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PREFACE

This book covers several important topics on the subject of optimization of
structural and mechanical systems. Computational optimization methods have
matured over the last few years due to the extensive research by applied
mathematicians and the engineering community. These methods are being
applied to a variety of practical applications. Several general-purpose
optimization programs as well as programs for specific engineering applications
have become available recently. These are being used to solve practical and
interesting optimization problems.

The book covers state-of-the-art in computational algorithms as well as
applications of optimization to structural and mechanical systems. Formulations
of the problems are covered and numerical solutions are presented and discussed.
Topics requiring further research are identified. Leading researchers in the field
of optimization and its applications have written the material and provided
significant insights and experiences with the applications. The topics covered
include:

>
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*

+* Optimization concepts and methods

X Optimization of large scale systems

X Optimization using evolutionary computations

X Multiobjective optimization

X Shape optimization

X Topology optimization

X Design sensitivity analysis of nonlinear structural systems
X Optimal control of structures

¢ Nonlinear optimal control

X Optimization of systems for acoustics

X Design optimization under uncertainty

X Optimization-based inverse kinematics of articulated mechanisms
X Multidisciplinary design optimization

¢ mesh free methods for optimization

X Kriging metamodel based optimization,

v
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*%* Sensitivity-free formulations for structural and mechanical system
optimization

Robust design based on optimization

* Parallel computations for design optimization

* Semidefinite programming for structural optimization.

R
> 0’0

LR

The book is suitable for advanced courses on optimization of structural and
mechanical systems. It is also an invaluable resource for researchers, graduate
students, and practitioners of optimization.

I would like to thank all the authors for their diligence and meticulous work in
writing their chapters. Without their hard work this book would not be possible. 1
would also like to thank the staff at World Scientific Publishing Company for
their patience and help in finalizing the material for the book.

Finally, I would like to thank all my family members for their unending
support, patience and love.

Jasbir S. Arora
Iowa City, lowa, USA
4 December 2006
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CHAPTER 1

INTRODUCTION TO OPTIMIZATION

Jasbir S. Arora

Department of Civil and Environmental Engineering
Department of Mechanical and Industrial Engineering
Center for Computer Aided Design
The University of lowa
lowa City, Iowa, U.S.A.

E-mail: Jasbir-Arora@uiowa.edu

Basic concepts of optimization are described in this chapter. Optimization
models for engineering and other applications are described and discussed.
These include continuous variable and discrete variable problems. Optimality
conditions for the continuous unconstrained and constrained problems are
presented. Basic concepts of algorithms for continuous and discrete variable
problems are described. An introduction to the topics of multiobjective and
global optimization is also presented.

1. Introduction

Optimization is a mature field due to the extensive research that has been
conducted over the last about 60 years. Many types of problems have been
addressed and many different types of algorithms have been investigated. The
methodology has been used in different practical applications and the range of
applications is continuously growing. Some of the applications are described in
various chapters of this book. The purpose of this chapter is to give an overview
of the basic concepts and methods for optimization of structural and mechanical
systems. Various optimization models are defined and discussed. Optimality
conditions for continuous variable optimization problems are presented and
discussed. Basic concepts of algorithms for continuous variable and discrete
variable optimization problems are described. Topics of multiobjective and
global optimization are also introduced. The material of the chapter is available
in many textbooks on optimization.'” It is derived from several recent
publications of the author and his co-workers.”>*
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2. Optimization Models

Transcription of an optimization problem into a mathematical formulation is a
critical step in the process of solving the problem. If the formulation of the
problem as an optimization problem is improper, the solution for the problem is
most likely going to be unacceptable. For example, if a critical constraint is not
included in the formulation, then most likely, that constraint is going to be
violated at the optimum point. Therefore special attention needs to be given to
the formulation of the optimization problem.

Any optimization problem has three basic ingredients:

e  Optimization variables, also called design variables denoted as vector Xx.

e Cost function, also called the objective function, denoted as f(x).

® Constraints expressed as equalities or inequalities denoted as g, (X)

The variables for the problem can be continuous or discrete. Depending on
the types of variables and functions, we obtain continuous variable, discrete
variable, differentiable and nondifferentiable problems. These models are
described next; for more details and practical applications of the models, various
references can be consulted.””'>!*16233

2.1. Optimization Models: Continuous Variables

Any continuous variables optimization problem can be transcribed into a
standard nonlinear programming (NLP) model defined as minimization of a cost
function subject to equality constraints and inequality constraints expressed in a
"<" form as Problem P.’

Problem P. Find the optimization variable vector x=[x, x, x,]" to minimize a
cost function f(x) subject to equality and inequality constraints:

g,;(x)=0,j=1top (1)
g, (x)<0, j=p+ltom 2

where 7 is the number of variables, p is the number of equality constraints, and m
is the total number of constraints. Note that the explicit lower and upper bounds
on the variables are included in Eq. (2). However, for efficient numerical
calculations the simple form of these constraints is exploited.

The feasible set for the problem is defined as a collection of all the points
that satisfy the constraints of Eqgs. (1) and (2). It is also called the constraint set,
and is denoted as S:
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s={ g,)=0.j=1t0 p1g,(x)<0. j= p+ 110 m] 3)
Thus the Problem P can be written simply as
minimize f(X) C))

xeS§

It is important to note that the feasible set for a problem may be empty if
there are too many constraints on the problem or if there are conflicting
constraints. In general, this is difficult to determine before the problem is solved.
Only after a numerical algorithm fails to find a feasible point for the problem, we
can conclude that the set S is empty.”' In that case the problem formulation needs
to be examined to relax some of the constraints, or eliminate conflict in the
constraints. In addition, it is difficult to know, in general, if there is a solution to
the Problem P. However, the question of existence of a solution can be answered
with certain assumptions about the problem functions. It turns out that if f(x) is
continuous on a nonempty feasible set S, all constraint functions are continuous,
and all inequalities contain their boundary points (i.e., expressed as “<” and not
simply as “<”), then there is a solution for Problem P. When these requirements
are satisfied, a robust numerical algorithm is guaranteed to converge to a solution
point.

If there are no constraints on the variables, the set S is the entire design space
and the problem is called an unconstrained optimization problem. If all the
functions are linear in terms of the variables, the Problem P is called a linear
programming (LP) problem. If the cost function is quadratic and the constraints
are linear, the problem is called a quadratic programming (QP) problem.

An inequality constraint g;{x) < 0 is said to be active at a point x if it is
satisfied as an equality at that point, i.e., g;(x) = 0. It is said to be inactive if it has
negative value at that point, and violated if it has positive value. An equality
constraint is always either active or violated at any point.

In some applications, several objective functions need to be optimized
simultaneously. These are called multiobjective optimization problems. They are
usually transformed into Problem P by combining all the objective functions to
form a composite scalar objective function. Several approaches to accomplish
this objective are summarized in a later section.”***>?’

When a gradient-based optimization method (discussed in a later section) is
used to solve Problem P, the cost and constraint functions are assumed to be
twice differentiable.
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2.2. Optimization Models: Mixed Variables

In many practical applications of optimization, discrete variables occur naturally
in the problem formulation. For example,

¢ plate thickness must be selected from the available dimensions,’

e material properties must correspond to the available materials,”*

e structural members must be selected from a catalog,'****

e number of reinforcing bars in a concrete member must be an integer,”®

e diameter of rods must be selected from the available sizes,
number of bolts must be an integer,”’

e number of strands in a prestressed member must be an integer.”®
Discrete variables must be treated properly in numerical optimization procedures.
A mixed continuous-discrete variable optimization problem is defined next as
Problem MP.

Problem MP. A general mixed discrete-continuous variable nonlinear
optimization problem is defined by modifying Problem P to minimize the cost
function f(x) subject to the constraints of Egs. (1) and (2) with the additional
requirement that each discrete variable be selected from a specified set:

x; € D;i, Dy =(dy,dip,.....dig; ); i=1tony (5)

where ny is the number of discrete design variables, D; is the set of discrete
values for the ith variable, g; is the number of available discrete values for the ith
variable, and dj; is the kth discrete value for the ith variable. Note that the
foregoing problem definition includes integer variable as well as 0-1 variable
(on-off variables, binary variables) problems. If the problem has only continuous
variables, and the functions f and g; are twice continuously differentiable, we
obtain the Problem P. Many discrete variable optimization problems have
nondifferentiable functions; therefore gradient-based methods cannot be used to
solve such problems. However, methods that do not require gradients of
functions are available to solve such problems.

It is also important to note that the discrete variable optimization problems
usually require considerably more computational effort compared to the
continuous variable problems. This is true even though the number of feasible
points with discrete variables is finite and they are infinite with continuous
variables.
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3. Optimality Conditions for Problem P

3.1. Definitions and General Concepts

The optimality conditions are the mathematical conditions that characterize a
minimum point for the problem. Let us first define what is meant by a minimum
point for the cost function f(x) before discussing the optimality conditions.

Local Minimum. The cost function f(x) has a local minimum (relative minimum)
at a point x* in the feasible set S if the function value is the smallest at the point
x* compared to all other points x in a small feasible neighborhood of x*, i.e.,

f&x*) <f(x) (6)
If strict inequality (i.e., f(x*) < f(x)) holds, then x* is called the strict or isolated
local minimum.

Global Minimum. The cost function f(x) has a global minimum (also called an
absolute minimum) at a point x* if Inequality (6) holds for a/l x in the feasible set
S. If strict inequality holds, then x* is called the strict or unique global minimum.

These definitions show that for the local minimum, we test the inequality in
Eq. (6) only for a small feasible domain around the point x*, and test it over the
entire feasible set S for the global minimum point. Note that the cost function
f(x) can have many global minimum points as long as the function values are the
same at all the points. Similarly, there can be multiple local minima in the small
feasible domain.

The foregoing definitions of local and global minima cannot be used directly
to find the minimum points for the Problem P. However, they can be used to
derive the optimality conditions that characterize a local minimum point. Note
that they cannot be used to derive optimality conditions for a global minimum
point for the function f(x). The reason is that the global optimality conditions
require knowledge about the global behavior of f(x). For a discrete variable
problem, the definitions are useful because there are only a finite number of
points to be checked for optimality of a given point. In fact most stochastic
methods for optimization of discrete variable problems, described in a later
section, use the definitions to check optimality of a point in its neighborhood.

The optimality conditions can be divided into two categories: necessary and
sufficient. The necessary conditions must be satisfied for a point to be a candidate
minimum point. The points that satisfy the necessary conditions are called
stationary points. Note however that a point satisfying the necessary conditions
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need not be a minimum point, i.e., points that are not minima may also satisfy the
necessary conditions. The sufficient condition if satisfied determines the
stationary point to be a local minimum point. If the sufficient condition is not
satisfied, no conclusion about the optimality of the stationary point can be drawn.
We shall describe both the necessary and sufficient conditions. Sample problems
showing the use of these conditions can be found in many textbooks.>”**

The optimality conditions are used in two ways: (i) they are used to develop
numerical methods for finding minimum points, and (ii) they are used to check
optimality of a given point; i.e., using them, a stopping criterion for the iterative
numerical algorithm can be defined. We shall first present the optimality
conditions for the unconstrained problem and then for the general constrained
Problem P.

3.2. Optimality Conditions for the Unconstrained Problem

When there are no constraints, the problem is to minimize just the cost function
f(x). The conditions for x* to be a minimum point for the function f(x) are
derived by analyzing the local behavior of the function at the point x*; i.e.,
Taylor’s expansion for the function.

First Order Necessary Condition. If x* is a local minimum for the cost function
f(x), then the gradient (first derivatives) of f(x) at Xx* must vanish, that is,
oflox;=0,i=1ton.

Second Order Necessary Condition. If x* is a local minimum for the function
f(x), then its Hessian H = [82f/8x,-6xj] at x* must be at least positive
semidefinite; i.e., all its eigenvalues must be nonnegative.

Second Order Sufficient Condition. If the matrix H(x*) is positive definite at
the stationary point x*, then x* is an isolated local minimum point. (A matrix is
called positive definite if all its eigenvalues are positive).

Any point x* satisfying the necessary conditions of optimality is called a
stationary point. If a stationary point is neither a minimum nor a maximum, then
it is called an inflection point. It should be noted that the optimality conditions
are based on derivatives of f(x) and not the function value. Therefore, the
minimum point is not changed if a constant is added to the function, or the
function is scaled by a positive constant. The optimum value of the cost function
does, however, change in the process.
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3.3. Optimality Conditions for the Constrained Problem

We now present the optimality conditions for a constrained problem which
involve constraints in addition to the cost function. Although a constrained
problem can have minimum points where no constraints are active, this usually
does not happen in practical applications. The case where no constraints are
active, the optimum point is inside the feasible set S and the foregoing optimality
conditions for the unconstrained problem apply; i.e., the optimality conditions for
the unconstrained problem are a special case of those for the constrained
problem. The conditions for the constrained problem can be expressed in several
alternate but equivalent ways. We shall present the conditions that are most
commonly used in the modern literature. These are known as Karush-Kuhn-
Tucker or KKT conditions.

Regular Point. An assumption in the derivation of the KKT necessary conditions
is that the minimum point be a regular point of the feasible set S. A point x is
called a regular point of the feasible set S if the cost function is continuous and
the gradients of all the active constraints are linearly independent at the point.
The number of linearly independent vectors cannot be more than n, the number
of variables, i.e., dimension of each vector. Thus the total number of active
constraints cannot be more than the number of variables at the regular point; i.e.,
at a minimum point.

Karush-Kuhn-Tucker Necessary Conditions. Let the Lagrangian for the
Problem P be defined as

L(x,u) = f(x)+ueg(x) ™

where u is a vector of Lagrange multipliers for the constraints g that needs to be
determined and a “e®” implies scalar product of vectors. Let x* € § be a local
minimum for f(x). Also, let the gradients of the active constraints at x* be
linearly independent (i.e., point x* is a regular point of the feasible set). Then
there exist unique Lagrange multipliers u} such that

VL(x*)=0, or Vf(x*)+Vg(x*)u*=0 (8)
ugi(x*)=0, i=(p+1)tom 9)
u; 20, i=(p+1)tom (10)

where Vg(x*) is an n X m matrix. Equations (8) show that the Lagrangian L is
stationary with respect to x since the gradient of the Lagrangian is zero, Eq. (9)
shows that either the Lagrange multiplier for the ith inequality is zero or the
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constraint is active at the minimum point (if u; = 0, g; must be < 0 for feasibility
of x*), and Eq. (10) shows that the Lagrange multipliers for the inequality
constraints must be nonnegative. In addition, x* must be a feasible point.
Equation (9) is called the switching condition or complementary slackness
condition because it identifies active and inactive inequality constraints. Note
that there are n variables and m Lagrange multipliers, and thus (n+m) unknowns.
There are (n+m) equations (n equations in conditions (8), p equalities, and m-p
equations in condition (9)). Therefore, the necessary conditions give a
determinate system of equations, though it is usually nonlinear.
The gradient condition of Eq. (8) can be re-arranged as:
—Vf(x*)=Vg(x*)u* 11

This form of the equation brings out the physical meaning of the gradient
condition. It shows that at the minimum point, the steepest descent direction
(negative of the cost function gradient) is in the range of gradients of the active
constraints; i.e., a linear combination of them with Lagrange multipliers as the
scalars of the linear combination.

The regularity check for x* is an important part of KKT conditions. If this
check is not satisfied, all other KKT conditions may or may not be satisfied at x*.
For example, the Lagrange multipliers may not be unique at x*. However, the
irregular points can also be local minimum points where KKT conditions may be
actually violated.

Second order optimality conditions can be used to distinguish the minimum
points from others. These conditions also involve Hessians of the functions, as
for the unconstrained problems; e.g., Hessians of the active constraints at x*. We
briefly discuss these conditions next."”’

Second-order Necessary Condition. Let x* satisfy the first order KKT
necessary conditions for Problem P. Let the Hessian of the Lagrange function L
at x* be defined as
VL=V f+3Su'Vg, (12)
i=1
Let there be nonzero feasible directions, d # 0, as solutions of the following
linear system at x*:

(Vg, ®d)=0,i=1top and for those i > p with g,(x*) =0 (13)
That is, the vectors d are in the null space of the gradients of the active

constraints. Then if x* is a local minimum point for the optimum design problem,
it must be true that
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020 where 0 =(deV2L(x*)d) (14)

Note that any point that does not satisfy the second-order necessary condition
cannot be a local minimum point.

Second-order Sufficient Condition. Let x* satisfy the first-order KKT
necessary conditions for Problem P. Let the Hessian of the Lagrange function L
be defined at x* as in Eq. (12). Let there be nonzero feasible directions, d # 0,
as solutions of the following linear system at x*:

(Vg, #d)=0,i=1top and for those i > p with g(x*) =0 and u} >0 (15)

That is, the vectors d are in the null space of the gradients of the active
constraints with u >0 for i > p. Also let (Vg, ed)<0 for those active
inequalities with u; =0. If

020 where 0=(deV2L(x*)d) (16)

then x* is an isolated local minimum point (isolated means that there are no other
local minima in the neighborhood of x*).

Equations (13) and (15) define vectors that are in the null space of the
gradients of the active constraints. There is slight difference in the two
null spaces defined by these equations. In Eq. (13), all the active
inequalities are included. However in Eq. (15), only the active inequalities
with positive multipliers are included. Note that if the Hessian VL is
positive definite at x* then both the second order necessary and sufficient
conditions for a local minimum are satisfied. Conversely, if it is negative
definite or negative semidefinite, then the second order necessary
condition is violated, and the point x* cannot be a minimum point.

3.4. Global Optimality and Convexity

Often a question is asked - is the optimum solution a global minimum? Usually
the answer to this question is that the solution is only a local minimum. The
global solution for the problem can be found by either an exhaustive search of the
feasible set S, or by showing the problem to be convex. Both procedures require
extensive computations. If the problem is convex, then any local minimum is also
a global minimum and the KKT first order conditions are necessary as well as
sufficient. The question of convexity of a problem is briefly addressed here.
Methods for finding a global solution are described in a later section.

Problem P is called a convex programming problem, if the cost function f(x)
is convex over the convex feasible set S. Therefore, we need to discuss convexity
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of the feasible set S and the function f( x). A set of points S (vectors X) is called a
convex set if and only if for any two points A and B in the set S, the entire line
segment AB is also in the set. Graphically this means that a convex set has no re-
entrant corners or holes. By this definition, we see that linear equalities and
inequalities always define a convex feasible set. Also, a nonlinear equality
always defines a nonconvex feasible set. However, in general, the graphical
definition is difficult to use to check convexity of a set because an infinite pair of
points will have to be considered. Therefore, a better computational procedure is
needed to check convexity of a function.

The feasible set for the Problem P is defined by the functions g;(x), i = 1 to
m. It turns out that if all the functions are convex, then the feasible set S is
convex. Thus we need to know how to check convexity of a function.

A function of n variables is convex if and only if its Hessian is at least
positive semidefinite everywhere over its domain of definition. If a function g;(x)
is convex, then the set defined by the inequality g;(X) < ¢; is convex, where e; is
any constant. Note that this is not an "if and only if" condition; that is if g;(x)
fails the convexity set, the feasible set defined by it may still be convex. In other
words this is only a sufficient condition but it is not a necessary condition. Note
that convexity checks for a problem are quite extensive. The Hessian of each
nonlinear problem function needs to be evaluated and its form needs to be
checked over the entire feasible domain.

The following points should be noted for convex programming problems:

(i) A convex programming problem can have several global minimum points
where the cost function has the same numerical value.

(i) The convexity check for a constraint function can sometimes fail if the form
of the constraint is altered; however, the feasible set defined by the constraint
may still be convex. Ref. 7 contains an example that illustrates this point.

(iii) If the convexity checks fail, the problem can still have a global minimum
point in the feasible set. However, it is difficult to conclude that a global
solution has been reached.

3.5. Lagrange Multipliers

It turns out that the optimum values of the Lagrange multipliers for the
constraints represent relative importance of the constraints with respect to the
cost function. We discuss this importance here. Also, many times it is useful in
practical applications to scale the cost function and constraints to avoid
numerical instabilities. We discuss the affect of this scaling on the Lagrange
multipliers for the constraints.
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3.5.1. Changes in Constraint Limit

Let us first study how the optimum value of the cost function is affected if a
constraint limit is changed; i.e., a constraint is relaxed or tightened. Assume that
Problem P has been solved with the current limit values for the constraints as
zero. Let e; be a small variation in the right hand side of the ith constraint. It is
clear that the optimum point for the perturbed problem is a function of the vector
e, i.e., x* = x*(e). Also f = f(e). However, these are implicit functions of e, and
the following result gives a way of calculating the implicit derivatives df/de; ®’

Sensitivity to Constraint Variations. Let x* be a regular point that, together
with the multipliers u;, satisfies both the KKT necessary conditions and the
sufficient conditions for an isolated local minimum point for the Problem P. If for
each gi(x) = 0 for i > p, it is true that u]> 0, then the solution x*(e) of the
modified problem is a continuously differentiable function of e in some

neighborhood of e = 0. Furthermore,

FEEO) _ e icttom 17
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It is useful to note that if the conditions stated in this result are not satisfied,
existence of the implicit derivative of Eq. (17) cannot be ruled out. That is,
the derivatives may still exist but their existence cannot be guaranteed. Using
Eq. (17), we can estimate a change in the cost function due to a change in the
right hand side of the ith constraint. First order Taylor expansion for the cost
function about the point e; = 0 is given as
9 (0)

f(ei)—f(o)"'a—eiei (18)
where f(0) is the optimum cost function value obtained with e; = 0. Substituting
from Eq. (17), we obtain change in the cost function Af due to the change e; as

Af = fle;) = F0)=-uje, (19)
Using the result of Eq. (19), we can show that the Lagrange multiplier
corresponding to a "< type" constraint must be nonnegative. To see this, let us
assume that we want to relax an active inequality constraint g; < 0 by selecting e;
> 0. This way, the feasible set for the problem gets expanded. Thus the minimum
value for the cost function should reduce or stay unchanged with the expanded
feasible set. However, Eq. (19) shows that if u;< 0, relaxation of the constraint
(ei > 0) results in an increase in cost (i.e., Af > 0). This is not possible, and
therefore, the Lagrange multiplier for a "< type" constraint cannot be negative.
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3.5.2. Scaling of Cost Function.

Some times in practical applications, the cost function for the problem is
normalized by multiplying it with a positive constant. Although this scaling does
not affect the optimum point, it does change the Lagrange multipliers for all the
constraints. Using the KKT conditions of Eq. (8), it can be shown that all the
Lagrange multipliers also get multiplied by the same scale factor.” Let u} be
the Lagrange multiplier for the ith constraint with the original cost function. Let
the cost function be scaled as f """ = af, where a > 0 is a given constant, and
u”” be the new value of the Lagrange multiplier for the ith constraint at
optimum. Then the new and old Lagrange multipliers are related as

u*=quf; i=1ltom (20)

3.5.3. Scaling of Constraints

In numerical calculations, it is useful to normalize all the constraints
(normalization of constraints is discussed in the next section). This scaling of a
constraint does not change its boundary, so it has no effect on the optimum point
or the cost function. However, the Lagrange multiplier for the constraint is
affected. Using the KKT conditions of Eq. (8), it can be shown that the Lagrange
multiplier for the scaled constraint gets divided by the same scale factor.’ Let the
ith constraints g; be divided by B; > 0 as g"= g;/f; and uf and u/®" be the
corresponding Lagrange multipliers for the original and the scaled constraints,
respectively. The new and original Lagrange multipliers are related as

uf" = piuf (21)

4. Basic Concepts Related to Computational Algorithms

Optimization methods for structural and mechanical systems have matured to the
point where they are being used routinely in many practical applications. Many
journals dedicated to the field of optimization and many textbooks on the subject
can be consulted for the range of applications. Various chapters of this book
contain a good sample of practical applications.

Real-world problems are usually quite complex. Each application has its own
requirements, simulation methods and constraints to meet. In addition, the desire
to solve more complex and larger problems also grows as computer-based
computational tools improve. Furthermore, since the methods have matured
substantially during the last decade, more nonexperts of optimization techniques
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are beginning to use this new methodology in their routine work. These
considerations dictate the use of a theoretically sound and numerically reliable
algorithm. Use of such an algorithm can remove uncertainty about the algorithm
behavior, allowing the wusers to concentrate on their application. Such
theoretically sound algorithms, although computationally more expensive, are
more cost-effective in the long run.

In the remaining sections, some basic concepts related to numerical
algorithms for optimization of structural and mechanical systems are presented
and discussed. Algorithms for continuous variable problems as well as discrete
variable problems are outlined. The ideas of a descent function, constraint
normalization, and potential constraint strategy are introduced. Convergence of
an algorithm is discussed and attributes of a good algorithm are presented. It is
important to note that the gradient-based algorithms converge only to a local
minimum point for the Problem P. Algorithms for finding a global solution
require extensive numerical calculations and are outlined in a later section.
Multiobjective optimization algorithms are also discussed.

4.1. A Basic Gradient-based Algorithm

Gradient-based optimization algorithms use the following iterative prescription:
) =x® p g a®: k=0,1,2,.... (22)

where the superscript k represents the iteration number, x(k) is the current
estimate of the optimum design, a;d(k) is a change in design, ; > 0 is a step
size, d(k) is a search direction, and x(0) is the starting point.

Gradient-based algorithms are broadly classified as primal methods and
transformation methods. In the primal methods the direction vector d(k) is
calculated using the problem functions and their gradients at the point x(k). Then
the step size is calculated along d(k) that needs only the function values.
Different algorithms can be generated depending on how the direction d and step
size o are calculated. In many algorithms, d is calculated by solving a linear or
quadratic programming subproblem. Several philosophies have been used to
develop various algorithms. For example, if an intermediate point or the starting
point is infeasible, many methods iterate through the infeasible region to reach
the final solution; many others correct the constraints to reach the feasible set
first and then move along the boundary to reach the solution point. Still others
make special calculations not to violate constraints during the iterative process.
Some algorithms generate and use second order information for the problem as
the iterations progress.
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In the transformation methods the solution process for Problem P is
transformed to a sequence of unconstrained minimization problems. Solutions of
the unconstrained problems converge to solution of the original problem. They
include barrier and penalty function methods as well as the augmented
Lagrangian or multiplier methods.”">'"*** In the transformation methods, a
transformed function is constructed by adding a penalty term for the constraint
violations to the cost function, as ®(x,r) = f(x) + P(g(x),r), where r is a scalar or
vector of penalty parameters and P is a real valued function whose action of
imposing the penalty is controlled by r.

Many methods have been developed and evaluated based on the strategies
described in the foregoing. Robust and general algorithms are based on the
following four basic steps:

(i) Linearization of cost and constraint functions about the current point.
(i) Definition of a search direction determination subproblem.
(iii)) Solution of the subproblem for the search direction.
(iv) Calculation of a step size along the search direction.

4.2. Constraint Normalization

It is useful to normalize all the constraint functions in numerical calculations
because it is not easy to determine which constraint is more severely violated if
they are not normalized. Also, in numerical calculations, one value for the
parameter to check feasibility of all the constraints cannot be used. As examples,
consider a stress constraint as o <o, and a displacement constraint as d <9,
where o is the calculated stress, o, > 0 is an allowable stress, O is the
calculated deflection, and 8, > O is an allowable deflection. Since the units
for the two constraints are different their values are of widely differing orders
of magnitude. If they are violated during the iterative solution process, it is
difficult to judge the severity of their violation. However, if they are normalized
as R - 1.0 <0, where R=0/0, for the stress constraint, and R=0/9, for the
deflection constraint, then it is easy to compare their values.

4.3. Potential Constraint Strategy

The optimization methods solve a subproblem to determine the search direction
at each iteration. The subproblem is defined using gradients of the constraints. A
subproblem that uses gradients of only a subset of the constraints is said to use a
potential constraint strategy. The potential constraint set is comprised of the
indices of active, nearly active and violated constraints, such as the index set [
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at the kth point x(¥) :
I, ={] i=1t0 pandalli> p with (g, +&)20} (23)

where £> 0 is a small number used to determine nearly active inequalities. Note
that the equality constraints are always included in the index set I, .

4.4. Descent Function

It is important to monitor progress of the iterative optimization process towards
the minimum point. This can be done if a function can be defined that decreases
at every iteration. Such a function is called the descent function or the merit
function. The cost function is a descent function for the unconstrained
optimization problems because it is required to reduce at each iteration. For
constrained problems, many descent functions have been used. These functions
must include the effect of constraint violations. The descent function is used in
the process of step size determination. The basic idea is to compute a step size
along the search direction d(k) such that the descent function is decreased. The
descent function also has the property that its minimum value is the same as the
cost function.

4.5. Convergence of an Algorithm

An algorithm that has been proven to converge starting from an arbitrary point is
called a globally convergent method, and satisfies two requirements: (i) there is a
descent function for the algorithm, and (ii) the search direction d(*) is a
continuous function of the variables. This requirement implies that the active
constraints are not coming in-and-out of the active set. This is called
"zigzagging" of constraints.

4.6. Attributes of a Good Algorithm

A good algorithm for practical applications should have the following attributes:
(i) Robustness: The algorithm must be convergent to a local minimum point
starting from any initial estimate.
(i) Generality: The algorithm must be able to treat equality as well as
inequality constraints.
(iii) Accuracy: The algorithm must be able to converge to an optimum point as
accurately as desired.
(iv) Ease of Use: Implementation of the algorithm must be such that it requires
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minimum of input for use of the algorithm by the experienced as well as
inexperienced users.

(v) Efficiency: The algorithm must have a faster rate of convergence, i.e., at
least superlinear. The algorithm should be able to treat linear constraints
efficiently. It should be able to exploit sparsity structure of the problem
functions, especially for large-scale problems.

5. Overview of Computational Algorithms

Many numerical methods have been developed and evaluated for constrained and
unconstrained optimization problems.'”*** In addition, algorithms for discrete
variable and nondifferentiable problems have been discussed.'® Many practical
applications require optimization of several objective functions, and therefore,
procedures to treat multiple objectives in an optimization problem have been
developed. In this section, we describe the basic concepts of these algorithms.

5.1. Gradient-based Algorithms

The gradient-based methods are suitable for problems with continuous variables
and differentiable functions because they utilize gradients of the problem
functions. The methods have been thoroughly researched and a considerable
body of literature is available on the subject. They include sequential quadratic
programming and augmented Lagrangian methods. We discuss the basic
concepts related to these methods. The interior point methods, developed initially
for linear problems, have also been extended for nonlinear problems.

5.1.1. Linearization and Sequential Linear Programming

All search methods start with an initial estimate for the optimum point and
iteratively improve it. The improvement is computed by solving an approximate
subproblem which is obtained by writing linear Taylor's expansions for the cost
and constraint functions. Let x(k) be the estimate for the optimum point at the kth
iteration and Ax(k) be the desired change. Instead of using Ax(k) as a change in
the current point, usually it is taken as the search direction d(k) and a step size is
calculated along it to determine the new point. We write Taylor's expansion of
the cost and constraint functions about the point x(k) to obtain a linearized
subproblem as

minimize (ced) (24)
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subject to the linearized equality constraints
(Ve ed)=e;; j=1t0p (25)
and the linearized inequality constraints
(ngOd)Sej;j>pandj I (26)

where ¢; =—g ;(x(¥)), and ¢=Vf (X(k )). Note that a potential constraint strategy
for inequality constraints is used in Eq. (26). If it is not to be used, £can be set to
a very large number in defining the index set [ in Eq. (23).

Since all the functions in Eqgs. (24) to (26) are linear in the variables d;, linear
programming can be used to solve for d;. Such procedures are called Sequential
Linear Programming methods or in short SLP. Note, however, that the problem
defined in Egs. (24) to (26) may not have a bounded solution. Therefore, limits
must be imposed on changes in the variables. These constraints are called move
limits in the optimization literature and can be expressed as

A <di<Aj; i=1ton (27)

where A; is the maximum allowed decrease or increase in the ith variable,
respectively at the kth iteration. The problem is still linear in terms of d;, so LP
methods can still be used to solve it. Selection of the move limits at every
iteration is important because success of the SLP algorithm depends on them.
However, selection of proper move limits is quite difficult in ptactice.

5.1.2. Sequential Quadratic Programming - SQP

To overcome drawbacks of SLP, sequential quadratic programming methods
(SQP) have been developed where a quadratic programming (QP) subproblem is
solved to find a search direction and a descent function is used to calculate a step
size in that direction.

Subproblem QP.
Minimize (ced)+1(d e Hd) (28)

subject to the linearized constraints in Eqgs. (25) and (26) where H is an n X n
matrix that is an approximation to the Hessian of the Lagrangian function.

Different definitions of the QP subproblem generate different search
directions. Once a direction has been determined, a step size is calculated by
minimizing a descent function along it. The descent function for the constrained
problems is constructed by adding a penalty for constraint violations to the cost
function. One of the properties of the descent function is that its value at the
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optimum point be the same as that for the cost function. Also, it must reduce
along the search direction at each iteration. In other words, the search direction
must be a descent direction for the function. Several descent functions have been
developed and used with different algorithms. We shall introduce Pshenichny's
descent function ® due to its simplicity and success in solving a large number of
problems.*'®***** It is the exact penalty function defined as

d(x) = f(x) + RV(x) (29)
where R > 0 is a penalty parameter and V(x) > 0 is the maximum constraint
violation among all the constraints. Note that R is required to be finite but larger
than the sum of the magnitude of all the Lagrange multipliers.

It is important to note that calculation of an exact minimum point for the
descent function along the search direction is quite costly. Therefore in most
practical implementations of any optimization algorithm, only an approximate
step size is determined. This is done using the so-called inaccurate or inexact line
search. In the inaccurate line search procedure, one starts with the trial step size
as one. If the descent condition is not satisfied, the trial step is taken as half of the
previous trial. If the descent condition is still not satisfied, the trial step size is
bisected again. The procedure is continued, until the descent condition is
satisfied; i.e., a sufficient reduction in the descent function has been achieved.
Performance of several SQP algorithms has been evaluated in Ref. 33.

5.1.3. Augmented Lagrangian Method

There is a class of computational methods that transform the constrained problem
to an unconstrained problem and solve it by using unconstrained optimization
methods. These are called sequential unconstrained minimization techniques.'
The basic idea of these methods is to define an augmented functional by adding a
penalty term to the cost function. The penalty term consists of the constraint
functions multiplied by the penalty parameters. The penalty parameters are
selected and the unconstrained function is minimized. Then the penalty
parameters are increased and the unconstrained function is minimized again. The
procedure is repeated until there is very little change in the solution. An
advantage of the methods is that the unconstrained optimization algorithms and
the associated software can be used to solve constrained problems. One drawback
of the methods is that the penalty parameters are required to go to infinity to
obtain an optimum solution. This can cause instability in numerical calculations.
To overcome difficulty of the foregoing methods, a different class of
methods has been developed that do not require the penalty parameters to
become infinite. The penalty parameters are required to be sufficiently large but
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finite. These are called the augmented Lagrangian methods or the multiplier
methods. The augmented functional is defined as
2

q):f(x)-i-%ﬁlri(gi+6i)2+%.§+lri[(gi+ei)+] (30)
i= i=p
where r; > 0 are the penalty parameters, ; for i = 1 to p are the multipliers for
the equality constraints, 8; >0 for i > p are the multipliers for the inequality
constraints, and (x), = x if x > 0, and (x), = 0 if x<0. The idea of multiplier
methods is to start with some values for the parameters r; and 6; and minimize
the augmented function of Eq. (30). These parameters are then adjusted using
some procedure and the process is repeated until optimality conditions are
satisfied. For more detailed discussion and applications of the methods, Refs. 10,
15, 19 and many works cited therein should be consulted.

It is important to note that the augmented functional, such as the one in Eq.
(30), have been used as descent functions for many SQP methods to determine an
appropriate step size along the search direction.”

5. 2. Algorithms for Discrete Variable Problems

The continuous variable optimization problem has infinite feasible points when
the feasible set is nonempty. In contrast, the discrete variable problem has only a
finite number of feasible points from which the optimum solution needs to be
determined. However, it is more difficult and time consuming to find an optimum
solution for the discrete variable problem compared to the continuous variable
problem. The reason is that there are no optimality conditions to guide the
numerical search process. We usually need to enumerate on the discrete points
and use the definition of the minimum point in Eq. (6) to find the best solution.
Many methods try to reduce this computational burden by using stochastic ideas
or heuristic rules.

The solution algorithm for a mixed-discrete variable optimization problem
depends on the type of problem. Five types of mixed variable problems are
defined in Refs. 7, 11, 12 and 16 based on the characteristics of variables and
problem functions. Also methods to solve the problems are identified. For
example, if the problem functions are continuous and the discrete variables can
have non-discrete values during the solution process, then gradient-based
algorithms can be used to guide the search for a discrete optimum solution. If the
problem functions are nondifferentiable and discrete variables must have only
discrete values, then implicit or explicit enumeration methods or stochastic
methods can be used to solve the problem.
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There are basically two classes of methods for solving discrete variable
problems: (i) enumeration methods, either implicit or explicit, such as the branch
and bound algorithm, and (ii) stochastic or evolutionary methods, such as genetic
algorithms and simulated annealing. Detailed review of the methods and their
applications are presented in Refs. 7, 11, 12, 14, 16, 25-30. Here we summarize
basic concepts and ideas of the methods from these references.

Branch and Bound Method. This is one of the most commonly used methods to
solve discrete variable problems.”'>'® It is also called an implicit enumeration
method because one systematically tries to reduce the entire enumeration. It was
initially developed for LP problems for which a global solution is obtained. The
method has also been applied to nonlinear problems for which there is no
guarantee of optimum or even a feasible solution. The method uses the concepts
of branching, bounding and fathoming to perform the search for the optimum
solution. The solution space for the problem is represented as branches of an
inverted tree. Each node of the tree represents a possible discrete solution. If the
solution is infeasible, then either the branch is truncated if the cost function is
higher than a previously established upper bound, or other branches are searched
for a better solution from that node. A node is said to be fathomed if no better
solution is possible with further branching from that node. When the solution at a
node is feasible, it either represents a new upper bound for the optimum if the
cost function is smaller than a previously established bound, or the node can be
fathomed if no better solution is possible with further branching. The method can
be implemented in two different ways. In the first one, non-discrete values for the
discrete variables are not allowed during the solution process. Therefore
enumeration on the discrete variables needs to be done as explained above. In the
second implementation, non-discrete values for the variables are allowed.
Forcing a variable to have a discrete value generates each node of the tree. This is
done by defining a subproblem with appropriate constraints on the variable to
force out a discrete value for the variable. The subproblem is solved using either
LP or NLP methods.

Simulated Annealing. Simulated annealing (SA) is a stochastic method that can
be used to find the global minimum for a mixed variable nonlinear problem.” The
method does not require continuity or differentiability of the problem functions.
The basic idea is to generate random points in a neighborhood of the current best
point and evaluate the problem functions there. If the cost function (penalty
function for constrained problems) value at any of those points is smaller than the
current best value, then the point is accepted, and the best cost function value is
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updated. If it is not, then the point is sometimes accepted and sometimes rejected.
The acceptance is based on the value of the probability density function of
Bolzman-Gibbs distribution. If this probability density function has a value
greater than a random number, then the trial point is accepted as the best solution.
The probability density function uses a parameter called the temperature. For the
optimization problem, this temperature can be the target value for the cost
function. Initially, a larger target value is selected. As the trials progress, the
target value is reduced (this is called the cooling schedule), and the process is
terminated after a large number of trials. The acceptance probability steadily
decreases to zero as the temperature is reduced. Thus in the initial stages, the
method is likely to accept worse points while in the final stages, the worse points
are usually rejected. This strategy avoids getting trapped at local minimizers. The
main deficiencies of the method are the unknown rate at which the target level is
to be reduced and uncertainty in the total number of trials.

Genetic Algorithms. As simulated annealing, these methods are also in the
category of stochastic search methods.”*”**** In the methods, a set of alternative
points (called the population) at an iteration (called generation) is used to
generate a new set of points. In this process, combinations of the most desirable
characteristics of the current members of the population are used that results in
points that are better than the current ones. Thus, the average fitness of
successive sets of points improves giving better values for the fitness function.
Here fitness is defined using the cost function or the penalty function for
constrained problems. The fitness value is calculated for each member of the
population. An advantage of this approach is that derivatives of the functions are
not needed. One starts with a set of randomly generated points. A finite length
string, such as a binary string of 0’s and 1’s, is usually used to represent each
point. Three operators are needed to implement the algorithm: (i) reproduction;
(ii) crossover; and (iii) mutation. Reproduction is an operator where an old string
(point) is copied into the new population according to its fitness. More highly fit
strings (those points with smaller fitness values) receive higher numbers of
offspring (new points). The crossover operator corresponds to allowing selected
members (points) of the population to exchange characteristics of the points
among themselves. Crossover entails selection of starting and ending positions
on a pair of mating strings (points) at random and simply exchanging the string
of 0's and 1's between these positions. Mutation corresponds to selection of a few
members (points) of the population, determining a location on the strings at
random, and switching the O to 1 or vice versa. The foregoing three steps are
repeated for successive generations of the population until no further
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improvement in the fitness is attainable, or the number of generations reaches a
specified limit. The member in this generation with the highest level of fitness is
taken as the optimum point.

Integer Programming. The problem is called an integer programming (IP)
problem when the variables are required to take on integer values. If all the
functions are linear, an integer linear programming (ILP) problem is obtained,
otherwise it is nonlinear. The ILP problem can be converted to 0-1 programming
problem. Linear problems with discrete variables can also be converted to 0-1
programming problems. Many algorithms are available to solve such problems,*
such as the branch and bound method discussed earlier.

Sequential Linearization Methods. Nonlinear discrete optimization problems
can also be solved by sequential linearization procedures. The functions of the
problem must be differentiable to use such a procedure. The nonlinear problem is
first linearized at the current point. Then an ILP method is used to solve the
linearized subproblem. A modification of this approach is to obtain a continuous
optimum point first, and then linearize and use IP methods. This process can
reduce the number of ILP problems to be solved. Restricting the number of
discrete values to a neighborhood of the continuous solution can also reduce the
size of the ILP problem.

Rounding-off Techniques. Rounding-off is a simple approach where an
optimum solution is first obtained by assuming all the variables to be continuous.
Then using heuristics, the variables are rounded-off to the nearest available
discrete values to obtain a discrete solution. The procedure is applicable to a
restricted class of problems where discrete variables can have non-discrete values
during the solution process. The process may not result in a feasible point for the
discrete variable problem. Note that it is not necessary to round-up all variables
to their nearest discrete neighbors. Some of them could be rounded-down while
others could be increased. The difficulty with this approach is in the selection of
variables to be increased and the variables to be decreased. The strategy may not
converge, especially in case of high nonlinearity and widely separated allowable
discrete values. In that case, the discrete minimizer need not be in a
neighborhood of the continuous solution. As an alternative, a dynamic rounding-
off strategy has been used where only one variable is rounded-off to its discrete
neighbor at a time. The selected variable is then fixed at the discrete value and
the problem is optimized again. This process is repeated until all variables are
selected and fixed to discrete values.
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Neighborhood Search Method. Some times it is reasonable to enumerate on the
discrete variables, especially when the number of variables is small. With all the
discrete variables fixed at their chosen values, the problem is then optimized for
the continuous variables. This approach has some advantages over BBM: it can
be implemented easily with an existing NLP solver, the problem to be solved is
smaller and the gradient information with respect to the discrete variables is not
needed. However, in general, the approach is less efficient than an implicit
enumeration method, such as the BBM, as the number of discrete variables and
size of the discrete set of values become large. To reduce the number of
enumerated cases, a neighborhood search method has been used which first
obtains a continuous solution with all the discrete variables considered as
continuous. Then only a few discrete values near the continuous solution are
selected for explicit enumeration.

5.3. Multiobjective Optimization

There are many practical applications where we need to optimize two or more
objective functions simultaneously. These are called multiobjective, multi-
criteria, or vector optimization problems. Here, we give a brief introduction to
the subject by describing some basic concepts, terminology and solution
methods. Material for this section is derived from Refs. 7 and 32; for more
details, references cited in there and many other sources can be consulted, such
as Refs. 35-37, 44.

5.3.1. Terminology and Basic Concepts

The Problem P defined earlier is modified to multiobjective optimization
problems as follows: find x S to minimize

£(x)=(f,(x). f,(x)..... f; (x)) 31)

where k is the number of objective functions in the vector f (X) A collection of
all the objective function vectors is called the criterion space. The feasible
criterion space Z is defined as the set of objective function values corresponding
to the feasible points in the variable space; i.e.,

Z={f(x)| xe S} (32)

Algorithms for solution of a single-objective optimization problem give local
minima for the cost function in the feasible set. If all local minima are found,
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then a global minimum point can be identified. In contrast, the process of solving
a multiobjective optimization problem is less definite. Usually this problem does
not have a unique solution; i.e., there is no point x that minimizes all the
objectives simultaneously. Therefore, it is not clear what is meant by the
minimum of multiple objective functions. Usually, the objectives have opposing
characteristics, since a point that decreases the value of one function may
increase the value of another. However, there can be infinite solution points for
the problem in the sense of Pareto optimality. This is the predominant concept in
defining solutions for multiobjective optimization problems that is discussed
next.

Pareto Optimal Points. A point x* € S is Pareto optimal if and only if there
does not exist another point x € S such that f(x)<f(x*) with at least
one f;(x) < f;(x*). In other words, a point x* € S is called Pareto optimal if
there is no other point x € § that reduces at least one objective function without
increasing another one. Pareto optimal points are also called efficient points of
the feasible set S.

Non-dominated Points. Another common concept is that of non-dominated and
dominated points of the feasible criterion space Z. A vector of objective functions
f* =f(x *) e Z is non-dominated if and only if there does not exist another vector
f € Z such that f <f* with at least one f; < f; . Otherwise, " is dominated.

Utopia Point. A vector of objective function values f° in the criterion space is
called the utopia point if f;” =min {f;(x)|forallxe S}, i = 1 to k. It is also
called the ideal point. Utopia point is a unique point in the criterion space that is
obtained by minimizing each objective function without regard for other
objective functions. Each minimization yields a point in the variable space and
the corresponding value for the objective function. It is rare that each
minimization will end up at the same point. That is, one point cannot
simultaneously minimize all the objective functions. Thus, the utopia point exists
only in the criterion space and, in general, is not attainable in the variable space.

Compromise Solution. Since the utopia point is not attainable, the next best
thing is a solution that is as close as possible to the utopia point. Such a solution
is called a compromise solution. The methods that seek different compromise
solutions are collectively called compromise programming.
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5.3.2. Solution Methods

Since the multiobjective optimization problem has infinite solutions (the Pareto
optimal set), the user needs to select a solution that suits the requirements of the
application. Therefore we may need to generate the entire Pareto set or at least a
good representation of it so that the user can select the desired solution. Most
solution methods for multiobjective optimization problems combine various
objective functions to define a composite scalar function for the problem. This
way, a single-objective optimization method can be used to solve the problem.
By varying parameters of the composite function, different optimum solutions for
the problem can be generated. Some methods always yield Pareto optimal
solutions but may skip certain points in the Pareto optimal set; i.e., they may not
be able to capture all of the Pareto optimal points. Alternatively, other methods
are able to capture all of the points in the Pareto optimal set but may also provide
non-Pareto optimal points as well. The former quality is beneficial when one is
interested in using a method to obtain just one solution point. The latter quality is
useful when the complete Pareto optimal set needs to be generated.

Weighted Sum Method. The weighted sum method is the most common
approach to multiobjective optimization. Each objective function is scaled by a
weighting factor w; >0as w; f;(x). Then all the objective functions are added
together to form a composite objective function to be optimized:

U=§mﬁ@) (33)

The objective functions are usually normalized before the weights are assigned to
them. The relative value of the weights generally reflects the relative importance
of the objectives. This is another common characteristic of the weighted sum
methods. If all of the weights are omitted or are set to one, then all objectives are
treated equally. The weights can be used in two ways. The user may either set w;
to reflect preferences before the problem is solved, or systematically alter them to
yield different Pareto optimal points (generate the Pareto optimal set). The
method is quite easy to use; selection of proper weights is the most difficult part
that requires thorough knowledge of the objective functions and their relative
importance.

Weighted Global Criterion. A broader class of weighted sum methods is based
on weighted global criterion which is defined as:
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U= {f b, (7, )= 1)) }/ (34)

The root 1/ p may be omitted because the formulations with and without the root
theoretically provide the same solution. The solution with this formulation
depends on the values of both w; and p. Generally, p is proportional to the
amount of emphasis placed on minimizing the function with the largest
difference between f;(x) and f; . Larger p puts more emphasis on minimizing
the largest difference. p and w; typically are not varied or determined in unison.
Rather, a fixed value for p is selected, and then, either w; is selected to reflect
preferences before the problem is solved, or it is systematically altered to yield
different Pareto optimal points. For computational efficiency or in cases where
the utopia point f;” may be difficult to determine, one may replace f;° with an
approximate value for it in Eq. (34). The approximation for f;" is called an
aspiration point, reference point, goal, or target point. When this is done, U is
called an achievement function.

