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series editor’s note

when you see the acronym Cfa, you, like me, may be conditioned to think confirma-
tory factor analysis. This authoritative assemblage by von eye, mair, and mun will 
change your conditioned response. now when you see Cfa, you’ll know that it might 
refer to an equally powerful analytic technique: configural frequency analysis. like 
its continuous variable acronym, Cfa is a useful and potent inferential tool used to 
evaluate the expected patterns in two-way to multiway cross tabulations of frequen-
cies. Remember your two-way frequency tables from your first undergraduate intro-
duction to statistics? in that course, you were taught to calculate the expected value 
of each cell and then calculate a simple chi-squared test to see if the whole table devi-
ated from the expected pattern. when you have some ideas about what is going on 
with your data, such approaches to frequency tables are pretty dissatisfying, right? 
well .  .  . be dissatisfied no more. much as confirmatory factor analysis revolution-
ized how we examine the covariations between two or more continuous variables, 
configural frequency analysis revolutionizes how we examine the cross-tabulation of 
two or more count variables.

Cfa models allow you to identify and test for cell configurations in your data that 
are either consistent with or contrary to your hypothesized patterns (the types and 
antitypes of Cfa). These models are flexible and powerful enough to allow you to 
control for potential covariates that might influence your observed results. They can 
address questions of moderation and mediation. They can be applied longitudinally. 
They can include predictive models. in fact, the variations in how Cfa models can be 
used indicate that Cfa models have matured to the level of a general multipurpose 
tool for analyzing categorical data.

von eye, mair, and mun have written a masterfully balanced book. They have pro-
vided a resource that is ideal for both the uninitiated and the Cfa expert. The novice 
will learn precisely why and how Cfa can unlock the mysteries of categorical data. 
The expert will find a state-of-the-science reference for all the new developments and 
advanced extensions that have emerged in the literature on Cfa over the last decade 
or so. given that this authorial team has been significantly responsible for many of 
those new developments, you’ll feel well connected to the “source” of knowledge.

The accolades from reviewers of this book are uniform in their appreciation. i’m 
confident you’ll join the chorus of appreciation when you tell your colleagues and 
students about this wonderful resource.

Todd d. LiTTLe 
University of Kansas 
Lawrence, Kansas
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Preface

Configural frequency analysis (Cfa; lienert, 1968; von eye, 2002a) is a 
method for the analysis of bi- or multivariate cross-classifications of cate-
gorical variables. in contrast to such methods as log-linear modeling, which 
express results mostly in terms of relationships among variables, Cfa allows 
one to look for effects at the level of individual cells, or groups of cells, in 
a table. The patterns of categories that define a cell, that is, the cell indices, 
are called configurations. Cfa identifies those configurations that contradict 
hypotheses because they contain more cases than expected. These configura-
tions are called type-constituting. Cfa also allows one to find those configura-
tions that contain fewer cases than expected. These configurations are called 
antitype-constituting. Configurations that constitute neither a type nor an anti-
type contain as many cases as expected.

The number of cases that are expected for each cell is determined by speci-
fying a Cfa base model. The base model includes all effects that are not of 
interest to the researcher. if the base model is rejected—this is the precondi-
tion for Cfa types and antitypes to emerge—those effects that the researchers 
are interested in identifying exist in the form of types and antitypes. This is a 
textbook on Cfa that serves three purposes:

1. introduction to Cfa and review of existing concepts and approaches
2. introduction and application of new Cfa methods
3. illustration of computer applications

The book begins with an introduction and review of methods of Cfa pro-
posed earlier. Readers not familiar with Cfa will benefit from this introduc-
tion (Chapter 1 of this book). Readers who need more detail may find it useful 
to review introductory textbooks on the topic of Cfa (von eye, 2002a) or over-
view articles (e.g., von eye & gutiérrez peña, 2004).

The second purpose involves the presentation, discussion, and applica-
tion of recently proposed methods of Cfa, and the introduction of new meth-
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ods. Recently introduced methods include Cfa of rater agreement (von eye 
& mun, 2005). This method, presented in Chapter 2, allows one to look at 
those configurations that indicate agreement between raters and to answer 
the question whether each of these constitutes a Cfa agreement type (as one 
would expect if there is strong agreement). Similarly, one can ask whether 
configurations that indicate discrepant judgments constitute Cfa agreement 
antitypes (as one would also expect if there is strong agreement). To comple-
ment the analysis of rater agreement, one can also look at agreement antitypes 
and disagreement types (the emergence of either of these may constitute a 
surprising result).

also recently discussed, but not in the context of a broader text, is the use 
of covariates in Cfa (glück & von eye, 2000). in this book, in Chapter 4, the 
discussion focuses on the role that covariates play for the detection of types 
and antitypes.

Configural prediction models are among the more widely discussed mod-
els of Cfa (p-Cfa). in Chapter 5 of this book, we focus on various designs 
of p-Cfa and the corresponding interpretation of types and antitypes. it is 
shown that there is no a priori correspondence between p-Cfa and logistic 
regression. However, by way of considering higher order interactions, cor-
responding models can be created. Still, whereas logistic regression relates 
variables to each other, the types and antitypes of p-Cfa relate predictor pat-
terns and criterion patterns to each other.

There are two topics in the chapter on p-Cfa that have not been discussed 
before in the context of Cfa. one is Cfa of predicting end points; the other is 
Cfa of predicting trajectories. also new is the discussion of options of graphi-
cal representations of p-Cfa results.

in the following chapters, a new approach to Cfa is introduced. So far, 
Cfa involved performing the five steps outlined in Chapter 1, which required 
performing just one Cfa run and the interpretation of the resulting types and 
antitypes. The new approach involves performing more than one run of Cfa, 
the comparison of results from these runs, and the interpretation of types and 
antitypes from one of the runs, depending on the results of the comparison. 
This new approach opens the doors to answering questions that were previ-
ously not accessible with Cfa.

The first application of this new approach is Cfa of mediation hypotheses 
(Chapter 6). Here, four Cfa runs are needed that, in part, mimic the media-
tion regression models proposed by Baron and kenny (1986). These runs allow 
researchers to determine (1) where mediation takes place in a cross-classifica-
tion, and (2) the type of mediation (i.e., complete vs. partial). one interesting 
result of Cfa of mediation is that, in the same table, complete mediation may 
be found for some configurations, partial for others, and no mediation for 
the rest of the configurations. a second application of this new approach to 
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Cfa can be found in auto-association Cfa (Chapter 7). Here, researchers can 
ask (1) whether types or antitypes exist at all, and (2) which of the possible 
relationships between two or more series of measures and covariates are the 
reasons for the types and antitypes to emerge.

Similarly, in Cfa moderator analysis, at least two models are run. The first 
does not include the moderator. The cross-classification is, thus, collapsed 
across all categories of the moderator variable. The second includes the mod-
erator. if the type and antitype patterns differ across the categories of the 
moderator, the hypothesis that moderation takes place is supported, at the 
level of individual configurations. again, moderation may be supported for 
some configurations but not others, so that an analysis at the level of indi-
vidual configurations will almost always lead to a more detailed picture of the 
processes that take place than an analysis at the level of variables. Chapter 8, 
on moderator Cfa, also contains the discussion of special topics such as the 
analysis of hypotheses of moderated mediation, and the graphical representa-
tion of configural moderator results.

a third application of this new methodology is presented in Chapter 9, on 
the validity of types and antitypes. it is proposed that types and antitypes 
can be considered valid if they can be discriminated in the space of variables 
that had not been used for the search of the types and antitypes. Here, at least 
two runs are needed. The first involves Cfa. The second involves estimating 
a manova, discriminant analysis, or a logit model.

in Chapter 10, two types of functional Cfa (f-Cfa) are presented. first, 
f-Cfa helps identify the role that individual configurations play in the iden-
tification of types and antitypes. f-Cfa identifies phantom types and anti-
types, that is, configurations that stand out just because other configurations 
stand out. f-Cfa is, therefore, a tool of use when one suspects that the mutual 
dependence of Cfa tests leads to the identification of invalid types and anti-
types. The second flavor of f-Cfa concerns the role played by the effects of 
log-linear models for the explanation of types and antitypes. f-Cfa can be 
used to isolate the effects that carry types and antitypes. each of the two ver-
sions of f-Cfa can require multiple Cfa runs.

Coming back to Cfa models that require only one run, two new models 
allow one to explore hypotheses concerning repeatedly measured variables 
(Chapter 11). Specifically, intensive categorical longitudinal data have been 
elusive to Cfa, thus far. intensive longitudinal data involve many observation 
points. instead of declaring bankruptcy under Chapter 11, we propose using 
the concept of runs. in a series of scores, runs are defined by the frequency 
and length of series of scores that share a particular characteristic (same score, 
ascending, etc.).

The second new approach to analyzing intensive longitudinal data involves 
configural lag analysis. This method of Cfa allows one to identify those con-
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figurations that occur more (or less) often than expected after a particular 
time lag, that is, for example, after 1 day, 2 days, a week, etc.

another topic that has never been discussed in the context of Cfa con-
cerns fractional factorial designs (Chapter 12). These designs are incomplete 
in that only a selection of all possible configurations is created. This strategy 
has the advantage that the table to be analyzed can be much smaller than the 
table that contains all possible configurations. in other words, for a table of a 
given size, the number of variables that can be analyzed simultaneously can 
be much larger when fractional factorial designs are used. The price to be paid 
for this advantage is that not all higher order interactions can be indepen-
dently estimated. a data example illustrates that Cfa of fractional factorial 
designs can yield the same results as Cfa of the complete table.

The third major purpose of this text is to provide the illustration of com-
puter applications. Three applications are presented in Chapter 13. each of 
these uses programs that can be obtained free of charge. The first application 
involves using a specialized Cfa program. The second involves using the cfa 
package in a broader programming environment, R. The third application 
involves using lEM, a general purpose package for the analysis of categorical 
data.

This book targets four groups of readers. The first group of readers of this 
book knows Cfa, finds it useful and interesting, and looks forward to finding 
out about new developments of the method. The second group of readers of 
this book has categorical data that need to be analyzed statistically. The third 
group is interested in categorical data analysis per se. The fourth group of 
readers of this book considers data analysis from a person-oriented perspec-
tive interesting and important. This perspective leads to far more detailed 
data analysis than aggregate-level analysis, at the level of variables.

The reader of this book can come from many disciplines in the social and 
behavioral sciences (e. g., psychology, Sociology, anthropology, education, or 
Criminal Justice). our collaboration with colleagues in medical disciplines 
such as pharmacology and nursing has shown us that researchers in these 
disciplines can also benefit from using Cfa for the analysis of their data. nat-
urally, researchers in the field of applied Statistics will notice that many of 
the concepts that are discussed in this text add interesting elements to person-
oriented research and to data analysis, in general, and that the application of 
Cfa involves interesting facets that go beyond those covered by well-known 
procedures.
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1
Introduction

Configural Frequency Analysis (CFA) is a method for the analysis of
multivariate cross-classifications (contingency tables). The motivation
for this book is to present recent exciting developments in the
methodology of CFA. To make sure readers are up to date on the basic
concepts of CFA, Chapter 1 reviews these concepts. The most important
include (1) the CFA base model and its selection, (2) the definition and
interpretation of CFA types and antitypes, and (3) the protection of the
nominal level of the significance threshold α. In addition, this first chapter
presents sample questions that can be answered by using the existing
tools of CFA as well as questions that can be answered by using the new
tools that are presented in this book. Throughout this book, emphasis is
placed on practical and applied aspects of CFA. The overarching goal
of this chapter — and the entire book — is to illustrate that there is
more to the analysis of a multivariate cross-classification than describing
relationships among the variables that span this cross-classification.
Individual cells or groups of cells stand out and identify where the action
is in a table. CFA is the method to identify those cells.

This chapter provides an introductory review of Configural Frequency
Analysis (CFA), a method of categorical data analysis originally proposed
by Lienert (1968). A textbook on CFA is von Eye (2002a), and for an
article-length overview, see von Eye and Gutiérrez Peña (2004). CFA
allows one to focus on individual cells of a cross-classification instead
of the variables that span this cross-classification. Results of standard
methods of categorical data analysis such as log-linear modeling or logistic
regression are expressed in terms of relationships among variables. In
contrast, results from CFA are expressed in terms of configurations (cells of
a table) that are observed at different rates than expected under some base
model. We begin, in this section, with an example. Section 1.1 presents
sample questions that can be answered by using the CFA methods known
so far and, in particular, the new methods discussed in this book. Section
1.2 introduces the five decision-making steps that researchers take when

1
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TABLE 1.1. Cross-Classification of Depression, Happiness, Stress, and Emotional Uplifts
in 123 First-Time Internet Users

Depression Happiness Stress Uplifts
1 2

1 1 1 6 5
1 1 2 5 0
1 2 1 4 27
1 2 2 12 10
2 1 1 10 5
2 1 2 19 10
2 2 1 2 4
2 2 2 1 3

applying CFA. Section 1.3 presents a slightly more technical introduction
to the methods of CFA.

Before going into conceptual or technical detail, we illustrate the type
of question that can be asked using CFA as it is known so far. CFA is
a method that allows one to determine whether patterns of categories of
categorical variables, called configurations, were observed more often than
expected, less often than expected, or as often as expected. A configuration
that contains more observed cases than expected is said to constitute a CFA
type. A configuration that contains fewer observed cases than expected is
said to constitute a CFA antitype.

For the first example, we use data from a study on the effects of Internet
use in individuals who, before the study, had never had access to the
Internet (L. A. Jackson et al., 2004). In the context of this study, 123
respondents answered questions concerning their depression, feelings of
stress, happiness, and the number of emotional uplifts they experienced
within a week’s time. For the following analyses, each of these variables
was coded as 1= below the median and 2= above the median for this group
of respondents (minority individuals with below-average annual incomes).
Crossing these variables yields the 2 × 2 × 2 × 2 given in Table 1.1.

The Pearson X2 for this table is 91.86. Under d f = 11, the tail probability
for these data is, under the null hypothesis of independence of the four
variables that span this table, p < 0.01. The null hypothesis is thus rejected.
The standard conclusion from this result is that there is an association
among Depression, Happiness, Stress, and Emotional Uplifts. However,
from this result, one cannot make any conclusions concerning the specific
variables that are associated with one another (i.e., that interact). In
addition, based on this result, one cannot make any conclusions concerning
the occurrence rate of particular patterns of these four variables.
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To answer questions of the first kind, log-linear models are typically
applied. A log-linear model that describes the data in Table 1.1 well includes
all main effects and the two-way interactions between Stress and Uplifts,
Happiness and Uplifts, and Depression and Happiness. The likelihood
ratio X2 = 15.39 for this model suggests no significant overall model – data
discrepancies (d f = 8; p = 0.052).

To answer questions of the second kind, one uses CFA. These questions
are qualitatively different from the questions answered using such methods
as X2, log-linear modeling, or logistic regression. The questions that
CFA allows one to deal with operate at the level of individual cells
(configurations) instead of the level of variables. As will be illustrated
later, when we complete this example, CFA allows one to examine each
individual pattern (cell; configuration) of a two- or higher-dimensional
table. For each configuration, it is asked whether it constitutes a CFA type,
a CFA antitype, or whether it contains as many cases as expected. A base
model needs to be specified to determine the expected cell frequencies.
In the next section, we present sample questions that can be answered by
using CFA.

1.1 Questions That CFA Can Answer

In this section, we first discuss the questions that can be answered by using
the methods of CFA known so far. The methods presented in this book
allow one to address a large number of new questions. A selection of these
questions is given, beginning with Question 6. The first five questions
review previously discussed tools of CFA (von Eye, 2002a).

1. Do the observed cell frequencies differ from the expected cell
frequencies? Counting and presenting frequencies are interesting, in
many cases. For example, during the Olympic Games, news reports
present medal counts to compare participating nations. However, the
interpretation of observed frequencies often changes when expected
frequencies are considered. For example, one can ask whether the number
of medals won by a country surprises when the size of the country
is taken into account when estimating the expected number of medals.
Methods of CFA allow one to make statistical decisions as to whether
an observed frequency differs from its expected counterpart. Naturally,
expected frequencies depend on the characteristics of the CFA base model,
discussed in Section 1.2. If a cell contains significantly more cases than
expected, it is said to constitute a CFA type. If a cell contains significantly
fewer cases than expected, it is said to constitute a CFA antitype.
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2. Is there a difference between cell counts in two or more groups? A large
number of empirical studies are undertaken to determine whether gender
differences exist, whether populations from various ethnic backgrounds
differ from one another, and when and in which behavioral domain
development can be detected. For these and similar questions, multi-group
CFA has been developed. The base model for this method is saturated in
all variables that are used for the comparison. However, it proposes that
the grouping variable is independent of the variables used for comparison.
Discrimination types can, therefore, result only if a pattern of the variables
used for comparison is observed at disproportional rates in the comparison
groups.

3. Are there configurations whose frequencies change disproportionally
over time? A large number of CFA methods has been devoted to the
analysis of longitudinal data. New methods for this purpose are also
proposed in this book (see Chapters 5, 6, and 7). Temporal changes can
be reflected in shifts between patterns, constancy and change in means
or slopes, temporal predictability of behavior, or constancy and change
in trends. Whenever a configuration deviates from expectation, it is a
candidate for a type or antitype of constancy or change.

4. Are patterns of constancy and change group-specific? Combining
Questions 2 and 3, one can ask whether temporal or developmental
changes are group-specific. For example, one can ask whether language
development proceeds at a more rapid pace in girls than in boys, or
whether transition patterns exist that show that some paranoid patients
become schizophrenic whereas others stay paranoid. The base model
for the group comparison of temporal characteristics is saturated in the
temporal characteristics, and proposes independence between temporal
characteristics and the grouping variable. Patterns that are observed
disproportionally more often than expected based on group size are
candidates for discrimination types (of constancy and change).

5. How are predictor variables related to criterion variables? One of the
main tenets of CFA application is that relationships among variables are
not necessarily uniform across all categories (or levels) of these variables.
For example, a medicinal drug may have effects that are proportional to
dosage. However, it may not show additional benefits if a stronger than the
prescribed dose is taken, and deleterious effects may result if even stronger
doses are used. Prediction CFA allows one to determine which patterns
of predictor variables can be predicted to be followed above expectation
by particular patterns of criterion variables, thus constituting prediction
types. Accordingly, prediction antitypes are constituted by predictor
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configurations for which particular criterion configurations are observed
less often than expected. The present book presents new prediction models
for CFA (Chapter 5).

The following sample questions are new in the array of questions that
can be addressed using CFA methods:

6. Does rater agreement/disagreement exceed expectation for particular
combinations of rating categories? Coefficients of rater agreement such as
Cohen’s κ (Cohen, 1960) allow one to make summary statements about
rater agreement beyond chance. CFA models of rater agreement allow
one to test hypotheses concerning, for instance, the weights raters place
on rating categories (von Eye & Mun, 2005). CFA allows one to examine
individual cells in agreement tables and ask whether there is agreement
or disagreement beyond expectation in individual cells. One possible
outcome is that raters agree/disagree more often than expected when they
use the extreme categories of a rating scale. Chapter 2 presents methods of
CFA of rater agreement.

7. Can structural zeros be taken into account in CFA? Many
cross-tabulations contain cells that, for logical instead of empirical reasons,
are empty. These cells contain structural zeros. In this book, methods are
reviewed that allow one to blank out cells with structural zeros. In addition,
it is discussed that particular designs systematically contain structural
zeros. An algorithm is proposed for the detection of such cells (Chapter 3).

8. Can the effects of covariates on the results of CFA be assessed? In Chapter
4, methods for the accommodation of continuous as well as categorical
covariates are discussed and illustrated.

9. Do particular characteristics of series of measures result in types or
antitypes? In many contexts, characteristics of series of measures are
used to predict an outcome. For example, one can ask whether a series
of therapeutic steps will cure a neurotic behavior, or whether a series of
evasive maneuvers can prevent a car from sliding into an elephant. In
these cases, the series is used to predict an outcome. In other series, a
starting point is used to predict a trajectory. CFA applications assume that
the relationships that allow one to predict outcomes or trajectories can be
described at the level of configurations. Sections 5.2 and 5.3 present CFA
methods for the prediction of end points and trajectories.

10. Which configurations carry a mediation process? Standard methods
for the analysis of mediation hypotheses are based on regression methods.
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As such, they imply the assumption that the relationships among variables
are the same over the entire range of admissible scores (Baron & Kenny,
1986; MacKinnon, Fairchild, & Fritz, 2007; von Eye, Mun, & Mair, 2009).
In a fashion analogous to Prediction CFA, Mediation CFA proceeds under
the assumption that predictive and mediated relationships are carried by
configurations of variable categories instead of all categories. Mediation
CFA, therefore, attempts to identify those patterns that support mediation
hypotheses. A second characteristic that distinguishes Mediation CFA from
standard mediation analysis concerns the nature of a mediation process.
Based on CFA results, it may not only be that some configurations support
mediation hypotheses whereas others do not, it is very well possible that
the same table can support the hypothesis of complete or full mediation for
some configurations, the hypothesis of partial mediation for others, and
the null hypothesis for still a third group of configurations. More detail on
mediation models is presented in Chapter 6.

11. Which configurations carry a moderator process? The relationship
between two variables, A and B, is considered “moderated” if it changes
over the range of admissible scores of a third variable, C. Here again, CFA
assumes that the relationship between A and B may better be described at
the level of configurations than the level of parameters that apply to the
entire range of possible scores. In the context of CFA, it may be the case
that a type or antitype exists for one category of C but not for another.
Moderator CFA helps identify those types and antitypes (Chapter 8).

12. Is mediation the same or different over the categories of potential
moderator variables? If a mediation process exists for a particular category
of a variable that was not considered when Mediation CFA was performed,
it may not exist for another category of that variable. Alternatively, if, for a
particular category of that variable, a mediation process is complete, it may
be partial for another category. In general, whenever the characteristics
of a mediation process vary with the categories of a variable that was
not considered when Mediation CFA was performed, this variable can be
viewed as moderating the mediation. Section 8.4 presents CFA methods of
analysis of moderated mediation.

13. Can we identify configural chains? Chains of events imply that three or
more time-adjacent events predict one another. A configural chain implies
that categories of time-adjacent observations co-occur more often (chain
type) or less often (chain antitype) than expected. Section 6.3 discusses
configural chain models in the context of CFA mediation models.

14. Are there types and antitypes beyond auto-association? In longitudinal
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data, auto-associations are often the strongest associations. Because they
are so strong, they may mask other relationships that can be of interest.
Auto-association CFA (Chapter 7) allows one to identify types and antitypes
that are caused by variable relationships other than auto-associations.

15. Are types and antitypes distinguishable in variables other than those
used to establish the types and antitypes? This question concerns the
validity of types and antitypes. The results of CFA are important in
particular if types, antitypes, as well as nonsuspicious configurations can
be discriminated in the space of variables that were not used in CFA. That
is, one may ask whether members of types and antitypes also differ in
those other variables (ecological validity) or, alternatively, if membership
in types and antitypes can be predicted from a second set of variables
(criterion-oriented validity). Chapter 9 discusses how to establish validity
in the context of CFA.

16. Can phantom types and antitypes distort the results of CFA? As is well
known, multiple tests on the same data usually are, to a certain degree,
dependent, increase the risk of capitalizing on chance, and types and
antitypes may emerge only because other types and antitypes emerged. In
CFA, in particular CFA of small tables, the results of examining individual
cells can affect the results of examining other cells. Therefore, strategies
are being proposed to reduce the chances of misclassifying cells as type-
or antitype-constituting. Section 10.1 (Functional CFA I) discusses and
compares two strategies.

17. What effects in a table explain types and antitypes? Types and antitypes
result when a base model does not describe the data well. Making the model
increasingly complex results in types and antitypes disappearing. Section
10.3 (Functional CFA II) presents, discusses, and compares two strategies
for the parsimonious identification of those effects that explain types and
antitypes.

18. Can CFA be used to analyze intensive longitudinal data? Walls
and Schafer (2006) discussed the situation in which data are so complex
that standard methods of analysis cannot easily be applied any more.
In longitudinal research, the consideration of a cross-classification of
responses from different observation points in time can come quickly to an
end when the resulting table becomes so large that sample size requirements
become prohibitive. In this book (Chapter 11), two methods are proposed
for the analysis of intensive longitudinal data. The first of these methods,
CFA of Runs, analyzes the characteristics of series of data as repeated events
instead of the data themselves. The second, CFA of Lags, analyzes long time
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series of data collected on individuals. It allows one to answer questions
concerning the typical sequence of responses from one observation to the
next, the second next, and so forth.

19. Is it possible to analyze fractional designs with CFA? There are two
reasons why fractional, that is, incomplete, designs are of interest in
categorical data analysis. The first reason is based on the Sparsity of Effects
Principle. This principle states that most systems are run by main effects
and interactions of a low order. Higher order interactions are, therefore,
rarely of importance. Second, if many variables are completely crossed,
tables can become so large that it is close to impossible to collect the
necessary data volume. Therefore, fractional factorial designs have been
discussed. In this book (Chapter 12), we apply fractional designs in the
context of CFA. In a comparison of a fractional table with the completely
crossed table, it is illustrated, using the same data, that the use of fractional
designs can yield results that differ only minimally or not at all from the
results from the complete table.

These and a number of additional questions are addressed in this book.
Many of the questions are new and have never been discussed in the context
of CFA before. Chapter 2 begins with the presentation and illustration of
CFA of rater agreement.

1.2 The Five Steps of CFA

CFA has found applications in many disciplines, for example, medical
research (Koehler, Dulz, & Bock-Emden, 1991; Spielberg, Falkenhahn,
Willich, Wegschneider, & Voller, 1996), psychopathology (Clark et al.,
1997), substance use research (K. M. Jackson, Sher, & Schulenberg,
2008), agriculture (Mann, 2008), microbiology (Simonson, McMahon,
Childers, & Morton, 1992), personality research (Klinteberg, Andersson,
Magnusson, & Stattin, 1993), psychiatry (Kales, Blow, Bingham, Copeland,
& Mellow, 2000), ecological biological research (Pugesek & Diem,
1990), pharmacological research (Straube, von Eye, & Müller, 1998),
and developmental research (Bergman & El-Khouri, 1999; Bergman,
Magnusson, & El-Khouri, 2003; Mahoney, 2000; Martinez-Torteya, Bogat,
von Eye, & Levendosky, 2009; von Eye & Bergman, 2003).

The following paragraphs describe the five decision-making steps
researchers take when applying CFA (von Eye, 2002a).

1. Selection of a base model and estimation of expected frequencies: A CFA
base model is a chance model that indicates the probability with which a
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configuration is expected to occur. The base model takes into account those
effects that are NOT of interest to the researcher. If deviations between the
expected and the observed cell frequencies are significant, they reflect, by
necessity, the effects that are of interest to the researcher. Most CFA base
models are log-linear models of the form log m̂ = Xλ, where m̂ is the array
of model frequencies, X is the design matrix, andλ is the parameter vector1.
The model frequencies are estimated so that they reflect the base model.
For example, a typical CFA base model specifies independence between
categorical variables. This is the main effect model, also called the model
of variable independence. Types and antitypes from this model suggest
that variables are associated. Another base model, that of Prediction CFA
(see Section 5.1.2), specifies independence between predictor variables and
criterion variables and takes all possible interactions into account, both
within the group of predictors and within the group of criteria. Types
(antitypes) from this model indicate which patterns of predictor categories
allow one to predict the patterns of criterion categories that occur more often
(less often) than expected with respect to the base model. Base models that
are not log-linear have also been proposed (for a classification of log-linear
CFA base models, see von Eye, 2002a; more detail follows in Section 1.3).

2. Selection of a concept of deviation from independence: Deviation from a
base model can come in many forms. For example, when the base model
proposes variable independence, deviation from independence can be
assessed by using measures that take into account marginal frequencies.
However, there exist concepts and measures that do not take into account
marginal frequencies. The corresponding deviation measures are termed
marginal-dependent and marginal-free (Goodman, 1991; von Eye & Mun,
2003; von Eye, Spiel, & Rovine, 1995). An example of a marginal-dependent
measure that is based on Pearson’s X2 is the Φ-coefficient. Φ measures the
strength of association between two dichotomous variables, that is, the
degree of deviation from the base model of independence between these
two variables. Measures that are marginal-free include the odds ratio,
θ. Marginal-dependent and marginal-free measures can give different
appraisals of deviation from a base model. So far, most CFA applications
have used marginal-dependent measures of deviation from a model.
Marginal-free measures have been discussed in the context of CFA-based
group comparison (von Eye et al., 1995).

1Note that, although here and in the following equations the expression “log” is used,
log-linear modeling employs the natural logarithm for calculations. In many software
manuals, for example, SPSS, we find the abbreviation “ln”. In other manuals, for example
SAS and R, “log” is used to indicate the natural logarithm, and “log10” is used to indicate
the logarithm with base 10.
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3. Selection of a significance test: A large number of significance tests of the
null hypothesis that types or antitypes do not exist has been proposed
for CFA (for an overview, see von Eye, 2002a). These tests differ in
that some are exact, others are approximative. These tests also differ
in statistical power and in the sampling schemes under which they can
be employed. Simulation studies have shown that none of these tests
outperforms other tests under all of the examined conditions (Indurkhya
& von Eye, 2000; Küchenhoff, 1986; Lindner, 1984; von Eye, 2002a, 2002b;
von Eye & Mun, 2003; von Weber, Lautsch, & von Eye, 2003b; von Weber,
von Eye, & Lautsch, 2004). Still, simulation results suggest that the tests
that perform well under many conditions include, under any sampling
scheme, Pearson’s X2, the z-test, and the exact binomial test. Under the
product-multinomial sampling scheme, the best-performing tests include
Lehmacher’s exact and approximative hypergeometric tests (Lehmacher,
1981).

4. Performing significance tests under protection of α: CFA can be applied in
both exploratory and confirmatory research. In either case, typically, a large
number of tests is conducted. The number of significance tests performed
is generally smaller in confirmatory CFA than in exploratory CFA. In either
case, when more than one significance test is performed, the significance
level, α, needs to be protected. The classical method for α protection is
the Bonferroni procedure. This method can suggest rather conservative
decisions about the existence of types and antitypes. Therefore, beginning
with Holm’s procedure (Holm, 1979), less prohibitive methods have been
proposed.

5. Interpretation of types and antitypes: The interpretation of types and
antitypes uses five types of information. First is the meaning of the
configuration, which is determined by the meaning of the categories
that define a configuration. For example, in a table that cross-tabulates
smoking status, age, and gender, we may find that female adolescents
who smoke cigarettes are found more often than expected. The second
type of information is the base model. For example, when the base
model distinguishes between predictor and criterion variables, types and
antitypes have a different interpretation than when this distinction is not
made. The third type of information is the concept of deviation from
expectation. The fourth type is the sampling scheme (e.g., multinomial
vs. product-multinomial), and the fifth type is external information that
is used to discriminate among types and antitypes (from each other and
from the configurations that constitute neither types nor antitypes). This
information and the discrimination are not part of CFA itself. Instead, this
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information is used in follow-up tests that are intended, for example, to
establish the validity of CFA types and antitypes (see Chapter 9 of this
book).

In this book, we focus on CFA applications that use marginal-dependent
measures of deviation, and multinomial sampling. In addition, we use
only a small selection of significance tests and procedures for α protection.
Therefore, these issues will not be pursued in detail in any of the data
examples (see von Eye, 2002a). Instead, we discuss the questions in detail
that can be answered with CFA, and the corresponding base models.

In the following paragraphs, we present two data examples. The first
rounds out the analysis of the data on Internet use in Table 1.1 by performing
a CFA. The second example presents a complete CFA of a different data set.

Data Example 1: Based on the X2 analysis of the data in Table 1.1, we
concluded that associations exist among Depression, Happiness, Stress,
and Emotional Uplifts. However, the analysis did not allow us to go into
any detail that would describe where exactly in the cross-classification the
correspondence can be found and what form it assumes. In the following
paragraphs, we use CFA to provide a more detailed description of the data
in Table 1.1. We first make the decisions required in the five steps of CFA.

1. Selection of base model: In the above null hypothesis, it was stated that
the four variables, Depression, Happiness, Stress, and Emotional Uplifts,
are unrelated to one another. The base model that corresponds to this
hypothesis is that of variable independence. In log-linear modeling terms,
the base model is log m̂ = λDepression + λHappiness + λStress + λUpli f ts. This
is also the model that underlies the Pearson X2 test. Types from the
present analysis indicate correspondence beyond expectation. Antitypes
also indicate correspondence, but with the effect that the configurations
that constitute the antitypes are observed less often than expected.

2. Concept of deviation from independence: In the present example, we note
that none of the variables is uniformly distributed (the marginal frequencies
are 69 for Depression = 1 and 54 for Depression = 2; 60 for Happiness =
1 and 63 for Happiness = 2; 63 for Stress = 1 and 60 for Stress = 2; and
59 for Uplifts = 1, and 64 for Uplifts = 2). In our analysis, we take the
marginal distributions into account (CFA based on odds ratios would be a
case in which marginal distributions are not taken into account). Therefore,
we use marginal-dependent measures of deviation from independence (see
Section 1.3).

3. Selection of significance test: We use the z-test. This test is known to
perform well when samples are reasonably large, which is the case in the



12 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

present example. We protect α using the Holland-Copenhaver procedure
(Holland & Copenhaver, 1987). For more detail on significance tests and
the protection of α, see Section 1.3 or von Eye (2002a).

4. Performing significance tests under protection of α: The estimation of
expected cell frequencies, protection of α, and the identification of types
and antitypes can be preformed with the programs discussed in Chapter
13. Table 1.2 displays the results of a CFA of the data in Table 1.1.

5. Interpretation of types and antitypes: The results in Table 1.2 show a clear
picture. Types are constituted by Configurations 1 2 1 2, and 2 1 2 1. This
indicates that particular patterns of responses occurred more often than
expected. The sole antitype is constituted by Configuration 1 1 2 2. It
indicates that one pattern of responses occurred less often than expected.
More specifically, the first type, 1 2 1 2, suggests that more first-time
Internet users than expected simultaneously exhibit below average scores
in Depression, above average scores in Happiness, below average scores
in Stress, and above average scores in Emotional Uplifts. Clearly, this
pattern is plausible (and the fact that this pattern was observed more
often than expected speaks to the validity of the four scales). The second
type, 2 1 2 1, suggests that more first-time Internet users than expected
simultaneously exhibit above average scores in Depression, below average
scores in Happiness, above average scores in Stress, and below average
scores in Emotional Uplifts. There is a strong element of plausibility to this
result too.

The sole antitype, 1 1 2 2, suggests that fewer first-time Internet users than
expected simultaneously exhibit below median scores in Depression, below
median scores in Happiness, above median scores in Stress, and above
median scores in Emotional Uplifts. A pattern with these scores would be
highly implausible. Evidently, it was not observed at all (m1122 = 0).

None of the other configurations was observed more (or less) often than
expected under the assumption of independence among the four variables
that span the cross-classification. The associations among the four variables
are, thus, carried by just three local associations2. The term local association
is introduced in more detail in the context of the next data example.

Data Example 2: In a study on the development of aggression in
adolescence (Finkelstein, von Eye, & Preece, 1994), 114 adolescents (67

2The log-linear model that explains the data well (LR−X2 = 11.93; d f = 7; p = 0.10) contains
the three bivariate interactions Depression × Happiness, Depression × Stress, and Stress ×
Emotional Uplifts.
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TABLE 1.2. CFA of Depression, Happiness, Stress, and Emotional Uplifts in 123
First-Time Internet Users

Configuration
DHSU

m m̂ z p Type/Antitype

1111 6 8.269 −.789 .21499847
1112 5 8.970 −1.326 .09248374
1121 5 7.876 −1.025 .15275226
1122 0 8.543 −2.923 .00173423 Antitype
1211 4 8.683 −1.589 .05600484
1212 27 9.419 5.729 .00000001 Type
1221 12 8.269 1.297 .09726839
1222 10 8.970 .344 .36549411
2111 10 6.472 1.387 .08273513
2112 5 7.020 −.762 .22289023
2121 19 6.164 5.170 .00000012 Type
2122 10 6.686 1.282 .09997573
2211 2 6.795 −1.840 .03291632
2212 4 7.371 −1.242 .10717321
2221 1 6.472 −2.151 .01574287
2222 3 7.020 −1.517 .06459447

girls) indicated, at age 13, whether they were, in their own opinion, above
or below average in verbal aggression against adults (V) and in physical
aggression against peers (P). The variables V and P were coded as 1 = low
(below median) and 2 = high (above median). Gender (G) was coded as
1 = male and 2 = female. The cross-classification V × P × G was analyzed
under the main effect base model of standard, first order CFA, that is, the
log-linear model log m̂ = λ + λV + λP + λG. CFA used the binomial test
(marginal-dependent), and protected α, using the Holland-Copenhaver
procedure. Table 1.3 shows the results.

The LR − X2 for the base model is 733.19 (d f = 4; p < 0.01), indicating
significant discrepancies between the base model and the data. We thus can
expect types and antitypes to emerge. The resulting types and antitypes
indicate local associations among the three variables that were crossed. The
term local association, introduced by Havránek and Lienert (1984), indicates
that the association among the variables manifests only in a selection of
category patterns (configurations), in the form of types and antitypes.
Those configurations that do not emerge as types and antitypes contain
frequencies that do not deviate from the expectation that was formulated
by the base model of variable independence.

Table 1.3 shows that CFA yields two types and one antitype. The first
type, constituted by Cell 1 1 1, suggests that more boys than expected report
low verbal aggression against adults and also low physical aggression
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TABLE 1.3. First Order CFA of the Cross-Classification of Verbal Aggression against
Adults (V), Physical Aggression against Peers (P), and Gender (G)

Configuration
VPG

m m̂ p Type/Antitype

111 28 15.5746 .00127984 Type
112 11 10.9254 .53681743
121 10 17.9254 .02218115
122 8 12.5746 .10690979
211 11 15.5746 .13097985
212 3 10.9254 .00382328 Antitype
221 18 17.9254 .53188666
222 25 12.5746 .00059501 Type

against peers. The second type is constituted by Cell 2 2 2. This type
suggests that the other end of the spectrum is occupied by girls. More girls
than expected report high verbal aggression against adults and also high
physical aggression against peers.

The sole antitype (Cell 2 1 2) suggests that fewer girls than expected
report high verbal aggression against adults but low physical aggression
against peers.

The types and antitypes in this example show that associations among
the three variables exist that span Table 1.3. A log-linear model that
describes these data well is [V,P][P,G][G]. For this model, we calculate
the likelihood ratio LR − X2 = 1.21 (d f = 2; p = 0.55). This model indicates
that verbal aggression against adults and physical aggression against peers
are associated with each other. Surprisingly, verbal aggression against
adults is unrelated to adolescent gender. In contrast, physical aggression
against peers is gender-specific. While interesting and interpretable, this
description of the data is less detailed than the one provided by CFA.
In addition, the CFA results suggest that gender plays a major role in the
interpretation of these data. Both types and the antitype are gender-specific.

The results in Tables 1.2 and 1.3 are typical of CFA results in several
respects:

1. CFA tables are interpreted, in virtually all cases, only after the base
model is rejected. A rejected base model is not a guarantee that types and
antitypes will result. However, if the base model describes the data well,
there is no need to search for types and antitypes that indicate the location
of significant discrepancies between model and data.
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2. Only a selection of cells emerges as type- and antitype-constituting. The
remaining cells do not deviate from the base model. Types and antitypes,
thus, indicate where, in the table, the action is.

3. Although, in Tables 1.2 and 1.3, the largest two cells constitute types
and the smallest constitute antitypes, this is not always the case. We will
encounter tables in which small size cells constitute types. The main reason
for this observation is that CFA focuses on discrepancies from expectation
instead of sheer size (zero order CFA being the only exception; see von Eye,
2002a). Even relatively small cells can contain more cases than expected,
and relatively large cells can contain fewer cases than expected.

A large number of CFA models and applications has been proposed
(Lautsch & von Eye, 2000, 2003, 2005; von Eye, 2002a). Current
development of CFA and, thus, this book focus on CFA models that allow
researchers to approach data with research questions that are similar to
those asked in variable-oriented research. Examples of such models include
mediator models (see Chapter 6). For example, researchers ask whether
the predictive relationship between two variables is mediated by a third
variable. Results state that the relationship is either not mediated, partially
mediated, or fully mediated (Baron & Kenny, 1986; Kenny, 2005). Using
CFA, one can determine which of the configurations in particular carry the
partial or full mediation (von Eye, 2008a; von Eye, Mun, & Mair, 2009). In
general, CFA results are formulated at the level of configurations, that is,
patterns of variable categories, instead of the level of variables.

In the following sections and chapters, those elements of CFA are
introduced that are needed for the new and the advanced CFA models
discussed in this text. In the remainder of this book, these models are
introduced and illustrated by using empirical data.

1.3 Introduction to CFA: An Overview

The following introduction into the method of CFA focuses on (1)
frequentist CFA models and (2) base models that can be expressed by using
the general log-linear model log m̂ = xλ. The two main reasons for not
elaborating on other approaches such as Bayesian CFA (Gutiérrez Peña &
von Eye, 2000; von Eye, Schuster, & Gutiérrez Peña, 2000) or non-log-linear
base models (von Eye, 2004a) are that (1) the newer methods discussed in
this book were all formulated in the context of frequentist CFA, and (2) they
all use frequentist log-linear methods for the estimation of expected cell
frequencies. Corresponding Bayesian models still need to be formulated.
The following introduction is selective in that it emphasizes those elements
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of CFA that are needed in the later chapters. More detail can be found in the
existing literature (e.g., von Eye, 2002a; von Eye & Gutiérrez Peña, 2004).

The Data Situation: Consider d categorical variables. For log-linear
modeling or CFA, these variables are crossed to span a contingency table

with R =
∏d

i=1 ci cells, where ci is the number of categories of the ith variable.
The frequency with which cell r was observed is mr, and the frequency that
was estimated for cell r is m̂r, with r = 1, . . . ,R.

Cell Probabilities and Significance Tests: The probabilities of the R
cell frequencies depend on the sampling scheme (von Eye & Schuster,
1998; von Eye et al., 2000) and the base model. In most cases, sampling is
multinomial, and we obtain

P(M1 = m1, . . . ,MR = mR|N, π1, . . . , πR) =
N!

m1!, . . . ,mR!

R
∑

r=1

πmr
r ,

with and
∑

pi = 1 and
∑

mr = N. It follows that the frequency Mr is
binomially distributed, with

P(Mr = mr|N, πr) =
N!

mr!(N −mr)!
πmr(1 − π)N−mr .

Therefore, to test hypotheses about a particular cell, one can use the
binomial distribution, and one applies the exact binomial test

BN,p(m) =

m
∑

j=0

N!

j!(N − j)!
p j(1 − p)N− j,

with 0 ≤ m ≤ N, and p is estimated from the sample. If Np ≥ 10 (Osterkorn,
1975), the standard normal

zr =
mr −Npr
√

Nprqr

provides a good approximation, where pr is the estimate of πr, q = 1 − p,
and r indicates that the test is being performed for the rth cell. Usually, p is
estimated from the data, and we obtain the estimate p = m̂/N. Alternative
tests include, for instance, the X2 and the Freeman-Tukey deviate.

These tests are still applicable when sampling is product-multinomial.
Lehmacher’s hypergeometric test requires product-multinomial sampling.
This test starts from the well-known relation

Xr =
mr − m̂r√

m̂r

= N(0, σ)
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for d f = 1. When the model fits, σ2 < 1 (Christensen, 1997; Haberman,
1973). To replace the term in the denominator, Lehmacher derived the
exact variance. It is

σ2
r = Npr[(1 − pr) − (N − 1)(pr − p̃r)],

where p is the same as for the binomial test. Lehmacher’s test requires that
p be estimated, based on a main effect model. To illustrate the estimation
of p̃, consider a table that is spanned by three variables. For this case, the
estimate is

p̃i jk =
(mi.. − 1)(m. j. − 1)(m..k − 1)

(m − 1)d
,

where i, j, and k index the categories of the three variables (d = 3) that span
the table. Using the exact variance,

√
m̂r can be replaced by the standard

normal

zL,r =
mr − m̂r

σr
.

Because p > p̃, Lehmacher’s z will always be larger than X. To prevent
non-conservative decisions Kuchenhoff (1986) has suggested using a
continuity correction.

