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Preface

Mixed-Signal Embedded Microcontrollers are commonly used in integrating ana-
log components needed to control non-digital electronic systems. They are used in 
automatically controlled devices and products, such as automobile engine control 
systems, wireless remote controllers, office machines, home appliances, power 
tools, and toys. Microcontrollers make it economical to digitally control even 
more devices and processes by reducing the size and cost, compared to a design 
that uses a separate microprocessor, memory, and input/output devices. In many 
undergraduate and post-graduate courses, teaching of mixed-signal microcontrol-
lers and their use for project work has become compulsory. 

Students face a lot of difficulties when they have to interface a microcontroller 
with the electronics they deal with. This book addresses some issues of interfacing 
the microcontrollers and describes some project implementations with the Silicon 
Lab C8051F020 mixed–signal microcontroller. The intended readers are college 
and university students specializing in electronics, computer systems engineering, 
electrical and electronics engineering; researchers involved with electronics based 
system, practitioners, technicians and in general anybody interested in microcon-
trollers based projects. 

The complete book is divided into ten chapters. It is our view that expertise in 
microcontrollers is achieved by using it in different applications. Most of the book 
is dedicated to describe a few project implementations. Six different successful 
projects have been detailed. 

Chapter 1 describes the fundamentals of electronics and analog processing cir-
cuits. The input signal is almost always passed through some analog processing 
circuits before it is interfaced to a microcontroller. For signal processing, the basic 
knowledge of this chapter is very important. 

Chapter 2 gives an overview of the SiLab C8051F020 micro-controller. On-
chip peripherals such as ADC and DAC, and other features like the digital cross-
bar and the voltage reference generator are briefly introduced. While program-
ming using a high level language, such as C, makes it less important to know the 
intricacies of the hardware architecture of the microcontroller, it is still beneficial 
to have some knowledge of the memory organization and the special function reg-
isters. 

Chapter 3 introduces the KeilTM C compiler for the SiLab C8051F020 micro-
controller. The high level language C, in combination with some standard codes, 
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is used to develop the software program. The differences in programming the 
C8051F020 in C, compared to a standard C program, are almost all related to ar-
chitectural issues which are highlighted in this chapter. 

Chapter 4 describes some of the important design issues of interfacing a micro-
controller to common electronic circuits. Open collector configuration, loading 
problems, microcontroller cross-bar definition, driving output load etc. have been 
discussed. 

In chapter 5 we have detailed the development of a DC motor control project 
using Silabs 8051F020. It has been taken directly off our teaching program. A 
problem based learning and teaching approach was taken and our main focus in 
this chapter is to describe in detail the laboratory exercise in which the students 
work in groups for a complete semester. The software part of the project involves 
the development of the software to control the speed of the DC motor. The hard-
ware part of the project is the design and development of over-current protection 
circuit and the associated expansion board.  

In chapter 6 we have described the design, fabrication and implementation of a 
switched mode power supply based on both discrete circuit and embedded micro-
controller. Even though an integrated circuit (IC) with a complete switched mode 
power supply is now available, from a student’s learning perspective still a lot of 
things can be learnt while doing this project. 

Chapter 7 details the implementation of an embedded microcontroller based 
control system for magnetic levitation. 

Chapter 8 describes the hardware implementation of a microcontroller based 
remote firing module to detonate fireworks and the software to control this remote 
module. Traditional systems for fireworks detonation usually use very long runs of 
cable, up to several hundred meters, for each firework connected. This increases 
the setup time and cost significantly. To reduce the amount of wiring, short 
lengths of cable are often used; this however places the technicians at risk because 
of the close proximity to the firework shells. The proposed wireless system over-
comes these shortcomings. 

Chapter 9 describes an embedded microcontroller based sensing system for sea-
food inspection. Interdigital sensors have been used for non-destructive and non-
invasive inspection of the material properties. There are many applications of in-
terdigital sensors based systems. 

We are indebted to many of our students and colleagues who were involved 
with the various projects over several years and some of their works have been 
used in this book. In particular we would like to acknowledge the contribution of 
our past and present students Dan Paolo Salvador, Elijah Sheppard, Jamses 
Tingsley, Chinthaka Gooneratne, Anuroop Gaddam, Adam Bullen, Mohd. Syai-
fudin Abdul Rahman, Vishnu Kasturi, Karan Singh Malhi, Michelle Cho and Mat-
thew Finnie. Chapters 2 and 3 are, in parts, reproduced by kind permission from 
Silicon Laboratories, USA, from the book “Embedded Programming with Field-
Programmable Mixed-Signal Microcontrollers”, Second Edition, 2008 (ISBN: 
978-0-9800541-0-1) and we would like to thank Chew Moi Tin and Prof. Chris 
Messom who had contributed to it. Over the years we have received invaluable 
technical support for our projects from Ken Mercer and we thank him profusely. 
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We would also like to express our sincere thanks to our family members for 
their continuous support and patience. 

We hope you find this book useful. 

 G. Sen Gupta 
S. C. Mukhopadhyay 

School of Engineering and Advanced 
Technology 

Massey University (Manawatu) 
Palmerston North, New Zealand 
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1 

Operational Amplifier and Analog Signal 
Processing Circuits: A Revision 

1.1   Introduction 

In most embedded microcontroller based systems, the input signals of the micro-
controller usually take a variety of forms in terms of magnitude, type, frequency 
and so on. On many occasions, it is not possible or advisable to connect the sig-
nals coming from sensors directly to the microcontroller. In some cases, even 
though the signal is in digital form, there is a need to change the level of voltage. 
In many situations the signals are in analog form and they need to go through a 
signal processing stage. In this chapter we will review the fundamental of elec-
tronic circuits which are mainly used as the signal processing circuits to interface 
signals from different transducers to microcontrollers. 

An operational amplifier is a commonly used building block for implementing 
different signal processing circuits in the analog domain. In analog electronic cir-
cuits the operational amplifier is the most versatile device. The common IC ampli-
fier is made up of a number of transistor stages on a single chip and is basically a 
voltage controlled voltage source. It is used as a fundamental building block in ba-
sic amplification, signal conditioning, active filters, function generators, switching 
capacitors etc. In its simplest form an operational amplifier, in short op-amp, is a 
three-terminal device with two inputs, inverting input V- and non-inverting input 
V+ , and an output, Vout as shown in figure 1.1.  

 

Vout

V+

V-

 

Fig. 1.1 Operational amplifier 

Proper power supply should be provided to op-amp for its reliable operation. 
Operational amplifiers have the following properties- 

1. an inverting input and a non-inverting input 
2. very high (usually assumed infinite) input impedance at each input 
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3. low output impedance 
4. very large voltage gain (typically 105) when used in open-loop configuration 

(i.e. without feedback) 
5. broad frequency bandwidth 
6. free of drift due to change in ambient temperature 
7. high stability. 
 

Ideally the gain and the input impedance of the op-amp are infinite. In practical 
op-amps the input impedance is normally 100 M Ω  or more. The output voltage is 
a function of the difference between the voltages at the input terminals. 

( )+ −= −outV A V V ; where A is the open loop gain of the op-amp. For an 

ideal op-amp A is infinite. 

From the above equation, we have, ( ) 0outV
V V

A+ −− = ≈ ; as A is infinite. 

This means V V+ −= , i.e., even if the terminals are connected by a resistance, 

the current drawn will be zero. In other words the input terminals are virtually 
short-circuited as there is no potential difference between the two inputs. Since 
there is no current flowing, it means as if the terminals are not connected to each 
other. So the input terminals are virtually open-circuited. So the behavior of an 
ideal op-amp is summarized as- 

 

1. current drawn by the op-amp at the input terminals is zero 
2. output voltage is whatever makes the input terminal voltages equal. 
 

For practical op-amp we need two terminals for the power supply, usually bipolar 
± 12V or ± 15 V, though the op-amp can operate with only one supply. In the fol-
lowing sections a few commonly used circuits are described. 

1.2   Voltage Follower Circuit 

Figure 1.2 shows the circuit configuration of a voltage follower. It is also known 
as a unity gain amplifier, buffer amplifier or an isolation amplifier. Its main appli-
cation arises due to the fact that its input resistance is very high so that it draws 
negligible current from the source. Many transducers provide a very small signal 
and it is very weak, so this configuration is ideal for those applications. 

 

VoutV+
 

Fig. 1.2 Circuit configuration of a voltage follower 

The input is fed directly to the +ve terminal. The output terminal and the invert-
ing input terminal are shorted. 



1.3   Inverting Amplifier 3 
 

The relationship of the input and output voltage is outV V+= . The output volt-

age and the input voltage are equal in magnitude and have the same sign. 

1.3   Inverting Amplifier 

Figure 1.3 shows the circuit configuration of an inverting amplifier. The input is 
fed to the inverting input terminal through the resistance Rin. The non-inverting 
terminal is connected to ground. RF is the feedback resistance and is connected be-
tween the output terminal and the inverting input terminal. 

 

Vout

RF

RinVin

 

Fig. 1.3 Circuit configuration of an inverting amplifier 

Assuming the current drawn at the inverting terminal is zero, the relationship 
between output and input is given by- 
 

0 in out

in F

V V

R R
+ =   which gives    V F

out in cl in
in

R
V A V

R
= − = −  

 

where Acl is the closed-loop gain of the amplifier. 
So the gain is decided by the ratio of the feedback resistance to the input resis-

tance. There is an inversion of the polarity i.e., the output voltage is the inverted 
version of the input voltage. In other words, there is a phase difference of 180o be-
tween the output and input voltages. By proper choice of RF and Rin any value of 
output voltage can be obtained. The maximum value of the output voltage is, 
however, limited by the supply voltage of the amplifier. 

1.4   Sign Changer 

In figure 1.3 if F inR R= , then out inV V= − , i.e., the sign of the input has been 

changed without a change in magnitude. If two such amplifiers are connected in 
cascade, the sign of the input and the output are the same. 
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1.5   Phase Shifter 

A phase shifter is obtained by substituting ZF in place of RF in figure 1.3. The in-
put resistance may also be replaced by an impedance, Zin.  If the magnitudes of ZF 
and Zin are equal but the phase angles are different, the operational amplifier will 
shift the phase of the sinusoidal input signal without changing its magnitude. Any 
change in phase (0o to ± 180o) can be obtained.  

1.6   Inverting Summing Amplifier 

Figure 1.4 shows the circuit diagram for a summing amplifier. 

 

Rin3

Rin1

GND

Vout

RF

Rin2

Vin1

Vin3

Vin2
A

 

Fig. 1.4 Summing amplifier 

Applying KCL at the node A and ignoring the input current to op-amp, we have 
 

1 2 3

1 2 3

1 2 3
1 2 3

0

Or, ( )

in in in out

in in in F

F F F
out in in in

in in in

V V V V

R R R R

R R R
V V V V

R R R

+ + + =

= − + +
 

 

If 1 2 3in in in FR R R R= = = , we get ( )1 2 3out in in inV V V V= − + +  

 
The output voltage is the sum of the input signals with phase reversed. 

1.7   Non-inverting Amplifier 

Figure 1.5 shows the circuit configuration of a non-inverting amplifier. The input 
impedance of this circuit is very high, ideally infinite. 
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IG
Vout

IF

RF

RG

Vin

A

 
 
Fig. 1.5 Circuit configuration of non-inverting amplifier 

Ideally, the voltage difference between the two terminals of the op-amp is zero. 

So A inV V= . 

Applying KCL at node A, we have F GI I=  

 

              Or,  out A out in inA

F G F G

V V V V VV

R R R R

− −= =  

or,      

or,  ( 1)

= +

= +

out in in

F F G

F
out in

G

V V V

R R R

R
V V

R

 

So, the voltage gain is given by, 1 F
cl

G

R
A

R
= + . 

The current through the feedback resistance is given by,  
 

  out A out in in
F

F F G

V V V V V
I

R R R

− −= = =  

 
It is seen that the current through RF is independent of RF and depends on Vin and 
RG. This circuit can be used as a constant current source provided Vin and RG re-
main constant with RF the variable load. Also the circuit can be used as voltage 
controlled current source in which the current is proportional to the input voltage. 

1.8   Non-inverting Summing Amplifier 

In order to combine more than one input in non-inverting configuration the circuit, 
as shown in figure 1.6, can be used. 
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Vout

.

. R

R nR

R

R

RV1

V2

Vn
 

Fig. 1.6 Circuit configuration of non-inverting summing amplifier 

The output voltage in terms of input voltages is given by, 
 

1 2 3 ....out nV V V V V= + + + . 

1.9   Difference Amplifier 

The output of a difference amplifier is the amplified version of the difference be-
tween two input signals. Figure 1.7 shows the circuit configuration. Any identical 
signal, for example noise, common to both the inputs is eliminated. The voltage at 
the input terminals A and B are given by, 

 

1 1
1 2 2

2 1 1 2

       and        
−= − =
+ +

in out
A in B in

V V R
v V R v V

R R R R
 

 

Equating A Bv v= , we have, 

 

2 2 1
1 1 2

2 1 2 1 2 1

1
2 1

2

,       V ( )

− + =
+ + +

= −

in in out in

out in in

R R R
V V V V

R R R R R R

R
Or V V

R

 

 

If 1 2R R= , 2 1out in inV V V= − , i.e., the difference between the two input signals. 
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R1

R2
B
A

I1
Vout

R1

R2

Vin2

Vin1

 
 

Fig. 1.7 Difference amplifier 

1.10   Current to Voltage (I-V) Converter 

Figure 1.8 shows the circuit configuration of a current to voltage converter. 

 

IS Vout

R

IR

 
 
Fig. 1.8 Current to voltage converter 

The current entering the inverting terminal is neglected. So the whole current is 
flowing through the resistor R. 

 

o0     s , + = = −S R S RI I I I  
 

So,      or,         or,  −−= ≈ = − = − = −out out out
R S R o S

V V V V
I I I V I R

R R R
 

 
The output voltage is directly proportional to the input current. 

1.11   Integrator 

Figure 1.9 shows the circuit configuration which acts as an integrator. 
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C

Ic
R IR VoutVin

 

Fig. 1.9 An integrator 

Applying KCL at inverting input terminal, we have  0R CI I+ =  
 

intial

0

( ) 0    Or,   0

1

−+ − = + =

= −

= − +∫

in in
out out

out in

t

out in

V Vd d
C V V C V

R dt R dt
dV V

dt RC

V V dt V
RC

 

 

RC is the time constant of the integrator. For a discharged capacitor Vinitial is zero. If 
any DC component exists in the input, the output will continuously increase which 
eventually results in the saturation of the output at one supply voltage. Sometimes to 
overcome this problem the circuit is usually modified to reduce its DC gain. 

In some application the initial voltage across the capacitor may create problem. 
So the capacitor can be discharged by using a semiconductor switch as shown in 
figure 1.10. The capacitor gets discharged when the FET switch is closed. Constant 
input voltage Vin and regular pulses on Reset will produce a saw-tooth waveform. 

Reset

Q1

C

VoutRVin

 
Fig. 1.10 An integrator with reset 
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1.12   Differentiator 

By interchanging the relative position of the capacitor and the resistor in figure 
1.9, a differentiator circuit is implemented. Figure 1.11 shows the circuit configu-
ration of a differentiator. 

 

C

IR

IC

R

VoutVin

 

Fig. 1.11 A differentiator 

 

Applying KCL at the inverting input terminal, we have 0C RI I+ =  

( ) 0

or,    

−
−

−− + =

= −

out
in

in
out

V Vd
C V V

dt R
dV

V RC
dt

 

So the output voltage is proportional to the derivative of the input voltage with re-
spect to time. 

This circuit amplifies the high frequency signals and unwanted noise and there-
fore is inherently unstable. Connecting the non-inverting input to ground via a re-
sistance R, reduces the effect of input bias current. 

1.13   Comparators and Schmitt Triggers 

In many applications, a special type of op-amp is used to compare a signal voltage 
on one of the input terminal with a reference voltage on the other input terminal, 
which is often adjustable. 

Figure 1.12 shows the configuration of a comparator with the non-inverting 
(reference) input set to VREF. The input is connected to the inverting input. 
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Vout

+Vcc

RC

Q1

+Vcc

RC

R2

R1

Vin Vout

VREF
V1

 

Fig. 1.12 Comparator configuration 

It is called the open-collector configuration i.e., the collector of the transistor is 
kept open. The output of the comparator should be connected to the supply 
through a resistor, RC, normally about 1 kΩ. 

The reference voltage can be changed by changing the variable resistance R2 
and is given by- 

 

2
1

1 2

=
+REF

R
V V

R R
 

 
When Vin  >  VREF,  Vo = 0  or  –Vcc 

     Vin  <  VREF,  Vo = Vcc  
 

RC can be replaced by a relay, heater, lamp or motor. 
When VREF = 0V, the comparator becomes a zero-crossing detector. 
 

Some IC comparators are- 
LM 311 
LM 339 
LT 1016 

 
Usually the comparators are fast acting and very often the input signals are noisy. 
There is a strong possibility that the output will undergo several on-off transitions 
as the input signal crosses the reference voltage level. This undesirable behavior 
can be prevented by using positive feedback from the output as shown in figure 
1.13, which is called a Schmitt trigger. The output now has a hysteresis because 
the reference voltage, VREF, depends on the output level. 

 



1.14   Logarithmic Amplifier 11 
 

R2

R3

+Vcc

RC

R1

Vin Vout

VREFV1

 
 

Fig. 1.13 Schmitt trigger 

Applying KCL at the non-inverting input terminal i.e., the junction point of re-
sistances R1, R2 and R3 

 

1

1 2 3

1

1 2 3 3 1

0  

1 1 1
or,   ( )

−− + + =

+ + = +

REF outREF REF

out
REF

V VV V V

R R R

V V
V

R R R R R

 

 

When Vout goes to +Vcc, VREF goes to the higher VREF 
When Vo goes to –Vcc, VREF goes to the lower VREF. 

 
So the lower and higher VREF gives a reference band. By choosing appropriate re-
sistance values the hysteresis band can be properly designed.                   

1.14   Logarithmic Amplifier 

Figure 1.14 shows the circuit configuration for a logarithmic amplifier. A diode 
has been connected in the feedback loop.   

 
D

R

ID

+VD-

VoutIinVin

 

Fig. 1.14 Logarithmic amplifier 
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The relationship of the diode current and voltage is given by- 

 

( 1)
D D

T T

V V
V V

D o oI I e I e= − ≈η η  

 
where, 
 

T

kT
V

e
= , and IO is the reverse saturation current of the diode. 

k is the Boltzmann’s constant = 1.38e10-23 J/K 
e is the charge of an electron = 1.6e10-19 C 
T is the absolute temperature in Kelvin 
 

At room temperature (300o K), the VT, the voltage equivalent temperature of diode 
is: 

 
-23

T -19

1.38e10 *300
V = = 26mV

1.6e10
 

 
Since the current drawn by the op-amp is negligible, we have- 
 

in
in D

V
I I

R
= =  

 
So we can write, 
 

η= =
D

T

V
V

in D oV RI RI e  

 
Now, the output voltage Vout = –VD (the voltage drop across the diode). 

Assuming 1η =  and replacing VD by –Vout, we have, 

 
out

T

v
V

in oV RI e
−

=  

 
Taking logarithm of both sides, 

 

log log( ) out
in o

T

v
v RI

V
= −  

 
By properly choosing R, it is possible to make RIo =1, so the first term of the right 
hand side will be zero. So we can write, 
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log               Or,     logout
in out T in

T

v
v v V v

V
= − = −  

1.15   Exponential Amplifier 

Figure 1.15 shows the circuit configuration of an exponential (or antilog) ampli-
fier. Since the current input to the op-amp is negligible, we have ID = IR. Because 
of the virtual ground at input, we have Vin= VD. 

 
D

T T

V Vin
V V

R D o oI I I e I e= = =η η  

Assuming  1η =  and  = −out RV I R , we get         = − = −
i

T

v
V

out D oV I R RI e  

 

R

D ID Vout

IR

Vin

 
 

Fig. 1.15 Exponential amplifier 

1.16   Single-Pole Filters 

Figure 1.16 shows the circuit configuration of a low-pass filter. The capacitor C is 
represented by an impedance 1/(sC) in the s domain (s = jω).  

 
C

R1 Vout

RF

Vin

 

Fig. 1.16 Low pass filter with gain 
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11

1

1

and

So, 

(1/ )
( )               ( )

1/ 1

( ) /
    ( ) ( ) ( )

( ) 1

= = =
+ +

= − = −
+

F F
F

F F

o F
o in in

F

R
R sC R

Z s Z s
R sC sR C

Z s R R
V s V s V s

Z s sR C

 

 
where Vo(s) and Vin(s) are s-domain output and input signals. 

The above equation represents a low-pass filter. When sRFC << 1, the signals are 
passed with a gain of (RF/R1) without any attenuation. At sRFC = 1, a 3 dB reduction 
in gain occurs. When sRFC >>1, the signals are highly attenuated. The voltage gain 
decreases by 10 times (-20 dB) when the frequency increases by 10 times. 

In many situations the voltage gain may not be required and a simple configura-
tion is important. Figure 1.17 shows the configuration of the low pass filter with 
unity gain with a negative feedback loop. The configuration is a voltage follower 
and the filtering is achieved by the passive RC filter. 

 

C

R VoutVin

 

Fig. 1.17 Unity gain low pass filter  

The expression of the output voltage is given by- 
 

2 2

c
out in

c

X
V V

R X
=

+
 

 
The cut-off frequency of the configuration is given by- 

 
1

c RC
ω =   or,  

1

2cf RCπ
=  

 
When the operating frequency f << fc, the signals are passed through without any 
attenuation. At f = fc, a 3 dB reduction in gain occurs. When f >> fc, the signals are 
highly attenuated. 

By interchanging the position of the resistor and the capacitor in figure 1.17, a 
high pass filter configuration is achieved. Figure 1.18 shows the configuration of a 
single-pole high pass filter based on passive RC filtering. 
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The expression of the output voltage is given by- 
 

2 2out in

c

R
V V

R X
=

+
 

 
The cut-off frequency of the configuration is given by- 

 
1

c RC
ω =   Or,  

1

2cf RCπ
=  

 
When the operating frequency f << fc, the signals are highly attenuated. At f = fc, a 
3 dB reduction in gain occurs. When f >> fc, the signals are passed with a gain of 
unity without any attenuation. 

 

R

C VoutVin

 

Fig. 1.18 Unity gain high pass filter 

1.17   Double-Pole Filters 

Figure 1.19 shows the configuration of a second order low pass filter. 

 
C1

R1

C2

VoutR2Vin

 

Fig. 1.19 Double-pole low pass filter 
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Figure 1.20 shows the configuration of a second order high pass filter. 

 

C1

R1

R2

C2 Vout

 

Fig. 1.20 Double-pole high pass filter 

For both the circuits shown in figures 1.19 and 1.20, the critical frequency or 
the cut-off frequency is calculated by the following formula- 

1 2 1 2

1

2
cf

R R C C
=

π
 

1.18   Band-Pass and Band-Stop Filters 

By cascading a high pass filter with a low pass filter, it is possible to implement a 
band pass filter; the configuration for a double pole band pass filter is shown in 
figure 1.21. 

 

R4 Vout

C4

R3

C3

C1 C2

R1

R2

Vin

 

Fig. 1.21 Double-pole band pass filter 

The critical frequency of each filter is chosen in such a way that their response 
curves overlap. The cut-off frequency of the high pass filter, fc1, is lower than the 
cut-off frequency of the low pass filter, fc2. The cut-off frequencies are given by- 



1.18   Band-Pass and Band-Stop Filters 17 
 

1 2

1 2 1 2 3 4 3 4

1 1
         

2 2
c cf f

R R C C R R C C
= =

π π
 

 
The centre frequency, fc, of the pass band is the geometric average of fc1 and fc2.  

 

1 2c c cf f f= . 

 
It is also possible to implement a band-pass filter by using only one operational 
amplifier. Figure 1.22 shows the configuration of such as band-pass filter. The 
cut-off frequency of the filter is given by- 

 
1

2cf CRπ
=  

 
The characteristics of the filter are affected by the gain of the filter. The gain is set 
by R1 and R2. 

In many applications it may be necessary to stop signal of a particular band of 
frequencies. It is possible to implement a band-stop filter as shown in figure 1.23. 

The cut-off frequency of the filter is given by- 
 

1

2cf CRπ
=  

 
The characteristics of the filter are affected by the gain of the filter. The gain is set 
by R1 and R2. 

 

Vout

C

C

R2

R1

2R

R

R

Vin

 

Fig. 1.22 Band-pass filter using only one op-amp 
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Fig. 1.23 Band-stop filter using only one op-amp 

1.19   Oscillator Circuits 

In many applications, oscillators are required to be implemented. Two op-amp 
based oscillators are described here. The first one provides sinusoidal output 
whereas the second one provides square wave output. 

Figure 1.24 shows the configuration of a Wein-bridge oscillator. A series and 
parallel combination of resistors and capacitors are used for the feedback circuit. 
At the selected frequency of oscillation, the feedback circuit has a phase shift of 
zero and a gain of 1/3. So the network is configured as a non-inverting amplifier 
with a gain of 3. The gain of 3 is achieved by adjusting the feedback resistance; R1 
is two times the resistance R2. If the gain is too low, the oscillation will stop. On 
the other hand a high gain will saturate the oscillator and the output will be dis-
torted. 

Figure 1.25 shows the circuit configuration of a simple op-amp based square 
wave generator. The circuit is also called as relaxation oscillator. The reference volt-
age at the non-inverting point A, depends on the output voltage and is given by- 

 

1

1 2

λ= ± = ±
+REF cc cc

R
V V V

R R
 

where λ is the feedback ratio. The supply voltage is ± Vcc. 
The circuit is also called an astable multivibrator. The period of the square 

wave is given by- 
 

1
2 ln

1
T RC

λ
λ

+=
−
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Fig. 1.24 Configuration of a Wein-bridge oscillator 
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Fig. 1.25 Square wave generator 
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2 

Introduction to Silicon Labs C8051F020 
Microcontroller 

2.1   Introduction 

This chapter gives an overview of the SiLab C8051F020 micro-controller. On-
chip peripherals like ADC and DAC, and other features like the crossbar and the 
voltage reference generator are briefly introduced. While programming using a 
high level language, such as C, makes it less important to know the intricacies of 
the hardware architecture of the micro-controller, it is still beneficial to have some 
knowledge of the memory organization and special function registers. Thus, these 
are also covered in this chapter. 

2.2   CIP-51 

SiLab mixed-signal system chips utilize the CIP-51 microcontroller core. The 
CIP-51 implements the standard 8051 organization, as well as additional custom 
peripherals. The block diagram of the CIP-51 is shown in figure 2.1. 

The CIP-51 employs a pipelined architecture and is fully compatible with the 
MCS-51™ instruction set. The pipelined architecture greatly increases the instruc-
tion throughput over the 8051 architecture.  

With the 8051, all instructions except for MUL and DIV take 12 or 24 system 
clock cycles to execute, and is usually limited to a maximum system clock of 12 
MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two 
system clock cycles, with no instructions taking more than eight system clock cy-
cles. With the CIP-51's maximum system clock at 25 MHz, it has a peak through-
put of 25 millions of instructions per second (MIPS). The CIP-51 has a total of 
109 instructions. Table 2.1 summarizes the number of instructions that require 1 to 
8 clock cycles to execute. 
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Fig. 2.1 Block diagram of CIP-51 

Table 2.1 Execution Time of CIP-51 instructions 

Clock Cycles to 
execute 

1 2 2/3 3 3/4 4 4/5 5 8 

Number of 
Instructions 

26 50 5 14 7 3 1 2 1 

2.3   C8051F020 System Overview 

The SiLab C8051F020 is a fully integrated mixed-signal System-on-a-Chip mi-
crocontroller available in a 100 pin TQFP package. Its main features are shown in 
figure 2.2 and summarized in table 2.2. The block diagram is shown in figure 2.3. 
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Fig. 2.2 System overview of the C8051F02x family 

Table 2.2 C8051F020 Features 

Peak Throughput 25 MIPS 
FLASH Program Memory 64K 
On-chip Data RAM 4352 bytes 
Full-duplex UARTS x 2 
16-bit Timers x 5 
Digital I/O Ports 64 pins 
12-bit 100ksps ADC  8 channels 
8-bit 500ksps ADC  8 channels 
DAC Resolution 12 bits 
DAC Outputs x 2 
Analog Comparators x 2 
Interrupts Two levels 
Programmable Counter Arrays (PCA)   
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Fig. 2.3 Block diagram of C8051F020 

All analog and digital peripherals are enabled/disabled and configured by  
user software. The FLASH memory can be reprogrammed even in-circuit,  
providing non-volatile data storage, and also allows field upgrades of the 8051 
firmware.  

2.4   Memory Organization 

The memory organization of the CIP-51 System Controller is similar to that of a 
standard 8051 (Figure 1.2). There are two separate memory spaces: program mem-
ory and data memory. The CIP-51 memory organization is shown in figure 2.4. Pro-
gram and data memory share the same address space but are accessed via different 
instruction types. 

2.4.1   Program Memory 

The C8051F020’s program memory consists of 65536 bytes of FLASH, of which 
512 bytes, from addresses 0xFE00 to 0xFFFF, are reserved for factory use. There 
is also a single 128 byte sector at address 0x10000 to 0x1007F (Scratchpad Mem-
ory), which is useful as a small table for software program constants. 
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Fig. 2.4 C8051F020 memory map 

2.4.2   Data Memory 

The C8051F020 data memory has both internal and external address spaces. The in-
ternal data memory consists of 256 bytes of RAM. The Special Function Registers 
(SFR) are accessed anytime the direct addressing mode is used to access the upper 128 
bytes of memory locations from 0x80 to 0xFF, while the general purpose RAM are 
accessed when indirect addressing is used (refer to Chapter 3 for addressing modes). 
The first 32 bytes of the internal data memory are addressable as four banks of 8 gen-
eral purpose registers, and the next 16 bytes are bit-addressable or byte-addressable. 

The external data memory has a 64K address space, with an on-chip 4K byte 
RAM block. An external memory interface (EMIF) is used to access the external 
data memory. The EMIF is configured by programming the EMI0CN and 
EMI0CF SFRs. The external data memory address space can be mapped to on-
chip memory only, off-chip memory only, or a combination of the two (addresses 
up to 4K directed to on-chip, above 4K directed to EMIF). The EMIF is also ca-
pable of acting in multiplexed mode or non-multiplexed mode, depending on the 
state of the EMD2 (EMI0CF.4) bit. 

2.4.3   Stack 
The programmer stack can be located anywhere in the 256 byte internal data 
memory. A reset initializes the stack pointer (SP) to location 0x07; therefore, the 
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first value pushed on the stack is placed at location 0x08, which is also the first 
register (R0) of register bank 1. Thus, if more than one register bank is to be used, 
the stack should be initialized to a location in the data memory not being used for 
data storage. The stack depth can extend up to 256 bytes. 

2.4.4   Special Function Registers (SFRs) 

The SFRs provide control and data exchange with the C8051F020’s resources and 
peripherals. The C8051F020 duplicates the SFRs found in a typical 8051 imple-
mentation as well as implements additional SFRs which are used to configure and 
access the sub-systems unique to the microcontroller. This allows the addition of 
new functionalities while retaining compatibility with the MCS-51™ instruction 
set. Table 2.3 lists the SFRs implemented in the CIP-51 microcontroller. 

The SFRs are accessed anytime the direct addressing mode is used to access 
memory locations from 0x80 to 0xFF. The SFRs with addresses ending in 0x0 or 
0x8 (e.g. P0, TCON, P1, SCON, IE etc.) are bit-addressable as well as byte-
addressable. All other SFRs are byte-addressable only. Unoccupied addresses in 
the SFR space are reserved for future use. Accessing these areas will have an inde-
terminate effect and should be avoided. 
 

Table 2.3 SFR memory map 

F8 SPI0CN PCA0H PCA0CPH0 PCA0CPH1 PCA0CPH2 PCA0CPH3 PCA0CPH4 WDTCN 

F0 B SCON1 SBUF1 SADDR1 TL4 TH4 EIP1 EIP2 

E8 ADC0CN PCA0L PCA0CPL0 PCA0CPL1 PCA0CPL2 PCA0CPL3 PCA0CPL4 RSTSRC 

E0 ACC XBR0 XBR1 XBR2 RCAP4L RCAP4H EIE1 EIE2 

D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4  

D0 PSW REF0CN DAC0L DAC0H DAC0CN DAC1L DAC1H DAC1CN 

C8 T2CON T4CON RCAP2L RCAP2H TL2 TH2  SMB0CR 

C0 SMB0CN SMB0STA SMB0DAT SMB0ADR ADC0GTL ADC0GTH ADC0LTL ADC0LTH 

B8 IP SADEN0 AMX0CF AMX0SL ADC0CF P1MDIN ADC0L ADC0H 

B0 P3 OSCXCN OSCICN   P74OUT FLSCL FLACL 

A8 IE SADDR0 ADC1CN ADC1CF AMX1SL P3IF SADEN1 EMI0CN 

A0 P2 EMI0TC  EMI0CF P0MDOUT P1MDOUT P2MDOUT P3MDOUT 

98 SCON0 SBUF0 SPI0CFG SPIODAT ADC1 SPI0CKR CPT0CN CPT1CN 

90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H P7  

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL 

80 P0 SP DPL DPH P4 P5 P6 PCON 

 0(8) 

Bit 
addressable 

1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F) 
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2.5   I/O Ports and Crossbar 

The standard 8051 Ports (0, 1, 2, and 3) are available on the C8051F020, as  
well as 4 additional ports (4, 5, 6, and 7) for a total of 64 general purpose port  
I/O pins. The port I/O behaves like the standard 8051 with a few enhancements. 
Access is possible through reading and writing the corresponding Port Data  
registers.  

All port pins are 5 V tolerant, and support configurable Push-Pull or Open-
Drain output modes and weak pull-ups. In addition, the pins on Port 1 can be 
used as Analog Inputs to ADC1. A block diagram of the port I/O cell is shown in 
figure 2.5. 
 

 

 

Fig. 2.5 Port I/O cell block diagram 

The four lower ports (P0-P3) can be used as General-Purpose I/O (GPIO) pins 
or be assigned as inputs/outputs for the digital peripherals by programming a Digi-
tal Crossbar (Figure 2.6). The lower ports are both bit- and byte-addressable. The 
four upper ports (P4-P7) serve as byte-addressable GPIO pins. 

The Digital Crossbar is essentially a large digital switching network that allows 
mapping of internal digital peripherals to the pins on Ports 0 to 3. The on-chip 
counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, com-
parator outputs, and other digital signals in the controller can be configured to ap-
pear on the I/O pins by configuring the Crossbar Control registers XBR0, XBR1 
and XBR2. This allows the system designer to select the exact mix of GPIO and 
digital resources needed for the particular application, limited only by the number 
of pins available. Unlike microcontrollers with standard multiplexed digital I/O, 
all combinations of functions are supported.  
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The digital peripherals are assigned Port pins in a priority order, starting with 
P0.0 and continue through P3.7 if necessary. UART0 has the highest priority and 
CNVSTR has the lowest priority. 