The global criterion reduces to other common methods with different values
of p. For instance, when p = 1, Eq. (34) is similar to a weighted sum with the
objective functions adjusted with the utopia point. When p = 2 and weights equal
to 1, Eq. (34) represents the distance of the current point f;(x) from the utopia
point, and the solution usually is called compromise solution as mentioned
earlier. When p = oo, Eq. (34) reduces to the well known min-max method.

Other Methods. There are other useful methods that reduce the multiobjective
optimization problem to a single-objective optimization problem:
® [Lexicographic method where the objective functions are arranged
in the order of their importance and a sequence of optimization
problems is solved: minimize fi(x) subject to f;(x)<f; (xj)
j=1to(i—=1); i>1; i = 1 to k. The process is stopped when two
consecutive problems have same solution.
® The &constraint method minimizes a single, most important objective
function f,(x) with other objective functions treated as constraints:
filx)<¢g;; i=1tok;i#s, where & is the upper limit for the objective
function f;(x). A systematic variation of & yields a set of Pareto
optimal solutions.
®  Goal programming approaches set goals b; for each objective function
fi(x). Then, the total deviation from the goals is minimized. In the
absence of any other information, goals may be set to the utopia point,
ie, b;=f ;. In that case, the method becomes a special case of the
global criterion method.
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Besides the scalarization methods discussed in the foregoing paragraphs,
there are methods that treat all the objective functions at the same time and
generate the Pareto optimal set for the problem. A prominent method in this class
is the genetic algorithm for multiobjective optimization problems.”>"** This
method is an extension of the genetic algorithms described earlier for single
objective problems. Additional genetic operators are used to generate the new
population for the next generation. For each generation, a possible set of Pareto
optimal points for the problem is identified. These play a major role in generating
new points for the next generation. The iterative process is repeated for a long
period of time. At the end, an approximation to the Pareto optimal set is obtained.
Since genetic algorithms do not require gradient information, they can be
effective regardless of the nature of the problem functions.

5.4. Algorithms for Global Solution

Thus far, we have addressed mainly the problem of finding a local minimum for
the cost function. However, in some practical applications, it is important to find
globally optimum solutions as opposed to the local ones. The question of when a
local solution is also a global optimum is quite difficult to answer because there
are no mathematical conditions that characterize a global solution, except for
convex programming problems, as discussed earlier. Therefore even when a
global solution has been found, it is not possible to recognize it. Due to this
reason, it is impossible to define a precise stopping criterion for a computational
algorithm for global optimization. Usually, the best solution obtained by an
algorithm after it is allowed to run for a long time is accepted as the global
solution for the problem. In general, the quality of the solution depends on how
long the algorithm is allowed to run. It is important to note that the computational
effort to solve a global optimization problem increases enormously as the number
of design variables increase. Thus, it remains a challenge to solve the global
optimization problem efficiently.

In this section, we present some basic concepts of procedures that can be
used to calculate a global solution. We consider the problem with continuous
variables and functions. For discrete and nondifferentiable problems, the
simulated annealing and genetic algorithms, described earlier, can be used for
global optimization. In general, global optimization methods can be divided into
two major categories: deterministic and stochastic. This classification is based on
whether or not they incorporate any stochastic procedures to solve the global
optimization problem. In the following subsections, we describe basic concepts
of some of the methods in both of these categories. The material is derived from
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the work of the author and his co-workers.”'”** Numerous other references cited
in these articles can be consulted for more details; e.g., Refs. 46-52.

5.4.1. Deterministic Methods

An exhaustive search of the feasible set S is performed in these methods to find
the global minimum. The success of the method can be guaranteed for only the
functions that satisfy certain conditions. We shall describe basic ideas of four
deterministic methods: covering, zooming, generalized descent and tunneling
methods.

Covering Methods. The basic idea of these methods is to cover the entire
feasible set S by evaluating the cost function at all the points in order to search
for a global minimum.*® This is an enormous calculation and therefore all the
covering methods try to implicitly cover the entire set by evaluating the functions
at some selected points. Some methods exploit certain properties of the cost
function to accomplish this objective. Covering methods have been used mainly
to solve two variable problems because for 3 and more variables, the number of
computations becomes very large.

Zooming Method. This method uses a target value for the global minimum of
the cost function which is imposed as a constraint in the solution process.”
Once the target is achieved, it is reduced further to zoom-in on the global
minimum. The method combines a local minimization method with successive
truncation of the feasible set S. The basic idea is that once a local minimum point
has been found, the problem is redefined in such a way that the current solution is
eliminated from any further search by adding the constraint f(x) < rf(x*), where
f(x*) is the cost function value at the current minimum point and 0 < r < 1 if
f(x*) >0, and r > 1 if f(x*) < 0. The redefined problem is solved again and the
process is continued until no more minimum points can be found. The method
has a drawback in that as the target level for the global minimum is lowered, the
feasible set for the problem shrinks and may even become disjointed. Therefore
as the global minimum is approached, finding even a feasible point for the re-
defined problem becomes time consuming.'

Methods of Generalized Descent. These methods are generalization of the
descent methods where finite descent steps are taken along the search directions
(i.e., straight lines). In those methods, it is sometimes difficult to find a suitable
step size along the search direction. Therefore, it may be more effective if we
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deliberately follow a curvilinear path (trajectory) in the design space. The
curvilinear paths are generated by integrating certain first or second order
differential equations. The differential equations use the function values and its
gradient along the trajectories. The search for the global minimum is based on
solution properties of these differential equations. An important property is that
their trajectories pass through majority of the stationary points for the cost
function. There are conditions that can determine whether or not the trajectory
will pass through all the local minimum points. In that case, the global minimum
is guaranteed to be found. The methods have been used for problems with only a
few variables.

Tunneling Method. The basic idea of the tunneling method is to execute the
following two phases iteratively until some stopping criterion is satisfied: the
local minimization phase and the tunneling phase. The method was initially
developed for unconstrained problems and then extended for constrained
problems.*® A local minimum x* for the problem is calculated in phase one. The
tunneling phase determines a new starting point for phase one that is different
from x* but has cost function value smaller than or equal to the known minimum
value. The tunneling phase is accomplished by finding a root of the nonlinear
tunneling function, T(x). This function is defined in such a way that it avoids
previously determined local minima and the starting points. The two phases are
repeated until no suitable roots of the tunneling function can be found. This is
realized numerically when T(x) > O for all x. This problem is difficult to solve
efficiently because finding a suitable point in the tunneling phase is in itself a
global optimization problem.

5.4.2. Stochastic Methods

Most stochastic methods depend on random processes to search for the global
minimum point. Some methods are useful for only continuous variable problems
while others can be used for all types of problems. These methods are some
variation of the pure random search. They try to reduce its computational burden.
Pure random search evaluates f(x) at N sample points drawn from a random
uniform distribution over the feasible set. The smallest function value found is
the candidate global minimum for f (X) The sample size N must be quite large
in order to get a good estimate of the global solution. Therefore the method is
quite inefficient due to the large number of function evaluations. Single start
method is a simple extension of the method in which a single local search is
performed starting from the best point found in the random search.
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The stochastic ideas are used in two ways in these methods: (i) to decide
stopping criteria for the methods, and (ii) to develop techniques to approximate
the region of attraction for a local minimum point. The goal of many stochastic
methods is to develop good approximations for the regions of attraction for local
minima so that the search for that local minimum is performed only once.

Some stochastic methods try to determine all local minima for the function.
Then, the best local minimum is claimed as the global minimum point. One
difficulty is that the number of local minima for the problem is not known a
priori. Therefore it is difficult to determine when to end the search for local
minima. Usually a statistical estimate for the number of local minima is used in
practice. The methods usually have two phases: a global phase and a local phase.
In the global phase, the function is evaluated at a number of randomly sampled
points. In the local phase, local searches are performed from the sample points to
yield candidate global minima. The global phase is necessary because just a local
strategy cannot give a global minimum. There are many stochastic methods for
global optimization, such as multistart, clustering, controlled random search,
simulated annealing, acceptance-rejection, stochastic integration, and genetic
algorithms. We shall describe only the basic ideas of some of the methods. More
details can be found in Refs. 7 and 17 and works cited therein. It is important to
note that since some stochastic methods use random processes, an algorithm run
at different times can generate different iteration histories and local minima.
Therefore, a particular problem needs to be run several times before the solution
is accepted as the global optimum.

Multistart Method. The basic idea of multistart methods is to perform search for
a local minimum from each sample point. The best local minimum point found is
taken as the global minimum. The stopping criterion for the method is based on a
statistical estimate of the number of local minima for the problem. The method is
reliable but it is not efficient since many sample points lead to the same local
minimum. Therefore, strategies to eliminate this inefficiency in the algorithm
have been developed.

Clustering Methods. The basic idea of clustering methods is to remove
inefficiency of the multistart method by trying to use the local search procedure
only once for each local minimum point.”' The random sample points are linked
into groups to form clusters. Each cluster is considered to represent one region of
attraction such that a search initiated from any point in the region converges to
the same local minimum point. Four clustering methods have been used for
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development of the regions of attraction: density clustering, single linkage, mode
analysis, and vector quantization multistart.

Controlled Random Search. The controlled random search has both global and
local phases in its algorithm. It uses the idea of a simplex which is a geometric
figure formed by a set of n+1 points in the n-dimensional space (n is the number
of variables). In two dimensions, the simplex is just a triangle and in three
dimensions, it is a tetrahedron. The method does not use gradients of the cost
function and so continuity of the functions is not required. In the global phase,
one starts with n+1 sample points. The worst point (having the largest value for
the cost function) is replaced by a trial point evaluated using the centroid for the
n sample points including the worst point. If the trial point is feasible and has
better cost function value, then it replaces the worst point of the selected set.
Otherwise, the process is repeated until a better point is found. In the local phase,
the worst point among the current n+1 sample points is reflected about the
centroid of the simplex. The point is then expanded or contracted to obtain a
better point. The worst point is replaced by this point. The two phases are
repeated until a stopping criterion is satisfied.

Acceptance-Rejection Methods. The acceptance-rejection methods use ideas
from statistical mechanics to improve efficiency of the multistart algorithm.*’
The strategy is to start the local minimization procedure only when the randomly
generated point has smaller cost function value than that of the local minimum
previously obtained. This forces the algorithm to tunnel below the local minima
in search for a global minimum. This modification, however, has been shown to
be inefficient, and therefore the tunneling process has been pursued only by
means of deterministic algorithms, as explained earlier. The acceptance-rejection
based methods modify this tunneling procedure which is sometimes called
random tunneling. The idea of acceptance phase is to some times start local
minimization from a randomly generated point even if it has a higher cost
function value than that at a previously obtained local minimum. This involves
calculation of certain probabilities. If the local minimization procedure started
from an accepted point produces a local minimum that has higher cost function
value than a previously obtained minimum, then the new minimum point is
rejected. This is called the rejection phase.

Stochastic Integration. In these methods, a stochastic perturbation of the system
of differential equations for the trajectory methods is introduced in order to force
the trajectory to a global minimum point. This is achieved by monitoring the cost
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function value along the trajectories. By changing some coefficients in the
differential equations we get different solution processes starting from the same
initial point. This idea is similar to simulated annealing but here a parameter in
the differential equation is decreased continuously.

6. Concluding Remarks

Basic concepts and terminology used for optimization of structural and
mechanical systems are described. Various types of optimization models are
presented and discussed. Optimality conditions for continuous variable
optimization problems are presented. Concept related to algorithms for
continuous variable optimization problems are presented and discussed. Basic
concepts of methods for discrete variable, multiobjective and global optimization
problems are described. The material is introductory in nature, and so, several
references are cited for readers interested in more in-depth study of various
topics.
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Numerical algorithms for real life engineering optimization must be strong and
capable of solving very large problems with a small number of simulations and
sensitivity analysis. In this chapter we describe some numerical techniques to solve
engineering problems with the Feasible Arc Interior Point Algorithm (FAIPA) for
nonlinear constrained optimization. These techniques include quasi- Newton for-
mulations that avoid the storage of the approximation matrix. They include also
numerical algorithms to solve in an efficient manner the internal linear systems
of FAIPA. Numerical results with large size test problems and with a structural
optimization example shows that FAIPA is strong an efficient for large size opti-
mization.

1. Introduction

The engineering optimization task consists in finding the design variables
r1, T3, ..., T, that

minimize f(x)
subject to g(x) <0 (1)
and h(z) =0,
where © = [71, %2, ..., 7,]", the scalar function f(zx) is the objective function and

g(x) = [g1(x), g2(x), ..., gm(x)]" and h(x) = [h1(x), h2(x), ..., hy(x)]" represent in-
equality and equality constraints. We assume that f(x), g(x) and h(x) are continu-
ous in R" as well as their first derivatives. In engineering applications most of these
functions are nonlinear. Then, (1) is a smooth nonlinear constrained mathematical
programming problem.

Real life engineering systems involve a very large number of design variables
and constraints. Evaluation of functions and of derivatives coming from engineering
models is very expensive in terms of computer time. In practical applications, cal-
culation and storage of second derivatives are impossible to be carried out. Then,
numerical techniques for engineering optimization must be capable of solving very
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large problems with a reasonable number of function evaluations and without need-
ing second derivatives. Robustness is also a crucial point for industrial applications.

Quasi-Newton method creates an approximation matrix of second deriva-
tives.13:25-43,:48,50 \ith this method large problems can be solved in a reasonable
number of iterations. Employing rank two updating rules, like BFGS or DFP, it is
possible to obtain positive definite approximation matrices. This is a requirement of
optimization algorithms that include a line search procedure?*25:26:43:48,:50 t4 ensure
global convergence. However, the classic quasi-Newton method cannot be applied for
large problems since it requires the calculus and storage of approximation matrices,
which are always full.

Limited memory quasi-Newton method avoids the storage of the approximation
matrix. 1424748 Pogitive definite matrices can also be obtained with this technique.
It was first developed for unconstrained optimization and then extended to prob-
lems with side constraints. Employing the Feasible Arc Interior Point Algorithm
(FAIPA), the limited memory method can also be applied for constrained optimiza-
tion problems.!9:31:32:44

Another approach to solve large problems with a quasi-Newton technique con-
sists in obtaining sparse approximation matrices. This idea was first exploited by
Toint in the 70th®%:°7-5% and by Fletcher et al. in the 90th.'"*® In both cases sparse
matrices were obtained in a very efficient way. However, those methods cannot be
applied for optimization algorithms with a line search, since it is not guaranteed
that the approximation matrices are positive definite. In booth cases, the authors
worked with a trust region algorithm, but the numerical results were poor.

The numerical techniques described in this chapter are based on the Feasible Arc
Interior Point Algorithm (FAIPA)3? for nonlinear constrained optimization. FAIPA,
that is an extension of the Feasible Directions Interior Point Algorithm,?2-23,24,26,49
integrates ideas coming from the modern Interior Point Algorithms for Linear Pro-
gramming with Feasible Direction Methods. At each point, FAIPA defines a “Fea-
sible Descent Arc”. Then, it finds a new interior point on the arc, with a lower
objective. Newton, quasi - Newton and first order versions of FAIPA can be ob-
tained.

FAIPA is supported by strong theoretical results. Global convergence to a lo-
cal minimum of the problem is proved with relatively weak assumptions. The
search along an arc ensures superlinear convergence for the quasi - Newton version,
even when there are highly nonlinear constraints, avoiding the so called “Maratos’
effect”4®. FAIPA, that is simple to code, does not require the solution of quadratic
programs and it is not a penalty or a barrier method. It merely requires the solution
of three linear systems with the same matrix per iteration. This one includes the
second derivative of the Lagrangian, or a quasi - Newton approximation. Several
practical applications of the present and previous versions of FAIPA, as well as
several numerical results, show that FAIPA constitutes a very strong and efficient
technique for engineering design optimization,!+2:4:5:6:7:8,27,28,29,30,38,39,40,41,54
also for structural analysis problems with variational inequalities.3:60:62

and
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The main difficulty to solve large problems with FAIPA comes from the size and
sparsity of the internal linear systems of equations. Since the quasi-Newton matrix
is included in the systems, limited memory and sparse quasi - Newton techniques
can produce important reductions of computer calculus and memory requirements.

In this chapter we present a new sparse quasi - Newton method that works with
diagonal positive definite matrices and employ this technique for constrained opti-
mization with FAIPA. This approach can be employed also in the well known sequen-
tial quadratic programming algorithm (SQP)25:51:52 or in the interior point methods
for nonlinear programming, as primal-dual or path following algorithms.?%:48:61 We
also describe numerical techniques, to solve large problems with FAIPA, employ-
ing exact or iterative linear solvers and sparse or limited memory quasi-Newton
formulations.

Quasi - Newton method is described in the next section, including limited mem-
ory formulation and our proposal for sparse quasi - Newton matrices. FAIPA is
described in Sec. 3 and the structure of the internal systems and some numerical
techniques to solve them are discussed in Sec. 4. Numerical experiments with a set
of test problems are reported in Sec. 5, followed with some results in structural
optimization. Finally, we present our conclusions in the last section.

2. Quasi-Newton Method for Nonlinear Optimization
We consider now the unconstrained optimization problem
minimize f(z);z € R" (2)

Modern iterative algorithms define, at each point, a descent direction of f(x)
and make a line search looking for a better solution. The quasi - Newton method
works with a matrix that approximates the Hessian of the objective function or
its inverse. The basic idea is to build the quasi - Newton matrix with information
gathered while the iterations progress.

Let the symmetric matrix B* € R7%" be the current approximation of V2 f(x*).
An improved approximation B**! is obtained from

Bl = B* 4+ AB*. (3)
Since
Vi@ - V") ~ [V ()@ - ab),
the basic idea of quasi - Newton method consist in taking ABP in such way that
Vf(@") - Vf(@") = [BM (@ —at), (4)

called “secant condition”, is true.
Let

§=a"! —zF and y = V(") — V().
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Then, (4) is equivalent to
v = Bl (5)

The substitution of (3) into (5) gives us n conditions to be satisfied by AB*.
Since AB* € R"*" | the secant condition is not enough to determine B**1_ Several
updating rules for B! were proposed.13:43:52 The most successful is the BFGS
(Broyden, Fletcher, Shanno, Goldfarb) formula

t  BFsstBF
gkl gk 00 .
* Oty 5tB*§ (©)

If B* is positive definite, it can be proved that
5ty >0 (7)
is a sufficient condition to have B**! positive definite. Under certain assumptions
about f(x), (7) is satisfied if an appropriate line search procedure is employed.?>
A quasi-Newton algorithm can then be stated as follows:
ALGORITHM 1.

Data. Initial ° € R and B® € R7"*" symmetric and positive definite. Set k = 0.

Step 1. Computation of the search direction d* € R", by solving the linear system
B'd" = -V f(zF) (8)

Step 2. Line search
Find a step length ¢* that reduces f(z), according to a given line search criterium.

Step 3. Updates

Take
xhtl = b 4 thdF
B! .= B¥ + AB”
k=k+1
Step 4. Go back to Step 1. a

Working with an approximation of the inverse, H" ~ [V2f(x)]~!, is advanta-

geous since it allows the search direction d” to be calculated with a simple matrix-
vector multiplication.
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We have that the secant condition (5) is equivalent to § = H F1y. Thus, an
updating rule for H can be easily obtained by interchanging B and H as well as §
and v in (6). We have
§5¢ Hk’y’ytHk 0
o H v
called DFP (Davidon, Fletcher, Powell) updating rule. In general, the approximation
matrix H**! that is obtained with this rule is not the inverse of B¥*! given by
BFGS rule. An expression for H*+1 corresponding to the BFGS rule can be obtained
from (6) by computing the inverse of B!
Woodbury formula,!3

HM — gR 4

employing the Sherman - Morrison -

(10)

tH '\ 66 Sy H® + H*o
A gk (X200 oA A0
= | 5 5

2.1. Limited Memory Quasi-Newton Method

With the limited memory formulation, the product of the quasi-Newton Matrix
H*! times a vector v € R™, or a matrix, can be efficiently computed without
the explicit assembly and storage of H L It is only required the storage of the ¢
last pairs of vectors  and . In particular, this technique can be employed for the
computation of the search direction in a quasi - Newton algorithm for unconstrained
optimization.

The updating rule (10) for H can be expressed as follows:

H""' = H" "+ [A H'"T|E[A H"! (11)
where

A = [5F0, ghmatl ghat2 skl A @ fnxa
D= [yFma g att yhmat2 4571 T e v

_[RY(D+T*H" T)R™' -R™'

E —-R! 0

2g%2
: B e RP9

R = upper(A'T'); R € RI*1

D = diag(R)

We write A = upper(B) when A;; = B;; for j > i and A;; =0 for j < 1.
The limited memory method takes H k=a — 1. Then, the following expression
for H**'v is obtained:

H*"'v =v 4+ [A T|E[A T)'v. (12)

This formulation is very strong and efficient for unconstrained optimization.
Even in very large problems, taking ¢ = 10, the number of iterations employing the
Limited Memory method is quite similar to the original quasi - Newton Algorithm.
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2.2. Sparse Quasi-Newton Matrices

The technique proposed by Toint, works with quasi-Newton matrices having the
same sparsity as the real second derivative of the function. The new matrix BFtlig
the symmetric matrix, closest to B and with the prescribed sparsity, that satisfies
the secant condition (4). Thus, B**! is the solution of the following constrained
optimization problem
minimize |B*™! — B¥|2,
subject to B*1§ = ~,
BkJrl _ [BkJrl]t
and BZ»H =0 for (i,5) € I,

(13)

n n
Z ZMZQJ is the Frobenius norm of M € R"**™ and the set I° defines
i=1 j=1
the required structure of the quasi-Newton matrix.

Toint obtained B**+! by solving a linear system with the same structure I°.
However, B**1 s not guaranteed to be positive definite.

The method proposed by Fletcher et al. relaxes the secant condition and works
with the set of the ¢ previous pairs of vectors {6¢,v'}; fori = k, k—1,k—2, ..., k—q+1,
as well as in the limited memory method.

Let be

IM|r =

e (A L LY L

and

Fk = [’ykﬂvkil”yki?? "'7’ykiq+1]’

where A* T'* € ®7%4_ The following optimization problem defines B**1
minimize |[B*T AR — T*|2,
subject to B¥T! = [BF 1)t (14)
and BZ»H =0 for (i,5) € I,

Since the secant condition is relaxed, this problem has a solution whatever it
is the structure of B¥*!. Then, any sparse structure can be chosen, even in the
case when the second derivative matrix is full. This approach does not require the
storage of B¥. However B*t! is not ensured to be positive definite, as in Toint’s
method.

2.3. Diagonal Quasi-Newton Matrices

We present a new approach?! based on the previous formulation, but employing
a structure for the quasi- Newton matrix such that checking if this one is positive
definite becomes easy. This check is then included as a constraint of the optimization
problem. The most simple case is that one in which the approximation matrices are
diagonal.
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We define the following problem

minimize ||B*TTAF — |2,
subject to BEM' > efori=1,2,..,n (15)
and ijﬂ = 0 for i # 7,

where € > 0 is given.
Let us call §; = BE™ . Tt can be shown 2! that (15) is equivalent to the quadratic
programming problem in g

minimize %BtQﬁ —Btb+c

1
subject to B; > efori=1,2,....n, (16)
where Q = 2 x Y [Diag(6)], b =2x Y Diag(6')y" and c = > (44"
i=k—q i=k—q i=k—q

Diag(v), for v € R™, is a diagonal matrix such that Diag(v);; = v;.
In Ref. 21 it is proved that (3, solution of problem (16), can be easily computed
as follows:

ALGORITHM 2.

For:=1,2,...,n,

- If Qb" > ¢, then set 3; =

it

by
Qi "
- Else, set §; = ¢. ]

The above formulation is very simple. The required computational effort is neg-
ligible, in terms of calculus and memory. However, limited memory technique has a
stronger theoretical support and seems to be more appropriate for unconstrained op-
timization. We shall employ sparse updating for constrained optimization, in those
situations that the limited memory update is not appropriate.

3. The Feasible Arc Interior Point Algorithm

In this section we describe a quasi-Newton version of FAIPA and present some pro-
cedures to solve large optimization problems employing the sparse and the limited
memory quasi - Newton methods. The best procedure in each case depends on the
structure of the problem. In particular, of the sparsity of the matrix of constraints
derivatives and of number of variables and constraints.

FAIPA requires an initial point at the interior of the inequality constraints and
generates a sequence of interior points. When the problem has only inequality con-
straints, the objective function is reduced at each iteration. An auxiliary potential
function is employed when there are also equality constraints.
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ALGORITHM 8. FAIPA - Feasible Arc Interior Point Algorithm

Parameters. a,v € (0,1) and ¢ > 0.

Data. Initial values for £ € R”, such that g(x) < 0, and for A € ™, A > 0,

B € R™*" gsymmetric and positive definite and ¢ € RP, ¢ > 0.
Step 1. Computation of a feasible descent direction

(i) Solve the linear systems:

B  Vg(x) Vh(x)] [do Vf(x)
AVgi(z) G(z) O | =—-1] 0
Vhi(z) 0 0 L Ho h(z)

and

B  Vg(x) Vh(z)]| [d1 0
AVgi(z) G(xz) 0 A =— A,
Vhi(z) 0 0 I 0

(17)

(18)

where G(x) = Diag[g(x)], A = Diag(\) and Vg(x) € R"*™ and Vh(x) € R"*P are
respectively the matrices of derivatives of the inequality and the equality constraints.

Let
P
de(x) = f(x)+ ) cilhi()|
i=1
be the auxiliary potential function.
(ii) If ¢; < —1.2p0(3), then set ¢; = —2pug(i);i =1, ..., p.

(i) If 1"V () > 0, set

dOtv¢c(m)

p=inf|elldollsla-Ngr s o

Otherwise, set

2
(iv) Compute the feasible descent direction d = dg + pdy

Step 2. Computation of the “restoring direction” d

Compute:

@ = gi(w+d) — gi(x) — Vgl(z)d; i =1,....,m

OF = hi(x +d) — hi(x) — Vhi(x)d; i=1,..,p

(19)
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Solve:
B Vg(x) Vh(z)] [d 0
AVgi(xz) G(z) 0 A =— |A! (22)
Vh'(z) 0 0 i oF

Step 3. Line search along the feasible descent arc x(t) =  + td + t2d

Find t = inf {1,v,v%13,...}, such that:
o(x + td + t2d) < ¢(x) + tnVe' (z)d

g(x 4 td + 12d) < 0 (23)
Step 4. Updates.
(i) Set the new point
x:=x+td+t3d
(ii) Define new values for A > 0 and B symmetric and positive definite.
(iii) Go back to Step 1. O

The present algorithm converges to a Karush - Kuhn - Tucker point of the prob-
lem for any initial interior point. This is true no matter how A > 0 and B, positive
definite, are updated. We employ the following updating rule for A:

Updating Rule for A\

Set, for i =1,...,m,
A i= max ose || do |]- (24)
If g;(x) > —g and \; < Mo set Ay = AL

The parameters €, g and A’ are taken positive. In this rule, \; is a second order
perturbation of \g, given by Newton iteration. If § and A’ are taken small enough,
then after a finite number of iterations, A\; becomes equal to Ao for the active
constraints.

The linear system (17) in (do, Ao, ito) is derived from a Newton’s iteration to
solve Karush - Kuhn - Tucker optimality conditions. Solving (17), we obtain dj,
that improves feasibility. In the calculus of d it is involved an estimate of the second
derivatives of the constraints. The feasible descent direction d = dg + pd; and the
feasible descent arc x(t) = x+td+ t2d are represented in Fig. 1, for the case when
an inequality constraint is active.

The line search described in Step 3 is an extension of Armijo’s scheme for un-
constrained optimization. More efficient inexact line search algorithms, based on
Wolfe’s or Goldfarb’s criteria, can also be employed.33:39
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X
Fig. 1. The feasible arc

3.1. BFGS updating rule for constrained optimization

Let l(z, \, 1) = f(x) + Ag(x) + p*h(z) be the Lagrangian of Problem (1). Quasi -
Newton method for constrained optimization works with an approximation of the
Hessian of the Lagrangian:

m p
B~ Lz p) =V (@) + Y \NVigi(x)+ Y 1w V2hi().
i=1 =1

The same updating rules used for unconstrained optimization can be employed, but
taking

Y= Vﬁfl(mk+17 )‘]87MI(§) - vml(mka Aé:a /.LIS)

However, since L(x, A, pt) is not necessarily positive definite at a local minimum, it is
not always possible to get positive definite quasi-Newton matrices. When employing
BFGS updating rule, v can be modified in such way to have §'y > 0, forcing Bk+!

51,52

to be positive definite. The following rule was proposed by Powell,
If

8ty < 0.26'BFs,
then compute
b= 0.86'B"*§
§tB*5 — 6ty
and take
vi=¢v+ (1 - ¢)B".
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In Ref. 26 it was proved that the convergence of the quasi-Newton version of
FATPA is two-step superlinear. The search along an arc ensures that the step length
can be taken equal to one after a finite number of iterations. This is a requirement
to prove superlinear convergence.

4. The Internal Linear Systems in FAIPA

The linear systems (17), (18) and (22) are called “Primal-Dual” systems since the
unknowns are related to the primal and the dual variables of the problem. These
systems can be reformulated in some equivalent ways that we shall describe here.
The most favorable formulation can be chosen in each case, depending on the struc-
ture of the optimization problem and the numerical technique employed to solve
the systems.

The primal-dual systems have a unique solution®® if the optimization problem
satisfies the following assumption:

Regularity Condition - For all  such that g(x) < 0 and h(x) = 0, the vectors
Vgi(z), for i = 1,2,...,m such that ¢g;(z) = 0 and Vh;(x) for i = 1,2,...,p are
linearly independent.

However, the primal-dual matrix is not symmetric neither positive definite.
Equivalent symmetric primal-dual systems can be obtained with the following co-
efficient matrix:

B Vg(x) Vh(x)
Vgi(x) A~'G(x) O (25)
Vh'(x) 0 0
When there are inactive constraints at the solution, the corresponding Lagrange
multipliers go to zero. In consequence, the symmetric primal-dual matrix becomes
ill-conditioned. However, it is not difficulty to obtain preconditioners to overcome
this kind of ill-conditioning.
It follows from (17) that

do = —B [V f(x) + Vg(x) o + Vh(z)puo)- (26)
and that

[[AVgt(@B‘lVg(w) — G(z)] Vgt(sc)B”Vh(w)] [)\0} _
Vh!(x)B 'Vg(x) Vh'(x)B 'Vh(z)| |uo

_[ AVg'(x)B™'Vf(x) }
Vh!(z)B7'Vf(x) — h(x)
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Then, (26) and (27) is an alternative formulation to compute Ag, o and do.
Similar expressions to get (dy, A1, 1) and (d, A, i) can be deduced. The system
(27) is called “Dual System”. Equivalent expressions can be obtained, involving
“Symmetric Dual Systems”, with the following coefficient matrix:

[Vg'(x)B~'Vg(z) - A 'G(z)] Vg'(x)B~'Vh(x)

Vh!(@)B~ V(=) Vh!(z)B~'Vh(z)| " (28)

The comments concerning the conditioning of the symmetric primal-dual matrix
(25) are also valid for (28).
From (17), we have

Ao = —G(x) 'AVg'(x)do (29)

and

B - Vg(2)G\(2)AVg'()] Vh(w)} [do] _ [Vf ﬂ NED)

Vh!(x) 0 Ho h(x)

The coefficient matrix of the system (30) is symmetric and positive definite, as
well as the Primal Matriz

[B—Vg(z)G ' (z)AVgt(z)]. (31)

This one is ill-conditioned when the inequality constraints are small.

The dual formulation is generally most favorable when the number of design
variables is much smaller than the number of constraints while, in the opposite sit-
uation, the primal formulation is preferable. The primal-dual formulation involves
a larger system of equations but it is more advantageous when sparse matrix tech-
niques are employed.

Three linear system with the same matrix are solved at each iteration of FAIPA.
In general, the coefficient matrices and right sides of the systems have small changes
from one iteration to the following one. Then, it should be possible to take advantage
of this fact when solving them.

4.1. Solving the primal-dual systems

The primal-dual system is particulary advantageous when the constraints deriva-
tive matrix is sparse and a sparse quasi-Newton matrix is employed. We solve the
linear systems employing the Harwell Subroutine Library®®, code MA27. This is a
set of FORTRAN subroutines for solving sparse symmetric linear systems by Gaus-
sian elimination that includes some procedures to take advantage of the matrix
structure’®16. The solution process is divided into three stages:

i) An analysis phase that examines the structure of the matrix in order to produce
a suitable ordering and data structures for an efficient factorization.
ii) A factorization phase that performs the actual numerical factorization.
iii) A solution phase which performs the forward and backward substitutions.
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We can assume that the zero elements are the same for all iterations. Thus,
the analysis phase must be only carried out for the first system in the first itera-
tion. Sice at each iteration the linear systems have the same coefficient matrix, the
factorization is done once per iteration only.

4.2. Solving the dual systems

The dual and the symmetric dual matrices can be computed employing the limited
memory formulation to determine the products B~ 'Vg(x) and B~ Vh(z) without
needing the computation nor storage of B.

Iterative methods for linear systems compute at each iteration the product of the
coefficient matrix by a vector. When employing limited memory formulation, this
product can be done without storing the coefficient matrix. This can be extremely
efficient when the constraints derivative matrix is not sparse.

A new technique based on a preconditioned conjugate gradient algorithm to
solve the symmetric dual system is now described, see Ref. 14. Let us consider:

Ax = b, (32)

where A € RV*N and x, b € RY. The present algorithm is based on the equivalent
systems

HL AL 'y=HL b, (33)

L'y=z. (34)

The lower triangular matrix L € RV* is an incomplete Choleski factorization

§RN><N

preconditioner and H e is a preconditioner based on quasi-Newton limited

memory method to minimize the quadratic function

Q) = sy T ALy —y'L ',
That is, H is a quasi - Newton approximation of (LT*AL™H)1,

Limited memory preconditioners were proposed by Morales et al.*6. Dubeux!*
proposed a criterium to select the “best” set of pairs (d,) to construct H. The
set of pairs (,7), that were obtained in the solution of one of this systems, can be
employed as initial set of pairs for the solution of next one since three systems with
the same matrix are solved at each iteration of FATPA.

The following preconditioned conjugate gradient algorithm is based on Algo-
rithm 9.1 in Ref. 55.

ALGORITHM /. Preconditioned Conjugate Gradient

Data. Initial values: °, 0 = L™ (b — Az"), 20 = fITO and p® = L™ 20.
Set k= 0.
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Step 1. Compute

k_ (Tt)kzk
(Ap*)tpk
2 = b ok ph

,rk-‘,-l — ,rk _ akL—lApk

~ k+l
LTI - S

()1 gt
(ri)k 2k

B =

Pl = Lt 4 gEph

Step 2. Set k =k + 1. Return to Step 1. |

The product Hr is computed employing (12). The products Az and Ap can
be computed without storing A.

5. Numerical Experiments

We present in this section some numerical results obtained with:

i) The classical full-matrix quasi-Newton version of FAIPA, FAIPA gN.
ii) The limited memory quasi-Newton version, FAIPA LgN. The internal systems
are solved iteratively.
iii) Faipa with a diagonal quasi-Newton matrix, FATPA_DgN.

Wolfe’s line search, described in Ref. 33, is employed in all the cases . The tables
with the results employ the same notation as in the paper. The number of box
constraints is called nb.

All the problems were solved with the same set of parameters: a = 0.7, ¢ = 1,
m = 0.1, 52 = 0.7, v = 0.5 and ¢ = 0.1. The initial values were \; = 1; for
i=1,2,...,m,S=1and c=0.

If the inequality constraints are not verified by the initial points, a feasible initial
point was found with the help of the auxiliary mathematical program

min z
(z,2) (35)
s. t. g(z) < 2,

where z is a scalar auxiliary variable. Making iteration with FAIPA to solve (35), a
feasible point is obtained once z becomes negative.
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5.1. Results with a collection of test problems

We report first our results with some test problems largely employed in Mathemat-
ical Programming literature. Our experience with 107 problems, compiled by Hock
and Schittkowski,3” are presented in Table 1, where “nprob” is the number of the
problem.

For all the problems, the optimal function value according to Ref. 37 was ob-
tained. The number of iterations required to have the optimal value of the function
with a relative error less than 1075 is reported. All the iterates satisfy the inequality
constraints. A tolerance of 10~® was established in the stopping criterium for the
equalities. The number of iteration in the line search is very small, since Wolfe’s cri-
terion is quite wide. In general, the line search requires only one or two evaluations
of the objective function and the constraints.

Table 1 also presents the numerical results obtained with the Sequential
Quadratic Programming algorithm included in MATLAB Library'?, with the same
stopping criteria. Since the inequality constraints are not always satisfied, a toler-
ance of 107% was also imposed.

The numerical results for a set of large problems is reported in Table 2. The are
described in Ref. 12. We propose here the parametric problem HS43_ nf, based on
Problem 43 in Ref. 37, stated as follows:

fl@) =M ot g+ ad s+ 223 + a3, — Sra—o — 2laa 1 + Tag

_ 2 2 2 2
g3j—2(z) = —(8 — Tij_3 — XTij_g — Tyj_1 — Ty; — T45-3 + Taj-2 — Tg5-1 + T4;5)
: P S R S , 4
g3j—1(x) = —(10 — a3, _3 — 225, o — 4,1 — 225, + Taj—3 + V)
_ 2 2 2
g3j(w) = —(5 — 224,53 — @i o — ;1 — 2%4j-3 + Taj_2 + Taj),

forj=1,2,...nf.
Our results are compared in terms of the required number of iterations with the
code Knitro described in Ref. 9

5.2. Ezxperiments with a structural optimization problem

We study the numerical behavior of the limited memory quasi-Newton version of
FAIPA when applied to two examples whose objective is the volume minimization
under Von-Misses stress constraints of rectangular plates submitted to in-plane
distributed loadings. The supports, loads and the design domains are shown in the
Figs. 2 and 5 respectively. In Problem 1 the domain is dicretized in 300, 1200 and
4800 elements and, 3200 elements for Problem 2. Quadrilateral bilinear plane stress
elements are employed. Young modulus is assumed to be £ = 210 GPa and Poisson’s
ratio v = 0.3 for all elements.

The thickness is constrained to be larger than 0.1 cm and smaller than 1.0 cm.
Von-Misses stresses, computed at the center of each element, must be lower than
250 MPa. The optimal structures are shown in Figs. 3 and 6, when the elements
with thickness equal to the lower bound were removed. The iterations histories are
represented in Figs. 4 and 7.
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Table 1. Numerical Results, Test problems in Ref. 37

FAIPA FAIPA

prob n m p box SQP|qN LgN DgN | prob n m p box SQP‘ qN LgN DgN
1 2 1 0 1 33 36 37 5 6 14 6 8 of 5 5 12
2 21 0 1 17 16 15 56 7 4 4 0 9 9 9 10
3 2 1 0 1 5 15 14 208 57 2 3 0 2 16 28 23 5
4 2 2 0 2 1 4 4 4 59 2 7 0 4 20 21 20 13
5 2 4 0 4 14 4 4 6 60 3 7 1 6 8 9 9 14
6 2 1 1 0 10 9 10 12 61 3 2 2 0 1t 10 10 9
7 2 1 1 0 8 11 11 28 62 3 7 1 6 7 4 4 4
8 2 2 2 0 4 9 9 9 63 3 5 2 3 7 9 9 10
9 2 1 1 0 5 5 5 6 64 3 4 0 3 23 23 22 15
10 2 1 0 O 11 7 7 12 65 3 7 0 6 7 13 13 19
1 2 1 0 0 7 6 6 6 66 3 8 0 6 5 10 10 9
12 2 1 0 0 16 4 4 12 68 4 10 2 6 13 19 29 21
13 2 3 0 2 31 25 40 9 69 4 10 2 8 15 11 11 19
14 2 2 1 0 5 14 14 6 70 4 9 0 8 36 64 31 53
15 2 3 0 1 2 6 6 6 71 4 101 8 8 15 15 16
6 2 5 0 3 6 18 18 36 72* 4 10 0 8 14 17 34 15
17 2 5 0 3 8 20 19 14 73 4 7 1 4 4 16 16 19
18 2 6 0 4 8 12 12 12 74 4 13 3 8 8 27 71 67
19 2 6 0 4 5 74 66 46 7 4 13 3 8 6 50 39 44
20 2 5 0 2 5 9 10 9 76 4 7 0 4 4 8 8 9
21 2 5 0 4 2 4 4 4 T 5 2 2 0 20 18 18 21
22 2 2 0 0 4 10 10 9 7 5 3 3 0 8 7 7 9
23 2 9 0 4 6 9 9 9 79 5 3 3 0 10 10 10 14
24 2 5 0 2 4 4 4 4 80 5 13 3 10 6 8 8 10
25 3 6 0 6 1t 65 11 38 81 5 13 3 10 9 10 10 12
26 3 11 0 37 24 32 25 8 5 16 0 10 3 12 12 12
27 3 1.1 0 116 19 22 22 84 5 16 0 10 13 4 4 4
28 3 1.1 0 31 4 4 28 86 5 15 0 5 8 12 12 29
29 3 1 0 O 1 11 11 15 93 6 8 0 6 20 7 7 11
30 3 7 0 6 9 6 6 6 95 6 16 0 12 1 4 4 4
31 3 7 0 6 8 9 9 9 96 6 16 0 12 1 7 7 9
32 3 5 1 3 3 1 11 14 97 6 16 0 12 8 8 8 7
33 3 6 0 3 61 14 14 9 98 6 16 0 12 8 42 31 6
34 3 8 0 4 7 18 18 9 9 7 16 2 14 27 12 21 6
35 3 4 0 6 5 6 6 11 100 7 4 0 O 13 11 17 9
36 3 7 0 3 1 12 13 10 101 7 20 0 14 26 22 39 28
37 3 8 0 6 6 14 16 11 102 7 20 0 14 26 28 27 17
38 4 8 0 6 28 16 15 17 103 7 20 0 14 25 18 22 28
39 4 2 2 8 199 13 13 12 104 8 22 0 16 14 18 17 13
40 4 3 3 0 6 6 6 7 105 8 17 0 16 33 54 63 50
41 4 9 1 0 9 12 12 14 106* 8 22 0 16 81 125 54 123
42 4 2 2 8 8 8 8 6 107 9 14 6 8 6 15 15 15
43 4 3 0 O 11 52 40 9 108 9 14 0 1 14 17 23 9
4 4 10 0 O 5 20 20 15 109 9 26 6 16 15 8 8 8
45 5 10 0 4 5 22 22 10 110 10 20 0 20 63% 4 4 5
46 5 2 2 10 36 10 10 19 |/ 111 10 23 3 20 124f 35 34 17
47 5 3 3 O 14 12 12 20 112 10 13 3 10 39 11 11 8
48 5 2 2 0 9 3 3 9 113 10 8 0 O 49 23 28 32
49 5 2 2 0 31 10 10 42 114* 10 31 3 20 31 116 93 93
5 5 3 3 0 13 11 13 13 116 13 41 0 26 199 51 55 18
5 5 3 3 0 5 4 4 4 117 15 20 0 15 23 40 46 29
52 5 3 3 0 4 5 5 7 118 15 59 0 30 13 45 51 29
53 5 13 3 0 5 5 5 7 119 16 40 8 32 9 77 100 89
54 6 13 1 12 1t 54 48 8

Note: ¥ The algorithm converges to a local minimum.

¥ Convergence is not achieved.

* The initial point is infeasible. Previous iterations were required in searching for a feasible
initial point.
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Table 2. Numerical Results, Test problems in Ref. 12
Problem n m P bor gqN LgN DgN Knitro
DTOC5.50 98 0 49 0 16 18 14 22
DTOC5.100 198 0 99 0 18 19 22 23
DTOC5.500 998 0 499 0 24 33 75 29
DTOC5-1000 1998 0 999 0 31 59 210 20
DTOC1L_5998 5994 0 3996 0 14 14 43 21
OPTCTRL6-40 119 0 80 0 67 42 19 116
OPTCTRL6-100 299 0 200 0 51 149 24 *
OPTCTRL6-400 1199 0 800 0 128 377 31 *
ORTHRDM2_100 203 0 100 0 12 13 8 12
ORTHRDM2_2000 | 4003 0 2000 O 10 16 9 15
ORTHRDM2_.4000 | 8003 0 4000 0 12 * 19 12
ORTHRDS2.50 103 0 50 0 38 144 44 60
ORTHRDS2_.100 203 0 100 0 36 96 107 50
ORTHRDS2_250 502 0 250 0 41 49 123 50
ORTHRDS2.500 1003 0 500 0 35 18 36 50
ORTHRDS2.2500 | 5003 0 2500 0 45 54 396 40
ORTHREGC_50 105 0 50 0 25 33 52 172
ORTHREGC_500 | 1005 0 500 0 29 31 214 48
ORTHREGC_ 2500 | 5000 0 2500 O 43 79 246 43
ORTHREGD_50 103 0 50 0 11 15 16 16
ORTHREGD_250 503 0 250 0 14 16 18 14
ORTHREGD_500 | 1003 0 500 0 14 17 17 16
ORTHREGD_2500 | 5003 0 2500 O 15 19 14 19
ORTHREGD_5000 | 10003 0 5000 0 * * 12 *
ORTHRGDS_250 503 0 250 0 48 26 174 23
ORTHRGDS_500 1003 0 500 0 46 33 252 16
GILBERT_5000 5000 0 1 1 58 Yt 112 45
GILBERT_1000 1000 0 1 1 55 Yt 67 48
GILBERT_10 10 0 1 1 17 19 18 20
SVANBERG._5000 | 5000 5000 0 10000 * * 75 420
SVANBERG-1000 | 1000 1000 O 2000 137 89 63 247
SVANBERG-100 100 100 0 200 48 56 64 76
POLYGON_225 48 324 0 96 43 33 28 *
POLYGON_50 98 1274 0 196 13 18 38 *
POLYGON_.75 148 2849 0 296 18 19 37 *
POLYGON_100 198 5049 O 396 19 13 34 *
HS43NF_500 2000 1500 0 0 17 17 24 *
HS43NF_1000 4000 3000 0 0 19 16 29 *
HS43NF_1500 6000 4500 0 0 17 17 25 *
HS43NF_2000 8000 6000 0 0 19 17 29 *
HS43NF_2250 9000 6750 0 0 * 16 27 *
HS43NF_3500 14000 10500 O 0 * 18 26 *

Note: * Not tested.
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Fig. 2.

Problem 1 - Description
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Fig. 6. Problem 2 — Optimal design
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6. Conclusions

All the test problems were solved very efficiently with the same set of parame-
ters. The number of iterations remains comparable when the size of the problem is
increased.

The numerical results shown here suggest that very large problems can be solved
with FAIPA, depending only on the capacity of solving the linear internal systems
and storing the required data. The diagonal quasi-Newton Matrix is more efficient
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for sparse problems. Otherwise, the limited memory approach together with the
iterative solution of the internal systems should be employed.

In consequence of some particular features, FAIPA is very advantageous for
large scale engineering applications. Engineering optimization usually requires only
inequality constraints, and all the iterates given by FAIPA are strictly verified. In
consequence the iterations can be stopped at any time. Since FAIPA solves linear
systems at each iteration, instead of Quadratic or Linear Programs,*? a large number
of existing techniques for linear systems can be employed. Also algebraical trans-
formations can lead to improve the efficiency when solving particular applications,
as in the Simultaneous Analysis and Optimization Algorithm, FATPA_SAND, or
the Multidisciplinary Design Optimization one, FAIPA_MDO, described in Ref. 33.
The fact that global convergence is proved for any way of updating B and A makes
FAIPA very strong. In particular, when we substitute the BFGS quasi-Newton ma-
trix by a diagonal approximation.
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CHAPTER 3

STRUCTURAL OPTIMIZATION USING EVOLUTIONARY
COMPUTATION

Christopher M. Foley

Department of Civil & Environmental Engineering, Marquette University
P.O. Box 1881, Milwaukee, Wisconsin 53201
E-mail: chris.foley@marquette.edu

In the past three decades, evolutionary computation has been shown to be a very
powerful tool for structural engineers. Application of evolutionary computation
methodologies have been spread far and wide throughout the field of structural
engineering ranging from selection of shapes for relatively simple structural
systems to designing active control systems to mitigate seismic response to
determining the location and extent of damage within structural systems. The
present chapter provides an overview of evolutionary computation including a
brief history of its development and the types of algorithms that are considered
to be forms of evolutionary computation. A basic discussion of the genetic
algorithm and evolutionary strategy is provided within the context of application
to a very simple structural engineering design problem. The chapter provides a
bird’s eye view and discussion of many applications of evolutionary
computation in the field of structural engineering. A brief synthesis of recent
applications of evolutionary computation in the field of structural engineering is
provided and recommendations for future work are given.

1. Introduction

designs that have been generated through natural processes.
shark is but one example of a naturally evolved “machine” that has been
optimized within an evolutionary timescale for living in the open ocean. Another
interesting example of natural design optimization comes from the field of
ethology. Although the ant is essentially without vision, ant colonies survive and
thrive as a result of their methods used to locate food. The trial and error
methodology used by ants to locate food sources is really nothing more than an

It is very easy for the cognitive human being to appreciate the seemingly perfect
The great white

optimization (search) algorithm used by these seemingly simplistic animals.