A residual measure that was discussed only recently in the context of
CFA (von Eye & Mair, 2008b) is the standardized Pearson residual, ri. This
measure is defined as

ri =
mi − m̂i

√

m̂i(1 − hi)
,

where i goes over all cells of the table, mi is the observed cell frequency
of Cell i, m̂i is the estimated expected frequency for Cell i, and hi is the ith
diagonal element of the well-known hat matrix,

H =W1/2X(X′WX)−1X′W1/2.

The elements wii, which are the elements of the diagonal matrix W, are the
estimated expected cell frequencies, m̂i. The standardized Pearson measure
ri has the following interesting characteristics:

1. If mi = m̂i, no standard error can be estimated. This is typically the
case when an observed cell frequency is exactly estimated, for example in
a saturated model, or when Cell i is blanked out. Each of these cases is
possible in CFA applications and will not affect the validity of the solution.

2. If one of the variables is dichotomous, corresponding cells can come
with exactly the same standardized Pearson residual. This characteristic is
discussed in more detail in Section 10.2.
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The Null Hypothesis in CFA: In CFA, individual cells are examined.
For Cell r, a test is performed under the null hypothesis H0 : E[mr] = m̂r.
This null hypothesis states that Cell r does not constitute a type or an
antitype. If, however, Cell r constitutes a CFA type, the null hypothesis is
rejected because (using the binomial test for an example)

BN,πr(mr − 1) ≥ 1 − α,

or, in words, the cell contains more cases than expected. If Cell r constitutes
a CFA antitype, the null hypothesis is rejected because (again using the
binomial test)

BN,πr(mr) ≤ α.

This indicates that Cell r contains fewer cases than expected.
α protection: In standard application of CFA, many cells are examined.

In fact, in exploratory CFA applications, typically, all cells of a table are
examined. In confirmatory CFA applications, this number can be smaller
because only those cells are examined for which a priori hypotheses exist
concerning the existence of types and antitypes. In either case, significance
tests are dependent (Krauth, 2003; von Weber, Lautsch, & von Eye, 2003a);
the topic of dependence of tests will be taken up again in Section 10.1). In
addition, large numbers of tests carry the risk of capitalizing on chance,
even if α is selected to be small. For these two reasons, CFA application
routinely comes with protection of the significance level α.

The most popular procedure forα protection is the Bonferroni method. It
requires that the sum of all α values not exceed the nominal α, or

∑

r αr ≤ α,
and that all αr be equal, or αr = α

∗, for all r = 1, . . . ,R. The protected α that
fulfills both conditions is α∗ = α/R.

Holm’s (1979) procedure does not use the second of these two
conditions. Instead, the number of tests is taken into account that was
performed before the current one. One obtains the protected

α∗r =
α

R − i + 1
,

where i numbers the tests, and i = 1, . . . ,R. This procedure requires the
test statistics to be ranked in descending order, and the tests are performed
in order. As soon as the first null hypothesis survives, the procedure is
concluded. The first α∗ is the same under the Bonferroni and the Holm
procedures. Beginning with the second test, Holm’s procedure is less
conservative than the Bonferroni procedure. For the last, that is, the Rth

test, the Holm-protected α∗ = α.
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As another alternative to Bonferroni’s procedure, Holland and
Copenhaver (1987) proposed the protected

α∗r = 1 − (1 − α)
1

R−i+1 .

This procedure is slightly less conservative than Holm’s procedure.

When tables are small, that is, the number of cells (configurations) is
small, tests can become completely dependent (see von Weber et al., 2003a).
When tables are large, dependency is less of a problem. However, as Krauth
(2003) showed, tests never become completely independent. When tables
are large, the risk of capitalizing on chance increases. Therefore, protection
of α is routine in CFA applications.

The CFA Base Model: A CFA base model must fulfill the following
four criteria (von Eye, 2004a; von Eye & Schuster, 1998):

1. Uniqueness of interpretation of types and antitypes: It is required that there
be only one reason for the existence of types and antitypes. For example, in
Prediction CFA (P-CFA; see Chapter 5), types and antitypes must emerge
only if relationships between predictors and criteria exist, but not because
of relationships among the predictors or among the criteria.

2. The base model contains only, and all of, those effects of a model that are not of
interest to the researcher: If, under this condition, types and antitypes emerge,
they reflect, by necessity, the relationships the researcher is interested in.
In the example of P-CFA, the base model takes into account all main effects
and interactions among the predictors and all main effects and interactions
among the criteria. The model is thus saturated within both the predictors
and the criteria, and types and antitypes can emerge only if relationships
among predictors and criteria exist.

3. Parsimony: A CFA base model must be as parsimonious as possible (see
Schuster & von Eye, 2000).

4. Consideration of sampling scheme: This criterion has a number of
technical implications. Specifically, the marginals of those variables that
were observed under a product-multinomial sampling scheme must be
reproduced. Therefore, the CFA base model must contain the effects
that allow one to reproduce these marginals. This applies accordingly
if multivariate product-multinomial sampling took place. By implication,
base models that do not contain these effects are not admissible (von Eye
& Schuster, 1998). Under standard multinomial sampling there are no
constraints concerning the specification of base models.
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TABLE 1.4. Sample Base Models for the Four Variables A, B, C, and D

Base Model Log-Linear Representation

Global Models

Zero order log m̂ = λ
First order log m̂ = λ + λA + λB + λC + λD

Second order log m̂ = λ+λA+λB+λC+λD+λAB+λAC+λAD+λBC+λBD+λCD

Regional Models

P-CFAa log m̂ = λ + λA + λB + λC + λD + λAB + λCD

Predicting D log m̂ = λ + λA + λB + λC + λD + λAB + λAC + λBC + λABC

Predicting A log m̂ = λ + λA + λB + λC + λD + λBC + λBD + λCD + λBCD

aFor P-CFA, A and B are considered predictors, and C and D are
considered criterion variables.

There are two groups of CFA base models. The first includes most of
the original CFA models (Krauth & Lienert, 1973). It is called the group of
global CFA base models. These models do not distinguish between variables
of different status. By implication, there is no grouping of variables in
predictors and criteria or dependent and independent variables. There
is not even the separation of groups of variables that are related to one
another. All variables have the same status. This group of models has
its parallel in exploratory factor analysis, correspondence analysis, or in
multidimensional scaling. These methods also consider all variables of the
same status.

Global CFA base models are structured in a hierarchy. In ascending
order, the lowest order model is that of zero order CFA (Lienert & von
Eye, 1984). This model takes no effect into account whatsoever. Therefore,
types and antitypes suggest only that the distribution in a table is not
uniform. Specifically, a type suggests that a cell contains more cases than
the average cell, and an antitype suggests that a cell contains fewer cases
than the average cell. In zero order CFA, the average cell contains N/t
cases, where t is the number of cells in the cross-classification. Because of
this characteristic, types and antitypes from zero order CFA have also been
called configural clusters.

The next higher level in the hierarchy of CFA base models is constituted
by first order CFA. This model takes the main effects of all variables into
account. Types and antitypes can, therefore, emerge only when associations
(interactions) among variables exist. These interactions can be of any order.
Unless every configuration in a table constitutes a type or antitype, these
associations are termed local (Havránek & Lienert, 1984).
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First order CFA is followed by second order CFA. This base model
takes, in addition to all main effects, all first order interactions into account,
that is, all pair-wise interactions. Types and antitypes emerge only when
interactions in triplets or larger groupings of variables exist. Second order
CFA is interesting because it allows one to identify effects that go, in their
order, beyond the effects considered in factor analysis, correspondence
analysis, or multidimensional scaling. If types or antitypes emerge, the
results of factor analysis or correspondence analysis can be considered
incomplete.

Higher order global base models of CFA can be considered. To the best
of our knowledge, there has been no application of such higher order CFA
models.

The second group of CFA base models is called regional. The base
models in this group distinguish between groups of variables. Most
prominent in this group is the base model of Prediction CFA (P-CFA) which
distinguishes between predictor and criterion variables. This book presents
many extensions and developments of P-CFA (see, e.g., Chapter 5).

To illustrate the base models that are used in CFA, we use the four
variables A, B, C, and D. In Table 1.4, we present the base models for zero
order, first order, and second order CFA. In addition, we present the base
model for P-CFA, for which we declare variables A and B predictors and C
and D criteria.

Table 1.4 displays all interactions that are taken into account in these six
sample base models. Types and antitypes will emerge only if those terms
(main effects or interactions) exist that are not part of the base model. CFA
methods for the identification of the terms that explain types and antitypes
are introduced in Chapter 10.

Data Example 3: For the following data example, we use data from the
Finkelstein et al. (1994) aggression study again (see Data Example 2, Section
1.2). We ask whether there are gender differences in the development of
physical aggression against peers from the age of 11 to the age of 15. To
answer this question, we perform a two-group analysis. For this analysis,
we cross the two measures of Physical Aggression against Peers, observed
in 1983 and in 1987 (P83 and P87; dichotomized at the grand median)
with Gender (G; 1 = males and 2 = females). The base model represents
a regional CFA model. It specifies that there are no relationships between
P83 and P87 on one side and G on the other. However, P83 and P87 can be
associated in the form of an auto-association. The base model is, thus,

log m̂ = λ + λP83
i + λP87

j + λP83,P87
i j

+ λG
k



22 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

TABLE 1.5. 2 × 2 Cross-Classification for Two-Group CFA Testing

Configurations P1P2
Groups

Row Totals
I II

i j a = mi jA b = mi jB A = mi j

All others combined c = m..A −mi jA d = m..B −mi jB B = m −Ni j

Column Totals C = m..A D = m..B N

The design matrix for this base model is

X =































































1 1 1 1 1
1 1 1 −1 1
1 1 −1 1 −1
1 1 −1 −1 −1
1 −1 1 1 −1
1 −1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 1
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The first column vector in this design matrix represents the constant
of the base model. The following three column vectors specify the main
effects of the variables P83, P87, and G. The last column vector specifies
the interaction between P83 and P87. This base model can be contradicted
only if relationships exist between the grouping variable, Gender, and the
development of physical aggression against peers. These relationships are
reflected in interactions among Gender and the two aggression variables,
specifically, [P83,G], [P87,G], and [P83,P87,G]. Therefore, if types and
antitypes emerge, they speak to the question of whether developmental
patterns of aggression against peers are gender-specific.

This two-group CFA does not examine individual cells. Instead, it
compares the two groups in each pair of configural patterns of the variables
that are used to discriminate between the two groups. To perform such a
pair-wise comparison, a 2 × 2 table is created in which the frequencies of
the pattern under study are compared with each other with respect to the
aggregated frequencies of all remaining patterns. This is illustrated in Table
1.5. The groups are labeled A and B, and the example uses two variables,
P1 and P2, to compare these groups.

Table 1.6 shows results of this analysis. For this analysis, the z
approximation of the binomial test and Holm’s procedure of α protection
were used. Sampling was multinomial.

The results in Table 1.6 show that only those boys and girls differ
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TABLE 1.6. Two-Group CFA of the Cross-Tabulation of Physical Aggression against Peers
in 1983 × Physical Aggression against Peers in 1987 × Gender

Configuration
P83P87G

m z p Type/Antitype

111 14
112 18 1.341 .090
121 10
122 15 .691 .245
211 10
212 15 .691 .245
221 5
222 27 −2.613 .004 Discrimination Type

from each other whose physical aggression against peers is high at
both assessments. Specifically, significantly more girls than boys report
themselves as engaging in high physical aggression against peers both at
age 11 and at age 15.

It is interesting to compare these results with those obtained from
log-linear modeling. The most parsimonious log-linear model that
describes these data is the main effect model (LR − X2 = 9.30; d f = 4;
p = 0.054). Adding any of the two-way interactions improves the model
only to a non-significant degree. For example, adding the P83 × P87
interaction, as is done in the base model for two-group CFA, yields
LR − X2 = 7.57 (d f = 3; p = 0.056). This improvement over the main
effect model is nonsignificant (∆X2 = 1.73; ∆d f = 1; p = 0.188). To give
another example, adding the P83 × G interaction yields LR − X2 = 6.12
(d f = 3; p = 0.106). The improvement over the main effect model is not
significant either (∆X2 = 3.18; ∆d f = 1; p = 0.075). This applies accordingly
when the third two-way interaction, P87 × G, is added. In sum, log-linear
modeling suggests that G, P83, and P87 are independent of one another.
In contrast, based on the results from two-group CFA, we can state that
gender differences exist in the development of physical aggression against
peers, specifically for those at the higher end of the spectrum of aggression
from age 11 to age 15. Two-group CFA will be used again, in Section 8.3.

1.4 Chapter Summary

CFA is a method for the statistical evaluation of individual cells or groups
of cells in cross-classifications of two or more variables. For each cell, it is
determined whether it contains about as many cases as expected, or more
or fewer cases. Cells that contain more cases than expected are said to
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constitute CFA types. Cells that contain fewer cases than expected are said
to constitute CFA antitypes. Application of CFA proceeds in the five steps
(1) selection of base model and estimation of expected cell frequencies;
(2) selection of concept of deviation from independence; (3) selection of
significance test; (4) performing of significance tests under protection of α;
and (5) interpretation of resulting types and antitypes.

Most important for the interpretation of types and antitypes is the
selection of a suitable base model. The same type or antitype can come
with interpretations that differ, depending on the effects that are taken into
account in the base model. Also depending on the specification of the base
model, the same cell can vary in whether it constitutes a type, an antitype,
or contains the expected number of cases.

In this book, two sets of new base models for CFA are introduced. The
first follows the tradition of CFA development by specifying base models
that lead to particular interpretations of types and antitypes. This applies,
for example, to the types and antitypes of rater agreement or disagreement
that are discussed in Chapter 2. The second set involves specifying series
of base models that, taken together, allow one to answer more complex
questions.



2
Configural Analysis
of Rater Agreement

To illustrate the focus that CFA places on individual cells instead of
aggregate-level appraisals of characteristics of cross-classifications,
Chapter 2 introduces CFA of rater agreement. In contrast to such
measures as κ, which present general statements about agreement
beyond chance, CFA allows researchers to identify four groups of cells.
The first includes cells that represent agreement beyond chance, that
is, cells that constitute agreement types. These types can be found
only in the diagonal of an agreement table. The same applies to
cells that constitute agreement antitypes, which indicate less agreement
than expected. In contrast, disagreement types can surface in any
of the off-diagonal cells, and so can disagreement antitypes. The
flexibility of the method of CFA is illustrated by the possibility of using
different base models, by presenting (1) the standard base model of
rater independence, which is also used to calculate κ, (2) an analogue
to the well-known equal weight agreement model (Tanner & Young,
1985), as well as (3) a base model (a quasi-independence model) that
focuses exclusively on the disagreement cells. Examples apply CFA of
rater agreement to data on the assessment of qualification and fit of job
applicants.

2.1 Rater Agreement CFA

So far, exploratory applications of CFA scouted cross-classifications with
the goal of finding types and antitypes, with no constraints concerning the
location in the table on which to focus. CFA of rater agreement can proceed
in a different way. In agreement tables, particular cells indicate agreement,
and other cells indicate disagreement. CFA of rater agreement can focus
on either or both (von Eye & Mun, 2005, 2006). To introduce agreement
tables, consider two raters, A and B, who use the three categories 1, 2, and

25
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TABLE 2.1. Agreement Table of Two Raters’ Judgments

Rater B Rating Categories
1 2 3

Rater A Rating Categories
1 m11 m12 m13

2 m21 m22 m23

3 m31 m32 m33

3 to judge objects. The agreement table of these raters’ judgments is given
in Table 2.1 (see von Eye & Mun, 2005, 2006).

The interpretation of the frequencies, mi j, in the cross-classification in
Table 2.1 is straightforward: Cell 1 1 contains the number of instances in
which both Rater A and Rater B use Category 1; Cell 1 2 contains the number
of instances in which Rater A uses Category 1 and Rater B uses Category
2, and so forth. The cells with indexes i = j with i, j = 1, . . . , 3 contain the
numbers of incidences in which the two raters use the same category. These
cells are called agreement cells. All other cells, which have indexes i , j, are
called disagreement cells.

When exploring cross-classifications of two (or more) raters, one has a
number of options concerning the selection of cells to examine (von Eye &
Mun, 2006). The coefficient of raw agreement focuses on the agreement cells
and expresses degree of agreement as the proportion of all judgments that
can be found in the agreement cells. Cohen’s (1960) κ and Brennan and
Prediger’s (1981) κn are proportionate reduction in error measures (see Fleiss,
1975). These measures ask whether the number of observed instances of
disagreement is below the expected number. If all agreement cells are taken
into account, this corresponds to asking whether the diagonal cells contain
more cases of agreement than predicted from a base model. When applying
CFA of rater agreement, one can focus on the diagonal cells, looking, for
example, for agreement types. However, one can also examine off-diagonal
cells, looking, for example, for disagreement antitypes (see von Eye & von
Eye, 2005). Alternatively, CFA can examine each cell in the table, looking
for patterns of types and antitypes. In more general terms, significant
deviations from base models can suggest that the two raters

1. agree more often than expected; if E[mii] > Eii, Cell ii constitutes an
agreement type;

2. agree less often than expected; if E[mii] < Eii, Cell ii constitutes an
agreement antitype;
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3. disagree more often than expected; if E[mi j] > Ei j (for i , j), Cell i j
constitutes a disagreement type; and

4. disagree less often than expected; if E[mi j] < Ei j (for i , j), Cell i j
constitutes a disagreement antitype.

In the following paragraphs, we present von Eye and Mun’s (2006) four base
models for the exploration of rater agreement. These models differ in the
assumptions made concerning the agreement cells. The first two models
are based on the assumptions of zero order and first order CFA. These
models do not make any particular assumptions that would single out
agreement or disagreement cells. It is simply assumed that the frequency
distribution in these cells follows the base models. For zero order CFA,
the base model proposes that no effects exist. The log-linear model for
this base model was used to define Brennan and Prediger’s (1981) κn, an
alternative to Cohen’s κ (1960). For first order CFA, the base model is
that of rater independence. This base model was used for Cohen’s κ. The
third model considered here was proposed by Tanner and Young (1985) for
explanatory analysis of agreement tables. This model proposes that raters
place equal weights on the agreement cells. The fourth model is specific for
the exploration of disagreement cells. This model blanks out the agreement
cells and searches for types and antitypes in the disagreement cells. The
following paragraphs describe these four models in more detail.

First Order CFA of Rater Agreement: In the present context, the base
model of first order CFA proposes independence among the d raters whose
judgments are crossed. Specifically, the model proposes, for d raters,

log m̂ = λ +
∑

i j

λRater
i j ,

where m̂ is the estimated expected frequency, λ is the intercept, and the
λRater

i j
are the parameters for the rater main effects.

CFA of agreement tables does not attempt to achieve overall model
fit. Instead, it examines individual cells and asks whether the CFA null
hypotheses must be rejected. If a null hypothesis is rejected, it suggests
an agreement type or antitype, or a disagreement type or antitype. The
typical result for agreement tables includes a number of agreement types
and a number of disagreement antitypes. Data examples follow below.

Zero Order CFA of Rater Agreement: Cohen’s κ has been criticized for
a number of reasons, one of which stands out and is discussed here. This
criticism of Cohen’s κ is known as marginal dependence (for a discussion
of this characteristic, see von Eye & von Eye, 2008). This characteristic
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indicates that if (1) the marginal probabilities are not uniformly distributed
and (2) at least one off-diagonal cell has a probability greater than zero, κ
has an asymptotic maximum of less than unity. As a result, a comparison of
κ values can be problematic. As a consequence of this characteristic, κ can
indicate low levels of agreement beyond chance although a vast proportion
of judgments matches exactly. The reason for this pattern of results is that
large frequencies in diagonal cells can conform with expectation as specified
in the main effect model, in particular if the marginals differ from each other.

To deal with these problems, Brennan and Prediger (1981) proposed
using the log-linear null model as the base model for κ instead of the main
effect model of rater independence. This model is log m̂ = λ. The resulting
measure of rater agreement, κn, does not suffer from these two criticized
characteristics of Cohen’s κ.

In the context of configural exploration of rater agreement, the same
discussion can be carried out. Types and antitypes from first order CFA
do not necessarily reflect the largest or smallest numbers of agreements,
because these numbers can conform with the expectancy that is based
on the model of rater independence. In contrast, when Brennan and
Prediger’s (1981) null model is used, deviations indicate that particular
configurations of rating categories were observed more often (types) or
less often (antitypes) than estimated by the null model. This implies that
cells emerge as constituting types if they contain significantly more cases
than the average cell, and cells emerge as constituting antitypes if they
contain significantly fewer cases than the average cell.

Tanner and Young’s (1985) Equal Weight Agreement Model as a

CFA Base Model: To introduce Tanner and Young’s (1985) equal weight
agreement model (also called the null-association agreement model;
Schuster, 2001), we use the sample case of the two raters, A and B. The
model assumes that the parameters for the interaction between Rater A
and Rater B, A × B, are all zero. In this respect, this model is identical to
the base models for Cohen’s κ, Brennan and Prediger’s κn, and first order
CFA. However, to model agreement, Tanner and Young’s model, which
is equivalent to Aickin’s (1990) constant predictive probability model,
specifies an equal weight parameter for the diagonal cells, that is, the
agreement cells. For two raters, the model can be formulated as the
log-frequency model

log m̂ = λ + λA + λB + δi jξ,

where δi j is the vector that contains the weights, the subscripts i j are used
to indicate that these weights are placed on the agreement cells, and ξ is
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the parameter that is estimated for this vector. This model can be adapted
for the case of more than two raters (von Eye & Mun, 2005).

Schuster (2001) showed that the expression exp(2ξ) has a simple
odds-ratio interpretation that reflects the degree of agreement. This
interpretation is

exp(2ξ) =
miim j j

mi jm ji
.

Thus, ξ can be compared to Cohen’s κ.
In the present context, we are less interested in the overall degree

of agreement. Instead, we ask whether types and antitypes exist that
contradict the equal weight agreement model. If such types and antitypes
can be identified, they indicate local associations. Just as with zero
order and first order CFA of rater agreement, these associations suggest
systematic patterns in the joint frequency distribution of the raters. When
Tanner and Young’s model is used, however, types and antitypes indicate
that the hypothesis of equal weights in the agreement cells allows one to
explain only part of the variation in the cells of the agreement table.

Quasi-Independence Model for the Exploration of Disagreement:
For example, in the context of rater training, it can be important to
know where raters disagree. Disagreement beyond chance may lead to
additional training or redefining categories of rating scales. A CFA model
that is suited for the exploration of disagreement cells is the log-linear
quasi-independence model. For two raters, this model is

log m̂ = λ + λA + λB +
∑

k

λk,

where the first three terms on the right-hand side of the equation are the
same as in the first order CFA base model. The summation term describes
the vectors needed to blank out the agreement cells. In the typical case,
J such vectors are needed in a model, with J being the number of rating
categories, and k = 1, . . . , J. Types that result from this model indicate
disagreement beyond chance, and antitypes indicate lack of disagreement
beyond chance (for adaptations of coefficients of agreement to questions
concerning disagreement, see von Eye & von Eye, 2005).

It is important to realize that types and antitypes of disagreement that
result from the model of quasi-independence differ from those that result
from the first order CFA base model. Both models assume independence
between raters. However, whereas the first order CFA model estimates
expected cell frequencies taking into account all cells, including the
agreement cells, the quasi-independence base model estimates expected
cell frequencies under exclusion of the agreement cells. Thus, types and
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antitypes of disagreement describe patterns of disagreement instead of
judgments in general.

2.2 Data Examples

In the following paragraphs, we present two data examples. The first
involves data from two raters. The second involves data from three raters.

Data Example 1: In the following example, we analyze data from a study
on the agreement of raters on the qualification of job applicants in a large
agency in the United States1. A total of 466 interview protocols was
examined by two evaluators, A and B. Each evaluator independently
indicated on a six-point ordinal scale the degree to which an applicant was
close to the profile specified in the advertisement for the position, with 1
indicating very good match and 6 indicating lack of match. We analyze the
cross-classification of the judgments of the two raters under the following
four base models:

1. Null model: log m̂ = λ;

2. Main effect model of rater independence: log m̂ = λ + λA + λB;

3. Equal weight agreement model: log m̂ = λ + λA + λB + δi jξ; and

4. Quasi-independence model for the exploration of rater disagreement:
log m̂ = λ + λA + λB +

∑

k λk.

Matrix X shows the vectors needed for each of these base models:

1Thanks go to Neal Schmitt for making these data available. Note that the data used here
are from the same data set as the ones used by von Eye and Mun (2006). However, in the
present example, different raters are used.
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1 1 · · · 0 1 · · · 0 1 1 0 0 0 0 0

1 0
. . . 0 1

. . . 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
1 −1 · · · −1 1 · · · 0 0 0 0 0 0 0 0
1 1 · · · 0 0 · · · 0 0 0 0 0 0 0 0

1 0
. . . 0 0

. . . 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 −1 · · · −1 0 · · · 0 0 0 0 0 0 0 0
1 1 · · · 0 0 · · · 0 0 0 0 0 0 0 0

1 0
. . . 0 0

. . . 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 −1 · · · −1 0 · · · 0 0 0 0 0 0 0 0
1 1 · · · 0 0 · · · 0 0 0 0 0 0 0 0

1 0
. . . 0 0

. . . 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 −1 · · · −1 0 · · · 0 0 0 0 0 0 0 0
1 1 · · · 0 0 · · · 1 0 0 0 0 0 0 0

1 0
. . . 0 0

. . . 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 1 0
1 −1 · · · −1 0 · · · 1 0 0 0 0 0 0 0
1 1 · · · 0 −1 · · · −1 0 0 0 0 0 0 0

1 0
. . . 0 −1

. . . −1 0 0 0 0 0 0 0
1 0 0 −1 −1 0 0 0 0 0 0 0
1 0 0 −1 −1 0 0 0 0 0 0 0
1 0 1 −1 −1 0 0 0 0 0 0 0
1 −1 · · · −1 −1 · · · −1 1 0 0 0 0 0 1
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Matrix X contains four blocks of vectors. The first consists of one
constant vector of 1s, in the first column. This column is all that is needed
for the null model. This base model proposes a uniform distribution for the
entire agreement table. The second block contains the 10 vectors needed
for the main effects of the two raters. Each rater used six rating categories.
Therefore, five effects coding vectors are needed per rater to capture the
main effects of the two raters. The main effect model for rater independence,
which is also used to calculate Cohen’s κ, uses the constant vector and the
main effects vectors. The third block consists of just one column. This
is the vector that is added to the first two blocks for Tanner and Young’s
equal weight agreement model. Using this vector, it is proposed that the
diagonal cells are different from the rest of the table, and that the weights
of the diagonals cells are the same. Differential weight agreement models
have been discussed also (for an overview, see von Eye & Mun, 2005). The
fourth block contains the six vectors needed to blank out the diagonal cells
of the agreement matrix. To obtain the quasi-independence model, this
block of vectors is added to the first two.

In the following paragraphs, we report the results for the four models.
For each of the analyses, we use the z-test and the Holland-Copenhaver
procedure of α protection. Table 2.2 displays the results for the CFA that
used the null model for a base model. The LR − X2 for this model is 808.8
(d f = 35; p < 0.01). We expect many types and antitypes to emerge.

As is characteristic of zero order CFA, the cells with the large frequencies
constitute types, and the cells with the small frequencies constitute
antitypes. In Table 2.2 cells with frequencies above 28 constitute types,
and cells with frequencies less than 5 constitute antitypes. As far as rater
agreement is concerned, we note that Configurations 2 2, 3 3, 4 4, and 5 5
constitute types. Configurations 1 1 and 6 6 fail to constitute types. We
conclude that, when the number of judgments is the only main indicator
of agreement, with no reference to expected rates of agreement other than
the average number of judgments, the two raters agree beyond chance in
the middle segment of the evaluation scale, but not when it comes to the
extreme scores. In addition, many of those configurations constitute types
that indicate stronger disagreement by just one scale point. With just a
few exceptions, configurations that indicate disagreement between the two
raters constitute antitypes.

Table 2.3 displays the results for first order CFA, which uses the base
model of rater independence. This is the same base model as the one used
for Cohen’s κ. The LR−X2 for this model is 297.27 (d f = 25; p < 0.01). This
model is significantly better than the null model (∆X2 = 511.53; ∆d f = 10;
p < 0.01). Still, it fails to explain the frequency distribution in the agreement
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TABLE 2.2. Zero Order CFA of Job Interview Protocol Evaluation Data

Configuration AB m m̂ z p Type/Antitype

11 5 12.944 −2.2081 .013618
12 6 12.944 −1.9302 .026793
13 2 12.944 −3.0419 .001175 Antitype
14 0 12.944 −3.5978 .000160 Antitype
15 0 12.944 −3.5978 .000160 Antitype
16 0 12.944 −3.5978 .000160 Antitype
21 11 12.944 −.5404 .294444
22 29 12.944 4.4626 .000004 Type
23 34 12.944 5.8523 .000000 Type
24 7 12.944 −1.6522 .049244
25 1 12.944 −3.3199 .000450 Antitype
26 0 12.944 −3.5978 .000160 Antitype
31 3 12.944 −2.7640 .002855 Antitype
32 29 12.944 4.4626 .000004 Type
33 56 12.944 11.9671 .000000 Type
34 43 12.944 8.3538 .000000 Type
35 3 12.944 −2.7640 .002855 Antitype
36 0 12.944 −3.5978 .000160 Antitype
41 1 12.944 −3.3199 .000450 Antitype
42 9 12.944 −1.0963 .136466
43 36 12.944 6.4082 .000000 Type
44 73 12.944 16.6921 .000000 Type
45 32 12.944 5.2964 .000000 Type
46 1 12.944 −3.3199 .000450 Antitype
51 0 12.944 −3.5978 .000160 Antitype
52 2 12.944 −3.0419 .001175 Antitype
53 4 12.944 −2.4861 .006458 Antitype
54 30 12.944 4.7405 .000001 Type
55 36 12.944 6.4082 .000000 Type
56 4 12.944 −2.4861 .006458 Antitype
61 0 12.944 −3.5978 .000160 Antitype
62 0 12.944 −3.5978 .000160 Antitype
63 1 12.944 −3.3199 .000450 Antitype
64 0 12.944 −3.5978 .000160 Antitype
65 2 12.944 −3.0419 .001175 Antitype
66 6 12.944 −1.9302 .026793
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TABLE 2.3. First Order CFA of Job Interview Protocol Evaluation Data

Configuration AB m m̂ z p Type/Antitype

11 5 .558 5.9469 .000000 Type
12 6 2.092 2.7016 .003451
13 2 3.710 −.8879 .187295
14 0 4.268 −2.0660 .019415
15 0 2.064 −1.4368 .075388
16 0 .307 −.5540 .289805
21 11 3.519 3.9876 .000033 Type
22 29 13.197 4.3499 .000007 Type
23 34 23.403 2.1904 .014247
24 7 26.923 −3.8396 .000062 Antitype
25 1 13.021 −3.3314 .000432 Antitype
26 0 1.936 −1.3913 .082072
31 3 5.751 −1.1472 .125656
32 29 21.567 1.6007 .054725
33 56 38.245 2.8711 .002045 Type
34 43 43.996 −.1501 .440337
35 3 21.279 −3.9626 .000037 Antitype
36 0 3.163 −1.7785 .037660
41 1 6.524 −2.1626 .015285
42 9 24.464 −3.1264 .000885 Antitype
43 36 43.382 −1.1208 .131192
44 73 49.906 3.2691 .000539 Type
45 32 24.137 1.6004 .054756
46 1 3.588 −1.3663 .085927
51 0 3.262 −1.8060 .035456
52 2 12.232 −2.9255 .001719 Antitype
53 4 21.691 −3.7985 .000073 Antitype
54 30 24.953 1.0104 .156153
55 36 12.069 6.8887 .000000 Type
56 4 1.794 1.6470 .049778
61 0 .386 −.6215 .267134
62 0 1.448 −1.2035 .114385
63 1 2.569 −.9788 .163849
64 0 2.955 −1.7190 .042808
65 2 1.429 .4775 .316512
66 6 .212 12.5566 .000000 Type
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table. Therefore, again, we expect many types and antitypes to emerge.

The base model used by first order CFA takes rater main effects into
account. In other words, this base model (1) accounts for raters’ differential
use of rating categories and (2) proposes independence of the two raters’
ratings. Based on these expectations, we note that, now, each of the
six agreement cells constitutes a type. The expected cell frequencies
for Configurations 1 1 and 6 6 are small. Therefore, interpretation has
to proceed with caution for these two configurations. The antitypes in
Table 2.3 present an interesting picture also. Only (but not all) cells
with disagreement by two or more rating categories constitute antitypes
(Configurations 2 4, 2 5, 3 5, 4 2, 5 2, and 5 3). Judgment discrepancies
larger than two rating categories occurred rarely (Configurations 2 5 and 5
2) or not at all (Configurations 1 6 and 2 6). In addition, large discrepancies
were not expected to occur very often. Thus, antitypes did not emerge for
these configurations (e.g., Configurations 1 6 or 2 6).

The results of the CFA that uses the Tanner and Young (1985) equal
weight agreement model for a base model are given in Table 2.4. The LR−X2

for this model is 205.41 (d f = 24; p < 0.01). This represents a significant
improvement over the first order CFA base model (∆X2 = 91.86; ∆d f = 1;
p < 0.01). Still, it fails to explain the frequency distribution in the agreement
table. Therefore, again, we expect types and antitypes to emerge. If types
and antitypes emerge for the diagonal, that is, the agreement cells, they
indicate the agreement cell configurations that deviate from the expectation
that is based on the equal weight hypothesis.

The results in Table 2.4 show that only one agreement type is left. It is
constituted by Configuration 6 6. It suggests that the two raters agree more
often than expected under the equal weight agreement model in the extreme
category, 6, that describes a job candidate as not matching the advertized
job profile. All other agreement cells contain observed frequencies that
differ from expectation only randomly. The remaining four types suggest
that disagreement by one scale unit occurs more often than expected. In
contrast, disagreement by more than one scale unit is particularly unlikely
when one of the raters uses rating Category 5 (Antitypes 2 5, 3 5, and 5 3).

The results of the CFA with the base model that blanks out the agreement
cells are given in Table 2.5. The LR − X2 for this model is 158.77 (d f = 19;
p < 0.01). This represents a significant improvement over the first order
CFA base model (∆X2 = 138.50; ∆d f = 6; p < 0.01). Still, this model also fails
to explain the frequency distribution in the agreement table. Therefore, we
expect types and antitypes to emerge. From this model, types and antitypes
cannot emerge for the diagonal cells, because they were blanked out. Types
and antitypes thus indicate where, in particular, disagreement differs from
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TABLE 2.4. CFA of Job Interview Protocol Evaluation Data; Base Model Is the Equal
Weight Agreement Model

Configuration AB m m̂ z p Type/Antitype

11 5 1.749 2.4577 .006992
12 6 2.014 2.8088 .002486
13 2 3.231 −.6850 .246668
14 0 3.611 −1.9004 .028691
15 0 2.022 −1.4221 .077496
16 0 .371 −.6094 .271116
21 11 3.588 3.9133 .000046 Type
22 29 28.581 .0784 .468772
23 34 17.433 3.9679 .000036 Type
24 7 19.484 −2.8282 .002341
25 1 10.911 −3.0004 .001348 Antitype
26 0 2.004 −1.4155 .078454
31 3 5.186 −.9597 .168591
32 29 15.704 3.3553 .000396 Type
33 56 66.283 −1.2631 .103277
34 43 28.161 2.7963 .002585
35 3 15.770 −3.2157 .000651 Antitype
36 0 2.896 −1.7018 .044395
41 1 5.677 −1.9630 .024822
42 9 17.193 −1.9759 .024082
43 36 27.587 1.6018 .054599
44 73 81.106 −.9001 .184031
45 32 17.266 3.5460 .000196 Type
46 1 3.171 −1.2191 .111401
51 0 3.322 −1.8227 .034176
52 2 10.061 −2.5413 .005522
53 4 16.143 −3.0222 .001255 Antitype
54 30 18.042 2.8154 .002436
55 36 26.577 1.8277 .033795
56 4 1.855 1.5744 .057701
61 0 .478 −.6914 .244666
62 0 1.448 −1.2031 .114461
63 1 2.323 −.8679 .192735
64 0 2.596 −1.6112 .053572
65 2 1.454 .4531 .325227
66 6 .702 6.3217 .000000 Type
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TABLE 2.5. First Order CFA of Job Interview Protocol Evaluation Data; Agreement Cells
Blanked Out

Configuration AB m m̂ z p Type/Antitype

11 5 — — —
12 6 1.319 4.0769 .000023 Type
13 2 2.686 −.4184 .337831
14 0 2.849 −1.6878 .045724
15 0 1.028 −1.0140 .155290
16 0 .119 −.3448 .365108
21 11 2.726 5.0121 .000000 Type
22 29 — — —
23 34 20.208 3.0680 .001077 Type
24 7 21.435 −3.1178 .000911 Antitype
25 1 7.737 −2.4220 .007718
26 0 .895 −.9459 .172096
31 3 4.977 −.8862 .187747
32 29 18.118 2.5566 .005284
33 56 — — —
34 43 39.143 .6165 .268783
35 3 14.128 −2.9606 .001535 Antitype
36 0 1.634 −1.2783 .100579
41 1 5.190 −1.8392 .032943
42 9 18.893 −2.2759 .011424
43 36 38.481 −.4000 .344592
44 73 — — —
45 32 14.733 4.4987 .000003 Type
46 1 1.704 −.5392 .294873
51 0 1.976 −1.4055 .079930
52 2 7.191 −1.9359 .026442
53 4 14.648 −2.7821 .002701
54 30 15.537 3.6693 .000122 Type
55 36 — — —
56 4 .649 4.1616 .000016 Type
61 0 .132 −.3631 .358275
62 0 .480 −.6927 .244243
63 1 .977 .0229 .490879
64 0 1.037 −1.0182 .154292
65 2 .374 2.6578 .003933
66 6 — — —
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the assumption of rater independence when agreement is not taken into
account.

Table 2.5 shows that six disagreement types and two disagreement
antitypes emerged. The types are constituted by Configurations 1 2, 2 1, 2
3, 4 5, 5 4, and 5 6. Each of these types suggests that disagreement by just
one scale unit is more likely than expected under the base model. The two
antitypes are constituted by Configurations 2 4 and 3 5. They suggest that
particular deviations between the two raters by more than two scale units
are very unlikely for categories in the middle range.

Data Example 2: In the second data example, we analyze data that
involve three raters (see von Eye & Mun, 2005). Three psychiatrists
reviewed the depression diagnoses of 163 inpatients. For each patient,
it was determined whether a diagnosis of 1 = not depressed, 2 = mildly
depressed, or 3 = clinically depressed can be supported. For the CFA of
the cross-classification of three psychiatrists’ judgments, we use the base
model of independence. Labeling the three psychiatrists with A, B, and C,
we thus use the base model

log m̂ = λ + λA + λB + λC.

For the CFA, we use the z-test and protect α by using the
Holland-Copenhaver procedure. Table 2.6 displays the CFA results.

Table 2.6 suggests that the three psychiatrists’ diagnoses are not
independent. Five types emerge, but no antitype. The types are constituted
by Configurations 1 1 1, 1 1 2, 1 2 2, 2 2 1, and 2 2 2. The first and the last of
these types suggest that the psychiatrists agree more often than expected
on the diagnoses “no depression” and “mild depression”. The diagnosis
“clinical depression” was also observed more often than expected (and it
was stated more often than any of the other diagnosis patterns), but not
significantly more often than expected.

Also observed more often than expected were three disagreement
patterns. These types suggest that certain patterns of disagreement by
just one scale point occur more often than expected under the base model
of independence of psychiatrists’ diagnoses.

One important aspect of the analysis of the data in Table 2.6 is that the
sample is relatively small for CFA. Many of the expected cell frequencies
are very small. Therefore, the types that are based on particularly small
expected cell frequencies (mi jk < 0.5) can be interpreted only with caution.
An increase in sample size can be recommended.
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TABLE 2.6. CFA of Depression Diagnoses Given by Three Psychiatrists

Configuration
ABC

m m̂ z p Type/Antitype

111 4 .271 7.1633 .000000 Type
112 3 .422 3.9714 .000036 Type
113 6 4.215 .8692 .192374
121 2 .244 3.5559 .000188 Type
122 1 .379 1.0076 .156830
123 3 3.794 −.4076 .341788
131 2 1.694 .2354 .406967
132 2 2.635 −.3910 .347900
133 17 26.346 −1.8209 .034311
211 0 .068 −.2603 .397322
212 1 .105 2.7558 .002928
213 2 1.054 .9216 .178357
221 1 .061 3.8028 .000072 Type
222 1 .095 2.9391 .001646 Type
223 1 .948 .0529 .478903
231 0 .423 −.6507 .257616
232 0 .659 −.8116 .208516
233 4 6.587 −1.0079 .156760
311 0 .766 −.8750 .190798
312 1 1.191 −.1749 .430579
313 3 11.909 −2.5815 .004918
321 0 .689 −.8301 .203253
322 1 1.072 −.0693 .472363
323 8 10.718 −.8302 .203226
331 0 4.785 −2.1874 .014357
332 4 7.443 −1.2620 .103478
333 96 74.429 2.5004 .006203
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2.3 Chapter Summary

CFA of rater agreement allows one to explore cross-classifications of
judgments of two or more raters, with the goal of identifying those
patterns that indicate agreement or disagreement beyond the rate expected
with reference to the base model. Instead of summarizing degree
of rater agreement in a single coefficient, CFA allows one to identify
those patterns of agreement and disagreement that stand out as beyond
expectation. The standard base model for CFA of rater agreement proposes
rater independence. Types and antitypes from this base model indicate
patterns of judgments that occur more or less frequently than expected.
More complex base model as well as base models that reflect particular
hypotheses can be specified. Weights can be taken into account, and there
can be a focus on selections of cells, for example cells that contain cases of
rater disagreement.



3
Structural Zeros in CFA

Zeros in cross-classifications come in two forms. The first involves cells
for which no case was observed but, theoretically, for example, in a larger
sample, cases could have been observed. Zero counts typically pose
no problem (unless there are so many that parameter estimation or the
estimation of a CFA base model becomes impossible). The second form
of zeros in a table involves cells for which it is impossible to find cases.
The zero counts in these cells are called structural zeros. A classical
example is the table that crosses location of cancer and gender. In
this table, for obvious reasons, the cell “female and prostate cancer”
cannot contain anybody. Chapter 3 discusses various ways in which
structural zeros can occur. Some of these ways are design-specific. It is
shown how these zero cells can be identified. The chapter also shows
how the CFA base model can be reformulated to take into account the
presence of structural zeros. It is illustrated that ignoring structural zeros
can lead to antitypes with no interpretation. It is also illustrated that the
number of structural zeros can have an effect on the complexity of CFA
base models that can be estimated. In a data example, data from an
experiment in cognitive psychology are reanalyzed.

In this chapter, issues concerning zeros in cross-classifications are
discussed. Zeros can come in various forms. In Section 3.1, we introduce
the distinction between empirical and structural zeros, and we talk about
blanking out structural zeros. In Section 3.2, we discuss the case in which
structural zeros are the result of design and data coding. Some of the
strategies to deal with zeros can also be applied to solve other problems
(Section 3.1). In both sections, the focus is on concepts and applications in
the context of CFA (von Eye & Mun, 2007). Methods of estimation have
been discussed elsewhere (see Birch, 1963; Bishop, Fienberg, & Holland,
1975; Fienberg, 1970; Haberman, 1973, 1974).

41
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3.1 Blanking Out Structural Zeros

Cross-classifications often contain cells with zero frequencies. For example,
in Table 2.2, 9 of the 36 cells did not show a single case. With only one
exception (Cell 6 4), each of these cells would have contained cases in
which the two raters disagreed by three or more scale units. Although
disagreement by this many scale points is, theoretically, possible, it did not
occur in this study. Zero counts with this characteristic are termed empirical
zeros.

In contrast, cells can exist that are characterized by structural zeros.
These are cells that are empty for logical or design reasons. Consider
the cross-classification of Location of Cancer and Gender. In this table,
the configuration “Prostate Cancer” and “Female” cannot contain cases,
for obvious reasons. A table with structural zeros is called structurally
incomplete. Tables can contain both empirical and structural zeros.

