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Preface 

This book is about the theory of continuous-state automated systems whose 
inputs, outputs and internal variables (temperature, speed, tension, etc.) can vary in a 
continuous manner. This is contrary to discrete-state systems whose internal 
variables are often a combination of binary sizes (open/closed, present/absent, etc.). 

 
The word “linear” requires some explanation. The automatic power control of 

continuous-state systems often happens through actions in relation to the gaps we 
are trying to control. Thus, it is possible to regulate cruise control by acting on the 
acceleration control proportionally to the gap observed in relation to a speed 
instruction. The word “proportional” precisely summons up a linear control law.  

 
Some processes are actually almost never governed by laws of linear physics. 

The speed of a vehicle, even when constant, is certainly not proportional to the 
position of the accelerator pedal. However, if we consider closed loop control laws, 
the return will correct mistakes when they are related either to external disturbances 
or to gaps between the conception model and the actual product. This means that 
modeling using a linear model is generally sufficient to obtain efficient control laws. 
Limits to the automated systems performances generally come from the restricted 
power of motors, precision of captors and variability of the behavior of the 
processes, more than from their possible non-linearity.  

 
It is necessary to know the basics of linear automated systems before learning 

about the theory of non-linear systems. That is why linear systems are a fundamental 
theory, and the problems linked to closed-loop control are a big part of it.  

 
Input-output and the state representations, although closely linked, are explained 

in separate chapters (1 and 2). Discrete-time systems are, for more clarity, explained 
in Chapter 3. Chapter 4 explains the structural properties of linear systems. Chapter 
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5 looks into deterministic and statistical models of signals. Chapter 6 introduces us 
to two fundamental theoretical tools: state stabilization and estimation. These two 
notions are also covered in control-related chapters. Chapter 7 defines the elements 
of modeling and identification. All modern control theories rely on the availability 
of mathematical models of processes to control them. 

 
Modeling is therefore upstream of the control engineer. However, pedagogically 

it is located downstream because the basic systems theory is needed before it can be 
developed. This same theory also constitutes the beginning of Chapter 8, which is 
about simulation techniques. These techniques form the basis of the control laws 
created by engineers.  

 
Chapter 9 provides an analysis of the classic invariable techniques while Chapter 

10 summarizes them. Based on the transfer function concept, Chapter 11 addresses 
pole placement control and Chapter 12 internal control. The three following chapters 
cover modern automation based on state representation. They highlight the 
necessary methodological aspects. H2 optimization control is explained in Chapter 
13, modal control in Chapter 14 and H∞ control in Chapter 15. Chapter 16 covers 
linear time-variant systems. 



Part 1 

System Analysis 
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Chapter 1 

Transfer Functions and Spectral Models 

1.1. System representation  

A system is an organized set of components, of concepts whose role is to 
perform one or more tasks. The point of view adopted in the characterization of 
systems is to deal only with the input-output relations, with their causes and effects, 
irrespective of the physical nature of the phenomena involved. 

Hence, a system realizes an application of the input signal space, modeling 
magnitudes that affect the behavior of the system, into the space of output signals, 
modeling relevant magnitudes for this behavior. 

Input ui Output yiSystem
 

Figure 1.1. System symbolics 

In what follows, we will consider mono-variable, analog or continuous systems 
which will have only one input and one output, modeled by continuous signals. 

                                   
Chapter written by Dominique BEAUVOIS and Yves TANGUY.   
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1.2. Signal models 

A continuous-time signal )( Rt ∈  is represented a priori through a function x(t) 
defined on a bounded interval if its observation is necessarily of finite duration. 

When signal mathematical models are built, the intention is to artificially extend 
this observation to an infinite duration, to introduce discontinuities or to generate 
Dirac impulses, as a derivative of a step function. The most general model of a 
continuous-time signal is thus a distribution that generalizes to some extent the 
concept of a digital function. 

1.2.1. Unit-step function or Heaviside step function U(t) 

This signal is constant, equal to 1 for the positive evolution variable and equal to 
0 for the negative evolution variable.  

U(t)

1

t
 

Figure 1.2. Unit-step function 

This signal constitutes a simplified model for the operation of a device with a 
very low start-up time and very high running time. 

1.2.2. Impulse 

Physicists began considering shorter and more intense phenomena. For example, 
an electric loading µM  can be associated with a mass M evenly distributed 
according to an axis. 
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What density should be associated with a punctual mass concentrated in 0? This 
density can be considered as the bound (simple convergence) of densities µ σ( )nM  
verifying: 

1 1( )
2

( ) 0 elsewhere

= − ≤ ≤

=

n

n

n
n n

µ σ σ

µ σ
                 

1

1
( )n

n
nM d Mµ σ σ

+

−
=∫  

This bound is characterized, by the physicist, by a “function” )(σδ  as follows: 

( )

( )

δ σ σ

δ σ σ

δ

+∞

−∞

= ≠

=

= +∞
∫

0 0

with ( ) 1

0

d

 

However, this definition does not make any sense; no integral convergence 
theorem is applicable.  

Nevertheless, if we introduce an auxiliary function )(σϕ  continuous in 0, we 
will obtain the mean formula: 

φ σ µ σ σ η
+

−→+∞
= ϕ∫

1

1
lim ( ) ( ) ( )

n

n
n

n
d  because 1 1

n n
η− ≤ ≤  

Hence, we get a functional definition, indirect of symbol δ: δ associates with any 
continuous function at the origin its origin value. Thus, it will be written in all cases: 

( ) δ σ δ σ σ
+∞

−∞
ϕ = 〈 ϕ〉 = ϕ∫0 , ( ) ( ) d  

δ  is called a Dirac impulse and it represents the most popular distribution. This 
impulse δ  is also written δ( )t . 

For a time lag ot , we will use the notations )( ott −δ  or δ( ) ( )
ot t ; the impulse is 

graphically “represented” by an arrow placed in ott = , with a height proportional to 
the impulse weight.  
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In general, the Dirac impulse is a very simplified model of any impulse 
phenomenon centered in ott = , with a shorter period than the time range of the 
systems in question and with an area S. 

x(t) x(t)t0
Area S

t t
τ

Sδ(t – t0)

⇒

  

Figure 1.3. Modeling of a short phenomenon 

We notice that in the model based on Dirac impulse, the “microscopic” look of 
the real signal disappears and only the information regarding the area is preserved. 

Finally, we can imagine that the impulse models the derivative of a unit-step 
function. To be sure of this, let us consider the step function as the model of the real 
signal )(tuo  represented in Figure 1.4, of derivative )(tuo′ . Based on what has been 
previously proposed, it is clear that 

τ
δ

→
′ =

0
lim ( ) ( )ou t t . 

u0(t) u’(t)0

t t

1 1–τ

–
τ–
2

τ–
2

–
τ–
2

τ–
2   

Figure 1.4. Derivative of a step function 
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1.2.3. Sine-wave signal 

π= + ϕ( ) cos(2 )ox t A f t  or ( )π +ϕ= 2( ) oj f tx t Ae  for its complex representation. 
of  designates the frequency expressed in Hz, ω π= 2o of  designates the impulse 

expressed in rad/s and ϕ  the phase expressed in rad.  

A real value sine-wave signal is entirely characterized by of  ( +∞≤≤ of0 ), by 
A  ( ott = ), by ϕ  ( ππ +≤ϕ≤− ). On the other hand, a complex value sine-wave 

signal is characterized by a frequency of  with +∞≤≤−∞ of .  

1.3. Characteristics of continuous systems 

The input-output behavior of a system may be characterized by different 
relations with various degrees of complexity. In this work, we will deal only with 
linear systems that obey the physical principle of superposition and that we can 
define as follows: a system is linear if to any combination of input constant 
coefficients ∑ ii xa  corresponds the same output linear combination, 

( )∑ ∑= iiii xGaya . 

Obviously, in practice, no system is rigorously linear. In order to simplify the 
models, we often perform linearization around a point called an operating point of 
the system. 

A system has an instantaneous response if, irrespective of input x, output y 
depends only on the input value at the instant considered. It is called dynamic if its 
response at a given instant depends on input values at other instants.  

A system is called causal system if its response at a given instant depends only 
on input values at previous instants (possibly present). This characteristic of 
causality seems natural for real systems (the effect does not precede the cause), but, 
however, we have to consider the existence of systems which are not strictly causal 
in the case of delayed time processing (playback of a CD) or when the evolution 
variable is not time (image processing). 

The pure delay system 0>τ  characterized by ( ) ( )τ−= txty  is a dynamic 
system.  
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1.4. Modeling of linear time-invariant systems  

We will call LTI such a system. The aim of this section is to show that the input-
output relation in an LTI is modeled by a convolution operation. 

1.4.1. Temporal model, convolution, impulse response and unit-step response 

We will note by )(thτ  the response of the real impulse system represented in 
Figure 1.5. 

xτ(t) hτ(t)

1–τ

τ t
  

Figure 1.5. Response to a basic impulse 

Let us approach any input )(tx  by a series of joint impulses of width τ  and 
amplitude τ( )x k . 

x(t)

τ   

Figure 1.6. Step approximation 
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By applying the linearity and invariance hypotheses of the system, we can 
approximate the output at an instant t  by the following amount, corresponding to 
the recombination of responses to different impulses that vary in time: 

( ) ( ) ( )∑
+∞

∞−
−≅ τττ τ kthkxty  

In order to obtain the output at instant t, we will make τ  tend toward 0 so that 
our input approximation tends toward x. Hence: 

( ) ( )ttx δττ
=

→0
lim  and ( ) ( )thth =

→
ττ 0

lim  

where )(th , the response of the system to the Dirac impulse, is a characteristic of 
the system’s behavior and is called an impulse response.  

If we suppose that the system preserves the continuity of the input, i.e. for any 

convergent sequence ( )nx t  we have 
→∞ →∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠

lim ( ) lim ( ( ))n n
n n

G x t G x t , we obtain: 

( ) θ θ θ
+∞

−∞
= −∫ ( ) ( )y t x h t d   

or: 

σ σ σ
+∞

−∞
= −∫( ) ( ) ( )y t h x t d  through θσ −= t  

which defines the convolution integral of functions x and h, noted by the asterisk: 

= =( ) * ( ) * ( )y t x h t h x t  

1.4.2. Causality 

When the system is causal, the output at instant t  depends only on the previous 
inputs and consequently function )(th  is identically zero for 0<t . The impulse 
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response, which considers the past in order to provide the present, is a causal 
function and the input-output relation has the following form: 

θ θ θ θ θ θ
+∞

−∞

= − = −∫ ∫
0

( ) ( ) ( ) ( ) ( )
t

y t h x t d x h t d  

The output of a causal time-invariant linear system can be interpreted as a 
weighted mean of all the past inputs having excited it, a weighting characteristic for 
the system considered. 

1.4.3. Unit-step response 

The unit-step response of a system is its response )(ti  to a unit-step excitation. 
The use of the convolution relation leads us to conclude that the unit-step response is 
the integral of the impulse response: 

( ) θ θ= ∫
0

( )
t

i t h d  

This response is generally characterized by: 

– the rise time mt , which is the time that separates the passage of the unit-step 
response from 10% to 90% of the final value;  

– the response time rt , also called establishment time, is the period at the end of 
which the response remains in the interval of the final value %.α±  A current value 
of α  is 5%. This time also corresponds to the period at the end of which the impulse 
response remains in the interval %;α±  it characterizes the transient behavior of the 
system output when we start applying an excitation and it also reminds that a system 
has several inputs which have been applied before a given instant; 

– the possible overflow defined as 
)(

)(max

∞
∞−

y

yy
 expressed in percentage. 

1.4.4. Stability 

 1.4.4.1. Definition 

The concept of stability is delicate to introduce since its definition is linked to 
the structures of the models studied. Intuitively, two ideas are outlined. 
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A system is labeled as stable around a point of balance if, after having been 
subjected to a low interference around that point, it does not move too far away from 
it. We talk of asymptotic stability if the system returns to the point of balance and of 
stability, in the broad sense of the word, if the system remains some place near that 
point. This concept, intrinsic to the system, which is illustrated in Figure 1.7 by a 
ball positioned on various surfaces, requires, in order to be used, a representation by 
equations of state. 

Asymptotic stability Stability in the broad sense Unstable  

Figure 1.7. Concepts of stability 

Another point of view can be adopted where the stability of a system can be 
defined simply in terms of an input-output criterion; a system will be called stable if 
its response to any bounded input is limited: we talk of L(imited) I(nput) L(imited) 
R(esponse) stability. 

 1.4.4.2. Necessary and sufficient condition of stability 

An LTI is BIBO (bounded input, bounded output) if and only if its impulse 
response is positively integrable, i.e. if: 

θ θ
+∞

−∞
< +∞∫ ( )h d  

The sufficient condition is immediate if the impulse response is positively 
integrable and applying a bounded input to the system, ∀ <( )t x t M , leads to a 
bounded output because: 

θ θ θ θ θ
+∞ +∞

−∞ −∞
∀ ≤ − ≤ ≤ +∞∫ ∫( ) ( ) ( ) ( )t y t x t h d M h d  

Let us justify the necessary condition: the system has a bounded output in 
response to any bounded excitation, then its impulse response is positively 
integrable. 
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To do this, let us demonstrate the opposite proposition: if the impulse response 
of the system is not absolutely integrable: 

θ θ
+

−∞
∀ ∃ >∫, ( )

T
K T h d K  

there is a bounded input that makes the output diverge. 

It is sufficient to choose input x such that: 

θ θ θ θ θ− = < − = >( ) sgn( ( )) for and ( ) 0 forx T h T x T T  

then θ θ θ
−∞

= > ∀∫( ) ( ) sgn( ( ))
T

y T h h d K K  which means that y  diverges. 

1.4.5. Transfer function  

Any LTI is modeled by a convolution operation, an operation that can be 
considered in the largest sense, i.e. the distribution sense. We know that if we 
transform this product through the proper transform (see section 1.4.1), we obtain a 
simple product. 

x yLTI                          X YLTI   
 

)_(*)_()_( xhy =  )_()_()_( XHY ×=  

Time domain (convolution) Spectral range (product) 

)_(
)_(

)_(
X
Y

H =  

This formally defined transform ratio is the transform of the impulse response 
and is called a transfer function of LTI.  

The use of transfer functions has a considerable practical interest in the study of 
system association as shown in the examples below. 
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 1.4.5.1. Cascading (or serialization) of systems 

Let us consider the association of Figure 1.8. 

x1 y1 y2 y3
LTI1 LTI2 LTI3

 

Figure 1.8. Serial association 

Hence ( )( ))_(*)_(*)_(*)_()_( 11233 xhhhy = . This leads, in general, to a 
rather complicated expression. 

In terms of transfer function, we obtain: 

)_()_()_()_( 321 HHHH ××=  

i.e. the simple product of three basic transfer functions. The interest in this 
characteristic is that any processing or transmission chain basically consists of an 
association of “basic blocks”. 

 1.4.5.2. Other examples of system associations 

e y

LTI1
+

+
LTI2

 

Figure 1.9. Parallel association 

)_(H)_(H
)_(E
)_(Y

)_(H 21 +==  
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e yLTI1
+ –

LTI2
 

Figure 1.10. Loop structure 

)_(H)_(H
)_(H

)_(E
)_(Y

)_(H
21

1

1 ×+
==  

The term )_(H)_(H 211 ×+  corresponds to the return difference, which is 
defined by 1 – (product of loop transfers). The loop transfers, introduced in the 
structure considered here, are the sign minus the comparator, the transfers 1H  and 

2H . 

1.4.5.3. Calculation of transfer functions of causal LTIs 

In this section, we suppose the existence of impulse response transforms while 
keeping in mind the convergence conditions. 

Using the Fourier transform, we obtain the frequency response )( fH : 

π θθ θ
+∞

− Φ= =∫ 2 ( )

0

( ) ( ) ( )jf j fH f h e d H f e  

where ( )H f  is the module or gain, ( )fΦ  is the phase or phase difference of the 
frequency response. 

Through the Laplace transform, we obtain the transfer function of the system 
( )pH , which is often referred to as isomorphic transfer function: 

( ) θθ θ
+∞

−= ∫
0

( ) pH p h e d  
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The notations used present an ambiguity (same H) that should not affect the 
informed reader: when the impulse response is positively integrable, which 
corresponds to a stability hypothesis of the system considered, we know that the 
Laplace transform converges on the imaginary axis and that it is mistaken with 
Fourier transform through π= 2p j f . Hence, the improper notation (same H): 

π= =
2

( ) ( )
p jf

H p H f  

We recall that the transfer functions have been formally defined here and the 
convergence conditions have not been formulated. For the LTIs, which are system 
models that can be physically realized, the impulse responses are functions whose 
Laplace transform has always a sense within a domain of the complex plane to 
define. 

On the other hand, the frequency responses, which are defined by the Fourier 
transform of the impulse response, even considered in the distribution sense, do not 
always exist. The stability hypothesis ensures the simultaneous existence of two 
transforms. 

 EXAMPLE 1.1.– it is easily verified whether an integrator has as an impulse 
response the Heaviside step function )()( tuth =  and hence: 

= 1
( )H p

p
                 ( ) ( )

f
Pf

j
ffH 1

2
1

2
1

π
δ +=  

where
f

Pf 1  designates the pseudo-function distribution 
f
1

. 

An LTI with localized constants is represented through a differential equation 
with constant coefficients with nm < : 

( ) ( ) ( ) ( ) ( ) ( )txatxatybtyb m
m

n
n ++=++ …… 00  
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By supposing that )(tx  and )(ty  are continuous functions defined from −∞  to 
+∞ , continuously differentiable of order m and n, by a two-sided Laplace transform 
we obtain the transfer function )(pH : 

n
n

m
m

m
m

n
n

pbpbb

papaa
pH

pXpapaapYpbpbb

+++

++
=

++=+++

…
…

……

10

10

1010

)(

)()()()(

 

Such a transfer function is called rational in p. The coefficients of the numerator 
and denominator polynomials are real due to their physical importance in the initial 
differential equation. Hence, the numerator roots, called zeros, and the denominator 
roots, called transfer function poles, are conjugated real or complex numbers. 

If )(tx  and )(ty  are causal functions, the Laplace transform of the differential 
equation entails terms based on initial input values )0(),0(),0( )1( −′ mxxx  and 
output values )0(),0(),0( )1( −′ nyyy ; the concept of state will make it possible to 
overcome this dependence.  

1.4.6. Causality, stability and transfer function 

We have seen that the necessary and sufficient condition of stability of an SLI is 
for its impulse response to be absolutely integrable: ( )∫

+∞
∞− +∞<θθ dh . 

The consequence of the hypothesis of causality modifies this condition because 
we thus integrate from 0 to +∞ . 

On the other hand, if we seek a necessary and sufficient condition of stability for 
the expression of transfer functions, the hypothesis of causality is determining. 

Since the impulse response ( )θh  is a causal function, the transfer function )(pH  
is holomorphic (defined, continuous, derivable with respect to the complex number 
p) in a right half-plane defined by σ>Re( ) op . The absolute integrability of θ( )h  
entails the convergence of )(pH  on the imaginary axis.  

A CNS of EBRB stability of a causal LTI is that its transfer function is 
holomorphic in the right half-plane defined by 0)( ≥pRe . 
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When: 

( ) ( )
( )pD
pN

epH pτ−=  

where )(pN  and )(pD  are polynomials, it is the same as saying that all the transfer 
function poles are negative real parts, i.e. placed in the left half-plane. 

We note that in this particular case, the impulse response of the system is a 
function that tends infinitely toward 0. 

1.4.7. Frequency response and harmonic analysis 

 1.4.7.1. Harmonic analysis 

Let us consider a stable LTI whose impulse response θ( )h  is canceled after a 
period of time Rt . For the models of physical systems, this period of time Rt  is in 
fact rejected infinitely; however, for reasons of clarity, let us suppose Rt  as finite, 
corresponding to the response time to 1% of the system. 

When this system is subject to a harmonic excitation ( ) 02 jf tx t Ae π=  from 
0=t , we obtain: 

( ) ( ) ( ) ( )0 0 02 2 2
0 0

t tjf t jf t jfy t h Ae d Ae h Ae dπ θ π π θθ θ θ θ− −= =∫ ∫  

For Rtt > , the impulse response being zero, we have: 

π θ π θθ θ θ θ
+∞− − Φ= = =∫ ∫0 0 02 2 ( )

0 0
0 0

( ) ( ) ( ) ( )
t jf jf j fh e d H f h e d H f e  

and hence for Rtt > , we obtain π π +Φ= =0 0 02 (2 ( ))
0( ) ( ) ( )jf t j f t f

oy t AH f e A H f e . 

This means that the system, excited by a sine-wave signal, has an output that 
tends, after a transient state, toward a sine-wave signal of same frequency. This 
signal, which is a characteristic of a steady (or permanent) state, is modified in 
amplitude by a multiplicative term equal to 0( )H f  and with a phase difference of 
Φ 0( )f . 
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( ) ( ) t f A t x x 0 2 sin π = ( ) ( ) Φ + = t fAty y 02 sin π LTI
 

= 0( )
y

x

A
H f

A
 module or gain                             ( )ofHarg=Φ  phase 

We note that )( fH  is nothing else but the Fourier transform of the impulse 
response, the frequency response of the system considered. 

 1.4.7.2. Existence conditions of a frequency response 

The frequency response is the Fourier transform of the impulse response. It can 
be defined in the distribution sense for the divergent responses in αt  but not for 

exponentially divergent responses )( bte . However, we shall note that this response 
is always defined under the hypothesis of stability; in this case and only in this case, 
we pass from transfer functions with complex variables to the frequency response by 
determining that π= 2p j f . 

 EXAMPLE 1.2.– let )()( tuth =  be the integrator system:  

( )
p

pH
1

=  

( ) ( )
f

Pf
j

ffH 1
2
1

2
1

π
δ +=  and not 

jfπ2
1

 because the system is not EBRB 

stable. 

=( ) ( ( ))H p TL u t  is defined according to the functions in the half-plane 
>Re( ) 0p , whereas =( ) ( ( ))H f TF u t  is defined in the distribution sense. 

Unstable filter of first order: ( ) 0≥= teth t  

( )
1

1
−

=
p

pH  defined for ( ) 1>pRe , ( )fH  is not defined, even in the 

distribution sense. 

Hence, even if the system is unstable, we can always consider the complex 
number obtained by formally replacing p by 2π j f in the expression of the transfer 
function in p. The result obtained is not identified with the frequency response but 
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may be taken as a harmonic analysis, averaging certain precautions as indicated in 
the example in Figure 1.11. 

Let us consider the unstable causal system of transfer function 
1

1
−p

, inserted 

into the loop represented in Figure 1.11. 

x(t) u(t) y(t)
2

–

+ 1
p – 1

 

Figure 1.11. Unstable system inserted into a loop 

The transfer function of the system is 
1

2
+p

. The looped system is stable and 

hence we can begin its harmonic analysis by placing an input sine-wave signal 
π= 0( ) sin(2 )xx t A f t . During the stationary regime, )(ty  and )(tu  are equally 

sinusoidal, hence: 

π= + Φ0( ) sin(2 )y yy t A f t  with 
12

2

0 +
=

jfA
A

x

y

π
 and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=Φ
12

2
arg

0jfy π
 

π= + Φ0( ) sin(2 )u uu t A f t  with 
( )

12
122

0

0
+
−

=
jf
jf

A
A

x

u
π
π

,
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=Φ
12
122

arg
0

0
jf
jf

u π
π

 

Hence:  

ππ == =
− 02

0

1
( )

2 1
y

p jf
u

A
H p

A jf
  

ππ =
⎛ ⎞

Φ − Φ = =⎜ ⎟−⎝ ⎠ 02
0

1
arg arg ( )

2 1y u p jf
H p

jf
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Table 1.1 sums up the features of a system’s transfer function, the existence 
conditions of its frequency response and the possibility of performing a harmonic 
analysis based on the behavior of its impulse response. 

 1.4.7.3. Diagrams 

Table 1.1. Unit-step responses, transfer functions and  
existence conditions of the frequency response 

h(t) H(p)  π ω=(2 ) ( )H j f H j  

θ θ
+∞

−∞
< +∞∫ ( )h d  

EBRB stability 

H(p) has its poles on the left of 
the imaginary axis. 

 

TF exists 
Possible direct analysis 

TF π== 2( )
p jf

H p  

−→ +∞ 1( ) ~ nt h t t  

H(p) has a pole of order n at the 
origin. 

 

→ +∞

>

( ) ~

0

ktt h t e

k
 

H(p) has poles on the right of 
the imaginary axis. 

 

ω→ +∞ ( ) ~ j tt h t e  

H(p) has poles on the imaginary 
axis. 

 

 
 

Directly impossible 
harmonic analysis 

impossible directly except 
for a simple pole at the 

origin 
 
 
 

Possible analysis if the 
system is introduced in a 

stable looping and 

ωω ==( ) ( )
p j

H j H p  

Holomorphy

Holomorphy

*

*

Holomorphy

*

*

Holomorphy
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Frequency responses are generally characterized according to impulse 
ω π= 2 j f and data )( ωjH  and )( ωjΦ  grouped together as diagrams. The 
following are distinguished: 

– Nyquist diagram where the system of coordinates adopts in abscissa the real 
part, and in ordinate the imaginary part ω=( )

p j
H p ; 

– Black diagram where the system of coordinates adopts in ordinate the module 
expressed in decibels, like: 

ω=1020 log ( ( ) )
p j

H p  and in abscissa ω=arg ( )
p j

H p  expressed in degree; 

– Bode diagram which consists of two graphs, the former representing the 
module expressed in decibels based on ω10log ( )  and the latter representing the 
phase according to ω10log ( ) . Given the biunivocal nature of the logarithm function 
and in order to facilitate the interpretation of the diagram, the axes of the abscissas 
are graduated in ω . 

1.5. Main models 

1.5.1. Integrator 

This system has for impulse response )()( tKUth = and for transfer function in p: 

= >( ) Re ( ) 0
K

H p p
p

 

The unit-step response is a slope ramp K : )()( tKtUti = . 

The frequency response, which is the Fourier transform of the impulse response, 
is defined only in the distribution sense: 

( ) ( )δ
π

= +1 1 1
2 2

H f f Pf
j f

 

The evolution of ω=( )
p j

H p  according toω leads to the diagrams in Figure 1.12. 



22     Analysis and Control of Linear Systems 

 

Figure 1.12. Bode diagram 

The module is characterized by a straight line of slope (–1), –6 dB per octave 
(factor 2 between 2 impulses) or –20 dB per decade (factor 10 between two 
impulses), that crosses the axis 0dB in ω = K. 

 

Figure 1.13. Black diagram 
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Figure 1.14. Nyquist diagram 

1.5.2. First order system 

This causal system, with an impulse response of 
−

=( ) ( )
t

K T
T

h t e U t , has a transfer 
function: 

= > −
+

1
( ) Re( )

1
K

H p p
Tp T

 

The unit-step response admits as time expression and as Laplace transform the 
following functions: 

( )
−⎛ ⎞

⎜ ⎟= −
⎜ ⎟
⎝ ⎠
1 ( )

t
Ti t K e U t                  ( ) ( )1

KI p
p Tp

=
+

 

It has the following characteristics: 

– the final value is equal to K, for an input unit-step function; 

– the tangent at the origin reaches the final value of the response at the end of 
time T, which is called time constant of the system. 

The response reaches 0.63 K in T and 0.95 K in 3 T. 
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Figure 1.15. Unit-step response of the first order model 

The frequency response is identified with the complex number ( )ωjH :  

( )ω
ω

=
+ 2 21

K
H j

T
       ( )( ) ( )TArctgjH ωω −=arg  

In the Bode plane we will thus have: 

22
10

1
log20

T

K

ω+
 and ( )TArctg ω−  according to ( )ω10log  

The asymptotic behavior of the gain and phase curves is obtained as follows: 
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These values help in building a polygonal approximation of the plot called Bode 
asymptotic plot:  

– gain: two half-straight lines of slope (0) and –20 dB/decade noted by (–1); 

– phase: two asymptotes at 0rd and rd2
π− . 

 

Figure 1.16. Bode diagram of the first order system 

The gain curve is generally approximated by the asymptotic plot. 

The plot of the phase is symmetric with respect to the point o1( , 45 )Tω φ= = − . 

The tangent at the point of symmetry crosses the asymptote o0  at 1
4.8Tω =  and, by 

symmetry, the asymptote o90−  at 4.8
Tω = .  

The gaps δ G  and δφ  between the real curves and the closest asymptotic plots 
are listed in the table of Figures 1.17 and 1.18. 
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δG ≈ 0 db ≈ 0 db – 1 db – 3 db – 1 db ≈ 0 db ≈ 0 db 

δφ 7° 14° 26.5° 45° 26.5° 14° 7° 

  

Figure 1.17. Black diagram 

 

Figure 1.18. Nyquist diagram 
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1.5.3. Second order system 

The second order system, of angular frequency 
0

0
1

T
=ω , and of damping 

coefficient ξ , is defined by a transfer function such as: 

( )

2
0

2

0
21

ωω
ξ p

p

K
pH

++

=  

 1.5.3.1. Unit-step response 

The theorems of initial and final values make it possible to easily comprehend 
the asymptotic features of the unit-step response: zero initial value, final value equal 
to K, tangent at the origin with zero slope. 

Based on the value of ξ  with respect to 1, the transfer function poles have a real 
or complex nature and the unit-step response looks different. 

1>ξ : the transfer function poles are real and the unit-step response has an 
aperiodic look (without oscillation): 

( ) ( )ξ ξ ξ ξ− + − − − −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − − + +⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2 2

0 0
1 11

( ) 1 (1 ) (1 )
2

t t
T Ti t K a e a e   

where 
12 −

=
ξ

ξ
a  

The tangent at the origin is horizontal. 

If 1>>ξ , one of the poles prevails over the other and hence: 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−≈

−
ξ

ω
2

0

1
t

eKti  
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Figure 1.19. Unit-step response of the second order system ξ ≥ 1 

1=ξ : critical state. The roots of the denominator of the transfer function are 
real and merged, and the unit-step response is: 

−⎛ ⎞
⎛ ⎞⎜ ⎟= − +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

0

0
( ) 1 1

t
Tt

i t K e
T

 

 

Figure 1.20. Unit-step response of the second order system ξ < 1 
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1<ξ : oscillating state. The two poles of H(p) are conjugated complex numbers 
and the unit-step response is: 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−

−
−=

−
αξω

ξ

ξω
2

0
2

1cos
1

1
0

t
e

Kti
t

 where 
21 ξ

ξ
α

−
=tg  

2
0 1

2

ξω

π

−
=aT  is the pseudo-period of the response. 

The instant of the first maximum value is 
2
a

m
T

t = . 

The overflow is written 
21100D e

πξ

ξα
β

−
−= = . 

The curves in Figure 1.21 provide the overflow and the terms rt0ω  ( rt  is the 
establishment time at 5%) and mt0ω  according to the damping ξ . 

 

Figure 1.21. 0 rtω  and 0 mtω  according to the damping ξ  
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The alternation of slow and fast variations of product rt0ω  is explained because 
instant rt  is defined in reference to the last extremum of the unit-step response that 
exits the band at a final level of ±5%. When ξ  increases, the numbers of extrema 
considered can remain constant (slow variation of tr), or it can decrease (fast 
variation of tr). 

 

Figure 1.22. Overflow according to the damping ξ  

 1.5.3.2. Frequency response 

( )

02
0

2
21

ω
ωξ

ω
ω

ω

j

K
jH

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=  

1≥ξ : the system is a cascading of two systems of the first order 1H  and 2H . 
The asymptotic plot is built by adding the plots of the two systems separately built 
(see Figure 1.23). 
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1<ξ : the characteristics of the frequency response vary according to the value 
of ξ . Module and phase are obtained from the following expressions: 

ω
ω ωξ
ω ω

=
⎛ ⎞

− +⎜ ⎟⎜ ⎟
⎝ ⎠

22 2
2

2 2
0 0

( )

1 4

K
H j     2 2

2
( ) ( )o

o
Arctg

ξωωφ ω
ω ω

= −
−

 

For 
2

1
<ξ , the module reaches a maximum 

2
max

12 ξξ −
=

K
A  in an angular 

frequency called of resonance 2
0 21 ξωω −=r . 

We note that the smaller ξ , the more significant this extremum and the more the 
phase follows its asymptotes to undertake a sudden transition along oω . 

Finally, for 0=ξ , the system becomes a pure oscillator with a infinite module in 
oω  and a real phase mistaken for the asymptotic phase. 

Figures 1.23, 1.24, 1.25 and 1.26 illustrate the diagrams presenting the aspect of 
the frequency response for a second order system with different values of ξ . 
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Figure 1.23. Bode diagram of a second order system with ξ ≥ 1 
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Figure 1.24. Bode diagram of a second order system with ξ < 1 

 

Figure 1.25. Nyquist diagram of a second order system with ξ < 1 
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Figure 1.26. Black diagram of a second order system with 1<ξ  

1.6. A few reminders on Fourier and Laplace transforms 

1.6.1. Fourier transform 

 Any signal has a reality in time and frequency domains. Our ear is sensitive to 
amplitude (sound level) and frequency of a sound (low or high-pitched tone). These 
time and frequency domains, which are characterized by variables that are opposite 
to one another, are taken in the broad sense: if a magnitude evolves according to a 
distance (atmospheric pressure according to altitude), the concept of frequency will 
be homogenous, contrary to a length. 

The Fourier transform is the mathematical tool that makes it possible to link 
these two domains. It is defined by: 

π
+∞

−

−∞

= =∫ 2( ) ( ) ( ( ))jftX f x t e dt TF x t  

When we seek the value )( fX  for a value of  of f that means that we seek in the 
whole history, past and future, of )(tx  which corresponds to frequency of . This 
corresponds to an infinitely selective filtering.  
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The energy exchanged between )(tx  and the harmonic signal of frequency 
of ( 2 ojf te π ) can be finite. )( ofX  is then finite, or infinite if )(tx  is also a harmonic 

signal and )( fX  is then characterized by a Dirac impulse )()( f
ofδ . 

According to the nature of the signal considered, by using various mathematical 
theories concerning the convergence of indefinite integrals, we can define the 
Fourier transform in the following cases: 

– positively integrable signal: ≤ ∞∫ ( )x t dt . The integral definition of the TF 

converges in absolute value. )( fX  is a function that tends toward 0 infinitely; 

– integrable square signal or finite energy signal ( )∫ ∞≤dttx 2 . The integral 
definition of the TF exists in the sense of the convergence in root mean square: 

π
+

−
→∞

−

− =∫ ∫
2

2lim ( ) ( ) 0
A

jft
A

A

X f x t e dt df  

– slightly ascending signal: ∃ > ⇒ <  and  ( ) kA k t A x t t . The Fourier 
transform exists in the distribution sense. We also note the transforms in the sense of 
following traditional distributions: 

2
( )( ) jaf
aTF e πδ −=  and its reciprocal function 2

( )( ) ( )jat
aTF e fπ δ=  

( ) ∑∑∑
+∞

−∞=

+∞

−∞=

−+∞

−∞=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

kk

jkT

k T
k

f
T

ekTtTF δδ π 12  

1.6.2. Laplace transform 

When the signal considered has an exponential divergence, irrespectively of the 
mathematical theory considered, we cannot attribute any sense to the integral 
definition of the Fourier transform. 

The idea is to add to the pure imaginary argument π2 j f  a real part σ  which is 
chosen in order to converge the integral considered: 

σ π
+∞

− +

−∞
∫ ( 2 )( ) jf tx t e dt  
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By determining that ,2 jfp π+σ=  we define a function of a complex variable, 
called the Laplace transform of )(tx , defined into a vertical band of the complex 
plane, which is determined by the conditions on σ ensuring the convergence of the 
integral: 

( ) ( ) ( )( )txTLdtetxpX pt == ∫
+∞

∞−

−  

The instability phenomena that can interfere in a linear system are characterized 
by exponential divergence signals; hence, we perceive the interest in the complex 
variable transformations for the analysis and synthesis of linear systems. 

We note that the complex variable that characterizes the Laplace transform is 
noted by s.  

Let us suppose that )(tx  is of exponential order, i.e. locally integrable and as it is 
in two positive real numbers A and B and in two real numbers α  and β  so that: 

α

β

∀ ≥ ≥ ≤

∀ ≤ ≤ ≤

1

2

0 ( )

0 ( )

t

tt

t t x t Ae

t t x t Be
 

and )(tx  locally integrable ⇔ ∀ < ∞∫, finite ( )
b

a

a b x t dt .  

The Laplace transform (LT) exists if ( )X p  exists. However: 

( )
+∞

− − −

−∞

≤ + +∫ ∫ ∫
2 1

2 1

( ) ( ) ( )
t t

pt pt pt

t t

X p x t e dt x t e dt x t e dt  

−∫
1

2

( )
t

pt

t

x t e dt  is bounded because ( )x t  is locally integrable. 

β σ− −

−∞ −∞

≤∫ ∫
2 2

( )( )
t t

pt tx t e dt B e dt  which converges if σ β= <Re( )p . 
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α σ
+∞ +∞

− −≤∫ ∫
1 1

( )( ) pt t

t t

x t e dt A e dt  which converges if σ α= >Re( )p . 

The LT thus exists forα σ β< = <Re( )p . 

Let 1σ  and 2σ  be the values of α  and β  ensuring the tightest increases of the 
signal module for t  tending toward ±∞ . We will call the group consisting of 
function ( )X p  and the convergence band [ ]21,σσ  Laplace transform (two-sided) 
which is sometimes noted by: 

{ } { }],[),()( 21 σσ= pXtxTL  

We note that in the convergence band, the integral that defines the Laplace 
transform is absolutely convergent, hence the properties of holomorphy, continuity 
and derivability with respect to p, of tpe−  are carried over ( )X p . 

 

 EXAMPLE 1.3. – consider the signal defined by 
0)(

0)(

≤=

≥=

tetx

tetx
bt

at

. 

Determining the transform of ( )x t  supposes the following evaluations: 

+∞+∞ −
− ⎡ ⎤

= − =⎢ ⎥
− −⎢ ⎥⎣ ⎦

∫
( )

( )

00

1a p t
a p t e

e dt
p a p a

 if < Re( )a p  

−
−

−∞−∞

⎡ ⎤
= − = −⎢ ⎥

− −⎢ ⎥⎣ ⎦
∫

00 ( )
( ) 1b p t
b p t e

e dt
p b p b

 if <Re( )p b  

Provided a is strictly less than b, so that there is a complex plane domain where 
the two integrals considered are convergent, ( )x t  will admit for LT the function: 

( )
bpap

pX
−

−
−

=
11
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Saying that ba <  means in the time domain: 

– for 0>a , the causal part ( )0≥t  exponentially diverges which implies, 
0>b , that the anti-causal part ( )0<t  converges faster toward 0 than the causal 

part diverges; 

– for 0<b , the anti-causal part ( )0<t  exponentially diverges which implies, 
0<a , that the causal part ( )0≥t  converges faster toward 0 than the anti-causal 

part diverges. 

All the anti-causal signals, zero for 0>t , that have a Laplace transform are such 
that this transform is defined into a left half-plane (containing = −∞Re( )p ).  

All the causal signals, zero for 0<t , that have a Laplace transform are such that 
this transform is defined into a right half-plane, (containing +∞=)(pRe ). The 
transform of such signals is again called one-sided transform. 

For a positively integrable (causal or anti-causal) signal:  

( )pX  for ( ) 0=pRe  is increased in module by
+∞

−∞
∫ ( )x t dt . 

Its Laplace transform always exists, the associated convergence band containing 
the imaginary axis. Hence, we notice the identity between the Laplace transform and 
the Fourier transform because on the imaginary axis: 

π

π
=

+∞
−

−∞

= =∫2

2( ) ( ) ( )
p jf

jftX p x t e dt TF x  

Finally, we note that the concept of Laplace transform can be generalized in the 
case where the signals considered are modeled by distributions. We recall from what 
was previously discussed in this chapter that the popular Dirac impulse admits the 
constant function equal to 1 as Laplace transform: 

1][)())((
0

==δ=δ
=

−
∞

∞−

−∫ t

ptpt edtettTL  
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ap

at

ptpt
a eedteattTL −

=
−

∞

∞−

− ==−δ=δ ∫ ][)())(( )(  

1.6.3. Properties 

As we have already seen, the Fourier and Laplace transforms reveal the same 
concept adapted to the type of signal considered. Thus, these transforms have similar 
properties and we will sum up the main ones in the following table. 

We recall that ( )tU  designates the unit-step function. 
 

Fourier transform Laplace transform 
 
Linearity 

( ) ( ) ( )yTFxTFyxTF µλµλ +=+  ( ) ( ) ( )yTLxTLyxTL µλµλ +=+  

The convergence domain is the intersection of 
each domain of basic transforms. 

( ) ( )fXtx TF⎯⎯ →⎯  ( ) ( )
( )⎩

⎨
⎧

<<
⎯⎯ →⎯

21 σσ pRe
pX

tx TL  

Delay 

( ) ( ) τπτ jfTF efXtx 2−⎯⎯ →⎯−  ( ) ( )
( )⎪⎩

⎪
⎨
⎧

<<
⎯⎯ →⎯−

−

21 σσ
τ

τ

pRe
epXtx

pTL  

Time reverse 

( ) ( ) ( )fXfXtx TF *=−⎯⎯ →⎯−  ( ) ( )
( )⎩

⎨
⎧

−<<−
−

⎯⎯ →⎯−
12 σσ pRe

pX
tx TL  

Signal derivation  
 
 

( ) ( )fXjf
dt
dx TF π2⎯⎯ →⎯  

This property verifies that the signal is 
modeled by a function or a distribution. 

The signal is modeled by a continuous function: 

( )
( )⎩

⎨
⎧

<<
⎯⎯ →⎯

21 σσ pRe
ppX

dt
dx TL  

The signal is modeled by a function that has a 
discontinuity of the first kind in ot : 

( ) ( )( ) ooo Stxtx =−−+ 00  

( )
( )⎪⎩

⎪
⎨
⎧

<<
−⎯⎯ →⎯

−

21 σσ pRe
eSppX

dt
dx pt

oTL o
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Case of a causal signal: 

0)0(

)()()(

−=

=
+xS

txtUtx

o
 

⎪⎩

⎪
⎨
⎧

σ<<σ
−⎯→⎯

+

21 )(

)0()(
)(

pRe

xppX
tu

dt
dx TL  

Transform of a convolution 

Through a simple calculation of double integral, it is easily shown that:  

( ) ( ) ( )fYfXyxTF =*  =( * ) ( ) ( )TL x y X p Y p  
defined in the intersection of the convergence 
domains of ( )X p  and ( )Y p  

 

The Laplace transform also makes it possible to determine the behavior at the 
time limits of a causal signal with the help of the following two theorems. 

THEOREM OF THE INITIAL VALUE.– provided the limits exist, we have: 

+ →+∞→
=

Re( )0
lim ( ) lim ( )

pt
x t pX p  

THEOREM OF THE FINAL VALUE.– provided the limits exist, we have: 

→+∞ →
=

Re( ) 0
lim ( ) lim ( )

t p
x t pX p  

The convergence domain of )(pX  is the right half-plane, bounded on the left by 
the real part of the pole which is at the most right (convergence abscissa 0σ ) 
because signals are causal. 
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1.6.4. Laplace transforms of ordinary causal signals 

x(t) X(p) σ0 convergence 
abscissa 

)0(δ  1  −∞  

)(
)0(

nδ  np  −∞  

00)(

01)(

<=
≥=

ttU

ttU
 

p
1

 0  

atetU −)(  ap +
1

 a−  

nttU )(  1
!
+np

n
 0  

atnettU −)(  ( ) 1
!

++ nap

n
 a−  

)sin()( ttU ω  22 ω
ω
+p

 0  

)cos()( ttU ω  22 ω+p

p
 0  

)sin()( tetU at ω−  ( ) 22 ω
ω

++ ap
 a−  

)cos()( tetU at ω−  ( ) 22 ω++

+

ap

ap
 a−  
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1.6.5. Ordinary Fourier transforms 

x(t) TF(x)(t)) 

1  )0(δ  

nt  )(
)0(2

1 n
n

j
δ⎟

⎠
⎞

⎜
⎝
⎛

π
−  

tjfe 02π  )( 0fδ  

π 0sin(2 )f t  )()( 00 2
1

2
1

ff jj −δ−δ  

π 0cos(2 )f t  ( ) ( )00 2
1

2
1

ff −+ δδ  

)(tsgn  
f

Pf
j

11
π

 

)(tU  ( ) f
Pf

j
1

2
1

2
1

0 π
δ +  

( )0δ  1  

( )0tδ  02 jfte π−  

( )∑
+∞

−∞=n
nTδ  ( )∑

+∞

−∞=n T
nT

δ1
 

( ) [ ]01 0,
0

x t t T
elsewhere

= ∈
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0

0
0
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0

fT
fT

eT jfT
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Chapter 2 

State Space Representation 

Control techniques based on spectral representation demonstrated their 
performances though numerous industrial implementations, but they also revealed 
their limitations for certain applications.  

The objective of this chapter is to provide the basis for a more general 
representation than the one adopted for the frequency approach and to offer the 
necessary elements to comprehend time control through the state approach. 

Time control, which is largely used in space and aeronautic applications but also 
in industrial applications such as servomechanisms, is based on the representation of 
systems through state variables. According to the matrix structure adopted, this 
modeling is also currently used during the synthesis of control laws, irrespective of 
the method chosen. 

This internal representation, which is richer and more global than the input-
output representation, is enabling the representation, in the form of a matrix, of any 
system: invariant or non-invariant, linear or non-linear, mono-variable or multi-
variable, continuous or discrete. This will be presented in this chapter, along with a 
few fundamental properties such as stability, controllability and observability. 

                                   
Chapter written by Patrick BOUCHER and Patrick TURELLE.   
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2.1. Reminders on the systems 

A physical system receives external excitations, stores information and energy, 
and delivers them according to the traditional diagram represented in Figure 2.1. 

  

Figure 2.1. Dynamic system 

The controls and outputs are generally multiple and their evolution is as a 
function of time. In the determinist case which we are dealing with here, knowing 
the controls )(tu  from −∞  makes it possible to know the outputs )(ty  at instant t. 

2.1.1. Internal representation of determinist systems: the concept of state 

A system can be represented externally through the relations that link the inputs 
to the outputs, which are described in the vector form: 

τ τ= ∈ ∞( ) { ( )}    [0 [t h ,y u  

Hence, linear and invariant systems (LIS) are traditionally represented, in the 
mono-variable case, by the convolution equation: 

∫∫
∞

∞−

∞

∞−

−=−=∗= ττττττ duthdtuhtuthty )()()()()()()(  

This representation is linked to the concept of transfer function by Laplacian 
transformation of the convolution equation: 

)()()( pUpHpY =  

However, we are soon limited at the level of these representations by the non-
linearities and non-stationarity of systems. Hence, it is interesting to consider what 
we call the state of a system in order to obtain a so-called “internal” representation. 
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 The state is a vector quantity )(tx  defined at any instant which represents the 
set of information and energies stored by the system at instant t. 

EXAMPLE 2.1.– let us consider the system consisting of a body in freefall in the 
field of gravity (supposed to be constant). The principle of energy conservation 
leads to the relation: 

2
total potential kinetic

1 constant
2

E E E mgz mv= + = + =  

Knowing v (speed of the body) and z (altitude of the body) is sufficient in order 

to characterize the evolution of this mechanical system. Hence, vector ⎥⎦
⎤

⎢⎣
⎡= )(

)()( tv
tztx  

makes it possible to describe this evolution. 

Thus, knowing the state of a system at instant 't t<  and the controls )(tu  
applied to the system between instants '  and t t , the system output is written as: 

τ τ= ≤ ≤, '( ) [ ( '), ( )] for  't tt h t t ty x u   

Similarly, the evolution of the state will be expressed by the relation: 

ϕ τ τ= ≤ ≤, '( ) [ ( '), ( )] for  't tt t t tx x u   

We note that )'(tx  can be expressed from )'"()"( ttt <x  and the controls )'(τu  
applied to the system between instants " and 't t : 

ϕ τ τ= ≤ ≤', "( ') [ ( "), ( ')] for  " ' 't tt t t tx x u  

which leads to: 

ϕ ϕ τ τ τ τ= ≤ ≤ ≤ ≤, ' ', "( ) [ [ ( "), ( ')], ( )] for  " ' 't t t tt t t t tx x u u   

Between " and t t , we have:  

ϕ τ τ= ≤ ≤, "( ) [ ( "), ( ")] for  " "t tt t t tx x u   
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The comparison between these two results leads to the property of transition, 
which is essential for the systems that we are analyzing here: 

ϕ τ ϕ ϕ τ τ=, " , ' ', "[ ( "), ( ")] [ [ ( "), ( ')], ( )]t t t t t tt tx u x u u  

ttttt ≤≤≤≤≤≤ τττ ''"""  

and which characterizes the transition of a state )"(tx  to a state )(tx  by going 
through )'(tx . 

The state of a system sums up its past entirely. 

2.1.2. Equations of state and equations of measurement for continuous systems 

Knowing state )(tx  at instant t and the controls applied for ttt ∆τ +≤≤ , we 
have the relations: 

ϕ τ+∆+ ∆ = ,( ) [ ( ), ( )]t t tt t tx x u  

ϕ τ ϕ+∆ −+ ∆ − =
∆ ∆

, ,[ ( ), ( )] [ ( ), ( )]( ) ( ) t t t t tt t tt t t

t t

x u x ux x  

The equation of state is then obtained by going at the bound ∆ →( 0)t  in this 
relation. Hence, we obtain the matrix differential equation: 

= [ ( ), ( ), ]
d

f t t t
dt

x
x u  

in which the control vector )(tu  has m components, and the state vector )(tx  is 
characterized by n components called state variables. 

The vector of measurements or of observations has l components and the 
equation of measurement has the following form: 

=( ) [ ( ), ( ), ]t h t t ty x u  
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The evolution of a dynamic system subjected to inputs )(tu  and delivering 
information )(ty  is entirely characterized by a vector )(tx  of size n linked to the 
inputs and outputs by the relations: 

=�( ) [ ( ), ( ), ]t f t t tx x u  

=( ) [ ( ), ( ), ]t h t t ty x u  

with: 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# # #

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )
( )  ; ( )  and ( )

  

( ) ( ) ( )n m l

x t u t y t

x t u t y t
t t t

x t u t y t

x u y  

2.1.3. Case of linear systems 

When the system is linear (principle of superposition of causes and effects), the 
equations of state and measurement have the following form: 

)()()()()( ttttt uBxAx +=�  

)()()()()( ttttt uDxCy +=  

in which: 

– )(tA  is the evolution matrix ( )nn ×dim ; 

– )(tB  is the control matrix ×(dim )n m ; 

– )(tC  is the observation matrix ( )nl ×dim ; 

– )(tD  is the direct transmission matrix ×(dim )l m . 

We note that state representation is not unique and in any case we would have to 
talk of a state representation (see section 2.3.2). 
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2.1.4. Case of continuous and invariant linear systems 

The four state representation matrices are constant, irrespective of time: 

)()()( ttt uBxAx +=�  

)()()( ttt uDxCy +=  

2.2. Resolving the equation of state 

Firstly, let us recall the nature of the magnitudes used: 

– state vector: )(tx  column vector 1×n ; 

– control vector: )(tu  column vector 1m × ; 

– observation vector: )(ty  column vector 1l × ; 

– equation of state: )()()()()( ttttt uBxAx +=� ;  [2.1] 

– equation of measurement: )()()()()( ttttt uDxCy += .  [2.2] 

We will approach the resolution of the equation of state in two instances: 

– free state 0)( =tu ; 

– forced state 0)( ≠tu . 

2.2.1. Free state 

This refers to solving the equation )()()( ttt xAx =�  from the initial condition 
.)( 00 xx =t  Since the equation is linear, the solution )(tx  is expressed linearly 

according to )( 0tx  as follows: 

Φ= 0 0( ) ( , ) ( )t t t tx x  

The matrix Φ 0( , )t t  of size nn ×  is called a system transition matrix. It has the 
following properties: 

Φ Φ ) Φ=2 0 2 1 1 0( , ) ( , ( , )t t t t t t ; (transition property previously mentioned) 

Φ =( , )t t I ; ( )Φ=( ) ( , ) ( )t t t tx x  
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Φ Φ −= 1
1 2 2 1( , ) ( , )t t t t  

( ) ( ) ( ) ( )( )Φ Φ= ⇒ =2 2 1 1 1 1 2 2( , ) ( , )t t t t t t t tx x x x  

( )Φ Φ= ∀0 0 0, ( ) ( , )
d

t t t t t t
dt

A ; ( )( )Φ= = �� � 0 0( ) ( ) ( ) and ( ) , ( )t t t t t t tx A x x x  

2.2.2. Forced state 

This refers to solving the equation )()()()()( ttttt uBxAx +=�  for ,0)( ≠tu  
knowing the general solution of the homogenous equation ( ))(),(Φ)( 00 tttt xx = . 
Then, a particular solution of the complete equation is searched for as 

)(),(Φ)( 0 ttttp zx = , where function )(tz  is the unknown factor obtained from the 
initial condition ).0)(z(0)(x 00 == ttp  

By deriving )(tpx  and by transferring in [2.1] we have: 

Φ Φ Φ= + = +� �0 0 0( ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )p
d

t t t t t t t t t t t t t
dt

x z z A z B u  

However: 

Φ Φ Φ= ⇒ = ⇔�0 0 0( , ) ( ) ( , ) ( , ) ( ) ( ) ( )
d

t t t t t t t t t t
dt

A z B u  

( ) )()(,Φ)( 1
0 ttttt uBz −=�  

or by considering the initial condition on z: 

0 0

1 1
0 0 0( ) Φ( , ) ( ) ( ) ( ) Φ( , ) Φ( , ) ( ) ( )

t t

p
t t

t t d t t t t dτ τ τ τ τ τ τ τ− −= ⇒ =∫ ∫z B u x B u  

and by using the properties of the transition matrix mentioned above: 

∫=
t

t
p dtt

0

)(),(Φ)( τττ Bx  
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The general solution of the complete equation is then expressed by: 

∫+=
t

t

dttttt
0

)()(),(Φ)(),(Φ)( 00 ττττ uBxx  

and the output )(ty  is then simply calculated from )(tx : 

)(u)()()(),(Φ)(),(Φ)()(

0

00 ttdtttttt
t

t

DuBxCy +
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= ∫ ττττ  

The only difficulty of this solving method is the calculation of the transition 
matrix. This method often calls upon numeric solving techniques. 

2.2.3. Particular case of linear and invariant systems 

When matrices A, B, C and D are independent of time, the transition matrix 
),(Φ 0tt  takes a simple particular form because Φ  depends only on the difference 

0tt − . Indeed, equation ),(Φ),(Φ
00 tttt

dt
d A= , with A constant, is resolved by 

analogy with the scalar case by searching for a solution as the sum of an entire 
matrix sequence.  

Φ

Φ −

= Α + − + − + + − +

= + + − + + − +

= + − + − + + − +

" "
� " "

" "

2
0 0 1 0 2 0 0

1
0 1 2 0 0

2
0 1 0 2 0 0

( , ) ( ) ( ) ( )

( , ) 0 2 ( ) ( )

   [ ( ( ) ( ) ]

k
k

k
k

k
k

t t t t t t t t

t t t t k t t

t t t t t t

A A A

A A A

A A A A A

 

By identifying term to term these two developments, we successively obtain: 

−= = =" "1 0 2 1 1
1 1

, , , ,
2 k kk

A A A A A A A A A  
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By considering the fact that Φ = =0 0 0( , )t t A I , for Φ 0( , )t t  we obtain the 
following development: 

Φ = + − + − + + − +" …2 2
0 0 0 0

1 1
( , ) ( ) ( ) ( )

2! !
k kt t t t t t t t

k
I A A A  

which is not that of the exponential function in the scalar case. Hence, we 
symbolically mark this development: 

)(
0

0),(Φ ttett −= A  

and therefore: 

ττττ detet
t

t

ttt )()()()(
0

0 )(
0

)( uBxx AA ∫ −− +=  

In this particular case of linear and invariant systems, the transition matrix can be 
calculated analytically from, among others, the values of matrix A. We will see 
some of these methods in the following section. 

2.2.4. Calculation method of the transition matrix 0A(t -t )e  

Use of serial development 

When the power calculation of matrix A is done simply (in particular through 
simple recurrences), we can use the definition of the matrix exponential function as 
an entire sequence: 

…" +−++−+−+=− kktt tt
k

tttte )(
!

1)(
!2

1)( 0
2

0
2

0
)( 0 AAAIA  

EXAMPLE 2.2. 

⎥⎦
⎤

⎢⎣
⎡= 00

10A  ⇒ ⎥⎦
⎤

⎢⎣
⎡= 00

002A  

⇒ ⎥⎦
⎤

⎢⎣
⎡ −=−+=−

10
1)( 0

0
)( 0 tttte tt AIA   
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⎥⎦
⎤

⎢⎣
⎡

−= a0
10A  ⇒ ⎥⎦

⎤
⎢⎣
⎡ −= 2

2
0
0

a
aA  

⇒  ⎥
⎦

⎤
⎢
⎣

⎡
−

= 3
23

0
0

a
aA …⇒

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

−

k

k
k

a
a

)(0
)(0 1

A  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=+−++−+−+=−

−−

−

)(

)(

0
2

0
2

00
0

0

0

11)(
!

1 )(
2
1)()(

tta

tta

kk

e
a

e
tt

k
tttttte "" AAAIA   

 Sylvester formula (distinct eigenvalues of A) 

If nλλλ ,, 21 "  are the n distinct eigenvalues of A (solutions of the equation: 

0)det( =− IA λ ), the transition matrix )( 0tte −A  is expressed by: 

λ λ
λ λ

− −

= =
≠

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
∑ ∏0 0( ) ( )

1 1

i

nn
jt t t t

i ji j
j i

e eA A I
 

EXAMPLE 2.3.– aa −==⎥⎦
⎤

⎢⎣
⎡

−= 21 ,00
10 λλA  distinct eigenvalues (the 

eigenvalues of a triangular matrix are presented in its diagonal). 

λ λ λλ λ λ
λ λ λ λ λ λ

− − −

= =
≠

− −

− −
− −

−

− −

⎡ ⎤− ⎡ ⎤ ⎡ ⎤− −
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

+ − ×⎡ ⎤ ⎡ ⎤= × +⎢ ⎥ ⎢ ⎥+ − −⎣ ⎦ ⎣ ⎦

−= + − = +

⎡ ⎤−
⎢= ⎢
⎢ −⎣ ⎦

∑ ∏0 1 0 2 0

0

0
0

0

0

( ) ( ) ( )2 1

1 2 2 11 1

( )

( )
( )

( )

( )

0
1

0 0

1 1 1

1
0

0 1

nn
ji t t t t t t

i ji j
j i

a t t

a t t
a t t

a t t

a t t

e e e

a
e

a a

e
e

a a a

e

a

e

A I A I A I

A I A I

A I A A I

− −

− −

⎡ ⎤−
⎡ ⎤⎥ ⎢ ⎥+ =⎢ ⎥⎥ ⎢ ⎥
⎣ ⎦⎥ ⎢ ⎥

⎣ ⎦

0

0

( )

( )

1
1 0 1

0 1
0

a t t

a t t

e

a

e
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 Sylvester interpolation method  

When the eigenvalues of A are not distinct, we cannot use the previous formula. 
Hence, we will do as follows: we will suppose that 1λ  is a simple eigenvalue and 
that 2λ  is a double eigenvalue. Thus, we build a matrix in which the rows of simple 
eigenvalues are of the same type: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅⋅⋅⋅⋅⋅

⋅
−−⋅

⋅
⋅

−−

−−

−−

−−

−−

)(12

)(1
3

2
33

)(
0

2
22

)(1
2

2
22

)(1
1

2
11

0

03

02

02

01

1
)()1(210

1
1

ttn

ttn

ttn

ttn

ttn

e

e
ettn

e
e

AAAAI

λ

λ

λ

λ

λλλ
λλ

λλλ
λλλ

 

The first row corresponding to a multiple eigenvalue is done in the same way, 
but the following row is the derivative of the current row with respect to the multiple 
eigenvalue (here 2λ ). If the eigenvalue is double, the next row has a standard form 
with the next eigenvalue. If the eigenvalue is triple, we repeat the procedure and we 
derivate again the second row corresponding to this triple eigenvalue and so on. 
Hence we obtain a matrix of n rows and n + 1 columns which we complete by a last 
row built from the successive powers of matrix A and completed by the transition 
matrix )( 0tte −A . 

 Hence, Sylvester’s method consists of formally calculating the determinant of 
this matrix and of extracting the transition matrix from this calculation by writing 
that this determinant, formally developed with respect to its last row, is zero. 

EXAMPLE 2.4.– if we take the same example: ⎥⎦
⎤

⎢⎣
⎡

−= a0
10A  and build the matrix 

which in our example is limited to: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−

−

−

)(
)(

)(

)(
2

)(
1

0

0

0

02

01

1
101

1

1

tt
tta

tt

tt

tt

e
ea

e
e

e

AA AIAI

λ

λ

λ

λ
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The determinant of this matrix developed in relation with the last row is: 

aeeea
tt

ttatta −×+×−−×= −
−−−− 1

01
1

1110 )(
)()( 0

00

AAI∆  

− − −∆ = − − −0 0( ) ( )( 1)a t t t ta e aeAI A   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=−+=⇒=

−−

−−
−−−

)(

)(
)()(

0

0
0

0

0

1110
tta

tta
ttatt

e
a

e

a
ee AIA∆   

NOTE 2.1.– regarding these last two techniques, we note that the transition matrix 
)( 0tte −A  is expressed by a finite degree polynomial (n – 1) of matrix A. This result 

is due to the fact that any matrix verifies its characteristic equation, )det( IA λ−  
(theorem of Cayley Hamilton) and thus all powers of A of a degree more than n are 
expressed by a linear combination of first powers n – 1. 

 Method of modes 

When matrix A is diagonalizable (it is at least the case when the eigenvalues of 
A are distinct), we can calculate the transition matrix by using the diagonal form of 
A.  

121121 ΛΛΛΛ −−−− ==⇒= MMMMMMAMMA ... 1Λ −= MMA kk  

"" +−++−+−+=− kktt tt
k

tttte )(
!

1)(
!2

1)( 0
2

0
2

0
)( 0 AAAIA =

1)(Λ1
0

2
0

2
0 0)(Λ

!
1)(Λ

!2
1)(Λ −−− =⎥⎦

⎤
⎢⎣
⎡ +−++−+−+ MMMIM ttkk ett

k
tttt ""  

However, matrix )( 0
Λ tte − , by build, is the diagonal matrix whose diagonal 

elements are the scalar exponential functions )( 0ttie −λ . The calculation of the 
transition matrix is then done by determining a system of eigenvectors of 

{ }( )nxxxA ,,, 21 "  in order to define the basic change matrix M.  
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EXAMPLE 2.5. 

⎥⎦
⎤

⎢⎣
⎡

−=⇒ a0
00A   eigenvalues λ λ= = −1 20, a  

⎥⎦
⎤

⎢⎣
⎡=⇒⎥⎦

⎤
⎢⎣
⎡

−=⇒ −−
−

)(
)(Λ

0
0

0
01

0
00Λ tta

tt
eea   

Determining M: 

⎥⎦
⎤

⎢⎣
⎡=⇒== 0
10 1111 xxxA λ  (for example) 

⎥⎦
⎤

⎢⎣
⎡
−=⇒−== aa 1

22222 xxxxA λ (for example) 

−

−
− −

⎡ ⎤
⎢ ⎥⎡ ⎤

= = ⇒ = ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎡ ⎤⎡ ⎤

⇒ = ⎢ ⎥⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎢ ⎥⎣ ⎦

0

0

1
1 2

( )
( )

1
1

1 1
[ ]

0 1
0

1
11 01 1

0 10 0

t t
a t t

a
a

a

ae
a e

a

A

M x x M

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

−−

−−
−

)(

)(
)(

0

0

0

0

11
tta

tta
tt

e
a

e
e A  

2.2.5. Application to the modeling of linear discrete systems 

Let us consider the equation providing the evolution of a state of a system 
between two instants t0 and t: 

∫+=
t

t

dttttt
0

)()(),(Φ)(),(Φ)( 00 ττττ uBxx  
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This equation is valid for any pair of instants .0 tt <  

Hence, let us suppose that between two instants 1and k kt t +  the control )(tu  
applied to the system is constant and equal to ).( kk tuu =  The evolution of the state 
between these two instants can be expressed as follows: 

Φ Φ τ τ τ
+

+ + +

⎡ ⎤
⎢ ⎥= + ⎢ ⎥
⎢ ⎥⎣ ⎦
∫

1

1 1, 1,( ) ( ) ( ) ( ) ( ) ( )
k

k

t

k k k k k k

t

t t t t t d tx x B u  

where: Φ + =1,( ) ( ) k kt t kF  and ∫
+

=+

1

)()()(Φ ,1

k

k

t

t
k kdt GB τττ  are two functions of k. 

When instants kt  are multiples of a sampling period T ( )kt kT=  and when 
between the two sampling instants the control applied to the system is constant, the 
evolution of this state is: 

)()()()()1( kkkkk uGxFx +=+  

which represents the discrete model of the continuous system of the equation of 
state:  

)()()()()( ttttt uBxAx +=�  operated by a control: 

( ) ( ) for ( 1) .t kT kT t k T= ≤ < +u u   

Moreover, when the system is invariant, ),()()( ttt uBxAx +=�  then we obtain: 

FF A == Tek)(  

and: Φ τ θτ τ τ θ
+ +

+ −
+= = = =∫ ∫ ∫

1 1

1( ) ( )
1,

0

 ( ) ( )
k k

k

k k

t t T
t

k

t t

k t d e d e dA AG B B B G  
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These two constant matrices are independent of k and the discrete model 
becomes: 

)()()1( kkk uGxFx +=+  

In both cases, the equation of measurement is added to the equation of state in 
order to complete the model. 

2.3. Scalar representation of linear and invariant systems 

2.3.1. State passage → transfer  

Linear and invariant systems are characterized by an external representation that 
has the form of a transfer matrix linking the controls to the outputs: 

=( ) ( ) ( )p p pY H U  

For mono-variable systems (y and u scalar), we define the transfer function of 

the system by the ratio: 
)(
)()(

pU
pYpH = . 

In the case of multi-variable systems, the transfer is characterized by matrix 
)( pH  whose size is linked to the size of output vectors y and control vectors u. If y 

has a size l and u has a size m, transfer matrix )( pH  has the size l × m. The problem 
that arises is the passage from an internal representation: 

)()()( ttt uBxAx +=�  

)()()( ttt uDxCy +=  

to the external representation )( pH . 

This passage will be done, in the case of the linear and invariant systems we are 
dealing with, by using the Laplace transform on the equations of state and 
measurement: 

− −

− = + ⇒ − = +

⇒ = − + −
0 0

1 1
0

( ) ( ) ( ) ( ) [ ] ( ) ( ) ( )

( ) [ ] ( ) [ ] ( )

p p t p p p p t p

p p t p p

X x AX BU I A X x BU

X I A x I A BU
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From the analogy between this transform and the expression of time response: 

∫ −− +=
t

t

ttt detet
0

0 )()()( )(
0

)( τττ uBxx AA  

we obtain the following relations: 

−−− = 0( )1[ ] { }t tp L eAI A  

τ τ τ−− −
⎧ ⎫
⎪ ⎪− = = ⎨ ⎬
⎪ ⎪⎩ ⎭
∫0

0

( )1 ( )[ ] ( ) { * ( )} ( )
t

t t t

t

p p L e t L e dA AI A B U Bu Bu  

which provide a new calculation technique of the transition matrix:  

[ ]{ }0 1( ) 1t te L p −− −= −A I A  

If the initial state is zero (hypothesis used in order to define the transfer function 
of a system), we have: 

− −= − = − +1 1( ) [ ] ( )  and  ( ) [ [ ] ] ( ),p p p p p pX I A BU Y C I A B D U   

hence we obtain the transfer matrix: 

−= − +1( ) [ [ ] ]p pH C I A B D  

Element )( pHij  of matrix )( pH  represents the transfer between the control 
( )ju t  and an output )(tyi , when the other controls are at zero. Thus, we can obtain 

from the matrix: 

  

)(

)(
)(

)(

)(

)(
)(

)()()( 2

1

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⇒×=

pU

pU
pU

pH

pY

pY
pY

ppp

m

ij

l

#
%"""
"%""
""…
"""%

#
UHY  
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)(
)(

)(
pU
pY

pH
j

i
ij =  to  ( ) 0  for  kU p k j= ≠  

NOTE 2.2.– there are systematic and recursive methods of calculating matrix 
−− 1[ ]pI A  such as the Leverrier-Souriau algorithm; firstly, matrix −− 1[ ]pI A  is 

written as: 

− −
− −

−
+ + +

− =
+ +

"
"

1 2
1 0 1 1

1
0 1

[ ]
n n

n
n n

n

p p
p

d p d p d

B B B
I A  

where:  

[ ]1
0 1 detn n

nd p d p d p−+ + + = −I A"   

which is an expression where the idea is to determine the n square matrices jB  
nn×  and the 1+n  scalar coefficients id . 

Hence, we make the following iterative calculations: 

=
= = −

= + = −

= + = −

0

0 1 0

1 0 1 2 1

2 1 2 3 2

        1

        trace{ }

1
        trace{ }

2
1

         trace { }
3

d

d

d d

d d

B I B A

B B A I B A

B B A I B A

  

{ }

{ }

− +

− − − −

= + = −
+

⋅

= + = −

#

1 1

1 2 1 1

1
trace

1

1
 trace 

k k k k k

n n n n n

d d
k

d d
n

B B A I B A

B B A I B A

 

and the last relation that represents the verification of the calculation and must give: 

01 =+= − IABB nnn d  

which ends the calculation of terms defining −− 1[ ] .pI A  
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2.3.2. Change of basis in the state space 

As we have already mentioned, the representation of a state of a system is not 
unique. Only the controls applied to the system and the resulting outputs are the 
physical magnitudes of the systems. Hence, there is an infinite number of internal 
representations of a system which depend on the state vector chosen. 

We will verify it by performing a change of basis in the state space. Let us 
assume that )(~)( tt xMx =  with M constant and )(~ tx  state of a system in the new 
basis: 

)(~)(~~)()()(~)()()(~)(

)(~)(~~)(~

)()(~~)()(~)()()(~)( 11

ttttttttt

ttt

ttttttxt

uDxCyuDxMAuBxAxCy

uBxAx

uBMxAMMxuBxMAuBxAxMx

+=+=+==

+=

+=⇒+=+== −−

�

�

���

 

In the new basis,  )()(~ 1 tt xMx −= and: 

)(~)(~~)(

)(~)(~~)(~

ttt

ttt

uDxCy

uBxAx

+=

+=�
 

with: 1 1    and − −= = = =A M A M B M B C CM D D� �� � .  

Hence, let us calculate: 

− − − −

− − −

−

= − + = − +

= − +

− + =

� �� � �1 1 1 1

1 1 1

1

( )

( )

p p p

p

p p

H C[ I A] B D CM[ I M AM] M B D

C[M[ I M AM] M ] B D

C[ I A] B D H

 

The change of basis did not modify the transfer matrix of the system. 

2.3.3. Transfer passage → state  

We will deal here only with mono-variable systems. Generalizing of multi-
variable systems is done easily for each scalar transfer function ).(pHij  
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Hence, let us consider a transfer function: 

)(
)()(

pU
pYpH = with:

)(
)()( 2

210

1
1

2
210

pD
pN

ppbpbb
papapaa

pH n

n
n =
++++

++++
=

−
−

"
"

 

We note that the coefficient of the highest degree term of the denominator is 
standardized at 1=nb . We also note that the degree of the numerator is at least one 
unit lower than the one of the denominator. If it is in any other way (same degree 

maximum for a physically conceivable system), the rational fraction 
)(
)(

pD
pN  is 

decomposed into a full part 0d  and a rational fraction of the type shown above. This 
full part 0d  characterizes the direct transmission of the control and hence represents 
an element of matrix D of the state model. 

Among all the forms of transfer passage →  state, we will describe two 
particular forms adapted to problems of control and estimation. 

 Companion form for the control 

We will start from the expression: )(
)(
)()( pU

pD
pNpY = . 

Let us assume that:  

)()()( 1 pXpNpY =  with 
)(
)()(1 pD

pUpX =   

where )(1 pX  represents the Laplace transform of )(1 tx , the first of n state 
variables constituting )(tx . It is thus possible to write the two following polynomial 
relations:  

−
−

= + + + + =

= = + + + +

"

"

2
1 0 1 2 1

2 1
1 0 1 2 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n

n
n

D p X p b b p b p p X p U p

Y p N p X p a a p a p a p X p
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In the time domain, the previous equations lead to: 

)()()()(

)()()()(

10
1

11
1

1

1

10
1

1
1

txat
dt

dx
at

dt
xd

aty

tutxbt
dt

dxbt
dt

xd

n

n

n

n

n

+++=

=+++

−

−

− "

"
 

Thus, by choosing as state variables )(1 tx  and its )1( −n  first derivatives, the 
equations of state and measurement are written: 

)()()()(

)()()()()(

)()(

)()(

)()(

12110

12110

1

32

21

txatxatxaty

tutxbtxbtxbtx

txtx

txtx

txtx

nn

nnn

nn

−

−

−

+++=

+−−−−=

=

=

=

"

"�

�

#

�

�

 

which lead to the matrix form called companion form for the control whose block 
diagram is given in Figure 2.2. 

 

Figure 2.2. Companion form for the control 
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This representation, whose state variables corresponding to this form are 
currently called phase variables (phase plane for n = 2), is summed up by the 
following equation of state and equation of measurement: 

)(

1

0

0
0

)(
10

010
00100
0..010

)(

1210

tut

bbbb

t

n ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⋅
⋅

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅⋅−−−
⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
⋅⋅⋅

⋅
=

−

xx�  

−= "0 1 1( ) [ ] ( )ny t a a a tx  

Companion form for the observation 

Let us bring back the fraction form: 

)(
)(

)(
)(

2
210

1
1

2
210

pD
pN

ppbpbb
papapaa

pU
pY

n

n
n =
++++

++++
=

−
−

"
"

 

By dividing )( pN  and )( pD  by np , we obtain: 

11111

1111

)(
)(

122110

122110

+++++
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−−−
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p
b

p
b

p
b

p
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p
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p
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p
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p
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pY

nnnn
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which leads to: 

)(111                                  

)(111)(
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b
p

b
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a
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a
p

apY

nnn

nnn
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⎥
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⎤

⎢
⎢
⎣

⎡
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=
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− −

− −

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥= − + ⎡ ⎤⎢ ⎥⎢ ⎥+ + −⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

" "

2 2

1 1
0 0

( ) ( )
1 1

( ) ( ) ( ) 1 1
[ ( ) ( )]

n n

n n

a U p b Y p

Y p a U p b Y p
a U p b Y pp p

p p
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Hence, through { } )()()( pYtxLpX nn == , we obtain: 

− − −

− − − −

= − +

= − +

⋅

= −

#

1 1 1

1 2 2 2

1 0 0

1
( ) [ ( ) ( ) ( )]

1
( ) [ ( ) ( ) ( )]

1
( ) [ ( ) ( )]

n n n n n

n n n n n

n

X p a U p b X p X p
p

X p a U p b X p X p
p

X p a U p b X p
p

 

These n equations are directly transcribed into the time domain as follows:  

)()()()(
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)()()()(

)()()()(

)()()(
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2223

1112

001

txtxbtuatx
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nnnnn
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Grouped as a matrix, they represent the companion form for the observation: 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎣
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−⋅⋅⋅
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⋅⋅⋅⋅⋅⋅
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=
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−

−

xx�  

the equation of measurement being reduced to: 

= "( ) [0 0 0 0 1] ( )y t tx  

The block diagram of this representation is given in Figure 2.3.  
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Figure 2.3. Companion form for the observation  

2.3.4. Scalar representation of invariant and linear discrete systems  

In section 2.2.5 we have seen the modeling of discrete linear and invariant 
systems as: 

)()()(
)()()1(

kkk
kkk

uJxHy
uGxFx

+=
+=+

 

The scalar representation of such systems is obtained by using the transformation 
in z on the equation of state (zero initial conditions): 

−

−

= + ⇒ − =

⇒ = −

= + ⇒ = − + =

1

1

( ) ( ) ( ) [ ] ( ) ( )

( ) [ ] ( )

( ) ( ) ( ) ( ) [ [ ] ] ( ) ( ) ( )

z z z z z z z

z z z

z z z z z z z z

X FX GU I F X GU

X I F GU

Y HX GU Y H I F G J U T U

 

This last relation makes it possible to define the transfer matrix of the discrete 
system: 

−= − +1( ) [ [ ] ]z zT H I F G J  

The calculation of matrix −− 1[ ]z I F  can be done by using the Leverrier-
Souriau algorithm which has been described for the calculation of matrix 

−− 1[ ]p I A  in section 2.3.1. 
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2.4. Controllability of systems 

2.4.1. General definitions 

A system is controllable between x0 and x1 if we can find a control )(tu  that 
makes it possible to pass from the initial state x0 to the final state x1 within a finite 
period of time. 

A system is entirely controllable if there is a solution )(tu  for any pair { }0 1,x x . 

A system is partially controllable if we can operate only on certain components 
of the state of a system between x0 and x1. 

 EXAMPLE 2.6.– let us consider the size 4 mono-variable system defined by the 
equation of state: 

)(

0
0

)(

000
000
000
000

)( 2

1

4

3

2

1

tub
b

t

a
a

a
a

t
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= xx�  

It is clear that only variables 1 2( ) and ( )x t x t  are controllable by )(tu . The 
evolution of variables 3 4( ) and ( )x t x t  remains independent of the control.  

2.4.2. Controllability of linear and invariant systems 

Firstly, we will limit ourselves to the case of a mono-variable system whose 
control )(tu is reduced to a scalar term. Hence, we have to define the necessary 
conditions (i.e. the sufficient conditions) so that the system described by the 
equation of state )()()( tutt BxAx +=� is controllable. The linearity of the equation 
makes it possible to calculate for a zero initial state =0( ( ) 0)tx . 

If we consider nR∈1x , there is a control )(tu  so that, for finite 1t , we have: 

τ ττ τ τ− − −= + = =∫ ∫
1 1

1 0 1 1

0 0

( ) ( ) ( )
1 0 0( ) ( ) ( ) ( )   (si ( ) 0) 

t t
t t t t

t t

t e t e u d e u tA A Ax x B B x  
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For any instant t, we have τ τ τ−= ∫
0

( )( ) ( ) .
t

t

t

t e u dAx B  

However, according to the Cayley-Hamilton theorem, )( τ−te A  can develop as a 
matrix polynomial of degree 1−n : 

τ α τ α τ α τ α τ
−

− −
−

=
= + + + =∑"

1
( ) 1

0 1 1
0

( , ) ( , ) ( , ) ( , )
n

t n i
n i

i

e t t t tA I A A A  

because, as we have seen during the calculation of the matrix exponential function, 
An and all powers more than A are linear combinations of (n – 1) first powers. 

Thus: 

α τ τ τ α τ τ τ
− −

= =

⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦
∑ ∑∫ ∫

0 0

1 1

0 0

( ) ( , ) ( ) ( , ) ( )
t tn n

i i
i i

i it t

t t u d t u dx A B A B  

By supposing that ( ) ττταρ dut
t

t
ii )(,

0

∫= , the previous equation becomes: 

1
1

10)( −
−+++= n

nt ρρρ BAABBx "  

an expression in which matrices BA i  are column vectors (like B – mono-variable 
control) and functions )(tiρ  are scalar. 

By using a vector notation: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅=

− )(

)(
)(

)(

1

1

0

t

t
t

t

nρ

ρ
ρ

ρ , we can sum up the previous 

equation as follows: ρ ρ−= =" 1( ) [ ] ( ) ( )nt t tGx B AB A B Q , where matrix GQ  is the 

square matrix nn ×  built by juxtaposing n column vectors .,,, 1BAABB −n"  

This result shows that irrespective of control ( ),  ( )t tu x  remains within the 
vector sub-space generated by vectors BA i , for 1,,1,0 −= ni " . 
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To reach any point )(tx  of the state space, the n BA i  columns must be linearly 
independent. In other words, it is necessary that: 

[ ]rank n=GQ   

If this condition is satisfied, we have )()( 1 tt xQG
−=ρ . 

The solution in )(tρ  of this problem is unique but there is an infinite number of 
)(tu  solutions satisfying: 

ττταρ dutt
t

t
ii )(),()(

0

∫=  

The control )(tu  is defined only by its n “projections” on the functions ),( ti τα . 

To conclude, a mono-variable linear and invariant system characterized by its 
equation of state: 

)()()( tutt BxAx +=�  

is entirely controllable by control )(tu  if and only if the controllability matrix: 

][ 1BAABBQG
−= n"  

is of rank n (and thus reversible or regular). 

This result can be generalized to the multi-variable case with the following 
adjustments: if )(,dim tmn iρ×=B  is no longer a scalar function but a vector of 
size m (that of ))(tu . Consequently, )(tρ  is a vector of size mn× . Considering 
these adjustments, the expression: 

ρ ρ−= =" 1( ) [ ] ( ) ( )nt t tGx B AB A B Q  

remains valid, but matrix GQ  is of size × ×( )n n m . 
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The system will be entirely controllable if matrix GQ  is of rank n, which means 
that we can extract n linearly independent columns from: 

][ 1BAABBQG
−= n"  

2.4.3. Canonic representation of partially controllable systems  

When rank = <[ ] q nGQ , the relation 1
1

10)( −
−+++= n

nt ρρρ BAABBx "  
limits the state evolution )(tx  of the system to a vectorial sub-space of size q 
generated by the independent columns of matrix GQ . Hence, we will seek a basis of 
the state space where the equation of state makes it possible to split the state vector 
into an entirely controllable part of size q and a non-controllable part of size n – q. 
Thus, let us choose a basis of the vector sub-space consisting of q linear independent 
combinations of q independent vectors of GQ . 

Let 1T  of size qn ×  be the matrix built from these q column vectors.  