59
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Classical or traditional algorithms for structural optimization are most often
driven with deterministic mathematical re-sizing procedures and essentially one
design is changed through iteration until a convergence criterion is reached.
These methods have been implemented in a wide range of structural optimization
applications and several excellent textbooks describing their fundamentals are
available"”. These direct and gradient-based solution algorithms are founded
upon a uniquely human field describing physical and natural phenomena —
mathematics.

While direct and gradient-based algorithms can be considered as very
powerful search and optimization tools, they are not without difficulties in
application for many practical engineering design optimization problems’. Direct
mathematical methods are point-to-point search algorithms that use objective
function and constraint values to guide the search through feasible decision
space. Gradient-based methods use derivatives of objective functions and/or
constraint equations to guide the search. As a result, convergence of these
algorithms depends upon selection of an initial solution for subsequent
modification through iteration and design variable changes. Poor initial design
selections can set the algorithms off in unprofitable directions and oftentimes, the
algorithms can get stuck in sub-optimal regions of the decision space.

Mathematical algorithms are often problem-specific and the efficiency and
capability of the algorithm in finding optimal solutions for general classes of
problems varies. Practical engineering problems often utilize discrete decision
variables (e.g. structural steel cross-section sizes in building design). This is
usually circumvented when mathematical optimization algorithms are employed
by re-casting the discrete decision variables into continuous functions that
facilitate differentiation. While this is an acceptable work-around, it implies that
the algorithm is allowed to consider infeasible locations in decision space and
computational time can be wasted determining objective function values for
infeasible solutions. In addition, all possible combinations of two values for each
decision variable (nearest upper- and lower-neighbor) need to be evaluated for
final solution feasibility. This is a significant amount of extra effort and there is
no guarantee that these combinations of nearest-neighbor decision variables will
lead to the optimal solution. Finally, gradient-based algorithms do not lend
themselves to easy implementation in parallel computing environments. Low
cost multiple-processor computers and networks of computers have resulted in
parallel computing environments becoming widely available and awaiting
exploitation.

Taking advantage of the perfect vision of hindsight, one might surmise that it
was only a matter of time for scientists and engineers to begin to look towards
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natural systems for design methodology inspirations. Much of the robustness
found in natural systems comes from the ability to adapt to ever-changing
environments. The ability of natural systems to change and adapt to their
environments has undeniable parallels within the engineering design field. The
concept of developing engineering designs by generating populations of potential
solutions (rather than single solutions) and mimicking the evolutionary process
found in nature to guide the search towards an optimal solution is the highest-
level definition of evolutionary computation (EC). These characteristics are what
distinguish EC from mathematical computation when applied to structural

optimization problems. Evolutionary computation includes stochastic
components not present in classical mathematically-based optimization
algorithms.

It is commonly believed that the field of evolutionary computation has
evolved (pun intended) from the activities of three research communities working
in widely dispersed geographic locations®”. Taxonomically speaking, three
distinct flavors of evolutionary computation emerged in the 1960’s. The first is
called the evolution strategy®®. A second approach, principally related to the
evolution strategy, is called evolutionary programming®"'. A third algorithmic
approach that was developed through the desire to simulate the adaptive behavior
seen in natural systems has been called the genetic algorithm'*"®.

A historical perspective regarding the development of evolutionary
computation has recently been provided*’. Essentially four decades (1960’s
through 1990’s) are contained in this perspective. Although conceptualizing
evolution as an optimization problem and subsequent development of computer
algorithms for optimization using evolution as a metaphor occurred in the 1930’s
and late 1950’s*; it wasn’t until widespread availability of computers in the
1960’s that the tremendous possibility for automating the optimization process
using evolutionary-based algorithms was realized. Thorough study of
evolutionary algorithms then proceeded as the desire to improve algorithm
performance increased. This was termed the “explorative 1970’s™. As the
theory and behavior of the evolutionary algorithm became better defined and
understood, researchers began seeking more widely varied applications of
evolutionary computation in a variety of engineering design fields. This period
has been called the “exploitative 1980’s™*. The 1990’s has seen the evolutionary
computation community begin putting together a unifying view of evolution
strategies, evolutionary programming and genetic algorithms and as a result, this
decade has been called the “unifying 1990°s™,

The engineering field has had significant involvement in the development of
theoretical foundations to help explain the workings of evolutionary algorithms.
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At present, the field of structural engineering appears to be in an exploitative
period of its own. In the decades following the 1980’s, the field of structural
engineering has seen a large number of applications of evolutionary computation
in design. These applications have ranged from simple linear elastic analysis-
based design, to design of structural control systems, to inelastic analysis-based
design, to inelastic time history analysis-based design of structural systems for
optimized performance. With these decades of exploiting applications of
evolutionary computation in structural design came exploration of evolutionary
algorithm parameters, applications of parallel computing, and novel methods to
represent systems within the evolutionary algorithm. A bird’s eye view of this
progress has yet to be developed.

There a several goals of the present chapter. First of all, it is hoped that it can
become a very useful starting point for researchers and students in the field of
structural engineering in their journey to understand and apply evolutionary
computation to the increasingly complex design problems that are being tackled
by the modern structural engineer. Secondly, the chapter seeks to provide the
reader with a concise, yet complete, summary of recent research efforts in the
field of optimal design that utilize evolutionary computation. The chapter will,
unfortunately, focus on civil engineering design applications (mainly in the field
of structural engineering) as these are most familiar to the author. The
application review in the chapter focuses on contributions to the body of
knowledge made during the years 2000 through 2006. Excellent resources for
structural optimization research prior to 1999 are available'’. Furthermore, state-
of-the-art reviews of evolutionary computation applications in structural design
have recently been published'®. It is the goal of this chapter to provide the reader
with an additional review to complement these former efforts. Finally, the author
hopes to provide the reader with sources of further information that relate to both
the theory and application of evolutionary computation as time marches on.

2. Optimization Problems and Complexity

It is prudent to begin the discussion of evolutionary computation by refreshing
one’s memory with regard to optimization problem statements that are typically
found in engineering design. Structural optimization algorithms are generally
formulated to tackle optimization problems whose statements take the following
general form;

Maximize: (X)), m=12,....M and n=12,...N
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Subject To: g;(x)<0 j=12,...,J
h, (x)=0 k=12....K
xf <x <xY i=1,2,..,1

The algorithm employed to solve the multiple objective optimization problem
illustrated above will seek to define a vector of design variables, x, within upper-
and lower-boundaries that satisfies all inequality, g(x), and equality, &(x),

constraints while maximizing the objectives. It should be noted that the present
problem illustration assumes that maximizing the inverse of an objective is, in
essence, minimization.

The vector of design variables can be used to define multi-dimensional
decision space, and when the design variable vector is completely defined, there
is a mapping of decision space to objective space that is unique to the problem
being solved”.

The complexity of the design problem can vary dramatically depending upon
the number of objectives, the number of constraints, and the size of the decision
space. Furthermore, the mapping of decision space to objective space can result
in increased problem complexity. A relatively simple example is characterized
by: a single objective being minimized (e.g. weight); a small design variable
space (e.g. 10 discrete cross-sectional areas); relatively few constraints; and
instances where constraints and objectives are evaluated using linear elastic
structural analysis (e.g. elastic analysis of a truss). A relatively complex design
problem characteristic of modern structural engineering can be described as
having: multiple objectives (e.g. minimizing fabrication complexity, minimizing
weight, maximizing confidence in meeting a desired performance level during
earthquake); very large decision variable space (e.g. 250+ discrete steel wide-
flange shapes found in buildings); many constraints (e.g. buckling, plastic hinge
rotation, collapse load limit); and instances where constraints and objectives
require advanced analysis methods (e.g. inelastic static analysis; inelastic time-
history analysis). Optimization algorithms based upon evolutionary computation
have been shown to be applicable to wide ranges of problem complexity.

When multiple objectives are considered in the optimal design problem, one
must be sure to evaluate the objectives chosen to ensure that they do indeed
conflict with one another. In other words, the objectives should have no
interdependence. If non-conflicting objectives are chosen when defining the
optimization problem, there will be one unique solution. When optimal design
problems involve multiple competing objectives are formulated, Pareto optimal
fronts in objective space can be defined and a single optimal design is defined by
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the preference expressed by the designer. When one seeks optimal solutions to
these multi-objective problems, diversity in the solutions generated is highly
useful. Evolutionary computation has been demonstrated to be very useful for
providing diverse solutions along Pareto optimal fronts for multiple-objective
optimization®.

To date, evolutionary computation has been shown to be applicable in the
widest range of problem complexities of any algorithm capable of selecting the
decision (design) variables in an optimal manner. It is for this reason that
evolutionary computation should be included in the arsenal of algorithms used by
the modern structural engineer. The next section of the chapter proceeds to
discuss the fundamental components of algorithms based upon evolutionary
computation principles and elucidates differences between evolution strategies,
evolutionary programming, and genetic algorithms when applied to structural
optimization problems.

3. Fundamentals of Optimal Design Using Evolutionary Computation

The traditional engineering design problem needs to be cast into a form that is

suitable for application of evolutionary computation. The basis of this

transformation can be an analogy to Darwinian evolution. The characteristics of

a Darwinian evolutionary system are":

® single or multiple populations of individuals competing for resources that are
limited;

e birth and death of individuals over time resulting in dynamically changing
populations;

e the definition of fitness that characterizes the quality of an individual in the
given environment thereby reflecting its ability to survive and reproduce;

e the notion of inheritance where parental offspring have characteristics of
both parents, but are not identical to the parents.

Given the desire to look at solutions to optimal design problems within the
context of a Darwinian evolutionary system, it is useful to select a relatively
simple optimal design problem statement and use this problem statement in
subsequent discussions. Therefore, let us consider a simple optimization problem
based upon design of a simple cantilever beam with defined length and tip
loading similar to that shown in Figure 1 adapted from the outstanding example
given by Deb’.
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Figure 1. Simple Cantilever for Design Optimization Problem.

An optimal design problem for this simple cantilever can be posed as a single-
objective, or multiple-objective problem. The most general case with multiple
objectives is stated below:

Minimize: fl(X)=WI=,0'A~L=,0-%~D2L
64P L
X :5 = e
f2( ) tip 3E7[ D4
2P L
Subject To: O, =3—-_3g o
7z D
J. <0

tip allow
10 mm < D £40 mm (2 mm increments)

200 mm < L <830 mm (10 mm increments)

Several parameters used in the problem are defined as follows: p is the

density of the material; E is the elastic modulus of the material; o, is the

llow

allowable maximum stress in the cross-section; and &, 1is the allowable

allow

deflection at the tip of the cantilever. The vector of design variables is
X=LD LJT. Combinations of diameter and length of the cantilever will be

sought to minimize one or both objectives depending upon the problem
considered.

Evolutionary computation facilitates relatively easy conceptualization of an
algorithm to search for values of the design variables that define the optimal
design. Initially, we can begin to talk about a simple evolutionary algorithm
form that does not contain many nuances that research efforts have sought to
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define and refine throughout the preceding two decades. A basic evolutionary
algorithm to solve the problem above is outlined in pseudo-code in Figure 2.

Generate a population of individuals

for 1 to Number_ Of_Generations
Select an individual that will create offspring
Use selected individual to create offspring
Select member of the population to die off
Evaluate stopping criterion

Report "best" individual found through evolution

Figure 2. Pseudo-Code for Simply Evolutionary Algorithm (adapted from De Jong*).

Prior to proceeding forward to look at formulations for GA, ES, and EP
approaches to solving the simple cantilever optimization problem, it is prudent to
discuss how populations of individuals may be created. @When applying
evolutionary computation, and individual is nothing more than a combination of
design variables. These design variable vectors can be given an evolutionary
reference by generating a slightly different characterization for the individual (i.e.
a solution to the optimization problem) as shown below;

X= <diameter length>

With reference to genetics, individual design variable vectors can be thought of
as the genotype or phenotype for the individual. The genotype for an individual
within the current optimization problem is a chromosome with two genes. When
these genes are given values, they result in a unique individual with its own
physical traits: diameter and length. The phenotype for the individual in the
design problem is the observable physical traits of the solution: diameter and
length.

The unique features of an individual (e.g. diameter and length) can take on a
range of values for the problem being considered. Again, with a genetics
analogy, these values can be referred to as alleles. In the current optimization
problem, the alleles making up an individual come from the ranges of the design
variables contained in the problem statement. The alleles describing the
phenotypic trait of diameter can take on values in a range from /0 mm to 40 mm
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with 2 mm increments; and the alleles describing cantilever span can take on
values in the range of 200 mm to 830 mm in 10 mm increments.

In general, two forms for the alleles have been considered in optimization
problems solved using evolutionary computation. These forms loosely
correspond to the flavor of evolutionary computation being implemented. Binary
alphabets have been used to define alleles within the chromosomal
representations of individuals used in genetic algorithms. Real-valued alleles
have been used in both genetic algorithms and evolution strategies. Object-
oriented representations of individuals have also recently emerged in structural
optimization.

One very important aspect to the evolutionary algorithm shown in Figure 2 is
the need to make decisions regarding individuals chosen to reproduce and
individuals chosen to die off during the evolution. Within the field of biology,
the quality of an individual is judged using its ability to survive and produce
viable offspring. As a result, quality can only be observed after a large portion of
the evolutionary process has already taken place. Therefore, quality is judged
using fitness based upon hindsight from a vantage point that is somewhere along
the evolutionary timescale (we often assume we are looking back from the end
of the evolutionary scale). Applications of evolutionary computation as implied
in the algorithm shown in Figure 2 demand that the quality of the individual be
judged regularly during the evolutionary process. Therefore, applications of
evolutionary computation generally define the quality of an individual using
objective fitness, which is an objective measure of its ability to satisfy the
constraints and objectives in the optimization problem posed during the
evolutionary process. This is often shortened in the optimization literature to
fitness and technically this use of the term is in conflict with its biological
origination®. In this chapter, we will use objective fitness to describe the quality
of an individual during the evolutionary process.

The fundamental differences in the three forms of evolutionary computation:
genetic algorithms (GA), evolution strategies (ES), and evolutionary
programming (EP): can be easily seen if they are formulated within the context
of the simple evolutionary algorithm pseudo-code shown in Figure 2 to tackle the
optimization problem described in Figure 1. We can now turn our attention to
specific forms of evolutionary algorithms and skeletal applications of how
these algorithms would be used to tackle the optimization problem postulated in
Figure 1. There are many good resources available describing the details of
applying GA’s, ES and EP*” '*** to solve engineering problems and these details
will not be reproduced here. Instead, an overview of how these evolutionary
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algorithms are used to solve the multiple-objective optimization problem posed
in Figure 1 is provided in the following sections.

3.1. Objective Fitness

Judging the quality of individuals generated throughout the evolutionary process
is essential for selecting individuals for reproduction. The objective fitness of an
individual is a function of how well that individual meets the desired objectives
and satisfies the constraints put forth in the problem. Assigning this fitness
begins with evaluation of the individuals. This evaluation can be quite complex
and is dependent upon the complexities of the analysis methods needed to
conduct the evaluation. It should be noted that the notion of objective fitness is
common to all forms of evolutionary algorithm, and as such, it is treated first as a
stand alone concept prior to discussion of specific forms of evolutionary
computation.

For the current cantilever problem given in Figure 1, the most basic form of
objective fitness comes from simply considering the objective values
corresponding to the individual as implied below;

fl(xi)zp'%'DizLi 2
64P L
fz(x,-)=E-D—; 3)

Single-objective fitness can be defined by simply applying weighting factors to
each objective whose magnitude is dependent upon user preference as indicated
below;

F(x,)=w - fi(x)+w, fo(x,) “
It should be noted that equations (2) and (3) involve weight and deflection,
respectively. As a result, the weighting factors might also include normalization
so that each component in the fitness definition has appropriate scale when
defining a single objective fitness for the individual.

Engineering optimization problems always include one or more constraints to
which potential solutions must adhere. The genetic algorithm handles constraint
satisfaction through imposition of penalties and therefore, the constrained
optimization problem statements must be recast in an unconstrained format.

The most direct way to do this is through imposition of linear or nonlinear
penalty functions that depend upon the degree to which a penalty is violated. A
penalized objective fitness for the cantilever problem with two constraints is
easily formulated using equation (4) as follows;
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cons

I:Wl fi(x)+w, - fo(x ):|'H(1+q)i)k (3)

k=1
The individual penalty functions corresponding to the deflection and stress
constraints in the optimization problem, shown in Figure 1, can take a linearized
form and a nonlinear form. The linearized form can have slope variation to
enhance the severity of the penalty as the violation increases. The linear penalty
form can be taken as™;

0 lf | max / allow <
q)5 = |5max (6)
kﬁ ’ 5auaw lf| max / allow
0 lf | max / allaw <
@, = O max (7
ka ’ | | lf | max / allow
allow
A nonlinear form can be written as™;
O lf| |/ allow —
D, = 8
’ ké‘Lgﬂ_lJ lf| max/ allow >1 ( )
allow
0 lf | max / allow <
q)a — Ng (9)
ko’ ’ (bﬂ _1] lf | max / allaw
allow

The scaling multipliers, k; and k_, are defined by the algorithm user and can

be used to enhance the penalty in a manner that is proportional to the violation.
The exponents, ng; and n_, can be used to scale the penalty in a manner that is

non-proportional to violation.

Identifying the appropriate scaling multipliers and exponents to apply in a
particular problem requires some measure of user intuition. Poor selection of
these parameters can cause premature convergence to sub-optimal solutions and
also epistatic behavior in the algorithm. Automatically adjusting penalties within
the evolutionary process has been proposed as a solution to this dilemma®*?’.

Generating algorithms that can handle multiple objective fitness quantities is
an active area of research in the communities of evolutionary algorithm theory
and engineering. Genetic algorithm researchers often refer to genetic algorithms
designed to handle multiple-objective problems as Multiple-Objective Genetic
Algorithms (MOGA’s).
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The optimization problem currently considered can also be maintained as a
multiple objective problem without pre-assigning preference through weighting
factors. If one were to maintain the constraint handling process described
previously, but preserve the multiple objective nature of the design problem, the

objective fitness should now consider two distinct components,
N,

E(x,-)=E(x,»)ﬁ(1+d>,-)k (10)
k=1
N,

E(x)=F(x) JJ0+®,), (1)
k=1
It should be noted that the form of equations (10) and (11) are not the only ways
to handle constraints in the definition of objective fitness. Improvements in
constraint handling in MOGA’s have been proposed™.

When multiple objective optimization problems are considered, the use of
weighting factors to impose preference as done in equation (5) is omitted. This
leaves sets of potential solutions in objective fitness space that the engineer can
use to aid in decision making. The Pareto optimal set of solutions is defined as
the set of solutions lying along a Pareto optimal front’. When a candidate
solution is said to be better than another candidate solution in meeting the
objectives, it is said to dominate the other solution. The set of non-dominated
solutions form the Pareto optimal set of solutions. The landmark resource for
multiple objective optimization using evolutionary computation is the text by
Deb’ and a very nice summary of the state-of-the-art in multiobjective
evolutionary algorithm developments has been generated”.

Generating a genetic algorithm or evolution strategy to handle multiple
objective optimization problems is not trivial. When iterations in the
evolutionary process are completed, a non-dominated surface will form in
objective fitness space. Identifying non-dominated Pareto front must consider
potential objective fitness surfaces that are both convex and non-convex.
Furthermore, if large populations are utilized, maintaining these large
populations with complex and time consuming fitness evaluations can result in
significant solution time. Procedures for identifying Pareto sets of solutions have
been proposed**™.

Research has found that non-dominated surfaces of solutions generated for
multi-objective optimization problems can include clustering of solutions within
objective fitness space. Ensuring that an evolutionary algorithm can generate
solutions spread out along the Pareto optimal surface has also been addressed in
research activity’” *> %%,
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Selecting individuals for reproduction’ can make for rather interesting
difficulties when implementing evolutionary algorithms. The non-dominated set
of solutions should be given some measure of preference in the selection process,
but if too much emphasis is placed on these solutions, genetic diversity may be
lost. To combat this, local selection algorithms™ and improved sampling
methods have been proposed™”.

It may be useful to maintain individuals with high objective fitness
throughout the evolutionary process. When the objective fitness is defined as a
single individual, this individual is the elife individual. When a Pareto set of
solutions is considered elite, which solution or solutions are to be maintained?
Researchers have addressed this issue and made recommendations on how to
incorporate elitism® within the evolution strategy™’.

The flurry of developments in multiple objective evolutionary algorithms
prior to 2000 demanded that an assessment be made to objectively evaluate the
performance of these algorithms on test problems. Detailed comparisons of
multiple objective evolutionary algorithm performance are available®*'.

When multiple objectives are incorporated into an optimal design problem,
the engineer will be required to eventually decide on the solution from the Pareto
set or front that is most appropriate. This suggests that input from the engineer
during the evolutionary process may be of benefit to the algorithm. Such an
environment has been proposed for multiple objective problems®” and the
interaction of user with algorithm can result in dynamic redefinition of objective
fitness space during execution of the algorithm.

3.2. Genetic Algorithm

The genetic algorithm (GA) maintains the closest link to genetics of any of the
three main types of evolutionary algorithms. The phenotypes and/or genotypes
of the individual are most-often described using the genetic concept of a
chromosome. Furthermore, the genetic algorithm also includes more formalized
“laws of motion” to simulate the evolutionary system. A simple flowchart
illustrating implementation of a genetic algorithm is given in Figure 3. One
iteration through the genetic algorithm is often called a generation. The
termination criterion is often a user-defined maximum number of generations or
lack of significant improvement in solutions.

i. Reproduction will be the term used later in the chapter to describe recombination and mutation.
¥ Elitism will be discussed in greater detail later in the chapter.
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The genetic algorithm contains many more steps than those implied in the
simple evolutionary algorithm pseudo-code given in Figure 3. First of all, each
individual in the population needs to be evaluated. This evaluation includes
computing the objective function value(s) for the individuals as well as
determining if the constraints are satisfied and these computations are often
based upon the results of structural analysis in structural engineering systems.

Initialize

Population
Evaluate

Population

[Assign Objective ]

Fitness

Y

—— Reproduction

Figure 3. Flowchart of Typical Genetic Algorithm.

The quality of the individual in a GA is often based upon the objective fitness
of the individual, which is evaluated using the value of the objective function(s)
as well as satisfaction of the constraints. Constraint handling is also a very rich
area of research in the GA community, but most often the objective fitness of the
individual is scaled using penalties that are a function of the degree to which the
constraints are violated.

The selection of individuals to participate in reproduction can vary with GA
implementation. The reproduction phase of the algorithm (i.e. recombination and
mutation phases) depends upon the phenotypic/genotypic representation for the
individuals that is used in the GA.
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The following sections of the chapter will outline typically employed methods
for representing individuals, evaluating objective fitness, conducting selection of
individuals for reproduction, methods of recombination, and mutation
techniques.

3.2.1. Individual Representation

The phenotypic or genotypic representation of the individuals within a genetic
algorithm is most often a chromosome of binary digits. In keeping with the
biologic analogy, each binary digit can be thought of as a gene. There have been
theorems (e.g. the schema theorem) proposed that suggest binary alphabet
representation facilitate very efficient searching®'.

If we consider the two allele individual of the cantilever beam problem, a
binary string chromosome and its decoded design variable vector are,

0110110101 = x=|D L[ =[22 730/

The decoding of the alleles in each segment of the chromosome can be done very

simply using the following expression™ *';
x=xmin+{%}~DV(bs) (1)

where: L

bs

x_.is the lower-bound for the design variable; x™

min

is the length of the binary string used to encode the design variable;

X

is the upper-bound for the
design variable; and DV (bs) is the decoded value of the binary string.

Individuals need not be represented in the form of binary string
chromosomes. In fact, binary string chromosomes can make search difficult
because neighboring solutions can have very significant differences in their
binary string representations resulting in Hamming cliffs’. Obtaining high-
precision solutions can also result in very long binary strings. Long binary
strings also imply larger population sizes. Real-value GA’s have been proposed
to address these issues”.  Sometimes referred to as decimal-coding, these
representations of candidate solutions have been shown to be effective in
structural optimization problems*. Additional treatment of real parameter GA’s
can be found elsewhere”'.

Recently, hierarchical representations of individuals similar to representations
used in genetic programming have also been proposed”. Representing
individuals within rational hierarchies alleviates the need for long chromosomal
representations for problems with large numbers of design variables. This
concept has been extended to object-oriented representations for individuals in
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complex design problems involving significant numbers of design variables*> *.

The use of network random keys in conjunction with tree representations of
individuals has been shown to facilitate very efficient solution algorithms®’.

3.2.2. Selection

The selection mechanism chosen for implementation in the evolutionary
algorithm is very important. The primary goal of selection is to find those
candidate designs that are good and those that are not so good within the
population. It is hoped that the algorithm employed will then create additional
copies (not exact copies though) of good solutions and allow the not so good
solutions to simply die off.

Difficulty often arises in applying selection operators as part of evolutionary
algorithms. Some candidate designs that are not rated highly in objective fitness
may have redeeming qualities that other solutions may benefit from. To only
select the premier solutions for subsequent reproduction is analogous to
“throwing the baby out with the bathwater”. Within the context of search, this
implies that the algorithm is honing in on specific regions of the search space
without adequate exploration. On the other hand, if the algorithm allows too
much disparity in solution quality of individuals selected for reproduction, the
algorithm can simply search too large a space thus making convergence of the
algorithm difficult. The exploration of the search space within the context of the
genetic algorithm is sometimes evaluated using the concept of selection pressure.
High selection pressure implies that only the elite solutions will be selected for
reproduction and low selection pressure is more egalitarian and allows many
more individuals to participate in reproduction.

The challenge in developing selection mechanisms or selection operators for
evolutionary algorithms is to facilitate exploration, while maintaining
exploitation of good solutions. Various selection mechanisms have been
developed to meet this challenge.

The fournament selection mechanism is a procedure whereby contests or
tournaments are held between two members of the population at a stage in the
evolution. The winners of these tournaments (those with better objective fitness)
are then placed in a mating pool until it is filled.

The fitness proportionate selection mechanism assumes that copies of
individuals are generated for the mating pool. The number of copies is
proportional to that individual’s objective fitness relative to the average objective
fitness of the population. Therefore, better individuals will have greater number
of copies. When the proportionate selection mechanism is executed, it is often
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easiest to implement by simulating a roulette wheel. In other words, the slice of
the wheel for an individual with better objective fitness will be larger than a
lower quality individual. Therefore, the probability of the better individual being
chosen for the mating pool is higher. There are a number of modifications to
roulette-wheel selection that have been proposed”.

When proportionate selection is used, scaling issues can arise when there is
large disparity among the objective fitness magnitudes for individuals in the
population. If individuals within the population begin to have objective fitness
magnitudes that greatly overshadow others, their slice of the roulette wheel can
become exceedingly large to the point where certain individuals fake over the
subsequent population. Measuring this tendency is done using the concept of
take over time*'. Scaling objective fitness is one way to inhibit or slow take over
by dominant individuals.

A selection method that avoids scaling issues is rank-based selection.
Implementing this mechanism simply involves ranking individuals from worst
objective fitness to best. The rank-based fitness is then the individual’s rank in
the population. Selection pressure and take over time have been studied within
populations with ranked fitness and selection mechanisms capable of
dynamically controlling selection pressure and take over time through user-
defined parameters have been proposed™.

3.2.3. Recombination

Recombination is a process by which two candidate solutions to the optimization
problem are combined to create one or more new potential solutions. These new
solutions contain aspects of both parent solutions and assuming the parents have
“high quality” genetic material, the offspring will as well.

Creation of new genetic material in the population, or new candidate designs,
is most often accomplished within the realm of genetic algorithms using the
crossover operator. When individuals are represented using binary
chromosomes, three crossover operations are most often conducted: single-point
crossover; multi-point crossover; and uniform crossover. The selection
mechanism carries out the task of identifying solutions to become members of
the mating pool. Two candidate designs are then selected for mating
(recombination) and the crossover mechanism is applied to create offspring that
have “genetic” material from both parents. The most common crossover
mechanisms are illustrated in Figure 4.

Single point crossover begins with identification of the parent strings. A
point along the string is chosen and the segment of the parent chromosome to the
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right or left of the crossover point is exchanged to create new candidate designs.
For the present cantilever design problem, the two parent designs at the left of the
figure result in offspring that maintain their diameter gene, but have altered genes
defining the span. It should be emphasized that new genes will only be
introduced into the offspring when the crossover point lies within the gene.
When the crossing site corresponds to the end of one gene and the beginning of
the next gene, crossover will simply result in a gene exchange with no new
genetic material being introduced. Thus, one can think of single point crossover
as minimally disruptive to the genetic material and exploration of the design
variable space remains relatively close to the original solutions.
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Figure 4. Crossover Operations Commonly used in Binary String Genetic Algorithms.

The second crossover mechanism in Figure 4 is multi-point crossover. In this
recombination, two crossing sites are chosen at random and the central segment
of the parent chromosomes are exchanged. As indicated in Figure 4, this
crossover operator has a higher probability of creating offspring that have do not
have common genes with the parent strings. It should be noted that this may only
be true for chromosomes with few genes. As the design variable numbers
increase, more than two crossing sites may be required to carry out
recombination that adequately searches the design space.
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Uniform crossover is the final mechanism commonly used. This crossover
operator is applied by simply moving bit-by-bit along the chromosomes and
flipping a fair (two-sided) coin. If the toss results in heads, the bits (alleles) are
exchanged. The results in Figure 4 were obtained using a random number
generator with bit exchange occurring when the random number exceeded 0.50.

The “optimal” crossover scenario for all problems remains to be defined. In
fact, recombination needs to be approached in significantly different ways when
binary chromosomes are not used to represent individuals. When the hierarchical
representation of individuals is used', recombination as envisioned using
crossover cannot create new genetic material. As a result, different crossover
mechanisms that have similarities with genetic programming have been
developed. These recombination mechanisms, termed homologous and non-
homologous crossover*” ***_ help to facilitate recombination similar to that seen
in more traditional crossover operations on binary strings. These hierarchical
representations have a significant correlation to genetic programming
representations of candidate solutions.

Representing candidate solutions in tree structures has great similarity to
genetic programming representations for solutions. The schema theorem for
binary string genetic algorithms®' has been shown to be the driving force behind
the success of these search algorithms. A schema theorem for sub-tree swapping
crossover recombination has recently been proposed™ . This theorem is very
useful for understanding how building blocks in hierarchical solutions can be
generated and exploited in evolutionary algorithms.

When genetic algorithms are applied to real-parameter optimization problems,
recombination is a tricky issue. Recombination operators using probability
distributions around parents have been proposed. A parent-centric operator®’
along with other algorithmic advancements have been demonstrated to show very
good performance on test problems and also demonstrate scalability.

It should be noted that there is no guarantee that the crossover mechanism
employed will result in a better candidate solution. The evolutionary
computation literature is populated with reporting of many research efforts
seeking to determine the best recombination operators. It is left to the reader to
review the evolutionary computation literature using the sources referenced in the
chapter.

3.2.4. Mutation

The next component in reproduction for genetic algorithms is mutation.
Mutation is a process by which an individual in the offspring population is
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selected at random and is mutated through exchanging alleles in the individual
chromosome. Mutation seeks to generate diversity in the population and
therefore, explore the design space. The location of the “bit-flipping” is usually
randomly chosen and the severity of mutation will be dependent upon the
position of the mutated bit. Mutation can create better solutions or worse
solutions — there is no guarantee to improve the candidate with mutation.

As stated earlier, the objective of mutation is to create diversity in the
population. This diversity can help the genetic algorithm avoid being trapped in
local minimums in objective space. As a result, mutation is sometimes thought
of as a global search mechanism, while crossover is sometimes thought to be a
local search mechanism.

More complicated mutation operations have been proposed. Intelligent
mutation operators designed to simulate local and global search characteristics of
crossover and mutation in problems that involve representations of individuals
that do not involve bit-string chromosomes have been thoroughly evaluated* *.

3.2.5. Elitism

Because crossover and mutation can result in candidate solutions that are worse
than the best solution resident in the mating pool, genetic algorithms often
maintain the best solution from a previous population through a mechanism
termed elitism. In simplest terms, elitism is simply taking the best solution (or
solutions) from one generation and simply carrying them over to the next
generation.

3.3. Evolution Strategy

The evolution strategy (ES) was developed to solve problems that involved
significant effort in evaluating objective fitness and focused on problems with
real parameter design variable representation. The evolution strategy was
formulated to involve small population sizes and utilize reproductive operations
that are mutation-based. The strength of the mutation can be varied. The simple,
two-member (14+1)ES is flowcharted in Figure 5.

As implied in the flowchart, the (1+1)ES involves one individual in the
parent population that develops one offspring through mutation. There is no
recombination in the two-member ES. The mutation operator in the ES is often
based upon a zero-mean normal probability density function. This is
symbolically denoted PDF,  (0,0) in the flowchart. The mutation strength,
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o, is user defined and it is nothing more than the standard deviation for this
distribution. If the mutation strength is increased, the new design variable vector
for the next iteration will vary significantly from the parent. If the mutation
strength is reduced, this variation will be smaller as exhibited by the smaller
magnitude for the standard deviation chosen.

Initial Solution and
Mutation Strength

x' and o

Mutated Solution 3
i i —— Reproduction
y' =X+ PDFy,, (O’O-) (mutation)

[ Objective Fitness ]

Fx). ()

v
F(y')= F(x")] THEN

H
|
—

F(XM): F(yl) Selection

Figure 5. Flowchart for Two-Member (1+1)ES .

One can certainly surmise that when the mutation strength is large, the
algorithm will have significant global search capability. However, if the
mutation strength is small, the algorithm will search locally around the current
parent solution. This also implies that the ES is naturally well suited to
dynamically changing the mutation strength with advancing generation with the
goal being to balance exploration of the search space and then exploitation of
good solutions when profitable regions of the search space is found.

A typical ES implements only mutation in the generation of new solutions.
Therefore, the typical ES is often called non-recombinative. Researchers soon
realized that the genetic algorithm operator of crossover is useful within the
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context of the evolutionary strategy and recombinative ES’s have been
developed.

The use of a single solution to start the two-member ES should give
significant concern with regard to the ability of an algorithm started off in this
manner to find optimal solutions. The two-member ES is highly dependent upon
mutation generating better solutions. If mutation is unproductive, then the
algorithm may stagnate or most certainly move very slowly toward the optimal
solution.  Controlling mutation so that productive results can maintained
throughout the ES has been the goal of several recent research efforts™.

The parallel search capability of the genetic algorithm that results from
recombination and sheer number of individuals in parent and offspring
populations made these characteristics highly desirable in the ES. Multi-member
and recombinative ES’s have been developed to improve the searching capability
of the two-member ES.

3.3.1. Multi-Member Non-Recombinative Evolution Strategy

The multi-member ES differs from the two-member ES in one very fundamental
way — population size before mutation and population size and constituents after
mutation. The basic algorithmic structure for multi-member ES remains the
same as that shown in Figure 5.

The multi-member evolution strategy, (¢ + A)ES , involves populations of u
solutions resulting in A4 mutated offspring in any generation (iteration). A
temporary population of (x#+A) individuals is then subjected to a selection
operator to generate  candidates for the next generation. Therefore, the
selection mechanism can operate on a pool of candidates that is significantly
larger than the initial population. Furthermore, if mutation does not yield
significant improvements in the solutions, this version of the ES will tend to

stagnate because the same solutions will be used over and over again. The
(u+ A)ES is also an elitist algorithm. The reason is that since the candidate

pool prior to selection involves g parent solutions, the selection operator may

result in these same solutions propagating to the next generation.
The second form of multi-member evolution strategy is the (1, A)ES . In this

“flavor”, u parent solutions are used to generate 4 new candidate designs with
A>pu. The pool of candidate designs then advanced to the next generation
through the selection operator does not include the original # candidates. In this
manner, the (¢,A)ES is non-elitist.
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3.3.2. Recombinative Evolution Strategy

A parallel with genetic algorithms can be maintained through further classifying
evolution strategies as being recombinative or non-recombinative’. A non-
recombinative ES does not include crossover-type operators (only mutation is
used), while a recombinative ES incorporates crossover-type mechanisms. The
original development of the ES involved real-parameter design variables
although this really isn’t a restriction on application.

The recombinative ES is implemented with parent designs being recombined
prior to mutation. If binary string chromosomes are convenient for this
recombination, then they most certainly can be used. If hierarchical (object-
based) representations are best, then these can be used as well. The number of
parents chosen for recombination is often denoted as p°. Therefore, the typical

notation for a multi-member recombinative evolution strategy is (u/p+ A)ES ,
or (u/p,A)ES.

3.3.3. Self-Adaptive Evolution Strategy

The use of the mutation operator alone and mutation strength and its
representation as a normal probability density function with strength defined
using the standard deviation in this distribution, provides the engineer with a
parameter than can be optimized by the algorithm itself and even attached to
specific design variables.

Self-adaptation within the context of the ES applied in a solution to a design
problem has been classified into three types: isotropic, non-isotropic, and
correlated’. In all three, the design variable vector for the problem is augmented
to include the mutation strength as a design variable. There are multi-level or
meta-ES methods of adaptation as well’.

Isotropic self-adaptation assumes that the mutation strength is a single value
applied to all design variables during the evolution. This strength is included as a
single design variable in the candidate solution vector. Non-isotropic self-
adaptation assumes that a different mutation strategy parameter is applied to each
design variable and the design variable vector is augmented to include a number
of mutation strength parameters equal to the number of design variables in the
problem. This self-adaptation is designed to all the ES to learn and adapt to
scenarios where the design variables contribute unequally to the objective fitness.
Correlated self-adaptation includes covariance in the decision variable vector and
is intended to tackle problems where design variables may be correlated to one
another.
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4. Applications in Structural Engineering

The field of civil-structural engineering can be thought of as being in the throws
of an “exploitation” period with regard to application of evolutionary
computation in optimized design. There have been many examples in the
literature of successful application of evolutionary computation in structural
engineering around the world. As of the date of publication of this chapter,
application of evolutionary computation remains strong and the types of optimal
design problems being tackled using evolutionary algorithms are increasing in
complexity.

Generating a review is always subject to the possibility of omission. The
present review will focus contributions during the period 2000 — 2006. The
interested reader can consult several other resources for literature reviews
covering the time period prior to the year 2000 .

It should be understood that the list of fields where evolutionary computation
has been successfully applied grows each year and the contents of this section
should not be used to construe limitations in the application of evolutionary
computation. The reality is that application of evolutionary computation is only
limited by the imagination.

4.1. Bridge Maintenance and Management

Bridge management systems have been developed to aid structural engineers
with the arduous task of deciding when and what type of maintenance
interventions to interject into transportation infrastructure (e.g. bridges) to extend
service live and minimize cost. Using these systems to actively manage bridge
maintenance cycles and minimize facility life-cycle costs has been shown to be
possible using evolutionary computation.

Genetic algorithms have been applied to develop maintenance plans for
existing bridges™. The proposed bridge management system employed a fairly
traditional genetic algorithm to solve a multiple objective optimization problem
that sought to minimize the cost of maintenance measures (e.g. repair,
strengthening) and maximize typical rating measures of load carrying capability
and durability during an “analysis period”**. The multiple objective optimization
problem considered was recast as essentially a single-objective optimization
problem using a prioritization scheme. A binary string chromosomal
representation for maintenance plans was used to facilitate 10 scenarios ranging
from epoxy-injection repair, to FRP strengthening, to no repair and no
strengthening.
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Diagnoses of damage within bridge systems include a fair amount of
subjectivity. True experts with the ability to make accurate diagnoses of damage
within the bridge structural system are not widely available and transportation
agencies are often required to make decisions regarding damage using trained
individuals making visual inspections of the bridge super- and substructure.
Decision algorithms have been derived using a combination of genetic algorithms
and data mining to reduce the computation time required to evaluate all possible
combinations of condition attributes seen at a bridge structure to generate
minimal decision algorithms describing damage®. Conditional attributes of
damage in the bridge structures considered ranged from longitudinal cracking, to
grid-like cracks, to reinforcement corrosion. Causes considered ranged from
excessive wheel loads, to insufficient distribution of flexural reinforcement, to
inappropriate curing. A hybrid rough-set data mining and genetic algorithm was
employed to generate minimal decision tables that related a minimal number of
conditional attributes of damage to its underlying cause™. It was shown that the
methodology used could lead the way to developing minimal decision
tables/algorithms for individuals with training in bridge inspection to arrive at
damage condition assessments consistent with expert diagnoses.

It is recognized that life-cycle cost minimization through rational and targeted
maintenance interventions is the most economical way to allow fixed funding
sources to be rationally distributed throughout the life of a bridge structure. A
modified genetic algorithm, coined a virus-evolutionary (VE) genetic algorithm®
was proposed to generate optimal maintenance scenarios to minimize repair
costs, strengthening costs and scaffolding costs. A comparison of the
maintenance scenarios found using a traditional genetic algorithm and the VE-
GA was provided. Examining the trade-offs between life-cycle maintenance
costs, lifetime condition, and lifetime safety of bridges and bridge networks is a
perfect application for the genetic algorithm. The GA’s ability to generate suites
of maintenance scenarios can facilitate the MOGA becoming a decision making
tool for the bridge manager. Genetic algorithms have been applied to study these
tradeoffs for individual bridges®’ and networks of bridges™.

There is uncertainty associated with the deterioration process in bridge
structures and their components. Including this uncertainty in the development
of optimal maintenance scenarios for bridges and groups of bridges within a
given transportation network is a logical step forward in improving the
effectiveness of bridge management systems. Multiple objective optimization
problems solved using genetic algorithms and Monte Carlo simulation and Latin-
Hypercube sampling have been able to provide optimal bridge maintenance
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scenarios to minimize cumulative life-cycle maintenance cost, maximum the
. . . . 59-
bridge condition and safety indices™°".

4.2. Structural System and Component Optimization

Evolutionary computation approaches to optimal design tend to be favored when
discrete design variables are considered in the optimization problem tackled.
These optimization problems are ubiquitous in civil-structural engineering and
therefore, evolutionary computation procedures have seen wide-ranging
application. The fact that evolutionary computation approaches do not utilize
gradients of objective functions or constraints makes them ideal to handle
optimal design problems where evaluation of objective and constraint satisfaction
involves complex analysis procedures.

The goal of this section is to synthesize past research efforts related to
discrete variable optimization applications of evolutionary computation for civil
engineering structural design. There has been a large variety of problems
attacked using evolutionary computation. However, these efforts can be
classified in one of three categories: (a) deterministic structural optimization —
DSO; (b) performance-based structural optimization - PBSO; and (c) reliability-
based structural optimization — RBSO.

For purposes of this review, DSO can be classified as a Level 1 reliability
format and is characterized by optimal selection of member/component sizes
using partial representation of the uncertainty in loads applied to the structural
system and the uncertainty in the resistance of the structural system as a whole
and its components. This is the design format used if optimization is conducted
using current load and resistance factor design codes® ®*. For the purpose of this
synthesis, DSO procedures will include formulations where constraints are
formulated using allowable stresses even though these types of constraints do not
make an attempt at considering uncertainty. RBSO can be considered to follow a
Level 2 reliability format and it includes full characterization of uncertainty in
load and resistance through use of random variable representations. PBSO lies in
between and it considers uncertainty in loading and response, but material
properties of the components within the system are defined at the median (or
other) values in lieu of a random variable cumulative distribution function.

The three characterizations above facilitate taxonomy of the approaches to
structure and component optimization in the field of structural engineering and
they will be used as an integral component of the synthesis to follow. The extent
to which DSO, PBSO, and RBSO problems have been considered and the types
of structural systems and response behavior that have been assumed within the
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optimization formulations can be inferred from the synthesis. Therefore, the
reader will gain an appreciation for gaps in application so that the exploitative
phase of evolutionary phase can continue. Furthermore, the reader will gain an
appreciation for the increased complexity in the problems being tackled using
evolutionary computation.

4.2.1. Deterministic Structural Optimization (DSO)

DSO procedures using evolutionary computation have been thoroughly spread
out within the field of structural engineering ranging from optimization of
reinforced concrete to steel structural systems. The analysis methodologies used
to define individual fitness in these applications have ranged from linear static to
nonlinear time-history analysis. This section of the chapter will generate a
synthesis of DSO applications that have used evolutionary computation.

If one were to tally the number of research efforts that sought to tackle DSO
problems using evolutionary computation, the structural steel system, would by
far, be the most popular; however, reinforced concrete systems have also
received some attention. Both of these systems are naturally populated with
discrete design variables ranging from members (e.g. beams or columns) to
connection strength and stiffness to reinforcing bar designations, etc.

Single-objective DSO applications within the realm of structural steel using
evolutionary computation include frames and trusses involving both linear and
nonlinear analysis. When single-objective problems are considered, it most often
involves weight minimization of the structural system, but more advanced forms
of single-objective optimization have been addressed.

DSO for minimum weight design of steel planar and space frame systems
using linear elastic analysis has been considered®*®.  Design variable
optimization for spatial and planar steel frame systems using a multi-level
genetic algorithm has been proposed®. In this effort, it is pointed out that as
the number of design variables increases the search space required to seek the
optimal solution increases exponentially. Therefore, in order to improve the
search for the optimal solution using the GA, the researchers proposed a two-
level procedure whereby the design variable set is divided in a systematic manner
into subsets as the evolution progresses. This process provides a controlled
constriction of the search space. A large variety of structure topologies were
considered from space trusses to tapered cantilever beams. DSO for minimum
weight was applied to spatial structural steel frames using displacement
constraints and member strength constraints derived from U.S. design
specifications®. Wind loading was considered in this effort and member
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strength constraints were formulated using two U.S. design specification
methodologies: allowable stress design; and load and resistance factor design.
Comparisons of designs generated using these two constraint formulations
suggested that load and resistance factor design methods generated more
economical structural systems (based upon the least weight formulation
considered)®.  Pre-engineered buildings are a perfect vehicle for design
optimization as the topologies and loading scenarios are often replicated many
times over. The topology of these systems often involves rafter members and
column members with additional haunches at the rafter-to-column connection.
DSO of these systems using a genetic algorithm using the following design
variables: rafter cross-sections; column cross-sections; supplemental T-section
haunch length into the span; and supplemental T-section haunch depth at the
column; has recently been demonstrated®. Member strength constraints were
formulated using British design specifications and discrete design variables were
designed using U.K. member cross-sections. A typical genetic algorithm was
used and constraint handling was implemented through penalty multipliers and
the design analysis assumed linear elastic behavior.

Application of evolutionary computation to DSO of large- and small-scale
steel truss systems for minimum weight design has also received significant
attention. Large-scale truss systems are frequent application targets. Preliminary
designs of long-span king-post trusses often used for indoor stadium roofing
systems has been generated with genetic algorithms®’. A simplified (preliminary)
design analysis of the king-post truss system was formulated such that 6 critical
sizing parameters could be considered in lieu of detailed matrix structural
analysis. The king-post system was resolved into a first-degree statically
indeterminate system thereby allowing the conventional force method to be
employed. Canadian steel design specifications were used to establish member
strength constraints and the simplified preliminary design-oriented formulation
could allow architectural, fabrication and shipping constraints to be included in
the preliminary design. As a result, the preliminary design formulation included
practical topology constraints for the completed system. Constraint handling was
accomplished without penalty functions through a simple filtering of feasible
(non-constraint violation) and infeasible (constraint violation) designs. A
thorough study of constraint activity during the evolution is provided as well as
the results of multiple GA runs. Several long-span truss systems are designed
and comparisons of the designs are provided.

Single-objective non-DSO of lattice dome-type trusses, latticed towers used
in electrical transmission and supply, and other three-dimensional structural steel
truss systems have been fertile grounds for application of evolutionary
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computation procedures. Moderate-scale transmission tower structures (e.g. 25-
m or 83-foot) tall have been considered”. This study included a minimum
weight objective, 3D elastic time-history analysis, and design constraints
formulated using a U.S. design code for transmission structures, which were
based upon allowable stresses. Three design variable resizing algorithms were
considered. A genetic algorithm was employed along with a discrete-continuous
and a continuous design variable resizing algorithm. Algorithm performance
comparisons were made. It was found that the genetic algorithm could find
designs with material volumes that were lower than the other algorithms
compared, but CPU time to generate the GA design was significantly greater. It
should be noted that study assumed elastic time-history analysis and more
complex design analysis (e.g. inelastic time history analysis) was not considered.
As a result, the ability of the non-GA solution algorithms discussed to consider
more complex analyses as the design basis was not evident.