When it comes to estimating expected cell frequencies for log-linear
models or for CFA, empirical and structural zeros must be treated
differently. Empirical zeros usually pose no problems (unless there are
too many empirical zeros or entire variable categories were never observed,
that is, when marginal counts are zero). The estimation procedure generates
the probabilities for these cells, and, based on this estimate, valid expected
frequencies can be calculated. In contrast, when zero observation cells are
structural, it would be a mistake to place a portion of the probability mass
into these cells. The effect would be that, for this empty cell, there is an
automatic deviation that will be held against the model. The probability of
being in this cell is misestimated. In addition, for the remaining cells, there
is not enough of the probability mass left, and the probability of being in
any of the remaining cells will, on average, be underestimated. This will
be held against the model too. As a result, the model that is needed to
describe the data will, in many cases, end up being unnecessarily complex.

Therefore, two strategies are pursued, depending on the nature of zeros
in a table. When a zero is empirical, either no corrective measure is taken
at all, or a small constant is added to each cell. This second option is called
invoking the Delta option. There is no general agreement on the magnitude
of the constant Delta. Some software packages automatically add 0.5 to
each of the t cells in a table. The effect of this measure is that the sample
size is artificially increased by 0.5t. Often, a model that would not converge
before the Delta option is invoked will converge with Delta. One possible
consequence of this strategy is that, again, models that fit the data are
more complex than necessary, given the data structure, because most of the
overall goodness-of-fit measures are sensitive to sample size, in particular
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the ones that are based on X2. Another problem with the Delta option is
that it is ad hoc, and the magnitude of the constant is arbitrary. Therefore,
Bayesian methods have been discussed for estimation as alternatives to
standard maximum likelihood methods (see Agresti, 2002).

When zeros are structural, the cells that contain these zeros must be
blanked out, to prevent the estimation algorithm from placing probability
mass into these cells. Blanking out a cell is easily done by adding a column
vector to the design matrix in which the blanked-out cell is given a 1, and
all other cells are given zeros.

In addition to distinguishing between empirical and structural zeros,
a distinction must be made between the term declaring cells structural zeros
and the superordinate term of blanking cells out. The former is based on the
existence of logically impossible patterns. Cells that show these patterns
are blanked out. Blanking out, however, can be used for purposes other than
specifying structural zeros. As was done for the analysis in Table 2.5, cells
can be blanked out when they are not part of the data structure of interest.
In Table 2.5, the focus was on disagreement cells. Therefore, all agreement
cells had been blanked out.

One important implication of blanking cells out in CFA concerns the
number of cells that are subjected to CFA tests and, thus, the protection of
the significance threshold, α. When s cells are blanked out, the number of
CFA tests is reduced by s, and the maximum number of CFA tests becomes
t− s. The protected significance threshold for the t− s tests is, therefore, less
extreme than for the CFA of the table with t cells. Implications for power
are obvious.

The number of cells that can be blanked out is limited, for two reasons.
First, if too many cells are blanked out, the degrees of freedom can become
negative. In most cases, each cell that is blanked out reduces the degrees of
freedom by one. Second, the blanked-out cells can change the structure of a
table such that estimation of expected cell frequencies is no longer possible.
In CFA applications, neither problem is frequent.

Data Example 1: The following example uses data from an experiment on
information processing (Hussy, 1991). 118 individuals played the game
Mastermind on the computer. The time needed to make a decision in each
trial was coded as 1 = up to 10 sec; 2 = between 10 and 20 sec; and 3 =
more than 20 sec. In addition, a fourth category was used with 4 = problem
solved. The players had up to eight trials to solve a problem. For the
following example, we analyze the cross-classification of Trials 7 and 8.
The cross-classification of the four categories of decision making contains
three structural zeros. These zeros can be found in Configurations 4 1, 4 2,
and 4 3. They indicate that those respondents who solved the problem in
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Trial 7, or before, cannot register a nonzero decision-making time for Trial
8. Configuration 4 4 contains those cases that solved the problem before
Trial 8 and therefore do not log a problem-solving time in Trial 8.

We approach the data by using two CFA base models. The first is that of
independence between the two trials. Types and antitypes can, under this
model, emerge if a particular amount of time needed to make a decision
at Trial 7 is associated with a particular amount of time needed in Trial 8.
This base model, which is that of a first order CFA, ignores the fact that the
cross-classification of decision-making categories contains three structural
zeros. The second base model includes vectors for the three structural
zeros. Let the decision-making variables be labeled as T7 and T8. Then,
the base model that disregards the structural zeros is

log m̂ = λ + λT7 + λT8.

Under consideration of the structural zeros, this model becomes the
nonstandard

log m̂ = λ + λT7 + λT8 +
∑

k

λsk ,

where the last term indicates the vectors used to specify the structural zeros
(one per structural zero). The design matrices for these two models are

X =
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0 0 1 1 0 0 0 0 0
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The first of the two column blocks in this design matrix contains the vectors
for the first order CFA base model. The second block, added to the first for
the second CFA run, contains the three vectors that are used to specify the
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position of the structural zeros in the table. Table 3.1 displays the results
from both CFA runs.

The LR − X2 for the first model is 44.36 (d f = 9; p < 0.01). This base
model is, thus, rejected, and we expect types and antitypes to emerge. The
LR − X2 for the second model is 21.26 (d f = 6; p < 0.01). The improvement
of the second model over the first is significant, with ∆LR − X2 = 23.10
(∆d f = 3, p < .01). Still, it is possible that, for both models, types or
antitypes emerge.

Table 3.1 shows the expected picture. In the upper panel — it
displays the results from the standard first order CFA model — the
estimated expected frequencies for Cells 4 1, 4 2, and 4 3 are greater than
zero. These frequencies should have been placed in Cell 4 4 because,
in a model that takes main effects into account, the marginals must be
reproduced. As a result, the model-data discrepancies under the model
without consideration of the three structural zeros are overestimated, and
the overall LR − X2 for the first model is exaggerated. In contrast, the base
model that does take the three structural zeros into account distributes no
probability mass over the empty cells, that is, over the structural zeros. This
can be seen in the lower panel of Table 3.1. The overall LR−X2 for this model
is, therefore, significantly smaller. In addition, the right panel shows that
the estimated expected frequency in Cell 4 4 corresponds perfectly with
the observed one. This is natural, considering that for decision-making
Category 4, at Trial 8, only one frequency was observed. (The subtable that
contains this cell is locally saturated, with d f = 0.)

CFA from both of these analyses shows one type in common,constituted
by Cell 1 1. This type suggests that significantly more participants than
expected make their decisions in 10 sec or less, both in Trials 7 and 8.

3.2 Structural Zeros by Design

In this section, we discuss a situation in which structural zeros result from
coding and design (von Eye & Mun, 2007). We first introduce the method
of differences in categorical longitudinal data analysis, and discuss the
relationship of this method to polynomials in growth trajectory models.
We then present an algorithm for the detection of structural zeros that are
part of designs when difference variables are cross-tabulated.

3.2.1 Polynomials and the Method of Differences

Structural zeros by design can result when researchers and data analysts
use the method of finite differences. This method goes back to Newton (see
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TABLE 3.1. CFAs of Decision-Making Categories in Trials 7 and 8, without (Upper Panel)
and with (Lower Panel) Consideration of Structural Zeros

Configuration
T7T8

m m̂ z p Type/
Antitype

11 22 11.429 3.1271 .000883 Type
12 9 9.412 −.1342 .446615
13 7 12.437 −1.5417 .061573
14 2 6.723 −1.8215 .034269
21 4 9.429 −1.7679 .038537
22 9 7.765 .4433 .328771
23 15 10.261 1.4796 .069488
24 5 5.546 −.2319 .408294
31 8 11.429 −1.0142 .155247
32 10 9.412 .1917 .423972
33 15 12.437 .7268 .233684
34 7 6.723 .1070 .457413
41 0 1.714 −1.3093 .095215
42 0 1.412 −1.1882 .117382
43 0 1.866 −1.3659 .085993
44 60 1.008 4.9708 .000000 Type

11 22 12.035 2.8723 .002038 Type
12 9 9.912 −.2895 .386089
13 7 13.097 −1.6848 .046013
14 2 4.956 −1.3277 .092132
21 4 9.929 −1.8817 .029942
22 9 8.177 .2878 .386746
23 15 10.805 1.2761 .100962
24 5 4.088 .4508 .326069
31 8 12.035 −1.1632 .122373
32 10 9.912 .0281 .488787
33 15 13.097 .5257 .299536
34 7 4.956 .9183 .179234
41 0 — — —
42 0 — — —
43 0 — — —
44 60 6.000 .0000 .500000
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TABLE 3.2. First and Higher Differences for Series of Six Values for the Polynomial
y = 5 + 4x + x2 + 0.9x3

X 0 1 2 3 4 5 6

f (X) 5 10.9 24.2 50.3 94.6 162.5 259.4
∆ j 5.9 13.3 26.1 44.3 67.9 96.9
∆2,k 7.4 12.8 18.2 23.6 29
∆3,l 5.4 5.4 5.4 5.4
∆4,m 0 0 0

Swade, 2002). It can be used to calculate derivatives of series of real-valued
numbers. In a fashion parallel to quotients that are used in calculus to
determine derivatives of functions, differences between adjacent scores
show specific lawfulness. For example, the signs of the differences indicate
whether a curve goes up or down.

A number of variants of the method of differences exists. To introduce
the method, we use finite ascending differences. Other variants can be used
to analogous effects. Consider a series of I measures, X, with values xi

and i = 1, . . . , I. Then, the Method of Finite Ascending Differences (MFAD)
calculates first differences by subtracting from each score the score before,
beginning with the second, or∆1, j = x j+1−x j, for j = 1, . . . , I−1. The MFAD
calculates second differences by subtracting from each first difference the
previous first difference, also beginning with the second, or ∆2,k = ∆1,k+1 −
∆1,k, for k = 1, . . . , I − 2, and so forth.

The relationship of differences to polynomials is as follows. If a series
of measures was created by a polynomial of lth order, with l ≤ I − 1, the
lth differences are constant, and all higher order differences are zero. An
artificial data example is given in Table 3.2. In the first line of the body of
the table, the values of the third order polynomial y = 5 + 4x + x2 + 0.9x3

are given, for values of X from 0 to 6, in steps of 1. In the following rows,
the table shows the first, second, third, and fourth differences. The third
differences are constant, and the fourth differences are zero.

Figure 3.1 depicts the series of the raw scores (circles), first differences
(triangles), second differences (pluses), and third differences (x’s; bottom
curve). Evidently, with increasing order, the differences become smaller,
and the third differences are constant.

For the following paragraphs, we need to take into account that the
application of CFA requires that all variables (except covariates, see Chapter
4) be categorical. In addition, the exact value of parameter estimates is
rarely of interest. Therefore, researchers tend to categorize scores and, in
the present context, parameter estimates. When polynomials are used, the
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FIGURE 3.1. First, second, and third differences for a third order polynomial.

parameter score of zero is a natural cutoffpoint. Consider, for example, first
order polynomials (or straight regression lines). A positive slope parameter
indicates that the scores, over the observed series, increase. A negative
slope parameter indicates that the scores decrease. Slope parameters of
exactly zero practically never occur. Therefore, for the following discussion,
we focus on increases or decreases, or, in more general terms, on positive
versus negative polynomial parameters. Focusing on the signs of such
parameters, one can classify series of scores using the transformation
(Lienert & Krauth, 1973a, 1973b),

∆ =















0, if ∆ < 0

1, if ∆ > 0.

This transformation suggests that a difference is assigned a 0 if ∆ j =

x j+1 − x j < 0, and a 1 if ∆ j = x j+1 − x j > 0. This transformation can be
applied to differences of any order as well as to polynomial parameters.
Alternative transformations, including those that allow for no change, have
also been discussed (for an overview, see von Eye, 2002a; for a critique of
dichotomization, see McCallum, Zhang, Preacher, & Rucker, 2002).
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In particular, in the analysis of repeated observations, researchers often
ask questions concerning patterns of change, where change is defined
using descriptors of the shape of series of observations. To answer
these questions, researchers cross dichotomized variables of the kind just
introduced. More specifically, researchers cross the transformed variables
that indicate first and higher differences. In the following paragraphs, we
present a data example.

Data Example 2: For the following example, we use data from the study on
the development of aggression in adolescents (Finkelstein et al., 1994) again.
In this study, 47 boys and 67 girls in the United Kingdom were asked to
respond to an aggression questionnaire in 1983, 1985, and 1987. The average
age in 1983 was 11 years. One of the dimensions of aggression examined
in this study was Aggressive Impulses (AI). In the present example, we
analyze the development of AI in 1983, 1985, and 1987.

In this analysis, the same single variable was observed three times.
For this series, two measures of first differences can be calculated (∆1,1 =

Time 2 − Time 1, and ∆1,2 = Time 3 − Time 2) and one measure of second
differences (∆2,1 = ∆1,2 − ∆1,1). Each of these measures is ∆-transformed as
described above. From this transformation, three dichotomous variables
result. Crossed, these three variables span a 2×2×2 contingency table with
cell indices 0 0 0, 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0, and 1 1 1. Using these
indices, a decrease is indicated by 0 and an increase is indicated by 1. Table
3.3 displays this cross-classification for the present data.

We now perform a first order CFA which uses the log-linear main
effect model for a base model. The z-test was used, along with the
Holland-Copenhaver procedure of α protection. For the base model, we
calculate an LR − X2 of 88.36 (d f = 4; p < 0.01). Types and antitypes can be
expected to emerge.

Table 3.3 shows that CFA identified two types and two antitypes. The
first type is constituted by Configuration 0 1 1. This pattern describes an
initial decrease in aggressive impulses that is followed by an increase. This
pattern is characterized by a positive quadratic trend, as is indicated by the
1 for the second difference. The second type is constituted by Configuration
100. It shows just the opposite curvature. It describes an initial increase in
aggressive impulses that is followed by a decrease. It thus has a negative
quadratic trend, which is indicated by the 0 for the second difference.

From the perspective of the present discussion of “structural zeros by
design”, the two antitypes are most interesting. The first antitype suggests
that not a single adolescent showed a decrease from Time 1 to Time 2 that
is followed by an increase from Time 2 to Time 3 and, overall, a negative
quadratic trend (Configuration 010). The second antitype suggests that no
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TABLE 3.3. CFA of First and Second Differences of Aggressive Impulses, Observed
Three Times

Configuration
∆1,1, ∆1,2, ∆2,1

m m̂ z p Type/Antitype

000 20 22.241 −.4751 .317344
001 13 13.470 −.1280 .449076
010 0 14.505 −3.8085 .000070 Antitype
011 26 8.785 5.8084 .000000 Type
100 36 20.733 3.3529 .000400 Type
101 0 12.557 −3.5435 .000197 Antitype
110 15 13.521 .4021 .343810
111 4 8.189 −1.4639 .071616

one showed an initial increase, followed by a decrease in combination, for
an overall positive quadratic trend (Configuration 101). Interestingly, this
is not a surprise at all. It is logical that nobody showed these patterns. The
difference pattern of the first antitype describes a ∪-shaped curve that is,
simultaneously, ∩-shaped. The difference pattern of the second antitype
describes a ∩-shaped curve that is, simultaneously, ∪-shaped. Neither is
logically possible. Because of this pattern of contradictory shapes, the cells
0 1 0 and 1 0 1 are empty by definition. Nobody can possibly show this
pattern. Therefore, these cells must be declared structural zeros.

As was described above, two vectors need to be added to the design
matrix to blank out these two cells. The design matrix for the extended
base model thus becomes

X =































































1 1 1 0 0
1 1 −1 0 0
1 −1 1 1 0
1 −1 −1 0 0
−1 1 1 0 0
−1 1 −1 0 1
−1 −1 1 0 0
−1 −1 −1 0 0































































.

For the extended base model, we calculate an LR − X2 of 25.39 (d f = 2;
p < 0.01). This model is significantly closer to the data than the original
base model, but it still fails to describe the data well. Types and antitypes
are, therefore, expected to emerge. Table 3.4 gives the CFA results. As
before, the z-test was used, and the Holland-Copenhaver procedure of α
protection. Note that, for the present CFA, the first protectedα isα∗ = 0.0085
instead of α∗ = 0.0064, because six CFA tests are performed instead of eight
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TABLE 3.4. CFA of First and Second Differences of Aggressive Impulses, Observed
Three Times; Cells 0 1 0 and 1 0 1 Declared Structural Zeros

Configuration
∆1,1, ∆1,2, ∆2,1

m m̂ z p Type/Antitype

000 20 27.886 −1.4934 .067667
001 13 17.234 −1.0198 .153910
010 0 — — —
011 26 13.880 3.2531 .000571 Type
100 36 23.880 2.4801 .006567 Type
101 0 — — —
110 15 19.234 −.9653 .167190
111 4 11.886 −2.2874 .011085

in Table 3.3. Cells with structural zeros are not part of the testing routine
and, thus, the number of tests is smaller.

For the extended base model, we obtain only two types. These types
are the same as in Table 3.3. What used to be antitypes are now structural
zeros, with zero probabilities.

3.2.2 Identifying Zeros That Are Structural by Design

In this section, we describe von Eye and Mun’s (2007) algorithm for the
identification of zeros that are structural by design. This algorithm is
applicable when a cross-classification is spanned by variables that result
from dichotomizing first and higher order differences. Variables that reflect
more than one order of differences must span the same table. When
researchers cross dichotomous variables that reflect patterns of differences
of different orders, they analyze the linear, quadratic, cubic, etc. elements
of series of measures simultaneously. Crossing such variables has the
effect that all possible combinations of curvature patterns are included in
the table. Unfortunately, all impossible combinations are included also.
An empirical data example of a table with two impossible patterns was
analyzed in Tables 3.3 and 3.4. Before describing the algorithm for the
identification of structural zeros in this type of cross-classification, we
present a definition of impossible patterns.

Definition: Combinations of categories of differences from different
orders are impossible if the lower order patterns suggest a different
curvature than the higher order patterns.

We now ask how impossible patterns can be identified. The following
iterative procedure examines all candidate patterns for contradictory
description of orientation. Patterns are candidates if they indicate a change
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in orientation (from 0 to 1 or vice versa). There is no need to consider
patterns that show either zero differences or no change in orientation. Let
∆1, j and ∆1, j+1 be the first differences between the adjacent measure pairs
x j+1 and x j, and x j+2 and x j+1, for j = 1, . . . , I − 1, and ∆2,k the second
difference, that is, ∆1,k+1 − ∆1,k. Let ∆ = 0 indicate a decrease and ∆ = 1
indicate an increase in scores. Iteratively, the algorithm proceeds in two
steps:

• Step 1: Compare each pair of first differences ∆1, j and ∆1, j+1 with the
corresponding second difference ∆2,k. If both ∆1, j , ∆1, j+1 and ∆1, j+1 , ∆2,k,
then the pattern is impossible. To give an example, consider the pattern 1
0 at a given difference level in combination with a 1 at the following level.
This pattern is impossible. The second of the first differences would indicate
a negative orientation, whereas the second difference would indicate a
positive orientation. Accordingly, the pattern 0 1 at a given level cannot
be combined with a 0 at the next higher level. If a pattern is identified as
impossible, proceed to the next pattern. If a pattern is impossible, all other
patterns that could be combined with the impossible pattern are impossible
also.

• Step 2: Proceed to the next pair of differences, and start over, at Step 1.
Continue until all patterns of differences are compared.

This procedure can be applied to difference patterns of all levels. If
a researcher decides to skip levels, the procedure can be adjusted.
Specifically, if a 1 at the following level renders a difference pattern
impossible, a 0 at the next higher level renders it impossible also. For
example, pattern 1 0 at level k cannot go with ∆ = 0 at level k + 2. For
example, for x values of−10, −5, 0, and 5, one obtains the difference pattern
1 0 1 for the three first differences, 0 1 for the two second differences, and
1 for the sole third difference. The first differences signs indicate an initial
increase that is followed by a decrease and then an increase. The second
differences signs indicate that the rate of change is initially decelerated and,
in later phases, accelerated. The third difference indicates an increase in
acceleration. This pattern of differences is possible. In contrast, consider
the series 9, 15, 10, 6. For this sequence, the first differences pattern is 1
0 0, the second differences pattern is 0 1 and, for the corresponding third
difference, we calculate ∆ = 1, thus indicating a ∩-shaped trend. For this
series, a zero for the third difference would be impossible.

Data Example 3: For the following example, an artificial data set was
created using QuattroPro, and processed using SYSTAT. A series of four
scores was created, using QuattroPro’s uniform random number generator
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TABLE 3.5. Cross-Tabulation of Three First and Two Second Differences (Artificial Data,
1,000 Cases; All Zeros in the Frequency Table Are Structural Zeros)

T2T1a T3T2 T4T3 S21 S32
0 1

0 0 0 0 7 13
0 0 0 1 8 9
0 0 1 0 0 59
0 0 1 1 0 55
0 1 0 0 0 0
0 1 0 1 213 0
0 1 1 0 0 0
0 1 1 1 69 57
1 0 0 0 69 69
1 0 0 1 0 0
1 0 1 0 0 211
1 0 1 1 0 0
1 1 0 0 55 0
1 1 0 1 60 0
1 1 1 0 14 9
1 1 1 1 12 9

aT2T1 indicates the sign of the first difference between measures T1 and
T2 (1 = increase; 0 = decrease), T3T2 indicates the sign of the first
difference between measures T2 and T3, etc.; S21 indicates the sign of
the second difference of T2T1 and T3T2, etc.

RAND. The data set includes 1,000 cases. For the following illustration,
the three first differences and the two second differences were calculated.
None of these turned out to be constant. This is as expected, considering
the random nature and the ratio scale level of the scores. The first and the
corresponding second differences were transformed into 0−1 patterns, with
0 indicating differences ≤ 0 and 1 indicating differences > 0. Crossed, the
resulting dichotomous variables span a contingency table with 25 = 32 cells.
This cross-tabulation is given in Table 3.5. Each of the possible patterns in
this table was observed more than once. Each impossible pattern has,
naturally, a frequency of zero. The variables are labeled T1, T2, T3 and
T4. The first differences are labeled T2T1 for the difference between the
second and the first scores, T3T2 for the difference between the third and
the second scores, and T4T3 for the difference between the fourth and the
third scores. S21 is the label for the difference between the second and the
first of the first differences, and S32 indicates the difference between the
third and the second of the first differences.
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TABLE 3.6. Search for Structural Zeros in a 25 Cross-Classification That Is Spanned by
Three First and Two Second Differences: Four Sample Patterns

Differences Levela Pattern Compared Overall Decision for Pattern
1st Differences 2nd Differences 1st vs. 2nd Differences

0 0 0 0 0 0 0 - 0 possible
0 0 0 0 0 0 0 - 0 possible Possible
0 0 1 0 0 0 0 - 0 possible
0 0 1 0 0 0 1 - 0 impossible Structural Zero
0 0 1 0 1 0 0 - 0 possible
0 0 1 0 1 0 1 - 1 possible Possible
0 1 1 0 0 0 1 - 0 impossible Structural Zero
0 1 1 0 0 1 1 - 0 impossible Structural Zero

aUnderlined numbers indicate the pair of the first and the second
differences being examined at each step.

To illustrate the algorithm described above, we now discuss the four
scenarios from this table. Table 3.6 shows the four decision scenarios that
can occur when deciding whether a pattern that includes difference from
levels k and k+ 1 must be treated as a structural zero. The rows of Table 3.6
can be read as follows. We discuss the four possible scenarios.

Scenario 1: From the pattern of first differences (three left columns), we
take the first two elements (e.g., 0 0, in the first row), and compare them
to the first element of the second difference pattern (0, in the first row).
If the second element of the first differences is equal to the sole element
of the second differences pattern, the shape of the curve can be described
in a compatible way using the MFAD approach, and we can move on to
the next elements of the same row. In the present case, we compare the
second two elements of the first differences pattern (0 0) in the first row
and compare this change pattern with the second element of the second
differences pattern (0, in the first row). If these two patterns are compatible,
we are ready to make a decision on the first change pattern, that is, 0 0 0
- 0 0. If all comparisons indicate that the patterns of the first and the
second differences are compatible, the entire pattern is possible. If any one
pattern is incompatible, that is, impossible, we treat the entire pattern as a
structural zero. In general, whenever the sign pattern at level k is constant,
any combination with sign patterns at the k+ first level of differences is
possible.
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Scenario 2: The second configuration in Table 3.6 (0 0 1 - 0 0) shows
that, for some patterns, the two comparisons can result in conflicting
conclusions. In this case, the impossible supersedes the possible, and the
pattern is treated as a structural zero. Table 3.5 shows that Pattern 0 0 1 - 0
0 was, indeed, not observed.

Scenario 3: In the third pair of rows, the two comparisons for the Pattern
0 0 1 - 0 1 suggest the same conclusion, although the sign patterns in the
pair are not constant. In this case, all comparisons show that the pattern is
possible, and the pattern can contain cases. Table 3.5 shows that Pattern 0 0
1 - 0 1 was observed 59 times. It should be noted that all comparisons need
to be made only if, before the last comparison, there is none that would
suggest an impossible pattern.

Scenario 4: The last pair of rows (Pattern 0 1 1 - 0 0) shows why this
is the case. As soon as a pattern is identified as impossible, the subsequent
comparisons are unnecessary.

Once a pattern is impossible at one level, all following patterns, taking
higher order differences into account, will also be impossible. If, however,
a pattern is possible at a given level, the following patterns, taking higher
order differences into account, can be either possible or impossible.

Of the 32 cell patterns in the present example (Tables 3.5 and 3.6), 14
are impossible. The log-linear main effect model that ignores the structural
zeros has 26 degrees of freedom. The model that takes the structural zeros
into account has 12 degrees of freedom. Only the latter is conceivable as a
valid base model for CFA.

In the present example, third differences can be calculated also. Taking
the third differences into account results in a table with 64 cells. This table
contains 46 structural zeros. The log-linear main effect model for this table
has 57 degrees of freedom when the structural zeros are ignored, and 11
degrees of freedom when the structural zeros are taken into account and
one column vector is inserted into the design matrix for each of them.

CFA based on the MFAD approach is attractive because it allows one to
examine change and variations in change from the perspectives of pattern
analysis and person orientation. However, in the complete crossing of
difference patterns from different levels of finite differences, a large number
of structural zeros will always and systematically result. In many cases,
structural zeros are not problematic, and software such as `EM, Splus, or
SYSTAT will allow one to take them into account. However, four issues
need to be considered.

First, structural zeros lead to incomplete designs. Therefore, design
matrices become nonstandard, and the interpretation of log-linear
parameters can be complicated (Mair, 2007; Mair & von Eye, 2007).
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Second, the models that can be fitted will have to be less complex than
the number of variables and the size of the cross-classification would allow
otherwise. The reason for this is that the number of degrees of freedom
available for modeling incomplete tables is smaller than for complete tables
of the same size. Therefore, data analysis, in particular modeling such data,
may end up in nonfitting models. In the context of CFA application, the
reduced number of degrees of freedom has the consequence that not all CFA
base models may be possible or admissible. For example, the base model
of second order CFA requires that all first order associations be taken into
account. If, because of a large number of structural zeros, parameters
cannot be estimated, the CFA base model that includes these parameters
cannot be applied.

The third issue is that signs of differences come with a priori
probabilities that do not necessarily correspond with the marginal
proportions (see von Eye, 2002a). If researchers wish to take these a
priori probabilities into account, additional vectors need to be included
in the design matrix. Each of these vectors costs one degree of freedom.
The complexity of possible log-linear models or CFA base models is thus
reduced even more. In addition, the option of including covariates (see
Chapter 4) becomes increasingly remote.

A fourth issue inherent in the analysis of difference scores is that
differences of raw scores that come with measurement error can be
unreliable (Lord & Novick, 1968). It was shown by von Eye (1982) that
reliability is not always low. Instead, it varies with (1) the reliability of the
individual measures and (2) retest reliability. Differences from Rasch-scaled
scores and from physiological measures tend to have better measurement
characteristics. The same typically applies to rank differences.

3.3 Chapter Summary

Structural zeros are zero frequencies in cells for which it is impossible that
cases can be found. Reasons are largely logical or technical. An example of a
logical reason is the case in which no females are found with prostate cancer.
Technical is the case in which up-and-down patterns of signs of differences
cannot co-occur. Structural zeros are in contrast to empirical zeros, which
simply indicate that no case was found but that, under different conditions,
cases could have been found with the profile indicated for a cell with a zero
count.

If zeros are structural, one must make sure that cells in which they occur
do not constitute antitypes. To prevent this from happening, one can blank
out these cells and apply the CFA base model to the table with one or more
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cells blanked out. Implications of this methodology include that (1) the
number of CFA tests performed to a table with structural zeros is smaller
than the number of CFA tests for a complete table and, therefore, (2) the
procedure used to protect α will always result in a less extreme adjusted
significance threshold.

An algorithm is presented that allows one to identify structural zeros
that occur for technical reasons (“by design”). A third implication is that
the number of CFA base models that can be employed can be limited when
the number of structural zeros is large.



4
Covariates in CFA

Covariates are defined as variables that may have an effect on the
observed outcomes without being under control of the experimenter.
Chapter 4 discusses continuous covariates. Categorical covariates
are discussed later in the book, in the chapter on Moderator CFA
(Chapter 8). It is shown how the CFA base model can be modified
to take continuous covariates into account. In a fashion analogous to
the number of structural zeros (Chapter 3), the number of covariates
has the potential of curtailing the complexity of the CFA base model
that can be estimated. A data example is given on the development
of aggression in adolescence in which physical pubertal progress, a
continuous covariate, is taken into account.

4.1 CFA and Covariates

A covariate is a variable that (1) may be predictive of the outcome variable
and (2) is not controlled in the process of data collection. Depending on
context, covariates are viewed as independent variables, as confounding
variables, or as causes of dependent measures. In the analysis of
categorical variables, the dependent variable is given by the logarithms
of the frequencies of a cross-classification, log m̂. Covariates, therefore, are
variables that possibly help explain the log m̂ (see also Section 7.2).

When covariates are categorical, they can be crossed with the variables
that are of key interest in a study. If this is possible (sample size limitations
may prevent researchers from doing this because, with each new variable,
the cross-classification increases in size by a factor given by the number of
categories of the new variable), covariates are not distinguishable from the
variables of key interest, unless they play a different role in the base model
(see section on structural zeros). For example, to eliminate the effects of
covariates on the emergence of types and antitypes, researchers may specify

58
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the base model such that it (1) is saturated in the covariates and (2) takes
into account all associations among covariates and the variables of key
interest. Types and antitypes will emerge from a base model having these
characteristics only if they are caused by the variables of key interest and
their interactions.

In contrast, when covariates are continuous, they cannot be used as
variables that span a cross-classification. To be able to take continuous
covariates into account without categorizing them, researchers proceed as
follows. First, the expectancy (mean) of the covariate is determined for
each cell of the table. Then, the resulting vector of means is inserted into
the design matrix of a log-linear model or a CFA base model. This can be
done with one or more covariates, degrees of freedom permitting. Each
covariate thus represents an investment of one degree of freedom.

The downside of this procedure is obvious. The design matrix,
which may have included orthogonal contrast vectors, will no longer be
orthogonal. Instead, effect vectors will be correlated. Typically, the mean
vectors of several continuous covariates will also be correlated. Thus, the
resulting design matrix is nonstandard, and parameter estimates will not
be independent.

The procedure of taking categorical covariates into account is routine
in CFA applications. Therefore, we focus, in this chapter, on continuous
covariates. From the perspective of a CFA user, an important issue concerns
the nature of covariates. On the one hand, if the covariates are hypothesized
to explain the data, one can first perform a CFA based on the design matrix
without the covariates. In a second step, covariates are added to the base
model in the first step, and CFA is performed based on the thus extended
base model. If the resulting pattern of types and antitypes changes, it must
be due to the covariates’ main effects, the interactions among the covariates,
and the interactions of the covariates with the variables of the original base
model.

Let the original base model be log m̂ = Xλ. Then, the extended base
model that includes the covariates is

log m̂ = Xλ + Cλc,

where X is the design matrix of the original base model and λ is the
corresponding parameter vector. X represents the key variables of a study.
C is the matrix that contains the mean vectors of the covariates and λc the
corresponding parameter vector.

On the other hand, if the researchers wish to focus on types and
antitypes that emerge solely from the key variables and their interactions
but not from the covariates, the associations between covariates and key
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variables can be taken into account, so that the extended base model
becomes

log m̂ = Xλ + Cλc + Aλa,

where matrix A contains the vectors for the associations among covariates
and key variables, and λa is the corresponding parameter vector. Including
the matrix A in the base model is conceptually equivalent to adjusting for
effects of covariates in the examination of predictor-outcome relationships
in variable-oriented research.

Data Example: In the following example, we use data from the Finkelstein
et al. (1994) study on the development of aggression in adolescence again.
47 boys and 67 girls in the United Kingdom were asked to respond to an
aggression questionnaire in 1983, 1985, and 1987. Their average age in
1983 was 11 years. One of the dimensions of aggression examined in this
study was Aggressive Impulses (AI). In the present example, we analyze
the development of AI from 1983 to 1987.

In the present analysis, two first differences of AI are calculated (∆1,1 =

Time 2 − Time 1, and ∆1,2 = Time 3 − Time 2) and one second difference
(∆2,1 = ∆1,2−∆1,1). Each of these differences is dichotomized into 0-1 scores
as described above, with 0 indicating a decrease and 1 indicating an increase
in score. Thus, three dichotomous variables result. Crossed, these three
variables span a 2×2×2 contingency table with cell indices 0 0 0, 0 0 1, 0 1 0,
0 1 1, 1 0 0, 1 0 1, 1 1 0, and 1 1 1. Table 3.4 displays this cross-classification
for the present data, along with a CFA that takes the two structural zeros
in Cells 0 1 0 and 1 0 1 into account (see Chapter 3). For the purposes
of the present chapter, we ask whether the progress that the adolescents
had made in the stages of physical pubertal development in 1983, that is,
at the beginning of the study, measured in units of Tanner scores, allows
one to predict the trajectory types found in Table 3.4. If pubertal stage in
1983 is hypothesized to predict the developmental trajectories of aggressive
impulses assessed three times from 1983 to 1987, in 2-year intervals, the
two types in Table 3.4 disappear. Alternatively, new types or antitypes can
emerge, or only one of the two types disappears. Table 4.1 displays the
results from Table 3.4 again, in its upper panel. In its lower panel, it shows
the results for the base model that includes the average Tanner scores in
the design matrix as a covariate.

For the results in the right-hand panel of Table 4.1, a first order CFA
was performed that includes the Tanner stage score means in 1983 as a
covariate in an additional column vector (see below). The z-test was used,
and the Holland-Copenhaver procedure of α protection. For this extended
base model, we calculate a value of 1.917 (d f = 1; p = 0.17). This LR−X2 is
so small that it is impossible for types and antitypes to emerge.
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TABLE 4.1. CFA of First and Second Differences of Aggressive Impulses, Observed
Three Times; Cells 0 1 0 and 1 0 1 Declared Structural Zeros without Covariate (Upper
Panel) and with Covariate (Lower Panel)

Configuration
∆1,1, ∆1,2, ∆2,1

m m̂ z p Type/
Antitype

000 20 27.886 −1.4934 .067667
001 13 17.234 −1.0198 .153910
010 0 — — —
011 26 13.880 3.2531 .000571 Type
100 36 23.880 2.4801 .006567 Type
101 0 — — —
110 15 19.234 −.9653 .167190
111 4 11.886 −2.2874 .011085

000 20 22.212 −.4693 .319445
001 13 10.788 .6733 .250375
010 0 — — —
011 26 26.000 .0000 .500000
100 36 36.000 .0000 .500000
101 0 — — —
110 15 12.788 .6184 .499993
111 4 6.212 −.8873 .187445

Not surprisingly, Table 4.1 (lower panel) shows no type or antitype.
Evidently, the residual distribution in the bottom panel of Table 4.1 can be
explained by the covariate vector. The design matrix for the extended base
model is

X =































































1 1 1 0 0 1.4
1 1 −1 0 0 1.4
1 −1 1 1 0 0
1 −1 −1 0 0 1.8
−1 1 1 0 0 1.5
−1 1 −1 0 1 0
−1 −1 1 0 0 1.6
−1 −1 −1 0 0 1.6































































.

In this design matrix, the first two column vectors represent the
contrasts for the first differences. The third vector represents the contrast
for the second differences.
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The following two vectors are used to declare Cells 0 1 0 and 1 0 1
structural zeros. The last vector contains the Tanner score means for each
of the eight cells.1

One explanation for the disappearance of the two types can be found
in the correlation of the covariate with the dependent measure. The last
column vector in the extended design matrix correlates with the observed
frequencies, m, to rcm = 0.71. Even more extreme, the last vector correlates
with the log m vector to r = 0.90. Thus, it can be said that physical
pubertal development in 1983 is predictive of the developmental trajectory
of aggressive impulses over the following 4 years. The smaller part of
the variance that physical pubertal development and the frequency vector
share is explained by the first five columns of the design matrix. However,
the correlation between the last vector in X and the residuals in the left-hand
panel of Table 4.1, that is, the correlation rc,m−m̂ is still 0.42. Table 4.1 shows
that taking this covariation into account makes the two types disappear.

4.2 Chapter Summary

Covariates are variables that are not under control of the experimenter
but potentially can help explain the outcome. In CFA, covariates play the
role of explaining the pattern of types and antitypes in an analysis. In
CFA applications, continuous covariates can be made part of the design
matrix. Categorical covariates can be crossed with the variables that are
used for CFA. Alternatively, categorical covariates can be used as grouping
variables in multi-group designs. Categorical covariates, when used as
grouping variables or factors, have the effect that the cross-classification
under study becomes larger. The number of cells increases by a factor that
is given by the number of categories of the covariate. Therefore, categorical
covariates tend to reduce the power of the cell-wise CFA tests.

1It is important to note that, in the current design matrix, the middle four cells, 0 1 0, 0 1 1,
1 0 0, and 1 0 1, are fully identified under the extended base model, that is, the model that
takes the structural zeros into account. Therefore, any entries in the middle for coordinates
of the last vector in this design matrix will yield the same results. Readers are invited to
try, for example, the column vector 1 1 100 100 100 100 7 7. As far as the other four cells, 1 1
1, 1 1 0, 1 1 0, and 1 1 1, are concerned, the entries used in the last vector will function as an
interaction between the first difference scores and the second difference scores. Thus, the
continuous covariate, in this example, functions as if it were a categorical covariate. This
situation is likely to occur when a table has only a small number of cells and when there
are just a few degrees of freedom. Readers are invited to also try the column vector 1 1 0 0
0 0 0 0.



5
Configural Prediction Models

Prediction models, for example, logistic regression, are among the
better-known models in the analysis of categorical variables. These
models, again, relate variables to one another. In contrast, CFA
prediction models, presented in Chapter 5, relate patterns of predictor
categories to patterns of criterion categories. Results from logistic
regression and Prediction CFA (P-CFA) are not comparable, for two
reasons. First, whereas logistic regression operates at the level of
variables, P-CFA operates at the level of configurations. Second, in most
logistic regression models, higher order interactions among predictors
and criteria are set to zero. In contrast, in P-CFA, these interactions can
be causes for types and antitypes to emerge. The detailed comparison
of logistic regression and P-CFA in Chapter 5 shows that P-CFA base
models can be adjusted to yield results that are comparable with those of
logistic regression or, in general, logit log-linear models. Models with one
or more predictors and one or more criteria are presented and applied.
Chapter 5 also presents two new special cases. In the first, models of
P-CFA are used to predict the end point of a series. The second special
case is that methods of P-CFA are used to predict a trajectory. The base
models of P-CFA share two characteristics. First, they are saturated in
the predictor variables (all possible relationships among the predictors
are taken into account) and they are saturated in the criterion variables.
Second, P-CFA base models propose independence of predictors from
criteria. Because of these characteristics of P-CFA base models,
prediction types and antitypes can emerge only if relationships among
predictors and criteria exist, at the level of configurations. Chapter 5
concludes with a discussion of new methods of graphically representing
results of P-CFA.

In this chapter, we discuss variable-level and configural prediction models
(von Eye, Mair, & Bogat, 2005). We introduce these models by first
comparing configural prediction models with models of logistic regression
and with standard, continuous-variable ordinary least squares (OLS)
regression. Then, we present configural models in more detail.

63
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Variable-oriented prediction models, in the bivariate case, regress
one variable, Y, onto another, X. In standard, continuous-variable OLS
regression, results are expressed in terms of regression coefficients that
indicate the number of steps that are taken on Y after a one-unit step on
X. When models from the family of general linear models are used, the
model equation is of the form Y = Xβ + ε, where Y is the array of observed
scores, X is the design matrix that contains, for instance, the scores on the
predictor variables, vector β contains the regression parameters, and ε is the
array of residuals. If Y contains the scores of one variable and X contains
one predictor, the model is called simple regression. If X contains more
than one predictor, the model is called multiple regression. For example,
if Y is regressed on two predictors, X1 and X2, the regression model is
Y = β+X1β1+X2β2+ε. If Y contains the scores on more than one dependent
variable, the model is called multivariate regression.

Unless piece-wise regression models are estimated (for sample
applications, see von Eye & Schuster, 1998), or the regression model is
restricted to be valid for a selected range of scores only, researchers assume
that the regression equation is valid over the entire range of admissible
scores on X. This issue will be taken up again when we discuss configural
mediation models, in Chapter 6.

When the outcome variable is categorical, similar parameters can be
estimated. Using the log-linear representation of logistic regression with
categorical variables, the general model is, as before, log m̂ = Xλ. If one
categorical outcome variable, Y, is regressed onto two categorical predictor
variables, X1 and X2, the logistic regression model (or logit log-linear
model) can be expressed as

log m̂ = λ + λX1

i
+ λX2

j
+ λX1X2

i j
+ λY

k + λ
X1Y
ik
+ λX2Y

jk
,

where the subscripts index the parameters, and the superscripts indicate
the variables using terms of standard log-linear models. Logit log-linear
models and logistic regression models are equivalent and are used
interchangeably in this chapter. Later, in this chapter, logistic regression
models will be discussed in more detail.

The log-linear logistic regression model shown above estimates
parameters for each predictor and for each criterion variable. In addition,
all interactions among the predictors are estimated as well, and at least
all two-way interactions between individual predictors and the criterion.
Typically, (k−1)(l−1) parameters are estimated for the interaction between
a predictor with k categories and a criterion with l categories. The
interpretation of these parameters depends on the definition of the effects
in the design matrix. Parameters that are estimated based on effects coding
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can lead to a different interpretation than when they are estimated based
on dummy coding. In contrast, overall model fit does not depend on type
of coding.

The configural approach differs from both, standard and logistic
regression. Specifically, instead of relating variables to one another, the
configural approach asks whether particular configurations stand out
because they contain more or fewer cases than one would expect under
a particular base model. In the present context, this model is a prediction
base model. As with all CFA base models, the prediction base model
contains only those variable relationships the researcher is not interested
in. So, here, the base model contains all relationships that are not part of a
prediction. These are (1) all main effects and interactions on the predictor
side and (2) all main effects and interactions on the criterion side.

If types or antitypes emerge, the predictive relationship must exist, at
least locally, that is, for the configurations that constitute the prediction
types and the prediction antitypes. A prediction type suggests that, given a
particular predictor category configuration, a particular criterion category
configuration was observed more often than expected. A prediction
antitype suggests that, given a particular predictor category configuration,
a particular criterion category configuration was observed less often than
expected. In brief, instead of interpreting parameters of prediction models,
users of CFA interpret the category patterns of those cells that constitute
types and antitypes.

In the following sections, various prediction models are introduced and
explained, all in comparison to logistic regression models (von Eye & Bogat,
2005; von Eye et al., 2005).

5.1 Logistic Regression and Prediction CFA

In this section, we first review logistic regression. This is followed by a
discussion of Prediction CFA (P-CFA).

5.1.1 Logistic Regression

Logistic regression is a method for the prediction of binary outcomes1 (for
overviews, see, e.g., Agresti, 2002; Christensen, 1997, 2005; Lawal, 2003).
Examples of such outcomes include political voting (respondent votes vs.

1In Section 5.1.1, we focus on binary outcome variables. That is, the sole outcome variable
has two categories. The arguments used in this chapter apply accordingly when the outcome
variable has more than two categories, or when more than one outcome variable is analyzed
in the same model.
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does not vote), hiring decision (applicant is hired vs. is not hired), and
caseness (meeting vs. not meeting criteria for a clinical diagnosis). Now,
let the two outcome categories of the criterion variable, Y, be labeled with
1 and 0, with probabilities Pr(y = 1) = p and Pr(y = 0) = 1 − p. The odds
of being in category y = 1 are p/(1 − p). The logarithms of odds are termed
log-odds or logits, log(p/(1 − p)).