 

 

Fig. 2.6 Block diagram of lower port I/O (P0 to P3) 

2.6   12-Bit Analog to Digital Converter 

The C8051F020 has an on-chip 12-bit successive approximation register  
(SAR) Analog to Digital Converter (ADC0) with a 9-channel input multiplexer 
and programmable gain amplifier (Figure 2.7). A voltage reference is required  
for ADC0 to operate and is selected between the DAC0 output and an external 
VREF pin. 

The ADC is configured via its associated Special Function Registers. One input 
channel is tied to an internal temperature sensor, while the other eight channels are 
available externally. Each pair of the eight external input channels can be setup as 
either two single-ended inputs or a single differential input. 
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Fig. 2.7 12-Bit ADC block diagram 

A programmable gain amplifier follows the analog multiplexer. The gain can 
be set in software from 0.5 to 16 in powers of 2. The gain stage is useful when dif-
ferent ADC input channels have widely varied input voltage signals, or when 
"zooming in" on a signal with a large DC offset (in differential mode, a DAC 
could be used to provide the DC offset). 

Conversions can be started in four ways: 
 

1. Software command,  
2. Overflow of Timer 2, 
3. Overflow of Timer 3, or  
4. External signal input (CNVSTR).  
 
Conversion completions are indicated by a status bit and an interrupt (if enabled). 
The resulting 12 bit data word is latched into two SFRs upon completion of a con-
version. The data can be right or left justified in these registers (since ADC output 
is 12 bits but the two SFRs are 16 bits) under software control. 

The Window Compare registers for the ADC data can be configured to inter-
rupt the controller when ADC data is within or outside of a specified range. The 
ADC can monitor a key voltage continuously in background mode, but not inter-
rupt the controller unless the converted data is within the specified window. 

2.7   8-Bit Analog to Digital Converter 

The C8051F020 has an on-board 8-bit SAR Analog to Digital Converter (ADC1) 
with an 8-channel input multiplexer and programmable gain amplifier (Figure 2.8).  
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Eight input pins are available for measurement. The ADC is again configurable via 
the SFRs. The ADC1 voltage reference is selected between the analog power supply 
(AV+) and an external VREF pin.  

A programmable gain amplifier follows the analog multiplexer. The gain can 
be set in software to 0.5, 1, 2, or 4. Just as with ADC0, the conversion scheduling 
system allows ADC1 conversions to be initiated by software commands, timer 
overflows or an external input signal. ADC1 conversions may also be synchro-
nized with ADC0 software-commanded conversions. Conversion completions are 
indicated by a status bit and an interrupt (if enabled), and the resulting 8 bit data 
word is latched into a SFR upon completion. 

 

 

Fig. 2.8 8-Bit ADC block diagram 

2.8   Digital to Analog Converters 

The C8051F020 has two 12-bit Digital to Analog Converters, DAC0 and DAC1, 
as shown in figure 2.9. The DAC voltage reference is supplied via the dedicated 
VREFD input pin. The DAC output is updated each time when there is a software 
write (DACxH), or a Timer 2, 3, or 4 overflow (Figure 2.10). The DACs are espe-
cially useful as references for the comparators or offsets for the differential inputs 
of the ADC. 
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Fig. 2.9 Comparator and DAC block diagram 
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Fig. 2.10 DAC block diagram 

2.9   Analog Voltage Comparators 

There are two on-board voltage comparators, Comparator0 and Comparator1, 
with software programmable hysteresis. The block diagram of the voltage com-
parators is shown in figure 2.11. The inputs of each comparator are available at 
the package pins. The outputs of the comparators are optionally available at the 
lower port I/O pins via the Crossbar. When assigned to package pins, each com-
parator output can be programmed to operate in open drain or push-pull modes. 
Comparator0 can also be programmed as a reset source. The operation of Com-
parator1 is identical to that of Comparator0, though Comparator1 may not be 
configured as a reset source. The comparators can generate an interrupt on its ris-
ing edge, falling edge, or both. The comparators' output state can also be polled 
in software. 
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Fig. 2.11 Functional block diagram of the voltage comparators 

2.9.1   Enable/Disable Comparator 

There is one Comparator Control register (CPT0CN and CPT1CN for Compara-
tor0 and Comparator1, respectively) for each comparator. Each comparator can be 
individually enabled or disabled (shutdown). Comparator0 is enabled by setting 
the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0.When  
disabled, the comparator output (if assigned to a Port I/O pin via the Crossbar)  
defaults to the logic low state, its interrupt capability is suspended and its supply 
current falls to less than 1 µA. Comparator inputs can be externally driven from -
0.25 V to (AV+) +25 V without damage or upset. 

2.9.2   Programmable Hysteresis 

The hysteresis of each comparator is software-programmable. The user can pro-
gram both the amount of hysteresis voltage (referred to the input voltage) and the 
positive and negative-going symmetry of this hysteresis around the threshold volt-
age. For the Comparator0, the hysteresis is programmed using bits 3-0 in the 
Comparator0 Control Register CPT0CN. The amount of negative hysteresis volt-
age is determined by the settings of the CP0HYN bits; in a similar way, the  
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amount of positive hysteresis is determined by the setting the CP0HYP bits. The 
hysteresis plot is shown in figure 2.12. VIN- and VIN+ are the input signals at 
CP0-/CP1- and CP0+/CP1+ respectively. 

 

 

Fig. 2.12 Comparator hysteresis plot 

2.9.3   Comparator Output and Interrupt 

The output of the comparator can be polled in software, or can be used as an inter-
rupt source. The output state of the Comparator can be obtained at any time by 
reading the CP0OUT (CP1OUT) bit. Comparator interrupts can be generated on 
rising-edge and/or falling-edge output transitions. The CP0FIF (CP1FIF) flag is 
set upon a Comparator falling-edge interrupt, and the CP0RIF (CP1RIF) flag is set 
upon the Comparator rising-edge interrupt. Once set, these bits remain set until 
cleared by software. 

The Comparator0 falling edge interrupt and rising edge interrupts are enabled 
by setting ECP0F (EIE1.4) bit and ECP0R (EIE1.5) bit respectively. The priority 
for Comparator0 falling edge interrupt and rising edge interrupt are set by PCP0F 
(EIP1.4) bit and PCP0R (EIP1.5) bit respectively. Likewise, the Comparator1 fal-
ling edge interrupt and rising edge interrupts are enabled by setting ECP1F 
(EIE1.6) bit and ECP1R (EIE1.7) bit respectively. The priority for Comparator1 
falling edge interrupt and rising edge interrupt are set by PCP1F (EIP1.6) bit and 
PCP1R (EIP1.7) bit respectively. 
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The following program shows how to set up the Comparator1 to generate inter-
rupts on the falling and rising edges. 

 

 
2.10   Voltage Reference 

A voltage reference has to be used when operating the ADC and DAC. The 
C8051F020’s three voltage reference input pins allow each ADC and the two 
DACs to reference an external voltage reference or the on-chip voltage reference 
output. ADC0 may also reference the DAC0 output internally, and ADC1 may 
reference the analog power supply voltage (AV+), via the VREF multiplexers 
shown in figure 2.13. 

The internal voltage reference circuit consists of a 1.2V bandgap voltage refer-
ence generator and a gain-of-two output buffer amplifier, i.e. VREF is 2.4 V. The 
internal reference may be routed via the VREF pin to external system components 
or to the voltage reference input pins shown in figure 2.13. Bypass capacitors of 
0.1 µF and 4.7 µF are recommended from the VREF pin to AGND. 
 
 
 

 

void Init_Comp1(void) //-- Initialise Comparator1
{ 

//-- Enable Comparator1, 10mV positive and 
//  negative hysteresis 

CPT1CN = 0x8F;  
  //-- Enable CP1 rising and falling edge interrupt 

EIE1 |= 0xC0;  
} 
 
//-- Comparator1 Rising Edge Interrupt Service Routine 
void CP1RIF_ISR(void) interrupt 13 
{ 
 //-- This interrupt is generated when CP1+ > CP1- 
 CPT1CN &= 0xDF; //-- clear the interrupt flag 
 P5 = 0x10;  //-- turn on LED at P5.4 
} 
 
//-- Comparator1 Falling Edge Interrupt Service Routine 
void CP1FIF_ISR(void) interrupt 12 
{ 
 //-- This interrupt is generated when  CP1+ < CP1- 
 CPT1CN &= 0xEF; //-- clear the interrupt flag 
 P5 = 0x20;  //-- turn on LED at P5.5 
} 
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Fig. 2.13 Voltage reference functional block diagram 

2.10.1   REF0CN: Reference Control Register 

The Reference Control Register, REF0CN, enables/disables the internal reference 
generator and selects the reference inputs for ADC0 and ADC1 (Table 2.4).  

 
Example: MOV REF0CN, #00000011B 

 
This enables the use of the ADC or DAC, and the internal voltage reference.  
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Table 2.4 REF0CN: Reference Control Register 

Bit Symbol Description 
7-5 - Unused. Read=000b; Write=Don’t care. 

4 AD0VRS 
ADC0 Voltage Reference Select 
0: ADC0 voltage reference from VREF0 pin. 
1: ADC0 voltage reference from DAC0 output. 

3 AD1VRS 
ADC1 Voltage Reference Select 
0: ADC1 voltage reference from VREF1 pin. 
1: ADC1 voltage reference from AV+ 

2 TEMPE 
Temperature Sensor Enable Bit 
0: Internal Temperature Sensor Off. 
1: Internal Temperature Sensor On. 

1 BIASE 

ADC/DAC Bias Generator Enable Bit 
(Must be ‘1’ if using ADC or DAC)  
0: Internal Bias Generator Off. 
1: Internal Bias Generator On. 

0 REFBE 

Internal Reference Buffer Enable Bit 
0: Internal Reference Buffer Off. 
1: Internal Reference Buffer On. Internal voltage  
    reference is driven on the VREF pin. 

2.11   Programmable Counter Array (PCA) 

The Programmable Counter Array (PCA0) provides enhanced timer functionality 
while requiring less CPU time. PCA0 consists of a dedicated 16-bit counter/timer 
and five 16-bit capture/compare modules. Each capture/compare module has its 
own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O 
when enabled. The counter/timer is driven by a programmable time-base that can 
select between six inputs as its source which are: 

 
• system clock 
• system clock divided by four 
• system clock divided by twelve 
• external oscillator clock source divided by 8 
• Timer 0 overflow 
• external clock signal on the ECI line 
 
Each capture/compare module may be configured to operate independently in one 
of the following six modes: 

 
• Edge-Triggered Capture 
• Software Timer 
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• High-Speed Output 
• Frequency Output 
• 8-Bit PWM 
• 16-Bit PWM 
 
The PCA0 is configured and controlled through the system controller's  
Special Function Registers (SFRs). The basic block diagram of the PCA is shown 
in figure 2.14. 

 

   

Fig. 2.14 Block diagram of the Programmable Counter Array 

2.11.1   PCA Counter/Timer and Timebase Selection 

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L (low byte) and 
PCA0H (high byte). When reading the 16-bit counter value, the low byte must be 
read first, followed by the high byte to guarantee an accurate reading of the entire 
16-bit PCA0 counter. Reading PCA0L automatically latches the value of PCA0H 
into a “snapshot” register; the following PCA0H read accesses this “snapshot” 
register. Reading PCA0H or PCA0L does not disturb the counter operation. The 
CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer 
as shown in table 2.5. Figure 2.15 shows the block diagram of the PCA 
Counter/Timer. 



2.11   Programmable Counter Array (PCA) 39
 

Table 2.5 PCA timebase selection 

CPS2 CPS1 CPS0 Timebase 

0 0 0 System clock divided by 12 

0 0 1 System clock divided by 4 

0 1 0 Timer 0 overflow 

0 1 1 High-to-low transitions on ECI 
(max rate = system clock divided by 4) 

1 0 0 System clock 

1 0 1 External oscillator source divided by 8 

 

 
Fig. 2.15 Block diagram of the PCA Counter/Timer 

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Over-
flow Flag (CF) in PCA0CN (PCA0 Control register) is set to logic 1 and an inter-
rupt request is generated if CF interrupts are enabled. Setting the ECF bit in 
PCA0MD (PCA0 Mode register) to logic 1 enables the CF flag to generate an in-
terrupt request. The CF bit is not automatically cleared by hardware when the 
CPU vectors to the interrupt service routine, and must be cleared by software. 
PCA0 interrupts must be globally enabled before CF interrupts are recognized. 
PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 
bit (EIE1.3) to logic 1. Clearing the CIDL bit in the PCA0MD register allows the 
PCA to continue normal operation while the CPU is in Idle mode. 

2.11.2   Operation Modes and Interrupts 

As mentioned earlier, each capture/compare module can be configured to operate 
independently in one of six operation modes: Edge-triggered Capture, Software 
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Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 
16-Bit Pulse Width Modulator. Each module has Special Function Registers 
(SFRs) associated with it. These registers are used to exchange data with a module 
and configure the module's mode of operation. Figure 2.16 shows the PCA Inter-
rupt configuration. 

 

 

Fig. 2.16 Block diagram of the PCA interrupt structure 

Table 2.6 PCA0CPMn register settings 

PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF Operation Mode 

X X 1 0 0 0 0 X 
Capture triggered by 
positive edge on CEXn  

X X 0 1 0 0 0 X 
Capture triggered by 
negative edge on CEXn 

X X 1 1 0 0 0 X 
Capture triggered by 
transition on CEXn 

X 1 0 0 1 0 0 X Software Timer 

X 1 0 0 1 1 0 X High Speed Output 

X 1 0 0 X 1 1 X Frequency Output 

0 1 0 0 X 0 1 X 
8-Bit Pulse Width 
Modulator 

1 1 0 0 X 0 1 X 
16-Bit Pulse Width 
Modulator 
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Table 2.6 summarizes the bit settings in the PCA0CPMn registers used to select 
the PCA0 capture/compare module’s operating modes. Setting the ECCFn bit in a 
PCA0CPMn register enables the module's CCFn interrupt. PCA0 interrupts must 
be globally enabled before individual CCFn interrupts are recognized. PCA0 inter-
rupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) 
to logic 1.  

2.11.3   Edge-Triggered Capture Mode  

In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value 
of the PCA0 counter/timer (PCA0L and PCA0H) and load it into the correspond-
ing module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). 

The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the 
type of transition that triggers the capture. 

• Capture is triggered on low-to-high transition (positive edge) is selected when 
CAPPn=1 and CAPNn=0 

• Capture is triggered on high-to-low transition (negative edge) is selected when 
CAPPn=0 and CAPNn=1 

• Capture is triggered on either transition (positive or negative edge) is selected 
when CAPPn=1 and CAPNn=1 
 

When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to 
logic 1 and an interrupt request is generated if CCF interrupts have been enabled. 
The CCFn bit is not automatically cleared by hardware when the CPU vectors to 
the interrupt service routine, and must be cleared by software. 

 

 
Fig. 2.17 PCA capture mode diagram 
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2.11.4   Software Timer (Compare) Mode  

In Software Timer mode, the PCA0 counter/timer (PCA0L and PCA0H) is  
compared to the module's 16-bit capture/compare register (PCA0CPHn and  
PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN 
is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. 
The CCFn bit is not automatically cleared by hardware when the CPU vectors to  
the interrupt service routine, and must be cleared by software. Setting the ECOMn 
and MATn bits in the PCA0CPMn register enables Software Timer (Compare) 
mode. 

When writing a 16-bit value to the PCA0 Capture/Compare registers, the low 
byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit 
to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’. This ensures that the 16-bit 
comparator is enabled only when the entire 16-bit data has been written to the 
PCA0 Capture/Compare registers. Figure 2.18 shows the PCA software Timer 
(Compare) Mode Diagram. 

 

 

Fig. 2.18 PCA software timer (compare) mode diagram 

2.11.5   High Speed Output Mode 

In High Speed Output mode, a module’s associated CEXn pin is toggled each time 
a match occurs between the PCA Counter (PCA0L and PCA0H) and the module's 
16-bit capture/compare register (PCA0CPHn and PCA0CPLn). Setting the TOGn, 
MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Out-
put mode. 

When writing a 16-bit value to the PCA0 Capture/Compare registers, the low 
byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
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to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’. This ensures that the 16-bit 
comparator is enabled only when the entire 16-bit data has been written to the 
PCA0 Capture/Compare registers. Figure 2.19 shows the PCA High Speed Output 
Mode Diagram. 

 

 

Fig. 2.19 PCA high speed output mode diagram 

2.11.6   Frequency Output Mode  

The Frequency Output Mode produces a programmable-frequency square wave on 
the module’s associated CEXn pin. The capture/compare register high byte 
(PCA0CPHn) holds the number of PCA clocks to count before the output is tog-
gled. The frequency of the square wave is defined by the following equation: 

 

2 0
PCA

CEXn

F
F

PCA CPHn
=

×
 

 
A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation. FPCA 
is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register 
(PCA0MD). The lower byte of the capture/compare register (PCA0CPLn) is com-
pared to the PCA0 counter low byte (PCA0L); on a match, CEXn is toggled and 
the offset held in the high byte is added to the matched value in PCA0CPLn.  
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Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn 
bits in the PCA0CPMn register. Figure 2.20 shows the PCA Frequency Output 
Mode Diagram. 

 

 

Fig. 2.20 PCA frequency output mode diagram 

2.11.7   8-Bit Pulse Width Modulator Mode  

Each module can be used independently to generate pulse width modulated 
(PWM) outputs on its associated CEXn pin. The frequency of the output is de-
pendent on the timebase for the PCA0 counter/timer. The duty cycle of the PWM 
output signal is varied using the module's PCA0CPLn capture/compare register. 
When the value in the low byte of the PCA0 counter/timer (PCA0L) is equal to 
the value in PCA0CPLn, the output on the CEXn pin will be asserted high. When 
the count value in PCA0L overflows, the CEXn output will be asserted and 
PCA0CPLn is reloaded automatically with the value stored in the counter/timer's 
high byte (PCA0CPHn) without software intervention. Setting the ECOMn and 
PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator 
mode.  

The duty cycle for 8-Bit PWM Mode is given by the following equation: 
 

(256 0 )

256

PCA CPHn
DutyCycle

−=  

 
Using the above equation, the largest duty cycle is 100% (PCA0CPHn = 0), and 
the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be 
generated by clearing the ECOMn bit to ‘0’. 

When writing a 16-bit value to the PCA0 Capture/Compare registers, the low 
byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
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to ‘0’; writing to PCA0CPHn sets ECOMn to ‘1’. This ensures that the 8-bit com-
parator is enabled only when both the capture/compare registers (PCA0CPLn and 
PCA0CPHn) are loaded and ready for operation. Figure 2.21 shows the PCA 8-bit 
PWM Mode Diagram. 

 

 
Fig. 2.21 PCA 8-bit PWM mode diagram 

The crossbar needs to be programmed to make the two pins, CEX0 and CEX1, 
available for PWM output. The following code segment configures the crossbar 
and the GPIO. It enables UART0 and routes CEX0 and CEX1 to two port pins. 
Thus CEX0 is at pin P0.2 and CEX1 is at pin P0.3. 

 

 

 
The following program shows how to configure the PCA0 to generate a PWM 
signal in the 8-bit PWM Mode. SYSCLK used is 22.1184 MHz and the PCA 
Timebase is SYSCLK/4. PCA Module 0 generates a PWM of 50% duty cycle  
 
 

void Init_Port(void) 
{ 

XBR0 = 0x14; //-- 00010100: UART0 Enabled, CEX0 and 
//-- CEX1 routed to 2 port pins 

 XBR1 = 0x00; 
XBR2 = 0xC0; //-- 11000000: Enable Crossbar and 

  //-- disable weak pull-ups 
 
    P0MDOUT |= 0x01;      //-- TX is push-pull 
    P0MDOUT &= ~0x02;     //-- RX is open-drain/hi-z 
    P0 |= 0x03;           //-- Make sure latches are 1 
 P0MDOUT |= 0x0C;      //-- CEX0 and CEX1 are push-pull 
} 
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(at CEX0) while PCA Module 1 generates a PWM (at CEX1) of 75% duty cycle. 
The frequency of the PWM signal is (22118400/4/256 Hz = 21.6 KHz). 

 

 

2.11.8   16-Bit Pulse Width Modulator Mode  

Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 
16-bit capture/compare module defines the number of PCA0 clocks for the low 
time of the PWM signal. When the PCA0 counter matches the module contents, 
the output on CEXn is asserted high; when the counter overflows, CEXn is as-
serted low. To output a varying duty cycle, new value writes should be synchro-
nized with PCA0 CCFn match interrupts. For a varying duty cycle, CCFn should 
also be set to logic 1 to enable match interrupts. 

The duty cycle for 16-Bit PWM Mode is given by the following equation: 

 
(65536 0 )

65536

PCA CPn
DutyCycle

−=  

 
Using the above equation the largest duty cycle is 100% (PCA0CPn = 0), and the 
smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be 
generated by clearing the ECOMn bit to ‘0’. 16-Bit PWM Mode is enabled by set-
ting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. When 
writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte 
should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 
‘0’; writing to PCA0CPHn sets ECOMn to ‘1’. This ensures that the 16-bit com-
parator is enabled only when the entire 16-bit data has been written to the PCA0 
Capture/Compare registers. Figure 2.22 shows the PCA 16-bit PWM Mode  
Diagram. 

void Init_PCA0(void) //-- Configure the PCA0
{ 

PCA0MD = 0x03; //-- 00000011: Use SYSCLK/4 as timebase, 
//-- enable counter overflow Interrupt 

PCA0CPM0 = 0x42;//-- 01000010: use PCA Module 0 for 
     //-- 8-bit PWM generation 

PCA0CPM1 = 0x42;//-- 01000010: use PCA Module 1 for 
     //-- 8-bit PWM generation 

 
 PCA0L = 0; 
 
 PCA0CPL0 = 0; 
 PCA0CPH0 = 0x80; //-- 50% duty cycle 
 PCA0CPL1 = 0; 
 PCA0CPH1 = 0x40; //-- 75% duty cycle 
 
 PCA0CN = 0x40; // 01000000: Enable PCA0 Counter (CR = 1) 
} 
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Fig. 2.22 PCA 16-bit PWM mode diagram 

The following code segment shows how to configure the PCA0 to generate a 
PWM signal in the 16-bit PWM Mode. SYSCLK used is 22.1184 MHz and the 
PCA Timebase is SYSCLK. PCA Module 0 generates a PWM of 50% duty cycle 
(at CEX0) while PCA Module 1 generates a PWM (at CEX1) of 75% duty cycle. 
The frequency of the PWM signal is (22118400/65536 = 337.5 Hz). It is assumed 
that the crossbar has been programmed to make the two pins, CEX0 and CEX1, 
available for PWM output. While writing the 16-bit value to the PCA0 Cap-
ture/Compare registers, the low byte has been written first followed by the high 
byte. 

 

 
 
In summary, the benefits of a highly integrated microcontroller include: 

 
1. More efficient circuit implementation and reduced board space 
2. Higher system reliability 
3. Cost effectiveness 

void Init_PCA0(void) //-- Configure the PCA0
{ 

PCA0MD = 0x09; //-- 00001001: Use SYSCLK as timebase, 
//-- enable counter overflow Interrupt 

PCA0CPM0 = 0xC2;//-- 11000010: use PCA Module 0 for 
    //-- 16-bit PWM generation 

 PCA0CPM1 = 0xC2;//-- 11000010: use PCA Module 1 for 
     //--16-bit PWM generation 

 
 PCA0L = 0; 
 PCA0H = 0; 
 PCA0CPL0 = 0x00; 
 PCA0CPH0 = 0x80; //-- 50% duty cycle 
 
 PCA0CPL1 = 0x00; 
 PCA0CPH1 = 0x40; //-- 75% duty cycle 
 
 PCA0CN = 0x40; // 01000000: Enable PCA0 Counter (CR = 1) 
} 
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3 

C Programming for Silabs C8051F020 
Microcontroller 

3.1   Introduction 

This chapter introduces the KeilTM C compiler for the SiLab C8051F020 board. 
We assume some familiarity with the C programming language to the level cov-
ered by most introductory courses in the C language. 

Experienced C programmers, who have little experience with the C8051F020 
architecture, should become familiar with the system. The differences in pro-
gramming the C8051F020 in C, compared to a standard C program, are almost all 
related to architectural issues. These explanations will be very useful with an un-
derstanding of the C8051F020 chip. 

The KeilTM C compiler provided with the SiLab C8051F020 board does not 
come with a floating point library and so the floating point variables and functions 
should not be used. However if floating point variables are required, a full license 
for the KeilTM C compiler can be used. 

3.2   Register Definitions, Initialization and Startup Code 

C is a high level programming language that is portable across many hardware ar-
chitectures. This means that architecture specific features such as register defini-
tions, initialization and start up code must be made available to a program via the 
use of libraries and include files. 

For the 8051 chip one needs to include the file reg51.h or using the SiLab 
C8051F020-TB development board include the file c8051f020.h: 

 
or 

#include <reg51.h> 

 

#include < c8051f020.h > 
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These files contain all the definitions of the C8051F020 registers. The standard 
initialization and startup procedures for the C8051F020 are contained in 
startup.a51. This file is included in the project and will be assembled together 
with the compiled output of the C program. For custom applications, this startup 
file might need modification. 

3.3   Basic C Program Structure 

The following is the basic C program structure; all the programs will have this  
basic structure. 

 

 
Note: All variables must be declared at the start of a code block. Variables cannot 
be declared amongst the program statements. 

This program can be tested in the SiLab IDE (Integrated Development Envi-
ronment). One cannot see anything happening on the C8051F020 development 
board, but it is possible to step through the program using the debugger. 

3.4   Programming Memory Models 

The C8051F020 processor has 126 Bytes of directly addressable internal memory 
and up to 64 Kbytes of externally addressable space. The KeilTM C compiler has 
two main C programming memory models, SMALL and LARGE which are re-
lated to these two types of memory. In the SMALL memory model the default 
storage location is the lower 128 bytes of internal memory while in the LARGE 
memory model the default storage location is the externally addressed memory. 

The default memory model required is selected using the pragma compiler 
control directive: 

 
 

//-------------------------------------------------------------- 
// Basic blank C program that does nothing  
// other than disable the watch dog timer 
//-------------------------------------------------------------- 
 
#include <c8051f020.h> // SFR declarations 
 
void main (void) 
{ 
   // disable watchdog timer 

   WDTCN = 0xde; 
   WDTCN = 0xad; 
 
   while(1);  // Stops program terminating and restarting 

} 
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Any variable declared in this file (such as the variable X above) will be stored in 
the internal memory of the C8051F020. 

The choice of which memory model to use depends on the program, the antici-
pated stack size and the size of data. If the stack and the data cannot fit in the 128 
Bytes of internal memory then the default memory model should be LARGE, oth-
erwise SMALL should be used. 

Yet another memory model is the COMPACT memory model. This memory 
model is not discussed in this chapter. More information on the compact model 
can be found in the document Cx51 Compiler User’s Guide for KeilTM  
Software. 

One can test the different memory models with the SiLab IDE connected to the 
C8051F020-TB development board. Look at the symbol view after downloading the 
program and see in which memory addresses the compiler has stored the variables. 

3.4.1   Overriding the Default Memory Model 

The default memory model can be overridden with the use of KeilTM C program-
ming language extensions that tell the compiler to place the variables in another 
location. The two main available language extensions are data and xdata: 

 

 
The integer variable X and character variable Initial are stored in the first 128 
bytes of internal memory while the integer variable Y and character variable SIni-
tial are stored in the external memory overriding any default memory model. 

Constant variables can be stored in the read-only code section of the 
C8051F020 using the code language extension: 

 

 
In general, access to the internal memory is the fastest, so frequently used data 
should be stored here while less frequently used data should be stored on the ex-
ternal memory. 

The memory storage related language extensions, bdata, and associated data 
types bit, sbit, sfr and sfr16 will be discussed in the following sections. Addi-
tional memory storage language extensions including, pdata and idata, are not 

#pragma small 
int X; 

int data X; 
char data Initial; 
int xdata Y; 
char xdata SInitial;  

const char code CR=0xDE;
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discussed in this chapter; refer to the document Cx51 Compiler User’s Guide for 
KeilTM Software for information on this. 

3.4.2   Bit-Valued Data 

Bit-valued data and bit-addressable data must be stored in the bit-addressable 
memory space on the C8051F020 (0x20 to 0x2F). This means that bit- valued data 
and bit-addressable data must be labeled as such using the bit, sbit and bdata. 

Bit-addressable data must be identified with the bdata language extension: 
 

 
The integer variable X declared above is bit-addressable. 

Any bit valued data must be given the bit data type, this is not a standard C 
data type: 

 

 
The bit-valued data flag is declared as above.  

The sbit data type is used to declare variables that access a particular bit field 
of a previously declared bit-addressable variable. 

 

 
X7flag declared above is a variable that references bit 7 of the integer variable X. 

You cannot declare a bit pointer or an array of bits. 
The bit valued data segment is 16 bytes or 128 bits in size, so this limits the 

amount of bit-valued data that a program can use. 

3.4.3   Special Function Registers 

As can be seen in the include files c8051f020.h or reg51.h, the special function 
registers are declared as a sfr data type in KeilTM C. The value in the declaration 
specifies the memory location of the register: 

 

 
Extensions of the 8051 often have the low byte of a 16 bit register preceding the 
high byte. In this scenario it is possible to declare a 16 bit special function register, 
sfr16, giving the address of the low byte: 

 

int bdata X; 

bit flag; 

/*  BYTE Register  */ 
sfr P0   = 0x80; 
sfr P1   = 0x90; 

bdata X;
sbit X7flag = X^7;  /* bit 7 of X */ 
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The memory location of the register used in the declaration must be a constant 
rather than a variable or expression. 

3.4.4   Locating Variables at Absolute Addresses 

Variables can be located at a specific memory location using the _at_ language 
extension: 

 

 
The above statement locates the integer X at the memory location 0x40. 

The _at_ language extension can not be used to locate bit addressable data.  

3.5   C Language Operators and Control Structures 

C language is a structured programming language that provides sequence, selec-
tion and repetition language constructs to control the flow of a program. The se-
quence in which the program statements execute is one after another within a code 
block. Selection of different code blocks is determined by evaluating if and else if 
statements (as well as switch-case statements) while repetition is determined by 
the evaluation of for loop or while loop constructs. 

3.5.1   Relational Operators 

Relational operators compare data and the outcome is either True or False. The if 
statements, for loops and while loops can make use of C relational operators. 
These are summarized in Table 3.1. 

Table 3.1 Relational Operators 

Operator Description 

== Equal to 
!= Not Equal to 
< Less than 
> Greater than 

<= Less than or equal to 
>= Greater than or equal to 

sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3   = 0x94; // Timer3 counter 

int X _at_  0x40; 
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3.5.2   Logical Operators 

Logical operators operate on Boolean data (True and False) and the outcome is 
also Boolean. The logical operators are summarized in Table 3.2. 

Table 3.2 Logical Operators 

Operator Description 

&& Logical AND 
|| Logical OR 
! Logical NOT 

3.5.3   Bitwise Logical Operators 

As well as the Logical operators that operate on integer or character data, the C 
language also has bitwise logical operators. These are summarized in Table 3.3. 

Table 3.3 Bit valued logical operators 

Operator Description 

& Bitwise AND 
| Bitwise OR 
~ Bitwise NOT 
^ Bitwise XOR 

 
Bitwise logical operators operate on each bit of the variables individually. 

 
Example: 

 
The above statement will assign the value 0x61 to the variable X. 

 
0x40  0100 0000 
0x21  0010 0001  
 Bitwise Logical OR 
0x61  0110 0001 

X = 0x40 | 0x21; 
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3.5.4   Compound Operators 

C language provides short cut bitwise operators acting on a single variable  
similar to the +=, -=, /= and *= operators. These are summarized in Tables 3.4  
and 3.5. 

Table 3.4 Compound Arithmetic Operators 

Operator Description Example Equivalent 

+= Add to variable X += 2 X=X + 2 

-= Subtract from 
variable 

X -= 1 X=X - 1 

/= Divide variable X /= 2 X=X / 2 

*= Multiply variable X *= 4 X=X * 4 

 

Table 3.5 Compound Bitwise Operators 

Operator Description Example Equivalent 

&= Bitwise And with 
variable 

X &= 0x00FF X=X & 0x00FF 

|= Bitwise Or with 
variable 

X |= 0x0080 X=X | 0x0080 

^= Bitwise XOR 
with variable 

X ^= 0x07A0 X=X | 0x07A0 

Initializing Crossbar and GPIO Ports 

We can initialize the crossbar and GPIO ports using the C bitwise operators. 
 

 

//-- Configures the Crossbar and GPIO ports
  XBR2 = 0x40; //-- Enable Crossbar and weak  

//   pull-ups (globally) 
  P1MDOUT |= 0x40;  //-- Enable P1.6 as push-pull output 



56 3   C Programming for Silabs C8051F020 Microcontroller
 

3.5.5   Making Choices 

 
 

Fig. 3.1 Flow chart for a selection construct 

Choices are made in the C language using an if else statement. 
 

 
When the Condition is evaluated as True the first block is executed and if the 
Condition evaluates as being False the second block is executed. 

More conditions can be created using a sequence of if and else if statements. 
 

 
In some situations, when there is a list of integer or character choices a switch-
case statement can be used. 

 
 

if (x > 10)  //-- the condition is true
    { y=y+1; } //-- Execute statement block 1 
else   //-- the condition is false 
    { y=y-1; } //-- Execute statement block 2 

if (x > 10) 
     { y=y+1; } 
else if (x > 0) 
          { y=y-1; } 
     else 
          { y=y-2; } 

Is the 
Condition 

True? 

 
Execute 

Statement Block2 

 
Execute 

Statement Block 1 

Yes No 
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When the variable x in the switch statement matches one of the case statements, 
that block is executed. Only when the break statement is reached does the flow of 
control break out of the switch statement. The default block is executed when 
there are no matches with any of the case statements. 

If the break statements are missing from the switch-case statement then the 
flow will continue within the switch-case block until a break statement or the end 
of the switch-case block is reached. 

3.5.6   Repetition 

Numeric repetition of a code block for a fixed set of times is achieved using a for 
loop construct. 

 

 

Completed 
the required 
number of 

times? 

Execute 

statement(s)

within the loop 
No

Execute statement that 
follows the loop 

Yes 

 

Fig. 3.2 Flow chart for a for loop 

switch (x) 
{ 
 case 5: 
 y=y+2; break; 
 case 4: case 3: 
 y=y+1; break; 
 case 2: case 1: 
 y=y-1; break; 
 default: 
 y=y-2; break; 
} 

int i;
int sum=0; 
for( i = 0; i<10; i++) 
{ 
     sum = sum + i; 
} 
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When the looping required is not determined by a fixed number of counts but 
by a more complex condition, we normally use the while loop construct to control 
the process. 

