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Preface 

Probability Theory, Theory of Random Processes and Mathematical Statistics are 
important areas of modern mathematics and its applications. They develop rigorous 
models for a proper treatment for various 'random' phenomena which we encounter 
in the real world. They provide us with numerous tools for an analysis, prediction 
and, ultimately, control of random phenomena. Statistics itself helps with choice of 
a proper mathematical model (e.g., by estimation of unknown parameters) on the 
basis of statistical data collected by observations. 
This volume is intended to be a concise textbook for a graduate level course, with 
carefully selected topics representing the most important areas of modern Probability, 
Random Processes and Statistics. 

The first part (Ch. 1-3) can serve as a self-contained, elementary introduction to 
Probability, Random Processes and Statistics. It contains a number of relatively sim­
ple and typical examples of random phenomena which allow a natural introduction 
of general structures and methods. Only knowledge of elements of real/complex 
analysis, linear algebra and ordinary differential equations is required here. 

The second part (Ch. 4-6) provides a foundation of Stochastic Analysis, gives 
information on basic models of random processes and tools to study them. Here a 
familiarity with elements of functional analysis is necessary. Our intention to make 
this course fast-moving made it necessary to present important material in a form of 
examples. 

Yu. Rozanov 



Annotation 

The book consists of two parts which differ one from another in their contents and 
the style of exposition. The first one discusses many relatively simple problems 
which lead to different models of probability and random processes, as well as basic 
methods of mathematical statistics, including typical applications. The second part 
presents elements of general analysis of random processes. 



CHAPTER I 

Introductory Probability Theory 

1. The Notion of Probability 

1.1. EQUIPROBABLE OUTCOMES 

Imagine a usual coin tossing with two possible outcomes w = 'head' or 'tail' each 
of them having the probability 1/2. In another example of a dice tossing with six 
possible equiprobable outcomes w = 1, ... ,6; what is the probability of the event 
{w is even}? The answer is of course 1/2 (why?). 

In a similar way, one can imagine a lot Q of N different outcomes each having 
the same probability P(w) = liN; what is the probability P(A) of the event {w E A} 
for a given subset A ~ o.? The natural answer is 

P(A) = N;:), (1.1) 

where N(A) is the number of elements in the set A ~ Q. Here, all possible events 
can be represented by corresponding sets A ~ Q, with the empty one A = 0 as 
the impossible event of the probability P(A) = 0, and A = Q as the certain event 
of the probability P(A) = 1. Moreover, one can operate with events as we do with 
sets, when AC = Q\A corresponds to the complementary event to A ~ Q, Al U A2 
corresponds to the union (sum) of events AI,A2 ~ Q etc. In particular, 

where on the right-hand side is the intersection of the complementary events Ai, A~ 
to AI, A2. (Sometimes the intersection Al n A2 of any AI, A2 ~ Q is also called the 
product of the events AI, A2 and denoted by Al . A2.) 

According to (1.1), for any disjoint events AI, ... ,An ~ Q the probability of their 
union 

n 
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is 

(1.2) 

which follows of course from the relation 

In spite of the simplicity of the above scheme, sometimes it might be difficult to 
find out which outcomes w can be considered equiprobable (i.e. having the same 
probability P(w) = liN). For example, in a simultaneous tossing of two coins one 
deals with the following outcomes: 'two heads', 'two tails', 'head and tail.' Are 
these N = 3 outcomes equiprobable? Or should we consider the following N = 4 
outcomes: 

Q = {'head-head', 'head-tail', 'tail-head', 'tail-tail'}, 

each of them having the probability P(w) = 1/4? 

1.2. EXAMPLES 

Random sampling. Suppose we randomly choose I objects from a lot containing 
n objects of which m are 'defective'. The sample contains a random ilUmber ~ = 

0, 1, ... , min (l, m) of defective objects. Any of 

( n) n! 
N= I = l!(n-l)! 

possible samples is equiprobable. What is the probability to choose a sample with 
~ = k defective objects? Let A = {~ = k} be the corresponding event. Then 

and according to (1.1) 

k = 0, 1, ... , min (l, m). (1.3) 

The system of probabilities (1.3) is called the hypergeometric distribution. 
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Random allocations. Consider random placement of n 'particles' into r 'cells' yield­
ing all possible distributions (nl, ... , nr ) of particles (nl is the number of particles 
in the first cell, n2 in the second cell, etc.). The total number N of all allocations 
is the number of all nl, ... ,nr such that nl + ... + nr = n which is the coefficient 
(lin!) j(n)(o) in the well-known Taylor series 

Therefore 

1 [~ r] 1 (n + r - 1) N =, --;;: (1 - x)- = ,r(r + 1)··· (r + n - 1) = . 
n. dx x=o n. n 

Assuming that all allocations are equiprobable, we find the corresponding probability 

(
n+r _1)-1 

P(nl,·· .,nr ) = n (1.4) 

Consider now a different situation when the random placement (nl, ... , nr ) is 
subject to the condition nk = 0 or 1, k = 1, ... , n (this implies, of course, n ~ r). 
The total number N of all such allocations is obviously N = (:) so, assuming any 
(nl, ... , n r ) equiprobable, we obtain for the corresponding probability 

(1.5) 

Note that we did not distinguish between particles at the derivation of the proba­
bility distributions (1.4), (1.5) of random allocation. * 

Suppose that we are dealing now with n different particles which are placed ran­
domly into r cells in such a way that any allocation (il, ... , in) is equiprobable, 
where 1 ~ ik ~ r is the cell number of the k-th particle, k = 1, ... , n. It is clear 
that the total number of all such allocations is N = rr so that the corresponding 
probability is 

* This assumption is satisfied by certain 'elementary particles' considered in Quantum Physics; see, 
e.g., W. Feller: An Introduction to Probability Theory and Its Applications, vol. I, Wiley, New York 
etc. 1968. 
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The event A = (nl, ... , n r ), considered in (1.4), (1.5) in the case of indistinguishable 
particles, occurs for 

different allocations (il,' .. , in) satisfying r conditions 

... , L 1 =nr · 
ik=r 

According to (1.1), the probability of this event is 

(1.6) 

1.3. CONDITIONAL PROBABILITY 

Let us return to the general scheme with a lot n of N equiprobable outcomes w ~ n 
and the probability of any event A ~ n determined by (Ll). Suppose we know that 
some event B does occur; what is the probability of A in the new situation? The 
corresponding probability is called the conditional probability of A given B, and is 
usually denoted by P(A I B). It is clear that if B occurs, the outcomes w ~ A are 
necessarily in B and among them only w E AB are in favour of A. Hence, assuming 
that all wEB are equiprobable, we get that 

peA I B) = N(AB) = N(AB)/N(B) 
N(B) N N' 

where N(AB), N(B) is the number of outcomes in AB, B, respectively. Hence the 
conditional probability of A given B can be defined by 

peA I B) = P(AB) 
PCB) . 

(1.7) 

For example, one can easily observe that in the random allocation scheme (1.4), the 
conditional probability of A = (nl, ... ,nr ) given B = ink = 0 or 1, k = 1, ... ,r} 
equals to 
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which is the same as the probability (1.5). 
Consider again the general equiprobable scheme (1.1), and suppose that B I, ... , Bn 

are disjoint (i.e. mutually exclusive) events whose union 

is the certain event n. Then, for any event A ~ n, the total probability formula 

n 

peA) = L peA I Bk)P(Bk) (1.8) 
k=l 

holds. 
According to (1.1), the above formula follows from the relation 

n 

N(A) = L N(ABk ). 

k=l 

Obviously (1.8) holds as well for any disjoint B 1, ••• , Bn and any A such that 

n 

EXAMPLE (The best choice problem). Imagine a fastidious bride who is to select 
the best among n candidates upon seeing them successively, under the condition 
that a rejected one is lost forever. Of course, it would be unwise to marry the first 
candidate if the number n is large. On the other hand, if she refuses too many of 
them, she might lose the best. How can she make the best choice? It is assumed 
that the bride is capable of ranking the candidates by assessing the 'quality' of every 
of them by a real number ~k, i.e., ~k is the 'quality' of the k-th successive candidate, 
k = 1, .. . ,n. 

A sensible strategy for the bride is the following. First she decides on some m 
(l :::; m :::; n) and then chooses the first among the last n-m candidates who is better 
than the previous m ones, i.e. her choice is the smallest't = m + 1, ... , n, such that 
~'t" > max (6, ... ,~m). (Of course, there is a chance to lose all the candidates if none 
of the last n - m ones is better than the first m.) The strategy depends on m, and 
the corresponding probability to choose the best possible candidate 
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can be maximized by an appropriate choice of m = m n , i.e. 

Pmn = max Pm· 
l~m~n 

CHAPTER 1 

Let us find the probability Pm in the case of equiprobable orderings ~il < ... < ~in. It 
is clear that a successive 6+1 can be anywhere between the previous ~1, ... ,~l as well 
as either larger or smaller than all of them, which results in 1 + 1 different orderings, 
so that the total number of all possible outcomes (orderings) ~il < ... < ~in is 

N = 1 .. ·l(l + 1) ... n = n!. 

Consider the probability P(Bk) of Bk = {'l = k}, k = m + 1, ... , n. Of course, 
under the event Bk, the first m points can be ordered arbitrarily, with the number of 
successive locations of 6+1 with respect to the previous 6, ... , ~l, 1= 1, ... , m - 1, 
explained above. The successive ~m+l, 1 = 1, ... , k - m - 1, can be correspondingly 
put each into m + 1 - 1 intervals only as ~m+l < max (6, ... ,~m), while for ~k = 

max (6, ... ,~k) there is only one possibility of choice of the interval. Finally, the 
successive ~k+l, 1 = 1, ... , n - k, can be in any of the k + I positions with respect 
to 6, ... '~k+1-1. Hence, the total number of outcomes favourable to Bk is 

m 
N(Bk) = 1·· . m· m··· (k - 2)(k + 1)··· n = n! (k _ l)k ; 

so that 

N(Bk ) m 
P(Bk) = ~ = (k _ l)k ' k = m + 1, ... ,n. 

Let A be the event that one has made the best choice, then 

n 

Pm = peA) = L peA I BdP(Bk), 
k=m+1 

where 
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as the event ABk differs from Bk in the way that the point ek is the very right so 
that there are only k + l - 1 choices for location of ek+l, l = 1, ... , n - k, and 
consequently 

Thus, 

m 
N(ABk ) = 1 ... m· m· .. (k - 2)k· .. (n - 1) = n! ----,-,­

(k - l)n 

It is easy to see that 

m n 1 

n L k 
k=m+1 

n I I 
m L n mJdX m m - ~ - - = -- log -
n 15. n x n n 

k=m+1 n !'! 
n 

and for large n (n -t 00), since lie is the maximum point of -x log x, 0 < x < 1, 
we obtain for the optimal quantities 

n 
mnl"V-, 

e 
1 

Pm n rv -

e 

1.4. INDEPENDENT EVENTS 

(e = 2.718 ... ). 

Given two events AI, A 2, it is natural to think of Al as being independent of A2 if 
the occurrence of A2 has no effect on the occurrence of AI, i.e., if the corresponding 
conditional probability satisfies 

In view of (1.7), the above independence of Al from A2 is equivalent to 

(1.9) 
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EXAMPLE. Let Al be the event that a card randomly picked from a deck is a spade, 
and A2 the event that the card is a queen. Are these two events independent? The 
question is not easily answered by the intuition alone. Using the formal definition 
(1.9) of independence, in the case of a full deck (52 cards) with 13 spades and 4 
queens we conclude that Al and A2 are independent, as the probability of the event 
AI· A2 to pick up the queen of spades is 

However the situation is quite different in the case of a deck which contains some 
blank cards in addition; in particular, for a large number n ---+ 00 of blank cards, we 
obviously have P(AI) ---+ 0, while P(AI I A2 ) == 1/4, independently of n. 

Independent trials. Consider two experiments, e.g., throwing a coin and a dice. 
Usually we consider them as independent, and this intuitive feeling is very much 
consistent with the general formal definition (1.9). Indeed, consider the general 
case of two independent experiments with the corresponding outcomes WI E 01 

and W2 E O2 of the total numbers NI and N2, respectively, assuming that any joint 
outcome W = (WI, W2) E 0 is equiprobable, where 0 is the direct product 

and the total number of outcomes w = (WI, W2) E 0 is N = NI . N2. Then, any two 
events Al ~ RI and A2 ~ 02 are independent in the sense of (1.9). More precisely, 
the event Al . A2 corresponds to the direct product Al x A2 having N(AI x A2) = 

NI(AI)· N2(A2) of outcomes w = (WI,W2), where NI(AI), N2(A2) is the number of 
outcomes in AI, A2, respectively. Therefore 

Of course, one can encounter a similar situation with several independent ex­
periments (trials) 0 1, ... ,On, when the whole thing can be described by the direct 
product 

(1.10) 

with equiprobable outcomes W = (WI, ... , wn ) E 0 in the corresponding trials, k = 

1, ... , n. Here, 

(1.11) 



INTRODUCTORY PROBABILITY THEORY 9 

and for any events Ak ~ .ok (k = 1, ... , n) in different trials one has 

(1.12) 

for any disjoint indices il,"" im = 1, ... , n (check it!). 
Relations (1.11) and (1.12) reflect mutual independence of the experiments.oI, ... , 

.on; moreover, they are accepted in Probability Theory as a formal definition of 
independent trials (events). The opposite case of highly dependent trials can be 
illustrated by formally taking all .ok to be the same, in which case the outcomes 
WI = W2 = ... = Wn are the most dependent. 

EXAMPLE. Consider random allocation of n different particles, where the k-th 
particle is placed into any of r cells, and any outcome Wk = ik (ik = 1,2, ... , r is 
the cell number) is equiprobable. Assume that the corresponding trials (allocations) 
.ok, k = 1, ... , n, are independent, i.e., the particles behave independently of each 
other; then their distribution law is given by (1.6). 

1.5. PROBABILITY AND FREQUENCY 

Consider a sequence.ok. k = 1, ... , n, of independent trials which are of a similar 
nature, and an event A = Ak associated with .ok (e.g., A is the occurrence of 'head' 
in coin tossing). Consider the frequency n(A)/n of the event A, where n(A) is the 
number of trials in which A occurred. For large n (n ---4 00) one can observe the 
remarkable phenomenon of the near coincidence 

n(A) ~ P(A), (1.13) 
n 

Table I. Number of occurencies of 'heads' in a series of 100 experiments of 100 coin 
tossings 

Trial Number of heads Total 
numbers 

0- 1,000 54 46 53 55 46 54 41 48 51 53 501 
- 2,000 48 46 40 53 49 49 48 54 53 45 485 
- 3,000 43 52 58 51 51 50 52 50 53 49 509 
- 4,000 58 60 54 55 50 48 47 57 52 55 536 
- 5,000 48 51 51 49 44 52 50 46 53 41 485 
- 6,000 49 50 45 52 52 48 47 47 47 51 488 
- 7,000 45 47 41 51 49 59 50 55 53 50 500 
- 8,000 53 52 46 52 44 51 48 51 46 54 497 
- 9,000 45 47 46 52 47 48 59 57 45 48 494 
- 10,000 47 41 51 48 59 51 52 55 39 41 484 
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which reflects the famous Law of Large Numbers of Probability Theory (it will 
appear in a general form in Sect. 8 of this chapter). As an illustration of (1.13), we 
present Table I containing the number of occurrences of 'heads' in a series of 100 
experiments each corresponding to a sequence of 100 coin tossings. * 

2. Some Probability Models 

2.1. TRIALS WITH COUNTABLE OUTCOMES 

Consider, for example, a sequence of coin tossing up to the first moment n when 
'head' appears (n = 1,2, ... ). Here, every outcome is a sequence of (n -1) 'tails' 
and 'head' at the end, which can be denoted as W = n (n = 1,2, ... ). Clearly, the 
probability of {w = n} is 

n = 1,2, .... 

The last formula formally holds for the outcome {w = oo}, too, as its probability is 
zero. For example, the probability of w = n being even is 

00 1( 1)-1 
P{w=2k; k=1,2""}=L2-2k =4 1- 4 

k=1 

1 
3' 

In the general trial with a countable number of outcomes w E 0 with prescribed 
probabilities P(w) ~ 0, 

L P(w) = 1, (2.1) 
wEn 

the probability of any event A ~ 0 is defined by 

P(A) = L P(w). (2.2) 
wEA 

Let several trials 0 1, ... ,On be given, which can jointly be described by outcomes 
w = (wi"" ,wn ), wk E Ok (k = 1, ... ,n), as the direct product 

0= 0 1 X ..• X On. (2.3) 

* See the reference on p. 3. 
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Assume that the trials Ok, k = 1, ... , n, are independent. Then the probability of 
every outcome W = (wI' ... ,wn ) E 0 is defined as 

(2.4) 

summing up in total to 

Here, any events Ak ~ Ok, k = 1, ... , n, belonging to different trials, are inde­
pendent in the sense of (1.11). This can easily be verified by formally representing 
Ak in the product trial 0 = 0 1 X ... x On by the corresponding direct product 
of Ak ~ Ok and the rest of OJ, j =I- k. (For example, Al can be represented by 
Al x O2 X ... x On.) Thus, the product Al ... An can be represented by the direct 
product Al x ... x An cO, and the general argument of (2.1)-(2.4) applies. 

2.2. BERNOULLI TRIALS 

Consider an event A = Ak ~ Ok, where Ok, k = 1, ... , n, are independent trials of 
a similar nature (for example, A is the occurrence of 'head' in a series of n coin 
tossing). Put Wk = 1 if the event A = Ak occurs, Wk = 0 otherwise. Then, as for as 
we are interested in the event A only, we can take 11k = {I, O} as the two-point set, 
k = 1, ... ,n. The direct product 

consisting of all {I, O}-sequences W = (wI' ... ,wn ), represents all possible outcomes 
W E 0 of interest. Let the probability of A be the same for each k = 1, ... , n: 

peA) = p; 

what is the probability that A occurs m times in the trial series? According to the 
general model (2.3), (2.4), we can define it as 

(2.5) 
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where (::.) is the number of all outcomes w = (wI' ... ,wn ) with 

as any such outcome has the same probability pew) = pm(l _ p)n-m. 
Formula (2.5) gives the Bernoulli (or binomial) probability distribution, with 

n 

LP(m) = L (:)pmqn-m = (p + q)n = l. 
m m=O 

The sum 

n, n-l 1 
"mP(m) = "m n. pmqn-m = np " (n - )pmqn-l-m = np 
L.J L.J m!(n - m)! L.J m 
m m=l m=O 

is called the mean value of the probability distribution P(m), m = 0, 1, .... 
Let us introduce the Poisson probability distribution 

am 
P(m) = -, e-a , m = 0, 1, ... , 

m. 

LP(m) = 1, 
m 

(2.6) 

where a > 0 is a parameter which coincides with the corresponding mean value 

00 m CX)m 

LmP(m) = L m;e-a = ae-a L; = a. 
m. m. 

m m=l m=O 

2.3. LIMIT POISSON DISTRIBUTION 

Consider a large series of the Bernoulli trials with a small probability p = peA) 
of the occurrence of the event A. We ask how the corresponding probabilities will 
behave when n ~ 00, p ~ 0 and the mean value 

np=a 
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remains constant. 
To answer this question, introduce the generating function f(z) of a probability 

distribution P(m), m = 0, 1, ... , given by the power series 

m 

of the complex variable z = reiu , r ~ 1, -7f ~ u ~ 7f, i = A. The coefficients 
of the power series are given by the well-known formula 

P(m) = _I f(m)(o) = _I r f(z) dz 
m! 27f J1z1=1 zm 

m=O,I, .... 

For the Bernoulli distribution 

with the corresponding n, see (2.5), the generating function is 

n 

fn(z) = LPn(m)zm = L (:)(zpr(1- pt-m 
m m=O 

Obviously for Izl ~ 1 as n --+ 00 we have 

I [ a( 1 - Z)] a(1 - z) I C lIn fn(z) + a(1 - z)1 = n In 1 - n + n ~ n ~ 0, 

which shows that 

fn(z) ~ e-a(l-z) = f(z) 

uniformly in Izl ~ 1. 
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The limit function 

turns out to be the generating function of the Poisson distribution with the mean 
value a. As a result, we have the convergence of the corresponding coefficients 

m=O,l, ... , 

which gives the following Poisson approximation of the Bernoulli distribution: 

m=O,l, .... (2.7) 

EXAMPLE (The raisin roll problem). Suppose N raisin rolls of equal size are baked 
from a batch of dough into which n raisins have been carefully mixed before. Then, 
clearly the number of raisins will vary from roll to roll, although the average number 
of raisins per roll is just a = niN. What is the probability that a given roll contains 
at least one raisin? 

It is natural to assume that the volume of the raisins is much smaller than that oc­
cupied by the dough, and the raisins move around freely and virtually independently 
during the mixing, hence whether or not a given raisin ends up in chosen roll does 
not depend on what happens to other raisins. Clearly, after careful mixing, raisins 
will be approximately uniformly distributed throughout the dough, i.e., each raisin 
has the probability 

1 
p=-

N 

of ending up in a given roll. Then, we can interpret the problem in terms of a series 
of n Bernoulli trials, where 'success' in the k-th trial means that the k-th raisin ends 
up in a chosen roll. Suppose, both the number N of rolls and the number n of raisins 
are large, so that, in particular, p = liN is small. Then the number of 'successes' 
in the n trials, or the number of raisins in a given roll, is approximately Poisson 
distributed, i.e., the probability P(m) of finding m raisins in the roll is 
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where 

n 
a=np= N. 

Therefore, the probability P of finding at least one raisin is 

P= I-P(O)~ l-e- a • 

15 

EXAMPLE (Radioactive decay). It is experimentally observed that radium gradu­
ally decays into radon, by emitting alpha particles (helium nuclei). The interatomic 
distances are large enough to justify the assumption that each radium atom disin­
tegrates independently of others. Moreover, each of the n initially present radium 
atoms has the same small probability p of disintegration during a time unit interval. 
(For instance, one gram of radium containing n ~ 1022 atoms emits about 1010 alpha 
particles per second; hence the corresponding p ~ 1010/1022 = 10- 12 .) Call the dis­
integration of a radium atom a 'success'. Then the number of emitted alpha particles 
equals the number of 'successes' in a series of n Bernoulli trials with the 'success' 
probability p. The values of nand p being such, we have a very accurate agreement 
with a Poisson distribution, i.e., the probability that exactly m alpha particles are 
emitted during the time interval is given by 

am 
P{m} = -, e-a , k = 0, 1,2, ... , 

m. 

where a = np is the average number of emitted alpha particles. 

2.4. FINITE NUMBER OF EVENTS 

Consider events A k , k = 1, ... ,n, whose possible outcomes can be jointly described 
by W = (wI' ... ,wn ), with Wk = 1 or 0 depending on whether Ak or the complemen­
tary event Ak occur, respectively (k = 1, ... , n). Such outcomes W = (wi' ... , wn ) 

form the direct product 

Note that, according to the general model (2.1), (2.2), probability peA) of an arbitrary 
event A ~ Q is determined by the probabilities 

(2.8) 
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for any m = 1, ... , n and any il"'" im = 1, ... , n. Indeed, by the general formula 
(2.2), for any events B ~ A we have the equality 

peA) = PCB) + peA \B), 

where A\B = ABc. Hence, first we can find probabilities 

P{W'1 = 1, ... ,w,,,, = 1, W'",+l =o} 

= P{W'1 = 1, ... , w'm = I} -P{W'1 = 1, ... , w'm+l = I} 

for any i l' ... , im+ I = 1, ... , n (m < n), then the probabilities 

= P {W'l = 1, ... , w'm = 1, w'm+2 = o} 

- P{ W'l = 1, ... , W'm = 1, w'm+l = 1, W'".+2 = o} 

for any il"" ,im +l,im +2 = 1, ... ,n (m < n - 1). 
In this way, we successively find all probabilities 

for any il"'" in = 1, ... , n (m < n). Obviously, events of the form {W'l 
1, ... , W'm = 1, W'm+l = 0, ... , W' n = o} represent all 'elementary events' W ~ n, 
and for any event A ~ n, its probability peA) is given by the general formula (2.2). 

For example, in the case n = 2, given 

we find 

P(AIA2) = P(Ad - P(AIA2), P(A,A2) = P(A2) - P(AIA2), 

P(A,A2) = 1 - [P(AI) + P(A2)] + P(AIA2). 
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2.S. THE GENERAL MODEL OF PROBABILITY THEORY 

Let us first describe relations between events. 
Events Al and A2 are equal if the occurrence of Al implies the occurrence of 

A 2, and vice versa. Al and A2 are called disjoint if the occurrence of one of them 
excludes the occurrence of the other one, in other words, if Al and A2 cannot occur 
simultaneously. 

The event A which occurs if and only if one of the events Al and A2 occur, is 
called the union (sum) of AI, A 2, and is denoted by A = Al U A2. The union of 
several events AI, A2, ... is defined analogously, and denoted by 

The event A which occurs if and only if both Al and A2 occur, is called the 
intersection (product) of AI, A2 and is denoted by A = Al n A2. The product of 
several events AI, A2 , •.. is defined analogously, and denoted by 

or A = Al . A 2 ···. The difference of Al and A2 is the event A which occurs if and 
only if Al occurs whereas A2 does not occur, and is denoted by A = Al \A2. The 
event A C which occurs if and only if A does not occur, is called the complementary 
event to A. 

Suppose that, among all possible events A which could occur in the given ex­
periment, one can choose a set of elementary events with the following properties. 
Firstly, elementary events exclude each other (or, are disjoint) and, moreover, at 
least one of them certainly occurs during the experiment. Secondly, for any event A, 
the occurring elementary outcome decides whether A occurs or not. An elementary 
event is usually denoted by the Greek letter w. The set Q of all w's is called the 
space of elementary events. 

Let Q be the space of elementary events w of the considered experiment (phe­
nomenon). With any event A connected with the experiment, we can associate the 
set of all possible outcomes w whose occurrence implies A. We denote this set by 
the same symbol A, and identify it with the corresponding event. 

The certain event, which occurs with every elementary outcome w, equals the 
entire space Q. The impossible event which never occurs, coincides with the empty 
set 0 en. 

The notions of union, intersection etc. of events, introduced above, now become 
the corresponding relations between sets: Al U Al is the union of sets Al and 
A 2, Al n A2 is their intersection, AC = Q\A is the complement to A in the space Q. 
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In particular, note that event Al implies the occurrence of event A2, denoted by 
Al ~ A2 or A2 2 AI, if and only if Al is contained in A2. The following properties 
of relations between events are useful. If Al ~ A2, then Al 2 Az; if A = Al U A2, 
then AC = Al n Az; finally, if A = Al n A2, then AC = Al U Az. In general, 
if a certain relation among events is true, then the relation obtained by changing 
to complementary events and by replacing the symbols U, n, ~, by the symbols 
n, u, 2, respectively, is also true. 

Often, one has to deal with events that are unions, intersections (products) etc. 
of other events. A family Q( of events is called an algebra if it contains finite 
unions/intersections and complements of its elements (recall that 

for example). If, in addition, Q( contains any countable unions/intersections, then it 
is called a a-algebra. 

The general model of the probability theory is given by a space .Q of elementary 
events w equipped with probabilities P(A), A E Q(, of all events A ~ .Q from a 
a-algebra Q(, which satisfy the following conditions: for any event A E Q( 

o ~ P(A) ~ 1, 

P(0) = 0 for the impossible event A = 0, and P(Q) = I for the certain event 
A = Q; moreover, for any sequence Ak E Q(, k = I, 2, ... , of disjoint events, 

P(UAk) = LP(Ak). (2.9) 
k k 

(2.9) is called the countable additivity (or a-additivity) property of the probability 
P(A), A E Q(. This property is clearly satisfied in the probability model (2.1), (2.2) 
with countable number of elementary events; in particular, in (2.2) we just sum over 
all 'chances' wE A in favour of the event A. 

For example, from (2.9) for any events A 2 B we have 

P(A) = P(B) + P(A \B), 

or 

P(A) ~ P(B) 
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whenever the occurrence of B implies A. 
For a finite number of (disjoint) events, equality (2.9) seems rather obvious. In 

the case of infinite number of A k , k = 1,2, ... , we deal with increasing events 

n 

U Ak , n = 1,2, ... , 
k=! 

and the limit 

of increasing bounded sequence 

P ( U Ak ), n = 1,2, ... , 
k=! 

exists. The countable additivity property (2.9) says that this limit is exactly the 
probability P(A) of the limit event 

n 00 

A = lim U An = U Ak. 
n-+oo 

k=! k=! 

i.e., 

(2.10) 

One can consider (2.10) as the continuity property of the probability, and apply it 
to any events A k , k = 1,2, ... , since 

00 00 

k=! k=! k=! k=! 

with disjoint 

k = 1,2, .... 
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In particular, (2.10) implies 

lim P(An) = peA) (2.11) 
n-+oo 

for any increasing events Al ~ A2 ~ ... , 

with the limit event 

A = lim An (= lim Un Ak) . 
n~oo n--+(X) 

k=1 

The limit equality (2.11) holds also for any decreasing events Al :2 A2 :2 ... , with 
the limit event 

A = lim An( = lim nn Ak). 
n-+oo n-+oo 

k=1 

Indeed, it is equivalent to 

lim [1 - P(An)] = 1 - peA), 
n-+oo 

where 

1 - P(An) = P(A~), 

and the complements Al ~ A2 ~ ... increase; moreover, 

A C = ( n Ak) C = U Ak. 
k=1 k=1 

In the sequel, we often use the following simple inequality: 

(2.12) 
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where Ak E Qt, k = 1,2, ... , are arbitrary events. To prove (2.12), write 

where 

k-l 

Bk = Ak \ U A j , k = 1,2, ... , 
j=l 

are disjoint and P(Bk) ~ P(Ak). Therefore, 

EXAMPLE. Suppose, each event Ak, k = 1,2, ... , occurs with probability 1; what 
is the probability that they all occur simultaneously? The question concerns the 
event 

with the complementary event 

satisfying 

P(AC ) ~ l: P(AAJ = 0, 
k 

since P(Ak) = 1 - P(Ak) = 0 for any k = 1,2, .... Hence 

P(A) = 1. 

The following statement will serve later on as a powerful tool in our discussion. 
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LEMMA (First Borel-Cantelli lemma). Let AI, A2,." be a sequence of events, with 
probabilities Pk = P(A), k = 1,2, ... , such that 

(2.l3) 

Then, with probability 1 only finitely many of the events AJ, A2, ... occur. 
Proof Let B be the event that infinitely many of the events AI, A2, ... occur. Put 

so that Bn occurs if and only if at least one of the events An, An+I , ... occurs. 
Clearly B occurs if and only if Bn occurs, for every n = 1,2, .... Therefore, 

B = n Bn = n ( U Ak). 
n n k~n 

Moreover, BI :) B2 :) ... , hence 

P(B) = lim P(Bn). 
n-+oo 

But 

P(Bn) :::; L P(Ak) = L Pk ----> 0, as n -+ 00, 

k~n k~n 

because of (2.13). Therefore 

P(B) = lim P(Bn) = 0, 
n-+oo 

i.e., the probability that infinitely many of the events AI, A2, ... occur is 0. Equiva­
lently, the probability that only finitely many of the events AI, A2, . .. occur is 1. 

o 
In the general model of the probability theory, given by an abstract set n 3 wand 

a probability P(A), A E Qt, defined on a a-algebra of events A C;;; n, independence of 
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events has no 'physical' meaning. In such a case, we call events A k , k = 1,2, ... , 
independent (or mutually independent) if 

P(A- ... A- ) = P(A- ) ... P(A- ) 
'I.} 'l,rn 'lot 'l..m. (2.14) 

for any mutually different iI' ... , im = 1,2, .... The above definition is justified by 
our earlier discussion of the model with afinite number of equiprobable outcomes (see 
(1.11». In another simple model with a finite number of events Ak, k = 1, ... , n (see 
(2.8», their independence in the sense of (2.14) means that Ak can be associated with 
independent trials Q k with two possible outcomes Wk = 0 or Wk = 1 corresponding 
to the occurrence of AI:, or A k , respectively, k = 1, ... , n, so that 

see (2.4). In particular, the last model, with independent Ak, shows that any events 
which are equal either to Ak, or to its complement AI:, (k = 1,2, ... ) are mutually 
independent. 

LEMMA (Second Borel-Cantelli lemma). Let AI, A2, ••• be a sequence of indepen­
dent events, with probabilities Pk = P(Ak ), k = 1,2, ... , such that 

00 

(2.15) 

Then, with probability 1 infinitely many of the events AI, A2 , .•. occur. 
Proof As in the proof of the first Borel-Cantelli lemma, let 

B = n Bn = n ( U A k ), 

n n k~n 

so that B occurs if and only if infinitely many of the events AI, A2 , ... occur. By 
taking complements, we have 

B~ = n AI:" 
k~n 

In particular, for every m = 0, 1,2, ... 

n+m 

B~ ~ n Ak· 
k=n 
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Therefore, 

P ( B~) ~ P (:O~ Ak) = P ( A~) ... P ( A~+m ) 
= (1 - Pn) ... (1 - Pn+m) 

( 
n+m ) 

~ exp - ~ Pk , 

where we use the inequality 1 - x ~ e- x , x ~ 0, and the fact that, if the events 
AI, A2,· .. are independent, then the complementary events AI' A2, ... are also inde­
pendent. But 

n+m 
L Pk ~ 00 as m --+ 00 

k=n 

because of (2.15). Therefore, passing to the limit as m -+ 00, we find that, for every 
n = 1,2, ... P(B~) = O. Consequently, 

n 

or 

P(B) = 1 - P(BC ) = 1, 

i.e., the probability that infinitely many of the events AI, A2, . .. occur, is 1. 0 

Conditional probability. In the general model of the probability theory, it is assumed 
that the occurrence of an event B, P(B) > 0, affects another event A in such a way 
that its a posteriori probability (i.e., the probability after B has occurred) becomes 

P(A I B) = P(AB) 
P(B) . 

The above probability is called the conditional probability of A given the event B. 
Of course, if the probabilities P(B) and P(A I B) are known, then we can find the 
probability of the event AB: 

P(AB) = P(A I B)P(B). (2.16) 
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Suppose, we are given P(Bk), peA I B k) for some disjoint B k, k = 1,2, ... , and 

Then, as 

we obtain the total probability formula: 

peA) = L peA I Bk)P(Bk). (2.17) 
k 

As an application of the notion of conditional probability, consider the following 
problem. 

Forecasting of events. Consider a random quantity ~ = 1,2, ... taking a finite 
number of integer values, depending on the outcome of another quantity (experiment) 
'T} = 1,2, ... which we observe. We want to forecast ~ given an observation of 'T}. 
More precisely, we want to find an appropriate function f = cp('T}) of'T} which would 
serve as the forecast of~. Of course, the forecast can be wrong, which happens with 
the probability 

P{ cp('T}) i- ~}. 

Let us find the best forecast CPo('T}) such that 

P{ cpo('T}) i- ~} ~ P{ cp('T}) i- ~} 

for any forecast cp('T}). We have 

P{ cp('T}) i- ~} = 1 - P{ cp('T}) = 0 
= 1- LP{'T} = k, ~ = cp(k)} 

k 

= 1 - L P{ ~ = cp(k) I 'T} = k }Pb = k}. 
k 
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For any k = 1,2, ... , define jo = <poCk) as the maximum point of the conditional 
probability: 

P { ~ = jo I 7] = k} = max P { ~ = j I 7] = k}. 
J 

Then, for any <p, 

P{ ~ = <poCk) I 7] = k} ~ P{ ~ = <p(k) I 7] = k}, 

and we immediately obtain the following result. 

THEOREM. The best forecast of ~ is given by t = <po(7]). 

2.6. SOME EXAMPLES 

(2.18) 

Gambler's ruin problem. Consider the game of 'heads or tails', in which a coin is 
tossed and a player wins 1, say, if he successfully calls the side of the coin which 
lands upward, but otherwise loses 1. Suppose the player's initial capital is x, and 
he intends to play until he wins m but no longer. In other words, suppose the game 
continues until the player either wins the amount of m, stipulated in advance, or else 
loses all his capital and is ruined. What is the probability that the player will be 
ruined? 

The probability of ruin clearly depends on both the initial capital x and the final 
amount m. Let p(x) be the probability of the player's being ruined if he starts with 
a capital x. Then the probability of ruin, given that the player wins the first call, 
is just p(x + 1), since the player's capital becomes x + 1 if he wins the first call. 
Similarly, the probability of ruin, given that the player loses the first call, is p(x - 1), 
since the player's capital becomes x-I if he loses the first call. In other words, if 
B, is the event that the player wins the first call and B2 the event that he loses the 
first call, while A is the event of ruin, then 

P(A I B,) = p(x + 1), P(A I B2) = p(x - 1). 

