AR 1-42 damaged neurons by a CDI14-dependent process
(Bate et al. 2004). Thus, the role of CD14 in AB-induced microglia activation strongly suggests that
innate immunity is linked with AD pathology.

11.2.2 Rote ofF AcTIVATED GLIA

Microglia represent the brain’s immune system and are known as a first-line defense when challenged
by bacterial, viral, or fungal infection. Although these functions are important and beneficial, it is
now clear that microglial activation may also be evoked by endogenous proteins and can significantly
contribute to neuronal damage. Activated microglia upregulate the expression of a variety of surface
proteins, including the major histocompatibility complex and complement receptors (Liu and Hong
2003). Once immunostimulated in response to neurodegenerative events, these microglial cells release
an array of proinflammatory mediators including cytokines, ROS, complement factors, neurotoxic
secretory products, free radical species, and nitric oxide (NO), all of which can contribute to neuro-
nal dysfunction and cell death (Griffin et al. 1998). Several amyloid peptide species and APP can act
as potent glial activators (Dickson et al. 1993; Barger and Harmon 1997; Schubert et al. 2000), and
disruption of the APP gene and its proteolytic products delays and decreases microglial activation
(DeGiorgio et al. 2002). It is interesting to note that some microglia activation may be beneficial as
activated microglia is able to reduce AP accumulation by increasing its phagocytosis clearance and
degradation (Frautschy et al. 1998; Qiu et al. 1998; Yan et al. 2003). Additionally, the secreted AP
species (both the short 1-40 and long AP 1-42 peptides) are constitutively degraded by an insulin-
degrading enzyme (IDE), a zinc metalloproteinase released by microglia and neural cells.

In addition to microglia, astrocytes also participate in AP clearance and degradation, provide tro-
phic support to neurons, and form a protective barrier between AP deposits and neurons (Wyss-Coray
et al. 2003; Koistinaho et al. 2004). The presence of astrocytes around the A plaques in the AD brain
suggests that these lesions generate chemotactic molecules that mediate astrocyte recruitment and
hypertrophy. It has been shown that astrocytes throughout the entorhinal cortex of AD patients gradu-
ally accumulate AP 1-42 positive material, and the amount of this material correlates positively within
the extent of local AD pathology. AR 1-42 within these astrocytes could be of neural origin and pos-
sibly accumulated by phagocytosis of locally degenerated dendrites and synapses (Nagele et al. 2003).
Recent evidence also suggests that astroglial cells are able to phagocytize AP peptides, a process that
may depend on their apolipoprotein E (ApoE) status. This work suggests that ApoE polymorphisms
may influence the risk of developing AD by affecting astroglial AR phagocytosis (Niino et al. 2001).

11.2.3 Rote oF NucLear FAcTOrR KAPPA BETA

TNF-alpha has been found to be a major mediator of inflammation in most of the aforementioned
diseases and its effect is regulated by the activation of transcription factor, NFkB. Under normal
stable conditions, this transcription factor stays inactivated by IkB. However, upon activation, it
enters the nucleus and increases the transcription of various inflammatory mediators. Several mol-
ecules have the ability to activate NFkB, which include TNFo, AP, and secreted APP (Barger and
Harmon 1997; Guo et al. 1998). Gene mapping studies show that NFkB sites are present in the pro-
moter regulatory region of the APP, PS-1, and BACE-I gene. Upon activation of NFkB, increased
transcription of APP and BACE-I ensues, which subsequently leads to increased AP production.
An increased level of NFkB in the brain has been observed in the presence of the APOE €4 allele,
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compared with the activation in the presence of the APOE €3 allele (Ophir et al. 2005). Thus, APOE
€4 might be playing a significant role in activating NFxB, leading to further damage. However, a
recent APOE gene promoter study has shown that AB can also stimulate APOE through the NFxB-
dependent pathway (Du et al. 2005).

11.2.4 RotLe oF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR G

Peroxisome proliferator-activated receptor G (PPARY) is a ligand-dependent nuclear hormone
receptor transcription factor and is a regulator of adipocyte differentiation. This factor has been
implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and
cancer. Upon activation, PPARY binds to peroxisome proliferator response element (PPRE) within
the promoter regions of targeted genes of inflammatory mediators expressed by T cells, such as
TNF alpha, IL-10, IFN-G, and IL-4, and also regulates their expression (Szczucinski and Losy
2007). Recent evidence suggests that PPARY activation not only suppresses AB-mediated induction
of microglial cells from producing proinflammatory cytokines, but also inhibits NFxB-mediated
pathways by reducing its nuclear translocation (Heneka et al. 2005).

11.3 CURCUMIN IN APP PROCESSING

AD is believed to be primarily driven by the excessive production of AP, the principal component
of senile plaques. AP is a 4 kDa peptide generated by a sequential proteolytic cleavage of the type I
transmembrane protein, the APP (Sambamurti et al. 2002). A significant body of evidence sug-
gests that curcumin, under both in vivo and in vitro conditions, can bind to amyloid plaques and
inhibit AP aggregation (Hong et al. 2009), as well as the fibril and oligomer formation (Yang et al.
2005). Recently, Zhang et al. (2010) have described a possible cellular mechanism explaining how
curcumin could decrease A} deposition and plaque formation. These investigators have shown that
curcumin has the ability to decrease AP levels by reducing APP maturation, or possibly by prevent-
ing endocytosis from the plasma membrane. Immature APP is N-glycosylated in the ER, and a frac-
tion of these molecules exit the ER and undergo O-glycosylation in the Golgi complex to become
mature APP (Zhang et al. 2010). Mature APP is then transported onto the plasma membrane after
which it can undergo endocytosis via clathrin-coated pits (Small and Gandy 2006). Their data also
showed that curcumin can significantly change APPmature/APPimmature ratio and decrease the
level of intermediate APP induced by Brefeldin A (BFA), an agent that disrupts the Golgi complex.
Overall, these findings suggest that curcumin can affect APP metabolism at the level of the ER and
the cumulative effect would be a significant decrease in both AP (1-40) and A (1-42) levels.

11.4 CURCUMIN AND TAUOPATHIES

As stated earlier, the key hallmarks of AD pathology include brain depositions of AB-loaded plaques,
intracellular NFT formation, and oxidative stress induced by impaired metabolic pathways and certain
multivalent metals (Selkoe 1994). Several studies conducted in early 1980s suggest that microtubule-
based axonal transport and synaptic function are impaired in AD (Grundke-Igbal et al. 1986b).
Microtubules are stabilized by the binding of the microtubule connection protein, tau (Grundke-Igbal
et al. 1986a). Basically, tau is a highly soluble microtubule-associated protein that plays an impor-
tant role in the stabilization of axons. Tau, being rich in phosphorylation sites, makes it vulnerable
to hyperphosphorylation, and a balance between its phosphorylation and dephosphorylation state
denotes the presence of normal physiological condition. Abnormal hyperphosphorylation of tau leads
to its impaired biological activity, resistance to degradation, induction of conformational changes, and
promotion of paired helical filament (PHF), which is the principal component of NFT (Metcalfe and
Figueiredo-Pereira 2010). Recent evidence suggests that although in a healthy brain, only two to three
amino acid residues are phosphorylated; the accrual of phosphorylation with nearly nine phosphates
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per molecule leads to AD and other tauopathies (Medeiros et al. 2011). It has been reported recently
that AB promotes neurite degeneration and microtubule disintegration by coordination with tau, and
signs of degeneration disappeared in the absence of tau, which again underscores the role of tau in
neurodegeneration (Metcalfe and Figueiredo-Pereira 2010). The significant increase in tau hyperphos-
phorylations, in which AP might play a key role, has also been reported in postmortem brain tissues
obtained from AD patients (Wai et al. 2009). These observations suggest that preventing tau phos-
phorylation could protect cells against AB-induced neurotoxicity. In this context, it is noteworthy that
curcumin plays a major role in reducing plaque deposition, proinflammatory cytokines, and pJNK
expression in Tg2576 mice that lack tau pathology (Begum et al. 2008). Recent evidence also suggests
that curcumin decreases tau hyperphosphorylation in PC12 cells (Park et al. 2008) and provides neu-
roprotective effect of curcumin against AB-induced toxicity. A recent study has shown that curcumin
significantly reduced the phosphorylation of tau (Ma et al. 2009), and a combination of fish oil and
curcumin treatment has shown a significant inhibition of tau phosphorylation, raising the possibility
of therapeutic applications against AD. It is reasoned that docosahexaenoic acid (DHA, present in
fish oil) and curcumin target different steps in the AP cascade. Further, curcumin has a direct anti-Af
binding activity that can directly antagonize AP aggregation (Begum et al. 2008). Moreover, DHA
competitively reduces availability of arachidonic acid substrate in phospholipids, whereas curcumin
reduces activity of phospholipases, cyclooxigenases, and lipooxygenases enzymes, which produce
proinflammatory lipid mediators. The combination of fish oil and curcumin also significantly pre-
vented cognitive decline in 3xTg-AD mice (Ma et al. 2009). Four human clinical trials are ongoing to
explore the potential use of curcumin against AD pathology (Baum et al. 2008). Further studies are
warranted to unravel the factors that might be associated with tau hyperphosphorylation.

11.5 AD IS A SYNAPTIC FAILURE: CURCUMIN’S EFFECT
ON PRE- AND POSTSYNAPTIC PROTEINS

Synaptic failure is a salient feature in individuals with AD and has shown to be correlated with the
cognitive decline in AD patients (Scheff and Price 2001; Scheff et al. 2006). Indeed, synaptic loss is an
early event in AD and synaptic contacts in both neocortex and hippocampus are lost in this neurode-
generative disorder. Recent studies suggest that levels of the presynaptic protein synaptophysin are sig-
nificantly decreased and levels of postsynaptic density protein (PSD)-95 are also dramatically altered
in AD brains compared to the control (Frautschy et al. 2001). A recent study has shown that in older
female Sprague-Dawley rats, a significant loss of presynaptic protein synaptophysin was observed in
the control animals, which were fed a normal diet, compared to the rats that received curcumin in their
diet (Frautschy et al. 2001). In this study, Frautschy and coworkers also found increased levels of PSD-
95 in the rats that had curcumin in their diet, compared to rats that received normal chow. Increases
in both pre- and postsynaptic protein levels ultimately improved the synaptic transmission, which was
evident when the Morris water maze test was conducted. In fact, curcumin-treated animals did signifi-
cantly better in this maze test than the control rats that received the normal chow diet.

Further, curcumin not only reduces AP levels in vivo and prevents the presynaptic loss in AD
patients, but also prevents the glutamate-induced excitotoxicity in rat cortical neurons (Wang et al.
2008). Mechanistically, curcumin increased the level of brain-derived neurotrophic factor (BDNF)
via the TrkB receptor signaling pathway to prevent the toxicity generated due to glutamate induction.

11.6 CURCUMIN AND ITS EFFECT ON THE LEVELS OF BDNF AND NGF

In addition to curcumin’s possible preventive role in AD and PD, curcumin has been reported to
be effective in alleviating stress-induced disorders in rodents, possibly by exerting neuroprotection
and neuroendocrine functions in the central nervous system (CNS) and BDNF is one of the most
widely distributed neurotrophins in the CNS and plays an important role in neuronal survival and
neurogenesis (Lee et al. 2002; Balaratnasingam and Janca 2012). Depletion of BDNF is strongly
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associated with several psychiatric and neurodegenerative disorders, including AD (Chu et al. 2011;
Diniz and Teixeira 2011; Zhang et al. 2012). Further, acute stress in rats was observed to deplete
CNS BDNEF levels (Ray et al. 2011d), and curcumin treatment can alleviate stress by upregulating
BDNF levels (Xu et al. 2007). A recent study (Wei et al. 2010) has demonstrated that when pigs were
treated with curcumin, it can alleviate subacute stress response through modulation of hippocampal
BDNF expression. Moreover, supplementing the diet with curcumin dramatically reduced oxidative
damage and normalized the levels of BDNF, synapsin I, and CREB, which were altered following
traumatic brain injury (Wu et al. 2006). Another study (Wang et al. 2008) has suggested that cur-
cumin can be protective against glutamate excitotoxicity, seemingly mediated via the BDNF/TrkB
signaling pathway.

Like BDNF, another neurotrophin, nerve growth factor (NGF) plays an important role in neural
development, neuropreservation, and synaptic plasticity and also has been reported to be decreased
in AD patients (Calissano et al. 2010). Recently, curcumin has been shown to increase the lev-
els of NGF in different regions of the brain and can be effective in ameliorating AD pathologies
(Hassanzadeh and Hassanzadeh 2012).

Postulated molecular targets of curcumin, in relation to AD, are depicted in Figure 11.2
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FIGURE 11.2 Molecular targets of curcumin are shown in this figure. The central role of curcumin’s action
is the inhibition of the proinflammatory transcription factor, NFxB, which is involved in the production of
several cytochemokines, leading to neuronal loss. NFkB can increase the production of APP and B-secretase
enzyme, which eventually causes more AP production. Curcumin has AP defibrillating properties (mainly by
chelating action on metal ions) and can also prevent neuronal loss by preserving neurons. Neuropreservation
by curcumin can be due to upregulating the levels of BDNF and NGF, among other factors. Curcumin has
also been shown to stimulate neurogenesis in specific regions of the brain. Separate studies have also depicted
that curcumin can prevent hyperphosphorylation of axonal protein tau (please see text for details). The hyper-
phosphorylation of tau protein is one of the cardinal features in AD. The schematic brain within this figure
represents not normal but neurodegenerative AD brain.
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11.7 CURCUMIN: BIOAVAILABILITY

Although clinical trials of curcumin have been ongoing to prevent various diseases including cancer
and AD, poor oral absorption of curcumin in both humans and animals has raised several concerns
about its clinical efficacy. Curcumin is a biphenolic compound that has hydroxyl groups at the
para-position on the two aromatic rings that are connected by 1,3-diketone bridge that can undergo
Michael addition, critical for some of the effects of curcumin but can contribute to its chemical
instability in aqueous solution (Anand et al. 2007). Major limiting factors of curcumin include its
low solubility in water and the fact that soluble curcumin molecules are highly unstable at physi-
ological pH (Tonnesen 2002; Tonnesen et al. 2002). To date, several formulations of curcumin have
been suggested to have more bioavailability than that of free curcumin. These include nanoparticle
formulation (Bisht et al. 2008; Ray et al. 2011a), micelles (Mohanty et al. 2010), and curcumin com-
bining with adjuvant (Anand et al. 2007; Sehgal et al. 2012). Large-scale clinical studies are needed
to demonstrate the efficacy of these formulations.

11.8 CONCLUSION AND FUTURE DIRECTIONS

AD is a multifactorial disorder with many pathological sequelae. As mentioned, deposition of AP
peptides in the brain is a hallmark of AD. However, whether A is the sole triggering agent for
the pathologies of AD is not clearly known. It was observed that deposition of AP takes place in
the brain years, (even decades), before the appearance of clinical manifestations of AD (Morris
et al. 1996), which may suggest that a second event or “hit” is necessary for the development of the
disease. In this context, our laboratory has proposed the latent early-life associated regulation or
LEARn in explaining the etiologies of several neurodegenerative chronic disorders, including AD
(Lahiri and Maloney 2010). LEARn postulates that an initial insult or “hit,” followed by a latent
period in the pathogenesis of chronic disorders where the person stays symptomless, during the
latent period, and the disease manifestation only occurs if a second insult or “hit” takes place in the
later period of life. In AD, the second “hit” could be the physiological changes related to normal
aging (Lahiri et al. 2009). It is possible that the activated inflammatory cascade in the brain can
trigger other pathological events related to AD, and environmental factors, including diets, can
have preventive roles (Lahiri et al. 2007). Once neuroinflammation sets in, it stimulates more AP
production and the latter increases the production of cytokines, which intensifies the inflamma-
tion, thus creating a vicious cycle. Segregated approaches of decreasing AP load or ameliorating
neuroinflammation alone did not produce desirable effects in clinical studies (Szekely and Zandi
2010; Sambamurti et al. 2011), which warrants effective therapy targeting multiple pathological cas-
cades. Preclinical research work from all over the world has already established the effectiveness of
curcumin in lowering AP loads, alleviating neuroinflammation, preserving neurons and synapses,
and preventing hyperphosphorylation of tau proteins. However, because of curcumin’s poor bio-
availability and rapid biotransformation in blood, translation of curcumin’s effectiveness in clinical
settings has not been fully observed. Several formulations of curcumin, including encapsulation in
nanoparticles, can be considered as potential ways to preserve curcumin’s efficacy in vivo. Taken
together, curcumin can have significant therapeutic potential in the treatment of several neurode-
generative disorders including AD and newer formulations of curcumin can open a new horizon in
their treatments.