 

Fig. 3.3 Flow chart for a while loop 

The while loop repeats the loop while the condition specified is true. 

3.5.7   Waiting for Events 

We can use a while loop to wait for the crystal oscillator valid flag to be set. 

3.5.8   Early Exits 

When executing a code block or a loop, sometimes it is necessary to exit the cur-
rent code block. The C language provides several mechanisms to do this. 

The break statement will move the flow of control outside the end of the cur-
rent loop. 

 

 

The continue statement skips the remaining code in the current loop, but contin-
ues from the start of the code block of the loop (after incrementing and checking 
that the loop should not terminate) 

Is the 
condition 

true? 

Execute 

statement(s) 

within the loop Yes 

Execute statement that 
follows the loop 

No 

//-- wait till XTLVLD pin is set
while ( !(OSCXCN & 0x80) ); 

int i;
int sum=0; 
for( i = 0; i<10; i++) 
{ 
     sum = sum + i; 
     if (sum > 25) break; 
} 
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3.6   Functions 

Functions in C are declared using the return data type, the data type of the parame-
ters and the body of the function. 

 

 
Standard functions in KeilTM C are not re-entrant and so should not be called recur-
sively. This is the case as parameters and local variables are stored in a standard lo-
cation for all calls to a particular function. This means that recursive calls will cor-
rupt the data passed as arguments to the function as well as the local variables. 

A stack, starting straight after the last data stored in internal memory is used to 
keep track of function calls, but only the return address is stored on the stack, so 
conserving space. One can see the operation of the stack in the SiLab IDE. 

Test the functions using the SiLab IDE connected to the C8051F020 develop-
ment board. It may be noticed that sometimes the compiler optimizations will re-
sult in some variables sharing the same memory address! 

3.6.1   Standard Function – Initializing System Clock 

A C function to initialize the system clock can be written as follows- 
 

 

void Init_Clock(void) 
{ 
    OSCXCN = 0x67;  //-- 0110 0111b 
    //-- External Osc Freq Control Bits (XFCN2-0) set  
    //   to 111 because crystal frequency > 3.7 MHz 
    //-- Crystal Oscillator Mode (XOSCMD2-0) set to 110 
 
    //-- wait till XTLVLD pin is set 
    while ( !(OSCXCN & 0x80) ); 
 
    OSCICN = 0x88;  //-- 1000 1000b 
    //-- Bit 2 : Internal Osc. disabled (IOSCEN = 0) 
    //-- Bit 3 : Uses External Oscillator as System  
    //           Clock (CLKSL = 1) 
    //-- Bit 7 : Missing Clock Detector Enabled (MSCLKE = 1) 
} 

int i;
int sum=0; 
for( i = 0; i<10; i++) 
{ 
     if (i == 5) continue; 
     sum = sum + i; 
} 

unsigned long square (int x)
{ 
 return x*x; 
} 
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3.6.2   Memory Model Used for a Function 

The memory model used for a function can override the default memory model 
with the use of the small, compact or large keywords. 

3.7   Interrupt Functions 

The basic 8051 has 5 possible interrupts which are listed in Table 3.6.  

Table 3.6 8051 Interrupts 

Interrupt No. Description Address 

0 External INT 0 0x0003 

1 Timer/ Counter 0 0x000B 

2 External INT 1 0x0013 

3 Timer/ Counter 1 0x001B 

4 Serial Port 0x0023 
 

 

The Cx51 has extended these to 22 interrupts to handle additional interrupts pro-
vided by manufacturers (see chapter appendix for the full table). An interrupt function 
is declared using the interrupt key word followed by the required interrupt number. 

 

 

Interrupt functions must not take any parameters and not return any parameters. In-
terrupt functions will be called automatically when the interrupt is generated; they 
should not be called in normal program code, this will generate a compiler error. 

3.7.1   Timer 3 Interrupt Service Routine 

One can write a timer 3 Interrupt Service Routine (ISR) that changes the state of 
an LED depending on whether a switch is pressed- 

int square (int x) large
{ 
 return x*x; 
} 

int count; 
 
void timer1_ISR (void) interrupt 3 
{ 
    count++; 
} 
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3.7.2   Disabling Interrupts before Initialization 

Before using interrupts (such as the timer interrupts) they should be initialized. 
Before initialization interrupts should be disabled so that there is no chance that 
the interrupt service routine is called before initialization is complete. 

 

 

When initialization has been completed the interrupts can be enabled. 

3.7.3   Timer 3 Interrupt Initialization 

We can put the timer 3 initialization statements within a C function 

sbit LED = P1^6; //-- LED at port pin P1.6
int LED_count=0; 
 
//-- This routine changes the state of the LED  
//   whenever Timer3 overflows. 
 
void Timer3_ISR (void) interrupt 14 
{ 
  unsigned char P3_input; 
  TMR3CN &= ~(0x80);     //-- clear TF3 
 
  P3_input = ~P3; 
  if (P3_input & 0x80)   //-- if bit 7 is set, 
  {          //  then switch is pressed 
     LED_count++; 

  if ( (LED_count % 10) == 0) 
  {                    //-- do every 10th count 

   LED = ~LED;        //-- change state of LED 
   LED_count = 0; 
     }  
  } 
} 

EA = 0;  //-- disable global interrupts

EA = 1;  //-- enable global interrupts

//-- Configure Timer3 to auto-reload and generate
//-- an interrupt at interval specified by <counts> 
//-- using SYSCLK/12 as its time base. 
 
void Init_Timer3 (unsigned int counts) 
{ 
    TMR3CN = 0x00; //-- Stop Timer3; Clear TF3; 
                   //-- use SYSCLK/12 as timebase 
 
    TMR3RL  = -counts; //-- Init reload values 
    TMR3    = 0xffff;  //-- set to reload immediately 
    EIE2   |= 0x01;    //-- enable Timer3 interrupts 
    TMR3CN |= 0x04;    //-- start Timer3 by setting  

 //   TR3 (TMR3CN.2) to 1 
} 
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3.7.4   Register Banks 

Normally a function uses the default set of registers. However there are 4 sets of 
registers available in the C8051F020. The register bank that is currently in use can 
be changed for a particular function via the using KeilTM C language extension. 

 

 
The register bank specified by the using statement ranges from 0 to 3. The register 
bank can be specified for normal functions, but are more appropriate for interrupt 
functions. When no register bank is specified in an interrupt function the state of 
the registers must be stored on the stack before the interrupt service routine is 
called. If a new register bank is specified then only the old register bank number 
needs to be copied to the stack significantly improving the speed of the interrupt 
service routine. 

3.8   Reentrant Functions 

Normal KeilTM C functions are not re-entrant. A function must be declared as re-
entrant to be able to be called recursively or to be called simultaneously by two or 
more processes. This capability is often required in real-time applications or in 
situations when interrupt code and non-interrupt code need to share a function. 

 

 
A re-entrant function stores the local variables and parameters on a simulated 
stack. The default position of the simulated stack is at the end of internal memory 
(0xFF). The starting positions of the simulated stack are initialized in startup.a51 
file. 

The simulated stack makes use of indirect addressing; this means that when one 
uses the debugger and watches the values of the variables they will contain the ad-
dress of the memory location where the variables are stored. One can view the in-
ternal RAM (address 0xff and below) to see the parameters and local variable 
placed on the simulated stack. 

int count; 
 
void timer1 (void) interrupt 3 using 1 
{ 
     count++; 
} 

int fact (int X) reentrant
{ 
     if ( X==1) { return 1; } 
     else { return X*fact(X-1); } 
} 
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3.9   Pointers 

Pointers in C are a data type that stores the memory addresses. In standard C the 
data type of the variable stored at that memory address must also be declared: 

 

3.9.1   A Generic Pointer in KeilTM C 

Since there are different types of memory on the C8051F020 processor there are 
different types of pointers. These are generic pointers and memory specific point-
ers. In standard C language we need to declare the correct data type that the 
pointer points to. In KeilTM C we also need to be mindful of which memory model 
we are pointing to when we are using memory-specific pointers. Generic pointers 
remove this restriction, but are less efficient as the compiler needs to store what 
memory model is being pointed to. This means that a generic pointer takes 3 bytes 
of storage - 1 byte to store the type of memory model that is pointed to and two 
bytes to store the address. 

 

 
One may also explicitly specify the memory location that the generic pointer is 
stored in, to override the default memory model. 

3.9.2   Memory Specific Pointers  

A memory specific pointer points to a specific type of memory. This type of 
pointer is efficient as the compiler does not need to store the type of memory that 
is being pointed to. The data type of the variable stored at the memory location 
must be specified. 

 

 
You may also specify the memory location that the memory-specific pointer is 
stored in, to override the default memory model. 
 

int * X;

int * Y;
char * ls; 
long * ptr; 

int * xdata Y; 
char * idata ls; 
long * data ptr; 

int xdata * Y; 
char data * ls; 
long idata * ptr; 



64 3   C Programming for Silabs C8051F020 Microcontroller
 

 

3.10   Summary of Data Types 

In Table 3.7, we have summarized the Data Types that are available in the Cx51 
compiler. The size of the data variable and the value range is also given. 

 

Table 3.7 Data Types 

Data Type Bits Bytes Value Range 

bit 1 - 0 to 1 

signed char 8 1 -128 to +127 

unsigned char 8 1 0 to 255 

enum 8/16 1 or 2 -128 to +127 or 
-32768 to +32767 

signed short 16 2 -32768 to +32767 

unsigned short 16 2 0 to 65535 

signed int 16 2 -32768 to +32767 

unsigned int 16 2 0 to 65535 

signed long 32 4 -2147483648 to 2147483647 

unsigned long 32 4 0 to 4294967295 

float 32 4 ±1.175494E-38 to 
±3.402823E+38 

sbit 1 - 0 to 1 

sfr 8 1 0 to 255 

sfr16 16 2 0 to 65535 
 

 
 
 

int data * xdata Y; 
char xdata * idata ls; 
long idata * data ptr; 
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A3   Chapter Appendix 

Table A.1 Interrupt Summary 
In

te
rr

u
p

t 
S

o
u

rc
e 

In
te

rr
u

p
t 

V
ec

to
r 

P
ri

o
ri

ty
 

O
rd

er
 

P
en

d
in

g
 

F
la

g
 

E
n

ab
le

 
F

la
g

 

P
ri

o
ri

ty
 

C
o

n
tr

o
l 

Reset 0000 Top None Always Enabled Always High-
est 

External Inter-
rupt 0 (/INT0) 

0003 0 IE0 (TCON.1) EX0 (IE.0) PX0 (IP.0) 
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4  

Design Issues of Microcontroller Interfacing  

4.1   Introduction 

In this chapter design issues of interfacing microcontrollers to some common  
electronic circuits have been discussed. These important issues are critical to the 
success of a project. Open collector configuration, loading problems, microcon-
troller’s cross-bar configuration, driving output load etc are a few of the issues 
discussed. 

4.2   Open-Collector Configuration 

In many situations the output of a circuit is in an open-collector configuration. The 
term open-collector usually refers to a transistor output. In this configuration the 
collector of the transistor is kept open i.e., it is not connected to the positive sup-
ply, as shown in figure 4.1.  Usually the transistor operates in cut-off or saturation 
regions i.e., as a switch. For proper functioning, the collector of the transistor 
should be connected to a positive supply through a pull-up resistor to complete the 
circuit. This provides an advantage to the designer as the pull-up resistor can be 
connected to a range of different voltages. The voltage level should be above the 
transistor saturation level. 

 

Pull-up resistor

+Vcc

Q1

 

Fig. 4.1 Open-collector configuration 
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Another advantage of open-collector configuration is to interface devices with 
different voltage levels. If instead of a bipolar junction transistor (BJT) a 
MOSFET is used, the term open-drain is commonly used. 

The choice of voltage level depends on the application and it must be within the 
allowable limit of the transistor. The value of the pull-up resistor is to be properly 
selected so that the current through the transistor doesn’t exceed the allowable 
limit of the transistor. Since the transistor operates in saturation, the current 
through the pull-up resistor, R, as well as through the transistor is approximately 
equal to Vcc/R neglecting the collector to emitter voltage drop. Typical value of the 
collector current is in the range of 10mA to 100mA. If the current exceeds the al-
lowable limit, the transistor may burn out. 

In many situations instead of a pull-up resistor, different types of loads, such as 
power relay, solenoid, motor, coil, or incandescent lamp may be used.  Some loads 
(power relay, solenoids, motors, coils) are inductive in nature. Usually an induc-
tive load generates a very high voltage spike when the switch is turned off. The 
designer should be very careful while those types of loads are used. If it is un-
avoidable, the transistors must be protected from transient over-voltages. The use 
of transient suppression components, RC filter, and free-wheeling diode parallel to 
the load is useful. Also a snubber or a zener diode across the transistor may be 
helpful. This is critical, as a single transient pulse may damage the transistor. 

In case of capacitive load, though rare in practice, it must be assured that the in-
rush current does not exceed the maximum current rating of the transistor. 

If the load is an incandescent lamp, care must be taken because it has a very 
high start-up current. The filament glows and the resistance of the lamp settles to a 
steady-state value.  Usually it is not recommended to use incandescent lamp for 
open-collector output; rather LED is to be used. 

4.3   Protection of Microcontroller from Over-Voltage 

In this section we will discuss a few tips to protect electronic circuits, especially 
the microcontroller, while the external signals are interfaced. The damage is 
caused due to over-overvoltage. With the help of some simple protection devices, 
it is possible to increase the EMI (Electro Magnetic Interference) and ESD (Elec-
tro Static Discharge) immunity level of the complete circuit and system. Usually 
all semiconductor devices, mainly ICs, contain internal protection circuits but it is 
not practical to incorporate large protection devices. The external protection de-
vices provide a higher level of surge protection. Though the knowledge of internal 
surge protection circuit may be helpful in selecting an external protection device 
with an appropriate power rating and turn-on voltages, the data sheets usually do 
not disclose the details of internal protection circuits. 

The main function of an external protection device is to limit the current 
through an IC or microcontroller by reducing the magnitude of surge voltage. It is 
expected that the protection device will turn on before the internal circuit turns on 
and absorb the entire energy of the surge pulse. The location of the protection  
device is very important to determine whether the majority of the surge energy is 
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absorbed by the external protection circuit. The layout of the printed circuit board 
(PCB) is also very important for proper operation of the protection circuit. 

Figure 4.2 shows a protection circuit with a diode array. A value of 0.7 V can 
be used to estimate the turn-on voltage of the external switching circuit. So the 
voltage level at input signal will be restricted to -0.7V to VDD+0.7 V. The diodes 
should respond very quickly for proper operation. 

In many situations schottky diodes of typical turn on voltage of 0.3 V may be 
used as is shown in figure 4.3. In this case the voltage level at the input signal is 
restricted to -0.3V to VDD+0.3 V. 

 

D2

D1

+VDD

Microcontroller
Input

 

Fig. 4.2 A diode array for transient voltage protection 

D2

D1

+VDD

Input

Microcontroller

 
 
Fig. 4.3 Schottky diode array based transient voltage protection 

The circuit shown in figure 4.4 is another way of dealing with the problem. The 
series resistance ensures that the majority of the surge energy will be dissipated by 
the external protection circuit. The current, I2, which flows to the microcontroller,  
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is relatively very small compared to the current I1, which flows to the protective 
device. 

The protection using diode arrays steer the surge current into the power supply 
rails where the energy of the transient voltage pulse is dissipated. If the energy as-
sociated with the transient voltage pulse is considerably large, it may affect the 
voltage level of the power supply rails. A decoupling capacitor, along with ava-
lanche diode, can be used to improve the load regulation of a power supply during 
a surge effect. A high frequency ceramic capacitor of approximately 0.01 to 0.1 
μF across the power pins reduces the effect of the surge pulse.  
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Fig. 4.4 Schottky diode array based transient voltage protection along with series resistance 

If an avalanche diode with a breakdown voltage slightly higher than VDD is 
used across the supply, an additional surge protection can be achieved. The sche-
matic representation is shown in figure 4.5. 
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Fig. 4.5 Transient voltage protection along with decoupling capacitor and avalanche diode 
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4.4   Switching Inductive Load and Diode Protection 

In many situations the microcontrollers are used with inductive loads such as  
motors, solenoids, and relays which generate switching transient voltages of  
many times the steady state value. Let us see what happens if we open a switch 
that is providing current to an inductor. The inductor voltage and current are  
related by: 

 

L
L

di
V L

dt
=  

 
where VL is the voltage across the inductor and iL is the current through the  
inductor. 

It is not possible to turn off the current suddenly as this would mean a very 
large voltage (ideally infinite) VL would appear across the inductor’s terminals. 
For example, turning off a 12 V solenoid can easily create a negative spike of 
around 300 volts. If the device can withstand this high voltage, the device or the 
system can survive. In the worst case, the switching transient voltage can destroy 
the microcontroller and semiconductor devices. In some situation, the transient 
voltage can cause program failures and flash memory corruption. In the case of 
high current, large inductance devices, the spike need not even be directly con-
nected to the microcontroller to cause the damage or program failure. Microcon-
trollers or systems damaged from inductive spikes are considered to be abused and 
are not eligible for warranty repair. 

Figure 4.6a shows the circuit diagram of a common circuit generally used  
to switch current through an inductive load. The switch is initially closed  
(ON) and the inductor (relay, motor, solenoid etc.) is carrying the full current. 
When the switch is tuned off, the inductor tries to continue the flow of current  
in the direction as shown by the arrow in figure 4.6a. In the absence of any  
path, the current will generate a huge voltage spike which may damage the switch. 
Even if the switch is not damaged, it definitely shortens the life of the switch and 
generates electromagnetic interference that may affect the nearby neighbouring 
circuits. 

A simple solution to avoid this type of problem is to provide a diode across the 
inductor as is shown in figure 4.6b. The diode doesn’t conduct while the switch is 
ON as it is reverse biased. When the switch is tuned off, the inductive spike makes 
the diode forward biased and the current flows through the diode. The diode 
should be able to handle the inductor current which was flowing just before the 
switch goes to OFF state. In many situations a diode like 1N4004 is fine for nearly 
all cases. The diode is also known as a freewheeling diode, flyback diode, sup-
pressor diode or catch diode. 
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Fig. 4.6 Switching transient overvoltage and protection circuit 

While the current ‘free-wheels’ through the diode the decay of the inductor cur-
rent is decided by the voltage drop across the diode. This may take a very long 
time in some situation. In order to decay the inductor current very quickly a resis-
tance can be used in series with the diode. 

While dealing with alternating supply voltage a RC snubber, as is shown in fig-
ure 4.6c, is to be used in place of the diode. Also in many applications, it is rec-
ommended to use a varistor in parallel with the load. The rating of the varistor 
voltage should be about 1.5 times the peak-to-peak steady-state voltage of the 
load. 

It is recommended not to use the microcontroller’s ground or power conductors 
to carry inductively switched loads. It is highly recommended to route all such 
conductors directly to and from the power supply and should be located as far 
away from the controller as possible. The use of a separate power source for  
large inductive loads is strongly recommended. It is also a good practice to use a 
separate enclosure for the microcontroller to shield it from the electromagnetic  
interference. 

4.5   Potential Divider for Feedback Voltage 

In many control engineering problems a feedback signal is required to be fed to 
the microcontroller for taking necessary control action. The feedback voltage is 
derived by using a suitable potential divider. The use of voltage or potential di-
vider is very common in electronic circuits. It is a circuit which provides a fraction 
of the given voltage. The choice of resistances of the potential divider as well as 
an understanding of the operation of the circuit from Thevenin’s equivalent theo-
rem is important to achieve the desired output. A typical example using a switched 
mode power supply (SMPS) has been considered to explain the issue. 



4.5   Potential Divider for Feedback Voltage 73
 

A boost converter with the following specification has been considered. The 
schematic diagram is shown in figure 4.7. 
 
Input voltage:   4V  
Nominal output voltage:   8V  
Nominal output current:   100 mA 
Nominal operating frequency:  100 KHz 

 
The output voltage of a boost converter is related to the input voltage of it by- 

1
i n

o u t

V
V

D
=

−
 

where D is the nominal duty ratio. The nominal duty ratio for this case is 0.5. 
The feedback voltage is taken with the help of the potential divider formed by 

the resistances R1 and R2 and is given by- 
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1 2
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R
V V

R R
=

+
 

Ideally, Vout is expected to be 8V. However, this output voltage can change de-
pending on the output condition. With the help of some corrective action the out-
put is kept constant. 
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Fig. 4.7 Boost converter and feedback voltage 

Usually the signal taken from the potential divider is fed to an electronic cir-
cuit. So the situation, as is shown in figure 4.8a, is not common. The open circuit 
voltage at the junction point is given by the expression of Vfeedback. Assuming the 
feedback voltage is feeding an equivalent impedance, the actual situation is as 
shown in figure 4.8b, in which the feedback voltage is basically feeding a load 
having an external resistance of Rext. 
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The situation can be represented with the help of equivalent Thevenin’s circuit 
as shown in figure 4.8c. 
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Fig. 4.8 Analysis of potential divider circuit 

The equivalent Thevenin’s voltage and resistance can be calculated as- 
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Let us take R2 = n * R1 so that theoretically the feedback voltage will remain  
constant. 
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So, the actual feedback voltage is given by- 
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It is seen that the actual feedback voltage is dependent on the external resistance 
value. The choice of the resistance value should be done keeping this condition in 
mind. 

The actual feedback voltage is compared to the reference voltage for control  
action. So the error is given by- 
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To minimize the error, the Thevenin’s resistance should be as small as possible 
and the external resistance should be as large as possible. Usually we do not have 
any control on the value of the external resistance as it depends on the electronic 
circuit or system to which the feedback signal is connected. On the other hand, the 
Thevenin’s resistance should not be too small as the current through the potential 
divider and consequently the power loss in it is completely wasted. The combined 
resistance (R1 + R2) should be significantly large compared to the equivalent load 
resistance of the circuit. 

4.6   Interfacing a Digital Signal 

The digital signals, whether input or output, are connected to the port pins of the 
microcontroller. Though the microcontroller operates at 3.3V, the port pins are 5V 
tolerant. This means that input digital signals up to 5V can be directly connected 
to the port pin without damaging the port. The SiLab C8051F020 has eight general 
purpose I/O ports, so a total of 64 pins are available for interfacing digital signals. 
The 32 port pins of the lower four ports, P0, P1, P2 and P3, have dual functions 
and can be defined as General-Purpose I/O (GPIO) pins or connections to internal 
resources such as UART, SPI etc. The programmer needs to define the function of 
the particular port pin for which it is used. This is achieved through the use of a 
Priority Crossbar Decoder and the steps to configure it are described below. 
 
Step 1: Allocation of the Pins 
The first step is to allocate the port pin for the intended function. This is achieved 
by using the three crossbar registers, XBR0, XBR1 and XBR2. By setting the bits 
of the crossbar registers it is possible to assign the port pins to a peripheral. Each 
crossbar register is an 8-bit register and each bit can be used to allocate pins for 
different functions such as UARTs, SMbus, Timers etc. in a priority order. The 
port pins are used in order of priority starting from P0.0 to P3.7. The UART0 has 
the highest priority and the CNVSTR has the lowest priority as shown in Priority 
Crossbar Decode table in figure 4.9. 

For example, if XBR0.2, which is the UART0EN bit, is set to logic 1, the TX0 
and RX0 will be mapped to P0.0 and P0.1 respectively. So by setting XBR0.2 to 
1, P0.0 and P0.1 are allocated for the UART0 and cannot be used for any other 
purpose. In this case it is not possible to assign only TX0 or RX0; they are always 
allocated as a group. Similarly if UART1 is also used, XBR2.2, which is the  
UART1EN pin, is to be set to logic 1. If any other peripheral such as SCK,  
MISO and so on are not used, the TX1 and RX1 will be mapped to P0.2 and P0.3 
respectively. 

In the Priority Crossbar Decode the priorities are shown from top to bottom in 
the rightmost column, starting from UART0 being the highest priority to 
CNVSTR being the lowest priority. The priority for the pins is from P0.0 to P3.7 
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as shown in the topmost row. Once the crossbar registers are defined to allocate 
pins for an intended function, the crossbar should be enabled. This is done by set-
ting the XBARE (pin XBR2.6) to logic 1. The port pins which are not allocated 
are available to use as general purpose input output pin (GPIO). 

 
Step 2: Configuring the Port Pin as Digital Input 
In some situations, with the assigned function of the port pin, the pin automati-
cally functions as an input pin. For example, while UART0 is assigned using 
XBR0.2, the pins P0.0 and P0.1 are reserved for TX0 and RX0. The port pin P0.1 
is automatically set as input pin for RX0. For configuring a port pin as a digital 
input, the following steps are required – set the output mode of the pin as “open-
drain” and then write a logic “1” to the associated bit of the port data register. For 
example if P0.2 is used as a digital input, we have to do the following code: 
 

Fig. 4.9 Priority Crossbar Decode table 

 
P0MDOUT.2 = 0; // open drain 

 P0.2=1;  // write Logic 1 
 

Step 3: Configuring the Port Pin as Digital Output 
The default state of the output configuration of the port pin is open-drain. The port 
pin can be configured either as open-drain or as a push-pull. In many situations the  
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push-pull output is required if the port output is required to drive some load. By 
writing logic “0” or “1” in the associated bit of the port data register, the port pin 
can be configured as “open-drain” or “push-pull” mode respectively.  For example 
if the port pin P0.4 is set as push-pull output, the following command will do- 

 
        P0MDOUT.4 = 1; 

 
In the following section a few examples are discussed to explain the whole  
process. 
 
Example 1 
In one application, Port 0.0 is used as a digital input and Port0.1 is used as digital 
output in the push-pull mode. The following few lines of code achieve it. 
 
P0MDOUT = 0x00;   // Output configuration for P0, all in open drain 
P0 |= 0x01;    // Pin P0.0 is for input so write a '1' to it 
P0MDOUT |= 0x02; // Output configuration for P0.1, in push-pull mode 

 
Example 2 
In one application the UART0 is used and the /INT0 is used for interfacing a digi-
tal input.  The port pin P0.0 and P0.1 are mapped for TX0 and RX0. The port pin 
P0.2 is used for /INT0 as digital input. The following few lines of codes are re-
quired to achieve it. 
 

XBR0 = 0x04; // Enable UART0 (Pin P0.0 and P0.1) 
 XBR1 = 0x04; // Enable /INT0 (Pin P0.2) 
 XBR2 = 0x40; // Enable the crossbar 
 
 P0MDOUT = 0x00; // Output configuration for P0 
 P0 |= 0x04; // Pin P0.2 is for input so write a '1' to it. 

 
Example 3 
In one application the UART0 is used and both the interrupts /INT0 and /INT1are 
used for interfacing digital inputs. One digital output in the push-pull configura-
tion is required. The port pin P0.0 and P0.1 are mapped for TX0 and RX0. The 
port pins P0.2 and P0.3 are used for /INT0 and /INT1 as digital inputs. The port 
pin P0.4 is used as digital output in push-pull mode. The following few lines of 
code are required to achieve it. 
 

XBR0 = 0x04; // Enable UART0 (Pin P0.0 and P0.1) 
 XBR1 = 0x14; // Enable both /INT0 (XBR1.2) & /INT1 (XBR1.4) 
 XBR2 = 0x40; // Enable the crossbar 
 
 P0MDOUT = 0x00;// Output configuration for P0 
 P0 |= 0x0C; // Pins P0.2 and P0.3 are for inputs so write 

// a '1' to it 
 P0MDOUT |= 0x10; // Output configuration for P0.4, in 

// push-pull mode 
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4.7   Interfacing an Analog Signal 

In this section interfacing of an analog signal to the microcontroller has been de-
scribed. This experiment will program the microcontroller to measure an input 
analog signal at ADC0 and output it at DAC1.  

Using the function generator, an analog signal was fed into the microcontroller 
at pin AIN0.1 of ADC0. The two signals, input ADC0 and output DAC1, were 
then measured and compared using the oscilloscope.  

 
Function Generator:  100 Hz sine wave  

2 VPP input signal 
1 V DC offset 

 
Microcontroller:  8V power supply 
 
Oscilloscope:  Triggering at rising edge 
   Channel 1 = input signal (ADC0) 
   Channel 2 = output signal (DAC1) 
 
ADC0 conversions can be started in four different ways: 
1. Software command (writing 1 to AD0BUSY) 
2. Overflow of Timer 2 
3. Overflow of Timer 3 
4. External signal input (rising edge of CNVSTR)  
 
The experiment has been conducted to test out the first three methods, in order to 
determine which method is more practical to use. The fourth method, using exter-
nal signal input (rising edge of CNVSTR), is usually not used as it has the lowest 
interrupt priority. 

The main() function: The key points to observe in main() are calling the various 
initialization routines and activating the interrupts. 

 
void main(void) 
{ 
 EA = 0;   // disable global interrupts 
 Init();   // general initialization 
 Init_Timer3(SYSCLK/50000); // init Timer 3 to generate 

// interrupts 
 Init_ADC0();   // init ADC0 
 EA = 1;    // enable global interrupts 
 
 DAC1CN = 0x80;   // DAC1 enabled 
 
 while (1) 
 { 
  DAC1 = adc_result; 
 } 
} 
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Note: The main() will be different for each of the three methods in starting the 
ADC0 conversion.  
 
Watchdog Timer (WDT) 
The WDT are disabled by writing 0xDE followed by, within 4 clock cycles, 0xAD 
to the WDTCN register. Interrupts were disabled during this procedure to avoid 
any inadvertent delay between the two writes.  

 
WDTCN = 0xDE; // Disable watchdog timer 
WDTCN = 0xAD; 

 
External Oscillator Control Register (OSCXCN) 
The external crystal oscillator, operating at a frequency of 22.1148MHz, has been 
set. The external crystal oscillator is enabled by setting CLKSL (OSCICN.3) to 1.   

 
OSCXCN = 0x67;  // enable external crystal oscillator 

// at 22.1148MHz   
for (n = 0; n != 255; n++);  // wait for osc to start 
while ((OSCXCN & 0x80) == 0);  // wait for Xtal to stabilize 
OSCICN = 0x88;  // Internal Osc. disabled (IOSCEN = 0)  

 
Digital Crossbar 
The crossbar is enabled by setting XBARE (XBR2.6) to logic 1.  
 
XBR2 = 0x40; // Enable Crossbar and weak pull-ups (globally) 

 
Voltage Reference 
For this experiment, the on-chip voltage reference of 2.4V was used. The Refer-
ence Control Register, REF0CN, enables or disables the internal reference genera-
tor and selects the reference inputs for ADC0. 

 
REF0CN = 0x03; // internal reference buffer on, internal bias 

// generator on 
 

Methods to start ADC0 Conversions: 
 
1) Software command (writing 1 to AD0BUSY) 

 
The AD0BUSY bit is set to 1 to start conversion. It remains set while the conver-
sion is in progress and is restored to 0 when the conversion is completed. The fal-
ling edge of AD0BUSY sets the AD0INT interrupt flag and triggers an interrupt 
(if enabled).  

 
ADC0CN = 0x80; // ADC0 enabled; continuous tracking mode; 

// ADC0 conversions are initiated  
// on every write of '1' to AD0BUSY; 
// ADC0 data is right-justified 

AD0BUSY = 1;  // setting AD0BUSY to 1; start conversion 
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In polling method, the AD0INT bit (ADC0CN.5) is polled to determine if a con-
version has been completed and then the data is read from the ADC0 register. 

 
while ( (ADC0CN &= 0x20) == 0); // Poll for AD0INT-->1 
adc_result = ADC0;    // read ADC value 
 

In an interrupt method, the ADC interrupt service routine is executed when the 
conversion is complete. Within the ISR, the AD0INT is reset and then the data is 
read from the ADC0 register. 

 
void ADC0_ISR (void) interrupt 15 
{  
 AD0INT = 0; // clear ADC conversion complete indicator 
 adc_result = ADC0;  // read ADC value 
 
} 

 
2) Overflow of Timer 2 

 
Timer 2 is configured in Mode 1 (16-bit auto-reload) to generate an interrupt at 
regular interval. The count register reload occurs on an FFFFH to 0000H transi-
tion and sets the TF2 timer overflow flag. On overflow, the 16-bit value held in 
the two capture registers is automatically loaded into the count registers and the 
timer is restarted.  

 
void Init_Timer2 (unsigned int counts) 
{ 
 CKCON |= 0x20;  // Timer 2 uses the system clock 
 T2CON = 0x00;  // T2CON.0 = 0 Allow Auto-reload on 

// Timer2, overflow (CP/RL2) 
 RCAP2 = -counts;  // Init reload values in the 

// Capture registers   
T2 = 0xFFFF;  // count register set to reload 

// immediately at first clock occurs 
 IE |= 0x20;   // IE.5,Enable Timer 2 interrupts (ET2) 
 T2CON |= 0x04;  // start Timer2 by setting TR2  
    // (T2CON.2) to 1 
} 

 
Setting TR2 to 1 enables and starts the Timer 2. The timer uses the system clock 
as the clock source. To allow capturing fast changing signals, the system clock is 
used directly, rather than dividing it by 12. As soon as Timer 2 overflows, the cor-
responding ISR is executed and the ADC conversion starts. Within the Timer 2 
ISR, the TF2 (Timer 2 Overflow flag) is reset.  

 
void Timer2_ISR(void) interrupt 5 
{ 
 T2CON &= ~(0x80); // clear TF2 
} 
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The ADC0 is configured to start on Timer 2 overflow as follows- 
 
ADC0CN = 0x8C; // ADC0 enabled; continuous tracking mode; 

// ADC0 conversions are initiated 
   // on overflow of Timer2; 

// ADC0 data is right-justified 

 
3) Overflow of Timer 3 

 
Timer 3 has only one operation mode, which is in 16-bit auto-reload mode. The 
operation is essentially the same as for Timer 2, except for slight differences in 
register names and clock sources.  

 
void Init_Timer3(int counts) 
{ 
 TMR3CN = 0x02;  // Stop Timer3; Clear TF3,  

// use SYSCLK as timebase 
 TMR3RL = -counts;  // Init reload values 
 TMR3 = 0xffff;  // set to reload immediately 
 EIE2 |= 0x01;  // enable Timer3 interrupts 
 TMR3CN |= 0x04; // start Timer3 
} 
 

Setting TR3 (TMR3CN.2) to 1 enables and starts the Timer 3. The timer uses the 
system clock as the clock source. As soon as Timer 3 overflows, the correspond-
ing ISR is executed and the ADC conversion starts. Within the Timer 3 ISR, the 
TF3 (Timer 3 Overflow flag) is reset.  

 
void Timer3_ISR(void) interrupt 14 
{ 
 TMR3CN &= ~(0x80); // clear TF3  
} 
 

The ADC0 is configured to start on Timer 3 overflow as follows- 
 
ADC0CN = 0x84; // ADC0 enabled; continuous tracking mode; 

// ADC0 conversions are initiated 
   // on overflow of Timer3; 

// ADC0 data is right-justified 

4.8   Discussions 

The code was initially written with a printf statement to display the ADC0 value. 
This was to show the effect of the printf. The figures 4.10 and 4.11 show the delay 
due to printf command. 