Let us build the basis change matrix (so that ( ) ( ))t t=T x T x�  by completing 
block 1T  by a block 2T  of size )( qnn −×  so that: 

= ↓
→→

−

1 2[ ] is reversiblen

q n q

T T T
 

In section 2.3.2 we have seen that in a basis change the new equations of state 
and measurement of the system are: 

)(~)(~~)()(~)(

)(~)(~~)()(~)(~ 11

ttttt

ttttt

uDxCuDxTCy

uBxAuBTxTATx

+=+=

+=+= −−�
 

In order to calculate matrices ,  andA B  C� �� , we will use the following property: let 

[ ]1 2
( )

 n rowsr
r columns r q≤

= ↓M M M M"����	���
  be a matrix extracted from GQ  by linear 

combinations of the independent columns of GQ . By construction, columns 
ofiM  M  are linked to columns 1 1of jT T  through a relation of the type:  
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1 11 2 12 1
1

for :   1, 2, , ( )
q

i ij j ij i iq q
j

k k k k i r r q
=

= = + + + = ≤∑M T T T T" "  

This expression translated as a matrix becomes: 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅=
⎢ ⎥⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

"

1

2

11 12 1[ ]

i

i

i q

iq

k

k

k

M T T T  

By grouping the iM  in order to build matrix M, we obtain: 

[ ]rMMMKTM "211 ==  

To conclude, if )(dim rn×M  is built from linear combinations of the columns of 
matrix GQ , then there is a matrix K ×(dim )q r  such that: 

rqqnrn ×××
= KΤΜ 1  

We will use this property to calculate matrices ,  and A B C� �� .  

−=� 1A T  AT = −1T A [T1⏐ T2] = −1T  [ AT1⏐ AT2] 

However, )(1 qn×AT  is, by construction, extracted from )(1 qq ×∃⇒ KQG  so 
that 111 KTAT = , hence: 

− −=1 1T A T T [T1 K1 ⏐ AT2] = [ −1T T1 K1⏐ −1T AT2] 

qnqqnq −−  

but: [ ]− − − −= = =1 1 1 1
1 2 1 2[ ] nT T T T T T T T T I  
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Block 1
1TT−  can thus be written:  

q

qn
qq

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=⇒

−↓
↓

⎥
⎦

⎤
⎢
⎣

⎡
= −−

0

~
0 2

1
1

1
1 ATT

K
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I
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In canonical form: 