The mutually exclusive events B, and B2 form a 'full set', since the player either 
wins or loses the first call. Moreover, we have 

assuming fair tosses of an unbiased coin. Hence, by the total probability formula 
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we get that p(x) = <p(x), as a function of x = 0, ... , m, satisfies the equation 

1 
<p(x) = "2 [<p(x + 1) + <p(x - 1)]. 1 ~ x ~ m - 1, 

where obviously 

<p(0) = p(O) = 1, <p(m) = p(m) = O. 

The solution of the above equation is a linear function 

where the coefficients c1 and c2 are determined by the boundary conditions: 

We finally find that the probability of min, given the initial capital of x, is just 

x 
p(x) = 1 - -, 0 ~ x ~ m. 

m 
(2.19) 

In a very similar way, one can find the corresponding probability not to be mined 
but to win the final amount m 

x 
q(x) =-, 

m 

which appears as the solution <p(x) = q(x) of the functional equation considered 
above with the boundary conditions 

<p(0) = q(O) = 0, <p(m) = q(m) = 1. 

In total, the two probabilities (to be mined or to win) give us 

p(x) + q(x) = (1 - :) + : = 1, (2.20) 

which shows that there is no chance to play infinitely with the capital 0 < x < m 
always strictly between 0 and m, and not hitting these edge points in a series of 
infinite tosses. (Could you have guessed that result in advance, prior to the above 
calculations?) 
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Random walk. Imagine a particle which randomly 'walks' along the x-axis, visiting 
integer points x = 0, ± 1, ... only; once at point x, it shifts either to the point x + 1, 
or to the point x-I, with probabilities p and q = 1 - p, respectively. 

How often the particle can return to the initial point (x = 0, say)? Of course, the 
particle can be again at x = 0 after an even number (= 2n) of steps only, as the total 
number of steps to the left and to the right has to be the same. For a given n, the 
probability of such event equals 

P( ) _ (2n) n n _ (2n)! n n n - p q - ( ,)2 P q , n n. 

According to the well-known Stirling formula 

we find that, as n --+ 00, 

1 
P(n) rv ;;;;:;;:;- (4pq)n. 

y7rn 

In the case p -1= q, as 4pq = 1 - (p - qf < 1, we see that 

P(n) < 00. 

This shows, according to the Borel-Cantelli lemma, that after infinitely many steps 
with probability 1 the particle returns to initial point (x = 0) only afinite number of 
times. (One can guess that if p > q, say, then the particle moves to the right to +00, 

as time increases.) 
What happens in the symmetric case p = q = 1/2? Let pO(m) be the probability 

that the particle returns to 0 at t = 2m for the first time. It is clear that if the first 
return occurs at t = 2m, then the conditional probability that the particle visits x = 0 
at time t = 2n, is the same as the probability P(n - m) of visiting x = 0 at time 
t = 2(n - m) from the very beginning. Hence, by the total probability formula, 

n 

P(n) = L pO(m)P(n - m), n = 1,2, ... , P(O) = 1, 
m=! 

which gives the following equation 

F(z) - 1 = FO(z)F(z), 
1 

F(z) = 1 _ FO(z) 
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for the generating functions 

= = 
F(z) = :LP(n)zn, FO(z) = :L pO(m)zm, Izl < 1. 

n=O m=! 

We immediately see that 

= 
F0(l) = " pOem) = pO = lim FO(z) 

~ z-+! 
m=! 

is the probability that the particle returns, at least once, to the origin. The equation 

1 
F(z) = 1 _ FO(z) 

shows that 

pO = lim FO(z) = 1 
z-+= 

if and only if 

= 
lim F(z) = :LP(n) = 00. 
z-+! 

n=O 
(2.21) 

This is exactly the case of the symmetric random walk with p = q = 1/2, since 
in this case, Pen) '" 1/.Jim, and (2.21) holds. Therefore, we can conclude that the 
particle returns to the initial point with probability 1. Obviously, after the first return, 
the situation will be exactly the same as at the very beginning and the second return 
occurs with probability 1, too, then, surely, will be the next one etc. Thus, with 
probability 1, the particle will return to the initial point infinitely many times. 

If p =1= q, then condition (2.21) fails, and the return probability po < 1. What 
is Po? More generally, what is the probability for the random walk to hit a point 
x =a? 

One can find it in a very similar way to the 'gambler's ruin' problem, see p. 26. 
Namely, assume for a while that there are stopping barriers at points x = a, b (a > 

o > b), say, so when the particle comes to any of them, it will remain there forever. 
Consider the probability to hit the point a at some time, as a function <p(x) of the 
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starting point x, of the random walk, a ~ x ~ b. According to the total probability 
formula, 

<p(x) = p<p(x + 1) + q<p(x - 1), a > x > b, 

with the obvious boundary conditions 

<pea) = 1, <pCb) = o. 

In the case of p =I- q, one obtains 

1 _ (q/py-b 
<p(x) = 1 _ (q/p)a-b' a ~ x ~ b. 

One can assume that the influence of the barrier at the left point b is negligible as 
b -t -00. Passing to the limit as b -t -00, we obtain the probability 

<p(x) = {(q/py-a, p < q, 
1, p > q, 

for the particle, starting at x ~ a, to hit the point a at some time. Substituting a, p 

by b, q, respectively, we get the probability 

<p(x) = {(P/qy-b, p> q, 
1, p < q 

for the particle to hit b, starting from x ~ b. Now, we can find the probability 

pO = {P + q(q/p)-l, p < q} = 1 -Ip _ ql 
p(p/q)-l + q, p> q 

(2.22) 

to return to the initial point, using the observation that the particle can return to 0 
either from x = 1, or from x = -1, where it surely comes after the first step, with 
the probability p and q, respectively. 0 

Time distribution of radioactive decay. Let us return to the process of radioactive 
decay (see p. 15), with the probability p for a radium atom to disintegrate during a 
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time interval of length t. More precisely, a radium atom, existing at a moment to, 
will disintegrate at a random moment to + T E (to' to + t] with the probability 

p = pet) = P{T :::;; t}, 

which depends on t ;;::: O. Consider the function 

<pet) = 1 - pet) = P{T > t}, t;;::: 0, 

which is decreasing and 

<p(0) = P{T > O} = 1. 

Suppose we know that T > s, then we still have the radium atom at the moment 
tt = to + s and, according to our assumption, the corresponding a posteriori prob­
ability of T > s + t, given T > s, is the same as P{T > t}. In other words, the 
conditional probability 

P{ T > s + tiT> s} = P{ T > t}, (2.23) 

which implies 

P{T> s +t} = P{T > S}P{T > t}. 

This brings us the following functional equation: 

<pes + t) = <pes )<p(t); s, t ;;::: O. (2.24) 

The probability <pet) = P{T > t} is continuous at t = 0, since {T > O} is the limit of 
increasing events {T > t}, t ----> O. Equation (2.24) implies that <p(s+t) is continuous 
at every point s ;;::: 0, i.e., <pet), t ;;::: 0, is a continuous function. Moreover, (2.24) 
implies, together with <p(0) = 1, that <pet), t ;;::: 0, is strictly positive, and one can 
check that log <pet) is a linear function: 

log <p(t) = ->'t, t;;::: 0, 
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where>. ;;:: 0 is a constant. Finally, we obtain 

(2.25) 

Let be given at time to some amount of radium, containing n atoms. Then 

np = np(t), pet) = 1 - e-At 

(see p. 15) is the average number of a-particles emitted during time interval (to, to+t), 
hence 

net) = n - np(t) = ne- At 

is the average number of radium atoms left at time to + t. According to this expo­
nential law, one obtains 

1 neT) -AT - = -- =e 
2 n 

for the ratio of the initial amount of radium, and the amount left after time 

T = log2 
>. . 

The half-life constant T (which does not depend on n) is experimentally known. 

3. Random Variables 

3.1. PROBABILITY DISTRIBUTIONS 

We have already encountered numerous random variables in our discussion; in par­
ticular, the number of 'successes' in the Bernoulli trials, the number of a-particles 
emitted in a time interval, the time up to the moment of disintegration of a radium 
atom in the radioactive decay process, etc. 

Roughly speaking, a random variable e is a quantity which takes its values 'at 
random' from a set of all possible values of e. A more precise meaning can be given 
at once in the (discrete) case of e taking a countable number of values x E ~ lR. = 
(-00,00), with corresponding probabilities 

00 

(3.1) 
-00 
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Here, 'randomness' of ~ is characterized by the probability distribution p{ = p{(x), 
-00 < x < 00, which determines the probability 

Pe(B) = P{~ E B} = L Pe(x) (3.2) 
xEB 

of an arbitrary event {~ E B}. One can recall here the hypergeometric distribution 
0.3), the Bernoulli distribution (2.5) and the Poisson distribution (2.6) - all of them 
are discrete distributions over a corresponding set of integers x = 0, 1, .... 

In our example of the radioactive decay, we have actually met a random variable 
~ of a different kind, taking values in any interval x' ~ ~ ~ x" of the time axis x ~ ° 
with the corresponding probability 

P{X' < ~ ~ x"} = P{~ > x'} - P{~ > x"} = l x
" >"e-'\x dx. 

x' 

Here, 'randomness' is characterized by the probability density 

p(x) = { >"e-'\x, x > 0, 
0, x ~ 0, 

cf. (2.25). In general, a probability density on the real lime IR = (-00,00) is given 
by a function p(x) ~ ° with 

£: p(x)dx = 1, 

and we say that ~ is a random variable with the probability density p(x) = P{(x), 
-00 < x < 00, if, for any interval (x', x"], the probability 

P{X' < ~ ~ x"} = l x
" p{(x)dx. 

x' 
(3.3) 

EXAMPLE (The uniform distribution). Imagine that a point ~ is thrown 'at random' 
onto an interval (a,b], as it happens e.g., in the roulette game, with (a,b] = (-7r,7r] 
corresponding to the roulette circle. Then 

" x" - x' l x 
P{X'<~~X"}= b-a = x, pe(x)dx, 
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with the probability density 

{
I 

( ) -b -, a < x ~ b, P, x = - a 

0, x ~ a, x> b. 

By the help of a probability density, we define the probability of an arbitrary event 
{~ E B} as 

(3.4) 

In general, when speaking of a random variable ~ E lR, we have in mind its 
probability distribution 

(3.5) 

or the probabilities P,(B) for ~ to belong to certain sets B ~ lR, including all intervals 
B = (x', x"]. From the latter, one can form many other B ~ IR and determine the 
corresponding probabilities P,(B), according to the known properties of countable 
additivity and continuity. For example, one has 

I "] l' (' 1 "] [x , x = 1m x - -, x , 
n-tCX> n 

P{x' ~ ~ ~ XII} = lim p{XI -.!. < ~ ~ XII} 
n-too n 

for closed intervals, 

[x] = lim (x - .!., x], 
n-+CX) n P{~ = x} = lim p{x - .!. < ~ ~ x} 

n-+oo n 

for single points, 

(-00, x] = lim (x', x], 
x'--+-oo 

P {~ ~ x} = lim P {x' < ~ ~ x}, 
X'---+-CX) 

etc. 
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On the other hand, for B = (x',x"] we can define P{~ E B} as 

P{ x' < ~ ~ x"} = F~(x") - F~(X'), 

where 

F~(x) = P{~ ~ x}, -00 < x < 00; 

is the so-called distribution function. Obviously, it is increasing, right-continuous, 
and 

lim F~(x) = 0, 
X-+-c.'X> 

lim F~(x) = 1 
x-++oo 

(why?). 

3.2. JOINT PROBABILITY DISTRIBUTION 

Dealing with discrete random variables ~k, k = 1, ... , n, we assume that there exists 
their joint probability distribution 

where xl' ... , xn range over a countable number of all possible values, and 

00 00 

-00 -00 

Summing up over (xl' ... , x n ) E B, we get the probability 

P~j, .... ~n(B) = P{(6'''''~n) E B} 

= L···LP~I ..... ~n(XI' ... ,Xn) 
B 

(3.6) 

of an arbitrary event {(6, ... , ~n) E B}. Obviously, the probability distribution of 
6, ... ,~m (m < n) alone can be obtained from (3.6) as 

00 00 

P~I ..... ~m(xl"'" x m ) = L'" LP~j, .... ~n(Xi"" ,xn ), (3.7) 
-00 -00 

'"---v--' 
n-m 
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where we sum over all possible (xm+ I, ... , xn) E ffi.n-m. 
Another type of random variables ~k E IR, k = 1, ... , n, correspond to probabilities 

of the form 

Pel> ... ,en(B) = P{(6, ... '~n) E B} 

= f··· J Pel>···,en (Xi' ... ' Xn) dX I ... dXn, 
B 

for various sets B ~ ffi.n we are interested in, in particular, to probabilities 

corresponding to B = (x~, x~] x ... x (x~, x~].* 
The function 

(3.8) 

(3.9) 

is called the joint probability density of 6, ... , ~n. In this case, the probability 
density of 6, ... , ~m (m < n), can be written as 

Pel, ... ,em (xI'···' xm) 

= JOO ... jOO pel, ... ,en(xl, ... ,xn)dxm+I ... dxn. 
-00 -00 

(3.10) 

EXAMPLE (Buffon s needle problem). Suppose a needle is tossed at random onto 
a plane ruled with parallel lines a distance L apart, where by a 'needle' we mean a 
line segment of length I ~ L. What is the probability of the needle intersecting one 
of the parallel lines? 

* It is worthwhile to mention that sets B <:;; IRn look like 'boxes'. Other sets B <:;; IRn can be formed 
by means of their unions and corresponding limits. 
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Let 6 be the angle between the needle and the direction of the rulings, and let 6 
be the distance between the bottom point of the needle and the nearest line above 
this point (see Figure 1). Then, if the conditions 

L 

L 

o 
a) b) 

Fig. 1. 

of the 'needle tossing experiment' are such that the random variable 6 is uniformly 
distributed in the interval (0, 7r], while the random variable 6 is uniformly distributed 
in the interval (0, L] and, moreover, 6,6 is uniformly distributed over the rectangle 
(0, 7r] x (0, L], we find that their joint probability density is 

The event consisting of the needle intersecting one of the rulings occurs if and only 
if 

6 ~ lsin6, 

i.e., if and only if the corresponding point ~ = (6,6) falls in the region B, where 
B is the part of the rectangle ° ~ xl ~ 7r, ° ~ X 2 ~ L lying between the xl-axis 
and the curve x2 = sinxI [B is the un shaded region in Figure 1 (b)]. Hence, by the 
general formula (3.8), 

J 1 dx dx 1 17r . 2l P{(6,6) E B} = I 2 = -L SIll Xl dX I = -L' 
B 7rL 7r 0 7r 

This can be tested experimentally; in fact, if the needle is repeatedly tossed onto the 
ruled plane, then the frequency of the event A, consisting of the needle intersecting 
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one of the rulings, must be approximately 21/(1T L). Suppose the needle is tossed n 
times, and let n(A) be the number of times A occurs, so that n(A)/n is the relative 
frequency of the event A. Then, for large n, 

n(A) 21 
---:;;:- rv 1TL. 

Hence 

21 n 
L . n(A) 

should be a good approximation to 1T = 3.14 ... , for large n. This actually turns out 
to be the case. * 

3.3. INDEPENDENT RANDOM VARIABLES 

Discrete random variables ~k, k = 1, ... , n, are said (mutually) independent if 

(3.11) 

i.e., if their joint distribution is the product of (marginal) probability distributions of 
these random variables. Similarly, random variables ~k, k = 1, ... , n with a joint 
probability density are called (mutually) independent if 

(3.12) 

i.e., if the joint density is the product of corresponding marginal densities of these 
random variables. 

EXAMPLE (Normal, or Gaussian, distribution). Let us imagine shooting at a target 
which is located at the origin of the ]R2 plane. The marks can be expected to be 
random points (6, 6), with distribution which is centrally symmetric around the 
origin. Moreover, we can assume that 'errors' 6,6, along orthogonal coordinates 
in ]R2, are independent, and jointly distributed according to a probability density 

* 1.U. Uspensky, Introduction to Mathematical Probability, McGraw-Hill, New York, 1937, p. 113. 
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where p(x I)' p(x2) represent corresponding probability densities of 6,6, respectively. 
In view of the central symmetry, we have 

as a function of r2 = xi + x~. Hence, with xI = 0,x2 = x, we obtain 

f(x2) == p(O)p(x), -00 < x < 00, 

or 

p(O) =1= 0, f(O) = p(0)2 =1= 0. 

By taking xi = s, x~(= x 2 ) = t, one easily obtains from the above equations that 

f(t) p(x) 
cp(t) = f(O) = p(O) , t ~ 0, 

satisfies the known equation 

cp(s + t) = cp(s)cp(t), s, t ~ 0. 

Hence, 

see (2.25), and, consequently, 

p(x) = p(0)e- AX2 , -00 < x < 00. 

To find the constants p(O) and>' > 0, we shall need the equality 
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which follows from 

= - e -(XI +x2)/2 dx dx 1 1<Xl l<Xl 2 2 

271" -<Xl -<Xl 1 2 

= - dB e- r /2r dr = 1. 1 121T 1<Xl 2 

271" 0 0 

Substituting x by x/a gives 

-- e- X U dx == 1, 1 l<Xl 2/2 2 

a.j2; -<Xl 
a> o. (3.13) 

Moreover, differentiation of the identity 

1 l<Xl -ux2/2 d _ 1 -- e x--
.j2; - <Xl - ..;u' u >0, 

with respect to u > 0 gives 

(3.14) 

Returning to p > 0 and A > 0, put A = 1/2a2 , then, using the condition 

£:p(X)dX = 1 

for the probability density p(x), -00 < x < 00, we obtain from (3.13) that 

1 
p(O) = ~. 

ay271" 

Thus, the marginal probability density of ~ = ~ 1,6 is 

-00 < x < 00, (3.15) 
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and is called normal (or Gaussian); the corresponding parameter a2 > 0 is given by 

see (3.14), and is called the variance of the random variable ~. The joint probability 
density 

-00 < x < 00, (3.16) 

of independent Gaussian random variables 6,6, is also called normal (or Gaussian). 

3.4. CONDITIONAL DISTRIBUTIONS 

The dependence between two discrete random variables ~ and 'f/ can be characterized 
by the conditional probability distribution 

p{(x I y), -00 < x < 00, 

of ~ given an outcome {'f/ = y}; it is assumed that for any y, -00 < y < 00, the 
identity 

(3.17) 

holds true. Here, the so-called Bayes formula applies: 

In a similar way, for random variables ~, 'f/ having a joint probability density 
p{,..,(x, y), one can define the conditional probability density 

P{(x I y), -00 < x < 00, 

of ~ given an outcome {'f/ = y}; it is assumed that for all y, -00 < y < 00, the 
identity 

(3.18) 
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holds true, together with the Bayes formula: 

p.,.,(y I x) 
p~(x I y) = p~(x) (). 

P.,., Y 

In the same way, one can define conditional probabilities and densities for any 
random vectors (6, ... , ~m) and ('Tn, ... , TJn); in the corresponding formulas (3.17), 
(3.18) one has to replace~, TJ, x, y by (6,···, ~m), (TJI, ... , TJn), (xl' ... ' x m), (Yl' 
... , Yn), respectively. 

To check the probabilistic intuition, consider the following question: what is the 
conditional probability distribution of the sum ~ = 6 + 6 of independent random 
variables 6, 6 given TJ = 6? One can guess that, in the case of discrete 6, 6, the 
conditional distribution of ~ = 6 + 6 given TJ( = 6) = Y is 

P~(x I y) = P~l(X - y), -00 < x < 00, 

just like TJ( = 6) == y is being constant and, in the case of 6, 6 having a probability 
density, the corresponding conditional probability density is 

p~(x I y) = P6(x - y), -00 < x < 00. 

3.5. FUNCTIONS OF RANDOM VARIABLES 

Given two independent random variables 6 and 6 with probability densities P~l (x) 

and P~2(x2)' what can we say about the distribution of ~ = 6 + 6? The answer 
to this simple question, which is part of a general problem concerning functions of 
random variables, is that the probability density of ~ is given by the convolution 

P~ = P~l * P~2' 

i.e., 

p~(x) = I: peJx - y)p~2(y)dy, -00 < x < 00, (3.19) 

since 

P {x' < ~ ~ XII} = 11 

follows by the substitution x = Xl + x 2' Y = x 2. 
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EXAMPLE (Triangular distribution). This is the distribution of e = 6 + 6, where 
6, 6 are independent and uniformly distributed in (-a, 0) and (0, a), respectively; 
its probability density is 

lia 
P{(x)=- P6(x-y)dy 

a 0 

1
1 r+a - 1 ( x) 

_ a2 Jo a dy - a 1 + a ' 

- -\1 dy = ft (1 - ~), 
a x 

0, 

-a < x ~ 0, (3.20) 

0< x ~ a, 

x < -a, x> a 

(see Figure 2). 

p(x) 

Ita 

-a a x 

Fig. 2. 

EXAMPLE (Gamma-distribution). Let e 1, ... ,en be independent random variables 
having the same exponential distribution, or probability density 

p(x) = {Ae->'X, x ~ 0, 
0, x < 0. 

The sum e = 6 + ... + en has the so-called gamma-distribution, with the probability 
density 

{
A (Axr- 1 e->'x 

P{(x) = (n - I)! ' 
0, 

x ~ 0, 

x < 0, 
(3.21) 
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which is the n-fold convolution 

p(x)*n = i: p(x - y)*(n-l)p(y)dy, -00 < x < 00 (n = 2,3, ... ), 

p(x)*l == p(x), -00 < x < 00. 

Let a joint probability density of 6, ... ,~n be given. We want to find the joint 
density of the random variables 

where 

is a one-to-one differentiable mapping ~n -+ ~n with a non-degenerate Jacobi de­
terminant 

~o. 

One can verify that the joint probability density of 'T/!, ... ,'TIn is given by 

P"l(Yl, ... ,Yn) = pe(x1,· .• , xn)IJ(xl' ... , xn)I- 1, 

(Yl, ... ,Yn) E ~n. 

3.6. RANDOM VARIABLES IN THE GENERAL MODEL OF PROBABILITY THEORY 

(3.22) 

Given a family of random variables ~, one can assume that all of them are associated 
with some probability model (n, ~, P), where n is a space of elementary events 
wEn, equipped with probabilities P(A) of all events A ~ n belonging to a a-algebra 
~. Any random variable ~ can be considered as a function 

(3.23) 
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on the space n, under the implicit assumption that, for ~ E lR, 

{x' < ~ :::; x"} E ~, -00 < x' < x" < 00. 

Then, every ~ can be approximated by an appropriate discrete random variable, for 
example 

~h = kh, (k - l)h < ~ :::; kh, 

with the probabilities 

P{~h=kh}=P{(k-l)h<~<kh}, k=O,±I, .... 

Obviously, 

(3.24) 

for all possible outcomes, hence we have a uniform approximation of ~ with the 
uniform convergence ~h ----t ~, when h -+ O. 

The above approximation helps to characterize various properties of random vari­
ables by means of corresponding properties of discrete random variables; for exam­
ple, a very intuitive definition of independent random variables ~k. k = 1, ... , n, 
can be given, in the sense that they take their values independently from each other, 
by requiring the corresponding approximations ~~, k = 1, ... , n, to be independent 
according to definition (3.11). In particular, we call random variables 6,··· ,~n 
(mutually) independent if any events of the type 

(3.25) 

are (mutually) independent; c.f. (3.11), (3.12), using the definition of independent 
events given in (2.14). 

4. Mathematical Expectation 

4.l. MEAN VALUE OF DISCRETE VARIABLE 

Consider a discrete random variable ~, taking value ~ = x with probability 

Pe(x) = P{~ = x}, -00 < x < 00. 
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The sum 

00 00 

E~ = LXPe(x) = LXP{~ = x} (4.1) 
-00 -00 

is called the mathematical expectation (or the mean value) of ~, assuming that it 
absolutely converges, i.e., 

00 

L IxIPe(x) < 00, 

-00 

and we sum over the countable set of all possible values x of the discrete variable 
~. The term 'mean value' has a very explicit meaning in the case when ~ takes a 
finite number N of values x = xl' ... ,xN ' with equal probabilities Pe(x) = liN, as 

Recall that we have already discussed the mean value of Bernoulli and Poisson 
distributions; see (2.5), (2.6). 

Speaking about the general case, note at once that if ~ = a takes a constant value 
X = a with probability I, then 

E~ =a. (4.2) 

Next, if ~ = I A is the indicator of an event A (1 A = I if A occurs, I A = 0 otherwise), 
then 

EIA = peA). 

If ", = cp(O is a function of a random variable ~ with probability distribution 
Pe(x), -00 < x < 00, then 

00 00 00 

Pe(x) = L cp(x)Pe(x), 
-00 -00 x: cp(x)=y -00 
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where we sum over all x, -00 < x < 00, assuming the absolute convergence of the 
series, i.e., 

00 

-00 

In a similar way, given", = (6, ... ,~n) as a function of discrete random variables 
~" ... , ~n, we obtain 

00 00 

E<p(6,··· '~n) = L'" L <p(x" ... ,xn)Pe" ... ,en(x" ... ,xn), 
-<X) -00 

assuming 

00 00 

L'" L l<p(x" ... ,xn)IPe" ... ,en(x" ... , xn) < 00. 
-00 -ex) 

In particular, formula (4.3) implies 

00 

(4.3) 
-00 

The last sum is always well defined, although sometimes it can be infinite, and EI~I < 
00 is just the condition which was assumed in definition (4.1) of the mathematical 
expectation. Sometimes it will be convenient to use this condition, in order to 
indicate the very existence of E~. 0 

Formula (4.3) helps to reveal some remarkable properties of the mathematical 
expectation E~, concerning its dependence on~. Namely, E~ is linear in the sense 
that, for any linear combination 

of random variables 6, ... , ~n, we have 

(4.4) 
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EE is multiplicative in the sense that, for any product E = 6 ... En of (mutually) 
independent Ek, k = 1, ... , n, we have 

(4.5) 

These properties can be verified by an application of the general formula (4.3). 
For example, 

00 00 

E(c,6 + ~6) = LL (c,x, + ~x2)P~1,6(X"x2) 
-00 -00 

00 00 00 00 

= c, LX, LP~1,6(X"X2) + C2 L X2 LP~1,6(X"X2) 
-00 -00 -00 -00 

00 00 

-00 -00 

and, for independent 6,6 with E161,E161 < 00, the absolute convergence of 

00 00 

L L Ix,llx2IP~1,6(x" x2 ) 
-00 -00 

00 00 

= LLlx,llx2IP~1(X,)P~2(X2) 
-00 -00 

00 00 

-00 -00 

implies the existence of 

00 00 

E(E, . 6) = LLx,X2P~1,6(Xi'X2) 
-00 -00 

00 00 

= LX,P6(X,) LX2P6 (X2) = E6 . E6· 
-00 -00 
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Moreover, if e 1, ... ,en are independent, then, for arbitrary functions <PI, ... ,<Pn such 
that E<pk(ek), k = 1, ... , n, exist, we have 

(4.5)' 

o 
Let us consider random variables as functions of wEn, i.e., 

e = e(w), wEn, 

in the framework of the general model (n, Qt, P) of the probability theory; see (3.23). 
Obviously, any discrete random variable e is a discrete function of wEn, taking a 
countable number of values 

e(W)=Xk, wEAk, k=I,2, ... , 

on disjoint sets Ak E Qt forming a partition 

Then 

(4.6) 

since 

00 

L xkP(Ak) = LX L P(Ak) 
k -00 k: Xk=X 

00 00 

-00 -00 

with 

00 

L IXkIP(Ak) = L IxIP~(x) < 00. 

k -00 
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Representation (4.6) permits us to prove some properties of the mean value Ee with 
respect to e, by taking the same partition 

for different e. Actually, this enables to consider random variables as functions of 
the corresponding disjoint events A k , k = 1,2, ... , alone. Using this observation, 
one can easily prove again the linearity and multiplicativity properties of the mean 
value. Another important property is 

(4.7) 

for 6 :(; 6 (i.e., for 6, 6 such that 6(w) :(; 6(w) for every wEn). Indeed, let 
6, 6 take values x 1k :(; x2k on Ak, k = 1,2, ... , respectively, then from (4.6) we 
get 

00 00 

-00 -00 

which also implies 

(4.8) 

since -lei :(; e :(; lei· 
Condition Elel < 00 guarantees the existence of Ee; one can check that if lei :(; 'T/ 

and E'T/ < 00, then 

(4.9) 

so that Ee exists and, of course, IEel :(; E'T/. 
Obviously, Elel < 00 is a restriction on probabilities of large values of lei; it 

implies 

E( 1{1~I>a}lel) = L IxIP~(x) --40 (4.10) 
Ixl>a 

as a --4 00, where the last expectation represents the mean value of lei over all 
outcomes with lei> a. 
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4.2. LIMIT MEAN VALUES 

We know (see (3.24)) that any random variable ~ can be written as the limit 

~ = lim ~h 
h-+O 

of the corresponding discrete approximations 

~h = kh, (k-l)h<~~kh, k=O,±I, .... 

Assuming the existence of E~h, let us show that the limit 

(4.11) 

exists. Indeed, according to (4.3), (4.8), 

IE~hl _ E~h21 = IE(~hl _ ~h2) I 

~ EI~hl - ~h21 ~ 2max(h1,h2) -t 0, 

so that the limit (4.11) exists, which is called the mean value (mathematical expec­
tation) of the (limit) random variable ~(= lim~h). 

Similarly to (4.3), one can obtain the mean value of a function 'T} = <p(6, ... ,~n) 
of random variables 6, ... ,~n with a given probability density, 

where 

Indeed, (4.12) holds for a discrete function <p, taking values Yk on sets B k , k = 

1, 2, ... , from the corresponding partition 
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since 

Ell = LYkP{ 17 = Yk} 
k 

= J ... J <p(X l ,···, Xn)P~" ... '~n (Xl' ... , Xn) dX l ... dxn. 

IRn 

Next, writing <p as the uniform limit 

<p = lim <p(h) 
h-tO 

of the corresponding discrete approximations <ph, 

(k-l)h<<p~kh, k=O,±I, ... , 

we obtain 

= J ... J <p(XI"'" Xn)P~I, ... '~n (xl' ... , Xn) dX l ... dXn, 

IR n 

having in mind that 

For a single random variable, (4.12) gives 

CHAPTER 1 
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EXAMPLE. If e is uniformly distributed on (a, b], then 

1 lb b - a 
Ee = -- xdx = -2-· 

b- a a 

EXAMPLE. If e is exponentially distributed with parameter A, then 

EXAMPLE. If e is normal, see (3.15), then 

1 100 2/2 2 Ee = -- xe- X a dx = 0, 
a,Jiii -00 

since the probability density is symmetric with respect to x = o. 
The limit approach (4.11) helps to prove properties (4.4), (4.8), for general random 

variables. Actually, (4.5)-(4.5)' and (4.7)-(4.10) hold as well. Let us verify (4.5), 
taking n = 2 for simplicity. As 6, 6 are independent, the corresponding discrete 
variables e~, e~ are also independent, and 

since 

E(6 ·6) = lim E(e~ . e~) 
h-+O 

IE(6 ·6) - E(e~ . e~) 1 

~ EI66 - e~e~ 1 

= EI66 - e~6 + e~6 - e~e~1 

~ EI6 - e~ 1161 + Ele~ 116 - e~ 1 

~ hEI61 + hE(161 + h) -+ o. 

The multiplicative formula (4.5)' for independent variables can be obtained in a 
similar way, by using discrete approximations <ph of the corresponding functions <po 

Next, if 6 ~ 6, then e~ ~ e~ + hand 

which proves (4.7); (4.8)-(4.10) follow in a similar way. o 



54 CHAPTER 1 

In addition to (4.10), it is worthwhile to mention that 

(4.10)' 

provided E, exists and is finite; and the latter can be justified with the help of 

Note here that, according to (4.1), (4.11), E, is well-defined for any random variable 
, ~ 0, although it can be infinite (in particular, this concerns the absolute value 1'1 ~ 0 
of arbitrary random variable '). 

We call random variables " { equivalent if , = { with probability 1, i.e., 

P{,-{=O}=1. 

Obviously, for equivalent " {, we have 

- -
E(, - ') = E, - E, = o. 

Hence, for example, , has a finite mean value E" if there is a majorant T/ ~ 0, ET/ < 
00, such that 

with probability 1. Namely, consider an equivalent variable { such that If! ~ T/ for 
all possible outcomes, then, as Elf! ~ ET/ and Elf! = EI'I, 

EI'I ~ ET/. (4.7)' 

4.3. SOME LIMIT PROPERTIES 

It is clear that if a random variable 

,= lim 'n 
n-+oo 

is a uniform limit of 'n, EI'n I < 00, i.e., 
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then the limit 

lim E~n = E~ 
n---+oo 

exists, which gives the mathematical expectation of ~. 
Moreover, in such a case we have 

(4.13) 

or the convergence in mean, which implies, of course, 

since 

Suppose we only know that (4.13) holds. How can one estimate the distance 
between the random variables ~n and ~? How can one be sure that [~n - ~[ :::; c, or 
how small is the probability of [~n - ~[ > c? The answer is given by the inequality 

which is a particular case of the Chebyshev inequality: 

1 
P{[1][ > c} :::; - E[1][ 

c 

valid for any random variable 1] and any constant c > O. (4.14) is clear from 

E<p(1]) = cP{ [1][ > c} :::; E[1][, 

where 

<p(1]) = {~: 

(4.14) 
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For bounded random variables 1171 ~ a, there is some kind of converse of (4.14), 
namely, 

EI171 ~ aP{ 1171 > c} + c, (4.15) 

which follows from 

Ecp(17) = cP{I171 ~ c} +aP{I171 > c} ~ EI17I, 

with 

<P(17) = { aC', 1171 ~ c} >- 1171. 1171 > c "... 

We see that convergence in mean implies convergence in probability: 

(4.16) 

for any c > 0, as n ~ 00. Moreover, the two types of convergence are equivalent 
to each other in the case of bounded random variables I~nl, I~I ~ a. Indeed, for any 
c >0, 

according to (4.15), where P{I~n - ~I > c} ~ ° because of the convergence in 
probability. 0 

Consider the random variables ~n, ~ as functions ~n(w),~(w) of elementary out­
come w E Q. The set of outcomes w E Q such that ~n(w) ~ ~(w) can be written 
as 

A = {w: ~n(w) ~ ~(w)} 

= nun {w: l~n(W) - ~(w)1 ~ ~ }, 
r m n~m 

where, by definition, the set on the right-hand side consists of w E Q such that, for 
any r = 1,2, ... , there is m = 1,2, ... such that 

Thus, we have the convergence ~n(w) ~ ~(w) with the probability peA), which, for 
peA) = 1, gives the convergence with probability 1. 
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LEMMA. Convergence with probability 1 is equivalent to the condition: for any 
c>O 

p{ sup lEn - EI > }c ---+ 0 (m ---> (0). 
n;:J:m 

(4.17) 

Note that condition (4.17) implies (4.16). 
Proof It suffices to take c = 1/ r, r = 1, 2, ... , in (4.17). The complementary 

event to the event 

A = {w: En(w) ---> E(w)} 

is 

r m 

where 

B rm = U {lEn - EI > ~ } = { sup lEn - EI > ~ }. 
n~m n~m 

As B rm , m = 1,2, ... , are decreasing, from (4.17) we obtain 

lim P(Brm ) = P(Br) = 0, 
m--+oo 

r 

Obviously, Br increase with r = 1,2, ... , hence P(Br) = 0 for all r is equivalent to 

P(B) = lim P(Br ) = sup P(Br) = O. 
r--+oo r 

EXAMPLE. Suppose, for any c > 0, 

(4.18) 
n 
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Then 

::;; LP{I~n-~I>c}---to, m -t 00, 

n):m 

which shows that ~n -t ~ with probability 1. This conclusion is very much consistent 
with the first Borel-Cantelli lemma, which says that, under the condition (4.18), only 
a finite number of the events {I~n - ~I > c} occur. In other words, starting with 
some nc: = nc:(w), which depends on wEn, for n ~ nc:(w) we have the inequality 
I~n - ~I ::;; c. 0 

Now we are ready to prove the following result. 

THEOREM. Suppose, ~n -t ~ with probability 1 and I~nl ::;; TJ for some (majorant) 
TJ, ETJ < 00, then 

Proof We have 

lim l~n(W)1 = 1~(w)1 ::;; TJ(w) 
n->CXl 

with probability 1, in particular, E~ exists. Then, we can define bounded variables 

I~~I, WI::;; a, such that ~~ -t e with probability 1 and, consequently, 

EI~~ - (I ---t O. 

Clearly, 

EI~n -~I =EI~~ -~'I +E(l{1/>a}l~n -~I) 

::;; EI~~ - (I + 2E(1{1/>a}TJ), 
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where 

as a ~ 00; see (4.10). Hence, we conclude that 

EI~n - ~I -- o. 