ABBREVIATIONS

AR amyloid beta protein

AD Alzheimer’s disease

APP amyloid precursor protein

APOE apolipoprotein E



Role of Curcumin in Ameliorating Neuroinflammation and Neurodegeneration 267

MAPT  microtubule-associated protein tau
NF«xB nuclear factor kappa-light-chain-enhancer of activated B cell
NFT neurofibrillary tangles

NO nitric oxide

PPAR v peroxisome proliferator-activated receptor G
ROS reactive oxygen species
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12.1 INTRODUCTION

The discovery of the physiological and pathophysiological roles of nitric oxide (NO) in the 1980s
became one of the most remarkable events in biology (Furchgott and Zavadski 1980; Palmer et al.
1987). From the chemical point of view, NO is an uncharged paramagnetic molecule. Its chemical
and physiological properties are a result of its tendency to stabilize an unpaired electron (Stamler
1994; Kerwin et al. 1995). In contrast to oxygen radicals, the half lifetime of NO reaches several
seconds depending on the type of tissues and physiological conditions (Kikuchi et al. 1993) as a
result of which NO molecules can easily penetrate through biological membranes and interact with
intracellular and extracellular structures that are located relatively far from the place where these
molecules were produced, and readily react with other substances as well (Moncada et al. 1991).
Nitric oxide plays a dual role in an organism: On the one hand, it diffuses into parasite cells and
inhibits the key enzymes necessary to those cells, thereby exhibiting a protective effect against the
parasite cells by destroying them; on the other hand, NO produced in an excess amount acts as a
strong cytostatic, which causes appreciable harm to the organism itself under conditions of oxida-
tive stress and production of active oxygen forms, mainly peroxynitrites (Schmidt and Walter 1994),
and eventually takes part in the development of inflammatory processes.

Almost all endogenous NO is synthesized from L-arginine during the catabolism of L-arginine
into L-citrulline by a family of cytochrome P450-like hemoproteins, i.e., nitric oxide synthases
(NOSs) (Wang et al. 2005a). The isoforms of NOSs are the products of various genes: nNOS and
eNOS are constitutive isoforms, while iNOS is an inducible isoform. In resting cells, the inducible
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isoform iNOS is not detected; for its expression, the activation of cells by lipopolysaccharides
(LPS) or cytokines, e.g., interleukins 1,2,6 & 8, interferon-gamma (IFN-7), tumor necrosis factor-o
(TNF-w), etc., is required. In this context, it should be mentioned that the constitutive forms cause
the production of NO in lower amounts (picomol), while the amount of NO synthesized under the
action of iNOS may vary and reach higher values (nanomol).

The mechanism of NO formation from L-arginine is the same for all the three isoforms; the
process proceeds via a two-stage oxidation reaction. In order to transform L-arginine into NO and
L-citrulline, all the three isoforms of NOSs require the following coenzymes: the reduced form of
nicotinamide adenine dinucleotide phosphate (NADPH), tetrahydrobiopterin (H,B), flavin mononu-
cleotide (FMN), and flavin adenine dinucleotide (FAD) (Griffith and Stuehr 1995; Woodward et al.
2009). NOS expression increases with activation of nuclear factor (NF-kB). The nuclear factor, kB,
is a protein referred to the K (kappa) group and brought to the active state by the action of lipopoly-
saccharides. NF-xB initiates transcription as a result of which the corresponding mRNA molecules
are produced; these molecules enter to cytoplasm and take part in the process of synthesizing vari-
ous proteins (including iNOS) on ribosomes (Bremner and Heinrich 2005). Three isoforms of NOSs
are involved in various pathological processes, including Alzheimer’s disease and stroke (nNOS),
septic shock, arthritis and inflammatory processes (iNOS), formation of edemas, and endothelial
damage (eNOS). Hence, selective inhibitors for various isoforms of NOSs are warranted (Babu and
Griffith 1998).

In accordance with the mechanism of action, the NOS inhibitors can be divided into the follow-
ing groups:

1. Compounds that prevent the transfer of L-arginine to active sites of enzymes

2. Compounds that inactivate the cofactors needed for NOS-catalyzed oxidation of L-arginine

. Compounds that inhibit the electron transport, into which NADPH and flavins are involved,
and the agents capable of interfering in the functions of heme

. Compounds that inhibit the production of NO

. Compounds that inhibit the activity of iNOS

. Compounds that inhibit iNOS expression

. Compounds that inhibit the activation of NF-xB

(O8]

[ NV, RN

The inhibitors of NO-synthases can be divided according to their origin: natural, semisynthetic, and
synthetic categories. Nowadays, the search for selective NOS inhibitors is conducted in all three
areas. This review is devoted to the study of plant secondary metabolites, capable of inhibiting the
production of NO and the activity of iNOS; the works presented in this review were mainly pub-
lished within the period from 2000 to date.

12.2 PLANT METABOLITES AND INHIBITORS OF NITRIC OXIDE PRODUCTION

After the discovery of the important role of NO in inflammatory processes, a new tendency appeared
in phytochemical studies, i.e., the works devoted to studying extracts and plant secondary metabo-
lites for their NO- and iNOS-inhibitory activity. First of all, it is the studies of extracts that are
obtained from fruits (Van Beharka et al. 2000; Tezuka et al. 2001; Meeteren et al. 2004; Jung et al.
2007a; Lin et al. 2008; Huang and Ho 2010), berries (Pergola et al. 2006; Lau et al. 2009), and veg-
etables (Wang et al. 2005b; Hwang et al. 2011) used for food or extracts of medicinal plants (Hong
et al. 2002; Sutherland et al. 2006; Wang et al. 2008b; Lii et al. 2009; Lee et al. 2005, 2011; Mueller
et al. 2010); the investigations are performed without isolating individual compounds or, in some
cases, with a partial determination of the component composition by applying high-performance
liquid chromatography, but always with establishing in details the mechanism of NO and iNOS
inhibition (Hong et al. 2002; Kiemer et al. 2003; Lee and Jeon 2003; Kaszkin et al. 2004; Kim et al.
2004; Matheus et al. 2006; Sutherland et al. 2006; Jung et al. 2007b; Lee et al. 2007; Yen et al. 2008;
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Chao et al. 2009; Ichikawa et al. 2009; Jung et al. 2009; Matsuda et al. 2009; Sheeba and Asha
2009; Sripanidkulchai et al. 2009; Jin et al. 2010; Ozer et al. 2010; Kang et al. 2011; Yu et al.
2011). The works devoted to these kinds of studies have been actively published in the last decade;
the main purpose of these investigations is partly to make recommendations on the use of plant
products for the prevention of various inflammatory and cancer diseases and, on the other hand, to
reveal the extracts of medicinal plants that exhibit the highest NO- and iNOS-inhibitory activity.
This, in turn, has motivated to undertake exhaustive research works directed toward the isolation of
active plant metabolites and the determination of their structures including the establishment of the
correlation between a structure and its activity concerned; the structure—activity relationship (SAR)
draws significant importance in clinical chemistry when developing new drugs.

The most widespread experimental model for the primary investigation of the isolated metabo-
lites for their NO-inhibitory activity is the mouse macrophages activated with lipopolysaccharide
(LPS) (Nathan and Xie 1994; MacMicking et al. 1997; Alderton et al. 2001), which has an ability to
induce iNOS expression and the formation of NO in cells. It should be noted that plant metabolites
with NO-inhibiting activity are referred to in various classes of natural compounds such as terpe-
noids, phenolic compounds, alkaloids, and also their glycosides. The most representative group is
the phenolic—phenolic compounds of various structural types: (1) simple phenolic compounds
(C4 compounds); (2) C,—C, compounds (oxybenzoic acids and their derivatives); (3) C,—C; phenolic
compounds (phenylpropanoids, lignans, neolignans, coumarins, and their derivatives); (4) stilbenes
(C4—C,—C;4 compounds); (5) C,—C;—C, compounds, cyclic and noncyclic—chalcones, flavonoids,
and aurones; (6) C,—C,—C, compounds; (7) diarylheptanoids (C,—C,—C4 compounds), etc.

12.2.1 FLAvONOIDS

Plant flavonoids have already created a stir among the scientific community at large due their multidi-
rectional biological activities, and at the same time they have been reported to possess promising capa-
bility of inhibiting NO production. More than 8000 individual flavonoid compounds of natural origin
are known to date (Pietta 2000). These phenolic secondary metabolites may be divided into several
structural subtypes; the primary amongst these being: flavones, flavonols, flavanones, flavanols, and
anthocyanidins. Such flavonoid compounds are the constituents of fruits, berries, and vegetables; the
average intake of flavonoids by humans is on the order of a few hundred milligrams per day in terms of
the aglycon mass (Hollman and Katan 1999). Flavonoids are frequently called “molecules against oxi-
dative stress,” i.e., proinflammatory radical “scavengers.” Products enriched with flavonoids are recom-
mended for chronic diseases, including diseases caused by the excessive production of nitric oxide (NO).

Flavones, e.g., 1 Apigenin (Matsuda et al. 2003; Comalada et al. 2006; Tong et al. 2007; Kang
et al. 2009), 2 Diosmetin (Comalada et al. 2006), and 3 Luteolin (Comalada et al. 2006; Lopez-
Posadas et al. 2008; Wang et al. 2008a), which “work™ in various cell models, in vitro and in vivo,
are considered to be the most active NO-inhibiting metabolites from the flavonoid group (Matsuda
et al. 2003). In order to understand how the structure influences the NO-inhibition activity, in
Matsuda et al. (2003) the authors tested 73 flavonoids in the free and glycosylated forms, natural
metabolites, and their methylated analogues: flavonones 1-12 and flavanones 13-17 (Table 12.1);
flavonols 18—37 and flavanols 38—40 (Table 12.2); and isoflavones 41-48 (Table 12.3). According to
the results obtained, flavonones 1-12 were found to be the most active among the compounds listed
(Table 12.1). The ICs, values of compounds 1, 2, and 3 inhibiting the production of NO are 7.7, 8.9,
and 20 UM, respectively; the ICs, values of Di- 4, Tri- 5, and tetra-O-methyl luteolins 6 are 11, 11,
and 2.4 uM (Table 12.1). Thus, among other flavones considered, compounds 1, 2, and 6 exhibit
the highest activity (ICs, < 10 uM). Flavanones 13-17 (Table 12.1) exhibit a lower activity, which
indicates that the presence of the double bond between the C, and C; atoms in the ring-C is a very
important factor for the occurrence of NO-inhibiting activity.

Among flavonols 18-37 (Table 12.2), only the completely methylated form, hexa-O-methyl
mirecetin 36, exhibited an activity of IC5, < 10 uM (ICs5, < 7.4 uM, Table 12.2). All the other
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TABLE 12.1
Data on the Inhibition of NO Production for Flavones 1-12 and Flavanones 13-17

Flavones: 1-12 Flavanones: 13-17 OCH5 > OH

Compounds (Str. No.) R, R, R, R, 1C5, (uM)
Apigenin 1 OH OH H OH 7.7
Diosmetin 2 OH OH OH OCH,; 8.9
Luteolin 3 OH OH OH OH 20
4',7-Dimethylluteolin 4 OH OCH; OH OCH; 11
3’4" 7-Trimethylluteolin 5 OH OCH;, OCH;, OCH, 11
3’4" 5,7-Tetramethylmethylluteolin 6 OCH;, OCH;, OCH;, OCH; 2.4
Apigenin, 7-0-Glc 7 OH O-Glc H OH >100
Apigenin, 7-O-Rut 8 OH O-Rut H OH >100
4’,7-Dihydroxyflavone 9 H OH H OH 14
3’,4’-Dihydroxyflavone 10 H H OH OH 23
3’4", 7-Trihydroxyflavone 11 H OH OH OH 26
Luteolin, 7-O-Glc 12 OH O-Glc OH OH >100
Liquiritigenin 13 H OH H OH 85
14 H OCH, H OH 38
Liquiritin 15 H OH H -O-Glc >100
16 H OCH, H -O-Glc >100
Eriodictyol 17 OH OH OH OH >100

Source: Matsuda, H. et al., Bioorgan. Med. Chem., 11, 1995, 2003.

flavonols and flavanols 38—40 (Table 12.2) considered in Matsuda et al. (2003) have high IC;, values
characterizing the inhibition of NO within this experiment.

Let us compare the activities of flavones (Table 12.1) and flavonols (Table 12.2) corresponding to
them. Apigenin 1 has a higher activity than kaempferol 20; diosmetin 2 is more active than tamar-
ixetin 26; and luteolin 3 exhibits a higher activity than quercetin 22. Thus, it can be concluded that
the introduction of the OH group at C-3 in ring-C upon moving from flavones to flavonols leads to a
decrease in the NO-inhibition activity. (This regularity remains valid for the other flavone/flavonol
pairs, e.g., 4/28 and 5/30 compounds; see Tables 12.1 and 12.2, respectively).

Comparing the structural features of the flavonoids studied with the NO-inhibition activity as stud-
ied by Matsuda et al. (2003), the following conclusions can be made:

1. The activity of flavones is higher than the activity of flavonols corresponding to them
(Tables 12.1 and 12.2). See the 1/20, 2/26, 3/22, 4/28, and 5/30 pairs.

2. The flavonoids containing the glycoside residue in the structure exhibit a lower
NO-inhibition activity in all cases (Tables 12.1 through 12.3); the IC,, value is above
100 uM. Thus, the transition from aglycon to glycoside leads to a significant decrease in
activity. See 1/7 and 1/8 pairs; in this case, it occurs independently on the structure of
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TABLE 12.2
Data on the Inhibition of NO Production for Flavonols 18—-37 and Flavanols 38—-40
R4 Ra
Rs R
Rs O Re Rs Re
3 R,
R, O f (Ry) OCH, > OH
Flavonols: 18-37 Flavanols: 38-40 OCH; > OH
Compounds (Str. No.) R, R, R, R, R, R, 1C;, (M)
3-Hydroxyflavone 18 OH H H H H H >10
Izalpinin 19 OH OH OCH; H H H >30
Kaempferol 20 OH OH OH H OH H 29
Kaempferol, -3-O-GlcA 21 -0-GIcA OH OH H OH H >100
Quercetin 22 OH OH OH OH OH H 36
Rutin 23 -O-Rut OH OH OH OH H >100
Quercetin, 3,7-di-O-Glc 24 -O-Glc OH 0O-Gle OH OH H >100
Rhamnetin 25 OH OH OCH, OH OH H 42
Tamarixetin 26 OH OH OH OH OCH; H 25
27 OCH, OH OCH, OH OH H 15
Ombuine 28 OH OH OCH, OH OCH, H >30
Ayanin 29 OCH, OH OCH, OH OCH, H 19
30 OH OH OCH, OCH,  OCH, H >10
31 OCH, OH OCH, OCH,  OCH, H 79
32 OCH, OCH, OCH, OCH,  OCH, H 26
Myricetin 33 OH OH OH OH OH OH 99
34 OH OH OCH, OH OCH, OH 24
35 OH OH OCH, OCH,  OCH, OH >10
36 OCH, OCH, OCH, OCH,  OCH,  OCH, 7.4
Myricitrin 37 -O-Rha OH OH OH OH OH >100
(+)-Catechin 38 B-OH OH OH OH OH H >100
(-)-Epicatechin 39 o-OH OH OH OH OH H >100
(-)-Epigallocatechin 40 o-OH OH OH OH OH OH 65

Source: Matsuda, H. et al., Bioorgan. Med. Chem., 11, 1995, 2003.

glycoside. See 3/12 pair (Table 12.1); 20/21, 22/23, 22/24, 33/37 pairs (Table 12.2); and
41/42, 43/44, 45/46 pairs (Table 12.3).

3. The activity of flavones (Table 12.1) is higher than the activity of flavanones corresponding
to them (Table 12.1). See 3/17 and 9/13 pairs.

4. Flavones and flavonols containing only one hydroxyl group near the C-4’ atom in ring-B
exhibit a higher activity than flavones and flavonols containing a larger number of OH
groups in ring-B, including those that have two OH groups in the 3" and 4’ positions. See
1/3 and 9/11 pairs (Table 12.1); and 20/22, 20/25, and 20/33 pairs (Table 12.2).