qnq

qn
q

−

−↓
↓

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

22

1211 ~0

~~~
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Likewise,  ~ 1 BTB −=  and B is extracted from :GQ  

−

⇒ ∃ × =

↓⎡ ⎤
⇒ = = ⎢ ⎥↓ −⎣ ⎦

�

JJG

2 1 2

1 2
1 2

( ) so that 

0

                               

q m

q

n q

m

K B T K

K
B T T K   

Matrix C~  does not have any particular characteristic. 

In the new basis, the equations of state and measurement have the following 
canonical form: 

)(
0

~
)(~~0

~~
)(~ 1

22

1211 ttt uBx
A
AAx

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=�  

= +� � �1 2( ) [ ] ( ) ( )t t ty C C x D u  

This form corresponds to a partitioning of the state vector into two sub-vectors 
)(~),(~

21 tt xx  representing the controllable part and the non-controllable part of state 
)(~ tx . The equations developed from this partitioning are: 

)(~)(~~)(~~)(~
12121111 tttt uBxAxAx ++=�  controllable part (size q) 
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)(~~)(~
2222 tt xAx =�  non-controllable part (size n – q) 

EXAMPLE 2.7.– let us consider the system described by the equations: 

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�

1 0 0 0 1

0 0 1 0 0
( ) ( ) ( ) ( ) [0 0 1 0] ( )

1 0 0 1 1

0 0 0 0 0

t t u t y t tx x x  

Is this system controllable? 

1 1 1 1
0 1 1 1

rank 2
1 1 1 1
0 0 0 0

− + −⎡ ⎤
⎢ ⎥+ − +⎢ ⎥= =
⎢ ⎥− + −
⎢ ⎥
⎣ ⎦

G GQ Q  (columns (2), (3) and (4) are linked). 

= 1 2 1[ ]T T T T  linear combination of independent columns of GQ . 
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2T  is chosen in order to least disturb the initial state structure and in particular in 
order to maintain, for the new state variables, a significant physical nature. 
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In the new basis, we thus obtain the canonical form for the following 
controllability: 

)(
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0
0
1

)(~
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)(~ tutt
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[ ] )(~0101)( tty x=  

where we note the blocks of zeros characteristic for this form in and .A B� �   

2.4.4. Scalar representation of partially controllable systems  

From the canonical form described above, we can determine the transfer matrix 
of the system as done in section 2.3.2: 

−

−

⎡ ⎤− − ⎡ ⎤
= − + = +⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦
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1 2
22

( ) [ ] [ ]
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n q

p
H p p
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I A A B
C I A B D C C D

I A
 

By using the triangular nature per blocks of the matrix to reverse, we obtain: 

−

−
−

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

� �
� �

�
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11 12 1

1 2 1
22

[ ]
[ ]

00 [ ]

q

n q

p

p

I A M B
C C D

I A
 

which is a form where the calculation of matrix M12 is useless because it appears 
only in the final result: 

−= − +� � �1
1 11 1( ) [ ]qH p pC I A B D  

We note on this form that the degree in p of the transfer matrix is reduced a 
priori to q instead of n. Hence, the scalar response represents only the controllable 
part of the state. 
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2.5. Observability of systems 

2.5.1. General definitions 

A system is observable if the observation of measurement )(ty  during a finite 
period of time 0 1( , )t t  makes it possible to determine the state vector at instant 0t .  

A system is entirely or partially observable depending on whether we can build 
all or a part of state 0( )tx . 

2.5.2. Observability of linear and invariant systems 

Firstly, we will suppose that measurement )(ty  performed on the system is a 
scalar measurement and we will deal here with the following problem. 

Let us consider a free state system described by equation of state )()( tt xAx =�  
and for which we notice the scalar output ( ) ( ) (dim 1 )y t t n= = ×C x C . 

If 0x  is the initial state ),0()0(x 0 =t  how can we find state 0x  from the 
observation of )(ty  during the finite period of time 1[0, ]t ? We will answer this 
question by formulating output )(ty  according to 0x . 

We have: 

α
−

=
= =∑

1

0 0
0

( ) e ( )
n

t i
i

i

t tAx x A x  and thus: α
−

=
= =∑

1

0 0
0

( ) e ( )
n

t i
i

i

y t tA x CA x  

By forming the scalar products: 

∫ =>=<
1

0

)()()(),(
t

kkk zdttyttyt αα  

α α α
−

=

⎛ ⎞
⎜ ⎟< >=
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⎝ ⎠
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0
0 0
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k k i
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we obtain: 

α
−

=
=< >=∑

1

0
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( ), ( )
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i
k k ki

i

z t y t a CA x  

with: ∫=
1

0

)()(
t

ikki dttta αα  

and in a matrix form: 
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size: n × 1          n × n                   n × n  n × 1 

We can show that, by construction, matrix { }ija  is regular. Thus, a necessary and 
sufficient condition for the system to be observable (thus to be able to uniquely 
extract 0x  from the equation below) is that the observability matrix defined by: 

⎥
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2
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Q0

#
#

 (and of size nn ×  here) is of rank n and we obtain: 
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EXAMPLE 2.8.– let us consider a system represented by equations of state and 
measurement in companion form for the observation: 
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and [ ] )(10000)( tty x"= . 

The calculation of observability matrix: 

2

1n−
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leads to:
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0Q  

matrix of rank n by construction. The companion form for the observation represents 
entirely observable systems through the inputs. Like in the case of controllability, 
this result can be generalized to the multi-variable case for which observability 
matrix 0Q  is of size nnl × . 
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The observability test becomes: 

2

1

rank

          

n
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nl n
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2.5.3. Case of partially observable systems 

When matrix 0Q  is not of full rank, the system is not entirely controllable and 
only a part of the state vector is reconstructible from the observations. If rank 

nr <=0Q , we can show (as we did for the canonical form for controllability) that 
there is a basis of the state space where the system admits the following canonical 
representation: 
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However, the basis change matrix = �( ( ) ( ))t tT x T x  is obtained differently; we 
build 1−T  (and not T) into two blocks:  

−
−

−

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

1
11

1
2

( )

( )

T
T

T
 

The first block (T–1)1 is obtained by linear combinations of independent rows of 
matrix Q0 and completed by block −1

2( )T  so that the ensemble is a regular matrix. 
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Once this matrix 1−T is calculated, we determine the matrices in the new basis 
like we did above, for the canonical form for controllability: 

CTCBTBATTA === −− ~~~ 11  

The canonical form thus obtained entails a split of the state vector into two 
parties: 

– )(~
1 tx  of size r which represents the entirely observable part of ( );t�x   

– )(~
2 tx  of size rn − which represents the non-observable part of ( ).tx�  

As shown in the equations developed below (by ignoring the term of control), 
)(~~)( 11 tt xCy = : 

– )(~~)(~
1111 tt xAx =�  entirely observable part (size r); 

– )(~~)(~~)(~
2221212 ttt xAxAx +=�  non-observable part (size n – r). 

2.5.4. Case of partially controllable and partially observable systems 

If rank nq <=GQ  and rank nr <=0Q , we show that there is a basis of the 
state space where the system admits the following minimum canonical 
representation: 

– )(~
1 tx  represents the controllable , non-observable part of ( );t�x   

– )(~
2 tx  represents the controllable, observable part of ( );t�x   

– )(~
3 tx  represents the non-controllable, non-observable part of ( );tx�  

– )(~
4 tx  represents the non-controllable, observable part of ( ).tx�   
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Chapter 3 

Discrete-Time Systems 

3.1. Introduction  

Generally, a signal is a function (or distribution) with support in the time space 
T, and with value in the vector space E, which is defined on R. Depending on 
whether we have a continuous-time signal or a discrete-time signal, the time space 
can be identified with the set of real numbers R or with the set of integers of Z. A 
discrete system is a system which transforms a discrete signal, noted by u, into a 
discrete signal noted by y. The class of systems studied in this chapter is the class of 
time-invariant and linear discrete (DLTI) systems. Such systems can be described by 
the recurrent equations [3.1] or [3.2]1: 

+ = +⎧
⎨ = +⎩

( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k

y k Cx k Du k
 [3.1] 

+ − = + −0( ) ( ) ( ) ( )n ny k a y k n b u k b u k n  [3.2] 

where signals u, x  and y  are sequences with support in Z  ( Ζ∈k ) and with value 
in mR , nR  and pR  respectively. They represent the input, the state and the output 
of the system (see the notations used in Chapters 2 and 3). ii baDCBA ,,,,,  are 
appropriate size matrices with coefficients in R:  

                                   
Chapter written by Philippe CHEVREL.   
1 We can show the equivalence of these two types of representations (see Chapter 2). 
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pxm
i

pxp
i

pxmpxnnxmnxn RbRaRDRCRBRA ∈∈∈∈∈∈ ,,,,,  [3.3]   

If equations [3.1] and [3.2] can represent intrinsically discrete systems, such as a 
µ-processor or certain economic systems, they are, most often, the result of 
discretization of continuous processes. In fact, let us consider the block diagram of 
an automated process, through a computer control (see Figure 3.1). Seen from the 
computer, the process to control, which is supplied with its upstream digital-analog 
and downstream analog-digital converters (ADC), is a discrete system that converts 
the discrete signal u into a discrete signal y. This explains the importance of the 
discrete system theory and its development, which is parallel to the development of 
digital µ-computers.  

 

Figure 3.1. Computer control 

This chapter consists of three distinct parts. The analysis and manipulation of 
signals and discrete-time systems are presented in sections 3.2 and 3.3. The 
discretization of continuous-time systems and certain concepts of the sampling 
theory are dealt with in section 3.4. 
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3.2. Discrete signals: analysis and manipulation 

3.2.1. Representation of a discrete signal 

A discrete-time signal2 is a function (.)x  with support in T = Z and with value in 
NnRE ∈=  ,n . 

We will talk of a scalar signal if n = 1, of a vector signal in the contrary case and 
of a causal signal if −∈∀= Zkkx ,0)( . Only causal signals will be considered in 
what follows. There are several ways to describe them: either explicitly, through an 
analytic expression (or by tabulation), like in the case of elementary signals defined 
by equations [3.4] to [3.6], or, implicitly, as a solution of a recurrent equation (see 
equation [3.7]): 

Discrete impulse3:                           
1 if 0

( )
0 if

k
k

k Z
δ ∗

=⎧⎪= ⎨
∈⎪⎩

 [3.4] 

Unit-step function:                          
1 if

( )
0 if

k Z
k

k Z
Γ

+

−∗

⎧ ∈⎪= ⎨
∈⎪⎩

 [3.5] 

Geometrical sequence:                   
if

g(k)
0   if

ka k Z

k Z

+∗

−∗

⎧ ∈⎪= ⎨
∈⎪⎩

 [3.6] 

It will be easily verified that the solution of equation [3.7] is the geometrical 
sequence [3.6] previously defined. Hence, the geometrical sequence has, for 
discrete-time signals, a role similar to the role of the exponential function for 
continuous-time signals.  

First order recurrent equation: 
⎩
⎨
⎧

=
=+

1)0(
)()1(

x
kaxkx

 [3.7] 

                                   
2 Unlike a continuous-time signal, which is a function with real number support (T = R). 
3 We note that if the continuous-time impulse or Dirac impulse is defined only in the 
distribution sense, it goes differently for the discrete impulse.  
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3.2.2. Delay and lead operators 

The concept of an operator is interesting because it enables a compact 
formulation of the description of signals and systems. The manipulation of 
difference equations especially leads back to a purely algebraic problem. 

 
We will call “operator” the formal tool that makes it possible to univocally 

associate with any signal ( )x ⋅  with support in T another signal ( )y ⋅ , itself with 
support in T. As an example we can mention the “lead” operator, noted by q 
[AST 84]. Defined by equation [3.8], it has a role similar to that of the “derived” 
operator for continuous-time signals. The delay operator is noted by q–1 for obvious 
reasons (identity operator: 11 q q∆ −= ).  

 

)1(
:

)(
:

+→
→

⇔
→
→

kxk
ETqx

kxk
ETx

    [3.8] 
)1(

:
)(

: 1

−→
→

⇔
→
→ −

kxk
ETxq

kxk
ETx

 

Table 3.1. Backwards-forwards shift operators 

Any operator f is called linear if and only if it converts the entire sequence 
( ) ( )kxkx 21 λ+ , R∈λ  into the sequence ( ) ( )kyky 21 λ+  with 1 1( )y f x∆=  and 

2 2( )y f x∆= . 

It is called stationary if it converts any entire delayed or advanced sequence 
)( rkx − , Zr ∈  into the sequence )( rky − , with  ( )xfy ∆=  (formally, 

)()( xfqxqf rr −− = ). 

The gain of the operator is induced by the standard used in the space of the 
signals considered (for example, L2 or L∞). The gain of the lead operator is unitary. 

These definitions will be useful in section 3.3. Except for the lead operator, 

operator 
T
q

T

11 −−
=∆δ  and operator )1()1( 1 −+= −∆

qqw  will be used sometimes. 
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3.2.3. z-transform 

3.2.3.1. Definition  

The z-transform represents one of the main tools for the analysis of signals and 
discrete systems. It is the discrete-time counterpart of the Laplace transform. The z-
transform of the sequence { ( )}x k , noted by )(zX , is the bound, when it exists, of 

the sequence: ( )∑
∞

∞

−∆=
-

)( kzkxzX  where z is a variable belonging to the complex 

plan. 

For a causal signal, the z-transform is given by [3.9] and we can define the 
convergence radius R of the sequence (the sequence is assumed to be entirely 
convergent for R>z ). 

∆ ∆
∞

−= =∑ 1

0

( ) { ( )} ( )X z x k x k zZ      R>z  [3.9] 

)(zX  is the function that generates the numeric sequence { ( )}x k . We will easily 
prove the results of Table 3.2. 

 
)(kx  )(zX  R )(kx  )(zX  R 

)(kδ  1 ∞  )(ka k Γ  
az

z
−

 a  

)(kΓ  
1−z

z  1 ω Γsin( ) ( )ka k k  
ω
ω− +2 2

sin

(2 cos )

z

z a z a
 a  

)(kk Γ  
2)1( −z

z  1 ω Γcos( ) ( )ka k k  
ω

ω
−

− +

2

2 2

cos

(2 cos )

z z

z a z a
 a  

Table 3.2. Table of transforms 

 3.2.3.2. Inverse transform 

The inverse transform of )(zX , which is a rational fraction in z, can be obtained 
for the simple forms by simply reading through the table. In more complicated 
cases, a previous decomposition into simple elements is necessary. We can also 
calculate the sequence development of )(zX  by polynomial division according to 
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the decreasing powers of 1−z  or apply the method of deviations, starting from the 
definition of the inverse transform: 

∫== −

C

k dzzzX
j

zXZkx )(
2
1))(()( 1
π

 [3.10] 

where C  is a circle centered on 0  including the poles of ).(zX  

 3.2.3.3. Properties of the z-transform4 

We will also show, with no difficulties (as an exercise), the various properties of 
the z-transform that can be found below. The convergence rays of the different 
sequences are mentioned. We note by xR  the convergence ray of the sequence 
associated with the causal sequence )(kx . 

P1: z-transform is linear ( ),(max yxbyax RRR = + ) 

+ = + ∀ ∈({ ( ) ( )}) ( ) ( ), ,Z ax k by k aX z bY z a b R  

P2: delay theorem ( xxq r RR = − ) 

+−− ∈∀= ZrzXzkxqZ rr ),()})({(  

P3: lead theorem ( xxqn RR = )  

+
−

− ∈∀
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑ ZnzkxzXzkxqZ

n
knn ,)()()})({(

1

0

 

In particular:  )0()()})1({( xzzXkxZ −=+  
  
P4: initial value theorem 

If )(kx  has )(zX  as a transform and if )(lim zX
z ∞→

 exists, then:  

)(lim)0( zXx
z ∞→

=      

                                   
4 Note: the various manipulated signals are assumed to be causal. 
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P5: final value theorem 

If )(lim kx
k ∞→

 exists, then: )()1(lim)(lim 1
1

zXzkx
zk

−
→∞→

−=  

P6: discrete convolution theorem ( ),(
2121

max xxxx RRR = ∗ ) 

Let us consider two causal signals 1( )x k  and 2 ( )x k  and their convolution integral 

)()()()()( 2
0

12121 kxknxkxknxnxx
n

kk
−=−=∗ ∑∑

=

+∞

−∞=
. We have: 

∗ =1 2 1 2({ ( )}) ( ) ( )Z x x n X z X z  

P7: multiplication by k ( xkx RR = ) 

= − ( )
({ ( )})

dX z
Z kx k z

dz
 

P8: multiplication by ka  ( xxa ak RR = ) 

)()})({( 1zaXkxaZ k −=  

 3.2.3.4. Relations between the Fourier-Laplace transforms and the z-transform  

The aim of this section is not to describe in detail the theory pertaining to the 
Fourier transform. More information on this theory can be found in [ROU 92]. Only 
the definitions are mentioned here, that enable us to make the comparison between 
the various transforms. 
 

 Continuous signal: xa(t) Discrete signal: x(k) 

Fourier transform ∫
∞

∞−

Ω−=Ω dtetxX tj
aF )()( ∑

+∞

−∞=

−=
k

kj
F ekxX ωω )()(  

Laplace transform/ 
z-transform 

Cp

dtetxpX pt
aa

∈

= ∫
∞

∞−

−)()(  
Cz

zkxzX
k

k

∈

= ∑
+∞

−∞=

−)()(  

Table 3.3. Synthesis of the various transforms 
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 Hence, if we suppose that )(zX  exists for ωjez = , the signal discrete Fourier 
transform )(kx  is given by )()( ωω j

F eXX = , whereas in the continuous case, ω  is 
a homogenous impulse at a time inverse, the discrete impulse dω  (also called 
reduced impulse) is adimensional. The relations between the two transforms will 
become more obvious in section 3.4 where the discrete signal is obtained through 
the sampling of the continuous signal. 

3.3. Discrete systems (DLTI) 

A discrete system is a system that converts an incoming data sequence )(ku  into 
an outgoing sequence )(ky . Formally, we can assign an operator f that transforms 
the signal u into a signal y ( ( ) ( ) ( ) ,y k   f u  k  k Z= ∀ ∈ ). The system is called linear 
if the operator assigned is linear. It is stationary or time-invariant if f is stationary 
(see section 3.2). It is causal if the output at instant nk =  depends only on the 
inputs at previous instants nk ≤ . It is called BIBO-stable if for any bound-input 
corresponds a bound-output and this, irrespective of the initial conditions. Formally: 
( ∞<⇒∞< ))((sup)(sup kfuku

kk
). In this chapter we will consider only time-

invariant linear discrete systems. Different types of representations can be 
envisaged.   

3.3.1. External representation 

The representation of a system with the help of relations between its only inputs 
and outputs is called external. 

 3.3.1.1. Systems defined by a difference equation 

Discrete systems can be described by difference equations, which, for a DLTI 
system, have the form: 

)()()()( 0 nkubkubnkyaky nn −+=−+  [3.11] 

We will verify, without difficulty, that such a system is linear and time-invariant 
(see the definition below). The coefficient in y(k) is chosen as unitary in order to 
ensure for the system the property of causality (only the past and present inputs 
affect the output at instant k). The order of the system is the order of the difference 
equation, i.e. the number of past output samples necessary for the calculation of the 
present output sample. From the initial conditions − −( 1), , ( )y y n , it is easy to 
recursively calculate the output of the system at instant k. 
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 3.3.1.2. Representation using the impulse response 

Any signal ⋅( )u  can be decomposed into a sum of impulses suitably weighted and 
shifted: 

∑
∞

−∞=
−=

i
ikiuku )()()( δ  

On the other hand, let ⋅( )h  be the signal that represents the impulse response of 
the system (formally: δ= ( )h f ). The response of the system to signal δiq−  is hq i−  
due to the property of stationarity. Hence, linearity leads to the following relation: 

∑∑
∞

−∞=

∞

−∞=
=−=−=

ii
kuhikuihikhiuky )(*)()()()()(  [3.12] 

The output of the system is expressed thus as the convolution integral of the 
impulse response h and of the input signal u. We can easily show that the system is 
causal if and only if 0,0)( <∀= kkh . In addition, it is BIBO-stable if and only if 

∑
∞

=
∞<

0
)(

i
ih . 

3.3.2. Internal representation 

In section 3.3.1.1 we saw that a difference equation of order n would require n 
initial conditions in order to be resolved. In other words, these initial conditions 
characterize the initial state of the system. In general, the instantaneous state 

∈( ) nx k R  sums up the past of the system and makes it possible to predict its future. 
From the point of view of simulation, the size of ( )x k  is also the number of variables 
to memorize for each iteration. Based on the recurrent equation [3.11], the state vector 
can be constituted from the past input and output samples. For example, let us define 
the ith component of ( )x k , ( )ix k , through the relation: 

=
= − + − − − + −∑( ) [ ( 1) ( 1)]

n

i j j
j i

x k b u k j i a y k j i  [3.13] 
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Then we verify that the state vector satisfies the recurrent relation of first order 
[3.14a] called equation of state and that the system output is obtained from the 
observation equation [3.14b]: 

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ = + ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

11 1 0 0

0 0
( 1) ( ) ( )

0 0 1

0 0 nn

BA

ba

x k x k u k

ba

 [3.14a] 

= + 0( ) (1 0 0) ( ) ( )
DC

y k x k b u k  [3.14b] 

We note that the iterative calculation of y(k) requires only the initial state 
( ) 00 xx ∆=  (obtained according to [3.13] from C.I. ( ) ( ){ }1 , ,y y n− − ) and the past 

input samples { }( ), 0u i i k≤ < . As in the continuous case, this state representation5 
is defined only for a basis change and the choice of its parameterization is not 
without incidence on the number of calculations to perform. In addition, the 
characterization of structural properties introduced in the context of continuous-time 
systems (see Chapters 2 and 4), such as controllability or observability, are valid 
here. 

The evolution of the system output according to the input applied and initial 
conditions is simply obtained by solving [3.14]: 

( )
( )

( )ky

k

i

ik

ky

k

f
l

kDuiBuCAxCAky ∑
−

=

−− ++=
1

0

1
0 )()(  [3.15] 

( )ly k  and ( )fy k  designate respectively the free response and the forced response of 
the system. Unlike the continuous case, the solution involves a sum, and not an 
integration, of powers of A and not a matrix exponential function. Each component 

( )ix k  of the free response can be expressed as a linear combination of terms, such as 
ρ λ( ) k

i ik , where ρ ⋅( )i  is a polynomial of an order equal to 1−in , where in is the 
multiplicity order of iλ  and ith the eigenvalue of A. 

                                   
5 A canonical form called controllable companion. 



Discrete-Time Systems     91 

 Based on the previous definitions, the system is necessarily BIBO-stable if the 
spectral ray of A, )(Aρ , is lower than the unit (i.e. all values of A are included in the 
unit disc). The other way round is true only if the triplet (A,B,C) is controllable and 
observable, i.e. if the realization considered is minimal. If )(Aρ  is strictly lower 
than 1, the system is called asymptotically stable, i.e. it verifies the following 
property: 

( )
→+∞

⋅ ≡ ⇒ = ∀ 0( ) 0 lim 0,
k

u x k x  

Another way to verify that this property is satisfied is to use Lyapunov’s theory 
for the discrete-time systems. The next result is close to the result for continuous-
time systems in Chapter 2. 

THEOREM 3.1.– the system described by the recurrence + =( 1) ( ),x k Ax k  
= 0(0)x x  is asymptotically stable if and only if: 

0>=∃ TQQ  and 0>=∃ TPP  solution of equation6: QPPAAT =−   

3.3.3. Representation in terms of operator 

The description and manipulation of systems as well as passing from one type of 
representation to another can be standardized in a compact manner by using the 
concept of operator introduced in section 3.2.2. 

Let us suppose, in order to simplify, that signals u and y as causal. Hence, we 
will be interested only in the evolution of the system starting from zero initial 
conditions. In this case we can identify the manipulations on the systems to 
operations in the body of rational fractions whose variable is an operator. The lead 
operator q and the mutual operator q–1 are natural and hence very dispersed. Starting, 
successively, from representations [3.11], [3.12] and [3.15], we obtain expressions 
[3.16], [3.17] and [3.18] of operator )(qH  which are characteristic for system 

)()()( kuqHky = ): 

n
nn

n
n

n
n

n
n

aqaq
bqb

qaa
qbbqH

+++
++=

+++
++= −−

−

1
1

0

1

0

1
)(  [3.16] 

                                   
6 Called a discrete-time Lyupanov equation. N.B.: QQ ⇔> 0  is defined positive. 
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∑∑
+∞

=

−+∞

−∞=

− ==
0

)()()(
i

i

i

i qihqihqH  [3.17] 

+∞
− − −

=
= − + = +∑1 1

1

( ) ( ) i i

i

H q C qI A B D CA Bq D  [3.18] 7 

The relation between the various representations is thus clarified: 

BCAkhCBbbahDbh k 1
1010 )(,)1(,)0( −==+−===  [3.19] 

The use of this formalism makes it possible to reduce the serialization or 
parallelization of two systems to an algebraic manipulation on the associated 
operators. This property is illustrated in Figure 3.2. In general, we can define an 
algebra of diagrams which makes it possible to reduce the complexity of a defined 
system from interconnected sub-systems. 

  

Figure 3.2. Interconnected systems 

                                   
7 The system is causal. 
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NOTE 3.1.– acknowledging the initial conditions, which is natural in the state 
formalism and more suitable to the requirements of the control engineer, makes 
certain algebraic manipulations illicit. This point is not detailed here but for further 
details see [BOU 94, QUA 99]. 

THEOREM 3.2.– a rational SLDI, i.e. that can be described by [3.16], is BIBO-
stable if and only if one of the following propositions is verified: 

– the poles of the reduced form of H(q) are in modules strictly less than 1; 

– the sequence h(k) is completely convergent; 

– the state matrix A of any minimal realization of H(q) has all its values strictly 
less than 1 in module. 

These propositions can be extended to the case of a multi-input/multi-output 
DLTI system (see [CHE 99]). 

NOTE 3.2.– the Jury criterion (1962) [JUR 64] makes it possible to obtain the 
stability of the system [3.16] without explicitly calculating the poles of H(q), by 
simple examination of coefficients naaa ,,, 21  with the help of Table 3.4. 

0 1 2 2 2
0 1 0 1

1 0 0 1
0 0

0 1
0

1 2
0

0 1
0 1 1

1
0

with:
n

n n n
n n

k n n k
n n k

k n n k
n k

a a a a
a a a a a aa a a b b

a ab b
a a a ab b b

ac c
b b b bc c

b

−
−

−
− −

− − −
−

− −
= =

−
=

−
=

 

Table 3.4. Jury table 

The first row is the simple copy of coefficients of naaa ,,, 21 , the second row 
reiterates these coefficients inversely, the third row is obtained from the first two by 
calculating in turns the determinant formed by columns 1 and n, 2 and n, etc. (see 
expression of kb ), the fourth row reiterates the coefficients of the third row in 
inverse order, etc. The system is stable if and only if the first coefficients of the odd 
rows of the table ( )0 0 0, , ,  etc.a b c  are all strictly positive.  
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NOTE 3.3.– the class of rational systems that can be described by [3.16] or [3.18] is 
a sub-class of DLTI systems. To be certain of this, let us consider the system 
characterized by the irrational transfer: −= + 1( ) ln(1 )H q q . This DLTI system, 

whose impulse response is zero in 0 and such that = 1( )h k k  for +∈ Zk  cannot be 

descibed by [3.16] or [3.18]. 

The use of lead and delay operators is not universal. Certain motivations that will 
be mentioned in section 3.4 will lead to sometimes prefer other operators [GEV 93, 
MID 90]. 

 Use of operator τδ  

Operator 
τ

δτ
1

ˆ
−

=
q

, R∈τ  [MID 90] represents an interesting alternative to the 

lead operator. It is easy to pass from parameterized transfer ( )H q  by coefficients 
∈{ , , {1, }}i ia b i n  to parameterized transfer δ δ( )H  by coefficients 

δ δ ∈{ , , {1, }}
i i

a b i n . Then we can work exclusively with this operator and 

obtain, by analogy with [3.14], a realization in the state space of the form: 

δδ

δ δ

τ

δ δ

δ

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

1 1
1 0 0

0 0
( ) ( ) ( )

0 0 1

0 0
n n

BA

a b

x k x k u k

a b

 [3.20a] 

δ δ

δ= +
0

( ) (1 0 0) ( ) ( )

C D

y k x k b u k  [3.20b] 

However, the simulation of this system requires a supplementary stage 
consisting of calculating at each iteration τ δ+ = +( 1) ( ) ( )x k x k x k . Finally, from the 
point of view of simulation, the parameterization of the system according to 
matrices δδδδ DCBA ,,,  differs from the usual parameterization only by the 
addition of the intermediary variable )(kxδ  in the calculations. We easily 
reciprocally pass to the representation in q by writing: 

( ) ( ) ( ) ( )
( ) ( ) ( )

qx k I A x k B u k
y k C x k D u k

δ δ

δ δ

τ τ⎧ = + +⎪
⎨ = +⎪⎩

 [3.21] 
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Hence, we have the equivalences: 

( )
δ

δτ
CC

AIA
↔

+↔  
δ

δτ
DD

BB
↔
↔  [3.22] 

( ) ∑
+∞

=

−−−∆
+=+−=↔

1

11)()(
i

ii
q DBACDBAICHqH δδδδδδδδδ δδδ  

 Combined use of operators γ  and τδ   

We use, this time together, operator τδ , which was previously defined, and 

operator 
2

1+
=

qγ  in order to describe the recurrence: 

( ) ( ) ( )
( ) ( ) ( )

w w

w w

x k A x k B u k
y k C x k D u k

τδ γ⎧ = +⎪
⎨ = +⎪⎩

 [3.23] 

where matrices8 wwww DCBA ,,,  are linked to matrices DCBA ,,,  of the q 
representation based on equation [3.24]. We note that the condition of reversibility 
of matrix ( )IA +  is required and that this condition is always satisfied if the 
discretized system is the result of the discretization of a continuous system (see 
section 3.4.3). 
 

τ
−= − +

=

12
( ) ( )w

w

A A I A I

C C

 τ
−= +

=

12
( )w

w

B A I B

D D

 [3.24] 

 
Representations [3.20] and [3.23] have certain advantages over the q 

representation that will be presented in section 3.4.6. We should underline from now 
that the “ τδγ − ” representation makes it possible to unify many results of the 
theory of systems traditionally obtained through different paths, depending on 
whether we deal with continuous or discrete-time systems [RAB 00]. In particular, 
the theorem of stability (see Theorem 3.1) is expressed as in continuous-time. 

THEOREM 3.3.– the system described by the recurrence 
τδ γ γ= = 0( ) ( ), (0)wx k A x k x z  is asymptotically stable if and only if 0>=∃ TQQ  

and 0>=∃ TPP  solution of equation9: QPAPA w
T
w −=+ . 

                                   
8 Index w  is used here in order to establish the relation with the W transform [FRA 92] and 
the operator: τ τγ δ−= 1w  [RAB 00]. 
9 We recognize here a Lyapunov continuous-time equation.  
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3.3.4. Transfer function and frequency response 

Let us consider a stable system defined through its impulse response (.)h  or by 

operator ∑
+∞

=

−=
0

)()(
i

iqihqH . We assume it is excited through the sinusoidal input of 

reduced impulse dω : djkeku ω=)( . 

The output is obtained by applying the theorem of discrete convolution: 

ω ω ω ϕ ω
ω

ω

κ ω
+∞ +∞

− − +

= =

⎡ ⎤
⎢ ⎥= = ∆
⎢ ⎥⎣ ⎦

∑ ∑( ) ( ( ))

0 0

( ) ( ) ( ) ( )

( )

d d d d

d

j k l jl j k
jk d d

l l

y k h l e h l e e e

jH e

 

Hence, the output of a DLTI system excited by a sinusoidal input of impulse dω  
is a sinusoidal signal of the same impulse. It is amplified by factor 

)()( dj
d eH ω=ωκ  and phase shifted of angle )(arg)( dj

d eH ω=ωϕ . Very naturally, 

its static gain10 stag  is obtained for 0=dω  or in the same way 1=z : 

)1()0( Hgsta =κ= . We note that )( djeH ω  is the discrete Fourier transform of the 
impulse response of the system and it can be obtained (see Table 3.3) from its z-
transform, )(zH  for .djez ω=  We will often talk of transfer function in order to 
arbitrarily designate )(zH  or )(qH . However, it is important to keep in mind that 

)(qH  is an operator, whereas )(zH  is a complex number. 

The drawing of module and of phase of )( djeH ω  according to dω  represents the 
Bode diagram of discrete systems. For the discrete case, there are no simple 
asymptotic drawings, which largely limits its use from the point of view of the 
design. In addition, the periodicity of function dje ω , of period π2 , induces that of 

frequency response )( djeH ω . This property should not seem mysterious. It simply 

results from the fact that ( 2 ){ ( ) , 1,2, }dj l k
lu k e lω π+= =  represent in reality 

different ways of writing the same signal. We even speak of “alias” in this case. The 
response of the system to each of these aliases is thus identical. In addition, it is 

                                   

10 Ratio between input and output in static state ( Ζ∈∀==
=ω

ω keku
d

djk ,1)(
0

). 
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easily proven that module )()( dj
d eH ω=ωκ  and phase )(arg)( dj

d eH ω=ωϕ  are 

respectively even and odd functions of ω . The place of the Bode diagram is to draw 
(by using the PC in practice) only on the interval π[0, ] . However, an approximate 
drawing can be obtained by applying the rules of asymptotic drawing presented in 
the context of continuous-time systems (see Chapter 1), by using a rational 

approximation of ωjez = . We will use for example the W transform, 
w
w

−
+↔

1
1z , 

and we will draw 
dj

H
ω=

⎟
⎠
⎞

⎜
⎝
⎛

−
+

ww
w

1
1 in the place and instead of ).( djeH ω  

 

Figure 3.3. Bode diagram 

Let us consider the case of a first order system given by its transfer function 

1,1)( <
−
−= a

az
azH . The bandwidth of the Bode diagram drawn in Figure 3.3 is 

more important if a is “small”. This result can be linked to the time response of this 
same system studied in the next section. 
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In addition, the frequency response from the δ  transfers can be written:  

ω ω

δ δκ ω ϕ ω
τ τ

⎛ ⎞ ⎛ ⎞− −= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 1
( ) and ( ) arg

d dj j

d
e e

H H .  

3.3.5. Time response of basic systems 

A DLTI system of an arbitrarily high order can be decomposed into serialization 
or parallelization of first and second order systems (see Chapter 1). Hence, it is 
interesting to outline the characteristics of these two basic systems. 

 3.3.5.1. First order system 

Let us consider the first order system described by: )()( ku
aq

bky
−

= . We can 

associate with it: 

– the recurrent equation: )()()1( kbukayky +=+ ; 

– the impulse response: ,)( 1 Ν∈= ∗− kbakh k and 0)0( =h ; 

– the unit-step response11: Ν∈−
−

= ka
a

bky k ),1(
1

)( . 

 3.3.5.2. Second order system 

Let us consider the second order system described by: )()(

)(
21

2
21 ku

aqaq
bqbky

qH

++
+= .  

We can associate with it the recurrent equation:  

)()1()()1()2( 2121 kubkubkyakyaky +++−+−=+  

                                   
11 It can be obtained either from the recurrent equation or by inverse z-transform of: 

)()( z
az

bzY Γ
−

= , with 
1

)(
−

=Γ
z

zz . 
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In addition, if we note by 1dp  and by 2dp  the poles and 1dz  the zero of )(qH , 
we have, if the poles are conjugated complex numbers dj

d ep ωρ=1  and 
dj

d ep ωρ −=1 , the unit-step response: 

( )ϕωρα ++= kHky d
k sin)1()(  

with: 
2
1

1cos2
cos2

sin 2

2
11

2
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
+−=

ωρρ
ωρρ

ωρ
α dd zzb .  

More generally, and according to the situation of the poles, there are various 
types of unit-step responses (see Figure 3.4), which are stable or unstable depending 
on whether the poles belong or not to the unit disc. 

 

Figure 3.4. Relation between the poles and the second order unit-step response  

3.4. Discretization of continuous-time systems 

The diagram in Figure 3.1, process excluded, represents a typical chain of digital 
processing of the signal that traditionally proceeds in several stages. 

The ADC periodically retrieves the values of the analog signal )(tya  at the 
instants kTtk = . It returns the discrete signal )(ky  consisting of successive samples 
of )(tya . This sampling operation can be standardized by the identity: 

)()( kTyky a= . In reality, the ADC also carries out the digitization of the signal 
(the digitized signal can have only a finite number of values). We will not discuss in 
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what follows these quantification errors for simplicity reasons and we will note by 

T
E  the sampling operator: )( ayEy

T
= . 

The computer is the processing unit that obtains signal )(ku  from signals )(ky  
and )(kr . The system is discrete. 

The ADC converts the discrete time signal )(ku  into the analog signal )(tua . 
Several types of blockers can be considered but currently the most widespread is the 
0 order blocker, to which we will associate operator 0B , that maintains constant the 
sample value for a sampling period (see Figure 3.1): τ+ =( ) ( ),au kT u k  ∀ ∈ ,k Z  

τ∀ ∈[0, [T . 

An alternative that will not be considered here consists of using a so-called “first 
order” blocker, operating a linear extrapolation of the input signal from the 2 last 
samples: 

τ τ τ− −+ = + ∀ ∈ ∀ ∈( ) ( 1)
( ) ( ) , , [0, [a

u k u k
u kT u k k Z T

T
 [3.25] 

Another point of view is to consider the discretized process of input ( )u k  and 
output ( )y k . It is a discrete system whose model can be obtained from the 
continuous-time model. The way it is obtained as well as its properties are at the 
heart of this section. The study of conditions under which we can reconstitute an 
analog signal from its samples (sampling theory) as well as the analysis of problems 
specific to the computerized control will not be discussed here. However, for more 
information, see [PIC 77, ROU 82]. 

The ADC is supposed to retrieve samples periodically. We note by T the 
sampling period. We also consider that ADC and DAC are synchronized. 

3.4.1. Discretization of analog signals 

We have previously defined the sampling operation by ( )axEx
T

=  by making 
the continuous-time signal )(txa  correspond to the discrete-time signal )(kx . We 
can define the Laplace transform of )(txa  and the z-transform of )(kx  and pass 
directly from the first one to the second one due to Table 3.5 and operator Z: 

−

→ → →
1

( ) ( ) ( ) ( )
TEL Z

a aX p x t x k X z

Z

 [3.26] 
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The inverse operation is possible only by issuing hypotheses12 on the original 
signal. Otherwise, the relation is not bijective and several analog signals can lead to 
the same discrete signal. In this case we talk of alias ( kdωsin  and kd )2sin( πω +  
are two aliases of a same signal). 

 

)(pXa  0),( ≥ttxa
)()( kTxkx a=

0≥k  
)(zX  

p
1  )(taΓ  )(kΓ  1−z

z  

α+p
1  te α−  kTe α−  Tez

z
α−−

 

22)( ω+α+
ω

p
 

α ω− sinte t

 

α ω− sin
k

kTe kT

dω

 
T

d
T

d
T

ezez
ze

αα

α

ω
ω

22 cos2
sin

−−

−

+−
 

22)( ω+α+
α+

p

p

 

α ω− coste t

 

α ω− cos
k

kTe kT

dω

 
T

d
T

d
T

ezez

ezz
α−α−

α−

+ω−

ω−
22 cos2

)cos(
 

Table 3.5. Table of transforms 

3.4.2. Transfer function of the discretized system 

Let )(Σ  be the continuous system defined by transfer )(sH  where s is the 
derivation operator. Let )( dΣ  be the discrete system obtained from )(Σ  by adding a 
downstream sampler and an upstream 0 order blocker, like in Figure 3.1 (if )(Σ  
designates the continuous process and )( dΣ  the discretized process). If the two 
converters are synchronized and at a pace equal to the sampling period T, we obtain 
for )( dΣ  the transfer 0)()( BsHEqH TT = . We obtain without difficulty13, from 
the relation )()()( kuqHky T= , the following relation: 

− ⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

1 ( )
( ) ( ) ( ),  with: ( ) (1 )T T

H p
Y z H z U z H z z

p
Z  [3.27] 

                                   
12 Shannon condition. 
13 At input we apply a discrete impulse which will then successively undergo the various 
transformations, δ⋅ = ⋅0( ) ( ( ) )( )Th E H s B , then we obtain ( )TH z  from the z-transform of 
this impulse response. 
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Due to this relation and Table 3.5, we will be able to easily obtain the transfer 
function of the discretized system and, consequently, its frequency response. It is 
also shown (see next section) that if cp  is a pole of the continuous system, then 

cTp
d ep = , whereas the poles of the discretized system ={ , 1, }dip i n  are 

obtained from the poles of the continuous system ={ , 1, }cip i n  using the relation: 

niep ciTp
di ,1=∀=  [3.28] 

Consequently, the stability of the continuous system <(Re ( ) 0)cip  leads to the 
stability of the discretized system )1( <dip . 

3.4.3. State representation of the discretized system 

Let us consider this time the continuous system Σ( )  which is described by the 
state representation: 

= +⎧
⎨ = +⎩

( ) ( ) ( )

( ) ( ) ( )
a a a

a a a

x t A x t Bu t

y t Cx t Du t
 [3.29] 

Let )(ku  be the input sequence of the discretized model. It is transformed into 
the constant analog signal )(tua  fragmented by the 0 order blocker before 
“attacking” the continuous system. We try to express the relation between )(ku  and 
the sampled output and state vectors )()( kTxkx a=  and )()( kTyky a= . We have, 
between the sampling instants kTtk =  and + = +1 ( 1) ,kt k T  )()( kutua =  and 
consequently 0)( =tua . Equation [3.29] is then rewritten between these two 
instants: 
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 [3.30] 
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Based on the solution of this differential equation, we obtain: 

⎛ ⎞
⎜ ⎟+ ⎝ ⎠

+

⎧
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎪⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎨
⎪ ⎛ ⎞

=⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

0

0 01

1

( ) ( ) ( )

( ) ( ) ( )0

( )
( ) ( )

( )

A
T

a k a k a kT T

a k a k a k

a k
a k

a k

x t x t x tA B
e

u t u t u tI

x t
y t C D

u t

 [3.31] 

Finally, we can associate the state representation with the discretized system: 

⎧
⎪ = = + Ψ⎪+ = +⎧ ⎪ = Ψ⎨ ⎨= +⎩ ⎪
⎪Ψ = + + +⎪⎩

2 2

( 1) ( ) ( )
with:

( ) ( ) ( )

2! 3!

AT
T

T T
T

A e I A T
x k A x k B u k

B B T
y k Cx k Du k

AT A T
I

 [3.32]14 

We obviously have, for ,)()( 1 DBAsICsH +−= −  the transfer of the discrete 
system given by DBAqICqH TTT +−= −1)()(  and we find again relation [3.28] 
because the poles of )( pH  and )(zHT  are also the eigenvalues of matrices A and 

,TA if we suppose the minimal realizations. 

3.4.4. Frequency responses of the continuous and discrete system 

The frequency responses of the continuous system and its discretization are 
given by )( ωjH  and HT(ejωT). We can also mention here that if the impulse ω  is 
expressed in rad/TU15, the discrete impulse ω ω=d T  is without size. The two 
frequency responses are very similar in low frequency, i.e. if πω <<T . They are 
necessarily different in high frequency, since the frequency response of the 
discretized system is periodic, contrary to the one of the continuous system. 

                                   

14 If A is non-singular, we also have BIeAB AT
T )(1 −= − . 

15 TU: Time Unit. 
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Figure 3.5. Bode diagram of the continuous system and its discretization 

3.4.5. The problem of sub-sampling 

Let us consider the case of a “standardized” pendulum subjected to a torque u. In 

the absence of friction, it will be controlled by equation u
dt
d =+θθ

2

2
. 

If we choose ⎥⎦
⎤

⎢⎣
⎡=

dt
dxT θθ ,  as state vector, we obtain the state representation: 

⎛ ⎞ ⎛ ⎞⎧ = +⎜ ⎟ ⎜ ⎟⎪ −⎝ ⎠ ⎝ ⎠⎨
⎪ =⎩

0 1 0

1 0 1

(1   0)

x x u

y

. We easily verify that this system is controllable and 

observable. The discretized system at time T is controlled by: 

+
⎧ −⎛ ⎞ ⎛ ⎞

= +⎪ ⎜ ⎟ ⎜ ⎟−⎨ ⎝ ⎠ ⎝ ⎠
⎪ = =⎩

1
cos sin 1 cos

( ) ( ) ( )
sin cos sin

( ) (1   0) ( )

k k k

k k

T T T
x t x t u t

T T T

y t x t
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It is also controllable and observable except if ,π=T  which corresponds to 
drawing a sample every half-period oscillation of the pendulum. This pace is 
obviously insufficient. In this case we talk of sub-sampling. 

If we change the perspective angle and if we use the formalism of transfer 
functions, the loss of controllability or observability illustrated above translates into 
a deterioration in the order of the discretized transfer. Let us illustrate this point with 
the help of the following example where ( )TH z  designates the discretized transfer 
obtained by transfer discretization ( )H p  with the sampling period T.  

( )
( )

( ) T
d

TT
ezez

BAzzH
p

pH αα ωωα
ωα

2222

22

cos2 −− +−
+=↔

++
+=  

2

1 cos sin
with:

sin cos

T T

T T T

A e T e T

B e e T e T

α α

α α α

ωω ω
α

ω ω ω
α

− −

− − −

⎧ = − −⎪⎪
⎨
⎪ = + −
⎪⎩

 

 We obtain for πω =T  the first order transfer ( ) T

T
T

ez
ezH α

α

−

−

+
+= 1 . We note that 

this transfer has a negative real pole and that its impulse response is an alternated 
sequence that converges towards 0 if .0>α  Such a behavior for a first order system 
does not have a continuous time equivalent. 

3.4.6. The problem of over-sampling 

We talk of over-sampling if the sampling period is “very small” with respect to 
the dominating pole 

Dcp of the continuous system, or even when 1<<
DcpT . The 

pole corresponding to the discrete system Dc

D

Tp
d ep =  is in this case very close to 

the unit. Hence, it is important to have a high numeric precision for the value of this 
pole because if not the discretized system will be considered wrong with respect to 
stability. For 1<<T , the state matrices (see equations [3.32]) are such that 

1<<− IAd  and 1<<dB . This point is illustrated by Example 3.1. 
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EXAMPLE 3.1.– let us consider the continuous system: 

( )Σ
⎩
⎨
⎧

=
+−=

)()(
)()()(

txty
tutxtx

aa

aaa αα  

We can obtain the state representation of the discretized system of equations 
[3.32]. For a sampling period sT 610−=  and α ∈{1,2} , we obtain a very good 
approximation: 

( )d
kxky

kukxkx Σ
⎪⎩

⎪
⎨
⎧

=
×+×−=+

)()(
)(10)()101()1( 6-6- αα  

2=α  represents a system “twice as fast” as the case 1=α  (the time constant of 
the continuous system is ατ 1= ). For all that, the coefficients of the realizations 
obtained by discretization differ only by their sixth decimal in the two cases 
( 1≈dA , 0≈dB ). 

Such an over-sampling ( 610−≈Tα ) is a source of numeric error unless there is 
high precision in the storing of coefficients. However, we note that this problem is 
not intrinsic and depends on the choice of the operator enabling the description of 
the discrete system. Σ( )d  can alternatively be described with the help of the 
operator Tδ  or γδ −T  (see section 3.3.3). From equations [3.32] and [3.22] we 
obtain here with high precision: 

( )dkukxkxT Σ+−= )()()( ααδ  

and with even higher precision (equation [3.24]): 

( )dkukxkxT Σ+−= )()()( αγαδ  

Even if very simple, this example makes it possible to appreciate the interest in 
choosing these operators in order to prevent the risks of numeric errors pertaining to 
over-sampling. The coefficients of the discrete model have the same order of 
magnitude as the ones of the continuous model and this for an arbitrarily small 
sampling period. For a more detailed analysis, see [GEV 93, MID 90, SWI 98]. 

Finally, for the simulation algorithm to be complete, )()()1( kxTkxkx Tδ+=+  or 
γ δ+ = +1( ) ( ) ( )

2 TT xx k x k k  should be calculated at each iteration. 
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3.5. Conclusion 

In this chapter, we introduced the basic concepts that make it possible to 
understand the discrete-time signals and systems. We saw that the z-transform has in 
the case of discrete-time a role similar to the Laplace continuous-time transform and 
that the lead operator was substituted to the derivation operator. The different 
concepts introduced in the previous chapters in terms of representation or structural 
properties of the systems could then be transposed without difficulty for the case of 
discrete-time systems. 

After briefly analyzing the behavior of basic discrete systems, we presented in 
short the issue of sampling passage from continuous-time signals and systems to 
discrete-time signals and systems. Our goal was to provide the basics that will make 
it possible to deal with (Chapters 8, 12 and 13) the digital simulation of continuous 
systems and their control by the computer. We deliberately ignored certain results, 
however essential, in signal theory but which were not strictly necessary in the 
context of this work. 
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Chapter 4 

Structural Properties of Linear Systems 

 4.1. Introduction: basic tools for a structural analysis of systems  

Any physical system has limitations in spite of the various possible control 
actions meant to improve its dynamic behavior. Some structural constraints may 
appear very early during the analysis phases. The following example illustrates the 
importance of the location of zeros with respect to the solution of a traditional 
control problem which is the pursuit of model, by dynamic pre-compensation. Being 
given a transfer procedure equal to: 

−=
+ 3

1
( )

( 1)

p
t p

p
 

is it possible to find a compensator )( pc , so that the compensated procedure has a 
transfer equal to the one of the model previously fixed, )( ptm ? It is well known that 
the model to pursue cannot be chosen entirely freely. Indeed, the pursuit equation 

)()()( ptpcpt m=  imposes that the model must have the same unstable zero as the 
procedure, otherwise the compensator will have to simplify it and hence an internal 
instability will occur. In addition, the relative degree of the model (the degree of 
difference between denominator and numerator; we will refer to it later on as the 
infinite zero order) cannot be lower than 2, otherwise the compensator will not be 
appropriate. 

 

                                   
Chapter written by Michel MALABRE.   
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The object of this chapter is to describe certain structural properties of linear 
systems that condition the resolution of numerous control problems. The plan is the 
following. 

After a brief description of certain main geometric and polynomial tools, useful 
for a structural analysis of the systems (section 4.1), we will describe the Kronecker 
canonical form of a matrix pencil, which, when we particularize it to different 
pencils (input-state, state-output and input-state-output) gives us directly, but with a 
common perspective, the controllable and observable canonical forms (of 
Brunovsky) and the canonical form of Morse (section 4.2). The following section 
(section 4.3) illustrates the invariance properties of the various structures of these 
canonical forms (indices of controllability, of observability, finite and infinite zeros) 
and of the associated transformation groups (basis changes, state returns, output 
injections). Two “traditional” control problems are considered (disturbance rejection 
and diagonal decoupling) and the fundamental role played by certain structures 
(invariant infinite and finite zeros, especially the unstable ones) is illustrated with 
respect to the existence of solutions, the existence of stabilizing solutions and 
flexibilities offered in terms of poles positions (concept of fixed poles). This is 
illustrated in section 4.4. Section 4.5 enumerates a few conclusions and lists the 
main references. 

4.1.1. Vector spaces, linear applications 

Let X and Y be real vector spaces of finite dimension and V ⊂ X and W ⊂ Y, two 
sub-spaces. Let L: X → Y be a linear application. LV designates the image of V by 
L and −1L W  designates the reverse image of W by L: 

= ∈ ∃ ∈ =: { such that  and }y x x yL LV Y V  [4.1] 

− = ∈ ∈1 : { such that }x xL LW X W  [4.2] 

With this notation, image ImL and core KerL of L can also be written:  
ImL = LX and LKer = L–1{0}. Naturally, the notation chosen for the reverse image 
should not lead to the impression that L would be necessarily reversible. 
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EXAMPLE 4.1.– let us suppose that ⎥
⎦

⎤
⎢
⎣

⎡
=

02
01

L , and W is the main straight line 

⎥
⎦

⎤
⎢
⎣

⎡
0
1

: − − ⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
1 1 0

{0}
1

KerL L LW . 

Let V be a basis matrix of V and tW a basis of the canceller at the left of W (i.e. 
a maximal solution of equation WtW = {0}), a basis of LV is obtained by directly 
preserving only the independent columns of LV. A basis of L–1W is obtained by 
calculating a basis of core Ker(WtL). 

4.1.2. Invariant sub-spaces 

Let A: X → X be an endomorphism (linear application of a space within itself). 
Let n be the size of X. A sub-space V ⊂ X is called A-invariant if and only if A 
V ⊂ V. This concept is adapted to the study of trajectories of an autonomous 
dynamic system, which is described in continuous-time or discrete-time by: 

)()1(or )()( kktt AxxxAx =+=�  [4.3] 

Indeed, any state trajectory initiated in an A-invariant V sub-space remains 
indefinitely in V. A-invariant sub-spaces form a closed family for the addition and 
intersection of sub-spaces (the sum and intersection of two A-invariant sub-spaces 
are A-invariant). Consequently, for any L ⊂ X sub-space, there is a bigger A-
invariant (unique) sub-space included in L, noted by *L , and a smaller A-invariant 
(unique) sub-space containing L, noted by *L , obtained as the bound of algorithms 
[4.4] and [4.5]: 

− + −= = = ∩ = ∩ ⇒ ="A A0 1 2 1 1 1 *, , , , i i nL X L L L L L L L L L L  [4.4] 

+= = = + = + ⇒ ="0 1 2 1 *{0}, , , , ,i i nA AL L L L L L L L L L L  [4.5] 

The concept of A-invariant sub-space also makes it possible to decompose the 
dynamics of an autonomous system of the type [4.3] into two parts, and to describe 
what happens inside and “outside” sub-space V. If we choose as first vectors of a 
basis of X the vectors obtained from a basis of V and if we complete this partial 
basis, the property of A-invariance of V is translated through a zero block in the 
matrix representing A in this basis: 
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⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A A
A

A
12

/0
V

X V
 [4.6] 

where AV represents the restriction of A to V and AX/V represents the complementary 
dynamics (more rigorously this is a representative matrix for the application in 
quotient X/V1). 

For controlled dynamic systems, where X and U designate, respectively, the state 
space and the control space described by: 

)()()1(or)()()( kkxkttt uBAxuBxAx +=++=�  [4.7] 

the (A,B)-invariance characterizes the property of having the capability to force 
trajectories to remain in a given sub-space, due to a suitable choice of the control 
law. A sub-space V of X is (A,B)-invariant if and only if AV ⊂ V + ImB. Similarly, 
V is (A,B)-invariant if and only if there is a state return (non-unique): F: X → U 
such that + ⊂( ) .A BF V V  The sum of the two (A,B)-invariant sub-spaces is (A,B)-
invariant, but this is not true for the intersection. For any sub-space L ⊂ V there is a 
bigger (A,B)-invariant (unique) sub-space included in L and noted by V *(A,B,L). It 
can be calculated as the bound of the non-increasing algorithm [4.8]: 

+ −= = = ∩ + ⇒ =A B A B0 1 1 1 *, , ( Im ) ( , , )i i nV X V L V L V V V L  [4.8] 

For the analyzed dynamic systems, where X and Y designate the state space and 
the observation space, and described by: 

)()(or     )()(

)()1()()(

kxktt

kxktt

CyxCy

AxxAx

==

=+=�
 [4.9] 

The (C,A)-invariance is a dual property of the (A,B)-invariance and is linked to 
the use of output injection. A sub-space S of X is (C, A)-invariant if and only if 
there is an output injection (non-unique) K: Y → X such that + ⊂( ) .A KC S S  
Similarly, S is (C,A)-invariant if and only if ∩ ⊂( Ker )A CS S . The intersection of 
two (C,A)-invariant sub-spaces is (C, A)-invariant, but this is not true for the sum. 
For any L ⊂ X sub-space, there is a smaller (C, A)-invariant (unique) sub-space 

                                   
1 Given V ⊂ X, the quotient X/V represents the set of equivalence classes for the relation of 
equivalence R defined on X by ∀x∈X, ∀y∈X : xRy ⇔ x-y ∈ V.  We can visualize 
(abusively) X/V as the set of vectors of X that are outside of V. 
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containing L and noted by S*(C,A, L). It can be calculated as the bound of the 
following non-decreasing algorithm: 

+= = = + ∩ ⇒ =0 1 1{0}, , ( Ker ) ( , , )i i n *A C C AS S L S L S S S L  
 [4.10] 

4.1.3. Polynomials, polynomial matrices 

A polynomial matrix is a polynomial whose coefficients are matrices, or, 
similarly, a matrix whose elements are polynomials, for example: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −++=⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

1
121

10
11

01
21

00
10 2

2

p
ppppp  [4.11] 

A polynomial matrix is called unimodular if it is square, reversible and 
polynomial reverse. A square polynomial matrix is unimodular if and only if its 
determinant is a non-zero scalar. 

 

For example: ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ −

10
1

  toequal being reverse its ,unimodular is 
10

1 pp
.  

In the study of structural properties of a given dynamic system of the following 
type (with n × n A matrix): 

( ) ( ) ( ) ( 1) ( ) ( )
( ) ( ) or          ( ) ( )
t t t k k k
t t k k

= + + = +
= =

x A x B u x Ax B u
y C x y Cx
�

 [4.12] 

intervene several polynomial matrices with an unknown factor p. The best known is 
certainly the [pI-A] characteristic matrix that makes it possible to extract 
information on the poles. Other polynomial matrices make it possible to characterize 
properties such as controllability/obtainability, observability/detectability, or 
concepts grouping together state, control and output, especially in relation to the 
zeros of the system. These are, respectively, the matrices: 

[ ],  and 
p p

p
− − −⎡ ⎤ ⎡ ⎤

− − ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

I A I A B
I A B

C C 0
 [4.13] 
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All these polynomial matrices, which only make the two monomials in p0 and p1 
appear, are called matrix pencils. All have the form [pE-H], with E and H not 
necessarily square or of full rank. Two pencils, formed by matrices of the same size, 
[pE-H] and [pE’-H’], are said to be equivalent in the Kronecker sense if and only if 
there are two reversible constant matrices P and Q such that [pE’-H’] = P [pE-H] 
Q. P and Q are the basis changes in the departure space X and in the arrival space X. 

We will analyze, with the help of these matrix pencils, several structural 
properties of systems [4.12]. This will be done progressively in our work, from the 
simplest (pole beams) to the most complete (system matrix). 

4.1.4. Smith form, companion form, Jordan form 

The poles of system [4.12] are given by the eigenvalues of A (see Chapter 2). It 
is well known that these eigenvalues are linked to the dynamic operator A and not 
only to certain of its matrix representations. More precisely, the eigenvalues of A are 
not changed if we replace A by A’ = T-1AT, where T designates any basis change 
matrix in X. When such a relation is satisfied, we say that A and A’ are equivalent. 
This relation is also written T-1[pI-A]T = [pI-A’] and thus A and A’ are equivalent 
matrices if and only if the beams [pI-A] and [pI-A’] are equivalent in the Kronecker 
sense. An important interest in any equivalence notion, besides the division into 
separate equivalence classes that it induces on the set considered, is to represent 
each class by a particular element, called canonical form. In the case of [pI-A] type 
beams, we know well the companion form type canonical forms (see Chapter 2) or 
Jordan form. These forms are in fact obtained directly from the famous Smith form 
which is developed for the general polynomial matrices. In practice, it is quite easy 
to show from Binet-Cauchy formulae that, for any given size k, two equivalent 
beams [pI-A] and [pI-A’] have the same HCF (the highest common factor) of all the 
non-zero minors of order k. Let us note by α1(p), α2(p)…, αn(p) these different 
HCFs for k = 1 to n. Polynomials αi(p) can be divided ascendantly (α1(p) divides 
α2(p) which divides α3(p)…). 

Let us introduce the following quotients: β1(p) = α1(p), β2(p) = α2(p)α1(p), …, 
βn(p) = αn(p)/αn-1(p). Polynomials βi(p) can be divided ascendantly as well. 
Polynomials βi(p) which are different from 1 are called invariant polynomials of  
[pI-A] (or of A). The last one (the highest degree one) is the minimal polynomial of 
A (it is the smallest degree polynomial which cancels A). The product of all βi(p) is 
αn(p), which is characteristic polynomial of A. The Smith form of [pI-A] is the 
diagonal of βi(p). The invariant polynomials can be written in an extended form, or 
in a factorized form where the n eigenvalues of A appear (certain powers lij being 
then equal to 0): 
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niiiii
i

l
n

llkk
ikiii ppppppppapaap )...()()(...)( 10 10

1
110 −−−=++++= −

−β [4.14] 

From the point of view of terminology, the pi singularities are called eigenvalues of 
A, (internal) poles of the dynamic system [4.12] and zeros of the beam [pI-A]. The 
companion form of A contains as many diagonal blocks as βi (p) which are different 
from 1 and for each block, of size ki × ki, all terms are zero except for the over-
diagonal which is full of “1” and the last line consisting of coefficients –aij of βi(p). 
The Jordan form of A contains, for each eigenvalue pi, as many blocks as βj(p) having 
a factor (p-pi) lij. Each basic block of this type, of size lij × lij has all its terms zero 
except for the diagonal which is full of “pi” and the over-diagonal which is full of “1”. 

Polynomials βj(p) are called invariant polynomials of A. The factors of these 
polynomials, i.e. (p-pi) lij are the invariant factors of A. The set of all βj(p), as well as 
the set of all invariant factors, form complete invariants under the relation of 
equivalence, i.e. under the action of basis changes (meaning that two square matrices 
of the same size are equivalent if and only if they have exactly the same invariant 
polynomials). 

4.1.5. Notes and references 

The basic tools for the “geometric” approach of automatic control engineering 
(invariant sub-spaces) were introduced by Wonham, Morse, Basile and Marro at the 
beginning of the 1970s; in particular see [BAS 92, WON 85], as well as [TRE 01]. 
Numerous complements on the “polynomial” tools leading to Smith, Jordan or 
companion forms can be found in [GAN 66], as well as in [WIL 65], which is an 
almost incontrovertible work for everything relative to eigenvalues. 

4.2. Beams, canonical forms and invariants 

The pole beam associated with the dynamic system [4.12] is a [pE-H] type 
beam, but with the two following particularities: E and H are square and E is 
reversible. Before considering the general case, we will transitorily suppose E and H 
as square, but E as not systematically reversible. This extension should be brought 
closer to the more general class of implicit systems called regular, i.e. the systems 
described by: 

)()(or   )()(

)()()1()()()(

kktt

kkkttt

CxyxCy

uBAxJxuBxAxJ

==

+=++=�
 

 [4.15] 
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with J not forcibly reversible, but [pJ-A] “regular2”, i.e. with a rank equal to n. In 
the case of continuous-time systems, such models particularly make it possible to 
manipulate the differentiators. For example, the following system describes a pure 
differentiator: 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 1 1 0 0
( ) ( ) ( ) ; ( ) [1 0] ( )

0 0 0 1 1
t t t t t

.
x x u y x  

 [4.16] 

It has indeed for transfer C(pJ-A)–1B = p. This system has a pole infinity of order 
1.  

A [pE-H] type regular square beam, with E and H as linear applications of X 
toward X and two isomorphic spaces of size n, will also have finite and infinite 
zeros. Among the most compact methods to illustrate these finite and infinite zeros 
of [pE-H], we can use the Weierstrass canonical form. We easily can, by using the 
basis changes in X and in X, which are P and Q respectively, transform the 
departure beam into its Weierstrass canonical form. It is a diagonal form with two 
main blocks separating the infinite zeros from the finite zeros: 

−⎡ ⎤
− = ⎢ ⎥−⎣ ⎦

[ ] with  nilpotent 
p

p
p

N I 0
P E H Q N

0 I M
 [4.17] 

Hence, the structure of infinite zeros of [pE-H] is given by the Jordan structure 
of N (in zero because N has only zero eigenvalues). To better understand the fact 
that the singularities in “0” of N represent infinite singularities for the beam, it is 
sufficient to write pN-I = p(1/pI-N). In addition, the structure of finite zeros of  
[pE-H] is given by the structure of [pI-M], as in section 4.1.4. For example, the 
Weierstrass form of a generalized pole beam for a [4.15] type system with two 
infinite poles, one of order 1 and the other of order 2, and two finite poles, in p = –1 
and p = 0 respectively is given by: 

⎡ ⎤
−⎡ ⎤⎢ ⎥ −⎡ ⎤⎢ ⎥⎢ ⎥− = = − = = + =⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥−⎢ ⎥ ⎣ ⎦

⎣ ⎦

0 0 0
1 0

0 0 0 1
[ ]   with 0 1 , , [ 1], [ ]

0 0 0 0 1
0 0 1

0 0 0

a
p

b p
p a p b c p d p

c

d

E H  

                                   
2 I.e. det(pJ-A) is not identically zero. 
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A way to obtain the Weierstrass form described in [4.17] is to use the following 
algorithms, which are very similar to algorithms [4.5] and [4.4]: 

+ − −= = ⇒ = =E H E H0 1 1 * 1 *
1 1 1 1 1 1{0}, ,i i nA A A A A A  [4.18] 

+ − −= = ⇒ = =0 1 1 * 1 *
2 2 2 2 2 2, ,i i nH E H EA X A A A A A  [4.19] 

The regularity of the beam [pE-H] can be translated: 

⊕ =* *
1 2 ,  A A X i.e. + =* *

1 2  A A X and ∩ =* *
1 2 {0}A A  [4.20] 

⊕ =E H* *
1 2 ,  A A X i.e. + =E H* *

1 2  A A X and ∩ =E H* *
1 2 {0}A A  [4.21] 

This leads quite naturally to the following choice for P and Q: 

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
* * * *
1 2 1 2basis of basis of , basis of basis of , Q  P  E  HA A A A

 [4.22] 

4.2.1. Matrix pencils and geometry 

 In the general case, [pE-H] is a rectangular beam, with no particular hypothesis 
of rank, either on E or on H. This means that apart from the previously defined finite 
and infinite zeros, [pE-H] also has a non-trivial core and co-core. Polynomial 
vectors and co-vectors, x(p) and xT(p) then exist such that: [pE-H] x(p) = 0 and/or 
xT(p) [pE-H] = 0. The various possible solutions of these equations are in fact 
classified and ordered in terms of degrees. If x(p) is in the core of [pE-H], the vector 
obtained by multiplying each component of x(p) by a same polynomial is also in the 
core. Hence, we will consider the lowest degree solutions possible. For example, for 
a beam described by: 

⎡ ⎤
− = ⎢ ⎥

⎣ ⎦

1 0
[ ]

0 1

p
p

p
E H   
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a core basis vector of minimal degree can be described by [1 -p p2]T, where “T” 
represents the transposition. Similarly, for a beam described by: 

⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
[ ]

1

p
pE H   

a co-core basis vector and of minimal degree can be described by [1 -p]. 

Then, through a reduction procedure with respect to these first solutions, we 
consider the following solutions of superior degree, but the lowest one possible, and 
so on. The result is that only the sequence of successive degrees is essential in order 
to properly describe the core and co-core in a canonical form. 

In order to describe the complete structure of a beam in its most general form, 
algorithms [4.18] and [4.19] are sufficient. An important difference with respect to 
the previous regular case is that, in general: 

∩ ≠ ≠

+ ≠ ≠

* *
1 2

* *
1 2

{0}   when the core is {0} and 

  when the co-core is {0}E H

A A
A A X

 

This geometric description is provided in the following section. 

4.2.2. Kronecker’s canonical form 

The main result for “any” beam is the following. 

Two beams [pE-H] and [pE’-H’] are equivalent in Kronecker’s sense, i.e. there 
are basis change matrices P and Q such that [pE’-H’] = P [pE-H] Q, if and only if 
[pE-H] and [pE’-H’] have the same Kronecker’s canonical form. 

Kronecker’s canonical form of a beam [pE-H] is a beam characterized only from 
E and H. This form can possibly contain identically zero columns and/or rows (this 
happens when in the core and/or the co-core there are constant vectors) and in 
addition it has a block-diagonal structure with four types of blocks: 

– finite elementary divisor blocks (also called finite zeros): these are (for 
example) Jordan blocks, of size kij × kij, associated with (p-ai) kij type monomials. 
(We can also choose companion type blocks.) For example: 

1 1 2 for the monomial ( 1) , etc.
0 1

p
p

p
+⎡ ⎤

+⎢ ⎥+⎣ ⎦
 [4.23] 
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– minimal index blocks per non-zero columns: these are rectangular blocks, of 
size εI × (εI + 1), having the form: 

[ ] etc. 2,for  
1

01

0
 1,for  1 == ⎥

⎦

⎤
⎢
⎣

⎡
εε

p

p
p  [4.24] 

– minimal index blocks per non-zero rows: these are rectangular blocks, of size 
(ηI + 1) × ηi, which are identical to minimal index blocks per columns, but simply 
transposed, thus: 

etc.,1ηfor  
1

=⎥⎦
⎤

⎢⎣
⎡ p

 [4.25] 

– infinite elementary divisor blocks (also called infinite zeros): these are square 
blocks, of size νi×νi, with a diagonal full of “1” and an over-diagonal full of “p”, i.e. 
having the form: 

etc. 2,for   1,for  [1]
10

1
== ⎥

⎦

⎤
⎢
⎣

⎡
νν

p
 [4.26] 

 Kronecker’s canonical form is fully characterized by the list of polynomials  
(p-ai) kij and by the three lists of integers {εi}, {ηi} and {νi}. These four lists form 
full invariants for the beams under the action of basis changes in the departure and 
arrival spaces. An example of Kronecker’s canonical form (the index “K” is used to 
indicate that the beam is in its Kronecker’s canonical form) is given below, 
corresponding to the list of invariants: {(p-ai) kij} = {p-3}, {εi} = {2}, {ηi} = {1} 
and {νi} = {2}: 

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥− = = − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

0 0 0

0 0 0 1 0 1
[ ]  with [ 3], , ,

0 0 0 0 1 1 0 1

0 0 0

K K

a

b p p p
p a p b c d

c p

d

E H

   [4.27] 

Now, due to the two algorithms [4.18] and [4.19], we can provide the geometric 
characteristics of these invariants. For this, we will use the following notations: 
given a list of positive integers {ni}, I = 1 to l, ordered in a non-increasing manner 
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(i.e. ni ≥ ni+1), we associate with it the list {pj} which is defined by pj = card{ni ≥ j}, 
where “card” represents the cardinal number, i.e. the total number of elements in the 
group. We note that the correspondence between the two lists {ni}, i = 1 to l and 
{pj}, j = 1 to h is a bijection. Indeed, it is easy to verify that list {ni} also satisfies  
ni = card{pj ≥ i} and consequently l = p1 and h = n1. 

The geometric characteristics of Kronecker’s invariants are given below. We 
note at this level that these characteristics establish the invariance of the four lists 
under the action of P and Q basis changes in the departure and arrival spaces. 
Indeed, the sizes of intermediary sub-spaces are clearly invariant when we replace E 
and H by PEQ and PHQ: 

– minimal indices per columns: 

µ µµ ε µ +∀ ≥ ≥ = ∩ − ∩1
i 2 21 11, card { } dim  ( ) dim ( )* *A A A A  [4.28] 

– minimal indices per rows: 

µ µµ η µ −∀ ≥ ≥ = + − +1
i 1 12 21, card { } dim ( ) dim  ( )* *A A A A  [4.29] 

– infinite elementary divisors: 

µ µµ ν µ −∀ ≥ ≥ = + − + 1
i 2 21 11, card { } dim ( ) dim ( )* *A A A A  [4.30] 

– finite elementary divisors. From the definitions of algorithms [4.18] and [4.19] 
it is easy to verify that, not only: 

⊂ ∩ ⊂ ∩* * * * * *
2 2 2 1 2 1, but also: ( ) ( )H E H EA A A A A A   

In addition: − ∩ = − ∩* *
2 2 1 2 2 1dim ( ) dim  ( ) dim ( ) dim  ( ( ))* * * *E EA A A A A A . 

The finite elementary divisors of the beam [pE-H] are then given by the finite 
elementary divisors (in the sense of Smith’s form; see section 4.1.4) of the next 
square operator, double restriction of H to two quotient spaces (in the departure and 
arrival spaces): 

∩ → ∩H E E* * * * * *
2 2 1 2 2 1

ˆ  : / / ( )A A A A A A  [4.31] 
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These general results on “any” beam will be now focused on some interesting 
cases that will differently clarify certain structural properties of [4.12] type systems. 

4.2.3. Controllable, observable canonical form (Brunovsky) 

Let us go back a little to the controlled dynamic systems without output equation, 
with X and U representing the state space and the control space. In order not to have 
to distinguish controllability and obtainability, we will limit ourselves here to 
continuous-time spaces, as described in [4.7]: 

)()()( ttt uBxAx +=�  [4.32] 

We can “naturally” associate with this system the controllability beam [pI–A -
B], i.e. for which E = [I  0] and H = [A  B]. Due to the subjectivity of E, 
Kronecker’s form of the controllability beam can have only two types of invariants, 
i.e. minimal indices per columns and finite elementary divisors (indeed, for the other 
types of blocks see [4.25] and [4.26], the block sub-matrix in E is not of full rank 
per row and hence it cannot be a part of the global subjective E). These invariants 
have a tighter connection with more traditional concepts, such as the controllability 
indices and the non-controllable poles. More exactly, we can easily show that the 
minimal indices per columns of the controllability beam are exactly equal to the 
controllability indices of the pair (A, B). The finite elementary divisors of the 
controllability beam correspond exactly to the non-controllable dynamics (with 
multiplicities considered through the invariant factors) of the pair (A, B). This will 
be mentioned in section 4.3. Before, we will characterize the group of 
transformations acting on the dynamic system [4.32] and that is equivalent to the 
group of basis changes on the left and right on [pI–A -B]. 

“Kronecker’s” group of transformations acting on the controllability beam 
[pI–A -B] corresponds identically to the “feedback” group acting on the pair (A, B), 
in other words formulated: 

[ ] [ ] &  reversible  such that:     ' 'p p∃ − − = − −P Q P I A B Q I A B   

1 1 &  reversible  &  such that:   ' ( ) , '− −⇔ ∃ ∃ = + =T G F A T A BF T B T BG   
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(To be sure, it is sufficient to note that P=T-1 and ⎥
⎦

⎤
⎢
⎣

⎡
=

GFT
0T

Q .) 

Kronecker’s canonical form of a controllability beam [pI–A -B] thus contains 
only minimal index blocks per columns and, possibly, blocks of finite elementary 
divisors. In order to show the quasi-immediate relation that exists between this 
Kronecker’s form and the more traditional controllability canonical forms (like 
Brunovsky’s form) we will take an example for which the minimal indices per 
columns are equal to {ε1} = {1}, {ε2} = {2}, and a finite elementary divisor is equal 
to {p+2}: 

⎡ ⎤
⎡ ⎤⎢ ⎥− = = = = +⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

0 0
1 0

[ ] 0 0   with  [ 1], , [ 2]
0 1

0 0
K K

a
p

p b a p b c p
p

c

E H   

Since this form is associated with [pI–A -B], we can write it differently so that it 
maintains a controllability beam form, which will be noted by [pI–Ac -Bc]. This is 
easily obtained by switching all the constant columns in the last positions. The pair 
(Ac, Bc) thus obtained is in Brunovsky’s controllable canonical form and, just by 
reading it, we note that the controllable space is of size 3, the pole in {-2} is non-
controllable and the controllability indices are 1 and 2 (see section 4.3): 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

00
10
00
01

2000
0000
0100
0000

cc BA  

The general structure of matrices (Ac, Bc) in Brunovsky’s canonical form is the 
following: 

{ }⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

0 { }

0 0
ci ci

non c

diag diag
c c

A B
A B

A
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with: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1

0

...

0

0

   ,

00000

10000

...............

0...0100

0...010

cici BA  [4.33] 

Blocks Aci are of size εi×εi; blocks Bci are of size εI × 1; the remaining matrix 
Anon c (that can be described, for example, in Jordan’s form; see section 4.1.4) is of 

size ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∑∑

i
i

i
i nn εε . It does not exist if the system is controllable: it 

describes the non-controllable dynamics; integers εi are the controllability indices of 
the pair (A, B).  

What has just been illustrated for controllability is also applicable and in a dual 
way to observability. 

Let us go back a little to the dynamic systems without a term of control, with X 
and Y designating the state space and the observation space respectively. We will 
limit ourselves here to continuous-time systems as described in section 4.9: 

( ) ( )
( ) ( )
t t
t t

=
=

x A x
y C x
�

 [4.34] 

We can “naturally” associate the observability beam with this system: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
C

AIp
  [4.35] 

i.e. for which E = [I  0]T and H = [AT CT]T. Due to the injectivity of E, Kronecker’s 
form of the observability beam can have only two types of invariants, i.e. row 
minimal indices and finite elementary divisors (indeed, for the other types of blocks 
see [4.24] and [4.26], the block sub-matrix in E is not of column full rank, and hence 
it cannot be a part of the global injective E). These invariants have a tighter 
connection with more traditional concepts, such as the observability indices and the 
non-observable poles. More exactly, we can easily show that the minimal indices per 
rows of the observability beam are exactly equal to the observability indices of the 
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pair (C, A). The finite elementary divisors of the observability beam correspond 
exactly to the non-observable dynamics (with multiplicities considered for the 
invariant factors) of the pair (C, A). This will be mentioned in section 4.3. Before 
this, we will characterize the group of transformations acting on the dynamic system 
[4.34] and that is equivalent to the group of basis changes on the left and right on 
[pI–AT -CT]T.  

“Kronecker’s” transformation group acting on the observability beam  
[pI–AT -CT]T corresponds identically to the “injection” group acting on the pair  
(C, A), in other words formulated: 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

−
−

=
−
−

∃
'

'
     : assuch  reversible  & 

C
AI

Q
C
AI

PQP
pp

  

TCHCTRCATARHT =+−=∃∃⇔ ',)(1'   : assuch   &  reversible  &   

(To be sure, it is sufficient to note that:
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−−

H0
RTTP

11
, and Q = T.) 

Kronecker’s canonical form of an observability beam [pI– AT  -CT]T thus 
contains only blocks of minimal indices per rows and, possibly, blocks of finite 
elementary divisors. In order to show the quasi immediate relation that exists 
between this Kronecker’s form and the more traditional observability canonical 
forms (like Brunovsky’s form) we will take an example for which the minimal 
indices per rows are equal to {η1} = {1}, {η2} = {2} and a finite basic divisor is 
equal to {p+5}: 

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥− = = = = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0 0

[ ] 0 0   with  , 1 , [ 5]
1

0 0 0 1
K K

a p
p

p b a b p c p

c

E H   

Since this form is associated with [pI–AT -CT]T, we can write it differently so 
that it maintains an observability beam form, which will be noted by [pI–Ao

T -Co
T] T. 

This is easily obtained by switching all the constant rows in the last positions:  
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⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=
0010
0001

5000
0000
0100
0000

oo CA  

The pair (Ao, Co) thus obtained is in Brunovsky’s observable canonical form. 
The unnoticeable space is of size 1. The pole in {-5} is un-observable and the 
unobservable indices are 1 and 2 (see section 4.3). 

The general structure of matrices (Ao, Co) in Brunovsky’s canonical form is the 
following: 

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

{ } 0 { }
,  with:

0 0
oi oi

non o

diag diag
o o

A C
A C

A
  

[ ]   00...01,

00000
10000
...............
0...0100
0...010

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= oioi CA  [4.36] 

Blocks Aoi are of size ηI × ηi, blocks Coi, are of size 1 × ηi and the remaining 
matrix Anono (that can be described, for example, in Jordan’s form, see section 4.1.4) is 

of size ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∑∑

i
i

i
i nn ηη . It does not exist if the system is observable; the 

integers ηi are the observability indices of the pair (A, C).  

Let us consider now more general dynamic systems, with u inputs and y outputs.  

4.2.4. Morse’s canonical form 

The systems described by equation [4.12], i.e.: 

)()(or )()(

)()()1()()()(

kktt

kkkttt

CxyxCy

uBAxxuBxAx

==

+=++=�
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have as “naturally” associated beam the following matrix, known as Rosenbrock’s 
“system matrix”: 

− −⎡ ⎤
− = ⎢ ⎥−⎣ ⎦

[ ]
p

p
I A B

E H
C 0

 [4.37] 

For this beam:  

   and  ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ ==

0C
BA

H
00
0I

E   

“Kronecker’s” group of transformation acting on the system matrix [4.37] 
corresponds identically to the “feedback and injection” group acting on the system 
[4.12], in other words formulated: 

 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

−
−−

=
−

−−
∃

0C
BAI

Q
0C
BAI

PQP
'

''
     : assuch  reversible  & 

pp
  

  : assuch  & &  reversible  & , RFHGT ∃∃⇔   

TCHCBGTBTRCBFATA ==++= −− ',',)(' 11  

(To be sure, it is sufficient to note that:
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−−

H0
RTTP

11
 and ⎥

⎦

⎤
⎢
⎣

⎡
=

GFT
0T

Q .) 

 Kronecker’s canonical form of a system matrix contains in general all the 
possible types of blocks. To visualize in terms of matrices A, B and C the form of 
the canonical representation obtained, it is sufficient, like in the previous case, to 
switch the rows and columns in order to move to the right all the constant columns 
(representative of the input matrix) and to the bottom the constant rows 
(representative of the output matrix). Let us take again the example [4.27] of section 
4.2.2, in which there is a block of each type: 
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The corresponding matrices have then the following form (written here by 
preserving the order of blocks), which is called Morse’s canonical form, and noted 
by (AM, BM, CM): 
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The general structure of triplets (AM, BM, CM) in Morse’s canonical form is the 
following: 
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where A1 is in Jordan’s form (A2, B2) in controllable canonical form [4.33], (A3, C3) 
in observable canonical form [4.36] and (A4, B4, C4) in simultaneously controllable 
[4.33] and observable [4.36] form. 

 The parts having the indices “2” and “3”, which characterize certain core 
structures (on the right and left), have an important but very particular role in certain 
control or observation problems, called non-regular. We will not discuss in detail 
this aspect here. However, the parts having the indices “1” and “4” that are the result 
of finite and infinite elementary divisors of the system matrix are directly linked to 
invariant finite zero and infinite zero type structures, which we will deal with in 
section 4.3. 
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4.2.5. Notes and references 

The general context of matrix pencils, and particularly Kronecker’s canonical 
form, is detailed in [GAN 66]. The “geometric” presentation done here is mainly 
based on the works of [LOI 86]. A main reference work for the study of various 
beams associated with the analysis of linear systems, such as the system matrix, is 
[ROS 70]; for everything that is more particularly linked to the canonical forms 
presented here as derived from Kronecker’s form, the reader can refer to [BRU 70, 
MOR 73, THO 73]. 

4.3. Invariant structures under transformation groups 

It is exactly because they are invariant under the action of various transformation 
groups that the structures previously introduced have a fundamental role in the 
analysis and synthesis of observation and/or control systems. For example, the poles 
of a given system (in open loop) are invariant by basis changes but they are not so 
by state returns: it is well known in fact that a property equivalent to state 
controllability is the capability to freely modify the poles by state return. However, 
the invariant zeros, finite and infinite, are not at all modifiable by such actions. That 
is why their location conditions the resolving of traditional control problems. In the 
following sections, we will recall a few invariance properties of the main structures 
connected to linear systems. 

4.3.1. Controllability indices  

The controllability indices and the invariant factors of the non-controllable part 
(if it exists) of the pair (A, B) (see section 4.2.3) form a set of full invariants under 
the action of the transformation group (T, F, G) where T and G designate the basis 
changes on the state and on the control, and F is a state return. This “feedback” 
group is defined by: 

),)((),( ),,( BGTTBFATBA 11GFT −− +⎯⎯⎯ →⎯  

 This basically means that any control law in the form of a regular state return, i.e. 
,reversible  with ,)()()( GGvFxu ttt +=  maintains these structures. Through a 

connection with a more “traditional” definition of controllability indices, noted by 
{ }mccc ,...,, 21  where m is the size of the control space, we recall that the general 
characterization of minimal indices per columns as described in [4.28], when 
particularized to the controllability beam [pI–A -B], with B of full rank (injective), 
gives very directly: 
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4.3.2. Observability indices 

The observability indices and the invariant factors of the non-observable part (if 
it exists) of the pair (C, A) (see section 4.2.3) form a set of full invariants under the 
action of the transformation group (T, R, H) where T and H designate basis changes 
on the state and on the output respectively and R is an output injection. This 
“injection” group is defined by: 

),)((),( ),,( HCTTRCATAC 1HRT +⎯⎯⎯ →⎯ −  

A more “traditional” definition of the observability indices, noted by 
{ }1 2, ,..., lo o o  where l is the size of the output space, can be found in connection to 
the general characterization of minimal indices per rows such as described in [4.29], 
particularized to the observability beam [pI–AT -CT]T, with C of full rank 
(subjective): 
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4.3.3. Infinite zeros 

As introduced in section 4.2.4, Morse’s canonical form, (AM, BM, CM) described 
in [4.38], is obtained from the initial system, let us say (A,B,C), by the action of an 
element of the “feedback and injection” transformation group, let us say (TM, FM, 
GM, RM, HM). This form is in fact maximally non-controllable and non-observable. It 
is in fact important, based on its particular structure, to verify that the system 
transfer matrix written in Morse’s canonical form will use only the part having the 
index “4” linked to the infinite elementary divisors and has a diagonal form: 
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where ni, i = 1 to r is the size of each block in part “4” which is in controllable and 
observable canonical form. For example, the following form (A4, B4, C4) where, to 
simplify writing, all the non-specified terms are zero: 
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corresponds to the list {ni}= {1,2,3}. The corresponding system has 3 infinite zeros, 
of orders 1, 2 and 3. This is the result of the transfer diagonal structure of Morse’s 
canonical form and because the transformations that lead to the canonical form of 
the system maintain the structure of zeros infinity. 
 

Indeed, based on the relations: 

MMMMMMMMMMM CTHCBGTBTCRBFATA ==++= −− ;;)( 11  

the passage from (A,B,C) to (AM, BM, CM) is reflected in the following relation: 
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Transfers B1(p) and B2(p) have the particular property of being biproper 
matrices: a biproper matrix is a proper matrix (i.e. whose bound is finite when p 
tends toward infinite), reversible and when reversed, also proper. A biproper matrix 
is no more than a unimodular matrix (see section 4.1.3), but on the ring of 
eigenfunctions. A scalar biproper is any transfer function in which the numerator 
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and denominator have the same degree. A unimodular (polynomial) has neither pole 
nor finite zero (its Smith’s form is reduced to the identity; see section 4.1.4), a 
biproper on the other hand has only poles and finite zeros and it cannot simplify (by 
product) any singularity to infinity. The behaviors at infinite of (A,B,C) and  
(AM, BM, CM) are thus identical. The behavior of (AM, BM, CM) is roughly described 
by the list of p-ni. The integers ni, which are equal in number to the rank of the 
system, are called the orders of infinite zeros of the system considered. 

In a purely “transfer matrix” context, we thus define Smith’s canonical form to 
infinity, which is the canonical representation under the action of the transformation 
group by multiplications, on the left and right, through bipropers. 

The general relations of the [4.30] type also make it possible to geometrically 
characterize the orders of infinite zeros. 

4.3.4. Invariants, transmission finite zeros 

As previously recalled, any multiplication of a given transfer by a unimodular 
preserves the finite singularities of this transfer (a unimodular has only poles and 
infinite zeros). The group of transformations obtained by multiplications on the right 
and left by unimodulars makes it possible to associate with each transfer matrix its 
canonical form, called Smith McMillan’s form, from which the so-called 
transmission poles and zeros can be calculated (linked to the transfer, i.e. to the 
controllable and observable part of the system considered). Synthetically, we can 
obtain it as follows: 

– write the departure transfer, let us say T(p), as T(p) = [1/d(p)] N(p), where d(p) 
is the LMCD (the lowest multiple common denominator) of all the denominators 
present in T(p); 

– write N(p) in Smith’s canonical form (by unimodular actions on the right and 
left); 

– divide each term of the diagonal thus obtained by d(p) and perform all the 
numerators/denominators possible simplifications. 

Hence, we reach a diagonal formula (always with r elements, r being the rank of 
the system), of type εi(p) /ψi(p), where ε1(p) divides ε2(p), …, divides εr(p) and ψr(p) 
divides ψr-1(p),…, divides ψ1(p). The transmission poles and zeros of T(p) correspond 
to the roots, respectively, of the denominators ψi(p) and the numerators εi(p). 

These transmission structures are related to the “open loop” transfer. They are 
invariant under basis changes but do not remain invariant under the action of 
transformations such as state return or output injection. 
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 If we consider a transfer state realization T(p), let us say (A,B,C), the invariant 
zeros defined from the finite elementary divisors of the associated system matrix 
(see section 4.2.4) are invariant under Morse’s group (basis changes, state returns 
and output injections). If the state realization is minimal, the invariant zeros coincide 
with the transmission zeros. Otherwise, the transmission zeros form only a sub-
group of all invariant zeros. 

4.3.5. Notes and references 

The various structures presented in this section, such as controllability/ 
observability indices and finite/infinite zeros are described in detail in [KAI 80, 
ROS 70] and many other works. 

4.4. An introduction to a structural approach of the control 

The objective of this section is to illustrate, based on relatively traditional control 
problems, the fundamental role played by certain structures (and we will dedicate 
our attention to infinite and finite zeros) in the existence of solutions. We will 
consider in particular the disturbance rejection and the diagonal decoupling. 

Let us consider a stationary linear system in which u(t) represents a control input 
with m components, d(t) a disturbance input with q components and y(t) an output to 
control with l components and described by the state model: 
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tttt

Cxy
EdBuAxx�

 [4.39] 

to which the following transfer matrices are also associated: 

EAICdTBAICuT 1)(:)(       and      1)(:)( −−=−−= pppp  [4.40] 

The problem of disturbance rejection by state return is formulated as follows: 
finding, if it exists, a state return having the form u(t) = Fx(t) + Ld(t) so that, for the 
system thus looped, the transfer matrix between d(p) and y(p) is identically zero. 
When disturbance d(t) is not measured, we impose L = 0. The problem of 
disturbance rejection with internal stability consists of researching, if they exist, F 
solutions so that, in addition, (A + BF) is stable. 
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The problem of diagonal decoupling by regular state return is formulated as 
follows: finding, if it exists, a regular state return having the form u(t) = Fx(t) + Gv(t), 
with reversible square G so that, for the system thus looped, the transfer matrix 
between v(p) and y(p) is diagonal (with principal diagonal), i.e. in the form: 

 { }[ ]0)(,),()(:)( 1
1

, #" phphdiagpp l=−−= − BGBFAICT GF  

The decoupling problem with internal stability consists of researching, if they 
exist, F solutions so that, in addition, (A + BF) is stable. 

4.4.1. Disturbance rejection and decoupling: existence of solutions 

The action of a state return type control law, as described in the previous section, 
as well as for rejection and for decoupling is translated in terms of transfer matrices 
by the multiplication on the right by a particular biproper matrix. Since such a 
transformation maintains the structure of infinite zeros, it is very natural to see 
conditions of existence of solutions for this type of structure appear. To illustrate 
this, we use the pre-compensator, which is equivalent to the control law selected. 

For disturbance rejection, the transfer between d(p) and y(p) for the compensated 
system by the control law u(t) = Fx(t) + Ld(t) is equal to Tu(p)C(p) + Td(p), that we 
want to cancel, with: 

])([])([:)( 111 LEAIFBAIFIC +−−−= −−− ppp  

It is easy to realize that C(p) is always proper, even strictly proper (i.e. the bound 
of C(p) is equal to zero when p tends toward infinity) when L = 0, i.e. when the 
disturbance is not available for the control law. 

The equation reflecting the objective of this rejection, i.e. Tu(p)C(p) + Td(p) = 0, 
can be rewritten as: 
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 In this equation, the matrix where C(p) intervenes is biproper (since C(p) is 
proper). A necessary condition for [4.41] to have at least one proper solution is for 
[Tu(p) ¦ Td(p)] and Tu(p) to have exactly the same orders of infinite zeros (because 
this structure is invariant under multiplication by a biproper). It turns out that this 
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condition is also sufficient. We can also show quite simply that this necessary and 
sufficient condition can be reduced to the comparison of two integers. We will 
designate “infinite rollout” the sum of orders of infinite zeros for a given system. 

The disturbance rejection is solvable by u(t) = Fx(t) + Ld(t) type state return if 
and only if (A,B,C) and (A, [B ¦ E],C) have the same rank and the same infinite 
rollout. 

Variants of this type of result exist when the disturbance is not measured, as well 
as when the state is not measured. In the second case, the existence of control laws is 
dealt with very similar measurement dynamic returns. 

For the decoupling problem, the action of a regular state return  
u(t) = Fx(t) + Gv(t), with reversible square G, is equivalent to the transfer 
multiplication Tu(p) by the equivalent biproper pre-compressor: 

GBAIFIC 11 ])([:)( −−−−= pp  

Let us consider, in order to simplify the explanation, the case of square systems 
(having as many input components as control components) and reversible systems. 
The objective of decoupling is then expressed by the equation: 

{ })(,),()()( 1 phphdiagpp l"=CTu  [4.42] 

Based on the diagonal form desired, a necessary condition for this equation to 
admit a biproper solution is that, on the one hand, the system is seen in its entirety, 
and on the other hand the reunion of all sub-systems row by row have exactly the 
same orders of infinite zeros (because this structure is invariant under a biproper 
multiplication). It turns out that this condition is equally sufficient. In addition, we 
can also show that this necessary and sufficient condition can be expressed with a 
single integer via the infinite rollout. 

For a system supposed reversible on the right (i.e. whose transfer is of full rank 
per rows), decoupling is solvable by u(t) = Fx(t) + Gv(t) type regular state return if 
and only if the infinite rollout of (A, B, C) is equal to the sum of infinite rollouts 
calculated for each row sub-system (A, B, ci), where ci designates the ith row of C. 
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4.4.2. Disturbance rejection and decoupling: existence of stable solutions 

 When the (natural) constraint of internal stability is added, the unstable zeros (if 
they exist) will have a similar role to the one of the infinite zeros with respect to the 
existence of solutions. The simplest way to be sure of this is to be able to formulate 
the control problem from the “transfer” equation. Before that, we must of course 
assume that the system considered can be stabilized. We can, however, assume it is 
already stable in open loop (if not a first stabilizing loop is to be used). The internal 
stability of the compensated system is hence translated simply by the necessary 
stability of the compensator researched. We must then solve a [4.41] or [4.42] type 
equation, on the ring of eigen and stable functions, and not only of eigenfunctions. 
The infinite zeros or the zeros with unstable values will then intervene as 
fundamental ingredients for the existence of solutions. For a system given under its 
state description, we will designate by “infinite and unstable rollout” the integer 
obtained by calculating the sum of the infinite rollout with the total number of 
unstable invariant zeros (sum of orders of multiplicity, irrespective of the 
corresponding particular (unstable) location). Thus, we obtain fairly simply the 
following results: 

– the disturbance rejection is solvable with internal stability by  
u(t) = Fx(t) + Ld(t) state return if and only if (A, B, C) and (A, [B ¦ E],C) have the 
same rank and the same infinite and unstable rollout; 

– for a system assumed to be reversible on the right, decoupling is solvable with 
internal stability by u(t) = Fx(t) + Gv(t) type regular state return if and only if the 
unstable and infinite rollout of (A,B,C) is equal to the sum of infinite and unstable 
rollouts calculated for each row sub-system (A, B, ci), where ci designates the ith row 
of C.  

4.4.3. Disturbance rejection and decoupling: flexibility in the location of poles/ 
fixed poles 

The results presented in the two previous sections are basically multi-variable in 
nature. They are obviously all the more valid in particular cases like, for example, in 
mono-variable cases. 

In this broad context of multi-variable systems, when the control problem 
considered is solvable, “the” solution is generally non-unique. Apart from 
researching, among all possible solutions, at least one stabilizing solution, we are 
often tempted to take advantage of the remaining degrees of freedom in order to 
fulfill supplementary objectives and especially to target certain poles (not only stable 
but, for example, sufficiently damped) for the solution looped system. The question 
of the possible flexibility in terms of the poles’ position then arises. 
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For the various control problems mentioned in this chapter (i.e. model pursuit, 
disturbance rejection or decoupling, etc.), it turns out that the simple fact of wanting 
to solve this “exact” problem leads to the inevitable appearance of an entire set of 
poles which are present in any solution. These poles are the “fixed poles” of the 
problem considered. Knowing them makes it possible to delimit the constraints 
imposed by the problem in terms of modifications of dynamics. Reaching a few 
“controllability” type (minimal) hypotheses, we can then find solutions that make it 
possible to position all the other poles, except for, obviously, these fixed poles, 
which, again, find their origin in the non-coincidence of certain structures of 
invariant finite zeros. We can in fact set the following results, which make it 
possible to look at the previous section as a particular case. We assume, for all the 
mentioned, cases that the control problem mentioned is solvable, in the sense of 
section 4.4.1: 

– the fixed poles of disturbance rejection by state return coincide with the 
invariant zeros of (A, B, C) which are not invariant zeros of (A, [B ¦ E],C). When 
the extended pair (A, [B ¦ E]) is “globally” controllable (a totally natural 
hypothesis), all the other poles (other than these fixed poles) can be positioned by a 
proper choice of state return; 

– the fixed poles of the decoupling by regular state return coincide with the 
invariant zeros of (A,B,C) which are not in the group obtained by bringing together 
the invariant zeros of each row sub-system (A, B, ci), where ci designates the ith row 
of C. When the pair (A,B) is controllable, all the other poles (other than these fixed 
poles) can be positioned by a proper choice of the state return; 

– the existence of stable solutions is simply equivalent to the juxtaposition of two 
conditions: existence of solutions (section 4.4.1) and stability of all (possible) fixed 
poles.  

4.4.4. Notes and references  

 The disturbance rejection and the diagonal decoupling were the object of 
numerous contributions, i.e. [BAS 92, TRE 01, WOH 85] for geometric treatments. 