Next, consider the following situation. Suppose, we deal with increasing random 
variables ~n ;;:: 0, E~n ~ C, n = 1,2, .... Then, there is the limit 

lim ~n = ~, 0 ~ ~ ~ 00. n-->DO 

Since {~n > x}, n = 1,2, ... , increase, 

P{~ > x} = lim P{~n > x} ~ lim .!.E~n ~ C _ 0 
n----tcx:> n~oo X X 

as x ~ 00, in particular, 

P {~ < oo} = 1 - lim P {~ > x} = 1. 
X-->DO 

As 0 ~ ~ < 00, so E~ is well defined although, possibly, E~ = 00, as ~ ;;:: ~n with 
probability 1 and 

E~;;:: lim E~n. n-->DO 

Actually, E~ < 00 and, moreover, 

E~ = lim E~n. (4.19) 
n-->DO 

Indeed, with probability 1 



60 CHAPTER 1 

which implies 

for any a > 0, so that 

which yields (4.19). We obtain the following result: 
For any increasing sequence ~n ;;:: 0, E~n ~ C, n = 1,2, ... , of bounded random 

variables, with probability 1 there exists the limit random variable 

~ = lim ~n 
n-+oo 

and 

4.4. CONDITIONAL EXPECTATION 

Let ~ and 1]1, ... ,'TIn be discrete random variables. Consider the conditional distri­
bution 

P ( I ) - P~.1]I •••. ,1]n (x, YI, ... ,Yn) 
~ X YI,"" Yn - P , 

1]1,' oo,1]n (YI, ... , Yn) 
-00 < x < 00, 

of ~ given 7]1 = YI,"" 'TIn = Yn, then we can define the corresponding conditional 
expectation 

00 

(4.20) 
-00 

One can easily verify that the following total expectation formula 

00 00 

(4.21) 
-00 -00 

holds, giving E~ as the mean value of cp(7]1 , ... ,7]n) = E(~ I 7]1, ... ,7]n)' 
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EXAMPLE (Exit time). Consider the symmetric random walk with stopping barriers 
at points a > 0 > b, see p. 29. Let 'T be the first time when the particle comes either 
to a, or to b; what is the mean value E'T? To find E'T, consider it as a function <p(x) 
of the initial point x of the random walk. Using the total mean formula, we obtain 
the equation 

1 2: [<p(x + 1) - 2<p(x) + <p(x - 1)] = 1, a> x > b, 

<p(a) = <p(b) = O. 

Indeed, after the first step the particle comes either to x + 1, or to x-I (with equal 
probability p = q = 1/2), using one time unit to do it, hence 

1 1 
<p(x) - 1 = 2: <p(x + 1) + 2: <p(x - 1). 

The same equation can be obtained in a more formal way, by introducing a random 
variable", = ± 1 which measures the first step, and then using the total mean formula 

E'T = E[E('T I",)] = pE('T 11) + qE('T 1-1), p=q= 1/2, 

with 

E'T = <p(x), E('T I 1) = 1 + <p(x + 1), E('T I -1) = 1 + <p(x - 1). 

One can verify that the solution of our equation is a quadratic polynomial, which is 
uniquely determined by the boundary conditions, namely 

<p(x) = (a - x)(x - b), a ~ x ~ b. 

In particular, taking x = 0 as the initial point, we obtain 

E'T = -ab, a ~ 0 ~ b. 

Note that E'T ~ 00 when b ~ -00, which reflects the fact that for the symmetric 
random walk with a single barrier, 

E'T = 00. (4.22) 

o 
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Consider now ~ and 'Tn, . .. , 'TJn having a joint probability density. Then we can 
define the conditional probability density 

( 1 ) - P~'71J,···,71n (x, YI,· .. , Yn) 
Pt; x YI,···, Yn - , 

P7IJ,"',71n (YI, ... , Yn) 
-00 < x < 00, 

and the corresponding conditional mean value 

(4.23) 

of ~ given 'TJI = YI, ... , 'TJn = Yn. One can easily verify that the following total mean 
value formula 

(4.24) 

holds, which gives E~ as the mean value of the function cp('TJI, ... , 'TJn) = E(~ 1 'TJI, ... , 
'TJn) of 'TJI, ... , 'TJn given in (4.23). 

5. Correlation 

5.1. VARIANCE AND CORRELATION 

Here, we consider random variables ~ with EI~12 < 00. For any such 6,6 there 
is E(~I . 6) since 16 ·61 is dominated by 'TJ = (1612 + 1612)/2 with E1] < 00. In 
particular, for any ~, EI~12 < 00, the mean value E~ is finite (this follows from above 
with 6 = ~ and 6 = 1). The quantity 

(5.1) 

is called the variance of the random variable~. In our earlier discussion, see (3.12), 
we have already met the variance 0'2 = Ee as the parameter of a normal distribution 
with zero mean E~ = O. 

For 6,6 with E6 = ap E6 = a2 , one can define the correlation coefficient 

(5.2) 
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Let random variables ~o = 1, 6, ... , ~n be given; their linear combinations 

form a linear space H. The positive bilinear form 

(5.3) 

is the inner product in H with the corresponding square mean norm 

(5.4) 

and the square mean distance 

LNote that II~II = 0 if and only if ~ = 0 with probability 1, i.e., is equivalent to 
~ == 0.) The well known inequality 

in our case becomes 

(5.5) 

With the square mean distance, the variance 

D~ = II~ - all 

measures the difference between ~ and a = E~. For normalized random variables 
~ and TJ with zero expectations E~ = ETJ = 0 and D~ = DTJ = 1, the correlation 
coefficient becomes very simple: 

r = (~, TJ); 
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in particular, 

(5.6) 

since 

Irl = I(~, 1])1 :::; II~II . 111]11 = 1, 

r = ± 1 if and only if ~ = ±1]. In general, the correlation coefficient measures 
the dependence between ~ and 1], which are linearly dependent in the extreme case 
Irl = 1. 

Random variables ~,1] are called uncorrelated if their correlation coefficient r = 0; 
for ~,1] with E~ = E1] = 0, this means that elements ~,1] E H are orthogonal. For 
example, independent ~ and 1] are uncorrelated since 

E(~ - E~)(1] - E1]) = E(~ - E~) . E(1] - E1]) = o. 

D 

In the framework of our Euclidean space H, consider the following problem: find 
the best forecast f of a random variable ~ E H, as a linear combination 

of random variables 1]1, ... ,1]m, which we can observe. More precisely, the corre­
sponding square mean error II~ - ell has to be minimal: 

II~ - ell = min II~ -1]11, (5.7) 
T/ 

where the minimum is taken over all linear combinations 

Of course, the solution is given by the orthogonal projection of ~ E H onto the 
subspace of H consisting of all1]'s, and, for orthonormal 1]1, ... , 1]m, we have 

m 

f = L(~' 1]k)1]k. (5.8) 
k=1 
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EXAMPLE. Consider independent measurements ~k = e + fl.k , k = 1, ... , n, of a 
quantity e, such that 

We want to find the best estimate of the unknown e given the observations 6,· .. , ~n' 
To solve the problem, one can proceed as follows. First, we exclude e by changing 
to 

Next, take the projection An of fl.n onto the linear span Ho of "11,· .. , 'T/n-l, and 
define the estimator 

of e, having the minimal square mean error 

It is easy to verify that the best linear estimate if defined above, is given by 

(5.9) 

with 

~ a 
lie - ell = ...jii' 

In general, one can even find a better non-linear estimate of e, by defining An as 
the corresponding conditional expectation 
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For example, in the case of uniformly distributed 11k, -a ~ 11k ~ a, k = 1, ... , n, 
such non-linear estimate is given by 

where 

We leave to the reader to verify that in such a case, 

liB - 811 =? 

5.2. NORMAL CORRELATIONS 

Consider eo == 1 and independent normal (Gaussian) random variables 6,···, en 
with Eek = 0 and Ee~ = a2 = 1, k = 1, ... ,n, see (3.14), (3.15). The variables 
eo, 6,· .. , en form an orthonormal basis in the space H of linear combinations 

since 

According to (3.15), the joint probability density of 6, ... ,en is 

1 {I n } = (27r)n/2 exp - 2 LX~ , 
k=1 

Consider a linear transformation 

n 

'f/k = ak + L akjej, k = 1, ... , n, 
j=1 

-00 < XI' ... ,Xn < 00. 

(5.10) 
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where a = {akJ} is a non-degenerate matrix. Obviously, 

E1Jk = ak, k = 1, ... , n. (5.11) 

The mapping ]Rn -; ]Rn, 

n 

Yk=ak+LakJxJ' k=l, ... ,n, 
J=1 

with the determinant IJI = lal, maps the quadratic form 

into 

n 

L btiYt - at)(YJ - aJ), 
t,J=1 

where {btJ } = B- 1 is the inverse of the product-matrix B = a . a*, with entries 

n 

BtJ = LatkaJk; 
k=1 

moreover, 

since 

n n n 

E(1Jt - at )(1JJ - aJ) = L L atkaJ1E~k6 = L atkaJk· 
k=ll=1 k=1 

(5.12) 

B = {BtJ } is called the covariance matrix of 1JI, ... ,1Jn. The determinant IBI of 
B = aa* (a* is the transposed matrix) is 



68 CHAPTER 1 

Hence, according to the general formula (3.22), we obtain the probability density of 

1/1," ·,1/n: 

(5.13) 

where ak = E1/k, k = 1, ... , n, and 

The probability density (5.13), as well as random variables 1/1, ... ,1/n themselves, is 
called normal (or Gaussian). 

One can immediately see that if normal variables 1/1, ... ,"In are uncorrelated, 

{B 2·· 
B .. - ii=ai' z=], 

'3 -
0, iij, 

then 

P1/I," ·,1/n (YI, ... , Yn) = 

(5.14) 

is the product of probability densities 

1 {I 2 2} P1/(Y) = a(27r)1/2 exp - 2(Y - a) /2a 

of 1/ = "Ik. with a = ak. a 2 = a~ (k = 1, ... ,n), i.e., 1/1, ... ,1/n are independent. 
We conclude here with the simple remark that any non-degenerate linear mapping 

IRn -t IRn maps normal variables into normal variables again. 
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5.3. PROPERTIES OF THE VARIANCE AND THE LAW OF LARGE NUMBERS 

By the definition of the variance, 

In particular, the variance does not depend on a constant shift: 

D(e + c) = De, 

and 

D(ce) = CDe, 

where c is a constant. If random variables 6, 6 are uncorrelated, then 

D(6 + 6) = D6 + D6, 

since for E6 = E6 = 0, say, 

and E66 = o. 

69 

(5.15) 

It was mentioned earlier that De measures the dispersion of a random variable 
e around its mean value a = Ee. One can roughly estimate the corresponding 
probability 

(5.16) 

using the Chebyshev inequality (4.14). o 
Consider the empirical mean 

1 n 

~ L:ek 
k=l 
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of uncorrelated random variables Ek. k = 1, ... , n, 

Suppose 

DEk ~ b, k = 1, ... , n; 

then 

as n ~ 00. In particular, 

(5.17) 

in probability; the rate of the convergence 

can be roughly estimated by the Chebyshev inequality: 

(5.18) 

o 
Let random variables Ek, k = 1, ... , n, be independent and identically distributed 

(i.i.d. for short), with 

DEk = b = 0'2, k = 1, ... , n. 
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Then (5.17) implies the convergence 

1 n ;; L~k ~ a, n --t 00, 

k=l 

71 

(5.19) 

of the empirical mean to the corresponding mean value. This remarkable phe­
nomenon is known as the law of large numbers. 

For example, let 

~k = 1 A, k = 1, ... , n, 

be the indicators of an event A( = A k ) in the corresponding Bernoulli trials, which 
occurs with the same probability 

p = peA) = EIA. 

Then 

Here, the empirical mean gives the frequency 

of the event A, and the law of large numbers says that 

n(A) ~ peA), n --t 00. (5.20) 
n 

o 
Let us show that in (5.17) and (5.19), we have the convergence with probability 1. 
Note first, using the first Borel-Cantelli lemma, that this true for the subsequence 

n = m 2 , m --t 00, since for any E: > a 
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according to (5.18). 
Assume, for simplicity, that Een = 0, k = 1, ... ,n, and set 

1 I n I "'m = max - ek· 
m2<n«m+1)2 m2 ~ 

k=m +1 

Obviously, for m 2 < n < (m + 1)2, we have 

where 

with probability 1, according to the observation above. Therefore, if suffices to prove 
that "'m ~ 0 with probability 1. Write 

then 

2m b 1 4b 
~ 2m x ( 2)2"2 = 2 "2 m € m € 

according to (5.18), as n - m2 ~ (m + 1)2 - m2 - 1 = 2m. Consequently, 

and the desired convergence follows from the first Borel-Cantelli lemma. 
Thus, we obtain the following result. 
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THEOREM (The law of large numbers). Let ~k, k = 1,2, ... , be a sequence of 
uncorrelated random variables, D~k ~ b. Then 

(5.21) 

with probability 1. 

6. Characteristic Functions 

6.1. SOME EXAMPLES 

Let ~ be a random variable taking only integer values x = k with probabilities 

P(k)=P{~=k}, k=O,±I, .... 

The corresponding Fourier series 

00 

feu) = LP(k)eiUk, -00 < u < 00, (6.1) 
-00 

defines a function feu) with the period 27r and P(k) as the Fourier coefficients 

P(k) = -21 /71' e-iuk feu) du, k = 0, ±l, .... 
7r -71' 

(6.2) 

EXAMPLE (Binomial distribution). For 

we have 

n 

feu) = L (~) (peiU)kqn-k = (peiu + qr, q = 1 - p. 
k=O 

(6.3) 

EXAMPLE (Poisson distribution). For 
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we have 

00 ( iu)k 
f( ) = ""' ~ -a = a(eiU_l) 

U ~ k! e e . 
k=O 

CHAPTER 1 

(6.4) 

o 
Next, let ~ be a random variable with probability density p(x), -00 < x < 00. 

The Fourier integral 

f(u) = I: eiUXp(x)dx, -00 < u < 00, (6.5) 

uniquely determines the function p(x), -00 < x < 00; in particular, if f(u), -00 < 
u < 00, is integrable, then p(x) is given by the inverse Fourier transform 

I Joo . 
p(x) = 27r -00 e-mx f(u) duo (6.6) 

EXAMPLE (Normal distribution). For the probability density 

the integral 

eZXp(x) dx = -- eZx- x /2 dx J~ 1 J~ 2 

-~ V2rr -~ 

exists for all complex z and is an analytic function, which for real z coincides with 

Therefore, it coincides with the analytic function ez2/2 for all complex z; in particular, 
for z = eiu we have 

(6.7) 
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U sing a linear transform we obtain the characteristic function of the normal random 
variable with mean value a and variance (12 

Dealing with complex-valued functions, let us introduce complex random variables 

~ = e +iC 

with real e, ~" and i = R, and the corresponding mathematical expectation (mean 
value) 

which is linear and satisfies other properties discussed above. In particular, one 
can verify the multiplicative formula (4.5)' for real independent random variables 
6, ... , ~n and complex functions 'PI,· .. , 'Pn, namely 

E['PI(6)'P2(6)] = E('P~ + i'Pn ('P~ + i'Pn 

= E [ ( 'P~ 'P~ - 'P1 'Pn + i ( 'P1 'P~ + 'P~ 'Pn ] 

= (E'P~ . E'P~ - E'P1 . E'Pn + i (E'P1 . E'P~ + E'P~ . E'Pn 

= (E'P~ + iE'PD (E'P~ + iE'P~) = E'PI(6)E'P2(6)· 

In accordance with general formulas (4.3), (4.12), we see that (6.2), (6.5) is nothing 
else but 

feu) = Eeiue , -00 < u < 00, (6.8) 

or the mean value of the complex-valued function 'P(O = eiue , which is well-defined 
for any real random variable ~ since leiue I ~ 1, and is called the characteristic 
function 

feu) = fe(u), -00 < u < 00, 
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According to the multiplicative property, for any independent (real) random vari­
ables 6, ... ,~n we have 

In other words, the characteristic function of the sum ~ = 6 + ... +~n of independent 
random variables is the product of the characteristic functions of the summands: 

Jr;(u) = Jr;t(u)·· . Jr;n(u), -00 < u < 00. (6.9) 

EXAMPLE (Triangular distribution). It is known that a triangular distribution corre­
sponds to the sum ~ = 6 + 6 of independent uniformly distributed random variables 
-a < 6 ::::;: ° and 0 < 6 ::::;: a. Clearly, 

-- 1 loa ema _1 
Jr;2(U) = Jr;t (-u) = Jr;Ju) = - emx dx = . , 

a 0 ~ua 

so for the triangular probability density 

1 ( Ixl) p(x) =;: 1 - -;;: , -a < x < a, 

we obtain 

= lem .a _11 2 = (Sin 1au)2 
~ua 1 au 

(6.10) 

EXAMPLE (Chi-square distribution). A chi-square distribution is given by the 
probability density 

{
I x(n/2)-'e-(x/2) 

p(x) = 2n/2r(n/2) , 

0, 

x> 0, 
(6.11 ) 

x::::;: 0, 
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where 

is the gamma-function and the integer n is called the degree of freedom. For n = 1, 
p(x) is the probability density of the square ~2 of a standard normal variable ~ with 
E~ = 0, D~ = 1. Let us show that for any n ~ 1, (6.11) is the probability density 
of the sum 

of squares of independent standard normal variables ~k, k = 1, ... , n. Consider the 
integral 

feu) = 1 [00 x(n/2)-Ie-((I/2)-iu)x dx 

2n/2r(n/2) 10 

which is an analytic function of the complex variable u in the upper half plane 
1m u > -1/2. On the half line 

1/2-iu=).>0 

it coincides with 

= __ ).-n/2 x ___ x(n/2)-I e- x dx 1 1 100 
2n/2 r(n/2) 0 

= _1_ \-n/2 r(n/2) = (1 _ 2' )-n/2 
2n/2 /\ r(n/2) zu. 

Therefore, feu) coincides with the analytic function (1 - 2iu)-n/2 for all u, 1m u > 
-1/2. By taking ureal, -00 < u < 00, we find that the corresponding characteristic 
function is 

feu) = (1 - 2iu)-n/2. (6.12) 

As (1 - 2iu)-I/2 is the characteristic function of the square of a standard normal 
variable, from (6.12) we obtain that feu) is the characteristic function of the sum of 
n squares of independent standard normal variables. 
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6.2. ELEMENTARY ANALYSIS OF CHARACTERISTIC FUNCTIONS 

Note that any characteristic function 

feu) = Eeiu~, -00 < u < 00, 

is continuous, since the convergence 

and boundedness of the exponents (e is real) implies 

feu + h) = Eei(u+h)~ ~ Eeiu~ = feu). 

Of course, 

f(O) = 1. 

Suppose there exist the moments 

Elel k < 00, k = 1, ... , m. 

Then the convergence 

* [(ie)k-lei(U+h)~ - (ie)k-leiU~] ~ (ie)keiu~, h ---> 0, 

together with the bound 

CHAPTER 1 

(6.13) 

E1J < 00 (k = 1, ... , m) 

gives us 
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k = 1, ... ,m. Moreover, 

i.e., the m-th derivative f(m)(u) is continuous. This leads to the well-known expan­
sion 

m .k 
""""' Z ak k m f(u) = ~ kf""" u + o(u ), 
k=O 

(6.14) 

at the point u = 0, with 

Moreover, in the case EI~lm+! < 00 we have the following estimate of the remainder 
term in (6.14): 

lo(um)1 ~ EI~lm+! lulm+! 
'-< (m+ I)! ' 

since 

EXAMPLE (Moments of a normal distribution). For a normal variable ~ with 

we have 

since the corresponding probability density is symmetric with respect to the origin, 
and 
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which follows from the general formula (6.14) with the characteristic function 

6.3. THE INVERSE FORMULA OF PROBABILITY DISTRIBUTIONS 

Let e be a real random variable. Let 

l(xl,x"l(x) =' "', { I X'<X~X" 

0, x ~ x' or x > x", 

be the indicator of a finite interval (x', x"]. Then 

P{ x' < e ~ x"} = El(xl,x"l(O = limE<p(O, (6.15) 

where <p(x) are bounded continuous functions and 

<p(x) ----+ l(xl,x"l(x), -00 < x < 00, 

rp 

1 I----------,..---------..... ~ ... --;- -------

./ 
x' x" x 

Fig. 3. 

as shown in Figure 3. Moreover, we can take <p(x) to be infinitely differentiable and 
vanishing for sufficiently large lxi, -00 < x < 00; the class of all such functions is 
denoted COO. 0 

A remarkable property of functions <p E COO is that their Fourier transform 

1 roo . 
~(u) = 27f J -00 e-mx<p(x) dx, -00 < x < 00, 
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is integrable which follows, for example, from the well known relationship 

= - i: (-iu)e- iu"cp(k-l)(x)dx = (iu)~(u) 

= ... = (iu)k<i5(u) 

81 

and the boundedness of cp(k) ( u), -00 < u < 00, k = 1,2, .... Applying the inverse 
Fourier transform, we have 

cp(x) = 100 
eiu"<i5(u) du = lim CPn(x) 

n ...... oo 
-00 

as the limit of sums 

n 

CPn(x) = 2: eiUkn"<i5(Ukn)hkn, -00 < x < 00, 

k=! 

which are bounded, according to 

Hence 

n 

= lim ~ <i5( Ukn) [Eeiukne] hkn 
n~oo~ 

k=! 

where fe(u), -00 < u < 00, is the characteristic function. Thus, we obtain the 
following result. 
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THEOREM. The characteristic function ft; uniquely determines the probability dis­
tribution of a random variable ~, by the formula 

E<p(O = 1: 0(u)ft;(u)du, <p E co· (6.16) 

6.4. WEAK CONVERGENCE OF DISTRIBUTIONS 

Let us consider the weak convergence P t;n =} P t; of the probability distributions of 
random variables ~n,~, respectively, in the sense that 

(6.17) 

for every <p E Co (recall that Co is the space of all infinitely differentiable functions 
<p(x), -00 < x < 00, which vanish for sufficiently large Ixl). 

Let fn = ft;n and f = ft; be the characteristic functions of Pn = Pt;n and P = Pt;, 
respectively. 

THEOREM. The convergence 

fn(u) -> feu), (6.18) 

which is uniform on any finite interval u' :s; u :s; u", implies the weak convergence 
Pn =} P. 

Proof Applying the inverse formula (6.16) with <p E Co and using the integra­
bility of 0, we obtain 

since 

and 

u' 100 10(u)1 du ---+ 0, U' --4 -00; 1~ 10(u)1 du -> 0, U" --400. 
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7. The Central Limit Theorem 

7.1. SOME LIMIT PROPERTIES OF PROBABILITIES 

Let us discuss some consequences of the weak convergence P (n =} P (. 
Consider an interval (x', x"], and a functions <P = <PI, <P2 E CO', as shown in 

Figure 4, such that 

Then 

Suppose x', x" satisfy 

P{c; = x} = 0, x = x', x". (7.1) 

rp 

r-----17f-�~I----------------~I~I'-·I----

I I I I I I 8 
I I I I I W-rp2 

8 I I I I I I 

rp18 ----r: : II I 8 I I I 

ll.;: :JJ 
x' x" x 

Fig. 4. 

Then 

IE<p2(O - E<Pl (C;) I ~ EI<p2(O - E<Pl (C;) I 

~ P{ x' - 8 < c; < x' + 8} + P{ x" - 8 < c; < x" + 8} ---t 0, 8 ~ 0, 

according to the continuity property of the probability distribution, and therefore 

P{ x' < c; ~ x"} = E1(x l ,x"1(O 

= lim E<pI(x) = lim E<p2(X). 
0-->0 0-->0 
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The weak convergence P~n =} P~ gives us the diagram 

which implies that, in the case of (7.1), 

Thus, we obtain the following result. 

THEOREM. The weak convergence P~n =} P~ implies 

P {x' < ~n ~ XII} --t P {x' < ~ ~ x"} (7.2) 

for any x', x" satisfying (7.1). 

EXAMPLE. Suppose we have the weak convergence P~n =} P~ of integer-valued 
random variables, taking values x = k, k = 0, ±1, .... Then 

(7.3) 

since (7.2) applies to any x', x" such that k - 1 < x' < k < x" < k + 1. 

EXAMPLE. If ~ has a probability density, then the weak convergence P~n =} P~ 

implies 

x" 

P{ x' < ~n ~ XII} --t 1, p~(x) dx (7.4) 

for any x' < x", since (7.1) holds for any x, -00 < x < 00. o 
Let us define the weak convergence of distribution functions 

as 

(7.5) 
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for every x, -00 < x < 00, which is a continuity point of the limit function Fe(x), 
i.e., for every x such that 

As Fe(x) is increasing and right-continuous, 0 ::;; Fe(x) ::;; 1, the number of disconti­
nuity points is at most countable, since 

x 

THEOREM. The weak convergence Pen => Pe implies the weak convergence Fen => 
Fe· 

Proof For any n, 

P{I~nl ~ a} ~ 0, a ~ 00, (7.6) 

and the convergence is uniform in n = 1,2, ... because of Pen => Pe; indeed, 

.------r,---------t---------:... 

-a -a+8 a-8 a x 

Fig. 5. 

where r.p E Co is a function shown in Figure 5. (The (uniform) convergence of (7.6) 
is called the compactness property.) (7.2) can be written as 

x' ,x" being continuity points of Fe; putting here x' = -a, x" = x, with a suitable 
a, we get 
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where 

F~(-a) ~ P{I~I ~ a} ~ c, 

C > ° being arbitrary small. Therefore, we conclude that 

o 

Convergence in probability. Suppose, ~n ----> ~ in probability; then, at every point x 
of continuity of the distribution function F~, and for any c > 0, we have 

IP{~n ~ x} - P{~ ~ x}1 

~ P{ ~n ~ x, ~ > x} + P{ ~n > x, ~ ~ x} 

~ P{ ~n ~ x, ~ > x + 8} + P{ ~n > x, ~ ~ x - 8} + c 

~ P{ I~n - ~I > 8} + c 

provided 8 > ° was chosen sufficiently small. Hence, the weak convergence F~n =} 

Fe immediately follows. 
On the other hand, suppose we have the weak convergence 

{ a, x < 0, 
F~n (x) =} Fo(x) = 

1, x ~ 0, 

where the limit function corresponds to the random variable ~ = 0. Then 

~n ---+ ° 
in probability, since, for any -Ci < ° < C2, 

EXAMPLE (The law of large numbers). Let ~k, E~k = a, k = 1,2, ... , be i.i.d. 
random variables (we only assume the existence of their mean value). If feu), -00 < 
u < 00, is the characteristic function of ~k - a, then the characteristic function of 

1 n 1 n - L ~k - a = - "(~k - a) n nL... 
k=1 k=1 
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is 

fn(u) = f(u/n)n, -00 < u < 00; 

see (6.9). Applying (6.14) with m = 1, a! = 0, we have 

and 

fn(u) = [1 + o(~) r -+ 1, n --- 00, 

uniformly in u' ~ u ~ u" from any finite interval, with the limit f(u) == 1 being 
the characteristic function of the zero random variable. Thus, we have the weak: 
convergence of the corresponding distribution functions, which implies, as we already 
know, that 

1 n 

;;: L ~k - a -+ ° 
k=! 

in probability. 

7.2. THE CENTRAL LIMIT THEOREM 

Suppose, we deal with a random variable which can be written as a sum 

n 

Sn = L~kn (7.7) 
k=! 

of a large number n of small independent random variables ~kn. To be more precise, 
let us assume that ~kn are normalized in the sense that 

n 

E L l~knl2 = 1, 
k=! 
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and, consequently, 

ES~ = 0, DSn = 1. 

Assume, in addition, that the so-called Lyapunov condition 

(7.8) 

is satisfied, which roughly says that ekn are small enough so that leknl 3 in the mean 
are much smaller than lekn 12 , k = 1, ... , n. In this case, we can approximate the 
distribution of (7.7) by the standard normal distribution: 

(7.9) 

thanks to the famous central limit theorem. 
To prove it, consider the characteristic function fn(u) of Sn, 

n 

fn(u) = II ikn(u), -00 < U < 00, 

k=! 

which is the product of the characteristic functions ikn(u) of (independent) ekn' 
According to (6.14), 

Moreover, 

n~oo, 

uniformly in u' ~ u ~ u" from every finite interval [u',u"]. Therefore, 

n 1 
log fn(u) = Z)og(1 + hkn) ---+ -2 u2 

k=1 
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since 

with 

n 

Lbkn = 1, 
k=! 

Thus 

where the limit function 

is the well-known characteristic function of the standard normal distribution. Using 
a general property of the weak convergence, see (6.18), we obtain the following 
result. 

THEOREM. Under the above conditions, 

1 l XII 
2 P{X' < S ~ x"} --t -- e-u /2 dx 

n'" 'F ' V k7f x, 
-00 < x' < x" < 00. (7.10) 

EXAMPLE. Let f.k, k 
variables with 

1,2, ... , be independent identically distributed random 

The corresponding normalized sum can be written as 

I (n ) n 
Sn = O""fii Lf.k - na = Lf.kn, 

k=! k=! 
(7.11) 
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with 

satisfying the conditions of the theorem, since 

E';kn = 0, 
2 1 

EI';knl =-, n EI';knf= 3 c3/2' k=l, ... ,n. an 

CHAPTER 1 

Thus, one can apply to (7.11) the standard normal approximation (7.9), (7.10). This 
approximation can be applied, in particular, to estimate the probability of deviation 
of the empirical mean 

from its mean value a = E';k, by writing (7.11) as 

(7.12) 
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Random Processes 

1. Random Processes with Discrete State Space 

1.1. THE POISSON PROCESS AND RELATED PROCESSES 

Let us return to the process of radioactive decay discussed above, where radium Ra 
disintegrates into radon Rn, by emitting a-particles. Let e(t) be the total number 
of a-particles emitted up to time t. Of course, for any 0 ~ s ~ t, the difference 
e(t) - e(s) is the number of a-particles emitted during the time interval (s, t]. As we 
already know, the random variable e(t) - e(s) is distributed according to the Poisson 
law 

p{e(t) - e(s) = k} = [a(t;! s)]k e-a(t-s), k = 0,1, ... , (1.1) 

with the mean value 

aCt - s) = E[e(t) - e(s)] 

which depends on the difference t - s only. We have 

aCt) = a(s) - aCt - s), 0 ~ s ~ t < 00, 

since 

e(t) = e(s) + [e(t) - e(s)], 

which implies that aCt) is linear: 

aCt) = at, t ~ o. (1.2) 

91 
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x 

3 ~(t) 

2 
I--~--

ill ~ 

I-

I--L1o--
o 

Fig. 6. 

Here, 

is the mean value of a-particles emitted during unit time, and we assume e(O) = O. 
A trajectory of the random process e(t), t ~ 0, is shown in Figure 6, where 'Tk are 

the moments of arrival (emittance) of a-particles, and 

'T = 'To, 'T1 - 'To, 'T2 - 'T1, ... 

are waiting times. Here, 'T is exponentially distributed: 

(1.3) 

(see p. 31); moreover, A = a, since 

P{'T > t} = P{'TO > t} = p{e(t) = O} = e-at 

according to (1.1). 
Consider t ~ 0 as the time axis. Suppose e(s) = k at time s when we start our 

observation of the radioactive decay process. The waiting time for the transition 
k -t k + 1 is distributed according to the same exponential law (1.3), which does not 
depend on the past behavior e(t), t ::::; s, up to the moment s. For k = 0, this follows 
from the known equality: 

P{'T> s + t I 'T > s} = P{'T > t} (1.4) 
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(seep. 31). 
The above properties, including (1.1)-(1.4), define the Poisson process ~(t), t ;:: 0, 

with intensity a. 0 

Homogeneous Markov property. Consider an arbitrary random process ~(t), t ;:: 0, 
with a countable number of states i = 0, 1, .... Starting at some initial state ~(O) = i, 
i = 0, 1, ... , the process stays there for random time '[0, after which it jumps to a 
new state ~('[o) = j with probability 7f'3' j -=f. i, j = 0, 1, ... , 

(1.5) 

where it stays up to the random moment '[1 when the next transition j -+ ~('[I) 

occurs etc. We assume that for any fixed time s > ° and any 'current' state ~(s) = k, 
the 'future' ~(t), t ;:: s, obeys the same probability law as the process with s = ° and 
~(o) = k, independently of the 'past' ~(t), t ~ s. (This is called the homogeneous 
Markov property.) In particular, given ~(s) = k, the (waiting) time from s up to the 
next state transition is distributed according to the exponential law with the same 
parameter A = Ak as the corresponding time '[ = '[0 with ~(o) = k, i.e. 

(1.6) 

Clearly, the above model gives the Poisson process in the case when 7f,] = 1 for 
j = i + 1 (7f'3 = ° otherwise) and Ak = A (= a) does not depend on k = 0, 1, .... 

EXAMPLE (A single server system). Imagine a service system which serves cus­
tomers as follows: in absence of any customers, and independently of what happened 
before, a customer's service time is distributed exponentially with parameter A. If 
a customer is being served, then other arriving customers are rejected. We assume 
that the probability of more than one simultaneous arrival is equal to 0, and that, 
having completed serving the customers, the system waits, independently of what 
happened before, for the next arrival for a random time, which has an exponential 
distribution with parameter J-L. Obviously, if we consider two states: ~(t) = ° if there 
are no customers, and ~(t) = 1 if a customer is being served at time t, then ~(t), 
t ;:: 0, is a random process satisfying the above conditions with AO = J-L, ?rO,I = 1 and 
Al = A, ?rI,O = 1. 

Note that the above model describes ~(t) up to the random time 

'[ = lim '[n (1.7) 
n-oo 

only, and it can happen that '[ < 00, which means an infinite number transitions in 
finite time. 
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For example, this phenomenon occurs in the growth process 

with Ak --+ 00 satisfying 

00 1 
L:r- < 00. 
k=! k 

Here, 

(1.8) 

are the mean values of the time intervals between consecutive transitions so that 

Kr = lim ETn = L; < 00, 
n-+oo k k 

see Chapter 1, (4.19), which clearly implies 

P{T < oo} = 1. 

Transition probabilities. Often, one is interested in probabilities p{e(t) = j}, which 
depend on t and the initial state e(O) = i, in particular, the transition probabilities 

p,it) = p{e(t) = j I e(O) = i}, i,j = 0, 1, ... , (1.9) 

of a time-homogeneous Markov process e(t), t ~ 0, with countable number of states. 
Here, we assume that the probabilities (1.9) concern only finite number of transi­

tions from e(O) = ito e(t) = j; more precisely, we assume that 

U{e(t) = j} = {T > t}, LP,it) = PiT > t I e(O) = i}, (1.10) 
J J 

where T is defined by (1.7). 
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Note first that 

{~(t) = j} ~ U{~(S) = k}, t ~ S, 

k 

and, thanks to the Markov property, 

PtJ(t) = I>tk(S)PkJ(t - S), 0 ~ S ~ t, 
k 

95 

(1.11) 

since the conditional probability of ~(t) = j given ~(O) = i, ~(s) = k does not 
depend on ~(O) = i and equals PkJ(t - s), while the probability of ~(s) = k under the 
condition ~(O) = i is Ptk(S), k = 0, 1, .... 

Next, as h -+ 0, 

Pu(h) = 1 - Ath + o(h), 
(1.12) 

PtJ(h) = AtJh + o(h), j i= i, o(h)/h -+ O. 

Indeed, according to (1.6), 

P{'TO > h I ~(O) = i} = e-A,h = 1 - Ath + o(h) 

and 

as the probability of the transition i -+ j at time 'To = S does not depend on s. 
Moreover, the probability of ~(h) = j occurring in the result of more than one 
transition is less than 

L P{ 'To ~ h, ~('To) = k, 'T1 - 'To ~ h I ~(O) = i} 
k#t 

= (1 - e- AJh ) L 7rt k (1- e-Akh ) = o(h), 
k#t 

since 'T1 - 'To does not depend on what happened before the moment 'To = S when a 
transition z -+ k, k i= i, occurred. The above argument shows that the constants AtJ 

in (1.12) satisfy 

(1.13) 

L AtJ = At L 7rtJ = At. 

Jolt Jolt 
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I 2. THE KOLMOGOROV EQUATIONS 

Consider the transition probabilities P'J(t) ~ 0, i,j = 0,1, ... , t ~ 0, which satisfy 
L.JP'J(t) ~ 1 together with (1.11)-(1.12). According to (1.12), P'J(t), as a function 
of t ~ 0, is continuous and differentiable at the initial point t = 0, 

j = t, 

j =1= t, 

and 

Here, we put An = -A" i.e. 

-Au = Ao = LAoJ' 
JoI, 

see (1.13). 
Let us show that Po;Ct) are differentiable for all t > ° and 

p~J(t) = LAokPkJ(t); i,j = 0, 1, .... 
k 

According to (1.11), 

P'J(S + h) - P'J(s) = [Pu(h) - I]PoJ(s) + LPok(h)PkJ(S), h, S ~ 0, 
kol, 

which shows at once that 

(1.14) 

(1.15) 

(1.16) 

IPoJ(s + h) - p'J(s)1 ~ [1 - Pu(h)] + LPok(h) ~ 2[1 - Pu(h)] ~ 0, h ~ 0, 
kolo 

where we can set s = t or S = t - h, for any t > 0. Therefore, P'J(t), t ~ 0, is 
continuous. In a similar way, 

P'J(S + h) - P'J(s) _ Pu(h) - 1 () + ""' p,k(h) () 
h - h POJ S L...J h PkJ S 

kolo 
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where, for an arbitrary small c: > 0, 

1 - Pu(h) 
h 

provided n was chosen large enough, since according to (1.15), 

This shows that for any t ~ ° there are limits 

I· p,it + h) - P'3(t) = I (t) 
1m h P'3 h-+O 

and 
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h-+ 0, 

Using the definition of >"3 and condition (1.15), we obtain the following result. 