5. Flavonols containing the hydroxyl groups near the C-3" and C-4’ atoms (Catechol type)
exhibit a higher activity than those that contain three hydroxyl groups in the 3’, 4, and 5’
positions (Pyrogallol type). See 22/33 compounds (Table 12.2).
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TABLE 12.3
Data on the Inhibition of NO Production for Isoflavones 41-48

Compounds (Str. No.) R, R, R, R, R 1C5o (M)
Daidzein 41 H H H H H 33
Daidzin 42 H H Glc H H >100
Genistein 43 OH H H H H 26
Genistin 44 OH H Gle H H >100
Tectorigenin 45 OH OCH, H H H 31
Tectoridin 46 OH OCH; Glc H H >100
Biochanin A 47 H H H H CH, 30
Glycitein 48 H OCH, H H H ~100

Source: Matsuda, H. et al., Bioorgan. Med. Chem., 11, 1995, 2003.

6. The presence of the OH group near the C-5 atom normally increases the activity. See the
1/9, 3/11, and 43/41 compounds.

7. If there is an OCH; group in the 3', 5/, or 4’ position, the compounds exhibit higher
NO-inhibitory activities. See compounds 2 (IC5, 8.9 uM), 6 (ICs, 2.4 uM), 36 (ICs,
7.4 uM), etc.

8. The activity of isoflavones is lower than the activity of corresponding flavones. In this
review, we outline the data for the 1/43 pair (ICs, 7.7/26 UM, respectively).

9. The compounds containing the OCH, group near the C? exhibit a low cytotoxicity.

It was also established by Matsuda et al. (2003) that all flavonoids as studied inhibit iNOS expres-
sion without reducing the iNOS activity. Another important group of flavonoids is anthocyani-
dins (Figure 12.1). Anthocyanidins are aglycons of anthocyanins, natural pigments extracted from
plants. Anthocyanidins are usually obtained from acidic plant extracts at low pH values; in this case,
anthocyanidins are in the form of salts, in which an electron of the oxygen atom is involved into the
heteroaromatic m-system of the benzpyrylium (chromenylium) cycle; the latter is a chromophore
defining the color of these compounds.

The influence of anthocyanidins 49-53 and their glycosides isolated from the extracts of berries on
the production of NO in LPS/INF-y-activated macrophages was studied by Wang and Mazza (2002).

Anthocyanidins:

49: Pelargonidin: R; =H, R,=0H, R3=H, R;=R;=0H

50: Delphinidin: R; =R,=R3=R;=R;=0H

51: Peonidin: R; =0OCH;, R,=0H, R3=H, R;=R;=0H
52: Malvidin: Ry =0CHj3, R,=0H, R3=0CH,, R;=R5=0H
53: Cyanidin: R;=H, R,=R3=R;=R;=0H

FIGURE 12.1 Anthocyanidin derivatives isolated from the extracts of berries.
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The activity of this group of flavonoids was found to be lower than the activity of flavonols exam-
ined in the same work; in the experiments, anthocyanidins 49 and 50 exhibited the highest activity.
Thus, at a concentration of 125 UM, compounds 49 and 50 inhibited the production of NO by 35%,
compounds 51 and 52 inhibited by 30%, and compound 53 inhibited by 19%; for reference, kaemp-
ferol 20 and quercetin 22 (Table 12.2) at the same concentration inhibit the production of NO by
73% and 57%, respectively.

Every year, researchers usually report on more and more new compounds referred to the group
of flavonoids; more than 450 new flavonoids were reported during the period from 2001 to 2003
(Veitch and Grayer 2008). Consequently, new works devoted to the study of biological activity of
new plant metabolites have been appearing.

The flavonols, fisetin 54 (IC5, < 5 M) and morin 55 (IC5, > 10 uM) (Figure 12.2), were evalu-
ated to possess promising inhibitory activity against iNOS mRNA and the activation of the nuclear
factor, NF-xB (Wang et al. 2006). From the ethanolic extract of Agrimonia pilosa Ledeb, a potent
source of polyphenols, compounds 56—59 including three flavanols 56, 58, and 59 (Figure 12.2) in
the free and glycolised forms were isolated (Taira et al. 2009); all the isolated compounds inhibited
the production of NO but did not exhibit any cytotoxicity at the concentrations used. Compound 56
showed the highest activity. The investigators suggested that phenolic compounds are good radical
“scavengers” and consequently exhibit the antioxidant properties (Taira et al. 2009). In this context,

54: Fisetin, Ry;=H,R,=H, R3=0H IC5q < 5 uM
55: Morin, R;=0H, R,=0H, R3=H 1C5q > 20 uM

OCH,
HO

o 57: Agrymonolid-6-O-B-D-glycoside, IC54 ~100 uM
OH

OH_oH
o
OH O OH OH O OH "CH,
58: Dihydrokaempferol 3-O-D-glycoside, IC5, ~100 pM 59: Quercetrin, IC5y ~100 uM

CH, OH O
OH

60: R=Rha, IC5, 40 uM

61: R=Ara%,Api, IC5, 15 pM 63:1C5o >>100 pM
62: R=Rha’-;Api, IC5, 20 uM

FIGURE 12.2 Naturally occurring polyphenols and their glycosides possessing NO-inhibitory activity.
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in order to clarify the mechanism of action for compounds 56-59, the same team carried out the
experiments in LPS-induced macrophage cells and in the presence of the NO donor, 4-ethyl-2-
hydroxyamino-5-nitro-3-hexenamide (NOR3). In all the cases, a decrease in the concentration of
nitric oxide was observed; the experimental results prompted the investigators to suggest compounds
56-59 inhibit the production of NO in macrophages acting as traps for nitric oxide produced.

Four flavonol and kaempferol 20 glycosides, i.e., compounds 60-63 (Figure 12.2), were iso-
lated from the methanolic extract of Cinnamomum osmophloeum Kaneh leaves, an endemic tree
of Taiwan, by Fang et al. (2005). These compounds exhibit a dose-dependent inhibition of NO
production in LPS/y-IFN-activated macrophage cells. Among the compounds examined, compound
61, kaempferol-3-O-B-D-apiofuranosyl-(1 — 2)-o-L-arabinofuranosyl-7-O-o.-L-ramnopyranoside,
was found to be the strongest inhibitor. For reference, at a concentration of 20 UM, compound 61
inhibited the production of NO by 69%, while compound 63 in the same concentration inhibited the
production of NO by only 9%. The ICs, value was 40, 15, and 20 uM for compounds 60, 61, and
62, respectively. In accordance with the data, the isolated glycosides can be ranked in the order of
decreasing NO-inhibition activity as follows: 61 > 62 > 60 >> 63. Although the investigators did
not comment on the correlation between the structure and properties (Fang et al. 2005), following
a comparison of the structures of compounds 60-63 that differ from each other by the structure of
the glycoside residue, R, near the C-3 atom, it follows that the most active compound 61 contains
two furanose cycles in the residue, compound 62 has one furanose cycle (apiofuranosyl, the same
as in compound 61), and the least active in this series compounds 60 and 63 (Figure 12.2) contain
only pyranose residues in the radical. The most bulky glycoside residues are found in compound 63,
which corresponds to its low inhibition activity. It should be noted that the NO-inhibition activity
of all glycosides 60—63 (Figure 12.2) is rather high; it is not in agreement with the data for other
glycosides, including kaempferol 20 as presented by Matsuda et al. (2003).

By analyzing the data on the NO-inhibition activity of the most common flavonoids as discussed
in literature (Wang and Mazza 2002; Matsuda et al. 2003; Wang et al. 2006; Puangpraphant et al.
2009), it may be said that a relative order of the activity among the compounds concerned persists.
For instance, the activity of compound 20, kaempferol, is higher than the activity of compound 22
in all experiments. However, the data on the NO-inhibition activity in LPS-activated macrophages
differ quantitatively only for quercetin 22: IC,;, ~ 125 uM (Wang and Mazza 2002), IC,, < 10 uM
(Wang et al. 2006), and ICy, = 11.6 uM (Puangpraphant et al. 2009). Thus, the most reliable results
and conclusions concerning the structure—activity correlation can be obtained from the series of
compounds with similar structures under the same conditions. Although works of this kind are rare,
we would like to pay special attention to these particular works.

Acacia confusa Merr. is traditionally used in the folk medicine of Taiwan. In 2008, Wu and his
coworkers reported the isolation of two flavonols, melanoxetin 64 and transilitin 65 (Figure 12.3), from
the ethyl acetate extract of the plant-wood (Wu et al. 2008). The structure of transilitin 65 differs from
the structure of melanoxetin 64 by the presence of the methylated OH group near the C-3 position; the
inhibitory activity in this case decreases almost by a factor of two. For melanoxetin 64, the activity is
characterized by an ICs, value of 6.9 UM, which is comparable with quercetin 22 (ICy, 6.4 UM, com-
pound 22 is used as a standard in the experiment), while for transilitin 65, the ICs,, value was determined
as greater than 100 uM. Melanoxetin 64 exhibited high NO-inhibition activity and inhibited iNOS
expression as well with IC, of 50 uM. The investigators explained a decrease in the activity observed
for compound 65 by an increase in the lipophilicity of its molecules with respect to compound 64.
These data do not correlate with the results from Matsuda et al. (2003) (flavonols 18-37, Table 12.2),
in which a substitution of the OH group near the C-3 atom of the ring-C normally led to a significant
decrease in the NO-inhibition activity (ICs, > 100 uM) only in the case of introducing the glycoside
residue. However, compounds 64 and 65 have the other type of substitution in ring A, i.e., they contain
OH groups at the C-7 and C-8 positions; it might be an important factor in the inhibition activity.

The extracts from the stems of Erycibe expansa, a traditional plant in Thai medicine, yielded a
number of isoflavones (Figure 12.3; Morikawa et al. 2006; Matsuda et al. 2007). Clycosin 66 and
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1 R2 4
s o ‘ 66: Clycosin:H H OH CH; 13
RZ
| 3

HO 7 _R? _
O 67: Erythrinine B: OH H H 18
OR OR* 68: OH H  OCH; H 37
) 69:OrobolOH H OH H 44
64: Melanoxetin, R=H, IC54 6.9 uM 70: Formononetin H H H CH, >100

65: Transilitin, R=CHj, IC55 >>100 uM

HO OR
H;CO W\ @

OH O

75:R=H,1Csq 35 uM
76:R=CHj, IC55 >>50 uM

71: Deguelin; R=H, IC5; 26 pM 73: Rotenone; R=H, IC5, 27 uM
72:Tephrosin; R=0H, IC5, ~100 uM  74: 12a-Hydroxyrotenone; R=0OH, IC5; ~100 uM

FIGURE 12.3 NO-Inhibitory naturally occurring flavonoids.

erythrinine B 67 exhibited the highest inhibitory activity with the IC,, values of 13 and 18 UM,
respectively. In addition, two rotenoids with the isoflavane skeleton, deguelin 71 and rotenone
72, were also found to be active having respective ICs, values of 26 and 27 uM. Rotenoids are
naturally occurring compounds, whose structure is close to isoflavones and involves the cis-fused
fragment of tetrahydrochromeno[3,4-b]Jchromene. Analysis of the structure—activity correlation
shows that the introduction of the hydroxyl groups into the node positions of rotenones in the
71/72 and 73/74 pairs causes a significant decrease in the NO-inhibiting activity and an increase
in the cytotoxicity.

The plants belonging to Arfocarpus genus (mulberry family) grow in tropical and subtropi-
cal regions and are used against fever and malaria in the traditional folk medicine of Indonesia.
Flavonoids isolated from the extracts of these plants were examined for various types of biological
activity (Wei et al. 2005). Compound 75 (Figure 12.3) was found to be a good inhibitor of NO pro-
duction in LPS-activated macrophages of the RAW 264.7 mouse; compound 76 (with methylated
hydroxyl group in ring-B) exhibits a substantially lower inhibition activity (see 64/65 pairs, Figure
12.3). Compound 75 reduces the production of NO by inhibiting iNOS expression. The lowest activ-
ity of formononetin 70 (Figure 12.3) most likely can be explained by its structure: This compound
is the most lipophilic isoflavonoid in the series (Wei et al. 2005).

12.2.2 CHALCONES

Chalcones are compounds that can be considered as flavonoids containing an open pyran ring. The
majority of the compounds from this group are found in plants in the form of glycosides. The fol-
lowing four chalcones were isolated from the extracts of Alpinia pricei Hayata roots: cardamonin
77, flavokavain B 78, and chalcones 79 and 80 (Lin et al. 2009; Figure 12.4); their NO-inhibition

77:R,=OH, R, = OH, Ry= OCH, IC5, 60.6 uM
78:R,=OH, R,= OCH,, R3= OCHj, IC5, 9.8 uM
79: R, = OCH,, R,=OCHs, Ry = OCHj, IC5, 79.0 uM
80: R, = OH, R,= OCH3, Ry=OH, IC5, 12.0 uM

FIGURE 12.4 Chalcones isolated from the extracts of Alpinia pricei Hayata roots.
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activity was studied. Compound 78 had the highest activity; according to the mechanism estab-
lished by the investigators, this compound exhibits a dose-dependent inhibition of iNOS expression
and of NF-xB activation. The data obtained indicate that chalcones 78 and 80 exhibit a higher
NO-inhibition activity; these compounds contain the phenolic hydroxyl group at C-2’ and the
methoxy group at C* position (Figure 12.4). Most likely, this kind of arrangement of the substitu-
ents in ring-B of chalcones (compounds 78 and 80) may influence their inhibition activity.

12.2.3 PHENYLPROPANOIDS

The plants traditionally applied in folk medicine, which exhibits anti-inflammatory activity, are of
interest. Many secondary metabolites having a NO-inhibition activity are isolated from the plants of
the Ginger family; these plants are widely used in oriental medicine and oriental cooking.

Alpinia galanga SWARTZ is the genus of herbaceous plants from the Ginger family. The
rhizome of A. galanga is widely used in folk medicine for preparing tinctures, e.g., as a remedy
against stomach diseases in traditional Chinese medicine, as a remedy against tympanism, and
also as antifungal and antipruritic agents in traditional Thai medicine, as additives in the cuisine
of the South and Southeast Asian countries. The NO-inhibition activity of the metabolites from
the extracts of this plant was also evaluated (Ando et al. 2005; Matsuda et al. 2005a,b; Morikawa
et al. 2005).

The major components of the extracts from A. galanga are the phenolic compounds from the
group of phenylpropanoids (Figure 12.5).

1'S-1-Acetoxychavicol acetate 81, a major component of the extracts from the rhizome of
A. galanga (Ando et al. 2005; Matsuda et al. 2005a,b; Morikawa et al. 2005), was reported to inhibit
the production of NO in LPS-activated peritoneal mouse macrophages by inhibiting B-interferon
mRNA (Ando et al. 2005) as well as by inhibiting the activation of the nuclear factor, NF-xB
(Morikawa et al. 2005). The correlation between the structure and the activity was studied not only
for acetate 81, but also for various natural and synthetic phenylpropanoids (C,—C; phenolic com-
pounds) (Matsuda et al. 2005). Let us consider the series of compounds 81-96 first; in these com-
pounds, there is a double bond between the C,~C, atoms in the propenyl substituent (Figure 12.5).

From the analysis of the data shown in Figure 12.5, the following conclusions can be made:

1. NO-inhibitory activity appears when the substituents occupy the para- or ortho-positions
in the benzene ring. See compounds 81-83, 85, 90, and 96.

2. The highest inhibition activity is observed for the compounds that contain acetoxy
groups both in the ring and near the C-1" position as a propenyl fragment; in this case the
S-configuration of the 1’-acetoxy group is preferable. See compounds 81-83 and 85.

3. The substitution of the acetoxy group at the C-4 and/or C-1’ position for OH or H (Figure
12.3), i.e., both in the ring and the propenyl radical, leads to a significant decrease in
the inhibition activity. See compounds 86-92, 94, and 95. Compounds 93 and 96 are
exceptions.

Among the phenylpropanoids, in which the double bond is located in the propenyl fragment between
the C,—C, atoms, only compounds 97-99 with the para-arrangement of the substituents in the ring
exhibited NO-inhibiting activity (Figure 12.6; Matsuda et al. 2005).

On going from the diacetate 97 to the mono-acetate 100, inhibitory activity receives a significant
decrease (Figure 12.6); however, phenols 98 and 99 containing the OH group at the C-4 and alco-
holic/aldehyde group at the C-3’ position exhibited the activity that is characterized by ICs, values
of 72 and 20 uM, respectively. During the study of the NO-inhibition activity, phenethyl ester of
caffeic acid, compound 101 with ICy, 15 uM was taken as a standard (Ando et al. 2005; Matsuda
et al. 2005; Morikawa et al. 2005). Compound 101 is referred to phenylpropanoids as well; its small
amounts can be found in propolis. This compound inhibits iNOS expression and the activation
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FIGURE 12.5 Major phenylpropanoids of Alpinia galanga possessing NO-inhibitory activity.

of NF-xB (Song et al. 2002) and is widely used as a standard in the experiments on studying the
NO-inhibition activity in natural compounds. Caffeic acid 102 itself exhibits no inhibition activity
(Matsuda et al. 2005; Figure 12.6).