Additional information on the treatment of this kind of control problem based on 
rational equations and especially the use of various rings in order to find solutions, 
can be found in [VID 85]. The results pertaining to the existence conditions 
expressed in terms of infinite structures were the object of several theses, such as 
[DIO 83, MAL 85]. Among the most recent contributions that complete the 
presentation of the existence of stable solutions, the use of rollouts and in particular 
the fixed poles and the remaining degrees of freedom, we can mention [MAL 93, 
MAL 97] and [MAR 94, MAR 99]. 
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4.5. Conclusion 

 This chapter is to be considered as an introduction to a structural approach of 
the control. Its main objective was to introduce, by a simultaneous use of geometric 
and algebraic approaches, an entire set of structures closely related to the system 
considered and to illustrate the fundamental role they play in solving the control 
problems. 

The presentation was limited to the linear, stationary and finite size case. 
Extensions of certain results are available for the more general classes of systems, 
for example, non-linear [MOO 87] or with delays [RAB 99]. The object of this final 
section is to mention another extension in the field of optimization. 

4.5.1. Optimal attenuation of disturbance 

When the “exact” disturbance rejection, as formulated at the beginning of section 
4.4, is not solvable with stability due to the presence of at least one unstable fixed 
pole, the designer has the alternative to tone down the objective of the control. 
Instead of targeting an exact rejection, we can limit ourselves to an attenuation 
(optimal if possible) of this disturbance, as per a certain standard. 

This point of view was largely developed by several authors such as Saberi, 
Sannuti and Stoorvogel (see, for example, [SAB 96]). Due to a reformulation of the 
optimization problem into an exact problem where the matrices of the corresponding 
state model are slightly modified [STO 92], the solutions of the H2-optimal 
attenuation problems can be obtained from the analysis of exact rejection problems. 
The same applies for the H2-optimal fixed poles, which are present in any optimal 
solution (see [CAM 00]). 
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Chapter 5

Signals: Deterministic and Statistical Models

5.1. Introduction

This chapter is dedicated to signal modeling procedures and in particular to sta-
tionary random signals. After having discussed the spectral characterization of deter-
ministic signals, with the help of the Fourier transform and energy spectral density, we
will now define the power spectral density of stationary random signals. We will show
that a simple modeling by linear shaper filter excited by a white noise makes it possi-
ble to approach a spectral density with the help of a reduced number of parameters and
we will present a few standard structures of shaper filters. Next, we will extend this
modeling to the case of linear processes with deterministic input, in which the noises
and disturbances can be considered as additional stationary noises. Further on, we will
present the representation in the state space of such a modeling and the relation with
the Markovian processes.

5.2. Signals and spectral analysis

A continuous-time deterministic signal y(t), t ∈ � is, by definition, a function of
� in C:

y : � −→ C
t �−→ y(t)

where variable t designates time. In short, we speak of a continuous signal even if the
signal considered is not continuous in the usual mathematical sense.
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A discrete-time deterministic signal y[k], k ∈ Z is, by definition, a sequence of
complex numbers:

y =
(
y[k]

)
k∈Z

In short, we often speak of a discrete signal. In general, the signals considered,
be they continuous-time or discrete-time, have real values, but the generalization to
complex signals done here does not entail any theoretical problem.

The spectral analysis of deterministic signals consists of decomposing them into
simpler signals (for example, sine curves), in the same way as a point in space is
located by its three coordinates. The most famous technique is the Fourier transform,
from the French mathematician J.B. Fourier (1768–1830), which consists of using
cisoid functions as basic vectors.

The Fourier transform
�
y (f) of a continuous-time signal y(t) is a function of the

form
�
y : f �−→ �

y (f) of a real variable with complex number value, which is defined
for any f by:

�
y (f) =

∫ +∞

−∞
y(t) e−j 2π ft dt [5.1]

We note from now on that if variable t is homogenous to a certain time, then vari-
able f is homogenous to a certain frequency. We will admit that the Fourier transform
is defined (i.e. the integral above converges) if the signal has finite energy. The Fourier

transform does not entail any loss of information. Indeed, knowing
�
y (f), y(t) can be

rebuilt by the following reverse formula; for any t:

y(t) =
∫ +∞

−∞

�
y (f) ej 2π ft df [5.2]

The Fourier transform is in fact the restriction of the two-sided Laplace transform

y̆(s) to the axis of complex operators:
�
y (f) = y̆(j 2π f) with, for any s ∈ C:

y̆(s) =
∫ +∞

−∞
y(t) e−st dt [5.3]

Likewise, the Fourier transform (or normalized frequency transform)
�
y (ν) of a

discrete-time signal y[k] is a function of the form:

�
y : � −→ C

ν �−→ �
y (ν)
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defined for any ν by:

�
y (ν) =

+∞∑
k=−∞

y[k] e−j 2π νk [5.4]

We will accept that the Fourier transform of a discrete-time signal is defined (i.e.
the above sequence converges) if the signal has finite energy. It is periodic of period

1. It is in fact the restriction of two-sided z transform y̆(z) to unit circle:
�
y (ν) =

y̆(ej 2π ν) with, for any z ∈ C:

y̆(z) =
+∞∑

k=−∞
y[k] z−k [5.5]

The Fourier transform does not entail any loss of information. Indeed, knowing
�
y (ν), we can rebuild y[k] by the following reverse formula; for any k:

y[k] =
∫ + 1

2

− 1
2

�
y (ν) ej 2π νk dν [5.6]

The Fourier transform (continuous-time or discrete-time) verifies the following
fundamental problem: it transforms the convolution integral into a simple product. Let
y1(t) and y2(t) be two real variable functions; the convolution integral (y1 ⊗ y2)(t) is
defined for any t by:

(y1 ⊗ y2)(t) =
∫ +∞

−∞
y1(τ) y2(t − τ) dτ [5.7]

Likewise, let y1[k] and y2[k] be two sequences; their convolution integral (y1 ⊗
y2)[k] is defined for any k by:

(y1 ⊗ y2)[k] =
+∞∑

m=−∞
y1[m] y2[k − m] [5.8]

The convolution integral verifies the commutative and associative properties, and
the neutral element is:

– δ(t) Dirac impulse for functions (δ(t) = 0 if we have t �= 0,
∫ +∞
−∞ δ(t) dt = 1);

– δ[k] Kronecker sequence for sequences (δ[0] = 1, δ[k] = 0 if we have k �= 0).

In addition, the convolution of a function or sequence with delayed neutral element
delays it with the same quantity. It is easily verified that the Fourier transform of the
convolution integral is the product of transforms:

(y1 ⊗ y2)� =
�
y 1

�
y 2 [5.9]
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On the other hand, the Fourier transform preserves the energy (Parseval theorem).
Indeed, the energy of a continuous-time signal y(t) or of a discrete-time signal y[k]
can be calculated by the square integration of the Fourier transform module

�
y (f) or

its normalized frequency transform
�
y (ν):

– continuous-time signals:
∫ +∞
−∞ |y(t)|2 dt =

∫ +∞
−∞ |�y (f)|2 df ;

– discrete-time signals:
∑+∞

k=−∞ |x[k]|2 =
∫ + 1

2
− 1

2
|�x(ν)|2 dν.

The function or sequence | �
y |2 is called a power spectrum, or energy spectral

density of signal y because its integral (or its summation) returns the energy of signal
y.

The Fourier transform is defined only for finite energy signals and can be extended
to periodic or impulse signals (with the help of the mathematical theory of distribu-
tions). We will give a few examples below.

EXAMPLE 5.1 (DIRAC IMPULSE). The transform of Dirac impulse is the unit function:

�

δ (f) = 1�(f) [5.10]

EXAMPLE 5.2 (UNIT CONSTANT). It is not of finite energy, but admits a Fourier trans-
form in the sense of distribution theory, which is a Dirac impulse:

�
1�(f) = δ(f) [5.11]

EXAMPLE 5.3 (CONTINUOUS-TIME CISOID). We have the following transformation:

y(t) = ej 2π f0t �
y (f) = δ(f − f0) [5.12]

Therefore, this means that the Fourier transform of the frequency cisoid f0 is an
impulse centered in f0. By using the linearity of the Fourier transform, we easily
obtain the Fourier transform of a real sine curve, irrespective of its initial phase; in
particular:

y(t) = cos(2π f0t)
�
y (f) =

1
2
[
δ(f − f0) + δ(f + f0)

]
[5.13]

y(t) = sin(2π f0t)
�
y (f) =

−j

2
[
δ(f − f0) − δ(f + f0)

]
[5.14]

EXAMPLE 5.4 (KRONECKER SEQUENCE). We immediately obtain:

�

δ (ν) = 1�(ν) [5.15]
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EXAMPLE 5.5 (UNIT SEQUENCE). The Fourier transform of the constant sequence
1Z [k] is the impulse frequency comb Ξ1:

�
1Z(ν) = Ξ1(ν) =

+∞∑
k=−∞

δ(ν − k) [5.16]

EXAMPLE 5.6 (DISCRETE-TIME CISOID). We have the following transform:

y[k] = ej 2π ν0k �
y (f) = Ξ1(ν − ν0) [5.17]

Thus, this means that the Fourier transform of the frequency cisoid ν0 is a fre-
quency comb centered in ν0.

Very often, the spectral analysis of deterministic signals is reduced to visualizing
the energy spectral density, but numerous physical phenomena come along with dis-
turbing phenomena, called “noises”; for example, mechanical systems generate vibra-
tory or acoustic signals which are not periodic and have infinite energy.

The mathematical characterization of such signals is particularly well formalized
in the case of stationary and ergodic random signals:

– random: this means that, in the same experimental conditions, two different
experiences generate two different signals. The mathematical treatment can thus be
only probabilistic, the signal observed being considered as the realization of a random
variable;

– stationary: the statistical characteristics are then independent of the time origin;

– ergodic: any statistical information is included in a unique realization of infinite
duration.

In any case, the complete characterization of such signals is expressed with the
help of the combined probability law of the values taken by the signal in different
instants, irrespective of these instants and their number. For example, for a Gaussian
random signal, this combined law is Gauss’ probability law. For a white random signal
(or independent), this combined density is equal to the product of marginals (to clarify
a current confusion, we note that these two notions are not equivalent: a Gaussian
signal can be white or not, a white signal can be Gaussian or not). In practice, we have
the second order statistical analysis that deals only with the first and second order
moments, i.e. the mean and the autocorrelation function.

A discrete-time random signal y[k], k ∈ Z is called stationary in the broad sense
if its mean my and its autocorrelation function ryy[κ] defined by:{

my = E(y[k])
ryy[κ] = E((y[k] − my)∗ (y[k + κ] − my)) ∀κ ∈ Z [5.18]
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are independent of index k, i.e. independent of the time origin. σ2
y = ryy[0] is the

variance of the signal considered. ryy [κ]
σ2

y
is the correlation coefficient between the sig-

nal at instant k and the signal at instant k + κ. It is traditional to remain limited only
to the mean and the autocorrelation function in order to characterize a stationary ran-
dom signal and this even if the characterization, referred to as of second order, is very
incomplete (it is sufficient only for the Gaussian signals).

In practice, there is only one realization y[k], k ∈ Z of a random signal y[k] for
which we can define its time mean 〈y[k]〉:

〈y[k]〉 = lim
N→∞

1
2N + 1

N∑
k=−N

y[k] [5.19]

The random signal y[k] is called ergodic for the mean if mean my is equal to the
time mean of any realization y[k] of this random signal:

E(y[k]) = 〈y[k]〉 ergodicity for the mean [5.20]

In what follows, we will suppose that the random signal y[k] is ergodic for the
mean and, to simplify, of zero mean.

The random signal y[k] is called ergodic for the autocorrelation if the autocorre-
lation function ryy[κ] is equal to the time mean 〈y∗[k] y[k + κ]〉 calculated from any
realization y[k] of this random signal:

E (y∗[k]y[k + κ]) = 〈y∗[k] y[k + κ]〉 ∀κ ∈ Z [5.21]

ergodicity for the autocorrelation

this time mean being defined for any κ by:

〈y∗[k] y[k + κ]〉 = lim
N→∞

1
2N + 1

N∑
k=−N

y∗[k] y[k + κ] [5.22]

The simplest example of ergodic stationary random signal for the autocorrelation
is the cisoid a ej (2π ν0k+φ), k ∈ Z of initial phase φ evenly distributed between 0
and 2π, of autocorrelation function a2 ej 2π ν0κ, κ ∈ Z . However, the ergodicity is lost
if the amplitude is also random. In practice, the ergodicity can be rigorously verified
only rarely. In general, it is a hypothesis – necessary in order to obtain the second order
statistical characteristics of a random signal considered from a single realization.
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Under the ergodic hypothesis, the variance σ2
y of the signal considered is equal to

the power 〈|y[k]|2〉 of any realization y:

σ2
y = 〈|y[k]|2〉 = lim

N→∞
1

2N + 1

N∑
k=−N

|y[k]|2 [5.23]

i.e. the energy of the signal y multiplied by the truncation window 1−N,N which is
equal to 1 on the interval {−N, . . . , N} and zero otherwise, divided by the length of
this interval when N → +∞. With the help of Parseval’s theorem, we obtain:

σ2
y = lim

N→∞
1

2N + 1

∫ + 1
2

− 1
2

|(y 1−N,N )�(ν)|2 dν

=
∫ + 1

2

− 1
2

{
lim

N→∞
1

2N + 1
|(y 1−N,N )�(ν)|2

}
dν [5.24]

Hence, through formula [5.24], we have decomposed the power of the signal on the
frequency axis, with the help of function ν �−→ limN→∞ 1

2N+1 |(y 1−N,N )�(ν)|2. In
numerous works, we define the power spectral density (or power spectrum, or spec-
trum) of a stationary random signal by this function. However, in spite of the ergodic
hypothesis, we can show that this function depends on the realization considered. We
will define here the power spectral density (or power spectrum) Syy as the mean of
this function:

Syy(ν) = lim
N→∞

E

(
1

2N + 1
|(y 1−N,N )�(ν)|2

)
[5.25]

= lim
N→∞

E

(
1

2N + 1

⏐⏐⏐⏐ N∑
k=−N

y[k] e−j 2π νk

⏐⏐⏐⏐2
)

[5.26]

Hence, we have two characterizations of a stationary random signal in the broad
sense, ergodic for the autocorrelation. Wiener-Khintchine’s theorem makes it possible
to show the equivalence of these two characterizations. Under the hypothesis that the
sequence (κ ryy[κ]) is entirely integrable, let:

+∞∑
κ=−∞

|κ ryy[κ]| < ∞ [5.27]

then, the power spectral density is the Fourier transform of the autocorrelation function
and the two characterizations defined above coincide:

Syy(ν) =
�
r yy(ν) [5.28]

=
+∞∑

κ=−∞
ryy[κ] e−j 2π νκ [5.29]
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Indeed, by developing expression [5.26], we obtain:

Syy(ν) = lim
N→∞

1
2N + 1

E

(
N∑

n=−N

N∑
k=−N

y[n]y∗[k] e−j 2π ν(n−k)

)

= lim
N→∞

1
2N + 1

N∑
n=−N

N∑
k=−N

ryy[n − k] e−j 2π ν(n−k)

= lim
N→∞

1
2N + 1

2N∑
κ=−2N

ryy[κ] e−j 2π νκ

× card {(n, k) | κ = n − k and |n| ≤ N and |k| ≤ N}︸ ︷︷ ︸
2N+1−|κ|

= lim
N→∞

2N∑
κ=−2N

(
1 − |κ|

2N + 1

)
ryy[κ] e−j 2π νκ

=
�
r yy(ν) − lim

N→∞
1

2N + 1

2N∑
κ=−2N

|κ| ryy[κ] e−j 2π νκ

Under hypothesis [5.27], the second term above disappears and we obtain formula
[5.29].

These considerations can be reiterated briefly for continuous-time signals. A conti-
nuous-time random signal y(t), t ∈ � is called stationary in the broad sense if its
mean my and its autocorrelation function ryy(τ) defined by:{

my = E(y(t))
ryy(τ) = E((y(t) − my)∗ (y(t + τ) − my)) ∀τ ∈ � [5.30]

are independent of time t.

For a realization y(t), t ∈ � of a random signal y(t), the time mean 〈y(t)〉 is
defined by:

〈y(t)〉 = lim
T→∞

1
2T

∫ T

−T

y(t) dt [5.31]

The ergodicity for the mean is written:

E (y(t)) = 〈y(t)〉 [5.32]

In what follows, we will suppose that the random signal y(t) is ergodic for the
mean and, to simplify, of zero mean.
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The random signal y(t) is ergodic for the autocorrelation if:

E (y∗(t)y(t + τ)) = 〈y∗(t) y(t + τ)〉 ∀τ ∈ � [5.33]

this time mean being defined for any τ by:

〈y∗(t) y(t + τ)〉 = lim
T→∞

1
2T

∫ T

−T

y∗(t) y(t + τ) dt [5.34]

The power spectral density Syy is expressed by:

Syy(f) = lim
T→∞

E

(
1

2T
|(y 1−T,T )�(f)|2

)
[5.35]

= lim
T→∞

E

(
1

2T

⏐⏐⏐⏐
∫ T

−T

y(t) e−j 2π ft dt

⏐⏐⏐⏐2
)

[5.36]

If function (τ ryy(τ)) is entirely integrable, let:∫ +∞

−∞
|τ ryy(τ)|dτ < ∞ [5.37]

then the power spectral density is the Fourier transform of the autocorrelation function:

Syy(f) =
�
r yy(f) [5.38]

=
∫ +∞

−∞
ryy(τ) e−j 2π fτ dτ [5.39]

Power spectral density is thus a method to characterize the spectral content of a
stationary random signal. For a white signal, the autocorrelation function is expressed,
with q > 0, by:

ryy = qδ [5.40]

Through the Fourier transform, we realize immediately that such a signal has a
power spectral density constant and equal to q.

Under the ergodic hypothesis, for the discrete-time signals, the power spectral den-
sity can be easily estimated with the help of the periodogram; given a recording of N
points y[0], . . . , y[N − 1] and based on expression [5.26], the periodogram is written:

Iyy(ν) =
1
N

|(y 10,N−1)�(ν)|2 [5.41]

=
1
N

⏐⏐⏐⏐N−1∑
k=0

y[k] e−j 2π νk

⏐⏐⏐⏐2

[5.42]
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where 10,N−1 is the rectangular window equal to 1 on the interval {0, . . . , N − 1}
and zero otherwise. With regard to the initial definition of power spectral density, we
lost the mathematical expectation operator as well as the limit passage. This estimator
is not consistent and several variants were proposed: Bartlett’s periodograms, modi-
fied periodograms, Welsh’s periodograms, correlogram, etc. The major drawback of
the periodogram, and more so of its variants, is the bad resolution, i.e. the capability
to separate the spectral components coming from close frequency sine curves. More
recently, methods based on a signal modeling were proposed, which enable better res-
olution performances than those of the periodogram.

5.3. Generator processes and ARMA modeling

Let us take a stable linear process with an impulse response h, which is excited by
a stationary random signal e, with output y:

y = h ⊗ e [5.43]

Hence, we directly obtain that signal y is stationary and its autocorrelation function
is expressed by:

ryy = h ⊗ h∗− ⊗ ree [5.44]

where h∗− represents the conjugated and returned impulse response (h∗−(t) =
(h(−t))∗). Through the Fourier transform, the power spectral density of y is expressed
by:

Syy =
∣∣�h ∣∣2See [5.45]

In particular, if e is a white noise of spectrum q, then:

Syy = q
∣∣�h ∣∣2 [5.46]

Inversely, given a stationary random signal y with a power spectral density Syy ,
if there is an impulse response h and a positive real number q so that we can write
formula [5.46], we say that this system is a generating process (or a shaper filter) for
y. Everything takes place as if we could consider signal y as the output of a linear
process with an impulse response h excited by a white noise of spectrum q.

This modeling depends, however, on any impulse response h of the shaper filter.
In order to be able to obtain a modeling with the help of a finite number of parameters,
we know only one solution to date: the system of impulse response h has a rational
transfer function. Consequently, we are limited to the signals whose power spectral
density is a rational fraction in j 2π f for continuous-time and ej 2π ν for discrete-
time. Nevertheless, the theory of rational approximation indicates that we can always
get as close as we wish to a function through a rational function of sufficient degrees.
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Since the module of the transfer function of an all-pass filter is constant, such
a filter does not enable under any circumstance to model a certain form of power
spectral density. Hence, we will suppose that the impulse response filter h is causal
with minimum of phase, i.e. its poles and zeros are strictly negative real parts for
continuous-time and of a module strictly inferior to 1 for discrete-time.

Finally, we note that formula [5.46] is redundant, i.e. the amplitude of power spec-
trum Syy can be set either by the value of spectrum q or by the value of the filter
gain for a given frequency. Hence, it is preferable to set the impulse response h, or its
Fourier transform, in a certain sense.

For discrete-time, it is usual to choose a direct transmission shaper filter (h[0] �= 0)
and the impulse response is normalized with h[0] = 1 (in this case we say that the
filter is monic). The equivalent for continuous-time consists of considering an impulse
response with a Dirac impulse of unitary weight at instant 0. If this condition does not
entail any constraint in the case of discrete-time (a pure delay being in this case an
all-pass filter), in the case of continuous-time it implies that the power spectral density
of the signal is not cancelled in high frequency.

For discrete-time, the transfer function of the filter is thus written:

h̆(z) =
c̆(z)
ă(z)

=

1 +
nc∑

n=1

c[n] z−n

1 +
na∑

n=1

a[n] z−n

[5.47]

The orders na and nc characterize the structure chosen. The parameter vector
θ = [q, a[1], . . . , a[na], c[1], . . . , c[nc]] is then necessary and sufficient to correctly
characterize the shaper filter.

In the case of a finite impulse response filter (na = 0), we talk of an MA (moving
average) model because signal y[k] is expressed with the help of a weighted average
of the input e[k] on a sliding window:

y[k] = e[k] + c[1] e[k − 1] + · · · + c[nc] e[k − nc] [5.48]

The MA model is particularly capable of representing the power spectrums pre-
senting strong attenuations in the proximity of given frequencies (see Figure 5.1).
Indeed, if c̆(z) admits a zero of a module close to 1 and of argument 2π ν0, then the
power spectrum is almost zero in the proximity of ν0.
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Figure 5.1. Typical power spectrum of an MA (left)
or AR (right) model

In the case of a single denominator (nc = 0), we talk of an AR (autoregressive)
model, because signal y[k] at instant k is expressed with the help of a regression on
the signal values at the previous instants:

y[k] = −a[1] y[k − 1] − · · · − a[na] y[k − na] + e[k] [5.49]

The AR model is particularly supported for two reasons. On the one hand, its esti-
mation by maximum likelihood, with the help of a finite period recording of signal
y, reaches an explicit solution (in the general case, we would have to call upon an
optimization procedure). On the other hand, it is particularly capable of representing
power spectrums presenting marked peaks in the proximity of certain frequencies, i.e.
signals presenting marked periodicities (see Figure 5.1); for example, Prony’s ances-
tral method, pertaining to the estimation of the frequency of noisy sine curves, deals
with determining the argument of the poles of an AR model identified by maximum
likelihood.

In the general case, we speak of an ARMA (autoregressive with moving average)
model:

y[k] = −a[1] y[k − 1] − · · · − a[na] y[k − na]

+ e[k] + c[1] e[k − 1] + · · · + c[nc] e[k − nc] [5.50]

Finally, we note that the choice of normalization h[0] = 1 is not innocent. Indeed,
the predictor filter of one count providing ŷ[k], prediction of y[k] on the basis of
previous observations y[k − 1], y[k − 2], . . ., obtained from the shaper filter [5.47] as:

ŷ[k] =
(

1 − ă(z)
c̆(z)

)
y[k] [5.51]

is the optimal predictor filter, in the sense of the prediction error variance y[k]− ŷ[k],
among all linear filters without direct transmission. This prediction error is then rigor-
ously the white sequence e[k].
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5.4. Modeling of LTI systems and ARMAX modeling

Let us take a linear time-invariant (LTI) system, of impulse response g. The
response of this system at the known deterministic input u is g⊗u, which can thus be
calculated exactly. However, this is often unrealistic, because there are always signals
that affect the operating mode of the system (measurement noises, non-controllable
inputs). In a linear context, we will suppose here that these parasite phenomena
are translated by an additional term v on the system output. The output y is then
expressed by:

y = g ⊗ u + v [5.52]

Hence, it is natural to propose a probabilistic context for this disturbance v and to
consider it as a stationary random signal, admitting a representation by shaper filter;
the output measured y is then expressed by:

y = g ⊗ u + h ⊗ e [5.53]

where u is the known deterministic input, e an unknown white noise of spectrum q, g
the impulse response of the system and h the impulse response of the shaper filter. We
suppose that h and g are the impulse responses of the systems with rational transfer
function, and, to simplify, that g does not have direct transmission.

5.4.1. ARX modeling

For discrete-time, the simplest relation input-output is the following difference
equation:

y[k] = −a[1] y[k − 1] − · · · − a[na] y[k − na]

+ b[1]u[k − 1] + · · · + b[nb]u[k − nb] + e[k] [5.54]

where the term of white noise e[k] enters directly in the difference equation. This
model is hence called “equation error model”. Thus, the transfer functions become:

ğ(z) =
b̆(z)
ă(z)

=

nb∑
n=1

b[n]z−n

1 +
na∑

n=1

a[n]z−n

[5.55a]

h̆(z) =
1

ă(z)
=

1

1 +
na∑

n=1

a[n]z−n

[5.55b]

We also talk of ARX modeling, “AR” referring to the modeling of the additional
noise and “X” to the exogenous input u[k]. Given the orders na and nb, the parame-
ter vector θ = [q, a[1], . . . , a[na], b[1], . . . , b[nb]] fully characterizes the system. This
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model is not especially realistic but, as in the case of AR, we can show that the iden-
tification by maximum likelihood of an ARX model leads to an explicit solution.

5.4.2. ARMAX modeling

The ARX model does not give much freedom on the statistical properties of the
additional noise. A solution consists of describing the equation error with the help of
a running average:

y[k] = −a[1] y[k − 1] − · · · − a[na] y[k − na]

+ b[1]u[k − 1] + · · · + b[nb]u[k − nb]

+ e[k] + c[1] e[k − 1] + · · · + c[nc] e[k − nc] [5.56]

Thus, the transfer functions become:

ğ(z) =
b̆(z)
ă(z)

=

nb∑
n=1

b[n]z−n

1 +
na∑

n=1

a[n]z−n

[5.57a]

h̆(z) =
c̆(z)
ă(z)

=

1 +
nc∑

n=1

c[n]z−n

1 +
na∑

n=1

a[n]z−n

[5.57b]

We talk of ARMAX modeling, “ARMA” pertaining to the modeling of the addi-
tional noise. Given the orders na, nb and nc, the parameter vector θ = [q, a[1], . . . ,
a[na], b[1], . . . , b[nb], c[1], . . . , c[nc]] fully characterizes the system.

5.4.3. Output error model

In the particular case of the ARMAX model where we take c̆(z) = ă(z), the
transfer functions become:

ğ(z) =
b̆(z)
ă(z)

=

nb∑
n=1

b[n]z−n

1 +
na∑

n=1

a[n]z−n

h̆(z) = 1 [5.58]

Hence, only an additional white noise remains on the process output. We talk
of an output error (OE) model. Given the orders na and nb, the parameter vector
θ = [q, a[1], . . . , a[na], b[1], . . . , b[nb]] fully characterizes the system. We can show
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that even if this hypothesis is false (i.e. if the additional noise if colored), the identifi-
cation of θ by maximum likelihood leads to an asymptotically non-biased estimation
(but this estimation is not of minimal variance in this case).

5.4.4. Representation of the ARMAX model within the state space

We present here the reverse canonical form, in which the coefficients of transfer
functions appear explicitly, which is written by assuming that d = max na, nb, nc the
size of the state vector x and by possibly completing sequences a, b or c by zeros:{

x[k + 1] = Ax[k] + B u[k] + K e[k]
y[k] = C x[k] + e[k]

[5.59]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a[1] 1 0 · · · · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
−a[d − 1] 0 · · · · · · 0 1
−a[d] 0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[5.60a]

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b[1]
...
...
...
...

b[d]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c[1] − a[1]
...
...
...
...

c[d] − a[d]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[5.60b]

C =
[

1 0 · · · · · · · · · 0
]

[5.60c]

5.4.5. Predictor filter associated with the ARMAX model

The one count predictor filter providing ŷ[k], prediction of y[k] on the basis of
the previous observations y[k − 1], y[k − 2], etc., and of input u[k], u[k − 1], etc., is
obtained as:

ŷ[k] =
b̆(z)
c̆(z)

u[k] +
(

1 − ă(z)
c̆(z)

)
y[k] [5.61]

It is the optimal predictor filter, in the sense of the second momentum of the pre-
diction error y[k] − ŷ[k], among all linear filters without direct transmission on y[k].
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This prediction error is then rigorously the white sequence e[k]. This is the basis of
the identification methods for ARMAX models through the prediction error method.
Given an input-output recording of N points (u[k], y[k])0≤k≤N−1, we will choose
among all the predictor filters of the form [5.61], which is parameterized by θ and
providing a prediction yθ[k], the one that minimizes the square mean of the prediction
error:

θ̂ = arg min
θ

1
N

N−1∑
k=0

∣∣y[k] − ŷθ[k]
∣∣2 [5.62]

This estimator is in fact the estimator of maximum likelihood in the case of a
Gaussian white noise hypothesis. We note that the hypothesis of a shaper filter with
minimum phase leads to a stable causal predictor.

5.5. From the Markovian system to the ARMAX model

The representation within the state space [5.59], in which the unique noise
sequence e[k] intervenes both on the equation of state and on the equation of meas-
urement, is called “innovation form” or “filter form”. However, by generalizing to the
study of systems with m inputs (u[k] is a vector with m lines) and p outputs (y[k] is a
vector with p lines), the random contributions are usually represented with the help
of two noises v[k] (the noise of the system) and w[k] (the measurement noise) in a
representation within the state space of size d as follows:{

x[k + 1] = Ax[k] + B u[k] + v[k]
y[k] = C x[k] + w[k]

[5.63]

where v[k] and w[k] are two white noises of spectra Q and R respectively and of
interspectrum S, i.e.: ⎧⎪⎨

⎪⎩
E (v∗[k] vT [k + κ]) = Qδ[k]
E (w∗[k]wT [k + κ]) = R δ[k]
E (v∗[k]wT [k + κ]) = S δ[k]

[5.64]

Noise v[k] generally represents the uncertainties on the process model or the dis-
turbances on the exogenous input. Noise w[k] generally represents the measurement
noise. We talk of a Markovian system.

However, Kalman’s filtering (see Chapter 7) enables us to show that it is always
possible to represent such a system in the innovation form, as:{

x̂[k + 1] = A x̂[k] + B u[k] + K e[k]
y[k] = C x̂[k] + e[k]

[5.65]
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where x̂[k], e[k] and K are the state prediction, the innovation (and we can prove it
is white) and the gain of Kalman’s stationary filter operating on model [5.63]. Such a
form is minimal, in the sense that it entails only as many noises as measurements.

In the particular mono-input-mono-output case, we find the ARMAX model,
whose canonical form is given in [5.60].
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Chapter 6 

Kalman’s Formalism for State  
Stabilization and Estimation 

We will show how, based on a state representation of a continuous-time or 
discrete-time linear system, it is possible to elaborate a negative feedback loop, by 
assuming initially that all state variables are measurable. Then we will explain how, 
if it is not the case, it is possible to build the state with the help of an observer. 
These two operations bring about similar developments, which use either a pole 
placement or an optimization technique. These two approaches are presented 
successively. 

6.1. The academic problem of stabilization through state feedback  

Let us consider a time-invariant linear system described by the following 
continuous-time equations of state: 

)()()( tuBtxAtx +=    ;   0)0( ≠x  [6.1] 

where nx R∈  is the state vector and mu R∈  the control vector. The problem is 
how to determine a control that brings )(tx  back to 0, irrespective of the initial 
condition )0(x . In this chapter, our interest is mainly in the state feedback controls, 
which depend on the state vector x. A linear state feedback is written as follows: 

                                   
Chapter written by Gilles DUC.   
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)()()( tetxKtu +−=  [6.2] 

where K  is an nm×  matrix (Figure 6.1) and signal )(te  represents the input of the 
looped system..  

The equations of the looped system are written as follows: 

= − +( ) ( ) ( ) ( )x t A BK x t Be t  [6.3] 

 

Figure 6.1. State feedback linear control 

Hence, the state feedback control affects the dynamics of the system which 
depends on the eigenvalues of KBA −  (let us recall that the poles of the open loop 
system are eigenvalues of A; similarly, the poles of the closed loop system are 
eigenvalues of KBA − ). 

In the case of a discrete-time system described by the equations: 

kkk uGxFx +=+1    ;   00 ≠x  [6.4] 

the state feedback and the equations of the looped system can be written: 

kkk exKu +−=  [6.5] 

+ = − +1 ( )k k kx F GK x Ge    ;   00 ≠x  [6.6] 

so that the dynamics of the system depends on the eigenvalues of KGF − . 

The research for matrix K can be done in various ways. In the following section, 
we will show that under certain conditions, it makes it possible to choose the poles 
of the looped system. In section 6.4, we will present the quadratic optimization 
approach, which consist of minimizing a criterion based on state and control vectors.  
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6.2. Stabilization by pole placement 

6.2.1. Results 

The principle of stabilization by pole placement consists of a priori choosing the 
poles preferred for the looped system, i.e. the eigenvalues of KBA −  in 
continuous-time (or of KGF −  in discrete-time) and then to obtain matrix K 
ensuring this choice. The following theorem, belonging to Wonham, specifies on 
which condition this approach is possible. 

THEOREM 6.1.– a real matrix K  exists irrespective of the set of eigenvalues 
λ λ1{ , , }n , real or conjugated complex numbers chosen for KBA −  (for 

KGF −  respectively) if and only if ),( BA  ( ),( GF respectively) is controllable.   

Demonstration. It is provided for continuous-time but it is similar for discrete-time 
as well. Firstly, let us show that the condition is sufficient: if the system is not 
controllable, it is possible, through passage to the controllable canonical form (see 
Chapter 2), to express the state equations as follows: 
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By similarly decomposing the state feedback [6.2]: 

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
1

1 2
2

( )
( ) ( ) ( )
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x t
u t K K e t

x t
 [6.8] 

the equation of the looped system is written: 
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 [6.9] 

so that, the state matrix being block-triangular, the eigenvalues of the looped system 
are the totality of eigenvalues of sub-matrices 1111 KBA −  and 22A . The 
eigenvalues of the non-controllable part are thus, by all means, eigenvalues of the 
looped system. 

Let us suppose now that the system is controllable. In this part, we will assume 
that the system has only one control; however, the result cannot be extended to the 
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case of multi-control systems. As indicated in Chapter 2, the equations of state can 
be expressed in companion form: 
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By writing the state feedback [6.2] as: 
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the equation of the looped system remains in companion form: 
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 [6.12] 

so that the characteristic polynomial of the looped system is written: 

λ λ λ −− − = + + + + +1
1 1det ( ( )) ( ) ( )n n

n nI A BK a k a k  [6.13] 

We see that, by choosing the state feedback coefficients, it is possible to 
arbitrarily set each characteristic polynomial coefficient so that we can arbitrarily set 
its roots, which are precisely the eigenvalues of the looped system. In addition, 
matrix K is thus uniquely determined.   

Theorem 6.1 thus shows that it is possible to stabilize a controllable system 
through a state feedback (it is sufficient to take all iλ  with a negative real part in 
continuous-time, inside the unit circle in discrete-time). More generally, it shows 
that the dynamics of a controllable system can be randomly set for a linear state 
feedback. 
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 However, in this chapter we will not deal with the practical issue of choosing 
the eigenvalues. Similarly, we note that for a multi-variable system (i.e. a system 
with several controls), the choice of eigenvalues is not enough in order to uniquely 
set matrix K. Degrees of freedom are also possible for the choice of the eigenvectors 
of matrices KBA −  or KGF − . Chapter 14 will tackle these aspects in detail. 

6.2.2. Example 

Let us consider the system described by the following equations of state: 
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 [6.14] 

We can verify that this system is controllable: 

2
11

10
rank )  (rank =

−
= ⎟

⎠
⎞

⎜
⎝
⎛ABB  [6.15] 

We obtain, with = 1 2( )K k k  : 

λ
λ λ λ

λ
−

− − = = + + +
+ +

2
2 1

1 2

1
det ( ( )) (1 )

1
I A BK k k

k k
 [6.16] 

and by identifying with a second order polynomial written in the normalized form: 

λ λ+ + +2
2 1(1 )k k   ≡  2

00
2 2 ωλωξλ ++    ⇔   

⎪⎩

⎪
⎨
⎧

−=
=

12 02

2
01
ωξ

ω
k
k  [6.17] 

Figure 6.2 shows the evolution of the output and the control, in response to the 
initial condition =(0) (1 1)Tx , for different values of 0ω  and ξ: the higher 0ω  is, 
the faster the output returns to 0, but at the expense of a stronger control, whereas 
the increase of ξ  leads to better dynamics. 
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Figure 6.2. Stabilization by pole placement 

6.3. Reconstruction of state and observers 

6.3.1. General principles 

The disadvantage of state feedback controls, like the ones mentioned in the 
previous chapter, is that in practice we do not always measure all the components of 
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state vector x .  In this case, we can build a dynamic system called observer, whose 
role is to rebuild the state from the information available, i.e. the controls u and all the 
available measures. The latter will be grouped together into a z vector (Figure 6.3). 

 

Figure 6.3. The role of an observer 

6.3.2. Continuous-time observer 

Let us suppose that the equations of state are written: 

⎩
⎨
⎧

=
+=

)()(
)()()(

txCtz
tuBtxAtx

 [6.18] 

The equations of a continuous-time observer, whose state is marked )(ˆ tx , are 
calculated on those of the system, but with a supplementary term: 

⎧ = + + −⎪
⎨

=⎪⎩

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆˆ( ) ( )

x t A x t B u t L z t z t

z t C x t
 [6.19] 

The observer equation of state includes a term proportional to the difference 
between the real measures )(tz  and the reconstructions of measures obtained from the 
observer’s state, with an L gain matrix. In the case of a system with n  state variables 
and q  measures (i.e. dim( x ) = dim( x̂ ) = n , dim( z ) = q ), L is an qn ×  matrix. 

Equations [6.19] correspond to the diagram in Figure 6.4: in the lower part of the 
figure we see equations [6.18] of the system we are dealing with. The failure term 
with the L  gain matrix completes the diagram. 

Hence, equations [6.19] can be written as follows: 

)()()(ˆ)()(ˆ tzLtuBtxCLAtx ++−=  [6.20] 

which makes the observer look like a state system ),(ˆ tx  with the inputs )(tu  and 
( )z t  and with the state matrix CLA − . We infer that the observer is a stable 

system if and only if all the eigenvalues of CLA −  are strictly negative real parts. 
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Figure 6.4. Structure of the observer 

Let us now consider the reconstruction error )(tε  that appears between )(tx  
and )(ˆ tx . Based on [6.18] and [6.19], we obtain: 

)ˆˆ()(ˆ xCLxCLuBxAuBxAxx −++−+=−=ε  

)()()( tCLAt εε −=  [6.21] 

and hence the reconstruction error )(tε  tends toward 0 when t  tends toward infinity 
if and only if the observer is stable. In addition, the eigenvalues of CLA −  set the 
dynamics of )(tε . Hence, the problem is to determine an L gain matrix ensuring 
stability with a satisfactory dynamics.  

6.3.3. Discrete-time observer 

The same principles are applied for the synthesis of a discrete-time observer; if 
we seek to rebuild the state of a sampled system described by: 

⎩
⎨
⎧

=
+=+

kk

kkk
xCz

uGxFx 1  [6.22] 

the observer’s equations can be written in the two following forms: 

+ = + + −⎧
⎨ =⎩

1ˆ ˆ ˆ( )

ˆˆ
k k k k k

k k

x F x G u L z z

z C x
 [6.23] 

kkkk zLuGxCLFx ++−=+ ˆ)(ˆ 1  [6.24] 
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From equations [6.22] and [6.23] we infer that the reconstruction error verifies: 

kk CLF εε )(1 −=+  [6.25] 

In order to guarantee the stability of the observer and, similarly, the convergence 
toward 0 of error kε , matrix L  must be chosen so that all the eigenvalues of 

CLF−  have a module strictly less than 1. 

According to [6.23] or [6.24], we note that the observer operates as a predictor: 
based on the information known at instant k, we infer an estimation of the state at 
instant 1+k . Hence, this calculation does not need to be supposed infinitely fast 
because it is enough that its result is available during the next sampling instant. 

6.3.4. Calculation of the observer by pole placement 

 We note the analogy between the calculation of an observer and the calculation 
of a state feedback, discussed in section 6.1: at that time, the idea was to determine a 
K gain matrix that would guarantee to the looped system a satisfactory dynamics, the 
latter being set by the eigenvalues of KBA −  (or KGF −  for discrete-time). The 
difference is in the fact that the matrix to determine appears on the right in product 

KB  (or KG ), whereas it appears on the left in product CL . 

However, the eigenvalues of A–LC are the same as the ones of AT–CTLT, 
expression in which the matrix to determine LT appears on the right. Choosing the 
eigenvalues of AT–CTLT is thus exactly a problem of stabilization by pole placement: 
the results listed in section 6.1 can thus be applied here by replacing matrices A  and 
B  (or F  and G ) by TA  and TC  (or TF and CT) and the state feedback K  by LT. 

Based on Theorem 6.1, we infer that matrix L  exists for any set of eigenvalues 
λ λ1{ , , }n  chosen a priori if and only if ),( TT CA  is controllable. However, we 

can write the following equivalences: 

),( TT CA  controllable ⇔  nTCnTATCTATCrank =− ]1)(   [   ⇔ 

n

nAC

AC
C

rank =

− ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1  

  
   ⇔  ),( AC  observable  [6.26] 
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Hence, we can arbitrarily choose the eigenvalues of the observer if and only if 
the system is observable through the measures available. Naturally, the result 
obtained from equation [6.26] can be used for the discrete-time case by simply 
replacing matrix A  with matrix F.  

6.3.5. Behavior of the observer outside the ideal case 

The results of sections 6.3.2 and 6.3.3, even if interesting, describe an ideal case 
which will never be achievable in practice. Let us suppose, for example, that a 
disturbance )(tp  is applied on the system [6.18]: 

⎩
⎨
⎧

=
++=

)()(
)()()()(

txCtz
tpEtuBtxAtx

 [6.27] 

but observer [6.19] is not aware of it and then a calculation identical to the one in 
section 6.3.2 shows that the equation obtained for the reconstruction error can be 
written: 

)()()()( tpEtCLAt +−= εε  [6.28] 

so that the error does not tend any longer toward 0. If )(tp  can be associated with a 
noise, Kalman filtering techniques can be used in order to minimize the variance of 

)(tε . We provide a preview of this aspect in section 6.5.3. 

If we suppose that modeling uncertainties affect the state matrix of system 
[6.18], so that a matrix AA ≠'  intervenes in this equation, then the reconstruction 
error is governed by the following equation: 

)()'()()()( txAAtCLAt −+−= εε  [6.29] 

so that there again the error does not tend toward 0. 

NOTE 6.1.–  observers [6.19] or [6.23] rebuild all state variables, operation that may 
seem superfluous if the measures available are of very good quality (especially if the 
measurement noises are negligible): from the moment the observation equation 
already provides q  linear combinations (that we will suppose independent) of state 
variables, it is sufficient to reconstitute qn − , independent from the previous ones. 
Therefore, we can synthesize a reduced observer, following an approach similar to 
the one presented in these sections (see [FAU 84, LAR 96]). However, the physical 
interpretation underlined in section 6.3.2, where the observer appears naturally as a 
physical model of the system completed by a retiming term, is lost. 



Kalman’s Formalism for State Stabilization and Estimation     169 

6.3.6. Example 

Let us consider again the system described by equations [6.14]: 
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We can verify that this system is observable: 
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 [6.30] 

The observer’s equations can be written, by noting = 1 2( ) :TL l l   
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The characteristic polynomial of the observer is written: 

λ
λ λ λ

λ
+ −

− − = = + + + +
+

1 2
1 1 2
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1
det ( ( )) (1 ) ( )

1
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I A L C l l l
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 [6.32] 

and by identifying with a second order polynomial written in normalized form: 

( ) ( )211
2 1 lll ++++ λλ   ≡  2

00
2 2 ωλωξλ ++    ⇔ 
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 [6.33] 
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Figure 6.5. Observer by pole placement 

 Figure 6.5 shows the evolution of the two state variables in response to the 
initial condition =(0) (1 1)Tx  and the evolutions of the state variables of the 
observer initialized by =ˆ(0) (0 0)Tx  for different values of 0ω : the higher 0ω  is, 
the faster the observer’s state joins the systems’ state.  
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6.4. Stabilization through quadratic optimization 

6.4.1. General results for continuous-time 

Let us consider again system [6.1], with an initial condition x(0) ≠ 0. The 
question now is to determine the control that enables to bring back )(tx  state to 0, 
while minimizing the criterion: 

∫
∞ += 0 )( )()()()( dttuRtutxQtxJ TT  [6.34] 

where Q  and R  are two symmetric matrices, one positive semi-defined and the 
other one positive defined: 

0≥= TQQ   ,  0>= TRR  [6.35] 

(hence, we have 0≥xQxT  x∀  and 0>uRuT  0≠∀u ). Since matrix Q  is 
symmetric, we will write it in the form = ,TQ H H  where H  is a full rank 
rectangular matrix. 

The solution of the problem is provided by Theorem 6.2. 

THEOREM 6.2.– if conditions [6.35] are verified, and also if: 

( , )   
( , )    
A B is stabilizable
H A is detectable

⎧
⎨
⎩

   [6.36] 

there is a unique, symmetric and positive semi-defined matrix P, which is the 
solution of the following equation (called Riccati’s equation): 

01 =+−+ − QPBRBPPAAP TT  [6.37] 

The control that minimizes criterion [6.34] is given by: 

⎩
⎨
⎧

=
−=
− PBRK

txKtu
T1

)()(
 [6.38] 
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It guarantees the asymptotic stability of the looped system: 

)()()( txKBAtx −=   is such that: 0)()0(
∞→

→∀
t

txx  [6.39] 

The value obtained for the criterion is then )0()0(* xPxJ T= .   

Elements of demonstration 

The condition of stabilizability of ),( BA  is clearly a necessary condition for the 
existence of a control that stabilizes the system. We will admit that it is also a 
sufficient condition for the existence of a matrix P, symmetric and positive semi-
defined, solution of Riccati’s equation [MOL 77]. If, moreover, (H, A) is detectable, 
we show that this matrix is unique [ZHO 96]. 

If ),( BA  is stabilizable, we are sure that there is a control for which J  (whose 
upper bound is infinite) acquires a finite value: since the non-controllable part is 
stable, any state feedback placing all the poles of the controllable part in the left 
half-plane ensures that )(tx  and )(tu  are expressed as the sum of the exponential 
functions that tend toward 0. 

Mutually, any control )(tu  leading to a finite value of J  ensures that 
)()( txQtx T  tends toward 0, and hence that )(txH  tends toward 0. Since ),( AH  is 

detectable, this condition ensures that )(tx  tends toward 0. 

Hence, let us define the function )()()( )( txPtxtxV T=  where P is the positive 
semi-defined solution of [6.37]. We obtain: 

= + + + =( ) ( )T TdV
A x Bu P x x P A x Bu

dt
 

= + + + =( )T T T T Tx A P P A x u B P x x P Bu  

−= − + + =1( )T T T T Tx PBR B P Q x u B P x x P Bu  

− −= + + − − =1 1( ) ( )T T T T Tu x PBR R u R B Px u R u x Q x  

= − − − −* *( ) ( )T T Tu u R u u u Ru x Q x  
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by noting ∗u  the control given by [6.38]. For any stabilizable control )(tu  we have: 

∫
∞ =+= 0 )( dtuRuxQxJ TT  

∫
∞ =−−+−= 0 )( )*()*( dtuuRuu

dt
dV T  

∫
∞ −−+= 0 )( )*()*()0()0( dtuuRuuxPx TT  

Since R  is positive defined, J  is minimal for )()( * tutu ≡  and thus has the 
announced value. As indicated in the third section, the detectability of ),( AH  
ensures the asymptotic stability of the looped system. 

NOTE 6.2.– when 0>P , function ( ( ))V x t , which is then positive defined and 
whose derivative is negative defined, is a Lyapunov function (condition 0>P  is 
verified if and only if ),( AH  is observable [MOL 77]). 

6.4.2. General results for discrete-time 

The results enabling the discrete-time quadratic optimization are the same, with a 
few changes in the equations describing the solution. Let us consider the system 
[6.4] and the criterion to minimize: 

∞

+ +
=

= +∑ 1 1
0

( )T T
k k k k

k

J x Q x u R u  [6.40] 

matrices Q  and R  having the same properties as in the previous section 
(particularly with the conditions [6.35]). The solution of the problem is provided by 
Theorem 6.3 [KWA 72]. 

THEOREM 6.3.– if conditions [6.35] are verified and also if: 

( , )   
( , )    
F G is stabilizable
H F is detectable

⎧
⎨
⎩

  [6.41] 
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there is a unique matrix P , symmetric and positive semi-defined, solution of the 
following equation (called discrete Riccati’s equation): 

−− − + + =1( ) 0T T T TF P F P F P G R G P G G P F Q  [6.42] 

The control that minimizes criterion [6.40] is given by: 

−

= −⎧⎪
⎨

= +⎪⎩
1( )

k k
T T

u K x

K R G P G G P F
 [6.43] 

It guarantees the asymptotic stability of the looped system: 

kk xKGFx )(1 −=+   is such that : 00
∞→

→∀
k

kxx  [6.44] 

The value obtained for the criterion is then )0()0(* xPxJ T= .  

6.4.3. Interpretation of the results 

The results presented above require the following notes:  

– the optimization of a criterion of the form [6.34] or [6.40] does not have to be 
considered as a goal in itself but as a particular means to calculate a control, which 
has the advantage of leading to a linear state feedback; 

– however, we can attempt to give a physical significance to this criterion: it 
creates a balance between the objective (we want to make x  return to 0, the 
evolution of x  penalizes the criterion through matrix Q ) and the necessary expense 
(the controls u applied penalize the criterion due to matrix R ); 

– the choice of weighting matrices Q  and R  depends on the user, as long as 
conditions [6.35] and [6.36] or [6.41] are satisfied. Without getting into details, it 
should be noted that if all coefficients of Q  increase, the evolution of x  is even 
more penalized, at the expense of the evolution of u  controls; thus the optimization 
of the criterion leads to a solution ensuring a faster dynamic behavior for the looped 
system, but at the expense of stronger controls. Inversely, the increase of all 
coefficients of R  will lead to softer controls and to a slower dynamic behavior; 

– the two conditions in [6.36] or [6.41] are not of the same type: in fact we can 
always fulfill the condition of detectability by a careful choice of matrix Q. 
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However, the available controls impose matrix B  (or G ), so that there is no way of 
acting on the condition of stabilizability; 

– the criterion optimization provides only matrix K of expression [6.38] or 
[6.43]. In the absence of input ( 0≡e ), the control ensures the convergence towards 
the state of equilibrium 0=x . Input e  makes the system evolve (in particular a 
constant input makes it possible to orient the system toward another point of 
equilibrium, different from 0=x ). 

6.4.4. Example 

Let us consider system [6.14] and the criterion: 

∫
∞ += 0

22 )( )()( dtturtyqJ   and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
0q

Q   and  rR =  [6.45] 

where q  and r  are positive coefficients. Hence, we have )0( qH =  and we can 
verify that ( )AH ,  is observable : 

2
0
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 [6.46] 

In section 6.2.2 we saw that ),( BA  is controllable, so that hypotheses [6.36] are 
verified. The positive semi-defined solution of Riccati’s equation and the state 
feedback matrix are written by noting rq=α  and rq /=β : 

)211(

)211(

21

β++−β=

⎟⎟⎠

⎞
⎜⎜⎝

⎛

β++−α
αβ+α

=

K

r
P

 [6.47] 

We note that the latter depends only on the ratio q/r and not on q  and r  
separately. Figure 6.6 shows the evolution of the control and the output, in response 
to the initial condition =(0) (1 1) ,Tx  for different values of q/r: the higher q/r  is, 
the faster the output returns to 0, but at the expense of a stronger control. 
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Figure 6.6. Stabilization by quadratic optimization 
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6.5. Resolution of the state reconstruction problem by duality of the quadratic 
optimization 

6.5.1. Calculation of a continuous-time observer 

The calculation of an observer (section 6.3) must ensure the convergence toward 
0 of the reconstruction error )(tε , described by: 

ε ε= −( ) ( ) ( )t A LC t   [6.48] 

or, similarly, that the eigenvalues of CLA −  are all of negative real parts. 
However, in section 6.3.4 we saw that the calculation of an observer implies the 
calculation of a state feedback when we transpose matrices A  and C  of the system. 
In other words, if we define the following imaginary system: 

)()()( tCtAt TT νηη +=  [6.49] 

with a state feedback, noted by )()( tLt Tην −= , we obtain the looped system: 

η η= −( ) ( ) ( )T T Tt A C L t  [6.50] 

whose state matrix has the same eigenvalues as the observer [6.20]. Hence, there is 
equivalence between the stability of the looped system [6.50] and the stability of the 
observer. 

In order to calculate matrix TL , we can use the quadratic optimization approach 
presented in section 6.4. Let us define for system [6.49] a quadratic criterion: 

∫
∞ += 0 )( )()()()( dttWttVtJ TT ννηη  [6.51] 

where V  and W  are two symmetric matrices – the first is semi-positive and the 
second is positive definite: 

0≥== TT JJVV   ,  0>= TWW  [6.52] 

By applying Theorem 6.2, and by using the duality between stabilizability and 
detectability, we immediately obtain the following result. 
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THEOREM 6.4.– if conditions [6.52] are verified and also if: 

⎪⎩

⎪
⎨
⎧

  
    

),(

),(

detectableTATJ

lestabilizabTCTA   ⇔  
⎩
⎨
⎧

  
    

),(
),(

lestabilizabJA
detectableAC

 [6.53] 

there is a unique matrix M, which is symmetric and positive semi-defined, solution 
of Riccati’s equation: 

01 =+−+ − VMCWCMMAAM TT  [6.54] 

The gain matrix: 

MCWLT 1−=   ⇔  1−= WCML T  [6.55] 

guarantees the asymptotic stability of the observer.   

We should also remember that the eigenvalues of CLA −  set the dynamics of 
the observer and of the reconstruction error )(tε . 

Hence, determining the observer depends only on the choice of the two new 
weighting matrices V and W. Like matrices Q and R of the problem of stabilization 
by quadratic optimization (section 6.4), their choice makes it possible to adjust the 
dynamics of the observer. It should particularly be noted that the increase of 
coefficients of V (W respectively) leads to a faster dynamics (slower, respectively). 

6.5.2. Calculation of a discrete-time observer 

The same approach is applicable for a discrete-time observer, for the synthesis of 
an observer described by equation [6.23] or [6.24]: by using the results in section 
6.4.2, we obtain the results below. 

THEOREM 6.5.– if conditions [6.52] are verified and also if: 

⎩
⎨
⎧

  
    

),(
),(

lestabilizabJF
detectableFC

 [6.56] 
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there is a unique matrix M , symmetric and positive semi-defined, solution of the 
Riccati’s discrete equation): 

01)( =++−− − VFMCCMCWCMFMFMF TTTT  [6.57] 

The gain matrix: 

1)( −+= TT CMCWCMFL  [6.58] 

guarantees the asymptotic stability of the observer.   

As for continuous-time, determining the observer depends only on the two 
matrices V and W: they set the eigenvalues of ,CLF−  on which depend the 
dynamics of the observer and the reconstruction error kε . 

6.5.3. Interpretation in a stochastic context 

In this section, we will give a short preview on the techniques of state 
reconstruction that can be used in a stochastic context1. It is interesting to realize 
that, in a certain measure, the results are obtained by quadratic optimization. 

The system whose state we seek to rebuild is supposed to be described by: 

⎩
⎨
⎧

+=
++=

)()()(
)()()()(

twtxCtz
tvtuBtxAtx

 [6.59] 

where )(tv  and )(tw  are white noises, of zero average and of variances:  

VtvtvE T =})()({   ;  WtwtwE T =})()({  [6.60] 

Noise )(tv  can be interpreted as a disturbance occurring at the system input and 
)(tw  as a measurement noise. The problem is to rebuild the state of the system 

through an observer of the form [6.19].  

                                   
1 More complete developments are proposed, for example, in [LAR 96]. 



180     Analysis and Control of Linear Systems 

 [KWA 72] shows that the observer that ensures an average zero error 
{ })(ˆ)( txtxE −  and that optimizes the variance: 

})()({)( TttEt εε=Σ    ;   )(ˆ)()( txtxt −=ε  [6.61] 

is given by the following equations: 

−

⎧ = + + −
⎪

=⎨
⎪

= Σ⎩
1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( ))
ˆ(0) { (0)}

( ) ( ) T

x t A x t B u t L t z t C x t

x E x

L t t C W

 [6.62] 

where )(tΣ  verifies Riccati’s differential equation:  

⎪⎩

⎪
⎨
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}))0(ˆ)0(())0(ˆ)0(({)0(
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xxxxE

VtCWCttAAtt
 [6.63] 

This observer is called Kalman’s filter and we note that its gain varies in time. 
However, we have the following convergence result [KWA 72]: 

THEOREM 6.6.– if conditions [6.56] are verified, )(tΣ  solution of [6.63] tends, 
when ∞→t , toward the unique positive semi-defined symmetric solution M  of 
Riccati’s algebraic equation [6.54].   

Hence, we can interpret the observer determined in section 6.5.1 as the 
permanent state of Kalman’s filter that optimizes the state reconstruction, 
considering the particular hypotheses on the noises that interfere on the system. 

The same results are obtained for discrete-time [KWA 72], if we assume the 
system described by: 
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 [6.64] 

Under conditions [6.56], the permanent state of Kalman’s filter is there also the 
observer determined in section 6.5.2. 
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6.5.4. Example 

Let us consider again the system described by equations [6.14]: 
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and let us calculate an observer with the weighting matrices: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

v
V

0
00

 or  ⎟
⎠
⎞

⎜
⎝
⎛

=
v

J
0

  and  wW =  [6.65] 

where v  and w  are positive coefficients. We can verify that ( )JA,  is controllable: 

( ) 20rank    rank =
−

= ⎟
⎠

⎞
⎜
⎝

⎛
vv

vAJJ  [6.66] 

In section 6.3.6 we saw that ),( AC  is observable, so that hypotheses [6.53] are 
verified. The equations of the observer are the general equations [6.19], with L  
solution of equations [6.54] and [6.55]. 

Figure 6.7 shows the evolution of the two state variables in response to the initial 
condition =(0) (1 1)Tx  and those of the state variables of the observer initialized 
by =ˆ(0) (0 0) ,Tx  for different values of the ratio v/w: the higher v/w is, the faster 
the observer’s state returns to the state of the system. 
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Figure 6.7. Observer by quadratic optimization 
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6.6. Control through state feedback and observers 

6.6.1. Implementation of the control 

The results of the previous sections enable to determine a control law for a 
system whose state is not entirely measured. We suppose that its equations are: 

⎩
⎨
⎧

=
+=

)()(
)()()(

txCtz
tuBtxAtx

 [6.67] 

The modal control, or the optimization of a quadratic criterion, provides a state 
feedback control, whose general form is the following: 

)()()( tetxKtu +−=  [6.68] 

Similarly, the modal approach, or the choice of two weighting matrices V  and 
W  provides an L  gain observer. 

The system control [6.67] is obtained by implementing the state feedback not 
from the state )(tx  of the system, which is not accessible, but from its 
reconstruction )(ˆ tx  provided by the observer. Hence, it is given by the following 
equations, which correspond to the diagram in Figure 6.82: 

⎧ = + + −⎪
⎨

= − +⎪⎩

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ( ) ( ) ( )

x t A x t Bu t L z t C x t

u t K x t e t
 [6.69] 

  

Figure 6.8. Control by state feedback and observer 

                                   
2 The name LQG (that stands for Linear-Quadratic-Gaussian) control is sometimes used to 
designate this type of control. It obviously refers to one of the methods used for calculating 
the state feedback, and to the stochastic interpretation of the reconstruction carried out by the 
observer (section 6.5.3). 
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In the case of a sampled system, described by the equations: 

⎩
⎨
⎧

=
+=+

kk

kkk
xCz

uGxFx 1  [6.70] 

the control law obtained by implementing the state feedback from its reconstruction 
kx̂  provided by the observer (following here too the principle in Figure 6.8) is given 

by: 

+ = + + −⎧
⎨ = − +⎩

1ˆ ˆ ˆ( )

ˆ
k k k k k

k k k

x F x G u L z C x
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6.6.2. Dynamics of the looped system 

Let us briefly discuss now the equations of state of system [6.67] looped by the 
control law [6.69]. For that we need n2  state variables because the system, as the 
observer, is of order n . Let us choose as state vector of the group the set of vectors 
x  and ε  together.  We already know equation [6.21] describing )(tε . For )(tx  we 
obtain equation [6.72]: 

( ) ε= + − + = + − + +ˆ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ))x t A x t B K x t e t A x t B K x t K t e t  

( ) )()()()( teBtKBtxKBAtx +ε+−=  [6.72] 

By considering both equations [6.72] and [6.21], we thus obtain: 
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In the case of a sampled system, we similarly obtain: 
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The block-diagonal structure of state matrices obtained makes it possible to state 
that the looped system has as eigenvalues the reunion of the eigenvalues of KBA−  



Kalman’s Formalism for State Stabilization and Estimation     185 

and of CLA−  (or KGF−  and CLF−  in discrete-time). The former have been 
chosen or set during the calculation of the state feedback (and in this case we have 
control dynamics) whereas the latter have been chosen or set during the calculation 
of the observer (and in this case we talk of reconstruction dynamics). 

6.6.3. Interest and limitations of this result 

The previous example justifies the approach adopted which consists of 
calculating the state feedback and the observer independently. 

In addition, if the observer operates in perfect conditions, it theoretically 
maintains )(tε  at 0, so that equations [6.73] and [6.74] become identical to 
equations [6.3] and [6.6] that we obtain if we can directly apply the state feedback! 

This result must be analyzed critically. First of all it implies that the observer and 
the system operate exactly in the same conditions. However, we saw in section 6.3.5 
that in the presence of an interference applied to the system, error )(tε  does not tend 
toward 0 anymore. The separation of dynamics remains, however, verified in this 
case. 

On the other hand, let us suppose that modeling uncertainties affect the system 
state matrix. In section 6.3.5 we established equation [6.29] that governs the 
reconstruction error. The equation of the looped system becomes: 
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This time we see that all the system’s dynamics are affected and that we cannot 
state anything with respect to the position of its eigenvalues. We must also add that, 
in certain cases, even a very small error between the two matrices can be enough to 
change the eigenvalues significantly.  

This last point shows that it is indispensable to verify that the control is 
sufficiently robust to face the model errors. A detailed analysis of the robustness 
properties is outside the context of this work; for more details on this aspect, see 
[DUC 99]. A first approach consists of ensuring that the stability margins of the 
looped system are sufficiently high. In what follows we will present this aspect. 



186     Analysis and Control of Linear Systems 

6.6.4. Interpretation in the form of equivalent corrector 

The state feedback return and the observer are illustrated in Figure 6.8 and given 
in continuous-time by equations [6.69]. If, in order to simplify, we note 0)( =te , 
equations [6.69] are written in the following form, which is obtained by carrying the 
expression of )(tu  in the first equation: 
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)()(ˆ)(ˆ

txKtu
tzLtxCLKBAtx  [6.76] 

Equations [6.76] correspond to a system with input )(tz  and output )(tu , i.e. 
what we usually call a corrector. By using the Laplace transform, let us calculate the 
transfer functions of the system and corrector. From equations [6.67] describing the 
system, we obtain: 

)()()( pUpGpZ =      with     −= − 1( ) ( )G p C p I A B  [6.77] 

and from equations [6.76] describing the corrector: 

)()()( pZpKpU −=      with     ( ) LCLKBAIpKpK 1)( −++−=  [6.78] 

The looped system can thus be represented by the negative feedback loop in 
Figure 6.9. The corresponding open loop transfer function is written: 

− −= = − + + −1 1( ) ( ) ( ) ( ) ( )BOT p K p G p K p I A BK LC L C p I A B  [6.79] 

 

Figure 6.9. Analysis of stability margins 
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If the system has only one control3, )( pTBO  is a scalar transfer function, and its 
stability margins can be determined from its frequency response  )( ωjTBO , traced 
in Bode, Black or Nyquist’s planes. This analysis enables to verify that the control, 
which was determined by adopting a purely algebraic approach, leads to satisfactory 
stability margins. 

The same approach is applied for a discrete-time system. The equations obtained 
for the state feedback control and the observer are written, by considering 0=ke : 

+ = − − +⎧
⎨ = −⎩

1ˆ ˆ( )

ˆ
k k k

k k

x F G K LC x L z

u K x
 [6.80] 

The application of the z-transform to equations [6.70] and [6.80] makes it possible 
to obtain transfer functions )(zG  and )(zK  of the system and of the corrector, then 
the open loop transfer function: 

− −= = − + + −1 1( ) ( ) ( ) ( ) ( )BOT z K z G z K z I F G L K C K C z I F G  [6.81] 

Hence, determining the stability margins can be done from the frequency 
response )( Tj

BO eT ω  in Bode, Black or Nyquist planes. 

6.6.5. Example 

Let us consider again system [6.14] which was our example throughout this 
chapter. We will use it again to illustrate what follows: 

– the state feedback calculated in section 6.2.2 by the modal approach, with 
20 =ω  and 7.0ξ = ; 

– the observer calculated in section 6.3.6, with 40 =ω  and 7.0ξ = . 

Figure 6.10 shows the responses to an initial condition =(0) (1  1)Tx  with state 
feedback and observer: the initial condition of the observer is =ˆ(0) (1  1)Tx  (top of 
the figure) and then =ˆ(0) (0  0)Tx  (bottom of the figure). In the first case, the 
responses are not clear because, as the observer has been set on the system since its 
origin, only the control dynamic appeared; in the second case, the initial error is 
non-zero at 0=t , and the two dynamics of control and reconstruction intervene 
when the observer is used. 

                                   
3 The approach is extended to the case of multi-control systems at the expense of additional 
developments (see [DOR 95, FRI 86]). 
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Figure 6.10. Control by the observer, compared to control by state return 

Finally, Figure 6.11 shows Bode’s diagram of )( ωjTBO , from where we can 
obtain gain and phase margins of 12.9 dB and 50.7º. These values can be considered 
as satisfactory. 
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Figure 6.11. Determination of stability margins 

6.7. A few words on the resolution of Riccati’s equations 

In this chapter Riccati’s equations occurred several times, corresponding to 
continuous-time and discrete-time problems. These equations appear in numerous 
control engineering problems and we will finish this chapter by giving a preview on 
a few explicit methods of resolution. 

Let us consider firstly Riccati’s continuous equation: 

0=+−+ QXSXXAAX T  [6.82] 

where A , TQQ = , TSS =  and TXX =  are nn ×  real square matrices and X  is 
the unknown factor. Neither the existence nor the uniqueness of the solution is 
guaranteed in the general case. In automatic control engineering, the main interest 
lies in the so-called “stabilizing” solution (we will see that it is unique), for which all 
the eigenvalues of XSA −  are of strictly negative real part. 
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Firstly, we will consider the nn 22 ×  Hamiltonian matrix, associated with 
equation [6.82]: 
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We easily verify that: 
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and thus that H  is similar to TH− : matrix H therefore has a symmetric spectrum 
with respect to the origin. As this is a real matrix, its spectrum is symmetric with 
respect to the real axis and hence it is also symmetric with respect to the imaginary 
axis. Furthermore, it is necessary to make the following hypothesis: matrix H  does 
not have a complex eigenvalues. 

Hence, we can calculate Jordan’s form of H , which makes it possible to write: 
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where Λ  and Λ−  contain eigenvalues with strictly positive and strictly negative 
real parts respectively. Let us introduce the second hypothesis: matrix 11T  is 
reversible. 

These two hypotheses are especially verified in the problems discussed in 
sections 6.4.1 and 6.5.1 [ZHO 96]. Then, the stabilizing solution of equation [6.82] 
is: 

1
1121
−= TTX  [6.86] 
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Demonstration. It is sufficient to formulate the terms of equation [6.85] where 11T  
and 21T  intervene: 
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XAQTTXSXAX T−−=Λ−=− −1
1121  

In addition, the first equation of the second brace shows that XSA −  has all its 
eigenvalues as strictly negative real parts. 

Numeric difficulties may occur when matrix H  has multiple or very close 
eigenvalues, or even close to the imaginary axis. To improve this aspect, we can use 
Schur’s form [BIT 91], by replacing equation [6.85] by factoring: 
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where matrix U  is orthogonal and matrices 11S  and 22S  are in Schur’s form (i.e. 
superior quasi-triangular, the real eigenvalues of H appear on the diagonal and the 
complex eigenvalues as 2 × 2 blocks), with block 11S  corresponding to the 
eigenvalues with negative real part. Hence, we have: 

1
1121
−= UUX  [6.89] 

In the case of Riccati’s discrete equation: 

01)( =++−− − QFXGGXGRGXFXFXF TTTT  [6.90] 

where all matrices are real, F , TQQ =  and TXX =  are of size nn × , TRR =  is 
of size mm × , G  is of size mn ×  and X  is the unknown factor. The stabilizing 
solution, if it exists, is the one for which matrix −− + 1( )T TF G R G X G G X F  has 
all its eigenvalues of the module strictly less than 1. 
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The approach is a simple transposition of the continuous-time case [BIT 91, 
VAU 70]. We must assume that matrix F  is reversible, in which case equations 
[6.86] and [6.89] can be applied, by using instead of [6.83] the matrix: 
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where TF −  is the transpose of 1−F . This matrix has eigenvalues that are opposite 
to each other, so that Jordan’s form which makes it possible to write: 
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where Λ  and 1−Λ  contain the eigenvalues of the module more than 1 and less than 
1 respectively. Schur’s form, on the other hand, is always provided by [6.88], where 
block 11S  corresponds to the eigenvalues of the module less than 1. 

6.8. Conclusion 

In this chapter, we have presented the necessary prerequisites for the creation of 
controls using the state representation. We saw that by using either an approach by 
pole placement, or an approach by quadratic optimization, it was possible to 
calculate a state feedback, then to rebuild the state and finally to obtain a control 
from the available measures. 

However, it should be clear that this chapter is left incomplete on purpose: the 
results presented are for the moment unusable for the majority of practical problems 
because they do not deal either with the pursuit of indications or with the 
disturbance rejection, and that the robustness aspects are only briefly touched upon. 
The resolution of such problems and the resulting procedures will be in fact 
developed later on. 
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Chapter 7

Process Modeling

7.1. Introduction

Obtaining a model of the industrial system to automate is the first task of a control
engineer – and not the smallest one, as the quality of his work significantly depends
on the adequacy between the model and the procedure.

To begin, we note that there are several points of view on a complex physical pro-
cedure. By complex, we mean a procedure with many variables and/or a procedure in
which the phenomena involved and the interactions between the variables, are compli-
cated. There is no universal model; its design depends entirely on the task for which it
will be used.

Certain models pertain to the representation of physical components of installa-
tion and to their connections (structural models). They can be described by diagrams
called PI (piping-instrumentation) which define the complete diagram of installation.
Universal graphic symbols are used in order to facilitate the interpretation of this rep-
resentation. Nowadays, a computer representation is also adopted: these models are
generally a database and/or an object oriented representation and they are used, for
example, for the maintenance of the procedure, for safety analysis, for the implemen-
tation of block diagrams, etc.

Other models are used for the design and dimensioning of the installation and for
managing the various operation modes; they often refer to different functions that the
installation must fulfill (functional models). They describe the role of each subsystem
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in performing the roles of the procedure, in connection with a structure and behavior
of components. They are used for the design of procedure monitoring, i.e. its very
high level of control: start-up, stop, failure management, manual reboot procedures,
structure changes, etc.

Let us consider the example of heating a room. The goal of the system is to heat up
the room. To do this, we specify several functions: generation of energy, water supply,
water circulation. These functions are based on several components. For example,
for water circulation, we use a heater, a pump and a control valve; for the function
of generating energy, we use a boiler, a pump and a fuel tank. To all the functions
enumerated above, corresponding to a normal operation, we can add a “draining”
function which would correspond to taking the installation out of service.

The goal of other models is to describe the behavior of the installation (behav-
ioral models); this refers to describing the evolution of physical units during all the
operation phases, be it from a static or dynamic point of view.

The complete description of an installation requires the representation of continu-
ous phenomena (main process) and of discrete aspects (discontinuous actions during
changes in the operation mode, security actions, etc.). To date these two representa-
tion modes have been separated; for example, under a purely continuous angle, the
synthesis of regulation loops is described by supposing that any state space is accessi-
ble and the production planning is represented in a purely discrete manner. However,
nowadays, there are attempts to characterize the set in a hybrid model (combination
of two aspects, continuous and discrete), but this path still has difficulties and is still
the subject of research.

The behavioral model may have different objectives. The two main objectives are:
the simulation of the installation in order to test its behavior in different situations
offline (different control laws that the engineer seeks to compare, research into its
limits, training of control operators, etc.) and the design of controls to implement. It
is not necessarily the same model that is used in these two cases: the first one often
requires more precision than the second one. In fact, for the majority of time, the con-
trol is calculated on a linear approximation of the system around the nominal working
point because the majority of industrial systems work (in normal operating mode) in a
limited range, corresponding to an optimal zone for the production. We can also use,
in order to calculate the control, a highly simplified non-linear model, the intermedi-
ary between these two situations being the calculation of a set of linear models for
different working points or operating modes. However, in order to design the automa-
tion of an installation in order to optimize the working points or train the operators,
the model must be the most robust possible.
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The complex model is based on a precise knowledge of physical, chemical, biolog-
ical or other laws, describing the material phenomena governing the processes imple-
mented in the procedure. We often speak, in this case, of a knowledge model or a
model based on the first principles. It is thus quite naturally described in the form of
non-linear differential equations in the dynamic case and/or in the form of algebraic
equations in the static case. These equations describe the main laws of the physical
world, which are in general material or energy balances. When we can reduce the
differential equations to first degree equations (by possibly introducing intermediary
variables), we obtain an algebraic differential state model.

The complex model can be simplified under the hypothesis of linearity, in order
to obtain linear differential equations from which we can move either to a state repre-
sentation or to an input-output representation by transfer function. Then, if we want,
we can also use the traditional methods in order to discretize these linear models, in
order to directly calculate a discrete control. The first section provides a few exam-
ples, which are trivial in comparison with the exhaustive task of the engineer for an
industrial procedure, but which illustrate the methodology.

When the objective is the development of a control on a linear model, it may be
simpler to directly research this model. This research can be done from specific exper-
imentations. In that case we speak of identification, rather than modeling. We obtain
a model of representation. We know well the link between the transfer function and
the frequency response and it is thus easy to translate the latter into a mathemati-
cal model. However, it is basically impossible to perform a harmonic analysis on an
industrial procedure – because it is incompatible with the production constraints – or
with the response time of the procedure. Hence, faster means have been investigated in
order to obtain these models from time characteristic responses; the most widely used
is of course the unit-step response because it corresponds to a change of the working
point of the installation, in other words to a current industrial practice. Therefore, a
few fast graphic constructions make it possible to obtain, for a minimal cost, a transfer
function close to the system. The second section deals with this aspect.

It was soon clear that, in order to make the model robust for the entire range of
operation where linearization is valid, we should use input signals with a much larger
spectrum than the step function, in order to excite all the modes of the system. As
such we use the identification on any input-output data (but that are full of information
regarding the behavior of the system); in this case, only the strong numerical methods
make it possible to extract the information contained in these data sets. These methods
are explained in the third section. The method that will be the most developed can in
fact be used on non-linear representations and that is why we also use it in order to
parameterize the knowledge methods mentioned above.
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7.2. Modeling

The behavioral modeling of a continuous procedure described in what follows is
based on a mathematical formalism: we search for a set of equations representing
the system in the largest possible operating range. This is a task that may take several
months and pertains to the multi-disciplinary teams. In fact, it requires a knowledge of
physics, chemistry, biology, etc. in order to be able to understand the phenomena that
the model will describe, and knowing numerical analysis in order to write the model
equations in a form that is adapted to the numerical calculus. It is also necessary to
have computer knowledge in order to be able to implement this calculations.

A procedure is sufficiently complex in order to be able to describe straightaway
its behavior by a system of equations. In order to realize a global model, we need
to decompose the general system into simpler subsystems, through a descending
approach, then recombine the various models into an ascending approach. This
decomposition can be found in the methodology of software development: that is
why we can use the same tools in order to manage these approaches (SADT, for
example). At the level of a basic subsystem, there is no optimal methodology: is it
necessary to start by writing the most complicated model possible – by calling upon
the description of detailed mechanisms – and later simplify it, either because we
have no knowledge regarding the coefficients present at this elementary level and no
possibility of estimating them in practice, or because this model is too complicated to
be used? Or is it necessary to start by writing a very rough model and not complicate
it unless the simulation results obtained are too inaccurate? It is obvious that the
model must be the result of a compromise between precision and simplicity. When
it is established, we have to verify it: this means that we test it to make sure there is
no physical inconsistency between its behavior and the behavior of the system, due,
for example, to numerical problems or to wrong initial hypotheses. Then we have
to validate it; this means testing its adequacy with the set of tasks for which it was
designed.

In order to initiate the modeling of a reasonably complex subsystem, we generally
write material and/or energy balances. Therefore, it is convenient to locate the energy
or material sources at the system’s input, those at the output (in general connected to
another subsystem), the elements that can store or lose energy or matter and those that
transport them.

The bond-graphs are a graphic representation tool for energy transfers in a physical
system, sometimes used as intermediaries between the physical description of a pro-
cedure and the writing of equations. Through a formalism reuniting fields as various
as mechanics, they describe electricity and hydraulics – simply because they are based
on the description of power exchange between subsystems. The graph consists of arcs
connecting the stress variables e or the stream variables f whose product represents
the power. Forces, torques, tension and pressure are stress variables. Speed, flow and
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current are stream variables. There are several main elements. The resistances dissi-
pate energy (electric resistances, viscous friction). The capacities store energy (electric
condenser, spring), as well as inertial elements (inductance, masses, moments of iner-
tia). The transforming elements preserve power e1f1 = e2f2 while imposing a fixed
ratio between streams and input and output stresses (e1 = ne2, f1 = f2/n). Finally,
the junctions are of two types (called 0 and 1) depending on whether they connect
elements that preserve the stress and distribute the stream or the other way round. We
will not go into further detail on this method, which is dealt with in specific works
(see [DAU 00], for example).

By admitting that we have conveniently traced the balance equations to write, they
are general in the form of non-linear differential equations. They can be used as such
in the simulation fine model, but they will not be generally linearized in order to obtain
the control calculation model. The linearization is operated as follows. Let us assume
that the differential equation is:

y(n)(t) = g
(
y(n−1)(t), y(n−2)(t), . . . , y(t), e(t), t

)
[7.1]

We represent [7.1] by a set of first order differential equations; this is in reality a
possible state representation of [7.1], which is obtained by noting:

y1 = y [7.2]

y2 =
dy1

dt
[7.3]

y3 =
dy2

dt
[7.4]

... [7.5]

yn =
dyn−1

dt
[7.6]

dyn

dt
= g
(
yn(t), yn−1(t), . . . , y1(t), e(t), t

)
[7.7]

If the model is represented by several differential equations whose variables are
coupled, we will generally have:

⎧⎪⎪⎨
⎪⎪⎩

dy1
dt = f1(y1, y2, . . . , ym, e, t)

...
dym

dt = fm(y1, y2, . . . , ym, e, t)

[7.8]
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We suppose that system [7.8] has a balance point Y0, E0 for which the derivatives
are zero, i.e. which is defined by:⎧⎪⎨

⎪⎩
yi(t) = Yi0 + xi(t)
e(t) = E0 + u(t)
fi(Y10, Y20, . . . , Ym0, E0, t) = 0

[7.9]

Now, we try to represent the trajectory of small variations x(t) and u(t) by carrying
[7.9] over [7.8] and by using a first order Taylor serial development, which leads to:

dYi0(t)
dt

+
dxi(t)

dt
=

dyi(t)
dt

[7.10]

= fi(Y10, . . . , Ym0, E0, t) +
dfi

dy1
(Y10, . . . , Ym0, E0, t)x1(t)

+ · · · + dfi

de
(Y10, . . . , Ym0, E0, t)u(t) [7.11]

Hence, we find the following linear approximation:⎡
⎢⎣

dx1
dt
...

dxn

dt

⎤
⎥⎦ =

⎡
⎢⎢⎣

df1
dy1

· · · df1
dyn

...
...

...
dfn

dy1
· · · dfn

dyn

⎤
⎥⎥⎦
⎡
⎢⎣x1

...
xn

⎤
⎥⎦+

⎡
⎢⎣

df1
de
...

dfn

de

⎤
⎥⎦u(t) [7.12]

where the state matrix is the Jacobian of the non-linear relation vector f(y, e, t).
Therefore, we obtain a linear state representation of the non-linear system.

Simple examples

We will take the simple example of two cascade tanks supplied by a liquid volume
flow rate. The tanks are the two storage elements of the matter; the incoming and

Figure 7.1. Cascade tanks
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outgoing flows of the second tank link this subsystem to its environment. There are
no losses or intermediary transport element, hence we will write two matter balance
equations, one for each of the storage elements.

Let Qe be the volume flow rate entering the first tank, Qs1 the volume flow rate
leaving the tank, A1 its section, N1 the water level in the tank and K the restriction
coefficient of the output tank. The outgoing flow is proportional to the square root of
the pressure difference ∆p at the edges of the tank, which is itself linked to the level
(law of turbulent flows). Hence, we have – if the atmospheric pressure is the reference
pressure:

Qs1 = K1

√
∆p = K1

√
N1 [7.13]

The same law describes the second tank, where, in order to simplify the notations,
we suppose that the tanks have the same coefficient K:

Qs2 = K2

√
∆p = K2

√
N2 [7.14]

The mass balance of the tanks gives:

Qe − Qs1 = A1
dN1

dt
[7.15]

Qs1 − Qs2 = A2
dN2

dt
[7.16]

In general, we can assume that the levels are subjected to small variations with
respect to the balance given by the working points Qe0, N10 and N20. The balance is
defined by:

Qe0 = K1

√
N10 = K2

√
N20 [7.17]

It should be noted, however, that this equation would be sufficient if we intended
to size up the system, i.e. to choose the tanks (K1,K2 coefficients) according to the
average levels and flows wanted. We write:{

N1 = N10 + n1

N2 = N20 + n2

[7.18]

Qe = Qe0 + Q0 [7.19]

Qs1 = K1

√
N10 + n1 [7.20]

The limited development of the square root leads to:

Qs1 = K1

√
N10

(
1 +

1
2

n1

N10

)
[7.21]
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and similarly:

Qs2 = K2

√
N20

(
1 +

1
2

n2

N20

)
[7.22]

Equation [7.15] thus becomes:

Qe0 + Q0 − K1

√
N10

(
1 +

1
2

n1

N10

)
= A1

dN1

dt
= A1

dn1

dt
[7.23]

If:

S1 =
2
√

N10

K1
[7.24]

then:

Q0 − n1

S1
= A1

dn1

dt
[7.25]

Based on [7.16] and [7.22], the evolution of the level of the second tank is
described by:

n1

S1
− n2

S2
= A2

dn2

dt
[7.26]

where:

S2 =
2
√

N20

K2
[7.27]

The state representation of this system follows immediately:

X =
[
n1

n2

]
[7.28]

Ẋ =
[− 1

A1S1
0

1
A2S1

− 1
A2S2

]
X +

[
1

A1

0

]
Q0 [7.29]

y =
[
1 1

]
X [7.30]

where we will measure the two levels. The transfer function of the second level is:

H(s) =
n2(s)
Q0(s)

=
S2

(1 + A1S1s)(1 + A2S2s)
[7.31]

Let us take a second example: a direct current engine operated by an armature. Let
R and L be the resistance and the inductance of the armature, u(t) the supply voltage,
i(t) the armature current, e(t) the back electromotive force, γ(t) the engine torque, J
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and f the inertia and frictions of the tree rotating at a speed ω(t). The electric equation
of the armature is:

u(t) = Ri(t) + L
di(t)
dt

+ e(t) [7.32]

The back electromotive force is proportional to speed (linear state):

e(t) = k1ω(t) [7.33]

The engine torque is proportional to the current:

γ(t) = k2i(t) [7.34]

Newton’s law applied to the tree engine gives us the balance of the engine and
working torques:

J
dω(t)

dt
= γ(t) − fω(t) [7.35]

The Laplace transform applied to this group of equations gives:

(Js + f)Ω(s) = k2
U(s) − k1Ω(s)

R + Ls
[7.36]

The transfer function of the of the engine system is:

H(s) =
Ω(s)
U(s)

=
k2

(Js + f)(R + Ls) + k1k2
[7.37]

If we choose as state vector:

X =
[

ω
dω
dt

]
[7.38]

we find the state representation:

Ẋ =
[

0 1
− fR

JL − k1k2
JL −R

L − f
J

]
X +

[
0
k2
LJ

]
u [7.39]

and if we measure the speed:

y =
[
1 0

]
X [7.40]

We know that this representation is not unique. We could have chosen as state
vector:

X =
[
ω
i

]
[7.41]
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which gives the state representation:

Ẋ =
[− f

J
k2
J

−k1
L −R

L

]
X +

[
0
1
L

]
u [7.42]

y =
[
1 0

]
X [7.43]

Obviously, these two representations have the same transfer function.

In order to have the control the question that arises is: can the value of all these
physical parameters intervening in these knowledge models be obtained? We can use
the manufacturers’ documentation for small systems as the ones developed below. For
more complex systems (like chemical or biotechnological systems) this task may be
very complicated. That is why we determine, often directly from experimental record-
ings, the parameters of transfer functions (the two time constants of the tanks, for
example). The following two sections describe this approach.

7.3. Graphic identification approached

When the objective of modeling is the research of a (simple) linear model in view
of the control, we can use direct methods based on the use of experimental record-
ings. Two methods are available: the use of the harmonic response of the system or
the analysis of time responses with specific excitations. The goal researched is, for a
minimal cost, to obtain an input-output representation of the procedure in the form of
a continual transfer function F (p). Let us recall that F (p) models only the dynamic
part of the procedure. The time expressions will entail the initial conditions.

The first approach (harmonic response of the system) is rarely conceivable because
its implementation is often incompatible with manufacturing requirements or, more so,
because the response time of the procedure makes recording it particularly long and
tedious.

The second approach is based on the recording of the system’s response to the
given excitations. In particular, we use the recording of the unit-step response, which
corresponds, from a practical point of view, to a change in the operating point. Hence,
from unique data, we identify the system by determining the coefficients of a standard-
ized transfer function with a predefined structure. It is important to point out that these
graphic methods do not make it possible to estimate the precision of the parameters
obtained. In addition, the quality of the model depends on the operating mode (noise
level, instrumentation, etc.) and on the operator (in particular during the use of graphs).
It is understood that the data must be collected in the absence of saturation and that it
is essential to verify the non-saturation at the level of internal regulation loops (when
they exist). Finally, the graphic techniques based on the use of the unit-step response
and presented below suppose that the system to identify is asymptotically stable.
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The first criterion to consider for the choice of the method is whether or not the
final value, noted by s(∞), which corresponds to a pseudo-periodical or a period-
ical response is exceeded. In Table 7.1, there is a classification of various methods
presented in the remaining part of this section, as well as the standardized transfer
function and the parameters to identify.

7.3.1. Pseudo-periodic unit-step response

From a balance position e(t−0 ), s(t−0 ), we apply at instant t0 a step function ∆E.
Then we obtain a unit-step response in the form of the one in Figure 7.2. This response
presents a first exceedance A1, a final value s(∞). Therefore, we use as a model the
transfer function:

F (p) =
S(p)
E(p)

=
K

1 + 2ζ p
ωn

+ p2

ω2
n

which has three parameters to identify K, ζ, ωn (see Table 7.1). The unit-step response
of the model selected has the form:

sm(t) = s(t−0 ) + K∆E

[
1 − 1√

1 − ζ2
e−ζωn(t−t0) sin

(√
1 − ζ2ωn(t − t0) + θ

)]

with tan θ =
√

1 − ζ2/ζ, for t � t0. The (relative) amplitude of the first exceedance,
noted by A1 %, depends only on damping ζ. By using the graph given in Figure 7.3,
we obtain the numeric value of ζ. The angular frequency ωn is linked to the period of
oscillations. Its numeric value is obtained by using Figure 7.4.

Figure 7.2. Pseudo-periodic unit-step response

Graphs to use

The two graphs to use are parameterized by damping ζ. Their use is described
below, based on the unit-step response in Figure 7.2.
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Figure 7.3. First exceedance (percentage)
according to ζ

Figure 7.4. Response time at 5%
according to damping ζ

Determining the transfer function F (p): method

The method is divided up as follows:

1) determining the static gain of procedure K = s(∞)−s(0−)
∆E ;

2) determining the first relative exceedance (percentage) A1 % =100× A1
s(∞)−s(0−) ;

3) with the help of Figure 7.3, determining the numeric value of ζ;

4) obtaining the response time at 5%, noted by tr5 %;

5) by using Figure 7.4, determining the numeric value of ωn·tr5 %
2π , then obtaining

the numeric value of the angular frequency ωn.
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Transfer function to identify Method

Necessary
tools
Coefficients
to identify

Pseudo-periodic unit-step response

2nd order:
K

1 + 2ζ p
ωn

+ p2

ω2
n

Graphs

K, ζ, ωn

Aperiodic unit-step response

1st order:
K

1 + τp
K, τ

Delayed 1st order:
K e−Trp

1 + τp
Broïda

Graph
K, Tr, τ

2nd order:
K

(1 + τ1p)(1 + τ2p)
Cadwell

Graph
K, τ1, τ2

High order:
K e−Trp

(1 + τp)n
Strejc

Graph
K, Tr, τ, n

Table 7.1. Graphic methods

7.3.2. Aperiodic unit-step response

The method used for the identification of transfer function depends on the general
features of the obtained step response. If this response does not have a horizontal
tangent at instant t = t0, the tester will obviously choose a 1st order model. Otherwise,
the choice will have to be between three models: a delayed 1st order model (Broïda
method), a 2nd order model (Cadwell’s method), and a model (strictly) superior to 1
delayed or not (Strejc method). Here again, the know-how and a priori knowledge are
very important with respect to the “quality” of the model selected. In order to simplify
the expressions, we will choose from now on t0 = 0. If this is not the case, a simple
variable change makes it possible to have this situation.

7.3.2.1. First order model

When the unit-step response appears similar to that in Figure 7.5, the model used
is:

F (p) =
S(p)
E(p)

=
K

1 + τp

The unit-step response of the model selected has the form:

sm(t) = s(0−) + K ∆E
(
1 − e−( t

τ )
)

for t � 0 [7.44]

Two parameters must be identified: the static gain of system K and the time con-
stant τ .
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Figure 7.5. Unit-step response for a 1st order system

Determining the transfer function F (p): method

The method is divided up as follows:

1) determining the static gain of procedure K = s(∞)−s(0−)
∆E ;

2) obtaining the time constant τ . Two approaches are conceivable depending on
whether or not we know the output final value s(∞). In both cases, we use the prop-
erties which resulted from the mathematical expression [7.44]:

a) determining τ using s(∞) (see Figure 7.5): the tangent at the unit-step
response t = 0 intersects the horizontal line s(∞) for t = τ , the response time at
5% verifies tr5 % = 3τ and the rise time1 of the system verifies tm = 2.2τ ,

b) determining τ without using s(∞). We choose two instants t1 and t2 = 2t1.
We have the numeric values of s(t−0 ), s(t1) and s(t2). By using [7.44], we obtain:⎧⎨

⎩s(t1) = s(t−0 ) + K ∆E
(
1 − e−(

t1
τ )
)

s(t2) = s(2t1) = s(t−0 ) + K ∆E
(
1 − e−(

2t1
τ )
) [7.45]

We suppose that x = e−(
t1
τ ). Then s(t1)−s(t−0 )

s(t1)−s(t−0 )
= 1−x

1−x2 = 1
1+x , which makes

it possible to determine x. The numeric value of the time constant is given by τ =
− t1

ln(x) . Expression [7.45] then enables us to calculate K.

Other graphic methods can be used, in particular that of the semi-logarithmic plane
[LAR 77]. However, since its use is not immediate, we will not present it here.

7.3.2.2. Second order model

We will present a unit-step response given in Figure 7.6.

1. Rise time is defined between instants t1 and t2 such as s(t1) = s(t−0 ) + 0.1 K ∆E,
s(t2) = s(t−0 ) + 0.9 K ∆E.
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Figure 7.6. Aperiodic unit-step response:
choice of second order model

When the selected model is:

F (p) =
S(p)
E(p)

=
K

(1 + τ1p)(1 + τ2p)

with τ1 < τ2, the unit-step response has the time expression:

sm(t) = s(0−) + K ∆E
(
1 − τ1

τ1 − τ2
e−( t

τ1
) +

τ2

τ1 − τ2
e−( t

τ2
)
)

for t � 0

Determining the transfer function F (p): Cadwell method

The Cadwell method is based on the fact that the unit-step response accepts a
particular point P1(t1, s1) which does not depend on the ratio x = τ2/τ1 and another
point P2 whose coordinates (t2, s2) strongly depend on this ratio. The approach to
adopt is the following:

1) determining the static gain of procedure K = s(∞)−s(0−)
∆E ;

2) obtaining the instant t1 = 1.32(τ1 + τ2) such that:

s1 = s(0−) + 0.74
{
s(∞) − s(0−)

}
3) inferring the numeric value of τsum = τ1 + τ2;

4) obtaining on the curve the point (t2, s2) such that t2 = 0.5τsum. Inferring the

value of n% = s(t2)−s(0−)
s(∞)−s(0−) ;

5) with the help of the graph in Figure 7.7, determining the value of 1
1+x . Inferring

x = τ2/τ1. Calculating the numeric values of τ1 and τ2 with:{
τ1 = τsum

1+x

τ2 = x τsum

1+x

[7.46]
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Similar method

This method lies on an approach similar to the previous one; it was developed by
Strejc. The approach to adopt is summed up below:

1) determining the static gain of procedure K = s(∞)−s(0−)
∆E ;

2) obtaining the instant t1 = 1.2564 (τ1 + τ2) such that:

s1 = s(0−) + 0.72
{
s(∞) − s(0−)

}
3) obtaining the value of τsum = τ1 + τ2;

4) obtaining on the curve the point (t2, s2) such that t2 = 0.3574 τsum. Inferring

the value of n% = s(t2)−s(0−)
s(∞)−s(0−) ;

5) with the help of the graph in Figure 7.8, determining the value of x = τ2/τ1.
Calculating the numeric values of τ1 and τ2 via the formulae of [7.46].

Figure 7.7. Cadwell method, n% = f(x)

Figure 7.8. Strejc method, n% = f(x)
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7.3.2.3. Model of an order superior to 1

When the unit-step response has a form similar to that in Figure 7.9, we can use the
Strejc method. We suppose there is a low dispersion of time constants of the system –
which is consistent with the Strejc hypothesis Tu/Tn > 0.1, where these parameters
are defined below. The transfer function sought is:

F (p) =
K e−Trp

(1 + τp)n

There are four parameters to determine: K, Tr, τ , n. We set t0 = 0.

Figure 7.9. Aperiodic unit-step response: choice of Strejc model

Determining the transfer function F (p): Strejc method

The difficulty of this method lies in the course of the tangent to the point of inflex-
ion I(ti, si). The delay Tr can be adjusted in order to compensate the error due to the
imprecision on the position of I . We do not present here the use of the graph making
it possible to determine a fraction order n [DAV 65].

The approach to adopt here is summed up below:

1) determining the static gain of the procedure K = s(∞)−s(0−)
∆E ;

2) tracing the tangent to the point of inflexion I . Calculating si % = si−s(0−)
s(∞)−s(0−) ;

3) rounding si % to one of the values given in Table 7.2. Hence, we set the order n;

4) on the curve, obtaining value Tn. Inferring Tu by using the column Tu/Tn;

5) calculating Tr = t1 − Tu. If Tr is negative (or very small in front of Tu, Tn),
we can readjust the tangent at the inflexion point in order to obtain Tr = 0;