Out of the three methods of starting the ADC conversion, AD0BUSY is the 
best method. Although, all three methods work well, Timer 2 overflow and Timer 
3 overflow use the timers which in some applications might be needed for other 
purposes. In addition, using CNVSTR requires extra setups, such as connecting an 
external signal to trigger the ADC0 conversion. Whereas, using AD0BUSY is the 
simplest and most convenient way to start the conversion.  
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Fig. 4.10 The input and output signals with a printf command 

 

Fig. 4.11 The input and output signals without printf command 
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5 

Embedded Microcontroller Based DC Motor 
Control: A Project Based Approach 

5.1   Introduction 

This chapter discusses the development of a mixed signal microcontroller based 
DC motor control project, which has been used for the purpose of teaching motor 
speed control theory. A problem based learning and teaching approach was taken 
and our main focus in this chapter is to describe in detail the laboratory part in 
which the students work in groups on a design project over a complete semester. 
The major part of the project was the development of software to control the speed 
of the DC motor. The project also includes the design and development of an 
over-current protection circuit. If the students complete the project, the end results 
can show that this type of cooperative problem based teaching and learning can be 
used to develop their skills in problem solving, enhance team work and their inter-
est in life long learning. The students attain a high level of technical knowledge 
and become capable of facing the challenges in real life. 

Many educators have augmented the conventional textbook presentations by in-
troducing laboratory works in the form of problem based learning to teach the stu-
dents.  In problem based learning a specific problem situation is used to focus the 
learning activities to achieve the target. Applications have been designed to assist 
students to teach modern embedded computing subject with the help of computer 
vision.   Computer based simulations and implementations have been developed to 
illustrate the important practical applications of PID control theory.   In addition, 
some researchers have used fuzzy logic algorithms to teach speed control of DC 
motor with some success.  

The speed control of a DC motor remains a standard component in under-
graduate course curriculum in many universities. The project work on DC motor  
speed control was chosen so that the students get some hands-on experience on 
measurement and instrumentation (they need to measure the speed of the motor 
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using tacho-encoder), use of microcontroller as control hardware and implemen-
tation of an actual controller to maintain the speed of the motor. In the theoretical 
part of the course the students are taught the basics of control systems, power 
electronics, motor fundamentals, advanced electronics and instrumentation. 
Given the limited resources, the students are divided into groups for the project 
work. The number of students depends on the resources of the university, but it 
has been the experience of the authors that each group consisting of 3 students is 
an optimum number. If more resources are available a minimum number of 2 stu-
dents in each group may be allowed. It is always better to have a few students in 
a group as they learn to work in an environment very similar to practical life 
situations. An overview of the project should be introduced at the beginning of 
the course and the target for each week should be defined clearly. The students 
are given access to the laboratory resources so that they can utilize their free  
off-time to work on the project. The target microcontroller used in this project  
is Silabs C8051F020. Theory of the microcontroller should be covered in  
another subject in a previous semester so that the acquired knowledge provides 
the students with a sound vehicle for gaining an understanding of the project  
materials.  

5.2   Description of the Problem 

The main part of the project was to control the speed of a permanent magnet DC 
motor. The experimental set-up, DC motor, tacho-encoder and the loading mecha-
nism is shown in figure 5.1. The schematic representation is shown in figure 5.2. 
The controlled voltage is applied across the motor terminals #1 and #2. The speed 
is measured using a tacho encoder, the operating principle of which is based on 
Hall effect. A supply source is provided between the +ve and GND terminals and 
the output (a square wave signal) is available between GND and output terminal. 
The tacho encoder gives one pulse for every revolution of the motor spindle. This 
is a real challenge from a control point of view especially at low speeds of opera-
tion. The motor is loaded by providing a voltage across the loading terminals. The 
loading is due to eddy current loss in the aluminum disk which rotates along with 
the motor and cuts the magnetic flux produced by the electromagnet. 

The problem of the speed control of DC motor was chosen because it is physi-
cally and mathematically quite straight-forward; the relationships between the ap-
plied voltage, speed and the load current are easily understood. The explanation 
for the need to maintain the speed of the motors is easily perceived by the stu-
dents. Moreover this is a problem which can be readily implemented with the 
well-known PID controller. The power circuit used to achieve the objective is 
shown in figure 5.3.  The electronic circuit is a single switch based chopper circuit 
and the Pulse Width Modulation (PWM) control is used for the control of the 
speed of the DC motor.  The microcontroller board used for this project, along 
with the expansion board, is shown in figure 5.4. 
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Fig. 5.1 Experimental set-up – DC motor, tacho encoder and loading mechanism 
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Fig. 5.2 Schematic representation of the set-up 
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Fig. 5.3 The complete power circuit 

 

 

Fig. 5.4 Microcontroller board along with the expansion board 

5.3   Motivation of the Project 

The motivation of this project came from the philosophy of the engineering cur-
riculum design of Massey University. Most of the courses incorporate project 
and/or laboratory activities as the curriculum has a stronger emphasis on engineer-
ing design practice. This approach helps the students to express their thoughts  
and try out theirs ideas; they learn the subject matter more deeply, they retain 
more information of the subject and more importantly their interpersonal skills 
grow.  
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5.4   Basic Theory of the Project 

The basics of the project work should be taught to the students in one or two hour 
long lectures. That should consist of the following information: 

5.4.1   Speed Control Using Pulse Width Modulation (PWM) 

• Used for efficient DC motor speed control. 
• A PWM circuit works by generating a square wave with a variable on-to-off ra-

tio as shown in figure 5.5. 
• The average ‘on’ time may be varied from zero to 100%, but usually doesn’t go 

to 100%. A 100% ‘on’ time is equivalent to a SHORT circuit of the switch. 
• A variable amount of power is transferred to the load (motor), depending on the 

operation of the motor loading. 
• The high value is held during a variable pulse width t over the fixed period T 

where, frequency of the PWM signal = 1/T. 
• The resulting waveform has a duty ratio, defined as the ratio between the ON 

time and the period of the waveform, usually specified as a percentage. 
• Duty ratio = On-time/ Time period. 
• In PWM control, the variable voltage across the armature is applied by switch-

ing the transistor (or electronic switch) with different pulse width (ON-time), 
with fixed period and amplitude (peak value). 

 

 

Fig. 5.5 PWM signal of varying duty ratio 

• However, due to the motor inductance and resistance, the resulting current 
through the motor has a small fluctuation around an average value which is dic-
tated by the amount of loading. 
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• As the duty ratio gets larger, the average voltage gets larger and the motor 
speed increases. 

5.4.2   Generating PWM Signal 

The normal method of generating a PWM signal is to compare a saw-tooth wave 
of the desired frequency with a control signal and is achieved by using op-amp 
circuits. The generation of a PWM signal using an embedded controller is ex-
plained below (see figure 5.6): 

 

• Use Timer 0 in Auto-reload mode so that it overflows at a regular interval and 
generates an interrupt (lts call it a software ‘tick’). 

• The PWM_Counter is incremented in the Timer 0 Interrupt Service Routine 
(ISR). 

• When the PWM_Counter value exceeds dutyCycleCount, the PWM_Output is 
reset to 0. This is shown in figure 5.6. 

• When the PWM_Counter value exceeds MAX_count, the PWM_Output is set  
to 1. 

• 0 <= dutyCycleCount <= 256 
• Resolution of the duty cycle is 1/256 (approximately 0.39%). 
• PWM output is at one of the digital output port pin, example P0.4. The pin 4 of 

port 0 must be defined as digital output using the Crossbar. 
• The PWM output pin must be configured in push-pull mode. 
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Fig. 5.6 Generation of PWM 
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The necessary software code for the Timer_0 interrupt service routine is shown 
below.  

 

 

5.4.3   PWM Frequency: Timer 0 Reload Value 

The re-load value for the timer should be correctly calculated. 
 

• For a desired PWM frequency, what should be the ‘tick time’ (Ttick)? 

256PWM tickT T= ×  

• If Ttick = 10 μs, then, 

10 256 sPWMT μ= ×  

6

1 1
390 Hz

10 256 10PWM
PWM

f
T −= =

× ×
 

• To produce an interrupt at every 10 μs, what should be the reload value of 
Timer 0? 

• Using a System Clock of 22.1184 MHz, 

1
0.04521 

22118400sysclkT s
Hz

μ=
 

 

void Timer0_ISR (void) interrupt 1 
{ 
 //-- clear TF0 
 TF0 = 0; 
 
 PWM_counter++; 
 if (PWM_counter >= dutyCycleCount) 
  PWM_output = 0; 
 
 if (PWM_counter >= MAX_Count) 
 { 
  PWM_output = 1; 
  PWM_counter = 0; 

} 
} 
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• So, the number of clock pulses required is: 

  
10

#Sysclk pulses 221
0.04521

=  

• Timer 0 reload value = 255 – 221 = 34 

5.4.4   Varying the PWM Duty Ratio 

While the control of the speed of the DC motor is tested in open loop condition, 
the potentiometer on the expansion board can be used to set the duty ratio. 

 
• The PWM ON time is changed by changing the value of dutyCycleCount, 

which must be between 0 and 255. 
• Use the potentiometer on the expansion board which is connected to the Analog 

Input (AIN0.2) of ADC0. 
• The ADC0 output is a 12-bit data (0 to 4095). 
• In the program, read the ADC0 output and divide by 16. 
 
The pictorial representation of the whole process is shown in figure 5.7. 
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Fig. 5.7 Generation of PWM duty ratio 

• There are many ways to initiate the ADC0 conversion: 
 

− Software command (Writing 1 to AD0BUSY)  
− Overflow of Timer 2 
− Overflow of Timer 3  
− External signal input (rising edge of CNVSTR).  



5.4   Basic Theory of the Project 91
 

5.4.5   Measuring Motor Speed and Closed Loop Control 

• For motor speed control, a reference speed is set (usually in rpm) 
• The digital speed controller (implemented in software) employs control algorithms 

to maintain the actual motor speed as close as possible to the reference speed. 
• The controller needs to know the actual motor speed so that if there is a differ-

ence between the actual speed and the reference speed, it can take suitable cor-
rective action to minimise the difference in speed. 
 

Tacho-Encoder has been used to get information of the speed. Its characteristics 
are- 

 
• Hall-effect device. 
• Supply: +5V DC 
• Output is a square pulse of 50% duty cycle. 
 
It gives one pulse per motor revolution. Slower the motor, larger the time period 
of the Tacho pulse. 

5.4.6   Measuring Actual Motor Speed 

General principle of measuring actual motor speed- 
 

• For one Tacho pulse (say, between two rising edges) count the number of  
fast-occurring ticks (overflows) of a programmed timer. This is explained in 
figure 5.8. 
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Fig. 5.8 Measurement of actual speed 
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• Use Timer 1 in auto-reload mode to generate the software interrupts (ticks) at 
20 μSec interval. 

• Calculate the Timer 1 reload value for a System Clock of 22.1184 MHz. 
• N: number of ticks counted for one motor revolution. 

1
  Actual Motor Speed

N
∝  

   
K

Actual Motor Speed
N

=  

where, 

  K is the proportionality constant. 

5.4.7   Calculating the Value of K 

    
K

Actual Motor Speed
N

=  

1
      tp

tp

Actual Motor Speed in RPS f
T

= =  

60 60
      

tp tick

Actual Motor Speed in RPM
T N T

= =
∗

 

6 0
 

t i c k

K

N N T
∴ =

∗
 

6 0
 

t i c k

K
T

∴ =  

• If Ttick = 20 μs, K = 3000000 

5.4.8   Counting N (Number of Ticks for One Revolution) 

• For every tick, increment a counter (let us call it TACHO_counter). This can be 
done in the ISR of Timer 1. 

• Use the Tacho encoder pulse to generate an external hardware interrupt at 
/INT0. 

• Count the number of ticks between two successive Tacho interrupts; this is N. 
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5.4.9   Setting Motor Reference Speed 

• In a digital speed controller, the controller computes the duty cycle of the PWM 
signal to make the motor run at the reference speed. 

• We need to input the reference speed to the controller. 
• This can be done by using the potentiometer on the expansion board which is 

connected to the Analog Input (AIN0.2) of ADC0. 
• The digital output of the ADC0 can be a measure of the reference speed in 

RPM. 
• You may want to clamp the reference speed to a range of 200 rpm to 2000 rpm. 
 
Figure 5.9 shows the process of generating the reference speed for the controller. 
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Speed 

 

Fig. 5.9 Setting of reference speed of the motor 

5.4.10   Recording Transient Behavior of Motor 

• The digital speed controller calculates the actual speed of the motor which can 
be displayed on the LCD. 

• The actual motor speed is continuously changing, even when the system has 
stabilized and reached a steady state. 

• One set of typical characteristics is shown in figure 5.10. 
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Fig. 5.10 Transient response of the motor 

• How are you going to see (and record) the system’s transient behaviour? 
 
Display the motor speed on the oscilloscope as an analog voltage. 

5.4.11   Displaying Actual Motor Speed as an Analog Voltage on 
Oscilloscope 

• Send the actual motor speed (which is expected to be in the range of 0 to 2000 
RPM) to the DAC1. 

• The DAC1 analog output will be a measure of the actual motor speed. 
 

Since it is a 12-bit DAC, the input can be in the range of 0 to 4095. Hence the  
actual motor speed may be multiplied by 2 before presenting at the DAC1 (see  
figure 5.11). The complete programme structure is shown in figure 5.12. 
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Fig. 5.11 Display of actual motor speed in an oscilloscope 
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Loop: 
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Fig. 5.12 The complete program structure 

5.5   Guidelines to the Students 

In this section some guidelines are provided so that the students can take the chal-
lenge and achieve success. The total activities are summarized as follows- 

The speed of the DC motor is controlled or maintained constant by changing 
the voltage across the armature terminals. In order to do this the actual speed is 
measured from the signal obtained from a tacho_encoder. The voltage across the 
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motor terminals is varied by changing the ON time of the switch for a fixed time 
period which is commonly known as PWM (Pulse Width Modulation) control.  

For achieving good performance, different types of controllers (P, PI, PID) 
have been developed and the characteristics of each are studied. Finally the over-
current protection has been implemented. 

The complete project work has been divided into five activities. To start with, 
the students are asked to write a program to generate a PWM signal at one of the 
port pins of the microcontroller. Using DIP toggle switches on the expansion 
board, they are asked to vary the frequency of the PWM signal and generate 

 
(1) 250 Hz,    (2) 400 Hz    and     (3) 600 Hz. 

 
Using the potentiometer on the expansion board (connected to Analog Input 
Channel AIN0.2), they are asked to vary the pulse width (duty cycle) from 0% to 
100%. Duty Cycle has a step resolution of 1/256. They are asked to display the 
duty ratio (as a percentage) on the LCD (Liquid Crystal Display). 

Some guidance has already been provided to the students for the above activity.  
22.1148 MHz external oscillator is used throughout the project. Timer 0 is used in 
auto-reload mode to generate a software interrupt (let us call it PWM_tick) at 
every X micro-seconds. They are asked to calculate X, which will be different for 
the different PWM frequencies.  

 
              TPWM = X * 256 

 
To generate the PWM_tick at every X micro-seconds, they need to calculate the 
timer reload value. 

In the ISR of Timer 0, a counter is incremented (let us call it PWM_counter). 
When the PWM_counter value exceeds the threshold value (0 to 255) set by the 
potentiometer, the PWM output will be reset. The PWM output is set when the 
PWM_counter reaches 256. 

Once the students are able to achieve the above task they are asked to complete 
Table 5.1. 

Table 5.1 Timer reload value for different frequency settings 

PWM Frequency 
(Hz) 

X 
(μSec) 

Timer 0 Reload 
Value (decimal) 

250 Hz   
400 Hz   
600 Hz   

 
Next they are asked to connect the PWM signal output pin to the gate of the 

transistor to run the motor. The duty cycle is varied from 0% to 100% and the 
change of motor speed is observed. They are also asked to note down the motor 
speed as a function of duty cycle. They repeat this for different PWM frequencies. 
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• What is the minimum duty cycle at which the motor starts rotating? 
• Does this change with PWM frequency? 
• Display the 400 Hz PWM signal on the oscilloscope and record it. 
 

By now the students are able to control the motor speed using the potentiometer 
(to change the PWM duty cycle). They have measured the motor speed from the 
tacho encoder waveform observed on the oscilloscope. However, to implement a 
closed-loop motor speed controller, they need to automatically measure the motor 
speed using the resources of the microcontroller. The measured motor speed (in 
rpm) needs to be displayed on the LCD. 

The following guidance is provided for this task. They are asked to use Timer 1 
in auto-reload mode to generate a software interrupt (let us call it TACHO_tick) at 
every 20 μSec. They need to calculate the timer reload value. For every 
TACHO_tick, increment a counter (let us call it TACHO_counter). This can be 
done in the ISR of Timer 1. 

Use the tacho encoder pulse to generate an external hardware interrupt. They 
use external interrupt /INT0.  

Count the number of TACHO_ticks between two successive tacho interrupts. 
This count (let us call it N) is inversely proportional to the motor speed. 

 
Motor Speed = K/N 
where, K is the proportionality constant. 

 
They are asked to calculate the value of K and   the Timer 1 reload-value to gener-
ate an interrupt every 20 μSec? They calculate and record in Table 5.2. 

 

Table 5.2 Tacho pulses as a function of speed 

Motor Speed 
(RPM) 

Tacho Pulse 
Time Period (μSec) 

N 

100   
500   

1000   
1500   
2000   

 
Knowledge of the memory requirements of the various data types is very im-

portant. The students are asked to comment on the data type of the variable 
TACHO_counter. 

They can run the motor with the generated PWM of variable duty ratio (using 
potentiometer) and measure the actual speed of the motor. Display the duty ratio 
in the 1st row and the measured motor speed in the 2nd row of the LCD. 

By now the students have the infrastructure to start implementing a PID  
controller for motor speed control. Thus far the potentiometer has been used to 
vary the motor speed by generating a PWM signal of varying duty ratio. In a PID 
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controller, the PWM duty ratio is automatically calculated by the controller to 
maintain the motor speed at a set reference speed. 

The students are asked to modify their program such that the potentiometer 
output is used to set the reference motor speed in RPM. Clamp the reference speed 
such that it is between 200rpm and 2000 rpm. They are instructed to use DAC0 to 
display measured motor speed on the oscilloscope. 

They are now capable of implementing a closed loop speed control of the mo-
tor. The basic idea is to maintain the speed equal to the reference speed. 

 
Potentiometer sets the  Reference_Speed 
 
Measure the   Actual_Speed 
 
Calculate the   Error_Speed  by Reference_Speed – Actual_Speed. 
 
Proportional Control (P-Control) 
 
Proportional_Factor = Error_Speed * Kp 

 
where,  Kp is the gain of the proportional controller. 

 
Duty ratio = Proportional_Factor 

 
 
Proportional Plus Integral Control (PI-Control) 

 
Integral_Factor = Integral_Factor + Ki * Error_Speed 

 
Now the duty ratio will be decided by  

 
Duty ratio = Proportional_Factor + Integral_Factor 

 
They are now asked to implement a PID control. They need one more variable 
here to store the previous speed error. 

 
Current_Speed_Error 
Previous_Speed_Error 

 
Derivative_Factor = (Current_Speed_Error – Previous_Speed_Error)*Kd 

  
Duty_Ratio = Proportional_Factor + Integral_Factor + Derivative_Factor 

 
At the end of the control cycle they replace the Previous_Speed_Error by Cur-
rent_Speed_Error 

 
Previous_Speed_Error = Current_Speed_Error 
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Note that the D-part doesn’t help to reduce the steady state error but helps to im-
prove the transient stability.  

They are asked to record data for different values of Kp for P control, for dif-
ferent values of Ki (with a fixed value of Kp) for PI control and different values of 
Kd (for fixed values of Kp and Ki) for PID control. 

 
Note: The students need to keep in mind that they are using a compiler which may 
not handle floating point numbers and operations. In that case, the multiplication 
with a number of less than one should be carefully done using division. 

5.6   Outcome of the Project 

The project has been a great success and all the groups have successfully com-
pleted the project. A few results from their reports are illustrated here. Figure 5.13 
shows the speed error as a function of reference speed for different values of pro-
portional gain, Kp. As expected, the magnitude of the error reduces with the in-
crease of Kp. 
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Fig. 5.13 Error speed as a function of reference speed for different values of proportional 
gains 

Figure 5.14 shows the the speed error as a function of reference speed for dif-
ferent values of integral gain, Ki, with a fixed proportional gain Kp of 0.5. It is 
seen the steady state error is minimum corresponding to Ki of 0.05. 
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Fig. 5.14 Error speed as a function of reference speed for different Ki values with Kp = 0.5 

Figure 5.15 shows the comparative values of speed error as a function of refer-
ence speed for P, PI and PID control. It is seen that the PID control gives the best 
result for the system. 
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Fig. 5.15 Comparative values of P, PI and PID control 

The transient performance of the system was studied with and without the de-
rivative control. The dynamic response of the system improved substantially by 
introducing the derivative control as can be seen from Figs. 5.16 and 5.17. 
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In figure 5.16 the peak-to-peak ripple is recorded at 297 mV which translates to 
a variation in speed of 253 rpm. In Fig. 5.17 the peak-to-peak ripple is recorded at 
109 mV which translates to a variation in speed of 93 rpm. The speed variation 
has dropped by 160 which is an improvement of 63.24%. The steady state speed 
error was 3 rpm. 

Figure 5.18 shows the comparison of transient response for different control al-
gorithms - P, PI and PID.   

 

 

Fig. 5.16 Transient response for PI Control (Kp=0.3, Ki=0.05) 

 

 

Fig. 5.17 Transient response for PID Control (Kp=0.3, Ki=0.05, Kd=1.0) 



102 5   Embedded Microcontroller Based DC Motor Control: A Project Based Approach
 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 1 2 3 4 5 6 7 8 9

Time (sec) -->

A
ct

u
al

 M
o

to
r 

S
p

ee
d

 (
x 

85
3 

R
P

M
) 

--
--

>

Reference Speed = 1000 RPM

P-Control
Kp = 0.5

PI-Control
Kp=0.5, Ki=0.05

PID-Control
Kp=0.5, Ki=0.05, Kd=1.0

 
Fig. 5.18 Comparison of transient performance for different control algorithm 
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6  

Embedded Microcontroller Based Switched 
Mode Power Supply: A Student Project 

6.1   Introduction 

In undergraduate curriculum of many universities the topic of Switched Mode 
Power Converter (SMPC) is usually taught as a part of a subject either on power 
electronics or basic electrical and electronic engineering. At Massey University, 
New Zealand, the design of a switched mode power supply has been incorporated 
as a project work in the subject 143.339 (Design for Computer and Communica-
tions Systems), a core paper for 3rd year engineering students and the students are 
required to fabricate the power supply. The subject is offered to students of Infor-
mation and Telecommunication Engineering, Computer Systems Engineering, In-
dustrial Automation and Mechatronics degree courses at Massey University, New 
Zealand. The laboratory work contributes 60% of the overall assessment for the 
course, of which 25% has been allocated for the power supply project. This is a 
project based paper in which the students are given the problem to solve. Problem 
(or project) Based Learning (PBL) is the process in which the students focus on 
the problem and all necessary things are learnt on a need-to-know basis. PBL is 
ideal for engineering education as it encourages a multi-disciplinary approach to 
problem solving and develops techniques and confidence in solving problems 
which is essential for modern engineering practices. Circuit simulation can be 
used as an aid in teaching the principles of power electronics to improve under-
standing. But simulation alone will not be sufficient to complete the teaching and 
there is a need for actual experimentation. The laboratory for conducting real ex-
periment is important. The laboratory component in power electronics can be 
stimulating and an insightful experience which reinforces classroom learning. 

The students design and fabricate a linear power supply which is the basic re-
quirement of the project work. The design, fabrication and implementation of a 
switched mode power supply itself is a project work on its own merit. Even 
though an integrated circuit (IC), with a complete switched mode power supply, is 
now commercially available, from students’ learning perspective a lot of things 
can still be learnt while doing this project.  

The control circuit can be implemented using discrete integrated circuits or us-
ing a microcontroller.  The challenges, design issues and results are presented in 
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this chapter. In order to make the whole chapter more interesting, the description 
of the implementation based on discrete circuit is also presented. 

The students were divided into groups; each group was asked to design and fab-
ricate a Switched Mode Power Converter, with given specifications, and conduct 
experiments with it. This was done to develop their design skills in a problem 
based learning setup. The project was closely linked with practical real-life appli-
cations to make it more interesting to the students. The students were allowed the 
use of design and programming tools such as PROTEL and MATLAB to solve the 
problem. In order to fully understand the design of the control circuit using micro-
controller, the students are asked to first design the controller using discrete inte-
grated circuits. With the design completed using discrete circuits, the students  
acquire the knowledge to design the controller using a microcontroller. At the end 
of the project the students were asked to produce a written report. 

The students’ opinion has been surveyed and it shows the project based ap-
proach has enhanced the learning of the subject. 

6.2   Description of the Project: Design of Power Supply 

The problem given to the students is described in this section. 

6.2.1   Specifications of the Problem 

Design and fabricate a switched mode power supply with the following  
specifications: 

 

• Input voltage:  4 V,  ±  20 % (for ex. Solar cell) 
• Output voltage:  8 V  ( for ex. input to microcontroller kit) 
• Output current:  100 mA 
• Output regulation:  ±  1.0% 

6.2.2   Objectives 

1. Identify the type of converter and the parameters involved. 
2. Design the parameter values. 
3. Select the appropriate components. 
4. Fabricate the power supply. 
5. Design the microcontroller based controller to maintain the output voltage con-

stant irrespective of input voltage and output current changes. 

6.2.3   Experiment and Comments 

1. Run your power supply with the simulated input (normal power supply) and 
output (resistive load). 

2. Collect data and draw the load regulation characteristics. 
3. Collect data and draw the line regulation characteristics. 
4. Collect data and draw the efficiency versus output power characteristics. 
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Comment on the following: 
 

1. Current limiting behaviour of the designed power supply. 
2. Thermal shutdown of the designed power supply. 

6.2.4   Guidance on the Implementation 

The following hints are given to the students on the design and selection of  
components: 

 

1. Based on voltage and current ratings, choose the diode and MOSFET. 
2. Select the capacitor and inductor as close as possible to their designed values. 

6.2.5   Experiment with Open-Loop Power Circuit 

1. Solder the power circuit on PCB. 
2. Connect power from power supply and drive the MOSFET from a Function 

Generator. 
3. Vary the duty ratio of the MOSFET drive from 20% to 80% in steps of 10% 

with the voltage setting  80%, 90%, 100%, 110% and 120% of the nominal 
voltage (nominal voltage = 4 V).  Connect a load resistance of around 220 
Ohms. Note down the output voltage for each setting. 

4. Set the input voltage of 4 V and adjust the duty ratio so that you get a nominal 
output voltage of around 8 V with a load resistance of 220 Ohms.  Keeping the 
duty ratio constant, change the load resistance from 62 Ohms to 1 k Ω  (Take 
10 readings). Note down the output voltage and input current in each case. 

5. From 3, plot the output voltage as a function of duty ratio for different input 
voltage settings. 

6. From 4, plot the output voltage as a function of load current.  

6.2.6   Design and Implementation of the Control Circuit 

The output voltage will be maintained using a variable duty ratio Pulse Width Modu-
lator (PWM) signal which will be implemented using a microcontroller. The micro-
controller is SiLabs C8051F020 operating at a clock frequency of 22.1184 MHz. 

6.2.7   Experiment with the Implemented Model 

1. Collect data for line regulation and plot it. 
2. Collect date for load regulation and plot it. 
3. Calculate output power (Vo2/R), input power (Vin*Iin) and efficiency. Plot the 

efficiency as a function of output power.  

6.2.8   Submission Requirements 

The students need to submit the following: 
 

1. The working model. 
2. The work-book in which they have designed and collected experimental results. 
3. There is a viva-voce (group-basis). 
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6.3   Design Process 

This section describes the implementation of project work with experimental and 
simulation results. The first thing the students need to do is to select the type of 
converter. From the specifications it is very clear that they should go for a boost 
converter to achieve the required 8 V output from the available 4 V input. The 
power circuit configuration of a boost converter is shown in figure 6.1. The four 
main elements are the transistor, diode, inductor and capacitor which they need to 
design and select. 

 

+

CQ R

DL

+ Vin 
4V 

Vout 

 

Fig. 6.1 The Boost converter for the project work 

Since the voltage and current ratings are not high, they can select high fre-
quency schottky diode and MOSFET of rating 30V and 1A which are usually 
readily available in the laboratory. The nominal duty ratio is given by- 
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The nominal output resistance is given by- 

 
 R = Vout/Iout  = 8/0.1 = 80 Ω  

 
The output voltage ripple for a boost converter is given by- 
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= ; Ts is the switching time period. 
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V

Δ
≤ .  

This gives us the value of capacitance C > 1.25 μF. A capacitance of 2.2 μF is 
chosen. 
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The inductor current ripple is given by- 
 

( )2
1 sL

L

D D RTI

I L

−Δ
=  

 

IL is the average inductor current. A high value of current ripple will allow choos-
ing a lower value of inductor. Using current ripple of 50%, the calculated inductor 
value is 200 μH.  A standard available inductor of 150 μH is used for the imple-
mentation. This will make the current ripple around 66%. 

The final circuit configuration used by one group is shown in figure 6.2. 
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Fig. 6.2 The implemented final circuit diagram  

A few capacitors are used in parallel which provides an improved ripple voltage.  
The students first run the power circuit under open loop condition before they 

actually design the controller. Figure 6.3 shows the output voltage as a function of 
duty ratio while the input voltages are maintained as a percentage of nominal input 
voltage (five different values - 80%, 90%, 100%, 110% and 120% respectively) 
under open-loop condition. Figure 6.4 shows the output voltage as a function  
of load current while the input voltage is kept constant at 4 V and the duty ratio  
is 50%. 

 

 
 

Fig. 6.3 Output voltage as a function of duty ratio for different input voltages 
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Load Effects on Output Voltage
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Fig. 6.4 Output voltage as a function of load current under open-loop condition 

6.4   Design of a Closed Loop Controller 

After working under open loop condition, the students then design the controller. 
A simplified block diagram describing the whole system is shown in figure 6.5. 

 
Fig. 6.5 The complete block diagram representation of the switched mode power supply 

The functions of the various blocks are described in the following sub-sections. 

6.4.1   Oscillator 
This is based on a standard Schmitt oscillator with asynchronous switching and is 
responsible for providing the timing for the control circuit. It serves two functions 
to this end: 

1. Produces a saw tooth waveform that the comparator uses to compare with the 
error signal generated by the op amp.  
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2. Produces a ‘default’ 95% duty ratio that is passed to the NAND block. This is 
used to provide switching during power-on. When the power is first switched 
on the error is outside the bounds of the saw-tooth wave and thus the MOSFET 
is latched on. By providing this ‘default’ switching cycle we can get the output 
to increase to a point where the control circuit can begin regulating the output. 

6.4.2   Op Amp 

This takes a stepped-down measurement of the output and compares it with a sta-
ble reference produced by a band gap generator. The error signal produced is used 
to modulate the gate pulse apparent at the MOSFET via the comparator. 

6.4.3   Comparator 

This compares the error signal coming from the op amp with the saw tooth wave-
form produced by the oscillator. Depending on where the DC error signal is in re-
lation to the saw tooth, we can change the duty ratio of the MOSFET. 

6.4.4   NAND Block 

This block performs two functions: 
 

1. Produces the ‘default’ PWM for the MOSFET. 
2. Decouples the control circuit from the power circuit. We use two NAND gates 

in parallel to drive the MOSFET. This reduces the time to charge the gate junc-
tion and send the device into/out of conduction. 

6.4.5   Power Circuit 

The circuit shown in figure 6.2 is used as the power circuit. Figure 6.6 shows the 
fabricated power circuit along with the control circuit. 

 

 
 

Fig. 6.6 Fabricated switched mode power supply using discrete components 
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A few waveforms captured are shown below. Figure 6.7 shows the voltage 
waveform at the gate of the MOSFET and the ripple voltage at the output. The 
ripple in the output voltage is negligibly small; it is caused by the switching of the 
storage components in the boost converter circuit. 

 

  

Fig. 6.7 Waveforms at gate and ripple voltage 

Figure 6.8 shows the waveforms available at the inputs to the comparator. 
These two waveforms are used by the comparator to output a pulse width modu-
lated square-wave. 

Figures 6.9 and 6.10 show the line regulation and load-regulation characteris-
tics respectively under closed loop control. It is seen that the output is maintained 
constant within the specified input voltage and load currents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.8 Waveforms at the input of the comparator 
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Fig. 6.9 Line regulation characteristics at closed-loop control 
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Fig. 6.10 Load regulation characteristics at closed-loop control 
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6.5   Implementation of an Embedded Microcontroller  
     Based Switched Mode Power Supply 

After the fabrication of the switched mode power supply using discrete circuit, the 
controller can be replaced by the microcontroller. The basic changes that are 
needed to be made are as follows: 

 
1. the feedback voltage need to be input to the microcontroller, 
2. the error voltage is calculated in the microcontroller, 
3. The error voltage is used to pass through a controller to obtain the desired duty 

ratio. 
4. The Pulse Width Modulation has been implemented using a timer as discussed 

in the previous chapter. 
5. The current signal has been used after a comparison with a reference voltage to 

protect the MOSFET. 
 
It is a challenge to implement the pulse width modulation of a switching fre-
quency of 100 kHz with a 22.1184 MHz microcontroller. Of course, a lower 
switching frequency such as 20 kHz can be chosen for successful implementation. 

Figure 6.11 shows the power circuit interfaced with the microcontroller. The 
output voltage, as well as the output current, is fed as inputs to the microcontrol-
ler. The output voltage, as well as the voltage signal corresponding to the output 
current, are taken as analog signals and connected to the ADC channels. The 
PWM signal is obtained from port P1.2 which is set up in push-pull output mode.  
After all the processing is done, the microcontroller outputs a pulse to the gate of 
the MOSFET. The complete program is given in the appendix. 

 

  

Fig. 6.11 The fabricated power circuit interfaced with the microcontroller 
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Figure 6.12 shows the switching ripple at the output voltage. There are some 
high frequency spikes present due to the switching of the MOSFET. First the 
feedback was taken from the output without any filter circuit and it was not possi-
ble to get a stable operation. The presence of ripple at the output, as is shown in 
figure 6.13, is considered to be the cause. The filter capacitors of very low cut-off 
frequency are added at the output as is shown in figure 6.2, to achieve stable op-
eration of the power supply. Figure 6.14 shows the waveform of the feedback 
voltage after filtering. 

 
 

 

Fig. 6.12 The switching ripple in the output voltage 

 

 

Fig. 6.13 The feedback voltage before filtering 
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Fig. 6.14 The waveform of feedback voltage after filtering 

Figure 6.15 shows the line regulation characteristics under closed-loop condi-
tion. The maximum variation of output voltage is within +/- 1% of the nominal 
output voltage. 