Now, in logistic regression, one predicts the logits from one or more
predictors. A linear model of the log odds can be expressed as

log

(

p

1 − p

)

= β0 +

K−1
∑

k=1

βkxk,

where K is the number of parameters and xk is the kth design matrix vector.
This is a straightforward extension of OLS regression and represents a
generalized linear model with a logit link function. The probabilities are,
then, estimated to be

p =
exp(β0 +

∑K−1
k=1 βkxk)

1 + exp(β0 +
∑K−1

k=1 βkxk)
,

and

1 − p =
1

1 + exp(β0 +
∑K−1

k=1 βkxk)
.

In practice, most logistic regression models can be estimated by using
either analytic modules for logistic regression or log-linear modeling.
The advantage of log-linear models lies in their generality. Every
logistic regression model can equivalently be expressed in terms of
log-linear models. However, log-linear models are more flexible than
logistic regression models in terms of specifying the relationships between
predictors and outcome variables.

Table 5.1 presents sample models in the log-linear bracket notation, in
the logit model notation, and using the shorthand logit symbol. In the
table, the variables X and Z are the predictors, and the variable Y is the
criterion.

The first model in Table 5.1 proposes that (1) the criterion is unrelated to
the two predictors, X and Z, and (2) the two predictors are associated with
each other. A violation of this model would indicate that the predictors
are related to the criterion. P-CFA, which will be elaborated below, can use
this model as a base model. It is important to note that each of the models
in Table 5.1 contains the association between the predictors, X and Z. The
association between predictors is not part of a standard regression model
in the context of the General Linear Model.
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TABLE 5.1. Logistic Regression (Logit) and Log-Linear Models for the Predictors, X and
Z, and the Criterion Variable, Y

Log-Linear Bracket Notationa Logistic Regression (Logit Model) Logit Symbol

Model 1: [Y], [XZ] β0 (−)

Model 2: [XY], [XZ] β0 + λ
X
i

(X)

Model 3: [YZ], [XZ] β0 + λ
Z
k

(Z)

Model 4: [XY], [YZ], [XZ] β0 + λ
X
i
+ λZ

k
(X + Z)

Model 5: [XYZ] β0 + λ
X
i
+ λZ

k
+ λXZ

ik
(X ∗ Z)

aThroughout this text, the bracket notation for interactions, for example,
[X,Y,Z] or [XYZ], and the ANOVA-like notation, X × Y × Z, are used
interchangeably.

The second model proposes that (1) Predictor X is associated with the
criterion, Y, (2) Predictor Z is unrelated to the criterion, and (3) the two
predictors are associated with each other. The third model proposes that
(1) only the second predictor, Z, is associated with Y, (2) the first predictor,
X, is unrelated to the criterion, and (3) the two predictors are associated
with each other. Models 2 and 3 can also be used as base models for P-CFA
(this is illustrated in Chapter 6, on mediation analysis).

The fourth model proposes that each of the predictors, X and Z, is
associated with the criterion, and (2) the two predictors are associated
with each other. The fifth model in Table 5.1 proposes that, in addition to
the propositions made by Model 4, the triple interaction between the two
predictors and the criterion exists, thus proposing, for example, that the
relationship between X and Y varies with the categories of Z (that is, an
interaction of XZ with Y). Unless constraints are placed on parameters,
this model is fully saturated. As such, it has no degrees of freedom left and
model fit is perfect (and not testable). Therefore, Model 5 is not a suitable
base model for P-CFA because it takes all possible predictor-criterion
relationships into account. In contrast, Model 4 can be used for P-CFA
if the hypothesis is entertained that prediction types and antitypes are
based on the triple interaction [X,Y,Z] (see the discussion of Figure 5.1).

The log-linear model that is equivalent to a standard logistic regression
model contains the following terms:

1. the main effect of the dependent variable;

2. the main effects of all independent variables;

3. the two-way interactions of all independent variables with the
dependent variable; and
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TABLE 5.2. Observed and Expected Frequencies for the Logistic Regression of Penalty
(P) on Race of Victim (V) and Race of Defendant (D)

Configuration
VDPa

Observed Estimated Std. Res.

1 1 1 593 592.416 0.024
1 1 2 14 14.584 −0.153
1 2 1 284 284.585 −0.035
1 2 2 38 37.416 0.095
2 1 1 25 25.584 −0.115
2 1 2 1 0.416 0.905
2 2 1 272 271.415 0.035
2 2 2 23 23.584 −0.120

aPenalty (P: 1 = no death penalty; 2 = death penalty), Race of Victim (V:
1 = black; 2 =white), and Race of Defendant (D: 1 = black; 2 = white).

4. all interactions among the independent variables. These terms
are included because the model makes no assumptions about the
relationships among the independent variables. The model is, thus,
saturated in the predictors.

5. (if desired) three- and higher-way interactions between two or more
predictors and the sole dependent variable, X.

Based on this definition and the examples in Table 5.1, the log-linear
model specification for the dependent variable, Y, and the K independent
variables, Xi, for i = 1, . . . ,K, is

log m̂ = λ0 + λ
Y +

K
∑

i=1

λXi

i
+

K
∑

i=1

λYXi

i
+

∑

i< j

λ
YXiX j

i j
+ · · · +

∑

i, j,...,K

λ
XiX j...

i, j,...,K
,

with i , j, where the λ terms refer to all parameters that are estimated for
a model term. Analogous models can be specified for the case in which
more than one criterion variable is modeled simultaneously. In many cases,
researchers set those terms to zero in which the interactions of predictors
are related to the criterion.

Results of logistic regression are interpreted, using information from
R2 equivalents, odds ratios, confidence intervals of parameter estimates,
goodness-of-fit and lack-of-fit tests, and significance tests of the effects of
individual predictor variables (parameters).

Data Example 1: The following data example presents a reanalysis of the
data that were published by the New York Times on January 8, 2003. For
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1,311 murder cases in Maryland that were recorded from 1978 to 1999, the
relationships among Race of Victim (V), Race of Defendant (D), and Penalty
(P) were examined. The two race variables were coded as 1 = black and 2 =
white; the penalty variable was coded as 1 = no death penalty issued and 2
= death penalty issued. In the following analysis, we use logistic regression
to determine whether the two race variables allow one to predict penalty.
The log-linear model that corresponds to the logistic regression model in
which P is predicted from D and V is

log m̂ = λ0 + λ
P + λD + λV + λDP + λVP + λDV.

The equivalent logit (logistic regression) model is λ0 + λ
P + λD + λV.

Including the three-way interaction, P × D × V, would have resulted in
a saturated model. Using the `EM software package (Vermunt, 1997), the
results shown in Tables 5.2 and 5.3 were created. Table 5.2 shows, from
left to right, the labels for the patterns; the observed cell frequencies; the
expected cell frequencies from the above logistic regression model; and the
standardized residuals, which are defined as

std. res. =
observed − estimated

√
estimated

.

The overall goodness-of-fit of the logistic regression model is excellent,
with LR − X2 = 0.65 (d f = 1; p = 0.42). The parameter estimates are
summarized in Table 5.3.

The tests of the main effect parameters do not need to be interpreted in
detail. The reason for this is that, in log-linear models, lower order terms
are of lesser interest when higher order terms are significant. In the present
model, two of the three two-way interactions are significant. The first of
these, [V,D], indicates that the victim and the defendant are more likely to
be of the same race. This result may be interesting in itself. However, it is
not of critical importance for the question asked with the logistic regression
model, that is, the question concerning the prediction of penalty from race
of victim and race of defendant.

The more interesting results can be found in the bottom two rows
of Table 5.3. We find that race of defendant, but not race of victim, is
statistically significantly related to penalty. This result contradicts the main
conclusion proposed by the New York Times. According to this conclusion,
victim’s race is pivotal to the death penalty (2003, p. A12). In the next
section, we ask whether P-CFA can shed additional light on these data.

5.1.2 Prediction CFA

In this section, we first cover models that include one criterion variable.
We then move to models with multiple criterion variables.
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TABLE 5.3. Log-linear Parameter Estimates for the [VD], [VP], [DP] Model for the Data
in Table 5.2

Label Parameter Estimate se za

Constant (Threshold) 3.68
Race of Victim (V) .90 .08 11.11∗

Race of Defendant (D) −.83 .09 −9.14∗

Penalty (P) 1.54 .08 18.44∗

V × D .77 .05 14.26∗

V × P −.10 .07 −1.52
D × P .42 .08 5.39∗

a ∗p < 0.05.

P-CFA with One Criterion Variable

In contrast to logistic regression, Prediction CFA (P-CFA) aims at
identifying those cells of a cross-classification that stand out because they
contradict a base model. The base model needs to be specified such that
the cells that stand out (outlandish cells) can be interpreted as intended.
When applying P-CFA, researchers are interested in relationships among
predictors and criteria, at the level of individual categories. Therefore, the
P-CFA base model is specified as follows. P-CFA base models

1. are saturated in the predictors; and

2. are saturated in the criteria; but they propose

3. independence of criteria and predictors.

In different words, a P-CFA base model takes all possible effects into
account except those that relate predictors to criteria. If this model is
contradicted, predictor-criteria relationships must exist. P-CFA identifies
those configurations that carry predictor-criterion relationships.

Consider again the death penalty data example used in the last section.
In this example, Penalty (P) was predicted from Race of Defendant (D) and
Race of Victim (V). Logistic regression suggested that Race of Defendant is
a significant predictor, but Race of Victim is not. The log-linear model used
for logistic regression was

log m̂ = λ0 + λ
P + λD + λV + λDP + λVP + λDV.

In contrast, the log-linear base model used for P-CFA is

log m̂ = λ0 + λ
P + λD + λV + λDV.
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TABLE 5.4. Design Matrix for Saturated Model of the Cross-Classification of the Variables
D, V, and P (Effect Coding); Column for Constant Is Implied

D V P D × V D × P V × P D × V × P

1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 1 1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1

The possible terms that are omitted in this base model are, in bracket
notation, [D,P], [V,P], and [D,V,P]. Each of these three terms contains the
criterion variable, P, and at least one of the predictors. Therefore, if cells in
the P-CFA of the data in Table 5.2 emerge as constituting types or antitypes,
they suggest that D, V, or both are related to P, and they can be interpreted
as prediction types and prediction antitypes.

To explain the difference between logistic regression and P-CFA in more
detail, consider the design matrix of the saturated log-linear model of the
three dichotomous variables, D, V, and P, in Table 5.4.

The last three columns in Table 5.4 are not part of the base model
of P-CFA. These are the columns for the effects that relate the criterion
variable, P, to the predictors, D and V, and the interaction between D and
V. The last column indicates the three-way interaction. This column is not
part of the logistic regression model or the P-CFA base model. In logistic
regression, the highest order interaction is typically set to zero. It implies
interactions between the predictors and the criterion. Unless the log-linear
logistic regression model is nonhierarchical, including this interaction in
the model results in a saturated model. In P-CFA, this interaction is not
part of the base model because it is part of the effects that can lead to types
and antitypes. The columns for the effects of D × P and V × P are part of
the logistic regression model.

Prediction types and antitypes from P-CFA suggest that
predictor-criterion interactions exist, at the level of individual
configurations. The topic of comparing logistic regression with P-CFA is
taken up again in the context of Table 5.8 and in Sections 5.1.3 and 6.1.

In the following paragraphs, we use the death penalty data again and
illustrate the application of CFA. Two base models of CFA will be computed.
The first is that of standard, first order CFA, that is, the base model of
variable independence. The model contains the effects that are specified in
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TABLE 5.5. First Order CFA of the Maryland Death Penalty Data

Configuration
DVP

m m̂ z p Type/Antitype

111 593 441.843 7.1911 .000000 Type
112 14 28.603 −2.7305 .003162 Antitype
121 284 430.674 −7.0677 .000000 Antitype
122 38 27.880 1.9166 .027645 Type
211 25 152.671 −10.3327 .000000 Antitype
212 1 9.883 −2.8257 .002359 Antitype
221 272 148.812 10.0983 .000000 Type
222 23 9.633 4.3065 .000008 Type

the first three columns of the design matrix in Table 5.4.

The second base model is that of P-CFA. The model includes the first
four columns of this design matrix. The results from the first order CFA base
model are summarized in Table 5.5. The z-test and the Holland-Copenhaver
procedure of α protection were used. The overall LR−X2 of 389.10 (d f = 4;
p < 0.01) suggests that large discrepancies exist, and we expect types and
antitypes to emerge.

The results in Table 5.5 suggest that each cell constitutes either a
type or an antitype. Instead of interpreting these four types and four
antitypes in detail, we now ask whether the data reflect a predictor-criterion
relationship. The P-CFA base model that allows one to answer this question
is

log m̂ = λ0 + λ
P + λD + λV + λDV.

This model is saturated in the predictors (interaction [D,V]), and can be
contradicted only if one or more of the interactions [D,P], [V,P], and [D,V,P]
exist. Table 5.6 summarizes results.

As for first order CFA, the z test and the Holland-Copenhaver procedure
were used. The overall LR − X2 of 35.95 (d f = 3; p < 0.01) is significantly
below the one from first order CFA. However, it still indicates that
model-data discrepancies exist. Therefore, we again expect types and
antitypes to emerge. P-CFA yields one antitype and one type. The antitype
suggests that it can be predicted, for black defendants who are accused
of having murdered a black victim, that it is less likely than chance that
the death penalty will be issued. In contrast, the type suggests that it can
be predicted, for black defendants who are accused of having murdered
a white victim, that it is more likely than chance that the death penalty
will be issued. None of the remaining configurations reflects a significant
predictor-criterion relationship. These results suggest that race of victim
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TABLE 5.6. P-CFA of the D × V × P Cross-Classification

Configuration
DVP

m m̂ z p Type/Antitype

111 593 570.094 .9593 .168696
112 14 36.906 −3.7705 .000081 Antitype
121 284 302.422 −1.0593 .144720
122 38 19.578 4.1636 .000016 Type
211 25 24.419 .1175 .453219
212 1 1.581 −.4619 .322061
221 272 277.064 −.3042 .380476
222 23 17.936 1.1957 .115902

is of importance, thus partially supporting the headline of the New York
Times article, according to which “death penalty found more likely when
victim is white” (2003, p. A12). However, based on the present analysis,
this conclusion seems to apply only if the defendant is black. When
the defendant is white, no configuration contradicts the assumption of
independence between the two predictors and the criterion.

From this result, we conclude that the interaction between D and V
explains a large part of the deviation from independence in Table 5.5. The
remaining two outlandish cells are the only indicators of the predictive
relations in the D × V × P cross-classification.

It is interesting to note that neither the logistic regression model nor the
P-CFA base model include the three-way interaction, D × V × P. Including
this term in the logistic regression model leads to a saturated model. Still, it
can be tested whether the parameter for this interaction is significant. The
software package `EM calculates 0.14 for the parameter, 0.90 for its standard
error, and 0.82 for z. This result indicates that the three-way interaction is
not significant (p = 0.37). We thus conclude that the interaction between
race of defendant and race of victim does not help one predict who is more
likely to be issued the death penalty.

To probe further whether the weak three-way interaction has any effect
on the results of P-CFA, we run the model again. However, this time, we
add the three-way interaction to the base model. The new model is

log m̂ = λ0 + λ
P + λD + λV + λDV + λDVP.

This model is nonhierarchical (see Mair & von Eye, 2007) because it sets
the parameters of the interactions [D,P] and [V,P] to zero. This model
can be contradicted only if one or both of these two-way interactions exist.
Table 5.7 displays the results of this constrained P-CFA model (we call
it constrained because the number of effects is reduced that can cause
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TABLE 5.7. Constrained P-CFA of the D × V × P Cross-Classification

Configuration
DVP

m m̂ z p Type/Antitype

111 593 582.101 .4517 .325727
112 14 24.899 −2.1842 .014472
121 284 285.914 −.1132 .454943
122 38 36.086 .3186 .375021
211 25 23.086 .3983 .345202
212 1 2.914 −1.1212 .131111
221 272 282.899 −.6480 .258492
222 23 12.101 3.1332 .000865 Type

types and antitypes). The z-test and the Holland-Copenhaver procedure
were used again. The overall LR − X2 of 16.00 (d f = 2; p < 0.01) for
the constrained P-CFA base model is significantly below the one for the
unconstrained P-CFA base model shown in Table 5.6. We thus know that
the three-way interaction does explain a significant portion of the variation
in the table, when the two-way interactions D × P and V × P are not taken
into account. The type-antitype pattern is, therefore, bound to change.

Taking into account the three-way interaction D × V × P in a
non-hierarchical P-CFA base model results in just one type. This type
suggests that if both the defendant and the victim are white, the death
penalty is issued with greater probability than expected. This result differs
strongly from the one from a P-CFA in which none of the predictor-criterion
interactions is taken into account, in Table 5.6. Researchers will have to
make a decision as to which of the results, the one in Table 5.6 or the one
in Table 5.7, to retain. We see no reason why, in the present example, the
three-way interaction should be excluded from causing types and antitypes
to emerge. We, therefore, retain the results from Table 5.6. Note that the
results in Tables 5.6 and 5.7 both contradict the conclusion published in the
New York Times (2003).

Alternative Configural Prediction Models

We now introduce and compare alternative P-CFA base models. For the
sake of simplicity, we use the case of two predictors and one criterion again.
Let P1 and P2 be the predictors, and C the criterion. Then, four base models
of P-CFA can be depicted as in Figure 5.1 (von Eye et al., 2005).

The P-CFA base model in the left panel of Figure 5.1 is that of standard
P-CFA. It includes the smallest number of model terms and is, therefore,
the most likely to yield types and antitypes. Specifically, it only includes
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FIGURE 5.1. Four P-CFA base models.

the main effects of all variables as well as the interaction between the two
predictors. A sample application of this model was given in Table 5.6.
The associations among the predictors and the criterion are not taken into
account. Therefore, this model can be contradicted in the form of types and
antitypes only if predictor-criterion relationships exist. These relationships
can be of any order. This model is parallel to the one that includes all
vectors in the left panel of the design matrix in Table 5.4.

The P-CFA base model in the second panel of Figure 5.1 adds the
interaction between P1 and C to the first base model. This model can
be contradicted only if (1) the association between the first predictor, P1,
and the criterion, (2) the three-way interaction, or (3) both exist. This
model is parallel to the one that includes all vectors in the left panel
and the first vector in the right panel of the design matrix in Table 5.4.
Similarly, the base model in the third panel can be contradicted only if (1)
the interaction between the second predictor, P2, and the criterion, (2) the
three-way interaction, or (3) both exist. This model is parallel to the one
that includes all vectors in the left panel and the second vector in the right
panel of the design matrix in Table 5.4. Finally, the last panel of Figure
5.1 depicts the P-CFA base model that contains all two-way interactions.
Under this model, types and antitypes can emerge only if the three-way
interaction among the three variables P1, P2, and C exists. This model can
be called the second order P-CFA base model. This model is parallel to
the one that includes all vectors in the left panel and the first two vectors
in the right panel of the design matrix in Table 5.4. With the exception of
the standard P-CFA model in the first panel of Figure 5.1, none of these
prediction models has been discussed in the CFA literature thus far.
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TABLE 5.8. A Comparison of Logistic Regression Models and P-CFA Base Models for
the Two Predictors, P1 and P2, and the Criterion, C

Logistic Regression Model P-CFA Base
Model in
Log-Linear
Notation

Optional
Term for
P-CFA
Base
Model

Logit Notation Log-Linear Notation

β0 + β1P1 [P1][P2][C] [P1][P2][C] [P1,P2,C]
[P1,C] [P1,P2][P2,C]

β0 + β2P2 [P1][P2][C] [P1][P2][C] [P1,P2,C]
[P2,C] [P1,P2][P1,C]

β0 + β1P1 + β2P2 [P1][P2][C] [P1,P2,C] [P1,P2,C]
[P1,P2][P1,C] [P1,P2]
[P2,C]

β0 + β1P1 + β2P2 + β3(P1,P2) [P1][P2][C] [P1,P2,C]
[P1,P2][P1,C] [P1,P2]
[P2,C][P1,P2,C]

Table 5.8 contains a comparison of logistic regression models and P-CFA
base models. All of the models depicted in Figure 5.1 are included. Not
all of the models are hierarchical. This applies in particular to the P-CFA
base models that contain the additional, optional term (see the last column
of the table). This term is part of the base model if only the lower order
interactions among the predictors and the criterion are of interest. It is
important to realize that the log-linear regression models are specified with
the goal of model fit. In contrast, the CFA base models are specified under
the expectation that they will be rejected. Rejection of a properly defined
CFA base model implies that the effects of interest exist.

One may ask when a researcher would apply the base models that
are shown in the second, third, and fourth panels of Figure 5.1 (these
are the first, second, and third models in Table 5.8, respectively). There
are two reasons for applying these base models. First, these models can
be used to assess the relative importance of individual predictor-criterion
relationships. In most CFA applications, this importance is not expressed in
terms of magnitude of parameters or in terms of significance of parameters.
Instead, it is expressed in terms of types and antitypes that emerge or
disappear when a particular effect is added to a base model, or removed
from it. Second, these models are of importance in the context of testing
configural mediation hypotheses. This issue will be discussed in detail in
Chapter 6. The issue of comparing the models of logistic regression and
P-CFA is taken up again in Section 5.1.3.
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TABLE 5.9. Design Matrix for the Saturated Model for the P × C1 × C2
Cross-Classification (Constant Vector Implied)

P C1 C2 P × C1 P × C2 C1 × C2 P × C1 × C2

1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 1 1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1

P-CFA with Multiple Criterion Variables and Multiple Predictors

In most empirical data analyses, more than one predictor and more than one
criterion are analyzed simultaneously. For instance, one can ask whether
gender and SES predict employment status and income bracket. For this
kind of design, P-CFA base models can also be specified. In addition,
the definition of a base model for P-CFA that was given earlier applies
here without change. That is, the P-CFA base model is saturated in the
predictors, saturated in the criteria, and proposes independence between
predictors and criteria. We now give two examples of P-CFA with multiple
criteria.

One Predictor, Multiple Criterion Variables: In the first example with
multiple criterion variables, we specify the base model for one predictor, P,
and the criterion variables, C1 and C2 (all three variables dichotomous). The
design matrix for the saturated model for the P×C1×C2 cross-classification
appears in Table 5.9.

The P-CFA base model for the P × C1 × C2 cross-classification is,
according to the above definition,

log m̂ = λ + λP + λC1 + λC2 + λC1,C2,

where the single superscripts indicate main effects, and the double
superscript indicates a two-way interaction. The corresponding vectors
can be found in the first, second, third, and sixth columns in Table 5.9. This
model contains none of the terms that would relate the predictor, P, to the
criteria, C1, and C2. These are the terms λP,C1, λP,C2, and λP,C1,C2. These are
also the only terms that could possibly be included in addition to the base
model. Therefore, as is the case in all P-CFA base models, prediction types
and antitypes can emerge only if predictor-criterion relationships exist.

Alternative models are conceivable. For example, if researchers are
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TABLE 5.10. Design Matrix for the Saturated Model for the P1 × P2 × C1 × C2
Cross-Classification (Constant Vector Implied)

Main Effects 2-Way Interactions 3-Way
Interactions

4-Way
Int.a

.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1
1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1
1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1
−1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
−1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
−1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
−1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1
−1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
−1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1
−1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1
−1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1

aThe order of the effects is: P1, P2, C1, C2, P1 × P2, P1 × C1, P1 × C2, P2
× C1, P2 × C2, C1 × C2, P1 × P2 × C1, P1 × P2 × C2, P1 × C1 × C2, P2 ×
C1 × C2, P1 × P2 × C1 × C2

interested only in predictor-criterion relationships that manifest at the level
of one-way interaction, the higher order interactions must be included in the
base model. In the present example, the P-CFA base model then becomes
nonhierarchical, and is

log m̂ = λ + λP + λC1 + λC2 + λC1,C2 + λP,C1,C2,

thus omitting only the terms λP,C1 and λP,C2 from the saturated model.
Types and antitypes can then emerge only if one or both of these effects
exist.

Two Predictors, Two Criterion Variables: In the second example with
multiple criterion variables, we specify the base model for two predictors,
P1 and P2, and two criteria, C1 and C2 (all four variables dichotomous).
The design matrix for the saturated model for the P1 × P2 × C1 × C2
cross-classification appears in Table 5.10.

The standard P-CFA base model for the P1 × P2 × C1 × C2
cross-classification is, according to the above definition of P-CFA base
models,

log m̂ = λ + λP1
i + λ

P2
j + λ

C1
k
+ λC2

l
+ λP1,P2

i j
+ λC1,C2

kl
.
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The design matrix vectors for this model can be found in the columns for the
four main effects in Table 5.10, and in the first and the last columns among
the two-way interaction terms. None of the terms that link predictors
and criteria is included in this model. These are the interactions [P1,C1],
[P1,C2], [P2,C1], [P2,C2], [P1,P2,C1], [P1,P2,C2], [P1,C1,C2], [P2,C1,C2],
and [P1,P2,C1,C2], that is, all interactions not included in the P-CFA base
model.

Alternative models can be specified as indicated in Figure 5.1. If
researchers are interested only in predictor-criterion relationships at the
level of two-way interactions, all three-way and higher order interactions
must be included in the base model. Types and antitypes can then emerge
only if two-way interactions exist.

Data Example 2: One Predictor, Two Criterion Variables: The following
example uses data from a longitudinal project on intimate partner violence
(Bogat, Levendosky, von Eye, & Davidson, 2006). A sample of 204 women
responded, in yearly intervals, to questions concerning the frequency
with which they suffered violence perpetrated by intimate partners. In
addition, they filled out a questionnaire that was administered to assess the
degree to which they showed symptoms of posttraumatic stress disorder
(PTSD scale for battered women; Saunders, 1994). 62% of the respondents
were Caucasian, 25% African American, and 13% of other or mixed racial
backgrounds. At the beginning of the study, the women were, on average,
27 years of age.

For the following analyses, we use the information regarding violence
assessed at the first wave and PTSD assessed at the second and third
observation points. We ask whether initial violence allows one to predict
PTSD 1 and 2 years later. Violence was scored as 1 = did not experience
violence and 2 = did experience violence. PTSD was scored as 1 =
symptoms below the clinical cutoff and 2 = symptoms above the clinical
cutoff. The questions concerning both violence and PTSD were formulated
such that they covered the period since the interview, that is, the year before
the interview. In the following sections, we abbreviate violence as V, PTSD
at Time 2 as P2, and PTSD at Time 3 as P3.

In a first analysis, we perform a standard, first order CFA. The base
model for this analysis is

log m̂ = λ + λV + λP2 + λP3,

where the superscripts indicate the variables whose main effects are part
of the base model. For the CFA, the z-test and the Holland-Copenhaver
procedure of α protection were used. Table 5.11, with violence at Time 1
(V: 1 = did not experience intimate partner violence; 2 = did experience
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TABLE 5.11. First Order CFA of Violence at Time 1 (V) × PTSD at Time 2 (P2) × PTSD
at Time 3 (P3) Cross-Classification

Configuration
VP2P3

m m̂ z p Type/Antitype

111 65 27.663 7.0990 .000000 Type
112 3 10.989 −2.4100 .007976 Antitype
121 12 31.739 −3.5037 .000229 Antitype
122 3 12.609 −2.7060 .003405 Antitype
211 20 40.328 −3.2010 .000685 Antitype
212 7 16.021 −2.2537 .012108 Antitype
221 49 46.271 .4013 .344114
222 45 18.381 6.2086 .000000 Type

violence), and PTSD at Times 2 and 3 (P2 and P3: 1 = PTSD symptoms
below clinical cutoff; 2 = PTSD symptoms above clinical cutoff), presents
results. The goodness-of-fit of the base model is poor (LR − X2 = 117.86;
d f = 4; p < 0.01). We thus expect types and antitypes to emerge.

The results in Table 5.11 show that, with only one exception, each
configuration constitutes a type or an antitype. Instead of interpreting
each of these in detail, we ask whether the association between the two
criterion variables, P2 and P3, accounts for a portion of these deviations
from independence. To answer this question, we add the interaction
between these two variables to the main effect model. The resulting base
model is that of a P-CFA with one predictor and two criteria,

log m̂ = λ + λV + λP2 + λP3 + λP2,P3,

where the double-superscripted term indicates the interaction that is now
part of the base model. For the following P-CFA, we used the z-test and
the Holland-Copenhaver procedure again.

For this base model, we calculated the LR−X2 = 87.78 (d f = 3; p < 0.01).
This model is significantly better than the base model for the first order CFA
in Table 5.11 (∆LR−X2 = 30.08; ∆d f = 1; p < 0.01). Still, it must be rejected,
and we can expect types and antitypes to emerge. P-CFA results appear in
Table 5.12.

The first prediction type (constituted by Configuration 1 1 1) suggests
that more women than expected can be predicted to show, 1 and 2 years
later, PTSD symptoms below the clinical cutoffwhen they were not exposed
to intimate partner violence during the first observation period. The
following two antitypes (constituted by Configurations 1 2 1 and 1 2 2)
suggest that women were less likely than expected to show PTSD symptoms
in the clinical range during the second observation period or during both
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TABLE 5.12. First Order CFA of Violence at Time 1 (V) × PTSD at Time 2 (P2) × PTSD
at Time 3 (P3) Cross-Classification

Configuration
VP2P3

m m̂ z p Type/Antitype

111 65 34.583 5.1722 .000000 Type
112 3 4.069 −.5298 .298129
121 12 24.819 −2.5731 .005040 Antitype
122 3 19.529 −3.7404 .000092 Antitype
211 20 50.417 −4.2838 .000009 Antitype
212 7 5.931 .4388 .330410
221 49 36.181 2.1311 .016541 Type
222 45 28.471 3.0978 .000975 Type

years when they were not exposed to intimate partner violence during the
first observation period. The third antitype (Configuration 2 1 1) suggests
that victims of intimate partner violence are less likely than expected to
show below clinical level PTSD symptoms both 1 and 2 years later. The
second and the third types (Configurations 2 2 1 and 2 2 2) suggest that
violence during the first observation period allows one to predict above
clinical level PTSD symptoms in victims either 1 year later or both 1 and 2
years later.

Data Example 3: Two Predictors, Two Criterion Variables: In the
following example, we illustrate multiple, multivariate P-CFA with two
predictors and two criterion variables. We use data from the intimate
partner violence project again. Specifically, we use severe violence from
Time 1 (V1) and Time 2 (V2), and PTSD from Time 2 (P2) and Time 3 (P3).
The cross-classification V1 × V2 × P2 × P3 is analyzed under the P-CFA
base model

log m̂ = λ + λV1 + λV2 + λV1,V2 + λP2 + λP3 + λP2,P3,

where the double-superscripted terms indicate two-way interactions. For
P-CFA, we use the z-test again along with the Holland-Copenhaver
procedure.

For the P-CFA base model, we calculate the LR − X2 = 114.5 (d f = 9;
p < 0.01). The model is thus rejected, and we can expect types and antitypes
to emerge. P-CFA results appear in Table 5.13. The predictors are Violence
at Time 1 and Time 2 (V1 and V2: 1 = did not experience intimate partner
violence; 2 = did experience violence), and the criteria are PTSD at Times
2 and 3 (P2 and P3: 1 = PTSD symptoms below clinical cutoff; 2 = PTSD
symptoms above clinical cutoff)
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TABLE 5.13. Multivariate P-CFA of the Predictors, Violence at Time 1 (V1) and Time 2
(V2), and the Criteria, PTSD at Time 2 (P2) and Time 3 (P3)

Configuration
V1V2P2P3

m m̂ z p Type/Antitype

1111 82 62.083 2.5277 .005740
1112 7 7.304 −.1125 .455231
1121 47 44.554 .3665 .357011
1122 13 35.059 −3.7255 .000097 Antitype
1211 3 7.083 −1.5342 .062484
1212 3 .833 2.3735 .008811
1221 0 5.083 −2.2546 .012078
1222 11 4.000 3.5000 .000233 Type
2111 0 7.917 −2.8137 .002449 Antitype
2112 0 .931 −.9651 .167253
2121 12 5.681 2.6509 .004014 Type
2122 7 4.471 1.1963 .115791
2211 0 7.917 −2.8137 .002449 Antitype
2212 0 .931 −.9651 .167253
2221 2 5.681 −1.5445 .061236
2222 17 4.471 5.9258 .000000 Type

Table 5.13 shows three prediction types and three prediction antitypes.
The first antitype is constituted by Configuration 1 1 2 2. It indicates
that it is very unlikely that women who do not experience severe violence
during either observation period suffer from PTSD symptoms in the clinical
range during both observation years. The first prediction type (constituted
by Configuration 1 2 2 2) indicates that women who did not experience
violence initially but experienced severe violence at Time 2 can be predicted
to report PTSD symptoms in the clinical range for both observation periods.
In contrast, women who experienced severe violence at Time 1 or both
Times 1 and 2 are very unlikely to report PTSD symptoms below the clinical
cutoff at Times 2 and 3 (Antitypes 2 1 1 1 and 2 2 1 1). The next type
(constituted by Configuration 2 1 2 1) suggests synchronous effects. Women
who experienced severe violence at Time 1 and no violence at Time 2 can
be predicted to report high levels of PTSD at Time 3, that is, for the second
observation period. Finally, the last type (constituted by Configuration 2
2 2 2) shows that for women who reported experiencing intimate partner
violence for both observation periods, it can be predicted that they also
suffer from clinical-level PTSD symptoms, at both Time 2 and Time 3.

The specification of the logistic regression model that corresponds to
the above multiple, multivariate P-CFA base model is not straightforward.
As always, the logistic regression model would include all main effects,
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the interactions among the predictor variables, and associations among
predictor and criterion variables. In the present example, this way of
specifying the logistic regression model would yield

log m̂ = λ + λV1 + λV2 + λP2 + λP3 + λV1,V2 + λV1,P2 + λV2,P2

+ λV1,P3 + λV2,P3 + λP2,P3.

This model does also contain the interaction between the two criterion
variables, P2 and P3. If of importance, and if a sufficient number of degrees
of freedom is available, the higher order interactions among predictors and
criteria can be made part of the model also. For example, the interactions
V1 × P2 × P3 and V2 × P2 × P3 may be made part of the model, which then
will be

log m̂ = λ + λV1 + λV2 + λP2 + λP3 + λV1,V2 + λV1,P2 + λV2,P2

+ λV1,P3 + λV2,P3 + λP2,P3

+ λV1,P2,P3 + λV2,P2,P3.

Other models are conceivable. Note that many general purpose
statistical programs (e.g., SYSTAT 12.0) are unable to process logistic
regression models with more than one criterion variable under the
generalized linear model or regression modules. When this is the case,
the multivariate logistic regression models can be expressed in terms of
log-linear models and processed by using standard log-linear modeling
modules or logit log-linear modules. One possible logit model for the
present example would involve specifying [P2] and [P3] as dependent
variables and [V1] and [V2] as factors without including them in the
model-building step. Alternatively, multivariate logistic regression models
can be analyzed by using software programs that test simultaneous
equations and have the capacity of analyzing categorical dependent
measures (e.g., Mplus). Either of these approaches, however, deals with
relationships among variables instead of testing hypotheses concerning
individual configurations.

5.1.3 Comparing Logistic Regression and P-CFA Models

In this section, we resume the comparison of models of logistic regression
and P-CFA. For this comparison, we again use the log-linear model notation
because both, logistic regression models and P-CFA base models, can be
expressed in terms of log-linear models.

Both, logistic regression models and P-CFA base models, focus on the
relationships among the criterion and the predictor variables. Effects that
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are not of interest are either set to zero (logistic regression) or included in
the base model (P-CFA). More specifically, models of logistic regression take
into account

1. the main effects of all variables in the model;

2. all possible interactions among the predictors in the model (this
includes all higher order interactions); the model is thus saturated
in the predictors;

3. all possible interactions among the criterion variables; the model is
thus saturated in the criterion variables; and

4. all first order interactions between predictors and criteria.

Occasionally, researchers also consider

5. three-way and higher order interactions among predictors and
criteria. Examples of such interactions include the three-way
interactions among two predictors and one criterion variable, the
three-way interactions among one predictor and two criterion
variables, and the four-way interactions among two predictor and
two criterion variables.

6. In addition, researchers occasionally include covariates in the model.

In most logistic regression models, the highest order interaction, that is, the
interaction that includes all predictor and all criterion variables, is not taken
into account. This is done for a number of reasons, which include (1) the
desideration of parsimony, (2) lack of hypotheses that would necessitate
consideration of an interaction of the highest order, and (3) the sparsity
of effects principle (see, e.g., Wu & Hamada, 2000), which suggests that
interactions of a high order are rarely needed to explain data (this principle
is taken up again in Chapter 12). The hierarchical model that includes the
highest order interaction is always saturated. P-CFA base models take into
account

1. the main effects of all variables in the model; and

2. all possible interactions among the predictors in the model (this
includes all higher order interactions); the model is thus saturated
in the predictors;
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3. all possible interactions among the criterion variables; the model is
thus saturated in the criterion variables; and, possibly

4. covariates.

However, the typical P-CFA base model will not take into account any
of the interactions that link predictor and criterion variables. Therefore,
prediction types and antitypes will, by necessity, reflect local interactions
among predictors and criteria. To determine which interactions, in
particular, cause the P-CFA types and antitypes to emerge, researchers
have to search and identify those interactions that are and those that are
not needed as causes for the prediction types and antitypes. Methods for
this search are described in Chapter 10, on functional CFA.

The comparison of the effects that will, at the end of analysis, be
interpreted as describing the relationships among predictors and criteria
shows that logistic regression and P-CFA differ in two important aspects.
First, logistic regression considers only the effects specified in the model,
at the expense of possible other effects. Unless parameters are constrained,
non-hierarchical or nonstandard models are specified, or researchers are
willing to live with a saturated model, only a selection of all possible
predictor-criterion relations is considered. In contrast, P-CFA typically
considers all possible predictor-criterion relations. Even the highest order
interactions are practically never excluded from possibly causing types and
antitypes to emerge. These effects can be excluded by making them part of
the P-CFA base model (see data examples in Tables 5.6 and 5.7). Because
of this difference between logistic regression and P-CFA, results are rarely
fully comparable. Later, in this chapter, we discuss options to make the
logistic regression model and the base model for P-CFA parallel.

The second major difference between logistic regression and P-CFA
is that the results of analysis of logistic regression are interpreted at the
variable level, whereas the results of P-CFA are interpreted at the level of
individual configurations.

To illustrate the differences between the models of logistic regression
and P-CFA, consider the case in which two predictors, P1 and P2, are
related to two criterion variables, C1 and C2. One logistic regression model
for these four variables is

log m̂ = λ + λP1 + λP2 + λC1 + λC2 + λP1,P2 + λC1,C2 + λP1,C1 + λP1,C2

+ λP2,C1 + λP2,C2 + λP1,C1,C2 + λP2,C1,C2.

This model focuses on the four first order and two second order interactions
among predictor and criterion variables, and sets the remaining third order
interactions among the predictors and the criteria to zero. These are the
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interactions [P1,P2,C1], [P1,P2,C2], and [P1,P2,C1,C2]. Any of these can
be made part of the model, if desired. In contrast, the standard base model
of P-CFA is, for the same four variables,

log m̂ = λ + λP1 + λP2 + λC1 + λC2 + λP1,P2 + λC1,C2.

Based on this model, prediction types and antitypes can be caused by any of
the predictor-criteria interactions. This includes the first order interactions
that standard logistic regression includes as well as the higher order terms
that are typically not part of that model.

If the interactions that are not considered in logistic regression are not
of interest in P-CFA either, they can be made part of the base model. In the
present example, the base model then becomes

log m̂ = λ + λP1 + λP2 + λC1 + λC2 + λP1,P2 + λC1,C2 + λP1,P2,C1 + λP1,P2,C2.

This base model can be considered parallel to the above logistic regression
model.

5.2 Predicting an End Point

In many domains of research, end points are of interest. Examples
of end points include the outcomes of training, therapy, punishment,
drug use, job interviewing, alcohol consumption, untreated diseases, and
marriage proposals. Similarly, teleological discussions concern end points
of development. In many instances, end points are categorical. For
example, a candidate is hired, a marriage proposal is accepted, a contract
is signed, or a therapy is successful. When an end point is categorical, CFA
can be a powerful method to predict the end point from concurrent and
earlier events. The typical situation is that a number of predictors exists.
These predictors can be repeated observations, classification variables, or
concomitant variables.

Let the end point be denoted by E, and the antecedent or concurrent
events by P1,P2, . . . ,Pm. Then, the P-CFA base model that allows one to
determine which category of the end point is predicted to occur or not to
occur with greater-than-chance probability includes the following terms:

1. Main effects of all variables; and

2. All possible interactions among the predictor variables.

The corresponding log-linear base model is

log m̂ = λ + λE
i +

∑

j

λ jP j +
∑

jk

λ
P jPk

jk
. . . ,
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where the double-subscripted terms indicate two-way interactions, and
the “. . .” indicates that all possible interactions among predictors are taken
into account. The model is thus saturated in the predictor variables. If this
model is rejected and types and antitypes emerge, relationships among
predictors and the series of antecedent events must exist.

Data Example 4: To illustrate this model, we use data from the intimate
partner violence project again. In the following data example, we ask
whether longitudinal patterns of violence (here, we use any violence; this
is in contrast to the severe violence observations we use in Chapter 6) over
a span of 3 years allows one to predict PTSD in the following year. The
following variables are used for this example:

• Predictors: Intimate partner violence, observed in three consecutive
years (DV1, DV2, DV3), each scored as 1 = absent and 2 = present;
and

• End point: Clinical-level PTSD in Year 4, scored as 1 = absent and 2 =
present.

The P-CFA base model for the prediction of PTSD from a history of violence
is

log m̂ = λ + λPTSD
i + λDV1

j + λDV2
k + λDV3

l
+ λDV1,DV2

jk
+ λDV1,DV3

jl

+ λDV2,DV3
kl

+ λDV1,DV2,DV3
jkl

.

As with all P-CFA base models, this model is saturated in its
predictors. It can be contradicted only if the trajectory of intimate
partner violence is related to the outcome, PTSD. Specifically, types and
antitypes can emerge only if one or more of the following interactions
exist: [DV1,PTSD], [DV2,PTSD], [DV3,PTSD], [DV1,DV2,PTSD],
[DV1,DV3,PTSD], [DV2,DV3,PTSD], [DV1,DV2,DV3,PTSD]. These are
the interactions that relate one or more of the violence indicators to the
outcome, PTSD. Note that, as in the context of Section 5.1.1 on logistic
regression and prediction CFA, the equivalent logit or logistic regression
model can be specified by declaring [DV1], [DV2], and [DV3] factors. The
base model fails to describe the data well (LR−X2 = 28.54; d f = 7; p < 0.01).
Therefore, we anticipate that types and antitypes may emerge. For the
following CFA, we use the z-test and the Holland-Copenhaver procedure
for the protection of α. Table 5.14 summarizes the CFA results.

Two types emerged from this analysis. These types indicate that two
trajectories are more likely than expected to result in PTSD. The first type is
constituted by Configuration 2 1 2 2. It indicates that women who first are
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TABLE 5.14. Predicting-the-End-Point P-CFA of PTSD from 3 Years of Intimate Partner
Violence (V1, V2, and V3); End Point is PTSD Diagnosis

Configuration
V1 V2 V3 PTSD

m m̂ z p Type/Antitype

1111 99 88.074 1.1643 .122155
1112 14 24.926 −2.1885 .014316
1121 7 8.574 −.5374 .295497
1122 4 2.426 1.0102 .156211
1211 12 13.250 −.3434 .365648
1212 5 3.750 .6455 .259302
1221 4 3.118 .4997 .308635
1222 0 .882 −.9393 .173779
2111 13 12.471 .1499 .440415
2112 3 3.529 −.2818 .389048
2121 2 5.456 −1.4795 .069498
2122 5 1.544 2.7811 .002709 Type
2211 16 16.368 −.0909 .463796
2212 5 4.632 .1708 .432184
2221 6 11.691 −1.6645 .048010
2222 9 3.309 3.1287 .000878 Type

able to leave a violent relationship but then, later, engage in another one are
more likely than chance to show signs of elevated PTSD, 1 year after having
entered the second violent relationship. The second type, constituted by
Configuration 2 2 2 2, indicates that women who are consistently in violent
relationships, for 3 years, show, 1 year later, signs of elevated PTSD. All of
the remaining configurations suggest that the presence or absence of PTSD
cannot be predicted from the other patterns of intimate partner violence,
over 3 years.