Two additional non-DSO applications to design of space trusses and lattice
towers involve object-oriented (OO) representations®’® and a third involves an
adaptive penalty scheme’'. The object-oriented approaches to lattice and space
trusses have a very similar theme to an object-oriented evolutionary algorithm
applied to inelastic analysis-based design of steel frames*”’>"*. With regard to
space truss optimization®, the OO methodology was applied to the genetic
algorithm components (e.g. chromosome class) and operators (e.g. crossover,
mutation). A very simple minimum-weight optimization problem with allowable
stress constraints was considered. The OO representations used in this effort
appear to be exclusive to programming implementation of the genetic algorithm
applied. Several moderately practical structures of relatively large number of
members were considered and algorithm performance is discussed. The lattice
structure effort’’ has even closer resemblance to a prior effort related to frame
structures®**7*™ in that the phenotypic representation of individuals is
formulated in an object-oriented manner. However, classification of this effort
as object-oriented is a bit misleading because the authors appear to be simply
grouping portions of the lattice structure into “objects” rather than implementing
object-oriented programming methodology (e.g. utilizing inheritance or classes).
The constraints implemented in the effort were allowable stresses and the
analysis used was linear static.

An adaptive penalty scheme, adaptive crossover and adaptive mutation have
also been proposed as integral components of a GA applied in the design of 3D
lattice trusses for allowable stresses established wusing U.S. design
specifications’'. These adaptive schemes were proposed to alleviate the user of
the often difficult a-priori decisions that need to be made with regard to constant
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multipliers and exponent magnitudes associated with penalizing infeasible
solutions and defining mutation and crossover rates. A two-phase member
grouping to reduce the design variable space was proposed. Rather than having
members grouped a-priori by the user of the GA, the members are grouped based
upon the result of an initial analysis of the structural system (with member sizes
defined as the same cross-section). Discussion of displacement constraint
activity, stress constraint activity, and algorithm performance using the adaptive
strategies and two-phase grouping procedure are given. It was shown that a GA
utilizing these strategies was successfully able generate very competitive
solutions to allowable stress optimization problems. It should be noted that
intelligent GA operators (e.g. mutation, crossover) similar to the adaptive
strategies used in this work have been introduced many years prior*> *® 47> 7,

Genetic algorithm solutions to DSO problems involving braced framing
systems using British design specifications and drift constraints have also been
proposed”®. Typical member grouping scenarios were utilized in this work and
example applications of the proposed GA formulation included multistory
moment resisting frames (MRFs), concentrically braced frames (CBFs), CBFs
with hat or outrigger truss, chevron or inverted V-bracing, and a structural
bracing topology that involved two-story K-bracing. A very traditional GA was
applied to generate optimized designs and comparisons of the normalized
material weights among the different frame topologies with grouped design
variables were drawn. The results of the GA-driven designs confirmed long-
standing knowledge regarding the economy of the topologies considered when
one considers weight of material as the only design objective.

Reinforced concrete structural systems have also been considered as targets
for DSO using genetic algorithms and their variants. A hybrid genetic algorithm
was recently proposed to drive resizing of design variables for large-scale high-
rise reinforced concrete wall systems™. The optimality criteria optimization
algorithm was combined with the a traditional genetic algorithm to enhance the
local searching capability of the GA and facilitate more efficient solution to real
structural systems involving a large number of design variables through
minimizing the number of re-analyses required. Linear elastic analysis was
assumed and wall sizing constraints and displacement constraints were used and
a single objective of minimum weight of materials was included. Reinforced
concrete moment resisting frames designed using U.S. load and resistance factor
design codes have also been considered’®’’. The moment resisting frames
considered in these efforts are significantly different, but both attest to the
capabilities of the typical GA in solving DSO problems for RC MRF systems.
Objective functions in these efforts considered cost of steel reinforcement,
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concrete material, and formwork. Other research efforts have considered DSO of
concrete beams using Indian design standards™ and Eurocode design
specifications’. These efforts consider very detailed design problem
formulations that involve bar arrangement templates, shear reinforcement,
tension steel cut off, etc. Objectives included minimization of materials costs,
formwork costs, and steel reinforcement volume. Both of these efforts related to
continuous beam DSO contain very useful information that may result in these
detailed design considerations to be moved forward toward large-scale R.C.
systems involving walls, beam-columns, etc. DSO of flat-slab reinforced
concrete building systems using British standards has also recently been
considered®®'. These efforts considered a whole-building approach to the
optimization ranging from floor slab thickness and reinforcement to column
footings. A review of the DSO efforts related to reinforced concrete systems
indicate that there is significant opportunity to bring these widely varying
approaches together into a (more or less) unified approach for concrete structural
systems.

Multiple-objective DSO of framing has also recently begun to receive
significant attention in the research community. Researchers have defined a min-
max optimum to implement a genetic algorithm in the solution two spatial truss
design optimization problems with multiple objectives®>. The objectives
considered were: (a) minimization of weight; (b) minimization of displacement at
a user-defined node; and (c) minimization of the stress that each member must
support. Objectives (b) and (c) considered in this study are considered as
penalized constraints in many GA applications. Authors provide detailed
comparisons of many optimization algorithm implementations and illustrate that
linear combination of objectives can lead to undesirable results. Structural steel
framing systems have also been considered. It has long been recognized that
minimum weight is not the only objective that should be considered in DSO of
structural steel systems. To this end, researchers have begun including
constructibility constraints in the GA-based optimization problem formulations®
and it has been shown that consideration of a design complexity measure (e.g. the
number of different member shapes used in the solution) can significantly affect
the minimum weight design. As a result, it is clearly indicated that design
complexity (from a fabrication standpoint) and minimum weight are competing
objectives in the design of steel systems and that trade-offs among these
objective is necessary. It is also clearly shown that the typical GA is a very
powerful tool for providing Pareto optimal sets of solutions to these problems.
An attempt has also been made to elucidate performance comparisons and the
associated construction costs among composite steel-concrete, steel, and
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reinforced moment resisting framing systems in terms of potential energy®. An
irregular (set back) framing system was considered and design followed U.S.
based seismic codes. The multiple-objective optimization decision making tools
developed using a GA and Pareto fronts developed in this study illustrate the
power of the genetic algorithm.

One of the powerful attributes of evolutionary computation is that gradients of
objective functions and/or constraints need not be evaluated during the
application of the algorithm. As a result, evolutionary algorithms are, relatively
speaking, immune to difficulties associated with sensitivity analysis of nonlinear
systems. Of course, the increased computational time required to execute an EA
is present, but the application of evolutionary computation is not limited to a
certain class of problems. Researchers have recognized this and have begun to
apply evolutionary computation to facilitate DSO of systems involving nonlinear
response.

There are two types of nonlinear behavior commonly encountered in either
static or dynamic analysis. The first is geometric nonlinearity and involves
equations of equilibrium formulated for elements and structural systems on the
deformed rather than undeformed structure or element. DSO is often
accomplished in these systems through application of design specifications or
codes. Nonlinear geometric behavior in codes and specifications is often
included through amplification of first order forces and deformations. However,
most modern design codes and design specifications do allow the direct use of
geometrically nonlinear (second-order) analysis. Optimized design of two
dimensional fully-restrained (FR) steel framed structural systems has been
accomplished using a genetic algorithm and linear and nonlinear structural
analysis®. U.S. design specifications for steel structures were utilized and a
single objective of member weight minimization was considered. It was shown
that drift constraints tend to limit geometrically nonlinear behavior in the typical
steel moment-resisting frames and group selection mechanisms and adaptive
crossover operators are effective. The impact of partially restrained (PR)
connections on steel frame response has been well-known for decades. DSO
using genetic algorithms for design of PR and FR steel frames has also been
demonstrated®®’.  Elastic geometrically nonlinear analysis using well-known
stability functions was utilized in this effort and design variables considered were
limited to wide-flange shapes. Member strength constraints were based upon
British design standards. Traditional interstory drift and deflection constraints
were implemented in the algorithm. Frame designs were generated with FR
connections and a variety of PR connection configurations. Comparisons of
structural system weights generated through application of the GA with various
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connection configurations are provided. It was shown that when gravity loading
dominates the loading combinations considered, PR frame designs can be lighter
than a corresponding FR frame. The use of nonlinear geometric analysis in the
evolution of frame designs sometimes resulted in more material for the columns
and beams and sometimes resulted in reduced material volume.

Application of a genetic algorithm in the minimum weight design of planar
steel frames subjected to interstory drift and limit loading capacity constraints
has using plastic mechanism analysis has also been demonstrated®™. Plastic
mechanism analysis is utilized to evaluate the frame limit load capacity in this
effort. Two planar steel frames with fully-restrained connections are designed
using the proposed genetic algorithm. The study outlines the need to carefully
select the population size as it can affect the computing time significantly and the
ability to reach the optimum solution. Recommendations on mutation and cross-
over rates are made. It was found that when gravity loading alone is present on
the frame, both load factor constraints and deflection (vertical) constraints can be
active. However, when lateral and gravity loading combinations were applied to
the framework, drift constraints become the dominant consideration in the
algorithm. It is also found that when nonlinear analysis is utilized instead of
linear elastic analysis as the design basis, greater economy can be achieved.

As computational tools progressed over the last two decades, researchers
began to explore design methodologies that could exploit software capabilities.
The concept of advanced analysis grew from these efforts. In a nutshell,
advanced analysis is a design method, where the structural analysis employed to
evaluate a structural system candidate design is able to include all pertinent
phenomenological behavior upon which design specification equations are based.
Thus, if advanced analysis is employed, there is no need to include evaluation of
design specification equations in the design process. Combination of advanced
analysis methods with genetic algorithms has recently been proposed*®**7%7*%
Single-objective DSO was considered in these effort. Design variables in these
efforts included beam and column sizes selected from wide-flange shapes were
considered. The design variable sets have also been expanded to include a
variety of partially restrained connections'®*"”*”*. Extensive constraint listings
consistent with the needs imposed by inelastic analysis-based design methods
were included in these efforts. Distributed (fiber-based, plastic zone)%"‘g’n’73
and concentrated plastic hinge with gradual formation® models for nonlinear
material behavior were also included in the studies. Stability functions® and
geometric stiffness matrices****’*”  were used to simulate geometric
nonlinearity.  These two research efforts can be considered as a final
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demonstration of the power of EC in handling very complicated DSO problems
using static analysis.

4.2.2. Performance-Based Structural Optimization (PBSO)

The development of performance-based design specifications and model codes
for steel and concrete building structural systems’® has ushered in new
applications of evolutionary computation in the optimized structural design®**.
PBSO formulations usually involve multiple objective optimization problem
statements. The constraints often involve target probabilities and/or confidence
levels in meeting performance objectives. Efforts that involve minimum life-
cycle cost design also falls into this category of structural optimization efforts.

Life-cycle cost optimization for steel framing systems has been a very fertile
area of research that can be classified as PBSO. When the structural system life-
cycle is included in the optimization, various ground motion levels need to be
considered. U.S. design specifications and nonlinear pushover analysis was used
in conjunction with a genetic algorithm to solve a performance-based structural
optimization problem that involved objectives related to initial construction
expense (material weight), the number of different steel sections used in the
design (diversity), and future seismic risk associated with interstory drift
resulting from both frequent and infrequent ground motions”. Life-time seismic
damage and initial material cost have also been considered as objectives in a GA-
based optimization algorithm using nonlinear pushover analysis as the analytical
basis for determining performance”. Nonlinear pushover analysis used as the
fitness-evaluation engine for genetic algorithms’”*® and evolution strategies’ has
been used to solve PBSO problems involving objectives of minimum structure
weight and confidence levels in meeting performance objectives during frequent
and infrequent ground motion events.

While static pushover analysis is a useful method for defining performance
expectations during ground motion events, it is well known that this analytical
method tends to give inaccurate results for irregular structural systems. Inelastic
time history analysis (THA) is a better predictor of performance during
ground motion events. Inelastic THA has been implemented as the
foundation of multiple-objective PBSO for 2D frame structures using genetic
algorithms®**'°1% " In order to consider multiple objectives in the GA, a novel
radial fitness was defined’>””. Objectives in these efforts for the PBSO statement
were confidence in meeting performance objectives during frequent and
infrequent ground motion events.
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The work related to PBSO of building systems is laying the foundation for
application of genetic algorithms in RBSO of buildings systems. Approaches to
accomplish RBSO with evolutionary computation are described in the following
sections.

4.2.3. Reliability-Based Structural Optimization (RBSO)

Rather than assuming resistance and loads are established at single values, RBSO
assumes that these critical components to structural performance remain
cumulative distribution functions thereby maintaining non-deterministic
measures of uncertainty. There have been relatively few efforts that have
successfully formulated RBSO problems for frame and truss structures.
Applications of RBSO to maintenance planning were described earlier in this
chapter.

In many instances, objectives of RBSO problems include minimization of
material cost (i.e. weight) and minimization of the cost of failure of the system.
Although uncertainty can be pervasive in both cost and failure, most studies limit
consideration of uncertainty to failure likelihood. As found in the review of
previous structural optimization efforts and evolutionary algorithms, establishing
the parameters for the genetic algorithm (e.g. crossover probability, population
size, mutation probability, crossover type, penalty multiplier magnitude, and
penalty exponent magnitude) can be difficult. When the structural design
demands uncertainty is considered, there is a pressing need to choose these
parameters wisely as the analysis effort needed to evaluate individuals in the
populations becomes very time consuming. Multiple-population GA’s have been
applied in the RBSO of planar truss structures'”'™ to alleviate the user from
defining these parameters. The sub-populations within a meta-GA in this study
included various parameters and the meta-GA assigned resources to the most-fit
sub-populations. The meta-GA implemented was shown to generate optimized
solutions in a manner that is more efficient than a standard single population GA.
Robustness of the algorithm with respect to finding the optimal solution to the
RBSO problem was also improved.

Single objective RBSO problems for minimum weight and cost of members
and connections have been formulated for 2D and 3D truss structures with
constraints on acceptable probabilities of failure'”. This research effort
considered selection of member cross-sections and member cross-section with
truss topology using genetic and modified branch-and-bound algorithms. It is
recommended that the inherent parallelism of the GA be exploited for future
work in RBSO.
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When large-scale structural systems are considered in RBSO, the effort
required to evaluate the fitness of individuals within the population becomes
significant. As a result, researchers have proposed methodologies for RBSO that
involve evolution strategies and Monte-Carlo simulation'®.

The uncertainty present in RBSO problems can make the design cumbersome
and as implied, there is uncertainty in the solution. A recent application of non-
dominated sorting genetic algorithm (NSGA) modified to become a non-
dominated sorting evolution strategy (NSES) to structural optimization involves
Robust Structural Optimization (RSO)'”. For purposes of this synthesis, this can
be classified as a subset of RBSO. In RSO, the objective of the optimal design
problem is to attain a solution that is insensitive to variation in uncontrollable
parameters. A RSO problem for a 3D steel structure subjected to a series of
ground motions was considered and nonlinear pushover analysis was used as the
basis for fitness definition'”’. A unique aspect to this study is that evolutionary
computation is utilized to validate coefficients used in the Greek seismic design
code for steel building systems.

4.2.4. Miscellaneous Applications

Applications of evolutionary computation in the structural engineering field have
been numerous and extend to a range much wider than that implied in the
previous three sub-sections of this synthesis. Aerospace structural engineering
applications often require that structural components maintain stability
throughout rather wide variation in temperature. To this end, the researchers
utilized the evolutionary strategy to determine ply orientations and stacking
sequence in a composite laminate such that the buckling load of an edge-
supported (simple supports) and edge-loaded plate is maximized'®. Two
constraint handling procedures are used. The first is a traditional penalty applied
to the objective function and the second is simply to reject infeasible designs
during the evolution. Three (u+7) evolution strategies are implemented: 4+4,

10+10, and 20+20. It is recommended that for the problem considered, a 4+4
evolution strategy was able to find good solutions with reasonable computation
cost.

Operations research has always been a fertile area for the development of
optimization algorithms. In a similar vein, researchers have utilized a genetic
algorithm to optimize precast member production scheduling using a flow-shop
operations research model'”. The research indicated that the traditional GA
implemented can not only produce single optimized solutions, but it could also
easily provide a family of good solutions that can be used as a decision-making
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tool for the production facility. Optimization of mass concrete construction
procedures has also been done using a genetic algorithm''®. A fairly traditional
genetic algorithm was implemented in this effort and the design variables
included: type of concrete; placing temperature, height of concrete lifts, and
placing frequency. Constraints related to structure cracking were formulated and
the objective was one of cost minimization. A finite element analysis of the mass
concrete structure (dam in the study considered) was conducted and was used as
the basis for constraint evaluation and definition of fitness.

Evolutionary computation has not been limited to selection of framing
components (e.g. beams or columns). Genetic algorithms have been used to
develop optimal seismic zoning scenarios''' and guide selection and scaling of
ground motion records''*'"®, As RBSO becomes an integral component of the
structural engineering design world, selecting ground motion records that satisfy
targeted recurrence intervals and intensities will become more important.
Furthermore, being able to rationally establish seismic zoning to minimize losses
(e.g. deaths, dollars, and downtime) removes the appearance of arbitrarily
assigned boundaries for seismic zones.

Applications of evolutionary computation have also been used in the selection
of light-gauge steel deck, wide-flange purlin shape, and purlin spacing for typical
wide-flange structural steel roofing systems when subjected to unevenly
distributed loading caused by snow''"*. Genetic algorithms have also been used
develop design charts to aid structural engineers in selecting steel floor framing
systems composed of wide-flange shapes and light-gauge deck to minimize cost
and satisfy all pertinent strength, deflection and vibration constraints'"”>. Both of
these studies illustrate that the genetic algorithms implemented could generate
either single optimal solutions or families of candidate solutions of common cost,
which indicates that the GA is suitable for use as a decision-making tool for the
structural engineer.

Design of cold-formed members can be a fairly tedious process due to the
significant number of instabilities that can arise within the member being
designed. It is well-known that the population size required for successful
implementation of a GA can vary with the problem considered. In order to use
small population sizes and still tackle a structural engineering optimization
problem involving cold-formed steel member design with design variables of
cross-section depth, width, thickness and bend radius; researchers proposed a
micro-GA application'"®.

It is obviously important to consider performance of the structural system
when conducting a seismic design of an industrial facility. However, one must
not overlook the importance of ensuring that the process components housed
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within that facility perform as intended during ground motion events. One
example of these process components is the networks of piping systems within
nuclear or other facilities. The dynamic structural behavior of these relatively
complex systems makes selecting the number and location of piping supports
very difficult. To this end, researchers have proposed a GA-based decision
support system for optimizing the response of piping systems when subjected to
seismic accelerations''’. The implementation of the GA as part of a “...joint-
cognitive system...”'"” seeks to take advantage of the strengths present in the
experienced engineer as well as the novel-solution generating ability of the
genetic algorithm.

The design of steel plate girders for a bridge superstructure using modern
U.S. design specifications for highway structures can be a daunting task.
Researchers have sought to take advantage of the genetic algorithm to aid in the
design of superstructure components''®.  Design variables used in this effort
include: presence of a longitudinal stiffener, spacing of girders, depth of the steel
girder web plate, thickness of the web plate, width of top and bottom flange, and
the thickness of the top and bottom flange. Constraints are formulated using U.S.
allowable stress design specifications. A parameter study using the GA
developed allowed the researchers to demonstrate optimized bridge
superstructure parameters for a wide range of girder spans for the two-span
configuration considered. As a result, the GA is again shown to be a very useful
decision making tool for the structural engineer.

4.3. Topology Optimization of Truss-Type Structures

Topology optimization of structural systems involves selection of topology,
geometry and sizes of the components within the system. A related area of
topology optimization is that of Evolutionary Structural Optimization (ESO). In
this approach, system topology is “evolved” through removal of material or
components from a based (ground) topology that are very lightly utilized in terms
of stress or force. ESO is not covered in this review as the method does not fit
the prototypical evolutionary computation method in which a population of
individuals is manipulated through mutation and/or recombination. However,
ESO is similar to a (1+1)ES without random mutation. The interested reader
can find a plethora of information related to ESO through simply searches with
this keyword in the literature listings at the end of this chapter.

System topology optimization is most often associated with conceptual design
of structural systems found in the early stages of the design process. It is at these
stages when design creativity can be at its peak and it is natural to explore the
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implementation of stochastic design procedures to generate alternative
possibilities. When genetic algorithms are used to solve optimization problems
that involve selection of the system topology or geometry in unstructured and
structured domains (e.g. the perimeter boundary of a frame is undefined or
defined, respectively), representation of individuals using binary string
chromosomes can generate difficulties because as design variables are added or
removed from the system, the string length for the individuals no longer remain
consistent. Furthermore, if a very dense base structure topology (or ground
structure) is assumed, chromosome lengths can be very long initially and search
efficiency via GA can degrade. These difficulties with standard GA formulations
as applied to topology and geometry optimization of truss-type structures has led
to the development of Implicit Redundant Representation (IRR) GA’s'"*'* and
other formulations capable of handling variable string lengths'*'. Topology
optimization algorithms utilizing GA’s that do not use binary string chromosomal
representations for individuals have also been proposed'?’. The concern for
control of overlapping members, unstable configurations, and zero-force
members in truss topologies developing during evolution using a GA has also led
to alternate definitions of topology for the system. Rather than define topology
and geometry using nodes and members, researchers have examined defining
topology using series of inherently stable triangular substructures and have
implemented GA formulations to generate optimized solutions'>.

The search for optimum topologies for truss structures considered competing
deflection and weight objectives has been done through multiple objective
genetic algorithms (MOGA’s)'**. Several unique GA operators were introduced
in this effort: active unit-based crossover; and unit-based mutation. A
hierarchical chromosomal representation was also proposed and discussion of
“total Pareto optimal sets”'** used to define optimum topologies within the
context of objective space is given. Truss structures were considered in this
research effort and optimal designs were generated considering topology
(bar/member presence in the system); geometry (node or connection locations in
2D space); and sizing (cross-sectional areas). Topology and geometry have also
been considered in optimization of a cantilevered truss structure considering
objectives of mass minimization, deflection minimization, and/or stress
minimization'>.

Comparatively speaking, evolution strategies have not seen as wide spread
use in topology optimization of truss structures. Various evolution strategy
implementations applied to truss topology optimization for a fixed loading
scenario and fixed initial node layout have been compared to simulated annealing
and a newly proposed random cost methodology'*’. Various initial (ground)
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structure topologies and geometries were considered. (1+ A)ES with A=1 and
A=1024 were shown to be relatively ill-behaved and (1,4)ES with 4 =64 was

shown to be able to come very close to finding optimal solutions when compared
to simulated annealing. The number of fitness (function) evaluations was
considered in the comparisons.

4.4. Structural Control and Supplemental Damping

Minimizing the impact of seismic excitation on building and truss structures
through use of passive supplemental damping mechanisms and active control
devices has been a fertile area of research in structural engineering in the past
two decades. Examples of supplemental damping mechanisms often considered
are: friction dampers; tuned mass dampers (TMD’s); added damping and
stiffness (ADAS) devices; triangular-plate added damping and stiffness
(TADAS) devices; and passive constrained layer damping (PCLD) patches.
Examples of active control devices are diagonal brace actuators; piezoelectric
patches; magnetorheological dampers; and TMD with active mass drivers
(AMD’s).

Genetic algorithms have been shown to be very effective tools for
determining the positioning and characteristics of passive damping devices
within structural engineering systems (e.g. buildings and trusses). The torsional
response of buildings subject to earthquake and wind excitations can be
effectively controlled through positioning TMD’s. Genetic algorithms have been
used to guide the design of TMD parameters and their locations for multiple
story buildings for the following performance criteria: drift; acceleration; drift-
based second norm; and acceleration-based second norm'?’. Design variables
considered for the tuned mass dampers were: mass ratio; frequency tuning ratio;
damping ratio; and damper position. Performance functions appear to have been
combined to define single-objective fitness for individuals and the GA
implementation was shown to be very effective in providing TMD parameters
and location to reduce response. The suitability of genetic algorithms in
addressing multiple objective optimization problems involving characteristics
and placement of TMD’s within a building structure has also been
demonstrated'”. The objectives to be simultaneously minimized using Pareto-
optimal fronts in this effort were: maximum nondimensional peak displacement;
maximum nondimensional peak acceleration; and maximum nondimensional
peak rotation when the system was subjected to a suite of ground motion records.
Design variables for the TMD’s included: mass, stiffness, damping; mass
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moment of inertia; rotational stiffness of the coupled dampers; rotational
damping characteristics of coupled dampers; and eccentricity of the TMD’s from
the center of mass in orthogonal directions.

Optimal number and placement of classical viscous fluid dampers, solid
viscoelastic dampers, and fluid viscoelastic dampers within a torsionally excited
structural system has been accomplished using a genetic algorithm'®. The
objective fitness in this study was defined using drift-based performance and
acceleration performance. The design variables considered in the GA
implementation was the total number of dampers at locations to be placed in the
structure. The GA design tool was used to compare optimal distributions of
viscous devices and viscoelastic devices throughout the building for base shear or
floor acceleration performance measures in a single-objective optimization
format. Optimal placement of passive fluid dampers within a 20-story building
was defined using a genetic algorithm. Four single-objective optimization
problems using 2-norm and < -norm measures of RMS response and frequency-
shaped transfer functions were formulated and solved using the GA
implementation. The GA generated solutions for damper distribution were
shown to include a configuration that significantly reduced inelastic response
measured through ductility demand.

Yielding and friction damper devices are also very useful in structural
systems that utilized diagonal bracing to resist seismic loading (e.g. chevron
braces). Optimal parameters of TADAS and ADAS devices placed at the stories
within a 10-story planar building system have been determined using a genetic
algorithm to meet the following objectives: equal-weight combination of
interstory drift and floor acceleration; and an objective of reducing floor
accelerations”'. Optimal parameters for metallic-yielding and friction dampers
within the 10-story building considered were defined using a fairly traditional
genetic algorithm.

Consideration of optimal placement and optimal type of passive damping
device within multi-story buildings is also very important because as building
systems become taller, the best type of passive damping device to be used to
minimize damage resulting from acceleration or drift may not be uniform over
the building height. A genetic algorithm with mortality constraint has recently
been proposed to efficiently generate optimal designs for multistory structural
systems that include triangular plate energy absorbers (TPEA), linear viscous
dampers (LVD), and viscoelastic dampers (VED) distributed throughout the
stories'*?. This study illustrates that the best solutions obtained using the genetic
algorithm formulation proposed did not include uniform distribution of dampers
throughout the height of the structural system and that the GA could generate
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interesting combinations of TPEA, LVD, and VED devices within a building
system. Furthermore, it is suggested that the GA formulation can be used to
“...clarify advantages and disadvantages of the various device types as design
circumstances change”'*
evolutionary computation as an automated and optimized design generation tool.

Passive viscous damper placement within truss systems typically found in
aircraft structures has also been guided using a genetic algorithm'”’. The designs
generated using the GA formulated were found to match intuition and therefore,
it is another example illustrating that the GA can be used as a design tool to
generate alternatives. Definition of optimal parameters for passive constrained
layer damping (PCLD) treatments for controlling displacement response of
simply supported beams has also been accomplished using genetic algorithms'**,
The GA-generated solutions to a design problem involving minimization of beam
displacement at mid-span when subjected to wide-frequency-range force
excitation illustrated that the shear modulus of the viscoelastic layer and the
location and length of the layer are the most important parameters to consider in
design.

Design of active and hybrid control systems for building structures has also
been a fertile area of research application of genetic algorithms. One very
interesting side problem often encountered in control system optimization is that
feedback from the system being controlled is often based upon limited
information (e.g. accelerometer data at limited story locations within the
structure). As a result, design of the feedback-control systems for large-scale
civil engineering structures is a very fertile area of active research as well.

Use of a genetic algorithm to guide placement of actuators within regular
multi-story buildings is the most basic form of optimal control problem'”. The
placement of predetermined actuator types and their corresponding control
algorithms using a genetic algorithm was determined using binary string
representations for the actuator position. The objective considered was drift at
the upper floor of a 16-story regularly framed building. GA operators used were
very straightforward. Optimal placement of magnetorheological dampers within
building systems using a GA has also been demonstrated”®. The GA design
variables for position were formulated with emphasis on practical installation.
Pre-defined controller strategies were considered and the objectives for the GA
optimization were norms of RMS of absolute acceleration and interstory drift
(considered independently).

The design of a control algorithm/system is not trivial when one considers the
environment likely to be present. For example, electronic measurements are
being taken at limited locations. This generates two important issues/concerns:

, which is a perfect example of the power of
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(a) the electronic signals will contain noise; and (b) one must be able to predict
and control response throughout the structure using the limited measurements as
feedback. As a result, designing the control algorithms for fixed position and
type of devices is a challenging problem. Design of controller gains to control
response of building systems using binary string GA’s has been demonstrated'*”'**,
A wind-excited 76-story shear building structure with fixed-positioned
ATMD devices at the roof level with fixed sensor locations was used as the basis
for an optimization problem that involved generation of optimal controller gains
in the presence of sensor noise”®. A single-objective fitness function involving
peak accelerations, peak displacements, RMS accelerations, and RMS
displacements at selected floors and actuators was utilized. Robustness criteria
for the controller design were also applied in the GA formulation. Hybrid system
control gains for 2D buildings have also been optimized using binary string
genetic algorithms"’. Comparison of response with active (including controller
optimization), passive, and hybrid control systems were also provided. Real-
coded GA’s have also been used design optimized controller gains for ATMD
devices with limited sensor arrangements'*’. Comparisons of optimal designs of
passive and active control devices generated using genetic algorithms for 3D
structural systems have also been made'®.

The robustness of a controller can be assessed through consideration of its
ability to remain stable and control of system performance in a realistic
environment'**. Sensor output noise and the inability to measure exact structural
parameters (e.g. mass, stiffness) are two examples of uncertainty in real
structures that a robust controller system must address. Optimal controller design
in the presence of these uncertainties has been enhanced through use of fuzzy-
logic principles. As a result, fuzzy-logic controller (FLC) design algorithms have
emerged. Design of an FLC for first-floor actuators in regular buildings using
genetic algorithms with an single objective of minimizing roof-level
displacement response of a 3-story building has been demontrated'*'. Design of
FLC wusing genetic algorithms within the context of multiple objective
optimization using Pareto optimal sets has also been demonstrated. GA-based
designs for two-dimensional systems have been generated by simultaneously
considering peak interstory drift and peak floor accelerations'*.  Three-
dimensional systems have also been considered'*’. Optimal controller design
using genetic algorithms and fuzzy logic concepts for smart base isolation
systems has also been illustrated. Single objective'* and multiple objective
optimization problems'*’ have been considered.

Optimal structural design problems that consider the number, placement,
controller gain and type of control system can be considered the most
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challenging. Selection of the optimal number of actuators, the position of said
actuators, and the control algorithm type (linear quadratic regulator, or
acceleration feedback control) using a multi-level genetic algorithm has been
illustrated and discussed'*®. Consideration of nonlinear structural response has
also been included in generation of optimal design algorithms incorporating
fuzzy logic methodologies to solve multiple-objective problems using a MOGA
where the position, number, and control algorithm are considered as design
variables'*’. Optimal placement and controller design have been considered as
design variables in a single objective optimization problem solved using genetic
algorithms in problems that involve a regular 40-story shear building and a
9-story irregular building'**. Placement, sizing, and feedback control gains of a
novel piezoelectric sensor-actuator to minimize the vibration of shell structures
has also been demonstrated'®.

Placement of sensors and actuators within the structural system as well as
design of the control algorithm (i.e. gains) on a high-rise structural system has
been demonstrated through application of a genetic algorithm for actuator/sensor
placement and gradient-based optimization methods for sensor/actuator gains'”’.
The objective function used in this study was a combination of minimizing
building response and control effort.

4.5. Damage Detection

There are instances where structural systems have been instrumented to measure
response during loading events. An example of this is accelerometers placed
within building systems to measure response during seismic events. These
systems generally contain very few instruments placed in locations felt to give
useful data for extrapolation post-event. It has long been desired to use the data
from relatively sparse instrumentation arrays to determine the existence, the
extent, and the location of damage in structural systems. This is not a trivial
endeavor and genetic algorithms have been used to detect damage in structural
systems using measured data.

The location of damaged members within truss structures has been identified
using simple genetic algorithms and the implicit redundant representation GA"'.
The proposed GA implementations were shown to be capable of identifying
damage (defined as a reduction in axial stiffness of a member) to truss members
in statically determinate and indeterminate truss structures when subjected to
moving fixed-axle vehicles. A small number of measured static displacements
were used to successfully locate damaged members in these truss structures.
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In lieu of static loading conditions, changes in the vibrational characteristics
of structural systems (e.g. frequencies of mode shapes) have also been used to
detect damage in structural systems. An optimization problem is formulated in
this instance to minimize the differences between measured vibration data and
analytically generated data. Binary string GA’s"” and real-coded GA’s"’ have
been shown to be successful tools in this endeavor. Cantilever beam structures,
planar truss structures and plane frame structures have all been considered for
application of the damage detection algorithms proposed.

When faults (e.g. damage, flaws) are sought within an existing structural
system, the engineer must rely on a limited number of sensors distributed in some
manner throughout the systems to be his eyes and ears. Genetic algorithms have
been used to generate the number and location of sensors to give information
regarding the probable position of damage within a cantilever plate'**. Fitness of
candidate solutions were defined using “observability” measures and resistance
to clustering of sensors within the system.

4.6. Parameter, Model, or Structure Identification

Engineers are well aware that the models for structural analysis that are
developed to simulate behavior are just that — models. Parameter identification
in the area of structural engineering is the process of generating more realistic
structural analysis models through examination of response of a real system to
known input (loading). This is sometime called solving an inverse problem in
that one is generating an analytical model from measured output data. Parameter,
Model, or Structure Identification can be used in structure health monitoring and
damage detection.

Locating superimposed mass (either moving or static) on a structural system
has been an area where genetic algorithms have been shown to be useful. A
computational procedure founded on a genetic algorithm for determining the size
and location of a concentrated mass within the boundary of an isotropic plate has
been proposed'”’. The objective fitness for the GA is based upon minimization
of an output error criterion defined using changes in natural frequencies.
Identification of moving masses along continuous (multiple-span) beams typical
of bridge superstructures has also been accomplished using a GA'™.
Minimization of the error between measured and reconstructed accelerations is
used as the objective in the optimization problem.

One of the few applications of evolutionary programming (EP) in civil
engineering design has been in the area of solving inverse problems'’.
Identifying the elastic modulus of an isotropic plate loaded uniformly at its edges
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and conducting pavement quality inspection were two example problems
considered in this effort.

When a large number of parameters needs to be identified in a large structural
system, convergence of a numerical algorithm for parameter identification can be
unreliable. As a result, researchers have proposed methodologies using genetic
algorithms to conduct parameter identification in these large systems. A Modal
GA has been proposed to reduce the search space required for parameter
identification of large dynamically loaded systems'®. The single objective
optimization problem proposed in this effort involves minimization of the
difference in the norms of measured and predicted response in the modal domain.
Substructuring and a staged application of a genetic algorithm for large system
parameter identification has also been proposed'”. Using a genetic algorithm to
identify prosperous locations in objective space along with a compatible local
search methodology (one without the need for gradient information) has also
been proposed to conducted parameter identification in large structural
systems'®.

Pareto optimal theory and evolution strategies have also been used to identify
structural ~ engineering parameters in  multiple-objective  optimization
formulations'®'. The two objectives considered in this effort were norm of the
difference in measured and predicted natural frequencies of a selected number of
mode shapes and norm of the difference between measured and predicted mode
shapes. The Strength Pareto Evolutionary Algorithm (SPEA) proposed in this
effort is also used to make predictions regarding reliability of the structural
system using the Pareto fronts generated. An extension of the SPEA procedure
to nonlinear structural systems is also discussed.

As outlined earlier, when GA’s are asked to search for a large number of
design variables, the search space can become quite large and the effectiveness of
the typical genetic algorithm can suffer. A real-coded genetic algorithm has been
proposed to minimize mode shape and mode frequency differences between
measured and predicted results'®. The GA is employed first in the parameter
identification, with subsequent implementation of a localized hill climbing
algorithm based upon eigen-sensitivity. A search space reduction method
(SSRM) has also been proposed to enhance the accuracy and reliability of a
genetic algorithm employed in structural parameter identification'®. Integral to
the SSRM is a modified GA that adaptively reduces the search space using
individual parameter convergence rates.

Pedestrian bridge structures have been found to vibrate significantly while in
service. Some rather famous instances of severe vibration of pedestrian bridges
have been reported (e.g. Millennium Bridge in London) and the dynamic loading
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and response of these systems has been the subject of much research. There are
many components that partake in defining a pedestrian bridge’s dynamic
characteristics (e.g. handrails) and defining the loading functions resulting from
pedestrians is not trivial. A genetic algorithm has been used to help define
forcing functions that are capable of simulating human walking forces acting on
slender pedestrian bridge type structures'®’. The identification parameters
considered were: heel contact duration; heel period; heel impact coefficient, tip
of toe period, tip of toe impact coefficient, and impact of heel to tip of toe. These
parameters were defined using a Genetic Algorithm and with the single objective
function being a simple normalized summation of the differences between
measured and predicted natural frequencies for the first two modes of simply
supported pedestrian bridges.

4.7. Conceptual Design of Building Systems

Evolutionary computations has the capability to serve as an artificial intelligence
mechanism whereby literally thousands of candidate designs can be generated
and evaluated automatically using user-defined criteria. As a result, structural
engineers have sought to exploit EC to aid in generating conceptual designs of
mid- and high-rise structural systems to understand the impact of multiple
competing objectives in defining the best compromise solution for building
systems.

At early stages of design of a building system, many factors need to be
considered. = Economy of design demands that initial construction cost,
maintenance costs, operating costs, and anticipated income or loss over time be
considered. When one considers the myriad of factors that define these costs,
he/she may find it impossible to rationally determine relationships among the
relative importance in each of these factors (either individually or collectively) in
defining the most economical solution with which to proceed to detailed design.
A genetic algorithm has been applied to the conceptual design of building
systems to simultaneously minimize capital cost, minimize operating cost, and
maximize income revenue'®'". Various structural systems were considered as
well as HVAC costs, land, lease rates, mortgage rates, inflation rates, and many
other practical parameters. A novel coloring algorithm is proposed to understand
the impact of structure type, number of stories, bay area, window ratio, and
design profitability within 3D objective space.

Conceptual design of the structural system has also been the target of
application of EC. A structured genetic algorithm (SGA) has been proposed to
allow alternative structural systems (e.g. precast concrete construction, composite
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construction) to be represented in a hierarchical binary chromosome structure'®®.
The SGA implemented in this study was intended to be a decision making tool
for the structural engineer. A parameter study was also undertaken after which
recommendations regarding the structural system were made through
consideration of the variation in land cost.

In the wake of September 11, 2001, the use of high-rise structural systems
was placed under increased scrutiny. The genetic algorithm and multiple-
objective coloring/filtering algorithm previously discussed'®'®’, was applied to a
multiple-objective optimization problem that examined the trade-off between
life-cycle profitability and their robustness (their load path safety against
progressive collapse)'”. Robustness was evaluated using a measure of force
redundancy in the structural system.

4.8. Parallel Processing Applications

The emergence of readily available clusters of networked computers and multiple
processor personal desktop computers facilitated exploitation of the inherent
parallelism of evolutionary computation procedures and opportunity to reduce
computation times in the solution to structural engineering optimization
problems.

Large structural steel systems have been optimized for minimum weight with
strength constraints defined by U.S. steel design specifications and conventional

drift constraints using a multi-level GA and fuzzy GA with MPI and OpenMP
170

parallel programming methods *. Comparisons of parallel algorithm
performance for the bilevel GA with MPI and OpenMP implementations are
provided.

A very large design problem (1080 design variables) was used as a numerical
experiment to evaluate the extent to which a typical GA would benefit from
having multiple processors'’'. Numerical experiments using as many as 128
processors demonstrated “... radical elapsed time reductions...” approaching
linear speed up with appropriate algorithm modification'”".

Determination of the type of support and the support location for piping
systems subjected to seismic excitation has been done using a parallel genetic
algorithm with the goal being to generate solutions that are near the optimal
design in objective space, but as different as possible in decision space'””. A
network of 10 Solaris Ultra-10 workstations was utilized in the parallel GA
solution and a single objective optimization problem was considered.

A network of workstations and MPI protocol have also been used to reduce

computation time necessary for a simple genetic algorithm'”>. It is shown that if
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proper load balancing among processors is considered in the parallel algorithm

formulation, near linear speed up can be attained on a ““...homogeneous hardware
»173

cluster...” .

5. Other Sources of Information

As with any review, there will always be a need to frame the period for the
review an in so doing, useful references will slip through. It is therefore, prudent
to guide the reader to additional sources of information in the form of journals
and conferences whereby he/she can obtain additional literature related to
evolutionary computation and its application in structural engineering.

There are many journals where applications of evolutionary algorithms can be
found and where their efficiency in generating solutions to structural engineering
optimization problems is evaluated. A listing of some of the more popular
journals available in the archival literature is:

Evolutionary Computation

Journal of Computing in Civil Engineering

Journal of Structural Engineering

Journal of Structural and Multidisciplinary Optimization

Computers & Structures

Engineering Structures

Journal of Constructional Steel Research

Journal of Bridge Engineering

Journal of Computer-Aided Civil and Infrastructure Engineering

Conferences that contain written proceedings are also sources for reviewing
the evolving state-of-the-art in evolutionary computation. Some of the most
pertinent and popular conferences related to EC are:

Genetic and Evolutionary Computation Conference (GECCO)

Foundations of Genetic Algorithms (FOGA)

International Conference on Genetic Algorithms (ICGA)

Congress on Evolutionary Computation (CEC)
SCE-SEI Structures Congress

6. Concluding Remarks

The review contained in this chapter demonstrates the truly staggering range of
applicability for evolutionary computation. EC is a very powerful tool for
automated and optimized design and its application in structural engineering
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appears limitless. It also appears that EC methodologies can form the basis of
unified automated and optimized design algorithms for structural engineering. It
is prudent at this point to provide some concluding remarks that can serve as a
brief synthesis for the information reviewed in this chapter. It is hoped that this
short summary of observations made at the end of the chapter can stimulate new
research directions dealing with application of EC in the field of structural
engineering.

The vast majority of applications of evolutionary strategies has been in
Europe.  Although incredibly useful, they have not seen as wide spread
application as genetic algorithms in the field of structural engineering.
Evolutionary (genetic) programming concepts have seen limited application as
well. Further exploitation and comparison of all EC methodologies in structural
engineering (as applicable of course) needs to occur.

There is opportunity for researchers to begin to tackle far more complex
structural engineering design problems using EC and future research efforts may
need to examine and further exploit alternate methods for expressing
phenotypes*>****7> a5 problems become more an more complex.

Design of supplemental damping and control mechanisms, performance-
based engineering design, and reliability-based engineering design appear to be
fertile areas for continued exploitation of multiple objective optimization using
evolutionary computation.

As design specifications and codes become more and more complicated and
computer software becomes more necessity than tool, EC has the opportunity to
become an integral part of artificially intelligent design algorithms in the future.

Researchers need to continue exploitation of parallel processing environments
(e.g. parallel computer clusters) on difficult structural engineering problems
beyond those of numerical experiments. Real problems need to be tackled in this
newly evolving computational environment.
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Decision-making is critical to the success of any product or system design. Multi-
objective optimization can provide effective and efficient tools for decision-making
under conflicting design criteria. The concept of tradeoff is integral to multiob-
jective optimization; and several approaches have been developed to resolve this
tradeoff — yielding the so-called Pareto optimal solutions. These approaches can
be broadly classified as those that require the specification of the designer prefer-
ences, and those that generate a set of Pareto optimal solutions from which the
designer can choose. These methods and their relative merits and shortcomings
are the focus of this chapter. A discussion regarding implementing these methods
for practical problems is presented, followed by a discussion on industrial and
academic applications.

1. Introduction to Multiobjective Optimization

Ever-increasing demands of system performance and economic competitiveness have
necessitated the development and use of formal design methods for each phase of
the engineering design process. Engineering design is a decision making process,
requiring critical decisions at every stage during the design of a product or a sys-
tem — from the initial conceptual design stage to the final detailed design stage.
Decision making is generally challenging because of the existence of conflicting de-
sign requirements. In the presence of only a single design objective, it is a nearly
trivial task to identify the optimal design configuration. However, as soon as one
introduces a second conflicting design objective, the design process becomes more
interesting and challenging. Multiobjective optimization techniques offer a formal
methodology for effective design and decision making under multiple conflicting
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design requirements and objectives. As such, multiobjective optimization can be a
critical component of the modern design process.

For example, in a simple beam design problem, the design requirements could
include the simultaneous minimization of beam mass and stress. Indeed, these two
objectives are in mutual conflict: reducing the beam cross-section size would re-
duce its mass, but increase the stress at critical failure points in the beam; while
increasing the cross-section size would reduce the stress, but would increase the
mass. Another practical example would be the tradeoff between fuel efficiency and
cargo capacity of cars. Large-sized vehicles can carry more load, but at the cost of
low fuel efficiency; while small-sized cars yield higher fuel efficiency, at the cost of
lower cargo capacity. One can find many such multiobjective examples in different
engineering and non-engineering fields. Many believe that all design problems can
(and should) be formulated as multiobjective problems.

In the above beam design example, if the mass objective were more important
to a designer than stress, he/she would prefer design configurations that yield lower
values of mass. A natural question arises: how does one generate optimal design
alternatives that reflect a designer’s preferences regarding conflicting design require-
ments? On the other hand, is it possible to provide a set of optimal solutions to the
designer from which he/she can choose the most desirable one? In this chapter, we
address these and many other pertinent questions relating to multiobjective design
and optimization.

1.1. Why Multiobjective Optimization?

A question often asked in the design community is: Why not simply minimize one
of the design objectives, and include the others as part of the constraints? While,
in theory, this approach can lead to the desired solution, it is unfortunately fraught
with significant pitfalls. For example, when one moves an objective from being
part of the objective function to being a constraint, one simultaneously changes the
nature of the preference pertinent to that objective — from a soft realistic preference,
to a hard constraint. The latter is in general not truly reflective of the designer’s
intent; and s/he may unknowingly settle for an inadequate solution. Furthermore,
the final solution typically depends heavily on the chosen value for the constraint,
which is largely uncertain. As one includes more and more constraints, the choice of
these constraint boundaries becomes a formidable task of it own. Fortunately, the
application of effective multiobjective methods can obviate these difficulties.

1.2. Scope of the Chapter

In this chapter, we present an overview of some of the basic concepts and solution
techniques in multiobjective optimization. Section 2 explains the concept of Pareto
optimality and provides relevant definitions. Section 3 discusses popular multiob-
jective methods, categorized as (i) methods that require articulation of preferences,
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and (ii) Pareto set generation methods. In Sec. 4, we discuss some of the practical
issues in multiobjective optimization, while recent applications and recent advances
in the field of multiobjective optimization are discussed in Sec. 5. Summary and
concluding remarks are given in Sec. 6.

2. Concept of Pareto Optimality

In this section, we introduce the critical concept of Pareto optimality, and present
the relevant terminology and definitions.

2.1. Multiobjective Optimization Problem Statement

Multiobjective optimization involves the simultaneous optimization of two or more
design objectives that are conflicting in nature. A typical optimization problem
statement involving multiple (ns) objectives can be written as

min [fi(x) fa(x) o f, (0] (1)
subject to

g(x) <0 (2)

h(x) =0 (3)

X <X < Xy (4)

where x; and x, are the lower and upper bounds on the design variables x, re-
spectively; g is the vector of inequality constraints, and h is the vector of equality
constraints.

2.2. Pareto Optimal Solutions

One may ask two very pertinent questions regarding Eq. 1: (i) How does one define a
“solution” to this problem? (ii) How does one solve a vector optimization problem
involving conflicting design criteria? To answer the first question, we must look
beyond the field of engineering. The concept of optimality — when trying to optimize
two or more objective functions simultaneously — was formalized in the 1900’s in
the field of economics®. This concept has come to be known as Pareto optimality
after its developer. The second of the above two questions is answered in Sec. 3.

Definition 1: A Pareto optimal solution is one for which any improvement in one
objective will result in the worsening of at least one other objective?. That is, a
tradeoff will take place.

Mathematically, a point f* (which is a vector of length ny) is called Pareto
optimal if there does not exist a point fP in the feasible design objective space,
such that ff > f7 for all j = 1,..,ny, and f; > f7, for at least one j. This
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mathematical definition assumes that smaller values of the design objectives are
more desirable (minimization in Eq. 1).

The concept of tradeoff is central to multiobjective optimization. It signifies that
an optimal solution to the multiobjective problem is one that results in an optimal
tradeoff between the conflicting design objectives.

A

dominated
region

Feasible space
<=0,h=0

Objective 2

Infeasible

Pareto frontier

Objective 1

Fig. 1. Design objective space for a bi-objective problem

In general, there exists an infinite number of Pareto optimal solutions to Eq. 1.
Each of these solutions satisfies the definition of Pareto optimality (Def. 1). Most of
the current methodologies for multiobjective problems revolve around identifying
a representative set of Pareto optimal solutions or a single Pareto optimal design.
Figure 1 graphically represents the design objective space of a bi-objective prob-
lem. The shaded portion is the feasible space (that is, where all points satisfy the
constraints, Egs. 2 and 3). The points on the edge of this feasible space (thick line)
comprise the Pareto optimal set, and satisfy Def. 1. The remainder of the feasible
region (shaded) is termed the “dominated region.”