 

 

Fig. 6.15 Line regulation characteristics under closed loop condition 

Figure 6.16 shows the load regulation characteristics under closed-loop condi-
tion. It is seen that the maximum variation of output voltage is within +/- 1% of 
the nominal output voltage. Figure 6.17 shows the variation of efficiency as a 
function of power output. The maximum efficiency reaches around 80%. Since the 
output is less than 1 Watt, this range of efficiency is not totally unexpected. 
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Fig. 6.16 Load regulation characteristics under closed loop condition 

 

 

Fig. 6.17 The variation of efficiency as a function of output power 

Figure 6.18 shows the picture of a group of students working on the project. 
The fabricated power circuit and the microcontroller board can also be seen in the 
picture. The whole project was implemented in three weeks which is the time allo-
cated for it in the teaching schedule. 
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Fig. 6.18 Students working on project in the laboratory 

6.6   Comments 

The students were asked to write down the different design issues, challenges and 
the way they attempted to solve the problems. The following section has been 
taken from a student report. 

6.6.1   Design Issues 

There are a few areas of this project that involved making design choices.  Firstly, 
we needed to consider which components to use in building the power supply 
hardware. On the software side, we had some choices how to generate the PWM 
control signal, and how to vary its duty ratio. Finally, we needed to think about the 
interface between our power supply and the microcontroller. 

6.6.2   Challenges of the Project Implementation 

The following points are considered as challenging for this project: 
 

(i) 100 kHz - There were a number of approaches that they could have taken to 
generate a variable duty ratio 100 kHz control signal. We found that only ap-
proaches which allowed independence of duty ratio control and signal production 
would work as duty ratio control took a huge amount of processor time. Ideally 
these operations would occur concurrently. 

 
(ii) Combining independent power supplies - For most of the project, we did not 
think about the fact that we were powering the power supply and the microcon-
troller from two independent power supplies. We did not realize that the inde-
pendence meant that our power supply voltage could float independently of the 
microcontroller reference setting. 
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(iii) Oscilloscope probe ground leads – The length of the ground leads on the os-
cilloscope probes significantly accentuated spikes. In some cases, it made prob-
lems appear worse than they actually were. 

 
(iv) Capacitive coupling – We encountered capacitive coupling problems in this 
project when changes in the output of our PWM signal produced spikes in the ana-
logue input. This was tracked back to the signal routing on the microcontroller ex-
pansion board. 

 
(v) ADC multiplexer switching – We discovered that changing ADC channel 
produced large spikes on the channels being switched off and on. This must have 
been the result of capacitive coupling of switching signals and channels in the 
ADC’s analogue multiplexer. 
 
(vi) Equivalent series resistance – We learnt about E.S.R. and its effects in the 
context of selecting our capacitor. 

 
(vii) Control 
− We used software and hardware filters to remove noise from our feedback; 

these were necessary for output stability. 
− We used an implementation of PWM generation that allowed signal generation 

to be independent from duty ratio control. 
− We used a control system based on the equation: newRatio = oldRatio + 

k*error. This approach incrementally adjusts the duty ratio based on an error. 

6.7   Conclusions 

In this chapter a student project on design and implementation of a switched mode 
power supply has been described. First the controller has been implemented by  
using discrete components and then the power circuit has been interfaced with em-
bedded microcontroller. The implementation of the project using embedded micro-
controller was a real challenge but the students have succeeded in implementing it. 

A6   Chapter Appendix 

Explanation of the implementation of a few parts and the complete listing of the 
program code is given here. 

A6.1   Microcontroller Setup 

The microcontroller should be setup to use the external oscillator; this gives the 
highest frequency to work with. Set OSCXCN to 0x67, this will set the microcon-
troller to use the external oscillator and set the oscillator to greater then 6.7 MHz. 
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The next step is to setup the port that will be used. To do this, set up the cross-
bar SFR’s XBR0, XBR1 and XBR2 to 0x04, 0x80 and 0x40 respectively. 

Port 1 can be set for analogue input, by ‘ANDing’ the port 1 control register 
with 0xFE. This will set P1.0 to analogue input i.e. P1MDIN &= 0xFE, other then 
setting P1.0 to analogue input the ports can be set to outputs, i.e. PxMDOUT = 
0x00, where x = 0 to 3. 

A6.2   Reference Voltage 

The reference voltage used is the internal reference voltage of the C8051F020. 
This can be done by setting the special function register (SFR) REF0CN to 0x07 
(Hex). This will cause ADC0 to use the internal bias generator. If the external po-
tentiometer (provided the extension board exists) is used to set up the reference 
signal, the potentiometer should be configured through the ADC channel. 

A6.3   Generation of 100 kHz PWM 

To generate the 100 kHz PWM signal, Timer 3 is used in auto-reload mode. The 
frequency of the PWM is set by the value in TM3RL. To generate 100 kHz 
TM3RL is set to 0xFF91 (Hex). 

A6.4   Feedback Voltage 

The feedback voltage that comes from the output of the circuit needs to be divided 
to bring it within the operating range so that the input to the microcontroller 
doesn’t exceed the allowable limit. A 10k/1k voltage divider was used to ensure 
that an adequate range of voltages could be measured. Also this resistance is cho-
sen to ensure that the excessive current with respect to the full load current doesn’t 
flow through the feedback resistances. 

A6.5   Implementation of PWM 

The PWM is implemented by changing the reload value in timer 3 depending on 
which part of the cycle the PWM is in.  

 
1  void Timer3_ISR (void) interrupt 14 
2  { 
3   int lwReload; 
4   lwReload = 221-ADCAdj; 
5   if ((P1 & 0x02) == 0x02) //if P1 is high go low 
6   { 
7    TMR3RL = 65315 + (lwReload) ;  

//low time reload time 
8    P1 &= 0xFD;    

//set output pin low 
9    TMR3CN &= ~(0x80);  //-- clear TF3 
10   } 
11   else 
12   { 
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13    TMR3RL = 65315 + (ADCAdj + Variance); 
    //high time reload time 
14    P1 |= 0x02;  //set output high 
15    TMR3CN &= ~(0x80);   //-- clear TF3 
16   } 
17  } 

 
The variable ADCAdj is the current value of ADC0, this is a value between 0 – 
255. This is the value that the potentiometer is set to. 

Line 3&4: the variable lwReload is the time that the PWM should stay LOW 
for. The value of 221 is 65,536 – 65315, thus if the value of ADCAdj + Variance = 
0 then the output should be 0. These values were chosen to keep the frequency of 
the PWM as close to 100 kHz as possible. The PWM will usually stay within ±2% 
of 100 kHz. 

Line 5&11: test if the output pin is high; if so change the output to LOW, else 
go HIGH. 

Line 7, 8, 9, 13, 14 & 15:  set the new timer 3 reload value, set the output pin to 
the appropriate value and reset the timer 3 interrupt flag. 

A6.6   Control Loop 

The control loop for this system consists of: 
 

Input Voltage -> ADC0 -> Compare to Goal Voltage -> Generate Variance -> 
Change PWM -> Input Voltage 

A6.7   Listing of the Complete Program Code 

#include <c8051f020.h> 
#include <stdio.h> 
//----------------------------------------------------- 
// 16-bit SFR Definitions for 'F02x 
//----------------------------------------------------- 
sfr16 DP = 0x82;  // data pointer 
sfr16 TMR3RL = 0x92;  // Timer3 reload value 
sfr16 TMR3 = 0x94;  // Timer3 counter 
sfr16 ADC0 = 0xbe;  // ADC0 data 
sfr16 ADC0GT = 0xc4;    // ADC0 greater than window 
sfr16 ADC0LT = 0xc6;    // ADC0 less than window 
sfr16 RCAP2 = 0xca;  // Timer2 capture/reload 
sfr16 T2 = 0xcc;  // Timer2 
sfr16 RCAP4 = 0xe4;  // Timer4 capture/reload 
sfr16 T4 = 0xf4;  // Timer4 
sfr16 DAC0 = 0xd2;  // DAC0 data 
sfr16 DAC1 = 0xd5;  // DAC1 data 
 
//----------------------------------------------------- 
// Global DEFINES 
//----------------------------------------------------- 
#define uchar unsigned char 
#define SYSCLK  22118450 // system clk freq in Hz 
#define LCD_DAT_PORT  P6 // LCD is in 8 bit mode 
#define LCD_CTRL_PORT P7 // 3 control pins on P7 
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#define RS_MASK 0x01  // for LCD_CTRL_PORT 
#define RW_MASK 0x02 
#define E_MASK  0x04 
 
//----------------------------------------------------- 
// Global MACROS 
//----------------------------------------------------- 
#define pulse_E();\ 
 small_delay(1);\ 
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK;\ 
 small_delay(1);\ 

LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK;\ 
 
//----------------------------------------------------- 
// Global Variables and Constants 
//----------------------------------------------------- 
int i,ADC0_reading, ADC1_reading; 
int ADCAdj; 
int CurrVoltage, GoalVoltage, Variance; 
const int InputVoltage = 4; //set the input voltage as a constant 
 
//-- function prototypes ------------------------------ 
void Init_Clock(void);  //-- initialise clock to use 

//   external crystal oscillator 
void Init_Port(void);  //-- Configures the Crossbar  
    //    and GPIO ports 
void Init_Timer3(void); 
void Timer3_ISR(void);  //-- ISR for Timer 3 
void init (void); 
void Init_ADC0(void); 
void Init_ADC1(void); 
void ADCtest(void); 
void ADC1test(void); 
 
//------ LCD function prototypes 
void small_delay    (char d);   // about 0.34us per count @22.1MHz 
void large_delay    (char d);   // about 82us   per count @22.1MHz 
void huge_delay     (char d);   // about 22ms   per count @22.1MHz 
 
main() 
{ 
 int Count; 
 Count=0; 
 init(); 
 for (;;)  //-- go on forever 

{  
  //-- test if input is ready 
  if ((ADC1CN & 0x1F) == 0) 
  { 
   ADC1test(); 
  } 
  //-- test if pot is ready 
  if (!AD0BUSY) 
  { 
   ADCtest(); 
   ADCAdj = ADC0_reading; 
  } 

 
//-- current voltage at the input 
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  CurrVoltage = (ADC1_reading - 3) * 11 / 10;  
  GoalVoltage = InputVoltage * (1000 / (100 –  
   ((ADC0_reading + 15) * 100 / 255))); //Vo=Vi(1/(1-D)) 
 

//-- set limits on the goal voltage 
  if (GoalVoltage > 40*InputVoltage) 

{GoalVoltage = 40*InputVoltage;} 
  if (GoalVoltage < 10){GoalVoltage = 40;} 

// max is input voltage * 4, min input voltage + 1volt 
 
  if (((GoalVoltage - CurrVoltage) > 2) || ((GoalVoltage  
      - CurrVoltage) < -2)) 
  { 
   Variance = (GoalVoltage - CurrVoltage); 
   //Count++; 
  } 
  else Variance = 0; 
 
  /*if (Variance > 0 && Count > 10) 

Variance = Variance + (Count - 9); 
  else if (Variance < 0 && Count > 10) 

 Variance = Variance - (Count - 9); 
  else Count = 0;*/ 
 
  // goal voltage based on the duty ratio of the PWM 

// signal and the input voltage 
 } 
 return(0); 
} 
void init (void) 
{ 
 i = 0; 
 Init_Clock(); 
 Init_Port(); 
 Init_Timer3(); 
 
 //-- Initialise ADCs ---------------------------------------- 
 REF0CN = 0x07; //-- Enable internal bias generator 

// and internal reference buffer 
   //   Select ADC0 reference from VREF0 pin 
 Init_ADC0(); 
 Init_ADC1(); 
 //-----------------------------------------------------------
  
 EIE2 = 0x01;  // Turn off all interrupts except 

// timer 3 interrupt 
 EA = 1;  //-- enable global interrupts 
 WDTCN = 0x07; // Watchdog Timer Control Register 
 WDTCN = 0xDE; // Disable watch dog timer 
 WDTCN = 0xAD; 
 OSCXCN = 0x67; // EXTERNAL Oscillator Control Register    
 while ((OSCXCN & 0x80) == 0);  // wait for XTAL to stabilize 
 
 OSCICN = 0x0C;   // Internal Oscillator Control Register 
 
 //-- Port 7-4 I/O Lines 
 P74OUT = 0x48;  //Output configuration for P4-7 
    //(P7[0:3] Push Pull) - Control Lines for LCD 
    //(P6 Open-Drain)- Data Lines for LCD 
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   // (P5[7:4] Push Pull) - 4 LEDs 
   // (P5[3:0] Open Drain) - 4 Push-Button 

// Switches (input) 
   // (P4 Open Drain) - 8 DIP Switches (input) 
//-- Write a logic 1 to those pins which are to be used for input 
 P5 = 0x00; // turn off LEDs 
 P4 = 0xFF; 
} 
 
//-------------------------------------------------------------------
// delay routines 
//------------------------------------------------------------------- 
void small_delay(char d) 
{ 
 while (d--); 
} 
 
void large_delay(char d) 
{ 
 while (d--) small_delay(255); 
} 
 

 
void huge_delay(char d) 
{ 
 while (d--) large_delay(255); 
} 
//=================================================================== 
 
void Init_Clock(void) 
{ 
// int count; 
 OSCXCN = 0x67; //-- 0110 0111b 

//-- External Osc Freq Control Bits (XFCN2-0) 
//   set to 111 because crystal freq > 6.7 MHz 
//-- Crystal Oscillator Mode (XOSCMD2-0) set  
//   to 110 

 //-- wait till XTLVLD pin is set 
 while ( !(OSCXCN & 0x80) ); 
 
 OSCICN = 0x88; //-- 1000 1000b 
   //-- Bit 2 : Int Osc. disabled (IOSCEN = 0) 
   //-- Bit 3 : Uses External Oscillator as 

//   System Clock (CLKSL = 1) 
//-- Bit 7 : Missing Clock Detector Enabled 
//  (MSCLKE = 1) 

 CKCON = 0x00; 
} 
 
void Init_Port(void) //-- Configures the Crossbar and GPIO ports 
{ 
 

// Configure the XBRn Registers 
 XBR0 = 0x04; //-- Enable UART0 (which uses P0.0 and P0.1) 
 XBR1 = 0x80;  
 XBR2 = 0x40; // Enable the crossbar, weak pullups enabled 
 

// Port configuration (1 = Push Pull Output) 
 
 P1MDIN &= 0xFE; //p1.0 is set as analog input 
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 P0MDOUT = 0x00;  //-- Enable TX0 as a push-pull output 
 P1MDOUT = 0x02;  // Output configuration for P1 

  // (Push-Pull for P1.6)  
 P2MDOUT = 0x00;  // Output configuration for P2   
 P3MDOUT = 0x00;  // Output configuration for P3  
} 
 
//-- Configure Timer3 to auto-reload and generate an interrupt at  
//-- interval specified by <counts> using SYSCLK/12 as its time base. 
void Init_Timer3 (void) 
{ 
 TMR3CN = 0x02;      //-- timer 3 uses system clock 
 TMR3    = 0xFFFF;   //-- set to reload immediately 
 
 TMR3RL = 0xFF91  //-- set the timer 3 reload value, this sets 

  //  the frequency to approx 100 kHz if using  
  // the 22 MHz external oscillator 

 
// EIE2   &= ~0x01; //-- disable Timer3 interrupts 
 EIE2   |= 0x01;  //-- enable Timer3 interrupts 
 TMR3CN |= 0x04;  //-- start Timer3 by setting TR3 to 1 
} 
 
//-- Interrupt Service Routine 
void Timer3_ISR (void) interrupt 14 
{  
 int lwReload; 
 lwReload = 221-ADCAdj; 
 if((P1 & 0x02) == 0x02) //if P1 is high go low 
 { 
  TMR3RL = 65315 + (lwReload) ; //low time reload time 
  P1 &= 0xFD;   //set output pin low 
  TMR3CN &= ~(0x80);  //-- clear TF3 
 } 
 else //else P2 go high 
 { 
  //high time reload time  

TMR3RL = 65315 + (ADCAdj + Variance); 
  P1 |= 0x02; //set output high 
  TMR3CN &= ~(0x80);  //-- clear TF3 
 } 
} 
 
void Init_ADC0(void) 
{ 

// Internal Temperature Sensor ON 
 ADC0CF = 0x80; //-- SAR0 conversion clock=1.3MHz approx.,  
   //   Gain=1 
 AMX0CF = 0x00; //-- 8 single-ended inputs (but for temp 

//  sensing this really doesn't matter) 
 AMX0SL = 0x00; //-- Select AIN0.2 (Potentiometer 

// on the Expansion Board) 
 ADC0CN = 0x81; //-- enable ADC0, Continuous Tracking Mode 
   //   Conversion initiated on Timer 3 overflow,  
   //   ADC0 data is left justified 
 AD0INT = 0; //-- clear ADC0 conversion complete interrupt  
   //   flag 
 AD0BUSY = 1; 
} 
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void Init_ADC1(void) 
{    
 ADC1CF = 0x81; //--SAR1 conversion clock= 941 Khz, Gain =1 
 AMX1SL = 0x00; //--Select AIN1.0 input 
 ADC1CN = 0x80; // enable ADC1, contiunous tracking mode, 

// conversion on timer3 overflow 
 ADC1CN |= 0x20;//Clear AD1INT 
 ADC1CN |= 0x10; // Set busy bit 
} 
 
void ADCtest(void) 
{  
 int lowbit; 
 AD0INT = 0;//-- clear ADC0 conversion complete interrupt flag 
 ADC0_reading = ADC0H; 
 lowbit = ADC0L; 
 AD0BUSY = 1; 
} 
 
void ADC1test(void) 
{ 
 ADC1CN &= 0xDF;//clear ADC1 conver. complete interrupt flag 
 ADC1CN |= 0x10; // Set busy bit 
 ADC1_reading = ADC1; 
} 

A6.8   Working Waveforms 

Figure 6.19 shows the PWM that is generated by the microcontroller, as the trace 
from the scope moves away from the starting point the PWM seems to ‘shimmer’. 
This is because the PWM is being altered to keep the voltage constant. The dynamic 
changes in the PWM are relatively small and thus the voltage is kept constant. 

 

 

Fig. 6.19 PWM signal, output is 8V with 4V input 
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Fig. 6.20 PWM signal, output is 7.1V with input 4V 

Figure 6.20 shows the PWM with the same microcontroller settings but the load 
has been reduced by 80%, thus the current drawn has increased from 158mA to 
840mA and the voltage has dropped at the output from 8.1V to 7.1V. Thus the 
PWM is varying significantly more to try to correct this problem. 

Figure 6.21 shows some of the internal variables of the program, the most im-
portant ones to watch to understand what is happening are ADCAdj, GoalVoltage, 
CurrVoltage and Variance. 

 

 

Fig. 6.21 Internal variables for the program 

Figure 6.22 shows the PWM and the output voltage from the circuit. It can be 
seen that there is ripple on the output voltage. 
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Fig. 6.22 PWM and O/P voltage 

 

Fig. 6.23 Ripple on the output voltage 

Figure 6.23 shows the output voltage ripple. The main ripple is approx 400mV 
p-p with spikes that go as high as 335mV and as low as -350mV. The oscilloscope 
was used in AC coupling mode to eliminate the DC offset of approx 8.4V. 
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7 

Embedded Microcontroller Based Magnetic 
Levitation 

7.1   Introduction 

Magnetic levitation is a fundamental requirement for implementing a magnetic 
bearing (MB). In a magnetic bearing system, it provides a contact-free support for 
the rotating shaft. This is achieved through an attractive magnetic levitation force, 
produced by passing current(s) through electromagnet(s). The magnetic force is 
controlled with the help of adjustable current by implementing a control system. 
The gap between stator and rotor is measured with a position sensor and is used as 
a means of controlling the levitation force of the magnetic bearing. In this chapter 
the implementation of the control system for magnetic levitation based on an em-
bedded microcontroller has been described. If the implementation of magnetic 
bearing system is done by using only electromagnets, it is known as Active Mag-
netic Bearing (AMB) system. 

7.2   Background and Motivation  

The use of magnetic bearing system in rotating machines has steadily increased, as 
an alternative replacement to conventional ball bearing. It provides a non-contact 
means of supporting the rotating shaft through an attractive magnetic levitation. 
Due to the non-contact nature of the bearing and rotor, it offers several advantages 
over mechanical bearing. 

 

• Frictionless: Since magnetic bearing provides a contact-free support between 
the bearing and the rotor, frictional force is absent in the system. 

• Extended machine life: Frictionless nature of the system extends the life of the 
machine as it is free from wear and tear. 

• High speed operation: Because of the frictionless nature of operation there is no 
limit on the rotor speed of rotation. 

• Lubrication free operation: Since there is no physical contact, lubrication of the 
system is not required and can be operated under environmental conditions that 
prohibit the use of lubricants. 
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• Low losses and noiseless operation: mechanical frictional loss and frictional 
noise is reduced due to the non-contact nature of the system. 

• Adjustable damping and stiffness characteristics due to use of electronics. 
• Extremely reliable. 
 
There are many applications that utilized MB’s advantages over the traditional 
ball bearing. These applications can be found in different fields such as: industrial, 
military and space applications; vacuum, low and high temperature atmosphere; 
friction free operation for gyros, disc-drives; lubrication free operation for food-
processing equipment, high vacuum pumps, clean-room machinery; and vibration 
isolation. 

Inspite of all the advantages, AMB’s are still too complicated and expensive. A 
few drawbacks are: 

• The control circuits required are complicated 
• A high precision displacement sensor is required to determine the rotor position 
• Power Consumption: current required by the electromagnets result in high 

power consumption. 
 
Generally speaking, a magnetic bearing system consists of magnetic actuators, 
controllers, amplifiers, and sensors. Unlike conventional bearings such as rolling 
element bearings and fluid film bearings, magnetic bearings require active control 
as they are unstable under open-loop operating condition. This instability also ex-
ists even when permanent magnets are used, since it is not possible to suspend an 
object in all axes at stable conditions. The rotor position is fed back to the control-
ler via the position sensors. The controller sends a command signal to the ampli-
fier which produces necessary currents in the actuator coils. Magnetic forces are 
generated by the currents in the coils. Employing an appropriate controller will 
stabilize the suspended rotor. 

In magnetic bearing technology electromagnets produce the necessary magnetic 
flux. The magnetic flux Φ can be visualized by magnetic field lines. The magnetic 
field intensity H is linked to the flux density B, by 

HB rμμ 0=  

Here, μ0 = 4 π *10-7 H/m is the absolute permeability of the vacuum, and μr is  
the relative permeability depending on the medium the magnetic field acts upon. 
µr equals 1 in a vacuum, as well as in air. By using ferromagnetic material,  
where µr is generally very large, the magnetic flux can be concentrated in the core 
material.  

Figure 7.1 shows the forces that are found in an electromagnet. Φ is the mag-
netic flux, u is the coil voltage, i is the current passing through the coil, s is the 
gap between the suspended object and the electromagnet, and A is the cross-
sectional area of the object. 
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Fig. 7.1 Forces of an electromagnet 

7.3   Hybrid Active Magnetic Bearing 

The system that is used throughout this chapter is called a Hybrid Magnetic Bear-
ing (HMB). It employs both passive and active ways of supporting the rotating 
shaft. It contains electromagnets, which are for active support, and permanent 
magnets found on the upper and lower part of the system, which provide passive 
support. The upper and lower permanent magnets found in HMB give not only 
support but help to reduce the load that the electromagnet has to carry, thereby 
minimizing the power loss. Figure 7.2 shows the different components of a hybrid 
magnetic bearing system. 

A few components are described in the following sections: 

7.3.1   Displacement Sensor 

Sensors supply the information to the controllers. Either position or flux can be 
measured, but position sensing is more widely used. There are several different 
position sensors which includes the Hall sensor, capacitive sensor, and eddy cur-
rent sensor. The eddy current sensors have the best characteristics in terms of 
bandwidth and phase shift. 

The displacement sensor measures the gap between the shaft and the rotor in 
the vertical axis. The sensor outputs a voltage proportional to the gap which is fed 
to a control system. This control system compares the current gap value with a 
reference value and subsequently adjusts the current in the electromagnet accord-
ingly to change the magnetic levitation of the shaft.  

7.3.2   Permanent Magnet 

The permanent magnets can be found in the upper and lower part of the system. 
They are used to provide stability and aid in supporting the weight of the shaft in  
the system. Figure 7.3 shows the fabricated magnetic bearing with 24 magnets 
each in the stator and the rotor. The disc is made of aluminium material. The 24  
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Fig. 7.2 Diagram showing the major components of the fabricated magnetic bearing system  

 

 

Fig. 7.3 Fabricated magnetic bearing with 24 magnets each in stator and rotor 

3 Phase Motor 

Power: 0.37 kW 
Volts: 230/400V AC 
Current: 1.8/1.1A 
RPM: 1425 
Frequency: 50Hz 

Displacement Sensor 

Input Voltage: 10-30V 
Output Voltage: 0-5V 
Range measure: 
0:6mm 

Variable 
AC Power 
Supply 

Control 
System 

DC power 
Supply 

Electromagnet 

Shell Material: Mild Steel 
Coil: 0.6mm diameter cop-
per wire 
Number of turns: 874 
Resistance: 12.80 Ohms 
Inductance ≈ 0.698H 

Upper and Lower Permanent Mag-
nets 

Disc: Aluminium 
Magnets: 24 
Stator magnet ring radius: 48mm 
Rotor magnet ring radius: 47mm 
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magnets are placed around the aluminium disc; 48 mm radius for stator and 47 
mm radius for rotor. This is a unique way of achieving magnetic levitation. 

7.3.3   Electromagnet and Force Relationship 

The electromagnet supports the weight of the system by providing a magnetic 
levitation force. The coil has 874 turns of copper wire and the diameter of the wire 
is 0.6mm. The electromagnet’s resistance is 12.80 Ω  and inductance is approxi-
mately 0.698 Henry. Table 7.1 shows the mass of the various components of the 
system. 

Table 7.1 Mass calculations of the system 

System components Mass (kg) 
Shaft and motor rotor 2.23 
Permanent magnets 0.42 
Electromagnet rotor 1.15 

Total 3.80 

 
It is assumed that the permanent magnets support 50% of the total weight. 
Since maF ≡ , the total force that the electromagnetic requires in order to levi-
tate the system is: 0.5*3.8*9.8 = 18.62 N. The electromagnet’s force relationship 
with the gap and current is: 
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All higher order terms are neglected 
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The nominal operating current is kept around 0.6 A and the maximum current  
is set at 1.0 A. The electromagnet and the displacement sensor are shown in  
figure 7.4. The electrical equation of the electromagnet around nominal gap: 

di
u Ri L

dt
= + ; u is the applied voltage across the coil 

 

Fig. 7.4 Electromagnet and displacement sensor 

Figure 7.5 shows the picture of the fabricated hybrid magnetic bearing system. 
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Fig. 7.5 Fabricated hybrid magnetic bearing system 

7.4   Design of Control System 

There are two types of control systems implemented in the AMB system. These 
are: (i) Analogue control system and (ii) embedded microcontroller-based control-
system. Both systems employ a PID controller for optimum system performance. 

7.4.1   PID Controller 

Transfer function for a PID controller is: 
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where, 

pK  - Proportional gain 

 
iK  - Integral gain 

 
dK  - Derivative gain 

 
Proportional, Integral, and Derivative (PID) controllers appear to be the most 
widely used. The reason for the popularity can be attributed to the simplicity  
of implementation and robustness. In a closed-loop (CL) system, the characteris-
tic of proportional (P), integral (I) and differential (D) controllers are given in 
table 7.2.  
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Table 7.2 Characteristics of the P, I and D controllers in a closed-loop system 

 

CL 
response 

Rise time Overshoot 
Settling 

time 
Steady state 

error 

Kp decrease increase small change 
decrease 

 

Ki decrease increase increase 
eliminate 

 

Kd small change decrease decrease 
small change 

 

 
A proportional controller (Kp) has the effect of reducing the rise time but it can-

never eliminate the steady-state error. However, employing an integral control (Ki) 
will eliminate the steady-state error but it affects the transient response. A deriva-
tive control (Kd) will have the effect of increasing the stability of the system, re-
ducing the overshoot, and improving the transient response of the system. The 
values of the gains are adjusted to provide the desired performance of the system. 

7.4.2   Analog Control System 

To appreciate the advantages and usefulness of digital control, analog control has 
been implemented first. The implementation of an analog control system uses a 
LM324N operational amplifier (Op-Amp). In the chapter appendix the final sche-
matic of the analog control system has been provided. Looking at each individual 
op-amp of the schematic, the first op-amp (U1A) shown in figure 7.6 is a unity 
gain inverter. It takes in the voltage signal from the displacement sensor and in-
verts it, since it is a negative feedback closed-loop control system. 

 

 
Fig. 7.6 Unity gain inverter 

The second Op-Amp (U1B), shown in figure 7.7, is a non-inverting summing am-
plifier. It takes two signals: (i) the inverted displacement sensor voltage signal and 
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(ii) a reference signal, which corresponds to a desired constant gap for optimum 
system operation. The two signals are added together and the sum is the error sig-
nal, which is relayed to the PI and PD controllers. 

 

 
Fig. 7.7 Non-inverting amplifier with Vref and inverted gap sensor signal as input 

The third Op-Amp (U1C), shown in figure 7.8, is a PI (proportional and inte-
gral) controller. It is a combination of an integrator circuit and a simple propor-
tional gain.  The combination of the feedback capacitor C1 and resistor R36 to the 
non-inverting input presents the integral control. The resistor R3 and the feedback 
resistor R36 provide the proportional control. The transfer function of an inverting 
Op-Amp with resistor R3 as the input element and resistor R36 and capacitor C1 as 
a feedback element is: 
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Fig. 7.8 PI controller circuit 
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The fourth Op-Amp U1D, shown in figure 7.9, is a PD (proportional and de-
rivative) controller. The combination of the capacitor C2 and the feedback resistor 
R7 at the non-inverting input presents derivative control. The resistor R12 and the 
feedback resistor R7 provide the proportional control.  

 

 
Fig. 7.9 PD controller circuit 

Figure 7.10 shows the combination of the two controllers, PD and PI. The input 
for both the controllers is the error signal from figure 7.7. The combined output of 
the PD and PI controller provides a desired response such as eliminating the 
steady-state error, reducing the overshoot, improving the transient response and 
increasing the stability of the system. 

 

 

Fig. 7.10 PI and PD controller 
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The fifth Op-Amp U2, shown in figure 7.11 is a non-inverting amplifier with a 
negative feedback. The Op-Amp takes both output signal of PI and PD controller 
as a non-inverting input. It combines the two signals and gives an overall effect of 
a PID controller.  

 

 

R35
1k

R34
10kR6 

100k 

R5 
100k 

U2 
LM311N

 
Fig. 7.11 Non-inverting amplifier with scaling down voltage divider network 

A part of the output of the final Op-Amp is fed into an external DC power sup-
ply, which applies the proportional current into the electromagnet coil for system 
stability at constant optimum gap.  

7.4.3   Results from the Controller 

An oscilloscope is used to see the waveform of the rotor position as an outcome of 
the analog control. There are two signals which have been looked at: (i) Actual 
signal and (ii) the control signal to the power supply. In all the waveforms, the top 
signal corresponds to the actual gap and the bottom signal corresponds to the con-
trol signal to the power supply. Figure 7.12 shows the steady state response of the 
system during normal operation. 

 

 
Fig. 7.12 Steady state response during normal operation 
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In addition, some disturbances were introduced to see how it affects the per-
formance of the system. Figure 7.13 shows the waveform changes of the system 
during disturbances.  

 

 

Fig. 7.13 Vibration during disturbance 

Figure 7.14 shows the steady state and transient response of the system, when 
Kd is increased. The image from the left shows the steady state response of the 
system from starting and the right image is the transient (disturbance) response, 
when Kd is increased. 

 

 

Fig. 7.14 Steady-state and transient response with increased Kd value 
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Figure 7.15 shows the steady state and transient response of the system when 
Kd is decreased. If the results of figures 7.14 and 7.15 are compared it is seen that 
an increase in Kd value decreases the overshoot and settling time of the system.  

 

 

Fig. 7.15 Steady-state and transient response with decreased Kd value 

 

 

Fig. 7.16 Steady-state and transient response with decreased Ki value 

Figure 7.16 shows the steady state and transient response of the system when Ki 
is decreased. The left image is the steady state response from starting and right 
image is the transient (disturbance) response. 

Furthermore, figure 7.17 displays the steady state and transient response of the 
system when Ki gain value is increased. The left image in figure 7.17 is the steady 
state response and on the right is the transient (disturbance) response. Comparing 
the two figures (figures 7.16 and 7.17), when the Ki gain value is increased there is 
an increase in overshoot.  
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Fig. 7.17 Steady-state and transient response with increased Ki value 

The steady state and transient response of the system is shown in figure 7.18 
when the proportional gain Kp is decreased. The left image of figure 7.18 is the 
steady state response and on the right image is the transient (disturbance) response 
when Kp is decreased. 

 

 

Fig. 7.18 Steady-state and transient response with decreased Kp value 

Figure 7.19 shows the system’s steady state and transient response when Kp is 
increased. The left part of figure 7.19 is the steady state response and on the right 
is the transient (disturbance) response. If the figures 7.18 and 7.19 are compared, 
it is seen that the rise time and steady state error is decreased when Kp value is  
increased.  
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Fig. 7.19 Steady-state and transient response with increased Kp value 

7.5   Microcontroller Based Control System 

With the above knowledge and understanding of the analog control system, it will be 
much easier to understand the digital control. The microcontroller board, as shown in 
figure 7.20, has been used to provide the control system. The expansion board con-
tains the potentiometer (for reference adjustment), LCD (for displaying the actual gap 
and reference gap) and the sensor input, where the signal from the displacement sen-
sor is connected. As far as the external interfacing is concerned the analog displace-
ment signal goes to the analog input, shown as sensor input in figure 7.20, and the 
PWM output is taken from port 1 (Port 1.0), shown in figure 7.20 as PWM output. 

 

Sensor

Potentiometer

LCD Screen

PWM Output 

PC Connection

 
 

Fig. 7.20 Microcontroller Development Board with Expansion Board 
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Pulse Width Modulation (PWM) signal is generated in the microcontroller 
board, and it produces a square waveform with a variable on-to-off ratio. The 
PWM signal controls the on/off state of the transistor, either allowing the current 
to flow through the electromagnet or limiting it. The magnetic bearing system is 
an unstable system and the use of PID controller is implemented to provide stabil-
ity of the system. The overall system setup for the microcontroller based control is 
shown in figure 7.21. 