To compare the predicting-the-end-point P-CFA with log-linear
modeling results, we attempt to find a parsimonious model for the data
in Table 5.14. One such model includes all main effects and the interactions
[V1,V2], [V1,V3], [V2,V3], [V1,PTSD], and [V3,PTSD]. For this model,
we calculate LR − X2 = 10.42 (d f = 7; p = 0.17). This model suggests
that the three-way interaction among the three predictor variable makes
no contribution to explaining the data (and, thus, the types and antitypes).
In addition, it suggests that, whereas intimate partner violence at T1 and
T3 is related to PTSD at T2, it is unrelated to PTSD. While well-fitting and
(maybe) interpretable, the results of this analysis suggest conclusions that
differ from those suggested by CFA. In addition, this model does not allow
one to talk about trajectories except that violence at one point in time is
associated with violence at the following or the second next point in time.
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5.3 Predicting a Trajectory

Predictions of trajectories are of importance in many respects. Given a
particular point in development, one might be interested in the most (or
least) likely course of subsequent development. For example, the study
of pubertal physical development allows one to distinguish between early,
on-time, and late maturers. Individuals in these groups can, possibly, be
predicted to differ greatly in cognitive and social developmental patterns.
Similarly, when an adolescent has experimented with marijuana, can it be
predicted that this individual develops into a user of hard drugs?

P-CFA allows one to predict pathways of development or, in more
general terms, trajectories. Based on an event or a status in time, the
frequencies of trajectories can be counted and compared with expectancies.
Consider the categorical variable, P, and a series of subsequent, repeated
observations of an outcome variable, Y. Then, the base model that allows
one to examine trajectories in Y includes the following terms:

1. Main effects of all variables; and

2. All possible interactions among the repeated observations of Y.

This model is thus saturated in the outcome variables. It can be contradicted
only if relationships between P and the repeatedly observed Y variable exist.

Data Example 5: In the following example, we use data from the study on
aggression in adolescence (Finkelstein et al., 1994) again. 114 adolescents
who were 11 years of age at the first interview were asked to indicate the
degree to which they feel they have aggressive impulses. Two and four
years later, they were asked to indicate the amount of physical aggression
they use against their peers. For the following analyses, each of these
three variables was dichotomized at the median. The variables used for
analysis are Aggressive Impulses (AI), and Physical Aggression against
Peers, observed 2 and 4 years after AI was observed (PAAP1 and PAAP2).
Each of the variables was scored as 1= below median and 2= above median.
The log-linear base model for the prediction of the development of Physical
Aggression against Peers based on Aggressive Impulses is

log m̂ = λ + λAI
i + λ

PAAP1
j + λPAAP2

k + λPAAP1,PAAP2
jk

.

This model can be contradicted only if one or more of the following
interactions exist: [AI,PAAP1], [AI,PAAP2], [AI,PAAP1,PAAP2]. Types
and antitypes will then indicate trajectories that occur more likely or less
likely than chance, conditional on AI.
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TABLE 5.15. Predicting the Developmental Trajectory of Physical Aggression against
Peers (PAAP1 and PAAP2) from Aggressive Impulses (AI)

Configuration
AI PAAP1 PAAP2

m m̂ z p Type/Antitype

111 23 14.684 3.4902 .000241 Type
112 11 11.368 −.1688 .432990
121 10 9.000 .5011 .308147
122 10 18.947 −3.5012 .000232 Antitype
211 8 16.316 −3.4902 .000241 Antitype
212 13 12.632 .1688 .432990
221 9 10.000 −.5011 .308147
222 30 21.053 3.5012 .000232 Type

The base model of the cross-classification of these three variables is
rejected (LR − X2 = 17.94; d f = 3; p < 0.01). Therefore, we anticipate
that types and antitypes may emerge. For the following P-CFA, we use
Lehmacher’s (1981) z-test because it has more power than the standard
z-test2. We protect α by using the Holland-Copenhaver procedure. Table
5.15 presents a summary of the P-CFA results. CFA of trajectories reveals
two types and two antitypes. The first type, constituted by Configuration
1 1 1, suggests that adolescents who report below-average aggressive
impulses at age 11 will also report low levels of physical aggression against
peers over the following 4 years. This type is complemented by the first
antitype (Configuration 1 2 2). This antitype suggests that adolescents who
report below-average aggressive impulses at age 11 are very unlikely to
report high levels of physical aggression against peers over the following
4 years. The second type, constituted by Configuration 2 2 2, suggests
that adolescents who report above-average aggressive impulses at age
11 will also report high levels of physical aggression against peers over
the following 4 years. Conversely, adolescents who report high levels
of aggressive impulses at age 11 are very unlikely to report low levels
of physical aggression against peers over the following 4 years (Antitype
2 1 1).

One log-linear model that describes these data well includes all main
effects and the interactions [AI,PAAP1], [AI,PAAP2] (LR−X2 = 5.33; d f = 2;
p = 0.07). This model suggests that aggressive impulses at age 11 are
associated with physical aggression against peers at both ages 13 and 15.

2Note that, for Lehmacher’s test to be applicable, one must have a table spanned by
variables with fixed probabilities at the margins (or in subtables). That is, sampling must
be product-multinomial. If this is not the case, tests should be used that do not require
product-multinomial sampling.
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FIGURE 5.2. Maryland death penalty example.

The autoregression of PAAP2 onto PAAP1 is, therefore, not needed to
explain the data in Table 5.15. Aggressive Impulses at age 11 predict
Physical Aggression against Peers both 2 and 4 years later. The CFA results
show where in the table these effects manifest.

5.4 Graphical Presentation of Results of P-CFA
Models

In Figure 5.1, four P-CFA base models were depicted by way of relating
variables to one another using bidirectional paths (double-headed arrows).
These arrows indicate the associations that the base models take into
account when estimating the expected cell frequencies. The results of
logistic regression models can be depicted in analogous fashion. For
example, the logistic regression results of the analysis of the Maryland
death penalty data can be depicted as shown in Figure 5.2 (cf. Table 5.3).
The figure depicts only the statistically significant associations from Table
5.3.

The results of P-CFA require a different graphical representation. The
reason for this difference is that P-CFA, and CFA in general, do not relate
variables to one another (except in the base models). Instead, these methods
inspect individual configurations. Therefore, a graph will have to connect
patterns of categories instead of variables. Consider the results of P-CFA
of the Maryland death penalty data that are summarized in Table 5.6. This
table shows that one type and one antitype were identified. In Figures 5.3
and 5.4 we present graphs for the type and for the antitype.
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D=1
in combination with

V=2

P=2

FIGURE 5.3. Graphical representation of prediction type 1 2 2 from Table 5.6.

D=1
in combination with

V=1

P=2

FIGURE 5.4. Graphical representation of prediction antitype 1 1 2 from Table 5.6.

Figures 5.3 and 5.4 show that P-CFA uses category patterns on the
predictor side to predict category patterns on the criterion side. The
expression “in combination with” indicates that both of the categories
that it links were observed. Categories that constitute a P-CFA type are
connected with a solid arrow. Categories that constitute a P-CFA antitype
are connected with a dotted arrow. To give examples in which the criterion
side also includes more than one variable, we depict the second type
detailed in Table 5.13 in Figure 5.5 and the first antitype enumerated in
Table 5.13 in Figure 5.6.

In general, graphs for CFA prediction models are created in the same

V1=2
in combination with

V2=1

P2=2
in combination with

P3=1

FIGURE 5.5. Type 2 1 2 1 from Table 5.13.
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V1=1
in combination with

V2=1

P2=2
in combination with

P3=2

FIGURE 5.6. Antitype 1 1 2 2 from Table 5.13.

way as for variable-oriented prediction models, except that both on the
sending and the receiving end, there are configurations instead of variables.

5.5 Chapter Summary

In contrast to linear regression, which yields a slope parameter that is
assumed to be valid over the entire range of admissible scores both for the
predictor and the criterion, Prediction CFA (P-CFA) allows one to predict
particular criterion configurations from particular predictor configurations.
This is in accordance with the general characteristic of CFA that researchers
examine individual cells instead of variables in a cross-classification. P-CFA
predictions can take two forms. The first is that, for a particular predictor
configuration, a criterion configuration is predicted to occur with increased
probability. The second is that, for a particular predictor configuration, a
criterion configuration is predicted to occur with decreased probability. The
former is particularly interesting, for instance, when intervention effects
are studied. The latter is interesting when side effects are studied and
researchers hope to be able to say that treatments are unlikely to result in
configurations of undesired side effects.

The base model of P-CFA is saturated in the predictors, is saturated in
the criteria, but proposes independence of predictors and criteria. Thus,
types and antitypes can emerge only if particular predictor configurations
are related to particular criterion configurations. The base models of
logistic regression and P-CFA can be made parallel either by making the
higher order interactions among predictors and criteria part of the logistic
regression model or by including the higher order interactions that are not
part of the logistic regression model in the P-CFA base model.

After a discussion of standard P-CFA, two special cases of P-CFA were
introduced. The first allows one to predict an end point from a trajectory.
The second allows one to predict a trajectory from a start point. As in all
P-CFA models, the predictions operate at the level of configurations.
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Graphical representations of P-CFA results proceed in a way similar to
the graphical representation of regression models, in that paths are drawn
that originate in the predictors and end in the criteria. However, in P-CFA,
these paths do not connect variables. Instead, they originate in predictor
configurations and end in criterion configurations.



6
Configural Mediator Models

Chapter 6 opens the doors to a new methodology in the search for
CFA types and antitypes. Instead of conducting just one CFA run,
we propose to conduct several CFA runs. The results of these runs
are compared, providing the basis for particular interpretations of types
and antitypes. In Chapter 6, it is shown how several CFA runs can be
performed with the goal of determining whether, at the level of individual
configurations, (1) processes of mediation can be identified at all, and
(2) whether evidence exists in support of hypotheses of complete or
partial mediation. Two approaches to configural mediation analysis are
discussed. The first begins with logistic regression analysis. If results
suggest that mediation exists, CFA is performed in a subsequent step,
and those configurations are identified that carry the mediation at the
level of individual cells. The second approach exclusively uses the
tools of CFA. Starting from a standard CFA that uses the hypothesis
of variable independence in its base model, four additional CFA runs are
performed that use base models that reflect different hypotheses about
the roles that potential predictors, mediators, and outcome variables may
play. The comparison of the resulting patterns of types and antitypes is
the basis for conclusions concerning the nature of mediation in individual
cells. One of the most interesting characteristics of mediation CFA
is that, in the same cross-classification, hypotheses involving partial
mediation, complete mediation, or no mediation can find support.

Mediation is modeled mostly in the context of predictive, causal, or
mechanistic concepts of the flow of effects. The underlying idea is that of a
chain of effects (Kenny, 2005; von Eye & Brandtstädter, 1998). Consider a
predictor variable (P), a mediating variable (M), and an outcome variable
(Y). Using these three variables, mediation can be depicted as in Figure 6.1.

Not surprisingly, a number of methods has been proposed to model
and test whether data support hypotheses about the existence of mediation
effects (see MacKinnon, 2008; MacKinnon, Lockwood, Hoffman, West, &
Sheets, 2002). The most frequently used method was proposed by Baron
and Kenny (1986). This method involves four steps:

95
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P

M

Y

FIGURE 6.1. Variable M mediates the relationship between P and Y.

1. Establish the relationship between the predictor, P, and the criterion, Y.
This can be achieved by simply regressing Y onto P. In continuous variable
analysis, standard linear regression analysis is the routine method used for
this purpose. In categorical variable analysis, logit models such as logistic
regression can be used. In the context of configural analysis, the prediction
models discussed in Section 5.1.2 can be used. It should be noted that
some authors state that this relationship does not need to exist, because
mediation can exist if only M is predicted from P and Y is predicted from
M. Therefore, the results of this first step are not necessarily conclusive. In
particular, a relationship between P and Y is not a necessary condition for
the existence of a mediated relationship between P and Y.

2. Establish the relationship between the predictor, P, and the mediator,
M. This relationship can be shown to exist by using the same methods
as under Step 1, with M being regressed onto P. This relationship is a
necessary condition for mediation to exist.

3. Establish the relationship between the mediator, M, and the criterion, Y.
Here again, regression methods can be used to predict Y from M. However,
in contrast to the first two steps, the third step requires that the effect of P
be taken into account. Therefore, simple regression will not be sufficient.
Partial regression models need to be estimated so that the effect of P is
controlled when the effect of M on Y is estimated. This is needed because it
is possible that both M and Y depend on P. The existence of a relationship
between the mediator and the criterion is also a necessary condition for
mediation.
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4. Determine whether mediation is partial or complete. Mediation is partial
if (1) the path from P to Y and (2) the paths from P to M and from M to
Y exist. A relationship is completely (or fully) mediated if only the paths
from P to M and from M to Y exist. If a relationship is fully mediated, the
path from P to Y is statistically zero when the path from the mediator, M,
to the criterion, Y, is taken into account. If the relationship between the
predictor, P, and the criterion, Y, cannot be established in the first step of
the procedure, mediation cannot be partial, only complete, if it exists at
all. In a partially mediated relationship, this path may be less strong when
M is taken into account than when M is not taken into account, but it still
exists. In most cases, the decision as to whether mediation is full or partial
is made based on the results of Step 3. That is, the regression model that
contains the paths both from P to Y and from M to Y allows one to make
the decision.

In the present context, we will not discuss the causal connotations of the
concept of mediation. Instead, we discuss the idea that underlies the
application of CFA in the context of mediation. The idea that carries
CFA is that of local relationships (Hand & Viniciotti, 2003; Havránek &
Lienert, 1984). At the aggregate level, variable-oriented data analysis,
researchers implicitly assume that relationships apply over the entire range
of admissible scores. If this is not the case, piecewise regression models
are estimated (for examples, see von Eye & Schuster, 1998), or interaction
terms are included in a model. In contrast, person-oriented (Bergman
& Magnusson, 1997; Bergman, von Eye, & Magnusson, 2006; von Eye
& Bergman, 2003), ideographic (Molenaar, 2004; von Eye, 2004b), and
configural data analysis allow one to accommodate the assumption that a
relationship exists only in a subset of variable categories. In the present
context of mediation, CFA is applied if researchers assume that either
complete or partial mediation relationships exist for some category patterns
but not for others, and that the remaining configurations indicate variable
(or configural) independence.

In the following sections, two approaches to Configural Mediation
Analysis are introduced. The first approach has not been discussed in
the literature before (we are grateful to Ryan Bowles for suggesting this
approach). It proceeds in two steps. First, it establishes a mediation
model by using methods of logistic regression. Second, using methods
of CFA, it identifies the variable categories that carry the mediation. The
second approach (von Eye, 2008a; von Eye, Mun, & Mair, 2009) performs
mediation analysis by relying entirely on CFA methods. It first determines
which variables are related to one another by searching for types and
antitypes under various base models. Then, in a series of decisions in which
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the results of these analyses are compared, it is determined (1) whether
mediation exists at all and, if it exists, (2) whether it is complete or partial.
Mediation can be complete for some category patterns, partial for others,
and may not exist for a third group of configurations. Both CFA approaches
to mediation analysis are based on the sequence of steps proposed by Baron
and Kenny (1986). However, these steps are modified for application in
CFA.

6.1 Logistic Regression Plus Mediation

In this section, we describe the version of configural analysis of mediation
that is based on logistic regression. This version proceeds in two phases.
First, Baron and Kenny’s (1986) four steps are performed that were
described in the preceding section. These steps are performed by using
methods of logistic regression, that is, logit models. In the second phase,
the same variables are subjected to configural analysis. It is the goal of the
second phase to determine which patterns of variable categories carry the
relationships that are involved in the mediation process.

Consider the mediation example given in Figure 6.1. In this example,
the paths from the predictor, P, to the criterion, Y, and the mediator, M, as
well as the path from M to Y are depicted. In the first phase of analysis, the
four steps proposed by Baron and Kenny (1986) are performed1:

1. Establishing the relationship between the predictor, P, and the criterion, Y: To
establish the relationship between P and Y, the logit model

log
p(Y = 1)

1 − p(Y = 1)
= β0 + β1P

is estimated, which is equivalent to the log-linear model

log m̂ = λ + λP + λY.

These two models have the same degrees of freedom and yield the same
overall goodness-of-fit scores. As was indicated before, some authors do
not view this step as a necessary condition for the existence of a mediator
relationship.

2. Establishing the relationship between the predictor, P, and the mediator, M: To
establish the relationship between P and M, the logit model

log
p(M = 1)

1 − p(M = 1)
= β0 + β1P

1An alternative approach to mediation analysis with categorical variables was described by
Vermunt (1997). An overview of this approach is given in the appendix to this section.
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is estimated, which is equivalent to the log-linear model

log m̂ = λ + λP + λM.

These two models are also equivalent (same degrees of freedom and same
overall goodness-of-fit scores). If this model suggests that P is unrelated to
M, mediation is impossible. In other words, this relationship is a necessary
condition for mediation to exist. This applies to both partial and complete
mediation.

3. Establishing the relationship between the mediator, M, and the criterion, Y:
This relationship is also a necessary condition for mediation to exist. To
establish the relationship between P and M, it is not sufficient to estimate
the logit model

log
p(Y = 1)

1 − p(Y = 1)
= β0 + β1M,

which would be equivalent to the log-linear model

log m̂ = λ + λM + λY.

These two models also have the same degrees of freedom and yield the
same overall goodness-of-fit scores. The problem with this model is that it
fails to take the effect of P into account. Therefore, partial logistic regression
parameters must be estimated. That is, both predictors must be included
in the equation. The equations thus become

log
p(Y = 1)

1 − p(Y = 1)
= β0 + β1M + β2P

and
log m̂ = λ + λP + λM + λY + λPM + λPY + λMY.

Note again that the three-way interaction is not part of the model. It would
render the model saturated. Thus, the three-way interaction is used as the
residual against which the model is tested.

4. Determining whether mediation is partial or complete: Mediation is partial
if all three paths exist: (1) the path from P to Y, (2) the path from P to M,
and (3) the path from M to Y. In contrast, mediation is complete, if the path
from P to Y is statistically zero when the path from M to Y is part of the
model. Thus, the result of Step 3 allows one to make a decision concerning
the type of mediation. If both λPM and λMY are significant but λPY is not,
mediation is complete. If all three two-way interactions are significant,
mediation is partial.
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Data Example 1: For the following data example, we adapt an example
from Vermunt (1997, Ch. 4, Example 4.1; Hagenaars, 1990, Table 2.1). We
analyze the three variables Religion (R; 1 = member of a religious group,
2 = nonmember), Political Preference (P; 1 = left, 2 = right, 3 = Christian
Democratic), and Voting Behavior (V; 1 = does vote, 2 = does not vote).
The frequency distribution of the cross-tabulation of these three variables
appears in Table 6.1. The question we ask is whether Political Preference
mediates the relationship between Religion and Voting Behavior. In the
first phase of the analysis, we perform a standard Baron and Kenny-type
mediation analysis using logistic regression. We consider the three models

log m̂ = λ + λR + λV ,

log m̂ = λ + λP + λR, and

log m̂ = λ + λP + λR + λV + λPR + λPV + λRV .

For a formulation of the mediator model in terms of conditional
probabilities, see Vermunt (1997). A review of this approach is provided
in the appendix to this section. For the reasons mentioned above, we keep
using the log-linear notation. All models were estimated by using `EM2. For
the first model, we obtain the LR−X2 = 58.08 (d f = 1; p < 0.01). The model
clearly does not fit. Still, we inspect the parameter for the Religion – Voting
path from the model that included the interaction term [RV]. We find that
λRV = 0.30 (se = 0.04; z = −7.41; p < 0.01). Because the model does not fit,
this result can be interpreted only with caution. We only conclude that the
path from Religion to Voting Behavior may exist, and we proceed to the
next model in the sequence.

This model contains the path from the predictor, Religion, to the
mediator, Political Preference. For this model, we obtain the LR−X2 = 56.28
(d f = 2; p < 0.01). The model clearly does not fit either. Still, in a
way parallel to the result from the first step, we find that one of the two
interaction parameters that were estimated for the path from Religion to
Political Preference is significant (λRP1 = −0.30; se = 0.06; z = −5.21;
p < 0.01; and λRP2 = −0.06; se = 0.06; z = −1.10; p = 0.14). Again, we
tentatively conclude that this path may exist.

The final model to be estimated includes all three interactions. The
frequency table for this model appears in Table 6.1.

The overall fit of this model is excellent. We obtain the LR − X2 =

2.69 (d f = 2; p = 0.26). The parameters thus can be interpreted. All of

2Results from SYSTAT, SPSS, or SAS should be equivalent to the `EM results. `EM uses effects
coding whereas SPSS, SYSTAT, and SAS Proc Genmod use dummy coding. Therefore, the
estimated parameters may differ in magnitude and interpretation. The estimates for the
expected cell frequencies and the overall model fit are exactly the same.
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TABLE 6.1. Logistic Regression Model with the Predictor, Religion (R), the Mediator,
Political Preference (P), and the Criterion, Voting Behavior (V)

Configuration
RPV

m m̂ Std. Res.

1 1 1 50 45.986 0.592
1 1 2 25 29.014 −0.745
1 2 1 88 90.068 −0.218
1 2 2 8 5.932 0.849
1 3 1 177 178.945 −0.145
1 3 2 47 45.055 0.290
2 1 1 39 43.014 −0.612
2 1 2 97 92.986 0.416
2 2 1 91 88.932 0.219
2 2 2 18 20.068 −0.462
2 3 1 61 59.055 0.253
2 3 2 49 50.945 −0.273

the interesting parameters are significant. Specifically, for the path from
Religion to Political Preference, we obtain the two parameter estimates
β1 = −0.16 (se = 0.06; z = −2.69; p < 0.01) and β2 = −0.19 (se = 0.06;
z = −3.16; p < 0.01). For the path from Religion to Voting Behavior, we
obtain the estimate β = 0.31 (se = 0.05; z = 6.83; p < 0.01). Finally,
for the path from Political Preference to Voting Behavior, we obtain the
two parameter estimates β1 = −0.53 (se = 0.06; z = −8.31; p < 0.01) and
β2 = 0.60 (se = 0.08; z = 7.58; p < 0.01). These parameters can be interpreted
as follows. First, looking at the individual parameters, we find, for R→ P,
that

• members of a religious group are unlikely to identify their political
preference as left;

• members of a religious group are also unlikely to identify their
political preference as right.

For R→ V, we find that

• members of religious groups are more likely to vote.

For P→ V, we find that

• voters who identify with the political left are less likely to vote; and

• voters who identify with the political right are more likely to vote.



102 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

R

P

V

FIGURE 6.2. Partial mediation model for the variables Religion (R), Political Preference
(P), and Voting Behavior (V).

Second, with respect to the path model, we note that, based on the three
models that were estimated, all paths of the mediator model are significant.
Mediation is thus partial, and the model can be retained. Figure 6.2 depicts
the partial mediation model.

From the perspective of performing a configural mediation analysis,
we now know that the paths exist that carry a partial mediation process.
We also know how the variables are related to one another. What we do
not know is whether the partial mediation process is carried by a specific
selection of cells that stand out in the form of types and antitypes. To
identify cells that possibly stand out, we perform a CFA. This analysis will
be parallel to the most complete of the logistic regression models, that is,
the model

log m̂ = λ + λR + λP + λV + λRP + λRV + λPV.

The corresponding CFA base model depends on the type of mediation that
was found by using the logistic regression models. If the hypothesis of full
mediation is supported, the CFA base model is

log m̂ = λ + λR + λP + λV + λRV .

If this model results in types and antitypes, the paths from Religion to
Political Preference and/or from Political Preference to Voting Behavior
exist. The types and antitypes show which configurations are responsible
for the mediation. If, in contrast, the hypothesis of partial mediation is
supported, the CFA base model becomes

log m̂ = λ + λR + λP + λV .
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Types and antitypes from this model indicate which configurations are
responsible for the direct path from R to V and the indirect connection
from R via P to V. The three-way interaction among the predictor, the
mediator, and the criterion can be included in each of these base models,
if the focus is on two-way interactions. To accomplish this, one formulates
a nonhierarchical log-linear model. In the present example, the three-way
interaction is [R,P,V].

Readers will notice that these two base models are parallel to the logistic
regression model only in part. Types and antitypes can be caused by the
two-way interactions between the predictor, the mediator, and the criterion.
These are the interactions [R,V], [R,P], and [P,V]. Up to this point, the
logistic regression and the CFA models are equivalent. However, the CFA
models leave the door open for the three-way interaction [R,P,V] to have
effects on the existence of types and antitypes. These effects may exist in
addition to the two-way effects, but they can also be the only effects in the
table (Meehl’s paradox; Meehl, 1950; von Eye, 2002a). This interaction was
not part of the logistic regression models.

In the present example, model fit was so good (LR − X2 = 2.69) that
it is impossible for the three-way interaction to improve the model-data
correspondence. Therefore, omitting this interaction in the CFA base model
is unlikely to affect the resulting pattern of mediation types and antitypes.

In the present example, the hypothesis of partial mediation was
supported. Therefore, we use the second of the above CFA base models.
This model coincides with a first order, global CFA base model. The overall
goodness-of-fit of this model comes with a LR−X2 = 209.97, which indicates
that the model is not tenable (d f = 7; p < 0.01). The rejection of the
base model is a precondition for types and antitypes to emerge. Table 6.2
displays results of first order CFA. As with the earlier models, the z-test
was used along with the Holland-Copenhaver procedure of α protection.

First order CFA of partial mediation shows that three types and five
antitypes carry the mediation process. The first type, constituted by
Configuration 1 3 1, suggests that more members of religious groups than
expected who identify themselves as Christian Democratic can be predicted
to vote. The second type is constituted by Configuration 2 1 2. It suggests
that respondents who are not members of a religious group and identify
with the political left are more likely than expected not to vote. The third
type, constituted by Configuration 2 2 1, suggests that respondents who
are not members of a religious group and identify with the political right
are more likely than expected to vote.

The first antitype, constituted by Configuration 1 1 1, suggests that,
for respondents who are members of a religious group and identify with
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TABLE 6.2. Mediation CFA of the Cross-Tabulation of the Predictor, Religion (R), and the
Mediator, Political Preference (P), with the Criterion, Voting Behavior (V)

Configuration
RPV

m m̂ z p Type/Antitype

111 50 74.973 −2.8842 .001962 Antitype
112 25 36.153 −1.8549 .031803
121 88 72.842 1.7761 .037859
122 8 35.125 −4.5768 .000002 Antitype
131 177 118.678 5.3536 .000000 Type
132 47 57.228 −1.3521 .088177
211 39 67.381 −3.4575 .000273 Antitype
212 97 32.492 11.3168 .000000 Type
221 91 65.465 3.1559 .000800 Type
222 18 31.568 −2.4149 .007870 Antitype
231 61 106.660 −4.4212 .000005 Antitype
232 49 51.433 −.3393 .367209

the political left, it can be predicted that voting is unusually unlikely. The
second antitype, constituted by Configuration 1 2 2, allows one to predict
that it is unexpectedly unlikely that respondents who are members of a
religious group and identify with the political right will not vote. The third
antitype, constituted by Configuration 2 1 1, indicates that respondents who
are not members of a religious group and politically on the left are less likely
than expected to vote. The fourth antitype, constituted by Configuration
2 2 2, shows that respondents who are not members of a religious group
and politically on the right are unlikely to refrain from voting. The fifth
antitype, constituted by Configuration 2 3 1, suggests that respondents who
are not members of religious groups and identify themselves as Christian
Democratic are less likely than expected to vote.

These CFA results can be simplified by creating aggregate types or
antitypes. Types can be aggregated with other types if they differ in just
one characteristic (Quine-McCluskey algorithm; see Hoernes & Heilweil,
1964; von Eye & Brandtstädter, 1982). The same applies to antitypes.
Types cannot be aggregated with antitypes (for a more detailed description
of methods of aggregation, see von Eye, 2002a, sec. 10.8).

The three types were constituted by Configurations 1 3 1, 2 1 2, and 2
2 1. Each pair of types differs in two or more characteristics. Therefore,
aggregation of types is not possible in the present example.

The five antitypes were constituted by Configurations 1 1 1, 1 2 2, 2 1 1,
2 2 2, and 2 3 1. Of these, two aggregate antitypes can be created: the first
and the third and the second and the fourth antitypes can be aggregated.
Specifically, when aggregating the first and the third antitypes, we obtain
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the composite antitype

1 1 1

2 1 1

. 1 1

where the dot indicates the variable category aggregated across. This first
aggregate antitype suggests that it is particularly unlikely that respondents
who identify with the political left will vote, independent of religious
orientation. From the perspective of testing a mediation hypothesis, this
result indicates that the mediator, Political Preference, and the criterion,
Voting Behavior, are related in a way independent of the predictor, Religion.

When aggregating the second and the fourth antitypes, we obtain the
second composite antitype

1 2 2

2 2 2

. 2 2

This aggregate antitype suggests that it can be predicted that it is very
unlikely that respondents who identify with the political right will not vote.
In other words, when a respondent is identified with the political right,
religious group membership is irrelevant for the prediction that members
are unlikely not to vote.

Note that the two antitypes 2 1 1 and 2 3 1 also differ in only
one characteristic. However, the variable Political Preference has three
categories, one of which is not involved in the definition of antitypes from
members of religious groups and voters. Therefore, aggregating across the
categories of this variable is not possible. This implies that the second
variable, Political Preference, is needed for the prediction of voting of
members of religious groups. Clearly, this pattern is a key element in
the mediation process in the present example. In contrast, the aggregate
antitypes show that, for the prediction of nonvoting of respondents who
identify with the political left, religious group membership does not make
a difference. This applies accordingly to predicting the voting behavior
of respondents who identify with the political right. As was said above,
these relationships support the notion that the mediator is related to the
criterion. The fact, however, that the predictor does not play a role in these
predictions shows that the current data also contain local relationships that
are not constituent of the mediation process.

Creating Logistic Regression and CFA Models That Are Parallel:
As was emphasized above, the CFA base model that was used to create
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the results in Table 6.2 is not exactly parallel to the logistic regression
model used for the analysis of the same data. Specifically, whereas the
logistic regression model focused on the two-way interactions between the
predictors and the criteria, CFA also allowed the three-way interaction to
play a role. In the following paragraphs, we make the models exactly
parallel.

There are two options to create parallel models. The first option changes
the logistic regression model so that it focuses on the same effects as the CFA
model. The second option involves adapting the CFA model. In the present
example, the first option would result in a saturated model. Therefore, we
go with the second option.

When specifying alternative CFA base models for the present example,
one can consider including the interactions [R,P], [P,V], and/or [R,P,V] in
the base model. Including one or both of the two-way interactions would
change the meaning of the mediator model. Specifically, including either
of the two-way interactions would interrupt the flow of information that
originates in the predictor, R, goes through the mediator, P, and ends in the
criterion variable, V. In contrast, including only [R,P,V] would still result
in a base model for full mediation. However, the focus would change
from two- and/or three-way interactions as possible causes of types and
antitypes to only two-way interactions as possible causes. In the present
example, the hypothesis of partial mediation was supported. Therefore,
and to illustrate a model that is parallel to the logistic regression model,
we include the [R,P,V] interaction in the CFA base model. The CFA base
model thus becomes

log m̂ = λ + λR + λP + λV + λRPV.

This model is nonhierarchical (Mair & von Eye, 2007), because it sets the
parameters of the first order interactions between the predictors and the
mediator, the mediator and the criterion, and the predictor and the criterion
to zero. In hierarchical models, all lower order terms of higher order
interactions are part of the model. The three two-way interaction terms set
to zero here are lower order terms of the three-way interaction [RPV]. The
design matrix for this base model appears in Table 6.3.

Using this design matrix, a CFA was performed on the voting data. It
differs from the design matrix for the base model for Table 6.2 in that the
last two vectors in Table 6.3 were included. To make results comparable
with those reported in Table 6.2, the z-test was used again along with the
Holland-Copenhaver procedure of α protection. Table 6.4 displays CFA
results.

The overall LR − X2 = 184.27 indicates that this base model is not
tenable either (d f = 5; p < 0.01), although the model is significantly
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TABLE 6.3. Design Matrix for CFA of a 2 × 3 × 2 Cross-Tabulation of the Variables
Religion (R), Political Preference (P), and Voting Behavior (V); Nonhierarchical Base Model
Includes Three-Way Interaction

Main Effects Three-Way Interaction
R P1 P2 V R × P1 × V R × P2 × V

1 1 0 1 1 0
1 1 0 −1 −1 0
1 0 1 1 0 1
1 0 1 −1 0 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1
−1 1 0 1 −1 0
−1 1 0 −1 1 0
−1 0 1 1 0 −1
−1 0 1 −1 0 1
−1 −1 −1 1 1 1
−1 −1 −1 −1 −1 −1

TABLE 6.4. Mediation CFA of the Cross-Tabulation of the Two Predictors Religion (R)
and Political Preference (P) with the Criterion Voting Behavior (V); Nonhierarchical Model;
Three-Way Interaction Taken into Account

Configuration
RPV

m m̂ z p Type/Antitype

111 50 81.694 −3.5066 .000227 Antitype
112 25 32.112 −1.2551 .104728
121 88 53.293 4.7542 .000001 Type
122 8 44.189 −5.4440 .000000 Antitype
131 177 136.417 3.4746 .000256 Type
132 47 47.295 −.0428 .482919
211 39 60.952 −2.8117 .002464 Antitype
212 97 36.242 10.0924 .000000 Type
221 91 83.875 .7780 .218282
222 18 23.643 −1.1605 .122923
231 61 89.769 −3.0364 .001197 Antitype
232 49 60.519 −1.4807 .069338
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better than the standard first order CFA base model (∆LR − X2 = 25.70;
∆d f = 2; p < 0.01). We thus can expect a different pattern of types and
antitypes to emerge. Indeed, Table 6.4 shows one new type, constituted by
Configuration 1 2 1. In addition, one of the types and one of the antitypes
that had emerged under the original first order CFA base model are no
longer extreme enough to qualify as outstanding cells (Type-Configuration
2 2 1 and Antitype-Configuration 2 2 2). The remaining types and antitypes
had been part of the results of the first analysis. We thus conclude that the
mediation process that was confirmed, at the level of two-way interactions,
by the sequence of logistic regression models is carried by the three types
and four antitypes in Table 6.4. We conclude that, although the three-way
interaction is not significant, it can, taken by itself, alter the resulting pattern
of types and antitypes.

As before, the two Antitypes 1 1 1 and 2 1 1 can be aggregated to
constitute the aggregate antitype . 1 1. The interpretation of the remaining
types and antitypes requires all three variables. Figure 6.3 displays two of
the mediation types as examples. Figure 6.4 displays two of the mediation
antitypes as examples.

Interpretation of Mediation Types and Antitypes: The interpretation
of mediation types and antitypes can be based on the predictive nature of
the variables’ relationships in the model. Given the right context, these
relationships may even be causal. If a type suggests that (local) mediation
is partial, one can formulate the interpretation as involving three predictive
elements. The first is the one from the predictor to the criterion. One can
say that a particular predictor category allows one to predict a particular
criterion category. In addition, the same predictor category allows one to
also predict a particular category of the mediator. This category, in turn,
allows one to predict the same criterion category as the predictor itself, thus
constituting a partially mediated relationship.

Consider, for example, the first type in Figure 6.3. This type is
constituted by the category pattern R = 1, P = 2, and V = 1. In the context
of a mediation model, a first element of this pattern can be interpreted
such that, for more members of a religious group than expected, it can
be predicted that they do vote in political elections. This describes the
predictor-criterion relationship. In addition, the same members of religious
groups are more likely than expected to have a preference for the political
right. This describes the predictor-mediator relationship. Finally, the same
individuals, all on the political right, have an increased probability of
voting. This completes the mediated element of the relationship.

In a parallel way, one can interpret antitypes. Consider the second
antitype in Figure 6.4. It is constituted by the category pattern R = 2,
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R=1

P=2

V=1 R=2

P=1

V=2

FIGURE 6.3. Mediation types in the voting behavior example (solid arrows indicate types).

R=1

P=2

V=2 R=2

P=1

V=1

FIGURE 6.4. Mediation antitypes in the voting behavior example (dotted arrows indicate
antitypes).

P = 1, and V = 1. This antitype indicates that, of those respondents
who are not members of a religious group, fewer will vote than expected
(predictor-criterion relationship). In addition, these individuals identify
with the political left, fewer of them vote than expected (predictor-mediator
and mediator-criterion).

Appendix to Section 6.1: An Alternative Method of Mediation

Analysis (Vermunt, 1997)

An alternative, equivalent method of mediation analysis can be specified in
terms of conditional probabilities, π (see Vermunt, 1997, p. 27). Specifically,
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the unrestricted model that is depicted in Figure 6.1 is

πRPV = πR πP|R πV|RP.

This model is saturated (d f = 0). Still, the parameters indicate whether
there is support for the mediational path model. Specifically, in the voting
data example, we estimate, for the P|R part of the model (main effect
statistics are estimated in the analyzed models but not reported here or in
later models), the following Wald statistics: for RP, 53.55 (d f = 2; p < 0.01).
For the V|RP part of the model, we find, for RV, 33.56 (d f = 1; p < 0.01);
for PV, 61.30 (d f = 2; p < 0.01); and for RPV, 2.70 (d f = 2; p = 0.259). We,
therefore, can conclude that each of the bivariate variable relationships that
was proposed as part of the path model given in Figure 6.2 is significant,
and the model as a whole is supported. In contrast, and as before, the
three-way interaction among R, P, and V remains nonsignificant.

To obtain a more parsimonious (nonsaturated) model, we remove the
three-way interaction. For the resulting model, we obtain a LR − X2 = 2.69
(d f = 2; p = 0.26), which indicates excellent model-data correspondence
(note that this value is exactly the same as the one for the log-linear model
that was estimated for Table 6.4). The Wald statistics for the individual
parameters are, for the P|R part of the model: for RP, 53.55 (d f = 2; p < 0.01).
For the V|RP part of the model, we obtain: for RV, 46.67 (d f = 1; p < 0.01);
and for PV, 77.60 (d f = 2; p < 0.01). At this level, we can conclude that
mediation exists, and it is, at the least, partial.

To test whether a fully mediated model can be defended, we set the
parameter for the direct path from R to V to zero. The resulting model has
3 degrees of freedom, and comes with a LR − X2 = 51.39 (d f = 1; p < 0.01).
This model is rejected. In addition, it is significantly worse than the less
parsimonious model of partial mediation. We thus retain the model of
partial mediation.

6.2 CFA-Based Mediation Analysis

The method of probing potential mediation described in the last
chapter is a hybrid. It combines two different approaches into one
method: variable-oriented logistic regression is combined with methods
of person-oriented CFA. The latter is used only if logistic regression yields
a mediation model that can be retained. In this chapter, we describe an
alternative approach to configural mediation analysis. This approach is
based entirely on CFA. In many instances, these two approaches will
yield the same results. However, the regression and the configural
approaches to mediation analysis can differ in two important aspects. First,
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types and antitypes can exist even if logistic regression does not support
mediation hypotheses. In these instances, and when researchers wish to
stay within the domain of person-oriented methods of analysis, the method
described in this chapter is the method of choice (von Eye, 2008a; von
Eye, Mun, & Mair, 2009). Second, patterns of types and antitypes can
emerge that suggest that, whereas some type- or antitype configurations
reflect mediation, others, in the same table, may reflect simple bivariate
relationships that are unrelated to the mediation process. The aggregate
antitypes in the preceding section are examples of such a situation.

The method that is described in the following paragraphs was designed
to be parallel to Baron and Kenny’s (1986) method that was used already
in the preceding section. Steps are performed that examine the same
relationships as proposed for the Baron and Kenny procedure. After
performing these steps, results are compared and a decision is made about
the nature of the mediation process. However, results are not expressed
in terms of variable relationships. Instead, results are expressed solely in
terms of types and antitypes, that is, in terms of the patterns of variable
categories that carry the mediation relationship.

Definition: A configural mediation model is defined by three elements:

1. the types and antitypes that link predictors, mediators, and criteria;

2. rules that allow one to make a decision about the existence of
mediation; and

3. rules that allow one to make a decision about the nature of mediation
as either partial or complete.

In the following paragraphs, we describe a two-stage procedure that
leads to statements about a mediation process. This procedure involves
(1) performing a series of four configural analyses that allow one to
make conclusions parallel to the ones based on Baron and Kenny’s (1986)
sequence of steps; and (2) comparing the results of these analyses with one
another. In the following paragraphs, we first describe the series of the
four configural analyses. We name the predictor P, the mediator M, and
the criterion Y.

Step 1. First Order CFA: This step involves performing a standard first
order CFA, as explained in the first chapter of this book (cf. Lienert, 1968;
von Eye, 2002a; von Eye & Gutiérrez Peña, 2004). This is the main effect
model [P][M][Y]. This step allows one to determine whether variable
relationships exist at all in the form of types and antitypes. If no types or
antitypes emerge from this first step, configural mediation cannot exist and
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configural mediation analysis can stop here. If, however, types or antitypes
do emerge, they may constitute evidence of configural mediation, and the
following steps are needed to determine (1) which patterns of variable
categories carry the mediation, and (2) the type of mediation.

Types and antitypes that result from the first step can reflect any (local)
variable relationship. Therefore, the following steps aim at determining
whether the types and antitypes support the notion that relationships exist
that are compatible with full or partial mediation. In the following three
steps, we use the configural regression and prediction models that were
discussed in Sections 5.1 and 5.2 (cf. von Eye & Bogat, 2005; von Eye et al.,
2005). The order in which the following three steps are performed has no
implication for the final results.

Step 2. Predicting the criterion from predictor and mediator: This step
corresponds to the second step in Baron and Kenny’s (1986) procedure.
It involves a CFA base model in which the predictor and the mediator
are allowed to be associated with each other. That is, we use the base
model [PM][Y], a configural multiple regression model. If no types and no
antitypes result from this model, neither the predictor nor the mediator is
related to the criterion, and the analysis can stop with the conclusion that
the types and antitypes that were found in Step 1 are solely due to the [PM]
interaction (and, possibly, the three-way interaction [PMY]). If, however,
types or antitypes result, there must be a relationship between the predictor
and the mediator on one side, and the criterion on the other. The nature of
this relationship is, at this point, unknown. Therefore, the following steps
are necessary.

Step 3. Predicting the criterion from the mediator: In the third step, a CFA
is performed, using a base model in which the predictor is allowed to be
associated with the mediator and also with the criterion (see Steps 2 and 3 in
Baron and Kenny’s procedure). That is, we use the base model [PM][PY]. If
types and antitypes result from this model, the mediator must be related to
the criterion, and one of Kenny’s (2005) conditions for mediation is fulfilled.

Step 4. Predicting the criterion from the predictor: In the base model for
the fourth configural model, the mediator is allowed to be associated with
the predictor as well as with the criterion (see Step 4 in Baron and Kenny’s
procedure). That is, we perform a CFA, using the base model [PM][MY].
Resulting types and antitypes indicate a relationship between the predictor
and the criterion, thus fulfilling the first of Kenny’s (2005) conditions.

These four steps tell us whether (1) the variables P, M, and Y are related
at all (Step 1); (2) both, the predictor and mediator, are related to the
criterion (Step 2); (3) the mediator is related to the criterion (Step 3); and (4)
the predictor is related to the criterion (Step 4). Table 6.5 summarizes the
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TABLE 6.5. Models for Configural Mediation Analysis of Variables P, M, and Y

Step CFA Base Model Types and Antitypes Can Be Due to

1 [P], [M], [Y] [P,M], [P,Y], [M,Y], [P,M,Y]
2 [P,M], [Y] [M,Y], [P,Y], [P,M,Y]
3 [P,M], [P,Y] [M,Y], [P,M,Y]
4 [P,M], [M,Y] [P,Y], [P,M,Y]

results from the four steps. Remember that the associations of interest are
the ones not included in the CFA base models.

If the results from these steps point to the existence of mediation — that
is, if types and antitypes emerge — we need to make a decision concerning
the nature of the mediation as either partial or complete. To come to this
decision, we compare the results from these four steps. Three comparisons
are needed before a decision can be made.