12.2.4 NEOLIGNANS

Neolignans are the compounds that biogenetically related to phenylpropanoids. Along with the
phenylpropanoids, new neolignans 103-106 (Figure 12.6) were also isolated from the 80%-water-
acetone extract of A. galanga thizome (Matsuda et al. 2005a,b). From the data as shown in Figure
12.6, it appears that the NO-inhibitory activity of neolignans 102-106 is lower than the activity of
compound 81, a major extract component; galanganol C 106 exhibits the highest NO-inhibition
activity in the experiment (ICs, 33 uM). Five glycosides of dibenzofuran neolignans 107-111
(Figure 12.7), isolated from Coptis japonica, were evaluated to possess inhibitory activity against
the production of NO in activated macrophages with ICy, values of 14-25 uM (Cho et al. 2000). All
the compounds have close structures and all exhibit a high inhibition activity; however, compound
110 exhibited the best properties and inhibited the production of NO in macrophages with IC,
14 uM. All compounds 107-111 are glycosides, and it is not clear which peculiarities of the struc-
ture in compound 110 causes its higher inhibition activity.
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FIGURE 12.7 Dibenzofuran neolignan glycosides isolated from Coptis japonica.

12.2.5 PHENYLBUTANOIDS

Zingiber cassumunar, a plant from the Ginger family, is widely used in Southeast Asian countries.
In Thailand, it is called “phlai” and finds application as a spice, and also in the treatment of asthma,
bronchitis, and gastrointestinal disturbance. A methanolic extract from the rhizome of this plant
have a NO-inhibitory activity in LPS-activated peritoneal macrophages of mice (Nakamura et al.
2009). Twenty-two compounds including the new compounds 112-121 (Figure 12.8) were isolated
from this extract, most of which belong to the class of phenylbutanoids. Phlain I 112 and phlain II
113 (Figure 12.8) differ by the configuration of the substituents at C-1”; 112 exhibits NO-inhibitory
activity (ICs, 24 uM), while such activity cannot be determined for 113 at the concentrations stud-
ied. Thus, the configuration of the substituents at the C-1” is important and defines for such activ-
ity as well. The NO-inhibiting effect of compound 114 (Figure 12.8) is the same as in compounds
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FIGURE 12.8 Phenylbutanoids isolated from Zingiber cassumunar and their comparative NO-inhibitory activity.

116-117; in this case, (E)-1-(3,4-dimethoxyphenyl)buta-1,3-dien 116 (IC,, 69 uM) and (E)-1-(2.4,5-
trimethoxyphenyl)buta-1,3-dien 117 (ICs, 83 uM) inhibit the production of NO without exhibiting
any cytotoxicity (Figure 12.8).

In the context of the structural peculiarities of phenylbutanoids affecting the activity, the pres-
ence and the absence of the terminal double bond in the butenyl radical (or the presence of the
1,3-dien fragment in the structure) should be noted. Here, compounds 116—-121 can be compared
(Figure 12.8). Compounds 116 and 117 that contain the terminal double bond in the butane frag-
ment exhibit NO-inhibiting activity, whereas compounds 118-121 show no such activity in the
range of concentrations studied.

12.2.6 DIARYLHEPTANOIDS

A great deal of attention is given to diarylheptanoids (C;—C,—C, phenolic compounds) as inhibitors
of NO production in activated macrophages. More and more new data on the biological activity of
these compounds as anti-inflammatory agents have been published. By using various biochemical
tests, the molecular mechanisms of inhibition of NO production were determined (Matsuda et al.
2001; Tao et al. 2002; Morikawa et al. 2003; Matsuda et al. 2006; Han et al. 2008; Li et al. 2010;
Lai et al. 2011).

Compounds 122-125 (Figure 12.9) were isolated from the 80%-water-acetone extract of Alpinia
officinarum (Ginger family) (Matsuda et al. 2006). Among these compounds, 125 and 124 exhib-
ited a capability of inhibiting the production of NO (the ICs, values are 33 and 62 UM, respectively).

In order to make definite conclusions about the influence of the structure on the NO-inhibiting
activity of diarylheptanoids, the investigation of compounds 122-134, which were isolated from var-
ious plants applied in traditional Chinese medicine (Matsuda et al. 2001; Tao et al. 2002; Morikawa
et al. 2003), was performed under the same conditions (Matsuda et al. 2006). Compounds 122-134
shown in Figure 12.9 were compared by the presence or absence of the enone fragment and conju-
gated double bonds in the seven-member bridge, and also of the substituents in the aromatic rings.
First of all, it should be noted that compound 125, which contains the enone fragment, showed the
highest inhibitory activity among other diarylheptanoid components of the A. officinarum extract
(Matsuda et al. 2006); compound 123 with the same substitution in the aromatic rings as in 125,
but a nonconjugated double bond in the carbonyl group at C-3, exhibited a lower activity (125 [ICs,
33 uM] > 123 [ICy, > 100 uM]).
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FIGURE 12.9 Diarylheptanoids isolated from Alpinia officinarum and their comparative NO-inhibitory activity.

Compound 122 containing unsubstituted aryl fragments and having the same structure of the ali-
phatic chain as in 123 also exhibited a low inhibition activity (ICs, > 100 uM). It is clear that the sub-
stituents in the aromatic rings do not influence the inhibitory activity, while the structure of the aliphatic
fragment connecting two aromatic rings plays an important role in the inhibition. Thus, compounds 126,
127, 129, and 131, which contain the keto-group conjugated with three double bonds, exhibit the close
and the high IC,, values, i.e., 11, 14, 14, and 18 uM, respectively. These diarylheptanoids have the same
structure of the C,—C, fragment, but differ by the substitution in the aromatic rings. It is appropriate to
compare compounds 126, 128, 130, and 132 (Figure 12.9) with each other. When the substitution of the
aryl fragments is the same, and the number of double bonds between the C,—C,; atoms decreases, the
NO-inhibiting activity decreases as well: ICs, 11, 25, 90, and >100 UM, respectively.

A low inhibition activity is observed for compounds 130, 133, and 134 (Figure 12.9), ICs, 90,
>100, and >100 uM, which have the same structure of the C,—C, fragment and differ by the substitu-
tion in the aromatic rings. Thus, the presence of the keto-enol fragment in the aliphatic chain does
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not cause an occurrence of a high NO-inhibition activity. The enone fragment without its conjuga-
tion with double bonds in compound 125 results in its rather high activity; however, the presence
of the keto-enol fragments without the system of the conjugated double bonds in the C,—C, bridge
in compounds 130, 133, and 134 does not contribute to the NO-inhibition activity. It is suggested
that the considered diarylheptanoids blocks the activation of NF-kB (Matsuda et al. 2006); no more
precise information about the mechanism of inhibition was published.

5-O-Methylhirsutanonol 135, isolated from Alnus japonica, Betulaceae (Figure 12.10), inhibited
the production of NO depending in a dose-dependent manner (1Cs, 14.5 uM), expression of iNOS
proteins and iNOS mRNA, and also the activation of the nuclear factor, NF-xB (Han et al. 2008).
This is true, the substance 135 acts as an inhibitor in various biochemical models. The inhibitory
activity of compound 135 is higher than the activity of oregonin 136 (Figure 12.10) isolated from
the same plant. Thus, the bulky hydrophilic substituent is supposed to reduce the inhibitory activity.

Twenty-two new diarylheptanoids were isolated from the extracts of Curcuma kwangsien-
sis (Ginger family) rhizome (Li et al. 2010); compounds 137-148 were examined for the inhibi-
tion of NO production in LPS-activated macrophages. For several compounds, the separation of

O OMe OH

HO OH HO,, WOH
e i
HO 50 14 .“ OH HO (0] OH
135: 5-O-Methylhirsutanonol
1C50 >50 pM
i OH

OR, HO 136: Oregonin
RZO OR,
R,0 %
" S (
3
1C50 UM
50 3 ORZ

Ry, Ry, C
1378 H H S 583 R0 R Ry, C ICyuuM
137b H H R 966 1388 H H S 4202
139a Ac H S 4951 138b H H R 20.56
139b Ac H R 2849 1402 Ac H S 6.54
140b Ac H R 15.63
OR
3 1 /7 3 OR,
J ® ” g
6
R,0 OR O O
R, R 3 2 HO
1 2 @ ICSO IJM R1 R2 C3 |C50 “M
1412 H H 5 9.83 142a  H H s 3.86
141b H 16.11 142b H 7.34

Ho/‘/_l;l)cj;g\u;\‘/‘/\)l\/\/\‘\

HO 143:1C,, 8.93 uM 145:1C; 5.58 uM

o]

(0] N F
® ®
3 HO 147:1C5, 4.79 pM OH
HO 146:1C5, 16.63 uM OH
o) \}/O/CI

N

149: Indometacin
HsC0 & Yk ICs0 12.96 pM
H;CO
HO OH

148:1C, 2.69 uM COOH

FIGURE 12.10  Structure-activity relationships within NO-inhibitory naturally occurring diarylheptanoids.
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enantiomers was performed using chiral columns, and the conclusions about the structure—activity
correlation were made with the asymmetric configuration of the carbon atom taken into account.
The major part of the isolated compounds exhibit the high NO-inhibition activity, ICs, < 15 uM
(Figure 12.10). Indometacin 149, an anti-inflammatory drug (ICs, 12.96 uM), was used as a stan-
dard in the experiment; this substance is referred to the derivatives of indole acetic acid and has
a pronounced analgetic activity found to be effective against rheumatoid arthritis, periarthritis,
ankylosing spondylitis, osteoarthrosis, and podagra. All diseases outlined in the preceding text are
believed to be associated with the excessive amounts of NO in organism (Li et al. 2010).

The inhibiting activity has almost no differences for the S/R enantiomers; it is high for both
S- and R-isomers. However, it should be noted that in the majority of enantiomer pairs (except
138a/138b and 139a/139b pairs, Figure 12.10), the inhibition activity decreases upon moving from
S- to R-enantiomer. The introduction of the substituents, OH or OCHj into the aryl fragments and
the presence of the double bonds in the C,—C; fragment have also no influence on the inhibitory
activity. Although in each pair the activity differs almost by a factor of two, the authors assume it to
be negligible, since all compounds 137-148 exhibit a rather high inhibition effect.

New data on the NO-inhibition activity of diarylheptanoids are continuingly published. Thus,
27 secondary metabolites were isolated from the extracts of Alnus formosana leaves with the
purpose of studying their anti-inflammatory activity (Lai et al. 2011); 13 from those diarylhep-
tanoids were newly found. Among the other components of the extract, new compound 150 and
alnuside A 151 (Figure 12.11) exhibited the highest NO-inhibition activity in LPS-activated
macrophages (ICs, 7.99 and 8.08 uM, respectively) without any cytotoxic effect. Let us compare
compounds 150/151 with the pair of diarylheptanoids, 135/136 (Figure 12.10). While, in the
135/136 pair, the activity decreases almost by a factor of three upon replacing the methyl group
for glycoside, in the 150/151 pair, the activity is almost the same upon replacing the n-butyl radi-
cal for the glycoside residue. It is difficult to make definite conclusions about how the substituent
affects the activity.

The bark of Acer nikoense Maxim. (Aceraceae, grows in Japan) is used as folk medicine for
the treatment of liver diseases and eye diseases. Cyclic diarylheptanoids 152-155 and acyclic dia-
rylheptanoid 156 (Figure 12.11) were isolated from the extract of the A, nikoense Maxim. Bark
(Morikawa et al. 2003); those compounds exhibited NO-inhibiting activity without any cytotoxic
effect. Comparing the 152/153 and 154/155 pairs by the NO-inhibition activity, the authors indi-
cated that biphenyl derivatives of diarylheptanoids, 154 and 155, exhibit a higher activity than
phenyl esters, 152 and 153. Thus, the presence of the biphenyl fragment most likely affects the
NO-inhibition activity.

O OCH,CH,CH,CH;
HO 0 om,U HO
® :
HO 150: ICs 7.99 uM O
151: Alnuside A

152: Acerogenln A, IC50 74 uM

SRS )
HO HO HO
0] HO Ho M
OH OH
‘ ‘ ‘ 156: (-)-Centrolobol, IC5, 73 uM

153: Acerogenin B 154: Acerogenin K 155: Acerogenin E
1C50 88 M IC50 25 pM IC50 24 pM

IC50 8.08 uM OH

FIGURE 12.11 Naturally occurring acyclic and cyclic diarylheptanoids possessing NO-inhibitory activity.
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12.2.7 COUMARINS

More than 50 compounds were isolated from the extracts of Angelica furcijuga, a known medicinal
plant widely used in Japanese folk medicine as a hepatoprotector, and an anti-inflammatory, anti-
allergic, and hypotensive agent (Matsuda et al. 2005a,b; Yoshikawa et al. 2006). A large number of
metabolites bear the coumarin skeleton. The coumarins of the khellactone-type, 157-167 (Figure
12.12), exhibited a significant activity with respect to the inhibition of NO production in LPS-
activated macrophages (Matsuda et al. 2005; Yoshikawa et al. 2006); compounds 160 and 162-166
have ICs, < 10 UM and do not cause any toxic effect (Figure 12.12); and pterixin 161 and saxdorphin
167 showed ICs, values of 20 and 11 uM, respectively. The known iNOS inhibitor, L-NMMA, was
used as a comparison sample; this compound exhibited a lower activity (ICs, 28 uM) under the
experimental conditions in comparison to coumarins 160-167.

Compounds 157 and 158 exhibited a much lower activity than coumarins 160-167; most likely the
acylation of both OH groups at the C-3" and C-4" atoms is required for an occurrence of NO-inhibitory
activity. In addition, ICs, of isoepoxypteryxin 159 is almost four times less than the ICs, value of com-
pound 160. Thus, epoxidation of the double bond in the acyl radical causes a decrease in the activity.

The furocoumarins 168-170 (Figure 12.13) exhibited the NO-inhibitory activity in a signifi-
cantly different manner than the others (Murakami et al. 1999). The furocoumarins 168-170 bear
the skeleton of psoralen 171 (Figure 12.13); their activity varies depending on the structure of “R”
group. Compounds 168 (Bergamottin) and 170 contain geranyl moiety in the structure; however,
in 170, there is a diol fragment over the C,—C;, atoms. The inhibition activity of compound 170 is
almost 10 times less than the activity of furocoumarin 168. In the structure of compound 169, the
diol fragment is located in the isoprenyl moiety, and the activity of compound 169 is lower than
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FIGURE 12.12 Khellactone-type coumarins exhibiting significant inhibition against NO production in
LPS-activated macrophages.
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FIGURE 12.13 NO-inhibitory furocoumarins.

the activity of compound 168 more than in 20 times. Thus, the presence of the diol fragment in the
moiety is supposed to influence the bioactivity of the substituted coumarins and leads to a decrease
in the inhibition effect.

The known natural coumarins, 171-191 (Figures 12.13 and 12.14), isolated from the plants of
Rutaceae exhibited no cytotoxicity during studying their NO-inhibition activity (Murakami et al.
1999). Compounds 171-191 were arbitrarily divided into three groups in accordance with their struc-
tural peculiarities. In the group of coumarins 172-177, all compounds contain an isoprenyl fragment
and alkylated OH groups in the structure (except compound 174). In the group of coumarins 178—
180, the isoprenyl fragment forms a dimethyl chromene cycle. Compounds 182, 183, and 184 contain
OH groups in the isoprenyl fragments. In the structures of compounds 185, 190, and 191, the phenol
groups are not alkylated. The investigation of the NO-inhibition was activity carried out at two con-
centrations of 10 and 50 uM (Murakami et al. 1999); the results indicated that, at a concentration of
10 uM, only dentatin 175 (Figure 12.14) inhibits the production of NO in LPS-activated macrophages
by more than 50% (~80%), whereas the other coumarins exhibit a much lower activity. Thus, the
compounds 168 > 172 > 173 > 174 (in the order of decreasing activity) inhibited the production of
NO by 25%-30% at a concentration of 10 uM. Compounds 176, 177, 181, and 178 had the activities
close in value and inhibited the production of NO by ~15% at a concentration of 10 uM. More than
half of all the compounds studied did not exhibit any inhibition capabilities at this concentration.
In the experiment involving compound 170, the production of NO increased. At a concentration of
50 uM, the inhibition of NO production by a little higher than 50% was observed for compounds
172 > 173 > 174 > 176 > 177 (in the order of decreasing activity); the concentration of NO was found
to be abruptly increased to 20% in the experiments with compounds 190 and 191. The analysis of the
structures of the compounds exhibiting a high activity revealed the presence of the isoprenyl moiety
and alkylated OH groups in the skeleton (except coumarin 174). Thus, a higher NO-inhibition activ-
ity is observed for the coumarins containing bulky alkyl groups and alkylated OH functions in the
structure; this kind of coumarin is also called prenylated coumarins.