 

 

Fig. 7.21 Equipment Setup for microcontroller-based control 

The displacement signal is taken as an input variable and goes through the ex-
pansion board of the microcontroller. The personal computer (PC) modifies the 
program to implement different gain values of Kp, Ki and Kd. It uses a RS232 se-
rial cable to connect from the serial port (COM) of the PC to the microcontroller 
which is also used to download the complied code. The reference signal, which 
corresponds to the desired constant gap for optimum system operation, is adjusted 
using the potentiometer in the expansion board.  Both the signals, reference and 
sensor, are displayed on the LCD. The unit for the two displayed signals is mi-
crometer. The PWM output, located at Port1.0 of the development board (also 
known as target board), is fed through the transistor switch. Figure 7.22 shows the 
topography of the target board.  The PWM signal turns on and off the switch,  
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hence controlling the electromagnet’s current. A 3-output power supply is used to 
provide the voltage to run the control system. A PID controller has been imple-
mented for good performance and system stability.  

 

 

Fig. 7.22 C8051F020 Target Board 

7.5.1   Microcontroller Code 

Timer 0 was used to generate the PWM signal. MAX_Count is set to 255. Each 
time the Timer 0 interrupt service routine is executed, PWM_counter is incre-
mented by 1. When the PWM_counter value exceeds the threshold value (0 to 
255) set by the potentiometer (dutyCycleCount), the PWM output will be reset.  
When the PWM_counter reaches the MAX_Count, the output is set to 1 and 
counter is reset. 22.1148 MHz external oscillator was used. Figure 7.23 shows the 
ISR (Interrupt Service Routine) of Timer 0 that sets the PWM output. 
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void Timer0_ISR (void) interrupt 1
{
 //-- clear TF0 
 TF0 = 0; 
 PWM_counter++; 
 if (PWM_counter >= dutyCycleCount) 
 { 
  PWM_output = 0; 
  if (PWM_counter >= MAX_Count) 
  { 
   PWM_output = 1; 
   PWM_counter = 0; 
  } 
 } 

}
 

Fig. 7.23 Timer0_ISR code for PWM_counter 

 

while(1)
{
  current_error_gap = Ref - Act; 

  //For PID control, Gain Values are: 
  // Kp=55/10; Ki = 6/10; Kd = 22/100; 
  proportional_factor = (current_error_gap * 55)/10; 
  integral_factor = integral_factor +

(current_error_gap*60)/100;
  derivative_factor = ((current_error_gap –

previous_error_gap)*22)/100;
previous_error_gap = current_error_gap; 

  //Integral factor limits at 10 <= integral_factor<= 100 
  if (integral_factor > 100) integral_factor=100; 
  if (integral_factor < 10) integral_factor=10; 

  //actual and reference gap in micrometers 
  gap_ref = ((33000*Ref)/(4095*8)); 
  gap = ((33000*Act)/(4095*8)); 

  //Displays the reference and actual values into the lcd 
  lcd_clear(); 
  printf("Ref: %4d um", gap); 
  lcd_goto(0x40); 
  printf("Act: %4d um", gap_ref); 

  dutyCycleCount = proportional_factor + integral_factor + 
 derivative_factor; 

  // DutyCycle limited at 40/255 (15% <= dutyCycleCount <= 95%) 
  if (dutyCycleCount < 40) dutyCycleCount = 40; 
  if (dutyCycleCount > 240) dutyCycleCount = 240;
  large_delay(1);
}

 

Fig. 7.24 Program for factor and duty cycle calculations in microcontroller control 
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The code for implementing the PID controller for the system is shown in  

figure 7.24. It also shows the PID gain values and the dutyCycleCount calculations. 
The current_error_gap calculation is the difference between the reference signal, set 
by the potentiometer, and the actual signal, coming from the displacement sensor.  

The PID factors are calculated with respect to the PID gain values. The propor-
tional factor is the product of the current error and proportional gain (Kp) while the 
integral factor is the sum of the previous integral factor plus the product of the er-
ror and integral gain (Ki). For derivative factor, it is the difference between the 
previous gap error and the current gap error multiplied by the derivative gain (Kd). 
The dutyCycleCount is the sum of the three calculated factors. However, the duty-
CycleCount is restricted to 10% to 95% operation. Also, the integral factor was 
limited to operate between 10 and 100. The dutyCycleCount, together with the 
PWM_counter, sets the PWM output. The compiler used doesn’t support floating 
point operations. So it is important to have all multiplication done first before any 
division takes place. 

ADC0 was used to convert the two signals - sensor signal input and the reference 
signal from the potentiometer. The displacement sensor signal is connected to the 
input pin AIN.3 and the reference signal is connected to AIN.2. Initially, the Chan-
nelFlag was set to 1 and then the signals are processed alternately. Figure 7.25 
shows the interrupt service routine of the ADC. Figure 7.26 shows the program 
structure of the overall control system. 

 

 

Fig. 7.25 ADC0_ISR code for the two signals – reference and actual 

void ADC0_ISR(void) interrupt 15 using 1
{ 
 
 AD0INT = 0; // clear ADC Conversion 
       
 //Selects one of the two signal - reference and actual 
 switch (ChannelFlag) 

{ 
  case 0: 
   Act = ADC0; 
   ChannelFlag = 1; 
   AMX0SL = 0x03; // Select Analog input 

// AIN.3- actual gap 
   AMX0CF = 0x00; //    " 
   break;  
  case 1: 
   Ref = ADC0; 
   ChannelFlag = 0; 
   AMX0SL = 0x02; // Select Analog input  
     // AIN.2- POT reference gap 
   AMX0CF = 0x00; //    " 
   break;  
 }  
} 
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Fig. 7.26 Program structure 

7.5.2   Results of the Microcontroller Based Control 

The output waveform of the microcontroller based system was observed on an os-
cilloscope. Figure 7.27 shows the output of a PD controller. The top waveform 
shows the steady state response for the system during normal operation. The refer-
ence and gain values are: 

 
• Kp = 3.0 
• Kd  = 0.1 
• Ref gap = 1.523 mm 
 
The waveform in figure 7.28 shows the output of the system with PID control. 
Comparing figures 7.27 and 7.28, the output waveform with PID control is a lot 
better with no overshoots or oscillations. Introducing the integral control improves 
the overshoot, steady state and transient response of the system. The PID gain and 
reference values used are shown below. 

 
• Kp = 3.0 
• Ki  = 0.1 
• Kd = 0.5 
• Gap Ref = 1.523 mm 
 
The reference signal is set to 1.523 mm from the potentiometer. Kp, and Kd values 
are set the same as the one in PD control and Ki value is set at 0.1. 

MAIN 
Initialisation: 
   Variables 
   Ports 
   Timers 
   ADC/DAC 
   LCD 
Loop: 
………………………… 
Get Reference gap  
Get Sensor signal 
………………………… 
Copy actual gap to 
DAC1 
………………………… 
Check for Control_Flag 
    
Control Algorithm to 
set PWM duty cycle 

ADC0_ISR
Read value from 
ADC0 and scale it 
to give set point 

Timer0_ISR
Generates the PWM 
signal   

ADC0

DAC1
PWM  
Signal 

Sensor 
Signal 

Potentiometer 
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Fig. 7.27 Microcontroller output signal with PD control 

 

Fig. 7.28 Microcontroller output signal with PID control 

Figure 7.29 shows the steady-state and transient response of the control system 
during normal operation. Figure on the left is the steady-state operation of the sys-
tem and on the right is the effect of the disturbances in normal operation. Distur-
bance is introduced by tapping the HMB while it is running. 
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Fig. 7.29 Steady-state and transient response during normal operation 

7.6   Conclusions  

This chapter has described two types of control systems implemented for the Hy-
brid Magnetic Levitation system. The two controllers employ a PID control to 
provide system stability. The first controller is an analog control system.  For this 
controller, it uses a LM324N, operational amplifiers. Each op-amp does a specific 
task to provide the overall system control. The major drawback of this control is 
the inflexibility of changing the gain values. Since the control is hardware-based, 
changing the gain values involves changing the components (i.e. resistor and ca-
pacitor value). Having to do this whenever you want to change the gain value is 
time consuming. The second controller is a microcontroller-based control. Unlike 
the analog system, the microcontroller provides easy ways of changing the gain 
values. It is a software based control; therefore changing the gain values requires 
you to just change the value of the gain variable in the program.  Furthermore, the 
microcontroller based control system is more accurate than the analogue; it is pos-
sible to set any desired P, I and D gain values for optimum performance. 
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A7   Chapter Appendix 

A7.1   Microcontroller Code Listing 
// This program is used to test the various parts of the expansion  
// board.It takes input from the serial port to select each test. 
 
//-------------------------------------------------------------------
// Includes 
//-------------------------------------------------------------------
#include <stdio.h> 
#include <c8051f020.h>     // SFR declarations 
//------------------------------------------------------------------- 
// 16-bit SFR Definitions for 'F02x 
//------------------------------------------------------------------- 
sfr16 DP  = 0x82;          // data pointer 
sfr16 ADC0      = 0xbe;          // ADC0 data 
sfr16 ADC0GT    = 0xc4;          // ADC0 greater than window 
sfr16 ADC0LT    = 0xc6;          // ADC0 less than window 
sfr16 DAC0      = 0xd2;          // DAC0 data 
sfr16 DAC1      = 0xd5;          // DAC1 data 
 
//-------------------------------------------------------------------
// Global DEFINES 
//-------------------------------------------------------------------
#define uchar unsigned char 
 
#define SYSCLK        22118400     // system clock frequency in Hz 
#define LCD_DAT_PORT  P6  // LCD is in 8 bit mode 
#define LCD_CTRL_PORT P7  // 3 control pins on P7 
#define RS_MASK       0x01  // for assessing LCD_CTRL_PORT 
#define RW_MASK       0x02 
#define E_MASK        0x04 
 
#define DIP P4   // DIP switches 
#define PB P5    // Push buttons bit 0 - 3 
#define LED P5    // LEDs bit 4 -7 
 
#define MAX_Count 256 
  
//-------------------------------------------------------------------
// Global MACROS 
//-------------------------------------------------------------------
#define pulse_E();\ 
 small_delay(1);\ 
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK;\ 
 small_delay(1);\ 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK;\ 
 
//-------------------------------------------------------------------
// Global CONSTANTS 
//-------------------------------------------------------------------
sbit SW2 = P3 ^ 7; 
sbit PWM_output = P1^0;  //-- PWM output pin 
 
unsigned int SAMPLE_RATE = 2;  // sampling rate - 2 Hz 
unsigned int Ref;   //Reference 
unsigned int Act;   //Actual signal   
unsigned int ChannelFlag; 
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int current_error_gap;   //Current error gap  
int proportional_factor;  //Proportional Factor 
int integral_factor;   //Integral Factor 
int derivative_factor;   //Derivative factor 
 
char control_action; 
 
unsigned int gap; 
unsigned int gap_ref; 
int previous_error_gap; 
unsigned int PWM_counter; 
int dutyCycleCount; 
 
//-------------------------------------------------------------------
// Declaration of functions. 
//-------------------------------------------------------------------
void init(void); 
void Init_Port(void);   //-- Configures the Crossbar and 
GPIO ports 
void lcd_init(void); 
void Init_Clock(void); 
void Init_ADC0(void); 
void Init_Timer0 (unsigned char reload); 
void Timer0_ISR (void); 
void Init_DAC1(void); 
 
void lcd_goto(uchar addr);     // move to address addr 
void lcd_busy_wait  (void);    // wait until the lcd is no 
longer busy 
char putchar(char dat); 
void lcd_cmd(char cmd); 
void lcd_clear(void); 
void lcd_cursor(bit on); 
 
void ADC0_ISR(void); 
void error_msg(int x); 
void small_delay    (char d); //8 bit,about 0.34us per count @22.1MHz 
void large_delay    (char d); // 16 bit,about 82us per count @22.1MHz 
void huge_delay     (char d); // 24 bit,about 22ms per count @22.1MHz 
 
void main(void) 
{ 
 EA = 0;   // Disable global interrupts 
 PWM_counter = 0; 
 current_error_gap = 0; 
 proportional_factor = 0; 
 integral_factor = 0; 
 derivative_factor = 0; 
 
 previous_error_gap = 0; 
 gap = 0; 
 gap_ref = 0; 
  
 lcd_init(); 
 init(); 
 Init_Clock(); // initialize the system clock 
 Init_Port(); 
 Init_Timer0(79);   
 lcd_cursor(0); 
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 init_timer3(SYSCLK/SAMPLE_RATE); // initialize Timer3 to  
        // overflow at sample rate 
 EA = 1;  
 ChannelFlag = 1; 
 Init_ADC0(); 
 Init_DAC1(); 
 
 while(1) { 
  current_error_gap = Ref - Act; 
 
  //For PID control, Gain Values are: 
  // Kp=55/10; Ki = 6/10; Kd = 22/100; 
  proportional_factor  = (current_error_gap * 100)/10;  
  integral_factor = integral_factor +  

(current_error_gap*10)/100;  
  derivative_factor = ((current_error_gap –  

previous_error_gap)*100)/1000;  
  previous_error_gap = current_error_gap; 
 
  //Proportional gain limits at 10 <= Kp <= 100 
  if (integral_factor > 100) integral_factor=100; 
  if (integral_factor < 10) integral_factor=10; 
 
  //actual and reference gap in micrometres 
  gap_ref = ((33000*Ref)/(4095*8)); 
  gap = ((33000*Act)/(4095*8)); 
 
  //Displays the ref and actual values into the LCD 
  lcd_clear(); 
  printf("Ref: %4d um", gap); 
  lcd_goto(0x40); 
  printf("Act: %4d um", gap_ref); 
 
  dutyCycleCount = proportional_factor +  

integral_factor + derivative_factor; 
  // DutyCycle limited at 40/255 (15% <= dutyCycleCount 

// <=  95%)240/255 
  if (dutyCycleCount < 40) dutyCycleCount = 40; 
  if (dutyCycleCount > 240) dutyCycleCount = 240;  
  large_delay(1);  
 } 
} 
 
//-------------------------------------------------------------------
// init – general initialization 
//-------------------------------------------------------------------
void init(void) 
{ 
 WDTCN = 0x07;  // Watchdog Timer Control Register 
 WDTCN = 0xDE;  // Disable watch dog timer 
 WDTCN = 0xAD; 
} 
 
void Init_Clock(void) 
{ 
 
 OSCXCN = 0x67; // Crsytal Osc. Mode without divide by 2 stage 
  // External Osc Freq Control Bits (XFCN2-0) set to 111 
  // because crystal frequency > 6.7 MHz 
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 // wait till XTLVLD pin is set i.e., crystal is stabilized 
 while ( !(OSCXCN & 0x80) ); 
 
 OSCICN = 0x88;  // 1000 1000b 
 // Bit 2:Internal Osc. disabled (IOSCEN = 0) 
 // Bit 3:Uses External Oscillator as System Clock (CLKSL = 1) 
 // Bit 7:Missing Clock Detector Enabled (MSCLKE = 1) 
} 
 
void Init_Port(void) // Configures the Crossbar and GPIO ports 
{ 
 P74OUT |= 0x08; // Setting the P5H and P5L to 

 // push-pull operation 
 LED &= 0xF0;  // LEDs are turned OFF 
 P2MDOUT = 0xFF; // Enable Port2 as (Push-Pull) output 
 XBR0 = 0x04; // Enable UART0 
 XBR1 = 0x04; // Enable INT0 (Pin P0.2) 
 XBR2 = 0x40; //Enable Crossbar and weak pull-ups (globally) 
 P0MDOUT |= 0x00; // Enable Port 0 as a open drain output 
 
 P1MDOUT = 0x01; //-- P1.0 Push-Pull 
 P2MDOUT = 0x00;// Output configuration for P2  
 P3MDOUT = 0x00; 
 
} 
 
void Init_Timer0 (unsigned char reload) 
{ 
 CKCON = 0xF8; //-- Use system clock (T0M = 1) 
 TMOD = 0x02; //-- Timer 0 in Mode 2 and incremented by  
   //   clock defined by T0M 
 TL0 = 0xFF; //-- Set to reload immediately 
 TH0 = reload; //-- Reload value (can be 0 to 255) 
 ET0 =1;  //-- Enable Timer 0 interrupts 
 TR0 = 1; //-- Start Timer 0 
} 
 
//Used to generate the PWM  
void Timer0_ISR (void) interrupt 1 
{ 
 //-- clear TF0 
 TF0 = 0; 
 
 PWM_counter++; 
 if (PWM_counter >= dutyCycleCount) 
 { 
  PWM_output = 0; 
  if (PWM_counter >= MAX_Count) 
  { 
   PWM_output = 1; 
   PWM_counter = 0; 
  }  
 } 
} 
 
void Init_ADC0(void) 
{ 
 REF0CN |= 0x03; // Enable internal bias generator and 
  // internal reference buffer which gives 2.4 V ref 
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  // Select ADC0 reference from VREF0 pin 
 ADC0CF = 0xB0;  // SAR0 conversion clock = 961 kHz was 0x08 
   // with Gain = 1 
 
 //AMX0SL = 0x03;  // Select Analog input AIN.3- actual gap 
 //AMX0CF = 0x00;  //    " 
 ADC0CN = 0x84; // enable ADC0, Continuous Tracking 
   // Mode Conversion initiated on Timer 3 
   // overflow, ADC0 data is right justified 
 EIE2 |= 0x02;  // enable ADC interrupts 
 
} 
 
void ADC0_ISR(void) interrupt 15 using 1 
{ 
 AD0INT = 0;   // clear ADC Conversion 
     // complete indicator 
  
 //Selects one of the two signal - reference and actual 
 switch (ChannelFlag) { 
 case 0: 
  Act = ADC0; 
  ChannelFlag = 1; 
  AMX0SL = 0x03; //Select input AIN.3- actual gap 
  AMX0CF = 0x00; //    " 
  break;  
 case 1: 
  Ref = ADC0; 
  ChannelFlag = 0; 
  AMX0SL = 0x02; //Select input AIN.2- POT reference gap 
  AMX0CF = 0x00; //    " 
  break;  
 }  
} 
 
// Digital to Analogue 
void Init_DAC1(void) 
{ 
 REF0CN |= 0x12; // Enable internal bias generator and 
    // internal reference buffer 
 DAC1CN = 0x88; // enable DAC1, right justified and 
// DAC1 = Ref; // DAC output updates on timer 3 overflow 
} 
 
void error_msg(int x) // Error directory for various tests 
{ 
 switch (x) { 
 case 0: 
  lcd_clear(); 
  printf("ERROR 20: DIP"); 
  lcd_goto(0x40); 
  printf("test failed"); 
  huge_delay(50); 
  break; 
 case 1: 
  lcd_clear(); 
  printf("ERROR 21: Push"); 
  lcd_goto(0x40); 
  printf("button failed"); 



154 7   Embedded Microcontroller Based Magnetic Levitation
 

  huge_delay(50); 
  break; 
 } 
} 
//-------------------------------------------------------------------
// lcd_goto 
//-------------------------------------------------------------------
// change the text entry point 
// 
void lcd_goto(char addr) 
{ 
 lcd_cmd(addr | 0x80); 
} 
 
#pragma OPTIMIZE (6) 
void lcd_init(void) 
{ 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK; //  E = 0 
 large_delay(200);    // 16ms delay 
 
 LCD_DAT_PORT = 0x38;   // set 8-bit mode 
 pulse_E(); 
 large_delay(50);   // 4.1ms delay 
 
 LCD_DAT_PORT = 0x38;   // set 8-bit mode 
 pulse_E(); 
 large_delay(2);   // 1.5ms delay 
 
 LCD_DAT_PORT = 0x38;   // set 8-bit mode 
 pulse_E(); 
 large_delay(2);   // 1.5ms delay 
 
 lcd_cmd(0x06);    // curser moves right 
 lcd_cmd(0x01);    // clear display 
 lcd_cmd(0x0E);    // display and curser on 
} 
 
#pragma OPTIMIZE (9) 
//-------------------------------------------------------------------
// lcd_busy_wait - wait for the busy bit to drop 
//-------------------------------------------------------------------
void lcd_busy_wait(void) 
{ 
 LCD_DAT_PORT = 0xFF; 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0 
 LCD_CTRL_PORT = LCD_CTRL_PORT | RW_MASK; // RW = 1 
 small_delay(1); 
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK; //  E = 1 
 do 

{          
// wait for busy flag to drop 

  small_delay(1); 
 } while ((LCD_DAT_PORT & 0x80) != 0); 
} 
 
//-------------------------------------------------------------------
// lcd_dat (putchar) - write a character to the lcd screen 



A7   Chapter Appendix 155
 

//-------------------------------------------------------------------
char putchar(char dat) 
{ 
 lcd_busy_wait(); 
 LCD_CTRL_PORT = LCD_CTRL_PORT | RS_MASK; // RS = 1 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0 
 LCD_DAT_PORT = dat; 
 pulse_E(); 
 return 1; 
} 
 
//-------------------------------------------------------------------
// lcd_cmd 
//-------------------------------------------------------------------
void lcd_cmd(char cmd) 
{ 
 lcd_busy_wait(); 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0 
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0 
 LCD_DAT_PORT = cmd; 
 pulse_E(); 
} 
 
//-------------------------------------------------------------------
// lcd_clear – clears the display in the lcd screen 
//-------------------------------------------------------------------
void lcd_clear(void) 
{ 
 lcd_cmd(0x01); //-- clear LCD display 
 lcd_cmd(0x80); //-- curser go to 0x00 
} 
 
void lcd_cursor(bit on)        // 1 displays curser, 0 hides it 
{ 
 if (on) 
  lcd_cmd(0x0E); 
 else 
  lcd_cmd(0x0C); 
} 
 
//-------------------------------------------------------------------
// Delay Routines 
//-------------------------------------------------------------------
void small_delay(char d) 
{ 
 while (d--); 
} 
 
void large_delay(char d) 
{ 
 while (d--) 
  small_delay(255); 
} 
 
void huge_delay(char d) 
{ 
 while (d--) 
  large_delay(255); 
} 
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8  

Embedded Microcontroller Based Fireworks 
Detonation System 

8.1   Introduction 

This chapter describes the implementation of a microcontroller based remote fir-
ing module to detonate fireworks. The system uses software running on a personal 
computer (PC) to control this remote module. 

Traditional systems use very long runs of cable, up to several hundred meters, 
for each firework shell which is connected. This significantly increases the setup 
time and cost. If shorter wires are used, it will lead to placing technicians too close 
to the firework shells when they are fired. Such trade-offs between safety and 
setup cost/time should not be needed. 

Because fireworks are classified as dangerous explosives the safety of all tech-
nicians and the public in the vicinity of the fireworks is of utmost importance. 
Safety mechanisms, both on the firing module and in the PC control software, 
must be implemented in order to avoid the unintentional detonation of any fire-
work shell. 

Large public displays, by their very nature, attract very large numbers of peo-
ple. With such large crowds of people, all in anticipation of the fireworks display 
event, things can become stressful, and the possibility of human error can come 
into play; these safety features can be crucial to a successful outcome. 

Large public fireworks displays must be choreographed to a high standard in 
order to meet public expectations. The designer of such a complex display re-
quires the use of a computer controlled system in order to achieve the demanded 
level of timing and accuracy. But computer control of firework detonation alone is 
not enough; in order to reduce the complexity and workload of wiring to each 
electronic-match, a wireless system can be used to improve reliability, reduce 
setup time and cost. It will also improve the flexibility of positioning the control 
system, leading to an increase in the safety of pyro-technicians.  
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Such wireless detonation and control systems are already commercially avail-
able but range in price from a few thousand dollars for a very basic system up to 
several thousand dollars for a high end system. Most of the systems, in the higher 
price brackets at least, include the ability to script firework detonations. There are 
only two software systems on the market that allow you to synchronize the deto-
nations to music and simulate the show as a 3D graphical visualization. A system 
of this nature could cost the user upwards of $10,000 USD for the hardware and 
software. This is out of the reach of smaller national and regional firework display 
operators. A system is required that offers comparable features at a much reduced 
cost.  

The designed system would be used for entertainment but with utmost safety. 
The remote firing module will be placed in close proximity to live explosives, and 
thus should be of rugged design. The remote module should be able to operate re-
liably at long ranges (up to 2 km) irrespective of weather conditions. 

The overview of the designed system is shown in figure 8.1. The fireworks will 
be connected to the remote firing module which is connected to the control com-
puter via wireless communication. There may be more than one remote firing 
module depending on the size of the fireworks display system. 

 

 

Fig. 8.1 System overview 

8.2   Preliminary Version of the System 

A 10-channel detonator board, using relays to switch the electric-matches, was ini-
tially designed as shown in figure 8.2. This detonator board needed to be con-
nected to the Silicon Laboratories microcontroller development boards to do the 
processing and to interface with the MaxStream RF modems over RS232. There 
was no LCD display or ability to give diagnostic output from the firing module.  
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Fig. 8.2 Initial design of a 10-channel detonator board 

The PC control software for the initial design was programmed in Visual Basic 
6.0 and had a very simple graphical user interface (GUI). It also featured a basic 
scripting system whereby test and fire commands could be issued by the software 
with defined delay periods as shown in figure 8.3. The initial system had several 
limitations and there was a need to design a new system. 

 

 

Fig. 8.3 Control software 
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8.3   Requirements 

The proposed system should be composed of a remote firing module using solid-
state devices as the switching components, and integrate the microcontroller board 
with the detonator board, so it is one complete, compact system. The module 
should provide some means to test all channels locally by a technician, and display 
the results on an LCD module. Safety switches are also to be incorporated into the 
device. The MaxStream RF module has been used as the wireless communications 
device for this application. 

At least 25 controllable channels should be available to provide a good balance 
between price and available outputs. The channels should use some sort of reus-
able, easy to use connection to the module such as spring-loaded terminals or 
screw in terminals. 

The PC control software should have a much more user-friendly GUI than the 
previous version and, if possible, the available commercial systems. It should al-
low both the manual testing and firing of electric-matches as well as automated 
firing by way of a scripting system.  

The entire system should not be extraordinarily expensive as the objective of 
this project is to produce a system that could be commercialized and compete with 
existing products, targeted at smaller fireworks display operators who cannot af-
ford overpriced commercial products. 

8.4   Design and Implementation 

8.4.1   Overview of Control Software 

The PC Control Software was chosen to be written in C# as this is a modern de-
velopment language with a lot of useful libraries and platform support. The two 
most important aspects that the software needed was the ability to control electric-
matches both manually and through a scripting language. 

The software created features a user-friendly GUI as this is very important es-
pecially when dealing with dangerous materials. There are four main sections to 
the software - master session control, manual control, script control and the show 
designer. The master control panel lays at the top of the user interface, and fea-
tures the Wireless Module Connection box, where the serial port number that the 
RF modem is attached to can be selected. If any remote modules are powered on 
then a connection to it can be established. Next to this are the buttons for arming 
and disarming testing and firing. Testing and firing have separate arming buttons 
so as to keep things as safe as possible, thereby avoiding any possibility of a tech-
nician accidentally firing a channel when they only wanted to test it.  

An XML configuration file contains various parameters that may be changed in 
future as deemed necessary, such as what resistances should constitute a short or 
an overloaded connection. 
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8.4.2   Manual Interface 

The manual control interface allows the operator to view which modules are ac-
tive, how many channels each contains and the status of each channel. From here 
channels can be individually tested and fired. Before testing or firing is allowed, 
the Arm Testing and Arm Firing buttons must be clicked to allow access to these 
features. This enables the onscreen controls, and sends a signal to the remote fir-
ing module indicating that firing and/or testing has been enabled. The firmware on 
the remote module keeps track of these states, and only allows firing or testing 
when both the PC and the module’s safety switches are off. The manual interface 
screen is shown in figure 8.4. 

Usually the resistance of an electric match is close to 2 ohms. The resistance of 
the electric match is measured to test whether the match is good, open or short-
circuited. If the tested channel resistance is below 1.2 ohms the test result is classi-
fied as short and is displayed with a red background in the listview control. If it is 
between 1.2 and 2.5 ohms it is said to be a good connection and given a green 
background. If it is above this it is called a bad (overloaded) connection, and again 
displayed with a red background. If it is open-circuit it is displayed as such and 
given an orange background; this is because it is unknown to the program if the  

 

 

Fig. 8.4 Manual control interface 
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channel was left unconnected intentionally or not. These easy to understand colors 
give a quick indication as of the status of each channel, which is beneficial to the 
technicians. 

A serial port communications log, as shown in figure 8.5, is also available from 
the drop down tools menu. This window displays all sent and received characters, 
which was extremely helpful during debugging. This can optionally be written to a 
text file. 

 

 

Fig. 8.5 Connection log window 

8.4.3   Scripting Interface 

The scripting interface is probably the most important section of the software, as it 
allows the execution of a completely automated fireworks display. The scripting 
interface window is shown in figure 8.6. 

The module sections begin with the keyword “module” followed by the identi-
fier of the module being referred to. A list of timecodes is then defined between 
the open and close braces. It is really necessary to have at what time each channel 
of the module should be fired, as all testing is accomplished through the manual 
interface. Therefore each line begins with the keyword “fire”, then the channel 
number (these can be in any order), then the time from the start of script execution 
to fire each channel, in the format minutes ‘:’ seconds ‘:’ milliseconds. Comment 
lines begin with the ‘#’ hash character. 

A script text file must first be loaded into the software with the Browse button, 
even if it is only blank. It can then be viewed, edited and saved in a separate text-
box pop-up window. Once the script is ready, the user clicks the “Setup” button.  
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Fig. 8.6 Scripting control interface 

This will compile the script and check for any syntactic errors, and validate what 
the user has entered; any errors are displayed in the output window, including 
what line they occur on. Setup will also fail if firing is not armed locally in the 
software or on any of the remote modules. 

When this is okay the list of timecodes will be transmitted to the remote mod-
ule. The remote modules will then send back an acknowledgement if the list of 
timecodes was received in good order. When setup is complete, the show can be-
gin by clicking the “Run” button. This will transmit to the remote modules the go-
ahead to start processing timecodes and begin firing. 

If the user needs to cancel the display the “Stop” button can be pressed to send 
the cancel command to the remote modules. 

It is a common practice with almost all of the existing commercial systems to 
use this concept of uploading timecodes to the firing modules for the reasons men-
tioned above. Some also allow the option of not needing to have a PC to initiate 
the firing process, in case the show technicians are not computer literate, though 
this concept is largely outdated in this day and age. 
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8.4.4   Designer Interface 

The designer interface is shown in figure 8.7. It provides a basis for future devel-
opment. On the left of the window would be a 3D graphical simulation of the 
fireworks display being designed. Such a simulation would be hugely beneficial to 
the creation and choreography of displays, letting the coordinators view the show 
prior to it actually happening, and letting clients view and sculpt the fireworks 
display to best suit their imaginations. 

 

 

Fig. 8.7 Designer interface 

8.5   Remote Firing Module 

8.5.1   Overview and Methodology 

The remote firing module is responsible for communicating with the control com-
puter, displaying diagnostic results, and firing/testing electric-match connections. 
Each electric-match that can be fired by the module is connected to a “channel” 
(an individual, controllable electric-match connection). MOSFETs are used to 
switch current flow through the channels and these are controlled directly by an 
onboard microcontroller.  
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A large number of channels should be available on the module, as this will pro-
vide an adequate number of firework connections and reduce the number of these 
modules required for a large show. 30 channels have been built into the module. 
The system contains an LCD module for displaying status and diagnostic informa-
tion, as well as local safety on/off switches for both firing and testing functionality 
for enhanced safety measures, again to protect the technicians wiring the system. 
Initially a small circuit board with 6 channels (including firing and testing current 
limit resistors, switching MOSFETs and zener diode for ADC readings) was de-
signed and built in order to verify that the designed circuit for firing and testing 
would work. This helped to develop a large portion of the firmware for the system 
using the Silicon Labs microcontroller development boards. 1.8 ohm resistors 
were used in place of electric-matches for initial development. 

After the successful design and testing of the experimental model, the full cir-
cuit was designed and fabricated. Solidworks was used for the CAD design of the 
control panel layout for all the mechanical components selected, and was ma-
chined on the CNC mill. The circuit boards, battery and panel were fitted inside a 
rugged, weatherproof plastic case. 

When completed a final test was done using the actual electric-matches, with 
all going well. Testing and firing worked perfectly the first time. 

8.5.2   Electric Matches 

An electric match as shown in figure 8.8 is used to provide a small initial explo-
sive charge to light a firework shell’s primary fuse. They are typically constructed 
from lengths of 22-gauge insulated wire joined by a small bridge-wire coated in a 
pyrotechnic mixture that will ignite when heated. The electric-matches are from 
1.5 to 2.5 ohms in resistance, and can be ignited by applying a current of approxi-
mately 1A (depending on model) through the match, with higher currents igniting 
the match at a faster rate. These are connected to the module using spring-loaded 
speaker terminals for ease of use. 

 

 

Fig. 8.8 An electric match used for detonating fireworks 

Electric-matches have no-fire, and all-fire currents. Typically a no-fire current 
ranges from 50 to 100mA, but varies a lot between model and brand of match. 
This no-fire current means that all of the electric-matches are almost guaranteed to 
not fire/ignite at this current. This is very useful for determining the maximum 
current limit to allow when testing the electric-matches for continuity. Conversely 
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an all-fire current dictates the minimum firing current required to successfully ig-
nite all electric-matches, and typically ranges between 350 mA to 1 A.    

8.5.3   User Interface 

The user interface to the Remote Firing Module consists of two separate parts: a 
hardware panel with physical buttons, switches and connectors, and a graphi-
cal/textual display for dynamic content on the LCD. 

In figure 8.9, the layout of the developed Remote Firing Module is shown. 
Spring loaded terminal connections numbering 1 through 30 are located at the top 
of the panel. Indicator LEDs for battery low and power are on the bottom left of 
the panel, next to the 2.5mm standard DC power jack for connection to a 16V+ 
un/regulated DC power supply for charging, with the power switch below this. 
The LCD is a 16 character by 2 line display, with large lettering and green illumi-
nated backlight for ease of sight. 

The small momentary push-button is the backlight control. The LCD backlight 
uses approximately 100mA of current when in use, and thus is a large waste of 
power. The Backlight button turns on or off the backlight. When the backlight is 
turned on, a timer will automatically turn it off after two minutes in order to con-
serve power. The technician simply needs to press the button in order to turn it 
back on again if they are working with the unit. 

 

 

Fig. 8.9 Hardware user interface 
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The other momentary push-button is the test-all/diagnostic button. This button 
will immediately test all channels, and display the results locally by scrolling them 
across the bottom line of the LCD. This can aid technicians setting up the system, 
as they do not need to walk all the way back to the control station just to test if 
their wiring is good. The state of each channel, either “short”, “open” or “OK” is 
displayed. More detailed results, i.e. the actual measured resistances across the 
terminals of each channel can only be viewed in the PC control software. 

The fire arm and test arm safety switches are located on the bottom right of the 
module. These are large, illuminated, rocker switches. The switch must be in the 
on position to enable testing/firing locally on the module. When testing/firing is 
enabled both locally on the module and remotely in the PC control software, the 
switch will be illuminated. If firing/testing is enabled either locally or remotely, 
but not both, the switch will flash at a slow rate. 