THEOREM. Transition probabilities p,it), t ~ 0, satisfy the differential equa­
tions (1.16). 
Regularity of the process. Suppose, we have the equality 

Then, with the notation 

i,(t) = I>,it) = P{T > t I ~(o) = 2}, t ~ 0, i = 0,1, ... , 
3 
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see (1.10), we obtain the following system of differential equations 

f:(t) = L A.kfk(t) 
k 

with the initial conditions 

f.(O) = P .. (O) = 1, i = 0, 1, .... 

The above system has the solution 

f.(t) == 1, 

since 

LA.k=-A.+LA.k=O, i=O,I, .... 
k k#. 

If this solution is unique, then 

P{T > t} == 1, t ~ O. (1.17) 

In other words, with probability 1 the number of state transitions of the Markov 
process is finite in any finite time interval. In particular, this is true when the 
number of states is finite. 

Equations (1.16) are known as the Kolmogorov backward differential equations. 
There are the corresponding Kolmogorov forward differential equations; 

p~J(t) = LP.k(t)AkJ' i,j = 0, 1, .... 
k 

Equations (1.18) are satisfied, in particular, if 

Ak~C, k=O,I, .... 

Indeed, in this case from (1.11) we obtain 

p~/t) = LP'k(S)P~J(t - s), 0 ~ S ~ t, 
k 

(1.18) 

(1.19) 
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since, according to (1.16), the derivatives 

are bounded, and the derivative series above converges uniformly. By setting there 
s = 0, we get (1.18). 

Assuming condition (1.19), we have the following result. 

THEOREM. Transition probabilities Pij(t), t ? 0, satisfy the differential equa­
tions (1.18). 

EXAMPLE (Poisson process). Consider the Poisson process, which corresponds to 
our general model with parameters 

Setting 

j = i, 
j = i, 
j -=f. i, i + 1. 

we obtain from (1.18), (1.13) the system of equations 

fMt) = 0, 

f£(t) = >"h-l(t), k = 1,2, ... , 

subject to the initial conditions 

fo(O) = 1, fk(O) = 0, k = 1,2, .... 

It is easy to see that the above system has the unique solution 

(>..t)k 
fo(t) = 1, !J(t) = >..t, ... , h(t) = ~, .... 

Finally, we obtain the transition probabilities 

P{~(t) = j I ~(s) = i} = [>"(t ~ s)]k e-A(t-s), t? s, j - i = k = 0, 1, ... , 

which actually describe the Poisson process with parameter a = >..; see (1.1), (1.12). 
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1.3. EXAMPLE (BRANCHING PROCESSES) 

Consider a branching process ~(t), t ~ 0, which describes an evolution of particles 
such that each particle, existing at time s, and independently of its past and other 
particles, is transformed into n particles at time t + s, with probability Pn(t), n = 

0,1, .... The state of the process is characterized by the total number ~(t) of particles 
existing at time t, assuming that this number is finite. 

Hence, if ~(s) = k, the number of particles at time t + s is 

~(s + t) = 6(t) + ... + ~k(t), 

where ~i(t) denotes the number of the descendents of the ith particles after time t. 
The random variables 6 (t), ... '~k(t) are independent and have the same probability 
distribution: 

P{~i(t) = n} = Pn(t), n = 0, 1, .... 

It follows that ~(t), t ~ 0, is a homogeneous Markov process with transition proba­
bilities 

and, clearly, 

poo(t) == 1, POn == 0, n = 1,2, .... 

According to the Kolmogorov backward differential equations, 

P~n(t) = L ).,lkPkn(t), n = 0, 1, ... , 
k 

where 

).,In = P~n(O), n = 0, 1, ... , 

(1.20) 
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and 

LAin = -All = AI. 
n#1 

The method of generating functions. Introduce the generating function 

Fk(t, z) = LPkn(t)Zn, 
n 
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of z, 0 ~ z < 1, where the sum is taken over n = 0,1, .... From (1.20), one can 
easily obtain 

(1.21) 

Using the Kolmogorov backward differential equation and the bound 

IP~n(t)1 ~ 2A, n = 0, 1, ... , 

for every fixed z, 0 ~ z < 1 we obtain 

LP~n(t)zn = L Alk LPkn(t)Zn, 
n k n 

or the following differential equation for the generating function FI (t, z): 

With (1.21) in mind, the above equation for F( t, z) = FI (t, z) can be rewritten as 

We introduce the function 

f(x) = LAlkXk, 0 ~ X ~ 1. 
k 
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Using the fact that F(O,z) = z, we see that for every z, 0 ~ z ~ 1, the generating 
function F(t, z) coincides with the solution x = x(t) of the equation 

dx 
dt = f(x), t ~ 0, (1.22) 

subject to the initial condition x(O) = z. 
Instead of equation (1.22), it is convenient to consider an equivalent equation for 

the inverse function t = t(x) of x = x(t), i.e., 

dt 
dx 

1 
f(x) , O~x~1. 

The solution of the above equation can be written as 

r du 
t(x) = }z f(u)' 

Analysis of the differential equation (1.22)for the generating function. From Alk ~ 0, 
k -=f 1, it follows 

!"(x) = L k(k - l)Alkxk-2 ~ 0, 0 ~ x < 1, 
k~2 

so that the function f(x) is convex and its derivative monotonically increases in the 
interval 0 < x < 1. Moreover, as 

00 

LAlk = 0, 
k=O 

so x = 1 is a root of the equation f(x) = O. Apart from it, the last equation may 
have another root in (0,1) (see Figure 7). 

Suppose first that there is a root x = n, 0 < n < 1. Then, x°(t) == n is a solution 
of the differential equation (1.22). Let x(t) be another solution, with x(O) = z, 
o ~ z < n. Since 1'(0.) is finite and since, for x rv n, f(x) is approximately equal to 
f'(o.)(x - n), it follows that the corresponding inverse function 

r du 
t(x) = }z f(u) 
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increases to +00 as x ~ Q. 

Note that x(t) does not intersect x°(t) == Q anywhere. Moreover, as f(x) is positive 
in the interval 0 ~ x < Q, x(t) is monotone increasing as t ~ 00 and is bounded 
by Q. In particular, x(t) has a limit (3 = limt---+oo x(t), z ~ (3 < Q. On the other hand, 
as x ~ (3, the continuous function f(x) has the limit 

f«(3) = lim f(x(t») = lim x'(t). 
t-+(X) t-+cx> 

It is clear that f«(3) = 0, otherwise 

x(t) = z + lot f(x(s»)ds 

tends to +00 as t ~ 00. Hence (3 is a root of the equation f(x) = 0 and (3 = Q. 

Consequently, every solution x = x(t), x(O) = z, 0 ~ Z < Q, is monotone increasing 
and 

lim x(t) = Q. 
t-+CXJ 

(1.23) 

Solutions starting at z E (Q,1) (0 ~ Q < 1) at t = 0, behave in an analogous 
way, with the only difference that x(t) is monotone decreasing, as x'(t) = f(x(t» is 
negative (f(x) ~ 0 for Q ~ X < 1). The corresponding graphs of x(t) for different 
values of x(O) = z, 0 ~ z < 1, are shown in Figure 8. Obviously, the situation is 
more simple if Q = O. 

f(x) f(x) 

o x 1 x 1 x 

a) b) c) 

Fig. 7. 
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The case x(O) = z = 1 has to be considered separately. As f(1) = 0, so xl(t) == 1 
is a solution of equation (1.22). Assume first that 1/ f(x) is nonintegrable in a 
neighbourhood of x = 1, i.e., 0: < 1 and . 

fl du 
}"'O feu) = -00, 0: < Xo < 1. (1.24) 

Take an arbitrary solution x(t), x(O) = 1 of (1.22). Suppose that x(to) = Xo for some 
to = t(xo) ;:: O. The corresponding inverse function can be written as 

1'" du 
t(x) = to + "'0 f(u)· 

Note that x(t) does not intersect xl(t) == 1 for t ;:: 0 since 

11 du 
t(l) = to + "'0 feu) = -00. 

In particular, x(O) = z < 1, which is a contradiction. Therefore, x(t) == 1 is the 
unique solution going through the point t = 0, x = 1. 

Next, consider the case 

fl dx 
}"'O f(x) > -00. (1.25) 

x 

a ~----------------------~~~== 

o 
Fig. 8. 
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x x 

ai----------!---- a i----------~---

o o 
a) b) 

Fig. 9. 

Then, for sufficiently large to > 0, the corresponding inverse curve 

1x du 
t(x) = to + Xo feu) 

intersects tangentially x 1(t) == 1 at a certain point t = 't, X = 1, where 

11 du 
'T = to + Xo feu) ~ 0 

(see Figure 9). In this case, we have an entire family {x-r(t)}-r;;.o of solutions going 
through the point t = 0, x = 1, each x-r(t) corresponding to a particular choice 
of 'T ~ O. In particular, the solution xo(t) corresponding to 'T = 0 has the property 
that it lies below all other solutions, namely 

xo(t) :::; x-r(t), 0 < t < 00. 

This follows from the fact that, in the domain 0 :::; x < 1, 0 :::; t < 00, a solution of 
the corresponding differential equation is unique so that different solutions do not 
intersect each other in this domain. It is easy to see that xo(t) is the (increasing) 
limit of solutions x(t) = x(t, z), x(O, z) = z E [0,1): 

xo(t) = lim x(t, z). 
z--,J 

(1.26) 

The study of the differential equation (1.22) enables us to draw the following con­
clusions about the corresponding branching process ~(t), t ~ O. 
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The probability of degeneration. In general, there is a positive probability that the 
number of particles at time t is zero. (Of course, this probability is 0 if AIO = 0, i.e., 
if the number of particles does not decrease.) Given k = 0, 1,2, ... particles at time 
t = 0, the above probability is PkO(t) = F(t,O)k = PO(t)k (see (1.21)). 

The function po(t) is a solution of the differential equation (1.22) with the param­
eter z = 0: 

Po(t) = f(po(t)), po(O) = O. 

We know that, as t -t 00, this solution tends to a, or the smallest root of the equation 
f(x) = 0 (see (1.23)), i.e., 

lim po(t) = Q:. 
t-+ex> 

Thus, a is the probability of degeneration of the branching process e(t), or the 
probability that after some time the number of particles is o. More generally, if we 
are given k particles at time t = 0, then the probability of degeneration is 

The probability of explosion. From (1.22) we see that, under the condition (1.24), 
with probability I every particle creates a finite number of particles in a finite time. 
Indeed, 

lim F(t, z) = LP'n(t) = 1, 
z-+I 

n 

and 

P{T:S; t} = 1 - LP'n(t) == 0, t ~ 0, 
n 

where T is the time when the total population of particles becomes infinite, see (1.10). 
On the other hand, if condition (1.25) holds, then 

lim F(t, z) = xo(t) = P{T > t} < I 
z-+I 

according to (1.26), where xo(t) < I (t > 0). Thus, with a positive probability 
P{ T :s; t}, a given particle produces an infinite number of offsprings in a finite 
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time t. (This phenomenon is called explosion.) The corresponding probability given 
k particles at time t = ° is 

see (1.21). 

QUESTION. Is explosion possible for a population of particles which multiply by 
dividing into two new ones (i.e., with A12 = -All = A being the only non-zero 
coefficient)? 

1.4. THE (LIMIT) STATIONARY PROBABILITY DISTRIBUTION 

Let e(t), t? 0, be a homogeneous Markov process having transition probabilities 

p,it); i,j = 0, 1, ... , 

LP'J(t) == 1, t? 0, 
J 

cf. (1.10). Consider the probabilities 

p,(s) = p{e(s) = i}, i = 0, 1, ... , 

at some time moment s ? O. According to the total probability formula, 

PJ(t) = P{ e(t) = j} = LP,(s)p,it - s), t? s, j = 0, 1, .... 

At s = 0, we have the initial probability distribution 

p,(O)=p{e(O)=i}, i=O,I, ... , 

We say that a probability distribution 

P; ? 0, i = 0, 1, ... , 

(1.27) 

(1.28) 
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is stationary, if 

According to (1.28), if the initial probability distribution is stationary: p,(O) = P:, 
then the probabilities 

p,(t)=P{~(t)=z}=p:, z=O,I, ... , (1.29) 

do not depend on t ;;:: O. 
Under condition (1.19) we can obtain from (1.28) the foIIowingforward differen­

tial equations 

(1.30) 

similar to the corresponding equations (1.18) for transition probabilities. Applying 
(1.30) to (1.29), we get the equations 

(1.31) 

from which stationary probabilities can be found (if they exist). 
Of course, it might happen that there is no stationary distribution, as in the case 

of the Poisson process, say. 
We are going to show that a unique stationary probability distribution exists if 

there are )0, h = ho > 0 and 8 > 0 such that 

(1.32) 

for any z = 0, 1, .... 
Note that (1.32) holds in the case of afinite number of states which can be reached 

one from another. Indeed, if p,is) > 0 for some s > 0, then 
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since PJJ(O) = 1 and the continuity of PJit) at t = ° imply 

THEOREM. There exists a unique stationary probability distribution P;, j = 0, 1, ... , 
and 

as t ----+ 00. Moreover, 

(1.33) 

independently of J and the initial probability distribution. 
Proof. Set 

Rit ) = sup p,it) , , 

which give lower and upper bounds, respectively, for the probability 

Let us show that rJ(t) monotonically increases and Rit) monotonically decreases, 
as t ----+ 00. In fact, for any t ~ s, we have 

rit) = i~f [ ~P'k(t - S)PkiS)] ~ i~f [ ~P'k(t - s)riS)] = rJ(s), 

RJ(t) = s~p [ ~P'k(t - S)PkiS)] ~ s~p [ ~p'ket - S)RiS)] = Ris). 

Furthermore, 

RJet ) - rJ(t) = sup [Pat(t) - P/3J(t)] 
01.,/3 
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Here, 

LPak(h) = LP{3k(h) = 1, 
k k 

hence 

o = L[Pak(h) - p{3k(h)] 
k 

can be rewritten as 

where E+, E- correspond to positive and negative summands, respectively. From 
condition (1.32), it is easy to show that 

Hence, 

RJ(t) - rit) ::; sup { L+ [Pak(h) - p{3k(h)]Rit - h) 
a.{3 k 

Consequently, 

+ ~[Pak(h) - p{3k(h)]rit - h) } 

+ = sup L [Pak(h) - p{3k(h)1(RJ(t - h) - rJ(t - h») 
a.{3 k 

::; (1 - 8) (Rit - h) - rJ(t - h»). 

where n is the entire part of t/h. Together with the monotonicity of RJ(t), rit), this 
implies the existence of the limit 
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as well as the uniform bound (1.33): 

To complete the proof of the theorem, we have to demonstrate that P;, j = 0, 1, ... 
define a stationary probability distribution. 

Note first that L J P; ~ 1 as the last inequality is true for any finite number of 
summands: 

The sum L J P; =1= ° which follows from (1.28) and 

Moreover, from (1.28) with t -> 00, S = t - h, h ~ ° it follows that 

In fact, the last inequality must be replaced by equality, since, by assuming that a 
strict inequality holds for some j, we obtain 

J J J 

Therefore, the probability distribution 

j = 0, 1, ... , 

is stationary: 

By taking P~ = PJ(O), j = 0, 1, ... , as the initial distribution and using the first part 
of the theorem, we conclude that 

PJ* = lim PJ(t) = pJo, j = 0, 1, .... 
t-+oo 

The last relations being obviously valid for an arbitrary stationary distribution p~, 
j = 0, 1, ... , shows that such distribution is unique, which completes the proof of 
the theorem. 0 
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EXAMPLE (Multi-server system). Imagine a service system that is analogous to 
the system described on p. 93, but that has n, instead of one, lines of service. The 
service time of customers arriving at each service line, is random and is exponentially 
distributed with parameter A. In particular, if j lines are occupied, the waiting time 
until one of them is free is 

where the waiting times TI, ... ,TJ of the occupied lines are independent and have 
the same exponential distribution with the parameter A. The variable T is distributed 
exponentially with the parameter jA. Let ';(t) be the number of occupied lines at 
time t. Then ';(t) is a homogeneous Markov process with n + 1 states j = 0, 1, ... , n 
with the transition parameters (see (1.12»: 

A'J = 

j =0, 
j = 1, 
j tf 0, 1, 

{ 
nA, 

AnJ = -nA, 
0, 

-iA - /l, { 
iA, j = i-I, 

j = i, 
/l, 
0, 

j = i + 1, 
jtfi-l,i,i+l, 

j = n - 1, 
j = n, 
j tf n - l,n, 

0< i < n. 

We recall that /l is the parameter of the exponential distribution of the interarrival 
time of customers. From (1.31) we obtain the system of equations 

- /lPo + APi = 0, 

/lP:-I - (/l + ZA)p; + (i + I)AP:+I = 0, 0 < i < n, 

/lP~-1 - np~ = 0, 

whose solution is given by Erlang's formula: 

j =0,1, ... ,n. 

For large n, one can apply the Poisson approximation 

* aJ -a 0 1 PJ rv -:-;-e j = , , ... , 
J. 
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with a = I1I>". 
It is clear that, starting from an arbitrary state, the process can reach any other 

state, and that condition (1.32) holds. Therefore, the probability distribution of 
~(t) converges as t -> 00 to the (stationary) Erlang distribution (see (1.33)). The 
convergence is very explicit in the case n = 1, when the forward differential equations 
can be easily solved and, with ° and 1 the only states, we obtain 

p (t) = _A_ [1 _ e-(A+JL)t] -----. _A_ = p*, 
01 A + I-" A + I-" 1 

P (t) = _1-"_ [1 - e-(.\+JL)t] -----. _1-"_ = p*, t -+ 00. 
10 A + I-" A + I-" 0 

EXAMPLE (Energy supply). Suppose there are n independent energy customers who 
use energy during random time intervals. With each customer, one can associate a 
homogeneous Markov process taking value 1 when energy is consumed and ° when 
no energy is needed, with transition parameters AOI = A, AOO = -A, AIO = 1-", 

All = -I-". Assuming that all these n processes are independent, their sum ~(t) forms 
a homogeneous Markov process with states 0,1, ... ,n, ~(t) = k being the number 
of energy users at time t. Obviously, the transition parameters of ~(t) are 

AOI = nA, AO = -AOOnA, 

Ak,k+l = (n - k)A, Ak,k-l = kl-", 

Ak = -Akk = (n - k)A + kl-", 1:::; k :::; n - 1, 

An,n-l = nl-", 

One can easily verify that the limit stationary probabilities are 

* n! (A)j ( I-" )j 
Pj = j!(n-j)! A+I-" A+I-'" j=O,I, ... ,n, 

giving the binomial (Bernoulli) distribution with the parameter p = A/(A + 1-"). 

2. Random Processes with Continuous States 

2.1. THE BROWNIAN MOTION 

Imagine a particle moving in a homogeneous fluid, in the result of chaotic collisions 
with the molecules of the fluid. The corresponding continuous chaotic motion of the 
particle is called the Brownian motion. 
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Let 6 (t), 6(t) be the particle's plane coordinates at time t ~ 0, where 6 (0) = 0, 
6(0) = 0, say. From physical argument, 6 (t), 6(t) can be assumed to be independent 
random variables with a probability density which is central symmetric with respect 
to the origin. Choose any axis on the plane going through the origin, and let ~(t), 
~(O) = 0 be the projection of (6 (t), 6(t)) onto it. Then, as we already know, ~(t) is 
a normal variable with the normal probability density 

-00 < x < 00, 

with zero mean E~(t) = 0 and the variance 

Of course, we can consider the Brownian motion process starting from ~(O) = x; 

then the corresponding probability density is 

-00 < y < 00. (2.1) 

Consider the particle's diffusion at disjoint time intervals (0, s) and (s, t), 0 < s < t. 
The corresponding displacements ~(s) = ~(s) - ~(O) and ~(t) - ~(s) arise in the result 
of physically independent collisions of molecules; i.e., we can assume that 

are independent random variables. Moreover, because of homogeneity of the fluid, 
~(t) - ~(s) obeys the same probability law as ~(t - s) - ~(O). To be more precise, the 
probability density of ~(t-s)-~(s) given any ~(s) = x is the same as the probability 
density of ~(t - s) - ~(O) given ~(O) = O. 

In particular, 

which shows that the function 
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is linear: 

where the constant a 2 is called the diffusion coefficient. 
The corresponding conditional probability density of ~(t) given ~(s) = x equals 

( ) 1 -(y-:d /2a2 (t-s) p x, t - s, Y = e , -00 < y < 00. 
y'27ra2(t - s) 

(2.2) 

Roughly speaking, the Brownian motion has the property that, given a 'current' state 
~(s) = x, and independently of the 'past' ~(t), t ~ s, the 'future' ~(t), t ;) s, obeys the 
same probability law as the initial process starting at s = 0 from the point ~(o) = x 
(this is called the time-homogeneous Markov property). 

2.2. TRAJECTORIES OF THE BROWNIAN MOTION 

Having characterized the probability distribution of the random variables ~(t), t ;) 0 
(see (2.1)-(2.2», now we shall define (random) trajectory of the Brownian motion 
as a limit of discrete time piecewise linear approximations 

(2.3) 

where 

THEOREM. The random functions (2.3) uniformly converge with probability 1 on 
each finite time interval. 

Proof Consider the event 

where n > m, T are positive integers, T > O. Note that, for ~n(t) of (2.3), the 
maximum above is attained at a partition point tkn = kl2n, and that, in view of 
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monotonicity of the partitions, the maximum increases with n. For the union AT' = 

Un>mA~,n of monotone increasing events A~,n, n = m + 1, m + 2, ... , we have 

In the following, we shall obtain an estimate of p(A~,n), uniformly in n, which 
applies also for P(AT'), or the probability of the event: 

for some n > m. 
It is obvious that 

A,;,n ~ U {tim;;;;t~~ti+l.m I~(tkn) - ~(tim)l, I~(tkn) - ~(ti+l,m)1 > em} 
• 

and 

p(A~,n) ~ LP{ tim;;;;t~alti+I.m I~(tkn) - ~(tim)l, I~(tkn) - ~(ti+l,m)1 > em} 
• 

= 2mT· p{ max I~(tkn) - ~(O)I, I~(tkn) - ~(2-m) I > em} 
O;;;;tkn;;;;2-m 

in the last inequality we use the fact that the families 

as well as 

of random variables obey the same probability law as the family ~(tkn), k = 0, 1, ... , 
2n - m . Next, we apply the following general lemma. 
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LEMMA. Let ~ 1, ... , ~r be random variables such that, for any k = 1, ... , r - 1, the 
distribution of ~r - ~k does not depend on ~ 1, ... , ~k and is symmetric with respect 
to O. Then 

x> O. (2.4) 

Proof Denote ~v the first of the variables 6, ... , ~r that exceeds x. As the event 
v = k is determined by 6, ... ,ek which do not depend on er - ek, we obtain 

k=l 

r-l 

= LP{v = k}P{~r - ~k < O} 
k=l 

r-l 

~ I:P{v = k}p{er - ~k ~ O} 
k=l 

r-l 

= I:P{v = k,~r - ~k ~ O} ~ P{~r > x}. 
k=l 

Complementing the resulting the inequality by the following one: 

we obtain the estimate (2.4). 
Applying this estimate to the variables ~(tkn), k = 0,1, ... , 2n-m, we get 

where 
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Consequently, we obtain the following estimate: 

Choose em -4 ° so that the series 

~ ffm _g2 2m/2o-2 
~ --e m <00 

em 
m=l 

converges (for example, we may take em = 2-m / 4 ). Then, as 

00 

L P(AT) < 00, 
m=l 

using the Borel-Cantelli lemma, we obtain that, with probability 1, only a finite 
number of events AT' m = 1,2, ... , occur. In other words, with probability 1, for 
all sufficiently large m and any n > m, 

where em -4 0 (m -4 00). We have that, with probability 1, the sequence (2.3) 
converges uniformly on every finite interval 0 :::; t :::; T, or the statement of the 
theorem. 0 

We define now the Brownian motion process as the limit 

~(t) = lim ~n(t), t ~ 0, (2.5) 
n--+oo 

which is a random continuous function, the distribution of the random variables ~(t), 
t ~ 0, being characterized in (2.1), (2.2). 

More precisely, we assume that the basic probability space (Q,~, P) is chosen so 
that the limit 

~(t,w)= lim ~n(t,w), t~O, (2.5)' 
n--+oo 

exists and satisfies the statement of the last theorem for every w E Q. In particular, 
every trajectory 

~(t) = ~(w, t), t ~ 0, (2.6) 



RANDOM PROCESSES 119 

is a continuous function, which on any finite interval 0 ~ t ~ T, is represented by 
the uniform limit (2.5)' of our continuous piecewise linear functions ~n(t), t ;;:: O. 

For the above continuous model, we can restate our probabilistic characterization 
of the Brownian motion process ~(t), t ;;:: 0 (which is also called the Wiener process), 
as follows: 1) ~(O) = 0; 2) for any 0 < 8 < t, the increment ~(t) - ~(s) has normal 
distribution with expectation 0 and variance a2(t - 8); 3) for any 0 < t! < ... < tn, 

the increments ~(td - ~(O), ... , ~(tn) - ~(tn-!) are independent. 0 
Some experimental trajectories of the Brownian motion can be seen in Figure 10*. 
Visually, trajectories of the Brownian motion look as if they were chaotically 

drawn by a jittering pen (which reflects the character of the physical process of 
Brownian motion, where the particle is subject to infinitely frequent impulses from 
the molecules, and every impulse produces an infinitely small displacement). As 
we shall see below, with probability 1 the trajectory has infinite variation on any 
interval: 

n 

sup L I~(tk) - ~(tk-!)I = 00. 
s=to<tJ <···<tn=t k=! 

THEOREM. For any interval [8, t], with probability 1 

n 

lim "" [~(tk) - ~(tk_!)J2 = a2(t - s), 
n----..oo L.J 

k=! 

(2.7) 

(2.8) 

where the limit is taken over a sequence {tkn}, n ;;:: 1 of partitions 8 = to < t! < 
... < tn = t, tk == tkn such that 

Proof Let show first that (2.8) holds for any sequence of partitions with hn ---> 0, 
if we replace the convergence with probability 1 by the convergence in the square 
mean. In fact, we have 

Set 

* Wold, H.O. (ed.): Bibliography of TIme Series and Stochastic Processes, pp. 10--11, Edinburgh, 
London, 1965. 
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Fig 10 a) Expenmental traJectones of the Browman motion with the dJffuslOn coefficient 0'2 = 1, b) a 
magmfied part of the trajectory 
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Consider the sum 

n n 

L [eCtk) - eCtk-l)] 2 - (12Ct - s) = L~k 
k=l k=l 

of the independent variables ~k, with mean 0 and the variance 

(see p. 79 for moments of the normal distribution). We obtain 

n 

:::; 2(14 max Ctk - tk-l) L(tk - tk-d = 2(14hn Ct - s) ---+ 0 
l~k~n k=l 

as n -+ 00. Next, from the Chebyshev inequality, 

As hn :::; 2-n , we can choose en -+ 0 so that 

Using the Borel-Cantelli lemma, we infer that, with probability 1, only finitely many 
of events 

occur, i.e., for all sufficiently large n we have 
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The theorem is proved. 0 
In particular, a.e. trajectory of the Brownian motion has infinite variation on any 

interval. Indeed, 

since maxk I~(tk) - ~(tk-l)1 -+ 0, due to continuity of the trajectory on the inter­
val [s, t). 

2.3. MAXIMA AND HITTING TIMES 

Let us consider the standard Brownian motion ~(t), t ~ 0, with the diffusion coeffi­
cient u 2 = 1, starting at ~(o) = O. We are interested in the probability distribution of 
the maximal displacement (or maximum) 

and of the hitting time 

'Tx=min{t: ~(t)~x} 

of a point x > O. Because of continuity of the Brownian motion, the random variables 
~t and'Tx are clearly related between themselves, namely 

Using the symmetry of the Brownian motion with respect to any starting point, one 
can see that, under the condition t > 'Tx, both events ~(t) ~ x and ~(t) ~ x are 
equiprobable. Hence 

and therefore 

(2.9) 
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where 

is the normal distribution function. 
Of course, we also have 

(2.10) 

Differentiating (2.9) with respect to t > ° and (2.10) with respect to x > 0, we 
obtain the corresponding probability densities of the random variables 'Tx and ~:, 
namely 

t > 0, 
(2.11) 

and 

x ~ 0, (2.12) 

x < 0. 

By the symmetry of the Brownian motion with respect to the origin ~(o) = 0, the 
hitting time 

'Tx = min{ t: ~(t) < x} 

of a point x < 0, and the minimum 

~t = min ~(s) = - max [-~(s)] 
O~s~t O~s~t 

obey the same probability laws (2.11), (2.12), respectively, with x replaced by -x. In 
particular, the Brownian particle hits any point x = a with probability 1. Moreover, 
before hitting a point a < 0, say, the particle travels for some time in the opposite 
direction x > 0, with 'Tx , ~t asymptotically behaving like x 2 , ±yt, respectively (as 
x and t increase). 0 
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Let 0 ~ T ~ t be the time when the Brownian trajectory attains its maximum et. 
To find the distribution of this random variable, one can proceed as follows. 

Let us consider the maximum et on an interval 0 ~ 8 ~ t and the hitting time 'Ta 
of a > O. Obviously, et = x ;;:: a implies Ta ~ t and, given 'Ta = 8 < t, 

et = a + max [e(u) - a]. 
s';;;u,;;;t 

The Brownian motion e(u), u ;;:: 8, starting at e(8) = e('Ta) = a obeys the same 
probability law as e(u - 8) + a, u - 8 ;;:: 0, e(O) = O. Therefore, the conditional 
probability density of et given 'Ta = 8 ~ t coincides with the probability density of 
the random variable 

a + max e(h) = a + ets 
O';;;h';;;t-s 

and can be found from (2.12), to be equal to 

Pc+(x I 8) = ~ e-(x-al2 /2(t-sl, a ~ x < 00. 
~t V~ 

Hence, using the Bayes formula and the hitting time distribution (2.11), we find the 
conditional probability density of'Ta given et = x ;;:: a: 

o < 8 < t, a ~ x < 00. 

The above identity remains valid for x = a as well: 

1 a 2/2 1 
P (8 I a) = - e-a s -- 0 < 8 < t. 

"a 7ry's(t - 8) 8 P€i(a)' 

Conditioned at et = a, 0 < a < 00, we have Ta = T as the maximum point. 
Therefore, the conditional density of'T given et = x, 0 < x < 00 is equal to 

1 X 2/2 1 
p,,(8 I x) = - e-x S --, 0 < 8 < t. 

7ry's(t - 8) 8 P€i(X) 
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p 
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o 

p(s) = _----!....l_ 
rr-Vs(t-s) 

i 
2 

Fig. 11. 

Hence, the joint probability density of T and ~: is 

s 

( ) _ I ::. _ x2/2s 
P'[f,+ s,x - V (t ) e , 0 < s < t, 0 ~ x < 00, 

't 7rS-SS 

125 

(2.13) 

which leads to the following formula for the probability density of the maximum 
point T: 

roo 1 
p'[(s) = Jo P'[,f,:(s,x)dx = 7rvs(t _ s)' 0 < s < t. 

This probability distribution is known as the arc sine law, since 

1s 1 2 ~ P{T ~ s} = du = -arcsin -, 
o 7rvu(t - u) 7r t 

(2.14) 

(see Figure 11). Note that the maximum point T = s is much more likely to occur 
towards the ends s = 0 and s = t of the interval (0, t) than somewhere in the middle 
(this happens, for example, if the Brownian particle drifts from the origin in the 
direction x < 0). 
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2.4. DIFFUSION PROCESSES 

Consider a particle moving in a non-homogeneous medium, whose movement e(t), 
t ~ 0, locally resembles the Brownian motion, but, given the position e(s) = x of 
the particle at a time s, the increment e(s + h) - eCs) depends on x = eCs). 

Of course, the probabilistic characterization of such a movement cannot be as sim­
ple as of the Brownian motion in general. However, we shall assume the following 
Markov property: given any 'current' state eCs) = x, the 'future' e(t), t ~ s, of the 
random process is conditionally independent of its 'past' e(t), t ::;; s. 

Suppose that, for any t > sand -00 < x < 00, there exists the transition proba­
bility density 

pCx, t - s, y), -00 < y < 00, 

which is the conditional probability density of the random variable ect) given eCs) = 
x. D 

Let us consider the joint probability distribution of e(s), e(t), 0 < s < t, given 
e(O) = x. The corresponding probability density can be written as 

p(x, s, z) p(z, t - s, y), -00 < z, y < 00, 

with p(z, t - s, y), -00 < y < 00, being the conditional density of e(t) given e(O) = x, 
e(s) = z (the latter density does not depend on e(O) = x, thanks to the Markov 
property). Integrating over -00 < z < 00, we obtain the probability density of eCt): 

p(x, t, y) = [: p(x, s, z)p(z, t - s, y) dz, -00 < y < 00. (2.15) 

This is the so-called Kolmogorov-Chapman equation (which is quite similar to Equa­
tion (1.11) and reflects the total probability formula). 

We assume that, for any fixed E: > 0, 

r p(x, h, y) dy = o(h), 
J1y-xl>c 

r (y - x)pCx, h, y) dy = a(x)· h + o(h), 
J1y-xl«c 

(2.16) 

r (y _ x)2p(x, h, y) dy = b(x) . h + o(h), 
J1y-xl«c 
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where o(h)/h --+ 0 as h --+ O. A random process ~(t), t ~ 0, which satisfies the above 
mentioned properties, is usually called a diffusion process. The functions a(x) and 
b( x), appearing in (2.16), are called the drift coefficient and the diffusion coefficient, 
respectively. 

The Brownian motion process considered above is an example of a diffusion 
process, with the corresponding coefficients a(x) = 0, b(x) = a2 . 

THEOREM. Suppose that the derivatives 8p/8t, 8p/8x, 82p/8x2 of the transition 
density p(x, t, y) exist and are continuous with respect to x, uniformly in y from each 
finite interval Yo ~ Y ~ Yl. Then p(x, t, y) satisfies the diffusion equation 

(2.17) 

(Equation (2.17) is known as the Kolmogorov backward equation.) 
Proof Take a continuous function ip(x) vanishing outside a finite interval, and 

set 

ip(t,x) = i: ip(y)p(x,t,y)dy. 

From the Kolmogorov-Chapman equation it follows that 

ip(t, x) = i: ip(Y) i: p(x, s, z)p(z, t - s, y) dz dy 

= i: ip(s, z)p(x, t - s, z) dz. 

Obviously, the function ip(t, x) has continuous derivatives 8ip/8t, 8ip/8x, 82ip/8x2. 
Using the Taylor formula in the neighbourhood of x (with S fixed), we obtain 

8ip(s,x) 1 [82ip(S,X) ] 2 
ip(S, z) - ip(S, x) = 8x (z - x) + 2 8x2 + 0(8e ) (z - x) , 

where 

<: _ I 82ip(s, z) 82ip(s, x) I 
Ve - sup 2 - 2' 

IZ-xl::;;e 8x 8x 
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so that O(b,,;) --+ 0 as c: --+ O. From the relations (2.16), with t - s = h --+ 0, we get 

<p(t,x) - <p(s,x) = [: [<p(s,z) - <p(s,x)]p(x,h,z)dz 

= ( [<p(s,z)-<p(s,x)]p(x,h,z)dz+o(h) 
Jlz-xl~e 
O<p(s,x) 1 = 0 (z - x)p(x, h, z) dz 

x Iz-xl~e 

1 [02<p(S, x) ] 1 2 + -2 a 2 + O(be ) (z - x) p(x, h, z) dz + o(h) 
x IZ-xl~e 

= {a(x) o<p~: x) + ~b(X) [02~~; x) + O(be)]}h + o(h). 

Hence 

1. <p(t,x) - cp(s,x) _ ()ocp(s,x) !b( )02<p(s,x) 
1m h -ax!Ol +2 x !Ol 2 ' 

h=t-s-+O uX uX 

or 

U sing the definition of cp( t, x), we can rewrite the above equation as 

where (recall) <p(y) is an arbitrary continuous function vanishing outside some finite 
interval. Hence, the equation 

op op 1 02cp -- + a(x)- + -b(x)- = 0 
ot ox 2 ox2 

is satisfied. The theorem is proved. 