12.2.8  STILBENES

The other group of phytogenous phenolic compounds of plant origin capable of inhibiting the
production of NO in activated macrophages is stilbenes (C,—C,—C, compounds). It was shown
that pterostilbene 192 (Figure 12.15), trans-3,5-dimethoxy-4'-hydroxystilbene, a dimethyl analog
of resveratrol 193, isolated from Vaccinium ashei and Vaccinium stamineum, exhibits the anti-
inflammatory activity similar to compound 193 and causes apoptosis of various cancer cells (Pan
et al. 2008). By polymerase chain reaction (PCR) analysis, pterostilbene 192 was found to inhibit
the production of NO (IC, 25.3 uM) and to block the synthesis of iNOS mRNA in LPS-activated
macrophages. Dihydrostilbenes (bibenzyls) 194-197 (Figure 12.15) isolated from Dendrobium
nobile also exhibit iNOS-inhibitory activity (Zhang et al. 2007).

Compounds 194-197 (Figure 12.15) were evaluated to inhibit the production of NO without
exhibiting a cytostatic effect. It should be noted that nobilin D 194 shows a higher NO-inhibitory
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FIGURE 12.14 Naturally occurring NO-inhibitory coumarins.

activity than the comparison sample, resveratrol 193, and higher by a factor of two more than
dihydrostilbene 197. The latter is most likely a result of the presence of the hydroxyl group in the
a-position (R,) in nobilin D 194; this peculiarity distinguishes it from bibenzyls 195-197. Thus, the
presence of the OH group in the bridge connecting the aryl fragments is an important factor for an
occurrence of inhibitory activity. It is believed that the biological activity of peanuts is defined by
the presence of stilbenes in their composition, i.e., mostly resveratrol 193 and its derivatives (Stivala
et al. 2001; Djoko et al. 2007). As can be seen from Figure 12.15, the stilbenes from peanuts 193,
198, and 199 differ from each other by the number of hydroxyl groups and the presence or absence
of the isoprenyl fragment. It is reported that arahidin-1 198 and piceatannol 199 have a higher
NO-inhibition effect in LPS-activated macrophages than compound 193 (Djoko et al. 2007). Thus,
it can be concluded that the combination of OH groups in the C-3" and C-4’ positions affects an
occurrence of inhibition activity.
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FIGURE 12.15 Naturally occurring NO-inhibitory stilbene derivatives.

12.2.9 Bis-BiBeNzYLs

Bis-bibenzyls are macrocyclic dimer bibenzyls (200-218; Figure 12.16) biogenetically related
to dihydrostilbenes. The natural source of bis-bibenzyls is liverworts, and their (200-218)
NO-inhibitory activity has been evaluated by Harinantenaina et al. (2005). Marchantin A 200
has been found to be the strongest inhibitor in the series (ICs, 1.44 uM); the introduction of the
hydroxyl group into the C-12 position (as can be seen by the example of marchantin B 201) some-
what decreases the inhibition activity (marchantin B 201, ICs, 4.1 uM). An additional hydroxyl
group in the C-7’ position causes a decrease in the activity of compound 203 (ICs, 10.18 uM);
methylation of this group also leads to a decrease in the activity by a factor of 40 (ICs, 62.16 uM)
in comparison to marchantin A 200. Perrotetin F 214 exhibits a high inhibition activity (ICs,
7.4 uM); the substituents in rings A and B in this compound are analogous to the substituents in
marchantin A 200.

The IC;, values for 206 and 207 containing methylated hydroxyl groups have been measured
as 42.5 and 42.45 uM, respectively. This fact confirms a significant role of the nonsubstituted
hydroxyl groups in the inhibition of NO production. However, riccardins A and F, 215 and
217, which have one methoxy group in the C-11 and C-1’ positions, exhibit high inhibition
activities (2.5 and 5 UM, respectively). Most likely, the reason behind this situation is a num-
ber of structural peculiarities of riccardins, i.e., the free hydroxyl group in the C-13’ position,
C,,—C,,-biphenyl bond, and the methoxy group in the C-11 or C-1’ position. The data shown
in Figure 12.16 confirm this suggestion with the example of riccardin C 216, which has a low
inhibition activity characterized by an ICs, value of above 100 uM. It should be noted that the
inhibition activity of isoplagiochin D 211 is three times lower than the activity of riccardin F
217, despite the fact that rings B and D are substituted in the same way. A possible explanation
of this behavior is the presence of the C(—C, biphenyl bond and the hydroxyl groups in rings A
and C; altogether they provide a rigid conformation of compound 211.
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FIGURE 12.16 Naturally occurring NO-inhibitory bis-bibenzyls.

12.2.10 TEerRPENOIDS

The compounds isolated from Laurus nobilis are widely used in cookery and folk medicine. The
extract metabolites 219, 220, and 221 (Figure 12.17) were found to exhibit the NO-inhibitory activ-
ity, but the molecular mechanism of this process still remains unclear (De Marino et al. 2004).
Megastigmane glycosides 219, 220, and 221 isolated from the extracts of Laurus do not belong to
terpenoid glycosides, since the aglycon skeleton contains 13 carbon atoms; however, the isolated
glycosides exhibit a high biological activity. Compounds 220 and 221 have a special skeleton, which
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FIGURE 12.17 NO-inhibitory terepenoids isolated from Laurus nobilis.
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involves the allene fragment; that is why they are considered in this review. Compounds 219-221
(Figure 12.17) inhibit the production of NO by 50% at a concentration of 10 uM.

It is noted in many phytochemical works (Rungeler et al. 1999; Castro et al. 2000; Siedle et al. 2004)
that sesquiterpene lactones are found to be the major components of the extracts from the plants of the
Asteraceae family. Extracts, tinctures, and decoctions from these plants are used in folk medicine as
anti-inflammatory agents. Sesquiterpene lactones in low concentrations, from micromoles to nanomoles,
inhibit the production of NO; a large number of these compounds do not exhibit any cytotoxic effect
during inhibition. The mechanism of the action of sesquiterpene lactones involves the inhibition of the
nuclear factor, NF-xB, with the ICy, value in the range of 5-10 uM. There are several works in which the
attempts to determine the structure—activity correlation for the studied compounds were made, despite
the complexity and diversity of lactone skeletons. Thus, analyzing the structure—activity correlation for
28 isolated lactones, Rungeler et al. (1999) commented that the high activity of compounds correlates
with the presence of the following two fragments in the structure: o-methylene-y-lactone fragment and
0O.~, B- or -, 6-unsaturated carbonyl groups. An increase in the lipophilicity has no effect on the NF-xB-
inhibition activity. A comprehensive study of the bioactivity of sesquiterpene lactones was conducted
by Siedle et al. (2004), where the inhibitory activity with respect to the activation of the nuclear fac-
tor NF-xB was studied in 103 various sesquiterpene lactones belonging to six structural groups (44
germacranolides, 16 heliangolides, 22 guaianolides, 9 pseudoguaianolides, 2 hypocretenolide, and 10
eudesmanolides). Almost all compounds examined exhibited high levels of activity. The activation of the
nuclear factor, NF-kB, initiates iNOS expression and other proinflammatory mediators.

Sesquiterpene lactones (222-230, Figure 12.18) isolated from Artemisia sylvatica exhibited
NO-inhibition activity in LPS-activated macrophages characterized by the ICs, values in the range
from 0.49 to 7.17 uM (Jin et al. 2004); the inhibition proceeds through the activation of the nuclear
factor NF-xB without an occurrence of the cytostatic effect. The authors emphasize an importance
of using extract components for treating inflammations of various etiologies. Lactones 222-230
contain the o-methylene-y-lactone fragment in the structure; compounds 222, 226, 228, 229, and

FIGURE 12.18 Sesquiterpene lactones isolated from Artemisia sylvatica exhibiting significant inhibition
against NO production in LPS-activated macrophages.
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230 also contain the enone fragment. Thus, the presence of these structural components plays an
important role in the occurrence of inhibition activity (Rungeler et al. 1999).

Lactones 231-232 and the conjugates of these lactones with amino acids, 233-234 (Figure
12.18), the major components of the methanolic extract from Saussurea lappa Clarke roots, have
the similar properties (Moore et al. 1994). Compounds 231-234 cause a reduction in the production
of NO in LPS-activated peritoneal macrophages of mice by inhibiting NF-kB expression. A fact
worthy of note is that during the formation of conjugates 233-234 (Figure 12.18), the methylene
group in the active fragment of the lactone disappears; however, no decrease in the NO-inhibition
activity was observed, and this is quite unclear from the standpoint of the postulated mechanism of
inhibition (Rungeler et al. 1999; Castro et al. 2000; Jin et al. 2004; Siedle et al. 2004).

Balsamodendron mukul Hook. is a medicinal plant that grows in India, Sri Lanka, and in the
north of Africa (Matsuda et al. 2004). The water-methanol extract from the resin of this plant also
inhibited the production of NO in LPS-activated peritoneal macrophages of mice. The compounds
239-249 (Figure 12.19) of various structures (diterpenoids, triterpenoids, and steroids), isolated
from this extract, exhibited the inhibition activity without any cytostatic effect. In particular, the
triterpene alcohol, mirrhanol A 236, and the diterpene alcohol, mukulol 249, which are the major
components of the extract, acted as selective dose-dependent inhibitors of iNOS expression. It is
likely that the presence of these particular components defines the therapeutic effect of this plant. In
the 235-237 series of compounds, compound 237, whose structure contains the hydrocarbon sub-
stituent at C-9 position, has the lowest activity; hence, the presence of the polar group is important
for an occurrence of activity. The presence of the OH group at the C-3 position in compounds 235-
237 in place of the carbonyl group at the same carbon atom (compounds 238-241) has no influence

235: R=COOH; Myrrhanol B, IC5; 61 uM 238: R=COOH; Myrrhanon B, IC5, >>100 pM
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FIGURE 12.19 Terpenoid constituents of Balsamodendron mukul Hook.
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on the inhibition activity. Most likely, the activity of compounds 235-241 is defined by the structure
of the alkyl group at the C-9 position. It is interesting to note that compounds 243-246 having the
skeleton of progesterone 242 exhibited a high degree of NO-inhibitory activity (Figure 12.19); the
activity of compounds 245 and 246 is higher than the activity of compounds 243 and 244. The main
structural distinction of these pairs is the presence or absence of the exocyclic double bond, respec-
tively; consequently, the configuration of the double bond is not so important for the occurrence of
inhibition activity. Compounds 247 and 248 (Figure 12.19) are dammarane-type triterpene alcohols
differing by the presence of the OH group at C-17 in the triterpene skeleton of compound 248; the
NO-inhibitory activity of triol 248 is over five times lower than the activity of diol 247.

Isodon xerophilus is a perennial shrub from Yunnan, a Chinese province; the leaves of this
plant are used as part of traditional Chinese medicine for the treatment of sore throats, inflam-
mation, and flu.

Diterpenoids, i.e., xerophilusin A 250, xerophilusin B 251, longikaurin B 252, and xerophilusin F
253 (Figure 12.20), so-called ent-kauranes, inhibited the production of NO in LPS-activated macro-
phages RAW 267.7 with the ICs, values of 0.60, 0.23, 0.44, and 0.67 UM, respectively, and also inhib-
ited iNOS expression in these cells (Aquila et al. 2009). Compounds 250-253 were found to inhibit the
activation of NF-kB as well. The inhibition activity of ent-kauranes with respect to the nuclear factor,
NF-xB, is most likely defined by the presence of certain reaction sites in the structure. Thus, different
authors pay attention to the exo-methylene group conjugated with the carbonyl group in the cyclopen-
tanone fragment. This reactive group interacts with biological nucleophiles, such as the thiol group
of cysteine, in the DNA-binding domain of the NF-kB subunits through the Michael-type reaction.

A high activity of ent-kaurane diterpenoids 254-257 (Figure 12.21) was noted by Giang et al.
(2003); the sesquiterpene lactone, parthenolide 258, used as a standard, showed the NO-inhibiting
activity lower almost by an order of magnitude than diterpenoids 254-257 studied; the mechanism
of inhibition for these compounds involves the suppression of NF-xB activation.

H5CCOO

OH
250: Xerophilusin A, 1C5, 0.60 uM  251: Xerophilusin B, IC5, 0.23 uM

252: Longikaurin B, IC5 0.44 uM  253: Xerophilusin F, 1C54 0.67 uM

FIGURE 12.20 Ent-kaurane diterpenoids isolated from Isodon xerophilus exhibiting significant inhibition
against NO production in LPS-activated macrophages.

Ry R R ICso UM S
254:H H OH 0.26 ,
255:H OAc H 0.21 ‘0 =

(0]
256:0Ac H OH 0.47
257:H OAc OH 0.15

0]
Parthenolide: 258, IC5, 2.01 uM

FIGURE 12.21 Potent NO-inhibitory ent-kaurane diterpenoids.
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Ry R Ry Ry Rs Re  1CsouM
259: H B-OAc OH H OH =0 0.67
260: OH [(-OAc H H OH =0 0.56

261: H a-OH  OAc H OH -OH >10
262: OH B-OH H OH  OAc =0 2.89

263 H =0 OAc H OH =0 136
264: H =0 H OH OH =0 124
265 OH PB-OAc H H OAc =0 048
266: OH PB-OAc H =0 OAc =0 069
267 H PBOAc H OH OH =0 063
268: OH PB-OAc H OH OH =0 252
269: OH PB-OAc H OH OAc =0 094
270: OH pB-OAc H OH OAc BOH >10

FIGURE 12.22 NO-inhibitory ent-kaurane diterpenoids isolated from Isodon excisus.

Isodon excisus (Labiatae) is a perennial plant commonly occurring in Korea, China, and Japan
and is used in folk medicine for the treatment of gastrointestinal infections (Hong et al. 2007). Ent-
kaurane diterpenoids 259-270 exhibiting a high NO-inhibition activity were isolated from the top
of this plant (Figure 12.22). The mechanism of inhibition is the same as in the related ent-kauranes
(Giang et al. 2003; Hong et al. 2007; Leung et al. 2005; Sun et al. 2006): The inhibition occurs
through the suppression of NF-xB activation. A lower (relative to the other compounds of the group
studied) NO-inhibition activity was observed for compounds 261 and 270; this is most likely owing
to the presence of four OH groups in the structure.

Three interesting compounds exhibiting a high NO-inhibition activity were isolated from the
extracts of Ferula fukanensis roots: sesquiterpene coumarins 271-279 (Figure 12.23) (Motai et al.
2004), sesquiterpene phenylpropanoids 280-284 (Figure 12.24) (Motai and Kitanaka 2005a,b), and
sesquiterpene chromones 285-289 (Figure 12.25) (Motai and Kitanaka 2005). The comparison
of the structures of these compounds allows certain conclusions about the structure—activity cor-
relation to be made. As seen from Figure 12.23, there is no keto-group in the sesquiterpene frag-
ment in compounds 271 and 272; both of these compounds do not show any inhibition activity
(Figure 12.23). The inhibition activity of the other compounds is rather high (ICy, is in the range of
8.9-31.2 uM) and is comparable for the pairs of cis- and trans-isomers (by the C,—C; bond in the
furan cycle), i.e., 273/274, 275/276, and 277/278; hence, it can be concluded that the configuration
of the C-2 and C-3 atoms in the furan cycle have no effect on the inhibition activity. However, the
inhibitory activity somewhat increases in the following order: 273/274 < 275/276 < 277/278. From
the comparison of the results, it can be concluded that the presence of the carbonyl group is an
important factor for the occurrence of inhibition activity. If the carbonyl group is conjugated with
the double bonds as observed in compounds 275/276, the inhibition activity is somewhat higher than
for compounds 273/274 containing the isolated carbonyl group. In these structural series of furo-
coumarins, compounds 277/278, in which the C;—C, double bond has a Z-configuration, exhibited
the highest activity. In compound 279, furan cycle discloses, but owing to the fact that the enone
fragment remains intact in the sesquiterpene molecule, the NO-inhibitory activity remains as well at
rather high level (ICs, 19.5 uM, which is comparable with the ICs, values for compounds 273-278).