Comparison 1: We first compare the results from Steps 2 and 3. If the
types and antitypes found by these models are the same, P is unrelated to
Y, but M is in a relationship with Y. The reason for this conclusion is that
the relationship between P and Y is taken into account in Step 3, but not
in Step 2. So, if the type and antitype patterns from Steps 2 and 3 are the
same (and different from the type and antitype patterns found in Steps 1
and 4), they can only be due to the relationship between M and Y. This
relationship (and the three-way interaction [P,M,Y]; see below) can be the
cause for types and antitypes in both Step 2 and Step 3 (see the right column
of Table 6.5). If, however, Steps 2 and 3 yield different results of types and
antitypes, we compare the two patterns. Two of the possible patterns are
of particular importance:

1. Types or antitypes result in Step 2, but not in Step 3. This pattern reflects
the effect of the relationship between P and Y, that is, the predictor and the
criterion. In addition, M is unrelated to Y. This indicates that the mediator
is unrelated to the criterion. If this is the case, the three variables are not in
a mediated relationship, and the analysis can be terminated at this point.

2. Types and antitypes result in both steps, but in different patterns. This
difference is due to the fact that the relationship between P and Y (predictor
and criterion) is included in Step 3, but not in Step 2. This pattern suggests
that both P, the predictor, and M, the mediator, are related to the criterion.

Because the model in Step 2 is nested in the models in Steps 3 and 4, it will
not occur that types or antitypes result in Step 3 or 4 but not in Step 2.

After the first comparison of the patterns of types and antitypes (Steps
2 and 3), we know whether the predictor, P, the mediator, M, or both are
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related to the criterion, Y. We now need to determine whether the predictor
and the mediator are related to each other. To prepare this decision, we
perform the next comparison.

Comparison 2: The second comparison involves the results from all four
analytic steps. The main effect base model used in Step 1 is the only
one that leaves the door open for the predictor and the mediator to be
unrelated to each other. In addition, this model proposes that none of the
other relationships exists that are part of the mediation process. These
relationships are part of Models 2, 3, and 4. In other words, the model
used in Step 1 differs from all others in that it does not contain the [P,M]
association. Therefore, if, after Comparison 1, the pattern of types and
antitypes found in Step 1 differs from any of the patterns of types and
antitypes found in the subsequent steps, the association between P and M
exists.

After the second comparison, we know the role played by the [P,M]
relationship. Finally, we need to know about the relationship among all
three variables, that is, [P,M,Y]. This is the relationship that rendered the
logit models in the last section saturated. The third comparison allows us
to come to a decision about this relationship.

Comparison 3: The three-way interaction [P,M,Y] can show its effects
in three forms. First, it is possible that types and antitypes exist only
because the three-way relationship [P,M,Y] exists (this can be determined
by performing a second order CFA; see von Eye & Lienert, 1984). If this
is the case, all steps will yield the same types and antitypes. Therefore,
a comparison of the results from all models listed in Table 6.5 will allow
one to decide whether this three-way interaction is the sole reason for
the existence of types and antitypes. Second, if a subset of types and
antitypes consistently emerges in all steps, these are most likely caused
by the three-way interaction. Third, types and antitypes can disappear,
and new types and antitypes can surface when the three-way interaction is
taken into account.

As is obvious from Table 6.5 and the third comparison, the three-way
interaction, [P,M,Y], plays a special role in configural mediation analysis.
It can be the cause for types and antitypes to emerge (or to disappear) in
any of the four models that are estimated. In addition, in standard P-CFA
as well as in its extensions in the context of mediation analysis, higher order
interactions are often among the reasons for a particular pattern of types
and antitypes. In variable-oriented mediation analysis of three variables,
taking the three-way interaction into account implies a saturated model
(unless the model is nonhierarchical). Therefore, researchers typically focus
on two-way interactions. Accordingly, when more than three variables
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TABLE 6.6. Models for Configural Mediation Analysis of Variables P, M, and Y; Highest
Order Interaction Included in the Base Model

Step CFA Base Model Types and Antitypes Can Be Due to

1 [P], [M], [Y], [P,M,Y] [P,M], [P,Y], [M,Y]
2 [P,M], [Y], [P,M,Y] [M,Y], [P,Y]
3 [P,M], [P,Y], [P,M,Y] [M,Y]
4 [P,M], [M,Y], [P,M,Y] [P,Y]

are involved in a mediation process, taking the highest order interaction
among predictor, mediator, and criterion variables into account also implies
a saturated model. In these cases, constraining lower order interaction
parameters helps “create” degrees of freedom.

In contrast, the base models of P-CFA and mediation CFA do not take
any of the effects into account that are of interest. Therefore, none of
the higher order interactions among predictors, mediators, and criterion
variables that can be suspected to be a cause of types and antitypes is part
of the base model. Thus, we are in a situation that is similar to the one
encountered when we compared logistic regression with P-CFA. Models
are not fully comparable because they differ in the reasons for a possibly
mediated relationship. Standard, variable-oriented mediation modeling
that uses logistic regression rarely includes the highest order interaction.
In contrast, mediation CFA does include this interaction as a possible cause
of types and antitypes by way of not including the contrast vectors for this
interaction in the base model.

In a way parallel to making logistic regression and P-CFA comparable,
logit model mediation analysis and configural mediation analysis can be
made comparable. The general rule is that, in order to create comparable
models, either

1. the base model of mediation CFA includes all effects in the base model
that are not included in the logit model, specifically, the [P,M,Y]
interaction; or

2. the logit model includes all effects that are not included in the base
model of mediation CFA.

The second approach usually results in a saturated model. Therefore, to
illustrate the first approach, consider again the models in Table 6.5. If the
corresponding logit models focus on the lower order interactions, the base
model of mediation CFA has to include the three-way interaction in the
base model. The models in Table 6.5 thus become as shown in Table 6.6.
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P M Y

FIGURE 6.5. Full mediation in the model of the variables P, M, and Y.

It should be emphasized again that including the highest order
interaction in the base model of mediation CFA does not imply that the
base model becomes saturated. Instead, including this interaction implies
that the model becomes nonhierarchical (Mair & von Eye, 2007). The higher
order interaction no longer implies that all lower order terms are part of
the model. For example, adding the highest order interaction to the first
model in the series of models (Step 1; see Table 6.6), does not imply that all
three two-way interactions are part of the base model. These interactions
are considered possible causes of types and antitypes. Similarly, adding the
highest order interaction to the fourth model in the series of models (Step
4; see Table 6.6), does not imply that the remaining two-way interaction,
[P,Y], is part of the base model.

We have now developed all elements that are needed for a complete
mediation CFA. Thus, we are ready for a data example. Before we present
a complete example, however, we summarize the conclusions from the
comparisons of the results obtained with the four mediation CFA base
models.

Conclusions: From the four steps shown in Table 6.5 and the comparisons
of results, five possible outcomes are of interest:

1. If Model 1 (standard, first order CFA) yields no types and no antitypes,
there is no mediation because the variables P, M, and Y are, locally,
unrelated to each other (note that types and antitypes may not emerge
even if variables are associated with each other). Configural mediation
analysis can, therefore, stop here.

2. If Model 1 yields types and antitypes, Model 2 yields the same types and
antitypes as Model 3, and Comparison 3 leads to the conclusion that at least
some of the types and antitypes are due to sources other than the three-way
interaction, and the model of full configural mediation is supported, that is,
the path model in Figure 6.5 holds3.

3Note that the models in Figures 6.1 and 6.2 are presented at the level of variable
relationships. The particular patterns that carry a configural mediation relationship, emerge
from the specific analyses proposed in this text, and are best depicted using the methods
introduced in Section 5.4.
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Y

FIGURE 6.6. Model of a direct effect only of P on Y.

3. If Model 1 yields types and antitypes and Model 2 yields the same types
and antitypes as Model 4, the model presented in Figure 6.6 is supported.
This is the direct effects-only model. There is no mediation.

4. If Model 1 yields types and antitypes, if Models 2 and 3 or Models 2 and
4 yield different types and antitypes (compared to each other and to Model
1), and if Models 3 and 4 yield different types and antitypes (also compared
to each other and to Model 1), all pairwise variable relationships exist, and
the model of partial mediation is supported that was depicted in Figure 6.1.

5. If Model 2 yields types and antitypes, but Model 3 fails to do so, the
mediator is unrelated to the criterion, and there is no mediation (see Figure
6.6).

It should be noted that other outcomes are possible. For example, it
is possible that there is only a relationship between the mediator, M, and
the criterion, Y, and that P is not related to either M or Y. Just as with
Conclusion 1, this result would contradict the hypothesis of mediation.

Finally, we ask which of the models listed in Tables 6.5 and 6.6 the
researcher should interpret. The only model that leaves all variable
relationships open is Model 1. Therefore, Model 1 can always be
interpreted. The results from Models 2 through 4 need to be known,
however, before an interpretation in the context of mediation hypotheses
is attempted. Models 2 through 4 cover only aspects of the mediation
relationship. The only model that covers the entire set of relationships is
Model 1.

If mediation is not supported, or if mediation is not considered or, in
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TABLE 6.7. Design Matrix for the Saturated Model for the Cross-Tabulation of the Three
Variables Religion (R), Political Preference (P), and Voting Behavior (V) (Constant Vector
Implied)

Main Effects 1st Order Interactions 2nd Order Interaction
R P1 P2 V RP1 RP2 RV P1 V P2 V RP1 V RP2 V

1 1 0 1 1 0 1 1 0 1 0
1 1 0 −1 1 0 −1 −1 0 −1 0
1 0 1 1 0 1 1 0 1 0 1
1 0 1 −1 0 1 −1 0 −1 0 −1
1 −1 −1 1 −1 −1 1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1 1 1 1 1
−1 1 0 1 −1 0 −1 1 0 −1 0
−1 1 0 −1 −1 0 1 −1 0 1 0
−1 0 1 1 0 −1 −1 0 1 0 −1
−1 0 1 −1 0 −1 1 0 −1 0 1
−1 −1 −1 1 1 1 −1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1 1 −1 −1

a particular context, meaningless, Model 1 can always be interpreted as a
standard first order CFA. That is, types and antitypes from Model 1 indicate
local relationships among variables. If, however, mediation assumptions
are supported, results from the same model can be interpreted in the context
of a predictive (or, given the right context, causal) mediated process.

Data Example 2: Partial Mediation: In the following paragraphs we
present a reanalysis of the voting behavior data (see Vermunt, 1997) that
were analyzed in the preceding section by using the logit model plus CFA
approach. We ask again whether there are patterns of types and antitypes
that support the assumption that Religion predicts Voting Behavior directly
or via Political Preference. Two analyses will be presented. The first is
a mediation CFA for which none of the four base models includes the
three-way interaction, [R,P,V]. For the second analysis, this interaction
will be part of each of the four base models. The cross-tabulation of the
three variables, R, P, and V, has 2 × 3 × 2 cells. The design matrix for the
saturated model for this cross-tabulation appears in Table 6.7.

Analysis 1: Three-way interaction [R,P,V] is not part of the Mediation CFA Base
Model:

The following four models are estimated for the first CFA-based
configural mediation analysis (see Table 6.5):

1. CFA Base Model 1:

log m̂ = λ + λR + λP + λV .
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This model uses the first four column vectors of the design matrix given in
Table 6.7. These are the vectors for the main effects of the variables.

2. CFA Base Model 2:

log m̂ = λ + λR + λP + λV + λRP.

This model uses the first four vectors of the design matrix and, for the R ×
P interaction, the first two vectors of the center panel of the matrix in Table
6.7.

3. CFA Base Model 3:

log m̂ = λ + λR + λP + λV + λRP + λRV .

This model uses the first four vectors of the design matrix. In addition, for
the R × P interaction, it uses the first two vectors of the center panel of the
matrix. For the R ×V interaction, it uses the third vector of the center panel
of the matrix in Table 6.7.

4. CFA Base Model 4:

log m̂ = λ + λR + λP + λV + λRP + λPV.

This model uses all main effect vectors, and the first two and the last two
vectors of the center panel of the design matrix in Table 6.7.

In each of the four following CFAs, we use the z-test and protected the
significance level using the same, Bonferroni-adjusted α∗ = 0.00417. This
protection is stricter than the Holland-Copenhaver procedure. We selected
it because of the large number of tests that are performed using the same
data. Now, instead of interpreting each CFA result in detail, we present
an overview table that allows one to easily perform the comparisons that
lead to a decision about the nature of the mediation in these data. Table
6.8 displays this overview. The detailed results for Model 1 were shown
already in Table 6.1.

Based on the results in Table 6.8, we now (1) summarize the results
from the four models with respect to the assumption of mediation, and (2)
perform the model comparisons:

Model 1. The main effect, first order CFA base model yields three types
and four antitypes4. If the mediation assumption can be retained, we

4Note that this is the same base model as the one used for the analysis for Table 6.2. The
fact that Cell 2 2 2, in Table 6.8, does not constitute an antitype is due to the stricter level of
α protection used for the present analyses.
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TABLE 6.8. CFA-Based Configural Mediation Analysis of the Variables Religion (R),
Political Preference (P), and Voting Behavior (V)

CFA Base Model
Configuration
RPV

m Model 1
[R][P][V]

Model 2
[R][P][V][RP]

Model 3
[R][P][V]
[RP][RV]

Model 4
[R][P][V]
[RP][PV]

111 50 Antitype Type
112 25 Antitype
121 88 Type
122 8 Antitype Antitype
131 177 Type
132 47 Antitype
211 39 Antitype Antitype Antitype
212 97 Type Type Type
221 91 Type Type
222 18 Antitype Antitype
231 61 Antitype
232 49 Type

LR −X2(d f ) 209.97 (7) 153.69 (5) 95.60 (4) 51.39 (3)

interpret this result. At this point, all we know is that the three variables are
associated and that mediation may exist. The following steps are performed
to identify the type of mediation (if any).

Model 2. This model yields two types and four antitypes. We conclude that
a mediation process may exist because the predictor, Religion, the mediator,
Political Preference, or both are related to the criterion, Voting Behavior. The
details of the mediation process are still unknown. To identify these, we
need the following models (see Table 6.8).

Model 3. This model results in two types and two antitypes. We conclude
that the mediator, Political Preference, and the criterion, Voting Behavior,
are associated.

Model 4. This model yields two types and one antitype. We conclude that
the predictor, Religion, and the criterion, Voting Behavior, are associated.

Now, these results need to be compared. The result of the comparisons
will be a decision about the nature of the mediation process. We proceed
in the sequence of steps outlined for the four models, above.

Comparison 1: The comparison of Models 2 and 3 shows that different
types and antitypes emerged. From this comparison, we conclude that
Religion, Political Preference, or both are related to Voting Behavior. We
now need to determine whether Religion and Political Preference are
related to each other.



Configural Mediator Models 121

Comparison 2: Table 6.8 shows that the pattern of types and antitypes
found for Model 1 differs from the patterns found for each of the Models 2,
3, and 4. Therefore, we conclude that the association between Religion and
Political Preference exists.

Comparison 3: The third comparison concerns the effects of the three-way
interaction. Table 6.8 shows that the overlap between the type and antitype
patterns from the four models is zero, that is, not one type or antitype
appears under all four CFA base models. We, therefore, conclude that the
types and antitypes found by the four models are not solely due to the
three-way interaction. It is important to note that this conclusion does not
imply that the three-way interaction plays no role. For example, the results
in Table 6.2 show a pattern of types and antitypes that is different from the
results of Model 2 in Table 6.8. The differences are due to the fact that, for
the results in Table 6.2, the three-way interaction was included in the CFA
base model.

At this point, in the present example, we are in a position in which
we can make a decision about the nature of configural mediation in
the cross-classification of the variables Religion, Political Preference, and
Voting Behavior. Specifically, we found, that

• Each model resulted in types and/or antitypes;

• the patterns of types and antitypes are unique for each model; and

• the types and antitypes are not solely due to the three-way interaction
[RPV].

We conclude that the hypothesis of local partial mediation is supported. This
is the same hypothesis that was already supported at both the variable and
the configural levels in the last section. However, the types and antitypes
found here differ from the ones interpreted in the last section, because, here,
we did not make an effort to produce a base model that was parallel to the
standard logit models that we had specified for mediation analysis.

The types and antitypes found here can be interpreted in a fashion
parallel to the last section. Therefore, we will not repeat the interpretation.
Instead, we ask whether aggregation of types and antitypes is possible
that leads to a picture that distinguishes configural mediation analysis
from variable-oriented mediation analysis even more. The three types that
resulted for Model 1 are 1 3 1, 2 1 2, and 2 2 1. The pairwise comparisons of
these type patterns show that each type differs in more than one category
from each other type. Aggregation that uses the Quine-McCluskey method,
therefore, cannot be performed.
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The four antitypes that resulted for Model 1 are 1 1 1, 1 2 2, 2 1 1, and 2
3 1. As in the last section, the first and the third of these differ in only one
category. By way of aggregation, we obtain

1 1 1

2 1 1

. 1 1

where the dot indicates the variable categories aggregated across. The
aggregated antitype, denoted by . 1 1, indicates that it is less likely than
expected that respondents who identify with the political left will vote.
This result is independent of the religious orientation of the respondents.

In the context of mediation configural analysis, this result is important.
It shows that the data contain one element of the mediator-criterion
relationship that does not originate in the predictor (cf. the interpretation
of the P-CFA results in Table 5.15).

Analysis 2: Three-way interaction [R,P,V] is part of the CFA base model:

In the following section, we reanalyze the Voting data using CFA-based
Configural Mediation Analysis again. However, in contrast to the models in
the last section, we now include the three-way interaction among Religion,
Political Preference, and Voting Behavior in each of the base models. Two
goals are pursued in this section. First, the CFA base models that are being
used in this section will be closer or, in some instances, identical to the ones
used for the logistic regression analysis of the same data. Second, these
models illustrate that a change in the base model can lead to a change in
results, even if the effect that is included in the base model is not significant.

We proceed in the same sequence of steps as in the first analysis, that
is, the analysis without the three-way interaction in the base model. The
following four base models are nonhierarchical because some (or all, as in
Step 1) of the terms that are of lower order with respect to the three-way
interaction that now is included as part of the base models are set to zero
(see Mair & von Eye, 2007). These steps are (see Table 6.6):

1. CFA Base Model 1:

log m̂ = λ + λR + λP + λV + λRPV.

This model uses the first four and the last two column vectors of the design
matrix given in Table 6.7. These are the vectors for the main effects of the
variables and the three-way interaction (second order interaction term),
respectively. The detailed results of this step are shown in Table 6.4.
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2. CFA Base Model 2:

log m̂ = λ + λR + λP + λV + λRP + λRPV.

This model uses the first four and the last two vectors of the design matrix
and, for the R × P interaction, the first two vectors of the center panel of
the matrix in Table 6.7. As with the first model, this and the following base
models use the last two vectors in the design matrix in Table 6.7 to include
the three-way interaction.

3. CFA Base Model 3:

log m̂ = λ + λR + λP + λV + λRP + λRV + λRPV.

This model uses the first four and the last two vectors of the design matrix.
For the R × P interaction, it uses the first two vectors of the center panel of
the matrix. For the R × V interaction, it uses the third vector of the center
panel of the matrix in Table 6.7.

4. CFA Base Model 4:

log m̂ = λ + λR + λP + λV + λRP + λPV + λRPV.

This model uses all main effect vectors, the two vectors for the three-way
interaction, and the first two and the last two vectors of the center panel of
the design matrix in Table 6.7.

In each of the four following CFAs, we used the z-test and protected the
significance level using the Bonferroni-adjustedα∗ = 0.00417 again, because
this protection is stricter than the Holland-Copenhhaver procedure. We
selected this more conservative protection procedure because of the large
number of tests that are performed using the same data. As in Analysis 1,
instead of interpreting each result in detail, we present an overview table
that allows one to easily perform the comparisons that lead to a decision
about the nature of the mediation in these data. Table 6.9 displays this
overview. The detailed results for Model 1 were shown already in Table
6.4.

The interpretation and comparison of the results from the four steps,
when the three-way interaction [RPV] is taken into account (i.e., Analysis
2), lead to the same conclusion as when this interaction is not taken into
account (i.e., Analysis 1). Partial mediation is supported again. However,
the results are not exactly the same. For example, consider CFA Base Model
1: In comparison with the results from the main effects-only base model in
Table 6.8, the present result shows one new type (constituted by Cell 1 2 1).
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TABLE 6.9. CFA-Based Configural Mediation Analysis (Three-Way Interactions Included)
of the Variables Religion (R), Political Preference (P), and Voting Behavior (V)

CFA Base Model
Configuration
R P V

m Model1
[R][P][V]
[RPV]

Model2
[R][P][V]
[RP]
[RPV]

Model3
[R][P][V]
[RP][RV]
[RPV]

Model4
[R][P][V]
[RP][PV]
[RPV]

111 50 Antitype
112 25 Type
121 88 Type Type
122 8 Antitype Antitype Antitype
131 177 Type
132 47
211 39 Antitype Antitype
212 97 Type Type
221 91
222 18 Antitype Type
231 61 Antitype
232 49

LR − X2(d f ) 184.27 (5) 128.66 (3) 71.39 (2) 35.89 (1)

In addition, one type (Cell 2 2 1) does not surface any longer. However,
also as before, whereas the types cannot be aggregated, the antitypes can.
The same antitype results. It is constituted by pattern . 1 1.

We thus conclude again that the data are structured such that they
contain (1) elements that support the hypothesis of partial mediation and
(2) other elements that just describe the relationship between the mediator
and the criterion variable. This form of result is unique to analysis with
CFA.

Data Example 3: Full Mediation: In the following paragraphs, we present
an example of full mediation. Figure 6.5 depicts full mediation in three
variables. To illustrate a process that is fully mediated, we now present a
data example using data from the longitudinal project on intimate partner
violence (Bogat et al., 2006). A sample of 204 women filled out, in 1-year
intervals, a questionnaire that was administered to assess the degree to
which they showed symptoms of posttraumatic stress disorder (PTSD scale
for battered women; Saunders, 1994). For the following analyses, we use
the information that was provided on perpetration of severe violence by
their intimate partners in the 12-month periods before the third, fourth, and
fifth interviews. The observed variable, Severe Violence (S), was coded as
1 = did not occur, and 2 = did occur. The three observations will be labeled
as S1, S2, and S3.
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The question we ask here is whether S2 is the mediator that links S1
and S3. If the relationship between S1 and S3 is fully mediated by S2, the
direct link between S1 and S3 is not needed to explain types and antitypes
from Model 1. The resulting model would be comparable to a first order
autoregressive Markov model.

As in the last section, we analyze the data by using two approaches to
configural mediation analysis. First, we apply the logistic regression plus
CFA method (Section 6.1). Second, we apply the CFA-only method (Section
6.2). Crossed, the three observations of severe partner violence span the 2
× 2 × 2 table given in Table 6.10.

Analysis 1: Logistic regression plus CFA:
In a first step, we run a reference model. This model is used for

comparison purposes. In this example, we use the model of variable
independence, that is, the first order CFA base model, as the reference
model:

log m̂ = λ + λS1
i + λ

S2
j + λ

S3
k
.

This model was estimated by using `EM (Vermunt, 1997). All other
programs, such as the CFA program discussed in Chapter 13, SYSTAT,
and R, yielded the same results (see Chapter 13 for sample scripts and
results from the different programs). The same applies to the models
discussed later in this section. The reference model describes the data
poorly (LR − X2 = 37.19; d f = 4; p < 0.01). We, therefore, reject it and
anticipate that types and antitypes will emerge.

Table 6.10 displays the observed and the estimated expected cell
frequencies for the reference model, along with the results for the base
model of first order CFA. For analysis, we use the binomial test and the
Holland-Copenhaver procedure of α protection. The binomial test was
used because the estimated expected frequency for Cell 2 2 2 was rather
small. If an expected frequency is small, the exact binomial test can be
trusted more than any of the asymptotic tests. Still, results from small
expected values have to be viewed and interpreted with caution.

From the rejection of the reference model, we conclude that interactions
must exist. If the full mediation hypothesis prevails, the interactions
between time-adjacent observations of severe partner violence explain
these data. To test this hypothesis, we estimate the model

log m̂ = λ + λS1
i + λ

S2
j + λ

S3
k
+ λS1,S2

i j
+ λS2,S3

jk
.

This model describes the data very well (LR−X2 = 3.95; d f = 2; p = 0.139).
In addition, this model is significantly better than the reference model of
first order CFA (∆LR − X2 = 33.24; d f = 2; p < 0.01). In addition, each
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TABLE 6.10. First Order CFA of the Cross-Tabulation of Severe Violence, Observed at
Three Occasions (S1, S2, and S3); Three-Way Interaction Not Taken into Account

Configuration
S1 S2 S3

m m̂ p Type/Antitype

111 157 143.2134 .01915750
112 2 5.8454 .06650423
121 8 18.1984 .00469242 Antitype
122 1 .7428 .52486050
211 20 30.6886 .01886143
212 2 1.2526 .35657128
221 11 3.8997 .00208993 Type
222 3 .1592 .00058901 Type

of the critical parameters is significant. Specifically, the parameter for the
[S1, S2] interaction is estimated to be λS1,S2 = 0.61 (z = 4.999; p < 0.01), and
the parameter for the [S2, S3] interaction is estimated to be λS2,S3 = 0.56
(z = 2.986; p < 0.01). We thus conclude that the hypothesis of full mediation
is confirmed. Severe partner violence predicts itself from one observation
point to the next. Only knowledge from the period before an interview
is needed for prediction of the current observation period. Model fit is so
good that significant improvement is almost impossible.

In the second step (of two) of this analysis, we ask which configurations
carry the relationships between S1 and S2, and between S2 and S3. This
question is answered by using CFA. The base model for this CFA includes

1. All main effects;

2. The interaction between S1 and S3; and

3. The three-way interaction among S1, S2, and S3.

If this model is rejected, only the interactions between time-adjacent
responses, that is, the interactions [S1, S2] and [S2, S3], can cause types
and antitypes. The base model is thus

log m̂ = λ + λS1
i + λ

S2
j + λ

S3
k
+ λS1,S3

ik
+ λS1,S2,S3

i jk
.

Note that this model is nonhierarchical because the two-way interactions
[S1, S2] and [S2, S3] are set to zero. The design matrix for this model appears
in Table 6.11.
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TABLE 6.11. Design Matrix for CFA of Full Mediation Hypothesis after Logit Model Fit

Main Effects Interactions
S1 S2 S3 S1 × S3 S1 × S2 × S3

1 1 1 1 1
1 1 −1 −1 −1
1 −1 1 1 −1
1 −1 −1 −1 1
−1 1 1 −1 −1
−1 1 −1 1 1
−1 −1 1 −1 1
−1 −1 −1 1 −1

TABLE 6.12. CFA of Full Mediation Hypothesis Concerning Severe Violence, Observed
at Three Occasions (S1, S2, and S3); Three-Way Interaction Taken into Account

Configuration
S1 S2 S3

m m̂ p Type/Antitype

111 157 154.3235 .36593879
112 2 1.9412 .57909197
121 8 10.6765 .25502512
122 1 1.0588 .71407553
211 20 20.0588 .55366868
212 2 4.6765 .15153541
221 11 10.9412 .53619432
222 3 .3235 .00438656 Type

The results of the CFA of the full mediation hypothesis appears in Table
6.12. This base model represents the data poorly (LR − X2 = 10.75; d f = 2;
p < 0.01). We, therefore, reject it and anticipate that types and antitypes
will emerge. We see one type.

Substantively, the CFA results in Table 6.12 suggest that the hypothesis
of full mediation is carried by those three women who are victims of severe
partner violence during the entire observation period (Configuration 2 2 2).
None of the other configurations contradicts the base model, according to
which time-adjacent pairs of responses are independent of each other. The
resulting process can thus be depicted as in Figure 6.7.

The results shown in Table 6.12 illustrate two characteristics of CFA
results (cf. the discussion of CFA results in Section 1.3). First, only one
configuration (cell) emerged as “outlandish”. This is as rare as the result
that all cells constitute types and antitypes. However, it shows that it is
possible to have just one extreme cell in a table. In the present example,
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S1=2 S1=2 S3=2

FIGURE 6.7. Full mediation type of severe partner violence.

TABLE 6.13. First Order CFA of Severe Violence, Observed at Three Occasions (S1, S2,
and S3); Three-Way Interaction Taken into Account

Configuration
S1 S2 S3

m m̂ p Type/Antitype

111 157 154.2109 .35907685
112 2 2.7647 .47666270
121 8 9.4440 .39447973
122 1 1.5804 .53054999
211 20 20.5804 .50496449
212 2 3.4440 .32899789
221 11 11.7647 .48611043
222 3 .2109 .00131946 Type

this cell is extreme because its estimated expected cell frequency is so small.
Therefore, as was emphasized previously, this type must be interpreted
with caution.

Second, it is not the case that the largest cells always constitute types
and the smallest always constitute antitypes. This pattern would be a
characteristic of zero order CFA (von Eye, 2002a). In all other models of
CFA, a rare result such as the one in Table 6.12, in which one of the smallest
cells constitutes a type, is conceivable and, evidently, can occur.

Analysis 2: Full Mediation CFA:

In this section, we illustrate the analysis of a cross-classification under
a full mediation hypothesis. We use the same data as in the last section,
in which we performed a logistic regression plus CFA, also under a full
mediation hypothesis. Here, we use the CFA-based method of analysis.
To come to a decision about the nature of mediation, we take the steps
that were described earlier in this section. Specifically, we estimate four
CFA base models, following the four steps shown in Table 6.6. Because
the three-way interaction is not necessarily part of the hypothesis of full
mediation, we include the three-way interaction [S1, S2, S3] in each of the
base models.

1. CFA Base Model 1: First Order CFA, including [S1, S2, S3]: The base model
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for first order CFA of the severe partner violence data is

log m̂ = λ + λS1
i + λ

S2
j + λ

S3
k
+ λS1,S2,S3

i jk
.

If types and antitypes emerge from this model, full mediation may exist. If
there are no types or antitypes, the analysis can stop here. As in Analysis 1,
we use the binomial test and protect α by using the Holland-Copenhaver
procedure. The first order CFA base model does not describe the data well
(LR − X2 = 11.89; d f = 3; p = 0.008). It is, thus, rejected, and we anticipate
types or antitypes to emerge. The CFA results from this base model are
summarized in Table 6.13. The results in Table 6.13 are very similar to those
in Table 6.12. With only one exception, all expected cell frequencies are close
to the corresponding observed frequencies, thus suggesting that, in large
parts of the table, the three severe violence responses are independent of
one another. The only exception is, as in the prior analysis, Cell 2 2 2.
This cell constitutes a type. From this result alone, we conclude that, if the
hypothesis of full mediation is supported at all, it is represented by this
configuration. This result would confirm the one obtained from logistic
regression plus CFA. Still, to make sure the hypothesis of full mediation
can be retained, we need to perform the remaining three steps of analysis.

2. CFA Base Model 2: Predicting S3 from S1 and S2: The base model for this
step is

log m̂ = λ + λS1
i + λ

S2
j + λ

S3
k
+ λS1,S2

i j
+ λS1,S2,S3

i jk
.

This model again fails to describe the data well (LR − X2 = 9.29; d f = 2;
p = 0.010). The only type that results from this model is constituted by
Configuration 2 2 2. We thus know that the interaction [S1, S2] makes only
a small, nonsignificant contribution to explaining the data (∆LR−X2 = 2.6;
∆d f = 1; p = 0.107). In addition, we know that there must be a relationship
between S1 and S3 and/or between S2 and S3. The following steps and
comparisons will provide more detail.

3. CFA Base Model 3: Predicting S3 from S2: The base model for this step is

log m̂ = λ + λS1
i + λ

S2
j + λ

S3
k
+ λS1,S2

i j
+ λS1,S3

ik
+ λS1,S2,S3

i jk
.

This model describes the data very well (LR−X2 = 3.36; d f = 1; p = 0.067).
No type or antitype emerges. This model was estimated to determine
whether there is a relationship between the mediator and the criterion that
results in types or antitypes. Clearly, this is not the case, and we can stop
here. The fourth CFA base model that tests the link between S1 and S3
would also have failed to result in types or antitypes. This result would
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have indicated that there is no predictor-criterion relationship at the level
of types and antitypes and, thus, would have supported the hypothesis
of full mediation. The result from Step 3, however, brings the hypothesis
of mediation down, and there is no need to examine the fourth CFA base
model.

Based on the results in the first and the second sets of analyses, we conclude
that logistic regression plus CFA and CFA-based analysis of the same data
can yield different results. The reason for this difference is that the results of
logistic regression are based on different models than CFA-based analysis
would include. One asks which of the two methods is the one to prefer.
The answer to this question depends on the research strategy under which
data are analyzed.

If researchers ask whether types and antitypes exist that represent
relationships that were found in the context of variable-oriented research,
logistic regression plus CFA is the right approach to mediation analysis.
If, however, researchers proceed in the context of person-oriented research
(Bergman & Magnusson, 1997; von Eye & Bergman, 2003), and ask whether
patterns of types and antitypes exist that support mediation hypotheses
solely at the level of configurations, CFA-based mediation analysis is the
method of choice. The present results illustrate that selecting one of these
two approaches to mediation analysis is not trivial, and can lead to different
conclusions.

6.3 Configural Chain Models

There exist many more prediction models that are conceptually related to
mediation analysis. One prominent example is the model of a prediction
chain. To define a chain, consider the three variables A, B, and C. According
to the definition given by von Eye and Brandtstädter (1998), these three
variables constitute a chain if A predicts (or causes) B, and B predicts (or
causes) C. Direct-path models assume that A and C are directly connected
with each other. In contrast, indirect-path models assume that the effect
of A on C goes through B. It is also conceivable that both the direct and
the indirect connections between A and C exist. Figure 6.8 displays the
indirect-path-only chain model for the three variables A, B, and C.

Naturally, longer chains are conceivable. It is doubtful whether the link
between two variables can meaningfully be labeled a chain. Clearly, the
concepts of Mediation and Chain are conceptually related to each other.
The indirect-path-only chain corresponds to a fully mediated process. The
chain that also contains the direct connection between A and C corresponds
to a partially mediated process. When more than three variables are studied
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A B C

FIGURE 6.8. Illustration of a chain with three variables.

as a chain, one can describe this relationship as a fully mediated process
with multiple mediators. Mediation processes with multiple mediation
steps are also conceivable. To analyze chain hypotheses, the same methods
can be used as described in Sections 6.1 and 6.2, on mediation models.
Therefore, chains will not be elaborated in detail in this context.

6.4 Chapter Summary

Mediation processes link predictor, mediator, and response variables such
that the path from the predictor reaches the criterion either only through the
mediator indirectly (full mediation) or through the mediator both indirectly
and directly. To evaluate mediator models, most researchers use regression
models or structural models. These models establish the existence of the
proposed paths in a sequence of simple and partial regression models.
When CFA is used to analyze mediation hypotheses, mediation is assumed
to manifest in patterns of configurations instead of variables.

For CFA of mediation hypotheses, two approaches are proposed.
The first involves establishing type of mediation using logit models.
If mediation exists, CFA is performed to identify those patterns of
configurations that carry the mediation process. This approach uses
methods from both variable- and person-oriented research.

The second approach uses exclusively CFA methods. A series of CFA
base models is specified with the goal of establishing links between the
predictor, mediator, and response variables, at the level of configurations.
The comparison of the results from these models allows one to make
decisions concerning the type of mediation that may exist for each pattern of
configurations. One possible outcome of the approach that uses only CFA
methods is that, in the same table, patterns of configurations may exist that
support hypotheses of full mediation while other patterns of configurations
may support hypotheses of partial mediation, and the remaining patterns
of configurations support the null hypotheses.



7
Auto-Association CFA

In contrast to mediation CFA, which can be performed using
cross-sectional but also longitudinal data, Auto-Association CFA
(A-CFA) is a method for the analysis of repeated observations. A-CFA
allows one to analyze two or more repeatedly observed variables,
that is, two or more series of scores. The question A-CFA allows
one to answer concerns the relationships among these series that
go above and beyond autocorrelations. To that effect, A-CFA uses
a base model that takes autocorrelations of all possible orders into
account. As a result, A-CFA will identify types and antitypes that are
indicative of relationships among the observed series of scores, at the
level of individual configurations. The role that covariates play in the
identification of types and antitypes in A-CFA is discussed. Alternative
approaches to specifying base models when covariates are part of the
analysis are proposed and applied in data examples.

In Section 7.1, we present auto-association CFA (A-CFA; von Eye, Mun,
& Bogat, 2008, 2009) without covariates, and, in Section 7.2, A-CFA with
covariates.

7.1 A-CFA without Covariates

A standard result of repeated measures analysis is that associations among
repeated, time-adjacent measures, that is, auto-associations, are strong. In
many studies, these associations are stronger than those between different
variables. However, researchers are often interested in the relationships
among two or more behavior trajectories. A-CFA allows one to examine
the relationships among two or more behavior trajectories. Specifically,
A-CFA

• identifies types and antitypes that exist beyond auto-associations;
these types and antitypes reflect relationships among different series

132
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of measures instead of relationships within individual series of
measures;

• operates at the manifest variable level; no assumptions concerning
latent variables are needed; and

• creates results in the form of local associations, that is, types and
antitypes, instead of associations at the variable level.

Reflecting these characteristics, the A-CFA base model is specified as follows:

1. it includes the main effects of all variables;

2. it includes interactions of any order within each series of measures;
the A-CFA base model is thus saturated within each series of
measures; and

3. it proposes independence between the series of measures.

A-CFA types and antitypes, therefore, can result only if the series of
measures are related to each other. In the simplest case, there is only one
series of measures and one additional variable that is observed only once.
In this case, temporal patterns of the series would be related to categories
of the variable that was observed once. Let this variable be X, and let the
second variable, observed twice, be Y1 and Y2. The A-CFA base model for
these three scores is

log m̂ = λ + λX + λY1 + λY2 + λY1,Y2.

There are only three terms that can be included before this model becomes
completely saturated. These are the terms [X,Y1], [X,Y2], and [X,Y1,Y2].
Each of these terms links the once-observed variable, X, with the repeatedly
observed variable, Y. The auto-association of Y is part of the base model.
Therefore, types and antitypes will reflect associations between X and Y
above and beyond the auto-association in the series of Y measures.

At this point, the base models of A-CFA and CFA of end points (Section
5.2) or trajectories (Section 5.3) are indistinguishable. Now, however,
suppose X was observed twice also. We obtain the scores X1 and X2.
Then the A-CFA base model becomes

log m̂ = λ + λX1 + λX2 + λX1,X2 + λY1 + λY2 + λY1,Y2.

This model is saturated in both series of measures. Only those
interactions that relate X-measures to Y-measures are not part of the base
model. These are the interactions [X1,Y1], [X1,Y2], [X2,Y1], [X2,Y2],
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[X1,X2,Y1], [X1,X2,Y2], [X1,Y1,Y2], [X2,Y1,Y2], and [X1,X2,Y1,Y2]. If
any of these interactions exists, they can manifest in types and antitypes.

Readers will notice that this model has the same form as some of the
P-CFA models in Chapter 5. The difference is that P-CFA can also be used
when (1) all measures stem from different variables, and (2) the data are
cross-sectional. The interactions among predictors and criteria, therefore,
will not reflect auto-associations. Extensions of the A-CFA model can
include

• longer series of measures,

• more than two series of measures, and

• continuous or categorical covariates.

The last of these extensions is discussed later, in Section 7.2. Before
introducing the extension, we present a data example.

Data Example 1: The following example uses the same data as Data
Example 3 in Chapter 1. In a study on the development of aggression in
adolescence (Finkelstein et al., 1994), 114 adolescents (67 females) indicated
at the ages of 11 and 15, whether they were, subjectively, above or below
average in aggressive impulses (A83 and A87) and in physical aggression
against peers (P83 and P87). The variables A and P were scored as 1 =
below their respective mean and 2 = above mean. Dichotomization was
performed at the grand mean of each variable, so that development toward
higher or lower than average could be reflected in the dichotomous scores.

In a first step, the cross-classification A83 × A87 × P83 × P87 was
analyzed under the main effect base model of standard, first order CFA,
that is, the log-frequency model

log m̂ = λ + λA83 + λA87 + λP83 + λP87.

Any association in this group of four variables can result in types and
antitypes. This includes the auto-associations. Therefore, in a second step,
we reanalyze these data, using A-CFA. The base model for this analysis is

log m̂ = λ + λA83 + λA87 + λA83,A87 + λP83 + λP87 + λP83,P87,

where, as before, single superscripts indicate main effects and double
superscripts indicate two-way interactions. Each of the interactions that
was not included in this model relates variables from the two series to
each other. Specifically, these are the interactions [A83,P83], [A83,P87],
[A87,P83], [A87,P87], [A83,A87,P83], [A83,A87,P87], [A83,P83,P87],
[A87,P83,P87], and [A83,A87,P83,P87].
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TABLE 7.1. First Order CFA of the Developmental Trajectories of Physical Aggression
against Peers (P83 and P87) and Aggressive Impulses (A83 and A87)

Configuration
A83 A87 P83 P87

m m̂ z p Type/Antitype

1111 24 10.288 4.2748 .000010 Type
1112 1 3.843 −1.4501 .073513
1121 9 11.037 −.6130 .269933
1122 4 4.122 −.0601 .476028
1211 5 8.329 −1.1534 .124375
1212 4 3.111 .5042 .307050
1221 3 8.934 −1.9854 .023552
1222 3 3.337 −.1844 .426835
2111 10 11.841 −.5351 .296302
2112 1 4.423 −1.6275 .051816
2121 12 12.702 −.1971 .421882
2122 2 4.744 −1.2599 .103850
2211 9 9.586 −.1892 .424971
2212 1 3.580 −1.3636 .086339
2221 11 10.283 .2236 .411524
2222 15 3.841 5.6943 .000000 Type

For both analyses, we use the z-test and the Holland-Copenhaver
procedure of α-protection. Table 7.1 shows the results from first order
CFA, and Table 7.2 shows the results from A-CFA.

The LR−X2 for the first order CFA base model is 51.27 (d f = 11; p < 0.01),
indicating significant model-data discrepancies. This applies accordingly
to the LR−X2 for the A-CFA base model (LR−X2 = 28.46; d f = 9; p = 0.001).
This base model is significantly better than the base model of first order
CFA (∆LR − X2 = 22.81; ∆d f = 2; p < 0.01). However, it still does not
describe the data well. Therefore, we expect types and antitypes to emerge
from both runs.

Table 7.1 shows that consistently below average aggressive impulses go
hand-in-hand with consistently below average physical aggression against
peers (Configuration 1 1 1 1). Accordingly, consistently above average
aggressive impulses go hand-in-hand with consistently above average
physical aggression against peers (Configuration 2 2 2 2). None of the
patterns that show change in one or both of the repeatedly observed
variables is particularly unlikely.

As was indicated above, auto-associations are often the strongest effects
in repeated-measures designs. Therefore, we now ask whether these
two types are the results of auto-associations or indicate cross-variable
relationships. If auto-associations are the sole reasons for the emergence of
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TABLE 7.2. A-CFA of the Developmental Trajectories of Physical Aggression against
Peers (P83 and P87) and Aggressive Impulses (A83 and A87)

Configuration
A83 A87 P83 P87

m m̂ z p Type/Antitype

1111 24 16.000 2.000 .022750
1112 1 2.333 −.873 .191332
1121 9 11.667 −.781 .217401
1122 4 8.000 −1.414 .078681
1211 5 6.316 −.542 .293909
1212 4 0.921 3.208 .000668 Type
1221 3 4.605 −.748 .227230
1222 3 3.158 −.089 .464541
2111 10 10.526 −.162 .435653
2112 1 1.535 −.432 .332871
2121 12 7.675 1.561 .059262
2122 2 5.263 −1.582 .056825
2211 9 15.158 −.814 .207822
2212 1 2.211 −.016 .493617
2221 11 11.053 −.089 .464541
2222 15 7.579 2.696 .003509

the two types, they will disappear if the corresponding interaction terms
are included in the base model. Table 7.2 shows the results of A-CFA.

Table 7.2 shows that none of the types that emerged from first order
CFA (Table 7.1) also emerged from A-CFA. We thus conclude that one of
the reasons for the existence of these types is that the auto-associations
are strong. One new type surfaced from A-CFA. This type, however,
suggesting that a shift from below to above average aggressive impulses
goes hand-in-hand with a synchronous and parallel shift in physical
aggression against peers, can be interpreted only with caution, for two
reasons. First, the expected frequency is rather small. Therefore, the
approximation of the normal distribution by the test statistic may not be
optimal. Second, the observed frequency is rather small also. Therefore,
a replication of this study with a larger sample may be needed to confirm
this result.