THEOREM. Suppose that the derivatives 

op(x, t, y) o[a(y)p(x, t, y)] 02 [b(y)p(x, t, y)] 

ot oy oy2 
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exist and are continuous. Then the transition density p(x, t, y) satisfies the differential 
equation 

8p 8 182 
8t = - 8y [a(y)p(x, t, y)] + 2: 8y2 [b(y)p(x, t, y)]. (2.18) 

Proof Similarly to the proof of the previous theorem, we can show that, for 
any twice continuously differentiable function cp(x) vanishing outside some finite 
interval, the limit 

~~ * [I: cp(y)p(x, h, y) dy - CP(X)] = a(x)cp'(x) + ~b(X)CP"(X) 

exists. We obtain 

8 100 

8t -00 p(x, t, y)cp(y) dy 

= ~~ * [I: p(x, t + h, y)cp(y) dy - i: p(x, t, z)cp(z) dZ] 

= I: p(x, t,Z) ~~ * [I: p(z, h,y)cp(y)dy - CP(Z)]dZ 

100 1 
= -00 p(x, t, z) [a(z)cp'(z) + 2:b(z)cp"(z)] dz. 

Integrating the last expression by parts, we get 

8 100 100 8 8t _oop(x,t,y)cp(y)dy = -00 [al(x, t,y)] cp(y)dy 

100 { a 1 a2 } = -00 - ay [a(y )p(x, t, y)] + 2: ay2 [b(y)p(x, t, y)] cp(y) dy. 

Hence, equation (2.18) follows, as cp(y) is arbitrary. The theorem is proved. 



CHAPTER 3 

An Introduction to Mathematical Statistics 

1. Some Examples of Statistical Problems and Methods 

1.1. ESTIMATION OF THE SUCCESS PROBABILITY IN BERNOULLI TRIALS 

According to a common belief, the birth of a girl or of a boy are equiprobable 
events. Let us adopt this as the initial hypothesis, and check how it fits some 
available data. For example, in the period 1871-1900 there were n = 2,644,757 
babies born in Switzerland including m = 1,359,671 boys and n - m = 1,285,086 
girls. * How well does this data agree with our hypothesis that the probability of a boy's 
birth is 0.5? By calling the last event a 'success', let us discuss the data in the 
framework of n = 2,644,757 Bernoulli trials, with unknown success probability p; 

the corresponding frequency is 

m = 1,359,671 = 0.5141. 
n 2,644,757 

No doubt that everybody would reject a hypothesis like p = 0.1, say. To give a 
rigorous answer for any hypothesis about the probability p, consider apriori the fre­
quency as a random variable whose probability distribution is well-known. Namely, 
as n is very large, one can apply to this random variable, denoted by ~, the normal 
approximation. The normalized random variable 

~-E~ r=fC. 
v'm = V p(1 - p) (~- p) 

satisfies the inequality 

(1.1) 

* See Van der Waerden: Mathematische Statistik, Springer-Verlag, Berlin, 1957. 
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Fig. 12. a) Normal distribution function with u = 1; b) normal density with u = 1. 

with the probability 

1 - Q = <I»(xa ), 

where 

<I»(X) = -- e-x /2 dx, 1 jX 2 
V21i -00 

-00 < x < 00, 

is the normal distribution function (see Figure 12 and Table II). Here, Q is a signifi­
cance level and Xa is the corresponding quantile. 

Let us return to the above data which gives the value 

J p(l ~ p) (~ - p) = 37 

Table II. The normal distribution function cI>(x) = 2~ f:'oo C,,2 /2 du 

x cI>(x) x <I>(x) x cI>(x) 

0.0 0.500000 1.5 0.933193 3.0 0.998650 
0.1 0.539828 1.6 0.945201 3.1 0.999032 
0.2 0.579260 1.7 0.955435 3.2 0.999313 
0.3 0.617911 1.8 0.964070 3.0 0.999517 
0.4 0.655422 1.9 0.971283 3.0 0.999663 
0.5 0.691462 2.0 0.977250 3.0 0.999767 
0.6 0.725747 2.1 0.982136 3.0 0.999841 
0.7 0.758036 2.2 0.986097 3.0 0.999892 
0.8 0.788145 2.3 0.989276 3.0 0.999928 
0.9 0.815940 2.4 0.991802 3.0 0.999952 
1.0 0.841345 2.5 0.993790 4.0 0.999968 
1.1 0.864334 2.6 0.995339 4.1 0.999979 
1.2 0.884930 2.7 0.996533 4.2 0.999987 
1.3 0.903 200 2.8 0.997445 4.3 0.999991 
1.4 0.919243 2.9 0.998134 4.4 0.999995 

4.5 0.999997 
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in the case of p = 0.5. This is far beyond the extreme point Xu = 4.5 of Table II 
corresponding to 0: = 0.000,003. In this particular case, we can either accept the 
incredible event of the probability less than 0.000,003, or just reject the hypothesis 
p = 0.5. Of course, the hypothesis has to be rejected. Using the above data, one can 
take 

p=0.5141 (= :) 

as the corresponding statistical estimate of the unknown probability p. How is it 
reliable? 

The question concerning the reliability of our knowledge about p can be ap­
proached as follows. According to the normal approximation, we have 

or, equivalently, 

e - Vp(1- p) fo ~ p ~ e + Vp(l- p) fo 
with the probability 1 - 20:, where 0: = 1 - <I»(xu). Hence we can be a priori sure 
that 

with the probability 1 - 20: at least, since p(l - p) ~ 1/4. For the presented data, 
e = 0.5141 a posteriori, and we can trust the corresponding estimate (called the 
confidence interval) 

0.5141 - 0.0003 Xu ~ P ~ 0.5141 + 0.0003 Xu 

with probability 1 - 20:. 

1.2. ESTIMATION OF PARAMETERS IN A NORMAL SAMPLE 

Suppose we observe independent identically distributed random variables 6,· .. ,en; 
the corresponding data is usually called a statistical sample of size n. What can we 
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say about its unknown probability distribution? Suppose we know that this distribu­
tion is normal, for example, and then one can ask about the unknown parameters 

One can apply the sample mean 

(1.2) 

as an estimate of the unknown parameter a; how is it reliable? The mean square 
error of this estimate is 

which is not very useful if a 2 is unknown. One can take 

,2 1 l:n (C ,)2 
a = -- <"k-a 

n-l 
k=l 

(1.3) 

as an unbiased estimate of a2 , i.e. 

which easily follows from 

Set 

..;n(a -a) 
T = , . (1.4) 

a 

The probability distribution of the random variable T does not depend on the param­
eters (a, a2), or the substitution of ~k by (~k - a)/a, k = 1, ... ,n. Assume for a 
while that a = 0, a2 = 1. A linear orthogonal transformation 

n 

'fJj = LCjk~k. j = 1, ... ,n, 
k=l 
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with 

in particular, results in independent normal random variables 'Tl1' with 

D'Tl1 = 1, j = 1, ... , n. 

We have 

n n 

Ld=L'Tl; 
k=1 1=1 

and 

n n 
"22,,2 = ~'Tl1 -'Tli = ~'Tl1· 

Hence 

T = v:n=I'Tl1 , 
X 

-4 

1=1 1=2 

-2 o 

Fig. 13. 

2 4 
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Table 1lI. Values of x", in (bilateral) confidence bounds for 2a 0.05; 0.02; 0.001 for 
Student's distribution with n - 1 degrees of freedom 

n-l 0.05 0.02 0.01 0.001 n-l 0.05 0.02 0.01 0.001 

1 12.71 31.82 63.66 636.6 20 2.086 2.528 2.845 3.850 
2 4.303 6.965 9.925 31.60 21 2.080 2.518 2.831 3.819 
3 3.182 4.541 5.841 12.92 22 2.074 2.508 2.819 3.792 
4 2.776 3.747 4.604 8.610 23 2.069 2.500 2.807 3.767 
5 2.571 3.365 4.032 6.869 24 2.064 2.492 2.797 3.745 
6 2.447 3.143 3.707 5.959 25 2.060 2.485 2.787 3.725 
7 2.365 2.998 3.499 5.408 26 2.056 2.479 2.779 3.707 
8 2.306 2.896 3.355 5.041 27 2.052 2.473 2.771 3.690 
9 2.262 2.821 3.250 4.781 28 2.048 2.467 2.763 3.674 

10 2.228 2.764 3.169 4.587 29 2.045 2.462 2.756 3.659 
II 2.201 2.718 3.106 4.437 30 2.042 2.457 2.750 3.646 
12 2.179 2.681 3.055 4.318 40 2.0221 2.423 2.704 3.551 
13 2.160 2.650 3.012 4.221 50 2.009 2.403 2.678 3.495 
14 2.145 2.624 2.977 4.140 60 2.000 2.390 2.660 3.460 
15 2.131 2.602 2.947 4.073 70 1.990 2.374 2.639 3.415 
16 2.120 2.583 2.921 4.015 80 1.984 2.365 2.626 3.389 
17 2.IIO 2.567 2.898 3.965 90 1.972 2.345 2.601 3.339 
18 2.101 2.552 2.878 3.922 100 1.965 2.334 2.586 3.310 
19 2.093 2.539 2.861 3.883 00 1.960 2.326 2.576 3.291 

where X2 = 2:/;=2 'TlJ is a random variable with the chi-square distribution (see p. 76). 
The joint probability density of independent random variables "7 = "71 and ( = X2 is 
given by 

- 00 < y < 00, ° < z < 00. 

The distribution function of the very T can be obtained in the form 

F(x) = I] PT/,c:(y, z)dydz, -00 < x < 00, 
v'n-1y'-;;xv'Z 

which leads to the probability density of T: 

_ 1 r(~) 1 ( ~)-n/2 
p(x) - J2;: r (ni1).;n=l 1 + n _ 1 ,-00 < X < 00. (1.5) 

This is the so-called Student's distribution with (n-I) degrees of freedom. Similarly 
to the normal distribution with parameters a = 0, a2 = 1, it is symmetric and bell­
shaped (see Figure 13); one can easily verify that it tends to the normal distribution 
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when n ---> 00. Table III gives the corresponding quantiles X Q , 

for various n and the significance levels 2a = 0.05, 0.02, 0.01, 0.001. In particular, 
for any n we have 

Hence, according to (1.4), 

(1.6) 

with the probability 1 - 2a, where fL, a are the statistics suggested in (1.2), (1.3), 
respectively. Thus, we get an estimate for the unknown mean value a, in the form 
of the corresponding confidence interval (1.6). 

1.3. CHI-SQUARE CRITERION FOR PROBABILITY TESTING 

Let us consider the scheme with disjoint events A" i = 1, ... , r, formally represent­
ing all possible outcomes of an 'experiment'. The problem is to verify how given 
probabilities 

P. =P(A,), i= 1, ... ,r, 

fit into the real data obtained from n independent trials (experiments). Let ~'k be the 
indicator of the event A, in the kth trial, ~'k = 1 if a, occurs, ~'k = a otherwise. Set 

n 

V, = L~'k (i = 1, ... ,r). 
k=! 

Of course, v.1 n is the frequency of the occurrence of At in the trial series. Consider 

ilt = v,-np, =t~'k-P', i=I, ... ,r. 
Jnpt k=!.,;np;, 
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According to 

E(v, - np,) = 0, 

n 

E(v, - np,)(vJ - nPJ) = LE(e'k - p,)(eJk - PJ) 
k=1 

i # j, 
i = j, 

the correlation matrix B = {B'J}' 

can be represented as 

with the unit matrix I. By applying a linear orthogonal transformation 

r 

T/J = L C'J!1J, i = 1, .. . ,r, 
,=1 

CHAPTER 3 

with CIJ = ../PJ ' j = 1, ... ,T, we obtain random variables T/" ET/, = 0, with the 
correlation matrix 
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Table IV. Values of Xo In confidence bounds for a = 0.05,0.01; 0.001 for chI-square 
dlstnbutions WIth n degrees of freedom 

n 0.05 0.01 0.001 n 0.05 0.01 0.001 

I 3.84 6.63 10.8 26 38.9 45.6 54.1 
2 5.99 9.21 13.8 27 40.1 47.0 55.5 
3 7.81 11.3 16.3 28 413 48.3 56.9 
4 9.49 13.3 18.5 29 42.6 49.6 58.3 
5 11.1 15.1 20.5 30 43.8 50.9 59.7 
6 12.6 16.8 22.5 31 45.0 52.2 61.1 
7 14.1 18.5 24.3 32 46.2 53.5 62.5 
8 15.5 20.1 26.1 33 47.4 54.8 63.9 
9 16.9 21.7 27.9 34 48.6 56.1 65.2 

10 18.3 23.2 29.6 35 49.8 57.3 66.6 
11 19.7 24.7 31.3 36 51.0 58.6 68.0 
12 21.0 26.2 32.9 37 52.2 59.9 69.3 
13 22.4 27.7 34.5 38 53.4 61.2 70.7 
14 23.7 29.1 36.1 39 54.6 62.4 72.1 
15 25.0 30.6 37.7 40 55.8 63.7 73.4 
16 26.3 32.0 39.3 41 56.8 65.0 74.7 
17 27.6 33.4 40.8 42 58.1 66.2 76.1 
18 28.9 34.8 42.3 43 59.3 67.5 77.4 
19 30.1 36.2 43.8 44 60.5 68.7 78.7 
20 31.4 37.6 45.3 45 61.7 70.0 80.1 
21 32.7 38.9 46.8 46 62.8 71.2 81.4 
22 33.9 40.3 48.3 47 64.0 72.4 82.7 
23 35.2 41.6 49.7 48 65.2 73.7 84.0 
24 36.4 43.0 51.2 49 66.3 74.9 85.4 
25 37.7 44.3 52.6 50 67.5 76.2 86.7 

where e' = {CkJ} is the conjugate matrix to e = {cJk }, ee' = J, i.e. 

In particular, 

i =I- j or i = j = 1, 
i =j (= 2, ... ,r). 

The orthogonal transformation preserves 

hence 
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(1.7) 
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is the sum of squares of k - 1 uncorrelated random variables ry, with zero mean 
Ery, = 0 and variance Dry, = 1. 

One can apply to ry, the normal approximation, since 

are sums of independent identically distributed random variables 

r 

ry,k = I>'J (~Jk - PJ) / JnP3· 
J=1 

Hence the random variable X2 of (1.7) has approximately the chi-square distribution 
with m = r - 1 degrees of freedom (see p. 76 and Figure 14). Table IV gives the 
corresponding quantiles xc>, 

for the significance levels a = 0.05, 0.01, 0.001, and n = 1, ... ,50. 
Suppose our data give 

(1.8) 

0.20 n= 1 

0.10 

o 10 20 30 40 x 

FIg. 14. 
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then we can either accept the occurrence of the very unlikely event (of a small 
probability ~ a), or reject the given hypothesis 

Pi = P(A i ), i = 1, ... ,r, 

and the chi-squares criterion suggests to make the latter choice. 

1.4. SEQUENTIAL ANALYSIS OF ALTERNATIVE HYPOTHESES 

Suppose we deal with a sequence of Bernoulli trials having in mind two hypotheses 
concerning the 'success' probability, namely, Ho: P = Po and HI: P = PI, say. We 
have to decide between Ho or HI, using the available data. Of course, one can make 
a wrong decision, by rejecting a hypothesis when it is true. 

Suppose that our preference lies with the hypothesis Ho, in the sense that the 
probability ao of rejecting Ho when it is true should not exceed a given ao, say; 
then we are to find a decision rule which at the same time rejects HI (when it is 
true) with a possibly small probability al. It is natural to look for a decision rule 
which satisfies 

with given limits ao, ai for our possible errors; of course, such a decision rule 
requires sufficiently large amount of data (a sufficiently large series of the Bernoulli 
trials, say). 

Let ~k be the indicator of 'success' in the kth trial (k = 1, ... ,n), taking values 
x = 1,0, with the corresponding probability 

P(x I Ho) = {po, 
1 - Po, 

x = 1, 

x =0, 
P(x I HI) = {PI, 

1 -PI, 

x = 1, 

x=O, 

under the hypothesis Ho, HI, respectively. Introduce the so-called likelihood ratio 

L( ) _ P(XI, ... ,Xn I Hd 
XI, ... ,Xn - P( I IT)' 

XI, ... ,Xn no 
(1.9) 

defined by means of the joint distributions of 6, ... ,~n under Ho and HI, on which 
the decision rule will be based. 

Consider the sequence 

~ P(~k I Hd 
logL(6,··· ,~n) = 6 10g P(~k I Ho)' n = 1,2, ... , (1.10) 
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consisting of sums of independent identically distributed random variables 

P(~k I HI) 
logP(~kIHO)' k=I,2, ... ,n. 

The elementary inequality 

P log tl + q log tz < log (Ptl + qtz), 

P, q ~ 0, P + q = 1, for the concave function logt, 0 < tl ~ t ~ tz < 00, shows that 

E I P(~k I Ht} 
og P(~k I Ho) 

= Po log PI + qo log ql < log(P1 + ql) = 0 
Po qo 

under the hypothesis Ho, while 

under the hypothesis HI. Hence, according to the law of large numbers, with prob­
ability 1 

(1.11) 

when Ho is true, and 

(1.11), 

when HI is true. In the case (1.11), the sequence (1.10) is bounded/rom above, and 
the probability to exceed a high level to tends to zero when to -> 00. Thus, there is 
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an upper level 10 > 0 such that our sequence (1.10) crosses 10 with the probability 
less than the given ao. Similarly, in the case (1.11)' there is a lower level II < 0 such 
that our sequence (1.10) crosses II with the probability less than the given aj. At the 
same time, with the probability 1, our sequence (1.10) crosses the upper level 10 > 0 
in the case (1.11)', and the lower [evelll < 0 in the case (1.11). By observing the 
sequence (1.10) for n = 1,2, ... , one can accept HI when the sequence (1.10) first 
exceeds the upper level 10 > 0, and accept HI, when itfirst exceeds the lower level 
II < O. Obviously, this decision rule satisfies ao ~ 0 0, al ~ aj, with arbitrarily 
chosen bounds a o > 0, aj > 0 of possible errors (recall that ai is the probability to 
reject the true hypothesis Hi, i = 0, 1). 

Everything is fine here except that we don't know how to find the levels 10,11. 
Suppose, a decision rule of the above type with 10 , it fits our demands for the error 

probabilities ao = a o and al = aj, say. We show that there is another decision 
rule of the same type corresponding to some other levels 10, II which can be easily 
determined by the given a o, aj. Namely, let us consider all x I, ... , Xn (n = 1, 2, ... ) 
such that 

log L(XI, ... , x k) < 10, k = 1, ... , n - 1, 

in particular, 

with log c = 10. Summing up over all such XI, ... , Xn (n = 1,2, ... ) the left hand 
side of the last inequality gives the probability 1 - al to accept the true hypothesis 
HI, while the corresponding sum on the right hand side gives the probability ao to 
reject the true hypothesis Ho. Hence 

or 

1 - al ? cao, 

1 - al 
10 ~ log---, 

ao 

which implies 

10 ~ -logao (a = ao) (1.12) 



144 

for any 0 ~ a, ~ 1. In a similar way, 

and 

a, 
I, ~ log-I-­

- 0:0 

for any 0 ~ ao ~ 1. Choosing 

10 = -loga;) 

CHAPTER 3 

(1.12), 

as the new upper level (with the given a;)) obviously can only diminish the probability 
ao to reject Ho when it holds true; thus 

Similarly, if 

h = logai 

is chosen as the new lower level (with the given ai), we get for the corresponding 
probability a, (to reject H, when it holds true), according to the general inequality 
(1.12), that 

or 

1.5. BAYESIAN APPROACH TO HYPOTHESES TESTING AND PARAMETERS ESTIMATION 

Let us imagine that the 'success' probability p in the observed Bernoulli trials is 
random (depends on some external random factors). For example, we are given an 
urn with a random number () of white balls and r - () black balls. A trial consists 
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of drawing a ball at random (with immediate replacement), with a white ball drawn 
considered as 'success'. 

Suppose, the first n Bernoulli trials resulted in successes. What can we say about 
the probability of success at the next (n + l)th trial? Assuming that all possible 
numbers e = i, i = 0, 1, ... ,r, of white balls in the urn are equiprobable, we obtain 
the joint probability distribution of e and ~ I, ... ,~n (~k is the indicator of the success 
at kth step, taking values Xk = 1,0): 

with m = 2:~=1 Xk representing the total number of successes and p = i/r. Therefore 

r 

P{6 = XI,··· ,~n = xn} = LP{e = i,6 = XI,··· ,~n = xn} 
t=O 

The corresponding a posteriori probability at the (n + l)th step, given 6 = 1, ... , 
~n = 1, equals 

P{~n+1 = 1 16 = 1, ... ,~n = I} 

rh 2::=1 (~r+1 fd tn +1 dt n + 1 
I ",r (t)n ~ rl nd =n+2' 

r+1 L."t=1 r Jo t t 

Of course, ~k = 1, k = 1, ... ,n, for large n suggests that nearly all balls in the urn 
are white. What is the best estimate of their number () = 0, 1, ... ,r? As we know, 
the best estimate {), as a function of the observations 6, ... ,~n, is the maximum 
point of the corresponding a posteriori probabilities: 

where, for any 6 = XI,··· ,~n = xn , 

(~)m (1 _ ~)n-m 
",r (l)m (1 _ l)n-m' 
L."J=o r r 

n 

m=Lxk 
k=1 

(1.13) 
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(see p. 11). In particular, in the extreme case m = n from (1.13) we obtain 

In the general case, consider the best estimate (j of the unknown parameter () defined 
in (1.13), where 

'1 ) 7r(i)P(6'''·,~nl()=i) 
7r(z 6,··· ,~n = Le 7r«()P(6, ... ,~n 1 ()' 

i=O,I, ... ,r (1.14) 

correspond to arbitrary a priori probabilities 

7r(i)=P{()=i}, i=O,I, ... ,r. 

Consider the likelihood ratio 

1 
P(XI, .. · ,Xn 1 () 

L(XI, ... , Xn () = P( 1 () ) 

Xl, .. · ,xn 0 

of the joint distributions of 6, ... , ~n, for () = 0, 1, ... , r and some ()o (see p. 141). 
Namely, as it was actually shown (see (1.10), (1.11», for () =I- ()o 

log L(6, .. · ,~n 1 () -t -00, 

with probability 1, provided ()o is the true value of (). Together with 0.14) this 
implies 

with probability 1 provided 7r«()o) =I- 0. Therefore, 

for sufficiently large n, which implies 
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according to (1.13). Of course, for a given n one cannot be sure that B = Bo, although 
III any case 

B ---+ Bo (n ---+ 00) (1.15) 

with probability 1 (this is called the consistency property of the estimate B). 
For a priori equiprobable {B = i} with ?rei) = P{B = i} = 1/(r+ 1), i = 0, 1, ... ,r, 

the best estimate B, obtained from (1.13), (1.14), is the most likely one, in the sense 
that it maximizes the conditional probability 

P(6,··· ,~n I B), B = 0, 1" ... ,r, 

for given observations 6,··· ,~n. 

1.6. MAXIMUM LIKELIHOOD METHOD 

Suppose we observe discrete random variables 6, ... ,~n, whose joint probability 
distribution P(XI, ... ,Xn I B) depends on an unknown parameter BEe, which we 
wish to estimate. The maximum likelihood method suggests an estimate B which is 
the most likely one in the sense that it is the maximum point B = B of the probability 
P(XI,.·· ,Xn I B), BEe, namely 

B: P(XI, ... ,Xn I B) = maXP(XI, ... ,Xn I B), 
() 

given observations 6 = Xl,··· ,~n = X n · 

(1.16) 

EXAMPLE. Suppose, ~k = Xk, k = 1, ... ,n, are the indicators of the success in 
Bernoulli trials with unknown success probability p = B, ° < B < 1. Then the 
maximum likelihood estimate is the frequency: 

which can be found as the maximum point B = fj of 

log P(XI,'" ,Xn I B) 

= log (:) + m 10gB + (n - m) log (1 - B), 



148 CHAPTER 3 

EXAMPLE. Suppose, (,k = Xk (k = 1, ... ,n) represent a statistical sample of inde­
pendent random variables having a Poisson distribution with parameter>. = (), () > 0. 
Then the maximum likelihood estimate is the sample mean 

which can be found as the maximum point () = >. of 

log P(XI, ... ,Xn I ()) 
1 n 

= log, , + Llog()xk - n(). 
Xl· ... X n · k=1 

In the case of continuous random variables 6, ... ,(,n with the joint probability 
density p(XI, ... ,Xn I ()) depending on unknown parameter () E e, the maximum 
likelihood estimate fJ is defined as the maximum point of p(XI, ... ,Xn I ()), () E e, 
i.e. 

(1.16), 

for observed values 6 = Xl,··· ,(,n = X n · 

EXAMPLE. Suppose, (,k = x k (k = 1, ... , n) represent a statistical sample of 
independent random variables having a normal distribution with parameter () = 

(a, 0-2 ), -00 < a < 00, 0-2 > 0, where 

0-2 = D('k (k = 1, ... ,n). 

One can easily verify that the maximum likelihood estimate fJ = (a, &2) is given by 

A2 1 ~( A)2 
0- = - ~ Xk -a . 

n 
k=1 

EXAMPLE. Consider a statistical sample (,k = Xk (k = 1, ... ,n) of independent 
random variables having a Laplace distribution with the probability density 
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where e, -00 < e < 00, is the unknown shift parameter, 

e = E~k (k = 1, ... ,n). 

The maximum likelihood estimate can be found as the maximum point e = e of 

>. n 
log P(Xl,··· ,Xn I e) = n log 2" - >. ~)Xk - el, 

k=1 

which is a piecewise linear function in e, attaining its maximum at one of the points 
Xk, k = 1, ... ,n. Considering these points in their natural order: 

X(I) ~ X(2) ~ •.. ~ x(n) 

on the real line, we get 

n n 

L IX(j+I) - x(k)1 - L IX(j) - X(k) I 

k=1 k=1 

= -(X(HI) - x(j)(n - 2j). 

We see that the maximum point e = x(j) is with j = m if n = 2m, or with j = m + 1 
if n = 2m + 1; the estimate 

e=X(m) 

is called the sample median. 

1.7. SAMPLE DISTRIBUTION FUNCTION AND THE METHOD OF MOMENTS 

Suppose we observe a statistical sample ~k = Xk (k = 1, ... ,n) of independent iden­
tically distributed random variables, whose probability distribution function F(x), 
-00 < x < 00, is unknown. By introducing the ordered sequence 

X(l) ~ X(2) ~ ..• ~ x(n) 
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F(x) 

- - -- - - ---r-------

o x 

Fig. 15. 

(called the variation series), one can define the sample distribution function 

{ 
0, 

F(x) = !ft, 
1, 

x <X(I), 

x(m) ~ x < X(m+I), 

x ~ x(n) 

m = 1, ... ,n -1, (1.17) 

(see Figure 15). According to the law of large numbers, for any x, -00 < x < 00, 

F(x) -+ F(x) 

as n -+ 00. 

Suppose, the unknown probability distribution depends on a r-dimensional param­
eter 0 = (01, ... ,Or) which is determined by the moments 

am(O) = E~k' m = 1, ... ,r, 

by a one-to-one continuous mapping 

Then, we can apply the so-called sample moments 

A 1 ~ m 
am = - ~xk' n 

k=1 

m= 1, ... ,r, 



AN INTRODUCTION TO MATHEMATICAL STATISTICS 151 

y = fI(t) 

* * * y=(}x 

* 
* * 

x = ~(t) 

* 

Fig. 16. 

which represent the corresponding moments with respect to the sample probability 
distribution (1.17), and estimate the unknown () by solving the system of equations 

The solution 0 = (01, ... ,Or) continuously depends on a = (0,1, ... ,ar) and 

with probability 1. Indeed, 

according to the law of large numbers: 

am = ~ t~k --+ E~k = am «()), m = 1, ... ,r, 
k=1 

and () is the solution of the limit equation: 

1.8. THE METHOD OF LEAST SQUARES 

Suppose, ~(t) and ",(t), t = 1,2, ... , are related by 

",(t) = ()~(t) + il(t) 

(1.18) 

(1.19) 

(1.20) 
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where () is an unknown constant, and ~(t) are 'small perturbations', represented by 
independent random variables with mean value E~(t) = 0 and variance D~(t) ~ a2 , 

which are uncorrelated with ~(t), say. Let be given observations of ~(t), TJ(t) at 
'times' t = 1, ... ,n (e.g., the data in Figure 16); how can we estimate the unknown 
parameter () which characterizes the linear dependence between x = ~(t) and y = 
TJ(t)? The method of least squares suggests the following algorithm. Consider 
~ = ~(t), t = 1, ... ,n, and TJ = TJ(t), t = 1, ... ,n, as vectors of the Rn-space. The 
best approximation 

of TJ E Rn, by means of all vectors ()~, -00 < () < 00, is given by the orthogonal 
projection of the vector TJ E ]Rn on the linear subspace of all ()~, -00 < () < 00, and 
is determined by the orthogonality condition 

n 

(TJ - r"O = L [TJ(t) - r,(t)]~(t) = 0 
t=1 

in the Rn -space. It gives the equation 

n n 

o L ~(t)2 = L ~(t)TJ(t) 
t=! t=! 

and the corresponding least squares estimate 

(1.21) 

How close is 0 to the true value ()? 
According to (1.20), 

n n n 

L ~(t)TJ(t) = () L ~(t)2 + L ~(t)~(t), 
t=! t=! t=1 

hence 

n n 

(0 - () L ~(t)2 = L ~(t)~(t) 
t=1 t=1 
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and one can expect in general that 

when 

n 

L~(t)2 ---700 (n ~ 00). 

t=! 

153 

(1.22) 

EXAMPLE (Correlation estimate). Suppose, in the scheme (1.20) we have random 
variables ~(t) with E~(t) = 0, D~(t) = 1, so that the parameter () represents the 
correlation 

() = E~(t)1J(t). 

Moreover, assume that we deal with independent trials at 'times' t = 1, ... , n, and 
that the random variables ~(t) and 1J(t) have the same joint distribution for each t. 
Then, according to the law of large numbers, with probability 1 

and 

1 n - L ~(t)d(t) ---7 O. 
n 

t=! 

Thus, (1.22) holds with probability 1. 

EXAMPLE (Trend estimation). Suppose, ~(t) = x(t), t = 1,2, ... , in (1.20) represent 
a deterministic function of t, which characterizes how the mean value 

yet) = E1J(t) = ()x(t) 

varies in 'time', and the random variables, d(t), t = 1,2, ... , are uncorrelated be­
tween themselves. Then, with 

n 

Lx(ti ---700 (n ~ 00), 

t=! 
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we have 

[ 
n ]2 n n 

E {; x(t) d(t) = {; x(t)2 Ed(tf ~ (J2 {; x(t)2 

and 

Thus, (1.22) holds in the square mean. 

2. Optimality of Statistical Decisions 

2.1. THE MOST POWERFUL CRITERION 

Let be given a statistical sample of random variables 6, ... , ~n, and their joint 
probability distribution depending on some unknown parameter B. We are to make 
certain decision about BEe. The decision rule will be based on the corresponding 
likelihood ratio 

as a function of the parameter B. In the case of discrete probability distribution 
P(x I B) of ~ = (6, ... , ~n) E ]Rn, the likelihood ratio is defined by 

P(x I B) 
L(x I B) = P(x I Bo)' 

while, in the case when the probability density p(x I B) of ~ = (6, ... ,~n) E ]Rn 

exists, 

L(x I B) = p(x I B) . 
p(x I Bo) 

In any case, L(x I B) is assumed to have the property that for any function <p(O of 
~ = (6, ... ,~n), E<p(O depends on BEe in such a way that 

(2.1) 
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where 

and (}o E e is a fixed point. 
Let two hypotheses Ho: () = (}o and HI: () = (}I be given; we have to choose one 

of them according to a given statistical sample E = (6, ... ,En) ~ ]Rn. We consider 
criteria of the following type. Namely, we choose a critical region S ~ ]Rn, and 
reject or accept the hypothesis Ho, depending on whether E E S or E ¢ S. 

By rejecting Ho, we accept HI; suppose, our preference lies with Ho, and we have 
to choose the critical region S ~ ]Rn in such a way that the probability to reject the 
true Ho is 

ao = P{ E E S I (}o} ~ a(j, (2.2) 

where a(j is a given bound for the error probability with respect to Ho: () = (}o. 
A criterion S which satisfies condition (2.2), is called the most powerful, if the 
probability of making an error when HI: () = (}I is true is minimal: 

(2.3) 

Let us show that the Neyman-Pearson criterion 

S* = {x: L(x I (}I) > c}, (2.4) 

where c > 0 is choosen from the condition 

a(j = P{E E S* I (}o}, 

is the most powerful. 
To do so, let us compare this criterion with any other criterion based on a critical 

region S ~ ]Rn, which satisfies the corresponding condition (2.2). Applying (2.1) to 
the indicator function cp(x) = 1 sc(x), x E ]Rn of the complement S; of S* in ]Rn, we 
have • 
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Next, 

a1 - aj = Eoo [tsc(~) - Is~(O] L(~ I (h) 

= Eoo Is.\~(OL(~ I ( 1) - Eoo lS\~(~)L(~ I (1) 

with Ll = S* n S, where 

Eoo lS\~(~)L(~ I Bd ~ cEoo 18\~(0 

~ cEoo18.\~(~) ~ Eoo ls.\~(OL(~ I (1) 

since L(x I (1) ~ c, x E S\Ll, 

Eoo 1 s\~ (~) = Eoo 18(0 - Eoo 1 ~ (~) 

= ao - Eoo 1~(0 

~ ao - Eoo 1~(~) = Eoo ls.\~(~) 

and L(x I (1) > c, x E S* \Ll. Hence 

Let us formulate our result as follows. 

THEOREM. The Neyman-Pearson criterion is the most powerful. 

2.2. SUFFICIENT STATISTICS 

CHAPTER 3 

Sometimes, one has to make a decision about the unknown parameter B E 8 of 
the probability distribution of ~ = (6, ... , ~n), by means of incomplete data in the 
form of a function T/ = f(O E ]Rm of the statistical sample ~ = (6, ... , ~n) E ]Rn. 

The corresponding T/ = f(~) is considered as a sufficient statistic, if it carries the 
same information about B E 8 as ~. This sounds all right, but what does it actually 
mean? A rigorous answer can be given as follows: for any given T/ = f(~) = y, the 
conditional probability distribution of ~ = (6, ... , ~n) does not depend on B E 8, 
i.e., conditioned on f(x) = y, all possible values ~ = x E ]Rn are distributed in the 



AN INTRODUCTION TO MATHEMATICAL STATISTICS 157 

same way independently of (). Thus, our knowledge about e = x itself, in addition 
to a given f(x) = y, cannot help in making our decision about the true (). 

For a discrete distribution P(x I (), x E ]Rn any sufficient statistic f of e E ]Rn 

can be characterized by the fact that the corresponding likelihood ratio L(x I () is a 
function of y = f(x), x E ]Rn, only: 

L(x I () = g(f(x) I (). (2.5) 

Indeed, according to (2.5), or 

P(x I () = P(x I ()o)g(f(x) I (), 

the probability distribution of'f/ = f(O satisfies 

P'l(Y I () = L P(x I ()o)g(f(x) I () 
x:f(x)=y 

= P 'l(y I ()o)g(y I (), 

and the conditional probability distribution e given fCO = y is 

for all x such that f(x) = y. On the other hand, for any sufficient statistic f we have 

P(x I () P(x I ()o) 
Pe(x I f(x» = P'l(f(x) I () = P'l(f(x) I ()o)' 

hence 

L(x I () = P(x I () = P'l(f(x) I () = g(f(x) I () 
P(x I ()o) P'l(f(x) I ()o) 

(2.5)' 

is actually a function of y = f(x) alone. 
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EXAMPLE (Sufficient statistic for a Bernoulli sample). Let x = (XI, ... ,xn ) be a 
statistical sample, representing indicators Xk of 'success' in n Bernoulli trials, with 
success probability p = 0, 0 < 0 < 1. Then f(x) = L~=I Xk is a sufficient statistic, 
since 

P(X I 0) = Of(x)(1 - 0)1- f(x) 

and the corresponding representation (2.5) holds. This sufficient statistic can be 
applied, in particular, to the estimate 

1 1 n 
p= -f(x) = - "Xk n nW 

k=1 

of the parameter p = O. 

EXAMPLE (Sufficient statistic for a Poisson sample). Let X = (XI, ... ,xn ) be a 
statistical sample from a Poisson distribution with mean value a = 0, 0 > O. Then 
f(x) = L~=I Xk is a sufficient statistic, as 

and (2.5) holds again. The above statistic appears in the well-known estimate 

1 1 n 
a = - f(x) = - LXk 

n n 
k=1 

of a = O. 
A characterization similar to (2.5) of sufficient statistics can be obtained when 

~ = (6, ... '~n) has a probability density 

Recall that we defined the conditional distribution of ~ with respect to ry = f(O, by 
assuming that ~ E ~n can be written as ~ = (ry, (), with the components ry E IRn , 

( E IRn - m having the joint probability density 

PT}.(Y' z I 0) = p(x I 0), 
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so that the corresponding conditional probability density is 

( I ) _PTJ,((y,zle) zElRm 
p( z Y - Prey I e) , 

(see p. 62). For a sufficient statistic 'r/ = 1(0, P((z I y) does not depend on e and the 
likelihood ratio is 

L(x I e) = PTJ,((Y' z I e) PTJ(Y I e) P((z I y) 
PTJ,((Y' z I eo) PTJ(Y I eo) P((z I y) 

= PTJ(Y I e) = g(y I e), Y = f(x). 
PTJ(Y I eo) 

On the other hand, representation (2.5) with 

gives 

and 

L(x I e) = PTJ,((Y' z I e) = g(y I e) 
PTJ,((Y' z I eo) 

PTJ,((Y' z I e) = PTJ,((Y' z I eo)g(y I e) 

PTJ(Y I e) = In-m PTJ,((Y' z I eo)g(y I e) dz 

= PTJ(Y I eo)g(y I e). 