Fukanedones A 280 and B 281 (Figure 12.24) do not inhibit the production of NO, since they
do not have the carbonyl group in the sesquiterpene fragment (Motai and Kitanaka 2005). The
other isolated compounds, 282-284, exhibit NO-inhibitory activity in accordance with the values
as shown in Figure 12.24; the cytotoxic effect of the compounds studied is negligible. Compounds
282 and 283, which contain a keto-dienone fragment in the structure, have the highest inhibition
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278:1C57 8.9 uM

279:1C5, 19.5 uM

FIGURE 12.23 Sesquiterpene coumarins isolated from the extracts of Ferula fukanensis exhibiting a high
NO-inhibition activity.

HO

282: Fukanedone C, IC5, 6.7 uM

H3CO
284: Fukanedone E, IC5, 76.2 uM

FIGURE 12.24 Sesquiterpene phenylpropanoids isolated from the extracts of Ferula fukanensis exhibiting
a high NO-inhibition activity.
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288:1C54 24 uM

HO o 289:1C5 10.7 pM

FIGURE 12.25 Sesquiterpene chromones isolated from the extracts of Ferula fukanensis exhibiting a high
NO-inhibition activity.

activity (Figure 12.24); but in contrast to the previous work (Motai et al. 2004), compound 282
with the E-configuration exhibits the highest activity. It should be noted that the presence of an
o, B-unsaturated keto-group in the sesquiterpene fragment is an important factor in the occurrence
of NO-inhibition activity. When the furan cycle occurs between the C;—C;, atoms, the inhibition
activity is decreased (compound 284, Figure 12.24). The mechanism of action of compounds
282-284 involves inhibition of iNOS RNA expression in LPS-activated macrophages.

In the case of sesquichromones 258-289 (Figure 12.25), the NO-inhibition activity is high
regardless of the structure of sesquiterpene radical (ICs, is in the range of 10.7-29 uM) (Motai
and Kitanaka 2005). Moreover, the highest activity is found for compound 289, the sesquiterpene
fragment of which does not bear any carbonyl group; these data do not correlate with the data from
Motai et al. (2004) and Motai and Kitanaka (2005a,b). From the analysis of these data, it can be
concluded that, in the case of sesquichromones 285-289, the chromone skeleton itself has the most
influence on the NO-inhibition activity.

12.2.11 ALKALOIDS

During studying the 80%-water-methanol extract from Crinum yemense (Amaryllidaceae), it was
shown that the extract inhibits the production of NO in the LPS-activated macrophage medium.
The following alkaloids isolated from this extract also inhibit the production of NO (Abdel-Halim
et al. 2004): yemenine A 290, (+)-crinamine 291, (+)-6-hydroxycrinamine 292, and (-)-licorine
293 (Figure 12.26) (the ICy, values are 4.9, 1.8, 5.4, and 2.5 UM, respectively). By the mechanism
of action, these compounds were referred to the agents inhibiting iNOS expression. Eucophylline
294 (Figure 12.26), a new tetracyclic vinyl-chinoline-type alkaloid isolated from the extract of
Leuconotis eugenifolius along with leucophyllidine 295 (Deguchi et al. 2010). During the exami-
nation of these compounds for the NO-inhibition activity, it was found that compound 295 exhib-
its a high dose-dependent inhibition activity, while compound 294 does not (Figure 12.26).
Recently, Chen et al. (2010) reported more than 20 -carboline-type alkaloids from the extracts
of Stellaria dichotoma var. Lanceolata roots, among which 13 were new; five compounds (296-300)
are the major components of the extract and exhibit high inhibition activities (ICs, are shown in
Figure 12.27) comparable with the standard, aminoguanidine (ICs, 4.6 uM). Isatis indigotica Fort
is referred to Cruciferaceae family and is a natural source of indigo. The extract of Isatis roots is
widely used in the traditional Chinese medicine against acute and chronic diseases, such as flu,
viral pneumonia, and hepatitis. Isaindigotone 301 (Figure 12.27) isolated from the chloroform-
butanol fraction of the extract from roots (Wu et al. 1997) inhibits the production of NO in LPS-
activated macrophages RAW 264.7 with IC5, > 10 uM (Molina et al. 2001). The synthetic analogs
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OCH,3 ~OCH,4

OH

Hoy,, h
O

293: (-)-Licorine, IC54 2.5 pM

295:1C5; 7.1 M

FIGURE 12.26 Naturally occurring alkaloids with NO-inhibitory activity.

296: R, = H, R,=H, Ry = (E)-CH = CHCO,CHs, IC5, 17.3 uM
297:R,=H, Ry=H, Ry=H, IC5, 19.3 uM
298: R, =H, R,=H, Ry = (Z)-CH = CHCO,CHj, ICs; 18.6 uM

301:R, = OCH; R,= OH Ry = OCH; IC5 >10 uM

\ 300: 1Cs 17.9 M 302: Ry = OCH; R, = OAC Ry= OCH; IC5 4.2 uM
299:1C 113 U 303:R;=HR,=0AcRy=HIC5, 1.8 uM
50 [
HO R
= = X OCH,
304: (-)-Falcarinol, R=H; IC5, 4.8 uM H5CO OCH5
305: (-)-Falcarindiol, R=0H; IC;5, 4.4 uM 306: Antrocamphin A, ICs, ~15 uM

FIGURE 12.27 B-Carboline-type alkaloids isolated from Stellaria dichotoma var. Lanceolata roots exhibit-
ing a high NO-inhibition activity.

of compounds 301, 302, and 303 inhibit the production of NO at lower concentrations (ICs, 4.2 and
1.8 uM, respectively). Hence, the presence of the acetoxy group at C-4’ atom is important for the
occurrence of the activity.

12.2.12  ACETYLENES

Diacetylenes 304 and 305 (Figure 12.27) were isolated from the extracts of A. furcijuga, a well-
known medicinal plant widely used in the folk medicine of Japan as a hepatoprotector and anti-
inflammatory, anti-allergic, and hypotensive agents (Yoshikawa et al. 2006). Compounds 304
and 305 exhibited a high activity as inhibitors of iNOS. The major component of the extract
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from Taiwanofungus camphorates used in the Taiwanese medicine for treating liver cancer
(Hsieh et al. 2010) can be given as an example of the acetylene-type compound having a high
inhibition activity. Antrocamphin A 306 (Figure 12.27) inhibits the production of NO at a con-
centration of IC5, ~ 15 UM, which is higher than the activity of the standard, quercetin 22 under
given conditions; it suppresses iNOS expression by inhibiting the activation of NF-kB. In the
series of compounds 304-306, there is a conjugated system of double and triple bonds (304 and
305), including the aromatic ring 306, which might have an important influence on the occurrence
of NO-inhibiting activity.

12.3 CONCLUSIONS

Plant secondary metabolites possess promising nitric-oxide-inhibitory potential as reflected from
the detailed discussion in this chapter. The following conclusions about the correlation between the
structure and the NO-inhibition activity can be inferred:

1. Upon moving from the phenolic compounds to the corresponding glycosides, a decrease in
the inhibition activity is normally observed.

2. Flavonoid-type metabolites, in which the hydroxyl functions (phenolic or alcoholic) are
“shielded” with alkyl groups, have a higher NO-inhibitory activity; as explained by the
investigators of various works, an increase in the “lipophilicity” of molecules causes an
increase in the inhibition activity. This is valid in the case of coumarins as well, and it is
shown that molecules containing isoprenyl moiety exhibit high inhibition activity.

3. Arylpropanoids and diarylheptanoids form a large group of compounds having a high
inhibitory activity against NO; for diarylheptanoids, the inhibitory activity increases in the
case if there is an enone fragment in the seven-member bridge, especially if this fragment
is conjugated with double bonds. Thus, the higher the length of conjugation in the seven-
member bridge, the higher the inhibition activity.

4. Unfortunately, the structure—activity correlation cannot always be explained even in the
groups of structure-related metabolites.

Analysis of the current status in the problem related to the search for new selective iNOS inhibitors
among natural compounds shows the following:

1. A large number of natural compounds, isolated from the extracts of plants that are used in
folk medicine against various inflammatory diseases, were examined for the inhibition of
NO production LPS- or y-IFN-activated macrophages.

2. The inhibitory mechanism of NO production in cells is associated with both the inhibition
of iNOS expression and the inhibition of NF-xB activation, and in the case of the metabo-
lites, the inhibition of NF-kB activation is more common.

3. Frequently, secondary plant metabolites have a very high inhibitory activity; hence, there
are two possible research areas: (a) searching for natural inhibitors that involve the deter-
mination of the major components of the extracts, the development of the methods for
their isolation, and the chemical modification of available natural compounds with the
peculiarities of structure—activity correlation taken into account, and (b) searching for
natural inhibitors having a high and unique activity; if the isolation of these compounds is
not possible in sufficient amounts due their low contents, the synthesis from the available
substrates is performed.

4. Analysis of the structure-activation correlation performed for secondary plant metabolites
is very important for determining the main direction of chemical modification of natural
skeletons, since the purpose of these transformations is to obtain compounds having a
higher inhibition activity and low toxicity.
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The diversity of the nature is inexhaustible, hence the investigation of plant extracts, the isolation of
bioactive compounds from them, and the analysis of the structure-activation correlation expand the
outlook of chemists-organics and turn their steps to obtaining biologically active compounds with
a given activity and to the synthesis of compounds that can be used for creating new drugs with a
high activity and low toxicity.
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13.1 INTRODUCTION

Steroids constitute a very large group of natural and synthetic compounds with a broad range of
biological activities. The basic steroid nucleus consists of three fused cyclohexane rings and one
cyclopentane ring as shown in Figure 13.1, which illustrates the standard steroid numbering and
ring nomenclature.

The diversity of steroids results primarily from variation in the side chains R;, R,, and R;, and
secondarily from differences in nuclear substitution and in the degree of unsaturation. R, and R,
are generally methyl groups, which may occasionally be oxygenated. R, is absent in the estrogenic
hormones and other steroids having ring A and/or B aromatic. The side chain R; may comprise
2,4,5,8,9, or 10 carbon atoms: if it is absent, the position is usually oxygenated. There are four
rings in a steroid skeleton and hence there are three fusion points. A/B, B/C, and C/D rings share
two carbons each (fusion). Every fusion center can either be trans- or cis-fused. In discussing inter-
molecular interaction, it has become customary to refer to the head and the tail of the steroid. The
head—tail designation usually refers to C; and C,; respectively or to substituents on these positions.
The most important classes of steroids include

1. Sterols

2. Bile acids

3. Corticosteroids
4. Sex hormones
5. Saponins

6. Withanolides

13.1.1 SteroOLS

Sterols are crystalline alcohols occurring in animal, plant oils, and fats freely or esters of higher
fatty acids. On the basis of the sources, they are grouped into the following classes:

13.1.1.1 Zoosterols

Zoosterols are the compounds obtained from animal fats. Cholesterol belongs to this class. It is
the most important zoosterol and occurs widely either freely or as esters in nearly all animal cells

FIGURE 13.1  Steroid atomic numbering.
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especially in brain, spinal cord, and human gallstones. The chief commercial sources of cholesterol
are fish liver oil, brain, and spinal cord of cattle.

HO Cholesterol

13.1.1.2 Phytosterols

Phytosterols are sterols obtained from vegetable oils and fats. Stigmasterol is the most important
member of this group. It occurs exclusively in plants and its chief source is soybean oil. Its structure
differs from that of cholesterol in the presence of a second double bond at C,,—C,; and an ethyl
substituent at C,,.

13.1.1.3 Mycosterols

Mycosterols are the sterols occurring in fungi and yeast, for example, ergosterol. The main structural
feature of ergosterol is that it has the same structure as cholesterol except that it has, in addition, two
more double bonds, one at C,_C, position and the other at C,,—C,;, and a methyl substituent at C,,.

13.1.2 BiLe Acips

Bile acids (C,, compounds) are hydroxy derivatives of cholanic acid. They have a 3o-hydroxyl
group (with one exception), other hydroxyl groups may be present at C,, C,, C,,, and occasionally
at other carbon atoms. A significant fraction of the body’s cholesterol is used to form bile acids.
Oxidation in the liver removes a portion of the CgH,, side chain, and additional hydroxyl groups are
introduced at various positions on the steroid nucleus. Cholic acid is the most abundant of the bile
acids. Bile acids act as emulsifying agents to aid the digestion of fats.

Cholic acid

13.1.3 CORTICOSTEROIDS

The outer layer, or cortex, of the adrenal gland is the source of a large group of substances known as
corticosteroids. Like the bile acids, they are derived from cholesterol by oxidation, with cleavage of
a portion of the alkyl substituent on the D ring. Cortisol is the most abundant of the corticosteroids,
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but cortisone is probably the best known. Cortisone is commonly prescribed as an antiinflammatory
drug, especially in the treatment of rheumatoid arthritis.

)

HO <OH

Cortisol Cortisone

Corticosteroids exhibit a wide range of physiological effects. One important function is to assist
in maintaining the proper electrolyte balance in body fluids. Though natural and synthetic cor-
ticosteroids are both potent antiinflammatory compounds, the synthetics exert a stronger effect.
Oral forms of corticosteroids are used to treat numerous autoimmune and inflammatory conditions,
including asthma, bursitis, skin disorders, tendinitis, ulcerativecolitis, and others. They are also used
to treat severe allergic reactions and to prevent rejection after organ transplant. Dexamethasone, a
synthetic corticosteroid, is similar to a natural hormone produced by adrenal glands. It often is used
to replace this chemical when body does not make enough of it. It relieves inflammation (swelling,
heat, redness, and pain) and is used to treat certain forms of arthritis, skin, blood, kidney, eye, thy-
roid, intestinal disorders, allergies, and asthma.

13.1.4 Sex HORMONES

Hormones are the chemical messengers of the body. They are synthesized and secreted into the
bloodstream by the endocrine glands and regulate biological processes. The sex glands—testes in
males, ovaries in females—secrete a number of hormones that are involved in sexual development
and reproduction. The sex hormones can be classified into three major groups:

1. Female sex hormones (estrogens)
2. Male sex hormones (androgens)
3. Pregnancy hormones (progestins)

13.1.4.1 Female Sex Hormones (Estrogens)

In 1929, the first sex hormone (estrone) was isolated from the urine of pregnant women. Later a much
more potent estrogen, estradiol, was isolated. Estradiol is the true female sex hormone, and estrone
is a metabolized form of estradiol that is excreted. Estradiol is secreted by the ovaries and promotes
the development of the secondary female characteristics that appear at the onset of puberty.

0 OH

HO HO
Estrone Estradiol

13.1.4.2 Male Sex Hormones (Androgens)

In 1931, the first androgen (androsterone) was isolated by extracting male urine. Soon afterward
in 1935, another male sex hormone, testosterone, was isolated from bull testes. Testosterone is
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the true male sex hormone and that androsterone is a metabolized form of testosterone that is
extracted in the urine.

HO” o

Androsterone Testosterone

Testosterone, secreted by the testes, is the hormone that promotes the development of second-
ary male characteristics: the growth of facial and body hair, the deepening of the voice, muscular
development, and the maturation of the male sex organs.

13.1.4.3 Pregnancy Hormones (Progestins)

Progesterone is the most important progestin (pregnancy hormone). After ovulation occurs, the
remnant of the ruptured ovarian follicle (called the corpus luteum) begins to secrete progesterone.
This hormone prepares the lining of the uterus for implantation of the fertilized ovum, and contin-
ued progesterone secretion is necessary for the completion of pregnancy. Progesterone is secreted
by the placenta after secretion by the corpus luteum declines. Progesterone also suppresses ovula-
tion, and it is the chemical agent that apparently accounts for the fact that pregnant women do not
conceive again while pregnant. It was this observation that led to the search for synthetic progestins,
such as norethindrone, that could be used to “turn off” ovulation. By inducing temporary infertility,
synthetic progestins form the basis of most oral contraceptive agents.

OH ~N

Norethindrone Progesterone

To give an idea of how small molecular differences can have large differences when affecting
humans and animals, two hormones are shown below: One is testosterone, the “male” hormone, and
the other is estradiol, the potent “female” hormone. Even though the molecular differences are very
small and the hormones look very similar, testosterone tells the body it is male, and estradiol tells
the body it is female. So, a small difference in molecular structure causes the difference between
male and female.