Definition 2: A dominated point is a point in the design objective space, for
which there exists a point in the feasible space that is better (lower, in the case of
minimization) in all objectives.

2.3. Local and Global Pareto Optimality

For design points that are globally Pareto optimal, the definition of Pareto opti-
mality (Def. 1) holds true with respect to all points in the feasible objective space.
Certain points, however, may be Pareto optimal only in a small region of the fea-
sible design objective space. Such points are called locally Pareto optimal. Multi-
objective optimization techniques aim for obtaining globally Pareto optimal points.
Gradient-based optimizers typically tend to produce locally Pareto optimal points
if the objective functions are multimodal (that is, possessing many local optima).
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2.4. The Pareto Frontier

Each Pareto solution of a multiobjective problem can be identified using either the
design objective values (as in Fig. 1) or the design variable values (x). The former
results in a critical concept of multiobjective optimization — the Pareto frontier.

Definition 3: The Pareto frontier is the set of all Pareto optimal solutions repre-
sented in the design objective (f) space.

The Pareto frontier is a highly useful tool for multiobjective decision making
in the design process. For two-objective problems, the Pareto frontier provides a
graphical environment (Fig. 1) for making effective tradeoff decisions. In Fig. 1, all
design alternatives that lie on the thick line constitute the Pareto frontier. Mathe-
matically, no one Pareto solution is objectively better than any other solution, but
to a designer, each Pareto solution represents a different level of desirability.

2.4.1. Usefulness of the Pareto Frontier

The Pareto frontier provides the designer a clear picture of the tradeoff character-
istics of the different design objectives involved.

A

B Design1
o (High Stress, Low Mass)
= 601
g Design 2
¢ (Low Stress, High Mass)
500 4 T
‘ L
>
50 Mass (kg) 200

Fig. 2. Tradeoff characteristics using a Pareto frontier

Figure 2 depicts a typical Pareto frontier for a two-objective optimization prob-
lem, which involves simultaneously minimizing the mass of a component and the
stress. The design labeled “Design 1”7 is one that provides the least possible weight
(50 kg), subject to design constraints. This design configuration can be obtained
by simply ignoring the stress objective, and minimizing only the mass. As a con-
sequence, the stress is adversely affected, and is high (60 MPa) for “Design 1.” At
the other end of the frontier is “Design 2”, which provides the lowest possible stress
(50 MPa) — at the cost of worsening the mass objective.

All other points on the Pareto frontier represent varying levels of minimization
with respect to each design objective. The selection of the most desirable alternative
is dependent on which design objective a designer prefers over the others, and by
how much. For example, if he/she prefers the stress objective, then his/her region
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of interest would be the region of the Pareto frontier that offers low values of stress
(in the vicinity of “Design 27). Thus, the Pareto frontier offers visual guidance to a
designer in making a decision regarding the most preferred design in a multiobjective
sense.

2.5. Pareto Frontier in Multiple Dimensions

So far in the chapter, we have depicted Pareto frontiers only for two-objective
problems. For more than two design objectives, visualization of the Pareto frontier
can be a challenging task. For example, Fig. 3 shows the Pareto frontier for a three
objective problem. Notice that the frontier is no longer a line (as in the case of two
dimensions), but is a surface. Beyond three dimensions, we cannot possibly show
all the objectives on the same plot. Even in three dimensions, understanding the
tradeoffs between the different objectives can be challenging and often impractical.
Pareto frontier visualization and tradeoff characterization in multiple dimensions is
an open research topic3.

~_(LLD
~_ L
\\ //
feasible
- space
o
2
3 infeasible
'.g' space
//V
(0.0,0) ~_

Objective 1

Fig. 3. Pareto frontier for three objectives

3. Multiobjective Optimization Solution Techniques

In the previous section, we introduced the basic multiobjective optimization termi-
nology and concepts. In this section, we describe some of the popular solution tech-
niques for multiobjective optimization. Multiobjective optimization solution tech-
niques can be broadly classified into two types: (i) Methods requiring designer pref-
erences, and (ii) Methods that yield discrete representations of the Pareto frontier,
or Pareto set generating methods.
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3.1. Methods Requiring Designer Preferences

These methods require and incorporate designer preferences into the multiobjective
problem formulation.

Definition 4: Preferences are the wishes or requirements of the designer regarding
the different design objectives of a multiobjective problem.

The primary aim of these methods is to provide the designer with a single
Pareto optimal design (instead of several solutions — which requires subsequent
selection). Consequently, these methods are also called Integrated Generating and
Choosing (IGC) methods?, because they integrate the two aspects of multiobjective
optimization and decision making — those of generating a candidate set of Pareto
optimal solutions, and subsequently selecting the most desirable solution, based on
the designer’s preferences.

One of the most challenging tasks for this category of methods is to effectively
and unambiguously model the designer’s preferences, so as to ensure that the result-
ing optimal solution is the most desirable one, at least from a practical perspective.
To model the designer’s preferences, most of the methods belonging to this category
adopt a utility function approach. A utility function is a combination (scalariza-
tion) of mathematical expressions for each design objective under consideration.
Also termed aggregate objective function (AOF) or preference function, this com-
bined performance measure is treated as the objective function that is minimized or
maximized. Next, we describe some of the popular approaches that belong to this
category.

3.1.1. Weighted Sum

The weighted sum (WS) approach to multiobjective optimization is arguably the
most popular approach in industry. The weighted sum method uses a linear combi-
nation of the objective functions with the help of weights that signify the relative
importance between the objectives. Mathematically, the AOF (which is minimized)
is defined as

ny
J= Z w; fi (5)

i=1
The designer can prescribe scalar values for the individual weights w;, depending
on his/her preference with respect to each design objective. Often, the weights

ny
are chosen so that w; > 0 and Y w; = 1. One would prescribe a higher weight

corresponding to the more prefer;ed design objective. For instance, if stress and
deflection are the two objectives involved, and a designer prefers minimizing stress
more than deflection, then he/she could intuitively choose an adequately high weight
for stress, compared to that for deflection.
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Figure 4 shows that the constant value contours of J in Eq. 5 are straight lines
in the objective space. The weights w; define the slope of the contour of J. The
solution to the multiobjective problem is the point where the minimum value AOF
contour becomes tangent to the Pareto frontier — for a specified set of weights.

Although quick and easy to implement, the weighted sum approach suffers from

some well-known drawbacks, which restrict its use in practical design.
1) It is not always easy to choose a physically meaningful set of weights for the
design objectives. This is especially true if the units of the different design objectives
involved are disparate. For example, typical stress values are measured in MPa, and
those of deflection, in inches. Although it is possible to scale the design objectives
using a normalization technique, the scalar weights fail to quantify the relative
importance between the objectives. Furthermore, a weight of, say, 0.3, provides little
information regarding its influence on the stress objective. That is, if a designer
needs an improvement of 10 MPa in stress, should the corresponding weight be
changed to 0.35, 0.5. or 0.8?

2) The linear AOF (Eq. 5) can miss potentially desirable regions of the Pareto
frontier — non-convex regions are unreachable using a linear combination of design
objectives. For example, in Fig. 4, point C, although Pareto, cannot be captured
using the WS approach. This shortcoming could misrepresent certain regions of the
Pareto frontier as non-Pareto (non-optimal), and could lead to undesirable results®.

The second drawback discussed above can be overcome by a judicious modifica-
tion of the AOF of the WS approach.

3.1.2. Compromise Programming

The compromise programming AOF is a modification of the weighted sum AOF.
In this case, the AOF (which is minimized) is a weighted exponential sum of the
objectives, defined as

ny
J = sz'fir (6)
i=1

where the exponent r > 2. Typically the exponent is chosen to be an even number.
This approach is also known as the weighted exponential sum approach.

The constant value contours of J are curves in the case of compromise pro-
gramming, which grow increasingly sharper as r increases. Figure 4 shows that this
mathematical construct works well for non-convex Pareto frontiers, because the
sharp contours of the AOF curves can “reach into” the non-convex regions®.

However, a critical aspect of the compromise programming approach is the need
to specify weights as preferences for the design objectives. Thus, one of the limita-
tions of the weighted sum method is retained in compromise programming as well.
In addition, now the designer also must specify the value of r, which is not always
an obvious choice.
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Fig. 4. Non-convex Pareto frontier

A popular variation of the compromise programming AOF includes designer-
specified targets as

J:Zwi (fi —t)" (7)

where ¢} is the most desirable value (or target) for the i-th design objective. The
weights w; can be manipulated to specify which objective is more (or less) important
than the other objectives.

3.1.3. Weighted Min-Max Method

The weighted min-max method is another weighted criterion approach. The AOF
under this formulation (which is minimized) is given as

J = max {wi (fi(x) — ff*)} (8)

where f{* represents the i-th objective function value obtained by minimizing only
the i-th design objective, subject to constraints*. By varying the weights, a designer
can control the extent to which each objective can potentially meet its target.
However, the selection of weights may yet be an inefficient task. Furthermore, the
objective function in Eq. 8 is non-differentiable, and may lead to potential difficulties
with gradient-based optimizers. This problem can be overcome by re-formulating
the optimization problem with the help of a dummy design variable*.

3.1.4. Goal Programming

Goal programming? is one of the early methods that attempted to model the de-
signer preferences in a more physically meaningful manner than weight-based ap-
proaches. Goal programming, as the name suggests, requires a designer to specify
goals, or targets, for each design objective — values that the designer prefers the
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most. Goal programming (GP) attempts to yield a design that results in objectives
values as close to each target value as possible. To achieve this, GP linearly maps
each objective function value to a preference function value, such that the prefer-
ence function value corresponding to each objective’s target is zero, while all other
values are mapped to real positive numbers (Fig. 5).

preference
function

d < 8 4+ objective(f)

Fig. 5. Goal programming preference function

For each design objective, the designer specifies, in addition to the target value,
t;, two weights, w:r and w; , which represent the slopes of the preference function on
either side of the target value. Any deviation to the left or to the right of the target
value results in a non-zero preference function value. During the multiobjective
optimization, the sum of all preference functions is minimized, which potentially
results in a design that minimizes the deviation of each design objective from the
specified target.

Mathematically, the goal programming problem formulation can be represented
as a linear program (optimization problem) as

ny
Jin =3 {wldf +ucds ©)
subject to
filx) —df <t (10)
fi(x) +d; >t (11)
df,d;y >0 (12)

where d;" and d; are the deviational variables on the positive and negative sides of
t;, respectively (Fig. 5).

Goal programming is an improvement over the typical weighted criteria methods,
because the specification of target values is more physically meaningful than the
specification of weights. However, goal programming leaves a critical aspect of the
AOF formulation to the designer — selection of the slopes of the preference functions.
Arbitrary selection of w™ and w™ in Eq. 9 could lead to numerical scaling issues
related to disparate scaling between the objectives.



Multiobjective Optimization: Concepts and Methods 131

Also, a possible source of difficulties is the fact that goal programming penal-
izes all values of the design objective on one side of ¢; — equally. This approach
is thus incapable of modeling preferences where certain objective values may be
significantly more desirable than others. For example a value of 200 kg for mass
may be the most desirable, yet a value of 250 kg may be acceptable, and a value
between 250 and 300 kg may be undesirable. In such situations (which are common
in design problems), identically penalizing all mass values greater than 200 kg is
not practical.

3.1.5. Physical Programming

Physical programming (PP), developed by Messac® (see also Messac et al.”), is an
approach for multiobjective optimization that is capable of effectively modeling a
wide range of complex designer preferences. Furthermore, the designer does not
need to specify any scalar weights to reflect his/her preferences — a major drawback
of most of the AOF formulation techniques described above.

The PP approach categorizes design objectives as belonging to one of the fol-
lowing sub-classes:

(1) Soft Classes:

(a) Class 1S: Smaller-is-better (minimization)
(b) Class 2S: Larger-is-better (maximization)
(c) Class 3S: Value-is-better
(d) Class 4S: Range-is-better

(2) Hard Classes:

(a) Class 1H: Must be smaller
(b) Class 2H: Must be larger
(c) Class 3H: Must be equal
(d) Class 4H: Must be in range

The hard classes become part of the constraints of the optimization problem,
while the soft classes are part of the AOF. For each soft class, the designer specifies
target values (five each for classes 1S and 2S, nine for class 3S, and ten for class
45). Figure 6 shows a representative piecewise linear preference function for class 4S.
The ten target values on the horizontal (objective function) axis divide the objective
space into several regions of desirability, such as ideal, desirable, tolerable, undesir-
able, highly undesirable, and unacceptable. The target values are specified by the
designer, and they can accommodate a wider array of preferences than with the goal
programming approach. Compare and contrast this situation with Fig. 5. Observe
that as we travel from the central region (the most desirable) to the undesirable
regions in Fig. 6, the slope of the preference function increases in magnitude.

A novel aspect of PP is that the vertical axis, which represents the preference
function value for each objective, has the same range for all of the design objectives.
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This feature avoids potential numerical issues due of disparate scaling between de-
sign objectives. Also, PP automatically calculates the slopes of the preference func-
tions using a simple algorithm that also ensures convexity. More details regarding
the algorithm can be found in Messac® and Messac et al.”.

Class4S !

preference
function

TOLERABLE

DESIRABLE
DESIRABLE

HIGHLY UNDESIRABLE
HIGHLY UNDESIRABLE

UNACCEPTABLE
UNDESIRABLE
UNACCEPTABLE

|

|

| . I
st 15 [P Ty N i & S s f
target values I

Fig. 6. Physical programming preference function

The nonlinear version of the PP (Messac®), which defines smooth and piecewise
nonlinear preference functions. Nonlinear PP uses splines to define the piecewise
nonlinear components. Its use is recommended for nonlinear optimization problems.

The linear version of PP (Messac et al.”) can be easily formulated as a linear
programming problem (if the objectives are linear functions of the design variables)
by defining deviational variables on the positive and negative sides of each of the
target values for a particular class. The AOF (which is minimized) is the sum of
the preference function values of all objectives.

3.2. Pareto Set Generation Methods

In the discussion so far, we have focussed on multiobjective methods that attempt
to model the designer’s preferences and yield a single Pareto optimal solution. There
is another distinct, yet important, class of multiobjective approaches that focuses
on obtaining a discrete representation of the Pareto frontier. The designer then se-
lects the most desirable design alternative from these representative Pareto optimal
points. Such methods are also referred to as Generate First Choose Later (GFCL)
methods?. The scope of this chapter is limited to methods that yield a discrete rep-
resentation of the Pareto frontier. In most design problems, a discrete representation
is often sufficient for effective decision making.

Desirable features
Before describing some of the popular approaches, we discuss some of the desir-
able qualities of any Pareto set generation method:
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(1) Exploring the entire Pareto frontier: The Pareto frontier generation method
should be capable of exploring all regions of the Pareto frontier. Some popular
methods (such as weighted sum) fail to explore certain regions because of geo-
metrical limitations. In such cases, the decision of the designer could be biased
against the regions that are not represented.

(2) Even distribution of Pareto points: It is critical that all regions of the Pareto
frontier are represented evenly — no one region should be over- or under-
represented. Even representation will ensure that the designer’s decision is not
biased towards or against any particular region of the Pareto frontier.

(3) Global vs. local Pareto points: It is essential that only global Pareto optimal
points are generated. Some of the methods tend to generate locally Pareto or
even non-Pareto points. Non-Pareto and locally Pareto points can be removed
by using appropriate numeric Pareto filters?. In some cases, local Pareto opti-
mum points can be avoided by using global optimizers, such as genetic algo-
rithms.

(4) Computational efficiency: The number of function evaluations required to gen-
erate Pareto optimal points is an important issue for any Pareto frontier gen-
eration technique, especially in simulation-based design, where each function
evaluation could entail a significant computational expense. The recent thrust
in the field of multiobjective optimization has been towards developing more
computationally efficient methods.

3.2.1. Weighted Criteria Methods

As in the case of methods requiring preferences, weighted criteria methods are ar-
guably the most popular Pareto frontier generation techniques. The basic concept is
similar to that discussed in Sec. 3.1.1. We first form an aggregate objective function,
for example,

ng
J=S wifr (13)
=1

where r = 1 represents the weighted sum AOF, and r > 2 represents the compromise
programming AOF. In the approach requiring designer preferences, the designer
specifies a particular set of weights to obtain a single Pareto optimal solution.
However, to generate the Pareto frontier using the weighted criteria approach, we
vary the weights in a specified range. Each unique combination of weights defines a
single objective optimization problem, which when solved yields a Pareto solution.
By sequentially varying the weights, we can explore different regions of the Pareto
frontier.

A critical issue regarding the inability of the weighted sum approach to explore
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non-convex Pareto frontier regions was discussed in Sec. 3.1.1. In the case of Pareto
frontier generation, we need to address yet another critical issue — that of evenness
of the obtained Pareto points. In general, a uniform change in the weights in Eq. 13
does not guarantee an even distribution of points on the Pareto frontier (Fig. 7).

5r o 5 o
fa fa
o
o 0,
% o,
0| ° o 0| °
0 8 0 8
fi f1
(a) Weighted sum (b) Compromise programming

Fig. 7. Uneven distribution of Pareto points - Example 1

Example 1
min {wn ff + w2 f5) (14)
subject to

Ji=x11f2 =x2 (15)

fi—10\°  [(f-5\°
—_ =] —-1<0 16
( 10 + 5 - (16)
~10<x <10 (17)

The above two-objective example is solved using the weighted sum (r = 1) and
compromise programming (r = 2) approaches by uniformly varying the weights
between 0 and 1 (w; > 0,> w; = 1). Figure 7 shows that the weighted criteria
methods do not result in an even distribution for this example. In general, steep
and shallow sections of the Pareto frontier are often under-represented. Furthermore,
increasing r tends to concentrate solutions in the central region (also termed the
“knee”) of the Pareto frontier.

3.2.2. e-Constraint Method

The e-constraint method is a precursor to several recently developed Pareto point
generation methods. Instead of forming an AOF of all of the objectives, the e-
constraint method minimizes only a single objective, while constraining the re-
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maining objectives. By changing the parameters of these additional constraints, we
can obtain distinct Pareto points.

For example, for a two-objective problem, the e-constraint method is formulated
as

m}in f1(x) (18)
subject to
fa(x) <6 (19)
g9(x) <0 (20)
h(x) =0 (21)
X SX <Xy (22)

The constraint fa(x) < ¢ reduces the effective feasible objective space, while
Eq. 18 minimizes the other objective, that is f;. The Pareto frontier can be explored
by sequentially changing ¢ from the minimum to the maximum possible value of fs.

Remarks:

1) The e-constraint approach is easy to understand and implement for two-objective
problems, because we would only need one additional constraint (Eq. 19). However,
for multiple objectives, handling too many additional constraints and their param-
eters (§) can be cumbersome.

2) The e-constraint approach may prove ineffective if the Pareto frontier is steep or
shallow. In such cases, specifying a reasonable increment (or decrement) for § can
be a challenging task. As a result, this method could miss steep or shallow sections
of the Pareto frontier. Also, an even distribution of points is not possible in most
practical cases.

3.2.3. Normal Boundary Intersection Method

The normal boundary intersection (NBI)® method is an improvement over the e-
constraint method in that it is effective for multiobjective problems also. Similarly
to the e-constraint method, NBI involves solving a series of single objective opti-
mization problems, subject to a shifting constraint. The NBI method is one of the
earlier methods to emphasize the importance of obtaining an even distribution of
Pareto points.

Mathematically, the NBI method is formulated as
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r}l’cliil A (23)
subject to
dw + Au = f(x) — f* (24)
g(x) <0 (25)
h(x)=0 (26)
x; < x <Xy (27)

where A\ is a dummy design variable, f* is the utopia point, defined as f*“ =
A AT A
each objective. ® is an ny X ny matrix where the i-th column contains the vec-
tor f(x}) — f*, where f(x}) is the objective function vector evaluated at the design
that minimizes the i-th objective (also termed “anchor point”). w is a vector of
positive weights that sum to one, and u = —®e, e being a vector of ones.
Geometrically, NBI constrains (through Eq. 24) the solution of Eq. 23 to lie on

the normal to the line (hyperplane in multiple dimensions) joining the anchor points.

— the coordinates representing the minimum values of

As w is systematically varied, we can obtain a uniform distribution of points on the
Pareto frontier. It is possible, however, for the NBI method to generate locally
Pareto optimal solutions, or even non-Pareto optimal solutions, regardless of the
type of optimizer used (gradient or non-gradient based).

3.2.4. Normal Constraint Method

The normal constraint (NC) method was developed by Messac et al.>® to overcome
some of the limitations of the NBI method. The NC method (i) generally reduces
the number of non-Pareto optimal points generated, (ii) can be easily extended
to guarantee the generation of the entire Pareto frontier?, and (iii) uses inequality
constraints instead of equality, which results in favorable numerical conditioning
properties.

The NC method is conceptually similar to the NBI method. The NC method
uses anchor points for each objective to define a utopia hyperplane, or a utopia line
in two dimensions (as shown in Fig. 8). It then forms a grid of points X, on this
utopia hyperplane (number of points is specified by designer). For each X, a single
objective optimization problem is defined, which imposes an additional constraint
that reduces the feasible region, as shown.

The geometrical details of the NC method are shown in Fig. 8 for a generic
utopia hyperplane point X,. The anchor points for the two objectives are shown
as f'* and f?*. The k-th optimization problem statement using the NC method is
given as
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Fig. 8. Normal constraint method
min fa(x) (28)
subject to
* A
(f> =) (f(x) = Xp) <0 (29)
g(x) <0 (30)
h(x)=0 (31)
x; < x <Xy (32)

where f(x) = [f1(x) fo (X)]T. Solving the above single objective optimization prob-
lem projects the point X,; normally onto the Pareto surface, and yields the Pareto
optimum, as shown in Fig. 8. By allowing the normal line to intersect at different
locations on the utopia line, we can obtain a uniformly distributed set of Pareto
optimal points.

The NC method offers important advantages over NBI (as discussed above).
However, disparate scales of the objective functions can still pose a problem, which

can be avoided using a simple linear normalization scheme (discussed later in
Sec. 4.2).

3.2.5. Multiobjective Genetic Algorithms

Genetic algorithms (GA) belong to an entirely different class of optimization tech-
niques. Genetic algorithms attempt to mimic the natural evolution process — in order
to solve optimization problems. While a detailed discussion regarding their working
is beyond the scope of this chapter, we mention some of the notable developments
in this field, especially in multiobjective optimization.

Recently, GAs have been effectively used to generate Pareto solutions for multi-
objective optimization problems. Genetic algorithms simultaneously process a pop-
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ulation of candidate points (traditional optimization techniques consider a single
point), which “evolves” towards the Pareto frontier. Genetic algorithms are well
suited for multiobjective optimization problems, because they can yield a discrete
representation of the Pareto frontier in a single pass of the algorithm. Also, mul-
tiobjective GAs are considered to be effective, because they do not attempt to
aggregate the individual objective functions. Throughout the optimization, they re-
tain the vector form of the objective function (Eq. 1). Furthermore, because GAs
are non-gradient optimizers, they are capable of yielding globally Pareto optimal
points. Also, they are capable of handling discrete design variables.

Genetic algorithm approaches, however, are hampered by issues such as poor
distribution of Pareto points (resulting in clusters) and excessive number of func-
tion evaluations. The evolution process needs to be repeated over several hundred
“generations,” or cycles, which may make multiobjective GAs computationally in-
efficient. Another criticism often directed towards GAs is the excessive parameter
tweaking often needed to obtain useful results.

One of the earliest uses of multiobjective GAs was by Schaffer!?, when he pro-
posed the Vector Evaluated Genetic Algorithm (VEGA) approach. Deb et al.ll
developed the Non-dominated Sorting Genetic Algorithm (NSGA) for obtaining
Pareto optimal points. Some of its features include a systematic approach for
avoiding under- or over-representation of certain Pareto regions and a fast sort-
ing capability. The Strength Pareto Evolutionary Approach (SPEA) by Zitzler and
Thiele!? is another notable development. Multiobjective GAs have been studied
extensively and tested on numerous multiobjective optimization problems in the
above-mentioned publications.

Example 2
min {f1(x) fa(x)} (33)
subject to
fi=x1;f2 =%z (34)
5ot 4 2e7 05013 < x, (35)
0<x1,x9<5 (36)

We solve the above bi-objective problem using three representative Pareto set
generation approaches, which will highlight some of their advantages and limita-
tions: (i) Weighted Sum, (ii) Normal Constraint, and (iii) Non-dominated Sorting
Genetic Algorithm. The MATLAB function ‘fmincon’ is used to solve each single-
objective optimization in the case of the WS and NC approaches. Note that the
Pareto frontier for this problem is disconnected (Fig. 9(a)).

Figures 9(b-d) depict the Pareto solutions obtained by the three approaches, in
comparison to the actual Pareto frontier. As expected, the weighted sum approach



Multiobjective Optimization: Concepts and Methods 139

°
4 ) 4 ©
constraint R
boundary o
3 feasible region 3 °
A 2 %q%
2| 2|
non-Pareto
1 infeasible region 1 1 0o0 ]
OO 1 2 3 4 5 OO 1 2 3 4 5
A fi
(a) Actual Pareto frontier (b) Weighted sum
5
o
4 4 3
?
)
%

i h

(c) Normal constraint (d) NSGA

Fig. 9. Comparison between different Pareto frontier generators

(Fig. 9(b)) does not result in an even distribution of Pareto points, and also misses
certain sections of frontier. The NC approach (Fig. 9(c)) results in the best distribu-
tion of the three approaches, after easily filtering the non-Pareto solutions. Finally,
NSGA (population size 100, evolved over 150 generations) results in an accurate
representation of the global Pareto frontier (Fig. 9(d)) — at the cost of too many
function evaluations.

3.3. Choosing an Appropriate Solution Approach

An important aspect of multiobjective optimization is the choice of an appropriate
solution technique for a given design problem. As in most areas of science and
engineering, there is no single multiobjective optimization method that works best
under all circumstances. However, below we provide some guidelines to help select
an appropriate technique.

Preference-based approaches vs. Pareto set generation approaches

The decision regarding whether to choose an approach that requires articulation
of designer preferences or one that generates the entire Pareto frontier is generally
guided by three factors: (a) available computational resources (and time), (b) avail-
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ability of preference information, and (c) visualization capabilities.

(a) Available computational resources: Typically, generating the entire Pareto fron-
tier can be computationally more expensive than obtaining a single Pareto optimal
solution. Especially for problems involving expensive simulations, such as finite ele-
ment analysis or computational fluid dynamics, computational requirements could
be a major concern. In such situations, attempting to obtain the entire Pareto
frontier may be impractical.

(b) Awailability of preference information: The second important factor is the avail-
ability of preference information, as required by methods such as goal programming
and PP. Typically, in the early phases of design, a designer might not have deep
knowledge of what he/she wishes. In such cases, obtaining a set of all Pareto points
may present a more favorable alternative.

(¢c) Visualization capabilities: Another factor is the visualization aspect of multiob-
jective optimization. For problems involving more than three objectives, it may be
challenging to graphically (or otherwise) convey the optimal results to a designer
for decision making . On the other hand, methods that combine objective functions
beforehand need only convey the progress of the optimization process. Current re-
search activities are often directed towards better visualization capabilities of the
Pareto frontier. However, Pareto set generation methods are more manageable when
restricted to problems involving few design objectives.

4. Multiobjective Optimization in Practice

There are several issues in multiobjective optimization that are important from a
practical perspective. Specifically, in this section, we describe some important deci-
sion making tools that are beneficial in the context of Pareto set generating methods.
We also discuss objective function normalization as an approach to overcome scaling
issues. Finally, we discuss the use of Pareto set metrics.

4.1. Decision Making Tools

The effectiveness of Pareto frontier based methods can be greatly enhanced by
several decision making tools. These are numerical tools that help obtain a more
meaningful representation of the Pareto frontier. It is important to note that these
tools do not improve the quality of the existing Pareto set; they simply ease the
process of selecting desirable Pareto solutions.

4.1.1. Pareto Filtering Techniques

In the previous section, we described several Pareto set generation methods. We
observed that some methods, such as NBI and NC, can generate locally Pareto
or non-Pareto optimal points. However, the generation of such points may not be
a serious limitation of the method, because such unwanted points can be identi-
fied and removed after the optimization process is complete. Numeric filters have
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been developed by Mattson et al.?, which overcome the limitation of the methods
that generate non-optimal points. Specifically, a “global Pareto filter” systemati-
cally searches through all obtained solutions, and removes the non-globally Pareto
optimal designs — leaving a reduced set of points that are globally Pareto. This re-
duced Pareto set containing only the globally optimal designs can then be presented
to the designer for decision making. For mathematical details of the global Pareto
filter, refer to Mattson et al.2.

4.1.2. Smart Pareto Representation

One of the desirable qualities of Pareto set generation methods is the ability to yield
an even representation in the design objective space. However, recently, there has
been increased interest in developing more meaningful Pareto frontier representa-
tions. The basic premise is that in practical design problems, certain regions of the
Pareto frontier may be of more interest to a designer than other regions.

Particularly, regions that entail practically insignificant tradeoff may not be
highly important to a designer. To understand insignificant tradeoff, we refer to
Fig. 2, where the Pareto frontier is particularly shallow in the regions of high mass.
As a result, if we are willing to give up a small amount in the stress objective, we
will be able to significantly improve on the mass objective. Such regions may not
need to have the same density of Pareto points as another region with significant
stress-mass tradeoff.

Moreover, such a non-uniform distribution could result in a reduction in the total
number of Pareto points, and is termed “smart representation” of the Pareto frontier
in Mattson et al.2. From a decision making perspective, a smaller representative set
of Pareto points is more manageable, and could ease the task of decision making
for the designer.

4.2. Objective Function Normalization

A major source of difficulties in multiobjective optimization can be traced to uneven
scaling between the objective functions. Most of the Pareto set generation methods
described in this chapter may fail to yield useful results if the objective functions
have widely varying scales. However, scaling issues can be overcome by performing
a simple linear transformation of the design objectives.

Under this transformation (normalization) scheme, each objective function is
first minimized separately to obtain the anchor points f#* = [ e fhe Z;‘; 0=
1,..,ns. Using the coordinates of these anchor points, the objective function space
(that includes the Pareto frontier) is linearly transformed to lie within a unit hy-

percube (Fig. 10). Mathematically, the transformed domain (f) is given by
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fi(x) — min f/*
J

max f7* — min f*
j j

filx) = (37)

Pareto set generation can be performed in the normalized space, and the solu-
tions can be mapped back to the original domain using the above transformation
in reverse. Although effective, this normalization scheme may be computationally
expensive — if obtaining the coordinates of all of the anchor points is expensive.
However, a similar normalization may be performed — without obtaining the anchor
points — if one has approximate knowledge of the range of each objective function.
For a more detailed discussion on normalization in multiobjective optimization,

refer to Marler and Aroral®.

4.3. Pareto Set Accuracy Metrics

When we have more than three objectives, visualization of the Pareto frontier is no
longer a simple matter. Visualization in n-dimension continues to be a subject of
considerable interest. Below, we describe a metric that can be used to quantify the
quality of Pareto sets obtained using a Pareto set generator.

The Pareto set accuracy metric can be used for testing the effectiveness of a
particular Pareto set generation method. It is useful for estimating how an obtained
Pareto set compares to the true Pareto set of the test problem. The error metric is
defined as follows,'4

3 Lo - ooy}
pl =l J

eval

38
Nobt ( )
where £(°Pt) is the set of nops Pareto points obtained by a given Pareto set generator,

and (< is the set of true Pareto optimal points. Thus, Pe{}al is the average of the
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minimum euclidian distances of each obtained Pareto point from the actual Pareto
frontier. A smaller value of P/ | Tepresents a more accurate set of Pareto points.

eva.
Specifically, P’ =0 indicates that the two Pareto sets coincide.

eval

The above accuracy (quality) metric can also be calculated in the design variable
(x) space by simply replacing f with x in Eq. 38. However, the above metric should
be used with caution: it may be highly sensitive to objective function or design
variable scaling. One way to avoid scaling problems is to normalize the concerned
values using the technique described in Eq. 37.

Other Pareto set evaluation metrics exist that do not require information about
the true Pareto frontier. For example, the hypervolume metric!®'2
the “size of the Pareto space.” It is equal to the sum of the hypervolumes defined

using each Pareto point and each of the objective axis. However, this measure works

is a measure of

well only for convex Pareto frontiers, and could be misleading for non-convex ones.
The interested reader may refer to Zitzler and Thiele!'?, Wu and Azarm'®, and
Velduizen'* for more information regarding Pareto set metrics. On a similar note,
Messac and Mattson® propose a measure for evenness of a Pareto set, based on
euclidian distances in the objective space.

5. Applications and Recent Advances in Multiobjective
Optimization

Multiobjective optimization techniques have been widely used both in industry and
in academic research. We briefly mention some of the engineering applications.
Physical programming has been applied to a wide variety of engineering prob-
lems. Messac and Hattis'® have used PP for the design of high speed civil transport.
Messac and Wilson'” apply PP for the multiobjective optimal design of a controller,
while Messac et al.'® use PP for a nine-objective structural optimization problem
involving the design of rigidified thin-wall membranes for housing . The NC method
has been demonstrated on several test problems involving truss optimization®°.
Industrial applications of multiobjective optimization include multiobjective
crashworthiness optimization®20

actuator?!. Multidisciplinary applications of multiobjective optimization are also

and the multiobjective design of a bimorph

common. Tappeta and Renaud?? present a multiobjective collaborative optimiza-

1-23

tion framework, while McAllister et a apply multiobjective optimization to a

race-car design problem.

5.1. Recent Advances

Much recent progress in multiobjective optimization has been towards effectively
incorporating the developed techniques into a multidisciplinary simulation-based de-
sign environment. Multidisciplinary design optimization (MDO) is characterized by
the presence of numerically intensive analysis modules. Thus, each design objective
and constraint function of the multiobjective problem could be a computationally
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expensive simulation. In such situations, it may be difficult to generate even a sin-
gle Pareto optimal point. Consequently, there have been recent developments in
using approximate models of the simulations in the multiobjective problem state-
ment. Effectively constructing these approximations (metamodels) by performing
the expensive simulations at judiciously selected design points is an active area of
research?*. Approximation-based design provides a computationally efficient envi-
ronment for multiobjective decision making.

Another critical area of research in multiobjective optimization is that of visu-
alization. Visualization does not mean simply presenting data in the form of tables
and charts. New visualization capabilities, both in terms of optimization progress
visualization and Pareto frontier visualization, which are physically meaningful to
the designer, are being developed. Physical programming based visualization was
developed by Messac and Chen?®, which allows a designer to visualize the relative
tradeoffs between design objectives in a physically meaningful manner during the
optimization. Mattson and Messac® discuss a Pareto frontier visualization approach
in multiple dimensions.

6. Summary and Concluding Remarks

Multiobjective optimization can play a critical role in most modern design method-
ologies. Engineering design is a decision making process, and multiobjective tech-
niques facilitate this decision making by providing the designer a Pareto optimal
set of designs, or a single Pareto point that reflects the designer’s preferences. Two
categories of multiobjective optimization techniques were described in this chapter:
methods requiring designer preferences, and methods that generate a representa-
tive set of Pareto points. Particularly, we noted some of the deficiencies of the
weight-based multiobjective methods, such as the weighted sum and compromise
programming approaches — in the context of Pareto frontier representation. Finally,
we discussed some practical issues in implementing these multiobjective approaches.
Importantly, note that the discussion in this chapter is limited in scope, and the
reader is encouraged to consult the references for more details in this ever growing
and exciting field.

7. Problems

Problem 1: For a hypothetical bi-objective optimization problem with f; and f- as
two generic design objectives, formulate an appropriate AOF (J) for the following
designer preferences.

(a) minimize f; and minimize fo, and both objectives are equally important. (b)
minimize f; and maximize fo, and f1 is twice as important as fo. (c) Get f1 as
close to 5 as possible, and f5 as close to 10 as possible. (d) maximize f> and get fo
as close to 10 as possible.

Explain any potential problems with each of your above AOF formulations.
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Problem 2: Consider the design of a pinned-pinned beam of length L = 10 m, width
b = 0.05 m, and height A, with a load P = 400 N applied at mid-span. The material
density is denoted by p = 10* kg/m3, and the Young’s modulus is £ = 10*! Pa.
The quantities of interest to a designer are the mid-span displacement and beam
mass. The designer would like both of these quantities to be as low as possible, by
controlling the height h.

(a) Express the displacement and mass as a function of the design parameters. (b)
Identify the design objective(s) and design variable(s) in this problem. (¢) Formulate
a multiobjective problem, and state it in the format of Eq. 1.

Problem 3: In Problem 2 above, obtain an optimal design configuration in each
of the following cases of designer preferences. Use any multiobjective technique
discussed in this chapter. The designer:

(a) is more inclined towards a design that provides a low mass value. (b) would
much rather prefer the displacement objective over the mass objective. (c) prefers
both the displacement and mass objectives equally. (d) would like a design that
provides as low a displacement as possible, and mass as close to 295 kg as possible.
After obtaining the optimal designs, plot each of them (on the same figure) in the
design objective space. Using this plot, comment on the performance of the chosen
optimization technique. Comment also on the non-uniqueness of your answer, and
its practical implication.

Problem 4: Using the weighted sum approach, obtain a discrete representation
(30-40 points) of the Pareto frontier for Problem 2 above. Consider two cases: (i)
non-normalized design objectives with mass in kg, and displacement in m, and (ii)
normalized objectives using the normalization scheme in Eq. 37. How did normal-
ization help (or did not help) in this case, and why?

Problem 5: Consider the following bi-objective optimization problem.

min [f1(x)  f2(x)]"

f1:X2;f2:(X*1)2
—4<x<4

(a) Obtain several optimal points on the Pareto frontier using the compromise
programming method (r = 2). Use Matlab’s fmincon function for optimization.
Plot the Pareto points in the objective space.

(b) Obtain and plot Pareto frontiers for » = 1,2,4,6,8. Comment on the general
trend of Pareto point distribution as 7 increases.

Problem 6: Plot the Pareto frontier (25-30 points) for the following bi-objective
problem using: (a) Weighted sum, (b) Compromise programming using an appro-
priate exponent, and (c) Normal constraint. Explain the advantages and limitations
of each method by examining the plots.
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min[f1(x) fa(x)]"
fl :Xl;f2 = X2
x3+x3/9>1;x} +x5>16
x3/27T+x5>1
0<x<29
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CHAPTER 5

SHAPE OPTIMIZATION
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Recently, shape optimization has been implemented into several commercial
finite element programs to meet industrial need to lower cost and to improve
performance. This chapter provides a comparatively easy method of shape
optimization to implement into a commercial finite element code by using
geometric boundary method. The geometric boundary method defines design
variables as CAD based curves. Surfaces and solids are consecutively created
and meshes are generated within finite element analysis. Then shape
optimization is performed outside of finite element program.

1. Introduction

Shape optimization can lead to minimization of mass by changing or determining
boundary shape while satisfying all design requirements. Shape optimization has
received increasing interest for about 3,000 years to achieve best results within
limited sources, beginning with the isoperimetric problem. The history of
isoperimetric problem, the determination of the shape of a closed curve of given
length and enclosing the maximum area on a plane, begins with the legendary
origins in the “Problem of Queen Dido” about 900BC.

Virgil told a story of Queen Dido in his famous epic ‘The Aeneid.”"” Dido,
also called Elissa, was princess of Tyre in Phoenicia. Escaping tyranny in her
country, Dido came to the coast of Libya and sought to purchase a land from the
natives. However, they asserted that they would sell only as much territory as
could be enclosed with a bull’s hide. Therefore, she had his people cut a bull’s
hide into thin strips and sew them together to make a single and very long string.
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Then Dido took the seashore as one edge for the piece of land and laid the skin
into a half-circle. By her institution, she inferred that the maximum area bounded
by a line could be enclosed by a semicircle as shown in Fig. 1. In this way, she
could purchase the largest site called “Bull’s Hide.” In that site, Dido and her
friends founded Carthage, a city in today’s Tunisia.

Different curves of equal
length connecting arbitrary two
points on a line

7

Fig. 1 Geometric description of isoperimetric problem which originated by Queen Dido in about
900BC

In the engineering field, the first shape optimization problem was defined by
Galileo in 1638 at his famous book titled ‘Dialogues Concerning Two New
Sciences,” where he presented a logical definition and solution for the shape of a
cantilever beam for uniform strength as given in Fig. 2.%

(From the Discorsi, Leiden 1638.)

Fig. 2 Shape optimization problem defined by Galileo in 1638
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The subject of shape optimization has been a topic of in-depth research for
over three decades since Zienkiewicz and Campbell® presented a basic
formulation for the problem. Structural optimization methodologies are now
noticeably matured and these methods have been implemented into commercial
finite element programs. Morphing technology has been developed to treat large
shape changes without mesh distortion during shape design process. However,
shape optimization within finite element program needs considerable manual
efforts to define design variable and added constraints, and to integrate with
CAD system and optimizer. In this chapter, we summarize definition of standard
shape optimization problem and its solution schemes. Then some limits of
methods are described and an emerging technique, the so-called geometric
boundary technique, is introduced. The geometric boundary method defines
design variables as CAD based curves. Then surfaces and solids are
consecutively created and meshes are generated within finite element analysis.
An engineering application of geometric boundary technique is presented to give
insights for practical design applications.

2. Definition of Shape Optimization Problem

Structural problem can be governed by means of the principle of virtual work for
a deformable continuum body in static equilibrium under the action of specified
body force f; and surface traction tio as follows:

Ifi&‘idv+ J.tlpﬁ’tidrt =f0,-,-&4i,jdv
v L, v

ey

:uo

U; i

_ .0
; on I', and ¢, =¢;” on I

for kinematically admissible virtual displacement du; . V denotes the known
domain in analysis phase, I', and I, represent displacement and traction
specified boundaries, respectively, as given in Fig. 3. Note that the summation
convention is applied for repeated index.

A shape optimization problem can be defined in general as follows:

Find the boundary of V(I')

to minimize a cost function m(V,u; )

- 0 0 2
subjectto g ;(V,u;)< g and Iy (V,u;) < hy

while u; satisfy the governing equations
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where g ;(V,u;) and h (V,u;) denote inequality and equality constraints
respectively. Each constraint describes a design requirement.

Fig. 3 Definition of a deformable body and applied forces

Definition of design variables characterizes the types of optimization such as
sizing, shape and topology as illustrated in Fig. 4. In sizing optimization, a
typical size of structure such as thickness of a beam and shell elements and
material properties such as density, elastic modulus, thermal conductivity etc are
optimized without changing meshes. In shape optimization, the shape of a
structure, i.e., boundary of design domain such as length of a beam and boundary
of shell is optimized so that meshes are varied as design changes. In topology
optimization, topology of a structure is optimized so that shape and connectivity
of design domain are altered.

O

&

(a) Sizing (b) Shape (c) Topology

Fig. 4 Definition of types of design variables
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Suppose that a torque arm given in Fig. 4 is modeled by using shell elements
for finite element analysis. Then, thickness of each shell element and material
properties as shown in Fig 4 (a) can be candidates of sizing design variables.
Geometric boundary such as size of holes and outer shape of torque arm as
illustrated in Fig. 4 (b) can be candidates of shape design variables. In addition to
shape design variables, change of connectivity within design domain such as new
hole as shown in Fig. 4 (c) can be candidate of topology design variables.

It is important to note that shape optimization problem may have multiple
solutions so unique solution is not guaranteed because it is an ill-posed problem
like most design problems. The reason is that the domain in which to look for the
final design domain, V(I'), is not determined yet. Moreover, influence of V(I')
on the governing equation Eq. (1) or on the design constraints g;(V,u;) and
h, (V,u;) is not explicit. However, our goal is not to obtain absolute optimum
design, but to get a better design or at least best design within the neighborhood
of small design changes. Therefore, we don’t prove that our solution is global
optimum design.

3. Shape Optimization Methods

Shape optimization based on finite element analysis has received increasing
interest in the practical design because the finite element analysis can replace
physical experiments in many engineering fields. However, it is difficult to
provide continuous shape changes during shape optimization without the mesh
distortion of finite element analysis. In addition to the formulation for shape
optimization given in Eq. (2), mathematical representation of the geometric
boundary, mesh generation and manipulation play an important role in shape
optimization when finite element program is employed to predict performances.

The design boundary can be properly parameterized by using a parametric
language that is often available in preprocessor of finite element programs.
Moreover, finite element program is widely integrated with a commercial CAD
system under design frameworks for industrial design. Thus, shape optimization
with high-fidelity finite element program can be performed with minimum
manual efforts.

In this section, techniques for representation of geometric boundary are
reviewed and geometric boundary method that defines boundary by using CAD
based curves is suggested. Then funnel shape of cathode ray tube for display
device is optimized to reduce the depth.
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3.1. Element Nodal Coordinate Method

Element nodal coordinate method is an early method for shape optimization
using finite element nodal coordinates as design variables.” However, relocation
of boundary nodal points often deteriorates the mesh quality or an unacceptable
design as shown in Fig. 5. To avoid the possibility of mesh distortion or
unacceptable designs, new constraints must be added to control the movement of
each nodal coordinate by trial and error. Therefore, it is natural to integrate with a
CAD system to define suitable design boundary and with a good mesh generator
to update the finite element model while changing design variables.

The boundary shape can also be obtained as a linear combination of several
basis shapes represented by boundary element nodal coordinates such as a
mapped mesh generator,” prescribed displacements, or fictitious loads.” In
order to characterize the continuous shape changes with a finite number of design
variables, the reduced-basis method where a few of design vectors are usually
used to sufficiently describe the shape changes in finite element analysis has been
implemented."”

N A
[/ —
[/ —
[ /
/ >
//
/_’
L
—»
(a) Initial design (b) Unacceptable optimum shape

Fig. 5 Shape optimization of square plate with square hall

3.2. Geometric Boundary Method

Geometric boundary for shape optimization can be defined by CAD-based curves,
which are referred to as geometric boundary method. For shell type structure,
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appropriate curves are predefined, surface is generated from the predefined
curves, and automatic mesh generator generates meshes on the surface. Once the
design is changed, CAD-based curves are changed. Then surface modification
and new mesh generations are sequentially followed during shape optimization
procedure. However, note that geometric boundary method is not recommended
to 3-dimensional finite elements such as hexahedral element because of
limitation in automatic mesh generation.

In this chapter, we performs shape optimization for cathode ray tube of flat
panel display device to minimize its depth for space saving.® To reduce the
depth of cathode ray tubes, the most important component is a funnel that should
mechanically withstand the vacuum pressure between the inner and the outer
pressures. An ideal arch-like shape of funnel geometry is initially modeled to
distribute vacuum stress from the shape of the original product. However, in
order to reduce the depth of cathode ray tubes without failure, the arch-like shape
of the funnel is optimized to achieve the goal systematically.

3.2.1. Definition of Shape Design Variable

In order to generate 3-dimensional funnel geometry of the cathode ray tubes,
three axes of funnel geometry are defined as short, long and diagonal axes as
illustrated in Fig. 6. Because funnel geometry is symmetric, the axes on the first
quarter are generated and expanded to full domain. Curve along each axis can be
precisely described by a rational Bezier function of degree 5 with 6 control points
that represents accurately the full 3-dimensional funnel geometry as given in
Figs. 6 and 7. Rational Bezier curve of degree n is given by a weighted
summation of Bernstein polynomials, B, ,(f), as follows:

i B; , ()w;P;
C(Hy="—— (3)
Z B;, @*)w;
i=1
Biy()=——2 (1= @)
’ i/ (n—10)!

where the points P; are control points and w; the nonnegative weights,
respectively.

To meet the design goal for cathode ray tube, the shortest depth of funnel
must be achieved. However, the depth is specified as a target value in this
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research. Note that we select a control point as design variable along each axis as
marked in Fig. 7. And we have examined that 3 design variables can provide
smooth shape of funnel.

3 curves are generated from 6 control points of each axis and translated into
the smooth surface passing through 3 curves for finite element mesh.” Then
finite element meshes on the surface are automatically generated by auto-mesh
command. If mapped meshes are used, we can control the quality of finite
element meshes. Generating curves, surface and meshes are executed in the
preprocessor of finite element program. In this study, APDL (ANSYS Parametric
Design Language) is used to generate Bezier curves, surface by ASKIN and
meshes by AMESH during shape optimization.

Fig. 6 Definition of shape variables for funnel geometry using 3 curves along each axis

Con‘lrol point used by D.V.

Fig. 7 Rational Bezier curve of degree 5 and its control point on an axis



Shape Optimization 157
3.2.2. Shape Optimization

Since glass is brittle, maximum principal stress becomes the failure criterion. The
first principal stress of the original model is obtained as 3.64 kgf/mm® that is
beyond the yield strength. Therefore, the maximum principal stress should be
minimized below the specified yield strength without adding mass of the funnel.

For simplicity, we optimize the shape of funnel while maintaining its depth
that is given as a target value by designer. In this study, one design variable from
each axis is selected, but you can add more design variables to obtain better
shape. Now we define shape optimization problem with three design variables as
follows:

Minimize o,,,, (w;)

Subject to m(w;) < my, )

Table 1 shows optimum result of funnel shape in cathode ray tube. Fig. 8

shows the stress distribution for the optimum shape of the cathode ray tube. The
maximum stress is reduced by 12.4 % without increasing mass of the funnel.