6) calculating the time constant τ by using one of the last three columns in Table
7.2.
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NOTE 7.1. The calculation of τ can be done by using more than the last three columns.
If dispersion is too significant, the position of the inflexion point must be modified, as
well as the tangent. In practice, we can see that a slight modification of the tangent
can lead to significant variations of parameters Tr, τ, n. This is explained by the fact
that different triplets (Tr, τ, n) can lead to similar forms of the unit-step response.

n si % Tu/Tn Tn/τ Tu/τ ti/τ

1 0 0 1 0 0

2 0.26 0.104 2.7 0.28 1

3 0.32 0.22 3.7 0.8 2

4 0.35 0.32 4.46 1.42 3

5 0.37 0.41 5.12 2.1 4

6 0.38 0.49 5.7 2.81 5

7 0.39 0.57 6.2 3.55 6

8 0.40 0.64 6.7 4.31 7

9 0.407 0.71 7.2 5.08 8

10 0.413 0.77 7.7 5.87 9

Table 7.2. Strejc method

7.3.2.4. Delayed 1st order model

We suppose that the unit-step response of the system considered can be approached
by that of the delayed 1st order system as illustrated in Figure 7.10. The transfer
function selected is:

F (p) =
K e−Trp

1 + τp

The delay Tr can be graphically adjusted and the time constant τ can be obtained
by one of the methods described in section 7.3.2.1. In order to determine the numeric
values of Tr and τ , the Broïda method uses two particular points s(t1) and s(t2)
obtained on the experiment curve.

Determining the transfer function F (p): Broïda method

The method is divided up as follows:

1) determining the static gain of procedure K = s(∞)−s(0−)
∆E ;

2) obtaining t1, t2 such that:{
s(t1) = s(0−) + 0.28

{
s(∞) − s(0−)

}
s(t2) = s(0−) + 0.4

{
s(∞) − s(0−)

} [7.47]
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3) calculating the time constants of the model:{
τ = 5.5 (t2 − t1)

Tr = 2.8 t1 − 1.8 t2

[7.48]

Figure 7.10. Unit-step response, use of Broïda model

NOTE 7.2. The unit-step response of the model selected is:

sm(t) = s(0−) + K ∆E
(
1 − e−( t+Tr

τ )
)

for t � 0

By using [7.47], we have:⎧⎪⎪⎨
⎪⎪⎩

S1 =
s(t1) − s(0−)
s(∞) − s(0−)

= 0.28 = 1 − e−(
t1−Tr

τ )

S1 =
s(t1) − s(0−)
s(∞) − s(0−)

= 0.4 = 1 − e−(
t2−Tr

τ )

or: ⎧⎪⎨
⎪⎩
− t1 − Tr

τ
= ln(1 − 0.28) = ln(0.72)

− t2 − Tr

τ
= ln(0.6)

[7.49]

from which we extract t1−t2
τ = ln(0.72)

ln(0.6) . Expressions [7.48] previously given are then
easily established.

7.3.3. Partial conclusion

A graphic approach enables us to easily obtain a continuous transfer estimation.
However, this facility is limited to predefined structured models associated to the
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recording of a specific response. We need to be aware of the fact that it is essential
to have a little, even very little, noise on the responses and, irrespective of everything,
the precision of the result can be uncertain. To go beyond the constraints, only a purely
numeric approach is likely to bring a positive response. This topic will be now dealt
with.

7.4. Identification through criterion optimization

A first revolution, at least psychological, was to admit that we can more success-
fully apprehend the research of behavioral models of a process, on a continuous-time
scale by definition, by dealing with z transfer functions for which the concept of time
unity disappeared, after a carefully chosen input-output sampling. There were at least
two reasons for this approach: on the one hand, the problem of identification (and
also the problem of simulation and control) is made much easier by the computing
tool and is already well known in data analysis (linear or non-linear regression) and
on the other hand, since the object of the behavioral model was, a priori, the syn-
thesis of a computer control, the procedure was subjected to a “per piece constants”
type inputs, for which the discrete model was ideally adapted (no loss of information
during sampling and thus no approximation during the passage from continuous-time
scale to discrete-time scale). However, this does not mean that an approach aiming
to deal directly with the identification of a continuous model must be mocked, but we
just need to know where not to go. To return to the initial objective of modeling, in our
opinion it is necessary to have good reasons to give up the “model method” approach
which consists of finding a set of parameters, for example those of a transfer, so that
the output of the model “fits best” to the output of the procedure for the same input
excitation. This obviously means, in the majority of cases, a non-linear optimization.
However, the majority of control engineers dealing with identification have often kept
ignoring this approach in order to avoid having to deal with this numeric problem,
even if it has been well controlled for more than 20 years (see the IMSL, TOMS,
HARWELL, NAG, etc., databases).

7.4.1. Algorithms

Generally speaking, the quasi-totality of algorithms is built on basic principles of
the linear parametric estimation whose dynamic version – that constitutes Kalman’s
filter [RAD 70] – represents a superior contribution to this field. The fundamental
alternative is to use the techniques of mathematical programming – in particular at the
level of the non-linear optimization [GIL 81]. Because of the delicate status of these
problems, their implementation required many studies and research before robust solu-
tions were obtained. Hundreds of publications dealt with the algorithm developments,
the majority of which focused on the conceptual aspect of the problem. This ten-
dency has decreased significantly since the beginning of the 1980s, and gave way to
an increase in studies on digital and computer implementation. Before approaching
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this question under a more pragmatic angle, we will see what we can use from the
multitude of approaches proposed in other works [LAR 77, LJU 87]. Hence, we will
distinguish several categories of problems and classes of methods; however, for rea-
sons of simplicity, we will limit ourselves to the stationary context (unknown param-
eters constant in time) which, in reality, covers many industrial applications.

7.4.2. Models

7.4.2.1. Single output system

For each input, the model is a transfer H(z), or its original ht, the weighting
sequence, i.e. the discrete impulse response. Let us recall that in this case the relation
between an input ut and an output yt is given by:

yt = −(a1yt−1 + · · · + anyt−n) + (b0ut−k + · · · + bmut−k−m) [7.50]

for the transfer:

H(z) =
z−k(b0 + · · · + bmz−m)
1 + a1 + · · · + anz−n

=
B(z)
A(z)

[7.51]

ai and bi are the parameters of the model. The integers k,m and n represent the
delay (expressed in sampling intervals), the number of zeros and the number of poles
respectively. In such a context, we can also impose that all transfers related to the
various inputs have the same denominator. With certain methods, the user does not
have a choice (all algorithms derived from least squares!).

7.4.2.2. Multivariable system

Here, the system fundamentally has several outputs and one or several inputs. In
this case, two attitudes are possible: we either call upon a series of single output sys-
tems, and this is generally not optimal at the level of the model’s complexity (number
of states), or we deal with the problems directly as they stand, by using only the state
representation: {

xt+1 = Axt+1 + But

y = Cxt

[7.52]

where ut is the vector input, yt the vector output and xt the state vector. The param-
eters to estimate are matrices A,B and C and possibly the initial state x0. Here, the
over-parameterization represented by this approach imposes the research of so-called
specific canonical forms.

7.4.3. Methods

7.4.3.1. Operation in a stochastic context

This means that we try to identify at the same time, a model of the procedure and
a model of the ambient noises or interferences. This second model is reduced to a
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so-called “shaper” filter whose input, imaginary signal, is labeled as an independent
sequence. Therefore, it is traditional to use what we call an ARMAX structure which
consists of writing an input-output relation including the imaginary signal, called here
innovation and noted by νt:

yt = −(a1yt−1 + · · · + anyt−n) + (b0ut−k + · · · + bmut−k−m)

+ νt + c1νt−1 + · · · + crνt−r [7.53]

Parameter r is the degree of the “shaper filter”.

This approach usually uses “maximum likelihood” type methods, corresponding
to the hypothesis according to which νt is an independent Gaussian sequence, and
“extended least squares”, which represents a version which can be operated in real-
time. The “instrumental variable” type algorithms or “generalized least squares” are
alternatives in which the shaper filter becomes, for example, C(z)/D(z), instead of
C(z)/A(z) previously. We note C(z) = 1 + c1z

−1 + · · · + crz
−r and D(z) another

polynomial not formulated here. In all cases, the zeros and the poles of the shaper
filter must be asymptotically stable.

7.4.3.2. Operation in a deterministic context

This time, the only objective is determining a model of the procedure. Without
getting into details, we can consider that there are two basic structures, depending on
whether we deal with an output error εt (method of the model whose output is ηt):

ηt = −(a1ηt−1 + · · · + anηt−n) + (b0ut−k + · · · + bmut−k−m) [7.54a]

εt = ηt − yt [7.54b]

or an equation or prediction error et (“least squares” method):

yt = −(a1yt−1 + · · · + anyt−n) + (b0ut−k + · · · + bmut−k−m) + et [7.55]

We note that formalizing an output error [7.54] or a prediction error [7.55] is only
a particular case of what we call innovation in [7.53]. In the first case, it is enough
to assume that r = n and ai = ci, i = 1, . . . , n; in the other case, we simply have
r = 0. The fact that we speak of deterministic context does not mean that we cannot
assimilate the interferences and/or measurement noises to random variables, contrary
to certain interpretations.

7.4.4. Optimization criteria

7.4.4.1. Quadratic optimization criterion

The formulation of the identification algorithm is expressed, from the point of view
of calculation, in terms of linear regression (or linearized), i.e. it leads to a quadratic
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minimization problem (with respect to parameters), more often without constraints.
In this case, we can carry out either a general processing of all data at the same time
(offline operation), or a sequential processing (with respect to time) of the inputs-
outputs enabling a real-time implementation (online). We often find in works on this
subject the name “recursive” for designating this type of approach. This term seems
totally inadequate if no recursion appears, in the mathematical sense of the word! By
supposing that θ = [a1, . . . , an; b0, . . . , bm], such a criterion is, for example, that of
simple least squares:

J(θ) =
∑

t

e2
t [7.56]

NOTE 7.3. With this type of criterion, the estimation of parameters is often biased!
In fact, for the estimation not to be biased, the sequence et must be available to an
independent random sequence, at the optimum which is rarely the case.

7.4.4.2. Non-linear optimization criterion

Unlike the previous case, we consider here the hypothesis where the identification
procedure leads to a non-linear regression. This time, the numeric procedure is then
necessarily iterative (non-linear programming (NLP) algorithm) and thus implies an
offline processing. The model method [RIC 71] consists of minimizing the criterion:

J(θ) =
∑

t

ε2
t [7.57]

whereas the maximum likelihood method operates with:

J(θ̃) =
∑

t

υ2
t [7.58]

where θ̃ = [θ, c1, . . . , cr]. Only the solutions approached for this problem can have
a sequential aspect. This is the case of the extended least square method with the
criterion [7.58]. Generally, these approaches are fundamentally unbiased.

7.4.5. The problem of precision

Let us note by θ̂ the set of parameters obtained by minimizing one of the previous
criteria [7.56] to [7.58]. A basic question is to know what degree of confidence we
can give to this result. It is necessary to make statistic hypotheses on, for example,
the type of interferences focused by et, εt or υt for talking of standard deviation for
the parameters contained in θ̂. However, in a context of industrial application, we can
perfectly evaluate the precision of θ̂ without resorting to any stochastic reasoning. The
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following expression, obtained from Fisher’s information theory and in relation to Rao
Cramer’s inequalities, can be used without resorting to sophisticated theories:

σ2(θ̂) = var(θ̂) = diag

{
J(θ̂)

N − dim(θ̂)

[
∂2J

∂θ̂i∂θ̂j

]−1
}

[7.59]

Here, N represents the horizon length of the summation with respect to t in the
criteria. The uncertainty on each component θ̂i of θ̂ is then quantified by

√
(var(θ̂i)).

The interpretation of this value then depends of course on reasonable hypotheses that
can be associated to the context. For example, if et, εt or υt (depending on the method
used) can be assimilated to a Gaussian independent random variable, then θ̂i is an
unbiased estimator of standard deviation

√
(var(θ̂i)). If, on the other hand, no such

hypothesis is made,
√

(var(θ̂i)) does not necessarily represent a standard deviation
any longer, but remains an indirect indication of the uncertainty on θ̂. To understand
why this argument is justified, it is sufficient to reason in a parametric space of size
1 instead of n + m + 1(+r). In [7.59], let us ignore for a second the reverse of the
second derivatives matrix of the criterion, which are optimally evaluated. The term
J(θ̂)/(N − dim(θ̂)) represents the root mean square of the prediction error, of the
output error or of the innovation. If we divided it by the root mean square of the mea-
sured output yt, we would have an image of the signal-to-noise ratio. In other words,
the “precision” of θ̂, expressed via [7.59], will improve proportionally to the S/N
ratio, which is perfectly logical. The interpretation of the second term is more subtle.
The altitude of J minimum is in relation with the S/N ratio. If the function to mini-
mize J presents a minimum with a flat base, the exact position of this minimum could
considerably vary, for the same level of noise or interferences, from a data recording
to another. In other words, the value of θ̂ could considerably change from one attempt
to another. Hence, for a calculation done with a given recording, the precision of θ̂
will be very low. Let us go back to formula [7.59]. A flat base corresponds to a sec-
ond small derivative (in absolute value); its reverse is thus high, and so var(θ̂) is high.
Conversely, when the criterion presents a sharp base, the position of the minimum will
vary very little from one recording to another and the calculation obtained with any
recording will provide an θ̂ which we can trust. In this case, the second derivative is
high, its reverse is small, and var(θ̂) is thus small, translating a low uncertainty. In a
multidimensional context, we can add to the previous theory the impact of the Hessian
conditioning that increases along with an over-parameterized model and/or an input
which is dynamically too poor. This is translated into an increase of the standard of
the reverse – from which again a big uncertainty is obtained as expected!

7.4.6. How to optimize

The minimization of criteria is the milestone of identification algorithms. The
absence of good numeric methods means that there are very few chances to reach
a result that is certain. There are two fundamentally distinct situations to consider.
If the criterion is quadratic, we have to use orthogonal factorization methods, be it a
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general, offline or sequential processing [LAW 77]. It is the only way to guarantee
that the matrices that must be symmetric and positive definite in theory are so numeri-
cally – irrespective of the precision of calculation (simple or double). For a non-linear
criterion, only iterative methods can solve the problem. Here the situation is less clear,
due to the difficulty of the problem and to the multitude of possible approaches. The
criteria to minimize are characterized by a reduced number of parameters to estimate,
from a few units to a few dozen, their “square sum” type structure and a very high
conditioning factor which can reach 1010. Geometrically, this is translated into con-
tour lines extremely extended in certain directions and very dense in others: mathe-
matically, the conditioning is defined by:∥∥∥∥ ∂2J

∂θ̂i∂θ̂j

∥∥∥∥
∥∥∥∥
[

∂2J

∂θ̂i∂θ̂j

]−1∥∥∥∥
These characteristics exclude any heuristic approach. For example, using Nelder-

Mead simplex method is absurd in this situation. Likewise, it is equally inappropriate
to use a method of conjugate gradients (reserved for big problems of modest condi-
tioning) and even less appropriate to use, the method of the so-called “optimal” gra-
dient. This last choice is the worst because it fails almost systematically. Algorithms
like those of Levenberg and Marquart, usually related to “square sums” type crite-
ria, are efficient in the 1963 initial description only if the minimum is close to zero!
Moreover, they are not always robust in the case of high conditioning, even if they
have been highly improved [MOR 77]. So we are left with “quasi-Newton” type algo-
rithms. Only the factorized Hessian implementations are capable of being numerically
stable in the case of high conditioning [POW 75].

7.4.7. Partial conclusion

The transfer approach is by far the most practical. The identification of a state
model is of a complexity order of magnitude superior to the previous approach, due
to the a priori over-parameterization that is, triplet (A,B,C). It is the problem of
“canonical forms” that we have here, with the immediate incidence on the numer-
ically undecidable character of algebraic conditions (all or nothing) of matrix rank
(transforms of approximately projective type) [BAR 77]. Hence, no totally automatic
procedure is surely satisfactory. Algorithms must remain guided (interactively) by the
user at the level of the canonical structure. This is one of the arguments that encour-
ages us to orient ourselves towards other approaches involved by questions of numeric
conditioning (stability and robustness of calculations) without any reference to any
canonical form. Passing through an impulse response is not of any practical interest
nowadays, if this type of model does not lead to anything (so to speak) in terms of
control. To conclude, we need to underline that the identification of a procedure is
related to open loop and that, fundamentally, everything that has been said above sup-
poses that the input does not depend on the output. Similarly, the models we referred
to express a dynamic input-output relation, in variation around zero.
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7.4.8. Practical application

Implementing a behavioral (identification) model requires a knowledge which
works on three levels:

– conducting an ad hoc test campaign;

– determining the proper structure of the model and estimating its parameters;

– validating this modeling in relation to the final objective of the design of such a
model.

7.4.8.1. Identification protocols

When a test campaign must be defined, a first task consists of sufficiently under-
standing the physical operating mode of the procedure to be modeled, in order to cor-
rectly define the magnitudes that will have the role of inputs – real or non-real inputs,
but manipulable (regulator set points), non-manipulable inputs (measurable interfer-
ences) – and of outputs. Then, since the procedures are a priori non-linear, several test
campaigns could be implemented around various characteristic working points. The
actions can be of the “slot” or “symmetric step functions” type. Being able to record
parts of unit-step responses is always a very interesting information with respect to a
priori knowledge (sign and magnitude order of static gain, delay evolution, presence
of a non-minimum phase, etc.). As soon as the sinusoidal input is eliminated (to be
kept in mind in order to verify the linearity of the procedure within a given variation
range, for example), and as soon as a certain independence is guaranteed between the
various inputs, we underline that it is not necessary to introduce other constraints than
that which ensures a functioning sufficiently rich in information on the dynamics of
tested procedure. In particular, it is not necessary to impose a test campaign controlled
by a computer – for example, in order to obtain a pseudo-random binary (or ternary)
sequence type of input excitation. The argument that it is easy in these conditions to
obtain by correlation an impulse response model does not have a practical value for an
industrial procedure. It is also true that these inputs are excellent, even the best, and
if the identification by correlation is not advisable, “carrying out” an autocorrelation
on the inputs and inter-correlation for inputs and outputs is an efficient way to per-
form a concentration of initial data by replacing the real input-output pair by the input
autocorrelation and input-output inter-correlation pair. An indispensable approach is
to operate in closed loop. In this case, we replace the real input-output pairs by the
input-set point and output-set point inter-correlation pairs. The set point, the external
input of the looped system, can very well be again a binary sequence for its dynamic
qualities, but this is still not indispensable, since the particularity of its autocorrelation
function is no longer used.

7.4.8.2. Identification tools

A few years back, due to the multiplicity of solutions proposed in works on the
subject, we could think that the difficulty is to know which algorithm to choose. The
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problem was to encode the method selected, because of the shortage of “handy” avail-
able solutions. Today the situation is no longer the same. There are ergonomic envi-
ronments offering a reduced but realistic choice of possible alternatives: see [MAT
95], which is only one of the universally known environments. Except for a specialist
in the identification field and digital techniques, we strongly advise everyone not to
initiate the design of an identification tool whose first vocation would be the modeling
of industrial procedures. At the level of methods, a main choice concerns the alterna-
tive between “prediction error” type approaches and “output error” type approaches,
the latter being preferred by us. A second criterion refers to the available support for
determining structural parameters such as k,m and n (or their equivalent including
multivariable systems). Finally, it is very important to have validation means – for
example, a very important one would be the accuracy obtained for the parameters.
Poles, zeros, typical responses and residuals are a valuable amount of information that
can be used by an identification software. Even if identification was presented here
based on time information generated by the procedure, analyzing the scalar properties
of a model can be a significant piece of information as well. Finally, the validation
of other input-output data is easily done today by comparing, for example, the new
residuals et, εt or υt with respect to those obtained by an optimization with the initial
data, both in terms of root mean square and autocorrelation.

7.4.8.3. “Customizing”

As for the unconditional aspects of the “home” software, below there are a few
recommendations on what should be done and what should not be done:

– never encode the following type of formulae:

P+ = P − Pv(1 + vT Pv)−1vT P [7.60]

where P is assumed to be symmetric defined positive and where v represents a column
vector. From a mathematical point of view, P+ is defined as positive if P is. Numeri-
cally, it is not necessarily the case. Thus, for example, negative variances in Kalman’s
filter, the sequential least squares of any type, etc.;

– for gradient calculations, never perform lateral finite differences, but central
ones, in the absence of the basically incontrovertible analytical form. In fact, the lateral
finite difference cannot “tend” towards zero when the current point tends towards a
minimum;

– never use “gradient” type non-linear optimization methods, including the con-
jugated gradient;

– use factorized “quasi-Newton” type methods which are incomparably more
robust than Levenberg-Marquant’s original algorithm, even if this is the reference in
the “identification” environment;

– in the calculation of a criterion whose theoretical value for the current set of
parameters diverges (for example, a transfer output error whose poles are, during an
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iteration, unstable), interrupt the simulation and the calculation of sensitivity func-
tions, hence of the gradient, on a preset upper bound. In the contrary case, there is a
fatal error risk in the optimization solver (irrespective of which one it is!);

– use the factorized forms for all the formulae for the update of symmetric posi-
tive defined matrix. For example, the equivalent of [7.60] is:

QM = Q

[
1 0 · · · 0

Y v Y

]
=

[
z gT

0 Z

]
[7.61]

where Y is Cholesky’s factorization of P ; hence, by construction, Z is that of P+.
In this approach, Q is an orthogonal matrix (Householder transformations or Givens
rotations) calculated to perform the superior triangular shaping of M . Quantity g/z
corresponds to the gain to be applied to the prediction error in the least squares for-
mula.

7.5. Conclusion around an example

To conclude this brief overview of parametric identification, here is a test prob-
lem with which it is easy to practice while using the various methods of identification
previously covered. The following results were obtained with the Matlab [LJU 95]
“identification” tool box, but any other software implementing the appropriate calcu-
lations can be used.

7.5.1. Simulated procedure

It is totally artificial and easily reproducible. It is characterized by a transfer in z
presenting the following characteristics:

– a pure delay of two sampling intervals;

– a non-minimum phase, with a zero of value 1.1;

– a pair of conjugated complex number poles highly oscillating (0.9 ± 0.3i);
– a faster mode (0.8);

– a static gain set at 5.

The working point of this procedure is, for the input, around level 50 and, for
the output, around level 400. The test protocol is reduced to two unbalanced slots of
different lengths – so that after their application, the procedure is around the same
working point. A 20 standard deviation independent Gaussian noise was added on
the calculated output. The simulation results appear in Figure 7.11 for an 81 second
simulation period and a sampling interval te = 0.25 second, i.e. 325 pairs (ut, yt).
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Figure 7.11. Simulated procedure

The reasons for these choices can be used as starting points for the “manual” con-
struction of test campaigns. The length of the first slot enables us to “see” the unit-step
response of the system. The short period of a second is there to tell us that it is not
necessary to see it for a numeric approach (opposed to a graphic one) in order to ben-
efit from the information present in the input-output data. Finally, the last one is built
in such a way that the system returns to its initial working point. This makes it pos-
sible to visualize a drift and to evaluate it if necessary. In addition, the sequence of
the two ascending and descending slots makes it possible to appreciate the linearity
hypothesis implicitly made. Moreover, the presence of vertical fronts offers the pos-
sibility of easily evaluating an initial value of delay k. For a multi-input context, the
same type of approach can be implemented, by paying attention to make these level
changes at different instants for each input, so that, globally, the inputs are “inde-
pendent”. Obviously nothing prevents subcontracting to a program the generation of
statistically independent pseudo-random binary sequences. Whoever can do a lot can
also do a little, but again, this is not indispensable.

7.5.2. In search of a model

Due to space constraints here, we cannot present all the characteristic results of
tests that progressively lead to a “good model”. Briefly, upon the selection of a method,
we can say in general that a noise analysis on the measurements enables us to choose
between the method of the model (if the noise seems “sufficiently white”) and the
maximum likelihood (in the contrary case). This reasoning ensures no bias for any
coherent experimental condition. The real difficulty is to rapidly estimate the structure
parameters k,m and n of the transfer. Generally, it is better to start with low complex-
ity n = 1 or 2 and increase n according to the results. Similarly, for m, the values
0 and 1 are rarely exceeded. The initial estimation of k is done visually – hence the
interest in the inputs with at least one isolated rigid front.
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Figure 7.12. Method of the model

Figure 7.13. Method of simple least squares

Figure 7.14. Place of poles for a too complex model

In order to adapt parameters k,m and n, we have several indicators:

– as long as σ(an) > |an| ⇒ decrease n with 1;

– as long as σ(bm) > |bm| ⇒, decrease m with 1;

– as long as σ(b0) > |b0| ⇒, increase k with 1;

– if ∀i : |polei| � 1 and Re(polei) < 0 decrease n with 1;
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– if the output error reaches a level inferior to the noise level, then there is over-
parameterization.

The first three arguments express that maybe the parameters in question are zero.
The following one indicates that a fast oscillating pole, which cannot be the result of
a correctly sampled continuous pole, models the measurement noise rather than the
procedure. In other words, we have a too complicated model which adjusts the data
so well that the noise present in the measurements is no longer filtered. Finally, the
fifth procedure is based on the same approach. It is equally appropriate to examine the
autocorrelation (or the spectrum) of the minimized error which must be sufficiently
characteristic of an independent sequence, with respect to the hypotheses justifying
the choice of the method and model. Numerous other details coming from experience
are to be considered and their synthesis would be difficult here. Anyone interested
may refer to the works previously mentioned.

To conclude, below a few characteristic results for a good structure are listed, i.e.
k = 2,m = 1, n = 3. Through the model method (see Figure 7.12), we have obtained
the results in Table 7.3.

Parameter Gain Zero Pole1,2 Pole3
Value 4.906 1.096 7 8.93e−1 + 2.96e−1 i 7.73e−1
Standard deviation 7.3e−2 2.3e−3 1.7e−3 8.1e−3

Parameter b0 b1 a1 a2 a3

Value −1.141 1.251 −2.560 2.266 −6.843e−1
Standard deviation 3.6e−2 3.8e−2 9.6e−3 1.8e−2 8.9e−3

Table 7.3. The model method

For comparison, the least squares method leads to Figure 7.13, which clearly
underlines the significant bias present in the estimation of model parameters. The
parameters are those in Table 7.4.

Parameter Gain Zero Pole1,2 Pole3
Value 4.11 1.38 9.18e−1 + 2.23e−1 i −4.72e−1
Standard deviation 5.2e−1 5.2e−1 1.19e−2 5.0e−2

Parameter b0 b1 a1 a2 a3

Value −8.93e−1 1.23 −1.36 2.50e−2 4.22e−1
Standard deviation 2.4e−1 2.4e−1 4.9e−2 8.9e−2 4.9e−2

Table 7.4. Least squares method

Even if the standard deviations are not so good, this degradation does not make it
possible to explain the non-adequacy of the model. Only the residual analysis makes
it possible to explain the strongly biased character of the least squares method.
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Finally, if we test a transfer with n = 5, two poles in the left unit semi-circle
appear (see Figure 7.14), which are indicators of a not very complex model. These
results were obtained with the model method.
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Chapter 8

Simulation and Implementation
of Continuous Time Loops

8.1. Introduction

This chapter deals with ordinary differential equations, as opposed to partial deriv-
ative equations. Among the various possible problems, we will consider exclusively
the situations with given initial conditions. In practice, the other situations – fixed final
and/or intermediary conditions – can always be solved by a sequence of problems
with initial conditions that we try to, by optimization, determine so that the other
conditions are satisfied. Similarly, we will limit ourselves to 1st order systems (using
only first order derivatives) as long as in practice we can always obtain such a system
by increasing the number of equations.

We will study successively the linear and non-linear cases. Even though the lin-
ear case has by definition explicit solutions, the passage from formal expression to a
virtual reality, with the objective of simulating, is not so trivial. On the other hand, in
automatic control, Lyapunov or Sylvester’s matrix equations, even if also linear, can-
not be processed immediately, due to a prohibitive calculating time. For the non-linear
case we will analyze the explicit approaches – which remain the most competitive for
the systems whose dynamics remain of the same order of magnitude – and then we
will finish by presenting a few explicit diagrams mainly addressing systems whose
dynamics can significantly vary.

Chapter written by Alain BARRAUD and Sylviane GENTIL.
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8.1.1. About linear equations

The specific techniques of linear differential equations are fundamentally exact
integration diagrams, provided that the excitation signals are constant between two
sampling instants. The only restrictions of the integration interval thus remain exclu-
sively related to the sensitivity of underlying numerical calculations. In fact, irrespec-
tive of this integration interval, theoretically we have to obtain an exact value of the
trajectory sought. In practice, this can be very different, irrespective of the precision
of the machine, as soon as it is completed.

8.1.2. About non-linear equations

Inversely, in the non-linear case, the integration numerical diagrams can essentially
generate only one approximation of the exact trajectory, as small as the integration
interval, within the precision limits of the machine (mathematically, it cannot tend
towards 0 here). On the other hand, we can, in theory, build integration diagrams of
increasing precision, for a fixed integration interval, but whose sensitivity increases so
fast that it makes their implementation almost impossible.

It is with respect to this apparent contradiction that we will try to orient the reader
towards algorithms likely to best respond to the requirements of speed and accuracy
accessible in simulation.

8.2. Standard linear equations

8.2.1. Definition of the problem

We will adopt the notations usually used to describe the state forms and linear
dynamic systems. Hence, let us take the system:

◦
X (t) = AX(t) + BU(t) [8.1]

Matrices A,B and C are constant and verify A ∈ Rn×n, B ∈ Rn×m. As for X
and U , their size is given by X ∈ Rn×m and U ∈ Rm×m. To establish the solution of
these equations, we examine the free state, and then the forced state with zero initial
conditions. For a free state, we have:

X(t) = eA(t−t0)X(t0)

and for a forced state, with X(t0) = 0:

X(t) =
∫ t

t0

eA(t−τ)BU(τ) dτ
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In the end we obtain:

X(t) = eA(t−t0)X(t0) +
∫ t

t0

eA(t−τ)BU(τ) dτ [8.2]

8.2.2. Solving principle

Based on this well known result, the question is to simulate signal X(t). This
objective implies an a priori sampling interval, at least with respect to the storage
of the calculation result of this signal. In the linear context, the integration will be
done with this same sampling interval noted by h. In reference to the context of usual
application of this type of question, it is quite natural to assume that the excitation
signal U(t) is constant between two sampling instant. More exactly, we admit that:

U(t) = U(kh), ∀t ∈ [kh, (k + 1)h] [8.3]

If this hypothesis was not verified, the next results – instead of being formally
exact – would represent an approximation dependent on h, a phenomenon that is found
by definition in the non-linear case. Henceforth, we will have Xk = X(kh) and the
same for U(t). From equation [8.2], by supposing that t0 = kh and t = (k + 1)h, we
obtain:

Xk+1 = eAhXk +
[∫ (k+1)h

kh

eA[(k+1)h−τ ] dτ

]
BUk [8.4]

This recurrence can be written as:

Xk+1 = ΦXk + ΓUk [8.5]

By doing the necessary changes of variables, the integral defining Γ is considerably
simplified to give along with Φ the two basic relations:{

Φ = eAh

Γ =
∫ h

0
eAτB dτ

[8.6]

8.2.3. Practical implementation

It is fundamental not to try to develop Γ in any way. In particular, it is particu-
larly inadvisable to want to formulate the integral when A is regular. In fact, in this
particular case, it is easy to obtain Γ = A−1[Φ − I]B = [Φ − I]A−1B. These for-
mulae cannot be an initial point for an algorithm, insofar as Γ could be marred by a
calculation error, which is even more significant if matrix A is poorly conditioned. An
elegant and robust solution consists of obtaining simultaneously Φ and Γ through the
relation: [

Φ Γ
0 I

]
= exp

([
A B
0 0

]
h

)
[8.7]
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The sizes of blocks 0 and I are such that the partitioned matrices are of size (m+n)×
(m + n). This result is obtained by considering the differential system

◦
W= MW ,

W (0) = I , with:

M =
[
A B
0 0

]
[8.8]

and by calculating the explicit solution W (h), via the results covered at the beginning
of this section.

There are two points left to be examined: determining the sampling interval h and
the calculation of Φ and Γ. The calculation of the matrix exponential function remains
an open problem in the general context. What we mean is that, irrespective of the
algorithm – as sophisticated as it is – we can always find a matrix whose exponential
function will be marred by a randomly big error. On the other hand, in the context
of simulation, the presence of sampling interval represents a degree of freedom that
makes it possible to obtain a solution, almost with the precision of the machine, reach-
ing the choice of the proper algorithm. The best approach, and at the same time the
fastest if it is well coded, consists of using Padé approximants. The choice of h and
the calculation of Φ and Γ are then closely linked. The optimal interval is given by:

h = max
i∈Z

2i :

∥∥∥∥∥
[
A B
0 0

]
2i

∥∥∥∥∥ < 1 [8.9]

This approach does not suppose in practice any constraint, even if another signal
storage interval were imposed. In fact, if this storage interval is bigger, we integrate
with the interval given by [8.9] and we sub-sample by interpolating if necessary. If, on
the contrary, it is smaller, we decrease h to return to the storage interval. The explana-
tion of this approach lies on the fact that formula [8.9] represents an upper bound for
the numerical stability of the calculation of exponential function [8.7]. Since the value
of the interval is now known, we have to determine order q of the approximant which
will guarantee the accuracy of the machine to the result of the exponential function.
This is obtained very easily via the condition:

q = min i : ‖Mh‖2i+1ei � ε, ej+1 =
ej

4(2j + 1)(2j + 3)
, e1 = 2

3 [8.10]

where M is given by [8.8] and ε is the accuracy of the machine.

NOTE 8.1. For a machine of IEEE standard (all PCs, for example), we have q � 8
double precision. Similarly, if ‖Mh‖ � 1

2 , q = 6 guarantees 16 decimals.

Let us return to equation [8.7] and we shall write it as follows:

N = eMh
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Let N̂ be the estimated value of N ; then, N̂ is obtained by solving the following
linear system, whose conditioning is always close to 1:

pq(−Mh)N̂ = pq(Mh) [8.11]

where pq(x) is the q degree polynomial defined by:

pq(x) =
q∑

i=0

αix
i, ak =

q∏
i=1

q + i − k

k!
[8.12]

In short, the integration of [8.1] is done from [8.5]. The calculation of Φ and Γ is
obtained via the estimation N̂ of N . Finally, the calculation of N̂ goes through that of
the upper bound of sampling interval [8.9], the determination of the order of the Padé
approximant [8.10], the evaluation of the corresponding polynomial [8.12] and finally
the solving of the linear system [8.11].

NOTE 8.2. We can easily increase the value of the upper bound of sampling interval if
‖B‖ > ‖A‖. It is enough to standardize controls U(t) in order to have ‖B‖ < ‖A‖.
Once this operation is done, we can again improve the situation by changing M in
M − µI , with µ = tr(M)/(n + m). We have in fact ‖M − µI‖ < ‖M‖. The initial
exponential function is obtained via N = eµe(M−µI)h.

NOTE 8.3. From a practical point of view, it is not necessary to build matrix M in
order to create the set of calculation stages. This point will be explored – in a more
general context – a little later (see section 8.3.3). We can finally choose the matrix
standard L1 or L∞, which is trivial to evaluate.

8.3. Specific linear equations

8.3.1. Definition of the problem

We will now study Sylvester differential equations whose particular case is rep-
resented by Lyapunov differential equations. These are again linear differential equa-
tions, but whose structure imposes in practice a specific approach without which they
basically remain unsolvable, except in the academic samples. These equations are
written:

◦
X (t) = A1X(t) + X(t)A2 + D, X(0) = C [8.13]

The usual procedure here is to assume t0 = 0, which does not reduce in any way
the generality of the statement. The size of matrices is specified by A1 ∈ Rn1×n1 ,
A2 ∈ Rn2×n2 and X,D,C ∈ Rn1×n2 . It is clear that based on [8.13], the equation
remains linear. However, the structure of the unknown factor does not enable us to
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directly apply the results of the previous section. From a theoretical point of view, we
can, however, return by transforming [8.13] into a system directly similar to [8.1], via
Kronecker’s product, but of a size which is not usable for the majority of the time
(n1n2 × n1n2). To set the orders of magnitudes, we suppose that n1 = n2. The
memory cost of such an approach is then in n4 and the calculation cost in n6. It is
clear that we must approach the solution of this problem differently. A first method
consists of noting that:

X(t) = eA1t(C − E)eA2t + E [8.14]

verifies [8.13], if E is the solution of Sylvester algebraic equation A1E + EA2 +
D = 0. Two comments should be noted here. The first is that we shifted the difficulty
without actually solving it – because we must calculate E, which is not necessarily
trivial. Secondly, the non-singularity of this equation imposes constraints on A1 and
A2 which are not necessary in order to be able to solve the differential equation [8.13].

8.3.2. Solving principle

A second richer method consists of seeing that:

X(t) =
∫ t

0

eA1τ (A1C − CA2 + D)eA2τ dτ + C [8.15]

is also solution of [8.13], without any restriction on the problem data. Now we will
examine how to calculate this integral by using the techniques specified for the linear
standard case. For this, we have:{

Q = A1C − CA2 + D

Y (t) =
∫ t

0
eA1τQeA2τ dτ

[8.16]

Thus, we have:

Y (t) = V (t)−1W (t) [8.17]

with:

exp

([−A1 Q
0 A2

]
t

)
=
[
V (t) W (t)

0 Z(t)

]
= S(t) [8.18]

It is clear that S(t) is the solution of the standard linear differential equation:

d
dt

[
V (t) W (t)

0 Z(t)

]
=
[−A1 Q

0 A2

] [
V (t) W (t)

0 Z(t)

]
, S(0) = I
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However, by formulating it, we have:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

◦
V = −A1V, V (0) = I
◦

W= −A1W + QZ, W (0) = 0
◦
Z= A2Z, Z(0) = I

which thus gives: ⎧⎪⎪⎨
⎪⎪⎩

V (t) = e−A1t

W (t) =
∫ t

0
eA1(t−τ)QeA2τ dτ

Z(t) = eA2t

[8.19]

From [8.19], we have:

W (t) = e−A1tY (t) = V (t)Y (t)

which leads to the announced result [8.17]. The solution X(t), to the initial condition,
is identified with Y (t), because we have X(t) = Y (t) + C.

The particular case of Lyapunov equations represents a privileged situation, as long
as the inversion of V (t) disappears. In fact, when we have:

A2 = AT
1 = A [8.20]

there is:

Z(t) = eAT
1 t ⇒ V (t)−1 = ZT (t)

from where:
Y (t) = ZT (t)W (t) [8.21]

8.3.3. Practical implementation

Again, everything lies on a calculation of matrix exponential function. Let us sup-
pose again that:

M =
[−A1 Q

0 A2

]
[8.22]

The argument previously developed for the choice of integration interval is applied
without change in this new context, including the techniques mentioned in Note 8.2.
However, we have to note that, in the case of Lyapunov equations, we necessarily have
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µ = 0. Since the integration interval is fixed, the order of the Padé approximant is still
given by [8.10]. In practice, it is useful to examine how we can calculate the matrix
polynomials [8.11]. Hence:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
pq(Mh) =

[
N1 N12

0 N2

]

pq(−Mh) =

[
D1 D12

0 D2

]

We have the approximation of S(h) [8.18]:

Ŝ(h) =
[
D1 D12

0 D2

]−1 [
N1 N12

0 N2

]
∼
[
V (h) W (h)

0 Z(h)

]

By developing: ⎧⎪⎪⎨
⎪⎪⎩

V (h) = eA1h ∼ D−1
1 N1 = Φ1

W (h) ∼ D−1
1 (N12 − D12D

−1
2 )N2

Z(h) = eA2h ∼ D−1
2 N2 = Φ2

[8.23]

Based on [8.17], we have:

Y (h) ∼ N−1
1 (N12 − D12D

−1
2 )N2 = Y1 [8.24]

Considering definition Y (t), we have:

Yk+1 = Φ1YkΦ2 [8.25]

a recurrence relation which gives the sought trajectory by addition of initial condition
C.

8.4. Stability, stiffness and integration horizon

The simulation context is by definition to simulate reality. The reality manages
limited quantities and, consequently, the differential equations that we simulate are
dynamically stable when they must be calculated on high time horizons. On the con-
trary, the dynamically unstable equations can only be used on very short periods of
time, in direct relation to the speed with which they diverge. Let us go back to the
previous situation – by far the most frequent one. Let us exclude for the time being the
presence of a complex integrator (zero pole) and let us deal with the asymptotically
stable case, i.e. when all the poles are of strictly negative real part. The experimental
duration of a simulation is naturally guided by the slowest time constant TM of the
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signal or its cover (if it is of the damped oscillator type). On the other hand, the con-
straint on the integration interval [8.9] will be in direct relation with the slowest time
constraint Tm (of the signal and its cover). Let us recall that:

T =
−1

Re(λ)
, Re(λ) < 0 [8.26]

where λ designates an eigenvalue, or pole of the system, and T the corresponding time
constraint, and that, on the other hand, for a matrix A:

‖A‖ > max
i

|λi| [8.27]

It is clear that we are in a situation where we want to integrate in a horizon that is
as long as TM is high, with an integration interval that is as small as Tm is low. This
relation between the slow and fast dynamics is called stiffness.

DEFINITION 8.1. We call stiffness of a system of asymptotically stable linear differ-
ential equations the relation:

ρ =
TM

Tm
=

Re(λM )
Re(λm)

[8.28]

where λM and λm are respectively the poles with the highest and smallest negative
real part, of absolute value.

NOTE 8.4. For standard linear systems [8.1], the poles are directly the eigenvalues of
A. For Sylvester equations [8.13], the poles are eigenvalues of M = In2 ⊗A1 +AT

2 ⊗
In1 , i.e. the set of pairs λi + µj where λi and µj are the eigenvalues of A1 and A2.

The stiff systems (ρ � 100) are by nature systems which are difficult to numeri-
cally integrate. The higher the stiffness, the more delicate the simulation becomes. In
such a context, it is necessary to have access to dedicated methods, making it possible
to get over the paradoxical necessity of advancing with very small integration inter-
vals, which are imposed by the presence of very short temporal constants, even when
these fast transients disappeared from the trajectory.

However, these dedicated techniques, which are fundamentally designed for the
non-linear differential systems, remain incontrovertible in the stiff linear case. In fact,
in spite of their closely related character, they represent algorithms as highly efficient
as the specific exact diagrams of the linear case, previously analyzed.

8.5. Non-linear differential systems

8.5.1. Preliminary aspects

Before directly considering the calculation algorithms, it is useful to introduce a
few general observations. Through an extension of the notations introduced at the



236 Analysis and Control of Linear Systems

beginning of this chapter, we will deal with equations of the form:
◦
x (t) = f(x, t), x(t0) = x0 [8.29]

Here, we have, a priori, x, f ∈ Rn. However, in order to present the integration
techniques, we will assume n = 1. The passage to n > 1 remains trivial and essen-
tially pertains to programming. On the other hand, as we indicated in the introduction,
we will continue to consider only the problems with given initial conditions. However,
the question of uniqueness can remain valid. For example, the differential equation
◦
x= x/t presents a “singular” point in t = 0. In order to define a unique trajectory
among the set of solutions x = at, it is necessary to impose a condition in t0 �= 0. The
statement that follows provides a sufficient condition of existence and uniqueness.

THEOREM 8.1. If
◦
x (t) = f(x, t) is a differential equation such that f(x, t) is contin-

uous on the interval [t0, tf ] and if there is a constant L such that |f(x, t)−f(x∗, t)| �
L|x − x∗|, ∀t ∈ [t0, tf ] and ∀x, x∗, then there is a unique function x(t) continuously

differentiable such that
◦
x (t) = f(x, t), x(t0) = x0 being fixed.

NOTE 8.5. We note that:

– L is called a Lipschitz constant;

– f(x, t) is not necessarily differentiable;

– if ∂f/∂x exists, the theorem implies that |∂f/∂x| < L;

– if ∂f/∂x exists and |∂f/∂x| < L, then the theorem is verified;

– written within a scalar notation (n = 1), these results are easily applicable for
n > 1.

We will suppose in what follows that the differential equations treated verify this
theorem (Lipschitz condition).

8.5.2. Characterization of an algorithm

From the instant when trajectory x(t) remains formally unknown, only the approx-
imants of this trajectory can be rebuilt from the differential equation. On the other
hand, the calculations being done with a finite precision, we will interpret the result of
each calculation interval as an error-free result of a slightly different (disturbed) prob-
lem. The question is to know whether these inevitable errors will or will not mount up
in time to completely degenerate the approached trajectory. A first response is given
by the following definition.

DEFINITION 8.2. An algorithm is entirely stable for an integration interval h and for
a given differential equation if an interference δ applied to estimation xn of x(tn)
generates at future instants an interference increased by δ.
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An entirely stable algorithm will not suffer interferences induced by the finite pre-
cision of calculations. On the other hand, this property is acquired only for a given
problem. In other terms, such a solver will perfectly operate with the problem for
which it was designed and may not operate at all for any other problem. It is clear that
this property is not constructive. Here is a second one that will be the basis for the
design of all “explicit” solvers, to which the so-called Runge-Kutta incontrovertible
family of diagrams belong.

Initially, we introduce the reference linear problem:

◦
x= λx, λ ∈ C [8.30]

DEFINITION 8.3. We call a region of absolute stability the set of values h > 0 and
λ ∈ C for which an interference δ applied to the estimate xn of x(tn) generates at
future instants an interference increased by δ.

We substituted a predefined non-linear system for an imposed linear system. The
key of the problem lies in the fact that any unknown trajectory x(t) can be locally
estimated by the solution of [8.30], x(t) = a eλt, on a time interval depending on
the precision required and on the non-linearity of the problem to solve. This induces
calculation intervals h and the faster the trajectory varies locally, the lower these cal-
culation intervals are, and vice versa.

We will continue to characterize an integration algorithm by now specifying the
type of approximation errors and their magnitude order according to the calculation
interval. To do this, we will use the following notations, with an integration interval h,
supposed constant for the time being:{

tn = nh, t0 = 0
xn approximation of x(tn)

[8.31]

DEFINITION 8.4. We call a local error the error made during an integration interval.

DEFINITION 8.5. We call a global error the error detected at instant tn between the
trajectory approached xn and the exact trajectory x(tn).

Let us formalize these errors, whose role is fundamental. Let tn be the current
instant. At this instant, the theoretical solution is x(tn) and we have an approached
solution xn. It is clear that the global error en can be evaluated by:

en = xn − x(tn) [8.32]
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Now, let us continue with an interval h in order to reach instant tn+1. At instant
tn, xn can be considered as the exact solution of the differential equation that we

solve, but with another initial condition. Let un(t) be this trajectory, solution of
◦
un=

f(un, t), with by definition un(tn) = xn. If the integration algorithm made it possible
to solve the differential equation exactly, we would have, at instant tn+1, un(tn+1).
In reality, we obtain xn+1. The difference between these two values is the error made
during a calculation interval; it is the local error:

dn = xn+1 − un(tn+1) [8.33]

There is no explicit relation between these two types of error. Even if we imagine
that the global error is higher than the local error, the global error is not the accumula-
tion of local error. The mechanism connecting these errors is complex and its analysis
goes beyond the scope of this chapter. On the other hand, it is important to remem-
ber the next result, where expression O(h) must be interpreted as a function of h for
which there are two positive constants k and h0, independent from h, such that:

|O(h)| � kh, ∀|h| � h0 [8.34]

THEOREM 8.2. For a given integration algorithm, if the local error verifies dn =
O(hp+1), then the global error has a magnitude order given by en = O(hp), p ∈ N.

NOTE 8.6. The operational algorithms have variable intervals; in this case, the magni-
tude order of the global error must be taken with an average interval on the horizon of
calculation considered. In practice, the conclusion remains the same. The global error
is of a higher magnitude order than the local error.

Since the integration interval is intuitively small (more exactly, the product hλ) to
obtain high precision, it is legitimate to think that the higher p is [8.32], the better the
approximant built by the solver will be. This reasoning leads to the following defini-
tion.

DEFINITION 8.6. We call an order of an integration algorithm the integer p appearing
in the global error.

Therefore, we tried building the highest order algorithms, in order to obtain by def-
inition increasing quality precisions, for a given interval. Reality is much less simple
because, unfortunately, the higher the order is, the less the algorithms are numerically
stable. Hence, there is a threshold beyond which we lose more – due to the finite
precision of calculation – than what the theory expects to gain. It is easy to realize
that the order of solvers rarely exceeds p = 6. There are two key words to classify
the integration algorithms into four categories: the algorithms are “single-interval” or
“multi-interval” on the one hand and on the other hand “implicit” or “explicit”. We
will limit ourselves here to “single-interval” explicit algorithms and we will finish
with the implicit techniques in general.
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8.5.3. Explicit algorithms

Explicit algorithms are the family of methods that are expressed as follows:{
vi = hf

(
xn +

∑i−1
j=1 bijvj , tn + aih

)
, i = 1, 2, . . . , r

xn+1 = xn +
∑r

i=1 civi

[8.35]

The algorithm is explicit as long as a vi depends only on with j < i. Finally, it is
at one step because xn+1 only depends on xn. Parameter r represents the cost of algo-
rithm calculation, measured in the number of times where we evaluate the differential
equation during an integration interval. The order of the method is a non-decreasing
function of r. The triangular matrix B = [bij ] and vectors a = [ai] and c = [ci] are
the algorithm parameters, chosen with the aim of creating the highest possible order
diagram that is also the most numerically stable. Euler’s 1st order method, and more
generally all Runge-Kutta type algorithms, meet the formulation [8.35]. We still have
to determine the field of absolute stability of a p order algorithm. This stability is
judged by definition on the reference equation, which is parameterized by dynamics
λ. From the current point (tn, xn), the exact value at the next instant tn+1 will be
eλhxn. For a disturbance applied to instant tn to be non-increasing in the future, the
condition is simply |eλh| � 1. If the algorithm is of p order, this means that eλh is
approached by its serial development in Taylor series at p order. The stability domain
described in the complex plane µ = λh is then defined by:∣∣∣∣∑ µi

i!

∣∣∣∣ � 1 [8.36]

For Euler’s method, p = 1, we find the unit circle centered in µ = −1. What is
remarkable is that the stability field of an explicit algorithm does not depend on the
formulae used to implement it (here B, a, c), but directly on the order that character-
izes it! In a system of non-linear equations, the role of λ is kept by the eigenvalues
of Jacobian ∂f/∂x; on the other hand, the magnitude order for the local and global
error is, by definition, guaranteed only for a value of µ belonging to the stability field
of the method [8.36]. The constraint on the integration interval is thus operated by the
“high” λ (absolute value of negative real value), i.e. by fast transients, even if they
became negligible in the trajectory x(t)! This is the fundamental reason as to why an
explicit method is not applied in order to integrate a stiff system.

Among all possible diagrams, we have chosen one corresponding to the best com-
promise between performance and complexity, and present in all the best libraries. It
is the Runge-Kutta-Fehlberg solver, whose particularity is to simultaneously offer a 5
and 4 order estimation, for the same cost (r = 6) like the more traditional diagram
of 5 order only. From this situation we will have a particularly competitive automatic
management of the integration interval, based on the idea that when we are in the
domain of absolute stability, the 5 order estimate can be, with respect to 4 order, the
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exact trajectory for estimating the local error. In addition, it is thus possible to verify
the compatibility of its magnitude order with what the theory expects. The parameters
of this solver are:

a =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1/4
3/8

12/13
1

1/2

⎤
⎥⎥⎥⎥⎥⎥⎦, c =

⎡
⎢⎢⎢⎢⎢⎢⎣

16/135
0

6,656/12,825
28,561/56,430

−9/50
2/55

⎤
⎥⎥⎥⎥⎥⎥⎦, c∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

25/216
0

1,408/2,565
2,197/4,104

−1/5
0

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1/4 0 0 0 0 0
3/32 9/32 0 0 0 0

1,932/2,197 −7,200/2,197 7,296/2,197 0 0 0
439/216 −8 3,680/513 −845/4,104 0 0
−8/27 2 −3,544/2,565 1,859/4,104 −11/40 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Here, parameter c∗ is the second value of c, leading to a 4 order estimation, the 5
order estimation being provided by c.

8.5.4. Multi-interval implicit algorithms

The complexity of these techniques is another matter [LON 95]. Firstly, let us
consider the implicit version of single-interval methods, which are directly obtained
from the explicit case [8.35]:{

vi = hf
(
xn +

∑i
j=1 bijvj , tn + aih

)
, i = 1, 2, . . . , r

xn+1 = xn +
∑r

i=1 civi

[8.37]

As long as vi depends now on itself, its calculation implies the solving of a non-
linear (static) system, precisely the one defining the differential equation to be solved.
To simplify the future notations, we say:

fn = f(xn, tn) [8.38]

A multi-interval method will be then written:

xn+1 =
r∑

i=1

αixn+1−i + h

r∑
i=0

βifn+1−i [8.39]

The method is implicit for β0 �= 0 and explicit for β0 = 0. Apart from the difficulty
related to the implicit case already mentioned, a multi-interval algorithm cannot start,
due to its reference to a past that does not exist at the beginning of the simulation. The
first points are thus always calculated by a single-interval method.
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Due to its particular context, solving non-linear systems intervening in the implicit
structures is not done as a priority by a standard solver but rather by a specific approach
consisting of using in parallel an explicit diagram, with the role of predictor, and an
implicit diagram, called a corrector. In these two phases, we usually add a third one,
called an estimator. By noting these stages P,C and E, each calculation interval is
built on a P (EC)mE type structure that we interpret as being constituted of a predic-
tion initial phase followed by m estimation-correction iterations and by an estimation
final phase. This leads to the general diagram:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P : x
(0)
n+1 =

∑r
i=1 αixn+1−i + h

∑r
i=1 βifn+1−i, k = 0

as long as k � m

E : f
(k)
n+1 = f

(
x

(k)
n+1, tn+1

)
C : x

(k+1)
n+1 =

∑r
i=1 αix

(k)
n+1−i + h

∑r
i=0 βif

(k)
n+1−i, k = k + 1

as long as in the end

E : xn+1 = x
(m)
n+1, fn+1 = f

(
x

(m)
n+1, tn+1

)
[8.40]

The number of m iterations is often imposed a priori or obtained from a conver-
gence criterion on |x(k+1)

n+1 − x
(k)
n+1|. If we consider formula [8.39], we have 2r + 1

degrees of freedom. Hence, we are capable, by choosing correctly the parameters of
the method (the αi and βi), of building an exact solver for the polynomial trajecto-
ries x(t) of a degree inferior than or equal to 2r. From this we obtain a local error
in O(h2r+1), i.e. a method of order 2r – therefore much more than what a single-
interval explicit method could have expected. Unfortunately, the diagrams of 2r order
are numerically unstable – there is phase difference (EC)m. We prove that it is impos-
sible to build numerically stable algorithms of an order greater than r + 1, for r odd,
and of order greater than r + 2, for r even.

The field of absolute stability is always characterized from the reference equation
◦
x= λx. Based on [8.39], by introducing an α0 = −1, we can rewrite this relation as:

r∑
i=0

αixn+1−i + h
r∑

i=0

βifn+1−i = 0 [8.41]

Applied to our reference linear equation, always with µ = hλ, we get:

r∑
i=0

(αi + βiµ)xn+1−i

If we apply interference δn to xn, the δn are governed by the same recurrence and
thus evolve as zn

i , where zi is a root of the polynomial:

p(z) =
r∑

i=0

αiz
r−i + µ

r∑
i=0

βiz
r−i [8.42]
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Consequently, the field of absolute stability of multi-interval methods (implicit or
not depending on the value of β0) is the set of µ ∈ C so that the roots of the polynomial
[8.42] verify |zi| � 1. It is important to know that the field of absolute stability of
implicit methods is always larger (often 10 times more) than that of explicit methods
of the same order – hence their interest in spite of their high complexity. On the other
hand, the more the order increases, the more the field is reduced. Hence, the designer
will again have compromises to make. Many diagrams were suggested in books and it
is obviously impossible to try to make a synthesis. For example, we chose the implicit
Adams-Moulton method. This strategy corresponds to the following parameters, for
r = 1, . . . , 6 with αi = 0 (i = 2, . . . , r), α1 = 1 and βi, according to the following
table: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
1 1/2 5/12 9/24 251/720 475/1,440

1/2 8/12 19/24 646/720 1,427/1,440
−1/12 −5/24 −264/720 −798/1,440

1/24 106/720 482/1,440
−19/720 −173/1,440

27/1,440

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In all cases, the order of the method is r + 1. The interval management is done
along with a selection of the order within the possible range, here r � 6. This consists
of comparing the magnitude order of the local error theoretically stipulated and with
that estimated with the help of devised differences and then adapting the interval. The
order is selected in such a way as to maintain the highest interval, while remaining
in the field of absolute stability. The professional codes are accompanied in reality
by heuristic methods which are often very sophisticated and the result of long expe-
rience, which give these tools the best compromise between cost, performance and
robustness. As long as the stability field continues to intervene, there is nothing solved
with respect to the stiff systems. Then, what do these techniques bring with respect to
single-interval explicit methods, with a much less complicated design? They poten-
tially offer better performances, in terms of the cost/order ratio, a better flexibility, the
variation of the interval and order at the same time, and especially a chance to get
away from this field of absolute stability – due to which it will finally be possible to
integrate these stiff systems.

8.5.5. Solver for stiff systems

For non-linear systems, stiffness is always defined by [8.28], but this time the λ
are the eigenvalues of the Jacobian ∂f/∂x. This means that stiffness is a characteris-
tic of the differential system, variable in time! A specific notion of stability had to be
introduced in order to deal with this particular case, which is extremely frequent in the
industrial applications of simulation. It is the S-stability (“stiff” stability). S-stability
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is expressed in terms of absolute stability for the area of the complex plane µ defined
by Re(µ) < d < 0 and a precision constraint in the area {d < Re(µ) < a, a > 0 ;
|Im(µ)| < c}. The subtlety of the approach lies in the fact that no particular precision
is required for the area Re(µ) < d < 0, since it is de facto acquired by the choice of
parameter d. In fact, always with respect to the local reference equation of dynamic λ,
when a fast transient would impose a very small interval, we verify that it has become
negligible at the following instant. We have |eµ| = |eλh| < ed. Conversely, a has the
potential increase of the trajectory and c is there to express that in oscillating phase, a
minimum of points are necessary to follow, with a given precision, a pseudo-period.
Gear [GEA 71], who is at the origin of all the developments for the integration of
stiff systems, proved that we could build S-stable single-interval implicit algorithms
for 2 � r � 6. The counterpart is that solving a non-linear system by the phase
(EC)m [8.40] was not convergent anymore, due to the interval increase authorized by
the S-stability and precisely forbidden by the absolute stability to which this diagram
referred. This time, we must solve the non-linear system through a more traditional
approach, like Newton type, i.e. by calculating the Jacobian of the system of differen-
tial equations ∂f/∂x and then by solving the system that it induces in order to obtain
the correction whose role was held by phase C. Gear’s diagrams are summed up in
the following table, which refers to the general relation [8.39], by noting that only β0

is non-zero:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k 2 3 4 5 6
β0 2/3 6/11 12/25 69/137 60/147
α1 4/3 18/11 48/25 300/137 360/147
α2 −1/3 −9/11 −36/25 −300/137 −450/147
α3 2/11 16/25 200/137 400/147
α4 −3/25 −75/137 −225/147
α5 12/137 72/147
α6 −10/147

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[8.43]

8.5.6. Partial conclusion

The single-interval explicit methods are by far the simplest. On the other hand, the
interval automatic management represents, in the majority of cases, their weak point.
This difficulty is intrinsically linked to the fact that we have only a priori a given
order diagram – without a Runge-Kutta-Fehlberg algorithm presented. On the con-
trary, the multi-interval methods are compatible with the interval automatic manage-
ment, because they easily offer multiple order diagrams. However, they cannot operate
without using single-interval methods. They are equally more delicate to implement,
due to the iterative aspect that characterizes them (implicit form). When, in the course
of integration, stiffness increases, the solver must call on Gear’s parameters, with the
necessity of using the Jacobian of the system in a Newton type iterative diagram. It is
clear that, for a difficult problem, there is no viable simple solution.
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If one is not a specialist in the field, it is strongly advisable to use the calculation
databases dedicated to this type of problem [SHA 97]. In any case, the objective of this
chapter was not to make the reader become a specialist, but to make him an adequate
and critical user of tools that he may have to use.

8.6. Discretization of control laws

8.6.1. Introduction

A very particular case of numerical simulation consists of implementing the con-
trol algorithms on the calculator. There are actually several methods of doing the syn-
thesis of a regulator. A simple method consists of experimentally determining the
discrete transfer function of the system, as we saw in the previous chapter. It is then
natural to directly calculate a discrete control and to implement it as such on the cal-
culator in real-time. The other approach consists of starting with a continuous model
experimentally obtained, or from the knowledge model. Then we can discretize this
model (z transform, discretization of state representation) and we find ourselves in the
previous situation. We can also choose to delay the discretization until the last moment
in order to benefit from all the know-how of the continuous control. Then we calcu-
late a continuous regulator that will have to be simulated on the control calculator in
real-time by a difference equation. In this last case, we generally choose to have a low
sampling period (with respect to the dynamics of the procedure) and we generally use
very simple simulation algorithms that we could even call simplistic! We will mention
some of them in this section.

NOTE 8.7. In order to take into account the presence of the pair zero order blocker/
sampler in the sampled loop, it is advisable to approach it by a pure delay of a sampling
half-period e−

T
2 s or by the transfer [BES 99]:

B′
0(s) =

(
1 − T

2
s

)
[8.44]

It is clear that this transfer is negligible as soon as the frequency corresponding to
the sampling half-period is placed in a sufficiently high frequency band with respect
to the transfer cross-over frequencies of the system. However, it makes it possible
to consider the phase difference brought about by the presence of the blocker and
explains that the results obtained with the numerical regulator are sometimes different
from those obtained with the continuous regulator.

8.6.2. Discretization

The continuous regulator is often obtained in the form of a transfer function,
describing a differential equation. We seek to replace, in this equation, the differ-
entiation operator by a numerical approximation. Depending on the approximations
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chosen for representing the differentiation (and hence the integration), we find various
difference equations to be programmed in the calculator.

Figure 8.1. Superior rectangle method

Figure 8.2. Inferior rectangle method

Figure 8.3. Trapezoid method

Let us consider first the approximation of a signal derivative y(t) by a rear differ-
ence calculation:

dy(t)
dt

∣∣∣∣
t=kT

�
ykT − y(k−1)T

T
[8.45]

This derivation method corresponds to the approximation of an integral calculation
by the technique known as the superior rectangle method or Euler’s first method [BES
99], which is illustrated in Figure 8.1:

IkT = I(k−1)T + TykT [8.46]
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We find a second Euler’s method, which is called an inferior rectangle method
(Figure 8.2). It is based on the rear difference calculation for the derivative:

dy(t)
dt

∣∣∣∣
t=kT

�
y(k+1)T − ykT

T
[8.47]

IkT = I(k−1)T + Ty(k−1)T [8.48]

We finally find an approximation known under various names: Tustin’s approxima-
tion, trapezoid approximation or Padé approximation. This last calculation is equiva-
lent to the integration by the trapezoid method (Figure 8.3):

IkT = I(k−1)T + T
2 y(k−1)T + T

2 ykT [8.49]

We will now deal with the relations that these approximations impose between
the continuous and numerical transfer functions of the regulator. We know that the
continuous derivation corresponds to the Laplace operator s. As for the delay of a
sampling period within a difference equation, it is represented by the operator z−1. If
we seek the z transform of equation [8.45], we find 1−z−1

T Y (z). Therefore, we can
conclude that each time we find a derivation in the time equation of the regulator, i.e.
the operator s in its transfer function, we will have, in the sampled transfer function,
the operator 1−z−1

T :

s =
z − 1
Tz

[8.50]

Under these conditions, it is easy to deduce, from the continuous transfer function
of the regulator, the discrete transfer function, which can be then used in order to
find the difference equation simulating the regulator numerically. Therefore, we will
easily verify that the approximation by front difference (equation [8.47]) returns to the
substitution:

s =
z − 1

T
[8.51]

and the trapezoid method [8.49] to the substitution:

s =
2
T

z − 1
z + 1

[8.52]

The approximation of the inferior rectangle does not maintain the stability of the
continuous transfer function that is digitized. In fact, the transformation (equation
[8.51]) transposes the left half-plane of plane s into an area in the poles plane in z
which goes beyond the unit circle (see Figure 8.4). For this reason, this is a little used
method.

With the transformation of the superior rectangle [8.50], the left half-plane in s is
transposed into plane z into an area situated within the unit circle (Figure 8.5).
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Figure 8.4. Transformation of the inferior rectangle

For this reason, this method is preferred to the approximation of the inferior rect-
angle. We can also note its advantage with respect to the latter in the calculation of the
integral [8.46], which makes the value of the magnitude integrate at instant k and not
at instant (k − 1) as in the equation [8.48].

Figure 8.5. Transformation of the superior rectangle

Finally, we note that Tustin transformation transposes the left half-plane s within
the unit circle in plane z, which guarantees the same stability properties before and
after the transformation (Figure 8.6). We have the same transformation of the complex
plane as with the theoretical value z = eTs, whose [8.52] is precisely a 1st order Padé
approximant.

8.6.3. Application to PID regulators

With these transposition tools, if the continuous regulator is given as a transfer
function, it is enough to choose the approximation desired and to perform the corre-
sponding substitutions. Let us take the example of the classic PID regulator. Let e(t)
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Figure 8.6. Trapezoid transformation

be the displacement signal at its input and u(t) the forward signal at its output. Its
transfer function is:

U(s) = KP

[
1 +

1
sTi

+
sTd

1 + sTd

N

]
E(s) [8.53]

where KP , Ti, Td and N represent the setting parameters of the regulator. By using
the approximation by the superior rectangle method, the integral term becomes:

1
sTi

=
T

Ti

z

z − 1
[8.54]

The calculation of the filtered derivative gives:

sTd =
Td

T

z − 1
z

[8.55]

1 + s
Td

N
= 1 +

Td

NT

z − 1
z

[8.56]

whose ratio is:
Td

T

z − 1
z + Td

NT (z − 1)
[8.57]

and equation [8.53] becomes:

U(z)
E(z)

= KP

[
1 +

T

Ti

z

z − 1
+

Td

T
· z − 1
z + Td

NT (z − 1)

]
[8.58]

that we can write in the standard form:

KP

[
1 +

T

Ti

z

z − 1
+

Tdd

T
· z − 1
z − γ

]
[8.59]
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with:

γ =
Td

NT + Td
[8.60]

and:

Tdd

T
=

NTd

NT + Td
[8.61]

We still need to write the difference equation corresponding to this transfer in order
to have the programming algorithm of the numerical PID. We can, for example, set
equation [8.59] at the common denominator:

K(z) =
r0z

2 + r1z + r2

(z − 1)(z − γ)
=

r0z
2 + r1z + r2

z2 + s1z + s2
[8.62]

with:

r0 = 1 +
T

Ti
+

Tdd

T
[8.63]

r1 = 1 + γ +
T

Ti
γ +

2Tdd

T
[8.64]

r2 = γ +
Tdd

T
[8.65]

and the difference equation is expressed as:

ukT = −s1u(k−1)T − s2u(k−2)T + r0ekT + r1e(k−1)T + r2e(k−2)T [8.66]

It is often suggested to separate the three terms – proportional, integral and deriva-
tive – in the coding, which leads to create three intermediary actions up, ui and ud,
that we sum up to obtain the global action:⎧⎪⎪⎨

⎪⎪⎩
Up(z) = KP E(z)

Ui(z) = Kp
T
Ti

z
z−1E(z)

Ud(z) = Kp
Tdd

T
z−1
z−γ E(z)

[8.67]

⎧⎪⎪⎨
⎪⎪⎩

up kt = KP ekT

ui kt = ui (k−1)T + KP
T
Ti

ekT

ud kt = γud (k−1)T + KP
Tdd

T (ekT − e(k−1)T )

[8.68]

This encoding enables us to act separately on each action; we can, for example,
disconnect the derived action if we prefer a PI to a PID; and we can also limit the
integral action in order to prevent it from saturating the actuators (antireset windup).
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In expression [8.68], we saw that the action derived will depend on the error vari-
ation on a sampling period. If the latter is very low, it is possible that the variance
on the error becomes of the same magnitude order as the noise, the rounding errors
or the quantization errors. Thus, it is not reasonable to have too small a sampling
period. Another comment should be made on the numerical realization of the integral
term, according to the variance multiplied by the sampling period. When we are too
close to the reference, the variance becomes low and, if the sampling period itself
is low, the correction of the integral action may become zero if it is inferior to the
quantization threshold. Therefore, we can notice a static error which is theoretically
impossible when we have an integrator in the direct chain of control. One solution
can be to increase the length of words intervening in the calculations of the integral
action. A second solution consists of storing the part of ekT not taken into account
after the product by T

Ti
in order to add it to the value e(k+1)T of the next sampling

period [LON 95].
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Chapter 9 

Analysis by Classic Scalar Approach 

9.1. Configuration of feedback loops  

9.1.1. Open loop – closed loops 

The block diagram of any closed loop control system (Figure 9.1) consists of an 
action chain and of a reaction (or feedback) chain which makes it possible to 
elaborate an error signal ),(tε  the difference between the input magnitude )(te  and 
the measured output magnitude )(tr . The output of the system is ).(ts  

 

Figure 9.1. Block diagram of a feedback control 

When the system is subjected to interferences b(t), its general structure is 
represented by Figure 9.2 by supposing that its working point in the direct chain is 
known. We designate by )(),( pRpE , ε(p) and )( pS  the Laplace transforms of the 
input, the measurement, difference and the output respectively (see Figure 9.2). 

                                   
Chapter written by Houria SIGUERDIDJANE and Martial DEMERLÉ.   
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Figure 9.2. General block diagram 

The open loop transfer function of this chain is the product of transfer functions 
of all its elements; it is the ratio: 

( ) ( ) ( ) ( )1 2( )
R p p p p

p
µ µ β

ε
=  [9.1] 

The closed loop transfer function of this chain is the ratio 
)(
)(

pE
pS  with: 

ε(p)= )()( pRpE −  [9.2] 

We have: 

2 1( ) ( ) ( ( ) ( )S p p B p pµ µ= + ε(p)) [9.3] 

and: 

)()()( pSppR β=  [9.4] 

by using equation [9.2] and by eliminating )( pR  and ε(p) of equations [9.3] and 
[9.4], we obtain: 

( ) ( ) ( )1 2 2( ) ( ) ( )
1 ( ) ( ) ( ) 1 ( ) ( ) ( )1 2 1 2

p p p
S p E p B p

p p p p p p
µ µ µ

µ µ β µ µ β
= +

+ +
 [9.5] 
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When the interferences are zero, 0)( =pB , the transfer function of the looped 
system is then: 

( ) ( )( ) 1 2
( ) 1 ( ) ( ) ( )1 2

p pS p
E p p p p

µ µ
µ µ β

=
+

 [9.6] 

or simply: 

( ) ( )
( ) 1 ( ) ( )

S p p
E p p p

µ
µ β

=
+

 [9.7] 

by supposing that 1 2( ) ( ) ( )p p pµ µ µ= . 

The transfer function with respect to the interference input is obtained by having 
0)( =pE in equation [9.5]: 

( )( ) 2
( ) 1 ( ) ( ) ( )1 2

pS p
B p p p p

µ
µ µ β

=
+

 [9.8] 

9.1.2. Closed loop harmonic analysis 

Bandwidth 

The bandwidth of a system is the interval of angular frequencies for which the 
module of open loop harmonic gain is more than 1 in arithmetic value: 

( ) ( ) 1j jµ ω β ω >>  [9.9] 

 Approximate trace 

In order to simplify the determination of closed loop transfer functions, we can 
use the approximations [9.10] and [9.11]: 

If 1)()( >>ωβωµ jj     then      
)(

1
)(
)(

ωβω
ω

jjE
jS ≈  [9.10] 

If 1)()( <<ωβωµ jj     then      )(
)(
)( ωµ

ω
ω j
jE
jS

≈  [9.11] 
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Figure 9.3 shows, in Bode plane, the approximate trace (in full line), of the gain 
curve of the closed loop frequency response. 

  

Figure 9.3. Approximate trace of the closed loop harmonic response 

Point A, in particular for integrator systems, is often rejected at 0=ω . 

 9.1.2.1. Black-Nichols diagram 

The Black-Nichols diagram makes it possible to graphically pass from the open 
loop system to the closed loop system. This diagram corresponds to a unitary 
feedback. The chart in Figure 9.4 is usable for open loop gains going from –40 dB to 
+40 dB and a phase difference between 0° and –360°. 

  
Figure 9.4. Black-Nichols diagram 
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When the feedback is not unitary, the transfer function can be re-written as a 
unitary feedback gain transfer function that is divided by the return gain β  because: 

1( )
1 1

F p µ µβ
µβ µβ β

= =
+ +

 [9.12] 

 9.1.2.2. Estimation of closed loop time performances from the harmonic analysis 

The closed loop (CL) frequency response is characterized by the quality 
factor rQ , also called magnification Q, i.e. the passage from the module through a 
maximum to an angular frequency rω  called resonance angular frequency. 

The time response is characterized, for a step function input, by the time of the 
first maximum mt  and the overflow D, as indicated in Figure 9.5a, i.e. 

∞∞−= sssD /)( max  where maxs  represents the maximum value obtained from the 
output to instant mt  and ∞s  that obtained in permanent state. The overflow is 
expressed as a percentage. 

 

  

Figure 9.5. (a) Time response in CL and (b) frequency response in CL 
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When the system has good damping, let ξ  be the value of the damping 
coefficient delimited between 0.4 and 0.7, we have the relation 3≈mctω , where 

cω  represents the gap angular frequency. It is the angular frequency for which the 
open loop arithmetic gain is equal to the unit. For a well damped system, the quality 
factor rQ  has a value of less than 3 dB. 

9.2. Stability 

A looped system is called stable if its transfer function: 

( )( )
1 ( ) ( )

pF p
p p

µ
µ β

=
+

 [9.13] 

does not have poles of positive or zero real part. 

In other words, the necessary and sufficient condition of stability of such a 
system is that )( pF  has all its poles with a negative real part.  

When the denominator of )( pF  is a polynomial of order higher than 3 and does 
not reveal any obvious root, the analytical calculation of the roots may be fastidious. 
To study the stability, we then use either the geometrical criterion called Nyquist, 
where we reason only on the open loop in order to determine the stability of the 
closed loop or the so-called Routh algebraic criterion where we reason on the )( pF  
specific equation without calculating its roots.  

We can firstly show that the stability of a linear closed loop control system is 
connected to the diagrams of its open loop frequency response.  

The transfer functions )( pµ  and )( pβ  are in general in the form of polynomials 
in p : 

)(1

)(1)(
pD
pN

p =µ  and 
)(2

)(2)(
pD
pN

p =β  [9.14] 

then:  

)(2)(1)(2)(1

)(2)(1)(
pNpNpDpD

pDpN
pF

+
=  [9.15] 
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The system’s characteristic equation is: 

0)(2)(1)(2)(1 =+ pNpNpDpD  [9.16] 

or: 

0)()(1 =+ pp βµ  [9.17] 

The system is stable if equation [9.17] does not have zeros of positive or zero 
real part. 

NOTE 9.1.– the methods presented in this chapter are valid when the open loop 
transfer function ( ) ( )p pµ β  does not result from a set of transfer functions 
presenting simplifications of the poles-positive real part zeros type. 

9.2.1. Nyquist criterion 

This criterion is based on the traditional property of analytical functions and it 
makes it possible to predict the behavior of a looped system by only knowing the 
open loop. To do this, we use the following Cauchy’s theorem. 

When a point M of affix p describes in the complex plane a closed contour C 
(Figure 9.6a), clockwise, surrounding P poles and Z zeros of a function )( pA  of the 
complex variable p, then the image of the point M through application A surrounds 

PZN −=  times the origin in the same direction. We suppose that there is no 
singularity on C.  

If we take, for example, 2=Z  and 3=P , then 1−=N , the point M makes 1 
tour around the origin, in counterclockwise direction (Figure 9.6b). 

  

Figure 9.6. Plane of the complex variable p and plane of )( pA  
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The application to the Nyquist criterion leads to consider the transformation 
)( pA  as being the denominator of the transfer function of the looped system. We 

want this transfer function not to have poles of positive real part and hence its 
denominator: 

)()(1)( pppA βµ+=  [9.18] 

not to have positive real part zeros. We then choose as contour C a semicircle of 
infinite radius in the complex semi-plane on the right of the imaginary axis. C is 
called the Nyquist contour. The image of C through )( pA  transformation must thus 
surround the origin, in a counterclockwise direction, as many times as the number of 
unstable poles of equation [9.18] and hence of ( ) ( )p pµ β .  

 

Figure 9.7. Contour and image of the Nyquist curve 

Contour C is chosen in such as way as to surround the poles of possible zeros of 
)()(1 pp βµ+  with strictly positive real part. If C contains, for example, 1=Z  zero 

and 3=P  poles (Figure 9.7a), the Nyquist diagram will make 2−=N  circuits 
around the origin in a clockwise direction and it will go around twice in a 
counterclockwise direction (Figure 9.7b).  

To be stable in closed loop, it is necessary that z = 0, the image of C must then 
make N = – P circuits around the origin. If the open loop transfer function )()( pp βµ  
is stable, we have 0=P , the image of C through the transformation )()(1 pp βµ+  
should not surround the origin. However, the number of circuits made around the 
origin in the transformation )()(1 pp βµ+  is equal to the number of circuits made 
around the critical point –1 in the transformation )()( pp βµ .  

In what follows, we will deal only with this latter transformation and we will 
study the case of open loop stable systems, that of integrator systems and finally the 
case of open loop unstable systems. 
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 Case 1. Open loop stable system: Nyquist diagram  

Let us take the example: 

( )( )( )cpbpap
Kpp

+++
=)()( βµ  [9.19] 

where a, b and c are positive. Contour C and the Nyquist image corresponding curve 
are given by the graphs in Figure 9.8. 

  

Figure 9.8. Contour and image of Nyquist curve 

The image of the semicircle of infinitely high radius, through this transformation, 
is reduced to a point, which in general is the origin (the systems that can be 
physically created always have zero gains for infinite angular frequencies).  

The image of the radius [,0] ∞++  is the curve in Figure 9.8b, corresponding to 
the trace of the open loop frequency response and described in the direction of 
increasing ω . The image of the ray [0,] −∞−  is the symmetric curve of Nyquist 
place, with respect to the axis of real numbers. We can easily show this symmetry 
from the expression of the open loop transfer function. In fact, based on the 
definition: 

∫
∞ −=
0

)()()( θωθθβµ djehpp  [9.20] 

where )(θh represents the impulse response of the open loop system, i.e.: 

[ ]∫
∞

−+−=
0

)sin()cos()()()( θωθωθθωβωµ djhjj  [9.21] 
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we have: 

[ ]∫
∞

−=−−
0

)sin()cos()()()( θωθωθθωβωµ djhjj  [9.22] 

or: 

µ ω β ω µ ω β ω− − =
___________

( ) ( ) ( ) ( )j j j j  [9.23] 

 Case 2. Open loop integrator system 

Let us take the example: 

)(
)()(

app
K

pp
+

=βµ  [9.24] 

where a  is positive. 

Contour C is chosen in such a way as to exclude the origin as indicated by Figure 
9.9a. This contour does not contain the unstable poles )0( =P . Let εC  be the circle 
of radius ε , θε jep =  (Figure 9.9c).  

The image of the ray [,0] ∞++  is the trace of the frequency response in open 

loop covered in the direction of increasing ω . When +→ 0ω , the gain of 
∞→)()( pp βµ  and the phase is of 2/π− . When +∞→ω , the gain 0→  and the 

phase is of π− . The image of the ray [0,] `−∞−  is the symmetric curve, with 
respect to the axis of real numbers. The image of the semicircle of radius ε  is an arc 
of circle of radius ∞ . When 0→p , θε=→βµ jeKpKpp //)()( . If ω  increases 

from −0  to +0 , θ  varies from 2/π−  to 2/π+  and the open loop gain is infinite.  
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Figure 9.9. The choice of the contour of C excludes the origin (a), the transform  
of the contour C (b), Cε circle of radius ε, p = εejθ (c) 

The image of the semicircle of an infinitely big radius is the origin of the 
complex plane. The transform of contour C, representing the complete Nyquist 
place, is represented by Figure 9.9b. 

NOTE 9.2. – when the open loop transfer function )()( pp βµ  has terms of the form 
/ kK p  with 1>k , θ  varies from 2/πk−  to 2/πk+  and )()( pp βµ  describes 

infinite k semicircles in a clockwise direction. 

 Statement of Nyquist criterion 

A looped system is stable (bounded input-bounded output) if and only if the 
Nyquist place of its open loop transfer function )()( pp βµ , which is described in 
the direction of increasing angular frequencies, does not go through the critical point 
– 1 and makes around it a number of circuits in the counterclockwise direction equal 
to the number of unstable poles of )()( pp βµ .  

 Case 3. Unstable system in open loop 

EXAMPLE 9.1.– the Nyquist trace is given in Figure 9.10. 

( )pp
Kpp

21
)()(

−
=βµ  [9.25] 
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Figure 9.10. Nyquist trace, open loop unstable system 

We have P = 1, this system, which is unstable in open loop, is equally unstable in 
closed loop because the Nyquist place does not surround once the critical point –1. 

EXAMPLE 9.2. 

( )
( )pp

pKpp
1.012

1)()(
+

+
=βµ  [9.26] 

The Nyquist trace is given in Figure 9.11a. 

 

Figure 9.11. Nyquist trace, open loop stable system (a), closed loop stable system (b) 

We have 0=P ; this system, which is stable in open loop, is equally stable in 
closed loop because the Nyquist place does not surround the critical point – 1. 
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EXAMPLE 9.3. 

)1.01)(51(2
)2.01)(1()()(
ppp

ppKpp
++

++
=βµ  [9.27] 

The Nyquist trace is given in Figure 9.11b. We have 0=P , the stability of the 
closed loop depends on the value of K. Let α  be the meeting point of the curve with 
the axis π−  (as indicated in the figure). If 01 <<− α , the looped system is stable 
because Nyquist place does not surround the point –1, if 1−<α , the looped system 
is unstable.  

Simplified Nyquist criterion: reverse criterion 

A simplified criterion can be deduced from the previous criterion. 

A system, stable in open loop, is stable in closed loop if, covering the Nyquist 
place of the open loop in the direction of the increasing ω , leaves the critical point 
on the left (Figure 9.12a). If it leaves the critical point on the right, it is unstable 
(Figure 9.12b). If the gain curve )( ωµβ j  goes through the critical point, the system 
is oscillating (Figure 9.12c). 

  

Figure 9.12. Stable system (a), unstable system (b), oscillating system (c) 

9.2.2. Routh’s algebraic criterion 

This criterion formulates a necessary and sufficient condition so that any n 
degree polynomial has all its roots of strictly negative real part. 

We re-write the characteristic equation [9.17] in the polynomial form: 

µ β −+ = + + + +− …11 ( ) ( ) 1 1 0
n np p a p a p a p an n  [9.28] 
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Then, we create Table 9.1 (with n + 2 rows). 

1 an an-2 an-4 ….. 

2 an-1 an-3 an-5 ….. 

3 b1=an-2 -an an-3 /an-1 b2=an-4 -an an-5 /an-1 b3=an-6 -an an-7 /an-1 ….. 

4 c1=an-3 -b2 an-1 /b1 c2=an-5 -b3 an-1 /b1 c3=an-7 -b4 an-1 /b1 ….. 

….. …. ….. ….. …. 

n+1 ….. 0 ….. ….. 

n+2 0 0 0 0 

Table 9.1. Routh’s table 

 For a regular system, the number of non-zero terms decreases with 1 every 2 
rows and we stop as soon as we obtain a row consisting only of zeros. The first 
column of Routh’s table has n + 1 non-zero elements for a characteristic equation of 
n order. The roots of this equation are of strictly negative real part if and only if the 
terms of this first column of the table have the same sign and are not zero. 

 Statement of Routh’s criterion 

A system is stable in closed loop if and only if the elements of the first column of 
Routh’s table have the same sign. 

EXAMPLE 9.4.– let us consider again example 9.1 : 

)21(
)()(

pp
Kpp
−

=βµ  [9.29] 

The characteristic equation is 0)21( =+− Kpp  or 02 2 =++− Kpp . The first 
two coefficients (which are the first two elements of the first column of Routh’s 
table) are of opposite signs, the looped system is unstable. 
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Let us now take example 9.2: 

)1.01(2
)1()()(
pp

pKpp
+

+=βµ  [9.30] 

The characteristic equation is 0)1()1.01(2 =+++ pKpp  or by developing 
01,0 23 =+++ KKppp . 

Routh’s table gives: 

0.1 K 
1 K 
K-0.1K 0 
K  0 

 
The system is stable in closed loop if 0>K . 

NOTE 9.3. – a necessary condition to have negative real part roots is that all 
ia coefficients have the same sign. 

9.2.3. Stability margins 

 The physical systems are represented by mathematical models which are 
generally not very exact. The stability of the mathematical model does not 
necessarily entail that of the physical system. Consequently, in order to take into 
account the uncertainties of the model, security margins must be defined during the 
theoretical study in order to ensure a satisfactory behavior to the looped system, 
especially when the Nyquist place of the harmonic response in open loop is near the 
critical point. 

 a) Phase margin – gain margin 

The phase margin is obtained by calculating the difference between the system 
phase considered and –180° to the gap angular frequency. The gain margin is 
obtained by calculating the difference between the system gain and 0 dB to the 
angular frequency where the phase reaches –180°. These margins, noted by φ∆  
and G∆ , are represented in Bode, Nyquist and Black-Nichols planes in Figure 9.13. 
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Figure 9.13. Bode plane (a), Nyquist plane (b), Black-Nichols plane (c) 

In Bode and Black-Nichols planes: 

)180( o−−=∆ φφ  to the angular frequency cω  for which 0=µβ dB 

dBG µβ−=∆ dB0  to the angular frequency πωω =  for which o180−=φ  

In Nyquist plane: 

φ∆  is represented by the angle ),( MONO
GG

 where 1== µβOM  (0dB) 

xG log20−=∆  where x µβ=  to the angular frequency πωω =  for which 
o180−=φ  

When a system is at a minimal phase difference, i.e. when all its zeros are of 
negative real part and of low-pass type, the only consideration of the phase margin is 
enough in general to ensure a convenient damping.  

 b) Delay margin – module margin 

The delay margin, for a stable system with a phase margin φ∆  is defined as 
being the ratio: 

c
m ω

φτ ∆
=  [9.31] 
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where cω  is the gap angular frequency. The delay margin represents the maximum 
allowed delay value leading exactly to the cancellation of the phase margin.  

The module margin represents the shortest geometrical distance between curve 
µβ  and point –1. 

  

Figure 9.14. Nyquist plane 

 c) Degree of stability of a second order system 

Let us consider a second degree system whose closed loop transfer function, with 
a unitary feedback, has the form: 

2
00

2

2
0

2
)(

ωξω
ω

++
=

pp
pF  [9.32] 

where ξ  represents the damping coefficient and 0ω  is the system’s angular 
frequency. If ξ  is low, the unit-step response is oscillating, if ξ  is high, the 
response is strongly damped and the transient state is long. 

The magnification rQ , i.e. the maximal gain of the closed loop module curve, 
which can be measured directly in the Black-Nichols plane (Figure 9.15), is related 
to the damping coefficient by the relation: 

212

1

ξξ −
=rQ  [9.33] 
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We note that when ξ  tends towards zero, rQ  tends towards infinity. The 
resonance angular frequency is given by the relation: 

2
0 1 ξωω −=r  [9.34] 

For a conveniently damped system, rQ  is less than 3 dB or a damping 
coefficient lower than 0.7. We can verify, with the help of a Black-Nichols diagram, 
that in order to have dB3≤rQ , we need a phase margin 045≥∆φ  and a gain 
margin dB5≥∆G . 

 

Figure 9.15. Black-Nichols plane 

 d) Degree of stability of any order system 

When a system has any order transfer function, there will not be an explicit 
damping coefficient like in the case of second order system. However, the responses, 
with an equal resonance coefficient, have almost the same form. Hence, we can 
measure the degree of stability of any order system by its resonance factor in the 
Black-Nichols plane. 

9.3. Precision 

In section 9.1.1 we saw the general block diagram of a closed loop control 
system (Figure 9.2). The role of such a system is to follow the output s(t) with the 
input e(t). Signal e(t) injected at the input of the system is ideally the signal that we 
would want to obtain at the output. In the case of a perfect feedback control, the 
difference )()()( trtet −=ε  is then zero at every instant. In the case of a real 
feedback control, this difference is never zero due to the time constants of physical 
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systems, on the one hand and to the interferences acting on the system on the other 
hand. 

The quality of the feedback control is mainly translated through its stability and 
the follow-up precision of the output on the input and consequently of the dynamics 
of this difference. The precision study makes sense only if the system is stable. 

In practice, it is interesting to know the permanent error, also called static, sε  
which is the asymptotic value of the instantaneous error dε , called dynamic.  

The specifications on the error are most often formulated in one of the following 
forms: 

– bounded or zero static error in response to the inputs or canonical interferences 
(step function, ramp, harmonic signal); 

– bounded dynamic error maxεε <d  for the inputs having certain given 
characteristics. 

In the presence of an interference, due to the overlapping principle, we have: 

ε(p) = εe (p) + εb (p) [9.35] 

where: 

εe (p)= )(
1

1

21
pE

βµµ+
 [9.36] 

and: 

εb (p)= )(
1 21

2 pB
βµµ

βµ
+
−

 [9.37] 

These expressions are calculated by considering firstly the zero interferences 
0)( =tb  ( 0)( ≠te ; see Figure 9.16a) and then the zero input 0)( =te  ( 0)( ≠tb , see 

Figure 9.16b). 
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Figure 9.16. Zero interferences b(t) = 0, e(t) ≠ 0 (a), zero input e(t) =0, b(t) ≠ 0 (b) 

9.3.1. Permanent error 

9.3.1.1. Step function input – zero interference 

When the input signal is a step function )( pE  of amplitude 0E , pEpE /)( 0= . 
Equation [9.36] then becomes: 

εe (p) = ( )βµµ 21

0
1+p

E
 [9.38] 

The theorem of the final value makes it possible to write: 

0
lim)(lim
→∞→

=
p

e
t

tε p εe (p) ( )βµµ 21

0
0 1

lim
+

=
→

E
p

 [9.39] 

This error is zero if βµµ 211+  has at least one pole at the origin, i.e. if βµµ 21  
has at least one integration. 

In general, )(lim
0

p
p

β
→

 is finite, hence the requirement for 21µµ  to have one or 

more integrations.  

Let us note by k the number of pure integrators; we say that the system is of class 
k. A system of class at least equal to 1 in open loop has a zero static error in 
response to an input step function. 

If the system in open loop is of class 0, the static error is equal to: 

K
E

tet +
=

∞→ 1
)(lim 0ε   [9.40] 
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We notice that the error is inversely proportional to the static gain. 

 9.3.1.2. Unit-step interference – zero input  

When the interference signal is a step function )( pB  of amplitude 0B , 
pBpB /)( 0= . Equation [9.37] thus becomes: 

εb(p) = ( )βµµ
βµ

21

20
1+
−

p
B

 [9.41] 

The theorem of the final value makes it possible to write: 

pt
p

b
t 0

lim)(lim
→∞→

=ε εb(p) ( )βµµ
βµ
21

2
0

0 1
lim

+
−

=
→p

B  [9.42] 

the following propositions will be verified: 

lim 02
0

lim ( ) 0 or

( ) when 0 ( 1)1

p
tbt

Kp p kkp

µ β

ε

µ

⎧ =⎪ →⎪⎪= ⇔ ⎨→∞ ⎪
⎪ ≈ → ≥
⎪⎩

  [9.43] 

In general, 2µ  and β  are not differentiators. The first condition is thus rarely 
satisfied. 

A system having in open loop at least one integration upstream from the 
application point of the interference (hence in 1µ ) presents a zero static error in 
response to an interference step function. However, if 1µ  does not have any 
integration, it is enough that 1µ  is an integrator system to cancel the static errors eε  
and bε  at the same time. If 2µ  has an integration, we can introduce a 
supplementary integration in 1µ  in order to cancel )(∞bε . Then we will have a 
second class system in open loop. 



274     Analysis and Control of Linear Systems 

9.3.1.3. Ramp input – zero interference 

Let us calculate the final value of the error for a ramp input 2
0 /)( pVpE = : 

εe(p) = )(
1

1

21
pE

βµµ+
 [9.44] 

we have: 

pt
p

e
t 0

lim)(lim
→∞→

=ε  εe(p) ( )βµµ 210
0 1

1lim
+

=
→ p

V
p

 [9.45] 

ke
t p

Kt ≈⇔=
∞→

βµµε 210)(lim  when 0→p with 2≥k  [9.46] 

In general, 21µµ  must have at least two integrations in order to cancel the 
permanent error in response to an input ramp. 

If the system has only one integration in direct chain, there is a finite final error: 

p
K≈βµµ 21  when 0→p  ⇒  

K
V

te
t

0)(lim =
∞→

ε  [9.47] 

Figure 9.17 sums up the permanent errors for a step function input, (Figure 
9.17a), and for a ramp input (Figure 9.17c) with a zero interference in the cases 
when 11 K≈µ  and 22 K≈µ  near 0=p . In the cases when 11 K≈µ  and 

pK /22 ≈µ  near 0=p , Figure 9.17b shows the absence of static error but the 