The top line of the LCD module displays several pieces of important informa-
tion. The connection status- “Connected” or “Not Conn.”. The module’s ID at the 
far right, ‘A’ in figure 8.9, and also whether firing and testing are enabled, which 
is indicated by a ‘T’ for testing and a ‘F’ for firing. Testing/firing must be enabled 
both locally and remotely for this to be displayed, and indicates that all safety is 
off, and the channel connections are live. When scripted timecodes are active, 
“FIRE” is displayed in the bottom right corner of the LCD to indicate that firing 
on the module is in progress. 

The bottom line displays the battery voltage in steps of 10%, which is updated 
in one minute intervals. The scrolling results of the local test-all button are also 
displayed here. 

8.5.4   Operational Modes 

There are three primary modes of system operation: normal, diagnostic, and 
charge.  

 
Normal – the system by default boots into normal operating mode. 

 
Diagnostic – this mode can be entered into by holding down the “test 
all/diagnostic” button when powering the system on. In this mode additional de-
bugging information is displayed on screen in various states. This mode provides a 
very good basis for displaying additional debugging and development information 
in a simple manner. 

 
Charge – charge mode is automatically entered into upon start up when a voltage 
reading of 16V or higher is detected on the input of the charger jack. In this mode 
all peripheral devices of the microcontroller are shut down, the LCD backlight is 
turned off, the RF module put into sleep mode and finally the microcontroller put 
into stop mode (disabling of the oscillator, effectively completely shutting down 
and disabling the chip). By doing this the whole system’s current consumption is 
reduced to a few milliamps (the majority of this being the LCD display which re-
quires 3mA to operate), and thus all of the current provided by the charging circuit 
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can be used to charge the battery. By allowing the LCD to operate, the status of 
the system, “Charging”, can be displayed, and the user made aware of this state. 

To enable charging, first switch the module off and then connect the input voltage 
to the charger jack. The LCD will indicate that it has entered charge mode. Now 
switch the power switch on in order to connect the battery to the charger supply. 

8.5.5   Wireless Network 

The option chosen is to utilize industrial grade commercially available radio mo-
dems. The MaxStream XStream series of RF modems operate at 2.4 GHz and 
provide up to 16 km range with a high gain antenna, and 5 km with a dipole an-
tenna. Communication with these devices is made simple, needing only a serial 
port on the PC, or can be talked to directly from a microcontroller that supports 
UART. One such module is shown in figure 8.10. 
 

 

Fig. 8.10 XStream Modem Package 

The devices support several types of communication topology: point-to-point, 
point-to-multipoint and broadcast. It is possible to configure each device with its 
own address ID, as -well as a receive-address-mask, so that it will only receive 
data from modules that match the required sender-address. The modules handle all 
necessary low level data protocols and encoding. They implement spread-
spectrum frequency hopping to reduce the effects of noise and increase security. 
The modules come with PC software for easily configuring the devices. 

8.5.6   Power Supply 

A power supply is required that can deliver high currents (2 to 3A) while remain-
ing small and portable. It must also last for several hours of continuous operation 
in the field. 
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Valve Regulated Lead-Acid (VRLA, also known as sealed lead-acid) batteries 
possess these traits, and are the only practical choice. The two main technologies 
available are gel-cell and Absorbed Glass Mat (AGM), both technologies are very 
similar and allow the battery to be stored, used and charged in virtually any posi-
tion. These lead-acid batteries are reasonably compact, high capacity, and are ca-
pable of supplying large currents at 12V, making them ideal for our purposes.  

Power consumption of the system is a major issue, as the device must be able to 
sit out in the field for up to 10 hours while a show is being setup. If all peripheral 
devices, including the LCD backlight consuming 100mA and the RF module con-
suming over 200mA, are active at all times the battery would not last long, there-
fore steps have been taken to reduce the on-time of these circuits. 

Voltage regulation from 12V down to 3.3V at close to 60mA for the microcon-
troller, and at times 12V down to 5V at over 300mA means that a couple of Watts 
are dissipated by the small onboard voltage regulators, so the more current drawn 
by the system that can be reduced, the better. 

The battery voltage is passed into 3.3V and 5V regulators to provide power to 
the microcontroller, LCD and RF module, the circuits are shown in figure 8.11. A 
diode is in place before the voltage regulators in order to provide protection to all 
sensitive components (microcontroller, capacitors, LCD, RF module etc.).  
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Fig. 8.11 System power supply circuit including voltage regulators 

8.5.7   Battery Charger 

A charging circuit for the self-contained VRLA battery has been implemented on-
board in order to provide the simplest mechanism for recharging the battery. A DC 
power jack on the case allows for the input voltage to be connected. 

VRLA batteries require a voltage across the terminals of 13.8V (2.3V per cell) 
in order to trickle charge. The battery will draw current it needs to recharge, 
though the initial current must be limited to 40% of C, the battery’s Ah rating, for 
these types of battery in order to reduce the internal build up of gases; in this case 
1.28A with the 3.2Ah battery used. The current drawn by the battery will slowly 
reduce as the battery reaches its full charge capacity.  

LM317 (variable voltage regulator) has been used to suit the needs of this pro-
ject, the circuit of which is shown in figure 8.12. It is a 13.8V regulator with 
650mA current limit. This is a reasonably small current to draw from a supply, 
and at these high input voltages power (and thus heat) dissipation can be kept 
lower. 
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Fig. 8.12 VRLA charger 

The input voltage is scaled down by approximately 1/8th in order to be fed into 
an ADC input of the microcontroller (this must be in the range 0 – 3.3V). The cur-
rent drawn from the supply by the battery will return through the ground rail, pass-
ing through a 1 ohm, 0.5W resistor. When this current reaches approximately 
650mA it will have a voltage of about 0.65V developed across it, thus turning on 
transistor Q8, pulling the GND/ADJ pin of the voltage regulator low, and cutting 
off the output. The output voltage of the regulator is given by: 
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Therefore with a value of 220 ohm for R1 (R24 in figure 8.12), a resistor of 2.2K 
(VR1 in figure 8.12) is required for R2 in order to get 13.8V at the output. As this 
is a non-standard value, a 5K trimpot has been used in order to tune the output 
voltage.  

The battery voltage can be monitored by an ADC channel of the microcontrol-
ler, and the charging current enabled or disabled by use of a p-channel MOSFET 
on the positive rail.  

Because the output required to charge the battery is 13.8V and the voltage regu-
lator needs an approximate voltage drop of 2.2V in order to function, an input 
voltage of 16V DC (regulated or unregulated) or higher is required. 

With 1 to 4 Watts being dissipated by the LM317 (depending on input voltage, 
16-20V) at the maximum current of 650mA, a medium size heat sink has been af-
fixed to it. 

8.5.8   Firing and Testing 

The requirement for firing is a device that can switch a high current through the 
electric-match in order to ignite it. While for testing it is required to allow a much 
smaller current through the match to determine whether the connection as well as 
the electric match is good or bad. This means it is possible to perform a simple con-
tinuity test, or measure the voltage developed across the connection to read the resis-
tance, which would be a much more accurate measurement of the electric-match’s 
state. This is because an electric-match may fail open circuit or short circuit, or the 
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wires connecting it may not be completely connected or may short. In the case the 
connection is shorted, this cannot be detected with the simple continuity test, thus a 
large number of times the failure of the system cannot be detected. Therefore it is 
chosen to use the measurement of resistance as an input signal to ADC. 

Relays are commonly used in similar situations where high current switching is 
required. They offer many benefits such as electrical isolation and ability to switch 
very large currents with minimal power loss, but also have several disadvantages, 
which primarily include needing relatively high currents to do the switching, large 
size and lifespan. Due to their mechanical nature, contact bounce and electrical 
arcing can reduce the lifespan of relays significantly. 

By using power MOSFETs it is possible to switch quite high currents (up to 
20A) with very small surface mount DPAK packages. These are also much 
cheaper per unit and increase the reliability of operation drastically. The circuit 
diagram used for firing and testing is shown in figure 8.13. 

 

 

Fig. 8.13 Firing and testing circuit 

To fire the electric-matches several amps of current are applied across the fuse-
wire for a short burst of time. Each electric-match connection is controlled by a 
dedicated MOSFET with another common firing MOSFET to control current 
flow, this allows for several channels to be fired in parallel. Current is limited by a 
2 ohm (R5) power resistor, capable of handling up to 50W power dissipation for 5 
seconds; this in series with the electric-match will deliver about 3A of current. For 
testing the /Fire is made LOW and the /TEST is made HIGH, the channel corre-
sponding to the target electric match is enabled. 

8.6   Central Control Circuit 

A Silicon Labs C8051F020 microcontroller is the heart of the module, providing 
all processing abilities, and interfacing with the RF module and LCD. This  
microcontroller is ideal for the needs of this project as it has 64 GPIO lines,  
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onboard ADCs, UART and several timers. The details of the connections are 
shown in figure 8.14. 

 

 

Fig. 8.14 Microcontroller schematic 

The microcontroller is operating at a frequency of 22.118450MHz, as this di-
vides down nicely for UART baud rates. Nearly every available IO resource of the 
microcontroller has been taken advantage of. Control and status pin mappings can 
be seen in figure 8.14. Along with P3 used for the LCD data lines, all of the pins 
of ports 5, 6 and 7 and some of ports 0 and 4 are used for the 30 channel control 
MOSFETs. The choice of which IO pins to use for what purpose was largely de-
termined by their location on the physical device when routing the PCB.  

8.6.1   LCD Control Circuit 

LCD module MCC162B2-2 with 16 characters 2 lines has been used. The LCD 
module is connected by a ribbon cable to a 2x8 pin header on the system board, 
and uses all pins on port 3 for data lines, and 3 pins of port 2 for control lines. A 
10 kohms trimpot provides contrast adjustment. The backlight of the LCD is an ar-
ray of LEDs with a constant voltage drop of 4.2V. The current requirement for the 
backlight has been shown below. 
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With such high power consumption it is not a good idea to have this running con-
stantly, so a small n-channel MOSFET has been employed on the ground pin in 
order to allow the microcontroller to enable and disable the LCD backlight as re-
quired. The figures 8.15 and 8.16 show the necessary electronic connection dia-
gram for the LCD module. 
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Fig. 8.15 LCD connection schematic 

 

 

Fig. 8.16 LCD block diagram and pin out 

8.6.2   RF Modem Control Circuit 

The MaxStream RF modem is a small self contained package operating at 5V. The 
device can interface to 3.3V digital signals as it treats any voltage of 3.0V or higher 
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on the inputs as a digital ‘high’. Because of this fact, and the fact that the Silicon 
Labs microcontroller being used has 5V tolerant inputs, means we are able to di-
rectly connect the two devices without any special voltage level translation circuitry. 

 

/CTS
1

Sleep
2

DO3

DI
4

/RTS,CMD
5

/RST
6

RXLED
7

/TX,PWR
8

/CONFIG9

5V10

GND
11

GND
12

GND
13

GND
14

RESERVED
15

J5

X
St

re
am

 R
ad

io
 M

od
em

+5V

DGND

UART0_rx

UART0_tx

RF_module_sleep

RF_module_command

10K

R19

Q10
N channel, SOT-23

+5V

10K
R32

DGND

RF_module_rst

10k
R33

DGND

 

Fig. 8.17 RF module connection schematic 

The device has an 11 pin header on the lower underside and a 4 pin header at 
the upper underside, which connect to sockets of the same dimensions on the sys-
tem board. Many of the pins of the device are not needed for operation, only the 
TX and RX pins are required for use. In order to aid in reducing power consump-
tion and ease of use connections to several other pins of the device have been 
made as is shown in figure 8.17. 

The device needs to be configured in order to specify the function of many of 
the IO pins, as they often serve dual purposes. Configuration of the device is 
achieved in one of two ways: text mode, by entering command mode by sending 
“+++” and waiting for one second before issuing textual character commands; or 
through binary command mode, where commands can be issued by pulling the 
command pin high and then sending more efficient binary command bytes. Binary 
command mode must first be enabled through the text command mode, as the 
CMD pin defaults to another purpose. 

This CMD pin has been connected to an IO line as executing binary commands 
is much more simple and far less time consuming than text commands. The RST 
pin has also been connected as a future-proof precaution through a small n-
channel MOSFET so that the device can be reset by software if any problems with 
it occur. 

The sleep pin has been connected in order to cut down the high current re-
quirements of the modem, which uses 150mA when transmitting, and 80mA when 
receiving. By default the device is always idling in receive mode, and therefore 



8.6   Central Control Circuit 175
 

needs to be told when it can enter into sleep mode. During sleep mode the device 
will consume less than 1μA of current. 

There are several sleep modes available, and the one to be used must be config-
ured on the device. 

 

• Pin-sleep – In this mode the modem stays asleep as long as the sleep pin is 
high. This mode is really useful to systems which transmit data only, as the de-
vice is not able to detect data being sent to it for it to receive while sleeping. 
Systems such as remote data-loggers transmitting at sporadic intervals would 
make best use of this sleep mode. 

• Serial-port sleep – This mode is very similar to the pin-sleep mode, except that 
the device remains asleep until data is detected on the DI input pin. Therefore it 
remains sleeping until data is transmitted locally from the module; unfortu-
nately it cannot detect when data is being sent to the device and wake during 
this mode. 

• Cyclic-sleep – In cyclic-sleep mode the device enters sleep mode when there is 
no RF activity, i.e. when it is not transmitting or receiving. The modem will 
wake itself from sleep mode at user-configurable intervals (in the range 0.1 to 2 
seconds) in order to check if data is being sent to the device. The pin-wakeup 
mode of the device must be enabled in combination with this mode to allow us 
to wake the device by de-asserting the sleep pin when we wish to transmit from 
the remote module. This is the most ideal sleep mode for our situation, and the 
one being used on the device. 

8.6.3   IO Control Circuit 

There are four LEDs connected to the system: one which is wired to 3.3V, which 
is the power on indicator, and three controlled by the microcontroller. A 2x5 pin 
header was used for these and with one pair of pins remaining it was decided to 
have a spare LED/IO line for use if future requirements demand it. This could 
prove quite useful as the hardware would not need to be extensively redesigned 
and rebuilt to incorporate only a small change. 

Four inputs are connected to the microcontroller, two momentary push-buttons 
and two large rocker switches. These are connected with a 100K pull-up resistor 
and a 4.7K resistor into the microcontroller. The connected switch grounds the  
input line when in the on-state. Figures 8.18 and 8.19 show the details of the  
connections. 

 

470

R3

470

R4

+3V3

FiringArmed_LED

DGND

470

R5 TestingArmed_LED

470

R6 BatteryLow_LED

1 2
3 4
5 6
7 8
9 10

P8

LEDs
470

R7

Spare_LED

 

Fig. 8.18 LEDs schematic 
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Fig. 8.19 Switches schematic 

8.7   Developed Hardware 

Some pictures of the developed system are shown in figures 8.20 to 8.25 which are 
self explanatory. The enclosure of the complete system, as is shown in figure 8.24, 
was chosen because it is made of very strong plastic, and has a waterproof rubber  

 

 

Fig. 8.20 Development system setup 

 

 

Fig. 8.21 Detonator board top/bottom 
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Fig. 8.22 Completed firing system board with attached RF module 

 

 

Fig. 8.23 Underside view of firing system board 
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Fig. 8.24 Enclosure and hardware control panel 
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Fig. 8.25 Underside view of hardware control panel 

 

seal. The panel was designed using Solidworks and machined on the CNC mill from 
a sheet of 3mm thick PVC. The case containing battery, controller board, LCD 
module and panel with spring-loaded terminal connections feels nice and heavy, of 
rugged design, as the system has been designed for use in a harsh outdoors environ-
ment controlling explosive materials. 

The main system board is connected to another PCB on the underside of the top 
panel, to which the speaker terminals are soldered; this meant the connections 
would be a lot neater, eliminating the need for a large number of messy wire con-
nections. 

A small adapter PCB had to be made in order to connect the 1x16 pin LCD 
connection to the 2x8 ribbon cable header on the main system board. 

8.8   Firmware 

8.8.1   Overview 

The microcontroller firmware is programmed in C, using the SiLabs IDE and the 
SDCC compiler. When the module powers on, it first of all initializes all variables 
to zero or their default values. After this it sets ups the microcontroller peripherals 
and subsystems before checking which operational mode to start in, normal, diag-
nostic or charge. 



180 8   Embedded Microcontroller Based Fireworks Detonation System
 

Once everything is up and running and the system is ready to begin operation. 
It first sends out the “hello” command to let the PC control program know that this 
module has been activated; this means the user doesn’t have to manually re-
connect on the GUI. 

The program then enters into an infinite loop where it first checks the flag to 
signal if an event timeout has occurred and needs to be processed. It will then 
check the command packet received flag, and process it if necessary. Otherwise it 
will check if the state of any of the input buttons or switches has changed. 

Running in parallel to this are two interrupt service routines, UART0 and Timer 
3 ISRs. The UART interrupt service routine will run when a byte is received from 
the RF module, it will process it and when the entire packet has been received 
raise the signal to the main loop to process it. Timer 3 serves as the basis of the 
event processing system. 

Each channel’s port and IO pin are contained in lookup tables to be able to eas-
ily map between a channel number (i.e. 0 – 29) and the port and pin it is contained 
on. These lookup tables are stored in xdata memory. By doing this it has tidied up 
the code significantly, and IO pin numbers do not need to be hunted around for 
within the whole program to change when needed. 

8.8.2   Communications 

Every packet sent and received in the system begins with a four byte command 
string; this reduces the processing overhead required by the microcontroller. This is 
followed by the address of the module the packet is intended for, or has originated 
from. Any subsequent data specific to the command or response being sent is then 
appended to the packet. Table 8.1 provides the details of the packet structure. 

Table 8.1 Packet structure 

Index Size Type Description 
0 4 char Command string ID, e.g. “badc” 
4 1 char Module ID, e.g. ‘A’, ‘B’, etc 
5 1 int Message data length 
6 * byte Message data 

 
The microcontroller’s UART0 peripheral device is used to accomplish the se-

rial communication. These pins talk at standard 3.3V logic levels to the XStream 
radio modem, no +/-10V level conversion ICs are necessary. The XStream mod-
ules operate only at 9600 baud, so this is the bit rate used to configure UART0 and 
the reason the crystal frequency is at 22.118450 MHz, this frequency eliminates 
any timing errors for the UART baud rates. 

When a command is to be received, the interrupt routine checks that the correct 
number of bytes (six for the packet header + the number specified for the message 
data length) has been received. The main program is then signalled, and the first 
four byte command string is decoded into a one byte integer identifier that is used 
to quickly check which command it is within the program. The command is then 
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executed, or an error command is sent back to the PC if the command received 
could not be identified. 

8.8.3   Command and Response Set 

Commands are sent from the PC to the remote module, and are responsible for 
controlling the core actions of the module, such as testing and firing channels and 
requesting status responses from the module, including safety switch states, num-
ber of channels available on the module etc. 

 
PC to Module available commands: 

 
"ping" -  ensure module is responsive, will respond with pong 
"fire" -  fire ematch on specified channel 
"test" -  test ematch on specified channel 
"tall" - test all ematchs on specified module and send back results 
"fstc" -  set fire timecodes 
"tbeg" -  fire by timecodes begin 
"tcan" -  fire by timecodes stop 
"fdis" -  firing disable 
"fena" -  firing enable, ie. safety off 
"tdis" -  testing disable 
"tena" - testing enable, ie. safety off 
"gtst" -  get test safety switch state 
"gfir" -  get fire safety switch state 
"gcnt" -  get addressable channel count of module 
 
Module to PC available commands: 
 
"badc" -  bad command recv'd 
"pong" -  sent in response to a ping packet 
"busy" -  the module is busy processing the previous command 
"ftst" -  fire timecodes set okay 
"tres" -  test result, 2 byte message data is channel, then 8bit ADC value 
"tsws" -  test safety switch state, data is byte 0x00 for off, 0x11 for on 
"fsws" -  fire safety switch state, data is byte 0x00 for off, 0x11 for on 
"ccnt" -  channel count, message data is one byte containing the number of 

addressable channels on this module 
"helo" -  module has been powered on, broadcast to let PC control software 

know the module exists 
"eukn" -  error, an unknown error has occurred in the module 
"efdi" -  error, could not fire, firing disabled either locally or remotely 
"etdi" -  error, could not test, testing disabled either locally or remotely 
"erng" -  error, the requested channel to fire or test is out of range 
"etns" -  error, firing timecodes not set (when tbeg command issued) 
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8.8.4   Event System 

The module’s event processing system is the key to the module’s operation. Every 
two milliseconds the timer 3 ISR (interrupt service routine) checks if there are any 
active event objects, and if so subtracts a value of 2 from its milliseconds remain-
ing state variable. When this reaches zero the global event_timeout signal variable 
is set to 1, and the main program can then process it (i.e. call its associated event 
handler function and either remove the event, or set it back up to repeat). 

Events are stored in an array of event_t object types. Where each event is given 
a unique ID with which it can be referred to. The remain variable keeps track of 
how many milliseconds remain until the event triggers, and the period variable 
contains the value that should be reloaded into the remain variable if the event is 
set to repeat. A callback function must also be specified that can be called when 
the event triggers to handle the event. 

 
struct event_t 
{ 
 BOOL repeat; 
 
 unsigned char id; 
 
 unsigned int remain; //-- in milliseconds 
 unsigned int period; 
 
 void (*callback)(); 
}; 

 
Events are started using the following function 

 
void start_event(unsigned int milliseconds, BOOL repeat, void 

(*callback)(unsigned char), unsigned char id); 

 
And they may be stopped at any time with 

 
void stop_event(unsigned char id) 

 
The timer 3 ISR runs at a clock frequency of 499.999 Hertz i.e. an interval of very, 
very close to 2 milliseconds. This frequency was chosen because the timer’s re-
load value is a 16-bit integer (i.e. it must be in the range 0x0000 to 0xFFFF and 
cannot be a floating point number). 

 

Timer reload value =
sysclock

0xFFFF
timerfreq

−  

 
The timer reload value counts up to the max (0xFFFF), therefore the value we 
want to time for is subtracted from this. 
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442379.44236
500

22114580 ≈==
timerfreq

sysclock  

 
A period of 500 Hz has been chosen, with a time period of 2 ms, because this 
value gave a result that was as close as possible to a full integer value compared to 
other millisecond periods. This in turn increases the timing accuracy significantly. 
The timer period also needed to be as small as possible to allow the highest resolu-
tion possible for events, and needed to be an integer number of milliseconds so 
event times could be accurately kept track of. 

 
Therefore the real operational period of the timer is 

 
sysclock 22118450

499.998869Hz
reloadvalue 44237

= =  

 
This allows us to keep extremely accurate time with a resolution of two millisec-
onds on the remote firing module. This is accurate enough to keep the system in 
synchronization for the firing timecodes. 

There are nine different events that are used on the module: 

• Fire – keep output on for 500 ms in order to ensure matches are ignited success-
fully. 

• Fire timecodes – repeated event every 100ms to keep time for firing on scripted 
timecodes when necessary. 

• LCD Backlight – keeps the backlight on for two minutes at a time and then 
turns it off save power. 

• Debounce – disables button input for 30ms when it is first detected in order to 
avoid multiple detections. 

• Battery – reads battery voltage at one minute intervals to keep an accurate dis-
play of the battery’s charge percentage. 

• Scroll – scrolls the test-all display when the diagnostic button is pressed. 
• Flash fire – flashes the fire armed LED when necessary. 
• Flash test – flashes the test armed LED when necessary. 
• Flash battery low – flashes the battery low warning LED when necessary. 
 
In conclusion it can be said that a smart, compact and efficient fireworks detona-
tion system based on embedded microcontroller has been designed and fabricated. 
The developed system has been tested satisfactorily in field trails. 
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A8   Chapter Appendix 

Microcontroller Code Listing 
 
/*  
Purpose: Microcontroller firmware for Detonator test board for fire-
works control system project. 
 
 Receives commands from control PC software over RS232. 
 -------------------------------------------------------------
 PC-to-module packet layout: 
 
 Index size  type description 
 0   4 char command string ID, eg "fire" 
 4   1 char ModuleID, eg. "A" or "B" etc 
 5   1 int channel 
 

Only "fire", "test", "chst" and "chun" commands use/send the 
channel byte. None of the strings are null terminated. 

 
 Available commands: 
 
 "ping" - ensure module is responsive, will respond with pong 
 "fire" - fire ematch on specified channel 
 "test" - test ematch on specified channel 
 "tall" - test all ematchs on specified module; send back results. 
 "fdis" - firing disable 
 "fena" - firing enable, ie. safety off 
 "tdis" - testing disable 
 "tena" - testing enable, ie. safety off 
 "gtst" - get test safety switch state 
 "gfir" - get fire safety switch state 
 "gcnt" - get addressable channel count of module 
 ----------------------------------------------------------------- 
 module-to-PC packet layout: 
 
 Index size  type description 
 0   4 char command string ID, eg "badc" 
 4   1 char ModuleID, eg. "A" or "B" etc 
 5   * byte message data 
 
 Available commands: 
 
 "badc" - bad command recv'd 
 "pong" - sent in reponse to a ping packet 
 "busy" - the module is busy processing the previous command 
 "tres" - test result, 2 byte message data is channel byte, then 

8bit ADC value 
 "tsws" - test safety switch state, message data is byte 0x00 for 

off, 0x11 for on 
 "fsws" - fire safety switch state, message data is byte 0x00 for 

off, 0x11 for on 
 "ccnt" - channel count, message data is one byte containing the 

number of addressable channels on this module 
 "helo" - module has been powered on, broadcast to let PC control 

software know the module exists 
 "eukn" - error, an unknown error has occurred in the module 
 "efdi" - error, could not fire, firing disabled either locally or 

remotely 
 "etdi" - error, could not test, testing disabled either locally 

or remotely 
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 "erng" - error, the requested channel to fire or test on is out 
of range 

 ----------------------------------------------------------------- 
 Fire armed switch at DIP switches #1 
 Test armed switch at DIP switches #2 
 Test All button at push-buttons #1 
*/ 
 
#include <stdio.h> 
#include <c8051f020.h> 
#include "LCD.h" 
#include "utils.h" 
 
#define CMD_UNKNOWN    0 
#define CMD_PING    1 
#define CMD_FIRE    2 
#define CMD_TEST    3 
#define CMD_TESTALL    4 
#define CMD_FIRE_ENABLE   5 
#define CMD_FIRE_DISABLE    
#define CMD_TEST_ENABLE   7 
#define CMD_TEST_DISABLE    
#define CMD_GET_FIRE_SW   9 
#define CMD_GET_TEST_SW   10 
#define CMD_GET_CHANNEL_COUNT   11 
#define RESPONSE_BAD_COMMAND   101 
#define RESPONSE_BUSY    102 
#define RESPONSE_PONG    103 
#define RESPONSE_TEST_RESULT   104 
#define RESPONSE_TEST_SW_STATE  105 
#define RESPONSE_FIRE_SW_STATE  106 
#define RESPONSE_FIRING_DISABLED  107 
#define RESPONSE_TESTING_DISABLED  108 
#define RESPONSE_CHANNEL_OUT_OF_RANGE 109 
#define RESPONSE_CHANNEL_COUNT  110 
#define RESPONSE_MODULE_ACTIVE  111 
 
#define MY_MODULE_ID 'A' // MUST be different for each hardware 
      // module connected to the system 
#define MY_CHANNEL_COUNT 6 
 
#define fire_pin P1_7 
#define test_pin P1_5 
#define vsen_pin P1_3 
 
// Types 
struct recv_packet_type 
{ 
 char command; 
 char module; 
 char channel; 
}; 
 
// Pin mapping constants 
char xdata channel_port_map[] =  
{ 
 3, // 0 
 3, // 1 
 3, // 2 
 3, // 3 
 3, // 4 
 3  // 5 
}; 
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char xdata channel_port_pinmask[] =  
{ 
 0x08, // 0 at P3.3, i.e. 0000 1000 
 0x01, // 1 at P3.0 
 0x02, // 2 at P3.1 
 0x40, // 3 at P3.6 
 0x80, // 4 at P3.7 
 0x20  // 5 at P3.5 
}; 
// UART vars 
volatile char recv_command_str[4]; // holds four character command 
string before being decoded 
 
volatile char recv_index; // keeps track of which byte of the  
      // packet being received we are upto 
volatile char packet_received; // boolean flag 
 
volatile struct recv_packet_type recv_packet;  
// receiving packet buffer 
volatile struct recv_packet_type proc_packet; 
// processing packet buffer 
 
volatile char tx_complete; 
 
// state vars 
bit busy; // busy processing eg. local diagnostics, test all 
bit connected; // connected with control PC, updated when cmd recvd 
bit accepting_input; // donot accept input during switch debouncing 
bit fire_armed_local; 
bit fire_armed_remote; 
bit test_armed_local; 
bit test_armed_remote; 
bit switch_state_fire; 
bit switch_state_test; 
bit switch_state_testall; 
 
// timing vars 
unsigned int timer_remaining_ms; 
 
void (*pfnEventCallback)(void); 
 
// Prototypes 
void do_command(struct recv_packet_type* pPacket); 
char decode_command(char* str); 
void update_display(void); 
 
void send_response(char response_type); 
 
void fire_channel(char channel); 
void test_channel(char channel); 
 
void test_all_channels(void); 
void perform_local_diagnostics(void); 
void start_fire_timeout(unsigned int ms); 
void start_debounce_timeout(unsigned int ms); 
 
void fire_timeout_callback(void); 
void debounce_timeout_callback(void); 
 
void start_event_timeout(unsigned int milliseconds, void 
(*pfnCallback)(void)); 
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void init_ADC1(void); 
void init_UART0(void); 
 
//-------------------------------------------------------------------
void init(void) 
{ 
 WDTCN = 0xDE; // disable watch dog timer 
 WDTCN = 0xAD; 
 
 OSCXCN = 0x67;    // enable external oscillator 
 while ((OSCXCN & 0x80) == 0);   // wait for xtal to stabilize 
 
 OSCICN = 0x08;    // disable internal oscillator 
 
 //-- configure digital crossbar 
 XBR0 = 0x04; // enable UART0 (which uses P0.0 and P0.1) 
 XBR1 = 0x00; 
 XBR2 = 0x40; // enable crossbar and weak pull-ups (globally) 
 
 //-- configure ports (1 = push-pull output) 
 P0MDOUT = 0x01; // enable TX0 as a push-pull output 
 P1MDOUT = 0xA0; // enable P1.5 and P1.7 as push-pull output 
     // (test and fire pins) 
 P2MDOUT = 0xFF; // P2 all to push-pull 
 P3MDOUT = 0xFF; // P3 all to push-pull 
 
 
 P74OUT = 0xC8; // output configuration for P4-7 
    // (P7[7:4] Push Pull) - fire/test status LEDs 
    // (P7[0:3] Push Pull) - control lines for LCD 
    // (P6 Open-Drain)- data lines for LCD 
    // (P5[7:4] Push Pull) - 4 LEDs 
   // (P5[3:0] Open Drain) - 4 push-button siwtches (input) 
   // (P4 Open Drain) - 8 DIP switches (input) 
 fire_pin = 0; 
 test_pin = 0; 
 
 P2 = 0x00; 
 P3 = 0x00; 
 
 P7 &= 0x0F; 
 
 //-- write a logic 1 to those pins which are to be used for input 
 P5 |= 0x0F; // development board 4 push-button switches 
 P4 = 0xFF; // DIP switches 
 
 //-- init peripherals 
 init_UART0(); 
 init_ADC1(); 
 
 lcd_init(); 
 lcd_curser(0); // switch off curser 
} 
 
//-------------------------------------------------------------------
void init_ADC1(void) 
{ 
 //-- setup pin P1.3 as ADC1.3 input 
 REF0CN = 0x03; // enable internal reference 
 P1MDIN = 0xF7; // P1.3 configured as analog input, 
     // others as output  
 AMX1SL = 0x03; // select AIN1.3 for input 
 ADC1CF = 0xF5; // highest possible conversion frequency with 
     // gain of 1 
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 ADC1CN = 0x80; // enable ADC1 in continuous tracking mode, 
     // conversion initiated on write to AD1BUSY 
 
 vsen_pin = 1; // must explicitly write logic 1 to this open 
     // drain pin to be used for input (disable 
     // output driver) 
} 
 
//-------------------------------------------------------------------
void init_UART0(void) 
{ 
 //-- set up timer 1 to generate the baude rate (9600) for UART0 
 CKCON |= 0x10; // T1M=1; timer 1 uses the sys clk 22.11845 MHz 
 TMOD = 0x20;   // timer 1 in Mode 2 (8-bit auto-reload) 
 TH1 = 0x70;    // baudrate = 9600 
 TR1 = 1;    // start timer 1 (TCON.6 = 1)  
 
 //-- set up the UART0  
 PCON |= 0x80; // SMOD0=1 (UART0 baud rate divide-by-2 disabled) 
 SCON0 = 0x50; // UART0 Mode 1, Logic level of stop bit ignored 
     // and Receive enabled 
 
 //-- enable UART0 interrupt 
 IE |= 0x10; 
 IP |= 0x10;  // set to high priority level 
 
 RI0 = 0; // clear the receive interrupt flag; ready to receive  
// TI0 = 0; 
} 
 
//-------------------------------------------------------------------
void main(void) 
{ 
 recv_index = 0; 
 tx_complete = 1; 
 
 packet_received = 0; 
 
 busy = 0; 
 connected = 0; 
 accepting_input = 1; 
 
 switch_state_fire = (P4 & 0x02) >> 1; 
 switch_state_test = (P4 & 0x01); 
 switch_state_testall = P5 & 0x01; 
 
 test_armed_remote = 0; 
 fire_armed_remote = 0; 
 
 test_armed_local = switch_state_test; 
 fire_armed_local = switch_state_fire; 
 
 EA = 0; // disable interrupts 
 init(); 
 update_display();  
 
 send_response(RESPONSE_MODULE_ACTIVE); 
 EA = 1; // enable interrupts 
 
 // Loop forever 
 while(1) 
 { 
  // Process received commands 
  if(packet_received == 1) 
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  { 
   busy = 1; 
 
   do_command( &proc_packet ); 
 
   busy = 0; 
   packet_received = 0; 
  } 
 
  // Process input 
  if(accepting_input && !busy) 
  { 
   bit sw_test = (P4 & 0x01); 
   bit sw_fire = (P4 & 0x02) >> 1; 
   // shift concerned bit into position 1 so it is assigned to  
    // the bit value type 
   bit sw_diagnostic = (P5 & 0x01); 
 
   // Check test armed switch 
   if( switch_state_test != sw_test ) 
   { 
    switch_state_test = sw_test; 
    test_armed_local = switch_state_test; 
 
    //start_debounce_timeout(30); 
 
    send_response(RESPONSE_TEST_SW_STATE); 
    send_byte(test_armed_local ? 0x11 : 0x00); 
 
    update_display(); 
   } 
 
   // Check fire armed switch 
   if( switch_state_fire != sw_fire ) 
   { 
    switch_state_fire = sw_fire; 
    fire_armed_local = switch_state_fire; 
 