Table 1 Optimum result of cathode ray tube

Initial Optimum
wy 1 0.997
Wy 1 0.956
W3 1 1.092
Maximum stress (MPa) 35.67 31.65
Mass (kg) 24.77 24.77

For highly time-consuming simulation, approximation models can be replaced
high-fidelity simulation models to predict performances efficiently during shape
optimization.”” To generate efficient approximation models of performance over
design domain, good metamodels, appropriated sampling strategy and validation
method of metamodel accuracy are considered.

4. Concluding Remarks

Shape optimization can be employed for daily computer aided design tool
because the manual efforts for seamless integration of CAD system, finite
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element program and optimizer at high fidelity levels are considerably reduced.
This chapter addresses representation of design variables for shape optimization
problem and its implementation methods.

A comparatively easy method for shape optimization to implement into a
commercial finite element code is illustrated by using geometric boundary
method. Curve generation, surface generation, and mesh generation are
performed in the finite element program by using the so-called parametric
language. Shape optimization of the funnel for a cathode ray tube is performed
by using a commercial finite element program and a reasonable shape of funnel
is obtained.

For highly time-consuming simulation, approximation models need to be
employed to predict performances efficiently. Moreover, shape optimization
program must be integrated with topology optimization program in order to
convert optimum topology into an initial shape for shape optimization
automatically.

MN3Y3 5.7
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Fig. 8 Distribution of maximum stress on optimum shape of funnel
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Taking as a starting point a design case for a compliant mechanism (a force inverter), the
fundamental elements of topology optimization are described. The basis for the develop-
ments is a FEM format for this design problem and emphasis is given to the parameteri-
zation of design as a raster image and the techniques associated with solving this class of
problems by computational means.

1. Introduction

Topology optimization is a phrase used to characterize design optimization formulations
that allow for the prediction of the lay-out of a structural and mechanical system. That is,
the topology or “landscape” of the structure should be an outcome of the procedure. In
principle the result of a topology optimization procedure is also optimal with respect to
size and shape, but it is here essential to note that fundamental differences in the design pa-
rameterization means that direct comparisons are difficult in practise. Moreover, topology
optimization is often restricted to design situations with a moderate number of constraints.
One should always consider topology optimization as a companion discipline that provides
the user with new types of designs that may be processed directly or which may be further
refined using size and shape optimization.

The classical concept of lay-out design was created in the early 1900s by Michell! and
was concerned with design of “thin” frame structures in a setting of plastic limit design.
This work was based on analytical methods. Much later, the methods of mathematical pro-
gramming, more specifically linear programming techniques and the simplex method, were

161



162 M. P. Bendsge and O. Sigmund

employed for stress constrained minimum weight design of truss structures.>> By allow-
ing for variable cross-sectional areas with a lower bound equal to zero, the single load,
minimum compliance optimal topology of a truss can be determined by solving a linear
programming problem. The topology here signifies which nodes that are connected, start-
ing from a so-called ground-structure consisting of a given, fixed set of nodal points and
an associated set of potential bars.

The idea of working from a given reference domain — the ground-structure — was later
carried over to the case of continuum structures. Some of the fundamental ideas were first
clarified in theoretical studies related to existence of solutions and the application of ho-
mogenization techniques for obtaining well-posed problem formulations. In turn, this work
constituted the foundation for the computational methods that now typically are called ma-
terial distribution techniques and which work with a design parameterization that allows
for the prediction of the optimal material distribution in a given reference domain. While
the first computational work* relied on optimality criteria methods for the optimization,
today such methods are typically based on mathematical programming together with FEM
for analysis. This means that many of the fundamental solution techniques of the material
distribution methods are very similar to methods developed for sizing optimization, but
with a range of intricacies that relate to the special form of the design parameterization for
topology design. Also, the large-scale setting required for topology optimization requires
special attention, calling for careful attention when formulating the design problems to be
solved.

A recent development in the field is the application of level-set methods for the de-
scription of design. This involves an implicit description of design through the level-set
curves obtained from a level-set function. This means that such methods rely on sensitivity
analysis results from shape design, but in contrast to standard shape design techniques the
level-set idea allows for changes in topology.

In the following we concentrate the developments on the material distribution method
for structural problems and show examples of the use of the methodology in an industrial
setting. Also, current research issues related to multi-physics design problems and to vari-
ous developments in level-set methods and in new mathematical programming approaches
are outlined.

For a thorough historical overview of the field we refer to the detailed review article
by Eschenauer and Olhoff> and the reader is also referred to the various monographs in
the area for further references and overview of the area. This includes works on topology
design methods in-the-large, on the so-called homogenization method in particular and
on aspects of variational methods.®7-® We note that the references in the following thus
emphasize recent works as we try to avoid a lengthy bibliography with a huge overlap with
the overview given in these works.

2. Problem Setting

In order to set the scene for the developments of this chapter, we will here consider the
problem of topology design of a compliant mechanism, initially in a setting of small
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Fig. 1. A basic compliant mechanism analysis problem: the displacement inverter, with spring and load model
for the input actuator (left) and workpiece (right).

displacement linear elasticity and using an approach initiated in Ref. 9. An important
application of compliant mechanisms lies in MicroElectroMechanical Systems (MEMS)
where the small scale makes it difficult to use rigid body mechanisms that attain their
mobility from hinges, bearings and sliders.

The problem is formulated as the maximization of displacement at an output port, for
a given force at an input port. In order to cater for problem settings where either geometric
advantage or mechanical advantage is premium, the workpiece at the output port is mod-
elled by a linear spring with spring constant k,,;. Choosing a high stiffness results in a small
output displacement and a relatively large force, while a small spring stiffness results in a
large output displacement and a smaller output force. Also, to simulate the physics of input
actuators we here model a linear strain based actuator through a spring with stiffness k;,
and an input force f;,. For example, for a piezoelectric actuator we have a blocking force
fin and a free (un-loaded) displacement f;,/k;,. Alternatively, a non-linear spring model
can be applied.

If we consider the analysis problem only for a block of linearly elastic material (filling
the domain Q) undergoing small displacements, see Figure 1, the FEM format for deter-
mining the output displacement u,,; can be written as:

Uout = lTll; where K(p) u=f~F (1)

Here K is the stiffness matrix, f is the load vector and u the displacement vector. Moreover,
1 is a vector for which the inner product with u produces the relevant output displacement
uoyt (11is interpreted as a (unit) load vector).

In the equilibrium equation of (1) we have already anticipated that the stiffness matrix in
a design optimization formulation will depend on a vector of design variables, here denoted

by p.
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2.1. The 0-1 Design Problem

The fundamental idea of the material distribution technique for topology design is to asso-
ciate to each pixel (or voxel) of a raster representation an independent design variable that
defines the amount of material utilized in that subset of the domain (the raster represen-
tation is a discretization of a material distribution in a continuum formulation). Typically,
one would for simplicity use the FEM mesh used for analysis as the basis for the raster
representation.

For the fundamental topology design problem of determining which elements of the
analysis domain should be part of the final structure, the design variables p. (one real
variable per element in the FEM mesh) are discrete valued and we have p, € {0,1}. We
can thus formulate an optimization problem on our reference domain € in the following
form:

rglpn{ tow =1"u}

st.:K(p)u=f

N
ZVePe <V

e=1

pe€{0,1}, e=1,...,N

)

This is thus a FEM format of the maximum output compliant mechanism problem for a
given input load and a prescribed volume V' (v, denotes the volume of element e). Note that
when the analysis mesh and the raster mesh coincide, we can write the stiffness matrix in
the form:

N
Kiin (P) = z peKe (3)
e=1

where K, is the (global level) element stiffness matrix for an element filled with the basis
material used for the structure to be designed (this can be isotropic or not). We have here
used an lower index /in for the stiffness matrix to signify that it depends linearly on the
design variables.

If we wish to view the problem setting in the standard nested format for design opti-
mization problems where the equilibrium conditions are considered as function calls we
have to remove the possibility for the stiffness matrix to become singular. This can be done
by assigning a low, but non-zero stiffness (given by a value ppmin > 0) to the elements where
p = 0, giving a stiffness matrix in the form

N
Kaff(p) = z [pmin + (l - pmin)pe] Ke (4)

e=1
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We can now write the problem as a problem in the design variables only as:

n})in {tou(p) = 'K (p)f}

N
S.t.: 2 VePe <V (%)

e=1

pe € {0,1}, e=1,...,N

We have now formulated a topology design problem defined on a given and fixed ref-
erence domain and one could attack this directly by computational means. However, the
problem (5) is a non-convex mathematical programming problem with integer variables
and with “expensive” function calls that involve FEM analyses. Moreover, in any relevant
format the problem is of very large scale as we in this type of topology optimization define
the design in terms of a raster representation. Thus, for a suitable resolution one should
use a high number of elements — and when addressing 3D design problems the situation is
aggravated. This not only means that a high number of design variables have to be dealt
with, but it also influences the computational cost of the FEM analyses involved. For high
resolution design this makes it computationally very costly to use methods like simulated
annealing'%!! or genetic algorithms'?!3 and experience with deterministic methods is also
limited to fairly small scale (bench-mark) examples (see Section 5) or to special design
problems such as minimum compliance problems.'*

The advantage of the topology design formulation above is that the analysis problems
to be solved are defined on a fixed domain; this means that if we relax the integer constraint
the problem is a standard sizing problem.

In a continuum setting of (2) the problem represents the basic idea of finding the topol-
ogy of a structure by searching for an optimal indicator function defining the subset of
that should be filled with material.'>' It is now well understood that this problem is not, in
general, well-posed and lacks existence of solutions (see Refs. 7, 8, and references therein).
A well-posed problem can be obtained either by restricting the class of subsets considered
(see later) or one can extend the set of designs. For compliance it is now known that ho-
mogenized multi-scale layered microstructures (composites) constitute an extended design
space that provides for existence of solutions and it is interesting to note that this also
means that the integer constraint on p is relaxed. In essence grey-scale designs are allowed,
thus opening up the possibility to apply gradient based optimization techniques. It was the
initial mathematical studies of such relaxation schemes that constituted the foundation for
the approach* which today is referred to as the “homogenization method” for topology de-
sign. In this presentation this aspect is not emphasized and we rather see relaxation as a
method for obtaining computationally tractable formulations. However, the reader should
be aware of this close relation to the theory of composites and to the theory of relaxation
of variational problems — much of the litterature refers to these aspects and the use of and
the reference to the various concepts are often intertwined.
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2.2. Working with a Grey-scale: Interpolation Models

The most straightforward way to obtain a problem formulation that relaxes the integer
constraint on the design variables is to consider the problem

min Ugyt
up

N
=1 (6)

N
ZVePe <V

e=1

0<p.<1, e=1,....N

where intermediate values of the design variables p, are now allowed.

Unfortunately, this formulation will typically result in large regions (many pixels) with
values of p, between zero and one, so one needs to include some additional conditions in
order to avoid such “grey” areas. The requirement is that the optimization should result in
designs consisting almost entirely of regions of material (p, = 1) or no (i.e., weak) material
(pe = 0) and intermediate values of p, should be penalized in a manner analogous to other
continuous optimization approximations of 0-1 problems. One could choose to add directly
a penalty function to the objective function in the form

N
O(p) = 2 vepe (1—pe) )
e=1

but typically an alternative path is taken.

One very efficient possibility for avoiding grey-scale designs is the so-called penal-
ized, proportional stiffness model with the acronym SIMP for Solid Isotropic Material
with Penalization.!”!8:1° This extremely popular method represents the stiffness matrix as

N
Ksimp(p) = z [ Pmin + (l - pmin) pep ]Ke (8)

e=1

where the power p satisfies p > 1. This means that the design problem statement becomes
min Ugyt
up

s.t.: Kgmp(p) u=f
N )
2 VePe < Vv

e=1

0<p.<1, e=1,....N

In SIMP one chooses p > 1 so that intermediate densities are unfavourable. That is,
the rigidity/stiffness obtained for intermediate densities is small compared to the volume
of the material. For problems where the volume constraint is active the optimization then
typically results in black-and-white (0-1) designs, if one chooses p sufficiently big (as a
rule of thumb, p > 3).
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Fig. 2. Topology optimization: A displacement inverter working as a compliant mechanism. Modelled through
linear analysis using the formulation of problem (9).

Note that the design optimization problem (9) is now in the format of a standard sizing
problem with continuous variables and defined on a fixed domain. This means that tech-
niques described in earlier chapters can now be applied to the problem. An example solu-
tion is shown in Fig. 2. Note that there here has been used some additional computational
techniques to avoid unstable numerical behaviour and very fine variations of the design,
see below for details. We also remark here that since mechanisms intrinsically should pro-
vide large deflections one must for all practical purposes actually apply large displacement
theory when studying design of such devices; this will also be discussed in a later section.

Several alternatives to the scheme above have been proposed. They are all based on the
same principle of being able to interpolate between 0 and 1 — or rather in terms of material
properties between weak material (p = ppin representing holes) and strong material (p =
1).20.21.22.23 Ope such model is the RAMP model?? where one models the stiffness matrix
as

N

Pe
I(ram = min T 1- min) 37 /1 N
p(p) 6:21 P ( P )1+6](1—Pe)

where g has to be chosen reasonably large. This approach was developed in order to have
a formulation where the minimum compliance design problem becomes concave in the
design variables (this requires that ¢ > (1 — Pmin)/Pmin) and thus generates solution that
are guaranteed to be integer valued. For an overview of the various possibilities we refer to
Ref. 6.

K. (10)

2.3. Interpreting Grey-scale: Material Models

If we in problem (9) set p = 1 we return to the setting of problem (6). This problem can
in 2D be interpreted as a mechanism design problem for a thin disk where the thickness of
each element is determined by p,. For the SIMP approach in general one can also ask if
this model can be interpreted in physical terms for example such that areas of “grey” can be
understood as regions consisting of a composite material constructed by a fine-scale varia-
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a) Base design: p=3, pmin =10 b) p=1, Pmin =107

¢) p=3, Pmin =10 8 d) p=3, pmin =1073

e) p=3, Pmin =10 f) p=3, Pmin =2%10 2

Fig. 3. A displacement inverter designed with various values of the power p in the SIMP model, and with various
values of ppin. The improvements of the objective functions compared to the base design (a) are respectively: b)
2.6%, c) 0.4%, d) -14.4%, e) -64.7% and f) -98.1%.

tion of the geometric lay-out of the given material. Such a comparison is mainly beneficial
in order to — perhaps — understand the behaviour of the computational schemes. However,
if a numerical method results in 0-1 designs one can for all practical purposes disregard
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such considerations. However, the physical realization is important when understanding
grey-scale results of a premature termination of the optimization.

If one seeks to construct a material model that mimics the SIMP model one should
at least satisfy the well-known Hashin-Shtrikman bounds for the properties of two-phase
materials.”* These express the limits of isotropic material properties of materials with mi-
crostructure built from two given, linearly elastic, isotropic materials. In order to satisfy
these bounds (in the limit of pmyin = 0) the power in the SIMP model p should satisfy some
fairly simple condition that depends on the spatial dimension and the Poisson ratio.>> As an
example, in both dimension 2 and 3, the condition is that p should be greater than or equal
to 3, when the Poisson’s ratio v is equal to 1/3. In this case one can also design physical
materials that realize the SIMP model.

3. Solution Methods

We will now address a possible computational procedure for solving the topology design
problem (9). This not only involves the application of techniques covered in more details in
other chapters of this book but also necessitates a course of action specific to the topology
design format.

3.1. Computational Framework

The approach to solve problem (9) that we propose here is based on using finite elements
for the analysis part (as the format of the statement (9) already presupposes) combined with
the use of a mathematical programming algorithm as an iterative procedure for treating (9)
in its nested format

Ir:)in{ Uout = lTKS_iILP(p)f}

N
.2 Y vepe <V (11)

e=1

ngegl, €:1,...,N

This means that we treat analysis as a function call and have to perform sensitivity analysis
in order to use a derivative based optimization algorithm.

3.1.1. FEM

The very nature of the raster representation of the design means that the finite element anal-
ysis models involved in the material distribution method become large scale, especially in
3D. However, note that (as mentioned earlier) we are working on a fixed grid and no re-
meshing of the design domain is necessary®. Moreover, the special format of the stiffness
matrix means that all element matrices can be pre-computed; a change of the design vari-
ables only affects the relative contribution to the global stiffness matrix. The FEM analysis

21f adaptive methods® are applied a re-meshing will take place, but this is not inherent in the approach.
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can be further optimized if rectangular (box-like) domains are used and are discretized with
the same element throughout. Then only one element matrix needs to be computed. For
large scale computations iterative solvers may be required for storage reasons and parallel
implementations®’ are also useful. Typically, solving the equilibrium equations becomes
the most time consuming part of topology design problems.

3.1.2. Sensitivity Analysis

For topology design problems we work with a huge number of design variables. Also,
we typically try to limit the number of constraints in the problem statements. Thus the
application of an adjoint method for the computation of derivatives is imperative.

For the functional oy = 17u we use that u satisfies the equilibrium equation, i.e., we
have that Ku — f = 0. For any vector A we can thus write

tou =1 u—A" (Ku—f) (12)

Differentiating this results in an equation

aa”;:‘ :ng‘;’e—g)‘i (Ku—f)— A (gzu+K§;e) (13)
that can be rearranged to the format
a;;:t = (1" -2"K) ;; —ng—;(eu (14)
If the adjoint variable A now satisfies the adjoint equation
" -A'K=0 (15)

we obtain the following simple expression for the derivative of the output displacement:

aMout

=—ppr'ATK 1
ape ppe A‘ u ( 6)

where we have used the expression (8) for the matrix K in terms of the design variables.

3.1.3. Optimization Algorithm

A major challenge for the computational implementation of topology design along the lines
described above is to cope with the high number of design variables. Optimality criteria
methods were first applied* but the use of mathematical programming algorithms typi-
cally implies greater flexibility and this is crucial for the problems that will be discussed
in this chapter. As mentioned earlier, the high number of design variables of topology
design is normally combined with a moderate number of constraints, and an algorithm
that has proven itself to be versatile and well suited for large scale topology optimization
problems is the MMA algorithm, with “MMA” being the acronym for Method of Moving
Asymptotes.?829:30
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a) Base design b) No filtering

¢) Half element size d) Quarter element size

Fig. 4. Topology optimization: A displacement inverter working as a compliant mechanism. Checkerboard pat-
terns and mesh-dependent results. The improvements of the objective functions compared to the base design (a)
are respectively: b) 4.3%, c¢) 14.4%, d) 29.9%

The Method of Moving Asymptotes and the related method called CONLIN®, like Se-
quential Linear Programming (SLP) and Sequential Quadratic Programming (SQP) meth-
ods, work with a sequence of approximate subproblems of given type. The subproblems
are constructed from sensitivity information at the current iteration point as well as some
iteration history. In the case of MMA and CONLIN these subproblems are separable and
convex and the subproblems are solved by for example a dual method or by an interior
point primal-dual algorithm.

3.2. Finer Points

After implementing a computational scheme for topology design along the lines for stan-
dard sizing design problems, as described above, one immediately discovers that additional
issues have to be addressed. First, if low order elements are used for the analysis elements

bSee, eg., Refs. 31, 32 for recent papers using this approach.
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one will see that the results contain a lot of checkerboard patterns of black and white ele-
ments. Moreover, refining the mesh can have a dramatic effect and will change the design
so as to include finer and finer detail in the design.

3.2.1. Geometry Control

The use of the SIMP interpolation scheme (or other similar ideas) addresses the integer for-
mat of the original setting of the topology design problem as defined in (5). Another serious
problem associated with the 0-1 problem statement, and a problem that the interpolation
scheme does not resolve, is that there normally does not exist solutions to the continuum
design problem for which (5) is a discretized version. This is not only a serious theoretical
drawback but it also has the effect of making the computational results sensitive to the fine-
ness of the finite element mesh. The physical explanation for the mesh dependent results is
that by introducing finer and finer scales, the design space is expanded and in the limit the
optimal design is not a classical solution with finite size features, but rather a composite
with material at multiple scales. A way to obtain mesh-independent results would thus be
to limit the geometric variations possible in the designs.

Quite apart from this theoretical reason for mesh-dependencys, it is relevant in its own
right to try to avoid fine scale variations in a design, simply for production reasons. Also, a
sensible design tool should preferably give mesh-independent results.

Several methods have been proposed to restrict the geometric variations of the designs
resulting from the material distribution method. As the method uses a raster representation
it is not surprising that these all have various interpretations in terms of image processing.

A range of techniques have been proposed that limits geometric variability of the design
field by imposing additional constraints on the problem that restrict the size of the gradient
of the density distribution p. This can be in terms of a constraint on the perimeter or on
some L7-norm of the gradient; in both cases experimentation is needed to find a suitable
constraint value.333435 An alternative is to impose a point-wise limitation on the gradient
of the density field. The constraint value here has immediate geometric meaning in terms
of the thinnest possible features of a design.>® Implementation can be problematic, but can
be handled by interior point ideas in MMA37 or via a move limit strategy.>8

Limiting the geometric variations of the raster representation of the design can also be
achieved by alternative means. A popular method is to apply filters as known from image
processing. One can thus work with filtered densities in the stiffness matrix so that the
equilibrium constraint of problem (9) is modified to the format:

Kaimp(H(p)) u=f (17)

where H denotes a filtering of p. This can for example be a linear filter with filter radius
Fmin that gives the modified density H(p). in element ¢ as

N
H(p). = Y, H{ px (18)
k=1
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Here the normalized weight factors Hy are defined by

1
Hf = ——— A (19)
1AL
where
A} = rmin — dist(e, k), {keN|dist(e,k) <rmin},e=1,....N (20)

In this latter expression, dist(k,i) denotes the distance between the center of the element
e and the center of an element k. The convolution weight Hy is zero outside the filter area
and the weights for the elements k decay linearly with the distance from the element e.

The filtering means that the stiffness in an element e depends on the density p in all ele-
ments in a neighborhood of e, resulting in a smoothing of the density. The filter radius rpi,
is fixed in the formulation and implies the enforcement of a fixed length-scale in the designs
and convergence with mesh refinement. Generally filtering also results in density fields p
that are bi-valued, but the stiffness distribution is more “blurred” with grey boundaries.

For implementation, the standard procedure described so far still apply, but the sensi-
tivity information should be modified to cater for the redefined stiffness matrix (this means
that the sensitivity of the output displacement with respect to p, will involve information
from neighboring elements). Note that the application of a filter does not require any ad-
ditional constraints to be added to the problem, in contrast to the approaches that work by
limiting the gradient or the perimeter.

An alternative to the direct filtering of the densities is a filtering of the sensitivity infor-
mation of the optimization problem, and computational experience is that this is a highly
efficient way to ensure mesh-independency. In scope this is similar to ideas used to en-
sure mesh-independence for simulations of bone-remodelling and for analysis with plastic-
softening materials. The scheme works by modifying the element sensitivities of Eq. (16)
as follows

—

OUlout -

1 X aMout
— (21)
Me  Pe Z‘

This heuristic filtering is similar to (18) but it is not the same as applying the filter H to
the sensitivities as the densities here also enters as weights. Using these sensitivities in the
optimization algorithm produces results very similar to for example those obtained by a
local gradient constraint. It requires little extra CPU-time and is simple to implement. The
sensitivity (21) converges to the original sensitivity when the filter radius rpj, approaches
zero and all sensitivities will be equal when ryi, approaches infinity. An interesting side-
effect of this filtering technique is that it somehow improves the computational behaviour
of the topology design procedures and allows for greater design changes before settling on
a “good” design; this is due to the inclusion of pg in the filtering expression.

3.2.2. Checkerboards

A description of the material distribution problem is not complete without a mention of the
so-called checkerboard problem. In certain cases an implementation of the material distri-
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bution method for topology design can generate checkerboard patches where the density
of material assigned to contiguous finite elements varies in a periodic fashion similar to a
checkerboard consisting of alternating solid and void elements, cf. Fig. 4b. It is now well
understood that this is unphysical and arises due to a bad FEM modelling being exploited
by the optimization procedure. For example, a checkerboard of material in a uniform grid
of square Q4 elements has a stiffness that is greater than any other possible material distri-
bution. Detailed analyses of the problem can be found in Refs. 39, 40.

The occurrence of checkerboards can easily be prevented, and any of the methods for
achieving mesh-independency described above will also remove checkerboards (when the
mesh becomes fine enough). It is normally recommended always to apply such measures
for geometry control and this could then be the end of the story. However, a fixed scale
geometric restriction on the designs is counter-productive when using numerical methods
to obtain an understanding of the behaviour of optimal topologies at a fairly fine scale,
when designing low volume fraction structures, or when composites are used as a basis
for the optimization. The most fundamental approach is to use a FEM discretization where
checkerboards are not present (their appearance is a FEM phenomenon). This typically in-
volves the use of higher order elements for displacements, with corresponding higher com-
putational cost, so many alternatives have been devised (see, e.g., Ref. 6 for an overview)
Here we just mention that the filtering techniques described above can also be used to con-
trol only checkerboard formation, without imposing a mesh independent length scale. This
just requires that one adjusts the filtering to be mesh-dependent (ie., r,,;, varies with the
mesh size).

3.2.3. Hinges

When inspecting topology optimization results for compliant mechanism it is noticeable
that the resulting mechanisms are often not truly compliant. Instead almost moment-free
one-node connected hinges are present, especially for examples with large output displace-
ments (i.e., small transfer of forces). As the structure would break at such hinges, tech-
niques to avoid them are required.

The one-node connected hinges are caused by bad computational modelling that the
optimization procedure exploits — just as for the checkerboard problem. In a Q4 model, the
hinge is artificially stiff and the stress variations are very badly modelled. However, using
higher order elements is only part of the answer and local stress constraint should preferably
be added to the formulation; this is computationally problematic and other methods have
been devised. Only some of the checkerboard and mesh-independency schemes described
above prevent the one-node connected hinges. For example, the filtering of gradients does
not prevent hinges if the gain (sensitivity) in building a hinge is big enough, and a local gra-
dient control only partly eliminates the problem and often results in hinges of intermediate
density.

We will here elaborate on a special geometry constraint that has been developed with
the hinge problem in mind.*! Being a MOnotonicity based minimum LEngth scale (MOLE)
method, it adds one extra constraint to the optimization problem that should have the value
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Fig. 5. The effect of restricting the formation of artificial hinges by the MOLE constraint (from Poulsen*!).

zero for the minimum length scale restriction to be satisfied. Also, it provides a similar
exact control of geometry as when using local gradients, but with just one constraint.

The idea of MOLE is to pass a circular “filter” window over the design and measure if
the density p along four equally spaced diagonals (horizontal, vertical and at +7/4 from the
horizontal) is monotonic or not within this window. The diameter of the window defines the
desired minimum length-scale of the design. The monotonicity can be measured by noting
that a sequence of real numbers x,y,z is monotonic (increasing, decreasing or constant) if
and only if the expression

m(x,y,z) = |y —z|+ ]z —y| = [z — x|

is zero and m is strictly positive otherwise. Adding such calculations over all elements and
any of the test directions results in a number that should be zero in order for the structure to
satisfy the desired length scale control. The computational effort in evaluating the constraint
is linear in the number of elements and derivatives can be computed analytically (for a
suitably smoothed version of the constraint).

4. Extensions

The challenge of extending the topology optimization method to new areas is to develop
sensible combinations of the design description and of objective functions and constraints.
Experimentation is the key to working out physically meaningful formulations which can
be managed by the optimization algorithms. Here we shall first consider some generaliza-
tion of the mechanism design problem, both in terms of non-linear analysis modelling and
in terms of adding design of the supports to the optimization formulation.
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4.1. Geometrical Nonlinearity

The analysis of the mechanism design problem has so far been treated in the framework
of linear finite element theory. This is somewhat contradictory as one tries to maximize
displacements, and for all practical situations the mechanisms should be modelled using
geometrically non-linear finite element analysis; in the following, we assume that strains
are small and that material non-linearity can be ignored. References on the application of
geometrically non-linear analysis for mechanism design include Refs. 42, 43, 44, 45, 46,
47.

Without going into technical details of the non-linear finite element analysis, we here
use that the condition of equilibrium can be written as

R(u) = 0 (22)

Here R is the residual in obtaining equilibrium, expressed in terms of Green-Lagrange
strains and Piola-Kirchhoff stresses which we assume are related via the standard SIMP
relation (as a linear Hooke’s law). The finite element equilibrium (the solution of (22))
may be found incrementally or in one load step using a Newton-Raphson method, and both
methods require the determination of the tangent stiffness matrix

_®
T ou’

With this type of non-linear modelling, a large displacement formulation of our mech-
anism design problem can be written as

Kr (23)

min Ugyt
up

s.t. : Rgimp(p,u) =0
N 24)
2 VePe < Vv

e=1

0<p.<l, e=1,....,N

The sensitivity of the output displacement can be found along the lines described in
Chapt. 8 of this monograph, and using the adjoint technique we obtain that Eq. (16) is now
modified to

Oous __ xTa_R (25)
ope ope
where A’ is the solution to the adjoint load problem
MKy =17 (26)

that uses the tangent stiffness matrix at the current design and corresponding displacement.
With these developments one can now apply the standard optimization procedure, as out-
lined for the linear case.
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Fig. 6. Taking non-linearity into account. a) Optimized topology using linear modelling, b) optimized topology
using non-linear modelling, ¢) and d) deflection of a) using linear and non-linear modelling, respectively and e)
and f) deflection of b) using linear and non-linear modelling, respectively (from Pedersen et al.*2).

4.1.1. The Importance of Non-linear Modelling

We remark here that the use of geometrically non-linear finite element modelling is abso-
lutely essential for mechanism synthesis. If a mechanism is designed using linear analysis
one notices that it typically behaves differently when large displacement analysis is ap-
plied. In rare situations one merely has inaccurate results but one also risks that the results
are useless as large displacement mechanisms, see Fig. 6.
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4.1.2. Computational Issues

One can save computational effort in the non-linear finite element analysis by reusing the
displacement solution from a previous topology iteration in each new Newton-Raphson
equilibrium iteration. This gives significant savings, especially near convergence of the
optimization process.

Numerical experiments show that the tangent stiffness matrix can become indefinite or
even negative definite during the topology optimization process, destroying convergence.
The problem is related to severe distortions of low-density elements with minimum or
close to minimum stiffness. As such elements represent void, their behaviour should not
influence the structural response and a scheme should be applied in order to circumvent the
problem. One method is simply to ignore the convergence of the iterative solver in nodes
surrounded by void elements.*® Alternatively, one may choose to remove elements with
minimum density from the design domain. However, element removal can be detrimental
for the optimization process and the possibility of re-appearance of material should be
included. This can, for example, be based on a filtering technique.*

4.2. Design of Supports

For the compliant mechanism design problem the positions and amounts of supports have
been modelled as fixed, but one can obtain further improvements from an introduction of
the supports as part of the optimization.

In such a formulation one can apply the topology design concept and set up a problem
that allows for the assignment of rigid or no supports to each element in a support design
domain (this may be a subset of the normal (material) design domain).’® We now also
convert this integer type problem into a continuous problem by introducing an element
support design variable &, and a diagonal element support stiffness matrix K; with large
values in the diagonal, such that we arrive at a combined global stiffness matrix (for linear

analysis):

K = Kiimp (P) + Ksupp(§)

where we with a small lower bound &,,;, on the support design variables § define

N
5upp 2 &mm + - &min) &eq ] Ks,e .
e=1

Here ¢ is a penalization factor corresponding to the power p for the stiffness variables in
the SIMP approach.

For the topology design problem a bound on the total support area S is also introduced
(for mechanism design this bound is not very important) and we can write a combined
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Fig. 7. Design for supports. a) Design domain, b) Optimized topology without support design (g, = 10.8um)
and c¢) Optimized topology including support design (u,; = 19.1um). The gain in output displacement is 77%
(from Buhl>?).

material distribution and support distribution problem as

min Ugyt
upg

s.t.: [Ksimp(p) + Ksupp(ﬁ)] u=f

N

Svpe<V, 0<p,<l, e=1,...,N @7
e=1

N

Y veke <8, 0<E <1, e=1,...,N

e=1

Here, the sensitivity of the output displacement with respect to the two sets of variables
split into (16) and a similar expression with respect to the support variables (using Kj ).

It turns out that the possible gains in using variable supports for compliant mechanism
design is quite dramatic. Thus this slight generalization of the fundamental topology design
concept is quite effective even though the extra computational cost is moderate (the analysis
problem does not change in complexity).

5. Variations of the Theme
5.1. Mathematical Programming Issues

The approach to the material distribution problem for topology design presented so far uses
continuous variables to convert the problem to a standard sizing problem. This problem is
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then treated in the standard nested format most typically used in structural optimization.
In the following we shall briefly outline possible alternative mathematical programming
modelling methods for the optimization problems at hand.

5.1.1. SAND Formulation

In what is called Simultaneous ANalysis and Design, the problem statement (9) is dealt
with directly and the mathematical programming code is used both to find the optimal p
and the associated displacement u. That is, the equilibrium constraints are handled directly
by the optimization code. This increases the size of the optimization problem significantly
and one would typically discard such an idea off hand. However, the use of modern interior
point methods, for example together with techniques such as multigrid methods or mul-
tilevel techniques show some promise.’3233 Much of the developments with the SAND
approach is in the literature today labelled as PDE-constrained optimization (see, for ex-
ample, Ref. 54 and references therein) or as mathematical programming problems with
equilibrium constraints (MPECs) (see, e.g., Ref. 55, 56). We remark here that a nice fea-
ture of the SAND approach is that one can set ppin = 0 and avoid working with a “weak"
material rather than void; in SAND the stiffness matrix is not required to be non-singular.

5.1.2. Mixed-integer Format

From a modelling point of view the SAND formulation also has some interesting impli-
cations for the original 0-1 format of problem (2). One notes here that the only non-linear
function that appears in this problem statement is the equilibrium constraint which is bi-
linear (in p and u, cf., Eq. (3)). If we rewrite this problem with an extra set of variables s
that represent element stresses it takes the form

min 1’ u
u,s,p
st.:Bs=f
Se =pe EcB,u, e=1,....N
Umin S Ue S Umax, e=1,...,N (28)
N
zvepe <V
e=1

pe € {0,1}, e=1,...,N

where B, E,, and B, are suitably defined matrices and where we have included some dis-
placement constraints (these can be chosen to be redundant). In (28) only the second set
of constraints are bilinear, and they are of a form where these, using the combination of
the integer constraint on p, and the displacement constraints, can be split into some linear

constraints. There exists thus numbers ¢™ and ™" so that problem (28) is equivalent with
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the problem>”-58

min 1T u
us,p
s.t.:Bs=f
Pe i <5 < pect™, e=1,...,N

E.B,u—s,> (1—pe)c™, e=1,...,N

EeBeu_seS(l_pe)cglaxv e=1,....N (29)
Unin < Ue < Umax, e=1,....N

N

ZvePeSV

e=1
pe€{0,1}, e=1,...,N

which has quite a number of additional constraints. However, one notes that this problem
is actually now a linear programming problem, albeit with mixed integer and continuous
variables. This means that one can apply techniques to obtain globally optimal designs.
Typically, only rather small sized problems can be solved by attacking problem (29) di-
rectly with a code like CPLEX, but these can then serve as bench-mark examples for other
techniques. Further work on developing variants of (29) with more benign behaviour for
computations may alleviate this complication.

5.1.3. Stress Constraints

Adding stress constraints to topology optimization problems in the framework of SIMP
presents several difficult issues. First, the modelling of the stress constraints is not direct,
but comparison with microstructural modelling implies that a reasonable constraint is of
the form>°-60

o < pP’6, ifp>0 (30)

expressed in terms of the von Mises equivalent stress Gyym and a stress limit 6. One here
immediately notices one of the problems with stress constraints: they constitute a set of
constraints that depend on the value of the design variable. This effect can be removed by
writing

poym < pPt'6 (31)

Unfortunately, it turns out that this is now a type of constraint that generates serious prob-
lems for gradient based algorithms if these are applied directly to the nested formulation
that is so popular in design optimization. This phenomenon is normally referred to as the
stress “singularity” problem and requires special attention as the optimum can be located
in degenerated parts of the design space. A constraint relaxation scheme is often used, but
also this can be troublesome; note that most of the studies on this mathematical program-
ming issues has mostly been concerned with truss structures (this is not a limitation from
a mathematical point of view). We refer the reader to for example Refs. 61, 62, 63, 64, 65
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Fig. 8. A globally optimal solution, with 0-1 variables and stress constraints. By courtesy of M. Stolpe®3.

and references therein for further information on this challenging issue, and to Refs. 66,
67, 68 for further modelling work on and computational experience for stress constrained
topology optimization of continuum structures. We finally note that if one applies the origi-
nal 0-1 formulation, the modelling of the stress constraint is straightforward; moreover, the
mixed integer LP format of (29) can be extended to cover stress constraints as well.8

5.1.4. Other Algorithmic Approaches

The approach for topology design described so far works with a raster-based design de-
scription and a gradient based mathematical programming technique for the optimization
iterations. A whole range of methods have been proposed that maintain the basic raster
concept but apply alternative optimization methods, both for the 0-1 format and for the
interpolated grey-scale models. These methods typically combine aspects of fully stressed
design, OC methods, element removal or structural growth, sometimes applying sensitivity
analysis as a basis for the updating schemes. The methods often apply the word “evolu-
tionary”, which here should not be confused with genetic algorithms (that have also been
used'?!3). We here mention example papers describing some of the more popular methods
that are named SKO® and ESO’, see Ref. 5 for an overview of the various approaches.
We here also mention the very interesting examples of the paper Refs. 71 that show the
limitations of applying heuristic methods.

5.2. Design of Articulated Mechanisms

The design problem treated so far has dealt with compliant mechanisms that attain their
mobility from flexibility of their constituents, and we have here applied the material dis-
tribution technique to find optimized topologies for the given design settings. An alterna-
tive is to use a truss representation, as in the ground-structure approach mentioned in the
Introduction.®”? In a sense this representation of all possible designs represents an interme-
diate class of mechanisms as there is here both flexibility in the truss members and hinges
in the truss nodes (joints).

Kinematic diagrams are widely used for conventional mechanism designs and it is both
natural and advantageous to represent kinematic diagrams by truss elements and pin joints.
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Fig. 9. An articulated mechanism (a force inverter), designed using a truss representation; the design setting is illustrated to
the left and shows the truss ground structure of potential bars, input force etc. Both topology alone (grey design to the left) and
topology as well as node locations (solid black design) are optimized, using a mixed-integer formulation that is solved to global
optimality by a branch-and-bound algorithm. In case of nodal positions being optimized, these are limited to move in the boxes
shown in the left-hand side illustration. By courtesy of M. Stolpe and A. Kawamoto”>.

Also, in a truss ground structure representation it is possible to accommodate large dis-
placement without element distortion problems.

In order to obtain true articulated mechanisms that obtain all of their mobility from their
joints the concept of degrees of freedom (DOF) becomes critical for obtaining a proper
design. This concept is an insignificant feature for compliant mechanism design as such
mechanisms do not have real joints. This means that the design formulation (along the
lines of (2)) has to include additional constraints that intrinsically are related to integer-type
information. The degrees of freedom constraint to be included can be based on Maxwell’s
rule.”®> However, this requires that every sub-structure contains no redundant elements and
for a ground-structure one then has to count the number of bars in a suitable way, for
example by introducing additional constraints or to make proper counting procedures.

For solution of the design problem one can work with various techniques for relaxing
the various integer constraints’* or one can apply branch-and-bound techniques directly
on the integer format of the problem.” The latter allows for the determination of globally
optimal solutions and in this case it turns out that additional constraints on for example the
stability of the truss needs to be included in the problem setting as well.

5.3. Level-set Methods

A new approach to topology design that has attracted considerable interest in recent years
is the application of ideas and methods from level-set methods that have traditionally been
used for modelling free and moving surface problems.”®’” In a level-set method one works
with an implicit definition of the boundaries of the design and this allows for a change in
topology as the level-set function develops during the iterative optimization procedure. In
most implementations (see, e.g., Ref. 78, 79, 80, 81 and references therein) the level-set
is not parameterized as such and the updates of the boundaries are based on the so-called
Hamilton-Jacobi equation. In turn, the driving term of this equation uses shape sensitiv-
ity information, derived as presented in Chapter 6. This makes the optimization scheme
similar to steepest descent methods. If a direct parameterization®? of the level-set is em-
ployed general mathematical programming techniques are available, at the cost of a more
involved geometry modelling. In the phraseology of image processing, the material distri-
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Fig. 10. A minimum compliance result using level-set method and FEMLAB. Left: Initial design with 6 holes
and right: optimized design with two resulting holes.
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bution method and the level-set approach are both concerned with segmentation and one
can see many analogies between the basic concepts of image segmentation and the field of
topology design (this is for example clearly illustrated in Refs. 83, 84).

Another possibility to consider changes in the topology of a design is to apply the bub-
ble method.®>3¢ This approach has in recent years been supplemented by the flourishing
field of topological derivatives.3”8%3% The technique is to calculate the sensitivity to in-
finitesimal topological changes of functionals that depend on the solution to partial differ-
ential equations, where a topological change means the appearance or closing of cavities.
The approach is closely related to shape sensitivity analysis; for a detailed overview see
Ref. 90. This sensitivity analysis cannot be applied in a standard mathematical program-
ming framework as there is no underlying parameter space for the design; instead material
removal ideas can be applied®! or the information can be used in connection with level-set
methods.”?

6. From Theory to Product
6.1. Industrial Use of Topology Design

The computer-based topology optimization method was first introduced in 1988 for the
minimum weight design of structural components. Since then, the topology optimization
method has gained widespread popularity in academia and industry and is now being used
to reduce weight and optimize performance of automobiles, aircrafts, space vehicles and
many other structures. Today, several commercial software systems provide topology opti-
mization for industry and a main user of topology design in the daily design efforts is the
automobile industry, where most major manufacturers and their sub-suppliers now use the
methodology.

A recent example of the use of topology design in aeronautics is for the design of inte-
grally stiffened machined ribs for the inboard inner fixed leading edge of the new airliner,
the Airbus 380. Two types of software were applied, one which is similar to the method de-
scribed here, and one that also includes information on the type of (eventually composite)
material that is useful for the design. Based on these results and quite a bit of engineering
interpretation a new type of structure was devised for the ribs which gave a weight benefit
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Fig. 11. Mimicking of industrial design process. Top: Design domain and resulting topology for rib structure in
frontpart of airplane wing and bottom: actual design and manufactured front part of wing at EADS (courtesy of
EADS Military Aircraft).

against traditional (up to 40%) and competitive honeycomb/composite designs.

The process of generating this new type of rib for an aircraft is typical for applications of
topology design in many mechanical engineering settings. The technique is not necessarily
used for creating the final design, but rather to give inspiration to the experienced engineer
that can see new possibilities on the basis of the computational results. In other fields,
however, one also sees that the results of the topology design are transferred directly to
production, for example when designing and producing new types of photonic crystals, see
below.

6.2. Nano-photonics
6.2.1. Wave Propagation Problems

The governing equation for a number of different wave-propagation problems is the scalar
Helmholtz equation

V- (AVu) + 0*Bu =0, (32)

where, depending on the physics problem considered, the field u (in 2D or 3D) as well as the
material constants will have different physical meanings. For the case of planar transverse
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electromagnetic polarized waves (the TE-mode), u is the electric field, A is the inverse of the
dielectric constant and B is the product of the vacuum permitivity and vacuum permeability,
whereas for the other polarization (transverse magnetic waves - the TM-mode), u denotes
the magnetic field value, A = 1 and B equals the product of the dielectric material value,
the vacuum permitivity and the vacuum permeability.

For the topology optimization of, e.g., photonic crystals it turns out that a SIMP model
with p = 1 suffices to handle the design parameterization, since maximum contrast in many
applications gives the best wave-confinement. However, in some cases "grey solutions"
with intermediate densities may appear. In those cases 0 — 1 designs can be obtained by
introducing some artificial damping in one of the material phases or we introduce a penal-
ization damping term (called a "pamping" term) which introduces artificial high damping
in intermediate density elements.®> For the objective function of the optimization we can
apply the so-called Poynting vector in order to maximize the wave energy transport to spec-
ified output domains; the Poynting vector” averaged over a time-period is for the scalar

case outlined here calculated as

- % AR(i u Vi) T, (33)
Fnut

where oy is a line through which the energy flow is measured and R denotes the real part
of a complex number.

6.2.2. A Z-bend in Photonics

The planar photonic crystal is an optical nano-material with periodic modulation of the
refractive index. The modulation is designed to forbid propagation of light in certain wave-
length ranges, so-called photonic bandgaps. Breaking the crystal symmetry by introducing
line defects and other discontinuities allows control of the light on a sub-wavelength scale
in the photonic crystals. Therefore, photonic devices based on the bandgap effect may be
several length-scales smaller than traditional integrated optical devices.

The idea behind these devises are as follows. Light propagates as waves and if trans-
mitted through a transparent medium like glass, it will propagate essentially without losses.
However, if one perforates the glass structures with a periodic arrangement of air holes with
hole distances a little less than the wave length of the light (this means that we are talking
about length scales smaller than micrometers, i.e. nano-scale), waves at certain frequencies
will no more propagate through the glass structure. This effect can be used to produce mir-
rors in nano-scale or it can be used to guide light in optical chips. The latter can be obtained
by filling some of the air holes in channel-like patterns as seen for a Z-bend in Figure 12.
Since the light cannot travel through the perforated structure, it will stay within the channel
and can be led around sharp corners and may be manipulated in other ways. Such photonic
crystal structures will in the future provide the basic building blocks for optical devices and
computers.

The idea of loss-less transmission of optical waves through photonic crystals outlined
above is a truth with modifications. In reality, the transmission is less than 100% because of
leaking waves and reflections at channel corners. It is quite obvious that the efficiency may
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be optimized by changing the shape, number and position of the holes along the channels.
Therefore, the design of photonic crystals is an obviously interesting application for the
topology optimization method.

Figure 12 shows the result of the design process for a Z-bend. If we had just removed
air holes to obtain a Z-shaped bend, the light transmitted through the bend would have
been less than 50% due to losses and reflections. For topology optimization it was chosen
to utilize only the outer parts of the two bend regions as design areas. Although one could
choose much larger design areas, the numerical experiments showed that relatively small
design areas were enough to yield the wanted improvement in efficiency. Had the efficiency
been unsatisfactory, the design areas could have been enlarged in order to introduce more
freedom in the design. In order to reduce the bend loss, the transmitted energy flow mea-
sured by the Poynting vector through the Z-bend waveguide is maximized in the topology
optimization procedure (see Fig. 12). The optimization can be performed for any number
of frequencies simultaneously, e.g., in a min-max formulation. In the case of the Z-bend it
was found that the use of a single frequency in the optimization is sufficient to produce a
large bandwidth with low loss.

The result of the topology optimization process resulted in a close to 100% transmis-
sion in a wide frequency range. Figure 12 shows the optimized design and the resulting
wave propagation through the optimized waveguide. The optimized Z-bend was manufac-
tured by e-beam lithography techniques at the Center for Optical Communication (COM)
at DTU (see Figure 12). The manufactured device performs very well with record breaking
bandwidth and transmission properties.

Many more examples of topology optimization in wave-propagation problems can be
found in the literature,®:96:97:98.99.93

7. Challenges in the Field

Topology optimization has become a very popular methodology, both in industrial use and
as a research area. It generates very efficient designs for many areas of applications and
has had a bigger impact than was envisaged just a decade ago. But there are still many
challenges in the area, and we try here to outline a few of central importance.

7.1. Multiphysics

The topology optimization method has over the last years been applied to several other
design problems. Examples are the design of tailored ‘exotic’ materials with counter-
intuitive properties such as negative Poisson’s ratios (materials which expand transversely
when pulled) and negative thermal expansion coefficients (material which shrink when
heated). Other applications include the design of transducers for underwater sound detec-
tion and MicroElectroMechanical Systems for use in hearing aids, air-bag sensors, and
micro-robots. Also design of channels flows is now possible.!00:101,102

These new challenges can be treated within the same basic format of the design
parametrization, problem statement and computational procedure, as was also outlined
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Fig. 12. Top, left: Standard Z-bend waveguide. Top, right: The optimized design. Bottom, left: TE polarized light
propagating through the topology optimized Z-bend. Bottom, right: The manufactured device, produced directly
from pixel-representation of the design (from Borel et al.?%).

above for the photonic crystal design. Thus the design of a acoustic device is closely related
to the design of a compliant manipulator and we can again use the topology optimization
for the design process. However, several issues need to be addressed. First, and a common
feature with most optimal design techniques, is the question of how one formulates ob-
jective functions and constraints that result in useful engineering designs. Another central
issue — and one particular to topology design — is how to relate gray-scale (density) to phys-
ical properties that allow these objective functions and constraints to be evaluated. Finally,
a scheme should be imposed to obtain black-and-white designs.