We now ask which log-linear model can be used to explain the joint
distribution of the four variables used in Tables 7.1 and 7.2. One model
that describes the data well includes, in addition to all main effects,
the auto-associations that are carried by the interactions [A83,A87] and
[P83,P87], and the synchronous interactions [A83,P83] and [A87,P87]
(LR − X2 = 5.05; d f = 7; p = 0.65). Table 7.3 displays the corresponding
parameters and test statistics, estimated by using `EM.
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TABLE 7.3. Parameters and Test Statistics for the Data in Tables 7.1 and 7.2, Using the
A-CFA Base Model plus the Two Synchronous Interactions [A83,P83] and [A87,P87]

Effect Parameter se z

P83 −0.197 0.124 −1.587
P87 0.606 0.131 4.636
A83 −0.106 0.104 −1.027
A87 −0.052 0.123 −0.421
P87,A87 0.407 0.119 3.435
P83,A83 0.278 0.099 2.802
A83,A87 0.296 0.101 2.930
P83,P87 0.357 0.122 2.933
Intercept 1.582

Table 7.3 shows that each of the interaction parameters is significant. We
conclude that aggressive impulses and physical aggression against peers
predict each other when they are observed in the same year. Across a span
of 4 years, however, only the auto-associations remain. CFA shows that
these effects are carried by a very small number of configurations.

7.2 A-CFA with Covariates

A covariate is defined as a variable that is not under control of the
experimenter, but may be a predictor of the outcome variable(s). In
person-oriented research, typical covariates are stratification variables.
For example, the effects of alcohol may be gender-specific, the timing
of pubertal development is gender-specific, the incidence rates of such
diseases as cancer or Parkinson’s disease are age-specific, intimate partner
violence varies across income brackets, car insurance rates vary across age
brackets and location of residence, or the selection of movies to watch
depends on who will be around to watch the movie with.

In the present context, we focus on categorical covariates. In addition,
we cross-tabulate the four covariates with all other variables in the table.
However, continuous covariates or categorical covariates that are not
crossed with all other variables can be taken into account also (Glück &
von Eye, 2000; von Eye, 2002a; von Eye & Mun, 2005, see also Chapter
4). Two extended A-CFA submodels will be considered. In the first, types
and antitypes reflect any of the possible predictor-criterion relationships,
and the covariate plays the role of just another variable used to span the
table. The second extended A-CFA submodel will be specified such that
types and antitypes reflect predictor-criterion relationships that are specific
to the categories of the covariate. Examples of such categories are the
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strata of a stratification variable. Each of the models discussed here can be
specified in a parallel way for standard P-CFA (von Eye, Mun, & Bogat,
2009), mediation CFA, moderation CFA, and most of the other CFA base
models discussed in this text.

7.2.1 A-CFA with Covariates I: Types and Antitypes Reflect Any of
the Possible Relationships Among Two or More Series of
Measures

For the following introduction of A-CFA with covariates, consider the four
variables X1, X2, Y1, and Y2. Let X1 and X2 be the measures of a first
time series and Y1 and Y2 the measures of a second time series. Let G be
the categorical covariate. New to the present case is the addition of the
covariate to the base model. The base model for A-CFA can be set up such
that types and antitypes necessarily reflect relationships between the two
series of measures. Specifically, this base model includes

1. the main effect of all variables, including the covariate;

2. all possible interactions within each of the series of measures;

3. all two-way interactions of the covariate with each of the measures of
the first series;

4. all two-way interactions of the covariate with each of the measures of
the second series;

5. all three-way interactions that include two measures from just one of
the series and the covariate; and

6. all higher order interactions that include solely measures from one
series of scores and the covariate (if the time series contains more than
two observation points).

This model specification has the effect that relationships between the
two series can be specific to categories of the covariate. The reason for
this is that the relationships among the measures of just one series and the
covariate are part of the base model and, therefore, can be no causes for
the emergence of types and antitypes. Types and antitypes that possibly
emerge from this A-CFA base model reflect relationships among the two
series of any kind. This applies accordingly when more than two series
of measures span a table. The A-CFA base model that results for the four
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variables and the sole covariate in the current example is

log m̂ = λ + λG
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If any of the associations that were omitted in this base model exist, types
and antitypes can emerge. Specifically, the following interactions can result
in types and antitypes:

• Two-way interactions: six of the possible
(5
2

)

= 10 two-way interactions are
already included in the base model. Each of the remaining four interactions
reflects relationships between the two series that were not taken into
account in the base model. Each of these interactions reflects relationships
between the two series of measures that can result in types and antitypes.
These interactions are [X1,Y1], [X1,Y2], [X2,Y1], and [X2,Y2].

• Three-way interactions: two of the possible
(5
3

)

= 10 three-way interactions
are already included in the base model. Each of the omitted interactions
also relates the series to each other. These interactions are [G,X1,Y1],
[G,X1,Y2], [G,X2,Y1], [G,X2,Y2], [X1,X2,Y1], [X1,X2,Y2], [X1,Y1,Y2],
and [X2,Y1,Y2]. The last four of these interactions do not include the
covariate.

• Four-way interactions: none of the possible
(5
4

)

= 5 four-way interactions
is already included in the base model. Each of these omitted interactions
also relates the series to each other. These interactions are [G,X1,X2,Y1],
[G,X1,X2,Y2], [G,X1,Y1,Y2], [G,X2,Y1,Y2], and [X1,X2,Y1,Y2]. The last
of these interactions does not include the covariate.

• Five-way interaction: the sole five-way interaction is not included in the
base model. Therefore, it can be the cause for types and antitypes to emerge.
This is the interaction [G,X1,X2,Y1,Y2].

A data example of this model of A-CFA — we call it A-CFA Model 1 —
will be presented later, in tandem with A-CFA Model 2, which will be
introduced in the next section.

7.2.2 A-CFA with Covariates II: Types and Antitypes Reflect Only
Relationships between the Series of Measures and the
Covariate

A-CFA Model 1 was specified such that types and antitypes reflect any
relationships between the two (or more) series of measures. The covariate
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was included in a subset of these interactions. However, researchers
may wish to focus on relationships between the series of measures that
are specific to categories of the covariate(s). To examine this kind of
covariate-specific associations, Model 2 also includes those interactions
that relate the two series of measures to each other without inclusion of
the covariate. For the same variables as used for A-CFA Model 1, the base
model for A-CFA Model 2 (von Eye, Mun, & Bogat, 2009) is

log m̂ = λ + λG
i + λ
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.

The first three lines of this equation reproduce the base model of A-CFA
Model 1. The next three lines display all two-way, three-way, and four-way
interactions that need to be included when the focus is on relationships
between the two series of measures that are specific to categories of the
covariate.

The interactions that are not part of this base model include (1) the
covariate, (2) at least one measure from the first (time) series, and (3) at
least one measure from the second (time) series of scores. Specifically, the
following interactions can result in types and antitypes:

• Three-way interactions: the remaining four of the possible
(5
3

)

=

10 three-way interactions are [G,X1,Y1], [G,X1,Y2], [G,X2,Y1], and
[G,X2,Y2].

• Four-way interactions: the remaining four of the possible
(5
4

)

= 5
four-way interactions are [G,X1,X2,Y1], [G,X1,X2,Y2], [G,X1,Y1,Y2],
and [G,X2,Y1,Y2].

• Five-way interaction: the sole five-way interaction is not included in the
base model. It can be the cause for types and antitypes to emerge. This is
the interaction [G,X1,X2,Y1,Y2].

The types and antitypes that result from A-CFA Model 2 have a different
meaning than some of those that result from A-CFA Model 1. Types
and antitypes from Model 1 reflect any interaction between the two
series of measures. Only a selection of these interactions includes the
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covariate (see Section 7.2.1). In contrast, types and antitypes from Model 2
reflect interactions between the two series of measures that are specific to
particular categories of the covariate.

Data Example 2: For the following example, we use data from the study on
intimate partner violence again that was used already in Chapter 5 (Bogat et
al., 2006). We use data from the first and the third years of observation. For
these observations, a total of 193 respondents was available. The following
question is asked. Are the relationships between the series of violence and
psychopathological symptoms that can be found for women with various
patterns of intimate partner violence specific to child gender? We use the
following five variables:

1. gender (G), coded as 1 = boy and 2 = girl;

2. dichotomized violence at Time 1 (V1), coded as 1 = respondent did
experience violence and 2 = respondent did not experience violence;

3. dichotomized violence at Time 3 (V3), coded in the same way;

4. dichotomized symptom measure at Time 1 (DX1; coded as 1 = above
clinical cutoff and 2 = below clinical cutoff; and

5. dichotomized symptom measure at Time 3 (DX3), coded in the same
way as DX1.

The dichotomization of V and DX was performed at their respective
grand means so that development can be described both ipsatively and
comparatively. The cross-tabulation of these five variables will be analyzed
by using three CFA base models. The first is the model of standard first
order CFA that includes the main effects of all variables. This is the model

log m̂ = λ + λG + λV1 + λV3 + λDX1 + λDX3.

If types and antitypes emerge from this model, we will know that local
relationships among these five variables exist. What we will not know
is whether these types and antitypes reflect strong auto-associations or
cross-variable relationships, and whether the types and antitypes are
specific to child gender. To be able to make decisions about these two
issues, we perform an A-CFA Model 1 with gender as covariate. The base
model for this analysis is

log m̂ = λ + λG
i + λ

V1
j + λ

V3
k
+ λDX1

l + λDX3
m

+ λV1,V3
jk

+ λDX1,DX3
lm

+ λG,V1
i j
+ λG,V2

ik
+ λG,DX1

il
+ λG,DX3

im

+ λG,V1,V3
i jk

+ λG,DX1,DX3
ilm

.
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In the third analysis, we focus on types and antitypes that solely reflect
interactions of the two series of measures that are child gender-specific.
The base model for this analysis is

log m̂ = λ + λG
i + λ

V1
j + λ

V3
k
+ λDX1

l + λDX3
m

+ λV1,V3
jk

+ λDX1,DX3
lm

+ λG,V1
i j
+ λG,V3

ik
+ λG,DX1

il
+ λG,DX3

im

+ λG,V1,V3
i jk

+ λG,DX1,DX3
ilm

+ λV1,DX1
jl

+ λV1,DX3
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+ λV3,DX1
kl

+ λV3,DX3
km

+ λV1,V3,DX1
jkl

+ λV1,V3,DX3
jkm

+ λV1,DX1,DX3
jlm

+ λV3,DX1,DX3
klm

+ λV1,V3,DX1,DX3
jklm

.

The complete design matrix for this A-CFA base model is given in Section
13.1.2, on sample applications. The LR − X2 for the base model of first
order CFA is 126.28 (d f = 26; p < 0.01). The LR − X2 for the base model of
A-CFA Model 1 is 50.17 (d f = 18; p < 0.01). The difference between these
two nested models is significant (∆LR − X2 = 76.11; ∆d f = 8; p < 0.01).
We thus can conclude that the auto-associations, the associations of the
individual variables with gender, and the associations of the two series
with gender make a substantial contribution to the explanation of this
table. Specifically, two of the parameters of this model are significant.
These are the parameters for the auto-associations (λV1,V3 = 0.56; se = 0.10;
p < 0.01; and λDX1,DX3 = 0.55; se = 0.13; p = 0.01). Because of the significant
reduction of the overall goodness-of-fit X2, we anticipate that some (or all)
of the types and antitypes that emerged from first order CFA may have
disappeared.

The log-linear base model for A-CFA Model 2 is improved even more.
It describes the data well. We calculate LR − X2 = 13.46 (d f = 9; p = 0.14).
This model is significantly better than the base model of first order CFA
(∆LR − X2 = 112.82; ∆d f = 16; p < 0.01) and also than A-CFA Model 1
(∆LR−X2 = 36.71; ∆d f = 9; p < 0.01). We thus anticipate that no types and
antitypes emerge. The results of the three configural analyses are displayed
in Table 7.4. For each CFA, we used the z-test and protected the significance
threshold by using the Holland-Copenhaver procedure.

First order CFA revealed four types and no antitype. The first type,
constituted by Configuration 1 1 1 1 1, indicates that mothers of boys
who experienced intimate partner violence at both Time 1 and Time 3 are
more likely than expected to display above-cutoff symptoms, also at both
observation points. The third type, constituted by Configuration 2 1 1 1
1, indicates that the same holds true for mothers of girls. We, therefore,
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TABLE 7.4. Standard CFA and Two Extended A-CFA Analyses of Victim Status and
Symptom Status with Child Gender as Covariate (* Indicates Estimated Zeros, Not
Structural Zeros)

First Order CFA (Independence Model) A-CFA Model 1
(Interactions with
Gender)

A-CFA Model 2
(Child
Gender-Specific
Interactions)

Configuration
G V1 V3 DX1 DX3

m m̂ z m̂ z m̂ z

11111 28 10.567 5.3631a 17.515 2.505 25.989 0.394
11112 0 2.260 −1.5032 0.687 −0.829 0.399 −0.632
11121 5 8.316 −1.1500 10.646 −1.731 5.458 −0.196
11122 1 1.778 −.5837 5.152 −1.829 2.153 −0.786
11211 3 7.642 −1.6792 2.576 0.264 3.667 −0.348
11212 1 1.634 −.4961 0.101 2.829 0.351 1.096
11221 1 6.014 −2.0447 1.566 −0.452 0.495 0.718
11222 0 1.286 −1.1341 0.758 −0.870 0.487 −0.698
12111 10 15.919 −1.4834 15.455 −1.387 10.112 −0.035
12112 0 3.404 −1.8450 0.606 −0.778 0.000* 0.000
12121 11 12.528 −.4318 9.394 0.524 13.303 −0.631
12122 9 2.679 3.8618a 4.545 2.089 6.584 0.941
12211 10 11.513 −.4458 15.455 −1.387 11.231 −0.367
12212 1 2.462 −.9317 0.606 0.506 1.250 −0.224
12221 14 9.061 1.6409 9.394 1.503 11.744 0.658
12222 5 1.938 2.2001 4.545 0.213 5.775 −0.323
21111 23 10.033 4.0938a 17.362 1.353 25.011 −0.402
21112 1 2.145 −.7820 1.362 −0.310 0.601 0.514
21121 5 7.896 −1.0307 8.851 −1.294 4.542 0.215
21122 3 1.689 1.0093 4.426 −0.678 1.847 0.849
21211 5 7.256 −.8375 3.255 0.967 4.333 0.321
21212 0 1.552 −1.2456 0.255 −0.505 0.649 −0.806
21221 0 5.711 −2.3897 1.660 −1.288 0.505 −0.711
21222 1 1.221 −.2001 0.830 0.187 0.513 0.680
22111 6 15.115 −2.3444 8.681 −0.910 5.888 0.046
22112 0 3.232 −1.7978 0.681 −0.825 0.000* 0.000
22121 9 11.896 −.8396 4.426 2.174 6.697 0.890
22122 1 2.544 −.9679 2.213 −0.815 3.416 −1.307
22211 17 10.931 1.8356 21.702 −1.009 15.769 0.310
22212 3 2.337 .4334 1.702 0.995 2.750 0.157
22221 12 8.603 1.1581 11.064 0.281 14.256 −0.598
22222 8 1.840 4.5419a 5.532 1.049 7.225 0.288

aTypes.
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can aggregate these two types to form the composite type . 1 1 1 1, where
the period indicates that the variable gender does not play a role in the
constitution of this type.

In contrast to the first and third types, the second type is gender-specific.
It is constituted by Configuration 1 2 1 2 2 and suggests that mothers of boys
who experienced intimate partner violence only at Time 3 — that is, after
the child was born — are more likely than expected to display below-cutoff
symptoms, also at both observation points. This type does not come with
a companion type in the sample of mothers with girls (see Cell 2 2 1 2 2).

The fourth type is also gender-specific. Constituted by Configuration 2
2 2 2 2, it indicates that mothers of girls who did not experience intimate
partner violence at either point in time are more likely than expected
to remain below the clinical cutoff for psychopathological symptoms, at
both points in time. The corresponding configuration for mothers of boys
(Configuration 1 2 2 2 2) does not constitute a type.

As expected, based on the significant difference between the two base
models, A-CFA Model 1 yields a type pattern that is different from the
one produced by first order CFA. Not a single type was reproduced.
Without α protection, the first and the third types would have surfaced
again. However, because of the possible dependence of tests and because
of the risk of capitalizing on chance, we refrain from interpreting these
configurations as constituting A-CFA Model 1 types. A-CFA Model 2 also
yields no types or antitypes, because the model describes the data well.

The present example illustrates which effects are the causes for the
types in the first two panels of Table 7.4. Including these effects makes the
types disappear. It also shows clearly that different base models can yield
different patterns of types and antitypes (Mellenbergh, 1996). Therefore,
we emphasize again that the selection of the appropriate base model is of
utmost importance for the interpretability of CFA results.

7.3 Chapter Summary

In repeated observation studies, auto-associations (the categorical
data equivalent to autocorrelations) are usually the strongest effects.
Auto-associations link observations from different points in time.
Therefore, researchers interested in types and antitypes that reflect
cross-variable associations need to look beyond auto-associations. The base
model of Auto-association CFA (A-CFA) takes all possible auto-associations
into account for each of the repeatedly observed variables. Types and
antitypes, therefore, can result only if cross-variable associations exist.
These associations can reflect links between variables that are specific to
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one or more points in time. However, they can also reflect associations
across time and associations between entire series of measures.

Two models are described. The first is A-CFA without covariates, the
second does allow one to include covariates. For the A-CFA model with
covariates, two submodels are introduced. In Submodel A-CFA 1, types
and antitypes can result from any of the interactions beyond the ones
considered in the base model. In Submodel A-CFA 2, types and antitypes
emerge only if they are the results of interactions that involve the covariate.



8
Configural Moderator Models

Variables that change the parameter estimates in models when they are
taken into account are called moderators. In CFA, however, we are not
interested in model parameters because we hope to reject the base
model. Instead, we are interested in patterns of types and antitypes.
Therefore, in CFA, moderators are those variables that change the
pattern of resulting types and antitypes when they are made part of a
model. Chapter 8 introduces configural moderator analysis, also new to
the arsenal of CFA methods, and illustrates it by using data examples.
Four variants of configural moderator analysis are introduced. The first
compares patterns of types and antitypes from models that do versus do
not include the moderator variable. The second is an extension of A-CFA
(Chapter 7). It considers moderator effects on the relationships between
series of scores. The third is moderated mediation, an extension of
mediator CFA (Chapter 6). This variant of moderator CFA allows one
to answer questions concerning moderator effects on mediation types
and antitypes. The fourth approach concerns moderated mediation.
The chapter concludes with a section on the graphical representation
of results of moderator CFA.

A moderator effect exists if the parameters that describe the relationship
between a predictor variable and a criterion variable depend on the values
(or categories) of a moderator variable. In CFA, a moderator effect exists
if type and antitype patterns vary across the categories of a variable not
included in a configural analysis. Taking into account Prediction CFA
(Chapter 5), Mediator CFA (Chapter 6), and, now, Moderator CFA, we
thus distinguish among regression-type relations (Figure 8.1), mediated
relations (Figure 8.2), and moderated relations (Figure 8.3).

Moderated relations are of particular interest in person-oriented
research. As Beaubien (2005) notes, moderation processes address “the
issues of ‘when?’, ‘for whom?’, or ‘under what conditions?’.” One could
enrich this list by adding all kinds of conditionals that can be addressed by
modeling moderated relations.

146
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Predictor Criterion

FIGURE 8.1. Regression-type relation.

Predictor Mediator Criterion

FIGURE 8.2. Fully mediated relation.

Unlike mediation processes, moderated processes can, in continuous
variable analysis, be expressed by using single, nonadditive linear
functions. In moderated processes, the dependent variable, Y, is a function
of both the independent variable, X, and the moderator variable, Z (see
Baron & Kenny, 1986; Beaubien, 2005; James & Brett, 1984), or, algebraically,
Y = f (X,Z). In standard regression contexts, that is, when at least X and Y
are continuous, moderated processes are typically analyzed by including
interaction terms in regression models. An example of such an equation is

Y = β0 + β1X + β2Z + β3XZ + ε.

This equation shows that standard analysis of moderation takes the main
effects of X and Z into account as well as their interaction.

There are many ways to analyze moderated relations. Often,

Moderator

Predictor Criterion

FIGURE 8.3. Moderated relation.
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descriptions of methods of analysis are grouped, based on the scale level of
the variables X, Y, and Z. If one classifies variables as either categorical or
metrical, the three variables X, Y, and Z can be combined to form eight
patterns of scale levels, from all metrical, to X and Y metrical, and Z
categorical, ..., to all three variables categorical. In the present context,
naturally, we focus on the analysis of moderator processes (1) in the context
of variables that are all categorical, and (2) at the level of types and antitypes.

In the following four sections, we introduce four approaches to
exploring possible moderator effects using CFA. The first involves running
consecutive analyses that do versus do not include possible moderator
variables. The second discusses moderator hypotheses in the context of
Auto-Association CFA, and the third approach involves using CFA models
of group comparison, specifically, n-sample analysis. The fourth approach
concerns moderated mediation.

8.1 Configural Moderator Analysis: Base Models
with and without Moderator

As was exemplified by Beaubien’s (2005) sample questions, moderator
analysis yields conditional statements. For example, a relationship between
variables can be found in one population but not in some other, a treatment
effect varies with the conditions under which it is administered, or certain
actions will be taken only if particular reasons are given.

In CFA application, we do not ask whether relationships among
variables incrementally change over the range of values of possible
moderator variables. Specifically, we ask whether types and antitypes
emerge or disappear for specific categories of moderator variables.
Therefore, a two-step strategy of analysis can be considered.

Step 1: Performing CFA without the moderator: Expressed differently, one
can perform CFA on a table that is collapsed over the categories of a variable
that can, possibly, have the effects of a moderator. Collapsibility is a widely
discussed issue in the realm of categorical variable analysis (e.g., Agresti,
2002; Bishop et al., 1975; Christensen, 1997; Clogg & Shihadeh, 1994).

Based on Bishop et al. (1975, p. 47), we define collapsibility as
follows: The variables that are summed over are said to be collapsible with
respect to particular λ parameters if the parameters in the model before
collapsing are identical to those from the corresponding log-linear model
after collapsing. This definition has a number of implications that are of
interest for configural moderator analysis (and in general):

1. Collapsibility is defined with respect to parameters. Therefore, a table
may be collapsible with respect to some categories of possible moderator
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variables, but not with respect to others. We, therefore, distinguish between
collapsing and condensing. Collapsing means that a table is summed over
all categories of a particular variable. Condensing means that a selection
of categories is combined.

2. If the λ-parameters that are removed by collapsing exist, that is,
are different from zero, other λ-parameters will change in response to
collapsing (or condensing).

3. If a variable is independent of all other variables, at all levels of
association, this variable can be removed by summing over all its categories,
that is, by collapsing, without any change in the remaining λ-parameters.

In log-linear analysis, collapsing is of interest when it comes to reducing the
dimensionality of a table and, thus, the complexity of models. In configural
analysis, collapsing is of interest (1) for the same reason (i.e., reducing the
size of the cross-classification), and (2), in particular, in the context of
considering moderator hypotheses. In the context of moderator analysis,
cross-classifications cannot be collapsed over moderator variables. Stated the
other way around, variables that can be collapsed across cannot be
moderator variables. However, in configural frequency analysis, we do
not ask whether parameters change when tables are collapsed. Instead, we
ask whether patterns of types or antitypes change when possible moderator
variables are included in a base model or removed from it. Note, however,
that changes in parameter values and changes in patterns of types and
antitypes are generally linked.

Step 2: Performing CFA with the moderator included: If the pattern of types
and antitypes changes from Step 1 when the potential moderator variable
is included, this variable can be considered a moderator variable. Resulting
changes in the pattern of types and antitypes are the effects of moderation.
More specifically, if the pattern of types and antitypes found in Step 1
differs across the categories of an additional variable, this variable can be
considered a moderator.

To illustrate these two steps, consider the outcome variable, Y, the
predictor, X, and Variable M, a potential mediator. Standard, first order
CFA uses, in Step 1, the base model

log m̂ = λ + λY + λX.

This model can also be used as a P-CFA base model. In Step 2, this model
becomes

log m̂ = λ + λY + λX + λM
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TABLE 8.1. Longitudinal CFA of Aggressive Impulses

Configuration
AI83 AI85 AI87

m m̂ z p Type/Antitype

111 31 12.589 5.1888 .000000 Type
112 5 10.191 −1.6262 .051957
121 7 16.700 −2.3737 .008806
122 10 13.519 −.9571 .169255
211 8 14.490 −1.7049 .044110
212 5 11.730 −1.9650 .024710
221 17 19.221 −.5066 .306226
222 31 15.560 3.9143 .000045 Type

when first order CFA is performed, and

log m̂ = λ + λY + λX + λM + λYX + λYM + λXM

when P-CFA is performed.

Data Example 1: For the following example, we use the aggression
development data used before, that is, Finkelstein et al. (1994) aggression
data. 114 adolescents (67 girls) indicated their level of aggressive impulses
(AI) in 1983, 1985, and 1987. At these points in time, they were, on average,
11, 13, and 15 years of age. Here, we first ask whether typical and atypical
pathways of aggressive impulses (AI) exist that emerge in the form of
types and antitypes. Then, we ask whether gender is a moderator of these
developmental patterns. The answer to this question is affirmative if (1)
particular developmental pathways that emerged as types or antitypes in
the first analysis are gender-specific, (2) types or antitypes from the first
step disappear, or (3) new types or antitypes emerge.

For the following analyses, we use the dichotomized AI scores.
Dichotomization was done at the grand mean, so that developmental shifts
from below to above average (or the other way around) can be ascertained
at the level of the individual.

For the first step of moderator analysis, we cross the three observations
of AI. Gender is not included in the analysis. In terms of collapsing, one can
say that the main effect of gender and all two- and higher-way associations
of the AI observations with gender are assumed to be zero. We perform a
first order CFA. The base model for this analysis is, thus,

log m̂ = λ + λAI83 + λAI85 + λAI87.

Table 8.1 displays CFA results. For this and the following CFAs in this
chapter, we use the z-test and protect α by using the Holland-Copenhaver
procedure.
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TABLE 8.2. Longitudinal CFA of Aggressive Impulses, with Gender as Possible Moderator

Configuration
G AI83 AI85 AI87

m m̂ z p Type/Antitype

1111 20 7.399 4.6325 .000002 Type
1112 4 5.990 −.8130 .208116
1121 5 9.815 −1.5369 .062157
1122 3 7.945 −1.7545 .039674
1211 6 8.516 −.8621 .194311
1212 5 6.894 −.7213 .235372
1221 9 11.297 −.6833 .247217
1222 15 9.145 1.9362 .026420
2111 11 5.190 2.5501 .005385
2112 1 4.202 −1.5620 .059149
2121 2 6.885 −1.8617 .031319
2122 7 5.574 .6041 .272873
2211 2 5.974 −1.6258 .051991
2212 0 4.836 −2.1991 .013936
2221 8 7.924 .0269 .489289
2222 16 6.415 3.7844 .000077 Type

Table 8.1 shows that two stability types of aggressive impulses exist, and
no antitype. The stability types suggest that adolescents rate themselves
either as consistently below average in aggressive impulses (Configuration
1 1 1) or consistently above average (Configuration 2 2 2). None of the other
configurations deviates significantly from expectation.

We now ask whether these statements hold equally for both gender
groups. To answer this question, we create a new table by including the
Gender variable. The base model for the new, first order CFA is

log m̂ = λ + λGender + λAI83 + λAI85 + λAI87.

Types and antitypes can result from this model if the auto-associations
among the AI observations are strong, but also if there is some interaction
with gender. Table 8.2 displays the results from this analysis.

Table 8.2 shows a pattern that seems to be very similar to the one
shown by Table 8.1. There are only two types, both indicating stability.
However, considering that configurations are now listed by Gender, we see
that both of these new types are gender-specific. Type 1 1 1 1 suggests
that consistently below average aggressive impulses occur more often
than expected only in the female population. Type 2 2 2 2 suggests that
consistently above average aggressive impulses occur more often than
expected only in the male population. We thus conclude that Gender is
a moderator of the development of aggressive impulses.
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One important issue of log-linear as well as configural moderator
analysis is that adding a moderator variable to a model implies that the
number of cells of the table under study increases by a factor of two (if
the moderator is dichotomous) or more (if the moderator has more than
two categories). As a consequence, power for cell-specific tests is bound
to decrease. Therefore, moderator analysis that proceeds along the two
steps discussed here tends to suggest nonconservative decisions about the
possible existence of moderation and, thus, conservative decisions about
the existence of types and antitypes in the table that was extended by the
moderator variable.

Consider, for example, the results in Table 8.2. Configuration 1 1
1 1 suggests that consistently below average aggressive impulses are
female-specific. This statement implies that the corresponding type
for males, 2 1 1 1, does not exist. Table 8.2, however, suggests that
Configuration 2 1 1 1 comes with a tail probability of 0.0054. Clearly,
this tail probability is not smaller than the critical one for this cell, which
is α∗

3
= 0.0037. However, in a larger sample, this configuration might have

constituted a type also. For Type 2 2 2 2, the corresponding configuration,
1 2 2 2, is less suspicious. Therefore, we retain our conclusion that Gender
has the effect of a moderator on the development of aggressive impulses
in adolescence. This applies in particular to above average aggressive
impulses.

8.2 Longitudinal Configural Moderator Analysis
under Consideration of Auto-Associations

In a way parallel to the version of A-CFA that restricts the base model such
that only interactions between the series of measures and the covariate can
be the causes for the emergence of types and antitypes, we can specify
a base model for Moderator CFA such that only interactions among the
moderator and the remaining variables, but not the interactions among the
remaining variables alone, can cause types and antitypes to emerge. The
base model that thus results for Moderator CFA is parallel in form and
function to the extended base model that can be formulated for A-CFA.
Specifically, the base model for this version of Moderator CFA takes into
account

1. the main effects of all variables in the analysis;

2. interactions of any order among the variables that are not considered
moderators; the base model thus is saturated in these repeated
observations;
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3. if more than one moderator is included in the analysis, interactions
of any order among the moderators; the base model thus is saturated
in the moderators.

The only effects that are not included in the base model are the
interactions that link moderators with the other variables. If any of these
effects exist, moderation may take place and affect the resulting pattern of
types and antitypes. Consider, for example, the three variables X, Y, and
Z, and the moderator M. The base model for these four variables is

log m̂ = λ + λM + λX + λY + λZ + λXY + λXZ + λYZ + λXYZ.

Each of the interactions not included in this model links the moderator to
one or more of the other variables. Specifically, these are the interactions
[M,X], [M,Y], [M,Z], [M,X,Y], [M,X,Z], [M,Y,Z], and [M,X,Y,Z]. In the
following example, we apply this base model in the context of longitudinal
and Auto-Association Moderator CFA.

Data Example 2: For the following example, we use data from the
Overcoming The Odds (OTO) study (Lerner, Taylor, & von Eye, 2002;
Taylor et al., 2002). The OTO is a longitudinal study of the nature of
positive functioning, and the role that individual and ecological assets
play in this functioning, in African American male youth. The youth who
participated in this study were either gang members (n = 45; average age
at the beginning of the study = 15.82 y) or members of community-based
organizations (CBO; n = 50; average age at the beginning of the study =
16.31 y). The participants indicated in interviews how many from a list of
individual and ecological assets were available to them. For the following
analyses, we use the total number of assets from two interviews, conducted
1 year apart. These scores were dichotomized at the grand mean. Thus,
for the following analyses, three variables are used: Assets in Year 1 (A1)
and Year 2 (A2) as the dichotomized asset scores (1 = below grand mean; 2
= above grand mean), and Group Membership (G; 1 = gang member; 2 =
CBO member).

In the following paragraphs, we analyze the responses, using three CFA
base models. For each analysis, we used the normal approximation of the
binomial test and the Holland-Copenhaver procedure of α protection. The
first base model is that of first order CFA of the A1 ×A2 cross-classification,

log m̂ = λ + λA1 + λA2.

Types and antitypes from this analysis indicate stability and change in the
availability of assets over a span of 1 year. The LR − X2 for this model is
a large 97.78 (d f = 1; p < 0.01), thus indicating a strong auto-association
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TABLE 8.3. First Order CFA of Repeatedly Observed Asset Scores (A1 and A2) in Male
African American Adolescents

Configuration
A1 A2

m m̂ z p Type/Antitype

11 39 17.684 5.6187 .000000 Type
12 1 22.316 −5.1587 .000000 Antitype
21 3 24.316 −5.0114 .000000 Antitype
22 52 30.684 4.6768 .000001 Type

between the two observations of total assets. We thus expect types and
antitypes to emerge. Table 8.3 presents the results from first order CFA.

Clearly, this table shows a strong association such that respondents with
many assets in Year 1 will also report many assets in Year 2. Similarly, low
asset counts remain stable. The total number of individuals with changes
in the number of assets is only 4, that is, about 4%.

Considering that the 2 × 2 table under study has, under the first order
CFA base model, only one d f , the CFA tests are more dependent than in any
other table, and the CFA results will not make a major contribution above
and beyond the statement that the two variables are strongly associated
with each other. In fact, based on von Weber et al. (2003a), we can state that
a first order CFA of a 2 × 2 table almost never presents interesting results.
We therefore refrain from interpreting each type and antitype from this
analysis and instead move to analyzing the moderator hypothesis. We ask
whether the strong association between the two observations of total assets
is the same for gang members and for CBO members. In other words, we
ask whether group membership moderates the auto-association between
the two asset counts. Two base models are considered. The first of these
takes group membership into account, and searches for types and antitypes
using a first order CFA. This model is

log m̂ = λ + λG + λA1 + λA2.

Types and antitypes from this model indicate whether there are
group-specific local associations. The LR−X2 for this model is 122.2 (d f = 4;
p < 0.01), thus indicating that strong variable associations exist. Again, we
expect types and antitypes to emerge. Table 8.4 displays the results from
the first order CFA base model that takes group membership into account.

The results in Table 8.4 suggest that one of the types is specific to
members of gangs, the other is specific to CBO members. Specifically,
having consistently below average numbers of assets describes a type
in gang members (Configuration 1 1 1), but not in CBO members
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TABLE 8.4. First Order CFA of Repeatedly Observed Asset Scores (A1 and A2) in Male
African American Adolescents in Gangs and Community-Based Organizations (G)

Configuration
A1 A2 G

m m̂ z p Type/Antitype

111 28 8.377 7.1003 .000000 Type
112 11 9.307 .5841 .279567
121 0 10.571 −3.4488 .000282 Antitype
122 1 11.745 −3.3492 .000405 Antitype
211 3 11.518 −2.6774 .003710 Antitype
212 0 12.798 −3.8458 .000060 Antitype
221 14 14.535 −.1524 .439447
222 38 16.150 5.9681 .000000 Type

(Configuration 1 1 2). Mirroring this pattern, consistently above average
numbers of assets constitutes a type in CBO members (Configuration 2 2
2), but not in gang members (Configuration 2 2 1). None of the antitypes is
group-specific.

The downside of the base model used for Table 8.4 (as well as the
one used for Table 8.2) is that one cannot see whether possible types and
antitypes result from the auto-association of the asset scores, or whether
group membership is associated with the availability of assets. Therefore, a
third analysis is performed, with group membership as moderator variable.
The base model for this analysis takes the auto-association between the
two asset observations into account. If types and antitypes result from this
analysis, they must reflect the association of group membership with asset
availability. The base model for this analysis is

log m̂ = λ + λG + λA1 + λA2 + λA1,A2.

Each of the interactions not included in this model links asset scores with the
group membership variable. Specifically, these are the interactions [A1,G],
[A2,G], and [A1,A2,G]. The base model used for the results in Table 8.4
had not taken the interaction [A1,A2] into account. Therefore, at least
some of the types and antitypes could be the effect of the auto-association
between A1 and A2. Table 8.3 had shown that this auto-association is
strong. Table 8.5 shows the results of this version of Moderator CFA of the
cross-classification of A1, A2, and G.

The results in Table 8.5 suggest that (1) Group Membership indeed is a
moderator of the auto-association between numbers of assets, observed at
two occasions, 1 year apart, (2) each of the antitypes in Table 8.4 is solely
due to the [A1,A2] auto-association, and (3) the moderator effect caused a
new antitype to emerge. In all, two types and one antitype emerge.
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TABLE 8.5. Moderator CFA of Repeatedly Observed Asset Scores (A1 and A2) in Male
African American Adolescents in Gangs and Community-Based Organizations (G), with
Group Membership as Moderator

Configuration
A1 A2 G

m m̂ z p Type/Antitype

111 28 18.474 2.4695 .006766 Type
112 11 20.526 −2.3748 .008779 Antitype
121 0 .474 −.6900 .245107
122 1 .526 .6547 .256316
211 3 1.421 1.3346 .091012
212 0 1.579 −1.2671 .102553
221 14 24.632 −2.4890 .006405
222 38 27.368 2.4086 .008007 Type

The first type, constituted by Configuration 1 1 1, suggests that below
average counts of assets at both observation points are more often found in
gang members than expected. The antitype, constituted by Configuration
1 1 2, suggests that consistently below average assets are particularly
unlikely in CBO members. The second type, constituted by Configuration
2 2 2, indicates that CBO members report consistently above average counts
of assets.

8.3 Configural Moderator Analysis as n-Group
Comparison

It is an interesting fact about CFA that types or antitypes that emerge in
only one comparison group but not in others do not necessarily result
in discrimination types when examined in an n-group CFA. The reason
for this is that the differences between the observed and the expected
cell frequencies may go in the same direction in all groups, but may
not be strong enough to establish types and antitypes in each of the
groups. We encountered an example of such a situation in Table 8.2, where
Configuration 1 1 1 constituted a type for girls but not for boys, although
almost twice as many females as expected showed this pattern. Using
n-group CFA (see also the data example in Section 1.3; von Eye, 2002a), one
can determine not only whether a moderator variable caused group-specific
types or antitypes to emerge but also whether discrimination types can be
found.

Interestingly, the base model for n-group CFA is, in the context of
moderator analysis, identical to the base model for Moderator CFA.
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TABLE 8.6. Two-Group Analysis of the A1 × A2 Cross-Classification

Configuration
A1 A2 G

m Statistic p Type/Antitype

111 28
112 11 3.979 .000035 Discrimination Type
121 0
122 1 −.954 .170114
211 3
212 0 1.855 .031779
221 14
222 38 −4.389 .000006 Discrimination Type

Consider, for example, the base model that was used for Table 8.5. If
variables X and Z are used to discriminate between the groups labeled,
using variable G, the base model is

log m̂ = λ + λG + λX + λZ + λX,Z.

This model is identical in form to the one for the example in Table 8.5.
However, the cell-wise significance tests that are usually performed in CFA
are replaced by the tests described in Section 1.3 (see Tables 1.5 and 1.6).
These tests compare the n groups in each of the configurations of categories
of X and Y. This procedure is illustrated in the following data example.

Data Example 3: In the following example, we complete the analysis of the
OTO data used in Sections 8.1 and 8.2. We now ask not only whether group
membership causes the development of availability of assets to be specific
to gang versus CBO members, but also whether it causes discrimination
types to emerge. Table 8.6 displays the results of two-group analysis for
the A1 × A2 × G cross-classification. The normal approximation of the
binomial test was used along with the Holland-Copenhaver procedure of
α protection.

The results in Table 8.6 show that Moderator CFA resulted in two
discrimination types. The antitype in Table 8.5 is part of the first
discrimination type. The following interpretation can thus be retained:

1. Consistently below average assets, that is, Asset pattern 1 1 . , is
typical for gang members and cannot be found at the same rate among
CBO members.

2. Consistently above average assets, that is, Asset pattern 2 2 . , is
typical for CBO members and cannot be found at the same rate in
gang members.
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8.4 Moderated Mediation

The processes of mediation and moderation can be combined in various
ways. Consider the three variables X, the predictor (or explanatory or
independent variable), Y, the dependent (or outcome) variable, and Me,
the mediator. These three variables can be in a fully or partially mediated
relationship, as depicted in Figure 6.2. According to Muller, Judd, and
Yzerbyt (2005), mediation can be moderated by a fourth variable, Mo, a
moderator. Moderated mediation exists if strength or type of mediation
depends on a moderator variable. Conversely, a moderated relationship
that involves X, Y, and Mo, can be mediated. Mediated moderation would
first imply that moderation occurs, that is, the strength of the relationship
between X and Y depends on Mo. This moderator effect can be mediated
by a mediating variable.

In the following section, we focus on moderated mediation. We ask
whether the pattern of types and antitypes that reflects mediation varies
across the categories of a moderator variable. This question can be asked for
any of the five moderated mediation path models that can be distinguished,
based on Preacher, Rucker, and Hayes (2007). The panels of Figure 8.4
depict these moderated mediation path models.

Additional scenarios are conceivable. For example, one can consider
models with multiple mediators, multiple predictors, or multiple outcomes.
One of the characteristics of the current approach is that each of these
models allows one to take variable associations into account. Thus,
unrealistic assumptions do not need to be made. An example of such
unrealistic assumptions is that, in survey data, independent variables are
uncorrelated with one another.

Base Models and Outcome Patterns of Moderated Mediation: In the
context of configural moderator analysis, we do not ask whether parameters
change in the presence of other parameters in the model. Instead, we ask
whether a pattern of types and antitypes that emerged when the table
was collapsed over the categories of a covariate (moderator) remains the
same or changes over the categories of this covariate when the table is
unfolded. The base model for moderated mediation, therefore, has the
same characteristics as the base model for moderation, except that the
moderated model is that of a mediated process. We consider two sets of
base models for moderated mediation. The first compares the resulting
type/antitype patterns from a model that does not include the moderator
variable(s) with the patterns from a model that does. Specifically, the first
set of moderated mediation base models has the following characteristics:

1. The first base model that is used for the examination of possible
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X Me Y

(a) Value of Predictor Determines Mediation Effect

X

Mo1

Me Y

Mo2

(b) Moderator Determines Relationship between Predictor and Mediator or/and
between Mediator and Outcome Variable

X Me Y

Mo

(c) One Moderator Determines Relationship between Predictor and Mediator as well
as between Mediator and Outcome

FIGURE 8.4. Moderated mediation path models.

moderator effects is that of a mediation process (see Chapter 6 for two
approaches to configural analysis of mediation). This is the model that is
collapsed over some or all categories of a potential moderator variable. It
is important to note that this model does not necessarily have to suggest
that mediation exists. It may be the case that mediation exists in subgroups
only and that, overall, mediation effects cancel each other out such that no
types or antitypes hint at the existence of mediation. The first base model
corresponds to the model used in Step 1 in Section 8.1 (this model does not
include a moderator).

2. The second base model takes potential moderator variable(s) into
account. Corresponding to the model used in Step 2 in Section 8.1 (this
model does include a moderator), this model includes the main effect(s) of
and the interactions among potential moderator variables. One possible
result from this model is that the type and antitype patterns indicate that
mediation varies over the categories of a moderator (the covariate). This
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variation can assume a number of forms. First, it is possible that mediation
exists for some categories of the moderator but not for others. Second, it is
possible that mediation exists for categories of the moderator but not in the
collapsed table. Third, it is possible that the type of mediation varies across
the categories of a moderator (to obtain this result, separate mediation
analyses may need to be performed for the categories of the moderator).

To give an example, consider the variables X, Y, Me, and Mo, defined
as independent variable, outcome variable, Mediator, and Moderator,
respectively. As was discussed in Chapter 2, one possible base model for the
mediation between X and Y is the main effect model (more complex models
are conceivable, for example, mediation in a Prediction CFA context). This
is the model:

log m̂ = λ + λX + λY + λMe.

The comparison model that takes the moderator into account is then

log m̂ = λ + λX + λY + λMe + λMo.

Types and antitypes can result from this model when any combination
of the following interactions exist: [X,Y], [X,Me], [X,Mo], [Y,Me], [Y,Mo],
[Me,Mo], [X,Y,Me], [X,Y,Mo], [X,Me,Mo], [Y,Me,Mo] and [X,Y,Me,Mo].
This model yields easily interpreted results. It is the interpretation of
a mediation model that takes into account the main effect of a potential
moderator variable. However, 4 of these 11 interactions do not contain the
moderator variable. Therefore, a second set of models may be considered,
with the following characteristics:

1. The first base model that is used for the examination of possible
moderator effects is, as before, that of a mediation process. As in the
first set of models, this model corresponds to the model used in Step 1 in
Sections 8.1 and 8.2.