Consequently, the conditional probability density 

P (z I y) = PTJ,((y, z I e) = PTJ,((y, z I eo) 
( PTJ(Y I e) PTJ(Y I eo) 

(2.5)' 

is independent of e. Thus, the characterization of sufficient statistics given in (2.5), 
remains true in this case. 
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EXAMPLE (Sufficient statistic for a normal sample). Let x ==: (Xl, ... , Xn) E IRn be 
a statistical sample representing independent normal variables ~k, with 

a2=D~k (k=I, ... ,n). 

Then 

n n 

f(x) = (fl(x),h(x)), fl(x) = I>k, hex) = I>~ 
k=1 k=l 

is a sufficient statistic of the parameter 

() = (a,a2 ), -00 < a < 00, a2 > 0, 

since 

and the corresponding representation (2.5) holds. The sufficient statistic f = (fl, h) 
appears in the well-known estimates 

A2 1 [ H(x)] 1 En ( A)2 a =-- fz(x)--- =-- Xk-a. 
n-l n n-l 

k=l 

Suppose, we want to apply <p(x) as an estimate of a component () of the unknown 
parameter of the probability distribution of ~ = (6, ... , ~n), given a statistical sample 
X = (Xl, ... , Xn) E IRn; here, () is a scalar (real) component, and <p = <p(x), X E 

IRn a (real) function. The accuracy of the estimate can be characterized by the 
corresponding mean square error 
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Consider a sufficient statistic ry = f(O given by a function y = f(x) E lRm of 
x = (Xl, ... ,Xn ). The conditional expectation 

'IjJ(y) = E[cp(O I f(O = y] 

does not depend on the unknown parameter and represents a function 'IjJ = 'IjJ(y) of 
y = f(x), X E lRn. Clearly, 

E[lcp(~) - 01 2 I f(O = y] 

= E[lcp(O - 'IjJ(y)12 I f(~) = Y] + 1'IjJ(y) - 012. 

By the total mathematical expectation formula (see p. 60), 

Elcp(O - 012 = EI'IjJ(ry) - 012 + Elcp(O - 'IjJ(ry)12 

~ EI'IjJ(ry) - 012, ry = f(O· 
(2.6) 

This inequality shows that 'IjJ = 'IjJ(y), as function of y = f(x), x E lRn gives a better 
estimate of 0 than cp = cp(x), x E lRn. Moreover, if the estimate cp is unbiased: 

then 'IjJ is of the same type: 

E'IjJ(ry) == 0, (2.7) 

since for 

the total mathematical expectation formula gives 
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EXAMPLE (The best estimate for exponential distribution). Let x = (Xl, ... ,xn ) be 
a statistical sample representing independent random variables ek > 0, distributed ac­
cording to an exponential law with parameter>' = (), () > 0, with the joint probability 
density is given by 

p(X I () = ()ne-oE:=1 Xk ( > ° k 1 ) Xk , = , ... ,n. 

Then 

is a sufficient statistic, and the random variable T} = f(O > ° has the probability 
density 

_ 1 n n-l -Oy 
Pn(Y I () - (n _ 1)! () y e , y > 0, 

which depends on n (see p. 43 on gamma-distribution). Here, there is only one 
unbiased estimate 'I/J(y) of the parameter () > ° since the function ['I/J(y) yn-l], y > 0, 
is uniquely determined by its Laplace transform 

One can easily see that 

1= () 100 
() y-l Pn(Y I ()dy = --1 Pn-l(y I ()dy == --1' 

o n- 0 n-

hence 

n 

'I/J(y) = (n - l)y-l, Y = LXk, 
k=l 

is the unbiased estimate of () > 0. Actually, it is the best unbiased estimate since, 
for any unbiased estimate <p = <p(x), a better one is given by 

hence it coincides with 'I/J(y) = (n - l)y-l. 
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2.3. LOWER BOUND FOR THE MEAN SQUARE ERROR 

In our discussion of estimates ep of a component B of the unknown parameter of the 
probability distribution of e = C6, ... ,en), we assume certain regularity conditions 
on the corresponding likelihood ratio LCe I B), as a function of B. The likelihood 
ratio LCe I B) was introduced in the beginning, when B stood for any Cmultivari­
ate) parameter of the distribution. Below, B will denote a real component of this 
parameter; we hope to avoid confusion with our earlier notation. 

According to C2.1), we have 

EepCe) = EoepCe)LCe I B) = aCB), 

El = EoLCe I B) = 1. 

Suppose, 

8 8 8 
8BaCB) = 8B EoepCe)LCe I B) = EoepCe) 8BLCe I B), 

888 
8B 1 = 8BEoLCe I B) = Eo 8BLCe I B) = O. 

Then 

Suppose, 

8 1 8 
8B log LCx I B) = LCx I B) 8BLCx I B) 

satisfies 

ICB) = E [:B log LCe I B)f < 00. 

The quantity ICB) is called the Fisher information on the parameter B. 
Consider the random variables 

171 = [epce) - aCB)]yiLCe I B), 

8 
172 = 8B log LCe I B)y'LCe I 0), 

C2.8) 

C2.9) 



164 

with 

Using the inequality 

( 2)1/2( 2)1/2 
IEo11I "l21:::; E0771 Eo 772 ' 

we obtain 

]
2 

2 2 8 
E01J1 . E01J2 ~ [80 a( 0) , 

where, according to our basic assumption (2.1), 

and 

E01JI = Eo[<p(O - a(0)]2 L(e I 0) 

= E[<p(O - a(0)]2 = D<p(e) 

E01J~ = Eo [:0 log L(e I O)f L(e I 0) 

= E [:0 log L(e I O)f = 1(0). 

Thus, we get the following inequality for the variance D<p(O: 

CHAPTER 3 

(2.10) 

(2.10) is known as the Rao-Cramer inequality. In particular, if <p is an unbiased 
estimate with 

a(O) = E<p(O == 0, 

then (2.10) gives the lower bound for the mean square error: 

(2.11) 

Let us formulate this result as follows. 



AN INTRODUCTION TO MATHEMATICAL STATISTICS 165 

THEOREM. Under the regularity conditions (2.8), (2.9), the variance of an estimate 
of the parameter B satisfies the Rao-Cramer inequality (2.10). 

Consider the Fisher information f(B) introduced in (2.9). From the regularity 
conditions (2.8) we have 

{) {) 
E {)B log L(t;, I B) = Eo oBL(t;, I B) = 0, 

so that 

o 
f(B) = D oB log L(t;, I B) (2.12) 

is the variance of to log L(t;, I B). Note that, according to the definition of L(x I B), 

o 0 
oB log L(t;, I B) = oB log pet;, I B) (2.13) 

for discrete probability distribution P(x I B), x E IRn, and 

o 0 
oB log L(t;, I B) = oB log pet;, I B) (2.14) 

for probability density p(x I B), x E IRn. 
How does f(B) = fn(B) depend on n? Assuming that t;, = (6, ... ,t;,n) consists of 

independent identically distributed random variables t;,k, k = 1, ... , n, in both cases 
(2.13), (2.14) we have 

(2.15) 

(why?). 
Let us analyse the inequality (2.10)/(2.11). Obviously, both (2.10) and (2.11) 

become equalities if and only if 

o 
oB log L(t;, I B) = C(B)[cp(t;,) - a(B)], (2.16) 

where C(B) is a constant depending on the full parameter of the probability distri­
bution, since (2.16) means linear dependence between the random variables Tn, "l2 
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defined in the proof of (2.10). The estimate ep which satisfies (2.16) and the equality 
in (2.10), has the minimal variance 

(2.17) 

and, for unbiased ep(e), the minimal mean square error 

(2.18) 

An estimate epee) satisfying (2.18) is called efficient. 

EXAMPLE (Efficient estimation of the mean value). Let e = (6,· .. ,en) consist of 
independent normal variables ek, with 

nek = a2 (k = 1, ... , n). 

The estimate 

of the component e = a of the full parameter (a, a 2 ) is unbiased and efficient, thanks 
to representation (2.16) in the form 

o n 
oe log pee I e) = a2 [ep(e) - e], 

with e = a on the right hand side. 

2.4. ASYMPTOTIC NORMALITY AND EFFICIENCY OF THE MAXIMUM LIKELIHOOD 

ESTIMATE 

Recall that the maximum likelihood estimate {j of the unknown parameter e E e of 
the probability distribution of e = (6, ... ,en) was defined as the maximum point of 
the corresponding likelihood ratio L(x I e) (see p. 147). We are going to study some 
properties of such estimates {j of a scalar Creal) parameter e, obtained by solving the 
equation 

o 
oe log LCe I e) = 0, (2.19) 
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in the case when e = (6,.·· , en) consists of independent identically distributed 
ek, k = 1, ... , n. Here, 

8 n 8 
8(} log L(x I (}) = L 8(} log P(Xk I (}) 

k=1 

if the ek'S are discrete, and 

8 n 8 
8(} log L(x I (}) = L 8(} log p(Xk I (}) 

k=1 

if the ek'S have a density p(·1 (}). 
In any case, 

is the sum of independent identically distributed random variables 

8 
8(} log LI(ek I (}), k = 1, ... ,n, 

(2.20) 

where L(e I (}) = Ln(e I (}), n = 1,2,.... We impose the following regularity 
conditions for n = 1: 

8 8 8 
Eo 8(} LI (e I ()) = 8(} EoLI (e I ()) = 8(} 1 = 0, 

82 82 
Eo 8(}2 LI (e I ()) = 8(}2 EoLI (e I ()) = 0 

and 

(2.21) 

where epee) ~ 0, Eep(e) < 00. 
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In particular, the above assumptions imply 

(2.22) 

where II (B) is the Fisher information corresponding to n = 1 (see (2.8), (2.9), (2.15»; 
we assume also that 

With all these assumptions made, the following result holds true. 

THEOREM. For sufficiently large n (n ~ 00), with probability 1 there is a solution 
B = fj of the likelihood equation (2.19), which gives a consistent estimate fj of the 
parameter B: 

fj ~ B. (2.23) 

Moreover, 

(2.24) 

Let us note at once that the asymptotic normality (2.24) implies the so-called 
asymptotic efficiency. Namely, (fj - B) v' In(B) asymptotically has mean zero and 
variance 1, or fj asymptotically is unbiased and has variance I n (B)-I, similarly as if 
it were an efficient estimate (see p. 166). 
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Proof of the theorem. Suppose, the true value of the parameter is f} = f}*. Using 
the regularity conditions on the likelihood ratio, we obtain 

() 
{)f} log Ll (ek 1 f}) 

() {)2 
= {)f} log Ll (ek 1 f}*) + (f) - f}*) {)f}2 log Ll (~k 1 f}*)+ 

1 2 + "2(f} - f}*) 8<p(ek) 

with some 8 = 8(ek, f}), 181 :::;; 1. Together with (2.20), this implies 

with some 8, 181 :::;; maXk 18(ek. f})1 :::;; 1, and 

1 n 
),2n = ;, L <p(ek) --t C = E<p(ek) (n --t 00), 

k=1 

thanks to (2.21), (2.22) and the law of large numbers. Now, it is easy to see that, for 
any arbitrary small c > 0, with probability 1 there is a point f} = e which satisfies 
the inequalities 

and the likelihood equation (2.19), since the continuous function :0 log L(e 1 f}) of 
f} changes sign at the end points of the interval f}* - c :::;; () :::;; f}* + c, for sufficiently 
large n (n --t 00). Obviously, this proves the consistency property (2.23) of the 
estimate e. Equation (2.19) for f} = e gives us 
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hence 

where 

obeys the central limit theorem, and 

since Aln --+ -II «(}*), 0 --+ ()* (n --+ 00) with probability 1. This proves the asymp­
totic normality (2.24) of the estimate 0. 



CHAPTER 4 

Basic Elements of Probability Theory 

1. General Probability Distributions 

1.1. MAPPINGS AND a-ALGEBRAS 

Suppose, we are given a probability model (n,~, P), with all possible outcomes 
wEn as elementary events, a u-algebra ~ of events A ~ n, and probabilities 
P(A), A E~. 

In other words, P(A), A E ~, is a (probability) measure on n, satisfying the 
a-additivity property. 

Suppose, 

is a mapping from n to a set X, and 

is the corresponding set inverse defined by 

c l B = {~ E B} = {w : ~(w) E B}. 

The inverse mapping ~-I preserves relationships between sets B ~ X, such as 

CI(BC) = (C l B)C, 

C1(UBk) = U (CIBk), 
k k 

C1(nBk) = n (CIBk), 
k k 

171 
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etc. This simple observation shows at once that the family of all sets B ~ X, with 
the property 

(1.1) 

forms a a-algebra which we denote by ~~. With w E Q representing a random 
outcome, we treat ~ = ~(w), wEn, as a random element in X which generates the 
family ~~ of events, with the probabilities 

P~(B) = P{~ E B}, B E ~~. (1.2) 

Here, we have the probability distribution of ~ with the 'phase space' X, given by 
the probability measure P~ = P~(B), B E ~~ of (1.2) on X. The triplet (X, ~~, P~) 
serves as the probability model associated with the random element ~, when we are 
interested in ~ alone and consider any event {~ = x}, x EX, as a possible outcome 
(elementary event). 

Suppose, we are interested in the events of the form 

A = {~ E B} E Q(, B E ~o, (1.3) 

where ~o is a family of sets B ~ X. More general sets B ~ X and {~ E B} E Q( 

may appear as a result of various combinations of the initial ones (and their limits). 
More precisely, one has to consider the whole a-algebra ~ generated by B E ~o, 

and the corresponding a-algebra 

of all ~-1 B = {e E B}, B E~. Formally, ~ can be defined as the minimal a­
algebra containing ~o. According to the definition of~, we have ~ ~ ~~ since the 
a-algebra ~~ contains the sets in (1.3). Thus, all events 

(1.4) 

form the a-algebra Q(~ ~ Q(, generated by the initial events (1.3), and we can consider 
the corresponding probability measure 

P~(B) = P{~ E B}, B E ~, (1.5) 

representing the probability distribution of e on the a-algebra ~ ~ ~~. 
The triplet (X,~, P~) can also serve as the probability model associated with ~. 
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EXAMPLE (Random variables). In the general probability model (0.,2(, P), we 
actually defined a random variable ~ = ~(w), wE 0. as a mapping from 0. to X = lR 
such that the events of the type (1.3) are well-defined for all B E 230, where 230 is 
the family of all finite unions of disjoint intervals (x',x"] (see p. 44). Note that this 
family 230, consisting of finite unions of all disjoint intervals (x', x"], -00 ~ x' < 
x" ~ 00 is an algebra on IR, which generates Borel sets B ~ IR, forming the minimal 
a-algebra 23 ;2 ~o. Thus, a random variable ~ determines the a-algebra 2(e ~ 2( 
(1.4) of events and the probability distribution Pe = Pe(B), BE 23, (1.5) on Borel 
sets B ~ lR. 

EXAMPLE (Joint probability distributions). Considering several random variables 
6, ... ,~n, we deal with the mapping 

such that events of the type (1.3) are well-defined for all B E 230, where 230 is the 
family of all finite unions of disjoint 'rectangles' 

(x~,xn x··· x (x~,x~], -00 ~ x~ < x% < 00, k = 1, ... ,n, 

including the whole space lRn (see p. 35). 230 is an algebra which generates 
all Borel sets B ~ lRn forming the minimal a-algebra 23 ;2 230. Thus, ran­
dom variables 6, ... ,~n determine the corresponding joint probability distribu­
tion Pe = Pe(B), B E ~, such that, for B = Bl X ..• x Bn with Borel sets 
Bk ~ IR, k = 1, ... ,n, 

The triplet (X,~, Pe), X = lRn , can serve as the probability space for the random 
variables ~l, ... ,~n, when we are interested in the probabilities of ~ = (6, ... ,~n) 
alone. A random outcome 

can be identified with x = (Xl, ... ,xn) E lRn. The random variables ~l, ... ,~n 

themselves can be defined, as functions of elementary event x E JRn in the probability 
model (JRn , 23, Pe), by 
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EXAMPLE (Probability distributions in functional spaces). Suppose, we deal with 
a family ~t, t E T, of random variables indexed by an arbitrary set T. For any 
possible outcome wEn, 

represents a corresponding trajectory, which formally can be defined as a function 
of t E T. Let us introduce the space X = ]RT of all functions 

x = {Xt, t E T} 

with values Xt E lIt Consider the so-called cylinder sets in X of the form 

{ ( ) B (n)} B(n) c_ rom, x: Xt" ... , Xtn E, m. (1.7) 

for any finite collection ti, ... ,tn E T, and any Borel set B(n) S;;; ]Rn (the cylinder 
set (1.7) will be denoted B(n) S;;; X, by the same symbol as the corresponding set 
B(n) S;;; ]Rn). Obviously, the family ~o of all such cylinder sets is an algebra, which 
generates a a-algebra ~ in X. 

The mapping 

with x = ~(w), is such that 

is an event for any cylinder set B(n) S;;; X. It determines the probability measure 

Pe = Pe(B), B E~, 

on the a-algebra ~ in the functional space X = ]RT, which is given on the algebra 
~o of all cylinder sets B S;;; X by 
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Dealing with random variables ~t, t E T, characterized by their joint probability dis­
tributions alone, we can apply (X, 113, Pe), X = ffi.T, as the corresponding probability 
model, with 

being functions of elementary event x E X = ffi.T, X = {Xt, t E T}. Of course, in the 
framework of the probability model (ffi.T , 113, Pe), the joint probability distributions 

altogether determine the probability measure P~ on X; in particular, for any cylinder 
set B ~ ffi.T, 

(1.8) 

where B(n) is the corresponding set in ffi.n . Observe that the Pt ], ... ,tn'S are consistent in 
the following sense: Pt ], ... ,tn (BJ x· .. xBn) is invariant with respect to a simultaneous 
permutation of tJ, ... ,tn and BJ, ... ,Bn, moreover, 

The above properties define a consistent family of finite dimensional distributions 
Pt], ... ,tn ; tJ, ... ,tnET, n=1,2, .... 

1.2. APPROXIMATION OF EVENTS 

In the framework of the general probability model (n, Qt, P), any event A ~ n can 
be described by means of its indicator 

wE A, 

w ~ A. 

We recall that A is equivalent to B if they coincide almost surely, i.e., if the event 

has zero probability; here, A.6.B is the symmetric difference of the events A, B. 
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The probability 

P(A~B) = EllA - IBI =11 IA - IB II (1.9) 

defines the distance between events A and B which coincides with the mean distance 

between their indicators; obviously 

IP(A) - P(B)I = IE IA - E IBI :::; EllA - IBI = P(A~B). (1.10) 

LEMMA (Approximation of events). Let !n ~ ~ be the u-algebra generated by an 
algebra !no of events. Then!n belongs to the closure of !no with respect to the 
distance (1.9), i.e. for any B E !n and e > 0 there is Bo E !no such that 

(1.11) 

Proof. Let [!no] ~ ~ be the closure of !no; we show that it is a u-algebra. For 
any B E [!no], the complement Be E [!no], since for a corresponding B, E !no and 
its complement B~ E !no we have 

Consider any Bl,B2 E [!no] and their product Bl,B2, with the indicator IB!B2 = 
IB! . IB2. Then 

II IB! . IB2 - IBd . IB<2 II 

:::;11 IB! . IB2 - IBd . IB2 II + " IB<! . IB2 - IBd . IB<2 II 

:::;11 IB! - IB<! II + " IB2 - IB<2 II:::; 2e, 

where Bd, B,2 E !no are corresponding approximations; hence have Bl . B2 E [!no]. 
Thus, [!no] is an algebra. Consider an increasing sequence Bn E [!no], n = 1,2, ... , 
and its limit 

B = lim Bn 
n->oo 

n 
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According to 

for proper approximations Bm E ~o we have 

provided n is sufficiently large. Thus, B E [~o] and [~o] is a a-algebra. Hence, 
[~o] :2 ~ by the definition of the minimal a-algebra ~ :2 ~o, since [~o] contains 
~o. Thus, any B E ~ can be approximated by a corresponding, Be E ~o as stated 
in (1.11). 

Of course, according to (1.10), (1.11), all probabilities P(B), B E ~, can be 
obtained as corresponding limits lim P(B), B E ~o. 

EXAMPLE (Probability distributions). At the very beginning, we actually introduced 
the probability distribution, 

Pe(B) = p{e E B}, B ~ ~o, 

of a random variable e on the algebra ~o of finite unions of disjoint intervals 
(x', x"], -00 < x' < x" < 00 (see p. 34). According to (1.10), (1.11), it uniquely 
determines the probability measure 

Pe(B) = p{e E B}, B E ~, 

on the a-algebra ~ of Borel sets B ~ lit In a similar way, for several random 
variables 6, ... ,en, we introduced their joint probability distribution 

on the algebra ~o of finite unions of all disjoint rectangles (xl' xn x ... x (x~, x~], 
-00 < x~ < x% < 00, k = 1, ... , n (see p. 36); according to (1.10), (1.11) it 
uniquely determines the probability measure 

Pe(B) = p{e E B}, B E ~, 

on the a-algebra ~ of Borel sets B ~ ]Rn . 
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EXAMPLE (Independent random variables). Earlier, we characterized independent 
random variables 6, ... ,en by the equality 

(1.12) 

for all intervals Bk = (x~,x%] ~ IR, k = 1, ... ,no The equality (1.12) can be 
immediately extended to all finite unions of disjoint intervals (x~, x%], -00 ~ x~ < 
x% ~ 00, and then, according to (1.10), (1.11), to all Borel sets Bk ~ IR, k = 1, ... ,n. 
This shows that independent random variables 6, ... ,en can be characterized in 
such a way that, for any Borel sets Bk ~ IR, the events {ek E Bk}, k = 1, ... ,n, 
are independent. (1.12) defines the joint probability distribution P~(B), B ~ ~, 
on Borel sets B ~ IRn , as the product of the marginal probability distributions of 
ek, k = 1, ... ,n. 0 

In further development of the notion of independence, we introduce the following 
formal definition. A random variable e is said independent of an algebra (a-algebra) 
~ of events if ~ is independent of all indicators IB of events B E ~. 

As we know, for independent events Ak, k = 1, ... ,n, any Ak is independent of 
the algebra generated by Aj , j -=I- k (see p. 23). In a similar way, if random variables 
~k, k = 1, ... ,n, are independent, any ~k is independent of the a-algebra, generated 
by ~j, j -=I- k (why?). 

1.3. 0-1 LAW 

Let us call algebras (a-algebras) Q(I and Q(2 independent if any events Al E Q(I and 
A2 E Q(2 are independent. For example, independent Q(I, Q(2 can be generated by 
given independent events, independent random variables, etc. 

Suppose, we deal with an infinite sequence Q(k), k = 1,2, ... , of independent 
a-algebras. Consider an event A whose occurrence is completely determined by the 
'tail' Q(k), k ~ n ---> 00; more precisely, A is an event from the a-algebra 

Q(OO = lim Q(n 
n--->oo 

n 

where Q(n is the a-algebra generated by Q(k), k ~ n. 

THEOREM. For any event A E Q(oo, 

peA) = 0 or 1. (1.13) 

Proof. Let us introduce the a-algebraQ(n generated by all events from Q(k), k ~ n; 
the union 

n 
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is an algebra which generates the o--algebra Ql 2 2loo . According to the lemma on 
approximation of events, any A E Ql can be approximated by a corresponding event 
Ae from the union Un Qln, Ae E Qln for some n = nee), such that 

lim P(Ae) = peA), 
,,-+0 

lim P(AA,,) = peA). 
,,-+0 

In particular, this is true for A E Qloo which does not depend on A" E Qln, 

P(AA,,) = P(A)P(A,,). 

Consequently, 

peA) = limP(AA,,) = peA) . lim peA,,) = p(A)2, 
,,-+0 ,,-+0 

which can be true only if peA) = a or 1. 
The above theorem is called Kolmogorov's 0-1 law. (For example, the statements 

of the Borel-Cantelli lemmas, on the occurrence of independent events Ak, k = 

1,2, ... , can be interpreted in terms of the 0-1 law; see p. 22-23) 

1.3. MATHEMATICAL EXPECTATION AS THE LEBESGUE INTEGRAL 

We defined the mathematical expectation E~ of a random variable ~ E IR as the 
Lebesgue-Stieltjes integral 

with respect to the corresponding distribution function 

Fe(x) = P{~ ~ x} = Pe(-oo,x], -00 < x < 00 

(see p. 45). Using the probability distribution Pe = Pe(B) as the probability measure 
on Borel sets B ~ lR, we can write 

E~ = i: xPe (dx) (1.14) 

as the Lebesgue integral. 
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Given random variables (~1, ... ,~n) = ~ E IRn we often deal with various functions 
cp = cp(O. What conditions on a real function 

guarantee that 'f/ = cp(O is a random variable so that 

{'f/ ::::; y} E 2(, Y E lR, 

are well-defined events, say, in the framework of the general probability model 
(n, 2(, P)? As a matter of fact, one need not worry about this question in the case 
when cp is a Borel function, i.e., such that 

is a Borel set, for any y E Ilt Indeed, in such a case, 

as we already know. Using the joint probability distribution P~ = P~(B) of ~ = 
(6, ... ,~n) E IRn on Borel sets B <:;;; IRn as the probability measure, we can write 

Ecp(~) = r cp(x)P~ (dx) 
iRon 

as the Lebesgue integral, or, in the coordinate form, 

(1.15) 

From (1.15) it follows that, for any independent 6, ... ,~n with the joint probability 
distribution 

the multiplicative formula 
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holds; here, for any Borel functions CPI,·.· ,CPn, the random variables "11 = CPI(6), ... , 
"1n = CPn(en) are actually independent. 

As it was mentioned earlier, in the general probability model one has a probability 
measure 

peA) = i P(dw), A E Qt, 

on a a-algebra Qt in the space of elementary events wEn, and the mathematical 
expectation Ee of a random variable 

e=e(W), wEn, 

is given by the corresponding Lebesgue integral 

Ee = in ~(w)P(dw). (1.16) 

l.5. .cp-SPACES 

In the framework of the general probability model (n, Qt, P), the corresponding £1-
space consists of all random variables e, EI~I < 00; it is a linear space equipped 
with the mean norm 

We actually applied this norm when considering the convergence en -+ e in mean, 
which coincides with the convergence 

in £I-space (see p. 55). 
The corresponding £2-space is formed by all random variables e, Elel2 < 00; it 

is a linear space equipped with the square mean norm 

which we applied earlier as well (see p. 63). 
The following property is known for £p-spaces (p = 1,2). 
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THEOREM . .cp-space is complete, i.e., the convergence 

~n - ~m ~ 0, n, m ~ 00 (1.17) 

(in the .cp-space) implies 

To prove the theorem, note that (1.17) implies the convergence in probability 
which in turn implies the same convergence ~n ~ ~, hence the existence of the limit 
random variable~. Indeed, for c = 1/2k one can find nk, k = 1,2, ... , such that 

According to the Borel-Cantelli lemma, for all sufficiently large k = 1, 2, ... , 

Hence 

00 

~nk(W) ~ ~(w) = ~nJw) + L [~nk+JW) - ~nk(W)] 
k=! 

with probability 1. Now, 

for any c > 0, i.e., ~n ~ ~ in probability. 
By the discussion above, 

with probability 1. Moreover, according to (1.17), for any c > ° 

provided n, nk are sufficiently large. Now, by the well-known limit properties of 
mean values (see Chapter 1, (4.19), (4.19)'), we conclude that 

This ends the proof of the theorem, as ~n, ~n - ~ E .cp (p = 1,2) imply ~ E.cpo 0 



BASIC ELEMENTS OF PROBABILITY THEORY 183 

(Of course, Lp-spaces and their completness are well-known in Functional Analy­
sis. Namely, in the (Q,Qt,P) model with the probability measure P(A) = fA P(dw), 
A E Qt, the real Lp-space is formed by all functions ~ = ~(w), w E Q, which 
are measurable with respect to the a-algebra Qt (Qt-measurable, for short), with the 
corresponding norm /I ~ /I < 00 given by means of the Lebesgue integral 

p = 1,2. For any ~n E Lp, n = 1,2, ... , satisfying 

there is ~ E Lp, which represents the limit limn---+oo ~n = ~ in Lp-space: 

In Lp-spaces (p = 1,2), we make no difference between any elements ~,f with 
II ~ -f 11= 0, which means that the random variables~, fare equivalent, i.e., ~ -f = ° 
with probability 1. 

We write 

Lp = Lp(Q, Qt, P), p = 1,2, 

to emphasize the dependence on the triplet (Q, Qt, P). Note that different a-algebras 
Qt correspond to different Lp-spaces. Obviously, 

whenever Qtl ~ Qt2. In particular, for any a-algebra ~ ~ Qt in the probability model 
(Q, Qt, P), 

is a subspace of Lp = Lp(Q, Qt, P). 
Similarly to the fact that any ~ E Lp(Q, Qt, P) generates events {~ E B} E Qt, 

with Borel sets B ~ lR, we have that, in the probability model (Q, Qt, P), any ~ E 

Lp(Q, ~,P) generates events 

{~E B} E ~ (1.18) 

for Borel sets B ~ llt In such a case, we say that ~ is measurable with respect to 
the a-algebra ~ (~-measurable). 
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Projection in Hilbert space. £2-space can be equipped with the inner product 

(see also p. 63). This makes £2-space a Hilbert space, with the square mean norm 

According to the well-known inequality 

I(~, 1])1 ~ II ~ II . 111] II; ~,1] E £2, 

which we already applied, see p. 63, we have 

Consequently, 

(1.19) 

moreover, £1 coincides with the closure of £2 in £1, as any ~ E £1 is the limit in 
£1 of 'continuous' approximations <Pa(~) E £2 (see Figure 17). 

-a 

Fig. 17. 
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Of course, the above property holds for any a-algebra !B <:;;; !]t, i.e., 

o 
We recall now the following remarkable property of the Hilbert space H( = £2). 

THEOREM. For any element ~ E H, one can define its projection € E Ho on an 
arbitrary subspace Ho <:;;; H, such that 

II ~ - € II = inf II ~ - <P II . 
<pEHo 

(1.20) 

The difference ~ - € is orthogonal to Ho, and the condition 

(~ - €, <p) = [E(~ - €)<p] = 0, <p E Ho, (1.21) 

uniquely characterizes the projection (see Figure 18). 
This result is well-known in finite dimensions, and can be easily verified in the 

general case. Namely, consider a sequence <Pn, n = 1,2, ... , leading to the infimum 
in (1.20), and the finite dimensional subspace Hm generated by <PI,··· ,<Pm (m = 
1,2, ... ). The projection €m of ~ on Hm is at the same time the projection of €n on 
Hm for n ~ m, since Hm <:;;; Hn. We have 

m,n -+ 00, 

Fig. 18. 
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as II en II increase with n and are bounded: 

Hence, the limit 

lim en = e E Ho 
n-+oo 

exists, and 

II ~ - e II = lim II ~ - en II 
n-+oo 

~ lim II ~ - CPn II = inf II ~ - cP II . 
n-+oo <pEHo 

o 
An application of the projection method is given in the following 

EXAMPLE (The best forecast problem). Suppose, we are interested in a random 
variable~, EI~12 < 00, which is not observable (at present, say). We want to forecast 
~ using available information, which is represented by a random element TJ = y E Y 
in a measurable space (Y, ~). In other words, the space Y is equipped with a 
a-algebra ~ of sets B ~ Y, and, for any B E ~, the corresponding event 

{TJ E B} E QL 

The forecast will be given in the form cp(TJ), where cP = cp(y), Y E Y, is an arbitrary 
function satisfying cP = cp(TJ) E £2. Let 

be the corresponding mean square error. We can proceed in the following way. For 
a convenience of notation, we identify an event {TJ E B} E m with the corresponding 
set B E ~, which lets us formally introduce the corresponding a-algebra ~ ~ m of 
events B E Q3. Then, by a forecast cp(TJ) we mean any 
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Obviously, the best forecast t = <Po(TJ) is given by the projection of ~ in the space 
H = £2(0, m, P) onto the subspace Ho = £2(0, IB, P), since it yields the minimal 
mean square error: 

II ~ - t 11= min II ~ - <P II, 
cpEHo 

see (1.20). Moreover, t = <Po can be identified by means of the orthogonality 
condition (1.21), or the condition 

since the indicators 1 B of events B E IB form a complete system in the subspace Ho = 
£2(0, !n, P), i.e., any <P E Ho is the limit <P = lim Lk Ck IBk of linear combinations 
of I B , BE lB. 

Finally, let us note that, dealing with complex random variables, one can apply 
complex £p-spaces (p = 1,2), where £1 does not need any additional comments, 
while £2 is equipped with the inner product 

(where, as usual, iJ stands for the complex conjugate of TJ). 

2. Conditional Probabilities and Expectations 

2.1. PRELIMINARY REMARKS 

There is no need to explain how important is to have an instrument to characterize 
the dependence of various events, random variables, or any random phenomena we 
are interested in. The most obvious dependence is between events A ;;;? B, when we 
know that the occurrence of B implies the occurrence of A. In a more complicated 
situation, one can use e.g. the conditional probability P(A I B) of A given B. In a 
similar way, the conditional expectation E(~ I TJ) characterizes how a random variable 
~ depends on another random variable TJ. In general, one can be interested in the 
dependence of an event or a random variable on a family of events and random 
variables, and the problem is how to define this dependence rigorously. Here, one 
can proceed in the following way. 

Suppose, the information about the occurrence of certain events, or random vari­
ables taking certain values etc. can be given by means of an element y = TJ E Y of 
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some space Y, which a priori is random. To be more precise, T/ E Y is a random 
element in a measurable space (Y, IB), generating the a-algebra Q{ of events: 

{T/ E B} E Q{, B ~ Y, BE IB, (2.1) 

in our probability model (n, IB, P). It is convenient to use the notation B E IB for 
the corresponding event {T/ E B}. With this agreement, we can say that the random 
element T/ E Y generates the a-algebra 

(2.2) 

of events B ~ n, B E lB. (Actually, this formal scheme can be applied to any a­
algebra IB ~ Q{, given in advance). We are going to define the conditional probability 
peA I IB) and the conditional expectation E('; I IB) as functions of T/ E Y, the same 
as the conditional probability peA I T/) and the conditional expectation E('; I T/), 
respectively. 

Consider any events A and B (= {T/ E B}, with B E IB). Suppose, it happens 
T/ = y; what is the a posteriori probability P(AB I T/ = y) of the joint occurrence of 
A and B? Obviously, in the case y E B (B ~ Y) we can treat B (B ~ n) as the 
certain event, hence 

P(AB I T/ = y) = peA I T/ = y), y E B. 

If y rf:. B, then B is impossible and 

P{AB I T/ = y} = 0, y rf:. B. 

Together, we can write 

P{AB I T/} = peA I T/) I B , (2.3) 

where IB is the indicator of the event B E lB. How can one return to the a priori 
probability P(AB)? Of course, one has to average P(AB I T/) over all possible 
outcomes of T/ E Y, i.e., according to (2.3), one obtains P(AB) as 

P(AB) = E[P(A I T/) IB). 
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The above equality can be written as 

(2.4) 

where ~ = lA, t = P(A I ry). One can recognize in (2.4) the equation which appeared 
in the best forecast problem (see p. 186). It defines the projection t of the random 
variable ~ = 1A in the £2-space on the subspace £2(0,!l3, P), or the best approxima­
tion of ~ by means of all functions cp = cp(",). In other words, t = P(A I "') represents 
the most we can say about the event A, given the '",-information.' 

One can use equation (2.4) to define the conditional expectation t = E(~ I !l3) of 
any random variable~, EI~I < 00. 

2.2. CONDITIONAL EXPECTATION AND ITS PROPERTIES 

Consider a random variable~, EI~12 < 00, as an element of the £2-space, 

£2 = £2(.0, Qt, P). 

As we know, equation (2.4) identifies the projection t of ~ E £2 onto the subspace 
£2(0,!l3, P), where !l3 ~ Qt is the a-algebra, generated by the random variable '" (see 
p. 188). Introduce E(~ I !l3) as the corresponding projection operator. 