presence of a trail error (Figure 9.17d) again with zero interference. We notice an 
error for a interference in step function when 11 K≈µ  and 22 K≈µ  (Figure 9.18b) 
whereas there is absence of error as soon as pK /11 ≈µ  (Figure 9.18b). 
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Figure 9.17. The image of responses to a step function  
input and a ramp input (zero interference) 

  

Figure 9.18. The image of responses to an interference step function (zero input) 
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 9.3.1.4. Sinusoidal input – zero interference 

Let us apply a sinusoidal input to the system: 

tEte 00 sin)( ω=  [9.48] 

For a permanent state, eε is a harmonic signal of module |εe| such that: 

|εe|
0

21
0 1

1

ω=βµµ+
=

jp

E  [9.49] 

If 0ω  is in the bandwidth of the open loop, 1
0

21 >>= ωβµµ jp  we obtain the 
approximation: 

|εe|
0

21
0

1

ωβµµ jp
E

=
=  [9.50] 

The error amplitude is inversely proportional to the gain of the open loop at 
angular frequency 0ω . 

  

Figure 9.19. Gain of the open loop 

In order to obtain a given a copy precision (for example, 1% to srd /10 =ω ), it 
is necessary that the gain of the open loop at angular frequency 0ω  is more than or 
equal to a/1 . 
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9.3.2. Transitional error 

 9.3.2.1. Case of a unitary feedback – zero interference 

  

Figure 9.20. Unitary feedback 

We seek to limit dε  to a value maxdε . 

For any input signal, the expression of the dynamic error is complex. However, 
if there is a limitation of the input signals at speed v and for accelerationγ , it is 
possible to obtain a condition characterizing the precision required. 

The input signal is defined by the constraints: 

Mvv ≤  and Mγγ ≤  [9.51] 

Among all the signals satisfying these conditions, the sine wave signal is by far 
the simplest. We will study this by replacing the signal by this “equivalent” sine 
wave signal.  

Let tEte 00 sin)( ω=  be this signal. Its maximum speed and acceleration are 
given by: 

00 ωEvM =  and 2
00 ωγ EM =  [9.52] 

These two equations define a sine wave signal which must be copied with an 
error less than maxdε . From these equations, we obtain 0E  and 0ω : 

M

Mv
E

γ

2

0 =  and 
M

M
v
γω =0  [9.53] 
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hence the condition: 

M

M

d

v
jp v

M

M

γ

ε
βµµ γ 2

max

21

1 ≤
=

 [9.54] 

We note that this condition is necessary and, in certain cases, it may not be 
sufficient. 

9.4. Parametric sensitivity 

Multiple factors, such as ageing or change of working points may lead to 
variations on the representative model parameters of the systems. It can be 
interesting to examine the influence of the variation of these parameters on the 
overall behavior of the system (stability or precision, for example). 

A system is called sensitive to the variations of a parameter α  if its behavior is 
affected by these variations. If )( pG  represents the transfer function of the system, 
the sensitivity with respect to parameter α  is defined as being the ratio: 

ααα /
)(/)(

∂
∂

=
pGpGS  [9.55] 

9.4.1. Open loop sensitivity 

Let the transfer function of an open loop system be: 

),(
),()(

α
α

pD
pNpG =  [9.56] 

Sensitivity is thus written: 

α
ααα ⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
−

∂
∂

=
D

pD
N

pNS 1)(1)(
 [9.57] 
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EXAMPLE 9.5.– let us consider a first order system: 
Tp

K
+1

 where 0KK α= . The 
sensitivity around gain 0K  is: 

1
1

0

0

0
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−= α
αα TpK
K

S
K

 [9.58] 

Sensitivity is 1 and any gain variation will have consequences on the output. 

Let us suppose now that 0TT α=  and therefore the sensitivity around the time 
constant 0T  is: 

α
αα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
pT

pT
K

S
T

0

0
1

0
0

 [9.59] 

pT
pT

S
T

0

0
10 α
α

α +
−=  [9.60] 

We notice that in this case sensitivity is a function of frequency. 

The responses to a step function for 5=K  and 15=K  to the nominal response 
corresponding to 100 =K  (Figure 9.21a) show that the system is integrally affected 
during the gain variations. 

 

Figure 9.21. Responses to a step function for k = 5 and k = 15 (a), for T = 0.5 and T = 2 (b) 

 Similarly, we can visualize the responses to a step function for T = 0.5 and 
2=T  for comparison to the nominal response corresponding to 10 =T  (Figure 
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9.21b). The sensitivity tends towards zero when 0→p  depending on equation 
[9.60] and hence in permanent state the responses tend towards the value of the 
static gain K.  

9.4.2. Closed loop sensitivity 

Let the looped system with unitary feedback be: 

  

Figure 9.22. Looped system 

The closed loop transfer function is: 

)(1
)(
pG

pGGBF +
=  [9.61] 

The sensitivity for a low variation of )( pG  is obtained by: 

BF

BF
BF G

pG
S α

αα ∂
∂

=
)(

 [9.62] 

or: 

( )

( )
))(1(

)()(1

)()()(1)(

2
pG

pGpG

pGpGpGpG

S BF +
+

∂
∂

−+
∂

∂

= ααα
α  [9.63] 

( ))(1)(
)(

pGpG
pGS BF +∂

∂
= α

αα  [9.64] 

( ))(1
1

pG
SS BF +

= αα  [9.65] 
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This equality shows that the bigger )(1 pG+  is, the smaller the sensitivity of the 
looped system becomes.  

EXAMPLE 9.6.– let us return to the system 
Tp

KpG
+

=
1

)(  previously considered 

and relooped with a unitary gain (see Figure 9.23). 

  

Figure 9.23. Relooped system with unitary gain 

Let us take 0KK α= . The closed loop transfer function is: 

TpK
K

pGBF ++
=

0

0
1

)(
α
α

 [9.66] 

which has the form: 

pT
KpGBF '

'

1
)(

+
=  [9.67] 

where  
0

0'
1 K

K
K

α
α
+

=  and 
0

'
1 K

TT
α+

= . 

We imagine that the sensitivities of the closed loop diagram are less than those in 
open loop. This is verified on the behavior of the unit-step response below. In fact, 
the sensitivity around gain 0K , with respect to the parameter α  is: 

( )
TpK

TpS BF ++
+

=
01

1
αα  [9.68] 
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Let us suppose now that 0TT α=  and therefore the sensitivity around the time 
constant 0T  is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−=
KpT

pT
S

TBF
0

0
10 α

α
α  [9.69] 

Figure 9.24 shows the responses to a step function for 5=K  and 15=K  in 
comparison to the nominal response corresponding to 100 =K . Figure 9.24b shows 
those of the looped system for T = 0.5 and 2=T  in comparison to the nominal 
response corresponding to 10 =T . 

  

Figure 9.24. Responses to a step function 
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Chapter 10  

Synthesis of Closed Loop Control Systems 

10.1. Role of correctors: precision-stability dilemma 

The correction methods covered in this chapter refer to considerations of scalar 
behavior. It is fundamental to understand that the specifications stipulating the 
closed loop performances will be translated by the constraints on the frequency 
response of the open loop corrected system. 

The search for a compromise between stability and rapidity generally leads to 
imposing, on the closed loop, a behavior similar to that of a second order system 
having conjugated complex number poles. The choice of the damping value ξ  is 
imposed by the required degree of stability. That is why it is indispensable to have a 
good knowledge of the relations between the parameters and the behavior of the 
second order systems in order to be able to use specifications defining the 
performances required from the closed loop final system. The general principle of a 
specification list is based on two points: 

– interpretation of specifications in order to obtain the characteristics of a second 
order model of the closed loop needed; 

– search for the constraints on the open loop introducing the behavior sought in 
closed loop. 

For reasons of clarity, let us recall the main results of the previous chapter 
concerning the analysis of the behavior of systems. 

                                   
Chapter written by Houria SIGUERDIDJANE and Martial DEMERLÉ.   
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10.1.1. Analysis of systems’ behavior 

10.1.1.1. Static errors 

For a zero static error: 
– with respect to a set point step function, there has to be at least one integration 

in the open loop; 
– with respect to a set point ramp, there have to be at least two integrations in the 

open loop; 
– with respect to an interference step function, there has to be one integration 

upstream from the input point of the interference in the open loop. 

 10.1.1.2. Stability 

The analysis of stability of the looped system, in the current case of a stable 
system in open loop, is based on the simplified Nyquist theorem: the image of the 
contour by µβ  must not surround the point –1. The distance with respect to point  
–1, which is expressed in terms of phase margin and gain margin provides a 
“measurement” of stability. 

We can associate a “visual” criterion of the stability measurement with the help 
of the closed loop response overflow with a set point step function. For a system 
whose closed loop transfer function is of second order, we know how to connect the 
concept of unit-step response overflow to the damping coefficient ξ of the poles and 
consequently to the phase margin of the open loop (OL). We note that for a second 
order system, a sufficient phase margin implies a good gain margin and the only 
concept of phase margin is thus sufficient. 

  

Figure 10.1. Overflow curve based on damping 
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Another way to characterize a stability measurement consists of analyzing the 
frequency response of the closed loop. The instability is characterized by the 
presence of a resonance peak. 

For a system whose closed loop transfer function is of second order, we connect 
this concept of frequency response resonance of the closed loop to the damping 
coefficient ξ  of the poles and hence to the phase margin of the open loop. 

 

ξ  ∆Φ in degrees Resonance in dB 

0.1 12 12 

0.2 22 8 

0.4 43 2.7 

0.6 58 0.35 

Table 10.1. Damping, phase and resonance margin 

There is no more resonance from .7.0=ξ  

 10.1.1.3. Rapidity 

The character of rapidity can be perceived in two ways, either directly by 
observing a time or frequency response, or indirectly through the concept of 
dynamic error (a rapid system enables the pursuit of an input that rapidly varies and 
hence a low dynamic error; see the method of the equivalent sine curve described in 
the previous chapter). 

 Closed loop frequency behavior, bandwidth 

 To evaluate the rapidity of the looped system, a sinusoidal input is used whose 
frequency can be chosen. More often than not, the transfer function of feedback β  
is a constant and we can then consider two cases for the behavior in closed loop 

µβ+
µ

1
. 

 If 1µβ >> , i.e. if we are in the bandwidth in open loop, we can consider the 
closed loop behavior equivalent to β/1 , presenting a constant gain irrespective of 
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the frequency. For any frequency sinusoidal input in the bandwidth, we can then 
consider that the output is a faithful image of the input. 

If 1µβ << , i.e. we are outside the bandwidth in open loop, we can consider the 
behavior in closed loop equivalent to µ . In this case, the amplitude of the output is 
very low compared to the amplitude of the input. 

A simple evaluation of rapidity consists of considering the bandwidth cω  in 
closed loop. With a constant feedback β , we can then consider the closed loop gain 
as constant if 1>>µβ . Hence, we can associate the bandwidth in closed loop with 
the bandwidth in open loop. The bandwidth in open loop is a qualifier of the rapidity 
in closed loop. 

 Time behavior in unit-step response 

We can also qualify the rapidity of a closed loop system by observing its 
response to a set point step function. For a system without overflow, we can measure 
the establishing time, but the dilemma precision-stability often leads to a 
compromise that entails a response with overflow. For a system having such a 
response, we use as a rapidity criterion the time necessary to reach the first 
maximum noted by mt . 

For a second order system we can connect the time notion of first maximum to 

the concept of bandwidth in open loop 21/ ξωπ −= cmt . We can use in general 
the relation approached: 3≈mctω  which is valid for any correct damping 
( ).16.0 << ξ   

Due to this relation, we can translate a first maximum time constraint of a unit-
step response in closed loop into a bandwidth constraint in open loop. 

 Dynamic precision 

In order to calculate an upper bound of the instantaneous error following the 
variations of any set point, we use the method of the equivalent sine curve. The 
result of this analysis leads to a specification of minimum gain in open loop for a 
certain bandwidth 0 to 0ω . Therefore, this constraint leads in general to imposing a 
certain bandwidth to the open loop, even if the constraint in the gain refers only to 
the bandwidth 0 to 0ω . 
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In short, we will use the following rules: 

– in order to obtain a good precision, we need to: 

- in static state, have one or more integrations in direct chain in order to cancel 
the permanent state errors, 

- in dynamic state, have a high gain for a frequency band until 0ω . This makes 
it possible to limit the dynamic errors; 

– for a good degree of stability, it is necessary that the phase margins and (or) the 
gain margins defined near cω  are satisfactory; 

– for good rapidity, it is necessary that the bandwidth in open loop is large and 
therefore generally having a high gain. 

If we use the Bode diagram to represent the scalar characteristics of the open 
loop to be corrected, we could translate the above constraints depending on three 
frequency areas as indicated in Figure 10.2. 

The previous chart underlines the contradictions between the specifications 
concerning precision and stability. An increase in the gain favors the precision at the 
expense of stability. 

 

Figure 10.2. Bode diagram of an open loop to be corrected 

The correctors or regulators have the goal to provide a control signal u to the 
process in order to maintain the requirements of precision and stability. They are 
inserted into a looped system as represented in Figure 10.3. 
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Figure 10.3. Corrector in a looped system 

The control magnitude can be a function of bx,,ε  or e . Based on the signals 
considered and the type of the function created, there are several types of correctors. 

Firstly, we will review the topologies of the most widely used correctors. 

10.1.2. Serial correction 

 

Figure 10.4. Serial corrector 

This type of corrector is inserted in the direct chain in a serial connection with 
the process and provides a control signal: 

))(()( tftu ε=  

The control takes into account only the error signal. 

Among the usable functions f, we can find: 

– the proportional action noted by P: 

)()( tktu ε= or )()( pkpU ε=  



Synthesis of Closed Loop Control Systems     289 

 – the integral action noted by I: 

ε θ= ∫
0

1
( ) ( )

t

i
u t dt

T
or 

pT
ppU

i

)()( ε
=  

 – the derived action noted by D: 

dt
tdTtu d
)(

)(
ε

=  or )()( ppTpU d ε=  

 – the phase lead action: 

)(
1
1)( p

aTp
TpKpU ε

+
+

=  with 1<a  

– the phase delay action: 

)(
1
1)( p

aTp
TpKpU ε

+
+

=  with 1>a  

A serial corrector creates the combinations of these actions more or less 
perfectly.  

It should be noted that this corrector acts on the static precision, dynamic 
precision and stability.  

For a first approximation: 

– action I cancels the static error; 

– action P increases the dynamic precision; 

– action D or the phase lead tend to stabilize the system.  

10.1.3. Parallel correction 

This type of corrector is grafted in parallel on an element of the direct chain as 
shown in Figure 10.5.  
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Figure 10.5. Parallel corrector 

1µ  can possibly be a serial corrector. x is an intermediary magnitude between 

the control and the output. If v contains a term of the form 
dt

tds )(
, we say that we 

realized a tachymetric correction. 

It should be noted that this corrector acts essentially on the dynamic stability and 
precision and not on the static error (this corrector cannot introduce integration). 

10.1.4. Correction by anticipation 

These correction techniques are used only as a complement of looped correction 
techniques. They rely on the injection of signals in open loop in order to minimize 
the transitions felt by the main correction loop, following the input variation or an 
external interference.  

 10.1.4.1. Compensation of interferences (zero input) 

 

Figure 10.6. Corrector by anticipation 
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Let us suppose that the interference is measurable. It is then possible – at least 
theoretically – to eliminate the influence of the interference b(t) with the help of a 
corrector by anticipation C(p) described by the diagram in Figure 10.6. 

In fact, it is enough to choose: 

2

1( )
( )

C p
pµ

= −   

to cancel the effect of )(tb  on the output. 

We note in this case that the stability is not affected, nor is the precision with 
respect to the input. 

Most often, 
)(

1

2 pµ
 is not physically feasible, which leads to adopting 

approximate forms of 
)(

1

2 pµ
. There is no perfect compensation of the transient 

state of interferences. 
 

EXAMPLE 10.1.– if 
p
Kp =)(2µ , we could take ( )p

p
K

pC
τ+

−=
1

1)(  with τ  less 

than the main time constants of 3µ . 

 10.1.4.2. Compensation of the input (zero interference) 

 

Figure 10.7. Input compensation 

This diagram can be considered, with respect to the error, as the overlapping of 
the two diagrams of Figure 10.8. 
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Figure 10.8. Diagram decomposition of the input compensation 

We have: 

( )
βµµ

βµ
βµµ

εεε
21

2

21
21 1

)()(
1

)(
+

−
+

+
=+=

pCpEpE  

In order to cancel the error with respect to the input, it is enough to choose 

βµ2

1)( =pC . 

It should be noted that in this case the closed loop control system perfectly 
follows the input law, without introducing the integration in the direct chain. The 
stability of the system is not modified, nor is the influence of interferences with 

respect to the error. Most often, 
βµ2

1  is not physically feasible. Thus, the 

compensation will not be perfect in transient states. 

10.1.5. Conclusions 

The feedforward correctors, when they are feasible, do not modify the stability 
of the loop and compensate either the error due to the input, or the effect of 
interference. In a complex case (several interferences, some of which are non-
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measurable), the implementation of these compensators can be difficult and 
imperfect. 

The “parallel” correctors generally modify an element of the direct chain, 
without introducing integration. They can be used in order to improve the stability. 

The “serial” correctors modify the stability and precision with respect to the 
input and interferences. This mode of correction is the most widely used. 

10.2. Serial correction 

10.2.1. Correction by phase lead 

 10.2.1.1. Transfer function 

Generally speaking, we call a phase lead corrector a corrector whose transfer 
function has the form: 

aTp
TpKpC

+
+

=
1
1)(  with 1<a  

This corrector can be physically created by the circuit of Figure 10.9. 

 

Figure 10.9. Phase lead network 

with CRT 1=  and 
21

2
RR

R
a

+
= . 
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It should be noted that the resistive bridge alone brings about an attenuation to 

the low angular frequencies, which justifies the presence of an amplifier of gain 
a
K .  

The Bode graph is represented in Figure 10.10. 

 

Figure 10.10. Bode graph of a phase lead network 

The tabulated values of the maximum phase input mφ  (obtained for 

aT/1=ω ) are given for your information (Table 10.2), in practice we can use the 

formula 
a
a

m +
−=

1
1sin φ  in order to find the value of a corresponding to a desired mφ  

value. 

a 1/4 1/6 1/8 1/10 1/12 

mφ  37° 45° 51° 55° 58° 

Table 10.2. Maximal phase lead 
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 10.2.1.2. Action mechanism of a phase lead corrector 

There is no general method to configure such a corrector. 

EXAMPLE 10.2. 

Let us examine on a current case the problems linked to this configuration (see 
Figure 10.11). 

 

Figure 10.11. Uncorrected system 

The OL of the uncorrected system presents an integration. An integral action is 
hence useless in order to ensure a zero static error for a step function input. 

Let us suppose that we want a response time rt  imposed in closed loop, or a 

dynamic precision given to an angular frequency 
τ

ω 1
0 << .  

Thus, we have to introduce a minimum gain K (proportional action) in the chain 
that leads to an insufficient phase margin: 

)1( pp
KKv

τ
µβ

+
=  with K  such as m

jp

v G
pp

KK
=

+ = 0
)1( ωτ

, 

or m
v G

KK
≈

0ω
 if 

τ
ω 1

0 << . mG  is minimum gain required at the angular frequency 

0ω . 

We notice on the graph in Figure 10.12 that the phase margin becomes 
insufficient. A correction is thus necessary, for example, a phase lead correction. 
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Figure 10.12. Bode graph with insufficient phase margin 

 

Figure 10.13. Bode graph in OL of the corrected system 
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Since this corrector is in series with µβ , there is an addition of gain and phase 
curves in the Bode plane (Figures 10.10 and 10.12). 
 
NOTE 10.1.– it should be noted that the open loop system without correction does 
not shift phases beyond –180°. Consequently, a phase lead corrector chosen for  
a = 1/6 – if it is conveniently placed – can bring a 45° phase lead, which is sufficient 
to ensure a convenient stability degree for the system. 

For that, we cut the axis 0 dB at the angular frequency ' 1/c T aω =  where the 
phase lead of the corrector is maximal (environment in Bode representation of the 
segment [ ]aTT /1,/1 ). Parameter a being chosen as well as the relative position of 

'cω , we verify if the value of minimum gain requested is satisfied and if not we fail 
the position of '

cω . 

 The resulting phase margin is calculated by adding the residual phase of the 
uncorrected system to cω  with respect to –180° and the mφ  of the corrector. It 
should be noted in this example that the resulting phase with respect to –180° is 
always positive. The looped system will thus always be stable. 

EXAMPLE 10.3.– it is not always like this, in particular when the OL transfer 
function of the uncorrected system shifts phases more than – 180°. 

Let the OL system before correction be: 
)1)(1( 21 ppp

K
ττ ++

 with 21 ττ > . 

  

Figure 10.14. OL system before correction 
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The phase margin of the corrected system is obtained by adding to the mφ  of the 
corrector 180° plus the phase of the initial system to 'cω : 

180)( '' ++=∆ mc φωφφ  

We note that this last term can be negative; hence we will need to choose a more 
efficient corrector (smaller a). 

When the phase curve of the system before correction decreases too fast, the 
phase lead caused by the corrector risks being considerably contrasted at point '

cω . 
The correction by phase lead can thus prove to be insufficient. 

  

Figure 10.15. Correction by phase lead 

In conclusion, the phase lead corrector: 

– increases the bandwidth ( cc ωω >' ); 

– brings in '
cω  a phase lead mφ  defined by 

a
a

m +
−=

1
1sin φ , if the corrector is 

properly centered so that its central frequency coincides with the cutting frequency 
of the corrected system. This choice of '

cω  avoids the complete construction of the 
phase in order to determine the phase margin obtained. 
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When the correction is perfectly set, in order to determine the final performances 
of the closed loop corrected system, a complete construction of the module and 
phase is necessary in the Bode plane. Therefore, a graph in Black-Nichols graph will 
make it possible to obtain the closed loop transfer function. 

10.2.2. Correction by phase delay 

10.2.2.1. Transfer function 

Generally speaking, we call phase delay corrector a corrector whose transfer 
function has the form: 

aTp
TpKpC

+
+

=
1
1)(  with 1>a  

This corrector can be physically created by the circuit represented in Figure 
10.16. 

  

Figure 10.16. Phase delay network 

With CRT 2=  and 
2

21
R

RR
a

+
= . 

The phase delay corrector has the Bode diagram represented in Figure 10.17. 
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Figure 10.17. Bode diagram of a phase delay network 

1/a 1/4 1/6 1/8 1/10 1/12 

mφ  –37° –45° –51° –55° –58° 

Table 10.3. Maximal phase delay 

10.2.2.2. Action mechanism of these correctors 

 The effect of these correctors is to increase the gain at low angular frequencies 
and thus improve the static precision without modifying the behavior at high angular 
frequencies. 

In addition, we can use the phase delay corrector to make the gain fall at high 
angular frequencies without modifying it at low angular frequencies.  

With the help of an example, let us see the effect of this corrector. 

  
           21 τ>τ  

Figure 10.18. Phase delay corrector 
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The desired performances are: 

– zero static error; 

– dynamic precision imposed at 
τ

ω 1
0 << ; 

– stability degree imposed by a phase margin φ∆  from 45 to 50°. 

The static error with respect to the input is zero (presence of one integration in 
the direct chain) in the absence of interferences. The graph of the OL  which makes 
it possible to define the minimal proportional action K, ensuring the desired 
precision is given in Figure 10.19. 

A phase lead correction is impossible for such a system because the phase of the 
OL decreases too fast near ωc. Since the integral action is useless, we can then place 
a phase delay corrector. 

  

Figure 10.19. OL graph 

This corrector must not affect the gain on the side of 0ω , hence the choice 

0
1 ω≈

aT
. The correction will be even more efficient for the stability as the gain 
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curve will cut the axis 0 dB with the biggest slope segment possible (–1) and near its 
environment. 

Due to these considerations, we adopt as corrector 
aTp
TpKpC

+
+

=
1
1)(  with 

aT/1  near 0ω . Parameter a will be determined by successive tests. The phase 
margin after correction can be estimated as follows: 

– calculate the ratio T/1τ  characterizing the “length” of the slope segment (–1) 
defined above; 

– if the new gap angular frequency '
cω , chosen near the geometrical 

environment of [ ]1/1,/1 τT , is much higher than 0ω '
0( 10 )cω ω≥  and much lower 

than 
2

1
τ

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

2

'
10

1
τ

ω c , then an approximation of the phase margin is given by 

carrying over the ratio T/1τ in Table 10.2 for the phase lead corrector. After 
correction, we obtain the Bode diagram in Figure 10.20. 

 

Figure 10.20. Bode graph in OL of the corrected system 

It should be noted that near the angular frequency '
cω , the contribution of the 

two breaks, (–1) to (–2) in 0ω  and (–2) to (–3) in 2/1 τ , is negligible. Everything 
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takes place as if only the slopes (–2), (–1) then (–2) remained with respect to the 
phase. This graph is that of a double integrator in a serial connection with a phase 
lead corrector.  

It should be noted that the phase delay correction happened in this particular 
example because the ratio between 2/1 τ  and 0ω  was high, but this is not always 
the case (see the combined action correction). 

The phase delay corrector decreases the bandwidth ( cc ωω <' ) and the constant 
stability static error (phase delay for non-integrator systems).  

There again, once the correction is set, it is necessary to build with precision the 
total OL in order to deduce the performances in CL. 

10.3. Correction by combined actions 

10.3.1. Transfer function 

Generally speaking, we call a lead-delay combined action corrector a corrector 
whose transfer function has the form: 

( ) ( )
( ) ( )pTpT

pTpT
KpC

41

32
11
11

)(
++
++

=  with 4321 TTTT >>>  

This corrector is obtained by serially connecting a phase delay corrector 
( )
( )pT

pT
K

1

2
1 1

1
+
+

 and a phase lead corrector 
( )
( )pT

pT
K

4

3
2 1

1
+
+

 with KKK =21 . 

The Bode diagram of such a corrector is represented in Figure 10.21. 
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Figure 10.21. Bode diagram of a lead-delay network 

 10.3.1.1. Action mechanism of these correctors 

These correctors combine the actions previously studied. They are used when the 
simple action correctors do not lead to the performances desired. 

EXAMPLE 10.4. 

 

Figure 10.22. Combined action corrector 

In Figure 10.22, we have 21 ττ > and as desired performances: 

– zero static error; 

– dynamic precision imposed at 0ω  (close to 
1

1
τ

); 

– phase margin φ∆  from 45 to 50°. 
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Figure 10.23. Phase delay correction 

The phase delay correction is inefficient here (proximity of angular frequencies 

0ω  and 
1

1
τ

) and therefore  in order to obtain the desired stability, a phase lead term 

must be added. 

The corrected OL is represented in Figure 10.24. 
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Figure 10.24. Bode graph in OL of the corrected system 

We can estimate the phase margin of the corrected system, if '
cω  is close to the 

environment of slope segment (–1), by referring to Table 10.2 of the phase lead 
circuit. This would be even more justified in the present case since 0

' 10ωω >c  and 
4

' 10/1 Tc <ω .  

10.4. Proportional derivative (PD) correction 

10.4.1. Transfer function 

A proportional and derivative action corrector has as transfer function: 

)1()( pTKpC d+=  

The derivative action is not physically feasible and it is approximated by a 

transfer function of the form: 
p

Td
τ+1

 with dT<<τ . 
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The new corrector has then as transfer function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
≈⎟⎟

⎠

⎞
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+

+=
p
pT

K
p
pT

KpC dd
ττ 1

1
1

1)(  

Therefore, the PD corrector has a transfer function which is equivalent to that of 
a phase lead corrector. The same methods could be used in order to determine dTK ,  
andτ . 

10.5. Proportional integral (PI) correction 

10.5.1. Transfer function 

A proportional and integral action corrector has as transfer function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

pT
pT

K
pT

KpC
i

i

i

111)(  

The proportional integral regulator (PI) has as its Bode diagram that in Figure 
10.25. 

  

Figure 10.25. Bode diagram of a PI corrector 
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 The essential function of a PI regulator is to bring one integration in the open 
loop. It is indispensable if the specifications stipulate that a zero static error is 
needed in response to a step function when the process to control does not have one. 
It is also indispensable if the process is an integrator but it is subjected to an 
interference injected upstream from the process. If we desire a zero static error for a 
step function interference, it is essential to add an integrator at the level of )( pC . 

The following example (Figure 10.26) is an illustration of the correction of a 
non-integrator process.  

  

Figure 10.26. Correction of a non-integrator process 

The desired performances are: 

– zero static error; 

– imposed bandwidth ω{0, }c ; 

– stability degree imposed by a phase margin φ∆  from 45 to 50°. 

An integral action is necessary in order to cancel the static error. However, it 
cannot be alone because then the system could not be stable. 

The graph of the Bode diagram of the open loop without correction makes it 
possible to place a PI corrector (see Figure 10.27). 
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Figure 10.27. Bode diagram of the uncorrected system in OL 

Let us introduce a PI corrector (represented by a dotted line in Figure 10.27) so 
that angular frequency iT/1  is near 10/cω  in order not to modify the phase margin 

φ∆ . The corrected curve in open loop is represented in Figure 10.28. 

  

Figure 10.28. Bode diagram of the corrected system in OL 

This corrector provides the desired performances to the closed loop. 
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10.6. Proportional integral proportional (PID) correction 

10.6.1. Transfer function 

An ideal PID corrector has as transfer function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= pT

pT
KpC d

i

11)(  

or: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ++
=

pT
pTTpT

KpC
i

dii
21

)(  

The roots of the numerator are: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

i

di
T
TT

T
4

11
21  and ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

i

di
T
TT

T
4

11
22  

with 042 ≥− dii TTT  the zeros are real and placed in 
1

1
T

 and 
2

1
T

. 

  

Figure 10.29. Bode diagram of a PID corrector 
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We note that 21 TTTi +=  and 
21

21
TT

TT
Td +

= . 

If the break 
2

1
T

 is much higher than 
1

1
T

 we have 
iTT

11

1
≈  and 

dTT
11

2
≈ . 

In practice, the derivative action will always be approximated by 
p
pTd

τ+1
. 

EXAMPLE 10.5.– integrator system affected by a disturbance (for example, level 
regulation with flow disturbance) with 21 ττ > . 

  

Figure 10.30. Integrator system affected by a disturbance 

Desired performances: 

– zero static error with respect to the set point and disturbance; 

– phase margin ∆ϕ from 45 to 50°; 

– dynamic precision imposed at angular frequency 0ω . 
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Figure 10.31. Uncorrected system 

In order to cancel the static error with respect to the disturbance, we will have to 
introduce an integral action in the corrector )( pC . The proximity of angular 

frequencies 0ω , 
1

1
τ

 and 
2

1
τ

 forbids us to use a PI corrector. Let us try a PID 

corrector. 

The double integration leads to a slope graph (–2) at low angular frequencies that 
has to go through point A (minimum gain at 0ω ). On the other hand, the phase 
margin imposes to cut the axis 0 dB with a slope segment (–1) on a convenient 
length and follow by a slope (–2), from which we obtain the chosen corrector. 
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Figure 10.32. Bode graph of the corrected system  

The same observations as above on the estimation of the phase margin apply 
here. 

10.6.2. Experimental adjustment method 

We will adjust a PID in order to control a system whose transfer function is 
unknown. 

  

Figure 10.33. System with unknown transfer function 
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 In certain cases, the transfer function of a system is unknown; hence the 
adjustment of a PID cannot use the methods previously presented. Thus, there are 
experimental adjustment methods. We shall keep in mind the Ziegler-Nichols 
method (sustained oscillations). This method is suitable only for a CL study. The 
adjustment is done as follows: 

 – neutralize the integral actions )( ∞=iT  and derivative )0( =dT  and therefore 
there remains a simple loop with proportional action; 

– increase gain K of the proportional action until the system becomes oscillating; 

– after obtaining a balance of oscillations, increase period 0T  (expressed in 
seconds) of these sustained oscillations and the limit gain MK . 

The corrector can be adjusted with: 

– MKK 6.0= , in order to have sufficient stability margin; 

– the derivation constant is chosen at 
8
0T

Td =  whose effect is to accelerate the 

proportional action; 

– the integration constant is defined by 
2
0T

Ti =  in order to cancel the static 

error. 

It should be noted that here di TT 4= , i.e.: 

( )
pT

pT
KpT

pT
KpC

i

d
d

i

22111)(
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=  

NOTES ON THE SERIAL CORRECTION.– the methods previously described aim 
at quickly deciding if the given correction is adequate. On the other hand, it is 
obvious that there is only one corrector satisfying this problem. The choice will be 
made after the testing of several correctors and taking into account criteria such as: 
cost, technological simplicity, reliability. 

It should be equally noted that the correction does not make it possible to 
infinitely increase the precision and speed (increase obtained in general through the 
increase of the gain leading to strong saturation risks). In fact, when the system 
saturates, the linearly defined performances are not reached (increased response time 
and limited precision). On the other hand, irrespective of the linearity of the system, 
it is not always interesting to have a too extended bandwidth, due to the 
amplification of noises. 
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10.7. Parallel correction 

10.7.1. General principle 

This type of correction is represented by the diagram in Figure 10.34. 

  

Figure 10.34. Parallel correction 

)( pC  must be calculated in such a way as to obtain the performances required. 
These performances (precision, stability) can be translated into characteristics on the 
OL graph in the Bode plane. The problem is thus to determine )( pC  in order to 
obtain a corrected open loop of convenient shape. 

The corrected open loop has as a transfer function: 

βµ
µ

µµ 3
2

2
1 1 C+

 

Let us consider the two following cases: ( ) 12 >>ωµ jC  and ( ) 12 <<ωµ jC . 

 Case 1:  

( ) 12 >>ωµ jC  ⇒  
)(

1
)(1 2

2
ωωµ

µ
jCjC

≈
+

 

the corrected open loop has as an approximate transfer function: 

)(
)(

)()( 31 p
pC

pp
β

µµ
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 Case 2: 

( ) 12 <<ωµ jC  ⇒  )(
)(1 2

2

2 ωµ
ωµ

µ
j

jC
≈

+
 

the corrected open loop has as an approximate transfer function: 

 )()()()( 321 pppp βµµµ  

Let us trace the variations of these two transfer functions in the Bode plane. The 
curves are cut in points A and B as indicated in Figure 10.35 (one of these points can 
be infinitely rejected). 

  

Figure 10.35. Variation of the two transfer functions 

In these points we have: 

C
βµµ

βµµµ 31
321 =  

i.e.: 

C
1

2 =µ  

or 12 =Cµ . 

Points A and B are thus the separations of cases 1 and 2. 
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Between A and B: 
C

βµµ
βµµµ 31

321 > , i.e. 12 >Cµ  (1st case) and outside A 

and B: 
C

βµµ
βµµµ 31

321 < , i.e. 12 <µ C  (2nd case). 

An approximation of the corrected OL is represented with a line in Figure 10.35. 
This approximation may not be good near points A and B, since max2Cµ  is low 
(see Figure 10.35). 

10.7.2. Simple tachymetric correction (C(p) = λp) 

We will show in an example how this type of correction is naturally introduced. 

  

Figure 10.36. System to correct 

The desired performances are: 

 – zero theoretical static error; 

– minimal bandwidth 
τ

ω 8=c ;, 

– stability degree with a phase margin 45=∆φ . 

Without )( pC  correction, it is necessary to choose a minimum gain K in order to 
maintain the constraint mincc ωω > . 
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Figure 10.37. Bode graph of the OL with 45° phase margin 

On the other hand, we have to make sure that the integration in the corrected OL 
is maintained (ensuring a zero static error). 

Let us choose )( pC  so that 
C

βµµ 31  has the form represented in Figure 10.37. 

This graph leads to a 45° phase margin (the break is set at 
τ

ω 8=c ). 

In the example of Figure 10.36, ( ) 1,1,
1

, 321 ==
+

== βµ
τ

µµ
pp

K
K v  and point 

A is rejected at 0=ω ( −∞  in the Bode plane). 

Hence, we have: 

pCp
K

C τ
βµµ 831 ==   (equation of the slope (–1) cutting the axis 0 dB in 

τ
ω 8= ) 
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By identifying: 

8
)( τKpC =  

Hence, we see that the output )( pC  is homogenous with the derivative of the 
output of the feedback control. We say we are dealing with a simple tachymetric 
correction ( λ=)( pC ). 

In this precise case, a direct calculation by decrease of the secondary loop is 
preferred. Let us choose λ=)( pC . 

The corrected OL has as a transfer function:  

p

KK

p
K

p

K
K

K
pK

K
p
K

p
K
p

K
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K v
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v

v
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1
1

1

1
)1(

1
1
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τλ

τ
λ
τ

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

+
=

++
=

+
+

+  

where
v

v
v K

K
K

λ+
=

1
' , 

vKλ
ττ

+
=

1
' . 

In order to have the same graph of the new OL as before, we must choose 
parameters K  and λ  in order to have 45° phase margin φ∆ , such as: 

1
)1(

81

'

'

'

=
+

==

= cjp

v

c

pp

KK

ωτ

ττ
ω

 ⇒  1
28

'
=

τ

vKK
 ⇒  28'

τ
=vKK   

81 =+ vKλ  ⇒ 7=vKλ  ⇒  
vK

K
τ

264=  and 
vK

7=λ  
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or: 

13264
77)( ττ KK

K
pC

v
≈==  

10.7.3. Filtered tachymetric correction 

We will see in an example how this type of correction is naturally introduced. 

  

Figure 10.38. System to correct 

The desired performances are: 

– zero theoretical static error; 

 – minimum gain mG  at 
τ

ω
8
1

0 = ; 

 – 45 to 50° phase margin.  

Without correction, in order to have the desired gain at 0ω  we have to choose 
K  such that: 

m
jp

v G
ppp

KK
≥

++ = 0
)1)(1( 21 ωττ

 

where  
21

0
11

ττ
ω <<<< . 

Hence, it is sufficient to have m
v G

KK
≥

0ω
. 
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Let us choose )( pC  so that 
C

βµµ 31  has the form represented in Figure 10.39. 

This form was chosen in order to deform the OL according to the example in section 
10.3 (correction by combined actions). 

The corrected OL has the following form (we note that the quadrilateral ΑΒΧ∆ 
is a parallelogram). 

  

Figure 10.39. Corrected OL 

In the example of Figure 10.38:  

K=1µ , 
)1)(1( 21

2 pp
Kv

ττ
µ

++
= , 

p
1

3 =µ , 1=β  
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and 
2

31 )1(

Tp
TpK

Cp
K

C λ
βµµ +

== . Hence, the expression of the corrector: 

Tp
Tp

Tp
TppC

+
=

+
=

11
)( λλ  

The realization goes through the reinjection of the speed through a high-pass 
filter created by the circuit given in Figure 10.40. 

R

C

  

Figure 10.40. Speed reinjection circuit 

The transfer function of this circuit is 
RCp

RCp
+1

. 

Such a correction is called filtered tachymetric correction.  

T is obtained by direct reading of the diagram and λ  is determined, for example, 

by writing that 
C

βµµ 31  has a gain of mG  in 0ωω =  (point A). 

m
jp

G
Tp

TpK
=

+

= 0

2
)1(

ωλ
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In general, 
T
1

0 <<ω  ⇒
2
0ωλT

KGm =                
2
0ω

λ
TG
K

m
=      

It should be noted that this correction was successful because the variance 

between points A )( 0ω  and C ⎟
⎠
⎞

⎜
⎝
⎛

τ
1  was sufficient (3 octaves). If points A and C 

(hence B and D) are too close (2 octaves or less), such a correction cannot provide 

the sufficient phase margin. 

Here again there are no general criteria for the choice of the corrector. The 
parallel corrections prove to be particularly practical as soon as the measurement of 
the reinjection variables is available (speed, acceleration, etc.). 

Finally, we should remember that the asymptotic graphs are approximate and 
that it is good to verify the corrected diagrams by using, for example, the Black-
Nichols graph. 

10.7.4. Correction of delay systems: Smith predictor 

Let us assume that the system in Figure 10.41 needs to be corrected. 

  

Figure 10.41. System to be corrected 

The negative effect of the delay on stability is obvious in the fast rotation of the 
phase. Since the principle of causality prevents the delay compensation by a time 
advance, the solution proposed by Smith consists of only rejecting the delay outside 
the loop. 

A possible structure of correction is represented in the diagram of Figure 10.42. 
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Figure 10.42. Correction structure 

 The corrected transfer function in closed loop is written: 

p

p

p

p

eCCC
eC

e
CC
C

e
CC
C

τ

τ

τ

τ

µβ
µ

βµ

µ

−

−

−

−

++
=

+
+

+
'

'

'

1
1

1

1  

By choosing )1(' peC τµβ −−= , which is physically feasible, the closed loop 
becomes: 

pe
C

C τ
µβ

µ −
+1

 

An equivalent block diagram could be that in Figure 10.43. 

  

Figure 10.43. Example of block diagram 

We notice that: 

– the delay is obtained from the loop; 

– its negative influence on stability is deleted; 

– however, it subsists between the input and the output.  
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A reliability study will be necessary in order to evaluate the incidence of a 
variance between the pure delay of the process and the one estimated introduced in 
the corrector 'C . 
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Chapter 11 

Robust Single-Variable Control  
through Pole Placement  

11.1. Introduction  

Partially originating from the adaptive control, RST control appeared in books 
around 1980 [AST 90, FARG 86, LAN 93]. Curiously, this approach was 
systematically described for the numerical control, perhaps because of its origins 
mentioned above and in [KUC 79]. In fact, this polynomial approach is the 
traditional correction with two degrees of freedom, a combination between feedback 
and feedforward on the setting. The primary goal of this chapter is to replace this 
order in a general context and to show all the degrees of freedom available to the 
designer. Then, a very simple, even intuitive, methodology is proposed in order to 
use these degrees of freedom to achieve a certain robustness of the structure created. 

11.1.1. Guiding principles and notations 

Figure 11.1 shows the block diagram of the RST control. Block diagram because 
transfers R, S and T are polynomials and are thus not proper. 

                                   
Chapter written by Gérard THOMAS.   
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Figure 11.1. Block diagram of RST control 

In all that follows, unless otherwise indicated, the systems studied will be 
discrete or continuous, i.e. will be respectively described by transfers of the z or s 
variable. For reasons of simplicity and coherence, the examples will be treated in the 
continuous case. 

 
As for any correction structure, the designer will have to determine the 

correction parameters (here polynomials R, S and T) to ensure:  

– internal stability [DOY 92]; 

– the asymptotic follow-up of a certain class of settings; 

– the asymptotic rejection of a certain class of interferences; 

– a satisfactory transient state. 
 
However, respecting these specifications is not sufficient to ensure a satisfying 

operation of the installation; it will be necessary to take into account: 

– the saturations of the process; 

– the level of measurement noise; 

– modeling errors. 

The non-compliance with these simple rules has had negative impacts on 
automatic control, which is then considered as a highly theoretical discipline whose 
industrial applications seldom exceeded the performances obtained by PIDs. 

The guiding principle of the RST control is to calculate the polynomials R, S and 
T to obtain: 

m

m

A
B

BRAS
BT

C
Y =

+
=  [11.1] 
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which will be satisfied if: 

om

om
)(
)(

AABRASb
ABBTa
=+

=
 [11.2] 

We observe that the unknown factors of the problem (R, S and T) are the 
solutions of polynomial equations. In particular, the latter is well-known by 
algebraists as a Bezout equation or Diophantus problem. That is why the following 
section is dedicated to some reminders on polynomial algebra. It shall be noted that 
this formalism was extremely well emphasized in [KUC 79] within the multi-
variable and discrete context and it is the starting point of the next section. 

11.1.2. Reminders on polynomial algebra 

A certain number of traditional results on polynomials is gathered here, in order 
to solve the general polynomial equation: 

CBYAX =+  [11.3] 

We must point out that here we are interested in the single-variable case where 
A, B, X, Y, C are polynomials and not matrices of polynomials. Thus the 
multiplications can be written in a random order. 

THEOREM 11.1.– the set of the polynomials with an unknown quantity on a 
commutative body is a commutative unitary ring. 

The ring of polynomials on ℜ will be called ℜ[x]. We note by: 

– 1 the identity polynomial (the neutral element of the multiplication in ℜ[x]); 

– 0 the zero polynomial (the neutral element of the addition in ℜ[x]), 

– ∂A the degree of polynomial A.  

We will assume that the concepts of polynomials division are known, as well as 
those of PGCD and PPCM of polynomials. If G and L are respectively the PGCD 
and the PPCM of A and B (A, B, G and L ∈ℜ[x]), we will write: 

= ∧G A B and = ∨L A B  
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DEFINITION 11.1.– we say that several polynomials are prime among themselves 
when their PGCD is of 0 degree, i.e. when their only common divisors are non-zero 
constants. 

THEOREM 11.2 (BEZOUT THEOREM).– a necessary and sufficient condition for 
n Ai polynomials to be prime among themselves is that there are n Vi polynomials 
such that: 

∑
=

=
n

i
VA

1
ii 1   [11.4] 

THEOREM 11.3 (BEZOUT EQUALITY).– since A and B are two polynomials 
prime among themselves, other than constants, there is only one pair of polynomials 
X and Y verifying:  

+ =XA YB C  with ∂ < ∂X B  and ∂ < ∂Y A  [11.5] 

THEOREM 11.4 (GENERALIZATION).– if A and B are two polynomials of PGCD 
G, then there is only one pair of polynomials X and Y such that: 

⎩
⎨
⎧

∂−∂<∂
∂−∂<∂

=+
GAY
GBX

G       YBXA  [11.6] 

THEOREM 11.5.– equation XA YB 1+ =  [11.7] has a solution if and only if the 
PGCD of A and B divides C. 

THEOREM 11.6.– let (X0,Y0) be a particular solution of CYBXA =+  [11.8] and 
let A1 and B1 be two polynomials prime among themselves such that GAA 1=  
[11.9] and GBB 1=  [11.10] where BAG ∧= ; thus the general solution is given 
by: 

= −⎧
⎨ = +⎩

0 1

0 1

X  X   B P

Y  Y   A P
 [11.11] 

where P is any polynomial of ℜ[x]. 

Among all these solutions it is usual to seek a single solution which confirms a 
particular property. The most usual is the solution of minimum degree.  
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Let (X0,Y0) be a particular solution of [11.3]; we know (Theorem 11.6) that the 
general solution is written: 

= −⎧
⎨ = +⎩

0 1

0 1

X  X   B P

Y  Y   A P
 [11.12] 

with GAA 1=  and GBB 1=  where BAG ∧=  and P is any polynomial of ℜ[x]. 

By carrying out the Euclidean division of X0 by B1 we obtain: 

= +0 1X B U V  with ∂ < ∂ 1V B  [11.13] 

by replacing in [11.12] we obtain: 

= − −1X V B (P U)  [11.14] 

the solution for [11.3] with minimum degree in X will be obtained for P = U or:  

= ⎫
⎬= + ⎭0 1

X V

Y Y A U
 [11.15] 

Indeed, based on [11.14]: 

∂ ≤ ∂ ∂ −1X max{ V, B (P U)}  [11.16] 

If P ≠ U, then: 

∂ − ≥ ∂1 1B (P U) B  [11.17] 

and since by construction: 

∂ < ∂ 1V B  [11.18] 

∂ ∂ − ≥ ∂1 1max{ V, B (P U)} B  [11.19] 
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the hypothesis P ≠ U leads to a solution in X of a higher degree than that obtained 
for P = U. 

           

NOTE 11.1.– the solution of minimum degree for X does not generally coincide 
with the solution of minimum degree in Y. 

The preceding theorems make it thus possible to calculate the solution for [11.3]. 
Now that the resolution tools of polynomial equations are known, it is advisable to 
specify in relations [11.2] the degrees of freedom available to the designer and also 
to equally translate the constraints of synthesis related to the nature of the problem 
and the specifications of the correction. 

11.2. The obvious objectives of the correction 

11.2.1. Internal stability  

It is difficult to take a final decision at this stage since the representation of the 
correction given in Figure 11.1 is formal and does not represent the real 
implementation. However, it is clear [DOY 92] that the denominator of all the 
transfers being AmAo, these two polynomials must be stable (besides the 
simplification carried out by Ao in [11.1] already supposed the stability of Ao); on the 
other hand, there should be no simplification of unstable root of A or B by the 
correctors built. On the other hand, the reverse is possible, i.e. we can choose some 
of the polynomials R, S and T in order to carry out such simplifications. 

Thus, based on the transfer in closed loop, 
BRAS

BT
C
Y

+
=  it is possible to hide 

zeros and (stable) poles of the model of the process by using S or R. Let us note, 
following the example of [AST 90]: 

−+= AAA and −+= BBB  [11.20] 

where P+P-
 represents the spectral factorization of the polynomial P, the roots of P+

 
being all stable1, the roots of P-

 being all unstable. By supposing that: 

'SBS +=  and 'RAR +=  [11.21] 

                                   
1 Open left half-plane for the continuous systems, the open disc of unit radius for the discrete 
models. 
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we get: 

)''( RBSABA
TBB

BRAS
BT

C
Y

−−++

−+

+
=

+
=  [11.22] 

The choice of 'TAT +=  makes it possible to simplify by A+B+. We are in fact 
brought back to the preceding problem where R, S and T are replaced by R’, S’ and 
T’, and A, B by A-, B-. This is why subsequently, unless told otherwise, the 
simplifications will not be mentioned. 

11.2.2. Stationary behavior 

Since the internal stability is guaranteed, it is now possible to deal with the 
following stage, namely with the stationary behavior. The specifications of the 
correction outline the settings and interferences likely to stimulate the process. Let 
e(t) be the error signal (not explicit in the correction structure in Figure 11.1) 
neglecting the supposed noise of zero mean value: 

D
BRAS

BS
C

BRAS
TRBAS

YCE
+

+
+

−+
=−=

)(
 [11.23] 

Generally, the authors [AST 90] then use [11.2 (b)] to simplify the expression of 
the contribution of the setting. In this case, the stationary behavior with respect to 
the order depends only on Am and Bm, the asymptotic follow-up of a step function 
setting resulting in the choice of a reference model of unit static gain. However, as it 
is noticed in [COR 96, WOL 93] this supposes a perfect identification of the 
procedure! In fact, the relations [11.2] are only true for the model of the procedure. 
Let A' and B' be “the true” values of the denominator and numerator of the 
procedure; the real error obtained through the implementation of the RST corrector, 
calculated using model A, B, will in fact be: 

D
RBSA

SB
C

RBSA
TRBSA

YCE
''

'
''

)(''
+

+
+

−+
=−=  [11.24] 

and of course om'' AARBSA ≠+ . We suppose that: 

−+
=

cc

c

DD

N
C  and 

−+
=

dd

d

DD

N
D  [11.25] 
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where Nx and Dx are polynomials prime among themselves, the indices + and – 
having the same significance as in [11.20]. Thus, for a continuous ramp setting we 
will have 2sDc =−  and for a sinusoidal disturbance of angular frequency oω , 

22
od sD ω+=− . 

By supposing that the calculated correction is sufficiently robust so that 
RBSA '' +  has all its roots stable, the stationary error will be cancelled only if −

cD  
divides )( TRBAS −+  and −

dD  divides BS. As seen above, the values of A and B 
are not exact and thus it is R, S and T that will provide this function2. The stationary 
specifications thus lead to imposing the following constraints (without taking into 
account possible integrations of the process): 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=−

=

−

−

−

"

'

d

c

c

SDS

LDTR

SDS

  or  
−−−

−

−

∨=

⎪⎩

⎪
⎨
⎧

=−

=

dcdc

c

1dc

DDD

LDTR

SDS

 [11.26] 

The preceding section s made it possible to set a certain number of constraints on 
the unknown factors of the problem and provided a general context for its solving. 
The following section will provide a calculation tool for polynomials R, S and T. 

11.2.3. General formulation 

We must solve [11.2] with the conditions [11.26], or: 

om

om
AABRAS

ABBT
=+

=
 with 

−−−

−

−

∨=

⎪⎩

⎪
⎨
⎧

=−

=

dcdc

c

1dc

DDD

LDTR

SDS

  [11.27] 

                                   
2 When the process is integrator we can write A = sA’ despite identification errors. 
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Since BT = BmAo, B must divide the BmAo product. We saw above (section 
11.1.3) that polynomial Ao must be stable and thus it can share with B only stable 
roots. Let B1 be the part of factorized B in Ao

3. Consequently, polynomial Bm must 
“become in charge” with the non-factorized part of B in Ao. Hence, let us assume 
that: 

'' 2121 mmoo BBBABABBB ===  [11.28] 

Therefore, Bm will have to contain at least all the unstable roots of B. Taking into 
account these factorizations, we obtain: 

om ' ABT =  [11.29] 

On the other hand, according to [11.2(b)], since B1 divides Ao and B it also 
divides AS. However, A and B are prime between themselves by hypothesis and 
therefore B1 divides S and S1 (since B1 is stable and not −

dcD ). Finally, we can write:  

')(
'')(

)(

'')(

')(

)(

)(

m2m

om

1dc

omc

om2d

dcdc

121

BBBg
ABTf

SBDSe

RABLDd

AARBSADc

DDDb

stableBBBBa

c

=
=

=

=+

=+

∨=

=

−

−

−

−−−

 [11.30] 

All these relations express the respect of internal stability (by supposing of 
course Am and Ao’ stable) and desired stationary performances. We notice that these 
relations require the choice of polynomials (Am, Ao’) and the factorization of B and 
then the solving of two Diophantus equations [11.30(c)] and [11.30(d)]. The 
following section is dedicated to the complete resolution of [11.30]. In particular it 
will be pointed out which are the degrees of freedom available to the designer in the 
choices mentioned above. 

                                   
3 We will have a maximum of B1 = B+ according to the notations in section 3.1.3, equation 
[3.20]. 
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11.3. Resolution 

As previously seen, it is possible to develop a general solution (Theorem 11.6) 
by formal calculation. However, it is more usual to solve the Diophantus equations 
resulting from this approach by using linear algebra. This approach makes it 
possible to set the degrees of freedom of the designer. Indeed, if we write4: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

===

∑∑

∑∑∑

∂

=

∂

=

∂

=

∂

=

∂

=
Y

i

i
i

X

i

i
i

C

i

i
i

B

i

i
i

A

i

i
i

syYsxX

scCsbBsaA

00

000  [11.31] 

The resolution of equation [11.3] goes back to that of the following system: 
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⎥
⎥
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⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎢
⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥
⎥
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⎢
⎢
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⎢
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⎢

⎣

⎡

∂∂

∂

∂

∂∂

∂∂

∂
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Y
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X

1

0
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B

11
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c

c
c

y

y
x

x
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.
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b
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0bb0aa
00b00a

 [11.32] 

Each row is obtained by equalizing the terms having the same power in [11.3]. 
This system is called the Sylvester system. The resolution of this system of 
equations requires knowing the degrees of the various polynomials and that part has 
not yet been set. It must be noted that in our problem, A and B are prime between 
themselves and, consequently, according to Theorem 11.5 [11.32] has one solution. 

 

                                   
4 For discrete systems the variable would be “z” and not “s”. 
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Before solving the general case, we will deal with a particular case (the one that 
is the most frequently dealt with in other works), which will enable us to show the 
approach used. 

11.3.1 Resolution of a particular case 

We find ourselves here in the case when no specification is made on the setting 
and the interference. Thus, only relations [11.2] should be solved. We know that 
polynomials Am and Ao must be stable, but this information is not sufficient for the 
designer and we must know the degrees of these polynomials to write the Sylvester 
system. Can we choose these degrees randomly? The following section makes it 
possible to answer this question. 

 11.3.1.1. Conditions on the degrees 

We suppose [DOY 92] that the model of the process is strictly proper, whereas 
the correctors will be supposed simply proper. Consequently: 

⎪
⎩

⎪
⎨

⎧

∂≥∂
∂≥∂
∂>∂

TSc
RSb
BAa

)(
)(
)(

 [11.33] 

From relations [11.33(a) and (b)] and [11.2(b)], we obtain: 

mo AASARB ∂+∂=∂+∂<∂+∂  [11.34] 

The uniqueness of the solution will thus be obtained by simply imposing: 

number of equations = number of unknown factors [11.35] 

The unknown factors in [11.2(b)] are the coefficients of the polynomials S and R 
and thus5: 

number of unknown factors = 2+∂+∂ RS  [11.36a] 

                                   
5 A polynomial of degree n has n + 1 coefficients. 
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The number of equations is the number of rows in the Sylvester system and thus: 

number of equations = 1om +∂+∂ AA  [11.36b] 

Considering the uniqueness of the solution and taking into account [11.34], we 
obtain: 

21om +∂+∂=+∂+∂ RSAA  [11.37] 

1−∂=∂ AR  [11.38] 

while of course always using [11.34]: 

AAAS ∂−∂+∂=∂ om  [11.39] 

Until this stage, polynomials Am and Ao do not have any constraint except for 
stability. The conditions for the regulators to be proper will introduce the following 
constraints: 

1−∂≥∂−∂+∂⇒∂≥∂ AAAARS om  [11.40] 

from where we obtain the first inequality referring to the degrees of Am and Ao: 

12om −∂≥∂+∂ AAA  [11.41] 

by using [11.2(a)] and the fact that 
S
T  is proper, we obtain: 

om ABBTBSTS ∂+∂=∂+∂≥∂+∂⇒∂≥∂  [11.42] 

and finally by using [11.39] we obtain a second inequality: 

omom ABBAAA
S

∂+∂≥∂+∂−∂+∂
∂

 [11.43] 
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which rearranged gives: 

BABA ∂−∂≥∂−∂ mm  [11.44] 

This simply means that the correction can only increase the relative degree. 

 11.3.1.2. Standard solution 

We must first of all choose Bm. By using the factorization 21BBB =  where B1 
is stable (we can choose B1 = 1 if we want to have a completely free choice of Ao) 
and consequently: 

'o1o ABA =  and 'm2m BBB =  [11.45] 

In order to minimize the complexity of the elements of the corrector, we usually 
choose a polynomial Bm’ = α the constant α being chosen in order to ensure a unit 
static gain for the model of reference6. Relations [11.41] and [11.44] thus become 
( 0'm =∂B ): 

1om

1om

1m

21m2m

12'
12'

)()'(

m

BAAA
ABAA

BAA

BBABBA
BB

∂−−∂≥∂+∂⇒
−∂≥+∂∂+∂

∂−∂≥∂⇒

∂+∂−∂≥∂+∂−∂
∂∂

 [11.46] 

We have seen in [11.30] that polynomial S is thus divisible by B1. Figure 11.2 
gives a graphic representation of the conditions [11.41] and [11.46]. 

                                   
6 It is pointed out that this choice is only a necessary condition to the asymptotic follow-up of 
a step function setting (see section 11.2.2). 
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Figure 11.2. Choice of the degrees of Am and Ao’ 

 11.3.1.3. Example 

Let us take an academic example. Let the process be described by the transfer: 

)11,0(

1
2 ++

+=
sss

s
A
B  

Therefore, we have the choice to make B1 = 1 or s+1 and thus B2 = s + 1 or 1 
respectively. 

 B1 = s+1 and B2 = 1 

The inequalities [11.46] thus lead to the relations: 

4113*2'
213

om

m
=−−≥∂+∂

=−≥∂
AA

A
 

If we choose the polynomials of minimum degree, we obtain: 

2'
2

o

m
=∂
=∂

A
A
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We can thus choose7:  

4
)2('

m

2
om

=
+==

B
sAA  

This choice of Bm ensures a unit static gain to the reference model. We can thus 
use the resolution of the Bezout equation: 

om AABRAS =+  

The resolution of this system of equations in this particular case gives: 

2
m

2

)2(4'

161.2421.22

)9.7)(1(

+==

++=

++=

sABT

ssR

ssS

o

 

 B1 = 1 

The inequalities [11.46] lead then to the relations: 

m

m o

o o

3
' 2*3 1 5

here '

A
A A

A A

∂ ≥
∂ + ∂ ≥ − =

=
 

If we choose the polynomials of minimum degree, we have: 

2'
3

o

m
=∂
=∂

A
A

 

                                   
7 The choice of the roots of these polynomials will be seen later. For the moment the only 
constraint is to choose them stable. 
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We can thus take: 

)1(8
)2(

)2(

m

2
o

3
m

+=
+=

+=

sB
sA

sA

 

By using the same procedure as before we obtain: 

2
om

2

2

)2(8'.

324120

77

+==

++=

++=

sABT

ssR

ssS

 

11.3.2. General case 

11.3.2.1. Choice of degrees 

This section is dedicated to the resolution of relations [11.30]. The methodology 
is the same as the one used in the preceding paragraph, but here the conditions of 
being proper do not relate directly to the unknown polynomials. Relations [11.33], 
[11.34] and [11.39] are always valid since we must solve: 

( ) ( )
o

o1m211dc ')(
A
ABAR

B
BB

S
SBDA =+−  [11.47] 

By taking into account [11.39] and the factorization of S, the degree of S  is 
given by: 

−∂−∂−∂+∂=∂ dcom DAAAS  [11.48] 

The uniqueness of the solution will be ensured if the number of equations is 
equal to the number of unknown factors, or: 

1

factorsunknown  ofnumber
2

equations ofnumber

1

dc

dc

−∂+∂=∂⇒

+∂+∂=+∂+∂+∂

−

−

DAR

RSDSA

 [11.49] 
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To solve [11.30(c)], it is necessary to know the degree of S and thus that of Bm’, 
which itself is solution of [11.30(d)]. For this equation, there is no constraint on 
being proper and we will set the uniqueness of the solution by retaining that of 
minimum degree in Bm’. The idea is to minimize the complexity of the transfers to 
be done. We consequently obtain: 

− −∂ = ∂ − ∂ ≥m c c' 1 ( 1)B D D  [11.50] 

We must now represent the property of the corrector by using [11.48] and 
[11.49]. The inequality RS ∂≥∂ gives: 

12 dcom −∂+∂≥∂+∂ −DAAA  [11.51] 

also, the inequality TS ∂≥∂  leads to the condition: 

11m −∂−∂+∂≥∂ − BDAA c  [11.52] 

Figure 11.3 represents these inequalities geometrically. 

  

Figure 11.3. Choice of degrees  of Am and Ao’ 
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 11.3.2.2. Example 

Let us take the following example: 

2
dc

d

2
c

2

5.0

)11.0(

sD
sD

sD

sB

sssA

=⇒
=

=

+=

++=

−
−

−

⎪⎭

⎪
⎬
⎫

 

the inequalities [11.51] and [11.52], by choosing B1 = 1, give: 

41231

7123*212

cm

dmm

=−+=−∂+∂≥∂

=−+=−∂+∂≥∂+∂
−

−

DAA

DAAA c  

by using the minimal degrees and by choosing identical dynamics for Am and Ao we 
can take: 

3
o

4
m

)1(

)1(

+=

+=

sA

sA
 

We obtain in this particular case: 

144

21018144

)1479.39.6(

210227042.191621.16

2
m

234

22

234

++=

++++=

++=

++++=

ssB

ssssT

sssS

ssssR

 

11.4. Implementation 

In section 11.1.1 it was mentioned that the structure in Figure 11.1 is formal 
because the represented transfers are not proper. This section makes it possible to 
carry out the control law. 
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11.4.1. First possibility 

RyTcSu −=  [11.53] 

with physically feasible operators. A possibility [IRV 91] consists of introducing a 
stable auxiliary polynomial F of an equal degree to that of S into relation [11.53], 
which becomes: 

y
F
R

c
F
T

u
F
S

−=  [11.54] 

the corrector is thus carried out as indicated in Figure 11.4. 

  

Figure 11.4. Realization of the corrector 

This realization is not minimal because it leads to the construction of three 
transfers of ∂S order. The following section provides a minimal representation of the 
RST regulator [CHE 87].  

11.4.2. Minimal representation 

If we return to relation [11.53], we can obviously write: 

y
S
R

c
S
T

u −=  [11.55] 

The realization of the first term leads in the majority of cases to the achievement 
of an unstable transfer (S always has a zero root). It is rather necessary to regard the 
corrector as a system having two inputs c(t) and y(t) and one output u(t) and thus it 
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is enough to write an equation of state verified by this system. The following 
example illustrates the procedure. 

 11.4.2.1. Example 

For sDDsAABssA dc ==+===++= −−;)1(;2;1 2
om

2 , by using the 
previously described procedure, we obtain: 

5.05.0

3

5.05.0

2

2

2

++=

+=

++=

ssT

ssS

ssR

 

Hence, the control verifies: 

YssCssUss )5.05.0()5.05.0()3( 222 ++−++=+  

By leaving on the left the term in U of highest degree and by dividing each 
member by s2, we obtain: 

]5.05.0[
1

5.03{
1

5.05.0 YC
s

YCU
s

YCU −+−+−+−=  

and thus by supposing that8: 

]5.03[
1

2

]5.05.0[
1

1

1XYCU
s

X

YC
s

X

+−+−=

−=
 

                                   
8 Signals x1 and x2 here do not have any relationship with those in Figure 11.1. 
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in the time field we have: 

2

12

1

5.0

5.03

5.05.0

xycu

xycux

ycx

+−=

+−+−=

−=

 

finally, by replacing in 2x , u  by its expression according to c, y and x2: 

2

212

1

5.0

5.25.03

5.05.0

xycu

ycxxx

ycx

+−=

+−−=

−=

 

and in the matrix, we have: 

[ ] [ ]10.5D   10C   
5.25.0
5.00.5

B   
31

00
A −==

−
−

=
−

= ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡  

 11.4.2.2. Generalization 

If we write9: 

( )

0

0

0

s

s with 1 and max , ,

s

n
i

i
i

n
i

i n
i
n

i
i

i

S

R n S R T S
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ρ σ

τ

=

=

=

=

= = = ∂ ∂ ∂ = ∂

=

∑

∑

∑

 [11.56] 

                                   
9 The continuous case is used here, but the approach is completely identical to the discrete 
case: it is enough to replace s by z in what follows. 
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this procedure can be generalized. Using [11.52] and [11.56], we obtain: 

s sτ ρ σ τ ρ
−

=
− + = − + −∑

1

0

.( ) ( )
n

n i
n n i i i

i

u c y u c y  

either by dividing by sn: 
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or by supposing that: 

s

s

s

s

σ τ ρ

σ τ ρ

σ τ ρ

σ τ ρ
τ ρ

−

−

−
− − − −

−
− − −

= − + −
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1
n 1 2 2 2 n-2
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x {( ) x }
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n n n

n n

u c y

u c y

u c y

u c y

u c y

 [11.57] 

It is easy to see that the last equation makes it possible to express u according to 
c, y and xn. That represents of course the output equation and thus: 

τ ρ
=
= −

C [0 0 1]

D [ ]n n
 [11.58] 
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By replacing u  by yc nn ρτ +−nx  in the expressions of x1, x2,....xn we obtain 
matrices A and B of the equation of state: 
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⎥
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⎢
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⎢
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ρρσττσ

σ
σ

σ
σ
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 [11.59] 

11.4.3. Management of saturations 

11.4.3.1. Method 

Many failures that occurred when the so-called “advanced” techniques were 
applied could have been avoided if the implemented regulators had managed the 
inherent saturations of every industrial procedure. The RST control is no exception. 
The previously discussed example can be used to emphasize the problem and its 
solution. We will be dealing with the structure described in Figure 11.5. 

  

Figure 11.5. Corrector with saturation 
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The following answers show the difference in operation with and without 
saturation. 

 

no saturation 
output y(t) is confused with that of reference model Bm/Am 

  

saturation at ±0.5 
 (a) with saturation, (b) reference model 

Figure 11.6. Comparison of behavior with and without saturation 
 (note that the scales in ordinate are not the same!); in both cases F(s) = (s + 1)4 
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The use of the strategy [ÅST 90, LAR 93] described in the following figure 
makes it possible to considerably decrease the effect of saturation as can be seen on 
the simulation in Figure 11.8. 

  

Figure 11.7. RST correction with “anti-wind up” 

 
 

Figure 11.8. Behavior in the presence of saturation and with “anti-wind up” with 
the response of the reference model represented by the dotted lines 

This structure can of course be implemented with the help of the realization 
presented in section 11.4.2.2. 
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 11.4.3.2. Justification of the method [KAI 80] 

The transfer process 
A
B

  can be described by an equation of state: 

Cx
BAxx

=
+=

y
u

 [11.60] 

where A, B and C are matrices of adequate size and x the state vector. The control 
of this process can thus be done by the technique of pole placement using an 
observer [KWA 72] according to the diagram in Figure 11.9. 

 

Figure 11.9. State feedback control with observer 

It is known [KWA 72, LAR 93] that the complete system thus corrected has as 
its poles the eigenvalues of the A-BK matrix (placement of poles) and the poles of 
the observer (principle of separation). If we do not take into account the 
deterministic interferences and the characteristics of the instructions, we have, at 
least, 2n-1 poles to place of which n-1 come from the minimal order observer. We 
thus find the significance of polynomials Am

 and Ao (from where we get the name of 
polynomial of the observer for Ao) 

 
Let us say that:  

xKˆ=v  [11.61] 

Signals yu,  and v  are scalar; according to what was previously said, we can 
thus define transfers such as: 

y
A

N
u

A
N

v
o

y

o

u +=  [11.62] 
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and thus, based on Figure 11.9, we have: 

c
BNNAA

BA
y

y
B
A

u

y
A

N
u

A
N

c

vcu

yuo

o

o

y

o

u

++
=⇒

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

=

−−=

−=

)(
 [11.63] 

By approaching the expression [11.1], we note that the state feedback control 
with observer corresponds to an RST structure where we chose: 

oAT =  [11.64] 

polynomials R and S thus being: 

y

uo
NR

NAS
=

+=
 [11.65] 

In the presence of saturation, there is the control described in Figure 11.11. 

 

Figure 11.10. State return control with observer in the presence of control saturation  
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It is easy to make a connection between this diagram and the one in Figure 11.5. 
The interest in this structure is thus understood since signal v  is calculated 
according to the “true” control of the process and its output. 

11.5. Methodology 

We have so far defined the various degrees of freedom of the RST control and 
now, to return to the objectives of section 11.1.1, we still have to define a “good 
transient state” by taking into account the level of noise on the control and the 
robustness aspect with respect to modeling errors. 

11.5.1. Intuitive approach 

Many mishaps can be avoided if we keep in mind the following rule: the more 
important the required performances are, the more disturbed the control will be and 
the more sensitive the corrected system will become to modeling errors. 

The following examples illustrate this “saying” within the context of this 
chapter. The model of the process considered is defined by: 

)11.0(

2
2 ++

=
sssA

B
 

the synthesis being done for a step function setting and interference. Taking into 
account what has been done above, polynomials Am and Ao must be both of a degree 
at least equal to 3. The table below shows the results obtained for various 
polynomials Am and Ao, the system being subjected to a step function setting and 
interference at 1 and 15 seconds respectively. 
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Figure 11.11. Influence of the measurement noise according  
to the dynamics chosen for Ao and Am 
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The column on the left shows the results in the absence of measurement noise. 
We observe that the more the poles of Am are on the left in plane s, the faster the 
response to the setting is and the better rejected the interference is when the poles of 
Ao are on the left in plane s. On the other hand, we note that the increase in 
dynamics by both  Am and Ao leads to an amplification of the noise on the control. It 
will never be pointed out enough that the designer should not be satisfied to look at 
the output of the process during the simulation! 

 
The following example illustrates the finally accepted phenomenon, that the 

increase of the required performances is confronted with robustness with respect to 
modeling errors (the precision-stability dilemma was a beginning). The synthesis is 
always made following the model of the preceding section, the “real” process having 
a time constant of 0.5 s, which is neglected in the model. The results of simulation 
do not require comments. 

 

Figure 11.12. Influence of a modeling error according to the choice of Am 

11.5.2. Reduction of the noise on the control by choice of degrees 

From Figure 11.1, it appears that: 

n
AA

AR
u

om
=  [11.66] 

So if we choose the minimum degrees for Am and Ao, according to relations 
[11.49] and [11.51], we observe that the transfer between the control and the 
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measurement noise is simply proper. This means that all the high frequencies of n 
will pass in u . Always according to the same relations, all we have to do in order to 
obtain a strictly proper transfer between u  and n  is to choose a polynomial Ao of 
degree higher than the minimal value. The following curves properly illustrate this 
phenomenon in the scalar field. 

  

Figure 11.13. Influence of the choice of the degree of Ao on u/n 

11.5.3. Choice of the dynamics of Am and Ao 

Section 11.5.1 shows the influence of the dynamics of these polynomials on the 
performances of corrected system. Section 11.5.2 provides the starting point of the 
solution by offering an additional choice criterion on their degree. We will discuss 
here the choice of their roots. This section is based on [LAR 99] where the author 
develops a methodology based on the LQG-LTR control. 

In all that follows, we will suppose that the setting and the interference are step 
functions and that polynomial T is chosen equal to Ao, i.e.: 

sDDD === −−−
dcdc  [11.67] 
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in this case, conditions [11.30] on the degrees become: 

m
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∂ = ∂ + =

 [11.68] 

S’ being the solution of: 

om' AABRAsS =+  [11.69] 

 11.5.3.1. Optimal choice of Am 

In the absence of interference, according to [11.23], the tracking error is given 
by: 

⎥
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CC
AA

BT
CYCE  [11.70] 

A possible synthesis strategy can be the choice of Am in order to minimize the H2 
standard of this transfer. A direct application of the variational calculation leads to 
the following stable optimal solution: 

)()(opt
m sBsBA −= −+  [11.71] 

This means that the roots of opt
mA  are the stable roots of B and the unstable roots 

of B made symmetrical with respect to the imaginary axis. Of course this solution 
does not satisfy the constraint on the degrees. For that we will have to add a certain 
number of roots, such as: 

BAsTsBsBA ∂−∂−+ +−= )1)(()( c
opt
m  [11.72] 

If the model has minimum phase difference (B- = 1), we can show that: 

BS
cT

=
→

'lim
0

 [11.73] 
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indeed, S’ is the solution of: 

oc )1(' AsTBBRAsS BA ∂−∂+=+  [11.74] 

and thus S’ is divisible by B. After reduction by B, we obtain: 

'''
'')1( oc

BSS
AsSAsTR BA

=
−+= ∂−∂

 [11.75] 

when Tc tends toward zero, we see that S’’ must tend toward a constant so that 
R∂ remains equal to R∂ . Thus, by considering the highest degree terms of A and Ao 

as equal, S’’ will tend toward 1 when Tc tends toward zero. 

11.5.3.2. Optimal choice of Ao 

We have seen above that the transfer connecting the measurement noise to the 
control is given by: 

om AA
AR

N
U

=  [11.76] 

for instance, in the limit case mentioned previously: 

ocom )1(
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∂−∂+

−
==  [11.77] 

In order to reduce the influence of the noise on the control10 we can choose Ao in 

order to minimize the H2 standard of 
o

1
A
sA

− . The use of the variational calculation 

leads as before to a polynomial Ao whose roots are the stable roots of sA and also 
symmetric with respect to the imaginary axis of the unstable roots. However, here 
there is the difficulty of the root at the origin. So we define the under optimal 
solution: 

                                   
10 This procedure supposes seeking an observer which could minimize the restoration noise 
of x̂K  (see section 11.4.3.2).  
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this solution tending towards the optimal solution for To tending towards infinity11.  

11.5.3.3. Study of the sensitivity function  

Let L(s) be the transfer of the loop; we can define the sensitivity function Σ by: 
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in the case of a system without unstable zero, the choice of an optimal polynomial 
Am leads to the sensitivity function: 
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and thus for the choice of Ao seen above and when Tc tends toward zero we have: 
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this for a process without integration ( 0)0( ≠A ). 

 Thus, everything occurs as if the loop transfer was 
o

1
sT

 and we obtain a phase 

margin of 2
π  to the angular frequency 

o
p

1
T

=ω , which gives a limit delay margin 

of or 2
TM

π
= . 

                                   
11 The presence of integrators in the process will be treated in a similar way. 
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In the case of a model with one integration, the limit sensitivity function will be: 
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the equivalent loop transfer thus becomes: 
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2
o
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( )

T s
L

T s
 [11.83] 

and the lag margin being oTM  647.0r = . 

It should be noted that the sensitivity function is always of a module less than 1 
(except for the infinite frequency). 

 11.5.3.4. Some improvements 

If the poles of A (or their symmetric) are slightly damped or too slow, the choice 
of Ao suggested above may lead to bad dynamics of regulation. This is why it is 
advisable to project these undesirable poles on the abscise vertical –1/ To. 

  

Figure 11.14. Choice of the roots of Ao 
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Thus, the contribution of this pair to the sensitivity function is: 
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ps

 [11.84] 

and therefore this transformation does not affect the main result of these choices: the 
limit sensitivity function is always of a module less than 1. 

Similarly, the presence of strong dynamic zeros leads, through the procedure of 
optimal choice of Am, to imposing fast methods to the corrected process. Several 
methods are proposed in order to avoid this obstacle [LAR 99]. We will suggest here 
the procedure illustrated in Figure 11.15. 

 

Figure 11.15. Choice of the roots of Am 

This procedure is of course to be prohibited if the transformed pole proves to be 
not sufficiently damped. 

NOTE 11.2.– we note that if we choose to make Ao tend toward sA (always under 
the hypothesis step function setting and interference), the R solution of the Bezout 
equation will tend toward Ao and the solution S’ toward Am. Consequently, the 

sensitivity function will still have the same limit 

o

omo 1
'

T
s

s
A
sA

AA
sAS

+
==  

 
We can thus reach the same limit sensitivity function either by making Am. tend 

toward B (Tc→0) or by making Ao tend toward sA (To→∞). 
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 11.5.3.5. Method of adjustment 

Based on the particular choices for Am and Ao: 
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the optimal solution corresponds to ∞→oT  and 0c →T , or in practice when: 

∞→
c

o

T
T

 [11.86] 

Practically, we obtain a sensitivity close to the limit sensitivity for a 5 order 
ratio. 

Increasing To increases the lag margin at the expense of the dynamics of 
regulation.  

Decreasing Tc makes the corrected system more sensitive to measurement noises 
(see the example in section 11.5.2).  

The initial value of To can be either: 

– the desired lag margin; 

– the dominant time constant in desired regulation; 

– a value close to the dominant time constant in open loop (for a stable process 
of course). 

11.5.4. Examples 

In section 11.5.1 we presented an example in order to highlight the influence of 
the dynamics of polynomials Am and Ao on the correction. We will reiterate this 
example by applying the methodology developed above. As the model of this 
example presents a slightly damped oscillating dynamics, we will be able to clarify 
the “improvements” described in section 11.5.3.3. The model is thus described by 
the transfer: 
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the setting and the interference being always steps functions. In accordance with the 
suggested methodology, we will have: 

( )312 += sTA cm  [11.88] 

and: 
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if we “hide” the oscillating poles, or: 
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in the opposite case. The following figures show the results obtained in the scalar 
field. Figure 11.16 corresponds to choice [11.89], whereas Figure 11.17 corresponds 

to choice [11.90]. We notice that in each case, the target sensitivity function 
oA

sA
 

and the real sensitivity function 
mo

'
AA

sAS
 have their modules close, thus justifying the 

approximation carried out in the design. In addition, in choice [11.89], we notice 
that the target sensitivity function is of a module less than 1. 
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Figure 11.16. Evolution of 
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(⎯ο⎯), of 

mo

'
AA

sAS
and of 

mA
B

(⎯⎯) in the case of 

2
2 1

)11.0( ⎟
⎠
⎞

⎜
⎝
⎛ +++=

o
o T

sssA  

The following figures give an outline of the time performances obtained in each 
one of these cases for various choices of oT . Each figure represents the behavior of 
the corrected process following a rule:  

– without measurement noise and model identical to the process; 

– with measurement noise and model identical to the process; 

– without measurement noise and process with a time constant of 0.5 s neglected 
in the model. 
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Figure 11.17. Evolution of 
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From these answers we notice that the lower Tc, the faster the feedback control 
response, but on the other side the control is subject to more noise. On the other 
hand, the higher To, the more robust the system will be to modeling errors, with a 
rejection dynamics of less competitive interference (we will have noticed in the last 
simulation the appearance of instability). Finally, in [11.89], the fact of hiding the 
oscillating poles of the process leads to a rejection of oscillating interference. 
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Figure 11.18. Time responses for To = 5 seconds 
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Figure 11.19. Time responses for To = 2 seconds 
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Figure 11.20. Time responses for To=1 second 
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Due to the degree of robustness when facing modeling errors, of the level of 
measurement noise, the designer can “easily” adjust the only two adjustment 
parameters Toand Tc. 

11.6. Conclusion 

Many problems of automatic control can be reduced to single-variable 
corrections. In this context, the placement of poles performed by the RST structure, 
i.e. with a corrector with two degrees of freedom, has been developed these last few 
years. This chapter aimed at providing the designer with the maximum of degrees of 
freedom to carry out this synthesis. 

Initially, the general solution of the RST control was given. In particular, the 
choice of synthesis polynomials degrees was discussed according to the classes of 
settings and interferences. Then the aspects of implementation were developed and, 
in particular, the problem of saturation of the actuator was largely dealt with. 
Finally, a methodology of choice of feedback control and regulation dynamics 
(choice of polynomials Am and Ao) was provided. This approach makes it possible to 
set performances compatible with a level of robustness chosen in advance. This 
simple approach uses two adjustment parameters (two time constants) which makes 
it accessible to non-specialists. 
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Chapter 12 

Predictive Control 

The developments presented in this chapter aim to cover the main ideas of 
predictive control and then to indicate the details of the analytical minimization of 
the criterion for two individual structures enabling the elaboration of the equivalent 
polynomial regulator. The choice of adjustment parameters will also be analyzed, 
providing some simple rules that guarantee the corrected system good stability and 
robustness. 

12.1. General principles of predictive control  

Predictive control is based on some relatively old and intuitive ideas [RIC 78], 
but it has been developed as an advanced control technique mainly since the 1980s. 
This development was done mainly according to two privileged main lines: 

– generalized predictive control (GPC) by Clarke (1985); 

– functional predictive control (FPC) by Richalet (1987). 

The philosophy of predictive control lies on the definition of five great ideas, 
common to all the methods. 

12.1.1. Anticipative aspect 

This anticipative effect is obtained by using explicit knowledge on the evolution 
of the trajectory to be followed in the future (necessary knowledge required at least 
                                   
Chapter written by Patrick BOUCHER and Didier DUMUR.   



374     Analysis and Control of Linear Systems 

on the horizon of some points beyond the present moment). This constraint which 
makes it possible to make good use of all the resources of the method, necessarily 
restricts the application field to the control of the systems for which the trajectory to 
follow is perfectly known and stored pixel by pixel in the computer. It is the case of 
the numerical control of machine-tools (cutting the pieces), of the control of robots 
arms, of monitoring the temperature profile of the applications in home automation, 
etc. 

12.1.2. Explicit prediction of future behavior 

The method requires the definition of a numerical model of the system, which 
makes it possible to predict the future behavior of the system. This discrete model 
results mainly from a preliminary offline identification. This feature makes it 
possible to classify predictive control in the big family of Model Based Control 
(MBC).  

12.1.3. Optimization by minimization of a quadratic criterion 

The optimization which makes it possible to obtain the control law is done by 
minimizing a quadratic criterion with finite horizon referring to the errors of future 
prediction, the variance between the predicted output of the system and the future 
setting or the reference trajectory inferred from this setting. 

12.1.4. Principle of the sliding horizon 

The elaboration of a sequence of future controls results from the preceding 
minimization, which is optimal in what the quadratic criterion is concerned, out of 
which only the first value is applied to the system and the model. 

The preceding steps are then repeated during the following sampling period 
according to the principle of sliding horizon, as seen in Figure 12.1. 
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Figure 12.1. Principle of sliding horizon 

The objective of the polynomial predictive regulator obtained by minimizing the 
criterion is that the predicted output joins the setting or the reference trajectory on a 
given prediction horizon. The principles that we have just mentioned make it 
possible to establish the operation diagram in Figure 12.2. 

  

Figure 12.2. Operation principle of a predictive algorithm 

Hence, the principle of the sliding horizon means that only the control at the 
present moment u(t) is applied on the system. Therefore, it is possible to limit the 
number of estimated values of the sequence. 



376     Analysis and Control of Linear Systems 

12.2. Generalized predictive control (GPC) 

12.2.1. Formulation of the control law  

The objective of this section is to indicate the fundamental points of the 
predictive structure considered [CLA 87a, CLA 87b], in the monovariable case, 
from the mathematical translation of the preceding general concepts up to the 
obtaining the equivalent polynomial regulator. 

 12.2.1.1. Definition of the numerical model 

All the forms are allowable for the model but the input/output polynomial 
approach by transfer functions is preferred. 

Traditionally the model is represented as CARIMA (Controlled AutoRegressive 
Integrated Moving Average): 
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where 11 1)( −− −=∆ qq , )(tu  and )(ty  are the input and output of the model, )(tξ  
is a centered white noise, 1−q  is the delay operator and )( 1−qA  and )( 1−qB  are 
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This model, which is also called incremental model, introduces an integral action 
and makes it possible to undo all the static errors with respect to the input or step 
function interference. 

 12.2.1.2. Optimal predictor 

The predicted output )/( tjty +  is traditionally decomposed into a free and 
forced response [FAV 88], including a polynomial form meant to properly conclude 
the final polynomial synthesis: 

1 1 1 1( / ) ( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( )

forced  responsefree  response
j j j jy t j t F q y t H q u t G q u t j J q t j∆ ∆ ξ− − − −+ = + − + + − + +   [12.3] 
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The unknown polynomials jjjj JHGF ,,,  are single solutions of Diophantus 
equations, which are obtained by equality of the inputs and output of transfer 
functions of equations [12.1] and [12.3] and they are solved recursively: 
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The set of calculations may be done in real-time off loop. The optimal predictor 
is finally defined by considering that the best noise prediction in the future is its 
mean (here supposed as zero), let us suppose that: 

− − −+ = + ∆ − + ∆ + −1 1 1ˆ( / ) ( ) ( ) ( ) ( 1) ( ) ( 1)j j jy t j t F q y t H q u t G q u t j   [12.5] 

12.2.1.3. Definition and minimization of the quadratic criterion 

The control law is obtained by minimizing a quadratic criterion pertaining to 
future errors with a weighting term on the control: 
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with: ∆ + ≡( ) 0  u t j for ≥ uj N . 

The criterion requires the definition of four adjustment parameters: 

– 1N : minimal prediction horizon; 

– 2N : maximal prediction horizon; 

– uN : prediction horizon on the control; 

– λ : weighting coefficient on the control. 
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12.2.1.4. Synthesis of the equivalent polynomial RST regulator 

The minimization of the criterion is based on writing the prediction equation 
[12.5] and the cost function [12.6] in a matrix form, such as:  
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The analytical minimization of the criterion leads to an optimal sequence of 
future controls: 
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Traditionally, in a predictive control, only the first value of the sequence, 
equation [12.8] is applied to the system, according to the principle of the sliding 
horizon: 

[ ]wihifn −−∆+−−= )1( )( )1()( T
1 tutytutu optoptopt   [12.9] 

Based on the above relation, it is finally possible to obtain the polynomial 
representation of the equivalent regulator as indicated in Figure 12.3. This traditional 
RST structure enables the implementation of the control law by a simple 
difference equation:  
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The three polynomials have the following form: 
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Figure 12.3. Structure of the equivalent polynomial regulator 

We observe that polynomial )(qT  encloses the non-causal structure (positive 
power of q ) inherent to the predictive control. 

The interest resulted from the RST representation (actually very general because 
any numerical control law can be modeled this way [LAN 88]) is that, finally, the 
real-time loop proves to take little calculation time as the control applied to the 
system is calculated through a simple difference equation [12.10]. The three 
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polynomials R, S, T are actually elaborated offline and uniquely defined as soon as 
the four adjustment parameters are chosen. 

Consequently, this type of control favors the selection of short sampling periods 
and it proves to be well-adapted to the control of fast electro-mechanical systems 
(machine-tool, high-speed machining, etc.). 

Another major interest in the RST structure pertains to the study of stability of 
the corrected loop and thus the characterization of stability of the elaborated 
predictive control, which is from that moment on possible for a set of parameters of 
the fixed criterion. This study is examined in the following section. 

12.2.2. Automatic synthesis of adjustment parameters 

The definition of the quadratic criterion [12.6] showed that the user must set four 
adjustment parameters. However, this choice of parameters proves to be difficult for 
a person who is not a specialist because there are no empirical relations which make 
it possible to relate these parameters to traditional “indicators” in control such as 
stability margins or a bandwidth. 

Based on the study of a great number of single-variable systems, it is however 
possible to issue some “rules” based on the traditional criteria of stability and 
robustness [BOU 92] that we summarize. 

12.2.2.1. Criterion of stability and robustness 

First of all, the objectives of stability are related to the study in Bode, Black or 
Nyquist planes of the transfer function of the open loop corrected by the predictive 
regulator: 

)()()(
)()()( 111

111
1

−−−

−−−
−

∆
=

qqSqA
qRqBqqHbo  [12.11] 

It is generally agreed that a “good” adjustment is characterized by: 

– a phase margin ϕ∆ higher to 45°; 

– a minimal gain margin ∆G from 6 to 8 dB (decibels). 
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The objectives of robustness are linked to the calculation of the delay margin 

dB) 0at frequency angular  gap  rad,in   ( cωϕωϕτ ∆∆=∆ c   [12.12] 

to the study, in the scalar plane, of the direct sensitivity functions dσ and 
complementary sensitivity functions cσ : 
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It is generally agreed that a “good” adjustment is characterized by: 

– a delay margin higher than a sampling period; 

– a direct sensitivity function of a module lower than 6 dB; 

– a complementary sensitivity function of a module lower than 3 dB. 

12.2.2.2. Selection procedure of the criterion parameters 

From the criteria formulated above with the help of the traditional tools of scalar 
Automation, it is possible to choose the sets of satisfactory adjustment parameters: 

– 1N : prediction horizon lower on the output. The product eTN  1  ( eT sampling 
period ) is chosen as equal to the pure delay of the system; 

– 2N : prediction horizon higher on the output. The product eTN  2  is limited by 
the value of the response time. The bigger 2N  is, the more stable and slower the 
corrected system becomes; 

– uN : prediction horizon on the control. Choosing uN  equal to 1 simplifies the 
calculation and does not penalize the stability margins (on the contrary, a higher 
value tends to decompose the phase margin); 

– λ : weighting coefficient on the control. This parameter is related to the gain of 
the system, through the empirical relation: 

)(tr TGG=optλ      (G matrix described in 12.2.1) [12.15] 



382     Analysis and Control of Linear Systems 

The choice of parameters is frequently limited to a bi-dimensional search ( 2N  
and λ ) ending with the selection of a “good” adjustment. 

12.2.3. Extension of the basic version 

Based on the preceding easy version, several derived strategies were developed, 
which made it possible to recognize: 

– closed loop pre-specified dynamics (structure of multiple reference models); 

– several variables to control (cascade structure); 

– constraints imposed on the input and output signals. 

12.2.3.1. Structure of multiple reference models 

The aim of this predictive structure of multiple reference models is double. 
Firstly, it makes it possible to impose a reference trajectory through a stable pursuit 
of a model determined by the user who tones down the conformity with the setting. 
This pursuit model imposes the dynamics of the looped system (input/output 
behavior) and it may be considered as a pole placement. 

It is also a matter of weakening the quick control variations that we can 
sometimes recognize through the preceding algorithm, by trying to recreate the 
reasonable reference control that must be applied to the system in order to obtain, at 
the output, the reference trajectory and by creating in the criterion a minimization on 
the control error and not only on the control. 

The digital model of prediction is defined here again as CARIMA: 

)(
)()1()()()( 1

11
−

−−

∆
+−=

q
ttuqBtyqA ξ   [12.16] 

The pursuit model chosen by the user makes it possible to specify the reference 
trajectory )(tyr  that the output of the system will have to follow: 

)()()()( 111 twqBqtyqA rrr
−−− =   [12.17] 

where: )()()( 111 −−− = qPqBqBr . 
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)( 1−qP  is conceived in such a way as to insure the asymptotical behavior: 
)()( ∞=∞ wyr  Thus, for a step function setting, we can choose: 

Cte
)1(
)1()( 1 ==−

B
AqP r  

)( 1−qAr  is generally a second degree polynomial making it possible to impose a 
desired response time as well as an adapted damping coefficient. 

Coupled to the reference trajectory )(tyr , a reference control )(tur , which is 
allowed by the system, is equally defined, the two trajectories being related by the 
relation: 

)()()()( 111 tuqBqtyqA rr
−−− =   [12.18] 

In order to avoid the reverse of the model and the stability problems related to 
polynomial )( 1−qB  that may result, equation [12.18] can be formulated again based 
on relation [12.17] by: 

)()()()()( 111 twqPqAtuqA rr
−−− =   [12.19] 

Figure 12.4 sums up the principle of this structure with reference models [IRV 
86]. 

  

Figure 12.4. Principle of GPC/MRM algorithm 