7.2. Algorithms

Structural optimization problems in general constitute a difficult class of optimization prob-
lems — notwithstanding the great successes of the field much improvement is probably still
possible when it comes to effective mathematical programming methods for large scale
problems. Considering topology optimization problems adds to the complications. These
are typically large scale in whatever format they are cast. Basically, the integer format is to
be preferred, but only small problems can be treated. Thus most work treats the relaxed for-
mats of the problem, using intermediate densities as continuous variables. Never-the-less,
the resulting problems can be more tricky than sizing problems, for example through the
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Fig. 13. A non-linear flow example. Design of a fluid transistor. For low Reynolds numbers the in-coming fluid
should exit at boundary A and for higher Reynolds numbers the fluid should exit at boundary B (from Gersborg-
Hansen et al.!0").

possibility of design dependent sets of constraints, as is seen for stress constraints and also
for buckling constraints. There is thus plenty of work to do for researchers in mathematical
programming.

7.3. Defining the Design

In the material distribution method one applies a raster representation of the design. This
means that the geometry modelling does not have a representation of boundaries where for
example a normal vector can be uniquely defined. Also, the interpolation schemes depend
on the possibility to define the physical field in every part of the reference domain (in fluids
this can be done via a Brinkman model for porous flow). For more general physics situation
there may not be any method to do this and one may believe that shape design is the only
obvious approach to design optimization in such cases. Level-set methods may provide an
answer, but here we need more work on algorithms for general optimization formulations.
Thus, there is also still plenty of scope for work in geometry modelling and its relation to
modelling of multiple and interacting physics.
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Recent developments in design sensitivity analysis of nonlinear structural
systems are presented. Various aspects, such as geometric, material, and
boundary nonlinearities are considered. The idea of variation in continuum
mechanics is utilized in differentiating the nonlinear equations with respect to
design variables. Due to the similarity between variation in design sensitivity
analysis and linearization in nonlinear analysis, the same tangent stiffness is
used for both sensitivity and structural analyses. It has been shown that the
computational cost of sensitivity calculation is a small fraction of the structural
analysis cost. Such efficiency is due to the fact that sensitivity analysis does not
require convergence iteration and it uses the same tangent stiffness matrix with
structural analysis. Two examples are presented to demonstrate the accuracy and
efficiency of the proposed sensitivity calculation method in nonlinear problems.

1. Introduction

Engineering design often takes into account the nonlinear behavior of the system,
such as the design of a metal forming process and the crashworthiness of a
vehicle. Nonlinearities in structural problems include material, geometric, and
boundary nonlinearities." Geometric nonlinearity occurs when the structure
experiences large deformation and is described using the material or spatial
formulation. Material nonlinearity is caused by the nonlinear relationship
between stress and strain and includes nonlinear elasticity, hyperelasticity,
elastoplasticity, etc. A contact/impact problem is often called a boundary
nonlinearity, categorized by flexible-rigid and multibody contact/impact
conditions. These nonlinearities are often combined together in many structural
applications. In the sheet metal forming process,” for example, the blank material
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will experience contact with the punch and die (boundary nonlinearity), through
which the blank material will be deformed to a desired shape (geometric
nonlinearity). At the same time, the blank material will experience permanent,
plastic deformation (material nonlinearity).

Design sensitivity analysis™* of nonlinear structures concerns the relationship
between design variables available to the design engineers and performance
measure determined through the nonlinear structural analysis. We use the term
“design sensitivity” in order to distinguish it from parameter sensitivity. The
performance measures include: the weight, stiffness, and compliance of the
structure; the fatigue life of a mechanical component; the noise in the passenger
compartment of the automobile; the vibration of a beam or plate; the safety of a
vehicle in a crash, etc. Any system parameters that the design engineers can
change can serve as design variables, including the cross-sectional geometry of
beams, the thickness of plates, the shape of parts, and the material properties.

Design sensitivity analysis can be thought of as a variation of the performance
measure with respect to the design variable.” Most literature in design sensitivity
analysis focuses on the first—order variation, which is similar to the linearization
process. In that regard, sensitivity analysis is inherently linear. The recent
development of second—order sensitivity analysis also uses a series of linear
design sensitivity analyses in order to calculate the second—order variation.*’

Different methods of sensitivity calculation have been developed in the
literature, including global finite differences,&g continuum derivatives,m’12
discrete derivatives,””"® and automatic differentiation.’®'® The global finite
difference method is the easiest way to calculate sensitivity information, and
repeatedly evaluates the performance measures at different values of the design
variables. Engineering problems are often approximated using various numerical
techniques, such as the finite element method. The continuum equation is
approximated by a discrete system of equations. The discrete derivatives can be
obtained by differentiating the discrete system of equations. The continuum
derivatives use the idea of variation in continuum mechanics to evaluate the first—
order variation of the performance function. After the continuum form of
the design sensitivity equation is obtained, a numerical approximation, such as
the finite element method, can be used to solve the sensitivity equation. The
difference between discrete and continuum derivatives is the order between
differentiation and discretization. Finally, automatic differentiation refers to a
differentiation of the computer code itself by defining the derivatives of
elementary functions, which propagate through complex functions using the
chain rule of differentiation. The accuracy, efficiency, and implementation
efforts of these methods are discussed by van Keulen er al."
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In this text, only the continuum derivatives are considered, assuming that the
same idea can be implemented to the discrete derivatives. In the finite difference
and computational differentiation, there is no need to distinguish linear and
nonlinear problems, as these two approaches are identical for both problems.

In spite of the rigorous development of the existence and uniqueness of
design sensitivity in linear systems,” no literature is available regarding
existence and uniqueness of design sensitivity in nonlinear problems. In this text,
the relation between design variables and the performance measures is assumed
to be continuous and differentiable. However, by no means should this important
issue in differentiability be underestimated.

The organization of the text is as follows. In Section 2, the design sensitivity
formulation of nonlinear elastic problems is presented. The unique property of
the problems in this category is that the sensitivity equation needs to be solved
once at the end of the converged configuration. Thus, the sensitivity calculation
is extremely inexpensive; basically, it is the same as that of linear problems.

In Section 3, the design sensitivity formulation of elastoplastic problems is
presented. Because the constitutive relation is given as a rate form and the
problem at hand is history—dependent, the sensitivity equation needs to be solved
at each load step. However, the sensitivity calculation is still inexpensive
compared with the nonlinear structural analysis, because the convergence
iteration is not required in the sensitivity calculation. After the convergence
iteration is finished, the linear sensitivity equation is solved using the
decomposed coefficient matrix from the structural analysis.

In Section 4, the design sensitivity formulation of contact problems is
presented. The penalty-regularized variational equation is differentiated with
respect to design variables.

This chapter is by no means comprehensive in terms of deriving sensitivity
formulations. The reader interested in detailed derivations is referred to the

. 2129
literature.

2. Design Sensitivity Analysis of Nonlinear Elastic Problems

When the deformation of a structure is significant, the initial (undeformed)
domain (Qy ) is distinguished from the deformed domain (€2, ). A material point
X € Qyx 1is deformed to a point x € Q,, such that x(X) = X + z(X), with z(X)
being the displacement (see Fig. 1).

The weak form of a static problem, whether it is elastic or elastoplastic, can
be stated that to find the solution z € V', such that
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iti : (), Current domain
Initial domain 2y P

Perturbed domain

Figure 1. Illustration of shape design perturbation in a nonlinear structural problem. The initial
domain is deformed to the current domain. For a given shape design variable, the design velocity
field V(X) is defined in the initial domain. Design sensitivity analysis is then to estimate the
deformation of the perturbed domain without actually performing additional nonlinear analysis.

aQ(Z7E) = ££2(2)7 (D

for all ze€ Z. In Eq. (1), V' is the solution space and Z is the space of
kinematically admissible displacements. aq(z,z) and ¢y (z) are the energy and
load forms, respectively, whose expressions depend on the formulations. In
many cases, the load form is simple and often it is independent of the
deformation. Thus, emphasis will be given to the energy form.

In nonlinear structural analysis, two approaches have been introduced: the
total and the updated Lagrangian formulations." The former refers to Qy as a
reference, whereas the latter uses 2, as a reference. In both formulations,
equilibrium equations are obtained using the principle of virtual work. These
equations are then linearized to yield the incremental form. As noted by Bathe',
these two formulations are analytically equivalent.

2.1. Total Lagrangian Formulation

2.1.1. Incremental Solution Procedure
When Qy is the reference, the energy form in Eq. (1) can be written as
aq, (2,%) ff E(z;7)dQy, 2)

where S(z) is the second Piola—Kirchhoff stress tensor, ‘:” is the double
contraction operator, and E(z;z) is the variation of the Green—Lagrange strain
tensor, whose expression is given as
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E(z;z) = sym(VUET . F), 3)

where sym(A) = $(A + A”) represents the symmetric part of a tensor, F = V(x
is the deformation gradient, and V, = 0/0X is the gradient operator in the
initial domain. Note that E(z;+) is linear with respect to its argument, while S(z)
is generally nonlinear.

The load form is independent of the deformation, and is defined as

f() ff 7z’ deQ—i—f zl .3 dr, 4)

where £? is the body force and 5 the surface traction on the boundary I'§.
The deformation—dependent load form can be found in Schweizerhof.*

Since the energy form is nonlinear, an incremental solution procedure, such as
the Newton—Raphson method, is often employed through linearization. Let Z[e]
denote the linearization operator with respect to incremental displacement Az.
Then the energy form in Eq (2) can be linearized, as

Llag, (2,7)] = | f . C : B(z;Az) + S(z) : H(Az,7)]dQy

= aQX (z;A2,7),

o)

where C is the material tangent moduli, obtained from Z[S(z)] = C: E(z;Az),
and the increment of E(z;z) is given as

H(Az7z) = sym(VUET . VUAZ). (6)

The notation of a;ix, (z;Az,z) is selected such that it implicitly depends on the
total displacement z, and has two parameters Az and z. Note that agX (z;0,9) 1S
bilinear and symmetric with respect to its two arguments.

In the solution procedure of a nonlinear problem, the applied load is divided
by N load steps and a convergence iteration is carried out at each load step. Let
the left superscript n denote the current load step and the right superscript & the
iteration counter. Then, the incremental equation can be written as

ai, ("2 02", 7) = (4 (2) - ao, ("2",7), (7
forall z € Z. (%, (z) is the load form at the current load step. After solving the
incremental displacement Az", the total displacement is updated using
ngttl = ngk 1 Agz*. The iteration in Eq. (7) is repeated until the right-hand side
(residual term) vanishes. After the solution is converged, the load step is
increased. This procedure is repeated until the last load step N .

Note that Eq. (7) is still in the continuum form, and the discretization is not
introduced yet. If the finite element method is used to approximate Eq. (7), the
discrete counter part will be
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'K AU} = ("R}, (®)

where ["K*] is the tangent stiffness matrix, {AU*} the vector of incremental
nodal displacements, and ["R*] the vector of residual forces.

2.1.2. Shape Sensitivity Formulation

A shape design variable is defined in order to change the geometry of the
structure. The concept of design velocity is often used for this purpose, which
represents the direction of design change for a given shape design variable. By
introducing a scalar parameter 7 that can control the magnitude of the design
change, the perturbed design, as shown in Fig. 1, in the direction of the design
velocity can be obtained as

X, = X 4+ 7V(X). 9

The perturbation process in Eq. (9) is similar to the dynamic process by
considering 7 as time. Because of this analogy, the direction V(X) of the design
change is called the design velocity.

For a given design velocity, the sensitivity of a function is defined as a
material derivative with respect to the parameter 7. For example, the material
derivative of displacement can be written as

. d . z2.(X,) — z%(X)
z=—Iz.(X = lim —X——~, 10
dT[T( T)]T:U 50 T ( )

As in continuum mechanics, the above material derivative can be decomposed
by the partial derivative and the convective term, as

#(X) = 2/(X) + Vyz - V(X). (11)

Even if the partial derivative is interchangeable with the spatial gradient, the
material derivative is not.> The following relation should be used for the material
derivative of the spatial gradient:

d

E(Voz) = VOZ — VOZ . VOV (12)
7=0

Since stress and strain include the gradient of the displacement, their material
derivative will include the unknown term V,z (implicit dependence) and the
known term V,z-V,V (explicit dependence). The design sensitivity analysis
solves for the first using the second. For example, the material derivative of the
strain variation in Eq. (3) can be written as

d _ . _
EE(Z; z) ., = H(zz)+ Hy(zz), (13)
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with the explicitly dependent term being
Hy (z7) = —sym|[(VzZ - Vo V)" - F| = sym[Vz" - (Vyz - Vo V). (14)

Let the incremental equation (7) be converged at the last load step, which
means that the nonlinear variational equation (1) is satisfied. Then, Eq. (1) is
differentiated with respect to the parameters 7 to obtain the following design
sensitivity equation:

agx (2,2,2) = Ly (Z) — ay(2,%), (15)
for all z € Z . The first term on the right-hand side is the explicit term from the

load form and the second from the energy form. These explicit terms can be
obtained after differentiating with respect to parameter 7, as

0 (z) = f fﬂ 77 [(Vof? - V) + £2divV |

+ [ 7" [(Vof® - V) + wEP(V - N)Jar {10
%
and
al (2,7) = f fQX [E(z:Z):C:Ey(z) + S : Hy(2;2) + S : E(z7)divV] dQ, (17)
where divV is the divergence of the design velocity, and
Ey(z) = —sym[(Vz- V(V) - F] (18)

is the explicitly dependent term from the Green—Lagrange strain. In Eq. (16), &
is the curvature of the boundary, and N the unit normal vector to the boundary.

The design sensitivity equation (15) in continuum form can be discretized
using the same method with the nonlinear structural analysis. We assume that
the nonlinear problem has been solved up to the final load step N and the final
iteration K . If the finite element method is used to approximate Eq. (15), the
discrete form of the sensitivity equation will be

[VKX]{U} = {Rf}, (19)

where [VK] is the tangent stiffness matrix at the last analysis, which is already
factorized from the structural analysis; {U} the vector of nodal displacement
sensitivity; and [R/¢] the fictitious load representing the right-hand side of
Eq. (15).

If Eq. (7) is compared with Eq. (15), the left-hand sides are identical except
that the former solves for Az, while the latter for z. The computational
advantage of sensitivity analysis comes from the fact that the linear equation (15)
is solved once at the last converged load step. In addition, the LU-decomposed
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tangent stiffness matrix can be used in solving for z with a different right—hand
side, often called the fictitious load® or the pseudo load.""

If aE}X (z;Az,%) is a true linearization of aq, (2,%), this method provides a
quadratic convergence when the initial estimate is close to the solution. Even if
the tangent operator is inexact, the structural analysis may still converge after a
greater number of iterations are performed. However, in sensitivity analysis the
inexact tangent operator produces an error in the sensitivity result because no
iteration is involved. Without accurate tangent stiffness, sensitivity iteration is
required,”’ which significantly reduces the efficiency of sensitivity calculation.

In shape sensitivity analysis, the total Lagrangian formulation has been more
popular than the updated Lagrangian formulation.”*** This is partly because the
reference configuration Qy is the same as the design reference. However, it will
be shown in the next section that the sensitivity expressions of the two
formulations are identical after appropriate transformation.

2.2. Updated Lagrangian Formulation

2.2.1. Incremental Solution Procedure

The updated Lagrangian formulation uses (2, as a reference. The energy form in
the updated Lagrangian formulation can be written as

ao, (2,7) = f fQI o(z) : e(z)dQ, (20)

where o(z) is the Cauchy stress tensor, &(z) the variation of the engineering
strain tensor, whose expression is given as

e(z) = sym(V,z), (21)

and V, = 0 /0x is the spatial gradient operator. The same load form in the total
Lagrangian formulation is used.*

Even if Eqgs. (2) and (20) seem different, it is possible to show that they are
identical using the following relations:

e(z)=F 7T -E(zz) - F!, (22)
cr(z):%F-S-FT. 23)

The same transformation as in Eq. (22) can be applied for E(z;Az). In Eq. (23),
J is the Jacobian of the deformation, such that dQ, = JdQx .

The linearization of Eq. (20) is complicated because not only the stress and
strain, but also the domain 2, depends on the deformation. Thus, instead of
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directly linearizing Eq. (20), it is first transferred to the undeformed
configuration (pull-back). After linearization, the incremental form (the same as
Eq. (5)) is transferred to the deformed configuration (push-forward) to obtain

a6, (2;A2,7) ff L ¢ 1 e(Az) + o(2) : M(Az,7)]dC, (24)

where ¢ = FFj; Fic Fy.Cpyip, is the spatial tangent moduli®’ and
N(Az,z) = sym(V,z" - V,Az) (25)

is the transformation of H(Az z) in Eq. (6).

The same incremental equation as in Eq. (7) can be used for the Newton—
Raphson iterative solution procedure with different definitions of a, (z,7) and
aé_r (z;Az,z). There is one difficulty in the expression of Eq. (20): the reference
Q, is unknown. For computational convenience, the domain at the previous
iteration is often chosen as a reference domain, assuming that as the solution
converges, the difference between the two domains can be ignored.

2.2.2. Shape Sensitivity Formulation

From the viewpoint of the shape design, the sensitivity formulation of the
updated Lagrangian can be done in two ways: either differentiating the energy
form in Eq. (20) directly, or differentiating the total Lagrangian form first and
then transforming it to the current configuration. The first is relatively complex
because the reference 2, depends on both the design and the deformation. Cho
and Choi™® differentiate the energy form in €,. Since the design velocity V(X)
is always defined in 2y , they update the design velocity at each load step, which
requires additional steps in the sensitivity calculation. In addition, this approach
cannot take advantage of the computational efficiency, because the sensitivity
equation must be solved at each load step.

From the idea that the total and updated Lagrangian formulations are
equivalent, the second approach is taken; i.e., transforming the sensitivity
Eq. (15) to the deformed configuration to obtain

ag, (2;2,7) = (1 (Z) — af/(2,7), (26)

for all z € Z. In Eq. (26), the same ¢}(z) in Eq. (16) is used, since the
difference between two formulations is in the energy form, not in the load form.
The explicitly dependent term from the energy form can be obtained, after
transformation, as

ay (2,%) ff cc:ep(z) 4+ o :My(z2) + o : (z)divV]d, 27

where
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ey (z) = —sym(Vyz - V, V), (28)
L% (275) = 7sym[vnET ’ (VOZ ’ V.LV)] - Sym[voi ' VJV] (29)

Note that the sensitivity Eq. (26) solves for the sensitivity of the total
displacement, not its increment. Thus, the same efficiency as with the total
Lagrangian approach can be expected.

3. Design Sensitivity Analysis of Elastoplastic Problems

In addition to the nonlinear elastic material in the previous section, the
elastoplastic material is important in engineering applications. The major
difference is that the former has a potential function so that the stress can be
determined as a function of state, whereas the latter depends on the load history.
In that regard, the elastoplastic problem is often called history—dependent. One
of the main disadvantages of this type of problem is that the sensitivity analysis
must follow the nonlinear analysis procedure closely.”* Two formulations are
discussed in this section: the rate form and the total form.

3.1. Small Deformation Elastoplasticity

3.1.1. Incremental Solution Procedure

When deformation is small (i.e., infinitesimal), the constitutive relation of
elastoplasticity can be given in the rate form, and stress can be additively
decomposed into elastic and plastic parts. The elastic part is described using the
traditional linear elasticity, while the plastic part (permanent deformation) is
described by the evolution of internal plastic variables.

Due to the assumption of small deformation, it is unnecessary to distinguish
the deformed configuration from the undeformed one. Since the problem
depends on the path of the load, it is discretized by N load steps: [ty,t,...,tx]
with the current load step being ¢,. In order to simplify the presentation, only
isotropic hardening is considered in the following derivations, in which the
plastic variable is identical to the effective plastic strain, e, .

Let the incremental solution procedure converge at load step ¢,_; and the
history—dependent variable "'¢ = {"'o," 'e,} be available. Then, the energy
form at ¢, can be written as

0@(7171&; nLE) — fﬁze(i) o dO). (30)
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In Eq. (30), the left superscripts » and n —1 represent the load steps ¢, and
t,_1, respectively. However, they will often be omitted whenever there is no
confusion. The notation of the energy form is selected such that it implicitly
depends on the history—dependent variable at the pervious load step.

The energy form is nonlinear with respect to its arguments. In order to
linearize the energy form, it is necessary to consider the update procedure of the
stress and the plastic variable. In the displacement—driven procedure, it is
assumed that the displacement increment Az is given from the previous iteration.
Mathematically, elastoplasticity can be viewed as a projection of stress onto the
elastic domain, which can be accomplished using a trial elastic predictor
followed by a plastic corrector. Then, the stress and the plastic variable can be
updated according to

"e = "1lo +C:Ae —2uN, 31

nep _ 71716]7 +\/%’Y, (32)

where C=(A+2u)1®1+2ul,, is the fourth-order isotropic constitutive
tensor; A and p are Lame’s constants; Ae = g(Az) is the incremental strain; N
is a unit deviatoric tensor, normal to the yield function; and ~ is the plastic
consistency parameter. In Eq. (31), the first two terms on the right—-hand side
correspond to the trial stress; i.e., "o = ""lo + C: Ae.

The plastic consistency parameter can be obtained from the relation that the
stress stays on the boundary of the yield function during the continuous yielding:

f("s,"e,) = ||"s|| — \[Zx("e,) = (33)

where "s = 1, : "o is the deviatoric stress tensor, I, is the fourth—order unit
deviatoric tensor, x("e,) is the radius of the elastic domain in the isotropic
hardening plastic model. In general, the above equation is nonlinear, so that the
local Newton—Raphson method can be used for the plastic consistency parameter.
When there is no plastic deformation, ~ is equal to zero.

Using the update procedure described in Egs. (31)—(33), the energy form can
be linearized to obtain

agy ("€ Az, 7) = f er(z) L C : g(Az)dQ, (34)
where the algorithmic tangent operator* is defined by
cils 42& NoN - ﬁ“’j i I, - N ® N, (35)

where A =2u + %8&/6@17; ® is the tensor product; and s is the deviatoric
stress at the trial state, which can be obtained by assuming that all incremental
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displacements are elastic. To guarantee the quadratic convergence of the
nonlinear analysis, the algorithmic tangent operator must be consistent with the
stress update algorithm.**

Once the energy form and the linearized energy form are available, the same
linear equation as Eq. (7) can be used to solve for the incremental displacement.
After the residual term vanishes, the stress and the plastic variable are updated
according to Egs. (31) and (32), the analysis moves to the next load step, and
proceeds until the last load step.

3.1.2. Shape Sensitivity Formulation

In the shape design sensitivity formulation for the elastoplastic material, it is
assumed that the structural problem has been solved up to the load step ¢, and
the sensitivity analysis has been finished up to the load step ¢, ;. The goal is to
solve the sensitivity equation at the load step t,. This is necessary because the
problem at hand is history—dependent. At each load step, the sensitivity of the
incremental displacement is solved, and the sensitivity of the stress and the
plastic variable is updated for the sensitivity calculation at the next load step.

By differentiating the variational equation (1) with the energy form in Eq.
(30), the sensitivity equation can be obtained as

aé("’lﬁ; A27Z) =y (Z) — ay("2,%) — a;("’lﬁ, "2,7), (36)

for all z € Z . The linearized energy form ag (" '€;e,+) is identical with that of
Eq. (34). Two differences can be observed in the above sensitivity equation
compared to the elastic problem: (1) it solves for the sensitivity of incremental
displacement Az, and (2) it depends on the sensitivity results at the previous load
step. In Eq. (36), the explicit term from the load form is similar to Eq. (16), and
the explicit term from the energy form is defined as

ay (2,%) ff ey (z): o +e(z): C'% : ey (z) + &(z) : 0divV]dQ, 37
where
ey (z) = —sym(Vz - VV) 38)

is the explicit term from the material derivative of the strain tensor. The last term
in Eq. (36), the history—dependent term, is given as

)= [ e . ®

where
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e onel. 2W el 0k ,_ 4. 20y el
ol = nlg Nty TRt INC 1 NeN): s (40)
A B, N

is the plastic variable from the sensitivity calculation at the previous load step.
After the sensitivity equation is solved, the sensitivity of the total
displacement can be updated by

ng = "1 4 Az (41)

In addition, the sensitivity of the stress and the plastic variable must be updated
for the calculation in the next load step, using the following formulas:

ng = "lg 4 C: [e(Ad) + ey (Az)], (42)

n g n—1: 1 /2 n & 2 Ok n—1s
ep: 16P+Z\/gN: S—\/ga 16p.

The fact that the sensitivity equation needs to be solved at each load step may

(43)

decrease the computational advantage. However, the sensitivity calculation is
still inexpensive compared to the structural analysis. First, the convergence
iteration in the nonlinear problem is avoided and the linear sensitivity equation is
solved at the end of each load step. Second, the LU-decomposed stiffness matrix
from structural analysis can be used for sensitivity calculation. Considering the
fact that most computational cost in the matrix equation is involved in the
decomposition, the proposed sensitivity calculation method provides a significant
advantage. The major cost in sensitivity calculation is involved in the
construction of the fictitious load and updating the history—dependent variables.

3.2. Finite Deformation Elastoplasticity

When a structure undergoes a large deformation, the elastoplasticity theory with
the infinitesimal deformation needs to be modified. @A new method for
expressing the kinematics of finite deformation elastoplasticity using the
hyperelastic constitutive relation is becoming a desirable approach for isotropic
material. This method defines a stress—free intermediate configuration composed
of plastic deformation, and obtains the stress from the elastic strain energy
density function defined in the intermediate configuration (see Fig. 2).

In this model, the deformation gradient is decomposed by the elastic and
plastic parts,” as

F(X) = E.(X) - F,(X), (44)

p

where F,(X) is the deformation through the intermediate domain, which is
related to the plastic deformation, and F, ' is the stress—free, unloaded process.
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3.2.1. Incremental Solution Procedure

Similar to the previous section, the load is discretized by N load steps and the
current load step is #,. In order to simplify the presentation, only isotropic
hardening is considered in the following derivations. In the incremental solution
process, it is assumed that the nonlinear analysis has been converged and plastic
variables "'¢ = {""'F,,"'e,} are available from load step ¢, ;.

The variational equation is similar to that of the updated Lagrangian
formulation, and the energy form is defined as

a0, ("' "2,7) = | fQX e(@) : "TdQ. (45)

Note that the energy form is defined using the integral over domain Qy , and the
Kirchhoff stress tensor T = Jo 1is used so that the effect of Jacobian is included
in the constitutive relation.*

In order to solve the nonlinear equation (45), the procedure of stress update is
presented first. At load step t,, with given displacement increment, the
deformation gradient is calculated by

" =f. nle — trFe . 7171Fp7 (46)

where f = 14 V,Az is the relative deformation gradient, and ”F, = f- "'F, is

V(X)

Undeformed domain
(Design reference) F

G
=

Deformed domain

Intermediate domain
(Analysis reference)

Figure 2. Analysis and design configurations for large deformation elastoplasticity. Plastic deformation
is applied to the intermediate domain. The constitutive relation is hyperelasticity between the
intermediate and deformed domains. The design velocity is always defined in the undeformed domain.
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the trial elastic deformation gradient, which is obtained by assuming that the
relative deformation gradient is purely elastic.

Since the trial state assumes that all incremental deformation is elastic, it goes
out of the elastic domain when a part of it is plastic deformation. Thus, the trial
state needs to return to the elastic domain, which is called the return—-mapping.
In this model, the return—mapping is achieved in the principal stress space with a
fixed principal direction. By using the constitutive relation between the principal
stress and logarithmic strain, better accuracy is obtained for a large elastic strain
problem than with the classical elastoplasticity.

Let e = {e,e,e3}" = {log()\),log(\;),log(N3)}! be the logarithmic principal
stretch of the elastic left Cauchy—Green deformation tensor, defined by

3
b ="F,-"F' =) Nn'@n'. (47)
i=1
Then, the Kirchhoff stress tensor, after plastic deformation, can be calculated by
3 . .
T=) n'" ®@n’, (48)
i=1
where t° = {7/, 7], 74} is the principal Kirchhoff stress. Note that for the
isotropic material, T and "b° share the same principal directions. Equation (48)
means that the principal direction is fixed during the plastic deformation, and the
principal Kirchhoff stress is updated, including plastic deformation, as
" -e — 2uyN, 49)

T =¢*

where ¢¢ = (\ + %u)i ® 1+ 2ul,, is the 3x3 elastic constitutive tensor for the
isotropic material; 1 = {1,1,1}" is the first-order tensor; 1,, =1—1(1®1) is
the second—-order deviatoric tensor; N is a unit vector, normal to the yield
function; and ~ is the plastic consistency parameter. If Eq. (49) is compared
with Eq. (31), two formulations yield a very similar return—mapping procedure.
The differences are that Eq. (49) is in the principal stress space, and the
logarithmic principal stretch is used instead of the engineering strain tensor.

The plastic consistency parameter can be obtained from the relation that the
stress stays on the yield function during the continuous yielding:

f(nS, nep) — ” nS” . \/T%K’(nep) — 0’ (50)

where "s = 1,4, : "7? is the deviatoric part of "T?, and k("e
the yield surface after plastic deformation.

The linearization of the energy form is similar to that of the updated

Lagrangian formulation, except that the integration domain is changed to the
undeformed one:

,») 1s the radius of
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aQX(”’IE,z;Az z) fo cc:e(Az) + T : m(Az,z)]dQ én

The tangent stiffness moduli ¢ in the above equation must be consistent with the
stress update procedure that is explained between Eqs. (46) and (50). The
explicit form of ¢ is available in Simo.*

Using the energy form in Eq. (45) and its linearization in Eq. (51), the
Newton-Raphson method, similar to Eq. (7), can be employed to solve for the
incremental displacement. Once the residual term is converged through iteration,
the plastic variables are updated and analysis moves to the next load step.

Different from the classical elastoplasticity, it is not necessary to store stress
because, as is clear from Eq. (49), stress can be calculated from hyperelasticity.
Instead, the intermediate configuration, which is represented by F, or counter
part F,, is stored for the calculation in the next load step. For that purpose, first
the relative plastic deformation gradient is calculated by

3
f, = Y exp(—yN;n' @ ', (52)
i=1
from which the elastic part of the deformation gradient is updated by
"F, = f, - "F,, and the plastic part can be obtained from "F, = "F,' - "F. In
addition, the effective plastic strain that determines the radius of the yield surface
can be updated by

"e, = "le, + \/%7. (53)

After the plastic variables are updated, the sensitivity analysis is performed at
each converged load step.

3.2.2. Shape Sensitivity Formulation

As mentioned before, the reference for the design is always the undeformed
configuration. When the references for the design and analysis are different,
transformation is involved in sensitivity differentiation. In the case of finite
deformation elastoplasticity, functions in the intermediate configuration are
transformed to the undeformed configuration (pull-back). After differentiation,
they are transformed to the deformed configuration (push—forward) in order to
recover the updated Lagrangian formulation.

By differentiating the nonlinear variational equation (45) with shape design,
the following sensitivity equation can be obtained:

ao, ("'€,%:2,7) = (y(2) — ay(2,7) — 0y (" '&2,3), (54
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where the explicit term from the load form is given in Eq. (16), and the explicit
term from the energy form is given by

ai; (2, %) ff cc:ep(z)+ T:my(2,2z) + T e(Z)divV |dQ. (55)

The expressions of ey (z) and my(z%z) are identical to those in the updated
Lagrangian formulation in Sec. 2.2. The last term on the right-hand side of Eq.
(54) is the history—dependent term, which is contributed by the plastic
deformation, given as

ap(""'€,2,7) = ff ,(2) + 7 m,(2,2) + T e(Z)]dD2. (56)

The first two integrands are related to the material derivative of the intermediate

configuration, and are defined as
(z) = —sym(F, - F, - F1), (57)

€

n,(2,2) = —sym(V,z" - F, - Fp o (58)
In addition, the last term in Eq. (56) is related to the history—dependent plastic

variable,

) or? . .
fie _ Ylion— 1 i i
T ;:1 e, n" ®n (59)

Note that the sensitivity equation (54) solves for the sensitivity of the total
displacement, which is different from the classical elastoplasticity.

After the sensitivity equation is solved for z, the sensitivities of history—
dependent terms are updated. For that purpose, the sensitivity of the plastic
consistency parameter is first obtained as

1 Ok
v o— 2 N a2 on-1g

(60)
where ¢, = (n’ ® n') : [e(2) + ey (z) + €, (z)]. Then, the sensitivity of the effective
plastic strain is updated by
ne, = "le, + 2. (61)
The sensitivity of the intermediate domain is also history—dependent, and can be
updated by
an — TLFgl . nF . nFJI . nFe . HFJI, (62)

where "F = Vyz—Vz-V,V and "F, =f,-"F, +f,-"F,. In the above
equation, the sensitivity of fp can be obtained by differentiating Eq. (52). After
updating the plastic variables, the nonlinear analysis moves to the next load step.
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4. Design Sensitivity Analysis of Contact Problems

Contact problems are common and important aspects of mechanical systems.
Metal forming, vehicle crashes, projectile penetration, various seal designs, and
bushing and gear systems are only a few examples of contact problems. In this
section, the contact condition of a 2D flexible body-rigid wall is considered.
This problem can easily be extended to 3D flexible—flexible body contact
problems, as shown by Kim et al.”®

4.1. Contact Problems with the Rigid Surface

Contact between two bodies can be described using the impenetrability
condition, which prevents one body from penetrating into another.*”** Figure 3
illustrates a contact condition with a rigid surface in R?. A natural coordinate ¢
is used to represent the location on a rigid surface. For example, the contact
point x, corresponds to the natural coordinate &, , so that x, = x.(&,).

The impenetrability condition can be imposed on the structure by measuring
the gap ¢, (x) between x € I', and the rigid surface, as shown in Fig. 3:

In = (X - Xc(gc)) : e71(§c) > 07 X e Fm (63)

where e, (¢.) is the unit outward normal vector of the rigid surface. The contact
point x. that corresponds to body point x € I'. is determined by solving the
following nonlinear equation:

(X - X(:(Ec)) "€ (gc) =0, (64

where e;(&.) is the unit tangential vector. The contact point x.(&.) is the closest
projection point of x € I', onto the rigid surface that satisfies Eq. (64).

Rigid Surface

Figure 3. Contact condition between flexible and rigid bodies. The penalty function is established
for the region I', where the gap function is less than zero. Shape design change will move the

contact point.
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The structural problem with the contact condition can be formulated using a
variational inequality, which is equivalent to the constrained optimization
problem.” In practice, this optimization problem is solved using the penalty
method. If there is a region T, that violates Eq. (63), then it is penalized using a
penalty function. After applying to the structural problem, the variational
equation with the contact condition can be written as

aQ(LE) + bF(LE) = £§2(2)7 Vz € Z7 (65)
where the energy and load forms are identical to the previous sections, depending

on the constitutive model. The contact form can be defined from the variation of
the penalty function, as

br(2,2) = w fr,‘ 9,7 - e, dl, (66)
where w is the penalty parameter. In Eq. (66), wg, corresponds to the contact

force. The nonlinear contact form in Eq. (66) can be linearized to obtain

by (z;Az2,7) = wfr,i (e, ®e,)  Azdl' — wfp f" 7 (e; ®e;)- Azdl, 67)

[0

where

a =€,  X.eg, C= "t"2 - gnQ. (68)

Note that there is a component in the tangential direction because of curvature
effects. If the rigid surface is approximated by a piecewise linear function, then
a =0 and ¢ = |t|?.

Suppose the current load step is ¢, and the current iteration count is k. Then,
the linearized incremental equation of (65) is obtained as

ag("zk;Azk,E) + bf:("zk;Azk,E) =0%(z) — aQ("zk,E) — bF("zk,E), Vz € Z. (69)

The linearized system of (69) is solved iteratively with respect to incremental
displacement until the residual forces on the right-hand side vanish at each load
step.

4.2. Design Sensitivity Analysis for Contact Problems

The shape design sensitivity formulation of the contact problem has been
extensively developed using linear variational inequality.>*' The linear operator
theory is not applicable to a nonlinear analysis, and the non-convex property of
the constraint set makes it difficult to prove the existence of the derivative.
Despite such a lack of mathematical theory, the shape design sensitivity
formulation for the contact problem is derived in a general continuum setting. As
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a result of the regularizing property of the penalty method, it is assumed that the
solution continuously depends on shape design. As has been well established in
the literature, differentiability fails in the region where contact status changes.”
One good feature of the penalty method is that the contact region is established
using a violated region, thus avoiding a non-differentiable region.

It is shown by Kim et al.*' that the design sensitivity analysis of a frictionless
contact problem is path—independent, whereas that of a frictional contact problem
is path—dependent and requires information from the previous time step to
compute sensitivity at the current time.

In order to derive the derivative of the contact form, the gap function in
Eq. (63) is first differentiated with respect to the shape design variable, to obtain

gn = (V + Z) "€y . (70)

In the above derivation, the tangential component has been canceled due to the
fact that the perturbed contact point also satisfies the consistency condition.
Equation (70) implies that, for an arbitrary perturbation of the structure, only the
normal component will contribute to the sensitivity of the gap function.
The contact form in Eq. (66) can then be differentiated with respect to the
shape design, as
d

ol B = br@hE) + b (@7). (71)

The first term on the right-hand side represents implicitly dependent terms
through z, and the second term explicitly depends on V. The implicit term
br(z;2,Z) is available in Eq. (67) by substituting z into Az. The explicit
term b (z,z) is defined as the contact fictitious load and can be obtained by
collecting all terms that have explicit dependency on the design velocity, as

b (2,2) = bp(&:V,2) +w [ rg,Z-e,V, dT. (72)

The design sensitivity equation can then be obtained by differentiating the
penalty—regularized variational Eq. (65) with respect to the design variable, as

a(2;2,%) + bp(2,2,7) = ((Z) — a (2,2) — b{:(2,7), VzZ € L. (73)

For the frictionless contact problem, the fictitious load of the contact form in
Eq. (72) depends on z and V. The material derivative formula in Eq. (73) is
history—independent. Thus, it is very efficient to compute the design sensitivity
of a frictionless contact problem. The design sensitivity equation is solved only
once at the last load step with the same tangent stiffness matrix from the
structural analysis. As compared with nonlinear response analysis, this property
provides great efficiency in the sensitivity computation process.
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5. Numerical Examples

5.1. Shape Design Sensitivity Analysis of the Windshield Wiper Problem™

The continuum forms of the structural equation and the sensitivity equation are
approximated using the reproducing kernel particle method (RKPM) , where the
structural domain is represented by a set of particles.’>> RKPM is an ideal
choice since, unlike the traditional finite element method, the solution is much
less sensitive to the mesh distortion that causes many difficulties in large
deformation analysis as well as in shape optimization.

Figure 4(a) shows the geometry of the windshield blade. The windshield is
assumed to be a rigid body. For the convenience of the analysis, a vertical line is
added to the windshield for smooth deformation. The upper part of the blade
is supported by a steel slab. Hyperelastic material (rubber) is used for the blade,
and w = 107 is used for the contact penalty.

As the glass moves to the left, the tip of the blade is in contact with the glass,
which is modeled as flexible-rigid body contact. The function of the thin neck is
to generate flexibility such that the direction of the blade can be easily turned
over when the blade changes its moving direction. The role of the wing is to
supply enough contact force at the tip point. Figure 4(b) shows a von Mises
stress contour plot with the deformed geometry at the final configuration. The
stress concentration is found at the neck and the tip because of the bending effect.

The geometry of the structure is parameterized using nine shape design
variables as shown in Fig. 4(a). The design velocity at the boundary is obtained

(a) ) =
Steel Slab 5213

48.13

44.14

Rigid wall~g A Ju, P 4y,

4014

Second wing—-® Uy

() t

36.14

Neck

32.15)
First wing 21
24.16|

20.14

16.14

Rigid Wall 117

I L.

4.174

1504

Figure 4. (a) Windshield blade geometry and shape design variables, (b) Contour plot of equivalent
stress.
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first by perturbing the boundary curve corresponding to the design variable, and
the domain design velocity field is computed using an isoparametric mapping
method. Four performance measures are chosen: the total area of the structure,
two von Mises stresses of the neck region, and the contact force at the tip.

Sensitivity analysis is carried out at each converged load step to compute the
material derivative of the displacement. The sensitivities of the performance
measures are computed at the final converged load step using z. The cost of the
sensitivity computation is about 4% of that of the response analysis per design
variable, which is quite efficient compared to the finite difference method. The
accuracy of the sensitivity is compared with the forward finite difference results
for the perturbation size of 7 =107%. Table 1 shows the accuracy of the
sensitivity results. In the third column of Table 1, At denotes the finite
difference results and the fourth column represents the change of the function
from the proposed method. Excellent sensitivity results are obtained.

Table 1. Sensitivity results and comparison with finite difference method

Design 0 A 0 (AP /)%
Area .28406E-5 .28406E-5 100.00
! oy (53) .19984E-3 .19984E-3 100.00
oy (54) .28588E-3 .28588E-3 100.00
Fo .55399E-5 .55399E-5 100.00
Area .68663E-5 .68663E-5 100.00
3 oy (53) .19410E-3 .19410E-3 100.00
oy (54) .68832E—4 .68832E—4 100.00
Fo .43976E-4 43976E-4 100.00

5.2. Design Sensitivity Analysis of the Deepdrawing Problem™

Figure 5(a) shows the simulation setting and the design variables of the problem.
Only half of the model is solved using symmetric conditions. A total of 303
RKPM particles are used to model the blank with elastoplastic material. The
punch, draw die, and blank holder are assumed to be rigid bodies, modeled as
piecewise linear segments. The draw die is fixed during the punch motion stage,
while the blank holder supports force to prevent vertical motion of the blank.
After the punch moves to the maximum down-stroke (30 mm), the blank is
released to calculate springback. Six design variables are defined, including the
horizontal and vertical position of the punch, corner radii of the punch and draw
die, the thickness of the blank, and the gap between the blank holder and the die.
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Figure 5(b) provides a contour plot of effective plastic strain after springback.
A significant amount of sliding is observed between the workpiece and the draw
die. High plastic strain distribution is observed in the vertical section. In the
optimization, the maximum allowable amount of plastic strain is limited to
prevent material failure due to excessive plastic deformation.

Two different types of results are evaluated: the amount of springback and
effective plastic strain e,. The amount of springback is defined as a difference
between deformations at the maximum down-—stroke and after releasing the
blank. Since the sensitivity of effective plastic strain is updated at each load step,
no additional computation is required for e, . The sensitivity of the springback is
calculated using the displacement sensitivity.

The accuracy of sensitivity result is compared with the finite difference result
by slightly perturbing the design and re-solving the same problem. Table 2
compares the accuracy of the proposed sensitivity ¢» with the finite difference
result Ay . A very good agreement between two methods is observed. A
perturbation of 7 = 107° is used for the finite difference results. In this example,
it is hard to find an appropriate perturbation size because the sensitivity
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Figure 5. (a) Geometry of the deepdrawing problem and design variables. (b) Effective strain
plot after springback. The solid line is the deformed geometry at the maximum down—stroke.

Table 2. Sensitivity results and comparison with finite difference method

Design W At 0 (&Y /)%

springback -4.31897E-5 —4.37835E-5 98.64

| e, (41) 1.48092E-8 1.48111E-8 99.99
e, (55) 2.92573E-8 2.92558E-8 100.01

e, (157) —2.08880E—-8 —2.08875E-8 100.00

springback 1.50596E-5 1.55745E-5 96.69

i e, (41) —1.81265E-9 —1.81292E-9 99.99
e, (55) —1.60858E—-8 —1.60891E-8 99.98

e, (157) 1.14224E-8 1.14229E-8 99.99
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magnitudes of the two functions are very different.

The computational cost of the sensitivity analysis is 3.8% of the analysis cost
per design variable. Such efficiency is to be expected, since sensitivity analysis
uses the decomposed tangent stiffness matrix, and no iteration is required.

6. Conclusions and Outlook

The design sensitivity formulations for various nonlinear problems are presented,
including nonlinear elasticity, small and large deformation elastoplasticity, and
frictionless contact problems. Even if the structural analysis contains combined
nonlinearities, the consistent derivative yields very accurate sensitivity results.
One of the most important advantages of the proposed approach is the
computational efficiency of calculating sensitivity information, which is critical
in the gradient—based optimization. Due to the facts that the proposed approach
does not require iteration and uses the decomposed stiffness matrix from the
structural analysis, it is shown through numerical examples that the computa-
tional cost of the sensitivity calculation is less than 5% of the analysis cost.
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CHAPTER 8
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Optimal controllers are presented in this chapter for control of structures with em-
phasis on disturbance modeling. Both time domain and frequency domain meth-
ods are presented. Advantages and disadvantages of both the methods are dis-
cussed. Techniques for incorporating the excitation characteristics and frequency
response information using augmentation techniques are presented. Numerical ex-
amples illustrating the control techniques and augmentation procedures for single
and multiple degrees of freedom system are presented. The robustness principles
in the context of linear optimal control are also discussed briefly.

1 Introduction

Optimal structural control using time domain and frequency domain methods have
been proposed and used extensively during the last two decades for mitigating the
effects of wind and earthquakes' 2345, The field of linear optimal control has been
the subject of active research for the past few decades. Time domain methods such
as LQR (Linear Quadratic Regulator) and its counterpart, LQG (Linear Quadratic
Gaussian) have been adopted in various structural control applications for mitigat-
ing the effects of wind and earthquakes'. The main idea behind the LQR method
is the minimization of a performance index under the constraints imposed by the
dynamic equations of motion. This minimization is aimed at reducing the struc-
tural responses of the system. Typically, two types of weighting matrices are used
in the LQR procedure. They correspond to weighting structural responses and con-
trol forces. By choosing the appropriate matrices, the desired performance of the
system can be achieved. The major limitations in the LQR method are (i) assuming
the excitation as a zero-mean white noise to reduce the time varying riccatti matrix
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equation to an algebraic one, and (ii) ability to measure all the states of the system
for full state feedback.

Some of the limitations in the LQR method are addressed in the LQG method.
In this method the LQR method is combined with a state estimator (Kalman Bucy
Filter); the estimated states (along with the partially measured states) are used
in place of unobserved states for full state feedback in LQR using the separation
principle®. Such a procedure is very useful in structural control where only partial
state measurements are available for output feedback.

Though the LQG procedure addresses some of the limitations of the LQR
method, there is no assurance of robustness, which can only be ensured by the Ho
and H., frequency domain methods. Ho and H,, derive their name from the norm
that is minimized, 2-norm or oo norm. The LQG procedure is essentially equivalent
to Hy control as minimizing the LQG cost function is equivalent to minimizing the
closed-loop system 2-norm. The control designs in frequency domain provide more
physical insights into the problem, especially because the disturbances can be de-
scribed satisfactorily using their power spectral densities (PSD); and the structural
system can be adequately modeled by transfer function. The disturbances (e.g.,
earthquake) can be modeled by augmenting the state equations (with an appropri-
ate filter excited by white noise). More descriptions of the augmentation procedures
are presented in the following sections. Ho and H., frequency domain methods also
incorporate the system uncertainty directly in the problem formulation to provide
a robust design. Both the methods, Hs and H.,-minimize a prescribed norm of the
transfer function from the excitation to the output.

The basics of dynamic systems, time domain methods and frequency domain
methods are introduced next.

2 State Space Representation and Transfer Functions

The equations of motion are formulated in state space for the application of con-
trol to structural systems subjected to excitations such as earthquakes. State-space
representation provides a consistent framework to analyze systems of any degree of
complexity. A dynamical system can have multiple realizations, or equivalent forms
of system representation. One such realization is the state space representation
where a n*" order differential equation is converted into n simultaneous first order
differential equations cast in matrix form. These equations are in the time domain
and are simple to solve using standard methods. In the state space representation,
a general linear, time varying structural system excited by an earthquake can be
represented as

x(t)=A)x(t)+B{)u(t) +E(t) i, (1)

y(t)=C(t)x(t)+D(t)u(t) +v(t)
where, x are the states of the system, A, B, C, D and E are time-varying system
matrices, i, is the earthquake excitation, u is the vector of control forces, y is the

(1)
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measurement vector, and v is the measurement noise. For a linear time-invariant
system (LTI), where the systems matrices do not change with time, the above
equations can be re-written as,

% (t) = Ax (t) + Bu(t) + Eug (1) @)
y () =Cx(t) + Du(t) +v(t)

Two important properties of a system are controllability and observability. A
system is said to be controllable if a state can be driven to any specified value from
its initial state. A system is said to be observable if a state vector can be determined
or estimated from the measured output. The controllability matrix can be formed
using the A and B matrices as

CO=(BABA’B.. A" 'B) (3)
and the observability matrix with C and A matrices as
OB = (C CA CA? .. CA™1)" (4)

If the dimension of the state vector is n, then the system is said to be controllable
if rank(CO)=n and the system is said to be observable if rank(OB)=n.