Of course, E(· I !l3) is a linear operator, and its operator norm in £1 is 

sup II E(~ I !l3) 11= sup E I E(~ I s.B) I :::; 1. 
lIell=l Elel~1 

Indeed, according to equation (2.4) with B = {t :::; O}, {t > O}, we have 

Eltl = -Et l{f~o} + Et l{bo} 

= -E~ l{€~O} + E~ l{bo} :::; EleI-

Thus, E(~ I !l3) extends to a linear continuous (bounded) operator in £1 since £2 
is dense in the £ I-space. Equation (2.4) is valid for any ~ E £ I as well, as the limit 
of the corresponding equality in £2; of course, the limit of conditional expectations 
is !l3-measurable and satisfies 

(2.5) 
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Let us show that equation (2.4) uniquely determines € = E(e I Q3), for any given 
eEL,. Indeed, in the opposite case € = €" €2, their difference ~ = €, - €2 is 
Q3-measurable and satisfies 

E~IB = 0, B E Q3. 

In particular, for B = {~ ~ O}, {~> O}, this leads to 

which implies ~ = 0 with probability 1, i.e., ~ = 0 as an element of L,. 0 

The operator E(e I Q3) for any eEL, defines the corresponding conditional mathe­
matical expectation with respect to the a-algebra Q3. In the case when Q3 is generated 
by some random element "" it is also known as the conditional mathematical expec­
tation E(e I ",) with respect to ", (see p. 60). 

Obviously, for any Q3-measurable e, 

(2.6) 

since € = e is a solution of equation (2.4); in particular, 

E(l I Q3) = 1. 

We have already mentioned that the conditional mathematical expectation E(e I Q3) 
is linear in random variables e, i.e., 

(2.7) 

for any linear combination of 6,6. 
It is easy to see that, if e is independent of all events of the a-algebra Q3 (i.e., e 

is independent of all random variables IB, B E Q3), then 

(2.8) 

Indeed, 
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Suppose, ~ ~ 0; then 

E(~ I 23) ~ o. (2.9) 

Indeed, according to equation (2.4) with B = {t < O}, we have 

which implies Pit < O} = 0, or t ~ 0 as an element of .c1• Of course, inequality 
(2.9) implies 

E(6 I 23) ~ E(6 I 23) (2.10) 

for 6 ~ 6; in particular, 

(2.11) 

if 

C1' ~ being some constants. 
Finally, we have the total mathematical expectation formula 

E~ = E[E(~ I 23)], (2.12) 

according to equation (2.4) with B = Q. 

2.3. CONDITIONAL PROBABILITY 

For any event A E Qt, its conditional probability peA I 23) with respect to the 
IT-algebra 23 of events is defined by 

peA I 23) = E(1A I 23). (2.13) 

In the case when 23 is generated by a random element 'f}, (2.13) becomes the condi­
tional probability with respect to 'f}: 

peA I 23) = peA I 'f}). 
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According to (2.13), 

° ~ P(A I ~) ~ 1, (2.14) 

since ° ~ lA ~ 1. For a countable number of any disjoint events A k , k = 1,2, ... , 

P(A I~) = 2: P(Ak I ~), A = UAk , (2.15) 
k k 

since 

in the £1-space. 
According to (2.6) and (2.8), for any A E ~ 

(2.16) 

while 

P(A I ~) = P(A) (2.17) 

for any event A independent of the a-algebra ~. Moreover, for any A E m, we have 
the total probability formula: 

P(A) = EP(A I ~). (2.18) 

Note that the conditional mathematical expectation of a random variable e E £1 
can be determined as 

by means of the corresponding discrete approximations 

k 
en =-, 

k-l k -- <e~ -, k=O,±I, ... , 
n n n 

similarly to the definition of 

Ee = lim Een = lim "~P { k - 1 < e ~ ~} , 
n----+oow n n n 

k 

see p. 51. 
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EXAMPLE. Let Q3 be generated by a discrete random variable ry taking a countable 
number of possible values Yk, k = 1,2, ... , and let 

Bk={ry=yd, k=1,2, ... , UBk=Q, 
k 

the corresponding disjoint events. Then equation (2.4) with ~ = lA, € = peA I Q3), B = 
B k , k = 1,2, ... , gives at once 

peA I Q3) = P(ABk) W E Bk, k - 1 2 P(Bk) , - , , ... , (2.19) 

as a function of wEn (or outcome Bk, k = 1,2, ... ). 

EXAMPLE (Discrete conditional distribution). Suppose, we want to determine the 
conditional probability distribution of ~ with respect to ry, where~, ry are discrete ran­
dom variables with a given joint probability distribution. I.e., we have to determine 
the conditional probabilities 

for all possible values x. It is easy to verify by (2.4) that 

P ( I ) = P~,1J(x,y) wE {'11 = y}. 
~ x ry P1J(Y) , ./ (2.20) 

EXAMPLE (Conditional probability density). Consider random variables ~,ry hav­
ing the joint probability density; we want to determine the conditional probability 
distribution of ~ given ry: 

P~(B I ry) = P{~ E B I ry}, B ~ lR. 

It is easy to verify by (2.4) that 

(2.21) 

where 

-00 < x < 00, 

is the conditional probability density. 
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3. Conditional Expectations and Martingales 

3.1. GENERAL PROPERTIES 

We start with the following multiplicative formula: 

E(<p~ / ~) = <pE(~ / ~), (3.1) 

valid for any ~-measurable random variable <p; of course, we assume <p~ E £1. This 
formula is obvious for <p of the form 

involving a finite number of sets Bk E ~, k = 1,2, ... , since, in equation (2.4), we 
have 

with B, BkB E ~. For general <p, use an approximation <Pn of <p of the above type 
such that /<Pn/ ~ <p and <Pn -; <P with probability 1; then <Pn~ -; <p~ in £1 by the 
dominated convergence theorem. Therefore 

and, simultaneously, 

with probability 1, which proves (3.1). 

Iterated conditional expectations. Let~' J ~" be two a-algebras. Then 

E [E(~ / ~') / ~"] = E(~ / ~"). (3.2) 

(3.2) is obvious for ~ E £2 as the superposition of two consecutive projections on 
H' = £2(o.,~', P) and H" = £2(0., ~", P) ~ H' is the projection on H". For ~ E £1, 
(3.2) can be extended by taking a limit in £1 of elements from £2. 
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Increasing and decreasing a-algebras. Suppose, we deal with increasing a-algebras 
~ 1 ~ ~2 ~ . . .. Their limit 

~ = lim ~n 
n-+oo 

is the minimal a-algebra ~ containing all ~n; ~ is actually generated by the algebra 

m 

which is the union of all ~m, m = 1,2, .... Then 

E(( I ~) = lim E(( I ~n)· 
n-+oo 

(3.3) 

To prove it, let us first assume ( E £2, then 

and 

as II tn 112 increase with n and are bounded by II t 112. Hence, there is a limit 

t = lim tn. 
n-+oo 

Moreover, t = E(( I ~), since, for any B E ~m (m = 1,2, ... ), we have 

or equation (2.4) for all B from the algebra Um ~m, and it can be extended to all 
B E ~ using the lemma on events approximation on p. 176. Thus, (3.3) holds for 
( E £2; to prove it for ( E £1, one can use an appropriate approximation by elements 
of the £2-space (see p. 185). 
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In a similar way, one can verify (3.3) for any decreasing a-algebras 231 2 232 2 
... ,with 

23 = lim 23n 
n-+oo 

n 

Martingales. This term* refers, in particular, to random variables et, t = 0, 1, ... , 
having the following property: 

(3.4) 

with respect to some given increasing a-algebras 23s , s = 0, 1, .... 
For example, this property holds for the a-algebras 23t generated byes, s ~ t, in 

the summation scheme 

et = eo + L L1eu (3.5) 
O";u";;t-1 

with eo = ° and independent increments 

having zero expectation E L1eu = 0. Indeed, since, for u ~ s, L1eu is independent of 
23s , so 

and, according to the representation (3.5), 

E(et I 23s) = E(es I 23s) + L E(L1eu I 23s) = es. 
s";;u";;t-1 

Actually, the scheme (3.5) defines a martingale in the case of arbitrary random 
variables L1et, t = 0, 1, ... , satisfying 

(3.6) 

* This tenn is of French origin and describes part of horses' harness. 
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(why?). 
We are going to apply the martingale approach to the problem of finding the 

mathematical expectation E er of the random variable 

er = eo + L Aeu, 
O~u~r-l 

where T is a stopping time, i.e., a random variable T with possible values t = 0, 1, ... 
such that, for any t, 

(3.7) 

(Roughly speaking, a stopping time T is a random variable such that the occurrence 
of any event {T ~ t} is determined by observation of ~(s), s ~ t, alone.) 

EXAMPLE (The gambler's ruin problem (see p. 26)). This problem can be reduced to 
the scheme (3.5) with Aet equal to the gambler's win at time t = 0, 1, ... , Aet = ±1 
with equal probability 1/2. If the initial gambler's capital is x, 0< x < a, the game 
continues up to time T which is the first time et, t = 0, 1, ... , hits the points a - x 
or -x, and the final win is er = a - x with the probability x/a, ~r = -x with the 
probability 1 - x/a. Hence 

x a-x Eer = (a - x) - - x -- = 0, 
a a 

which reflects the fact that 

(3.8) 

with eo = 0. Suppose now that the gambler'S capital is infinite, and the game con­
tinues up to the first time T the gambler wins some amount a > 0. As we know, 
T < 00 with probability 1 (see p. 29), and the gambler's win at the end of the game 
is exactly 

er = a, 

which contradicts (3.8). o 
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What can we say about er for a random T in the general scheme (3.5), (3.6)? 
Let us introduce 

t < T, 

t ~ T, 

where tAT = min(t, T) and er = es for T = S, S = 0, 1, .... 

LEMMA. The random variables eU\To t = 0, 1, ... ,form a martingale. 
To prove it, we apply the following representation: 

t-l 

etM = L es l{r=s} + et IV;o,t}. 
s=o 

Consider the increment 

fletM = et 1{r=t} + et+l 1{r;;"t+l} - et1{r;;"t} 

= l{r;;"t+l}flet. 

(3.9) 

where the complement {T ~ t + I} to the event {T ~ t} is contained in the a­

algebra Il3 t • Hence 

which is what we need to show only. 
Suppose now that T < 00 with probability 1; then in (3.9) we obviously have 

with probability 1. If, in addition, 

(3.10) 

then we have equality (3.8), since 
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for the martingale f,tM. 
For example, (3.10) is true when the random variables Llf,t are bounded: 

!Llf,t! ~ C, t = 0, 1, ... , 

and the stopping time T satisfies 

ET < 00. 

Indeed, we have 

f,tM = L Llf,8M' 
O~8~t-1 

with increments 

and therefore 

00 

!f,tM! ~ C L I{T~8}' 
8=1 

where the random variable." = L I{T~8} ~ 0 has finite expectation: 

00 00 00 

8=1 8=lu=8 

00 

= L UP{T = u} = ET < 00. 

u=1 

199 

(3.11) 

(3.12) 

This proves (3.10), according to the dominated convergence theorem (see p. 58). 0 

EXAMPLE (Walds identity). Suppose, we deal with independent random variables 
"'t, t = 1,2, ... , having the same mean value 

E"'t =a. 
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Then 

E L 'fIt=aET 
l,;;;t,;;;". 

CHAPTER 4 

(3.13) 

for any stopping time T, ET < 00 (with respect to the a-algebras !'Bt generated by 
'fIs, s ~ t, t = 1,2, ... ). To prove (3.13), one can apply the above result to the 
martingale 

~o = 0, ~t = L ('flu - a), t = 1,2, ... , 
l';;;u';;;t 

with ~~t-l = 'fit - a. 
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Elements of Stochastic Analysis and Stochastic 
Differential Equations 

1. Stochastic Series 

1.1. SERIES OF INDEPENDENT RANDOM VARIABLES 

It is often very difficult to decide about the convergence of a series L:k xk in the 
case when L:k IXkl = 00 and the ± signs of xk' k = 1,2, ... , do not form a regular 
pattern; of course one can apply the general criterion E~=m x k ~ 0, m, n ~ 00, but 
actually nothing else. In such a case, Stochastic Analysis can be helpful provided 
the signs of the summands follow a typical 'head' or 'tail' sequences in a series of 
independent coin tossings. For example, let 

be a series of independent random variables. According to the 0-1 law, the series 
L:k ek(W) converges for outcomes W E Q whose total probability is either ° or 1. 

THEOREM. Let the numerical series 

converge. Then the series L:k ek of independent variables converges with probabil­
ity 1. 

To prove the theorem we need the following 

LEMMA. The Kolmogorov inequality 

(1.1) 

201 
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holds for any c > 0 and any independent variables f.k, k 
Df.k < 00. 

Proof Without loss of generality, assume Ef.k = O. Set 

m 

Sm = Lf.k, m= 1, ... ,n. 
k=! 

Write II = 1 whenever lSI! > c and II = m whenever 

CHAPTER 5 

1, ... , n, such that 

occurs, m> 1. Consider the indicator l{v=m}' m = 1, ... ,n, then Sml{v=m} and 
Sn - Sm are independent. Hence 

according to E(Sn - Sm) = 0, which implies 

E(S; l{v=m}) = E(S~I{v=m}) + E[(Sn - Sm)21 {v=m}] 

~ E(S~ l{v=m})' m = 1, ... , n. 

Hence 

n n 

~ L E( S~l{v=m}) ~ c2 L El{v=m} 
m=! m=! 

n 

= c2 L P{II = m} = c2p{1I ~ n}, 
m=! 

since II = m implies S;" > c2• Thus, for the event 

{ max 18m I > c} = {II ~ n} 
l';;m';;n 
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we obtain the corresponding inequality (1.1), as 

n 

L:Dek =E8~. 
k=! 

Now, we can prove the theorem. As Lk Eek converges, we need to prove the 
convergence of Lk(ek - Eek). Indeed, for 

n 

8n = L:(ek - Eek), 
k=! 

according to the Kolmogorov inequality, we have 

p{ sup 18n - 8m l > c} = lim p{ max 18k - 8m l > c} 
n>m n--+oo m';;;k';;;n 

which implies the existence of the limit 

n 

lim 8n = lim "'" ek 
n----+CXl n---+oo6 

k=! 

with probability 1 (see p. 57). 

1.2. THREE SERIES' CRITERION 

We start with the following simple observation: the convergence of Lk ek (for any 
particular outcome wE Q) implies the convergence of 

for any a > O. Indeed, since ek -> 0, so 
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for some n = n(w). Moreover, for independent ~k. k = 1,2 ... , the convergence 
L:k ~k with probability 1 is equivalent to the convergence of 

and 

since the latter implies the coincidence of ~k and ~k 1 mk I:(a}, k ~ n, starting with 
some finite n = new), according to the Borel-Cantelli lemmas. 

Let us consider bounded variables, assuming that I~k I ::::; a, k = 1, 2, .... 

TIIEOREM. A series L:k ~k of bounded independent variables converges with prob­
ability 1 if and only if 

converge. 
To prove the theorem, we need the inverse Kolmogorov inequality 

(1.2) 

which proves the theorem in the zero mean case: E~k == 0, since the necessary 
condition 

p{ sup 18n - 8m l > c} ---+ 0, m ~ 00, 
n~m 

for the convergence of 

n 

Sn = L ~k, n ~ 00, 

k=! 
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with probability 1 (see p. 57), is satisfied only if Lk D~k < 00 which follows from 
the inequality 

for all n > m. In the general case, consider a sequence ek, k = 1,2, ... , having the 
same probability distribution as the original one ~k, k = 1,2 ... , then the conver­
gence of Lk ~k with probability 1 obviously implies the same for Lk ek hence the 
convergence of Lk(~k - ek) with 

Consequently, the series 

L:D(~k - ek) = 2 L:D~k 
k k 

converges, which implies also the convergence of Lk(~k -E~k) (see p. 201). Finally, 
the convergence of 

implies the convergence of 

L:E~k = L: [~k - (~k - E~k)]' 
k k 

Now we prove the very inequality (1.2). Assuming E~k == 0 for convenience, we 
proceed similarly as in the proof of inequality (1.1). Namely, 

E(S~I{v=m}) = E(Sn - Sm)2. El{v=m} + E(S;,I{v=m}) 

~ ES~ . P{v = m} + (a + c2)P{v = m} 

= P{v = m}[ES~ + (a + c2)] 
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as 

n n 

E(Sn - Sm)2 = L D~k ~ L D~k = ES;, 
k=m+l k=l 

and 

because of ISm-ll{v=m}1 ~ c, I~ml ~ a. Summing up the above inequality over 
m = I, ... ,n brings us to 

P{v ~ n}[ES; + (a + c)2] ~ ES;I{v~n} 

= ES; - ES;I{v>n} ~ ES; - c2p{v > n} 

= ES; - c2 + c2P{v ~ n}, 

and, finally, 

o 
For arbitrary independent variables ~k, k = I, 2, ... , the following criterion ap­

plies: in order that the series 2:k ~k converges with probability I, it is necessary 
and sufficient that the three series 

LE(~k 1{lekl~a}), LD(~kl{lekl~a}) (1.3) 
k k 

converge. Actually, this is a comparison criterion between the convergence of 2:k ~k 
and the 'truncated series' 

discussed in the beginning of this section. 
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EXAMPLE (Series with 'independent signs '). Let us consider independent variables 
t;.k taking only two values ±Xk, with probabilities p and q = 1 - p, correspondingly, 
k = 1, 2, . . .. According to the three series criterion, in the symmetric case p = q = 
1/2 (Et;.k == 0) the series I:k t;.k converges if and only if 

LX~ < 00, 
k 

while for p i= q, this is true only if 

in addition (why?). 

2. Stochastic Integrals 

2.1. RANDOM FUNCTIONS (PRELIMINARY REMARKS) 

We have encountered before random functions, describing the time evolution of a 
random process t;.(t), t E T, T = [0,00), such as Poisson process, Brownian motion, 
etc. (see Chapter 2). 

There are two basic interpretations of a random function. Firstly, we can treat it 
as a function t;.(t), t E T, defined on a given set T and taking values t;.(t) E ~ which 
are random variables 

t;.(t) = t;.(w, t), wEn, 

on a probability space (n, m, P). Secondly, for any outcome wEn we can consider 
the real-valued function 

t;.(W,·) = t;.(w, t), t E T, 

defined on the set T, which is random insofar it depends on the 'random' wEn; 
for any particular wEn this function is usually called trajectory, or realization, 
of the random function t;.(t), t E T. The first approach is convenient when we 
are interested in some properties of t;.(t), t E T, which are determined by the joint 
probability distributions 
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for various tI,"" tn E T and BI,"" Bn ~ IR; the second one is preferable when we 
are interested in trajectories having certain desirable properties (recall the Brownian 
motion model with continuous trajectories discussed on p. 119). 

Dealing with the properties of ~ = ~(t), t E T, which are determined by the joint 
probability distributions pt" ... ,tn , one can always apply the corresponding funcctional 
model (X,~, P€), X = IRT , which was actually considered when we discussed 
~(t), t E T, as a family of random variables (see p. 174). Having in mind certain 
desirable properties of the trajectories (such as continuity or integrability), one usually 
has to replace the original random variables ~(t) by properly chosen equivalent ones 
[(t); of course such a replacement does not affect the joint probability distributions 
pt), ... ,tn (why?). 0 

A random function ~ = ~(t) on T ~ IR with t E T interpreted as time, can be 
considered as a random process ~(t), t E T, which describes the evolution of the 
random variables ~(t) (formally, the term 'random process' is equivalent to 'random 
function'). 

Dealing with ~(t), EI~(t)1 < 00, one can consider ~ = ~(t), t E T, as a function 
with values in the Banach space 

A similar observation applies to ~(t), EI~(tW < 00, and the Hilbert space 

Continuity, differentiability, or integrability of a random function with values in 
Lp will be referred to as the corresponding property 'in mean' (p = 1), and 'in square 
mean' (p = 2), similarly as we used these terms for the corresponding convergence 
(see p. 55). 

Here, we introduce the following characteristics of a random process ~(t), t E T: 
the mean value 

A(t) = E~(t), t E T, 

and the correlation function 

B(s, t) = E[~(s) - A(s)] [~(t) - A(t)] , s, t E T. 
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EXAMPLE (Normal, or Gaussian, random functions). These are random functions 
~(t), t E T, having normal (Gaussian) joint probability distributions 

Ptl> ,tn (BI X •.. x Bn) 

= r ... r Ptl> ,tn (xU"'' xn) dX1 ... dXn, BI,"" Bn ~ lR, iBJ iBn 

where 

t {I n } 
= (2n)n/2IBI exp - 2: k~l bkJ(Xk - ak)(xJ - aJ) , 

(Xl""'X k ) E ]Rn. 

Here, 

ak = E~(tk) = A(tk), 

IBI = det{BkJ} =1= 0, {bkJ } = {BkJ}-I, 

BkJ =E[~(tk)-A(tk)][~(tJ)-A(tJ)] =B(tk,tJ), k,] = t, ... ,n 

(see p. 67). The mean value A(t), t E T, and the correlation function B(s, t), s, t E T, 
completely determine all joint probability distributions Ptl> ,tn' tl,"" tn E T. 0 

Let us remark that many interesting probability models deal with non-differentiable 
random functions (such as the Brownian motion), which can be studied using the 
methods of Stochastic Analysis, the proper stochastic calculus for non-differentiable 
functions. 

2 2 INTEGRATION IN CI-SPACE 

Consider a random function ~(t), t E T, in the 121-space, assuming EIE(t)1 < 00 and 
T ~ ]R an interval. 

If ~(t) is a step function: 

(2.1) 
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taking constant values on ajinite number of disjoint intervals 11k = (sk' tk], e(t) = ° 
elsewhere, we set 

with 1111 = t - S for any 11 = (s, t]. In the general case, call e(t), t E T, integrable 
in mean, if there exist step functions en(t), t E T, of the form (2.1) approximating 
e(t), t E T: 

lim r Ile(t) - en(t)11 dt = 0, 
n--+oo iT (2.2) 

where II . II is the £,-norm. We have 

III en(t) dt - l em(t) dtll = III [en(t) - em(t) ] dtll 

~ lllen(t) - em(t)11 dt ----> 0, m, n ----> 00, 

so there is the limit 

lim (en(t) dt = ( e(t) dt 
n--+oo iT iT 

which uniquely determines the corresponding integral 

l e(t) dt E £, (2.3) 

in the £,-space. o 
Observe that any step function 

e(t) = e(w, t), wEn, t E T, 

of the form (2.1) is integrable with respect to the product measure P(dw) x dt, as 
the function of (w, t) E n x T. The £,-integral 

l e(t)dt = l e(w, t)dt, wEn, (2.4) 
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as an element of £ 1 can be represented by the random variable which, for any 
particular outcome wEn, is the integral of the corresponding trajectory ~(w, t), t E 
T. This remarkable property can be extended to general random functions ~(t), t E T, 
as follows. For approximating step functions ~n(t), t E T, condition (2.2) implies 

£ [EI~n(t) - ~m(t)l] dt 

= £ ll~n(W' t) - ~m(w, t)IP(dw) x dt ----t 0, n, m ----> 00, 

which implies the existence of a jointly integrable function 

~(w, t), (w, t) E n x T, 

with the finite integral 

£ l few, t)P(dw x dt), t E T, 

such that 

£ ll[(w, t) - ~n(W, t)IP(dw) x dt 

= £ Elf(t) - ~n(t)1 dt 

= £ I/[(t) - ~(t)I/ dt ~ 0, n ----> 00. 

Hence, according to condition (2.2), we have 

£ I/[(t) - ~(t)I/ dt = 0, 

which implies [(t) = ~(t) with probability 1 for almost all t E T. Substituting ~(t) 
by equivalent variables [(t), we obtain a new random function 

~(t) = ~(w, t), wEn, t E T, 
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denoted by the same letter as the old one, for simplicity, which is jointly integrable 
on.Q x T with respect to the product measure P(dw) x dt, and such that its £I-integral 
is represented for almost all outcomes wEn (with probability 1, in other words) 
by the trajectory integral, as in (2.4). The new random function e(t), t E T, is 
called equivalent to the initial random function, in the sense that, for every t E T, 
the corresponding random variables are equivalent. 0 

In a similar way, one can discuss integration in the £2-space, the corresponding 
integral being defined as an element of £2 ~ £ I. 0 

2.3. STOCHASTIC INTEGRALS IN .c2-SPACE 

Suppose we want to study a random processes whose local behaviour is given by 
the equation 

de(t) = <pet) d1](t), 

describing the relationship between infinitesimal time increments of 1](t) and e(t). If 
e = e(t) and 1] = 1](t) are differentiable functions of time t ~ to, one can apply the 
integral 

e(t) - e(to) = rt <p(s)d1](s), t ~ to. 
ltD 

However, if 1] = 1](t), t ~ to, has unbounded variation (as in the case of the Brownian 
motion), the above integral has to be replaced by an appropriate stochastic integral, 
which is defined below. 

We start with the definition of the stochastic integral for deterministic (non-random) 
functions <p = <pet) and a random process 1] = 1](t), 

1](to) = 0, E1](t) = 0, 

corresponding to a right-continuous function in £2 with uncorrelated (orthogonal) 
increments 

/11] = 1](t) -1](s) 

on disjoint intervals /1 = (s, t], S < t. Such a function is characterized by the 
right-continuous increasing function 
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with* 

(2.5) 

For example, ",(t), t ~ to = 0, can be the Brownian motion process, with inde­
pendent increments ll.",(s) on disjoint intervals, and 

see p. 115. 
Consider an interval T ~ [to, 00). Given a step function cp = cp(t), t E T, taking 

constant values 

(2.6) 

on a finite number of disjoint intervals 11k = (Sk' tkl ~ T, cp(t) = 0 elsewhere, set 

(2.7) 

where 11k'" = ",(tk) - ",(sk)' k = 1, ... , n. 
Obviously, 

E h cpd", = 0 (2.8) 

and 

(2.9) 

* Obviously, for uncorrelated 1)(s) = 1)(8) - 1)(to) and /11) = 1)(t) -1)(s), we have 
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for any linear combination of step functions considered above. 
stochastic integral satisfies the following properties: 

CHAPTER 5 

Moreover, the 

(2.10) 

where the integrals on the right side are the Lebesgue integrals with respect to the 
corresponding measure dF. (2.10) can be justified by 

where the random variables CPkl1kry are uncorrelated (orthogonal) and I1kF = F(tk)­
F(sk)' k = 1, ... ,n. 

In the general case, consider cP = cp(t) which can be approximated by step functions 
CPn = CPn(t) of the form (2.6), in the sense that 

(2.11) 

Then 

= ilCPn - CPml 2dF ~ 0, n,m ----; 00, 

so there is the limit in the L2-space 

r cP dry = r cp(t) dry(t) = lim r CPn dry, iT iT n~=iT 
(2.12) 

which satisfies the properties (2.8)-(2.10) as well, for general functions cP = cp(t) 
considered above. 
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EXAMPLE (Stochastic integral with respect to the Poisson process). Let'T/(t), t ;:: to, 
be a Poisson process starting at to = O. Here, increments fl.'T/ on disjoint interval;, 
fl. = (s, t] are independent, but it does not fit into our construction of the stochastic 
integral since 

E'T/(t) = >..t, t;:: O. 

To apply the general scheme (2.6)-(2.12), introduce 

'T/o(t) = 'T/(t) - E'T/(t), t;:: 0, 

with the corresponding 

F(t) = Ei'TIo(t)I Z = D'T/(t) = At, t;:: O. 

If <p = <p(t) is continuous on T = (a, b], say, one can easily see that 

where 

is the usual Lebesgue-Stieltjes integral with respect to the Poisson process trajectory 
'T/(t), t ;:: 0, which is a right-continuous increasing function having jumps 'T/(Tk) -
'T/(Tk - 0) = 1 at some points Tk, a < Tk :::; b (see p. 92). 0 

Note that the scheme (2.6)-(2.12) can be applied to a family of random variables 
fl.'T/, Efl.'T/ = 0, indexed by intervals fl. = (s, t) ~ T, respectively, such that 

for any finite partition fl. = Ufl.k by disjoint fl.k = (sk,tkl, k = 1,2, ... , and such 
that for any disjoint intervals fl. = (s, t] the corresponding random variables fl.'T/ are 
uncorrelated (orthogonal in the LZ-space), with 



216 CHAPTERS 

given by a measure dF. Such a family is called a stochastic measure d1] with a 
structure measure dF which is written as 

Ed1] = 0, (2.13) 

For any given stochastic measure d1] satisfying (2.13), we can define the stochastic 
integral 

l cpd1] = £ cp(t)d1](t) 

as it was done in (2.6)-(2.12). 

EXAMPLE (Stochastic measure with a given structure measure). Given an arbitrary 
structure measure 

dF = Eld1]f, 

with 

say, we can construct the corresponding stochastic measure as follows. Let 1] be a 
random variable with the distribution function 

F'I(t) = P{1]:::;; t} = [too dF, -00 < t < 00. 

Set 

!:J..1] = I16,(1]), !:J.. = (s, t], (2.14) 

where I is any isometric operator in the .c2-space mapping indicators 16,(1]) into the 
subspace of random variables with zero means. Hence 

E!:J..1] = 0, 

EI!:J..1]1 2 = EII6,(1])12 = P{ s < 1] :::;; t} = 1 dF, !:J.. = (s, t). 
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Moreover, f1ry are uncorrelated (orthogonal) on disjoint intervals f1 = (s, t], since 

o 
The scheme (2.6)-(2.12) can be obviously applied to any stochastic measure dry 

on a domain T <;;;; ]Rn and satisfying (2.13). One can start with f1ry defined on 
multiintervals 

say, and then extend it to the stochastic integral 

l cp dry = l cp(t) dry(t) 

on T <;;;; ]Rn satisfying all properties (2.8)-(2.9). o 
In fact, the stochastic integral (2.12) is well defined for any function cp = cp(t), 

t E T, with 

llcp(t)1 2 dF(t) < 00, (2.15) 

since any such cp can be approximated in the sense of (2.11) by appropriate step 
functions CPn, n = 1,2, .... 

Under condition (2.15), the corresponding stochastic integral satisfies the relation 

1 cp(t) dry(t) == l [cp lil(t) ] dry(t), f1 <;;;; T. 

As a function of f1 <;;;; T, the last integral represents a stochastic measure on T, 
denoted by cp dry, such that 

E[cpdry] = 0, (2.16) 

o 
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Finally, the (2.6)-(2.16) can be discussed in the complex Cz-space as well, as­
suming that the corresponding stochastic measure dry is complex-valued, and that its 
values I1ry on disjoint 11 ~ T are orthogonal in this space, with the only change that 
the second part of (2.10) reads now 

(2.10') 

2.4. STOCHASTIC ITO INTEGRAL IN .LrSPACE 

In (2.6)-(2.12), we dealt with deterministic (non-random) functions <p = <pet). Can 
one discuss random functions <p = <pet), t ~ to, and define the corresponding stochas­
tic integral 

on T = (a, b], say? The following construction yields the so-called stochastic Ito 
integral (in the C2-space). 

The main point is to consider non-anticipating random functions <p = <pet), EI<p(tW 
< 00, measurable with respect to the corresponding a-algebra Q3t which, roughly 
speaking, represents all events up to time t; the increasing a-algebras 

are assumed to be right-continuous, i.e., 

In addition to the initial scheme (2.6)-(2.12), ry = ry(t), t ~ to, is supposed to be a 
random process with independent increments on disjoint intervals such that 

I1ry = ry(t) - ry(8), 11 = (8, t], 

for all 'future' times t > 8 does not depend on the 'past' Q3s, representing on intervals 
11 = (8, t] a stochastic measure dry with zero mean Edry = 0 and the structure measure 
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Similarly to the scheme (2.6)-(2.12), one can start with random non-anticipating 
functions of the form (2.6), i.e., 

on disjoint intervals 11k = (Sk' tkl ~ T, where random variables 'Pk' EI'PkI2 < 00, 

are measurable with respect to the corresponding a-algebra 

lim~s+h=~s, k=l, ... ,n. 
h--->+O k k 

Of course, for the stochastic integral of the form (2.7), (2.9) is trivial, and (2.8) 

follows from 

since the increment I1k'TJ = 'TJ(tk) - 'TJ(sk) does not depend on the random variable 'Pk 
which is measurable with respect to ~s , k = 1, ... , n (see p. 48 on the multiplicative 

k 

property of the mathematical expectation). Equations (2.10) for the norm and inner 
product in the L2-space become now 

EI h 'Pd'TJ12 = II h 'Pd'TJ112 = h (EI'P12) dF 
(2.17) 

= h 11'P(t)11 2 dF(t), 

E(l 'PI d'TJ·l 'P2d'TJ) = (l 'PI d'TJ, l 'P2d'TJ) 

= h E('PI'P2) dF = h ('PI(t),'P2(t») dF(t). 
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Indeed, 

E/ ~ <Pk . Llk11r 

= LEI<pk· (Llk11) 12 + 2 L E [<Pk(Llk11)<PJCLlj11)] 
k k<j 

= LEI<pkI2. EILlk1112 + 2 LE[<Pk(Llk11)<Pj]E(Llj11) 
k k<j 

In the general case consider a non-anticipating function <P = <pet), EI<p(t)j2 < 00, 

which can be approximated by non-anticipating functions <Pk = <Pk(t) of the form 
(2.6), in the sense that 

t EI<p(t) - <Pn(t) 12 dF(t) 

= tll<p(t) - <Pn(t) 112 dF(t) -----70, n --4 00. 

The corresponding stochastic integrals satisfy 

= tll<Pn(t) - <Pm(t)112 dF(t) -----70, n, m --4 00, 

and therefore converge in the .c2-space, giving the stochastic integral 

r <P d11 = r <pet) d11(t) = lim r <Pn d11. iT iT n-+oo iT (2.18) 

Obviously, this stochastic integral inherits all properties claimed earlier in (2.8), (2.9) 
and (2.17). 



STOCHASTIC ANALYSIS 221 

In particular, the stochastic integral (2.18) exists for any non-anticipating contin­
uous (in the L2-space) function <P = 'P(t) on T = (a, b], as 

(2.19) 

for any sequence of partitions 

n 

T = U(tk-l, tkl 
k=l 

with 

EXAMPLE (Stochastic Ito integral with respect to the Brownian motion). Integration 
of the Brownian motion process <pet) = "l(t), t ~ to, with respect to itself yields 

(b 1 1 Ja "let) d"l(t) = 2 ["l(b)2 - "l(a)2] - 2 (b - a) (2.20) 

instead of the formula 

(b 1 Ja "l(S) d"l(s) = 2 [",(bf - "l(af], 

which is true in the case of a differentiable function (however, the Brownian motion 
is not differentiable). To verify (2.20), write 

k = I, .. . ,n, 

and then use formula (2.19) with <pet) = "let). We obtain 

n 

J~~ I>(tk-l) ["l(tk) - "l(tk-d] 
k=l 

1 [2 2] . 1 ~ [ ] 2 = 2 "l(b) - "lea) - J!...~ 2 ~ "l(tk) - "l(tk-l) 
k=l 

1 1 
= 2 ["l(bf - "l(a)2] - 2 (b - a), 
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according to the formula for the 'quadratic variation' 

n 

lim" [ry(tk) -ry(tk_d]2 = b - a 
n-+oo~ 

k=! 

of the Brownian motion (see p. 120). 

3. Stochastic Integral Representations 

3.l. CANONICAL REPRESENTATIONS 

We call a canonical representation any stochastic integral representation 

~(t) = 1 <p(t, >.) dry(>.), t E T, 

CHAPTER 5 

(3.1) 

of a given (real or complex) random process ~(t), t E T, where dry(>.), >. E A, is 
a stochastic measure on a parameter space A ~ IR, and <p(t, >.) is a deterministic 
function of t E T, >. E A. If dry is a stochastic measure with 

Edry = 0, Eldryl2 = dF, (3.2) 

then the mean value 

E~(t) = 0, t E T, 

and the correlation function 

B(s, t) = E~(s)~(t) = 1 <p(s, >')<p(t, >.) dF(>'), s, t E T, (3.3) 

according to (3.1) and general properties (2.8), (2.10) of stochastic integrals. 
As a matter of fact, one can obtain a representation (3.1) for any random process 

~(t), t E T, with zero mean and the correlation function of the form (3.3). Namely, 
assume that the probability model (0, Qt, P) is sufficiently rich so that one can define 
a stochastic measure dry of the given structure 

Edry = 0, 
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(see (2.14), for example). Then the random process ~(t), t E T, is isometric in the 
.c2-space to the random process 

since 

((t) = L cp(t, A) d17(A), t E T, 

(~(s), e(t») = E~(s)~(t) = E{(s){(t) 

= (((s),{(t)), tET. 

The stochastic measure 

d1](A) = Id17(A) 

can be obtained by means of the corresponding isometric operator I in the .c2-space 
such that 

I{(t) = e(t), t E T. 

Consequently, 

~(t) = I{(t) = I L cp(t, A) d17(A) 

= I [ lim ~ cpk~k17] 

= lim L CPk [I~k17J = lim L CPk~k1] = ( cp(t, A) d1](A), t E T; 
k k iA 

here we used a corresponding stochastic integral approximation (see (2.7), (2.12» to 
make things clear. 