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The cost function is henceforth a weighted sum affecting the squares of the 
output predicted errors and the squares of the future control error increments: 
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with: ε + ≡( ) 0u t j  for ≥ uj N  and: 
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Based on relations [12.16], [12.17] and [12.18], we notice that, on the one hand, 
the increments of control errors and, on the other hand, the output errors are linked 
by the relation: 

)()1()()()( 11 ttqBtqA uy ξεε +−= −−   [12.21] 

which corresponds exactly to the CARIMA structure [12.16], parameterized again in 
terms of signals pertaining to input/output errors. The entire theory previously 
developed in the case of the GPC “traditional” algorithm can be preserved by 
replacing in the minimization process y  by yε , ∆ u  by uε  and w by 0 (the system 
must indeed follow a zero error setting). From this moment on, the minimization of 
the quadratic criterion [12.20] reaches the optimal sequence: 

ε ε⎡ ⎤= − + −⎣ ⎦N if ih ( )  ( 1)opt y u optt tuε   [12.22] 

with: ε ε⎡ ⎤= + −⎣ ⎦
T

( ) ( 1) .opt u opt u u optt t Nuε  

Here again, only the first value of the sequence, equation [12.22], is applied to 
the system, according to the principle of sliding horizon: 

[ ])1( )( )( T
1 −+−= ttt optuyoptu εεε ihifn   [12.23] 

We infer from it the equivalent polynomial regulator of this restated problem in 
terms of error signals: 

)()()()( 11 tqRtqS yoptu εε −− −=   [12.24] 
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with: 
1 T 1 1 1

1

1 T 1 1
1

( ) (1   )                     degree ( ) degree ( )

( )                                      degree ( ) degree ( )
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− − − −

− − −
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The control applied to the system is inferred from the difference equation: 

− − −∆ = − +1 1 1( ) ( ) ( ) ( ) ( ) ( )rS q u t R q y t T q w t   [12.25] 

with, based on relations [12.17] and [12.19]: 
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This control law is based again on an RST structure, with the same polynomials 
)( 1−qR  and )( 1−qS  as those obtained through the traditional algorithm; only 

polynomial )(qT  is modified, becoming a causal rational fraction and explicitly 
considering the pursuit model chosen by the user. Furthermore, the calculation of the 
input/output closed loop makes it possible to verify that the resulting dynamics is 
defined by the pursuit model, which is not at all the case of the transfer function 
between the output and the interference. 

12.2.3.2. Cascade structure 

The cascade structure suggested makes it possible, in the case of a two-loop 
version, to simultaneously control two variables (for instance speed and position, for 
the regulation of the electro-mechanical systems). In the internal loop it includes a 
predictive structure with multiple reference models developed above, paired to a 
GPC traditional algorithm for the external loop, as indicated in Figure 12.5 

The synthesis of the regulator of the internal loop is considered according to the 
GPC/MRM strategy of the previous section, in such a way that the internal regulator 

2R , 2S  and 2T  is finally implemented by the following difference equation: 

− − −∆ = − +1 1 1
2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )S q u t R q y t T q w t   [12.27] 

The predictive model used for the synthesis of the external regulator consists of 
two terms: on the one hand the model corresponding to the asymptotical behavior of 
the closed internal loop and on the other hand the model issued from the external 
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system (defined by the polynomials )( 1
1

−qA  and )( 1
1

−qB ), according to the 
relation: 
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Figure 12.5. Predictive cascade structure 

In order to obtain this cascade structure [BOU 91], a GPC “traditional” algorithm 
is perfected, obtaining the external regulator as an equivalent RST polynomial form, 
this regulator is also implemented with the help of a second difference equation: 

− −∆ = − +1 1
1 2 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )S q w t R q y t T q w t   [12.29] 

The global implementation of this two-loop structure thus requires the 
programming of two difference equations, with weaker degree polynomials and 
therefore a short calculation time for the algorithm. The fact that this structure can 
be generalized to any number of loops proves that it is really adapted to the fast real-
time loops, like the single-loop structures considered previously. It is important to 
indicate that only a “single rhythm” cascade has been presented so far (i.e. with one 
and the same sampling period for the two loops). Other cascade predictive structures 
were developed, either “multi-rhythm” (different sampling periods between loops), 
or by using operator δ when over-sampling problems appear. The reader can refer to 
[BOU 95] and [BOU 96] for more details. 
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12.2.3.3. Recognition of equality type terminal constraints (CRHPC) 

A number of various physical problems require the recognition of constraints on 
the output signal as well as on the control. These constraints may be of “equality” 
type, when we try to impose precise values to the signals considered, or of 
“inequality” type, making it possible to define saturations or ranges of specific 
variations for a signal. The aim of this section is to examine the recognition of 
“equality” type constraints within the GPC algorithm. 

Imposing “equality” type constraints requires the minimization of the cost 
criterion GPC subjected to a set of m equality constraints in the future, called 
terminal constraints, defined by: 

+ + = +2 2ˆ( )  ( )  y t N j w t N for = 1,...,  j m   [12.30] 

where m is the number of points for which the predicted output ŷ  must coincide to 
the setting w after the higher prediction horizon 2N . This strategy was developed in 
a version called CRHPC (Constrained Receding Horizon Predictive Control) [CLA 
91]. 

Equation [12.30] may be transposed in the following matrix form: 

ccc fwuG −=~   [12.31] 
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( ) ( )[ ]T22  ,..., NtwNtw ++=cw  

( ) ( )[ ]T22  ,..., 1 mNtfNtf cc ++++=cf  

fc represents the free response of the system under constraint, defined similarly 
for the free response of the non-constraint system (equation [12.6]), by: 

)1( )(  −∆+= tuty  ihiff ccc   [12.32] 
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with: 
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The algorithm CRHPC consists of a GPC traditional algorithm related to the 
concept of terminal constraints. Based on the numerical model of the system 
(equation [12.1]), of the optimal predictor (equation [12.5]), of the quadratic 
criterion (equation [12.6]) and of the terminal constraints (equation [12.30]) and 
with the help of Lagrange multiplier factors, the optimal solution of the problem 
(equation [12.6]) under the constraints (equation [12.30]) is obtained in matrix form:  
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with: )(2 T
uNIGGH λ+=  

= − − ∆ −
= + ∆ −

c w if ih
b if ih
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   (  ( )  ( 1))

y t u t

y t u tc c
 

All the vectors and matrices defined above are made up of coefficients 
intervening in the j- interval predictors (equation [12.5]) for mNjN +≤≤ 21 . 

With an approach similar to the one adopted for the simple predictive structure, 
only the first value of the previous sequence is applied to the system, according to 
the principle of the sliding horizon: 

cnbm 11   )( TT +=∆ tuopt   [12.34] 

with: mT
1  first row of − − −H G G H G1 T 1 T 1 ( ( ) )c c c  

         nT
1  first row of − − − − −−H H G G H G G H G1 1 T 1 T 1 1 T[2 ( ( ) ) )]c c c c  
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Equation [12.34] corresponds to a linear corrector that can be written in an RST 
form, totally similar to the one obtained without constraint: 

)()()()()()( 11 twqTtyqRtuqS +−=∆ −−   [12.35] 

The three polynomials R, S, T take the following form: 
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We can find in this structure a basic part resulting from the algorithm without 
traditional constraint, with elements corresponding to the recognition of constraints. 

The fundamental advantage of this version under CRHPC constraints is to ensure 
the stability of the looped system for particular choices of adjustment parameters 
[LEV 93, NIC 93]: 
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The recognition of terminal constraints was developed here only in the context of 
a “traditional” structure of the GPC algorithm. This formalism can also be 
introduced in the single- or multi-rhythm cascade structures with operator δ … A 
unified version including the equality and inequality constraints was perfected, 
leading to the elaboration of GPC regulators by non-linear quadratic optimization. 
The reader can refer to [DUM 98]. 

12.3. Functional predictive control (FPC) 

 This second structure of predictive control is introduced here by indicating the 
big ideas of the method, starting with the form of the model, the quadratic criterion 
and up to the examination of adjustment parameters. The formalism and the 
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calculation necessary to the analytical minimization of the criterion will not be dealt 
with so that the presentation does not become too difficult. The reader may refer to 
[COM 94, RIC 87] for minimization details of a simple structure and [RIC 93] in the 
case of a cascade structure. 

12.3.1. Definition of numerical model 

 As in the case of GPC, there is no restriction for the form of the model, but the 
approach by state variable representation is preferred. The first versions of FPC used 
even a representation by convolution with the help of the coefficients of the discrete 
impulse response. 

 If we note by )(tu  and )(tsm  respectively the input and output of the model, this 
model is traditionally represented by the system of equations: 
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  [12.37] 

12.3.2. Choice of a reference trajectory 

The reference trajectory, initialized on the output of the process at instant t, 
specifies the way in which we want the process to relate to the setting on a given 
prediction horizon. All choices are possible but the easiest is to consider a first order 
dynamics for the variance between the setting and the reference trajectory. If we 
note by )(ts p  the output of the system and )(tw  the setting to be followed, this 
reference trajectory )(tsR  is then defined by the relation: 

[ ] [ ])()()()( tstwjtsjtw p
j

R −=+−+ α   [12.38] 

where 10 ≤≤ α  is a parameter that conditions the speed of the conformity desired: 
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T
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with eT  the sampling period and rT  the response time in closed loop. 
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12.3.3. Object-model difference  

FPC makes it possible to adjust the prediction of the process output obtained 
through the model, by taking into account the modeling and identification errors as 
well as possible interferences. Hence, we introduce a signal measuring the variance 
between the system and the model [SAN 94], called omd (object/model difference): 

)()()( tststomd mp −=   [12.40] 

Hence the aim is to provide a future prediction of this variance )(ˆ jtdom + , so 
that we have: 

)(ˆ)(ˆ)(ˆ jtdomjtsjts mp +++=+   [12.41] 

The “level” prediction that consists of considering: 

)()()()( tststomdjtomd mp −==+   [12.42] 

corresponds to a case of a 0 degree self-compensator capable of blocking a static 
variance. In general, the self-compensator is written: 
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where ed  is the degree of the extrapolator. 

12.3.4. Structure of the future control 

In an original way, compared to other predictive techniques, the future control is 
structured here in the form of a linear combination of preliminarily chosen functions, 
called “basic functions” and marked = { }, 1b k bu k n : 
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Hence, the calculation of the future control sequence requires the determination, 
at every instant t, of the unknown coefficients µ ={ }, 1k bk n . Furthermore, based 
on the strategy of sliding horizon, only the first value of the sequence is applied, 
which requires that the choice of basic functions must be done in such a way that at 
least one function verifies 0)0( ≠kbu . 

Traditionally, the basic functions are canonical functions (step function, ramp, 
parabola), which are chosen according to the type of the setting and the integrator 
character of the process. Table 12.1 provides the value of error psw −  in the case of 
a non-integrator system. 

 

Functions 
Input 

Step function Step function + 
ramp 

Step function + 
ramp + parabola 

Step function 0 0 0 

Ramp Cte ≠ 0 0 0 

Parabola ∞ Cte ≠ 0 0 

Table 12.1. Error psw −  for a non-integrator system 

12.3.5. Structure of the optimal predictor 

The predicted output )/( tjtsm +  is traditionally decomposed into a loose 
response and forced response: 

)()()/(ˆ   jtsjtstjts FmLmm +++=+   [12.45] 

with, taking into account the basic functions and the state model: 
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kbms    representing the forced response of the model at input kbu  . 
 



Predictive Control     393 

If an input/output polynomial structure is chosen, the optimal predictor will have 
a similar form to the one developed in the case of GPC equation [12.5] [DUM 92]. 

12.3.6. Definition of quadratic criterion, concept of match points 

The FPC control law is obtained by minimization of a quadratic criterion 
pertaining to the future errors with a weighting term on the control: 

λ
=

= + − + +∑ 2 2

1

ˆ[ ( ) ( )]   ( )
hn

p j R j
j

D s t h s t h u t   [12.47] 

Based on equations [12.41], [12.43] and [12.45], the criterion thus chosen 
minimizes the variance between the output of the predicted process and the 
reference trajectory in a certain number of points called match points: let jh  be 
these points and hn  their number. The approach followed during the minimization 
of the criterion, before reaching the future controls structured by relation [12.44], is 
summed up in Figure 12.6. 

 
As for the generalized predictive control, the minimization (not detailed here) of 

the preceding criterion leads to an equivalent polynomial regulator in RST form 
represented in Figure 12.3. 

  

Figure 12.6. Reference trajectory and match points 
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12.3.7. Adjustment parameters 

Based on the preceding theoretical developments, it appears that the 
implementation of a functional predictive control law involves the choice of the 
following parameters: 

– rT : desired response time. This parameter is used to indicate the sampling 
time if necessary. It also intervenes in the definition of coefficient α of the reference 
trajectory; 

– bn  and kbu ,t : the number of basic functions and their nature. These parameters 
are set as soon as the nature of the setting signal and the integrator type of the 
process are known; 

– hn  and jh : the number of match points and their place. The mathematical 
resolution requires a number of equations more than or equal to the number of 
unknown factors; traditionally, we choose bh nn =  and the match points are placed 
within the prediction horizon, which is limited by the response time desired. The 
more a point will be placed at the beginning of the horizon, the faster the system will 
most probably be; 

– λ : weighting coefficient on the control. This parameter is related to the gain of 
the system have through a relation similar to the one defined in GPC. 

The choice of parameters proves to have, in the single-variable case, a 
complexity equal to that observed in the case of a generalized predictive control 
structure, as only the match points (often restricted to one) and the weighting 
coefficient on the control are to be fixed, equivalent to horizon 2N  and to 
coefficient λ  of GPC. 

12.4. Conclusion 

 Predictive methods considered in the preceding sections showed the simplicity 
of their design and implementation because they are always translated, irrespective 
of the versions considered (simple or cascade), outside inequality constraints, by the 
real-time programming of several difference equations, which are generated from 
the RST polynomial structure of the equivalent regulator. This fundamental 
characteristic implies very fast real-time loops (since the polynomials are actually of 
low degrees, very few online operations prove to be necessary) because all the 
calculation of the synthesis phase are made off loop as soon as the adjustment 
parameters are chosen. This control structure is indicated for applications for which 
the specifications in terms of sampling period are more and more severe (high speed 
machining in machine tools, for example). 



Predictive Control     395 

Parallel to this simple implementation, predictive techniques make it possible to 
satisfy the very strict specifications, in terms of stability, speed and precision (static 
or dynamic) but also in terms of robustness, with respect to interferences or 
neglected dynamics. This level of performance, that “traditional” controls cannot 
achieve is, however, very complex in terms of the choice of adjustment parameters, 
not only by a higher number, but also due to a stronger interaction between these 
parameters. This is why it appears more and more necessary to design, apart from 
the traditional synthesis of the regulator, a support module with adjustment 
parameters, which will make the implementation as transparent as possible for the 
user who is not always a specialist in advanced control laws. The design of a support 
module is more and more conceivable starting with traditional tools of Automation 
for the study and analysis of stability and robustness. 

All the advantages listed above – simplicity, performance, etc. – ensure that 
these predictive techniques are implemented in various industrial applications, in 
very different fields, but preferably when the trajectory to be followed in the future 
is already known, in a way to profit entirely from the anticipative aspect of this 
control law. 

Hence, a privileged field of predictive control is robotics and machine-tool, for 
which the elaborated versions (single or multi-rhythm cascades, with operator 
δ under constraints, etc.) make it possible to deal with sampling periods that can be 
very strict, to cover a very large range of problems that are already known and to 
slightly improve the outcomes that have been accessible so far [BOU 87, RIC 87]. 
however, these techniques were also implemented on slow processes, as the thermal 
systems [CLA 88], the problems of monitoring the temperature of buildings [DUM 
98], or the food industry [DUM 98]. 

Finally, it should be noted that all these structures developed in the context of 
single-variable systems can be generalized to multi-variable systems without any 
particular theoretical difficulty [BOU 96]. The influence of adjustment parameters 
becomes, however, more complex since the scalar study of the stability and 
robustness require the use of the techniques obtained from the µ-analysis with the 
concept of structured and non-structured uncertainties [BOU 99, MOH 92]. One of 
the multi-variable applications of GPC pertains, for example, to the torque-flow 
control of asynchronous machines for which couplings are very important and the 
operation is non-linear. 

The performances of predictive laws also open the possibility of implementing 
these techniques to adaptive structures, which make it possible to maintain an 
“optimal” behavior when the system presents parametrical drifts in time. The 
perspectives in this field prove to be very interesting because the principles of direct 
predictive adaptive control laws (for which the parameters of the regulator, 
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presented in RST polynomial form, are updated directly in real-time and in a single 
step) are added to indirect adaptive predictive versions henceforth traditional. These 
methods do not impose the real-time calculation of the predictors required for the 
creation of the regulator and leave the hope of a gain in time for the significant 
calculation.  
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Chapter 13 

Methodology of the State Approach Control  

 Designing the “autopilot” of a multivariable process, be it quasi-linear, 
represents a delicate thing. If the theoretical and algorithmic tools concerning the 
analysis and control of multivariable linear systems have largely progressed during 
the last 40 years, designing a control law is left to the specialist. The best engineer 
still has difficulties in applying his knowledge related to multivariable control 
acquired during his automation course. It is not a mater here to question the interest 
and importance of automation in the curriculum of an engineer but to stress the 
importance of “methodology”. The teaching of a “control methodology”, coherently 
reuniting the various fundamental automation concepts, is the sine qua non 
condition of a fertile transfer of knowledge from laboratories toward industry.  

The methodological challenge has been underestimated for a long time. How 
else can we explain the little research effort in this field? It is, however, important to 
underline among others (and in France) the efforts of de Larminat [LAR 93], 
Bourlès [BOU 92], Duke [DUC 99], Bergeon [PRE 95] or Magni [MAG 87] 
pertaining to multivariable control methodology. 

This chapter deals with a state-based control methodology which is largely 
inspired by the “standard state control” suggested by de Larminat [LAR 00]. 

                                   
Chapter written by Philippe CHEVREL.  
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13.1. Introduction 

Controlling a process means using the methods available for it in order to adjust 
its behavior to what is needed. The control applied in time uses information 
(provided by the sensors) concerning the state of the process to react to any 
unforeseen evolution. Designing even a little sophisticated control law requires the 
data of a behavior model of the process but also relevant information on its 
environment. Which types of disturbances are likely to move the trajectory of the 
process away from the desired trajectory and which is the information available a 
priori on the desired trajectory? 

 
Finally, a method of designing control laws must make it possible to arbitrate 

among various requirements: 

– dynamic performances (which must be even better when the transitional 
variances between the magnitudes to be controlled and the related settings are 
weak); 

– static performances (which must be even better when the established variances 
between the magnitudes to be controlled and the related settings are weak); 

– weak stress on the control, low sensitivity to measurement noises (to prevent a 
premature wear and the saturation of the actuators, but to also limit the necessary 
energy and thus the associated cost); 

– robustness (qualitatively invariant preceding properties despite the model 
errors). 

Although this last requirement is not intrinsic (it depends on the model retained 
for the design), it deserves nevertheless to be discussed. It translates the following 
important fact. Since the control law is inferred from models whose validity is 
limited (certain parameters are not well known, idealization by preoccupation with 
simplicity), it will have to be robust in the sense that the good properties of control 
(in term of performances and stress on the control) apply to the process as well as to 
the model and this despite behavior variations.  

This need for arbitrating between various control requirements leads to two 
types of reflection.  

It is utopian to suppose that detailed specifications of these requirements can be 
formalized independently of the design approach of the control law. In practice, the 
designer is very often unaware of what he can expect of the process and an efficient 
control methodology will have as a primary role to help him become aware of the 
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attainable limits. The problem of robustness can also be considered in two ways1. In 
the first instance, modeling uncertainties are assumed to be quantified in the worst 
case and we seek to directly obtain a regulator guaranteeing the expected 
performances despite these uncertainties. At their origin, the H∞ control [FRA 87] 
and the µ-synthesis [DOY 82, SAF 82, ZHO 96] pursued this goal. A more realistic 
version consists of preferring a two-time approach alternating the synthesis of a 
corrector and the analysis of the properties which it provides to the controlled 
system. Hence, the methodology presented in this chapter will define a limited 
number of adjustment parameters with decoupled effects, so as to efficiently 
manage the various control compromises. 

How can the various control compromises be better negotiated than by defining a 
criterion formalizing the satisfaction degree of the control considered? The 
compromise would be obtained by optimizing this criterion after weighting each 
requirement. Weightings would then play the part of adjustment parameters. A priori 
very tempting, this approach faces the difficulties of optimizing the control 
objectives and the risks of an excess of weightings which may make the approach 
vain. It is important in this case to define a standard construction procedure of the 
criterion based on meta-parameters from which the weightings will be obtained. 
These meta-parameters will be the adjustment parameters.  

The methodology proposed here falls under the previously defined principles, i.e. 
it proceeds by minimization of the judiciously selected standard of functional 
calculus. When we think of optimal control, we initially think2 of control 2H  or 

∞H . We will prefer working in Hardy’s space 2H  (see section 13.2) for the 
following reasons: 

– the criterion, expressed by means of 2H  standard ( 2H  is a Hilbert space), can 
break up as the sum of elementary criteria; 

– control 2H  has a very fertile reinterpretation in terms of LQG control which 
was the subject of many research works in the past whose results can be used with 
benefit (robustness of LQ control, principle of separation, etc.); 

– the principle of the “worst case” inherent to control ∞H  is not necessarily best 
adapted to the principle of arbitration between various requirements. In addition, and 
even if the algorithmic tools for the resolution of the problem of standard ∞H  
optimization operates in the state space, the philosophy of the ∞H  approach is 
based more on an “input-output” principle than on the concept of state. 

 
 

                                   
1 In [CHE 93] we used to talk of direct methods versus iterative methods. 
2 For linear stationary systems. 
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 In fact, the biggest difficulty is not in the choice of the standard used  (working 
in ∞H  would be possible) but in the definition of the functional calculus to 
minimize. This functional calculus must standardize the various control 
requirements and be possible to parameterize based on a reduced number of 
coefficients. In the context of controls 2H  or ∞H , it is obtained from the 
construction of a standard control model. This model includes not only the model of 
the process but also information on its environment (type and direction of input of 
disturbances, type of settings) and on the control objectives (magnitudes to be 
controlled, weightings). The principle of its construction is the essence of the 
methodology presented in this chapter. The resolution of the optimization problem 
finally obtained requires to remove certain generally allowed assumptions within the 
framework of the optimization problem of standard 2H . 

In short, the methodological principles which underline the developments of this 
chapter are as follows: 

– to concentrate on an optimization problem so as to arbitrate between the 
various control requirements; 

– to privilege an iterative approach alternating the design of a corrector starting 
from the adjustment of a reduced number of parameters up to the decoupled effects 
and the analysis of the controlled system; 

– to express the control law based on intermediate variables having an identified 
physical direction and thus to privilege the state approach and the application of the 
separation principle in its development. The control will be obtained from the 
instantaneous state of the process and its environment. 

This chapter is organized as follows. Section 13.2 presents the significant 
theoretical results relative to the 2H  control and optimization  and carries out 
certain preliminary methodological choices. The minimal information necessary to 
develop a competitive control law is listed in section 13.3 before being used in 
section 13.4 for the construction of the standard control model. The methodological 
approach is summarized in this same section and precedes the conclusion. 

13.2. H2 control 

The traditional results pertaining to the design of regulators by 2H  optimization 
and certain extensions are given in this chapter. Its aim is not to be exhaustive but to 
introduce all the notions and concepts which will be useful to understand the 
methodology suggested later on. 
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13.2.1. Standards 

13.2.1.1. Signal standard 

Let us consider the space nL2  of the square integrable signals on [ [∞,0 , with 
value in nR . We can define in this space (which is a Hilbert space) the scalar 
product and the standard3 defined below: 

+∞ +∞⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∫ ∫
1

2

2
0 0

, ( ) ( ) , ( ) ( )T Tx y x t y t dt x x t x t dt   [13.1] 

The Laplace transform TL() makes the Hardy space nH2  of analytical functions 
)(sX  in 0)( ≥sRe  and of integrable square correspond to nL2 . Parseval’s theorem 

makes it possible to connect the standard of a temporal signal of nL2  to the standard 
of its Laplace transform in nH2 :  

ω ω ω
π

+∞

−∞

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∫
1

2

*
2 2

1
( ( ) ( ))

2
x X Graph X j X j d  [13.2] 

13.2.1.2. Standard induced on the systems 

 Let us consider the multivariable system defined by the proper and stable 
(rational) transfer matrix ( )G s or alternatively by its impulse response 

−⋅ = ⋅1( ) TL ( )g . 

yu G(s)
 

                                   
3 Standard whose physical importance in terms of energy is obvious. 
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The “H2 standard” of the input-output operator associated with this system is 
defined, when it exists, by: 

ω ω ω
π

+∞

−∞

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫
1

2

*
2

1
( ( ) ( ))

2
G Graph G j G j d  [13.3] 

Let us note that mRtu ∈)(  and pRty ∈)(  respectively the input and output of the 
system at moment t. Let )(tRuu , )(tRyy  be the autocorrelation matrices and 

)( ωjSuu , )( ωjSyy  the associated spectral density matrices. We recall that these 
matrices are defined as follows. For a given u  signal we have: 

τ τ
→+∞

−

= +∫
1

( ) lim ( ) ( )
2

T
T

uu
T

T

R u t u t dt
T

. For a centered random u  signal, whose 

certain stochastic characteristics (in particular its 2 order momentum) are known, 
)(⋅uuR  could be also defined by the equality: )]()([)( tutuER T

uu τ+=τ . The two 
definitions are reunited in the case of a random signal having stationarity and 
ergodicity properties [PIC 77]. In addition we have the relation: 

ττ=ω ωτ
+∞

∞−
∫ deRjS j

uuuu )()( . These notations enable us to give various 

interpretations to the 2H  standard of G . The results of Table 13.1 are easily 
obtained from Parseval’s equality or the theorem of interferences [PIC 77, ROU 92]. 
They make it possible to conclude that 2G  is also the energy of the output signal 

in response to a Dirac impulse or that it characterizes the capacity of the system to 
transmit a white noise4. These interpretations will be important further on. 

 

                                   
4. Characterized by a unitary spectral density matrix. 
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Characteristic of the input signal 2G Significance 

)()( tItu mδ=  222 gyG ==  
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( ) ( )uu m

u
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R t I t
 

ω ω
∞

−∞
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= ∫

2 2
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( )  ( (0))

( ( )) 

yy

yy

G E y t graph R
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Table 13.1. Several interpretations of ||G||2 

13.2.1.3. The grammians’ role in the calculation of the 2H  standard 

 Let us consider the quadruplet ppnpmnnn RDRCRBRA ×××× ∈∈∈∈ ,,,  such 
that: 

−= − +1( ) ( )G s C sI A B D  [13.4] 

 In other words, the state ( ) nRtx ∈  of the system Σ  evolves according to: 

0
( ) ( )

with: (0)
( ) ( )

x t A B x t
x x

y t C D u t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 [13.5] 

The partial grammians associated with this system are defined by: 

τ τ

τ τ

τ
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=

∫

∫
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0
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T

T

t
A T A

c
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A T A
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t e BB e d

t e C Ce d

G

G

  [13.6] 

Table 13.2 presents the results emerging from these definitions. 
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Input signal characteristic Significance of grammians 

δ=( ) ( )mu t I t , 00 =x  
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Table 13.2. Several interpretations of grammians 

)(tcG  and )(toG  are respectively called partial grammians of controllability and 

observability. In fact, −1[ ( )]c tG  is directly connected to the minimal “control 
energy” necessary to transfer the system from state 0)0( =x  to state 1)( xtx =  

[KWA 72]. Basically, ττ − −= 1( ) 1
1 1( ) [ ( )]

TA tT
cu B e t xG 10 tτ <≤  is the minimal energy 

control [ ] ⎟
⎠
⎞

⎜
⎝
⎛ =ττ −∫ 1

1
1

0
)()()( xtxuu c

T
t

T G  that changes the state )(⋅x from 00 =x  to 0=t  to 

1x  to 1tt = . 
  
There are also the following equivalences: 

– ),( BA  is controllable 0)( >>∀⇔ tcG0,t ; 

– ),( AC  is observable 0)( >>∀⇔ toG0,t . 

It is shown without difficulty that )(tcG  and )(toG  are solutions of Lyapunov 
differential equations: 

= + +( ) ( ) ( ) T TG t A t t A BB
c c c

G G  =(0) 0cG  

 = + +( ) ( ) ( )T TG t A t t A C C
o o o

G G  =(0) 0oG   [13.7] 

The partial grammians can be effectively calculated by integrating this system of 
first order differential equations (see section 13.6.1). 



Methodology of the State Approach Control     407 

The “total” grammians (this qualifier is generally omitted) result from the partial 
grammians by: )(lim Tc

T
c GG

+∞→
=  and )(lim To

T
o GG

+∞→
= . Their existence results 

from the stability of the system. They are the solution of Lyapunov algebraic 
equations obtained by canceling the derivatives )(tcG  and )(toG : 

0=++ TT
cc BBAA GG  and 0=++ CCAA T

oo
T GG . 

The following important property is therefore inferred. Let ( )sG  be the transfer 

matrix defined by the presumed minimal realization ⎟
⎠
⎞

⎜
⎝
⎛

=
0

:)(
C

BA
sG .  

Then:  

( ) = =G G
2

2
( ) ( )T T

o cG s Graph B B Graph C C  [13.8] 

Numerically, standard 2H  of ( )G s  could be obtained by resolution of an 
Lyapunov algebraic equation obtained from the state matrices CBA ,, . Let us note 

that matrix ( )G s  must be strictly proper for the existence of 2
( )G s . 

A last interesting interpretation of standard 2H  of ⎟
⎠

⎞
⎜
⎝

⎛
=

0
:)(

C

BA
sG  is as follows. 

Let mBBB ••• ,, 21  be the columns of B . Let Liy  be the free response of the 
system on the basis of the initial condition ii Bx •=0 . It is verified then that the 
following identity is true: 

= + +L2 2 2 2
1 22 2 2 2

( ) L L LmG s y y y  [13.9] 

Thus, standard 2H  gives, for a system whose state vector consists of internal 
variables easy to interpret, an energy indication on its free response for a set of 
initial conditions contained in )Im(B . 

13.2.2. H2 optimization 

13.2.2.1. Definition of the standard H2 problem [DOY 89] 

Any closed loop control can be formulated in the standard form of Figure 13.1. 
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Figure 13.1. Standard feedback diagram 

The quadripole G , also called a standard model, and feedback K  are supposed 
to be defined as follows, by using the transfer matrices ( )G s  and ( )K s  and their 
realization in the state space: 
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−= + − 1( ) ( )K K K KK s D C sI A B  [13.10] 

NOTE 13.1.– the size of each matrix results from the size of the various signals: 
2121 ,,,, ppnmm RyRzRxRuRw ∈∈∈∈∈ . 

The closed loop system of input w and output z, noted by zwT , is obtained: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )sGsKsGIsKsGsGsKsGFsT l 21221211zw
1, −∆

−+==  
−= + − 1( )bf bf bf bfD C sI A B   [13.11] 
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It has the property of internal stability if and only if the eigenvalues of bfA  are 
all of negative real part. 
 

The standard 2H  optimization problem is generally referred to as a problem 
consisting of finding 

2HK  which ensures:  

– the inner stability of the closed loop system = ( , )lF
2zw HT G K ; 

– the minimality of the criterion =
2 2
( )H zwJ T

2HK . 

13.2.2.2. Resolution of the H2 standard optimization problem  

The solution of the problem above is well-known [ZHO 96]. To begin with, let 
us distinguish two elementary cases before presenting the general case. 

The “state feedback” (SF) case: it is the case where xy = . All the state 
components of the standard model are accessible for feedback. 

The “output injection” (OI) case: it is the case where the feedback can act 
independently on each component of the evolution equation. This case occurs during 
the design of an observer. 

In these two cases, there are the following particular standard models: 

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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2 21
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I C D

 [13.12] 
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The optimum of the 2H  criterion, in the case of the state feedback, has the 
characteristic that it can be obtained by a static feedback: 

−= = − +1
12 12 2 12 1( ) ( ) ( )T T T

E KK s D D D B P D C
H2R  [13.13] 

with: 

≥⎧
⎪
⎨ −+ − + + + =⎪⎩

0 (P positive semi-defined)

1( )( ) ( ) 0
2 1 12 12 12 2 12 1 1 1

P

T T T T T TA P PA PB C D D D B P D C C C
  

The optimal state feedback thus results from the resolution of this latter second 
order matrix equation, named the Riccati equation, which is, for the closed loop 
system, the Lyapunov equation:  

+ + + + + + =2 2 1 12 1 12( ) ( ) ( ) ( ) 0T T
E E E EA B K P P A B K C D K C D K
H H H H2 2 2 2R R R R  

P is thus the observability grammian of the looped system and it is deduced with 

the optimum: 
22

1 12 2
( , ) ( )T

zw l E ET F G K graph B PB= =
H2R R . For the sake of 

completeness, it is necessary to specify the existence hypotheses of a solution to this 
problem: 

– pair ( )2, BA  must be stabilizable in order to enable the stability of the looped 
system. Let us note, however, that if the inner stability of the looped system is not 
required, the hypothesis according to which the non-stabilizable modes by u are all 
non-controllable by w or unobservable by z is enough. Gain 

2HREK  can then be 

determined from the state representation reduced to the only stabilizable states as we 
will see further on; 

– 011 =D  is a condition which generically ensures the strict propriety of zwT  and 
thus the existence of its 2H  standard; 

– 12D  must be of full rank (per columns) to ensure the reversibility of 1212 DD T  

in the Riccati equation. Similarly, the zero invariants of ⎟
⎠
⎞

⎜
⎝
⎛

=
121

2
12 :)(

DC

BA
sG  must 

not be on the imaginary axis. 
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The 2H  solution, which is optimal in the case of output injection, is obtained 
directly from what precedes by application from the duality principle (see section 
13.6.2). Under the dual assumptions of those stated previously, we obtain: 

1
21212112 )()()( −+Σ−== DDDBCDsK TTT

KIS 2H  [13.14] 

with: 
1

2 1 21 21 21 2 21 1 1 1

0 (  positive semi-defined)

( )( ) ( ) 0T T T T T TA A C B D D D C D B B B

Σ Σ

Σ Σ Σ Σ−

⎧ ≥
⎪
⎨
⎪

+ − + + + =⎩

  

At optimum, = = Σ
2 2

( , ) ( )
1 122

TT F G K Graph C C
zw l IS

. The existence hypotheses 

of a solution to this problem are themselves dual of those of problem (RE). 

The 2H  solution – which is optimal in the general case, is this time a dynamic 
system of the same size as the standard model. It is obtained from the two preceding 
elementary cases by applying the separation principle [AND 89]: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+++
= 0: 2222

2H

2H2H2H2H2H

2H RE

ISREISISRE
K

KKDKCKKBA
sK  [13.15] 

Moreover: 

( ) ( ) ( )( ) ( )( ) ( )( )2 222
2 2 2 2

, , ,zw l l E E l IS IST s F G s K s F G s K F G s K= = +
2 H H2 2H R R  

Let us sum up the existence conditions of this solution to the standard H2 
problem ( )2, BA  stabilizable and )( ,2 AC detectable. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∈∀

121

2,
DC
BIjA

R
ω

ω  and 12D  are of full rank per column. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∈∀

212

1,
DC
BIjA

R
ω

ω  and 21D  are of full rank per row. These hypotheses 

are easily understood if it is known that at optimum, the poles of )(sTzw  tend toward 
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the zeros of transmission of )(12 sG  and )(21 sG . In addition, the remaining invariant 
zero are non-controllable modes by 1B  or non-detectable modes by 1C  which 
would be preserved in closed loop. Hence, the absence of infinite zeros or on the 
imaginary axis is imposed.  

011 =D . 

13.2.3. H2 – LQG  

Various interpretations of the 2H standard provided in the preceding section 
enable us to establish the link with Kalman theory and LQG control (see Chapter 6). 
If w is a centered, stationary, unit spectrum white noise, and if the standard model is 
that in Figure 13.2 [STE 87], we obtain: 

( ) ( ) ( ) ( )
( )

22
2

0 0

1 1lim lim
T T

cT T
zw LQGTT T c

Q N x t
T E z t dt E x t u t dt J

u tT T N R→∞ →∞

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦
∫ ∫

( )
( ) ( ) ( ) ( )

fTx
x y Ty f

V Nw t
and E w w t

w t N W
τ τ δ τ

⎡ ⎤⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤ ⎢ ⎥= −⎢ ⎥⎨ ⎬⎣ ⎦ ⎢ ⎥⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭ ⎣ ⎦

 [13.16] 

The two elementary cases previously discussed in relation to 2H  correspond to 
the case of LQ control and the design of the Kalman filter. We have

2HRELQ KK −=  

and the control law by state feedback xKu LQ−=  minimizes 

→∞

⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
∫
0

1
lim

( )
( ) ( )

( )

T
cT T

LQ TT cT

Q N x t
J x t u t dt

u tN R
. In addition, for 

2HISFK KL = , 

the observer ( )xCyLuBxAx FK ˆˆˆ 22 −++=  is precisely the Kalman filter minimizing 

− 2
1 ˆ( ( ) )E C x x  under the hypotheses of evolution noise xw  and measurement 

noise yw  previously defined. 
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Figure 13.2. Standard form for LQG control 

 

Figure 13.3. LQG structure (state feedback/observer) 

The resulting control law illustrated in Figure 13.3 has the structure of the state 
feedback/observer: 

−

= −⎧⎪
⎨

= − + + −⎪⎩

= − − − +

2 2 2

1
2 2

ˆ

ˆ ˆ ˆ( ) ( )

( ) ( )

LQ

FK FK

LQ LQ FK FK

u K x

x A L C x B u L y C x

K s K sI A B K K C K
2H

 [13.17] 
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Finally, the equivalence between the standard 2H  problem and LQG problem is 

obtained for: ,  ,  ,  ,   , 212111121121211
TTT

c
TT DDWBBVDCNDDRCCQ =====  

T
f DBN 211= . 

 
However, for 2H , matrices c WVNRQ ,,,,  and fNt can be officially considered 

weighting matrices. In order to be able to wisely choose these weightings, the 
designer must make use of methodological rules like the ones suggested in section 
13.4. 

13.2.4. H2 – LTR 

According to what was said above, the plethoric works (see [CHE 93] and the 
references included) on the LQ control, LQ with frequency weightings and LQG can 
be useful in the context of 2H  control. This is true in particular for the results 
relating to robustness.  

It has been known for a long time that the LQ control gives to the looped system 
enviable properties of robustness (see Chapter 6 and [SAF 77]) The exteriority of 
the Nyquist place with respect to the Kalman circle guarantees good gain and phase 
margins, as well as good robustness with respect to static non-linearities (criterion of 
the circle [SAF 80]) and a certain type of dynamic uncertainties5. These properties 
are obtained at the beginning of the process. 

  

Figure 13.4. Analysis of robustness of the LQG control 

                                   
5 1)())()(()( −−=∆ sLsLsLs uupu  relative uncertainty on the input loop transfer if uL  and 

puL  represent the nominal and disturbed loop transfers. 
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The robustness properties of the LQ control (or of REH2  regulator) can be lost 
in the general case, i.e. when the state of the system is inaccessible. The addition of 
an observer, be it the Kalman observer, in fact modifies the loop transfer 

2
1)()( BAsIKsL LQuLQ

−−=  obtained in the case of state feedback. As an example 
we will verify that )(sL

LQu  is also the loop transfer of control LQG if we open the 
loop of Figure 13.4 at point . Unfortunately, the need for robustness is felt at point 

 and not at point  (uncertainties due to the actuators). The LTR technique (Loop 
Transfer Recovery according to the Anglo-Saxon terminology [STE 87, MAC 89]) 
consists of choosing for problem LQGH /2 , a particular set of weightings, allowing 
the restoration of the loop transfer )(sL

LQu  in point  this time. In the diagram of 
Figure 13.5 it appears obvious that this will be at least closely obtained on the only 
condition that the transfer matrix 2

1
2 )( BCLAsIK FKLQ

−+−  is small in terms of a 
certain standard. This will be the case for the following particular choice of 
weightings (for the Kalman filter):  

0,0,0, 222121 →→=⇔→= f
T NWBBVDBB  

This result is formalized by the following proposition. 

Proposition (primal LTR) 

⇒→= 0, 2121 DBB FKL  minimizes ( )
2

2
1

2 BCLAsIK FKLQ
−+− . 

 
Moreover, if the process is at phase minimum and reversible on the left 
( ) 0

2
2

1
2 →+− − BCLAsIK FKLQ  and the robustness of LQ 6 [AND 89], [SAF 80] 

is recovered for regulator LQGH −2  at the beginning of the process (at point ). 

NOTE 13.2.– the demonstration of this result, omitted for lack of space, uses the 
separation principle presented in section 13.2.2. 

We obtain by duality the following proposition. 

Proposition (dual LTR) 

⇒→= 0, 1221 DCC LQK  minimizes ( )
2

1
22 FKLQ LKBAsIC −+− . 

                                   

6 1))(()( −+= sLIsS
LQuu  satisfies the equality 1#

1212 =
∞

DSD u , if 0121 =DC T . Note: 

#
12D  represents the reverse on the left of 12D : TT DDDD 12

1
1212

#
12 )( −∆

= . 
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If moreover the process is at phase minimum and reversible on the right 
( ) 0

2
1

22 →+− −
FKLQ LKBAsIC  and the robustness7 is recovered for regulator 

LQGH −2  at the end of the process (at point ). 

Hence, the dual LTR makes it possible to obtain good robustness margins with 
respect to uncertainties at the output of the system resulting in particular from 
sensors. 

Let us note that “input robustness” and “output robustness” are not necessarily 
antagonistic and that in the majority of the encountered practical cases, these 
properties converge. It is at least the bet of the standard state control presented in 
[LAR 00]. 

 

Figure 13.5. Equivalent LQG diagram 

13.2.5. Generalization of the H2 standard problem  
 

The required (and commonly approved) hypotheses in the formulation of the 
standard 2H  problem are too restrictive to be able to rigorously solve the majority 
of control problems, at least by adopting the methodology recommended in this 
chapter. If the hypothesis “ 12D  and 21D  of full rank” can be made less strict by 
preferring a resolution of the problem based on the latest developments regarding 
the optimization by positive semi-definite programming8 [GAH 94, IWA 91], the 
internal stability of the relooped standard model ),( KGFl  always appears as a 
constraint. As underlined in [CHE 93], this is restrictive in the context of the design 

                                   
7 That of the Kalman filter this time. 
8 The problem is formulated as an optimization problem under the constraint of Linked 
Matrix Inequalities (LMI). The numerical tools related to this type of optimization are from 
then on entirely competitive.  
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of a regulator because the constraint should only relate to the internal stability of the 
process and not of the standard model which potentially includes dynamic 
weightings. For this reason, we consider it useful to present a generalized version of 
the standard problem for its use in the context of the methodology of the control 
suggested further on. 

 

Figure 13.6. Toward defining the 2H  generalized problem 

The generalized 2H  problem  can be formalized as follows. Let us consider the 

looped system in Figure 13.6 with 1mRw∈ , 2mRu∈ , nRx∈ , 1pRz ∈ , 2pRy∈ . 
A realization in the state space of the standard model )(sG  can be directly deduced 

from those presumed minimal of )(sWe , )(0 sG  and )(sWs : 

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

0 0 0
1 2

0 0 0
0 1 11 12

0 0
2 21

( ) : ( ) : ( ) :

0

e e s s

e e s s

W W W W
e s

W W W W

A B B
A B A B

G s C D D W s W s
C D C D

C D

 

⇓  

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0
1 1 2

1 2
0 0 0 0
11 1 11 12 1 11 12

0 0 0 0 2 21 2211 1 11 12

0 0 0
21 2 21

0 0 0

0

( ) : :

0 0

e e

e e

s e s s s e s

s e s s s e s

e e

W W

W W

W W W W W W W

W W W W W W W

W W

A B

B C A B D B
A B B

B D C B C A B D D B DG s C D D

C D DD D C D C C D D D D D

D C C D D

  

 [13.19] 
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We will assume 00
1111 ==

es WW DDDD . By construction, the modes of )(sWs  
are unobservable by y, whereas the modes of )(sWe  are non-controllable by u. If 
these modes are unstable, the standard model )(sG  is non-stabilizable by u and non-
detectable by y. The standard 2H  problem cannot be solved (we are outside its 
context of hypothesis). 

DEFINITION OF THE 2H  OPTIMIZATION PROBLEM GENERALIZED.– it is 
a question of finding 

2HK  which ensures: 

– the inner stability of the looped process 0 0 2

0( )l Hz w
T F G ,K= ; 

– the minimality of the criterion 
2

)(
22 zwHH TKJ = . 

LEMMA 13.1.– the existence of a solution to the problem above requires the 
hypotheses (H0) to (H3) below.  

H0. The poles )(sWe  and )(sWs  are of non-negative real part. If this were not the 
case, it would be enough to incorporate the stable parts of )(sWe  and )(sWs  into 
the model )(0 sG . 

H1. The pairs ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
0
12

0
2

0
1

0
,

0
DB

B
ACB

A

sss WWW
 and 

0 0
0 021 2
1

0
[ ], e

e
e

W
W

W

A
D C C

B C A
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

are 

respectively stabilizable and detectable. If these hypotheses were not satisfied but if 
),,( 0

2
00

2 BAC is stabilizable and detectable, we will reduce beforehand the standard 
model  (see [FRA 77]) so that it satisfies (H1). 

H2. 12D  (respectively 21D ) is of full rank per column (resp. per row). 

H3. The realizations of ( )sG12  and ( )sG21 , obtained from equation [13.19], have 
no other invariant zeros on the imaginary axis that belong respectively to the 
spectra of 

eWA and 
sWA . Precisely: 

H3.1 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

0
12

0
1

0
12

0
1

0
2

0 0

DDCCD

DBACB
BIjA

sss

sss

WWW

WWW

ω

 is of full rank per columns R∈∀ω  
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H3.2 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

ee

ee

ee

WW

WW

WW

DDCCD

DBACB

BIjA

0
21

0
2

0
21

0
1

00
1

0ω

 is of full rank per rows R∈∀ω  

H4. 011 =D . 

THEOREM 13.1 (SOLUTION TO THE GENERALIZED 2H  PROBLEM).– under 
the hypotheses (H0) to (H3) of lemma 13.1, we can show that the generalized 2H  
problem admits a solution if and only if: 

0)())((/0 111122
1

12121212 =+++−+≥∃ − CCCDPBDDDCPBPAPAP TTTTTT  

0)())((/0 111212
1

21212112 =++Σ+Σ−Σ+Σ≥Σ∃ − TTTTTT BBBDCDDDBCAA  

Hence −= − +1( ) ( )
12 12 2 12 1
T T TK D D B P D C  

and = − Σ +( )
2 1 21

TL C B D −1( ) 1
21 21
TD D .  

It is shown that: 

– the only unstable modes KBA 2+ are the unstable modes of 
eWA ; 

– the only unstable modes 2LCA + are the unstable modes of 
sWA ; 

– the optimal regulator has the same size as the standard model and is given by: 

⎟
⎠

⎞
⎜
⎝

⎛ ++
=

0
:)( 22

K

LLCKBA
sK

2gH  

Note that the separation principle continues to apply. 

We can also show the following original result which establishes the link with 
the well-known Regulation Problem with Internal Stability (RPIS) introduced by 
Wonham [WON 85]. 
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THEOREM 13.2 (HIDDEN EQUATIONS).– under the same hypotheses as 
previously, properties 1 and 2 are equivalent as well as properties 3 and 4. 

 −∃ ≥ + − + + + =1
2 1 12 12 12 2 12 1 1 10 / ( )( ) ( ) 0T T T T T TP A P PA PB C D D D B P D C C C   

( )

0 0 0
2 1

0 0
1 12

0 0 0
1 12 11

0
0

, / 0

( ) 0

e
e

s s s

s s s s e

W
a W a a

W W Wa a

W W a W a W W

A B B C
T A T K

B C A B DT K

D C C T D D K D D C

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − + =⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟∃ ⎨ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎪

+ − =⎪⎩

 

1
2 1 21 21 21 2 21 1 1 10 / ( )( ) ( ) 0T T T T T TA A C B D D D C D B B B−∃Σ ≥ Σ + Σ − Σ + Σ + + =  

( )

0 0 0
21 2 10 0

1

0 0
21 110

1

0
( ) (0 ) 0

, /

0

e

s e s
e

e

e s e
e

W
W a a a W W

W
a a

W
a a W W W

W

A
A S S L D C C B C

B C A
S L

B
S L D D B D D

B D

⎧ ⎛ ⎞
⎪ ⎜ ⎟− − + =

⎜ ⎟⎪
⎪ ⎝ ⎠∃ ⎨

⎛ ⎞⎪
⎜ ⎟+ − =⎪
⎜ ⎟⎪ ⎝ ⎠⎩

 

Furthermore: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

33

33
PTP

PTTPTP
a

T
aa

T
a   

where solution 3P  of the Riccati equation reduced to the controllable part by u is 
solution of 1. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΣΣ
ΣΣ=Σ T

aaa

T
a
SSS

S

11

11   

where solution 1Σ of the Riccati equation reduced to the observable part by y is 
solution of 3. 

Let us give the idea of the equivalence proof of properties 1. and 2., the 
equivalence of properties 3. and 4. resulting by duality.  
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We show that .1.2 ⇒  by partitioning the solution of the Riccati equation 

according to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

32

21
PP
PP

P T , with 1P  matrix of the same size as 
eWA  and then by 

verifying that ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

33

33
PTP

PTTPTP
a

T
aa

T
a  is solution if we choose solution 3P  of the 

Riccati equation reduced to the controllable part by u and aT  solution of 2. 

Reciprocally, we can deduce that .2.1 ⇒  as follows. Equation 1 can be “seen” 
as the Lyapunov equation associated with the observability grammian by z of the 
looped system if Kxu = , with K defined in Theorem 13.1. The existence of a 
solution 0≥P  leads, according to lemma 3.19 of [ZHO 96], to the conclusion that 

)( BKA +  is stable even since the looped system is detectable by z. The non-stability 
of the pair ),( BA  leads to the conclusion that the looped system must necessarily be 
undetectable by z and, consequently, that equation 2. admits one solution.   

NOTE 13.3.– Theorem 13.2 generalizes the former reflections [LAR 93], [LAR 00] 
in the case of output frequency weightings. It introduces the dual problem of the 
regulator [DAV 76, FRA 77, WON 85]. Speaking of hidden problems would be 
more general. The problem of the regulator consists in fact of hiding, by a proper 
feedback, the non-stabilizable modes by u (interpreted as disturbances) in order to 
make them unobservable by z. The dual problem seeks to hide the non-detectable 
modes by y so as to make them non-controllable by w. It is clear that the existence of 
a solution for the 2H  problem is subordinated to the existence of a solution for each 
one of these sub-problems. 

When they exist, the solutions to the hidden equations are not necessarily single. 
Equation 2 of Theorem 13.2 is a necessary and sufficient condition to the Regulation 
Problem with Internal Stability (RPIS) which is well-known in other works [WON 
85]. The uniqueness of ),( aa KT  is acquired as soon as )(0

12 sG  is reversible on the 
left and does not have zeros among the eigenvalues of 

eWA  [STO 00]. In a dual 
way, the solution ),( aa LS  in (4) will be unique if )(0

21 sG  is reversible on the right 
and does not have zeros among the eigenvalues of 

sWA . 

13.2.6. Generalized H2 problem and robust RPIS 

Let us consider here the case of a standard model that does not have unstable 
modes unobservable by y. This restrictive and simplifying hypothesis will not block 
the “State Standard Control” type methodological developments. From the 2H  
generalized problem, we can establish the following result which shows the presence 
of an internal model [WON 85] within the regulator. 
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Theorem 13.3 ( 2H  REGULATOR AND INTERNAL MODEL).– let us suppose 
satisfied the hypotheses of the generalized 2H problem (degenerated hypotheses if 
the standard model does not have unstable modes unobservable by y). Let us 
suppose moreover that there is a solution to equation 2 of Theorem 13.2 (section 
13.2.5). Then, the 2H  optimal regulator (see Theorem 13.1) contains a copy of 
unobservable dynamics of the pair ),( 212 eWa ADTC + . 

The demonstration results from corollary 3.3 of [STO 00].   

COROLLARY 13.1.– the duplicate within the regulator of unobservable dynamics 
of the pair ),( 212 eWa ADTC +  is basically Wonham internal model. The 2H  
regulator thus obtained satisfies the principle of the internal model. 

In what follows, we will seek to specify the conditions in which one will have a 
robust 2H  regulator where property 0)(lim =

∞→
t

t
 (condition of existence of 2zwT ) is 

verified despite the arbitrarily small uncertainties on )(0 sG . Because if we know 
(see [HAU 83]) that the stabilizing and detectability properties are preserved for 
small disturbances on )(sG  (or the state matrices which characterize it), it is not the 
same for the hidden properties.  

  
Besides the hypotheses of the 2H  problem, we will suppose that the )(sWe  

modes are perfectly known and that there is a matrix zM of appropriate size such 
as 21 CMC z= . In addition, the result statement will be facilitated by the introduction 
of the following notation: 

( )
''

2

12

2

1

'
,,

000
00

00
001
000

21

qqq
vv R

v
vv

v
v

a ×∆
∈

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
σ

σ
σ

σ

σλ  

THEOREM 13.4 (ROBUST RPIS).– let tq
q etttm λ+++= )()( 10 ppp  be a 

mode of the exosystem ).(sWe  Hence, 
eWA  is similar to matrix ⎟⎟⎠

⎞
⎜⎜⎝

⎛

∗
λ
0

0'qa  with 

0,1,,' 21 ==== vvqq λσ  if R∈λ  and σ λ λ= = =1' 2 , ( ), ( ),q q re v im  
λ= −2 ( )v im  if C∈λ . The 2H  optimal regulator contains a strong internal model 

[WON 85] associated with the mode )(tm  and consequently the rejection of the 
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mode )(tm  on )(tz  will be robust if 
eWA  is similar to ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∗
⊗=
0

0'
2

q
p

W
aIA

e
λ . In 

other words, the mode )(tm must be observable 2p  times by y  if .)( 2pRty ∈  

If the presentation of this result is original and in particular the relation with the 
2H  problem generalized, its demonstration can result from the traditional results on 

the regulator problem (see [ABE 00, HAU 83] and the references included).    

The result of Theorem 13.4 is important as it provides a key for the weighting 
choice )(sWe  when we wish to reject a robust disturbance. It reiterates the “principle 
of sufficient duplication” introduced in [LAR 00].  

13.2.7. Discretization of the H2 problem  

Let us consider that we must implement on the computer a regulator 2H  
designed beforehand in continuous-time [GEV 93, WIL 91]. A slightly clumsy way 
would be to approximate a posteriori the continuous-time regulator. We recommend 
the following way which proceeds by discretization of the 2H  problem and direct 
calculation of the optimal discrete regulator.  

 
Hence, the problem consists of determining the discrete-time regulator )(

2
zKdH  

which will give to the numerical control9 in Figure 13.7 a behavior close to that of 
the analogical control resulted from feedback )(

2
sKH . Therefore, let us try to define 

the 2H  standard discrete problem for which )(
2

zKdH  would be the solution. 
 

                                   
9 0B  and ET represent respectively the 0 order blocker and the sampling operator in 
accordance with Chapter 3. 
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Figure 13.7. Discretization of the standard 2H  problem  

Discretizing problem 2H  does not imply discretizing the standard model by 
writing 0BET GGd = . By doing this, the behavior of the system in between two 
samplings would be neglected. Similarly, w would implicitly receive spectral 
properties that it does not have ( )(tw  cannot be assumed as constant between two 
sampling instances). The following lemma makes it possible to obtain dG  from 
hypotheses 1 to 3 below: 

1) ( )
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 2

1 12

2 21

: 0

0

A B B

G s C D

C D

 with10: 0121 =TBD ; 

2) the sampler TE  incorporates an ideal spectrum anti-aliasing filter (band-pass 

filter of unitary gain on ⎥⎦
⎤

⎢⎣
⎡−

2
,

2
ee ff  if ef  is the sampling frequency). At this level 

we could also introduce a delay so as to take into account the delay of calculation. 
We will not do it here in order to avoid complicating the writing of the discrete 
model; 

3) the input of control )(⋅u  remains constant between two sampling instances. 

                                   
10 This hypothesis is not at all compulsory. It just simplifies the writing of the resulting 
discrete model.  
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LEMMA 13.2 (OBTAINING THE STANDARD DISCRETE MODEL).– under the 
preceding hypotheses, the discrete standard model dG  results from the continuous 
model by: 

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2

1 12

2 21

( ) : 0

0

d d d

d d d

d d

A B B

G z C D

C D

 [13.19] 

with: 
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d ∫=
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( )[ ] 2
1

11 ecd TGB = , i.e.  τττ deBBeBB
Te AT
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22 CCd = and
e

d T
DD 21

21 =  

The model thus discretized makes it possible to write Theorem 13.5. 
 
THEOREM 13.5 (DISCRETIZATION OF 2H  PROBLEM).– )(

2
zKdH  minimizing 

22
),(

22 dHdHlwz KGFT
dd

=  also minimizes =
2 202 2

( , )zw l H dH TT F B EG K . 

We once more neglect to give the proof of the theorem. At least let us give the 
idea. It is shown initially that the state dkx  of the model 

2dHG  has the same 

dynamic and stochastic properties as the discretized state ( )ex kT  of 
2HG . It is 
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shown then that 22 zzzz
k

dk
T

dkd ==∑∆ . Finally, dky  is obtained by 

discretization of the white noise wD21 .  
 

NOTE 13.4.– we have, by definition of the 2H  standard in discrete time, 
1

2

2
1 ( ( ) ( ))

2

e
e e

d d d d d d

e

T
j T j T

z w z w z w

T

T Trace T e T e d

π

ω ω

π
ω

π

+

∗

−

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ . Standard 2zwT  

cannot be interpreted this way. zwT  transfer uses continuous and discrete-time 
signals at the same time and 2zwT  is defined only through its interpretation in 
terms of induced standard. 

NOTE 13.5.– the way the 2H  discrete problem is solved is completely similar to the 
way the 2H  problem in continuous-time is solved. Only the formal expressions of 
Lyapunov and Riccati equations change [ZHO 96]. Alternatively, we can use the 

operator
ee TT γδ −  (see section 3.3) and the complex variable 

1
12

+
−=

z
z

Te
w . In this 

case, the 2H  standard of the ( )G w  transfer is defined by 
1

2

2
1 ( ( ) ( ))

2
G Trace G w G w d

π

+∞
∗

−∞

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫ w  with 
1
12

+
−=

e

e

Tj

Tj

e e
e

T ω

ω
w  and we find 

the same results as for continuous time. 

13.3. Data of a feedback control problem 

The goal of a methodological guide is to offer support to the designer of a 
control law throughout the design chain. Before being able to formalize the control 
problem through an 2H  optimization problem, since it is the part included here, it is 
important to proceed in a systematic way. Which are the “contours” of the system to 
be regulated? What do we know of its environment? Which are the means of action? 
Which is the available information in real-time? Which are the control objectives, at 
least from a qualitative point of view? These questions and the formalization of their 
answer belong to the methodological approach. We will use as much as possible the 
notations adopted in [LAR 00]. 

Graph 

Graph 
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13.3.1. Model of the process 

The first stage consists, without any doubt, of proceeding on the basis of 
functional reasoning. How should we define the system to be adjusted and which 
function must it have? From the nature of its function, we will infer the magnitudes 
that need to be controlled, denoted as cy , and at least qualitatively the control 
objectives. We will define on this occasion the setting or reference magnitudes r. 
Secondly, it is a question of defining the means of action necessary or useful for the 
achievement of the control objectives. The action magnitudes are reunited into a 
control vector noted by u. Any other means of action that is not used for the 
feedback control considered will be labeled as disturbance. The other sources of 
disturbances result from the environment of the system to adjust. The disturbance 
inputs are gathered in vector d. It is finally necessary to keep track of the 
measurements or observations which are likely to be used to carry out the control 
law. oy  defines the vector of the noticed outputs. 

The contour of the system to be adjusted is “drawn” at the end of these first two 
stages through the data of its inputs-outputs oc yyud ,,, . It is then important to 
model the relations of cause to effect between these various magnitudes, starting 
from the equations of physics which govern its behavior, or directly by minimizing 
the distance between the inputs-outputs of the system and that of a mathematical 
model. We make the assumption here that this model is linear and defined by 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
0

:

dyy

uydyy

ud

SAR

co

ccc

DC
DDC
BBA

sG  according to the diagram in Figure 13.8. 

 

Figure 13.8. Model of the system to be adjusted 

The model can then be simulated for various input signals in order to well 
understand the behavior of the system and the evolution of its internal variables 

SARx . It is important from now on to specify the operation environment of the 
system. 
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13.3.2. Modeling the environment of the system to adjust 

Controlling any system consists of controlling its actuators so that it can fulfill 
the required function. The control law naturally depends on the function to be 
accomplished and on the conditions under which it must be accomplished. The 
magnitudes to be controlled were already defined in section 13.3.1. It is still 
necessary to specify the requirements imposed on them. Similarly, macroscopic 
information on the type of disturbances to which the system is subjected can be 
validly used during the design of the control. 

Let us specify these aspects by using the example of an electric machine. The 
same machine can fulfill very different functions. Does it have to function with an 
engine or a generator? We implicitly answer this question while defining which are 
the control magnitudes and the magnitudes to control. Typically, position or speed 
control pertains to an “engine” operation. Let us suppose that we are interested in a 
position control. The formulation of an efficient control law requires more 
information on the operation conditions of the engine. Which position profile does it 
have to follow? Is the position reference likely to vary in an abrupt way, with stages, 
or on the contrary its evolution is linear, as it can be the case sometimes in robotics? 
It is the same with specific applications where the reference is quasi-periodic, even 
sinusoidal [DET 99]. In addition, does the disturbance, which is here a resistive 
torque, have a characteristic “signature”? 

A regulator, be it a little sophisticated, will use this information to predict and 
anticipate the future evolution of the system. It is clear that the quality of this 
anticipation depends on the capacity of the regulator to predict the evolution of 
references and disturbances on the basis of their past evolution. For this reason, the 
development of a control law necessarily supposes (sometimes in an implicit way) 
the definition of predictor models which specify and formalize the environment of 
the system to be adjusted. In what follows, ξ  will indifferently define the 
disturbance d , the reference r, or the aggregation of both. Generally, the signal ξ  
will be described by a Markov model as follows: 

ξ ξξ ξ

ξξ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠0

A Bx x

C w
 

Let us define δ= −∑( ) ( )i i
i

w t q t t  with δ  as a Dirac distribution, Niiq ∈)(  and 

Niit ∈)(  as two independent random sequences with value in R . Niit ∈)(  is strictly 

increasing. 
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This choice enables the adequate description of many standard signals. Consider 
the following examples: 

( )
( ) ( )ξ ξ ξ

ξ
⎛ ⎞ ⎛ ⎞⎛ ⎞

= ⇔ = Γ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

( )0 1
 ( )

1 0 ( )
i i

i

x t x t
t q t t

t w t
  

enables the description of a Wiener noise. 

( )
( )

ωξξξ
ωξ

ω ω
ξ ω

− −

− −

⎛ ⎞
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ −⎜ ⎟
⎜ ⎟= − ⇔ = Γ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎝ ⎠

∑
0

0

( )
1

0 0 ( )2 0

0 1 0
( )( ) 1

0  ( )
( )( )

1 0 0

i

i

t t

i it t
i

x tx tx t e
q t t

x tw tt e
 

describes the evolution of the standard signal represented in Figure 13.9. For 
00 =ω , ξ  evolves in ramps piece by piece. 

( )

ξ ξ
ω

ω
ξ

ξ ω ω

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟

= − ⇔⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠
⎛ ⎞
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⎝ ⎠

∑
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0

1
1 2

2

0 1 0
( ) ( )

0 0 1
( ) ( )

1 0 0 0

cos ( ) sin ( ) ( ), i
i i i i i i

i i

x t x t

t w t

q
t q t t q t t t t si q

q

 

describes the evolution of a harmonic signal. 

 

Figure 13.9. Model of a 2nd order aperiodic signal  
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Under certain hypotheses on the random variables iq  and it , the signal )(tξ  has 
second order statistical properties equivalent to the signal )(' tξ  obtained by 
injecting at the input of the model a centered white noise )(' tw  [BRO 92, LAR 93]. 
This second form is besides better adapted to take into account a disturbance on the 
signal measured which is often connected to a colored noise. 

 
Any input signal w or 'w  is irreducible in both cases and the best prediction of 

)( ttx ∆+ξ  that can be done at instant t  is given by )()( txettx
tA
ξ

∆
ξ

ξ=∆+ . This 

point is illustrated in Figure 13.10. ξ ( )x t , being internal to the signal model ξ , 
incorporates everything that we know on the past evolution of ξ . 

 

Figure 13.10. Sinusoidal prediction 

Finally, the designer task consists of providing the type of the prediction to be 
carried out (constant, in ramp, sinusoidal prediction). This information is formalized 
through the data of predictor models of disturbances and settings: 

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

0 0
r rr r

r

A Bx x

Cr
      and       

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

0 0
d dd d

d

A Bx x

Cd
 [13.21] 

13.3.3. Additional data 

The designer may specify certain statistical information that he knows such as 
the average frequency of a disturbance appearance, the characteristics of a 
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measurement noise, etc. A 2H  criterion may be inferred in its “LQG” interpretation 
(see section 13.2.3). This approach is not viable for the design of a control law. Even 
if we exclude the fact that obtaining this information is a problem in itself, 
minimizing the hope for the output signal of the standard model would not guarantee 
in any way the dynamic performances expected. The interpretation of the 2H  
standard as “energy” of the impulse response is better adapted here. 

Matrices fc NWVNRQ ,,,,,  that intervene in the criterion LQGH −2  must be 
interpreted as weighting matrices. They cannot be left as such in the hands of the 
designer as he may give up in front of the difficulty of the task or he may settle for 
an average adjustment. Better than a few empirical rules, the question of choosing 
the weightings deserves a true “methodological hat”, which makes it possible to 
obtain the weightings of a limited number of adjustment parameters with well 
understood effects. The designer will be able then “to adjust” these control 
parameters to best manage the control compromises. The definition of such “a 
methodological hat” is the subject of the following section. 

13.4. Standard H2 optimization problem  

The relation between an 2H  optimization problem and the synthesis problem of 
a regulator based on the information collected in the preceding section seems still 
fine at this stage. We will describe the various construction stages of the standard 
model for the 2H  optimization, based on the information available in section 13.3 
on the one hand and on the calculation of the weight matrices from the parameters 
left at the designer’s free choice on the other hand. 

13.4.1. Construction of the conceptual control model  

 The magnitudes penalized in the 2H  criterion must be selected in a coherent 
way to lead to a clear optimization problem. This is what is carried out by the 
following stages and is summed up by the diagram in Figure 13.11.  

Once the signals oc yyud ,,,  are defined as indicated in section 13.3, we 
establish the process model ( )sGSAR  defined by: 
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⎟
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We associate an additional input which will enable the additional incorporation 
of a noise on the evolution equation while defining ( )sG

xSARW  by: 

[ ]0
0

0 0
c c c

o o

SAR
SAR SAR d u

c y y d y u
x

o y y d

x
x A B I B

d
y C D D

w
y C D u

⎛ ⎞⎡ ⎤⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟= ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎝ ⎠

 [13.22] 

We define the predictor model of disturbances and settings with which we 
associate an evolution noise whose intensity will be fixed later on according to the 

control objectives: 

ξ ξξ
ξξ

ξ

⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

1

2

 
0 x

A Bx
xCr
w

Cd

. We define the setting variance 

cyre −= which will have to be brought back to 0. 

We seek the one trajectory of the process ))(),()(( ⋅⋅⋅ aa xu  which ensures the 
nullity of the setting variance and thus ryc ≡ . It results from the state of the 
predictor model of disturbances and settings according to relations ξxTx aa =  and 

ξxKu aa = , in which aT  and aK  are solutions of Sylvester equation: 

⎪⎩

⎪
⎨
⎧

=+
=+−−

0
0

1

2

ξ

ξξ
CTC

CBKBTAAT

ay

dauaSARa

c
 

To conclude, we define the control variance au uue −=  and vector 

y
c

w
y
r

y +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  of the magnitudes accessible to the regulator. 
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Figure 13.11. Conceptual control model (CCM) 

We easily obtain a minimal realization of the CCM from what precedes. We 
note: 

⎛ ⎞⎛ ⎞
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 [13.22] 

We are able from now on to associate with the control problem a clear and 
relevant 2H  optimization problem. This will be done in the following section. 

13.4.2. Definition of the H2 optimization problem 

On the basis of CCM and weighting matrices 2
1

2
1

2
1

2
1

, c
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ccc
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cc RRRQQQ ==  

and 
T

ooo
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ooo RRRQQQ 2
1

2
1

2
1

2
1

, == , we build the standard model ( )sGH 2
 

defining the 2H  problem (see Figure 13.12): 
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Figure 13.12. Definition of the H2 problem 

The 2H  problem that consists of calculating )(sK  ensuring the internal stability 

of )(sGSAR  and minimizing 
2

))(),((
2

sKsGF Hl  is a generalized clear 2H  problem 

(section 13.2.5) considering the previously taken precautions (penalization of 
variances ue  and e  with respect to the asymptotic trajectory). It remains to be 
entirely defined. Choosing the weighting matrices is potentially choosing 

+
×

( 1)

2
MCC

MCC
n

n  coefficients if MCCn  is the order of the CCM. It is too much to 

be able to properly handle them. Other works unanimously refers to Bryson’s rule 
[BRY 69] which suggests using the diagonal matrices in order to simplify the 
problem. Hence, each coefficient is applied to a state variable or particular control 
and the “rule” stipulates choosing it in accordance with the variation range (existing 
or desired) of the variable considered. It is implicitly supposed that each variable has 
an obvious physical direction. 

This standardization11 approach is good but still it is too approximate and often 
delicate. De Larminat in [LAR 93] recommends standardizing the system according 
to the controllability or observability on a determined horizon, based on the partial 
grammians (see section 13.1). This approach seems to be the proper one (we will 
justify this) and is what we will present here. 

Matrices cQ and cR will be inferred from the choice of a control horizon cT : 

I,)()(0 == ∫ c
T

u
tA

y
T

u
tA

ycc QdtBeCBeCTR c SAR
c

SAR
c  [13.23] 

                                   
11 The interest was always in standardizing the units of descriptive physical magnitudes of 
the process considered by expressing them in percentage of the nominal value.  
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 Symmetrically, matrices oQ and oR  will be inferred from the choice of an 
observation horizon oT : 

I,][ 0
1

22 == ∫ −o
TT

o
AtTtA

oo RdteCCeTQ  [13.24] 

Let us note various possible rewritings for matrices cR  and oQ : 

( ) 2120 2121 )()( BTGBTdtBeCBeCTR co
T

c
T AtTAt

cc
c == ∫  

− −= =∫ 1 1
2 2 2

0
[ ] [ ( )]

ToT A t T At
o o o o oQ T e C C e dt T G T  

Understanding these choices implies returning to the various interpretations of 
the grammians given in section 13.2.1. We leave this exercise to the reader who can 
refer to [LAR 00] for more details. We will mostly deal with the consequences of 
such a choice. 

13.4.3. The interest in standardization 

The previous choices are of undeniable methodological interest. From the 
standardization approach it results that the horizons cT  and oT  respectively adjust 
the dynamics of the control modes and of filtering modes (see separation principle). 
It is noted in [LAR 00] that the control poles, for example, are in general at the left 

of the real axis 
cT
1− . Our experiment corroborates this result. A second result, 

equally significant, is stated in the following proposition. 

Proposition: “standard” character of SSC 

The properties of the feedback control system obtained according to the standard 
state control (SSC) procedure are independent of the state representation of the 
model of the system to be adjusted and of that of the predictor models. 

Let us provide the demonstration idea of this original result. It results directly 
from the two following notes. 
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The corrector 
( )

=
2 2min

arg ( ( ), ( ))opt l H
K s stabilizing

K F G s K s  is independent of the 

state representation chosen for
2
( )HG s . 

Let us consider the models )(1
2

sGH  and )(2
2

sGH  obtained from two distinct 

creations of )(sGMCC  in the state space. Let T be the passage matrix from one 

creation to another. In order to have )()( 21
22

sGsG HH = , it is sufficient that: 

1
12

−−= TQTQ c
T

c , 12 cc RR = , T
oo TTQQ =2 , 12 oo RR = . These equalities are 

automatically satisfied by the weighting matrices calculated as indicated above from 
grammians.  

Thus, SSC has the essential property for a control methodology to lead to a result 
which is independent of the choice of internal variables of the process and 
exogenous signals. 

13.4.4. Management of the control compromises 

The control parameters left to the user’s free choice are two: cT  and oT . How 
should they be used? oT  controls the dynamics of the observer. The higher it is, the 
slower the rebuild dynamics of the observer and the less its sensitivity to the 
measurement noises becomes. Generally, oT , selected as higher than cT ,will fix the 
dominant modes of control. The control horizon will be sufficiently small to 
guarantee good robustness margins in terms of module margin. 0→cT  involves 
indeed 02

1
→cR . Consequently, based on Figures 13.11 and 13.12, it is obvious 

that the state representation of ( )sGH 2
 (see section 13.4.2) is such that 012 →D . 

The conditions of the dual LTR defined in section 13.2.4 apply in theory only if the 
condition 21 CC =  is satisfied. This is not necessarily true if the SSC rules are 
applied. [LAR 00]. The “LTR effect” is, however, often noted12. To be systematic, 
in 2H  criterion we will have to penalize vector T

yu eeez )(=  with 
aoy yye −=  if ay  is defined by aoa xCy =  ( ),( aa xu  is the asymptotic trajectory 

defined in section 13.4.1). Hence, if the process is at phase minimum in the 
bandwidth of the control, we have the guarantee of obtaining “good” robustness 
properties (module margin) at the level of sensors (system output). 

                                   
12 Minimizing −− + 1

1 2
2

( )LQ FKC sI A B K L  does not necessary lead to make 

−− + 1
2 2

2
( )LQ FKC sI A B K L  small unless ∈2 1Im( ) Im( )C C .  
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Finally, the compromises related to the adjustment of the process are managed 
from these two parameters. Nothing prevents after all to define a horizon rT , thus 
making it possible to adjust the dynamics of the pursuit. This can be carried out in a 
very systematic way without questioning the structure state feedback/observer, 
which results from the separation principle and which is advisable to be used during 
the implementation of the regulator on the computer. In addition, the discrete-time 
regulator is easily obtained by applying the result given in section 13.2.7. 

Finally, if we seek to obtain a “robust” setting follow-up, during the construction 
of the CCM (see section 13.4.1), we could to add on oy a vector of disturbances od  
of the same size as oy and such that: 

ξ
⎛ ⎞

⊗⎛ ⎞ ⎜ ⎟⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎝ ⎠

2

2

0
 

0

do
pdo

xo
o do p

yo

x
I A Ix

w
d C I

w

 

ξ⊗2( , )do pC I A  observable 

According to Theorem 13.4, this addition will guarantee obtaining a robust 
setting follow-up. 

13.5. Conclusion 

This chapter does not describe in detail SSC but it only outlines its main 
principles. General results, which may be original for some of us, were presented so 
as to lay down the theoretical bases of a control methodology using the state 
approach. Hence it should be noted the atypical presentation of LTRH −2 , the 
definition and the resolution of the generalized 2H  problem, the relation between its 
resolution and the so-called “regulator” problem, the discretization of the standard 

2H  problem, etc. The generality of these developments makes it possible to 
consider various extensions to SSC. 

If the methodological contribution of SSC is undeniable in our eyes, it is possible 
to still enrich it in various ways. It may thus be interesting in certain cases to be able 
to obtain good robustness margins at the beginning of the process rather than at its 
end and to still widen the class of systems which can be approached by SSC. It is 
also possible to introduce frequency weightings without the state approach (in the 
deep sense of the term) which is the basis of SSC. Finally, it is possible to 
specifically reduce the sensitivity of certain transfers of the looped system with 
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respect to uncertain parameters and thus to increase to a certain extent the robustness 
of the regulation. For that, we enrich the initial 2H  criterion of the parametric 
sensitivity of significant transfers. The optimization problem which results from this 
is in this case more complicated numerically as shown in [CHE 01]. A sufficiently 
efficient algorithm could be developed despite everything (see [YAG 01]). It 
remains to polish the methodological aspect that makes these tools usable by the 
designer. 

13.6. Appendices 

13.6.1. Resolution of the Lyapunov equations  

Preliminary definitions 

Let be M and N be two matrices of size nm ×  and qp×  respectively. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⊗

NmNm

NmNm
NM

mnm

n

1

111
. ⊗  defines the Kronecker product. 

( )Tmnnmm mmmmmmMVec 1212111)( =   

PROPOSITION 13.1.– the equivalence below is verified. 

= + + ⇔ = − ⊗ + ⊗ −( ) [ ] ( ) ( )T T TP F P PF Q Vec P I A A I Vec P Vec Q  

This equivalence can be used with gain to calculate )(tP  starting from the data 
of matrices F and Q. We obtain the partial grammian of controllability for TAF =  
and TBBQ =  and the partial grammian of observability for AF =  and CCQ T= . 

PROPOSITION 13.2.– equation 0=++ QPFPFT  with the unknown factor P 
and for which Q is symmetrical, has the following properties: 

– F does not have eigenvalues on the imaginary axis and is a sufficient condition 
for the existence of a solution; 

– let us suppose that: CCQC T=∃ /  and ( , )C A  is detectable, then ≥ ⇒[ 0P  F 
is stable]; 
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–
0

TA AF is stable P e Q e dτ τ τ
+∞

⇒ = ∫ . 

13.6.2. Duality principle 

System 
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

( ) :
T T

T
T T

A C
G s

B D
 defines the dual system of ( ) ⎥

⎦

⎤
⎢
⎣

⎡
=

DC
BA

sG : . It 

appears trivial that a system and its dual have the same modes. We also have, 
without difficulty, the following relations of duality: 

⇔( , )  ( , )T TA B controllable B A  observable  

⇔( , ) ( , )T TC A observable A C  controllable 

Let us also consider the diagram of standard feedback in Figure 13.1 pointed out 
below. We verify without difficulty the following equalities: 

( ), ( , )TT T T
zw L L zwT F G K F G K T∆ ∆⎡ ⎤= = =⎡ ⎤⎣ ⎦ ⎣ ⎦  

22 wzzw TT =  

Consequently, “finding K which minimizes 
2

( , )LF G K ” or “finding L which 

minimizes
2

( , )T
LF G L ” are two dual problems and we can infer the solution of 

one from the other by the relation of duality TKL = . 

 

Figure 13.13. Standard feedback diagram 
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13.6.3. Another useful interpretation of grammians 

Grammians are more than mere intermediaries for calculation of the 2H  
standard. In robust control, they are used for model analysis and reduction. The 
controllability grammian contains useful information pertaining to the areas or 
directions of the state space which are the most “excited” by the inputs. The 
observability grammian contains similar information pertaining to the state space 
areas where the outputs are the most “sensitive”. The construction of these areas 
(contours of an ellipsoid) can be obtained on the basis of a decomposition of 
grammians into singular value (semi-axes of the ellipsoid of nR  deduced from the 
values and singular vectors of the grammian concerned). Precisely, the 
controllability grammian cG  makes it possible to define the area of the state space 
reachable by inputs of given energy, whereas the observability grammian oG  
defines the sub-space of initial conditions 0x producing outputs of given energy. This 
interesting geometrical interpretation of grammians was provided by Moore [MOO 
81]. 

13.6.4. Zeros of a multivariable system 

Let ⎥
⎦

⎤
⎢
⎣

⎡
DC
BA

 be a minimal realization of the transfer matrix ( )G s  to m  inputs 

and p  outputs. Let us assume that Cz ∈0  is not a pole of ( )G s . In the case mono 
input-mono output ( 1== pm ), 0z  is a ( )G s  zero (finite) if and only if =0( ) 0G z . 
In the multivariable case, the concept of zero is richer and its characterization more 
delicate. Before pointing out some results enabling this characterization, let us give a 
dynamic interpretation to the concept of zero. 

PROPOSITION 13.3.– 0z  is a zero of transmission )(sG  if there is an input vector 
of the form tzeutu 0

0)( =  and an initial state 00 )( xtx =  so that the output of the 
system is identically zero. 
 
THEOREM 13.6.– 0z  is a zero of transmission )(sG  if and only if one of the two 
following propositions is verified: 

1) ∃ ∈ <0/ ( ( )) ( ( ))s C rank G z rank G s  

2) 0/
A z I B A sI B

s C rank rank
C D C D
− −⎛ ⎞ ⎛ ⎞

∃ ∈ <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The zero of transmission 0z  is called blocking zero if =0( ( )) 0rank G z  or, 

equally, 0A z I B
rank n

C D
−⎛ ⎞

=⎜ ⎟
⎝ ⎠

 . 

If we tone down the minimal hypothesis of realizing ),(sG the proposition 
enables the characterization of the invariant zeros which include, in addition to the 
transmission zeros, decoupling zeros (uncontrollable or/and unobservable modes of 
the realization) (see Chapter 4). 

13.6.5. Standardization of a system 

Let us assume the system ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

DC
BA

sG : . Let us note by mRu∈ , nRx∈ , 

pRy∈ the input, state and output vectors of the system. Let uN , xN  and yN  be 
diagonal matrices of suitable size enabling the standardization of the inputs, states 
and outputs of the system: uNu uN = , xNx xN = , yNy yN = . The standardized 
model ( )NG s  admits for realization in the state space: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −−−−

−

1111

1

:
uyxy

uxxx
N DNNCNN

BNNANN
sG . 
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Chapter 14

Multi-variable Modal Control

14.1. Introduction

The concept of eigenstructure placement was born in the 1970s with the works of
Kimura [KIM 75] and Moore [MOO 76a]. Since then, the eigenstructure placement
has undergone continuous development, in particular due to its potential applications
in aeronautics. In fact, the control of couplings through these techniques makes them
very appropriate for this type of application. Moore’s works led to numerous stud-
ies on the decoupling eigenstructure placement. The principle consists of setting the
dominant eigenvalues of the system while guaranteeing, through a proper choice of
related closed loop eigenvectors, certain decoupling, non-reactivity, insensitivity, etc.
Within the same orientation, Harvey [HAR 78] interprets the asymptotic LQ in terms
of eigenstructure placement. Alongside this type of approach, Kimura’s works on pole
placement through output feedback have been supported by several researchers. In
these more theoretical approaches, the exact pole placement is generalized during the
output feedback. The degrees of freedom of eigenvectors are no longer used in order
to ensure decoupling – as in Moore’s approach – but in order to set supplementary
eigenvalues. Recently, research in automatics has been particularly oriented towards
robustness objectives (through methods such as the H∞ synthesis, the µ-synthesis,
etc.), the control through eigenstructure placement being limited to the aim of ensur-
ing the insensitivity of the eigenvalues placed (insensitivity to the first order) by a
particular choice of eigenvectors [APK, 89, CHO 94, FAL 97, MUD 88]. It was only
recently that the modal approach was adjusted to the control resisting to paramet-
ric uncertainties. This adaptation, proposed in [LEG 98b, MAG 98], is based on the
alternation between the µ-analysis and the multi-model modal synthesis (technique of

Chapter written by Yann LE GORREC and Jean-François MAGNI.
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µ-Mu iteration) and makes it possible to ensure, with a minimum of conservatism, the
robustness in front of parametric uncertainties (structured real uncertainties).

In this chapter, we will describe only the traditional eigenstructure placement. We
will see how to ensure certain input/output decoupling or how to minimize the sen-
sitivity of the eigenvalues to parametric variations. These basic concepts will help
whoever is interested in the robust approach [MAG 02b] to understand the problem
while keeping in mind the philosophy of the standard eigenstructure placement. The
implementation of the techniques previously mentioned is facilitated by the use of
the tool box [MAG 02a] dedicated to the eigenstructure placement (single-model and
multi-model case).

The first part of this chapter will enable us to formulate a set of definitions and
properties pertaining to the eigenstructure of a system: concept of mode and relations
existing between the input, output and disturbance signals and the eigenvectors of the
closed loop. We will see what type of constraints on the eigenvectors of the closed loop
make the desired decouplings possible. Then we will describe how to characterize the
modal behavior of a system with the help of two techniques: the modal simulation and
the analysis of controllability. This information will allow to choose which eigenvalues
to place by output feedback. This synthesis of the output feedback will be described
in detail in the second part of this chapter. Finally, the last part is dedicated to the
synthesis of observers and to the eigenstructure placement with observer.

14.2. The eigenstructure

In this section we will reiterate the results formulated in [MAG 90].

14.2.1. Notations

14.2.1.1. System considered

In this part, the multi-variable linear system considered has the following form:

ẋ = Ax + Bu

y = Cx + Du
[14.1]

where x is the state vector, u the input vector and y the output vector. The sizes of the
system will be as follows:

n states x ∈ Rn

m inputs u ∈ Rm

p outputs y ∈ Rp

The equivalent transfer matrix is noted G(s):

G(s) = C(sI − A)−1B + D
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14.2.1.2. Corrector

In what follows, the system is corrected by an output static feedback and the inputs
v (settings) are modeled with the help of a pre-control H . Therefore, the control law is:

u = Ky + Hv [14.2]

where v has the role of reference input.

If D = 0:

ẋ = (A + BKC)x + BHv

If D �= 0, the expressions of y in [14.1] and of u in [14.2] make the following
relation possible:

u = (I − KD)−1KCx + (I − KD)−1Hv

By substituting u in the relation ẋ = Ax + Bu, we obtain:

ẋ = (A + B(I − KD)−1KC)x + B(I − KD)−1Hv

By noticing that K(I − DK)−1 = (I − DK)−1K, we get:

ẋ = (A + BK(I − DK)−1C)x + B(I − KD)−1Hv

14.2.1.3. Eigenstructure1

The eigenvalues of the state matrix of the looped system A + BK(I − DK)−1C
are noted:

λ1, . . . , λn

the right eigenvectors:

v1, . . . , vn

and the input directions:

w1, . . . , wn

where (by definition):

wi = (I − KD)−1KC vi ⇔ wi = K(Cvi + Dwi) [14.3]

1. In this chapter, it is supposed that the eigenvalues are always distinct.
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The left eigenvectors of matrix A + BK(I − DK)−1C are noted:

u1, . . . , un

and the output directions:

t1, . . . , tn

where (by definition):

ti = uiBK(I − DK)−1 ⇔ ti = (uiB + tiD)K [14.4]

14.2.1.4. Matrix notations

Let us take q vectors (generally q = p or q = n); the scalar notations λi, vi, wi,
ui, ti become:

Λ =

⎡
⎢⎣λ1 0

. . .
0 λq

⎤
⎥⎦ [14.5a]

V =
[
v1 . . . vq

]
, W =

[
w1 . . . wq

]
[14.5b]

U =

⎡
⎢⎣u1

...
uq

⎤
⎥⎦ , T =

⎡
⎢⎣t1

...
tq

⎤
⎥⎦ [14.5c]

If λi is not real, it is admitted that there is an index i′ for which λi′ = λ̄i. Thus,
in matrices V and W , vi′ = v̄i, wi′ = w̄i and in matrices U and T , ui′ = ūi, ti′ = t̄i.
In addition, when it is a question of placement, we will consider that if λi is placed,
then λi′ is placed too. Vectors ui and vi are standardized such that:

UV = I and U(A + BK(I − DK)−1C)V = Λ [14.6]

14.2.2. Relations among signals, modes and eigenvectors

Apart from the definition of the concept of mode, the objective of this section is
to study the relations between excitations, modes and outputs in terms of the eigen-
structure. Knowing this makes it possible to consider the decoupling specifications as
constraints on the right and left eigenvectors of the looped system (constraints that
could be considered during the synthesis). This knowledge is the basis of the tradi-
tional techniques of eigenstructure placement. However, in many cases, the decou-
pling specifications are not primordial. In fact, it would be often be preferable to place
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the eigenvectors of the closed loop by an orthogonal projection, this approach enabling
us to better preserve the natural behavior of the system.

In this section, for reasons of clarity, we will consider a strict eigensystem (with no
direct transmission (D = 0)). The different vectors considered are:

– the vector of regular outputs z;

– the vector of reference inputs v;

– the vector of disturbances d. These disturbances are distributed on the states
and outputs of the system, respectively by E′ and F ′;

– the vector of initial conditions x0.

System [14.1] becomes:

ẋ = Ax + Bu + E′d

y = Cx + F ′d

z = Ex + Fu

[14.7]

14.2.2.1. Definition of modes

Let us take the state basis change where U corresponds to the matrix of n left
closed loop eigenvectors (see [14.5]):

ξ = Ux [14.8]

where:

ξ =

⎡
⎢⎣ξ1

...
ξn

⎤
⎥⎦

The various components of this vector will be called the modes of the system.

In [14.8] there was an obvious relation between state and mode of the system.
Identically, the relations between excitations, modes and outputs of the system will be
detailed, which will enable us to interpret the various specifications of decoupling in
terms of constraints on the eigenstructure of the system.

14.2.2.2. Relations between excitations and modes

The input u of [14.7] is of the form [14.2]. The effect of the initial condition is
modeled by a Dirac function x0δ, hence:

ẋ = (A + BKC)x + BHv + (E′ + BKF ′)d + x0δ



450 Analysis and Control of Linear Systems

or:

ẋ = (A + BKC)x + f

where f corresponds to all excitations acting on the system (f = BHv + (E′ +
BF ′K)d + x0δ). After having applied the basis change (ξ = Ux):

ξ̇ = Λξ + Uf

We obtain:

ξ(t) = eΛt ∗ Uf(t)

where “∗” is the convolution integral and eΛt the diagonal matrix:

eΛt = diag
(
eλ1t, . . . , eλnt

)
In addition:

ξi(t) = eλit ∗ uif(t) =
∫ t

0

eλi(t−τ)uif(τ) dτ [14.9]

14.2.2.3. Relations between modes and states

By returning to the original basis, we obtain:

x = V ξ =
n∑

i=1

ξivi [14.10]

This relation shows that the right eigenvectors of the system control the modes on
the states.

14.2.2.4. Relations between reference inputs and controlled outputs

Here, f = BHv. Instead of considering the state vector as above, we consider the
controlled output z = Ex+Fu. The term Ex can be written EV ξ and the term Fu:

Fu = FKCx + FHv = FKCV ξ + FHv = FWξ + FHv

The mode transmission becomes:

ξi(t) = eλit ∗ uiBHv and z =
n∑

i=1

[
E F

] [vi

wi

]
ξi(t) + FHv [14.11]

The transfers between v and ξ and between the modes and z (by omitting the term
that does not make the eigenvectors appear, FHv) can be written:

v−→ UBH −→ (sI − Λ)−1 ξ−→ [
E F

] [V
W

]
z−→
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We note:

– Ek, Fk the kth rows of E,F ;

– zk, vk the kth inputs of z, v ;

– Hk the kth columns of H .

The open loop relation between the inputs and the controlled output (by omitting
the term that does not make the eigenvectors appear, FHv) is given by (see [14.9] and
[14.11] by considering W = 0):

zk(t) =
n∑

i=1

Ekvi

∫ t

0

eλi(t−τ)uiBHv(t) dτ [14.12]

The conditions that the eigenvectors must satisfy so that there is decoupling are
immediate:

uiBHk = 0 ⇒ vk does not have any effect on the mode ξi(t)

Ekvi + Fkwi = 0 ⇒ the mode ξi(t) does not have any effect on zk

14.2.2.5. Relations between initial conditions and controlled outputs

The transfers between x0δ and ξ and between the modes and z can be written:

x0δ−→ U −→ (sI − Λ)−1 ξ−→ [
E F

] [V
W

]
z−→

Based on the notations previously mentioned, the equivalent constraints on the
eigenstructure are:

uix0 = 0 ⇒ the initial condition does not have any effect on the mode ξi(t)

Ekvi + Fkwi = 0 ⇒ the mode ξi(t) does not have any effect on zk

14.2.2.6. Relations between disturbances and controlled outputs (F = 0 or F ′ = 0)

The transfers between d and ξ and between the modes and z can be written:

d−→ [
U T

] [E′

F ′

]
−→ (sI − Λ)−1 ξ−→ [

E F
] [V

W

]
z−→

The equivalent constraints on the eigenstructure are:

uiE
′
k + tiF

′
k = 0 ⇒ dk does not have any effect on the mode ξi(t)

Ekvi + Fkwi = 0 ⇒ the mode ξi(t) does not have any effect on zk
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14.2.2.7. Summarization

The analysis of the time behavior of a controlled system was done in the modal
basis. Each mode is associated to an eigenvalue λi of the system in the form eλit. We
have shown that:

– the excitations act on the modes through the left eigenvectors U and the output
directions T ;

– the modes are distributed on the controlled outputs through the right eigenvec-
tors V and the input directions W :

excitations
U,T−→ modes

V,W−→ controlled outputs

We have also showed that the decoupling on the controlled outputs have the form:

Ekvi + Fkwi = 0

EXAMPLE 14.1. The graph in Figure 14.1 is used in order to illustrate the decoupling
properties accessible through this method. The system considered here is of the 3rd

order and has two inputs and three outputs.

The relations linking the modes and the controlled outputs are:⎡
⎣z1

z2

z3

⎤
⎦ =

⎡
⎣E1

E2

E3

⎤
⎦x =

⎡
⎣E1

E2

E3

⎤
⎦ [v1 v2 v3

] ⎡⎣ξ1

ξ2

ξ3

⎤
⎦

Figure 14.1. Example of desired decoupling between inputs/modes and modes/outputs

The decoupling constraints in Figure 14.1 are:

– the first mode must not have any effect on z1 and z3;

– the third mode must not have any effect on z1;

– the reference input v1 must not have any effect on the third mode.
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Hence, we obtain the following constraints:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E1v1 = 0