Let us consider the simplified form of the state space equations in Eq. 2 without
the external excitation and the measurement noise.

x(t) = Ax (t) + Bu(t) 5)
y (t) = Cx(t) + Du (t)

Taking the laplace transform on both sides of Eq. 5 (for zero initial conditions),
we get

sX (s) = AX (s) + BU (s) = X(s) = (sI— A) ' BU (s) (6)

Y (s)=CX(s)+DU(s)= |C(sI—A) 'B+D|U(s)=H(s)U(s) (7)

where, H(s) is the transfer function from the control input, u, to the measurement
vector, y. Each term in H(s) is a proper ratio of polynomials, and for the case
D = 0, the ratio of each term in the transfer function matrix is strictly proper. The
transfer function is the frequency response function, if the variable s is replaced by
the complex variable jw. As shown in Fig 1, the output is equal to the harmonic
excitation input, e/“?, multiplied by the frequency response function.

jwt . H(jw)elwt
— S H(jw) p—>

Fig. 1. Frequency response function for a linear system
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3 Time Domain Methods: LQR and LQG
3.1 LQR Method

The problem of finding the optimal control involves the minimization of a specified
cost function subject to either static or dynamic constraints. There are special cases
when the constraint is dynamic, linear and the cost function is quadratic. Such con-
ditions arise, for example, when the objective is the minimization of strain energy
in a structure and whose deformations are predominantly in the linear elastic range.
The Linear Quadratic Regulator (LQR) method®, also known as the quadratic op-
timal regulator method, provides a systematic way of computing the state feedback
control gain matrix under the aforementioned conditions. The LQR method involves
computing the feedback gain matrix K of the optimal control vector, u = —Kx(t),
given the state equation,

x = Ax+ Bu (8)

so as to minimize the quadratic performance index,
o0
J = / (x"Qx+u"Ru)dt 9)
0

where, Q is a positive-definite (or positive-semidefinite) Hermitian or real symmet-
ric matrix, and R is a positive-definite Hermitian or real symmetric matrix. These
weighting matrices determine the relative importance of the responses and the ex-
penditure of control energy. The block diagram representation is shown in Fig. 2.
The control gain matrix is obtained by solving the optimization problem and is

R X = Ax + Bu =

—-K

Fig. 2. Block diagram for LQR method

: 6
given as®,

K=R 'B’P (10)
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and the matrix P is the steady state solution (assuming an excitation of zero mean
white noise) of the following simplified algebraic Riccatti matrix equation,

ATP+PA -PBRBTP+ Q=0 (11)

The basic design steps for the LQR method involves the solution of the algebraic
Riccatti matrix equation, Eq. 11 for P. If a positive definite matrix P exists, the sys-
tem is stable, or the matrix A — BK is stable. The matrix P obtained is substituted
in Eq. 10 to obtain the optimal feedback gain matrix. Egs. 10 and 11 correspond to
the continuous case; the discrete counterparts for these equations could be found in

other references®.

e Example 1: An idealized two-story building is shown in Fig. 3. The ob-
jective is to design a controller based on LQR method. The mass of the
two floors are m; = mo = 10,000 kgs and the stiffnesses of the two floors
are k1 = ko = 10,000 kN/m. Let us assume that the damping coefficients
are ¢; = ¢z = 31.6 kN-s/m, and the damping matrix is stiffness propor-
tional. Assuming the structural motion is sufficiently small that the nonlin-

N _ NEE

AActuators k2y 2

R m

L4

k], (T]

Fig. 3. Idealized two-story building model

ear effects can be neglected, and denoting the displacements relative to the
ground by X = |11 227, the equations of motion for the structural system
can be expressed as

Mx + Cx + Kx =Tu (12)

where u is a column vector which consists of the forces f; and fo exerted
by the actuators located in the two storys; I' = Isyo is an identity matrix.
The mass, damping and stiffness matrices are,

mp 0 c1+c2 —c k1 + kg —ko
|: 0 m2:| ,C |: —C2 Co :| ’ |: —kg kQ :| ( 3)

Defining states, x = [ x|, Eq. 12 can be cast in state space form as,

x(t) = Ax(t) + Bu(t) (14)
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where,

0 I 0
A= | Mk —Mlc] B = [er] (15)

If the performance function is chosen to be of the form in Eq. 9, with the
following weighting matrices Q and R,

10 0 0 0
0 10 0 0 1073 0
= R:
Q 0 0 1020 |’ { 0 103}
0 0 0 102

The steady-state control that minimizes the cost is obtained as,

4.5255 4.2434 0.5332 0.5317

= —K - —
u(t) x(t) 4.2434 8.7689 0.5317 1.0649

} x 10°x x(t)  (16)
The closed loop system is simulated using the above computed steady-state
gain with an initial velocity of 1 m/s at both floors. Sample results of the
simulation are shown in Fig. 4 in the form of displacement and force time
histories.

As can be readily seen from Example 1, all the states need to be known at each time
step in order to calculate the optimal gain matrix. For structural control applications
all the states are seldom known and the measurements are often noisy. Lack of
excitation information in computing the feedback gain matrix is another limitation
for the structural control purposes. The above limitations are addressed, to an
extent, in the Linear Quadratic Gaussian (LQG) method.

3.2 Optimal Estimation

Optimal estimation is needed for output feedback wherein unobserved states, or
noisy state measurements, are estimated. Estimation of unknown states based on
available measurements is accomplished with the aid of the Kalman Bucy filter.
Optimal (in the sense of minimum-variance) estimates of the states are obtained
for the case when the system is linear, cost function is quadratic, and the inputs
and errors are gaussian. The linear optimal estimator minimizes the mean-square
estimation error with respect to the choice of a filter gain matrix. The estimate of
states is through a linear ordinary differential equation based on a system model
with the actual residual measurement errors driving the state propagation through
the optimal gain matrix. The covariance estimate is derived from linear ordinary
differential equation driven by the statistics of the assumed measurement errors
and disturbance inputs®. The dynamic system considered in Eq. 2 is repeated here
where the excitation is a white, zero-mean gaussian random process, and the matrix,
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10 st floor w/ LQR
==—2nd floor w/ LQR
sk RN Ist floor w/o control |
;7 N LTS — -~ — 2nd floor w/o control
L N e N
- \ /‘ ! \ ’ N
\g-/ 0 \ e \ 7/ N _ ) 3
=< \ // \ ; 7 N R o
\ / A - - -_-7
5+ -7
_10 | | | | | | | | |
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~ Oor
=
E
g
S-1f
_2 | | | | | | | | |
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Time (s)

Fig. 4. Simulation results for LQR control - (a) Floor displacements with and without LQR
control; (b) LQR force time history for the two floors

D =0.

x(t) = Ax(t) + Bu(t) + Ew (1)
y(t) =Cx(t)+v(t)

The known expected values (denoted by E(-)) of the initial state and covariance
assuming uncorrelated disturbance input and measurement are as follows:

(17)

E([X(O) - )A(O [X(O) - )A(()]T) = PO (18)

The disturbance input and measurement error are white, zero-mean gaussian pro-
cesses with spectral density matrices Q. and R, defined as follows:

E(w(t)) = E(v(t)) =0
E(w(t)w?(t)) = Qc(t)o(t — 7) (19)
E(v(t)vT () = Re(t)d(t — 7)

The linear estimator is optimal in the sense that the variance of the state estimate
error is minimized on the average (expected value). Based on the optimization®,
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the covariance estimate is found by solving the following estimator Riccatti matrix
equation® for P,:

P.=AP,+P.AT + EQ.ET - P.CTR, 'CP,

20
Pe(o) =Py ( )
The optimal filter gain equation is®,
K.=P.C’R_" (21)
The state estimate is found by solving the following equation®:
% = A%+ Bu+ K.[x — C¥] (22)

%(0) = %o
For stable filter estimates, R ! should be positive definite. If (A, C) is detectable
(system’s unstable subspace is contained in the observable subspace) and (A, Q,.) is
stabilizable (system’s unstable subspace is contained in the controllable subspace),
then the filter known as Kalman Bucy Filter (KBF) is stable and K. approaches a
steady state value, which is an unique positive semi-definite solution of the algebraic
Riccatti equation®

AP, +P.AT + EQE” - P.CTR, 'CP. =0 (23)
If (A, Q.) is controllable, then the solution is positive definite.

3.3 LQG Method

From the LQR method, it is seen that the optimal control for a linear system with
a quadratic performance index is a linear feedback of the state variables. From the
KBF, the estimates of the state variables can be obtained from noisy measurements
of linear combinations of the state variables, using a filter that is a model of the
system and a feedback signal proportional to the difference between the actual and
estimated measurements. The LQG method involves the combination of the KBF
optimal estimation filter and the optimal deterministic controller. This optimal
feedback controller is combined in the ensemble average sense, for linear-quadratic
problems with additive gaussian white noise. Consider the following state equations:

x(t) = Ax(t) + Bu(t) + Ew (t)

v (1) = Cx(t) +v (1) (24)

For this system, using the separation principle®, the controller is designed using
the LQR method with the states estimated using the KBF. The estimated states
are used for the controller design as though they are the exact states of the sys-
tem. In other words, the LQG method involves the minimization of the quadratic
performance index,

J= E[/ (x"Qx +u"Ru) dt] (25)
0
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under the constraint imposed by the equations of motion. The solution to this

problem is®:

u=—-Kx(1)

x = A% + Bu + K, [x — C%] (26)

If (A, B) is stabilizable, (A, Q) is detectable, (A, C) is detectable, and (A, Q,) is
stabilizable, then the closed loop system using the LQG control is stable. The order
of the resulting controller is the same as the order of the plant. The control and esti-
mation parts are derived separately and then combined in the LQG implementation
as they possess the certainty-equivalence property®.

e Example 2: The structural system considered in this example is the same
as in Example 1. The objective in this example is to show the performance
of the LQG controller using the measurements of all states with additive
Gaussian white noise and with an external excitation being uniformly dis-
tributed white noise. In order to design the controller, the estimator gains
are computed first as shown in Egs. 21 and 23. The estimator gains are
computed assuming that the input excitation and the measurement error
are zero mean Gaussian random processes with variances 1 and 0.01 respec-
tively. The gains of the estimator are given by,

0.0094 0.0147 0.003 0.0172
0.0147 0.0237 —0.0167 0.0005
0.0003 —0.0167 4.1573 5.5093
0.0172 0.0005 5.5093 8.9965

K. = (27)

The actual and estimated states computed using the estimator gains in
Eq. 27 are shown in Fig. 5. The controller gains, K computed in Eq. (16)
are used together with the estimator gains in Eq. 27 to design the LQG
controller as shown in Eq. 26. The results of the simulation with and without
the LQG controller for the structure under uniform white noise external
disturbance and a Gaussian distributed additive noise of variance 0.01 are
shown in Fig. 6.

From Fig. 6, it is clear that the LQG control performs well under the broad-band
excitations considered in this example. However, the performance of the LQG con-
troller for structural control applications under narrow-band earthquake excitations
is only marginal. The performance of the LQG controller can be improved by aug-
menting the state equations using the frequency information of the earthquakes as
shown in the following section.

4 Control in the Frequency Domain

The time-domain control techniques introduced in section 3 involve the minimiza-
tion of states and control input in the form of a quadratic cost function subject
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Fig. 5. Actual states (solid lines) and their respective estimates (dotted lines)

to dynamic constraints. Earlier, we had introduced the concept of a transfer func-
tion in Eq. 7 that is obtained by taking a Laplace transform of the time-domain
equations. If the variable s in the transfer function is replaced by jw, where, w
is the circular frequency, the transfer function can be regarded as the frequency
response function. Transfer functions and frequency response functions determine
the input-output relationships in the frequency domain and the mapping from the
time domain to the frequency domain can be achieved through the transformation
techniques described earlier. These transformations are applicable to linear systems
only and are not valid for nonlinear systems. From the structural control perspec-
tive, this restriction is not severe, as most of the structures are designed to operate
in the linear range and the localized nonlinearities for many structural systems can
be linearized through a variety of techniques available in the literature. Frequency
domain control techniques are particulary advantageous for structural control, as
the frequency information from the disturbances such as earthquakes and wind can
be incorporated in the control design formulation. The main objective of the fre-
quency domain control is a minimization of a norm of a transfer function between
the input and output as described in the following sections.
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Fig. 6. States with LQG control (solid lines) and their respective uncontrolled time histories
(dotted lines)

4.1 Hy and Ho, Norms

For a stationary random process, the power spectral density’ S,, of the output z,
from a frequency response function H, subjected to an input d, of power spectral
density, Sq4(w), is given by

S:(w) = H(jw)Sa(w)H" (jw) (28)
where, the * indicates the conjugate transpose of H. The root mean square (RMS)
value of the output, z is,

00 1/2
1 . ./
Iol e = | 7 [ tracelFt () Su (@) B" () ds (29)
—0o0

For the case when the input d is a unit intensity white noise signal, the Ho norm

of the transfer function is defined as,

. 1/2

lzll,.. .= iﬂ /trace[H(jw)H* (jw) dw (30)

ms 2

— 00
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Thus, the 2 norm of the transfer function is the RMS value of the output, when the
input is a unit intensity white noise.

The singular values of any matrix, A, denoted o;[A], are the non-negative
square-roots of the eigen values of A*A, where, A* is the transpose of the complex
conjugate of A, given by

g; [A] = )\i (A*A) (31)

The smallest and the largest singular values are denoted by o [A] and & [A] respec-
tively. In terms of the singular values, the 2 norm can be written as
1/2

I8, = | 5 [ Do oulH ()P 32)

where, n is the smallest dimension of the matrix H.
The oo norm of a transfer function matrix, H is defined in terms of its singular
values as,

sup

Hll,, = " @[HGw)]) (33)

This means the co norm is the supremum of the maximum singular value over all
frequencies. The 2 and oo norms of H, is denoted by Hs and H, respectively.

4.2 Frequency Domain Representation

The basic block diagram used for representing the architecture in the frequency
domain control is shown in Fig. 7. The generalized plant is represented by G and

—5 Z 5
G y
—y

K [€—

Fig. 7. Basic block diagram for frequency domain representation

the controller by K. The measurement outputs are represented by y, the outputs
to be regulated by z (may or may not be measured), external disturbance by w,
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which includes the earthquake excitation and sensor noise, and the control input
is represented by u. Frequency domain representation enables the frequency infor-
mation of the excitation and the regulated variables to be included in the system
representation. In order to accomplish this within the framework of the standard
block diagram representation, the frequency weighting functions are augmented in
the generalized plant. A more detailed description of the procedure is introduced in
the following sections. For all the discussions to follow, unless otherwise noted, the
system G is assumed to be Linear Time Invariant (LTT).

In order to explain the main idea of frequency domain control methods, the
partitioned form of the transfer function of the plant shown in Fig. 7 is,

Gyw Gyu
The subscripts in the transfer function components of the partitioned matrix
denote the input-output pairs. For example, G, denotes the transfer function be-
tween the control input u and the regulated output z. By a simple rearrangement

of the input-output equations, we obtain the transfer function for the disturbance
input, w to the regulated outputs, z as:

sz = sz + quK(I - GyuK)ilew (35)

The central idea behind the frequency domain control methods is to minimize the
norm of H,,,. Depending upon whether the 2-norm or the co norm that is mini-
mized, the method is named accordingly as Hy or H.

For the purposes of structural control, frequency dependent weighting functions
are introduced in order to design a controller that is effective for the range of
frequencies in the excitation, and the frequency of responses of interest. In order
to accomplish this within the frame work of the standard block diagram shown in
Fig. 7, the weighting functions are appended to the plant system. The resulting
plant is typically of a higher order than its original. However, the larger order is
usually not a serious limitation as structural systems may be reduced using model
reduction techniques. A schematic representation of the augmentation is shown
in Fig. 8. The weighting functions are represented by W1 and W2. W1 is a filter
whose output represents the excitation of interest. This filter is designed to simulate
the frequency characteristics of the excitation (for example, earthquake) and W2
weights the structural responses at the frequencies of interest to be regulated. The
resulting augmented system is represented by G, (s) and contains both the weighting
functions and the plant, and replaces the plant system, G(s) in Fig. 7. The weighting
procedures are described in detail in Example 3.

4.8 Equivalence of LQG and Hs Optimal Control

The steady-state LQG control is equivalent to an Hs optimization problem as it in-
volves finding a feedback controller that internally stabilizes the closed-loop system
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Ga(s)

W Z
> W1F—> 3 \V >
1 G(s) 2
z K(G) [ =

Fig. 8. Augmented System

and minimizes the 2-norm as shown in Eq. 30. Now, let us consider the quadratic
performance function for LQG control given by®,

J=EFE [xT (0) Qx (00) + u(o0)TRu (00)] (36)
which can be written as,
sl mner|[TES))

In the above equation, x and u denote the states and control inputs respectively,
and oo represents the steady-state condition. Minimizing Eq. 37 is equivalent to a
2-norm minimization and hence, LQG and Hs optimization can be regarded as
equivalent under the aforementioned conditions.

5 H., Optimal Control

The discussion so far regarding the Hy and H., controllers have been primarily
in the frequency domain, where transfer function matrices have been presented
to describe the system and the controller. However, in order to compute the H
controller, the dynamical system in Eq. 2 is cast in the state space form. The state
space equations written in the standard form® as follows:

x=Ax+ Biw + Bou
z = C]_X + D]_]_W + Dlzll (38)
y = C2ox + D21w + Da2u

In Eq. 38, D11, D12, Do, Doy, C; and Cs are mapping matrices of appropriate
dimensions. The basic block diagram® is shown in Fig. 7. The generalized plant is
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represented by G and the controller by K. The measurement outputs are represented
by y, the outputs to be regulated by z, external disturbance by w, which includes the
excitation and sensor noise and the control input is represented by u. The purpose
of the H, control method is to minimize the co -norm of the transfer function from
input w to regulated output z, G, and is written as

G (5)]loc = SUP [0 (G ()] <7 (39)

o is the largest singular value of the transfer function, sup denotes the supremum
and ~ is a positive bound for the norm. The solution for the controller for the

generalized regulator problem!?!1:12 is given by
u=—-Fy X% (40)
and the state estimator is given by
X =A%+ Bau+B;Ww + I Loo(y — §) (41)
where,
W=7 B{K%
and

y =7 "D21B1 Kook + Ca%

The term, w and y are the estimates of the worst case disturbance and output
of the estimator. There exists a stabilizing controller if and only if there exists
positive semi-definite solutions to the two Riccatti equations for K, and N, and
the condition

p(KooNy) < 72 (42)

where p(A) is the spectral radius of A which is defined as the largest singular value
of A. The controller written in the packed matrix notation is

Ay I L
Kg — o0 o0 o0 4
sub (3) |:_Foo 0 :| ( 3)
where,
Foo = (DlzTD12)_1(Bg‘KOO + D12 TCl)
Lo = (NoCI +B;DI)(Dy1 D12 7)) !
and

Joo = (I -7 °NgKs) ™!
The terms, Ko, and N, are the solutions to the controller and estimator Riccatti
equations given by
A — BZﬁIZD]TzCl ’)/72]31]3%1 — Bzﬁlng

K. = Ric - . T
elreN — (A - B2D12D1T201)

(44)
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(A — BlDzlﬁzlcz)T '7720%1]31 — CgTﬁzlcz ) (45)

N p— ) o~ o~ —~ o~
o = Ric ( _B,B7 _ (A - BngleCz)

Cy = (I . D12]512D1T2) c,
B, =B, (I _ Dlef)21D21)

- -1 ~ —1
D2 = (D{;D12) ;D21 = (D21D3,)

The computations involving the controller and estimator gains are performed using
MATLAB! in Example 3.

e Example 3: The objective of this example to illustrate the frequency do-

main augmentation techniques and design of frequency domain controllers
for a simple single degree of freedom (SDOF) system subject to earthquake
excitation. This SDOF system can be thought of as an idealized base iso-
lated structure3. Frequency dependent weighting matrices are chosen for the
control design incorporating the outputs and input characterizations. Four
types of control designs using both Hs and Hs, methods are considered (i)
No weighting filters, (ii) Output weighting filter only, (iii) Input excitation
filter only, and (iv) both output and input excitation filters. Comparison of
the responses for all cases in the frequency domain and some general obser-
vations regarding the choice of weighting functions are made. The method
of augmenting the system equations with the weighting functions is also
presented for each case. The SDOF system chosen for this example has the
following system properties:

A 0 1
| —6.317 —0.0503 (46)
T
B=[01] =-FE
The control objective is to minimize the displacements, which is one of
the states of the system and the control energy input. The measurement
consists of the noisy measurement of the velocity at all times. The plant
with the weighting filters W1 and W2 is shown in Fig. 9. The vector w
consists of the earthquake excitation vector and the measurement noise,
T
w = [w v}
and the regulated quantities are
T
z = [Zl 2’2}

which are the base displacement and the control input respectively.
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Fig. 9. General augmented system used in the Example 3

Augmentation with W1

In order to better inform the controller about the frequency content of the
ground motion, a input shaping filter is incorporated into the system. Fig.
10 shows the magnitude of the filter as well as the frequency content of

10

10

10

Magnitude

10”

10

—4 . . . . e . .
107" 10° 10
Frequency (Hz)

10

Fig. 10. Frequency content of input excitation filter (solid line) and fault-normal components of
Northridge earthquake (Sylmar-dashed line and Rinaldi-dotted line)
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Northridge earthquake (fault-normal components of Sylmar and Rinaldi
records). The transfer function of the form,

2
2¢gwgs + wy

w1 =
(s) 52 + 264wy s + wg

is chosen to represent the filter that characterizes the input excitation. In
state space, the equations for the shaping filter, whose input is white and
output are the ground accelerations can be written as:

).(f = Afo —l—BfU)

4
dg = Cfo ( 7)
where,
0 1
Ag= {—cﬂ —2¢,w ]
gT 'had?) (48)
By=[01

/ ]
Cr= [—WS _2§9W9]

Here, w,=27 rad/s and ¢,=0.6. Augmenting the state space equations with
the filter, we get

x| _[AEC,][x)_[B], . [0],
Xf 10 Af Xt 0 Bf (49)
X, = Ayx, +Bou + E w

The matrices in the state and output equations can be written as

A=Ay
B, = [E, 0];B; =B,; D11 = 0;Dy = B;

(50)
Clz |:10:| ;CQZ [010} ;D21= [O 1};D22:O.

00

Augmentation with W2

The SDOF system is sensitive to disturbance in the vicinity of its natural
frequency. At higher frequencies where the structure is often not sensitive to
disturbance, we want to lower the control. Hence, the control effort should
roll-off at frequencies slightly greater than the system’s first natural fre-
quency. In order to accomplish this, a first order weighting function shown
in Fig. 11 of the form,
a
s+a

is chosen. Here, the parameter a=3.0 rad/sec determines the roll-off fre-
quency. In state space, the output filter equation can be written as,

W2 =

X, = AoX, + Box (51)
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Fig. 11. Weighting function W2

Yo = Coxo (52)

Where, x, are the states of the filter, y, are the outputs, and,

-3 0 20
AO_[O_3],BO_{02],andC0—[1.50] (53)

As with the input excitation filter, the plant is augmented with the filter

as follows:
{;}: [ﬁﬂ {;}+ []3]“ [ﬂw (54)

Xg = AyXxy +Bou+ E w
The matrices in the state and output equations can be written as

A:Aa;
B

1 = [E, 0];By =B,;Dy; = 0;Dy, = B; (55)

};CQ= [010];D2; =[01];Dg =0.
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Augmentation with both W1 and W2

The augmented state equations when both the weighting filters, W1 and
W2 are introduced, can be written as follows:

X A, 0 Xq B. E.
8 St F v o I
Xaa = AgaXaa + Baat + Eqqw
The matrices in the state and output equations can be written as
A=Au;
Bi = [E. 0];Bs = Byo; D1y = 0;Dyp = B;

0150
Cl_[o 00

(57)
};sz [010];Ds; =[01];Dg =0.

Frequency Domain Response of the SDOF System

In this example, we assume that one of the states, namely, the velocity is measured.
The displacement of the system is to be controlled. The singular value plots of
the transfer functions between the input excitation, w and the regulated output,
namely, the displacement, z1 is shown in Fig. 12 and Fig. 13 for both Hs and H
controls. The closed loop transfer function for both cases, namely, Hs and H., have
been generated using MATLAB!3.

Fig. 12 shows the singular value plots for the transfer functions for the case of Hs
control in all the four cases; namely, without weighting filters, with output weighting
filter, W2 only, with input excitation filter, W1 only, and both W1 and W2. From
Fig. 12, we can see that the case with both input and output filters minimizes the
response at higher frequencies. However, the responses corresponding to the peak
are not minimized. In comparison, from Fig. 13 we can see that the H., control
minimizes the peaks for all cases. As with the Hs case, the presence of both W1 and
W2 leads to better response reductions; however, in the case of H.,, the response
reductions occur at all frequencies. It is clear from these figures that the H., control
is more effective in suppressing the response peaks of the systems compared to the
Hs control. In other words, Hs control minimizes the responses in an average sense
and H., control minimizes the worst case responses. This behavior is very important
for the case of structures whose responses are dominated by their fundamental mode,
as filters can be designed specifically taking this effect into consideration.

6 A Brief note on Robustness of Hy and H,, Methods

No discussion on the Hs and H,, methods is complete without reference on the
robustness of these methods to model uncertainties. A controller that functions
adequately for all admissible perturbations is termed robust. Robustness can be
defined in terms of stability or performance. A control system is said to be robustly
stable if it is stable for all admissible perturbations. A control system is said to
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Fig. 12. Magnitude of the transfer function, H,1,, for the case of Ha control

perform robustly if it satisfies the performance specifications for all admissible per-
turbations. The stability of feedback systems is determined in terms of gain and
phase margins for gain and phase perturbations. In the field of optimal control, two
types of uncertainties are considered in the control design: (i) Structured uncertainty
where there is information available about the uncertainty, which will restrict the
uncertainty to a section of a model process; (ii) unstructured uncertainty where no
information about the uncertainty is known except the upper bound of its magni-
tude. There has been significant research conducted in the areas of structured and
unstructured uncertainties®. Unstructured uncertainty is modeled by connecting an
unknown but bounded perturbation to the plant. The unstructured uncertainty
is analyzed by placing them within a common framework discussed in the ear-
lier sections. The system so formed now will have three inputs and three outputs.
Combining the nominal plant, G(s) with the feedback, K(s), results in a system
consisting of a nominal closed loop system, N(s), with the perturbation, A(s), in a
feedback loop as shown in Fig. 14.

The above feedback system, for the bounded unstructured uncertainty, ||A] < 1,
is internally stable for all possible perturbations provided the nominal closed loop
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Fig. 13. Magnitude of the transfer function, H.1,, for the case of Hs control

system is stable and

||dewd||oo =P {0 [Neyw, (W)} <1 (58)

This is called the small-gain theorem and it used to test for robust stability with
respect to bounded perturbations. Eq. 58 is a necessary and sufficient condition for
internal stability with respect to unstructured uncertainty.

Structured uncertainty arises when a plant is subjected to multiple uncertainties
such as a number of uncertain parameters or multiple unstructured uncertainties.
For this case, the structured uncertainty can be written in the block diagonal trans-
fer function form:

As) = RN (59)

where, n is the number of uncertainties and A(s) represents the individual uncer-
tainties applied to the plant. In the standard block diagram notation, the structured
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Fig. 14. Unstructured uncertainty model for robustness

uncertainty, A(s) is represented in the same way as in Fig. 14. The uncertainty is
scaled so that their infinity norms

[Aillee < L [[A2floc < Livvs [[Anfle 1= [[A]loe < 1. (60)

The general feedback system given in Fig. 14 is stable for all possible perturbations
A(jw) € A
and
[AGw)lleo <1,
if and only if the nominal closed loop system is internally stable and

o7 {na [Nzpw, (G0} <1 (61)

where, px is called the structured singular value and given by

1

“(N) = —
1A (N) min [0 (A)] det I+ NA) = 0]

pa(N)=0 if det(I+NA)#£0 ¥V AcA

The determination of robust stability is dependent on the computation of the struc-
tured singular value and can be impractical for a large number of cases. Hence,
bounds on the structured singular values are generated and they provide good es-
timates of the structured singular value. In the case of performance robustness, the
robust performance problem can be converted into an equivalent robust stability
problem by appending an uncertainty block to the system in Fig. 14. The system
meets the performance robustness objectives if and only if the new augmented sys-
tem is robustly stable. Detailed description of robustness is beyond the scope of this
chapter, and the readers are referred to books on robust optimal control®!0:!! for
a comprehensive discussion.
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7 Concluding Remarks

The main idea of this chapter is to introduce the concepts of optimal structural
control in the time and frequency domains. Augmentation techniques for structural
control design where the frequency characteristics of excitations are introduced.
Numerical examples are presented to illustrate the salient features of the control
design. This chapter, by no means, is intended to provide an exhaustive review
of the field of optimal structural control. Instead, it is aimed at providing a brief
introduction to optimal structural control whose roots are strongly embedded in
optimization and modern control theory.
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CHAPTER 9

OPTIMIZATION OF SYSTEMS FOR ACOUSTICS

Ashok D. Belegundu and Michael D. Grissom

The Pennsylvania State University, University Park, PA 16802
E-mail: abelegundu@psu.edu

An experimentally verified approach for the optimization of systems for
acoustics with passive structural modifications is given. The method is general
enough to handle a variety of structural modifications and structural
impedances. Following some introductory acoustics and vibrations concepts,
the optimization approach is formulated. Governing equations and solution
methods are given, and finally several example applications are shown.

1. Introduction

This chapter discusses passive optimization techniques for minimizing or tuning
acoustic response. The focus is on relating direct experience of our group, in the
last ten years, on vibrating structures that are harmonically excited and which
radiate sound into the open air. Work carried out here has been experimentally
verified. A survey of all work done in this area is not attempted. The aim here is
to share our important experiences in designing quiet structures. This chapter
does not address noise in a cavity such as an automobile interior, nor flow
induced noise such as jet noise, fan noise. Active noise cancellation techniques
are also not addressed. Figure 1 shows some applications for noise reduction that
involve vibrating panels. Other examples are radiated noise from engine valve
covers, oil pans, timing chain cover plates, and cylindrical pressure vessels.
Passive approaches involve attaching point masses, stiffeners, and vibration
absorbers (point mass/stiffness/damper) to the structure (Fig. 2).

Recently, attaching thin acoustic cavities has shown potential (see Section 6).
In high impedance structures made with thick metal plates for instance, we
surround the noise source with a cover and attach absorbers to the cover (see gear
box in Fig. 3). The cover is an air-tight enclosure made of thin sheet metal or

245
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composite material. There are also passive devices to reduce noise in acoustic
enclosures. Helmholtz resonators (Fig. 2) and wave guides are popular among
these. Helmholtz resonators have been used in spacecraft fairings as also in
motorcycle intake systems.

Computations are based on the use of finite element analysis for vibration
analysis and a wave superposition-boundary element method for acoustic
analysis. These codes are integrated with non-gradient optimizers (simulated
annealing, differential evolution, and random search). Adopted objective
functions include kinetic energy, sound power, and a multiattribute value
function.. This work is targeted up to medium frequency bands. At very high
frequency bands with high modal density, it may be argued that techniques such
as SEA (statistical energy analysis) are better suited than finite or boundary
analysis.

Fig. 1. Examples of Noise Sources involving Vibrating Panels: (a) washing machine, (b) boat’s
motor housing or cowling, (c) Trim Panel in aircraft — current 120 dB interior noise levels must be
reduced to about 70 dB with constraints on thickness and weight.
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Fig. 2. Passive devices that may be attached to a vibrating structure.
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Fig. 3. Complex noise source application to be enclosed and then attaching absorbers to the cover.

2. Definitions and Introductory Concepts

The simplest vibrating structure is a single degree of freedom (1-DOF) sprung
mass. A free-body diagram of a 1-DOF sprung mass with base excitation is
shown in Fig. 4.
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Fig. 4. Free-body diagram of 1-DOF sprung mass with base excitation.

The base impedance, transmitted force (f;,) divided by velocity at the base, of this
system is given by Eq. 1 in terms of the mass (M), stiffness (k), and damping (»)
of the system.

i, (M, +ink+k)

ey

The impedance can also be expressed as in Eq. 2 in terms of the mass, absorber
natural frequency (®,), and damping.

i _—ioM,(1+in)

2

i 2)
ST A (1+in)
a)z

n

At o << o, the tuned absorber acts as a discrete mass on the base structure. At
® >> o, the tuned absorber acts as a discrete spring on the base structure. In the
vicinity of ®, the absorber has a spike in impedance that indicates that large
forces can result even with a relatively low base velocity. At this resonance, the
magnitude and width of the peak is determined by the mass and damping of the
absorber. Greater mass increases the impedance linearly. Greater damping
reduces the impedance but increases the bandwidth of the peak. It is these passive
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effects of mass, stiffness, and sprung masses that will be exploited to optimize
systems for acoustics.

The simplest sound sources are the monopole and the dipole. While they are
theoretical in nature, they form the basic patterns for more complex sound
radiators. A monopole can be conceptualized as a small sphere, with its entire
surface expanding and contracting in-phase. Acoustic waves radiate equally in
all directions from a monopole. A dipole is two closely spaced monopoles,
pulsating out of phase with one another. In contrast to the monopole, the sound
radiated from a dipole is very directive and, at low frequencies, is not a very
efficient acoustic radiator. The acoustic radiation of structures with complex
geometries is evaluated by replacing the vibrating surfaces with monopoles and
dipoles and solving their equivalent source strengths for the magnitude of the
vibration. This concept is used to evaluate acoustic response which makes
optimization of systems for acoustics possible for vibrating structures with
complex geometries.

Acoustic optimization objectives vary widely from application to application.
Practically, they are constrained more by the ability to measure them than the
ability to calculate them. Several of the more common are mentioned here, but
nearly all are based on sound pressure measurements. Sound pressure level
(SPL) is measured at a point with a single microphone (p), and is generally
reported in decibels relative to 2x107 Pascals in air (Eq. 3).

SPL (dB) = 20log;o( p/2x107) (3)

A single SPL measurement or calculation is usually not enough to
characterize the acoustic effect of a sound producing system. The SPL
measurement is also affected by surrounding structures, and it is often difficult to
isolate a system from its surroundings to obtain a good measurement. Two
objectives that are used to evaluate the overall effect due to acoustic energy flow
are sound intensity (I) and power (I1). Intensity is defined as the rate of acoustic
energy flow through a unit area, the pressure p times the particle velocity (v)
(Eq. 4).

I=pv 4
In practice, the real portion of the particle velocity is estimated by measuring
the pressure at two closely spaced microphones, and the intensity is time
averaged. The real part of the average intensity is reported in decibels relative to
1x10™"% W/m’.

Lyg(dB) = 10l0go(Lea/ 1x10™%) (5)
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Sound power is defined as the rate of energy flow through a surface that
completely surrounds the system of interest, or the real part of the intensity
integrated over that surface (Eq. 6).

n=(f1,,ds (6)
S

The sound power is reported in decibels relative to 1x10™ W.
T1(dB) =10log;,(I1/1x10™"?) (7

There are many other sound metrics, but they are nearly all based on the
previous three. In some situations, as in the aircraft trim panel in Fig. 1(c), the
objective is to maximize transmission loss through the panel. This is defined as
the ratio equal to the acoustic intensity incident on one side of the panel divided
by the acoustic intensity transmitted on the other side.

Other metrics consist of weighting the sound power, pressure, or intensity in
the frequency domain. The typical human ear responds more to some frequencies
than others, and responds to some combinations of frequencies differently than
others. The first model of a frequency dependence effect is to apply the A-
weighting curve to the sound pressure measurements. Other attempts to measure
sound quality include loudness, harshness, and annoyance metrics.

3. Optimization Problem Formulation

Optimization problems may be stated as minimizing an objective function f (x)
subject to constraints: g (x) <0, h (x) = 0. As noted above, masses, vibration
absorbers etc. can be attached to the structure (or a cover around the structure).
Thus, design variables for optimization relate to mass (m), stiffness (k), or
damping (c) of each attachment to the base structure. Often, variables are chosen
which are related to these. Details will be given below in Section 6.

3.1. Objective Function Formulation

Regarding objective functions, kinetic energy (KE) is minimized first, to obtain a
good starting point for sound power minimization. The KE is that of the original
structure excluding the vibration absorbers. The physics of sound in this context
is as follows. A structure can be vibrating significantly in a certain mode but still
radiate very little sound power. This happens when the mode is a weak radiator
where displaced volume velocity cancellation occurs as with the dipole source. In
Fig. 5 below, mode (a) is a strong and (b) is a weak radiator, respectively. When
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the objective function is defined over a broad frequency band, the optimized
designs resonate more as weak radiators.

\ \ 1 f/
N /
N / N
f y <@y
(a) (b)

\ /
T

Fig. 5. Vibration Mode (a) is a strong and (b) is a weak -- radiator.

When KE is minimized by the optimizer, the energy is either transferred to the
added absorbers, masses, and stiffeners or the structural impedance is increased
at the forcing locations. Generally, total mass of attachments is constrained to be
less than 10% of the original weight of structure.

Since all the metrics considered (KE, II, ...) are frequency dependent (Fig. 6)
each must be formed into a scalar objective function for optimization. Owing to
light damping that is found in structures, we may add the response at resonant
frequencies only.

KE,,

KEy,

Fig. 6 Objective function for broadband frequency with resonant frequencies.

Thus, KE, = KE;, + KE,, + KE;, + ... will represent total energy at ®,. Summing
KE, + KE, + ... over the band of interest will serve as a good measure for total,
integrated, energy in an harmonically excited system. We may represent this as

W=>Ww) ©)
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From Parseval’s theorem, this measure equals the average kinetic energy in a
time period. Sound power calculations follow similar lines as KE as far as
summing peaks.

Recently, a multiattribute objective function based on ‘conjoint analysis’ that
is commonly used in the business community has been shown to be effective.
The objective is based on multiple attributes: sound power over a frequency
band, weight, cost, and amount of damping. A special case is the additive value
model when certain assumptions are met:

V=2v(f) )]
where V is the objective, v; is a consistently scaled function value associated with
the level f; of attribute i.

3.2. Procedure for Optimal Design of Quiet Structures

Most important in optimization is the need to perform reanalysis, i.e. analyze the
structure with changing parameters in the optimization loop, without re-
computing modes of the original structure (which is a large finite element
model). Figure 7 below shows the design flow in computer-aided design of quiet
structures including the multiple attribute objective function. Note the
importance given to keeping a minimum amount of computations within the
iterative optimization loop.

I Define Geometry/Materials I

| Modal Analysis of Base Structure |

l Initial Acoustic Analysis I

l Conjoint Analysis I

I Forcing Function I

)l Calculate Frequency Response l

I | Calculate Objective |

I Modify Attachment Parameters
Including Rotatory Inertia Effects
| Finished |

Fig. 7. Flowchart for computer-aided design of quiet structures.
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Before getting into details of governing equations, measurements and
examples, the general design approach, of which Fig. 7 above is only a part, is
outlined below for a noise reduction problem. Note: “Structure” here is defined
as the original structure or, in cases when the original structure has high
impedance (e.g. made of very thick plates), of a cover structure around the
original structure. Structure does not include the attachments (i.e. the absorbers).

Task 1. The power spectrum of the sound power radiating from the noise
source is experimentally determined to identify the frequency band within which
the sound power levels are high at the operating condition. Within this band, the
kinetic energy KE and sound power I1 may be discretized as W = ZW((’):) Nl
is obtained by summing the power at each frequency over the frequerfty interval.
Task 2. Conduct modal analysis experiments of the structure.

Task 3. Develop a finite element model and validate the model by comparison
with the modal analysis experiments.

Task 4. Develop a forcing function. White noise is a good choice when there is
uncertainty. In this case, every node is excited normal to the surface with a load
of ¢ Newtons with random phase, where ¢ may be determined to match sound
power prediction with measured values. In the case when loading is due to
acoustic excitation, nodal velocity measurements have to be taken and used to
define an equivalent forcing function, through, say least-squares technique.

Task 5. To validate the acoustical model, compute the sound power radiated
from the structure (or cover) based on results from the numerical model and the
physical model to insure their agreement.

Task 6. Optimize the structure using tuned absorbers or other attachments.
Task 7. Experimentally validate the optimized design.

4. Governing Equations and Solution Methods

As discussed in the previous section, at the core of any method of optimization of
systems for acoustics is the reanalysis method. In this case, the reanalysis
method involves the recalculation of the acoustic radiation of a forced vibrating
structure with modifications. The most general modification is a sprung mass
(tuned absorber, Fig. 4) as they add additional degrees of freedom, so the
reanalysis is presented in terms of adding tuned absorbers. This section begins
with a description of the vibration analysis of a structure, then describes two
possible vibration reanalysis methods, and finally gives the acoustic analysis
method.
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4.1. Vibration Analysis of Base Structure (Without Modifications)

The first step is to determine the eigenvalues and eigenvectors of the unmodified
structure. We denote @, = matrix whose columns are eigenvectors and A, =
diagonal matrix whose elements are eigenvalues. A natural frequency in rad/s is
obtained from the eigenvalue as @w= ﬁ . Dimension of the matrix ®, is
(number of degrees of freedom, number of modes in the basis). Modal
information can be found from a finite element model or from experiment. Here
we use finite elements to determine modal response. The basic equations for this
are given below.

Equations of motion of the forced vibration for a finite element representation
of a hysteritically damped base structure are

m %+ [k, +ink,|x=f, (10)

where m,k,,7 ,fo, and x are the mass and stiffness matrices, the material loss

factor, and the forcing and response vectors, respectively. Assuming harmonic
excitation and response, we have

—o'm X +[k, +irk,|X =F, (11)

where F( and X are the complex amplitudes of the force and response vectors. If
the forcing vector and damping are set to zero, the normal modes can be found by
solving the eigenvalue problem

k,®, =Am,®, (12)
The eigenvectors satisfy
Dk, ®, =4, ®/m®, =1 (13)
Using mode superposition, the forced response of the structure can be given as
X=>q, ®/=0.q (14)
j=1

where q is a vector of modal ‘participation factors’ or modal ‘coordinates’ given
by

B ®/'F
" Forrarinz]

q j=l..m (15)
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0
ink
Other quantities such as kinetic energy and radiated sound power can now be
computed.

At the kth resonance, whence w = @, , and A= @2 , we have ¢ ;=

4.2. Analysis of Modified Structure by the Impedance Method

As discussed in the introduction, a few different methods exist for dynamic
analysis of the structure with vibration absorbers attached to it. Of these, the
impedance method and the reduced eigenvalue method are most attractive, since
in each of these Eq. 12 is solved only once. We first discuss the impedance
method. The reanalysis problem is formulated in terms of added impedances as

m %+ [k, +ink,x=f, =f, —zx (16)

where f;, is the forcing vector, and z is the impedance matrix of the modification.
The impedance matrix is diagonal if each modification is independent and
discrete as is the case with simple spring-mass absorbers. For example,
impedance for a simple mass m takes the expression z = i@m, and for a spring-
mass system with parameters &, m takes the form

iwmk
1=—-. 17
k-ma’ an
Replacing f, by f, —zX, we have
X=0,[ 0’ +(1+in)4, | ®!(F, —icxX) (18)

Defining a diagonal matrix A = [— @ + A (l +i 77)]_1 , we can write the solution

X =[l+io® A’z |'® AD'F, (19)

where z. is the matrix of impedances and @ is the matrix of eigenvectors
corresponding only to (non-zero) impedance locations. Solution to Eq. 19 gives
the response only at the impedance locations, X, . In Eq. 19, only a small pxp
matrix, were p is the number of impedance (or absorber) locations, is inverted for
each desired frequency. Response of the modified structure at a general degree
of freedom (as opposed to where an absorber is attached) is obtained by

X=®,q. =P AP, (F,-iwzX,) (20)
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where X, is the vector of X, found through Eq. 18 augmented with zero values at
the zero impedance locations, and (, is the vector of modal coordinates of the
modified structure.

The computational procedure may be summarized as follows. Given a set of
absorbers with known locations and parameters, z is first defined. Then, for the
specified frequency @, Eqs. 18 and 19 are solved to obtain the displacement
amplitude of the base structure X(@). Velocities are obtained fromX =i wX.
Other quantities such as kinetic energy of the base structure are readily
determined from the velocities.

4.3. A Disadvantage with the Impedance Method For Estimating Broadband
Response

Two main difficulties exist with the impedance method. One is the derivation of
expressions for impedance, z, that incorporate rotatory inertia of the absorbers
(as a result of base rotation). The other difficulty is as follows. The impedance
method yields response at a specified frequency . Peak values of kinetic energy
or other performance metric which occur at resonance frequencies not known
apriori are not easily determined. The kinetic energy must be calculated at
enough discrete frequencies that the peaks (or sum of peaks or an integral
measure) over the broadband are accurately captured. The following figure
illustrates the difficulty just mentioned. The kinetic energy of the base structure
(Fig. 8) is computed and plotted at various frequencies for the given resolution.
Only a single peak is included in the frequency band for illustration.

KE of the Structure vs. Frequency
T T T

} —— Peak with low damping
—g— Constant resolution sweep

I I I I I I I
40 45 50 55 60 65 70 75 80
Hertz

Fig. 8. A constant resolution sweep missing a peak in the kinetic energy.
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Evaluation of kinetic energy at equal increments in frequency misses this peak
value. For low structural damping, as is generally the case, extremely small steps
must be used, and even this will not be accurate. Noting that small increments
mean more computation, the problem of determining broadband response now
becomes evident. This problem has not received much attention in the past as
absorbers were used to target only a fixed frequency. Use of distributed tuned
absorbers for broadband energy/sound reduction has exacerbated the problem of
determining multiple response peaks.

4.4. Reduced Eigenvalue Reanalysis Method

As before, let My and K, refer to the mass and stiffness matrices of the base
structure without absorbers. An absorber is described by its own mass and
stiffness matrices M,,, and K,,,. Some degrees of freedom of these matrices
coincide (shared) with those of base structure where they are attached, while
other degrees of freedom are independent. Thus, the modification mass and
stiffnesses of the absorbers may be partitioned as

Am m, Ak k,
My, =| , K, = (21)

m, m, k! k.,

where Am is the added mass matrix at the shared degrees of freedom, m, is the
added mass matrix at the new degrees of freedom, m, is the coupling mass
matrix, and similar descriptions for the stiffness submatrices. The modification
element matrices are assembled into the base structure’s mass and stiffness
matrices as

m,+Am m, |(x,] [(I+in)k,+Ak k, |(x,] (£,
T .ot T = (22)
m, m_||X, k, k. ||x, 0

Harmonic excitation, response, and modal superposition as defined for the
unmodified structure is assumed. As stated earlier, attachment of small vibration
absorbers allow us to assume that response of the base structure with additions
can be represented in the original modes. Thus, modal superposition parallels
Eq. 14 for the unmodified structure, but with added terms from the modifications:

{;} :ﬁ) ﬂ{;} @3)
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Equations 21 and 22 are combined to give Eq. 23

{_w{moffAm ma}+{(l+zf7)kTO+Ak kaﬂ[cbo OHq}:{FO} o
m, m, k, k. || 0 I|X, 0

Both sides of Eq. 23 are pre-multiplied by the modal matrix in Eq. 22, and the
result is simplified by taking advantage of the orthogonality conditions (Eq. 25):

{_ " {I +®Amd, ®'m, } N {(1 +in)A, + ! Akd, <1>§kdﬂ { q } _ {cl)gFo}

m/®, m_ k!®, k. X. 0
(25
Equation 25 can be denoted as
[— a)21\7[+f<] X=F (26)
where
S q
X= 27

Equation 25 involves inverting a smaller matrix. Dimension of X equals m
number of modes used in Eq. 14 plus the number of independent degrees of
freedom associated with the absorbers. The solution of X from the above
equation can again be obtained using modal superposition. We set F=0 and
solve for the modes from

K¢/ =4, M§’ j=1..1m (28)
We then have
X=>y, ¢’ (29)
j=
where
o=| Do (30)
¢ = @

As in Section 2, we may use orthogonality properties to write the modal response

as
¢ F
= 31
Vi (—®" + 1) GD
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where 4, = (complex) eigenvalues of the modified structure with absorbers.
From Eq. 22, we have X, = ®, q, which together with Eqgs. 27, 29-31 yields
the response of the base structure degrees of freedom (i.e., excluding absorber
degrees of freedom) as

X, =Dy, o, (32)
where the modes of the modified system are given by
D =D, P . (33)
Eq. 22 can be written as
X, =®,[-@ +4,]' ®'F, (34)

which represents the forced response of the modified base structure.

While the impedance approach discussed earlier only provides X(@), and a
search technique is needed to determine the peak responses, in the reduced
eigenvalue approach each peak response is immediately obtained by setting the
real part of A,, = @,” in Eq.34. Further, we have derived an efficient technique for
generating absorber matrices, M,y and Kjps.

4.5. Sound Power Calculations

A full development of the boundary element / wave superposition method used
here is given by Fahnline and Koopmann. The method replaces each of the
(triangular) elements on a surface with point acoustic monopole and dipole
sources. The strength of each of the sources is found through a volume velocity
boundary condition:

u="0Us (35)
where s is the vector of source strengths (one for each element on the structure),
U is a matrix relating the source strengths to volume velocities and u is the vector
of volume velocities. The volume velocity produced by a single element i