Testosterone Estradiol

With the exception of retinoic acid, the steroid hormones are all derived from cholesterol.
Moreover, with the exception of vitamin D, they all contain the same cyclopentanophenanthrene
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ring and atomic numbering system as cholesterol. The conversion of C,, cholesterol to the 18-, 19-,
and 21-carbon steroid hormones (designated by the nomenclature C with a subscript number indi-
cating the number of carbon atoms, e.g., C,, for androstanes) involves the rate-limiting, irreversible
cleavage of a 6-carbon residue from cholesterol, producing pregnenolone (C,,) plus isocaproalde-
hyde. Common names of the steroid hormones are widely recognized, but systematic nomenclature
is gaining acceptance and familiarity with both nomenclatures is increasingly important. Steroids
with 21 carbon atoms are known systematically as pregnanes, whereas those containing 19 and 18
carbon atoms are known as androstanes and estranes, respectively.

13.1.5 SAPONINS

Saponins are high-molecular-weight glycosides, consisting of a sugar moiety linked to a triterpene or
steroid aglycone. The name “saponin” comes from the Latin word sapo (Soap). Saponins are widely
distributed in the plant kingdom. Even by 1927, Kofler had listed 472 saponin-containing plants (Kofler,
1927) and it is now known that over 90 families contain saponins. Saponins occur in plants that are
used as human food: soybeans, chick peas, peanuts, mung beans, broad beans, kidney beans, lentils,
garden peas, spinach, oats, aubergines, asparagus, fenugreek, garlic, sugar beet, potatoes, green pep-
pers, tomatoes, onions, tea, cassava, yams (Birk and Peri, 1980; Oakenfull, 1981; Price et al., 1987).
The aglycone or non-saccharide portion of the saponin molecule is called the genin or sapogenin.
Depending on the type of genin present, the saponins can be divided into three major classes:

1. Steroid sapogenins
2. Steroid alkaloid sapogenins
3. Triterpene sapogenins

13.1.5.1 Steroid Sapogenins

Over 100 steroid sapogenins are known and most are derived from the spirostan or furostan skeleton.
In all cases, the C;4 and C,, angular methyl groups are B-orientated and the C,; methyl group has the
a-configuration. There is sometimes a 5,6-double bond. The sapogenins are mostly hydroxylated at C;.

Spirostan Furostan

Spirostans are characterized by the existence of a ketospiroketal moiety (rings E/F) and may be sub-
divided into a 255 or a 25R series. The 2585 series (e.g., yamogenin) and 25R series (e.g., diosgenin)
were formerly referred to as neosapogenins or isosapogenins, respectively. The C,; methyl group is
axially oriented in neosapogenins and equatorially oriented in isosapogenins.

Yamogenin (255) Diosgenin (25R)
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13.1.5.2 Steroid Alkaloid Sapogenins
There are two classes of steroid alkaloid sapogenin: the spirosolans and the solanidans.

Spirosolan Solanidan

13.1.5.3 Triterpene Sapogenins

The triterpene sapogenins can be divided into three main classes, depending on whether they have
a B-amyrin (oleanane-type), oi-amyrin (ursane-type), or lupeol skeleton.

B-Amyrin type (oleanane-type) a-Amyrin type (ursane-type) Lupeol type

13.1.6 WITHANOLIDES

The C,4-steroidal lactones characterized by a nine carbon side chain with a six membered lac-
tone ring were designated as “withanolides.” Genuine interest arose in withanolides when it was
found that they are able to exhibit antitumor activity in a number of animal studies (Chakraborti
et al., 1974; Umadevi et al., 1992). In addition, cytotoxicity, immunosuppressive, antimicrobial,
hepatoprotective, insect antifeedant and antiinflammatory properties were observed (Budhiraja
et al., 1984; Gil et al., 1997, Furmanowa et al., 2001). Several review articles on withanolides have
appeared since the isolation of withaferin A from the leaves of Withania somnifera (Kundu et al.,
1976; Glotter et al., 1978; Budhiraja and Sudhir, 1987; Ray, 1989; Glotter, 1991; Singh and Kumar,
1998). Today there is much interest in natural products with anticancer activity. Withanolides are
considered as potential candidates as far as treatment of cancer is concerned.

Withanolide skeleton
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13.2 X-RAY CRYSTAL STRUCTURE OF STEROIDS CONCERNED

Crystal and molecular structure determinations have been reported for single crystals of 11 steroids
(1 Sterol, 5 Withanolides, 3 Pregnanes, 1 Steroid sapogenin, and 1 Androstane). None of these
steroids contain more than one crystallographically independent molecule in the asymmetric unit.

13.3 EXPERIMENTAL

For obtaining x-ray diffraction quality single crystals, solvent loss technique was employed. Three
dimensional x-ray diffraction intensity data from single crystal samples were collected on Enraf-
Nonius CAD-4 diffractometer and Brucker SMART APEX CCD area-detector diffractometer. The
crystal structures were solved by direct methods and refined by standard least-squares methods.
The computer programs used for structure solution are SHELXS97 (Sheldrick, 1997a); the refine-
ments were carried out by using SHELXL97 program (Sheldrick, 1997b). ORTEP-3 for Windows
(Farrugia, 1997) software was used for making the thermal ellipsoids. Geometrical calculations
were performed using PLATON (Spek, 1999) and PARST (Nardelli, 1995) software.

13.4 RESULTS AND DISCUSSION

13.4.1 CRrystAL STRUCTURE OF Z-GUGGULSTERONE: A STEROL

Guggul is the yellowish resin (or gum) that is produced by the Commiphora mukul, a small, thorny plant
that grows in dry areas of India, Pakistan, and Afghanistan. Guggul is also referred as gugglesterone,
guggul gum, guggal, guggul, gugulu, and gum gugal. Guggul is used in the treatment of arthritis, skin
diseases, pains in the nervous system, obesity, digestive problems, infections in the mouth, and menstrual
problems. The resin has been used for centuries as part of India’s traditional medicine called Ayurveda.
This resinous sap is processed and purified, and then standardized for a given amount of its active
constituents—FE- and Z-guggulsterones. These two compounds are plant sterols with a high degree of
human bioactivity and have been shown in studies to affect many biological processes including thyroid
metabolism, cholesterol management, and dermal (skin) function. In each of these areas, Guggulsterones
were shown in studies to be highly effective modulators with near drug-like potency. Guggulsterones
stimulate the thyroid gland, which in turn produces more thyroid hormones such as thyroxin. Guggul is
also an antioxidant, which helps stop the oxidization of cholesterol and the subsequent hardening of the
arteries. Since guggul supports hardening of the arteries, which may impede blood flow to and from the
penis, guggul may possibly be the treatment for impotence many men are looking for (Nadkarni, 1954;
Patil et al.,, 1972; Nityanand et al., 1973; Kuppuranjan, 1978; Bordia, 1979; Mester et al., 1979; Singh
et al., 1982; Tripathy et al., 1985, 1988; Satyavati, 1991; Urizar et al., 2002; Wu et al., 2002).

E- and Z-Guggulsterones have been isolated from the gum resin of Commiphora mukul by Patil
et al. (1972) along with a number of other compounds. This was the first report of their occurrence
in nature. The synthesis and stereochemistry of these compounds was reported much before their iso-
lation by Benn et al. (1964). The compounds isolated from Commiphora mukul were found identical
to the synthesized compounds in all respects. For the present study guggulsterone Z [4,17(20)-(trans)-
pregnadiene-3,16-dione, C,,H,;0,] was synthesized by the method described earlier (Benn et al., 1964).
16,17-Epoxypregnenolone was refluxed with hydrazine hydrate to obtain a mixture of isomeric diols,
5,17(20)-(cis)-pregnadiene-3[3,16c-diol and 5,17(20)-(trans)-pregnadiene-3p,16ct-diol. The mixture of
diols was subjected to oppenaure oxidation using toluene, cyclohexanone, and aluminum isopropoxide,
which yielded a mixture of dienones. This mixture of dienones was chromatographed over a column
of natural alumina. Elution with hexane: ethyl acetate (9:1) gave the trans isomer, 4,17(20)-(trans)-
pregnadiene-3,16-dione (Z-guggulsterone as designated by Patil et al., 1972) followed by the cis isomer,
4,17(20)-(cis)-pregnadiene-3,16-dione (E-guggulsterone as designated by Patil et al., 1972) (Gupta et al.,
2006). The chemical structures of Z- and E-guggulsterones are shown in Figure 13.2 and an ORTEP
view of the molecule indicating atom numbering scheme is shown in Figure 13.3 (Farrugia, 1997).
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Z-Guggulsterone E-Guggulsterone

FIGURE 13.2 Chemical structures of Z- and E-guggulsterones.

FIGURE 13.3 ORTEP view of the molecule with displacement ellipsoids drawn at the 50% probability level.
H atoms are shown as small spheres of arbitrary radii.

Mean bond lengths [C(spf)-C(sp*) = 1.534(3); C(sp*)-C(sp?) = 1.508(3); C(sp?)-C(sp?) = 1.468(3);
C(sp?) = C(sp?) = 1.338(3) A] are comparable to the theoretical values as reported by Allen et al.
(1987), although the bond C,—C,, = 1.567(2) A shows significant deviation from the mean value. An
examination of other published steroid structures seems to suggest that this lengthening is related
to the presence of a double bond in ring A. The length of the Cy—C,, bond in some of the steroid
structures having double bond in ring A ranges from 1.553 to 1.570 A with a mean value of 1.563 A
(Roberts et al., 1973; Eggleston et al., 1990; Gupta et al., 1994; Sarkhel et al., 2001; Thamotharan
et al., 2004). In steroids with a fully saturated or fully unsaturated ring A, the Cy—C,, bond does not
show such a systematic lengthening (Weeks et al., 1971; Duax et al., 1989; Ribar et al., 1993; Starova
et al., 2003; Matsumoto et al., 2004).

The presence of double bond at C,—C; and =O at C; imposes a distorted lo-sofa conforma-
tion on ring A, with asymmetry parameters AC,(C,—C,) = 9.40, AC,(C,—C,) = 15.35 (Duax and
Norton, 1975). The overall shape of ring B is still approximately the chair conformation typical
for totally saturated six membered rings. Distortion from that ideal form can be expressed by the
loss of mirror symmetry through atoms C, and C, [AC,(C,—C,) = 8.14] with the retention of per-
pendicular rotational symmetry [AC,(Cs—C,,) = 1.83]. The best mirror plane passes through C; and
C,» With AC(C;) = 3.34. Ring C has a distorted chair form [AC(C,)) = 2.75, AC,(C4—C,,) = 8.10].
The conformation of D ring is intermediate between 13[3,140-half chair [AC,(C;—C,,) = 8.71] and
l4o-envelope [AC,(C,,) = 8.71)] with pseudorotation parameters A = —15.57° and ¢,, = —40.98°
(Altona et al., 1968). The C;...Cyq distance, which is a measure of the length of the steroid nucleus,
is 8.870 A. The distance between terminal atoms O, and C,, is 12.028 A. The C,y—C,,...C;;—Cq
pseudo-torsion angle, which gives a measure of the molecular twist, is 7.2°. The B/C and C/D ring
junctions approach frans characteristics about the C4—C, and C,;—C,, bonds, respectively, whereas
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FIGURE 13.4 A view of the unit cell packing structure illustrating the C—H...O intermolecular interactions.
H atoms have been omitted for clarity, except those involved in hydrogen bonding.

the A/B ring junction is quasi-trans (Bucourt, 1974). This quasi characteristic of the A/B trans ring
junction is due to the existence of the trigonal atom Cs.

Figure 13.4 illustrates the packing of the molecules and their hydrogen-bonding arrangement.
Atom O, was found to have close C—H...O contact [distance 2.55(3) A to H,,] to neighboring mole-
cules related by screw axes in c-direction forming zigzag chains. This distance lies within the 2.7 A
range we usually employ for nonbonded H...O packing interactions (Steiner, 1997). Using compiled
data for a large number of C-H...O contacts, Steiner and Desiraju (1998) found significant statistical
directionality even as far out as 3.0 A, and concluded that these are legitimately viewed as “weak
hydrogen bonds,” with a greater contribution to packing forces than simple van der Waals attrac-
tions. Chains of hydrogen-bonded molecules are packed with van der Waals contacts. The crystal-
lographic data are summarized in Table 13.1.

13.4.2  CrystaL STRUCTURE OF WITHAFERIN A (58,60-EPoxY-4f,27-DIHYDROXY-
1-Ox0-22R-WiTHA-2,24-DIENOLIDE): A WITHANOLIDE

In view of the wide applications in indigenous or traditional systems of medicine as well as in folk medi-
cines, the plant W. somnifera has attracted attention of phytochemists all over the world since a long time
in the study of its constituents. Withaferin A is the most active withanolide contained in the leaves of
W. somnifera and has been isolated from the 95% alcohol extract of the leaves of W. somnifera. The anti-
bacterial activity of Withaferin A was established long before the structure of this compound was fully
clarified (Kurup, 1956). Withaferin A has also shown significant anticancer activity (Sing et al., 1998).
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TABLE 13.1

Crystal and Experimental Data

CCDC no 261919

Crystal description Colorless rectangular
Crystal size 0.18 x 0.16 x 0.13 mm
Empirical formula C,,H,0,

Formula weight 312.43

Mo Ko, 0.71073 A
a=7.908(2) A, b=13.611(3) A, ¢ = 16.309(4) A

Radiation, wavelength
Unit cell dimensions

Crystal system Orthorhombic

Space group P2,2,2,

Unit cell volume 1755.4(7) A3

Density (calculated) 1.182 Mgm-3

No. of molecules per unit cell, Z 4

Temperature 100 K

Absorption coefficient(LL) 0.074 mm™!

F(000) 680

Refinement of unit cell 999 reflections (2.04° < 0 < 28.23°)
Scan mode ¢ and o scans

0 range for entire data collection 2.50° < 0 <28.30°

Reflections collected/unique 11819/4307

Reflections observed [I > 26(I)] 3667

Range of indices h=-10to7,k=-18to 15,1=-21to 19
R 0.0242

Riigma 0.0303

No. of parameters refined 320

Final R-factor 0.0578

wR(F?) 0.1430

Weight 1/[6%(F) + (0.1106P) + 0.00P]

where P = [Ff + 2Ff:|/3

Goodness-of-fit 0.974
(A/G) g —0.047 (for z H182)
Final residual electron density —0.191< Ap < 0.293 eA-3

Air dried and powdered leaves (500 g) of W. somnifera were extracted with 95% ethanol at
room temperature while stirring for 2 h. The extract was filtered through muslin cloth followed
by centrifugation. The marc was again extracted twice as mentioned earlier. All the three extracts
were pooled and concentrated to 1/8th of its volume. Syrupy solution was diluted with water and
the resulting suspension was extracted sequentially with CHCIl;, EtOAc, and n-BuOH. The CHCl,
extract was subjected to chromatography over silica gel (60—120 mesh) and the elution was carried
in increasing polarity with CHCl;, 2% MeOH in CHCl;, 5% MeOH in CHCl; and MeOH. Fractions
got eluted in 2% MeOH in CHCl, were pooled, concentrated, the residue after crystallization from
EtOAc yielded withaferin A (200 mg) (Figure 13.5), mp 252°C-253°C (Bandhoria et al., 2006d).

An ORTEP view of the molecule indicating atom numbering scheme is shown in Figure 13.6.
The mean bond lengths are C(sp*)-C(sp’) = 1.532(3); C(sp*)-C(sp®) = 1.501(3); C(sp>)-C(sp?) =
1.476(4); C(sp?) = C(sp?) = 1.329(4); C(sp>)—O = 1.445(3); C = O = 1.214(3) A. The shortest and the
longest C(sp*)—C(sp®) bond distances are observed in ring B to which the epoxide is fused [C;—C, =
1.467(3) and C4—C,, = 1.579(3) A]. For the similar withanolides having epoxide at the same position,
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FIGURE 13.5 Chemical structure of withaferin A.