    //start_debounce_timeout(30); 
 
    send_response(RESPONSE_FIRE_SW_STATE); 
    send_byte(fire_armed_local ? 0x11 : 0x00); 
 
    update_display(); 
   } 
 
   // Check local diagnostics button 
   if( switch_state_testall != sw_diagnostic ) 
   { 
    switch_state_testall = sw_diagnostic; 
 
    if(switch_state_testall == 0) 
    { 
     //start_debounce_timeout(4000); 
     perform_local_diagnostics(); 
    } 
   } 
  } 
 } 
} 
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//-------------------------------------------------------------------
char decode_command(char* str) 
{ 
 if(isequal(str, "ping", 4)) return CMD_PING; 
 if(isequal(str, "fire", 4)) return CMD_FIRE; 
 if(isequal(str, "test", 4)) return CMD_TEST; 
 if(isequal(str, "tall", 4)) return CMD_TESTALL; 
 if(isequal(str, "fena", 4)) return CMD_FIRE_ENABLE; 
 if(isequal(str, "fdis", 4)) return CMD_FIRE_DISABLE; 
 if(isequal(str, "tena", 4)) return CMD_TEST_ENABLE; 
 if(isequal(str, "tdis", 4)) return CMD_TEST_DISABLE; 
 if(isequal(str, "gfir", 4)) return CMD_GET_FIRE_SW; 
 if(isequal(str, "gtst", 4)) return CMD_GET_TEST_SW; 
 if(isequal(str, "gcnt", 4)) return CMD_GET_CHANNEL_COUNT; 
 
 return CMD_UNKNOWN; 
} 
 
 
//-------------------------------------------------------------------
void do_command(struct recv_packet_type *pPacket) 
{ 
 switch(pPacket->command) 
 { 
 case CMD_PING: 
  send_response(RESPONSE_PONG); 
  break; 
 
 case CMD_FIRE: 
 
  // DEBUG 
  P7 |= 0x80; 
  delay_10ms(25); 
  P7 &= ~0x80; 
  delay_10ms(25); 
  P7 |= 0x80; 
  delay_10ms(25); 
  P7 &= ~0x80; 
  delay_10ms(25); 
  P7 |= 0x80; 
  delay_10ms(25); 
  P7 &= ~0x80; 
  delay_10ms(25); 
  P7 |= 0x80; 
  delay_10ms(25); 
  P7 &= ~0x80; 
 
  fire_channel(pPacket->channel); 
  break; 
 
 case CMD_TEST: 
 
  // DEBUG 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
  delay_10ms(25); 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
  delay_10ms(25); 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
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  delay_10ms(25); 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
 
  test_channel(pPacket->channel); 
  break; 
 

 case CMD_TESTALL: 
 
  // DEBUG 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
  delay_10ms(25); 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
  delay_10ms(25); 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
  delay_10ms(25); 
  P7 |= 0x20; 
  delay_10ms(25); 
  P7 &= ~0x20; 
 
  test_all_channels(); 
  break; 
 
 case CMD_FIRE_ENABLE: 
  fire_armed_remote = 1; 
  update_display(); 
  break; 
 
 case CMD_TEST_ENABLE: 
  test_armed_remote = 1; 
  update_display(); 
  break; 
 
 case CMD_FIRE_DISABLE: 
  fire_armed_remote = 0; 
  update_display(); 
  break; 
 
 case CMD_TEST_DISABLE: 
  test_armed_remote = 0; 
  update_display(); 
  break; 
 
 case CMD_GET_FIRE_SW: 
  send_response(RESPONSE_FIRE_SW_STATE); 
  send_byte(fire_armed_local ? 0x11 : 0x00); 
  break; 
 
 case CMD_GET_TEST_SW: 
  send_response(RESPONSE_TEST_SW_STATE); 
  send_byte(test_armed_local ? 0x11 : 0x00); 
  break; 
 
 case CMD_GET_CHANNEL_COUNT: 
  send_response(RESPONSE_CHANNEL_COUNT); 
  send_byte(MY_CHANNEL_COUNT); 
  break; 
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 default: // CMD_UNKNOWN 
  { 
   send_response(RESPONSE_BAD_COMMAND); 
  } 
 } 
 
 // update display 
 if(!connected) 
 { 
  connected = 1; 
  update_display(); 
 } 
} 
 
//-------------------------------------------------------------------
void update_display(void) 
{ 
 char write; 
 
 // Test armed display 
 if(test_armed_local && test_armed_remote) 
  write = 'T'; 
 else write = ' '; 
 
 lcd_goto(12); 
 putchar(write); 
 
 // Fire armed display 
 if(fire_armed_local && fire_armed_remote) 
  write = 'F'; 
 else write = ' '; 
 
 lcd_goto(13); 
 putchar(write); 
 
 // Module ID 
 lcd_goto(15); 
 putchar(MY_MODULE_ID); 
 
 // Connection state display 
 lcd_goto(0); 
  
 if(connected == 1) 
  printf("Connected"); 
 else 
  printf("Not Conn.");  
} 
 
//-------------------------------------------------------------------
void fire_channel(char channel) 
{ 
 // Ensure this is legal 
 if(!fire_armed_local || !fire_armed_remote) 
 { 
  send_response(RESPONSE_FIRING_DISABLED); 
  return; 
 } 
 
 if(channel >= MY_CHANNEL_COUNT) 
 { 
  send_response(RESPONSE_CHANNEL_OUT_OF_RANGE); 
  return; 
 } 
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 // Enable port pin 
 port_or(channel_port_map[channel], 
      channel_port_pinmask[channel]); 
 
 // Enable fire pin 
 fire_pin = 1; 
  
 start_fire_timeout(1000); 
 
 /* taken care of in timeout callback 
 delay_10ms(6); 
 fire_pin = 0; 
 port_and(channel_port_map[channel],  
     ~channel_port_pinmask[channel]); 
 */ 
} 
 
//-------------------------------------------------------------------
void test_channel(char channel) 
{ 
 char result; 
 
 // Ensure this is legal 
 if (!test_armed_local || !test_armed_remote) 
 { 
  send_response(RESPONSE_TESTING_DISABLED); 
  return; 
 } 
 
 if (channel >= MY_CHANNEL_COUNT) 
 { 
  send_response(RESPONSE_CHANNEL_OUT_OF_RANGE); 
  return; 
 } 
 
 EA = 0; // we will want to disable interrupts while we do this  
    // to ensure there is no chance of it taking longer  
    // than it should and detonating something. 
 
 // Enable output pins 
 port_or(channel_port_map[channel], 
      channel_port_pinmask[channel]); 
 
 test_pin = 1; 
 
 // Give mosfets time to switch on 
 delay_10us(5); 
 
 // Get result 
 ADC1CN &= ~0x20; // clear interrupt flag, AD1INT = 0 
 ADC1CN |= 0x10; // start conversion, AD1BUSY = 1 
 while( (ADC1CN & 0x20) == 0 ); // poll for measurement 
       // complete, AD1INT = 1 
 ADC1CN &= ~0x20; // clear interrupt flag, AD1INT = 0 
 
 result = ADC1; 
 
 // Turn off test MOSFET 
 test_pin = 0; 
 
 // Give time for test to turn off and ground output through 
 // channel mosfet (otherwise the fuse_positive track is left  
 // floating) 
 delay_10us(6); 
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 // Turn off channel MOSFET 
 port_and(channel_port_map[channel],  
      ~channel_port_pinmask[channel]); 
 
 EA = 1; 
 
 send_response(RESPONSE_TEST_RESULT); 
 send_byte(channel); 
 send_byte(result); 
} 
 
//-------------------------------------------------------------------
void perform_local_diagnostics(void) 
{ 
 bit prev_armed_local = test_armed_local; 
 bit prev_armed_remote = test_armed_remote; 
 
 if (!busy) 
 { 
  busy = 1; 
 
  test_armed_local = 1; 
  test_armed_remote = 1; 
  
  test_all_channels(); 
 
  test_armed_local = prev_armed_local; 
  test_armed_remote = prev_armed_remote; 
 
  busy = 0; 
 } 
} 
 
//-------------------------------------------------------------------
void test_all_channels(void) 
{ 
 char i; 
 
 // Ensure this is legal 
 if (!test_armed_local || !test_armed_remote) 
 { 
  send_response(RESPONSE_TESTING_DISABLED); 
  return; 
 } 
 
 // Perform test 
 for(i = 0; i < MY_CHANNEL_COUNT; i++) 
  test_channel(i); 
} 
 
//-------------------------------------------------------------------
void send_response(char response_type) 
{ 
 char* text = "eukn"; 
 
 // set response code string 
 if (response_type == RESPONSE_BAD_COMMAND)   
 text = "badc"; 
 else if (response_type == RESPONSE_PONG)    
 text = "pong"; 
 else if (response_type == RESPONSE_BUSY)    
 text = "busy"; 
 else if (response_type == RESPONSE_TEST_RESULT) text = "tres"; 
 else if (response_type == RESPONSE_TEST_SW_STATE) text = "tsws"; 
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 else if (response_type == RESPONSE_FIRE_SW_STATE) text = "fsws"; 
 else if (response_type == RESPONSE_CHANNEL_COUNT) text = "ccnt"; 
 else if(response_type == RESPONSE_FIRING_DISABLED) text = "efdi"; 
 else if(response_type == RESPONSE_TESTING_DISABLED) text ="etdi"; 
 else if(response_type == RESPONSE_CHANNEL_OUT_OF_RANGE) 
       text= "erng"; 
 else if(response_type == RESPONSE_MODULE_ACTIVE) text = "helo"; 
 
 // send data 
 send_byte(text[0]); 
 send_byte(text[1]); 
 send_byte(text[2]); 
 send_byte(text[3]); 
 send_byte(MY_MODULE_ID); 
} 
 
//-------------------------------------------------------------------
void start_fire_timeout(unsigned int ms) 
{ 
 start_event_timeout(ms, fire_timeout_callback); 
 
 P7 |= 0x80; 
} 
 
//-------------------------------------------------------------------
void start_debounce_timeout(unsigned int ms) 
{ 
 accepting_input = 0; 
 
 start_event_timeout(ms, debounce_timeout_callback); 
} 
 
//-------------------------------------------------------------------
void fire_timeout_callback(void) 
{ 
 int i; 
 
 P7 &= ~0x80; 
 
 fire_pin = 0; 
 
 // Turn off all channels 
 for(i = 0; i < MY_CHANNEL_COUNT; i++) 
  port_and(channel_port_map[i], ~channel_port_pinmask[i]); 
} 
 
//-------------------------------------------------------------------
void debounce_timeout_callback(void) 
{ 
 accepting_input = 1; 
} 
 
//-------------------------------------------------------------------
void start_event_timeout(unsigned int milliseconds, void 
(*pfnCallback)(void)) 
{ 
 TMR3CN = 0x00; // stop and clear, use sysclock/12 
  
 
 pfnEventCallback = pfnCallback; 
 timer_remaining_ms = milliseconds; 
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 TMR3RL = 0x0000; 
 TMR3 = 0xFFFF;  // reload immediately 
 
 EIE2   |= 0x01; // enable interrupts for timer 3 
 TMR3CN |= 0x04; // start timer 3 
} 
 
//-------------------------------------------------------------------
void UART0_ISR(void) interrupt 4 
{ 
 /* TODO 
  Start timer so if a whole valid packet is not recved withen X  
  Milliseconds it sends a recv-timeout response to the PC and re 
  sets recv_index. 
 
  This is to safe-guard against possible transmission errors and  
  something getting out of sync. 
 */ 
 
 int packet_length; 
 char received_byte; 
 
 P2_1 = !P2_1; 
 
 // interrupt caused by received byte 
 if (RI0 == 1) 
 { 
  received_byte = SBUF0; // read the input buffer 
  RI0 = 0;       // clear the interrupt flag 
 
   recv_index++; 
 
  // determine packet length 
  packet_length = 5; 
 
  if ( (recv_packet.command == CMD_FIRE) || 
   (recv_packet.command == CMD_TEST) ) 
  { 
   packet_length = 6; 
  } 
 
  // get command str 
  if (recv_index <= 4) 
  { 
   recv_command_str[ recv_index-1 ] = received_byte; 
 
   if (recv_index == 4) 
       recv_packet.command = decode_command(recv_command_str ); 
  } 
 
  // get module id 
  if (recv_index == 5) 
  { 
   recv_packet.module = received_byte; 
  } 
 
  // get channel id 
  if (recv_index == 6) 
  { 
   recv_packet.channel = received_byte; 
  } 
 
  // done 
  if (recv_index == packet_length) 
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  { 
   recv_index = 0; 
 
   if ( recv_packet.module == MY_MODULE_ID ) 
   { 
    // do not process if busy processing previous command 
    if (packet_received || busy) 
    { 
     send_response(RESPONSE_BUSY); 
    } 
    // signal program 
    else 
    { 
     proc_packet.module = recv_packet.module; 
     proc_packet.channel = recv_packet.channel; 
     proc_packet.command = recv_packet.command; 
 
     packet_received = 1; 
    } 
   } 
 
   recv_packet.module = 0; 
   recv_packet.command = CMD_UNKNOWN;    
  } 
 } 
 
 // interrupt caused by end of transmitted byte 
 else if(TI0 == 1) 
 { 
  TI0 = 0; 
  tx_complete = 1; 
 } 
} 
 
//-------------------------------------------------------------------
void Timer3_ISR(void) interrupt 14 
{ 
 TMR3CN &= ~0x80; // reset timer 3 overflow flag 
 

 /* 
  reload = 0xFFFF - ( SYSCLK/12 ) / freq 
      = 0xFFFF - ( SYSCLK/12 ) / ( 1 / seconds ) 
      = 0xFFFF - ( SYSCLK/12 ) / ( 1 / (milliseconds/1000) 
 

     minimum frequency = 28.125 Hz =>  maximum milliseconds = 35.5 
 */ 
 
 if(timer_remaining_ms > 0) 
 { 
  // must time in blocks of 35 ms 
  if(timer_remaining_ms < 35) 
  { 
   timer_remaining_ms = 0; 
   TMR3 = 0xFFFF - (SYSCLK/1000/12) * timer_remaining_ms; 
  } 
  else 
  { 
   timer_remaining_ms -= 35; 
   TMR3 = 0xFFFF - (SYSCLK/1000/12) * 35; 
  } 
 } 
 else 
 { 
  TMR3CN &= ~0x04; // stop timer 3 
 



198 8   Embedded Microcontroller Based Fireworks Detonation System
 

  pfnEventCallback();  
 } 
} 
 
//-------------------------------------------------------------------
void send_byte(char byte) 
{ 
 while(tx_complete == 0); 
 
 EA = 0; 
 
 tx_complete = 0; 
 SBUF0 = byte; 
 
 EA = 1; 
} 
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9 

Embedded Microcontroller Based  
Non-destructive Seafood Inspection System 

9.1   Introduction 

In this chapter an embedded controller based sensing system for seafood inspection 
has been described. Interdigital sensors have been used for non-destructive and non-
invasive inspection of system properties. There are many applications of interdigital 
sensors based systems – they are used in bio-medical field to monitor the change in 
impedance caused by the growth of immobilized bacteria; a micro-sensor based on 
interdigital electrodes is used to measure the water content in human body as the wa-
ter content in the skin could be used as an index to confirm the health of human skin. 
The interdigital sensors can also be used for the estimation of fat content in pork 
meat and inspect the quality of saxophone reeds. The capacitive sensors can be inter-
faced with microcontrollers for effective signal processing. Detection of the 
presence of contaminated acid in seafood has been explained in this chapter. 

9.2   Working Principle of Interdigital Sensors 

The operating principle of the interdigital sensors depends on the detection of 
electric field which is altered by the material under test (MUT). The operating 
principle of an interdigital sensor is the same as that of a parallel plate capacitor; 
figure 9.1 shows the transformation of parallel plate capacitor to an interdigital 
sensor. The electric field passes through material under test as it flows from the 
positive electrode to the negative electrode. Thus, electrode and material geometry 
as well as material dielectric properties affect the capacitance and conductance 
between electrodes. 

 

 
Fig. 9.1 Operating principle of an Interdigital sensor [A] 
[A] A.V. Mamishev, K. Sundare-rajan, Y. Du and M. Zahn, “Interdigital Sensors and 
Transducers”, Proceedings of the IEEE, Vol. 92, No. 5, May 2004. 
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A strong signal can be achieved by repeating the electrode patterns multiple 
times and this leads to an interdigital structure. One set of electrodes of interdigital 
sensor is driven by an AC voltage source and the other set of electrodes is 
connected to ground as shown in figure 9.2. An electric field is formed between 
the driven and ground electrodes and the penetration of electric field for different 
wavelengths can be seen from figure 9.3. 

The wavelength of an interdigital sensor is the distance between two adjacent 
electrodes of the same type. In figure 9.3, different penetration depths with respect 
to different wavelengths of the sensor are shown. When a material is placed in the 
vicinity of the interdigital sensor, electric fields generated at driving electrodes 
pass through the most of the material and terminate at sensing electrodes or 
ground electrodes. 

 

 

Fig. 9.2 Interdigital sensor structure        

   

Fig. 9.3 Electric field formed between two electrodes for different wavelengths 

The electric field is affected by the dielectric properties of the material under 
test, hence the dielectric properties of the material can be known from the current 
or voltage measured at the ground electrode. By changing the area of the sensor, 
the spacing between the electrodes and also the number of fingers of each 
electrode, the strength of the output signal can be varied. Figure 9.4 shows the 
picture of fabricated sensors of different configurations. 
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Fig. 9.4 Fabricated interdigital sensors of different configurations 

The electrical connection diagram for conducting experiment using the inter-
digital sensors is shown in figure 9.5. A series resistor is connected with the sen-
sors to measure the current through the sensor. 

 

 

Fig. 9.5 Electrical connection of interdigital sensor for property estimation 

The current is measured by measuring the voltage across the resistance, R, 
which is connected in series with the sensor. So we have, 

 
 *RV I R=  
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where,    VR is the voltage across R 
               R is the series resistance 
               I is the current drawn by the sensor. 

 

Now,        
V

I
Z

=   

 
where, Z is the impedance of the sensor along with R and V is the supply voltage. 
 

2 2
totZ X R X= + ≈   as X >> Rtot;  Rtot = R + resistance of the sensor itself. 

 
*

R

R V
V

X
=  

 

RV CRV= ω         as  1
X

C
=

ω
 

 

      02 /Rf AV d= π ε ε  

 
A is the effective area of the sensing element and d is the effective distance be-
tween the electrodes. 
 

So, R RV K f= ε  
 

where,  02 /K AV d= πε , and is constant for a fabricated sensor. 

Since VR α f and VR α Єr, the voltage across R is proportional to both frequency 
and relative permittivity. 

The output voltages of two different sensors for air, butter, cheese and water at 
different frequencies are plotted in the figures 9.6 and 9.7 respectively. It can be 
seen that the sensors have different output values for the same frequencies. How-
ever, the nature of the response is similar – the output increases fairly linearly with 
frequency. The difference in output values for the two sensors can be attributed to 
the varying pitch lengths and areas. The readings for water were taken by holding 
the water in a plastic bag and placing it over the sensor which was wrapped in a 
thin plastic cling wrapper. Butter and cheese blocks were also packed using plastic 
cling wraps. 

It can be observed that the output values for butter and cheese are between 
those of air and water because their relative permittivity is more than air but less 
than water. Measures are taken to ensure that there is no moisture content on the 
sensors or the material under test as this would affect the output of the sensor. To 
avoid this, sensors are wrapped in thin plastic cling wraps which also helps to 
eliminate the direct contact of the materials with the sensors. 
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Fig. 9.6 Output voltage of sensor 1 for air, butter, cheese and water 

Sensor 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9

Frequency in KHz

O
u

tp
u

t 
V

o
lt

ag
e

Air

Butter

Cheese

Water

 

Fig. 9.7 Output voltage of sensor 2 for air, butter, cheese and water 

9.3   Sensing System for Seafood Inspection 

A low cost sensing system for inspection of raw seafood was developed based on 
interdigital sensor. The developed low cost sensing system can be used in the fish 
processing and packaging industry for at a pre-screening stage. The sensing sys-
tem analyses the samples from the ranch site and then provides a pass or fail 
analysis. If the results show a certain number of failed analysis (suspicious re-
sults), the samples from that ranch site have to be sent to the laboratory for further 
analysis of contaminated chemicals. Testing for contaminants such as Domoic 
Acid (DA) in the seafood is an expensive process. The developed sensing system 
is easy to use for the purpose of sample inspection and can provide fast analysis of 
DA within shellfish meat for in-situ monitoring. The developed sensing system 
should be reliable and cost effective.  

The developed low cost sensing system consists of a microcontroller, novel in-
terdigital sensor, power supply circuit using 9V battery and signal processing cir-
cuit. Subsequent sections will highlight the details of the system called Seafood 
Inspection Tool (SIT). 
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9.4   Interfacing to Microcontroller 

A SiLab C8051F020 microcontroller was used both for generating the necessary 
excitation signal as well as for data acquisition. The main purpose of using micro-
controller based sensing system is to develop a low-cost system. The micro-
controller was programmed to generate a sinusoidal voltage for excitation of the 
sensor. A sinusoidal waveform of 7.5 V peak-to-peak was generated at an operat-
ing frequency of 10 kHz. The stepped sine wave was first generated by the micro-
controller and the smoothened sine wave was obtained using smoothening circuit , 
which was fabricated on a single signal processing board. 

The signal coming from the sensor is alternating in nature. The interfacing cir-
cuit used for this setup is shown in figure 9.8. The sensor input needs to have an 
offset since the 12-Bit Analog to Digital Converter (ADC) cannot process values 
less than zero.  

 

Power Supply 

Sensor and 

sample

Signal Processing Circuit

Microcontroller

 

Fig. 9.8 Experimental setup of a low cost sensing system 

9.5   Initialization of Important Parts of Microcontroller 

The ADC and DAC use a 2.4 V reference by default. The stepped sine wave was 
first generated by the micro-controller for the excitation voltage. It was generated 
uisng DAC0 and is connected to a sine-wave smoothening circuit, to obtain the 
desired excitation signal. AIN0.2 was selected to be the sensor input channel. The 
initialisation of ADC and DAC are as follows:  
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//-------------------------------------------------------------------
// converter_init 
//-------------------------------------------------------------------
// 
// Initialise the required ADCs and DACs 
// 
void converter_init(void) 
{ 
 //--- Set up ADCs & DACs --- 
 // Enable the internal bias generator & internal refernece buffer. 
 // ==> ADCs & DACs use a 2.4V reference by default 
 // Configure the reference for ADC0 to be the VREF0 pin. 
 // Turn the temperature sensor off. 
 REF0CN = 0x03; 
 

 //*** ADCs *** 
 ADC0CF = 0x38; // SAR0 conversion clock ~2.2 MHz, gain = 1 
 

 AMX0CF = 0x00; // Configure for 8 single-ended inputs 
 AMX0SL = 0x02; // Select AIN0.2 (sensor input) 
 ADC0CN = 0x80; // Enable ADC0 in continuous Tracking Mode 
     // Conversion initiated on write to AD0BUSY 
     // ADC0 data is right justified 
 EIE2 |= 0x02; // Enable ADC0 interrupt 
 

 //*** DACs *** 
 DAC0CN = 0x80; // Enable DAC0 in on demand mode; 
     // Data is left justified 
 DAC1CN = 0x87; // Enable DAC1 in on demand mode; 
     // Data is left justified 
 

 DAC1H = 0x63; // Set a reasonable contrast (in case DAC1 is 
     // controlling contrast) 
} 

 

The sine wave is generated by a sequence of 20 digital samples. The sine wave 
was programmed using timer 3. Timer 3 is initialised as follows: 
 

//-------------------------------------------------------------------
// sine_timer_init 
//-------------------------------------------------------------------
// Initialise timer 3 in preparation for using it to generate a sine  
// wave 
void sine_timer_init(void) 
{ 
 

 TMR3CN = 0x06; // Timer 3 uses the system clock; clear its 
     // interrupt flag 
 TMR3 = 0xFFFF; // The timer will overflow straight away 
 TMR3RL = 0xFF5F; // The timer counts from 0x0000 to 0xFFFF 
 EIE2 |= 0x01; // Enable timer 3's interrupt 
 EIP2 |= 0x01; // This interrupt is high priority 
 TMR3CN |= 0x04; // Start the timer 
} 

 

A brief explanation of the variables used in the program follows- AIR is the digital 
value of the sensor output with air (no sample), SENSE is the initial digital value 
of sensor output with sample, THRESH is the threshold value which in this initial 
design is set to 2048, NEW_SENSE is the new digital value of the sensor output 
and VIRT_TICKS is used for the virtual timer. Software initialisation is as follows: 
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//-------------------------------------------------------------------
// software_init 
//-------------------------------------------------------------------
// This function initialises all the global variables 
// 
void software_init(void) 
{ 
 //--- Sensor Related Variables 
 AIR = 0; 
 SENSE = 0x0019; 
 THRESH = 2048; // Change the treshold value for DEMO 
 NEW_SENSE = 0; 
 VIRT_TICKS = 0; 
 //--- Sine Wave Generator Related Variables --- 
 SINE_SAMPLES = 20; 
 SINE_INDEX = 0; 
} 
 

Hardware initialisation function is used to disable the watch dog timer, to set up 
the clock, to set up the crossbar and to configure the required LED for the indica-
tion of power, pass and fail results. The hardware initialisation is as follows: 
 
//-------------------------------------------------------------------
// Hardware related initialisation 
// 
void hardware_init(void) 
{ 
 //--- Disable watch dog timer --- 
 WDTCN = 0x07; 
 WDTCN = 0xDE; 
 WDTCN = 0xAD; 
 
 //--- Set up the clock --- 
 OSCXCN = 0x00;  // Don't use any external oscillators 
 OSCICN = 0x07;  // Instead use the internal 16MHz clock 
 while ((OSCICN & 0x10) == 0); // Wait for the oscillator to  
       // stabilize 
 //--- Set up the crossbar --- 
 XBR2 = 0x40;   // Crossbar is enabled 
 //--- Configure ports 0..3 --- 
 //*** OUTPUTS *** 
 // Push-pull: P1.6 (LED) 
 //    P2.0-2 (Indicator LEDs) 
 //*** INPUTS *** 
 // Open drain: P3.7 (Start button) 
 
 P0MDOUT = 0x00; 
 P1MDOUT = 0x40;  // P1.6 is in push-pull mode 
 P2MDOUT = 0xFF;  // P2.0-2 are in push-pull mode 
 P3MDOUT = 0x00;  // P3.7 is open drain 
 
 // Write logic 1 to inputs 
 P3 = 0x80; 
 //--- Configure ports 4..7 --- 
 //*** OUTPUTS *** 
 // Push-pull: P7.0 - P7.3 (LCD control) 
 // Open drain: P6 (LCD data) 
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 P74OUT = 0x40; 
 P2 = 0x01;   // Turn on the power LED 
} 

9.6   Electronics and Signal Processing Circuit for the Low Cost 
Sensing System 

An efficient data acquisition system is very important in the development of a low 
cost sensing system. Since the output signal from the sensor is small (in mV) a 
good circuit has to be designed and developed to minimize the effect of noise. The 
signal processing circuit consists of a sine-wave smoothening circuit and a signal 
conditioning circuit. Both circuits were fabricated on a single board as shown in 
figure 9.9.  

The main function of the software is to initialise all the components and then 
call introScreen to let the user run through a complete test or run individual tests 
via serial control. The main function of the program code is as follows: 
 

 

Fig. 9.9 Fabricated electronic circuit for signal processing 

//-------------------------------------------------------------------
// main routine 
//-------------------------------------------------------------------
// 
// The main function initialises all components ready for testing,  
// then calls introScreen to let the user run through a complete test  
// or run individual tests via serial control. 
// 
main() 
{ 
 uint reading = 0; 
 bit first = 1; 
 
 EA = 0;   // Disable all interrupts temporarily 
 software_init(); 
 hardware_init(); 
 lcd_init(); 
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 reading_timer_init(); 
 sine_timer_init(); 
 converter_init(); 
 EA = 1;   // Re-enable all interrupts 
 
 AD0BUSY = 1;  // Start monitoring the sensor 
 
 lcd_reset(); 
 printf("Press <START>"); 
 lcd_goto(0x40); 
 printf("to calibrate"); 
 
 while (P3 | 0x7F != 0x7F) 

{ // Wait for the user 
  // wait... 
 } 
 
 calibrate(); 
   
 lcd_reset(); 
 printf("Press <START>"); 
 lcd_goto(0x40); 
 printf("to Measure"); 
 
 while (P3 | 0x7F != 0x7F) 

{ // Wait for the user 
  // wait... 
 } 
 

VIRT_TICKS = 0; 
 reading = SENSE; 
   
 while (VIRT_TICKS < 40) 

{ // For ~2 seconds 
  if (NEW_SENSE) 

{ // New reading to incorporate in the average 
    NEW_SENSE = 0; 
    reading = (reading + SENSE) >> 1; 
    meter(); 
  } 
 } 
 reading = SENSE - AIR; 
 lcd_reset(); 
 lcd_goto(0x40); 
 printf("Press <RESET> ", reading); 
 lcd_goto(0x0C); 
 if (reading > THRESH) 

{ 
 // failed 
  printf("FAIL"); 
  P2 |= 0x14;  // Turn on the fail LED 
 } 
 else 

{ 
  // passed 
  printf("PASS"); 
  P2 |= 0x40;  // Turn on the pass LED 
 } 
 while (1) 

{ 
     // stop the program here 
 } 
 return(0); 
} 
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9.7   Smooth Sine Wave Generation 

The smoothened sine wave was obtained using a smoothening circuit. The circuit 
diagram of the sine-wave smoothening circuit is shown in figure 9.10. The step 
sine wave generated by the microcontroller has a very high frequency component; 
therefore a low pass filter of 6 kHz is needed to make the sine wave smooth. A de-
coupling capacitor was used to reduce noise. A pull down resistor of 1 MΩ was 
used to bring the sine wave at symmetry with respect to ground. The 100 kΩ resis-
tor is used to minimize the current input to the non-inverting op-amp. The sine-
wave generated by the micro-controller before and after the smoothening circuit is 
shown in figure 9.11. The generated sine wave was used as an excitation signal for 
the developed novel interdigital sensor. 

 

 

Fig. 9.10 Sine-wave smoothening circuit diagram 

 

Fig. 9.11 Sine-wave generated by the micro-controller before and after the smoothening 
circuit 

Before 

After 
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9.8   Signal Rectification and Amplification 

The second part of the signal processing circuit is the signal conditioning circuit 
which was built using several operational amplifiers. It is used to interface the 
sensor signal to the microcontroller as shown in figure 9.12. It consists of a full 
wave rectification circuit and an amplification circuit.  

The operation of the circuit is as follows: the output voltage from the sensor is 
fed to the first op-amp (unity gain amplifier) to generate a full sine wave signal 
(positive and negative). The supply for this op-amp is bipolar whereas all the other 
op-amps have uni-polar supply. If the input voltage form the sensor, VSEN, is 
greater than 0V, then the output from Op-amp 2 equals VSEN but only the positive 
half of the input signal is available at the output. Op-amp 3 operates as a 
substracter, delivering an output voltage which equals two times the output of op-
amp 2 minus the output of op-amp 1. In effect the output of op-amp 3 is the 
rectified version of the input signal. The rectified voltage will pass through op-
amp 4 with a gain of 9.2. The amplified signal will pass through a low pass filter 
with a cut off frequency of 13 Hz. The dc signal from op-amp 5 is connected to a 
digital input of the microcontroller for the necessary conversion into digital value.  

 

 
 
Fig. 9.12 Signal conditioning circuit 

9.9   Calibration, Sensitivity Threshold and Signal Definitions 

The sensing system needs to be calibrated before it can start taking measurements 
and provide analysis of the samples under test. The calibration is based on the 
digital value of the sensor output at air, ADCAIR (sensor without sample). The mi-
crocontroller reads this data first and uses it for calibration. The sample with 
known thickness is placed on the sensor for measurement. The micro-controller  
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then records the sensor reading in terms of digital value of that sample, ADCOUT. 
The sensitivity of the sensor is given by- 

 

( )
*100OUT AIR

AIR

ADC ADC
Sensitivity

ADC

−=  

 

 = Digital value of the sensor output at air 

= Digital value of the sensor output with sample

AIR

OUT

where

ADC

ADC

 

 
The current sensitivity value is compared to the required threshold sensitivity to 
get a pass or fail analysis of the particular sample.  

 
//-------------------------------------------------------------------
// calibrate 
//-------------------------------------------------------------------
// 
// Calibrate the sensor by sensing the air for ~2 seconds (to get a  
// good average reading) 
// 
void calibrate(void) 
{ 
 uchar count = 0; 
 bit flash = 0; 
 
 lcd_reset(); 
 printf("Prepare to"); 
 lcd_goto(0x40); 
 printf("calibrate sensor"); 
 huge_delay(50); 
 
 while (P3 | 0x7F != 0x7F) 

{ // While the user hasn't responded...// Flash text 
  if  (!flash) 

{ // If flash is off... 
   lcd_goto(0x00); 
   printf("Press the button"); 
   lcd_goto(0x40); 
   printf("   when ready   "); 
  } 
  else 

{ 
lcd_reset(); 

  } 
 
  large_delay(122);// Check the button every 10ms or so 
 
  if (count == 25) 

{ // Flash on for 35ms 
   count = 0; 
   flash = ~flash; 
  } 
  count++; 
 } 
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 lcd_reset(); 
 printf("Calibrating..."); 
 AIR = SENSE; 
 T4 = 0; 
 VIRT_TICKS = 0; 
 
 while (VIRT_TICKS < 40) 

{ // For ~2 seconds 
  if (NEW_SENSE) 

{ // New reading to incorporate in the average 
   NEW_SENSE = 0; 
   AIR = (AIR + SENSE) >> 1; 
   meter(); 
  } 
 } 
} 

9.10   Prototype of Seafood Inspection Tool (SIT) 

The first prototype of seafood inspection tool (SIT) was developed to detect do-
moic acid (DA) in mussels. SIT consists of a ± 9V power supply, a novel planar 
interdigital sensor, a SiLab C8051F020 microcontroller, a signal processing cir-
cuit and an expansion board (for display). A user friendly software was devel-
oped to make it easy to use. It can be used by anyone, especially by fisherman, 
for pre-screening process at the ranch site. The first prototype of SIT is shown in 
figure 9.13. 

 

 

Fig. 9.13 Seafood inspection tool (1st prototype) 
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9.11   Conclusion 

A smart sensing system for food monitoring was developed to assess seafood con-
taminated with marine bio-toxins. A low cost sensing system, using a microcon-
troller and a few fabricated circuit boards, has been developed. This chapter has 
discussed the development of the various components of the sensing system. The 
first prototype of SIT was introduced to help the fishermen to conduct the pre-
screening process for the detection of domoic acid. If the results from the samples 
are suspicious, the whole batch should be isolated and detailed laboratory analysis, 
using expensive equipments, should be conducted. 
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