E3v1 = 0
E1v3 = 0
u3BH1 = 0

The first two equations will be considered during the synthesis of the corrector as
constraints on the output feedback (K), whereas the third constraint pertains to the
pre-control (H).

14.3. Modal analysis

14.3.1. Introduction

The modal synthesis consists of placing the eigenstructure of the closed loop sys-
tem (see section 14.4). In order to achieve this, it is very important to know very well
the modal behavior of the open loop system and the difficulties related to its modifi-
cation. As for all synthesis methods, those that we will use in what follows are even
more efficient if the designer has a good understanding of the system he is trying to
control. The analysis described in this section will help him avoid in the future trying
to impose unnatural constraints on the control law.

More precisely, modal simulation makes it possible to generate an answer to the
following questions: what is the influence of each mode on the input-output behavior
of the system? Consequently, on which models is it necessary to act in order to modify
a given output? By considering afterwards synthesis-oriented objectives, we will seek
to have information on the difficulty of placing certain poles. This relative measure
will be obtained by using a technique of controllability analysis. A more complete
study on this type of analysis can be found in [LEG 98a].

14.3.2. Modal simulation

This refers to the analysis of the modal behavior of a system. This type of tech-
nique is used when we want to know the couplings between inputs, modes and outputs,
overflows, etc. It makes it possible to evaluate the contribution of each mode on a given
output.

Let us consider a signal decomposed according to equation [14.12]. In this equa-
tion, we decompose the controlled outputs z. The modal simulation can also be rel-
ative to the measured outputs y; in this case, this analysis also makes it possible to
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detect the dominant modes (good degree of controllability/observability, etc; see also
section 14.3.3). For the outputs measured, we will have:

yk(t) = Ckv1

∫ t

0

eλ1(t−τ)u1BHv(τ) dτ

+ · · · + Ckvn

∫ t

0

eλn(t−τ)unBHv(τ) dτ [14.13]

where yk corresponds to the kth input of y. The modal simulation consists of simu-
lating each component:

Ckvi

∫ t

0

eλi(t−τ)uiBHv(τ) dτ [14.14]

of the signal yk(t) separately. This evaluation provides information on the contribu-
tion of modes λi to the outputs. It also makes it possible to evaluate the nature –
oscillating or damped – of this contribution.

Figure 14.2. Example of modal simulation.
On the left: contributions of each mode;

on the right: overall contribution

EXAMPLE 14.2. An example of modal simulation is given in Figure 14.2. This exam-
ple of modal simulation is taken from Robust Modal Control Toolbox [MAG 02a]. The
simulation is meant to illustrate the modal participation of the modes of the system to
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a given output. A step function excitation is sent at input. On the left of Figure 14.2
are traced the different components of the form [14.14] and on the right is traced the
sum of these components. On this figure, we can notice that the mode −1 does not
have any influence on the output considered, thus it will not be necessary to act on this
mode in order to modify the behavior of this output. However, the modes in −0.1 ± i
and in −2 are very important and they will have to be considered during the synthesis.
In addition, the modal simulation provides information on the type of contribution of
these two modes (transient state and permanent state). The former is very oscillating
whereas the latter is damped. This information visually (and thus obviously) illus-
trates the fact that the modes are associated to very different eigenvalues. Based on
this analysis, the designer has a precise idea of the modal behavior of the system and
can decide which models to modify in order to influence the outputs to control.

DEFINITION 14.1 (DOMINANT EIGENSTRUCTURE). We call a dominant eigenstruc-
ture the set of pairs of eigenvalues and eigenvectors having a preponderant influence
in terms of input-output transfer. The modal simulation makes it possible to determine
the influence of each mode on the system’s outputs and hence to isolate the pairs of
eigenvalues and eigenvectors with a preponderant influence. This technique could be
used in order to determine, among the set of eigenvalues of the system, which ones to
place by output feedback. This concept of dominant mode is even more important in
the context of multi-model techniques discussed in [MAG 02b].

After dealing with the input-output modal contribution, we will now present the
input-output controllability of each mode (corresponding to the difficulty of placing
the modes of the system through an output feedback).

14.3.3. Controllability

The study of controllability is a subject that generated a lot of interest and many
investigations were undertaken by researchers [HAM 89, LIM 93, MOO 81, SKE
81]. After having sought to determine if a state was or was not controllable (Kalman,
Popov-Belevich and Hautus’ traditional approaches (PBH), Grammian technique), the
research has rapidly turned towards the study of the difficulty associated with con-
trolling a state. That is the point of origin for the concept of controllability degree.
Numerous researchers have explored this field by adapting the traditional concepts
of controllability (PBH test, Grammian method, etc.). In the majority of cases, these
techniques are based on a study pertaining to the open loop and are not relevant for
our situation. For example, the Grammian measurement of an unstable pole is infinite
(zero controllability) and does not reflect the fact that this pole can be controllable
by output feedback. Through a continuity argument, the controllability measurement
of a pole in terms of stability is erroneous due to the nature itself of this pole. This
statement makes this type of method unusable in the context of our approaches. The
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technique that we choose, in order to efficiently apply the methods of eigenstructure
placement, is the technique of modal residuals analysis, which provides an instanta-
neous criterion independent of the type of eigenvalues analyzed. Other possibilities
are proposed in [LEG 98a].

Modal residuals

The modal decomposition can be evaluated by considering the time responses at
a given instant and for a given input. Generally, responses to an input impulse (high
frequencies) or to a step function on the state (low frequencies) are considered. Let
us take equation [14.13] where BHv(t) is replaced by Blδ (impulse response) and
where the measured outputs are considered; the following result is obtained.

Behavior at high frequencies: impulse response at instant t = 0

We have:

yk(t = 0) = Ckv1u1Bl + · · · + CkvnunBl

The quantities CkviuiBl, i = 1, . . . , n are called residuals between input number
l and output number k. The evaluation of residuals CkviuiBl makes it possible to find
the controllability degree of mode i.

EXAMPLE 14.3. A relative controllability analysis through the graph of modal resid-
uals is given in Figure 14.3. The impulse residuals of each mode are represented in
this figure as a bar chart.

Figure 14.3. Example of analysis of input-output controllability
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14.4. Traditional methods for eigenstructure placement

Based on the definitions of input and output directions ([14.3] and [14.4]), the
following lemmas can be easily demonstrated.

LEMMA 14.1 ([MOO 76a]). Let us take λi ∈ C and vi ∈ Cn. Vector vi is said to be
placed as the right eigenvector associated to the eigenvalue λi if and only if there is a
vector wi ∈ C such that: [

A − λiI B
] [vi

wi

]
= 0 [14.15]

Any proportional gain K that makes it possible to carry out this placement satisfies:

K (Cvi + Dwi) = wi [14.16]

Vectors wi correspond to the input directions defined by [14.3].

Demonstration. If [14.15] and [14.16] are verified:

Avi + Bwi = λivi

and:

wi = (I − KD)−1KCvi

By combining these two equations, we obtain:

(A + B(I − KD)−1KC)vi = λivi

which justifies the “if” part of the lemma. As for the part “only if”, let us consider the
last equation written as follows:[

A − λiI B
] [ vi

(I − KD)−1KCvi

]
= 0

By defining wi = (I − KD)−1KCvi, we have K (Cvi + Dwi) = wi, which
concludes the demonstration of the lemma. �

By duality, we also have the following result.

LEMMA 14.2. Let us take λi ∈ C and u∗
i ∈ Cn. Vector ui is said to be placed as the

left eigenvector associated to the eigenvalue λi if and only if there is a vector t∗i ∈ Cp

such that: [
ui ti

] [A − λiI
C

]
= 0 [14.17]

Any proportional gain K that makes it possible to carry out this placement satis-
fies:

(uiB + tiD)K = ti [14.18]

Vectors t∗i correspond to the output directions defined by [14.4].
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Parameterization of placeable eigenvectors

The vectors satisfying [14.15] can be easily parameterized by a set of vectors ηi ∈
Rm. In fact, based on [14.15], the eigenvectors of the right solutions belong to the
space defined by the columns of V (λi) ∈ Rn×m which are obtained after resolving:

[
A − λiI B

] [V (λi)
W (λi)

]
= 0 [14.19]

Therefore, for a column vector ηi ∈ Cm:

vi = V (λi)ηi

Based on [14.17], the eigenvectors of the left solutions belong to the space defined
by the rows of U(λi) ∈ Rp×n given by:

[
U(λi) T (λi)

] [A − λiI
C

]
= 0 [14.20]

Thus, for a row vector ηi ∈ Cp:

ui = ηiU(λi)

14.4.1. Modal specifications

For any type of control, one of the main objectives is to stabilize the system, if it
is unstable, or to increase its degree of stability, if poorly damped oscillations appear
during the transient states. Alongside this, we can try to improve the speed of the sys-
tem without deteriorating its damping. These specifications are interpreted directly in
terms of eigenvalue placement. As we saw in section 14.2, a system can be dissociated
into modes. Each mode corresponds to a first order (real number eigenvalue) or to a
second order (self-conjugated complex number eigenvalues). These modes have dif-
ferent contributions evaluated due to the modal simulation presented in section 14.3.2,
hence we will have the concept of dominant modes (see note 14.1). For these domi-
nant modes, it is possible to formulate the following rules: for a desired response time
τd and a desired damping ξd, the dominant closed loop eigenvalues must verify:

Re(λ) < 0 for stability

|Re(λ)| � 3
τd

|Re(λ)|
|λ| � ξd
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These constraints define an area of the complex plane (Figure 14.4) where the
eigenvalues must be placed.

Figure 14.4. Area of the complex plane
corresponding to the desired time performances

Let us note that – since the control is done through power systems (closed loop con-
trols) with limited bandwidths – a supplementary constraint is imposed by the closed
loop modes which must be placed within the same bandwidth. Hence, it is recom-
mended to close this field by imposing a bound superior to |Re(λ)| (see Figure 14.5).

Figure 14.5. Area of the complex plane corresponding to the
desired performances and to the constraints on the bandwidth



460 Analysis and Control of Linear Systems

14.4.2. Choice of eigenvectors of the closed loop

The solution sub-space of [14.5] or [14.9] is of size2 m. Hence, it is necessary to
make an a priori choice of eigenvectors in this sub-space. Several strategies can be
used in order to choose these closed loop eigenvectors (see below).

14.4.2.1. Considering decouplings

We seek here to reduce the size of V (λi) to 1. The right eigenvectors will satisfy
[14.15] and the conditions pertaining to decouplings (see section 14.2.2) are of the
form E0vi + F0wi = 0. Consequently, vectors vi and wi are calculated by resolving:[

A − λiI B
E0 F0

] [
vi

wi

]
= 0 [14.21]

Since matrix B is of size m, it is possible to impose m− 1 decoupling constraints
(number of rows of E0 and F0).

14.4.2.2. Considering the insensitivity of eigenvalues

The concept of insensitivity consists of quantifying the variation of the eigenvalues
of a system subjected to parametric variations. This quantification is given by lemma
14.3.

LEMMA 14.3. Let us consider the system [14.1] corrected by the output static feed-
back K. For a variation of the state closed loop matrix Â = A + B(I − KD)−1KC,
we have for first order:

∆λi = ui∆Âvi [14.22]

In addition, if the variation ∆Â of matrix Â is due to variation ∆K of matrix K:

∆λi = (uiB + tiD)∆K(Cvi + Dwi) [14.23]

and if variation ∆Â is due to the respective variations ∆A, ∆B, ∆C, ∆D of
A,B,C,D:

∆λi = ui∆Avi + ui∆Bwi + ti∆Cvi + ti∆Dwi [14.24]

2. It is easily shown that the size of this sub-space is equal to m if and only if λi is not a
non-controllable eigenvalue. In case of non-controllability, the size is superior to m. Thus, the
degree of freedom which is lost when an eigenvalue is not movable due to its non-controllability,
is recovered at the level of eigenvector placement which offers more degrees of freedom.
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Demonstration. By definition:

(Â + ∆Â)(vi + ∆vi) = (λi + ∆λi)(vi + ∆vi)

When we multiply on the left by ui and when we simplify the equal terms while
taking into consideration that uivi = 1, we have:

ui∆Âvi + ui∆Â∆vi = ∆λi + ui∆λi∆vi

Let us take, by neglecting the second order terms:

ui∆Âvi = ∆λi

which corresponds to equation [14.22]. When the variation of the state closed loop
matrix is due to an output feedback variation, we can replace ∆Â with:

∆Â = B(I − KD)−1∆KC + B(I − KD)−1∆KD(I − KD)−1KC

Hence, equation [14.22] becomes:

∆λi = uiB(I − KD)−1∆K
(
Cvi + D(I − KD)−1KCvi

)
Based on the matrix identity (I − KD)−1 = I + K(I − DK)−1D and the

definitions [14.3] of wi and [14.4] of ti, i.e. wi = (I − KD)−1KCvi and ti =
uiBK(I − DK)−1, equation [14.22] becomes:

∆λi = (uiB + tiD)∆K(Cvi + Dwi)

which corresponds to expression [14.23]. Let us consider now that the variations of
the closed loop dynamics are due to the variations of state matrices ∆A, ∆B, ∆C,
∆D. We have:

∆Â = ∆A + ∆B(I − KD)−1KC + B(I − KD)−1K∆C

+ B(I − KD)−1K∆D(I − KD)−1KC

By using definitions [14.3] of wi and [14.4] of ti as before, we will immediately
have:

∆λi = ui∆Avi + ui∆Bwi + ti∆Cvi + ti∆Dwi

which proves expression [14.24]. �

Based on equation [14.22], the variation of the eigenvalue λi is increased as fol-
lows:

|∆λi| � ‖∆Â‖‖ui‖‖vi‖
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In order to minimize the sensitivity of eigenvalues, we can thus minimize the cri-
terion:

J =
n∑

i=1

‖ui‖‖vi‖

Let us consider all the eigenvalues and the associated eigenvectors as being real.
Let Ji = ‖ui‖‖vi‖. Based on the relation uivi = 1, we obtain:

Ji =
1

cos(ui, vi)

In addition3, 〈ui〉 = 〈v1, . . . , vi−1, vi+1, . . . , vn〉T . Ji is thus the reverse of the
sinus of the angle between vi and the space generated by the other eigenvectors. Min-
imizing J thus implies maximizing the angle between the eigenvectors.

Case of state feedback

The objective is to calculate the state feedback Ke by placing the poles {λ1, . . . ,
λn} while minimizing the sensitivity criterion:

J =
n∑

i=1

‖ui‖‖vi‖

General methods of non-linear optimization (gradient, conjugated gradient, etc.)
can be used in order to carry out the optimization of the criterion. In the case of state
feedback, it is possible to use an entirely algebraic method [CHU 85, KAU 90, MOO
76b]. It is based on the interpretation of insensitivity in terms of angles between the
eigenvectors.

14.4.2.3. Use of the orthogonal projection of eigenvectors

In many applications, decouplings are not primordial. In this case, it is preferable
to choose the closed loop eigenvectors as orthogonal projections of the open loop
eigenvectors.

DEFINITION 14.2. Let us consider that the open loop eigenvalue λi0 is moved into λi.
Based on the notations defined by [14.19], the open loop eigenvector vi0 (associated
with the eigenvalue λi0) is projected as follows:

ηi = (V ∗(λi)V (λi))−1V ∗(λi)vi0 [14.25]

3. The notation 〈〉 designates the sub-space generated.
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The eigenvector and the input direction of the closed loop are thus chosen as being
the orthogonal projections of the open loop eigenvector with the help of relations
[14.26] and [14.27]:

vi = V (λi)ηi [14.26]

wi = W (λi)ηi [14.27]

Properties of the orthogonal projection

The choice of closed loop eigenvectors by orthogonal projection of the open loop
eigenvectors makes it possible to:

– minimize the control leading to a desired pole placement (with a minimization
of secondary effects such as the destabilization of non-placed poles);

– maintain the parametric behavior of the open loop. In fact, dispersion of the
open loop poles – when the system is subjected to disturbances – is often acceptable.
By considering that this hypothesis is verified and by keeping in mind that the dis-
persion of poles is closely related to the eigenvectors (see developments at first order
[14.22]), it is natural to consider using the degrees of freedom related to the choice of
the eigenvectors of the closed loop in order to maintain this good dispersion [MAG
94a], as shown in Figure 14.6. Ideally, based on [14.22], we would have to choose
the closed loop eigenvectors that are co-linear to those of the open loop, in order to
have a ∆λi identical in open loop and in closed loop, but these eigenvectors are con-
strained to evolve within a space defined by equation [14.19]. Therefore, we suggest
choosing them as being orthogonal projections of the open loop eigenvectors on the
eigenspace solution of [14.19] in order to minimize the distance between the closed
loop eigenvector and the open loop eigenvector in the sense of the Euclidian standard.
This projection is done through relations [14.25], [14.26] and [14.27];

– proceed by continuity. We can continually move a pole towards the left by pro-
jecting the corresponding eigenvector.

Figure 14.6. Shift of a set of poles with minimum dispersion
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EXAMPLE 14.4. To illustrate these points, let us take a set of models pertaining to the
lateral side of a jumbo jet (RCAM problem taken from [DOL 97]). The poles of the
open loop are represented in Figure 14.7.

Figure 14.7. Poles of the open loop of the lateral side of the RCAM

Figure 14.8. Poles of the closed loop with orthogonal
projection of the eigenvectors of the open loop

On the nominal model, we carry out the following placement:

− 0.23 + 0.59 i → −0.6 + 0.6 i

− 1.30 → −1.30

− 0.18 → −0.8

by considering, for each eigenvalue placed, the orthogonal projection of the open
loop eigenvector (associated to the open loop eigenvalue) on the solution closed loop



Multi-variable Modal Control 465

eigenspace. In practice, for each eigenvalue λi ∈ {−0.23 + 0.59 i,−1.30,−0.18}
placed respectively in λ′

i ∈ {−0.6 + 0.6 i,−1.30,−0.8}, we calculate the sub-space
V (λ′

i),W (λ′
i) solution of:

[
A − λ′

iI B
] [V (λ′

i)
W (λ′

i)

]
= 0

Then we place the closed loop eigenvectors v′i associated to λ′
i by projection of

the open loop eigenvectors vi associated to λi on the sub-space 〈V (λ′
i)

T ,W (λ′
i)

T 〉T .
This projection is done as follows:

v′
i = V (λ′

i)(V
∗(λ′

i)V (λ′
i))

−1V ∗(λ′
i)vi

w′
i = W (λ′

i)(V
∗(λ′

i)V (λ′
i))

−1V ∗(λ′
i)vi

Figure 14.8 represents the poles of the closed loop. We can notice that the group of
poles pertaining to each eigenvalue placed has shifted with a minimum of dispersion
(the isolated eigenvalues correspond to the eigenvalues not dealt with).

14.4.3. State feedback and output elementary static feedback

When even n or p triplets (λi, vi, wi) are placed, it is not necessary to distinguish
the two syntheses because the procedures are the same. The formula to use in both
cases is equation [14.16]. Usually, p (or n) triplets are placed. The calculation of K
is done as follows:

K = [w1 · · · wp](C[v1 · · · vp] + D[w1 · · · wp])−1

If p < n, the n − p are not disturbing if they correspond to dynamics sufficiently
fast or negligible in the sense of section 14.3. In the contrary case, it is necessary to use
the exact pole placement techniques or to increase the number of eigenvalues placed
by using an observer (see section 14.5).

In the context of our work, the result previously mentioned can be used in order to
define procedure 14.1.

PROCEDURE 14.1 (EIGENSTRUCTURE PLACEMENT BY STATE FEEDBACK OR OUT-
PUT ELEMENTARY FEEDBACK). The procedure is decomposed as follows:

1) choosing a self-conjugated group of q � p complex numbers λ1, . . . , λq to
place as closed loop eigenvalues;
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2) for each λi, i = 1, . . . , q, choosing a par of vectors (vi, wi) satisfying [14.15]
i.e.:

[
A − λiI B

] [vi

wi

]
= 0

with v̄i = vj for i, j, such that λ̄i = λj ;

3) finding the real solution of:

K (Cvi + Dwi) = wi i = 1, . . . , q

making it possible to place the eigenvalues {λ1, . . . , λq} and the related right eigen-
vectors {v1, . . . , vq}. If the problem is sub-specified (the number q of eigenvalues
placed is inferior to the number p of outputs of the system), this solution can be
obtained by a least squares resolution (αi = (Cvi + Dwi)):

K = [w1, . . . , wr]
(
[α1, . . . , αr]T [α1, . . . , αr]

)−1[α1, . . . , αr]T

NOTE 14.1 (GAIN COEFFICIENTS BELONGING TO R). In the second phase, the con-
dition on the conjugated term is necessary in order to be able to find a real solution.
This is easily explained by the fact that:

K (C[vi v̄i] + D[wi w̄i]) = [wi w̄i]

which can be written (after multiplication on the right by an arbitrary matrix):

K (C[
(vi) �(vi)] + D[
(wi) �(wi)]) = [
(wi) �(wi)]

where only real numbers are used. The group of linear constraints of the third stage
can also be written (see [14.5]):

W = K (CV + DW ) [14.28]

NOTE 14.2 (NON-CONTROLLED EIGENVALUES). Gain K given by this algorithm
makes it possible to place only p triplets. This method is thus used when the n − p
other eigenvalues correspond, in open loop, to low controllable modes or outside the
bandwidth of the corrector, and thus will not be too disturbed by the corrector during
looping.

EXAMPLE 14.5. Let us consider again the lateral model of the jumbo jet described
in [DOL 97]. We are interested in the traditional measurements of β, p, r and φ.
In particular we wish to decouple the requests in β (respectively φ) (noted by βc

(respectively φc)) of φ (respectively β) (couplings inferior to one degree, for requests
in βc and φc, of two and 20 degrees). These decouplings are illustrated in Figure 14.9.
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Figure 14.9. Preferred decouplings between β and φ

The system has 10 states and six outputs, hence it is possible to place only six
pairs of eigenvalues and eigenvectors. Based on the relations obtained from the flight
dynamics, we associate three real number modes to φ (modes ξ1, ξ2, ξ3 associated
to the eigenvalues λ1, λ2, λ3) and a complex number mode as well as a real number
mode to β (modes ξ4, ξ

∗
4 , ξ5 associated to the eigenvalues λ4, λ

∗
4, λ5). Since the system

has two inputs, it is possible to impose, for each eigenvalue placed, a decoupling
constraint. Therefore, the output feedback will be synthesized in such a way that the
three modes associated with φ are each decoupled from β (first output) and the three
modes associated with β are each decoupled from φ (fourth output). The eigenvectors
associated with the eigenvalues of φ will thus satisfy:

[
A − λiI B

1 0 0 0 0 0 0 0

] [
vi

wi

]
=
[
0
0

]

The eigenvectors associated with the eigenvalues of β satisfy:

[
A − λiI B

0 0 0 1 0 0 0 0

] [
vi

wi

]
=
[
0
0

]

These constraints make it possible to ensure decoupling between modes and out-
puts. The permanent state decouplings between the settings and outputs are ensured
by integrators. After calculating the output feedback, we note that the modes dealt
with are correctly placed and the modes that were not dealt with are fast and not dis-
turbed by the output feedback gain thus calculated. The responses of outputs β and φ
to settings in βc and φc are traced in Figure 14.10 (respectively equal to a two degree
step function and to a 20 degree step function).
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Figure 14.10. Decouplings between β and φ by output static feedback

We can notice in this figure that couplings (anti-diagonal faces) remain, in both
cases, inferior to the degree. Hence, the required decouplings have been correctly
considered during the synthesis.

14.5. Eigenstructure placement as observer

14.5.1. Elementary observers

A modal approach of the observers’ synthesis is proposed in [MAG 91, MAG 94b,
MAG 96]. This modal approach is based on the following lemma.

LEMMA 14.4. The system defined by (see Figure 14.11):

˙̂zi = πiẑi − tiy + uiBu + tiDu [14.29]

where ui ∈ Cn, ti ∈ Cp and πi ∈ C satisfy:

uiA + tiC = πiui [14.30]

is an observer of the variable zi = uix. The observation error is given by εi =
ẑi − uix satisfying:

ε̇i = πiεi
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Demonstration. Based on [14.1] and [14.29] we have:

˙̂zi − uiẋ = πiẑi − tiCx + uiBu − uiAx − uiBu

Based on [14.30], we have:

˙̂zi − uiẋ = πi(ẑi − uix) �

Figure 14.11. Elementary observer of the variable z = uix

14.5.2. Observer synthesis

The previous lemma establishes that a linear combination of states uix can be
estimated by a mono-dimensional observer and this observer is obtained with the help
of vector ui satisfying [14.30] for a given vector ti and a complex number πi. This
equation can be written (see equation [14.15]):

[
ui ti

] [A − πiI
C

]
= 0 [14.31]

If q elementary observers are used in parallel, it is possible to represent the overall
observer as in Figure 14.11, but by replacing ui, ti and πi with their matrix notations
U, T and Π where:

U =

⎡
⎢⎣ u1

...
unc

⎤
⎥⎦ , T =

⎡
⎢⎣ t1

...
tnc

⎤
⎥⎦ , Π = Diag{π1 · · · πnc

} [14.32]

and where each triplet (πi, ui, ti) satisfies [14.29]. These nc equations can overall be
described as:

UA + TC = ΠU [14.33]

Here, z becomes a vector of size nc. This structure (including the output feedback)
is described in Figure 14.12.
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Figure 14.12. Closed loop observer

14.5.2.1. Parameterization of elementary observations

Based on [14.31], vectors ui correspond to elements of the eigen sub-space defined
by:

[
U(πi) T (πi)

] [A − πiI
C

]
= 0

Hence, the elementary observers can be parameterized by a vector η∗
i ∈ Cn−p as

follows:

ui = η∗
i U(πi)

14.5.2.2. Choice of elementary observations

Decoupling

In order to choose vectors ui, it is possible to consider decoupling objectives (for
details, see [MAG 91], dual problem of the control issue).

Projection

Let us consider λi0 an open loop eigenvalue and ui0 its related left eigenvector. It
is possible to dualize the projection proposed in section 14.4.2. Hence, we obtain:

ui = ηiU(πi) [14.34]

ti = ηiT (πi) [14.35]

where:

ηi = ui0(U(πi)U(πi)T )−1U(πi) [14.36]

The choice of the projection can be justified by considering that ui0 is exactly
placed. In this case, the elementary observer that corresponds to this placement is
characterized by the open loop triplet (λi0, ui0, ti0) with ti0 = 0. It is obvious that
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this triplet satisfies [14.31]. The corresponding observer is represented in Figure 14.13.
From this figure it results that the measurement vector y is not used for the observation
of the variable zi = uix. Consequently, when the increased output feedback is used as
indicated in Figure 14.12, a dynamic pre-control structure is obtained. More generally,
when a projection is used, through a continuity argument, the pre-control structure
becomes “dominant”. The effects of the output feedback are thus minimized.

Figure 14.13. Elementary observer of
z = uix where ui is a left eigenvector of A

14.5.3. Synthesis of output dynamic feedback in the form of observer

When a set of elementary observers is considered, the “measurements” available
to us are provided by y and ẑ. The problem of synthesis supposes seeking matrices
Ky and Kz so that the system:⎧⎪⎨

⎪⎩
ẋ = Ax + Bu
˙̂z = Πẑ + (UB + TD)u − Ty

y = Cx + Du

[14.37]

corrected by:

u = Kyy + Kzẑ

has the dynamics hoped for. Due to the separation principle, this synthesis is usually
divided into two sub-problems.

The separation principle, mentioned below, establishes that the syntheses of the
observer and the output feedback can be done independently:

1) the observer is synthesized by the choice of matrices U , T , Π according to
equation [14.33];

2) instead of synthesizing the output feedback as u = Kyy + Kzẑ specific to
system [14.37], we synthesize it as u = Kyy + Kzz (it should be noted that the
estimation ẑ of z is replaced by signal z) of the following system:⎧⎪⎪⎨

⎪⎪⎩
ẋ = Ax + Bu[
y

z

]
=

[
C

U

]
x +

[
D

0

]
u

[14.38]
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THEOREM 14.1 (SEPARATION PRINCIPLE). Let us consider that:

1) an observer of order nc is synthesized, i.e. that three matrices U ∈ Rnc×n,
T ∈ Rnc×p and Π ∈ Rnc×nc satisfying [14.33] are synthesized;

2) two gain matrices Ky ∈ Rnc×nc and Kz ∈ Rm×nc specific to [14.38] are
calculated, thus making it possible to place p + nc eigenvalues and eigenvectors.

Then, if U , T , Π, Ky and Kz are used based on Figure 14.12, the corresponding
closed loop system is such that:

1) the eigenvalues of Π belong to the spectrum of the closed loop system;

2) the p+nc eigenvalues of the system [14.38] corrected by Ky and Kz belong to
the spectrum of the closed loop.

Demonstration. After simplifying the expression of ẑ (see [14.37]):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = Ax + Bu

˙̂z = Πẑ + UBu − TCx

y = Cx + Du

Let us consider the feedback in the conceivable form (ẑ replaces z) u = Kyy +
Kzẑ. This will control the increased system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
ẋ
˙̂z

]
=

[
A 0

−TC Π

][
x

ẑ

]
+

[
B

UB

]
u

[
y

ẑ

]
=

[
C 0
0 I

][
x

ẑ

]
+

[
D

0

]
u

by the feedback u = K̃
[ y

ẑ

]
where:

K̃ = (I − KyD)−1
[
Ky Kz

]
The equation of the closed loop system is thus:[

ẋ
˙̂z

]
=

([
A 0

−TC Π

]
+
[

B
UB

]
K̃

[
C 0
0 I

])[
x
ẑ

]
[14.39]

Let us use the estimation error variable ε = ẑ − Ux by considering the following
variable change:[

x
ε

]
=
[

I 0
−U I

] [
x
ẑ

]
⇔

[
x
ẑ

]
=
[
I 0
U I

] [
x
ε

]
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System [14.39] becomes, by using the equality UA + TC = ΠU :

[
ẋ
ε̇

]
=

([
A 0
0 Π

]
+
[
B
0

]
K̃

[
C 0
U I

])[
x
ε

]

or: [
ẋ
ε̇

]
=

⎡
⎣A + BK̃

[
C
U

]
BK̃

[
0
I

]
0 Π

⎤
⎦[x

ε

]
[14.40]

The block triangular structure demonstrates the lemma: the closed loop spectrum
will consist of the observer spectrum and the system spectrum [14.38] looped accord-
ing to u = Kyy + Kzz. �

Let us consider the problem of the equivalent output feedback described by the
system [14.38]. Procedure 14.1 can be applied to this system (see procedure 14.2).
The supplementary rows of the “new matrix C” of the system make it possible to
place p + nc eigenvectors instead of p (if nc + p � n, n eigenvalues and eigen-
vectors are placed). The separation principle makes it possible to consider the loop-
ing u = Kyy + Kzz for the synthesis, whereas for the implementation we use
u = Kyy + Kzẑ. For example, we could use this type of an observer (by choos-
ing an order equal to n − p) in order to place all the eigenvalues of the system (but it
is preferable to place only the dominant modes) or to artificially increase the number
of outputs in order to deal with robustness problems (see [MAG 97]).

NOTE 14.3 (NON-CONTROLLABILITY OF OBSERVER MODES). Based on equation
[14.40] we note that the left eigenvectors associated to modes πi of the system looped
by the observer have the form [0 uci] (for a certain vector uci of size nc). Conse-
quently, the product “left eigenvector by matrix B” is zero ([0 uci] [BT 0]T = 0),
which immediately translates the non-controllability.

Now we will sum up the above discussions.

PROCEDURE 14.2 (EIGENSTRUCTURE PLACEMENT THROUGH AN OBSERVER). Let
us suppose that we want to place q (dominant) poles and that q > p. The procedure is
divided as follows:

1) choosing matrices U , T , Π satisfying equation [14.33]. The size nc of these
matrices is equal to the size of the dynamic extension used for placing the q − p
pairs of eigenvalues and eigenvectors that cannot be placed by output static feedback,
i.e. nc = q − p (in the case of placement of all eigenvalues of the system, we have
nc = p − q);

2) choosing a self-conjugated set of q complex numbers λ1, . . . , λq to place as
closed loop eigenvalues;
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3) for each λi, i = 1, . . . , q, choosing a pair of vectors (vi, wi) satisfying [14.15],
i.e.:

[
A − λiI B

] [vi

wi

]
= 0

with v̄i = vj for i, j such that λ̄i = λj ;

4) finding the real number solution of:

[
Kc Kz

]([C
U

]
vi +

[
D
0

]
wi

)
= wi i = 1, . . . , q [14.41]

If the problem is sub-specified (q < nc + p), this solution can be obtained in the
least squares sense: [

Kc Kz

]
= [w1, . . . , wq](ΓT Γ)−1ΓT

where:

Γ =
[
Cv1 + Dw1 · · · Cvq + Dwq

Uv1 · · · Uvq

]

NOTE 14.4 (EQUIVALENT DYNAMIC EQUALIZER). We can show that the feedback
calculated by the above procedure corresponds to the dynamic gain:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ac = Π + (UB + TD)Kz

Bc = −T + (UB + TD)Kc

Cc = Kz

Dc = Kc

[14.42]

and to the dynamic pre-control:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ap = Ac

Bp = UB + TD

Cp = Cc

Dp = I

[14.43]

NOTE 14.5 (EFFECT OF THE EIGENSTRUCTURE OF THE OBSERVER). Based on the
demonstration of the separation principle, the dynamics of the observer is non-control-
lable. Let us consider ẋ = Ax + B(u + v). It is possible to show that:[

x
xc

]
= Σn+q

i

∫ t

0

[
vi

vic

]
eλi(t−τ)[ui uci]

[
B

UB

]
v(τ) dτ [14.44]
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Note 14.3 underlines the fact that the non-controllability of the observer’s modes
implies uiB +uciUB = 0; hence, the term corresponding to πi in [14.44] disappears.
The eigenstructure of the observer does not have any effect on that of the closed loop
system.

EXAMPLE 14.6. Let us take again Example 14.4. We consider here that the only avail-
able outputs are the measurements of the slide-slip angle β and of the bank angle φ.
These two measurements enable us to place only two pairs of eigenvalues and eigen-
vectors through the output static feedback. That is the reason why we will use the
procedure of eigenstructure placement in the form of an observer. This eigenstruc-
ture – by choosing an observer of a sufficient order – will enable us to set a part or all
the dynamics of the system.

The system considered has p = 2 outputs and we will place the same eigenvalues
as in Example 14.4, i.e. q = 4 eigenvalues. The observer necessary to such a placement
must thus be of order nc = q − p = 2. We choose the dynamics of the observer
according to objectives specific to the bandwidth of the corrector. For example:

π1.2 = −0.8 ± 0.8 i

Matrices U and T are obtained through the equation of Example 14.4 by orthogo-
nal projection.

We will place the same eigenvalues as previously, i.e.:

− 0.2360 + 0.5954 i → −0.6 + 0.6 i

− 1.3017 → −1.317

− 0.1837 → −0.8

with the same decoupling constraints.

We calculate matrices Kz and Kc of the observer by resolving a set of four equa-
tions similar to [14.41].

Finally, in the spectrum of the closed loop, we find the modes placed by the correc-
tor in the form of observer as well as the modes of the observer itself (separation prin-
ciple). The non-controlled modes have a correct behavior. We note that these modes
could have been placed in the same way by increasing the size of the observer. Fig-
ure 14.14 shows the four modal simulations between βc, Φc and β, Φ. We note that
the decouplings were taken into consideration.
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Figure 14.14. Inputs-outputs modal simulation

14.6. Conclusion

In this chapter, we have defined and studied the modal behavior of a system. We
have seen how to choose the eigenvalues and eigenvectors of the closed loop according
to the objectives:

– on the dynamics of time responses;

– on the couplings-inputs, outputs or modes-outputs;

– on the local robustness to parametric variations.

Once this choice is made, we have seen how to synthesize a static corrector making
the placement of this eigenstructure possible. In the case of the output feedback, it
is possible to place p pairs of eigenvalues and eigenvectors with a constant gain. In
order to remedy this inconvenient, we have presented the synthesis of observers and
the technique that makes it possible to directly carry out an eigenstructure placement
in the form of an observer. Therefore, it is possible to place the totality of pairs of
eigenvalues and eigenvectors of the system.
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As we have said in our introduction, our intention was to describe here a synthesis
technique in which we choose a priori the eigenvalues and eigenvectors of the closed
loop, which leads us to a linear problem. Other techniques do not make this choice and
adopt other policies calling upon more complex resolutions or non-convex optimiza-
tion problems. Those interested in finding out more may refer to [APK 89, CHO 94,
MUD 88].

Finally, the traditional approaches that we described are the basis of more complete
syntheses (detailed in [MAG 02b]), that are meant, in particular, to deal with problems
of parametric robustness.
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Chapter 15 

Robust H∞/LMI Control 

The synthesis of a control law passes through the utilization of patterns which 
are nothing other than an imperfect representation of reality: besides the fact that the 
laws of physics provide only a global representation of phenomena, valid only in a 
certain range, there are always the uncertainties of pattern establishment because the 
behavior of the physical process cannot be exactly described using a mathematical 
pattern.  

Even if we work with patterns whose validity is limited, we have to take into 
account the robustness of the control law, i.e. we have to be able to guarantee not 
only the stability but also certain performances related to incertitude patterns. This 
last issue requires completing the pattern establishment work with a precise 
description of pattern uncertainties, to include them in a general formalism enabling 
us to take them into account and to reach certain conclusions. 

The synthesis of a control law is hence articulated around two stages which are 
being alternatively repeated until the designer reaches satisfactory results: 

– controller calculation: during this stage only certain performance objectives 
and certain robustness objectives can be taken into account; 

– analysis of the controlled system properties, from the perspective of its 
performances as well as their robustness.  

                                   
Chapter written by Gilles DUC.   
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The approaches presented in this chapter are articulated around these two 
concepts. 

15.1. The H∞ approach 

The preoccupation for robustness, which is inherent among the methods used by 
traditional automatic control engineering, reappears around the end of the 1970s 
after having been so widely obscured due to the development of state methods. It is 
at the root of the development of ∞H  approaches. 

15.1.1. The H∞ standard problem  

Within this approach, the designer considers a synthesis scheme whose general 
form is presented in Figure 15.1: vector u represents the controls and vector y the 
available measurements; vector w reunites the considered exterior inputs (i.e. 
reference signals, disturbances, noises), which can be the inputs of the shaper filters 
chosen by the designer. Finally, vector e reunites the signals chosen to characterize 
the good functioning of the feedback control system, which are generally obtained 
from the signals existing in the feedback control loop with the help of the filters 
chosen there also by the designer. 

 

Figure 15.1. H∞ standard problem  

The objective of the problem considered is thus to determine a corrector )(sK  
that ensures the stability of the closed loop control system in Figure 15.1, conferring 
to the transfer )(sTew  between w and e a norm ∞H  less than a given level γ . This 
can be defined as follows: 
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where λ  designates the highest eigenvalue. 

Let us suppose that the level γ has been reached. Then, by using the properties of 
norm H∞ [DUC 99], we can establish that: 

– each transfer )(sT
jiwe  between a component jw  irrespective of w  and a 

component ie  irrespective of e  verifies: 

γωω <∈∀ )( jT
jiweR  [15.2] 

– the system remains stable for any uncertainty of the pattern that would 
introduce a looping of e  over w  in the form )()()( sessw ∆= , )(s∆  being a stable 
transfer matrix irrespective of the norm ∞H  less than γ/1 . 

We can therefore use these results in different manners: 

– to impose templates to certain transfers by choosing the signals e  and w , in 
an appropriate manner; if, for example, )()()( 1 szsWse = , where z  is the output to 
be controlled and w  is a disturbance, we obtain: 

)(
)(

1 ω
γωω
jW

jTzw <∈∀ R  [15.3] 

so that the filter )(1 sW  makes it possible to impose a template to the transfer )(sTzw  
between the disturbance and the output; 

– to perform the synthesis of a corrector which ensures the robustness related to 
the incertitude of )(s∆  pattern marked by norm (in this case, the signals e  and 
w do not correspond to the feedback control inputs and outputs but they are the 
results of an appropriated pattern establishment); 

– to adopt a combination of these two approaches. 

It is worth mentioning that, historically, the second approach is the root of the 
∞H  syntheses development and gathering all the patterns uncertainties in a single 

transfer matrix )(s∆  is a very poor representation which leads in most of the 
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practical cases to limited results. The synthesis ∞H  must then be seen, according to 
the first approach, as a way to impose templates to nominal patterns of the feedback 
control without being able to take into account all the robustness objectives from the 
synthesis. 

15.1.2. Example 

Let us consider a system with the input y  and the control u, where the nominal 
pattern is: 

)(
)2()1(

1
)()()( sU

ss
sUsGsY

++
==  [15.4] 

We want to create a feedback control in accordance with the block diagram in 
Figure 15.2, where the corrector )(sK  must ensure the following objectives: 

i) the output y must be controlled over a constant reference r, with a static error 
less than 0.01; 

ii) the gain of the feedback control1 must contain all the angular frequencies 
between 0 and 1 rd/s at least; 

 iii) the module gain2 must be at least equal to 0.7; 

iv) the gain of the transfer function between r  and u  must be less than 10 for all 
angular frequencies and it must decrease following a gradient of –20 dB/decade 
beyond 10 rd/s; 

v) the gain of the transfer function between r  and y must be less than 0.5 beyond  
10 rd/s. 

 

Figure 15.2. Block diagram of the feedback control  

                                   
1 Conventionally defined as the set of angular frequencies for which the gain between the 
reference r and the error � is less than 1. 
2 Defined as the minimum distance between a point of Nyquist plot of the equalized system 
and the critical point –1. 
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Points i) to iii) can be translated through stresses on the transfer function 
( )ε

−= + 1( ) 1 ( ) ( )rT s G s K s , where the gain must be: 

– less than 0.01 in steady regime; 

– less than 1 below 1 rd/s; 

– less than 1/0.7 above. 

Point iv) explicitly concerns the transfer −= + 1( ) ( ) (1 ( ) ( ))urT s K s G s K s . 

Finally, point v) concerns the transfer ( ) 1)()(1)()()( −+= sKsGsKsGsTyr . 

This brings us to construct the block scheme in Figure 15.3, where the filters 
)(sWi  are chosen in accordance to these specifications. 

 

Figure 15.3. Diagram used by the synthesis 
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s sW s
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s sW s
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+ +⎛ ⎞= =⎜ ⎟+ +⎝ ⎠
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+⎛ ⎞= =⎜ ⎟ +⎝ ⎠

 [15.5] 

It must be noted that denominator )(2 sW  does not result from specifications but 
it is introduced in order to make this filter an eigenfilter: this condition is generally 
required by the resolution algorithms. 
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The scheme in Figure 15.3 is presented in the general form in Figure 15.1 by 
choosing rw = , ε=y  and ( )Teeee 321= . We are then going to search for a 
corrector )(sK  solution of the following problem: 

γ
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 [15.6] 

If this problem accepts a solution, we shall then have: 
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 [15.7] 

so that the objectives will be reached if the value of γ is less than 1 (or at the most 
close to 1). 

By applying one of the resolution methods which are to be subsequently 
presented, we obtain a corrector corresponding to the value 029.1=γ  whose 
equation is the following, after an order reduction that makes it possible to eliminate 
the useless terms (a pole and a zero in high frequency and an almost exact 
compensation between a pole and a zero): 

)737.15)(01.0(
)2)(1(71)( 2 +++

++=
sss

sssK  [15.8] 
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The transfer functions obtained for the feedback control are written: 
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 [15.9] 

Figure 15.4 shows the Bode diagram for each of these functions compared to that 
of the inverse of the filters: it makes it possible to verify that the inequalities [15.7] 
are satisfied and hence that the synthesis objectives are reached. 

In terms of robustness, the last of the inequalities [15.7] introduces a bound over 
the transfer bandwidth between the reference and the regulated magnitude: this 
ensures that the closed loop control system can tolerate high frequency dynamics 
which are not taken into account by the pattern [15.7] without risk for stability. In 
order to illustrate this idea, we suppose as an example that the pattern [15.7] does 
not consider an additional first order term at the denominator, so that a more precise 
pattern would be:   

( )( )( )sss
sG

τ+++
=′

121
1

)(  [15.10] 

Acknowledging that: 

⎟
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⎠

⎞
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s
s

sGsG
τ

τ
1

1)()(  [15.11] 

The closed loop control system is presented in Figure 15.5a, which is equivalent 
to that in Figure 15.5b. In this latter figure, the transfer from r ′  to y ′  verifies the 
third inequality [15.7]: 

)()()(1
)()(

)(
3 ω

γ
ωω

ωωωω
jWjGjK

jGjK
jT ry <

+
=∀ ′′  [15.12] 
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Figure 15.4. Bode diagrams for different transfers (full lines) 
and for their templates (dotted lines) 

We therefore infer that the closed loop control system in Figure 15.5b is stable 
for any value of τ  such that: 

γ
ω

ωτ
ωτω

ωτ
ωτωω

)(

1
1

1
)( 3 jW

j
j

j
j

jT ry <
+

∀⇔<
+

∀ ′′  [15.13] 

because Figure 15.5b then corresponds to a system where the open loop (in y ′′ ) is 
stable, with a gain always less than 1: from Nyquist criterion, the close loop is then 
also stable. 
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Figure 15.5. Study of the neglected dynamics robustness 

Figure 15.6 makes it possible to compare the two functions’ Bode diagrams 
which appear in the second inequality [15.13] ( γ/3W  with full line and graphs for 
three different values of τ  in dotted line): we see that stability is ensured for any 
value of τ  less than 0.2. 

 

Figure 15.6. Determination of a bound value of the neglected time constant  
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15.1.3. Resolution methods 

We can consider different methods in order to solve the ∞H  standard problem. 
We therefore present the approach through the Riccati equations and the approach 
through Linear Matrix Inequalities (LMI), which are the most widely used. 

These two methods use a state representation of the interconnection matrix )(sP  
which is written in the following form: 
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with yeuw nnnnn yeuwx RRRRR ∈∈∈∈∈ ;;;; . 

15.1.4. Resolution of ∞H  standard problem through the Riccati equations 

To solve the ∞H  standard problem, we suppose the following hypotheses as 
being satisfied: 

H1) ),( uBA  can be stabilized and ),( ACy  can be detected; 

H2) ( ) ueu nD =rank  and yyw nD =)(rank ; 

H3) u
eue

un nn
DC
BIjA

+=⎟⎟
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wn nn
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+=⎟⎟
⎠

⎞
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⎝

⎛ −
∈∀

           
 

rank    ω
ω R . 

From a practical point of view, hypothesis H1 forces the user to choose the stable 
filters )(sWi : placed outside the loop, these are actually non-controllable by u and 
non-observable by ε . In order to be verified, hypothesis H2 supposes the presence 
of direct transmissions between the controls u and the regulated variables e on the 
one hand, and between external inputs w and the measures y on the other hand. 
Hypotheses H3 and H4 are verified when the transfers )(sPeu  and )(sPyw  are not 
zero on the imaginary axis. 
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We present below the solution of a simplified case, which is characterized by the 
following relations: 
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 [15.15] 

The general case is presented in [GLO 88]. We can also bring this general case 
back to the simplified one by using variable changes [ZHO 96]. 

The following theorem makes it possible in the first place to test the feasibility of 
the standard problem. 

THEOREM 15.1.– having the hypotheses H1-H4 and the conditions [15.15], the 
∞H  standard problem has a solution if and only if the following 5 conditions are 

satisfied: 
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imaginary axis;  

ii) there is a symmetrical matrix 0≥∞X  solution of the Riccati equation: 
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iv) there is a symmetrical matrix 0≥∞Y  solution of the Riccati equation: 

γ −
∞ ∞ ∞ ∞+ + − + =2 ( ) 0T T TT

e e y y w wY A A Y Y C C C C Y B B  [15.17] 

v) ( ) 2γρ <∞∞YX  

where )(ρ  designates the module of the highest eigenvalue.  
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Finally, a solution for the standard problem is given by the following theorem.  

THEOREM 15.2.– based on the conditions of Theorem 15.1, a corrector )(sK  
stabilizing the system and accomplishing γ<∞)(sTew  is described by the state 
representation [15.18]: 

∞ ∞ ∞
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∞ ∞ ∞ ∞ ∞= + − −2ˆ T T T

w w u u yA A B B X B B X Z Y C C  [15.18]  

γ − −
∞ ∞ ∞= − 2 1( )nZ I Y X   

Thus the application of this solution consists of using firstly the results of 
Theorem 15.1 to find an admissible value of γ  (we can use iterations on y by 
exploring through dichotomy a range of values previously chosen). Afterwards, we 
calculate a corrector by applying Theorem 15.2. 

15.1.5. Resolution of the ∞H  standard problem by LMI 

Synthesis by LMI provides another way to solve the standard problem. It is more 
general, since it requires only the hypothesis H1. We shall limit the exposition to the 
case when the condition [15.19] is verified: 

0=yuD  [15.19] 

In the opposite case, we firstly solve the problem by considering fictional 
measure units ŷ  corresponding to this case and we modify a posteriori the corrector 
obtained by carrying out the change of the variable uDyy yu−= ˆ  within its state 
equations. 

The feasibility of the standard problem is tested using the following theorem 
[GAH 94]. 
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THEOREM 15.3.– having the hypothesis H1 and condition [15.19], the problem 
∞H  standard has a solution if and only if there are 2 symmetric matrices R and S, 

verifying the following 3 matrix inequalities:   
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where RN  and SN  form a core basis of )( T
eu

T
u DB  and )( ywy DC , respectively.  

Additionally, the nr <  order correctors exist if and only if the inequalities 
[15.20a, b, c] are verified by the matrices R and S which satisfy the additional 
condition: 

( ) rSRIrankrn
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⎛
 [15.20d]  

The matrix inequalities [15.20a, b, c], which replace Theorem 15.1 conditions 
from i) to v), are closely connected to the unknown parameters R and S: they are 
usually designated by LMI. It is easy to verify that the set of matrices satisfying one 
or several LMIs is a convex set. Specific solvers are dedicated to this kind of 
problems [GAH 95]. 
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We can additionally seek the optimal value of γ  by solving the following 
problem, which is a convex optimization problem: 

 min
,

γ
TT SSRR ==

 under [15.20a, b, c] [15.21] 

From the solutions of matrices R and S in the previous problems, we can 
consider various procedures to form a corrector: explicitly formulae are given 
especially in [IWA 94], whereas [GAH 94] proposes a resolution by LMI, which can 
be summed up as follows.  

Let: 
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with r
cx R∈  being a state representation of the corrector of order nr ≤  sought. 

The closed loop control system in Figure 15.1 has as a state representation:  
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and, based on the “Bounded Real Lemma” [BOY 94], its norm ∞H  is less than y if 
and only if there is a matrix 0>= TXX  that verifies: 
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(which is a bilinear matrix inequality in X , cA , cB , cC , cD ). A suitable matrix X 
can be obtained by performing a decomposition into singular values of SRI n − , 
from where we can infer 2 full rank matrices rnNM ×∈ R,  verifying: 

SRINM n
T −=  [15.24b] 
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which make it possible to determine: 

⎟⎟
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= + NRMN
NS

X T  [15.24c] 

where +M  designates the pseudo-reciprocal of M  ( rIMM =+ ). The inequality 
[15.24a] is therefore an LMI in cA , cB , cC , cD , where the resolution then provides 
a corrector.  

15.1.6. Restricted synthesis on the corrector order  

The two resolution methods presented in the previous sections lead to correctors 
with an order equal to that of the matrix )(sP , which contains the pattern of the 
regulation system increased by the filters expressing the synthesis objectives. 
However, we easily understand that this order, which can be very high, is not 
inevitably necessary to obtain a satisfactory control policy.  

The LMI formulation makes it possible to consider the synthesis H∞  with a 
restricted order. Let nr <  be the order of the corrector sought. It is necessary to 
establish matrices R and S, which are solutions of LMI [15.20a, b, c] and satisfying 
at the same time the restriction [15.20d] (about which we can say that it is always 
verified for nr ≥ ): this restriction leads to the loss of convexity of the set of 
matrices solutions, but heuristic methods dedicated to this type of problem can be 
efficiently used [DAV 94, ELG 97, VAL 99]. 

15.2. The µ-analysis 

The µ-analysis is a technique which makes it possible to study system properties 
in the presence of different uncertainties of the pattern establishment. It should be 
noted that it is no longer a matter of calculating a corrector but, a corrector being 
given, it is about characterizing the robustness it provides to the closed loop control 
system. This technique, which appeared at the beginning of the 1980s, represented a 
major progress, perceptible especially through the change in the judging manner: it 
enables in fact the description and analysis of the properties on a patterns family and 
no longer on an unique pattern about which we know that it is not capable to 
represent the set of possible behaviors of a process. 
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15.2.1. Analysis diagram and structured single value  

The µ -analysis uses the general diagram in Figure 15.7 (where we can observe 
the relationship with the one used in synthesis ∞H ): all the pattern uncertainties are 
reunited in the matrix )(s∆ ; the transfer matrix )(sH – which, in the case of a 
feedback system obviously depends on the corrector – establishes a pattern for the 
interconnections between the inputs w, the objectives e and the signals v and z which 
make the uncertainties possible. 

If the transfer matrix )(sH  can be anything, the situation is not the same for the 
matrix )(s∆ , which generally has a particular structure. Typically, this matrix will 
be block diagonal and consist of, on the one hand real diagonals blocks (representing 
the parametrical uncertainties) and on the other hand, transfer functions (or matrices) 
(representing neglected or uncertain dynamic phenomena):  
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 [15.25] 

where n nH ×
∞R  conventionally designates the set of stable transfer matrices of size 

nn × . Further on, we shall name S the set of all complex matrices having size and 
structure identical to those of )(s∆ : 
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;

,...,,,...,diag 11 1
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 [15.26] 

  

Figure 15.7. Robustness analysis diagram  

In other terms, S∈∆ )(s  for all the values of s. 
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Let M be a square complex matrix having the same size as )(s∆ . We note by *∆  
the transpose-conjugated of ∆ . The structured single value of M, of the set S, is 
defined by: 

( ) ( )( )
( )

µ λ
−

∆∈

⎛ ⎞= ∆ ∆ − ∆ =⎜ ⎟
⎝ ⎠

= ∀∆ ∈ − ∆ ≠

S S

S

1
*: inf ( ) : det 0

: 0  if  det 0

M I M

I M

 [15.27] 

15.2.2. Main results of robustness  

The structured single value makes it possible to establish different results 
[ZHO 96]. Further on, we divide the transfer matrix )(sH in Figure 15.7 into: 
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with 1)dim()dim( nvz ==  and 2)dim()dim( nwe == . 

THEOREM 15.4.– if )(sH is stable, the system in Figure 15.7 is stable for any 
matrix )(s∆ of type [15.25] so that α/1)( <∆ ∞s  if and only if: 

R∈∀ ω , ( ) αωµ ≤)(11 jHS  [15.29] 

If, in addition, β<∞)(22 sH , the system in Figure 15.7 has a norm ∞H  less 
than β  for any matrix )(s∆  of type [15.25] so that β/1)( <∆ ∞s  if and only if: 

R∈∀ ω , ( ) βωµ ≤)( jHS'  [15.30] 

where S'  is obtained by completing S  by any complex matrices having the same 
size as )(22 sH : 

×′= ∆ = ∆ ∆ ∆ ∈ ∆ ∈S' S C 2 2
22 22{ diag{ , } ; ; }n n  [15.31]  

The first result of Theorem 15.4 is clearly a result of the stability robustness with 
pattern establishment uncertainties. The second one is the result of performance 
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robustness because it guarantees that each transfer function )(sT
jiwe  has a gain less 

than 1 for all frequencies. 

15.2.3. Example 

We consider the closed loop control system in Figure 15.8, with a constant 
corrector 2)( =sK . The system to be controlled is characterized by the transfer 
function )(sG , whose nominal expression is: 

( )2
1

)(
as

sG
+

= ;  31 << a  [15.32] 

  

Figure 15.8. Studied system  

In addition, this pattern neglects the high frequency dynamics, which are 
globally represented by a time constant with a maximal value equal to 0.5 s. 

 
To characterize the parametrical uncertainty on the transfer function )(sG , we 

firstly suppose that δ+= 2a , with 11 <<− δ . The transfer function corresponds 
then to the differential equations: 
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δ
 [15.33] 
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(having for instant yy =2 ). In order to separate the uncertainty δ  from the rest of 
the system, in accordance with the general diagram in Figure 15.7, we have: 

⎩
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==
==

2222

1111
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;
zvyz
zvyz

δ
δ

 [15.34] 

Equations [15.33] are then written: 
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 [15.35] 

In order to represent the neglected dynamics, by reiterating the approach 
presented in section 15.1.2, we note that a possible pattern of the system is the 
following: 
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with 5.00 << τ . We can contain this type of patterns within the set of transfer 
functions in the following form: 

( )
( ))()(1

1
)(

2
ssW

as
sG dd ∆+

+
=  [15.37] 

where the filter )(sWd  is chosen according to the previous knowledge of neglected 
dynamics and where )(sd∆  is a restricted norm stable transfer function: 

1)(sup)(
5.01

5.0:)(

<∆=∆
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=

∞ ω
ω

js
s

ssW

dd

d
 [15.38] 

By reuniting these two pattern establishments, we can redraw the block diagram 
of the closed loop control system in the form given in Figure 15.9 (always with 
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2)( =sK ). We easily identify the matrices )(s∆  and )(sH  of the general diagram 

in Figure 15.7 by considering ( )Tdvvvv 21=  and ( )Tdzzzz 21= : 
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Figure 15.9. Diagram used for the robustness analysis  

We can verify that )(sH  corresponds to a stable system and that: 

6/1)(sup)( 2222 ==∞ ω
ω

jHsH  [15.41] 

In accordance with the above results, we define the sets S  and S'  by: 

{ }{ }CRS ∈∆∈∆=∆= ddI ;;,diag 2 δδ  [15.42a] 

{ }{ }CCRS' ∈∆∈∆∈∆∆=∆′= 22222 ;;;,,diag ddI δδ  [15.42b] 
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Figure 15.10 shows an upper bound of µ ωS 11( ( ))H j  according to ω  (obtained 
following an approach which will be presented in the next section). Its value remains 
less than 0.7 for any ω . We infer from this that the closed loop control system is 
stable for any )(s∆  with the structure [15.39] such that: 

⎪⎩
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<

⇔<∆
∞

∞ 7.0/1)(
7.0/1

7.0/1)(
s
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 [15.43] 

The first condition is equivalent to a condition on a, which is presented below. 
From the second condition we can infer a maximal value for τ  by noticing that: 

27.0
1)()(7.0/1)(

+
<∆∀⇔<∆ ∞ ω

ωωωω
j

jjjWs ddd  [15.44] 

If we apply this inequality to our particular case, i.e.:  

1
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+
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=∆
s

s
ssW dd τ

τ
 [15.45] 

we infer from it a maximal admissible value for τ : 
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We can finally state that the closed loop control system is stable if:  
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 [15.47] 

Figure 15.10b shows an upper bound of ( )( )H jµ ωS' according to ω . Its value 
remains less than 0.89 for any ω . We infer from here that the closed loop control 
system preserves a norm ∞H  less than 0.89 for any )(s∆  of structure [15.39] such 
that 12.189.0/1)( =<∆ ∞s , which is a condition accomplished for: 

⎩
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<<

56.00
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τ
a

 [15.48] 
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a) Robustness of stability 

 
b) Robustness of performance 

Figure 15.10. Upper bounds of the structured single value  

15.2.4. Evaluation of structured single value 

The calculation of the structured single value is recognized since the beginning 
as a difficult mathematical problem (except for simple cases, it is part of the 
problems with non-polynomial complexity). Nevertheless, we know how to search 
various upper bounds by solving optimization problems under LMI constraints. This 
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means that the following sets of matrices, whose structure is inferred from that of 
the set S: 

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∈

=
= × RC

D
i

rr
i

nqnr

dD

IdIdDDdiagD
ii

q

;

,,,,,
111  [15.49a] 

{ 0}D ; D D
H

∗= ∈ = >D D  [15.49b] 
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The set D consists of matrices which can be substituted by any matrix of S: 
DD ∆=∆ ; the set DH is formed of Hermitian matrices positively defined by D; the 

set G is formed of Hermitian matrices (not necessarily defined) such that for any 
matrix of S: GG ∗∆=∆ : in fact the single non-zero blocks of matrices G 
correspond to real blocks of ∆ . 

We then demonstrate the following results [YOU 95, ZHO 96]. A first upper 
bound is obtained by using only the matrices D: 

( ) ( )121
1 min −∗−

∈
∗ =≤ DMDMDM

D
λγµ

DS  [15.50a] 

This first upper bound can be calculated by solving the following optimization 
problem: 

111 minmin γγγ
HDD DD ∈∈

∗ ==  under the constraints:  [15.50b] 

01 ≥γ  [15.50c] 

02
1 ≤−∗ DMDM γ  [15.50d] 
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If the matrices )(s∆  contain real blocks, a more precise upper bound is obtained 
by using in conjunction the matrices D and G: 

( ) ∗≤ 2γµ MS  with [15.51a] 

222 minmin γγγ
G
D

G
D

∈
∈

∈
∈

∗ ==

G
D

G
D H

 under the constraints: [15.51b] 

02 ≥γ  [15.51c] 

0)( 2
2 ≤γ−−+ ∗∗ DGMMGjMDM  [15.51d] 

The interest of these formulations is that, with fixed 1γ  and 2γ , the inequalities 
[15.50d] and [15.51d] are LMIs, in D or in D and G respectively. The calculation of 

∗
1γ  and ∗

2γ  can be performed by using regulators dedicated to this type of problem 
[BAL 93, GAH 95]. 

The approach usually used to perform a µ-analysis consists of searching an upper 
bound of ( ))(11 ωµ jHS  or ( ))( ωµ jHS'  for a previously chosen set of values for 
ω . If these functions are regular enough (which unfortunately is not always the case 
[PAC 93]), we obtain quite easily upper bounds of their maximum: based on the 
results in section 15.2.2, this is the information we need in order to conclude on the 
issues related to stability robustness or the performances robustness. This approach 
has been used in the example of section 15.2.3. 

15.3. The µ-synthesis 

15.3.1. A H∞ robust synthesis  

In an interesting manner, the µ-synthesis combines the two previous approaches 
by searching an answer to the following problem: can we determine a corrector 
which guarantees that the norm ∞H  of a closed loop control system remains less 
than a given γ  level, this system being submitted to different pattern uncertainties?  

In order to approach this problem, we consider the block diagram in Figure 
15.11, which combines the diagram of ∞H  standard synthesis (Figure 15.1) and that 
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of µ-analysis (Figure 15.7). As in the previous section, the uncertainties )(s∆  have 
the general structure: 

{ }
ii

r
nn

ii

qrrr

Hs

ssIIs
×

∞∈∆∈

∆∆=∆

RR )(;

)(,...),(,,...,diag)( 11 1

δ
δδ

 [15.52] 

 

Figure 15.11. The problem of robust synthesis  

and we shall suppose that each uncertainty has a norm bounded by 1: 

] [
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i
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 [15.53] 

Moreover, by supposing that the level γ  to be satisfied is equal to 1 (we can 
always return to this case by integrating the value of γ  in the matrix )(sP ), the 
problem is the following: to establish a corrector )(sK  so that the norm ∞H  of the 
transfer of w  toward e should be less than 1 for any )(s∆  of type [15.52] such that 

1)( <∆ ∞s . 

Let )(sT  be the transfer between Twv )(  and Tez )(  of the closed loop system 
through )(sK  (Figure 15.11). Based on the results in section 15.2.2, this property is 
verified if and only if: 

R∈∀ ω , ( ) 1)( ≤ωµ jTS'  [15.54] 



504     Analysis and Control of Linear Systems  

where the set S'  is defined as in [15.31]. Establishing a corrector verifying [15.54] 
is called a µ-synthesis problem [ZHO 96]. Unfortunately, except for simple cases, it 
has no solution known nowadays. Therefore, we have to try to solve it by using an 
alternative method.  

15.3.2. Approach by D-K iterations 

However, based on the results in section 15.2.4, an inequality of the following 
type is verified for each value of ω: 

( ) ∗≤ ωγωµ )( jTS'  with [15.55a] 

ωω γγ
ω D′

=
∈

∗
D

min  under the constraints:  [15.55b] 

0≥ωγ  [15.55c] 

0)()( 2 ≤−− ωωω γωω DjTDjT T  [15.55d] 
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The set D'  is formed of matrices which can be substituted with any matrix of 
S' . A more realistic problem consists of searching a corrector )(sK  and a stable 
transfer matrix )(sD  so that its reverse 1)( −sD  is stable and can be substituted with 
any matrix of S' , such that: 

1)()()( 1 <
∞

−sDsTsD  [15.56] 
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In fact, condition [15.56] will ensure that: 
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Let us note that the constraint of having D(s) and 1)( −sD  as stable is necessary 
in order to have a corrector which stabilizes the transfer matrix which appears in 
[15.56]. 

 
Once more, this problem has no generally known solution, but we can try to 

solve it by searching alternative matrices K(s) and D(s). In fact: 

– calculate fixed K(s) to D(s) is nothing else than a problem of synthesis ∞H , 
corresponding to the block diagram in Figure 15.12; 

– with fixed K(s), the search for D(s) can be conducted by calculating the upper 
bound [15.55] for a set of previously chosen values of ω  and then by interpolating 
the matrices ωD  obtained by a stable and inversely stable transfer matrix. 

These two steps are repeated until the convergences of matrices ωD  or the 
fulfillment of condition [15.54]. This procedure is named D-K iteration. 

 

Figure 15.12. ∞H  standard problem solved  during D-K iterations 

We note that if the calculation of K(s) on the one hand and the calculation of 
each matrix ωD  on the other hand are perfectly solved problems, the procedure 
convergence is ensured only if D(s) perfectly interpolates the matrices ωD . In 
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practice, we are limited to a rough interpolation, meaning that we lose any guarantee 
of the convergence of the D-K iteration.  

We should also note that the ∞H  synthesis which provides K(s) uses an 
interconnection matrix PD(s) which contains the matrices D(s) and D(s)–1 (Figure 
15.12): the corrector order obtained by the Riccati equations (section 15.1.4) or by 
LMI (section 15.1.5) will then be equal to the PD(s) order, which increases along 
with the order chosen for D(s) during the interpolation of matrices ωD . 

This procedure is obviously heavier insofar as the number of uncertainties taken 
into account in )(s∆  is significant. An intelligent use of this technique consists of 
using it with a limited number of uncertainties and taking care to choose those which 
are the most penalizing for the synthesis. After that, we shall perform a much more 
refined analysis of robustness, the µ-analysis procedure developed within section 
15.2 not presenting the same inconvenient.  

15.3.3. Example 

Let us recall the example presented in section 15.2.3 in order to illustrate the µ-
analysis. We had established that having a constant corrector K(s) = 2, the 
robustness analysis tracked by using the diagram in Figure 15.9, made it possible to 
guarantee an ∞H  norm less than 0.89 for any value of the parameters verifying 
inequalities [15.48]. 

We want to enhance this result by calculating the corrector K(s) by µ-synthesis. 
For that, we will apply the D-K iterations procedure by identifying the transfer T(s) 
which used to appear during the development of the previous section at the transfer 
H(s) in Figure 15.9. The matrices ωD  which intervene in the synthesis procedure 
will be contained in the following set ′D : 

{ }{ }CD ∈==′ idddddiagD ;1,,, 321  [15.57] 

Let us note that we choose the diagonal matrices to limit the number of transfers 
to determine at the moment of interpolation (whereas the presence of a repeated 
uncertainty 2Iδ  would authorize to replace the first two elements with a plain 
matrix 2 × 2). Additionally, the procedure does not make a difference between real 
and unreal uncertainties. These two remarks show that the family of the patterns to 
be considered forms an over-set of those in which we are directly interested. 

The D-K iterations have been conducted by choosing to interpolate each element 
of the matrices ωD  by a first order transfer function and by using the software 
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[BAL 93]. The maximum of the ( ))( ωµ jHS' upper bound, calculated in 
accordance with the selection performed in [15.57] by considering four complex 
uncertainties, is established at the end of four iterations on an order value of 0.72. 

By recalculating ( ))( ωµ jHS' as in section 15.2.3 (i.e. with one real repeated 
uncertainty and two complex uncertainties), we obtain a hardly different value, 
namely 0.697 (Figure 15.13.a). We infer from this that the closed loop control 
system preserves an ∞H  norm less than 0.697 for any value of the parameters 
verifying the inequalities: 
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τ
a

 [15.58] 

The matrix )(sD obtained after the last iteration is given by: 
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The obtained corrector is of 9th order (equal to the sum of orders of G(s), Wd(s), 
D(s) and D(s)–1), but it can be easily reduced to a 2nd order transfer function whose 
expression is: 

( )( )100/113.68/1
062.1/114.1)(

ss
ssK

++
+=  [15.60] 

The Bode diagram for this corrector is given in Figure 15.13b. 

15.4. Synthesis of a corrector depending on varying parameters  

15.4.1. Problem considered and L2 gain 

 The use of a fixed corrector, even “robust”, is not conceivable for a process 
whose parameters vary strongly or rapidly. In this section, we shall suppose that the 
process to be controlled can be described by a linear system with variable 
parameters (LVP system), whose general form is the following. 



508     Analysis and Control of Linear Systems  

 
b) Performance robustness  

  
b) Bode diagram of the corrector  

Figure 15.13. Results of µ-synthesis 

)(θP : 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

)(
)(
)(

)()()(
)()()(
)()()(

)(
)(
)(

tu
tw
tx

DDC
DDC
BBA

ty
te
tx

yuywy

euewe

uw

θθθ
θθθ
θθθ

 [15.61] 

where θ θ θ θ= 1 2( ) ( ( ), ( ), ..., ( )) T
pt t t t  is a vector with time depending parameters, 

each component of )(tθ  having the possibility to be measured in real-time. This last 
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hypothesis enables us to search for a corrector )(θK  in the same form (Figure 
15.14). 

 

Figure 15.14. System and corrector depending on parameters  

It is suitable first of all to define a measure for the performances to be reached. 
For this, we can generalize the concept of ∞H  norm (which is applicable only to 
invariant systems) in the following way; let )(2

nL R  be the set of signals )(ts  with 
+R  in nR  whose 2L  norm: 

∫
∞= 02 )()(: dttstss T  [15.62] 

is limited. The 2L  gain of the system in Figure 15.14 is then defined by:  

2

2

)(
sup

2
w

e

Ltw ∈
=γ  [15.63] 

The synthesis problem we are going to consider is to establish a corrector )(θK  
depending on the parameters which ensure the stability of the closed loop control 
system in Figure 15.14 for any possible evolution of )(tθ , while providing to the 
closed loop control system a 2L  gain between w and e less than a given value y. 
Further on, we consider two versions of this problem corresponding to two pattern 
establishments different from the process and from the corrector.  

15.4.2. Polytopic approach  

Let us suppose that each parameter )(tiθ  could have any value within a range of 
type ][ ; ii θθ . The vector )(tθ  can then have any value within a section of pR . 
We shall note by p

i i 2,,1, =π  the peaks of this section. If equations [15.61] of 
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the system to be controlled are connected in )(tθ , each matrix of its state 
representation evolves within a “polytope” whose peaks are successively obtained 
by considering p

i it 2,,1,)( == πθ . More specifically, at any moment t, the 
vector )(tθ  can be expressed as a barycenter of the peaks iπ : 
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and the state representation matrices [15.61] are expressed based on the same 
coefficients iα : 
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It then seems possible to search for a corrector: 
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whose state representation matrices are expressed once more based on the same 
linear combination: 
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Further on, we shall suppose that the following hypotheses are verified: 

H5) 0)( =θyuD  or in an equivalent  manner 0)( =iyuD π  for pi 2,,1= ; 

H6) )(θuB , )(θyC , )(θeuD  and )(θywD  are independent of θ , or in an 
equivalent manner:  

uiu BB =)(π , yiy CC =)(π , euieu DD =)(π , ywiyw DD =)(π , pi 2,,1=  
 [15.68] 
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H7) for any possible evolution of )(tθ  within the top peaks iπ , )( ),( uBA θ  can 
be quadratically stabilized and )( )(, θAC y  can be quadratically detected, or in an 
equivalent manner there are real symmetric matrices 0>X  and 0>Y  satisfying 
respectively the followings LMIs: 

0)( <+ ui
T

i
T

u AXXA NN , pi 2,,1=  [15.69a] 

0)( <+ y
T

ii
T

y AYYA NN , pi 2,,1=  [15.69b] 

where uN  and yN  form a base of the cores of T
uB  and yC  respectively. 

The feasibility of the problem presented is tested by using the following theorem 
[APK 95a]. 

THEOREM 15.5.– having the hypotheses H5, H6, H7, there is a corrector 
stabilizing the system in Figure 15.14 and ensuring an 2L  gain less than y for any 
possible evolution of )(tθ within the top peaks iπ , if and only if there are two 
symmetric matrices R and S verifying the following three matrix inequalities: 
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where RN  and SN  form a base of cores of )( T
eu

T
u DB  and )( ywy DC  

respectively.  

Inequalities [15.70], calculated on inequalities [15.20.a, b, c] of the ∞H  
synthesis problem are LMIs in R and S. We note that, unlike the ∞H  problem, the 
first two inequalities are both replaced by a system of p2 inequalities which must be 
simultaneously verified by the same matrix R or S. 

After the resolution of this inequality system, the construction of matrices 
)( iKA π , )( iKB π , )( iKC π , )( iKD π can be done, for every peak iπ , by following 

the approach presented in section 15.1.5 for the construction of the ∞H  corrector. 
The final corrector is hence obtained by the formula [15.67]. It is actually dependant 
on the evolution of )(tθ  because, at the moment I, we have to infer from )(tθ  the 
values of the coefficients iα , from where we infer the corrector matrices. We 
understand that this operation can become tedious if the number of variable 
parameters taken into account within the synthesis is increased. 

15.4.3. A more general approach  

Let us take again as departing point equations [15.61]. When the different 
matrices of this state representation depend on )(tθ  in a rational manner, this 
system can be presented like in Figure 15.15, where an invariable system described 
by the matrix )(sP  is looped by a matrix Θ ( )t  isolating the parameters: 

θ θ θΘ =
1 21 2( ) ( ( ) , ( ) , ..., ( ) )

pn n p nt diag t I t I t I  [15.71] 

This operation is similar to the one necessary in order to perform a µ-analysis. 
We can search for this system a corrector in the same form, i.e. presented as the 
looping of an invariant system of transfer matrix )(sK  and of a response of matrix 

)(tΘ  (Figure 15.15). 
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Figure 15.15. Structures of the system and of the corrector  

Without being any less general, we can always suppose that the elements 
contained into )(tΘ  have been standardized, so that: 
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Further on, we shall note the state representation of )(sP in the form: 
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and we shall suppose as verified the following hypotheses: 

H8) 0=yuD ; 

H9) ( )uBA,  can be stabilized and ( , )yC A  can be detected. 
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As in the case of µ-analysis, we define a set of matrices calculated on the 
structure of the matrix Θ ( )t : 

{ }{ }0;;,,1 >=∈== × Tnn
ipH LLLLLdiagL iiRL  [15.74] 

The feasibility of the problem presented is tested using the following theorem 
[APK 95b]. 

THEOREM 15.6.– having the hypotheses H8, H9 there is an corrector stabilizing 
the system in Figure 15.15 and ensuring an 2L  gain less than y for any possible 
evolution of )(tθ  verifying [15.72] if and only if there are two pairs of existing 
symmetric matrices nnSR RR ×∈),(  and HHJL LL ×∈),( , verifying the 
following three matrix inequalities:  
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where RN  and SN  form a base of cores of )( 2
T

eu
T

u
T DDB θ  and 

)( ywyy DDC θ  respectively. 
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Based on matrices R , S , L  and J , a corrector responding to the problem can 
be built following an approach similar to that presented in section 15.1.5 for the ∞H  
corrector  [APK 95b]. 

This second approach covers a range of systems wider than that of the polytopic 
systems because the dependence in )(tθ  is supposed to be rational (and not 
necessarily connected). Moreover, it does not require expressing )(tθ  at each 
moment as the baric center of different peaks of its evolution field. On the other 
hand, it requires putting the system in the form of Figure 15.15. The resolution uses 
two additional matrices, but the number of LMIs to be verified is smaller. 

15.4.4. Example 

We consider a system described by the following state equations:  
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txtz

tvtxtx
δδ  ; 21.0 ≤≤ δ  [15.76] 

This system corresponds to an integrator followed by a first order transfer whose 
time constant varies between 7.5 and 150 ms.  

Taking into account the range of values of δ  given below, we are going to 
search for a corrector which minimizes the 2L  gain of the system described in the 
block diagram in Figure 15.16. On this appear two exogenous inputs 1w , 2w  which 
act, one in the system’s output (and which represents, for example, a setting input) 
and the other at the input and two outputs 1e , 2e  which correspond to the feedback 
error and to the control (this type of problem is rather usual within ∞H  synthesis 
[DUC 99]). 

 

Figure 15.16. Synthesis problem considered  
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The system being polytopic, we can apply the approach of section 15.4.2, by 
defining the peaks 1π  and 2π  from two extreme values of δ . Certainly, it does not 
verify hypotheses [15.68] but we can modify the problem by adding at the system 
input a filter of negligible constant time fT : 
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Further on, we have considered ms1.0=fT . The minimization of γ  under 
constraints [15.70], based on the software [GAH 95], leads to the value 37.9=γ . 
The correctors corresponding to each peak are given by: 
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The parameter δ  is expressed according to the peaks 0.1 and 2 by the 
expression: 

( )
9.1

2121.0 δαααδ −=⇔−+=  [15.79] 

the parameterized corrector in δ  has the following state representation: 
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Figure 15.17a shows the response of the output )(tz  and of the control )(tv  to 
an amplitude interval –1 on the input 1w , the parameter δ  evolving throughout this 
response in accordance with the relation ( )tt 50cos95.005.1)( +=δ . We note that, 
despite a very brutal variation of δ  during this transient, the response is very well 
damped and the control is very smooth. 

Figure 15.17b shows the output in response to the same input signal, this time for 
constant values of δ , which are contained between 0.1 and 2. We note that the 
various responses are relatively homogenous despite this strong parametrical 
dispersion. A synthesis of a fixed corrector, even with all issues identical, does not 
make it possible to obtain this result. 

 

a) Response with parametric variation 

 
b) Fixed parameter response 

Figure 15.17. Unit-step responses with LVP corrector  
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15.5. Conclusion 

In this chapter, we noted that the concepts inferred from the ∞H norm connected 
with the matrix inequalities make it possible to implement very strong analysis and 
synthesis tools. The developments presented here have many extensions within the 
contemporary works. See [DUC 98, DUC 99] for a more complete bibliography on 
this subject. 
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Chapter 16 

Linear Time-Variant Systems 

The complexity of the physical phenomena studied cannot be reduced to only 
one modeling by linear dynamic systems with constant coefficients. These models 
are sometimes poorly adapted because, for example, they can only deal with 
magnitudes having an exponentially decreasing correlation. However, in fields full 
of variety such as hydrology [HUR 65], electronics [VAN 88], traffic [RIE 97, WIL 
95], electrical engineering [CHA 81] and mechanics [CLE 98, ZHU 96], there are 
many situations that generate behaviors that do not obey these quite simple models. 
Therefore, in the last 30 years, new analysis models and tools have appeared. In this 
perspective, one of the goals of research is to extend the class of linear dynamic 
systems by including those for which the coefficients vary in time. These variations 
can be divided into two classes. The first class concerns the sudden non-
stationarities or “failures” characterized by time intervals where the coefficients are 
constant. The non-stationarity is due only to the presence of instantaneous shifts in 
their values. This modeling is found, for example, in the field of monitoring and 
diagnostic [BAS 93]. As such, the problem is to essentially detect the instants of 
change as well as the amplitude of the parametric shifts. The second class pertains to 
the systems where the coefficients are functions of time. When these dynamics are 
“slow” with respect to those of the system, they can be dealt with through adaptive 
techniques.  

 However, there are also many cases in which the evolution of parameters is 
“fast” (T-periodic systems [RAB 92], auto-similar systems [GUG 01], etc.). This 
last category makes the development and the implementation of specific methods in 

                                   
Chapter written by Michel GUGLIELMI.   
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both the control and identification fields indispensable. Firstly, it is important to 
have the basic mathematical tools indispensable to their analysis. 

This chapter is dedicated to the analysis of the dynamic systems required by the 
linear differential equations with time-variant coefficients. The approach presented 
consists of an approach parallel to that adopted for the constant coefficient systems. 
The Laplace transform, even if it can be always applied to the input/output 
magnitudes of the system, can no longer be used in order to define the transfer 
function of these systems. 

However, this transfer concept can, despite everything, be extended to the non-
stationary linear differential systems provided they operate on the non-commutative 
body of rational fractions. This body is isomorphic to the group generated by the 
non-stationary linear dynamic systems. Hence, we can elaborate the composition 
rules of these systems with the help of the algebraic rules applied to the transfer 
functions. The results obtained can be used in order to solve control or/and 
identification problems. 

This chapter deals, in the first place, with the construction of the non-
commutative polynomial ring and of the body of related rational fractions. As in the 
traditional case, the relation between the basic properties of dynamic systems 
(stability, etc.) and the characteristics of the elements of the body of fractions (poles, 
etc.) can be established. The second part pertains to the construction of the systems: 
serialization or/and parallelization. It is possible, for each association diagram, to 
write the transfer function of the system composed with the help of simple algebraic 
rules. Finally, based on these results, two applications illustrate the use of the results 
obtained. The first one concerns the modeling of multi-component polynomial phase 
signals and the second is dedicated to the design of a pole placement control law.  

16.1. Ring of non-commutative polynomials 

Let )(λΠ  be the set of polynomials of degree n: 

{ [ ] }niKtatatataP i
n

n
n

n ,1)()()()()()( 0
1

1 ∈∀∈++λ+λ=λ=λΠ −
− …  

Let K be a differential body, i.e. a body on which is defined a derivation operator 
∀ ∈( )da dt a t K  (noted from now by a� ) which will satisfy the traditional derivation 

properties:  

+ = + = +��
. . . .

( ) anda b a b ab ab ab  
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when coefficient )(tan  is equal to 1, polynomial )(λP  is standardized. 

The set )(λΠ  including addition and multiplication which satisfies: 

)()()(,)(
.

tatataKta +λ=λ∈∀  

has a non-commutative ring structure [ORE 33].  

16.1.1. Division and the right highest divisor (RHD) 

∀ )(1 λP , )()(2 λΠ∈λP ⊗ )(λΠ  

insofar as 
21 PP nn ≥  (where  Xn  represents the degree of λ( )X ) there is a unique 

pair of polynomials λ λ[ ( ), ( )]Q R so that: 

)()()()( 21 λ+λλ=λ RPQP  with Rn  < 
2Pn  

We can infer Euclid’s division algorithm: 

)()()()( 3211 λ+λλ=λ PPQP   

 ….  …  … 

)()()()( 211 λ+λλ=λ −−− nnnn PPQP  

The RHD of )(1 λP , )(2 λP  is then defined as the standardized polynomial 
resulted from )(λnP . 

16.1.2. Right least common multiple (RLCM)  

It is then possible to define the RLCM of )(1 λP , )(2 λP  as the lowest degree 
standardized polynomial divisible on the right by both )(1 λP  and )(2 λP . 

)()()()()( 2211 λλ=λλ=λ PQPQM  
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Generally, the existence of the Euclidian division implies the existence of the 
RHD [ORE 33].   

16.1.3. Explicit formulation of RLCM 

Based on all the factors of the Euclidian division, it is possible to express the 
RLCM: 

[λ α λ λ λ λ λ λ λ− − −
− − −= 1 1 1

1 2 1 2 3 1( ) [ ( )] [ ( )] [ ( )] [ ( )] .... [ ( )] ( )] [ ( )]n n n nM P P P P P P P  

The constant )(tα  (which does not depend on λ) is such that polynomial )(λM  
is normalized. 

NOTE.– the product of two polynomials 1 2( ) ( )P Pλ λ  cannot generally be divided on 
the right by )(1 λP  which makes the use of all the terms of the Euclidian division 
compulsory in the expression above. 

)(λM  is a polynomial and writing it in the inverse form is basically a useful 
notation. 

By applying the same approach, we can define the left highest divisor and the 
left least common multiple. 

16.1.4. Factoring, roots, relations with the coefficients 

Any polynomial )(λP  can be factorized in the general form: 

))(())(())....(())(()()( 121 tptptptptP nn −λ−λ−λ−λα=λ −  

The roots of )(λP  are provided by the solutions of equation 0)( =λP . 

The relation between the roots and the coefficients of )(λP  is a non-linear 
differential equation [KAM 88]: 

0)()()()()()( 0
1

1
1

1

2

1 =+++ −−
−

− ∑ tatpStatpStatpS n
n

n
i

n

in
n  
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where S is the operator defined by: 

2)()(

)()()(

)(1

.
2

1

≥∀+=

+=
−− iStptpS

tptptSp

dt
pSdi

nn
i

nnn
i

 

EXAMPLE 16.1.– let us consider the second degree polynomial: 

))())((()()()( 2101
2 tptptataP −λ−λ=+λ+λ=λ   

From the following relations: 

)()()( 121 tatptp −=+ and )()()()( 02

.

21 tatptptp =−  

we infer that the roots are solutions of: 

0)()()()()( 0212

.
2
2 =+++ tatptatptp  

Particular case: 0)(0)()( 2
01 =λ=λ⇒== Ptata  

21 22 21 22
1 1( ) ( ) 0 and ( ) , ( )p t p t p t p t k

t k t k
⇒ = = = − = ∀ ∈ℜ

+ +
 

Hence, the factoring of )(λP : 

ℜ∈∀
+

−λ
+

+λ=λ=λ k
ktkt

P )
1

)(
1

()( 2  

16.2. Body of rational fractions 

In general it is not possible to define a body of rational functions from 
polynomials for which the unknown factor and the parameters cannot be switched 
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(skew). However, if the polynomials verify the two following conditions called ORE 
[AMI 54]: 

1 2

1 2 2 1 1 2

( ), ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ), ( ) so that ( ) ( ) ( ) ( )

P P

P P P P P P

λ λ Π λ Π λ

λ λ λ λ λ λ

∀ ∈ ⊗

∃ =
 (condition on the left)  

and: 

λ λ λ λ
λ λ λ λ λ λ

∀ ∈ Π ⊗ Π

∃ =� � � �
1 2

1 2 1 1 2 2

( ), ( ) ( ) ( )

( ), ( ) so that ( ) ( ) ( ) ( )

P P

P P P P P P
 (condition on the right)  

it is possible to consider the set: 

{ }
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F P Q P Q

Q P P Q

λ λ λ λ Π λ λ Π λ

λ λ λ Π λ λ Π λ

−

−

= ∀ ∈ ∀ ∈ =

∀ ∈ ∀ ∈
 

where λ λΠ = Π −*( ) ( ) {0}  which has a body structure [ZHU 89]. 
 

NOTE.– the inverse of polynomial )(λP  is unique and verifies: 

λ λ λ λ− −= =1 1( ) ( ) ( ) ( ) 1P P P P  

16.3. Transfer function 

In the case of linear systems with constant coefficients, the transfer function is 
defined as the ratio between the Laplace transforms of the output and those of the 
input. When the coefficients are time functions, it is possible to extend this concept 
of transfer function which preserves certain properties obtained in the traditional 
case even if it does not represent any longer the ratio between the Laplace 
transforms of the pair input/output. 
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Let ∑ )(
dt
d  be the set of n degree single-variable systems described by the 

linear differential equation with variable coefficients belonging to a derivable body 
K: 

− −+ + + = + + +" "( ) ( 1) (0) ( ) ( 1) (0)
1 0 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n

n ny t a t y t a t y t b u t b t u t b t u t  

with = =( ) ( )( ) ( ) , ( ) ( )i i i i i iy t d y t dt u t d u t dt  

It is easy to show that this set, consisting of two internal operations (serialization 

and parallelization) is a body. Hence, the application of ∑ )(
dt
d 1 on )(λF  is an 

isomorphism. 
  
Therefore, system Σ  can be formally described by its transfer function:  

)()()( 1 λλ=λ − PQH  

where: 

1 1
1 0 1( ) ( ) ( ) , ( ) ( ) ( )n n n n

n nQ a t a t P b b t b tλ λ λ λ λ λ− −= + + + = + + +" "  

16.3.1. Properties of transfer functions 

THEOREM 16.1.– two transfer functions )(1 λH  and )(2 λH  are equivalent if and 
only if there is a polynomial )(λD  such that [KAM 88]: 

λ λ λ λ λ λ= =1 2 1 2( ) ( ) ( ) and ( ) ( ) ( )P D P Q D Q  

The transfer function )(1 λH is said to be minimal if the numerator and 
denominator are first on the right.  

                                   

1 Henceforth, )(
dt
dΣ  will be simply noted by Σ . 
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16.3.2. Normal modes 

If we make the homogenous equation:  

( ) ( 1) (0)
1( ) ( ) ( ) ( ) ( ) 0n n

ny t a t y t a t y t−+ + + ="  

correspond to the polynomial equation 0)( =λQ , we show that if )(tqn  is a root of 

)(λQ , then 
∫ ττ
t

n dq
e 0

)(
 is a normal mode of the system. 

 
EXAMPLE 16.2.– for 0)()2( =ty  which corresponds to: 

λ λ+ − ∀ ∈ℜ =+ +
1 1( )( ) 0kt k t k .  

A root kt +
1  provides the normal mode: kte

t

dk
+=

∫ τ+τ
0

)(1
 (well known). 

16.3.3. Stability 

The solutions of the homogenous equation form a vector space of size smaller or 
equal to its n degree [AMI 54, ZHU 89]. 
 

The general solution is written: 

∑
∫

=
ττ

i

dq

i

t

i

ecty 0

)(
)(  

We infer that the system is stable if: 

itq
t

i ∀<ℜ
∞→

0))((lim  

where ℜ  means real part. 
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16.4. Algebra of non-stationary linear systems 

A major interest in the transfer function is due to the possibility of easily 
calculating the transfer function of associated systems, either serially or in parallel.  

16.4.1. Serial systems 

Let 1∑  and 2∑  be two systems of transfer functions )()()( 1
1

11 λλ=λ − PQH  and 
)()()( 2

1
22 λλ=λ − PQH respectively; the transfer function of the system ∑  obtained 

by serializing 1∑  and 2∑  can be calculated as follows: 

 
 

Let )(λM  be the RLCM of )(2 λP  and of )(1 λQ : 

)(Q)(Q̂ )()(ˆ)( 1122 λλ=λλ=λ PPM  

then we have: 

)()()()(ˆ)(ˆ)(

)()()()(ˆ)(

)()()()(ˆ)(ˆ)(

)()()()()()()(

1
1

111
1

2
1

2

1
1

1
1

2
1

2

1
1

122
1

2
1

2

1
1

12
1

212

λλλλλλ=

λλλλλ=

λλλλλλ=

λλλλ=λλ=λ

−−−

−−−

−−−

−−

PQQQPQ

PQMPQ

PQPPPQ

PQPQHHH

 

and finally: 

λ λ λ λ λ−= 1
2 2 1 1

ˆ( ) [ ( ) ( )] ( ) ( )H P Q Q P  

EXAMPLE 16.3.  

1 1 1 2 2 2 1
1 1 1 1

1 1 1 2 2 2

Si  ( ) 1 ( ) ( ) and ( ) 1 ( ) ( )

( ) ( ) ( ) ( 1 ) ( ) ( ) ( ) ( 1 )

y t t y t u t y t t y t y t

H Q P t H Q P tλ λ λ λ λ λ λ λ λ− − − −

∑ + = ∑ − =

= = + = = −

� � �
 

we obtain: tPPM 1)(Q)(Q̂ )()(ˆ)( 1122 +λ=λλ=λλ=λ  and 1)( −λ=λH  

so )()( tuty =∑ �  

If
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16.4.2. Parallel systems 

Let 1∑  and 2∑  be two systems of transfer functions )()()( 1
1

11 λλ=λ − PQH  and 
)()()( 2

1
22 λλ=λ − PQH  respectively; the transfer function of the system ∑  obtained 

by putting 1∑  and 2∑  in parallel is provided by: 

 
 

Let )(λM  be the RLCM of )(1 λQ  and )(2 λQ : 

)()(ˆ)(Q)(Q̂ )( 2211 λλ=λλ=λ QQM  

then we simply have: 

))()(ˆ)()(ˆ)(()(

)()()()()()()(

2
1

21
1

1
1

2
1

21
1

121

λλ+λλλ=λ

λλ+λλ=λ+λ=λ
−−−

−−

PQPQMH

PQPQHHH
 

EXAMPLE 16.4. 

)()(1)( 111 tutytty =+∑ � and )()(1)( 222 tutytty =−∑ �  

1
2

1
22

1
1

1
11 )1()()()()1()()()( −−−− −λ=λλ=λ+λ=λλ=λ tPQHtPQH  

gives: tttttM 21)1)(2()1()( 2 +λ+λ=−λ+λ=+λλ=λ  

and )1(2)21()( 12 tttH +λ+λ+λ=λ −  

or: ))(
1

)((2)(
2

)(
1

)( tu
t

tuty
t

ty
t

ty +=++∑ ����  
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16.5. Applications 

In this section, two types of usage of this algebra are presented in the field of 
modeling and control. 

16.5.1. Modeling  

One of the methods of signal and control processing consists of designing 
models capable of representing the magnitudes in question. Hence, models MA, AR, 
ARMA with constant coefficients have been very successful due to their capability 
to characterize a sufficiently large variety of dynamic behaviors. Their properties 
were the object of numerous studies and their applications are extremely diversified. 
However, these models are sometimes insufficient. A current approach is, similarly 
to the one that facilitated the traditional models MA, AR and ARMA, the research 
for new models taking into account the highly non-stationary character. 

 We can illustrate this requirement for the modeling of polynomial phase signals, 
which we frequently encounter in physics, especially for processing signals coming 
from radar, sonar, etc. These signals are non-stationary with frequency 
characteristics that continuously evolve in time with variation speeds that may be 
significant. The dynamic model of the single-component signal is very easy to 
establish, whereas that of the multi-component signal is very complex. However, 
this is indispensable when we deal, for example, with the problem of multiple 
trajectories due to reflections. The algebra developed here makes it possible to 
create the complete dynamic model. 

Let us consider the following multi-component signal: 

)(

11

2
2)()( ii ttj

n

i
i

n

i
i eatyty γ+β+

==

α

∑∑ ==  

It corresponds to a signal (“chirp”) recorded from a main trajectory to which are 
associated n – 1 reflections. 

 
For each component )(tyi , it is easy to obtain the differential equation that gives 

it: 

[ ]nitytty
t

ty iii
i

i ,10)()()()( 2 ∈∀=β+α+
β+α

α− ���  
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However, obtaining the one that governs the sum )(ty  requires the use of the 
results presented in the previous section. 

Formally, from: 

[ ]αλ λ α β λ
α β

⎡ ⎤
− + + = = ∀ ∈⎢ ⎥+⎣ ⎦

2 2( ) ( ) [ ( )] ( ) 0 1,i i i i
i

t y t P y t i n
t

 

we obtain for )(ty : 

λ λ λ= =[ ( )] ( ) 0 with ( ) . . . . .( ( ))iM y t M P P C M D P   

16.5.2. Pole placement 

Let us consider the system )(Σ  written by its transfer function 
)()()( 1 λλ=λ − BAH , is there a looping defined by )()(1 λλ− PQ  so that the closed 

loop transfer has a dynamics set a priori by a polynomial )(λC ? 

 

 
From uByA )()( λ=λ , λ λ=( ) ( )Q r P y  and cyru +−=  we obtain: 

cyQyPuQ

uByA

)()()(

)()(

λ+λ−=λ
λ=λ

 

The solution to this problem goes through an intermediary problem which 
consists of seeking the controller in a factorized form: 

)(
~

)(
~ 1 λλ −QP  
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which is connected to the initial factorization by:  

)(
~

)()(
~

)( λλ=λλ QPPQ  

which leads to: 

cyQAyPBQA )(
~

)())(
~

)()(
~

)(( λλ=λλ+λλ  

In order for the closed loop poles to be given by )(λC , it is necessary that: 

)(
~

)()(
~

)()( λλ+λλ=λ PBQAC  

with:   )(
~

)()(
~

)( λλ=λλ PQQP  

Which leads to the following algorithm: 

– solution of the Diophantine equation; 

– search of RLCM )(λM  of )(
~

),(
~ λλ PQ ; 

– )(λP  and )(λQ  are quotient polynomials of )(λM  by )(
~ λQ  and )(

~ λP  
respectively. 
 

The resolution of the Diophantine equation is done the same way as in the case 
where polynomials can be switched [KUC 79]. 

EXAMPLE 16.5.– let us consider the system Σ  described by the differential 
equation: 

uuyyty +=++ ����  

We choose 3)1()( +λ=λC  

The previous algorithm applied to: 

32 )1()(
~

)1()(
~

)1( +λ=λ+λ+λ+λ+λ PQt  
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leads to:  

1
)(

~
−

+λ=λ
t

t
Q  and 

2

2

)1(

1
)1(

33
)(

~

tt
tt

P
−

+λ
−

+−=λ  

And the condition: 

)(
~

)()(
~

)( λλ=λλ QPPQ  

finally gives:  

)133)(1(

5264
)(

23

234

++−−
+−+−−λ=λ

tttt

tttt
Q  

⎟⎟⎠

⎞
⎜⎜⎝

⎛

++−
++−+λ+−

++−
+−−=λ

133

14156
)33(

133

33
)(

23

23
2

23

2

ttt

ttt
tt

ttt

tt
P  

which gives the following controller: 

− + − +− =
− − + +

�
4 3 2

3 2

4 6 2 5

(1 )( 3 3 1)

t t t t
u u

t t t t
 

⎛ ⎞− + − + +− − + +⎜ ⎟⎜ ⎟− + + − + +⎝ ⎠

2 3 2.
2

3 2 3 2

3 3 6 15 14
( 3 3)

3 3 1 3 3 1

t t t t t
t t y y

t t t t t t
 

16.6. Conclusion 

Due to the use of the algebra defined on the non-commutative body of rational 
fractions, it was shown that, not only could the concept of transfer function of a 
linear dynamic system with time variable coefficients be extended, but also the 
traditional operations on these systems had simple solutions, based on simple 
algebraic operations defined on the body of the related fractions. These 
mathematical results make it possible to raise and solve traditional control or/and 
identification problems. Obviously, the complexity of calculations is increased with 
respect to traditional systems (i.e. with constant coefficients) and, in practice, it is 
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necessary to use formal calculation tools. Finally, the approach presented here was 
to voluntarily consider the continuous-time systems but an analogous approach can 
be followed for the discrete-time systems (see, for example, Kamen’s works). 
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