FIGURE 13.6 ORTEP plot of the molecule with 40% probability thermal ellipsoids. All H atoms have been
omitted for clarity.

variations in ring B C(sp*)—C(sp?) bond lengths have been repor}ed (Parvez et al., 1988, 1990). The
two C—O epoxy bond lengths [Cs—O, 1.438(3), C,—0, 1.437(3) A] are the same. ;

Ring A has a lo,4o-twist boat conformation with C, and C, —0.346(3) and —0.576(2) A, respec-
tively, from the C,, C;, Cs, C,, plane. Ring B is cis fused to ring A and has a half chair conformation
with 8,90 orientation [AC,(C4—C,) = 7.9]. The overall shape of ring C is close to the chair confor-
mation. Distortion from the ideal form could be expressed as due to the loss of rotational symmetry
[AC,(C,,—C,,) = 12.14] with the retention of perpendicular mirror symmetry through atoms C, and
C,; [AC((Cy) = 2.06]. The conformation of D ring is 13a-envelope [AC(C,;) = 4.02] with pseudo-
rotation parameters A = 27.96° and @,, = 48.02°. The d-lactone ring E adopts 220-distorted sofa
conformation [AC((Cy,) = 9.07]. Ring E makes a dihedral angle of 59.0(1)° with the plane of the

steroid nucleus. The distance between the terminal atoms O, and O,; is 16.468 A and the C;...C,q
distance, which is a measure of the length of the steroid nucleus, is 8.471 A. The pseudo-torsion
angle Cy—Cy,...Cj3-Cg 1s 1.9% indicating that the steroid nucleus is untwisted. This is attributed
to the short intramolecular C-H...O contacts [C;,—H,,,...O, 3.056(3) and C,,—H,,,...O, 2.808(4) Al
present in the molecule. The B/C and C/D ring junctions approach trans characteristics about the
Cs;—C, and C;—C,, bonds, respectively.
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FIGURE 13.7 Part of the crystal structure, showing the formation of molecular chains along the c-axis.

The crystal structure of withaferin A is dictated by two intermolecular hydrogen bonds. Atom
O, of the hydroxy group in the molecule at (x, y, z) acts as a hydrogen-bond donor to hydroxy atom
027 in the molecule at (X, y, z + 1), producing a chain. Chains of molecules are packed together to
form well-defined layers. Molecules within the layers are arranged in an antiparallel manner and are
stabilized by the second hydrogen bond (O,;,—H,,0...0,,) (Figure 13.7). The crystallographic data
are summarized in Table 13.2.

13.4.3  CrystaL STRUCTURE OF WITHANONE (60, 7a-EPOXy-50t,170¢, DIHYDROXY-
1-Ox0-22R-WITHA-2,24 -DIENOLIDE): A WITHANOLIDE

Withanone was isolated from W. somnifera leaves. Air dried and powdered leaves (500 g) of W.
somnifera were extracted with 95% ethanol at room temperature while stirring for 2 h. The extract
was filtered through muslin cloth followed by centrifugation. The marc was again extracted twice
as mentioned earlier. All the three extracts were pooled and concentrated to 1/8th of its volume.
Syrupy solution was diluted with water and the resulting suspension was extracted sequentially with
CHCI;, EtOAc, and n-BuOH. The CHCI, extract was subjected to chromatography over silica gel
(60—120 mesh) and the elution was carried in increasing polarity with CHCl;, 2% MeOH in CHCl,,
5% MeOH in CHCl; and MeOH. Fractions got eluted in CHCl; were pooled, concentrated and the
residue yielded withanone (150 mg) (Figure 13.8), mp 275°C-276°C (Bandhoria et al., 2006e).

An ORTEP view of the molecule indicating atom numbering scheme is shown in Figure 13.9.
Mean bond lengths are: C(sp*)—~C(sp’) = 1.532(6); C(sp*)-C(sp?) = 1.506(7); C(sp*)-C(sp*) = 1.459(7);
C(sp*)—0 = 1.432(5); C(sp?) = O = 1.225(6) A. The shortest C(sp’)—C(sp®) bond distance is observed
in ring B to which the epoxide is fused [C,—C, = 1.461(6) A]. In ring A, the double bond imposes
a 10B,50~half-chair conformation on ring A, with asymmetry parameter AC,(Cs—C,,) = 6.13. The
conformation of ring B is intermediate between 90, 10B-half-chair and 10B-sofa, with asymmetry
parameters: AC,(Cy—C,,) = 11.96, AC/(C,,) = 13.58. The overall shape of ring C is close to the
chair conformation. Distortion from the ideal form could be expressed as due to the loss of mir-
ror symmetry through atoms C;; and C,, [AC,(C,,) = 11.0], with the retention of perpendicular
rotational symmetry [AC,(C,,—C,5) = 1.43]. The conformation of ring D is intermediate between
13B,140-half chair [AC,(C,;—C,,) = 8.98] and 14a-envelope [AC(C,,) = 11.73] with pseudorota-
tion parameters A = 13.24° and @,, = 47.93°. The §-lactone ring E adopts 223-sofa conformation
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TABLE 13.2

Crystal and Experimental Data

CCDC no

Crystal description

Crystal size

Empirical formula

Formula weight

Radiation, wavelength

Unit cell dimensions

Crystal system

Space group

Unit cell volume

Density (calculated)

No. of molecules per unit cell, Z
Temperature

Absorption coefficient
Absorption correction
Extinction coefficient

F(000)

Refinement of unit cell

Scan mode

0 range for entire data collection
Reflections collected/unique
Reflections observed [I > 26(1)]
Range of indices

R
R,
No. of parameters refined
Final R

wR(F?)

Weight

int

sigma

Goodness-of-fit
(NG o
Final residual electron density

285229

Colorless rectangular
0.3 x0.2x0.2mm
CysHi04

470.58

CuKa, 1.5418 A

a=10.697(1) A, b=12.344(2) A, c = 18.714(2) A

Orthorhombic
P2,2,2,
2471.1(5) A3
1.265 Mgm~3
4

293(2) K
0.707 mm™!
y-scan (T,
0.0029(5)
1016

25 reflections (12° < 6 < 24°)

/20

4.29° <0< 67.90°

2639/2552

2471

h=0-12,k=0-14,1=-22t0 22
0.0096

0.0107

460

0.0382

0.1156

1/[c %(F2) + (0.1068 P)> + 0.1682 P]

where P = [F§ + 2F3]/3

=0.9373 and T, = 0.9807)

min max

1.003
—0.028 (for X H112)
—0.150 < Ap < 0.265 eA-?

|
OH

FIGURE 13.8 Chemical structure of Withanone.
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FIGURE 13.9 ORTEP view of the molecule, showing the atom-labeling scheme. Displacement ellipsoids are
drawn at the 50% probability level and H atoms have been omitted for clarity.

with atom C,, disposed 0.605(5) above the plane defined by other five ring atoms [AC,(C,,) = 5.16].
Ring E makes a dihedral angle of 73.9(1)° with the plane of the steroid nucleus. The ring junctions
A/B, B/C, and C/D are trans fused about the C;—C,,, C;—Cy, and C;;-C,, bonds, respectively. The
distance between the terminal atoms C; and C,; is 15.238 A. The length of the steroid nucleus is
8.948 A (C,...C,¢) and is more in comparison to withaferin A. This is attributed to the A/B ring
junction, which is trans fused in withanone and cis fused in withaferin A. The pseudo-torsion angle
C,9—C,p...C;5—Cjq is 1.8° indicating that the steroid nucleus is untwisted.

Packing view of the molecules in the unit cell viewed down the a-axis is shown in Figure 13.10.
The characteristic pattern observed in packing diagram is the appearance of twisted chains of

: v
¢ |

FIGURE 13.10 Appearance of chains of molecules that are hydrogen bonded.
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TABLE 13.3

Crystal and Experimental Data

CCDC number 272526

Crystal description Colorless irregular

Crystal size 0.3x0.2x0.3 mm

Empirical formula CsH3,04

Formula weight 470.58

Radiation, wavelength Mo Ko, 0.71073 A

Unit cell dimensions a=9.191(10) A, b= 12.858(6) A, c = 21.400(16) A
Crystal system Orthorhombic

Space group P2,2,2,

Unit cell volume 2529(3) A

Density (calculated) 1.236 Mgm~3

No. of molecules per unit cell, Z 4

Temperature 293(2) K

Absorption coefficient 0.086 mm™!

Absorption correction y-scan (T,,;, =0.9564 and T, = 0.9970)
F(000) 1016

Refinement of unit cell 25 (6° <6< 12°)

Scan mode /26

6 range for entire data collection 2.41°<0<24.97°

Reflections collected/unique 3158/3076

Reflections observed (I > 20(1) ) 1742

Range of indices h=0-10,k =0-15,1=-22to 25
Ry 0.0653

Riioma 0.0665

No. of parameters refined 312

Final R-factor 0.0603

wR(F?) 0.1427

Weight 1/[6 2(E2) + (0.1064P)> + 0.00 P]

where P = [F§ + 2F3]/3

Goodness-of-fit 0.897
(A/O) ax 0.586 (for U11 H5")
Final residual electron density —0.203 < Ap < 0.288 eA-3

molecules packed together to form layers. C;—H;...0O, weak hydrogen bond binds adjacent links
in these chains. The adjacent chain links are rotationally related. Chains of hydrogen-bonded
molecules are parallel to c-axis. The packing of the chains in the crystal is further stabilized into
a three-dimensional network by strong O—H...O and C-H...O hydrogen bonds. In the packing
diagram it can also be seen that the 8-lactone ring E lies in layers perpendicular to the c-axis. The
crystallographic data are summarized in Table 13.3.

13.4.4 CRysTAL STRUCTURE OF 6at,70t:24t,250c-Dieroxy-5a,12at, DiHYDROXY-1-
Ox0-208, 22R-WiTHA-2-ENOLIDE METHANOL SOLVATE: A WITHANOLIDE
Phytochemical investigations of Datura quercifolia plant, growing in Jammu and Kashmir State of

India at high altitudes, led to the isolation and characterization of several datura lactones which are
of withanolide skeleton (Dhar et al., 1976; Kalla et al., 1979; Qurishi et al., 1979). Datura lactones
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differ from other withanolides in having a rare epoxide functionality in the lactone ring and are used
for the treatment of various conditions, such as infections, organ transplantation, cancer, rheumatoid
arthritis, etc. (Sany, 1987; Bartlett et al., 1991; Gonsette, 1996).

Powdered leaves of Datura quercifolia were extracted with toluene while stirring. The extract
was concentrated to dryness under reduced pressure and was subjected to column chromatography
over silica gel on a glass column of 1%z in. dia. The column was eluted with solvents by gradu-
ally increasing the percentage of MeOH in CHCI,. In all 105 fractions of 100 mL each were col-
lected and pooled on the bases of TLC patterns using CHCIl;: MeOH (9:1) as developing solvent.
Spots were visualized by spraying with freshly prepared cerric-ammonium sulfate. Fractions 23-29
showing same TLC pattern were pooled, dried, and subjected to further chromatographic resolu-
tion using 100-200 mesh SiO, gel column (1:20 ratio) and eluted with CHCl;: MeOH mixtures
of increasing polarity. In all 60 fractions of 200 mL each were collected. Fractions 37-44 were
pooled on the bases of TLC (CHCI;: MeOH = 9:1) and again subjected to column chromatography.
Thirty fractions of 100 mL each were collected. Fractions 23-28 were concentrated under reduced
pressure. Residue on crystallization from MeOH yielded the title compound (Figure 13.11), m.p.
261°C-262°C (Bandhoria et al., 2006f).

An ORTEP view of the molecule indicating atom numbering scheme is shown in Figure 13.12.
The mean bond lengths are: C(sp?)-C(sp?) = 1.523(7); C(sp*)-C(sp?) = 1.501(7); C(sp*)-O = 1.446(6);

- CH3OH

OH 'O

FIGURE 13.11

FIGURE 13.12 ORTEP view of the molecule with displacement ellipsoids drawn at 40% probability level.
H atoms have been omitted for clarity.
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C(sp?) = O = 1.207(6) A. The shortest C(sp*)—C(sp®) bond lengths are observed in rings B and E to
which epoxide is fused at C, C, and C,,, C,5 atoms [C,—C, = 1.456(7) and C,,—C,5 = 1.478(7) A]. Ring
A is highly distorted from the normal chair conformation, assuming instead an 5o, 103—half-chair
conformation due to the localization of double bond at C, = C, position [C, = C; = 1.335(8) A] with
asymmetry parameter [AC,(C,—C;) = 4.88]. Ring B assumes 90.,10B—half chair conformation instead
of chair conformation due to epoxide fused at C, and C,. The best rotational axis for this ring passes
through the C—C, and C,—C,, bonds with the asymmetry parameter AC,(Cy—C,,) = 3.08. Ring C has
a chair conformation. Rotational symmetry is dominant; a pseudo-C, axis intercepts the C;—C, and
C,,—C,; bonds with the asymmetry parameter [AC,(Cy—C,) = 2.20]. The best mirror plane for this ring
passes through Cg and C,, atoms with asymmetry parameter [AC(C,) = 3.47]. The five-membered ring
D adopts a conformation approximately halfway between that of a 13[3,140-half-chair [AC,(C;—C,,) =
7.50] and a 13B-envelope [AC,(C,; = 12.74)] with the phase angle of pseudorotation A = 10.87° and maxi-
mum angle of torsion @,, = 48.01°. The conformation of ring E is C,5, O; diplanar [AC,(C,,—C,;) = 7.25].
The average of the torsion angles in this ring is 25.8(6)°. Ring E makes a dihedral angle of 73.1(1)° with
the plane of the steroid nucleus. The C,,—C,,...C,;—C,5 pseudo-torsion angle, which gives a measure of
the molecular twist, is 3.3°. The C;...Cy, distance, which is a measure of the length of the steroid nucleus,
is 8987 A. The distance between the terminal atoms is 15.256 A (C;...Cyy). The geometry of rings is
trans at the A/B, B/C, and C/D ring junctions. The packing of the molecules in the unit cell is shown
in Figure 13.13. From the figure it is evident that the molecules related by two-fold screw are packed
in interpenetrating layers. The crystal structure is stabilized by the presence of O-H...O and C-H...O
intra- and intermolecular hydrogen bonds. The crystallographic data are summarized in Table 13.4.
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FIGURE 13.13 Packing of the molecules in the unit cell down a-axis.
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TABLE 13.4

Crystal and Experimental Data

CCDC no

Crystal description

Crystal size

Empirical formula

Formula weight

Radiation, wavelength

Unit cell dimensions

Crystal system

Space group

Unit cell volume

Density (calculated)

No. of molecules per unit cell, Z
Temperature

Absorption coefficient
Absorption correction
Extinction coefficient

F(000)

Refinement of unit cell

Scan mode

6 range for entire data collection
Reflections collected/unique
Reflections observed (I > 26(1) )
Range of indices

R

int

No. bof parameters refined
Final R-factor

wR(F?)

Weight

Goodness-of-fit
(GAY)
Final residual electron density

293742
Light green rectangular

0.3%0.2x0.2mm

C,4H,,0,-CH,0H

259.31

Mo Ko, 0.71073 A

a=6.916(4) A, b=19.1992) A, c = 20.138(5) A
Orthorhombic

P2,2,2,

2674(2) A3

1.288 Mgm™

4

293(2) K

0.093 mm-!

y-scan (T,
0.0025(9)
1120

25 reflections (9° < 0 < 14°)

/20

2.12° <0 <24.97°

2691/2690

1628

h=0-8,k=0-22,1=0-23
0.0060

0.0524

350

0.0462

0.1203

1/[6*(F2) + (0.0838P)2 + 0.5979 P]

where P = [Foz + 2F02:|/3

=0.9666 and T, = 0.9872)

min max

1.005
—-0.001 fory C,,
—0.194 < Ap <0.217 eA-3

13.4.5 CRrysTtAL STRUCTURE OF (20R,22R)-60,70t-EPOXY-50t,27-
DiHYDROXY-1-Ox0OWITHA-2,24-DiENOLIDE: A WITHANOLIDE

Powdered leaves of W. somnifera were extracted with 95% ethanol while refluxing. The alcoholic
extract was concentrated to its 1/8th volume under reduced pressure and diluted with water.
Resulting suspension was extracted sequentially with CHCI,, EtOAc, and n-BuOH. The CHCl,
extract was subjected to chromatography over silica gel (60—120 mesh) and the elution was car-
ried in increasing polarity with CHCl;, 2% MeOH in CHCI;, 5% MeOH in CHCI; and MeoH.
Fractions got eluted in 5% MeOH in CHCI, were pooled, concentrated, the residue after crystal-
lization from MeOH yielded 27-hydroxywithanolide B (Figure 13.14) (105 mg, mp 292°C-294°C)

(Gupta et al., 2008).



326 Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds

o, wE

OH

FIGURE13.14 Chemicalstructureof (20R,22R)-60a.,7a—Epoxy-50.,27-dihydroxy-1-oxowitha-2,24-dienolide.

FIGURE 13.15 ORT