EXAMPLE (Canonical representation by stochastic functional series). Let ~(t), t E 

T, be a random process with zero mean and continuous correlation function, de­
fined on a finite interval T ~ JR. The correlation function B(s, t), s, t E T, being 
continuous, symmetric: 

B(s, t) = B(t, s), s, t E T, 
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and positive definite: for any Ck, tk, k = 1, ... , n, 

there exists a complete system of eigenfunctions 

CPk(t) = cp(t, Ak), k = 1,2, ... , 

which satisfy the equation 

l B(s, t)cp(t,.A) dt = Acp(S, .A), sET, 

and the orthogonality conditions 

r ()-()d {t, k=j, 
iTCPktcpjt t= 0, k=/=j. 

This leads us to the representation 

B(s, t) = L .AkCP(S, .Ak)cp(t, .Ak) 
k 

= L cp(s, A)cp(t,.A) dF(.A), s, t E T, 

CHAPTER 5 

(3.4) 

of the type (3.3), with the spectral measure dF(A) = A concentrated on the discrete 
set A ~ IR of all eigenvalues .A = .Ak ~ 0, 

The above representation of the correlation function, known as Mercer's theorem, 
leads to the canonical representation 

(3.5) 
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of e(t), as a stochastic functional series of CPk(t) = cp(t, >.) with uncorrelated random 
coefficients "lk as atoms of the stochastic measure d"l(>') at >. = >'k, 

EXAMPLE (Spectral representation of a stationary process). Let e(t), -00 < t < 00, 

be a random process with constant mean value Ee(t) = a (below, we assume a = 0) 
and such that the correlation between e(s), e(t) depends only on s - t: 

B(s, t) = Ee(s)e(t) = B(s - t), -00 < s, t < 00. 

Such random processes, corresponding to a (continuous) correlation function 

B(t) = Ee(t + s)e(s) = Ee(t)e(O), -00 < t < 00, 

are usually called stationary (in the wide sense). Being positive definite: 

see above, the continuous function B(t), -00 < t < 00, can be written as the Fourier 
integral 

B(t) = [: e iAt dF(>'), -00 < t < 00, (3.6) 

with some bounded measure dF(>.) ~ 0, due to the well-known Bochner-Khinchin 
theorem. The representation 

B(s, t) = B(s - t) = [: eiA(s-t) dF(>'), -00 < s, t < 00, 

being of the type (3.3), we obtain the corresponding canonical representation (3.1): 

e(t) = [: e iAt d"l(>'), -00 < t < 00, (3.7) 
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called the spectral representation of the stationary random process ~(t), 00 < t < 00. 

The stochastic measure d1](A) of the structure 

Ed1]=O, 

is called the stochastic spectral measure, and dF itself is called the spectral measure 
of the stationary process. The spectral representation (3.7) suggests the following 
approximation 

~(t) = lim LetAktL1k1] 

k 

of ~(t) by means of uncorrelated random oscillations etAktL1k1], -00 < t < 00, with 
the corresponding frequencies IAkl, -00 < Ak < 00. Roughly speaking, (3.7) itself 
is a superposition of stochastic uncorrelated harmonics 

The spectral measure dF(A) gives the distribution of the total 'mean energy', 

EI~(t)12 = [: dF(A), -00 < t < 00, 

over various harmonics etAtd1](A), -00 < t < 00, with the corresponding amplitude 
square mean equal to 

Eld1](A)1 2 = dF(A), -00 < A < 00. 

o 
Interchange of the order of integration. Given a canonical representation (3.1), one 
often has to deal with the integral 

£ [1 <P(t,A)1](dA)] dt 

in the L2-space, say. Can we interchange here the integration order? To simplify 
the analysis of this question, assume that 

£11<p(t,A)ldF(A)dt < 00. 
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The answer is positive, i.e. 

"II = l [[ CP(t,>')d1](>')] dt = [ [l CP(t,>')dt] d1](>.) = 'TJ2. (3.8) 

Indeed, 1]1 and 1]2 are the limits in the £2-space of linear combinations of /11]'S on 
various /1 ~ A, and we need only to verify that the inner product 

is the same as 

Obviously, this is true, thanks to the Fubini theorem on the interchange of the 
integration order. 

3.2. SPECTRAL REPRESENTATION OF A STATIONARY PROCESS AND ITS APPLICATIONS 

The stochastic integral representation 

~(t) = i: ei>.t d1](>'), -00 < t < 00, 

of a stationary process (see (3.7» is very useful in the study of its linear transfor­
mations 

~'P(t) = i: ei>.tcp(>.) d1](>.), -00 < t < 00. (3.9) 

Given cp(>.), -00 < >. < 00, (3.9) transforms harmonic components of the initial 
process by multiplying them by the corresponding 'weights' cp(>.), depending on the 
frequency>.. Such a transformation can give more 'weight' to some components 
and less 'weight' to another ones. Of course, the weight function cp(>.) has to fulfill 
the condition 

100 2 
-00 I cp(>.) I dF(>.) < 00, 

under which the stochastic integral on the right side of (3.9) is defined for each t 
(see (2.15». 
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EXAMPLE (Differentiation). Let the spectral measure dF satisfy 

Then the stationary process e(t) has the derivative in the square mean: 

e'{t) = lim e(t + h) - e(t) 
h-+O h 

100 [ eiA(Hh) - e iAt ] 
= lim h d1J(A) 

-ex:) h--+oo 

= [: eiAt(iA) d1J(A) = e<p(t), -00 < t < 00, cp(A) = iA. 

EXAMPLE (Integration). Consider an integrable function c(t), -00 < t < 00, then, 
with 

[: Ic(t)1 dt < 00, cp(A) = [: eiAtc(t)dt, 

we have 

e<p(t) = [: eiAtcp(A)d1J(A) = [: eiAt [I: e-iAtc(S)dS] d1J(A) 

= [: C(S)[[: eiA(t-S)d1J(A)] ds = [: c(s)e(t - s)ds 

= [: c(t - s)e(s)ds, -00 < t < 00. 

o 
Let us consider a random process e(t), -00 < t < 00, with a constant mean value 

such that 

eO(t) = e(t) - a, -00 < t < 00, 
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is a stationary process with zero mean and a spectral measure Fo(d>') which is 
continuous at >. = 0: dFo(O) = O. Introduce the sample average 

I {T 1 (T 
T Jo ~(t) dt = T Jo ~o(t) dt + a 

over the time interval 0 :::; t :::; T, T -+ 00. 

According to the spectral representation 

~o(t) = [: e,>.t drJo(>'), -00 < t < 00, 

we have 

1 (T lex> e,>'T - 1 
T Jo ~o(t) dt = -ex> i>.T d17o(>')· 

Therefore 

1 T ex> e,>'T 1 2 
1 1

2 

T 10 ~o(t) dt = [ex> 1 i>.:;' 1 dFo(>') 

( 1 e,>'T 112 
= J >'#0 i>.T dFo(>') ~ 0, T -+ 00, 

since dFo(>') = 0 and 

1 e,>'T - 11-+ 0 
i>.T ,T -+ 00, 

boundedly for any>. i- O. Thus, we get the following result. 

THEOREM. Given a stationary process ~(t), -00 < t < 00, there is the limit 

llT lim -T ~(t) dt = a 
T--+ex> 0 

(3.10) 

(in the square mean), which coincides with the mean value E~(t) == a. 
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This result is similar to the law of large numbers and is known as the Ergodic 
Theorem for stationary processes (in the L2-space). 
Stationary processes in the strict sense. This term usually indicates that, for any 
tl, ... , tn, the joint probability distribution of random variables ~(tl), ... , ~(tn) coin­
cides with the joint probability distribution of ~(tl + t), ... ,~(tn + t), for any time 
shift t, -00 < t < 00. 

Consider a nonlinear transformation of ~(t) of the form 

~<p(t) = <p[~(tl +t), ... ,~(tn +t)], -00 < t < 00. 

If 

then ~<p(t) is a stationary process in the wide sense, with the constant mean value 

The process ~(t), -00 < t < 00, itself is called ergodic, if any stationary process 
~<p(t), -00 < t < 00, of the above form satisfies 

(3.11) 

EXAMPLE (Estimation of the correlation function and spectral measure). Suppose, 
we observe, on a time interval 0 ~ t ~ T, an ergodic stationary process ~(t), -00 < 
t < 00, with zero mean and unknown correlation function 

B(t) = E~(t + s)~(s) = £: ei)"t dF(A), -00 < t < 00. 

One can apply 

~ 1 100 ~ ~ 
B(t) = If -00 ~(t + s)~(s)ds 

as an estimate of the correlation function, where f(t) = ~(t) for 0 ~ t ~ T, f(t) = 0 
otherwise. According to the general ergodic property (3.11), for any -00 < t < 00 

~ 11T --lim B(t) = lim -T ~(t + s)~(s) ds 
T-+oo T-+oo 0 (3.12) 

= E~(t)~(O) = B(t). 
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Moreover, for any <p E Co 

t~~ I: e(t)B(t) dt = I: e(t)B(t) dt 

= I: <peA) dF(A), 

(3.13) 

where 

1 100 
e(t) = 2n -00 e-iAt<p(A)dA, -00 < t < 00, 

is the Fourier transform. 

3.3. STOCHASTIC INTEGRAL REPRESENTATION OF A PROCESS WITH INDEPENDENT 

INCREMENTS 

Examples of this type of random processes are the Poisson process and the Brownian 
motion. Let us forget the Brownian motion for a while, and suppose that we have at 
our disposal a family of independent Poisson processes ",( t, fl.x), t ~ 0, indexed by 
some (intervals) fl.x, -00 < x < 00, and corresponding to parameters A = fl.F(x); 
recall that 

E",(t, fl.x) = t . fl.F(x), D",(t,fl.x) = t· fl.F(x). 

Set 

~(t) = L x",(t, fl.x), t ~ 0, 
x 

where the sum is taken over a finite number of x's, -00 < x < 00. Then obviously 
~(t) is a random process with independent increments ~(t) - ~(s) on disjoint intervals 
(s, t], as this is true for the Poisson processes; moreover, 

E",(t) = t L xfl.F(x), D",(t) = t Lx2fl.F(x). 
x x 

Taking in account the structure of the trajectories of a Poisson process, we see that 
~(t), t ~ 0, is a piecewise constant function having a jump of the size x at the 
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moment T when the corresponding Poisson process ry(t,llx), t ~ 0, has a (unit) jump 
(see p. 92). If we consider the jump moments TO < T1 < ... alone, they appear 
exactly as in the Poisson process 

ry(t) = Lry(t,llx), t~O, 
x 

with the corresponding parameter 

A = LllF(x) 
x 

(one can easily verify that a sum of independent Poisson processes is again a Poisson 
process, e.g. by applying characteristic functions (p. 73)). Although all jumps of 
the Poisson process ry(t), t ~ 0, are of fixed size (equal to 1), the jumps of the 
process e(t), t ~ 0, have different sizes x, depending on which Poisson component 
ry(t, llx), t ~ 0, jumps at this moment. 

This preliminary discussion suggest a general construction of the process e(t), t ~ 
0, having jumps of any size x, -00 < x < 00, whose intensity is characterized by 
the corresponding measure dF(x). 

Let us introduce a Poisson stochastic measure dry on 

IR~ = {O ~ t < 00, -00 < x < oo}, 

whose values llry are independent on disjoint sets II ~ IR~ and distributed according 
to the Poisson law with parameter llA given by the corresponding values of the 
product measure 

dA = dt x dF(x) 

on IR~. We assume that 

(3.14) 

so that F(dx) can be unbounded near the point x = 0. Introduce the stochastic 
measure 

dryo = dry - Edry = dry - dA 
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on lRt, of the structure 

With condition (3.14), we can define 

~o(t) = t 100 
xdryo' t > o. Jo -00 

(3.15) 

It is clear that ~o(t), t ~ 0, is a random process with independent increments, since 
dryo together with dry are stochastic measures with independent values on any disjoint 
time intervals (s, t], in particular. 

To analyse the stochastic integral representation (3.15), put 

and 

ry(t,&c) = lot i dry, t ~ 0, 

1Jo(t,Llx) = lot i dryo = ry(t,Llx) - Ery(t,Llx) 

= ry(t,Llx) - t· LlF(x), t ~ 0, 

where Ll ~ lR is an interval -00 < x < 00. For any fixed t ~ 0, ry(t, Llx) and 
1Jo(t, Llx) define stochastic measures on lR which we denote by 1](t, dx) and 1]o(t, dx), 

respectively. Obviously, 

(3.16) 

Suppose, the measure F(dx), -00 < x < 00, isfinite. Then, with condition (3.14), 
we can define 

A = I: xF(dx) 

and represent the random process (3.16) as 

~o(t) = ~(t) - E~(t) = ~(t) - At, 
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where 

e(t) = I: X17(t, dx), t ~ 0, (3.17) 

and 

e(t)=joo X17(t,dx) = lim "'xTJ(t,Llx) 
n-+oo~ 

-00 x 

is the limit of the corresponding approximating sums 

L XTJ(t, ilx), t ~ O. 
x 

Note that any such sum, as a random process in t ~ 0, is exactly of the type discussed 
in the beginning. 

The above characterization of the process eo(t), t ~ 0, as the limit of the corre­
sponding 'jump-type' processes, can be extended to the general case, by putting 

where, for any c > 0, 

is a process of the type (3.16), corresponding to the finite measure 

_ { dF(x), Ixl ~ c, 
dF,,(x) - I I 0, x < c. 

Consequently, the process eo(t), t ~ 0, of (3.16) can be approximated by the sum of 
a jump-type process and a linear drift with the velocity 

A" = r xdF(x), 
Jlxl~" 

which guarantees that the mean value of the process is zero. o 



\ 

STOCHASTIC ANALYSIS 235 

Let us return now to continuous processes with independent increments, which 
can be represented by the Brownian motion (J(t), t ~ 0, having zero mean and 
the diffusion cooefficient (J2 > 0. It is clear that if (J(t) and ~o(t) of (3.16) are 
independent and at, t ~ 0, is a deterministic linear drift, then 

~(t) = at + (J(t) + I: X7]o(t, dx), t ~ 0, (3.18) 

represent a certain class of random processes with independent increments. 
Moreover, for any ° < tl < t2 < ... < tn the (independent) increments 

have exactly the same (joint) probability distribution as 

~(tl + t) - ~(t), ~(t2 + t) - ~(tl + t), ... , ~(tn + 1) - ~(tn-l + t) 

for any time shift t ~ 0; in short, the representation (3.18) gives us the process 
~(t), t ~ 0, with stationary increments. 0 

What can be said about the probability distribution of increments of the process 
(3.18)? As ~(o) = 0, it suffices to consider 

~(t) = ~(t) - ~(o) 

itself, thanks to the fact that the increments are stationary. We apply the method of 
characteristic functions (see pp. 72-82). 

Consider first the jump-type component (3.17) alone, corresponding to a finite 
measure dF(x), -00 < x < 00. Let 

~n(t)=LX7](t,Llx), n=I,2, ... , 

be an approximating sequence of finite sums, with independent Poisson components 
7]( t, !l.x), 

E7](t, !l.x) = t . !l.F(x). 

The characteristic function 
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is the product of the characteristic functions of the independent random variables 
x",( t, 11x), which yields 

Infn(u) = t L (eiUX - I)LlF(x). 
x 

Passing to the limit as n ~ 00 on the right side, we obtain 

Inf(u) = t 1: (eiUX -1) dF(x), -00 < u < 00, 

with 

feu) = lim fn(u) 
n-oo 

being the limit characteristic function of the limit random variable 

of (3.17). For its extension (3.18), with the deterministic component at and a 
normally distributed {3(t), we obtain 

(3.19) 

- 00 < u < 00. 

Finally, we can consider the general scheme (3.18), with the 'jump-type' component 
(3.16); namely, using the finite approximation dF",(x) of the measure dF(x) as above, 
we get the same formula (3.19) as the limit of 

In f",(t) = t{iau - ~ a2u + r (eiux - 1 - iUx) dF(x), -00 < u < 00, 
Jlxl~e 

when € -> 0, thanks to condition (3.14) which guarantees the existence of an inte­
grable majorant for 

eiux - 1 - iux, -00 < u < 00. 

Let us formulate our result as follows. 

THEOREM. The stochastic integral representation (3.16)-(3.18) defines a random 
processes with independent stationary increments, the characteristic function of 
which is given by (3.19). 
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4. Stochastic Differential Equations 

4.1. STOCHASTIC DIFFERENTIALS 

The formal expression 

d~(t) = aCt) dt + f3(t) d1](t), t > to, 
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called a stochastic differential, is just equivalent to the stochastic integral represen­
tation 

~(t) - '(to) = it a(s) ds + t f3(s) d1](s), t ~ to to 10 (4.1) 

(in the C2-space, say). As we'll see below, equation (4.1) itself provides a certain 
characterization of the process. 

For example, does the square ,(t) = 1](t)2 of the Brownian motion 1](t) , t ~ to, 
admit a stochastic differential? Actually, it does, namely 

d~(t) = dt + 21](t) d1](t) 

(see p. 220), and this simple example shows that the problem of finding the stochastic 
differential d,(t) for a given random process is not trivial. 0 

Let us consider a more general example. Suppose 

'(t) = it e(t,s)d1](s), t ~ to, to 
where e(t, s) is a deterministic function of t ~ s ~ to having the continuous derivative 
It e(t, s). By interchanging the order of integration, we obtain 

lot [loU d~e(U'S)d1](S)] du= 1: [it :ue(u,S)dU] d1](s) 

= it [e(t,s) - e(s,s)] d1](s) = ,(t) -it e(s,s)d1](s). 
~ ~ 

Therefore, 

d~(t) = [1(~ :t e(t,S)d1](S)] dt+e(t,t)d1](t). (4.2) 
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We conclude this preliminary discussion with the suggestion to verify that a random 
process ~(t), t ~ to, admits the stochastic differential 

d~(t) = Get) dt 

with a continuous (in the square mean) a(t), t ~ to, if and only if it is continuously 
differentiable (in the square mean) and 

e(t) = Get) (4.3) 

(recall that we consider random functions with values in the C2-space only). 

4.2. LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 

We have in mind the system of stochastic differential equations 

d~(t) = e (t) dt, ... ,d~(n-2)(t) = ~(n-l)(t) dt, 

d~(n-l)(t) = [al(t)~(n-l)(t) + ... + an(t)~(t)] dt + dry(t), 

for a random process ~(t), t ~ to, and its square mean derivatives ~(k)(t), k:::; n - 1, 
which will be written in short as 

d~(n-l) - a1 ~(n-l) dt - ... - an~ dt = dry, t > to. (4.4) 

Here, the coefficients ak = ak(t), k = 1, ... , n, are assumed to be continuous deter­
ministic functions of t ~ to. 

In the case dry = 0 the above equation becomes the ordinary homogeneous differ­
ential equation 

which has a unique solution 

n-l 
~(t) = L ~kwk(t, to) (4.5) 

k=l 
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for any given 

~(to) = ~o, ... ,~(n-l)(tO) = ~n-l. (4.6) 

Here, wit, to) are the corresponding deterministic solutions with 

(j)( ) _ {I, j = k, 
wk to, to - 0 . -L k , J I , 

j, k = 0, ... , n - 1. 

Obviously, for any given initial conditions (4.6), the solution of (4.4) is unique, 
since the difference of any two solutions satisfies the homogeneous equation with 
the zero initial condition. It is also clear that we have to look for the solution of 
(4.4) with the zero initial condition only, since the general solution is the sum of 
this particular solution and the solution of the homogeneous equation with a given 
initial data (4.6). 

THEOREM. The solution of the stochastic differential equation (4.4) with the zero 
initial conditions (4.6) is given by the formula 

~(t) = t w(t, s) d1](s), t ~ to, 
lto 

(4.7) 

where the kernel w(t, s), as afunction oft ~ s, satisfies the homogeneous differential 
equation 

(4.8) 

with the initial conditions 

w(s, s) = 0, ... , w(n-2)(s, s) = 0, w(n-l)(s, s) = 1. 

Proof. According to the general formula (4.2), the random function (4.7) has the 
stochastic differential of the form 

where w(t, t) = o. Hence, the derivative ~(l)(t) (in the square mean) exists and is 
given by 

~(l)(t) = t w(l)(t, s) d1](s), t ~ to. 
lto 
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The existence of all (n - 1) derivatives 

~(k)(t) = ft w(k)(t,s)dry(s), t ~ to, k";; n -1, 
ito 

CHAPTER 5 

(4.9) 

can be shown analogously. Using the general formula (4.2) for the (n - l)th deriva­
tive, we obtain 

where 

w(n)(t, s) = a1(t)w(n-l)(t, s) + ... + an(t)w(t,s), t> s, 

and w(n-l)(t, t) = 1. Together with (4.9), this proves equation (4.4) for the derivatives 
~(k)(t) and the theorem as well. 0 

Now, we can characterize the behaviour of a solution ~(t), k ~ to, of the linear 
stochastic differential equation (4.4), as follows: For t ~ s, and without the stochastic 
disturbance dry(t) on the right side of (4.4), the trajectory of the process is 

n-l 
x(t) = L ~(k)(s)wk(t, s), t ~ s, 

k=O 

which is a deterministic function except that it depends on the initial random variables 
~(k)(s), k = 0, ... ,n - 1; wk(t, s), t > s, is the solution of the ordinary homogeneous 
differential equation (4.8) with initial conditions 

(j)( ) _ { 1, j = k, 
w k S,S - ° . --'- k , J r , 

k,j = 0, ... , n - 1. 

If, for t ~ s, the term dry(t) is present on the right side of (4.4), the deviation of the 
process from the trajectory x(t) is given by 

t n-l 
~(t) - x(t) = 1 wet, u) dry(u) - ~ ~(k)(s)wk(t, s), t ~ s, (4.10) 
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which is uncorrelated with x(t), since dl1(t), t> s, is uncorrelated with ~(k)(s), k = 

0, ... , n - 1, given by 

~(k)(S) = r w(k)(s, u) dl1(U), 
ito 

see (4.9). 

Let us consider in more detail the first order differential equation 

d~(t) = a(t)~(t) dt + dl1(t), t ~ to, 

with the initial condition ~(to) = 0, say. We assume that 

Edl1(t) = 0, 

The general formula (4.10) gives, in particular, the correlation function as 

B(t,s) = E~(t)~(s) = B(s,s)w(t,s), t ~ s, 

where 

d 
dt w(t, s) = a(t)w(t, s), t > s, 

w(s, s) = 1. 

o 

(4.11) 

Hence B(t, s), t ~ s, is the unique solution of the homogeneous differential equation 

d 
dt B(t, s) = a(t)B(t, s), t > s, (4.12) 

with a given B(s, s) at t = s. According to the stochastic integral representation 
(4.7), the variance 

B(t, t) = E~(t)2 = (j2 t w(t, s)2 ds, t ~ to, 
ito 
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satisfies the differential equation 

d 
dt B(t, t) = 2a(t)B(t, t) + U 2, t ~ to· 

Indeed, 

:t B(t, t) = U 2W(t, t)2 + 2u21ot wet, s) [:t wet, s)] ds 

= u2 + 2u2a(t) t wet, s)2 ds ito 
= u2 + 2a(t)B(t, t). 

4.3. LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 

CHAPTER 5 

(4.13) 

Let us consider the stochastic differential equation (4.4) with constant coefficients. 
Suppose that all roots of the characteristic polynomial 

P() n n-l Z =Z -a1z -···-an-IZ-an 

lie in the left half-plane Re(z) < ° of the complex parameter z; then, the correspond­
ing equation (4.4) will be caIled stable. The kernel 

wet, s) = wet - s), t ~ s, 

in (4.7) can be obtained by solving the differential equation 

with the initial conditions 

weD) = 0, ... ,W(n-2)(0) = 0, w(n-l)(o) = 1 

(cf. (4.8)). Under the stability condition of the polynomial P(z), the function wet) 
exponentially decreases with t --t 00; setting wet) = ° for t < 0, we have 

100 -i>..t 1 
-00 e wet) dt = P(i>..) , -00 < >.. < 00. 
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This formula can be easily obtained by partial integration of 

Consequently, 

1 100 
i>.t 1 w(t) = 2n -00 e P(i)..) d)", -00 < t < 00. 

Let us consider the random process 

~(t) = t w(t - S)T7(ds), t ~ to, 
ito 

of (4.7), with the stochastic measure of the following structure: 

Ed"7(t) = 0, 
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(4.14) 

(4.15) 

Let us discuss long-time behaviour of the process ~(t) when t - to --+ 00. Formally, 
it is convenient to assume that to --+ -00 (we suppose that the stochastic measure 
T7(dt) is defined on the whole real axis -00 < t < 00). Putting to = -00, we obtain 
the random processes 

C(t) = I: w(t - S)T7(ds) = [too w(t - S)T7(ds), -00 < t < 00, (4.16) 

with EC(t) = 0 and the correlation function 

EC(t)e(s) = 0'2 I: w(t - u)w(s - u)du 

= 0'2 I: w(t - s + u)w(u)du = B(t - s), -00 < s, t < 00, 

which depends only on the difference t - s; i.e., C(t) is stationary in the wide sense. 
Comparing ~(t) and C(t), we easily obtain 

l to 
2 100 

2 = 0'2 -00 Iw(t - s)1 ds = 0'2 t-to Iw(u)1 du ----t 0 
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as t - to --+ 00, i.e., 

e(t) --+ C(t), to --+ -00, 

in the square mean. Of course, the same result is true for a general solution e(t), 
t ~ to, of the stochastic differential equation (4.4), since for any k = 0, ... ,n - 1 

in the representation (4.5) of a general solution of the homogeneous equation. Thus, 
we get the following result. 

THEOREM. A general solution e(t), t ~ to, of the stable stochastic differential 
equation (4.4) converges as to --+ -00 to the stationary process C(t), -00 < t < 00, 

of (4.16): 

e(t) --+ C(t), -00 < t < 00. 

Set 

(T2 

f(>") = 2nIP(i>..)I2' -00 < >.. < 00. (4.17) 

We can write the correlation function of the stationary process (4.16) in the following 
form: 

B(t) = EC(t + s)e(s) 

= (T2 1: w(t + s)w(s)ds = 1: ei.\t f(>")d>", -00 < t < 00. 

Hence 

F(d>") = f(>")d>" 

is the spectral measure of C(t) (f(>..) itself is called the spectral density). Indeed, 
by taking the inverse Fourier transform, one has 

2~ 1: e-i.\tB(t)dt = ;: 1: e-i.\t [1: w(t + S)W(S)dS] dt 

= (T21
OO 

ei'\s [100 e-i.\(t+s) w(t + s) dt] w(s) ds 
2n -00 -00 

(T2 [ 1 ] 100
. (T2 1 

= 2n P(i>..) -00 e-t'\sw(s) ds = 2n IP(i>")12 · 
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EXAMPLE (Stochastic oscillations of a heavy pendulum). The motion of a free 
pendulum is described by the second order differential equation 

w"(t) + 2hw'(t) + a2w(t) = 0, 

where h > 0 is a small parameter characterizing friction, while a2 > 0 characterizes 
the frequency AQ, A6 = a2 - h2 , of the damped oscillations of the heavy pendulum. 
Let us imagine that the pendulum is a part of some ship equipment, and is subject 
to high frequency chaotic (random) oscillations caused by the rough sea. 

The corresponding motion of the pendulum forced by a stochastic term d1J(t) with 
the structure (4.15) can be described by a stationary random process C(t) with the 
spectral density 

f 

o Ac) 

Fig. 19. 

obtained from the general formula (4.17). The spectral density leA), 0 :::; A < 00, 

is concentrated near the point A = AQ (see Figure 19), which shows that the most 
powerful harmonics of the forced motion correspond to frequencies A close to the 
frequency AQ of the free oscillations: 

(see p. 225 for the general spectral representation of a stationary process). This result 
is quite different from what we know about forced oscillations in the deterministic 
theory. 
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4.4. THE KALMAN-BUCY FILTER 

We consider a random process ~(t), t ~ to, satisfying the stochastic differential 
equation 

d~(t) = O(t) dt + d'T](t) (4.18) 

and the initial condition ~(to) = 0, where O(t) is a square-mean continuous random 
function. We interpret O(t), t ~ to, as a 'signal', which is observed in the additive 
(random) noise given by a stochastic measure d'T](t) of the structure 

Ed'T](t) = 0, 

We suppose that d'T](t), t ~ to, does not depend on O(t), t ~ to (or is just uncar­
related with it). 

The problem is to estimate O(t) given ~(s), to ~ s ~ t. Below, we discuss the 
fundamental result due to Kalman and Bucy, which gives the solution to the above 
problem for random functions O(t), t ~ to, satisfying the linear stochastic differential 
equation 

dO(t) = a(t)()(t) dt + d'T]o(t) (4.19) 

with the initial condition OCto) = 0, where aCt) is a nonrandom continuous function 
and d'T]o(t), t ~ to, is a stochastic measure of the same structure as d'T] and independent 
of d'T](t), t ~ to. 

We shall consider linear estimators of O(t) given by linear combinations of the 
'observed' variables ~(s), to ~ s ~ t, or by their limits in the square mean. 

Obviously, each linear combination of the variables ~(s), to ~ s ~ t (for example, 
a linear combination of the variables ~(to), ~(tl), ... , ~(tn), where to < tl < ... < tn) 
can be written as the stochastic integral 

with the corresponding piecewise constant function 
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The limits of such linear combinations are the estimators which can be represented 
as stochastic integrals 

", = it c(s)d~(s) = it c(s)B(s)ds + it c(s)d",(s), to to to (4.20) 

where c(s), to ~ s ~ t, is an arbitrary function such that the last two integrals exist. 
Their sum will serve us as the definition of the stochastic integral with respect to 
d~(t), which we shall use from now on. (For example, the linear estimator (4.20) is 
well-defined for any continuous function c(s), to ~ s ~ t.) 

Note that 

are uncorrelated (orthogonal) random variables in the L2-space and 

Among all estimators (4.20), we shall look for the optimal one 

o(t) = it c(t,s)d~(s) to (4.21) 

corresponding to a weight function c(s) 
orthogonality condition 

c(t, s), to ~ s ~ t, by applying the 

E[B(t) - O(t)] 2 = 0 

in the L2-space, which guarantees 

By expressing the orthogonality condition directly in terms of the weight function 
c(t, s) in (4.21), one obtains the following 
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LEMMA. Suppose that the function c(t, s) is continuous in t ~ s ~ to and satisfies 
the integral equation 

c(t, s) = B(t, s) -it c(t, u)B(u, s) du, t ~ S, 
to 

(4.22) 

where B(t, s) = EO(t)O(s), t, s ~ to, is the correlation function of the random process 
O(t), t? to. Then c(t, s) is the weight function of the optimal estimator (4.21), and 

c(t, t) = E[O(t) - O(t)]2 (4.23) 

is the corresponding quadratic error. 
Proof In fact, (4.22) implies the orthogonality condition, since, for arbitrary 

variables of the form (4.20), we have that 

E[O(t) - o(t)]ry 

= E [O(t) - lot c(t, u)B(u) du - 1: c(t, u) d'T/(U)] 

x [1: c(s)B(s)ds + 1: C(S)d'T/(S)] 

= it c(s) [B(t, s) -it c(t, u)B(u, s)du - c(t, S)] ds = O. 
to to 

Furthermore, 

E[O(t) - O(t)] 2 = EO(t) [O(t) - o(t)] - EO(t) [O(t) - O(t)] , 

where 

EO(t) [O(t) - O(t)] 

= EO(t)2 - E[O(t) ·1: c(t, u)O(u) dU] - E[O(t) ·1: C(t,U)d'T/(U)] 

= B(t, t) -it c(t, u)B(u, t) du = c(t, t) 
to 
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according to (4.22) with s = t; and 

EO(t)[B(t) - O(t)] = 0 

by the orthogonality condition with", = oct). Hence, the lemma is proved. 0 

As B(t), t ~ to, satisfies the stochastic differential equation (4.19) and the initial 
condition B(to) = 0, it can be written as 

B(t) = (t wo(t, s) d"lo(s), t ~ to, 
ltD 

where wo(t, s), t ~ s, is the soliuton of the differential equation 

d 
dt wo(t, s) = a(t)wo(t, s), t> s, 

(4.24) 

with the initial condition woes, s) = 1. Moreover, we know that the correlation 
function B(t, s) = EB(t)B(s) satisfies the differential equation 

d 
dt B(t, s) = a(t)B(t, s), t > s, 

see p. 241. 
Our aim is to find a function c(t, s) which is continuous together with its derivative 

it c(t, s), for all parameters t ~ s ~ to, and which satisfies the integral equation 
(4.22). 

By differentiating equation (4.22) with respect to t, we obtain: 

d ltd -d c(t, s) = a(t)B(t, s) - c(t, t)B(t, s) - d c(t, u)B(u, s) duo 
t to t 

Assume there exists a function x(t) such that 

d 
dt c(t, s) = x(t)c(t, s), t> s. 

Then from (4.22) one has 

x(t)B(t, s) = x(t) [C(t, s) + 1: c(t, u)B(u, s) dU] 

= [aCt) - c(t,t)]B(t,s). 
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Obviously, x(t) = aCt) - bet), where 

bet) = e(t, t). 

Having obtained this unexpected result, it is natural to look for the function e(t, s), 
t ;;:: s, as the solution of the differential equation of the form 

d 
dt e(t,s) = [aCt) - b(t)]e(t,s), t > s, 

(4.25) 

e(s, s) = b(s), s;;:: to. 

o 
Take a continuous function bet), t ;;:: to, then the solution e(t, s) of the linear 

differential equation (4.25) and its derivative -it e(t, s) are jointly continuous in t ;;:: 
s ;;:: to. If we take this solution e(t, s) as the weight function in (4.21), then, by 
expressing the stochastic differential dO(t) in the form (4.2): 

and using (4.25), we obtain 

dO(t) = [a(t) - b(t)] Oct) dt + bet) [O(t) dt + d1J(t)]. 

According to (4.19), the difference !let) = e(t) - O(t) satisfies the linear stochastic 
differential equation 

d!l(t) = de(t) - dO(t) 
(4.26) 

[aCt) - b(t)] !let) dt + [d1Jo(t) - bet) d1J(t)] 

with the initial condition !l(to) = 0, whose solution can be written as 

!let) = t wet, s) d1Jo(s) - rt wet, s)b(s) d1J(s). 
lto lto 
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Here, the weight function w(t, s), t ~ s, is the solution of the ordinary differential 
equation 

d 
dt w(t,s) = [a(t) - b(t)]w(t,s), t> s, 

w(s,s) = 1, 

see p. 241. By comparing this equation to (4.25), we see that 

c(t, s) = w(t, s)b(s), t ~ s. (4.27) 

D 

As c(t, s) defines the optimal estimator (4.21), the corresponding function b(t) = 
c(t, t) is given by 

b(t) = ELl(t)2, t ~ to, 

see (4.23). From (4.13) and (4.26) it follows that the variance b(t) is the solution of 
the following Ricatti equation 

:t b(t) = 2a(t)b(t) - b(t)2 + 1, t > to, 

b(to) = 0. 

(4.28) 

Let b(t), t ~ to, be the solution of (4.28). From (4.19), (4.26) we obtain for 
e(t) = O(t) - Ll(t) the stochastic differential equation 

de(t) = [a(t) - b(t)] e(t) dt + b(t) d~(t), t > to, 

whose solution, with e(to) = 0, can be written as 

e(t) = (t c(t,s)d~(s) 
ito 

= (t c(t,s)(}(s)ds + t c(t,s)d17(S). 
ito ito 

(4.29) 

(4.30) 
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Let us show that the weight function c(t, s) satisfies the integral equation (4.22). By 
applying (4.24), (4.26) and the differential equation (4.28) for bet) = EA(t)2, we 
easily obtain that the function 

J(t) = EO(t) [B(t) - O(t)] = E [B(t) - A(t)] A(t) 

= t wo(t,s)w(t,s)ds - bet) 
lto 

satisfies the homogeneous differential equation 

:t J(t) = [2a(t) - b(t)] J(t), 

J(to) = o. 

Hence J(t) == O. From (4.30) we get 

bet) = EB(t) [B(t) - O(t)] - EO(t) [B(t) - O(t)] 

= EB(t) [B(t) - O(t)] = B(t, t) - t c(t, s)B(s, t)ds, t ~ to. 
ltD 

Together with (4.25), for the function 

co(t, s) = c(t, s) + it c(t, u)B(u, s) du - B(t, s), t ~ S, 
to 

we obtain the homogeneous equation 

d 
dtCo(t,s) = [a(t)-b(t)]co(t,s), t>s, 

co(s, s) = O. 

Hence co(t, s) == 0, which proves (4.22). 
The above discussion can be summarized in the following 

THEOREM. The optimal estimator O(t) of B(t) is given by the stochastic integral 
(4.21), with the weight function c(t, s), t ~ s, together with the function bet) = 
E[B(t) - Bct)]2, satisfying the system (4.25), (4.28) of differential equations. The 
optimal estimator O(t), t ~ to, can be obtained by solving the stochastic differential 
equation (4.29). 
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