2. The second base model takes the moderator variable(s) into account.
Corresponding to the model used in Section 8.2, this model includes
not only the main effect(s) of potential moderator variables but also all
interactions that do not involve the moderator. Types and antitypes that
result from this model necessarily indicate that the moderator interacts with
X, Y, Me, or any combination of these. If moderation exists, it can assume
the same forms as for the first model, but the causes of this moderator
category-specific variation are restricted to interactions that involve the
moderator.
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Consider, for example, the same variables as above and the same first base
model. The base model that is used to explore moderated mediation under
the present constraints is

log m̂ = λ + λX + λY + λMe + λMo + λX,Y + λX,Me + λY,Me + λX,Y,Me.

The interactions in this equation does not include the Moderator. Therefore,
only those interactions that do include the moderator are possible causes
for types and antitypes.

Data Example 4: For the following data example, we use data from a study
on the recipients of social welfare in Mexico (Lobato, Martı́nez, Miranda,
Rivera, & Serrato, 2007). A sample of 250 recipients was asked whether
they perceived the services rendered as low versus high in quality (QUA:
predictor), whether they were satisfied with the services (SAT: mediator),
and whether they would use the services again (USE: criterion variable).
In addition, they were asked about their expectations concerning these
services (EXP: high vs. low: moderator). Each of the questions was asked
on a 10-point scale. Each of the response distributions was heavily skewed
toward positive evaluation. Therefore, dichotomization was not done at
the median or the scale midpoint, but at the item score 8.1 for QUA, and
at the item score 9.1 for the other items. In the following analyses, each of
the four variables is scored as 1 = below the cutoff and 2 = above the cutoff,
and will be interpreted as “low” and “high”, respectively.

In the following analyses, we first ask whether the intention to use the
services again can be predicted from perceived quality and is mediated
by satisfaction with the services. Second, we ask whether this mediation
process, if it exists, is moderated by the respondents’ expectations.

To answer the first question, we have to establish whether mediation
exists. To do this, we perform Mediation CFA, using the following four
base models (see Table 6.5 in Chapter 6):

1. First Order CFA-Main effect model:

log m̂ = λ + λ
QUA
i
+ λSAT

j + λUSE
k

;

2. Predicting the criterion from the predictor and the mediator:

log m̂ = λ + λ
QUA
i
+ λSAT

j + λUSE
k
+ λ

QUA,SAT
ij

;

3. Predicting the criterion from the mediator:

log m̂ = λ + λ
QUA
i
+ λSAT

j + λUSE
k
+ λ

QUA,SAT
ij

+ λ
QUA,USE

ik
;
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TABLE 8.7. First Order CFA of the Cross-Classification of Perceived Quality of Services
(QUA), Satisfaction with Services (SAT), and Intention to Use Services Again (USE)

Configuration
QUA SAT USE

m m̂ z p Type/Antitype

111 65 27.216 7.2425 .000000 Type
112 38 41.512 −.5450 .292861
121 8 20.700 −2.7913 .002625 Antitype
122 10 31.572 −3.8392 .000062 Antitype
211 16 29.016 −2.4163 .007840 Antitype
212 23 44.256 −3.1952 .000699 Antitype
221 10 22.068 −2.5690 .005100 Antitype
222 80 33.660 7.9874 .000000 Type

4. Predicting the criterion from the predictor:

log m̂ = λ + λQUA
i
+ λSAT

j + λUSE
k
+ λQUA,SAT

ij
+ λSAT,USE

jk
.

Table 8.7 shows the results of the first step, that is, first order, main effect
CFA. These are the results that will be interpreted if mediation exists. The
LR − X2 for this model is 141.78 (d f = 4; p < 0.01). The model is, therefore,
rejected, and we expect types and antitypes to emerge.

Table 8.7 shows that, with the exception of Configuration 1 1 2, every
configuration constitutes a type or an antitype. Now, instead of interpreting
each of these in detail, we ask whether hypotheses concerning the existence
of complete or partial mediation can be supported. We perform a
CFA-based mediation analysis (see Section 6.2). Table 8.8 displays the
summary table of the results of the four models listed above.

To determine whether mediation exists, we now perform the steps
outlined in Section 6.2, on CFA-based mediation analysis.

Comparison 1: The comparison of the results from Steps 2 and 3 shows
that the main effect base model and the one that takes the interaction
between Quality and Satisfaction into account result in different patterns
of types and antitypes. We conclude that Quality, Satisfaction, or both are
related to the outcome, Intention to Use Services Again.

Comparison 2: The pattern of types and antitypes from Step 1 differs from
the patterns of types and antitypes from all other steps. We conclude that
the path from the predictor, Quality, to the mediator, Satisfaction, exists.

Comparison 3: To determine the role played by the three-way interaction
[QUA, SAT,USE], we add this interaction to the fourth model in Table 8.8.
The LR − X2 for this model is 15.23 (d f = 1; p < 0.01). This model is not
significantly better than Model 4 (∆LR − X2 = 0.17; ∆d f = 1; p = 0.68), and
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TABLE 8.8. CFA-Based Configural Mediation Analysis of the Variables Perceived Quality
of Services (QUA), Satisfaction with Services (SAT), and Intention to Use Services Again
(USE)

CFA Base Model
Configuration
QUA SAT USE

m Model 1
[QUA][SAT]
[USE]

Model 2
[QUA][SAT]
[USE]
[QUA, SAT]

Model 3
[QUA][SAT]
[USE]
[QUA, SAT]
[QUA,USE]

Model 4
[QUA][SAT]
[USE]
[QUA, SAT]
[SAT,USE]

111 65 Type Type
112 38 Antitype
121 8 Antitype Type
122 10 Antitype
211 16 Antitype Type
212 23 Antitype
221 10 Antitype Antitype
222 80 Type Type

LR −X2(d f ) 141.78 (4) 59.73 (3) 16.25 (2) 15.40 (2)

the same type as indicated in Table 8.8 emerged. We, therefore, conclude
that the three-way interaction explains no additional aspects of the data.

Based on the results of these comparisons, we can come to the following
conclusions about the mediation process that was hypothesized to relate
the variables Quality, Satisfaction, and Intention of Use to one another.

Conclusion: Model 1 yields types and antitypes, and because Models 2-4
yield patterns of types and antitypes that differ from the pattern for Model
1 and from each other, the model of partial mediation is supported.

We now ask whether this mediation process is moderated by
expectations. Specifically, we ask whether the resulting pattern of mediator
types and antitypes is different for respondents with high expectations than
for respondents with low expectations. To answer this question, two CFA
models need to be estimated. The first is the one that is interpreted as
possibly supporting mediation hypotheses. The results for this model are
displayed in Table 8.8. The second model contains the moderator variable,
EXP. Table 8.9 shows the results of a first order, main effect CFA of the EXP
×QUA × SAT ×USE cross-tabulation. The LR−X2 for this model is 180.75
(d f = 11; p < 0.01). We, therefore, expect types and antitypes to emerge.

Table 8.9 shows that two types and three antitypes from Table 8.7 remain
when the moderator variable, Expectations (EXP), is included. There are
two reasons why this reduction in the number of types and antitypes can
happen. The first is that, in the presence of the moderator, types and
antitypes disappear, or additional types and antitypes emerge. The second
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TABLE 8.9. First Order, Main Effect CFA of the Cross-Classification of Variables EXP,
QUA, SAT, and USE

Configuration
EXP QUA SAT USE

m m̂ z p Type/Antitype

1111 40 11.431 8.4500 .000000 Type
1112 18 17.435 .1353 .446175
1121 7 8.694 −.5745 .282821
1122 6 13.260 −1.9938 .023087
1211 5 12.187 −2.0586 .019764
1212 6 18.588 −2.9197 .001752 Antitype
1221 6 9.269 −1.0737 .141489
1222 17 14.137 .7614 .223200
2111 25 15.785 2.3192 .010191
2112 20 24.077 −.8308 .203031
2121 1 12.006 −3.1763 .000746 Antitype
2122 4 18.312 −3.3445 .000412 Antitype
2211 11 16.829 −1.4209 .077669
2212 17 25.669 −1.7110 .043541
2221 4 12.800 −2.4596 .006955
2222 63 19.523 9.8400 .000000 Type

reason is that the more restrictive significance threshold of the larger table
that includes the moderator, in tandem with the smaller cell frequencies,
can have the effect that the discrepancies between observed and expected
cell frequencies become so small that types and antitypes no longer emerge.

For the present data, Configurations 1 1 1 1 and 2 1 1 1 in Table 8.9
correspond with Configuration 1 1 1 in Table 8.7. Here, we find that only
Configuration 1 1 1 1 constitutes a type. We conclude that Moderation Type
. 1 1 1 exists only for those who approach their receiving of welfare with
low expectations. Specifically, if expectations are low, satisfaction is low
also, and one can predict that the quality of services is perceived as low
and that the intention to use the services again is weak also. This pattern
occurs more often than expected.

Configurations 1 1 2 1 and 2 1 2 1 in Table 8.9 correspond with
Configuration 1 2 1 in Table 8.7. Of these, only Configuration 2 1 2
1 constitutes an antitype. For Configuration 1 1 2 1, the model-data
discrepancy is so small that one is tempted to conclude that this antitype
exists only for those who have high expectations. Specifically, we find that
it is highly unlikely that those with high expectations perceive the quality
of services as low but are highly satisfied and still do not intend to use the
services any more.

This applies accordingly to Antitype 2 1 2 2. High expectations,
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perceiving the quality of services as low, but high satisfaction and the
intention of using the services in the future are unlikely to be observed
together.

The third antitype in Table 8.9, constituted by Configuration 1 2 1 2,
corresponds with Antitype 2 1 2 in Table 8.7. This antitype is moderated also
because Configuration 2 2 1 2 does not constitute an antitype. This pattern
suggests that, for respondents with low expectations, the inconsistent
pattern 2 1 2 is highly unlikely to be observed. For respondents with
high expectations, this pattern tends to be unlikely also. However, the
discrepancy is not strong enough for the configuration to constitute an
antitype.

Configurations 1 2 2 2 and 2 2 2 2 in Table 8.9 correspond with
Configuration 2 2 2 in Table 8.7. Only Configuration 2 2 2 2 constitutes
a type again. The observed and the expected frequencies in Cell 1 2 2 2
do not differ enough to constitute a type. We conclude that the consistent
pattern . 2 2 2 indicates that, for respondents with high expectations,
perceiving quality as high allows one to predict that satisfaction is also
high and the intention is strong that the services will be used in the future.

As was indicated above, the interactions among the variables in the
mediator model may be among the reasons for types and antitypes to (not)
emerge in the cross-tabulation that includes the moderator. Therefore, the
model that includes these interactions may be of interest. For the present
example, this is the model

log m̂ = λ+λQUA
i
+λSAT

j +λUSE
k
+λQUA,SAT

ij
+λQUA,USE

ik
+λSAT,USE

jk
+λQUA,SAT,USE

ijk
.

The LR − X2 for this model is 38.97 (d f = 7; p < 0.01). This base model
does not describe the data well either. However, only one type remains. It
is constituted by Configuration 1 2 2 2. No other type or antitype emerges
under this model. We conclude that, if the moderator is taken into account,
the interactions among the variables in the mediation model explain more
variability than when the moderator is not taken into account. Mediation
still exists, but only for one of the configurations in the table.

8.5 Graphical Representation of Configural
Moderator Results

The graphical representation of configural moderator models can be
developed in a way parallel to the graphical representation of configural
prediction or mediator models. The basic idea is that the relationships
identified in the form of types and antitypes do not involve variables but
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X1 Y2

FIGURE 8.5. Prediction type X1 Y2.

X1 Y2

Mo4

FIGURE 8.6. Moderated prediction relationship: X1 Y2 is found only for Mo4.

configurations, that is, patterns of categories of categorical variables. In
Figure 8.4, moderator models were depicted at the level of variables.

In this section, we describe and illustrate how graphical representations
of configural moderation can be created. The graphs consist of two
elements. The first element is that of a configural regression relation,
depicted as in Figure 6.3, for mediation types, and in Figure 6.4, for
mediation antitypes. From these figures, we take the part that relates
two configurations to each other. For example, let X1 be the first category
of the predictor, X, and Y2 the second category of the criterion, Y. Let X1
Y2 constitute a prediction type. Then, the graphical representation of this
relationship can be depicted as in Figure 8.5.

The moderation element comes into play when the graph indicates that
a configural relationship is found for a particular category of a moderator
variable only. Consider the moderator variable Mo. Let the prediction type
be found only for category Mo4. Then, the graph in Figure 8.5 becomes as
shown in Figure 8.6.

Data Example 5: In the following example, we depict the first moderator
type and the moderator antitype that were found in Table 8.5. The type
indicates that below average number of assets over a period of 2 years,
denoted by A1 = 1 and A2 = 1, are found only in youth who are members
of gangs, G = 1. Figure 8.7 depicts this relationship.

The antitype in Table 8.5 (Cell Configuration 1 1 2) indicates that below
average number of assets over a period of 2 years, denoted by A1 =
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A1=1 A2=1

G=1

FIGURE 8.7. Moderated type-prediction relationship of asset number and group
membership.

A1=1 A2=1

G=2

FIGURE 8.8. Moderated antitype-prediction relationship of asset number and group
membership.

1 and A2 = 1, are unlikely to be found in youth who are members of
community-based organizations, G= 2. Figure 8.8 depicts this relationship.
In this figure, the antitype relationship is depicted with dotted lines.

8.6 Chapter Summary

Moderator effects are said to exist if the relationship between two (or more)
variables changes across the categories of another variable. In configural
analysis, moderator effects exist if patterns of types and antitypes vary
across the categories of the moderator variable. CFA of moderator effects
proceeds in a series of major steps. These two steps first involve performing
CFA runs sequentially in which the moderator variable is, versus is not,
taken into account. Second, the resulting patterns of types and antitypes
are compared with one another. If a type/antitype pattern changes when
the moderator is taken into account, that is, if a resulting type/antitype
pattern is group-specific, a moderation effect is said to exist at the level of
individual configurations.
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A variant of moderation CFA is introduced that allows one to test
whether mediation processes are moderated by grouping variables. This
variant allows one to perform moderated mediation analysis at the level
of individual configurations. This variant performs mediation CFA first
without a moderator, followed by mediation CFA that does take the
moderator into account. If mediation effects are group-specific, they can be
said to be moderated.

The graphical representation of configural moderator effects follows
the lines of graphing variable-oriented moderator models. However, it
proceeds at the level of configuration patterns. This is necessary because,
parallel to mediation CFA, the same table can contain configurations that
reflect moderator effects, and other configurations that do not. In addition,
graphical representation at the level of configurations is necessary to be
able to distinguish between moderator types and antitypes.



9
The Validity of CFA Types and
Antitypes

Distinctions between individuals do not need to be made if they
carry no implications. In CFA, tables are analyzed with the goal of
identifying types, antitypes, and those configurations that are observed
as often as expected. One way of determining the validity of types
and antitypes involves asking whether these configurations can also
be distinguished in the space of variables that had not been used for
CFA. The methods that can be applied to answer this question include,
for example, MANOVA, discriminant analysis, and logit models. In
Chapter 9, repeated measures ANOVA is applied to determine whether
configurations of physical aggression against peers can be distinguished
based on physical pubertal development.

9.1 Validity in CFA

An important question that has been asked in the context of classification
methods is whether the groups that are being discussed are “for real”. In
taxometric research, several methods have been proposed to establish the
existence of clusters (Blashfield & Aldenderfer, 1984; Everitt, Landau, &
Leese, 2001; von Eye, Mun, & Indurkhya, 2004). One of these methods
involves repeating an analysis by using a different clustering algorithm.
The hypothesis is that different algorithms will yield similar solutions if
the clusters exist. A second method involves split-sample, jackknifing, or
bootstrapping methods. Using these methods, clustering is repeated based
on repeatedly drawn subsamples (with replacement). Robust solutions will
emerge more often than solutions that are specific to subsamples. A third
method involves using significance tests against null hypotheses according
to which a particular data generation process will not lead to groupings
(see, e.g., von Eye, 2010; von Eye & Gardiner, 2004; Wood, 2004). A fourth
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method involves establishing the external validity of groupings by using
variables that were not included when groups or clusters were established.
When this method is applied, researchers ask whether groupings are also
different in the space of other variables than those used for clustering (see
also von Eye & Bergman, 2003).

When it comes to establishing types and antitypes from CFA, the second,
third, and fourth of these methods have been discussed. The second
method is part of a CFA software package (for a sample application, see
Lautsch & von Weber, 1995, Table 8). The third method is an established
routine in CFA applications. Types and antitypes are interpreted only if
cell-wise null hypotheses can be rejected. The fourth method has not found
many applications yet. Therefore, we discuss it in this text.

Establishing the external validity1 of CFA solutions is straightforward.
Two sets of variables are used. The first is the basis for CFA. The second set
of variables is selected such that it is conceptually related but not identical
to the first. This selection proceeds in the same way as the selection
of variables when the external validity of psychometric instruments is
established. For example, to establish the external validity of intelligence
tests, one can use existing tests, grades in college, job performance, and, as
a matter of course, wins in the lottery (maybe not).

Once types, antitypes, and those configurations have been identified
that do not deviate from expectation, one can use analysis of variance,
discriminant analysis, or logit models to answer the question whether these
groups of cases (or subsets of these groups) also differ in the space of those
variables that were not used for CFA. When ANOVA is used, one asks
whether types, antitypes, and those cells that reflect the base model (these
are the cells that constitute neither types nor antitypes) differ in their means
in the second set of variables. When discriminant analysis or logit models
are used, one asks whether membership in the groups of types, antitypes,
and nonsuspicious cells (again, these are the cells that constitute neither
types nor antitypes) can be predicted from the second set of variables.

Data Example 1: For the following example, we use the Finkelstein et
al. (1994) aggression data again. 114 adolescents indicated their level of
physical aggression against peers (PAAP) in 1983, 1985, and 1987. At these
points in time, they were, on average, 11, 13, and 15 years of age. In
addition, progress in physical pubertal development was determined for
each student by a nurse. Tanner scores were used to indicate progress in
stages. Here, we first ask whether typical and atypical pathways of PAAP

1Note that, in the present context, the term external validity has a different meaning than
usual. Here, it means that types, antitypes, and other configurations are established by
using different variables, not different samples.
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TABLE 9.1. First Order CFA of the Development of Physical Aggression against Peers
over Three Observation Points

Configuration
P83 P85 P87

m m̂ z p Type/Antitype

111 42 24.237 3.6081 .000154 Type
112 2 9.052 −2.3440 .009539 Antitype
121 6 15.807 −2.4666 .006819 Antitype
122 5 5.904 −.3719 .354967
211 18 26.000 −1.5689 .058337
212 7 9.711 −.8699 .192180
221 17 16.956 .0106 .495773
222 17 6.333 4.2387 .000011 Type

exist that emerge in the form of types and antitypes. Then, we ask whether
these pathways correspond to specific developmental curves in physical
pubertal development. The first question will be answered by using CFA.
The second question will be answered by using repeated measures ANOVA
with polynomial decomposition.

For CFA, we use the three variables P83, P85, and P87. These are
the dichotomized scores of the PAAP variable, measured at three different
points in time. Dichotomization was performed at the grand mean so
that development can be described both ipsatively and comparatively. A
score of 1 indicates below average aggression, and a score of 2 indicates
above average aggression. A first order CFA was performed which
assumes, in its base model, that the three repeated observations are
independent of one another. Types and antitypes then reflect various forms
of auto-associations. The z-test was used, and αwas protected by using the
Holland-Copenhaver procedure. Table 9.1 displays the results of this first
order CFA.

The LR − X2 for the base model of first order CFA is 42.70 (d f = 4;
p < 0.01). The base model is thus rejected, and we expect types and
antitypes to emerge.

Table 9.1 shows that two types and two antitypes exist. The types
reflect stability over time. Configuration 1 1 1 describes those adolescents
who rate themselves as below average in physical aggression against peers
over the entire observation period. Parallel to the first type, the second
describes those adolescents who rate themselves as above average over the
entire observation period (Configuration 2 2 2). The two antitypes show
that an increase from below to above average aggression against peers
for just the second or the third observation period is particularly unlikely
(Configurations 1 1 2 and 1 2 1).
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TABLE 9.2. Between-Subjects Effects: Results of Repeated Measures ANOVA

Source SS d f MS F p

Configuration 101.97 7 14.57 1.207 .305
Error 1279.19 106 12.07

TABLE 9.3. Within-Subjects Effects: Results of the Repeated Measures ANOVA

Source SS d f MS F p

Time 1789.14 2 894.57 414.49 < .01
Time × Configuration 71.49 14 5.11 2.37 .005
Error 457.55 212

Now, to establish external validity for these types, antitypes, and
non-suspicious cells, we perform a repeated measures ANOVA. This
analysis uses time (1983, 1985, and 1987) as the repeated measures factor
and the eight configurations as the between-groups factor. The Tanner
scores of physical pubertal development are used as dependent measures.
A decomposition into orthogonal polynomials of up to second order will be
performed to determine whether curvature is configuration group-specific.
Table 9.2 shows the results for the between-subjects part of the repeated
measures ANOVA.

The results in Table 9.2 suggest that the eight groups (configurations)
do not differ significantly in their means in physical pubertal development.
Accordingly, the multiple R2 = 0.057 is rather small. The within-subjects
part of the ANOVA will tell us whether the eight configurations differ in
curvature over time. Table 9.3 displays the overview of the within-subjects
part of the repeated measures ANOVA. The Huynh-Feldt ε was used to
adjust the tail probabilities to the serial dependence in the data.

The results for the main effect of Time in Table 9.3 show that the
configurations, overall, differ in their pubertal development scores over
time. This is as expected. The Tanner score means are 4.48, 8.19, and
12.35, for 1983, 1985, and 1987, respectively. Wilks’ Lambda for this effect
is Λ = 0.12. This value indicates that 88% of the variation of the dependent
measure that can be explained based on time was explained. This effect is,
thus, strong. The interaction of Configuration with Time suggests that the
developmental curves are specific to configurations rather than common
to all configurations. Wilks’ Lambda for this interaction is Λ = 0.76. This
value indicates that this interaction explains 24% of the variation of the
dependent measure. This effect is, thus, weak to medium in magnitude.
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TABLE 9.4. Orthogonal Decomposition of the Main Effect of Time

Source SS d f MS F p

Linear Trend 1785.76 1 1785.76 757.80 < .01
Error 249.79 106
QuadraticTrend 3.38 1 3.38 1.73 .19
Error 207.75 106 1.96

TABLE 9.5. Polynomial Decomposition of the Time × Configuration Group Interaction

Source SS d f MS F p

Linear Trend 22.80 7 3.26 1.38 .220
Error 249.79 106
Quadratic Trend 48.69 7 6.96 3.55 .002
Error 207.75 106 1.96

Table 9.4 displays the results for the decomposition of the effect of
Time into orthogonal polynomials. Linear and quadratic polynomials are
considered.

Table 9.4 shows that, overall, the increase in physical pubertal
development is linear. The quadratic component is nonsignificant. We
conclude that, over the observation period of 4 years (the respondents
were 11-15 years of age), there is, overall, no significant acceleration or
deceleration in this development. Table 9.5 shows whether this result
varies with the eight groups under study.

Table 9.5 shows that the linear trend is not group-specific. In other
words, the straight-line increase is about the same for each of the eight
groups. In contrast, the groups differ significantly in their quadratic
trends. Figure 9.1 displays the developmental curves of physical pubertal
development, by group.

The curves in Figure 9.1 indicate that those adolescents who indicate that
they are below average in physical aggression against peers (Configuration
1: 1 1 1) show a negatively accelerated curve of physical pubertal
development. Those adolescents who see themselves as above average in
physical aggression against peers (Configuration 8: 2 2 2) show a positively
accelerated curve of physical pubertal development. Members of the
second antitype (Configuration 3: 1 2 1) show a curve with no acceleration.

We note that the members of the two types and the two antitypes differ
from each other in the quadratic component of their developmental curves,
but not in the means or linear trends. The curvatures of the nonsuspicious
respondents seem to show less pronounced acceleration or deceleration.
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FIGURE 9.1. Developmental curves of physical pubertal development, by configuration.

With respect to the quest for external validity, we conclude that
these results support the classification of cells into types, antitypes, and
nonsuspicious cells. This classification also holds in the space of physical
pubertal development, which had not been used for the definition of the
table that had been subjected to the CFA.

9.2 Chapter Summary

The interpretation of types and antitypes is based on two key elements
of information. The first is given by the meaning of the categories in
a configuration. The second is given by the base model. Types and
antitypes are considered externally valid if they can also be discriminated
in the space of variables that were not used for the configural analysis
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that resulted in the types and antitypes. Methods of discriminant analysis,
MANOVA, or logit models can be used to establish this form of external
validity. In these analyses, each type, antitype, and configuration that does
not stand out as a type or antitype constitutes a factor level (or group in
discriminant analysis). The variables not used for configural analysis are
used as dependent variables, and one asks whether members in one of the
configurations of CFA also differ in these dependent variables.



10
Functional CFA

Chapter 10 presents two methods of Functional CFA (F-CFA). One
of the characteristics of CFA is that the tests that are performed to
identify types and antitypes are, to a certain degree (that depends,
among other things, on the base model and the size of a table),
dependent. Therefore, there exists the risk that types and antitypes
may emerge because other types and antitypes emerge. These types
and antitypes are called phantom types and phantom antitypes. The
first version of F-CFA presented in Chapter 10 involves strategies to
identify phantom types and antitypes. Two strategies for this first
version of F-CFA are discussed. The first focuses on optimizing
overall goodness-of-fit. The second focuses on the largest model-data
discrepancies. The second version of F-CFA presented in Chapter
10 aims at identifying those effects in a table that cause types and
antitypes to emerge. The ascending strategy of this version of F-CFA
systematically adds, beginning from the base model that resulted in
types and antitypes, effects to the base model until the following two
conditions are fulfilled. First, all types and antitypes disappear. Second,
no new types or antitypes emerge. The most parsimonious model that
has these characteristics contains the effects that are called type- and
antitype-constituting. In contrast to the ascending strategy of F-CFA, the
descending strategy starts from the saturated model. It systematically
removes effects, beginning with the most complex. The iteration ends
when a model is found that (1) fits the data and (2) results in no types
or antitypes. The effects not included in this model are called type-
and antitype-constituting. The choice between these two strategies is
guided by the importance of higher order terms. If higher order terms are
not significant, the ascending strategy is preferred. If, however, higher
order terms explain significant portions of the variability in a table, the
descending strategy is preferable over the ascending strategy.

In this chapter, we present two versions of Functional CFA (F-CFA; von
Eye & Mair, 2008a, 2008b, 2009). Both of these versions of CFA are called
functional because they allow one to make statements about the role that
elements of configural frequency analysis play in the resulting pattern of

176



Functional CFA 177

types and antitypes. The first version of F-CFA to be discussed here, in
Section 10.1, leads to statements about the role played by individual cells of
a table. The second version, discussed in Sections 10.3.1 and 10.3.2, leads to
statements about the role played by individual effects as they are modeled
in the design matrix. These effects are used to explain the emerging types
and antitypes.

10.1 F-CFA I: An Alternative Approach to
Exploratory CFA

One interesting consequence of the mutual dependence of types and
antitype tests is that so-called phantom types and phantom antitypes can
emerge. This was shown by Victor (1983) and Kieser and Victor (1991,
1999, 2000), using an example like the following one. Consider a 3 × 3
contingency table, spanned by the variables X and Y, such as the one given
in Table 10.1. The frequencies in this table were determined for the purpose
of this example. Specifically, the observed frequencies, m, in Table 10.1 were
determined so that they reflect the following characteristics:

1. each cell of the table contains 100 cases;

2. the frequency of Cell 1 1 was reduced by 90 cases; therefore, Cell 1 1
is a candidate for a CFA antitype;

3. the frequency of Cell 3 3 was increased by 90 cases; therefore, Cell 3
3 is a candidate for a CFA type;

4. Cells 1 2 through 3 2 reflect a uniform distribution and independence
of X and Y; therefore, they are candidates for configurations that do
not deviate from the first order CFA base model.

The analysis performed is a first order CFA of variable independence.
The z-test was used along with the Holland-Copenhaver procedure of α
protection.

The results of first order CFA in Table 10.1 show that the type/antitype
pattern that was unearthed by first order CFA fails to reflect the structure
of the data. Whereas Cell 1 1 does constitute an antitype, Cell 3 3 does not
constitute a type. In addition, Cells 1 2 and 2 1 constitute types and Cells
2 3 and 3 2 constitute antitypes. None of these cells deviates from the data
structure.

In addition to the dependence of CFA tests, a second problem is lurking.
When CFA base models are used to estimate expected cell frequencies,
the fact that types or antitypes may exist is not taken into account. To
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TABLE 10.1. Illustration of Phantom Types and Antitypes; Artificial Data

Configuration
X Y

m m̂ z p Type/Antitype

11 10 49 −5.5714 .000000 Antitype
12 100 70 3.5857 .000168 Type
13 100 91 .9435 .172724
21 100 70 3.5857 .000168 Type
22 100 100 .0000 .500000
23 100 130 −2.6312 .004255 Antitype
31 100 91 .9435 .172724
32 100 130 −2.6312 .004255 Antitype
33 190 169 1.6154 .053114

the contrary, the estimation proceeds under the assumption that types
or antitypes do not exist. One effect of this procedure is that marginal
frequencies can be distorted by existing types and antitypes, and cells
that, otherwise, would conform with the assumptions put forth in the
base model, emerge as phantom types or phantom antitypes. In computer
science, phantom types are defined as data types “with type constraints
associated with different cases” (Cheney & Hinze, 2003). In other words,
phantom types exist only if certain conditions are met. In CFA, phantom
types and phantom antitypes exist only because other types and antitypes
in a table exist. Without those, they would not emerge (Kieser & Victor,
2000). In the example in Table 10.1, two phantom types and two phantom
antitypes emerge, and the type that is part of the data structure looks
non-suspicious.

In the following sections, we discuss two approaches to dealing with the
problems of phantom types or antitypes. The first approach was proposed
by Kieser and Victor (1999, 2000). It involves sequential identification
of types and antitypes with the goal of minimizing overall deviations
from the base model. The second approach was proposed by von Eye
and Mair (2008a, 2008b, 2009). This approach also involves sequential
identification of types and antitypes. However, in contrast to Kieser and
Victor’s approach, the goal is to identify, at each step of the sequence, the
cell with the largest discrepancy from the base model. Both approaches
conclude their iterations when either no types or antitypes remain in the
table or the base model fits.



Functional CFA 179

10.1.1 Kieser and Victor’s Alternative, Sequential CFA: Focus on
Model Fit

Kieser and Victor (1999) proposed both a confirmatory and an exploratory
version of their alternative CFA. In the present context, we focus on the
exploratory version. To explain this model, consider the log-linear CFA
base model

M∅ : log m̂ = Xλ,

where, as before, X is the design matrix and λ is the parameter vector.
Now, let τ be a parameter vector that characterizes the deviations of the
cells that constitute types and antitypes. Taking into account τ, the base
model becomes the type/antitype base model

MT/A : log m̂ = X

(

λ

τ

)

.

In the first base model, the design matrix has r rows and c columns with
r > c. In the type/antitype base model, the design matrix still has r rows,
but now it has c+ t columns, where t indicates the number of type/antitype
cells, and (c + t) < r. For identification, we assume that X is of full rank.
The type/antitype model allows one to model any type structure and any
number of type/antitype cells (as long as there is a sufficient number of
degrees of freedom). In addition, any base model can be modeled.

The confirmatory procedure proposed by Kieser and Victor (1999)
involves estimating the parameters in τ for a priori specified type- and
antitype-constituting cells. The exploratory procedure proceeds in the
following steps:

1. Estimate the first base model and calculate the LR − X2 for this model.
If the model fits, stop, and no type or antitype resulted (this is no different
than in standard CFA).

2. If the model does not fit, blank out each single cell, one after the other,
(that is, declare each individual cell a structural zero; see Chapter 3) and
calculate the ∆LR−X2 with respect to the first base model. If this ∆LR−X2

is significant, the cell that was blanked out for this step is a candidate to
constitute a type or antitype. If not, the procedure terminates here.

3. Add the vector for the cell with the largest ∆LR − X2, or, equivalently,
the smallest overall LR − X2, to the design matrix for the base model, and
iterate Step 2 until the model fits.

The result of this procedure is, typically, (1) an extended base model that
fits and (2) a pattern of types and antitypes. In addition, the results of
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TABLE 10.2. LR−X2 Values That Result When Individual Cells of the Cross-Classification
in Table 10.1 Are Blanked Out

Blanked-Out Cell 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

LR − X2 21.48 63.88 86.13 63.88 88.17 69.57 86.13 69.57 80.05

Kieser and Victor’s CFA are usually more parsimonious than the results
of standard CFA because blanking out cells reduces the probability of
phantom types/antitypes emerging.

To illustrate this procedure, consider again the example in Table 10.1.
The base model for this 3 × 3 table comes with the design matrix

X =







































































1 0 1 0
1 0 0 1
1 0 −1 −1
0 1 1 0
0 1 0 1
0 1 −1 −1
−1 −1 1 0
−1 −1 0 1
−1 −1 −1 −1
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The LR−X2 for the base model is 88.17 (d f = 4). Blanking out one individual
cell after the other, we obtain the LR − X2 values given in Table 10.2.

Clearly, the largest effect is observed when Cell 1 1 is blanked out
(LR − X2 is smallest). The ∆LR − X2 for the base model and the model
after blanking out Cell 1 1 is 66.69 (∆d f = 1; p < 0.01). We, therefore, add
the vector that blanks out Cell 1 1 to the design matrix of the original base
model and obtain the following new design matrix:

X =







































































1 0 1 0 1
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1 0 −1 −1 0
0 1 1 0 0
0 1 0 1 0
0 1 −1 −1 0
−1 −1 1 0 0
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The additional vector has the effect that Cell 1 1 is blanked out. We now
proceed as in the last step and calculate the LR − X2 values for the model
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TABLE 10.3. LR−X2 Values That Result When Individual Cells of the Cross-Classification
in Table 10.1 Are Blanked Out (Cell 1 1 Already Blanked out)

Blanked-Out Cell 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

LR − X2 — 16.63 16.63 16.63 20.22 12.56 16.63 12.56 0.00

after blanking each of the remaining cells out. The result of this step is
summarized in Table 10.3.

The results in Table 10.3 are clear. Each of the new base models improves
model fit. One of them stands out. If Cell 3 3 is blanked out, the remaining
cell frequencies are perfectly reproduced, the LR−X2 becomes zero (d f = 2),
and the search for types and antitypes can be concluded. Cell 1 1 constitutes
an antitype and Cell 3 3 constitutes a type. The design matrix for this model
is

X =







































































1 0 1 0 1 0
1 0 0 1 0 0
1 0 −1 −1 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 1 −1 −1 0 0
−1 −1 1 0 0 0
−1 −1 0 1 0 0
−1 −1 −1 −1 0 1
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The result of this analysis has four important characteristics:

• The type/antitype structure perfectly depicts the structure of the
frequency table (Table 10.1).

• The resulting pattern of types and antitypes is more parsimonious
than that of standard CFA, which needed three types and two
antitypes to describe deviations from the base model.

• The model used to describe the data structure does not consider the
cells that deviate from the data structure.

• The extended base model fits. This characteristic greatly facilitates
the interpretation of types and antitypes. They now reflect deviations
from a fitting base model. In contrast, in standard CFA, the
base model does not necessarily fit after types and antitypes were
identified. Thus, the data structure that types and antitypes deviate
from can be unclear.
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10.1.2 von Eye and Mair’s Sequential CFA: Focus on Residuals

Kieser and Victor’s approach to sequential CFA has three characteristics
that make it attractive in the context of configural frequency analysis.
First, the probability of falling for phantom types or antitypes is greatly
reduced. Therefore, second, the role that each individual cell plays in
the description of a table and in the identification of types and antitypes
becomes clear: Types and antitypes clearly suggest deviations from an
otherwise fitting model instead of possibly reflecting dependence of CFA
tests. Third, the solutions obtained from Kieser and Victor’s method usually
are more parsimonious than the solutions from standard CFA.

However, there are two downsides to Kieser and Victor’s CFA. The
first is that it can be numerically intensive. After the first step (fitting a
base model), c log-linear models have to be estimated; after this step, c − 1
models have to be estimated, and so forth. Second, the focus of Kieser and
Victor’s method is the fit of the base model. Types and antitypes are a mere
by-product.

Therefore, von Eye and Mair (2008a, 2008b, 2009) proposed an
alternative to Kieser and Victor’s method. This alternative also proceeds
iteratively by blanking out cells one by one until some criteria are fulfilled.
However, the focus of this method is on the magnitude of individual cell
residuals instead of global goodness-of-fit statistics. This method proceeds
in the following steps:

1. Estimate the base model and calculate the LR −X2 for this model. If the
model fits, stop, and no type or antitype resulted (this is no different than
in standard CFA or in Kieser and Victor’s sequential CFA).

2. Select the cell with the largest absolute residual, blank it out, and
reestimate the thus extended base model.

3. One after the other, blank out the cell with the largest residual (that is,
declare each individual cell a structural zero), until either the base model
fits or there is no residual left to blank out.

In contrast to Kieser and Victor’s CFA, the overall goodness-of-fit plays
no role in this procedure until the base model fits, that is, until the
overall goodness-of-fit statistic indicates no significant overall model-data
discrepancies any more.

To illustrate this procedure, we use the data example in Table 10.1 again.
In this table, the largest residual was calculated for Cell 1 1 (z = −5.57; see
Table 10.1). In the second step of von Eye and Mair’s procedure, this cell
will be blanked out and the CFA will be reestimated. The results of this run
appear in Table 10.4.
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TABLE 10.4. CFA of the Data in Table 10.1 after Blanking Out Cell 1 1

Configuration
X Y

m m̂ z p Type/Antitype

11 10 — — —
12 100 86.957 1.3988 .080943
13 100 113.043 −1.2268 .109951
21 100 86.957 1.3988 .080943
22 100 92.628 .7660 .221833
23 100 120.416 −1.8605 .031408
31 100 113.043 −1.2268 .109951
32 100 120.416 −1.8605 .031408
33 190 156.541 2.6743 .003745 Type

TABLE 10.5. CFA of the Data in Table 10.1 after Blanking Out Cells 1 1 and 3 3

Configuration
X Y

m m̂ z p Type/Antitype

11 10 — — —
12 100 100 .0000 .500000
13 100 100 .0000 .500000
21 100 100 .0000 .500000
22 100 100 .0000 .500000
23 100 100 .0000 .500000
31 100 100 .0000 .500000
32 100 100 .0000 .500000
33 190 — — —

The design matrix for this model is the same as the one for the second
step in Victor and Kieser’s model. The overall goodness-of-fit is also the
same. Most important for the present purposes is that the number of types
and antitypes now is dramatically reduced. Only one residual is significant,
from a CFA perspective. This is the residual for Cell 3 3. Blanking out this
cell results in the second of the above design matrices. The results of the
CFA that uses this design matrix as its extended base model are given in
Table 10.5.

The results in this table replicate the results in Section 10.1.1. The fit of
the extended base model is perfect, Cell 1 1 constitutes an antitype, and Cell
3 3 constitutes a type. It should be noted, however, that when empirical data
are analyzed and the data structure is not known before analysis (as is the
case in the present example), the methods presented in Sections 10.1.1 and
10.1.2 will rarely yield the same type/antitype pattern. The data examples
provided by von Eye and Mair (2008a) illustrate this difference.
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The method presented in this section is straightforward and more
economical than the method proposed by Kieser and Victor (1999).
Specifically, at each step, only one CFA needs to be performed. The
maximum number of CFA runs is, therefore, d f − 1, which is much smaller
than the number of log-linear models that need to be estimated for Kieser
and Victor’s procedure.

When focusing on residuals in a CFA context, researchers make
decisions concerning the protection of the significance threshold, α.
Usually, the total number of tests is used as the basis for determining α. In
the present context, this number is unknown. It can maximally be (d f − 1)c
and minimally c. If a researcher uses (d f − 1)c as the reference number, the
resulting α-level can be prohibitively small, with the effect that (1) no types
or antitypes are identified and (2) the base model does not fit. Alternatively,
if c is used as reference number, α may not be properly protected, and
researchers may capitalize on chance. A third option discussed by von
Eye and Mair is even more liberal. It involves always selecting the largest
residual, regardless of significance level, until either the extended base
model fits or there is no cell left to be blanked out.

Another decision to be made by the researchers concerns the residual
measure to be used. In the present and the following examples, we used
the standard normal z statistic. Alternatively, Pearson’s X2 can be used,
Lehmacher’s z, the adjusted residual, the Freeman-Tukey deviate (the
software package SYSTAT uses this statistic to identify outlandish cells
that have an interpretation similar to types and antitypes in Kieser and
Victor’s CFA), even the tail probability of the binomial test. Depending
on the distributions and the power of these and other statistics, different
patterns of types and antitypes may result (Indurkhya & von Eye, 2000;
von Eye & Mun, 2003; von Weber et al., 2004). This issue, however, is well
known from many statistical applications. The selection of test statistics
can influence the results of statistical testing.

In sum, the main characteristics of von Eye and Mair’s F-CFA include
that

1. types and antitypes can be interpreted as deviations from a model that
fits the structure of the remaining cells in the table (Victor and Kieser’s
version of F-CFA shares this characteristic); in contrast, the interpretation
of types and antitypes from standard CFA can be unclear when the base
model does not fit after types and antitypes are taken into account;

2. the probability of falling for phantom types and antitypes is very small
(Victor and Kieser’s version of F-CFA shares this characteristic); and

3. it retains the focus on local deviations from a base model that otherwise
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TABLE 10.6. First Order CFA of Glück’s Spatial Strategy Data

Configuration
R P V

m m̂ z p Type/Antitype

111 30 164.480 −13.8295 .000000 Antitype
112 59 28.132 6.1967 .000000 Type
121 304 236.873 6.5911 .000006 Type
122 77 40.515 6.2593 .000000 Type
211 1215 1069.467 11.0785 .000000 Type
212 141 182.921 −4.1341 .000018 Antitype
221 1462 1540.180 −5.7994 .000000 Antitype
222 238 263.432 −2.4032 .008126 Antitype

fits; this focus is shared with standard CFA but not with Kieser and Victor’s
CFA.

Data Example 1: The following example uses data from a study on
strategies employed when solving spatial ability tasks (Glück, 1999; Glück
& von Eye, 2000). 181 high school students processed the 24 items of a
cube comparison task. After completing this task, the students indicated
the strategies they had used to solve the task. Three strategies were used:
Mental Rotation (R), Pattern Comparison (P), and Change of Viewpoint (V).
Each of these strategies was coded as either not used (= 1) or used (= 2).
In the following analyses, we ask whether patterns of strategy use versus
nonuse stand out. We use von Eye and Mair’s alternative, sequential CFA.
The first step of this method involves performing a standard CFA. Here, we
apply first order CFA, using the standardized Pearson residual (see Section
1.3) and the Holland-Copenhaver procedure. The results of this analysis
are given in Table 10.6.

The overall goodness-of-fit LR−X2 = 271.86 (d f = 4; p < 0.01) suggests
poor model-data correspondence. We, therefore, expect types and antitypes
to emerge.

The result in Table 10.6 is extreme in the sense that, with no exception,
each cell constitutes a type or an antitype. Instead of interpreting these
many configurations, we ask whether the sequential CFA discussed in this
section can suggest a more parsimonious solution. Note that the focus of
the following reanalysis is on the parsimony of a CFA solution. It is hard
to discuss the possible existence of phantom types or antitypes when there
are no a priori hypotheses concerning the data structure. The design matrix
for the base model of the CFA in Table 10.6 was (constant implied)
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TABLE 10.7. First Order CFA of Glück’s Spatial Strategy Data; Cell 1 1 1 Blanked Out

Configuration
R P V

m m̂ z p Type/Antitype

111 30 — — — Antitypea

112 59 43.970 2.5340 .011707
121 304 341.992 −4.8299 .000000 Antitype
122 77 54.038 3.4910 .000241 Type
211 1215 1183.953 3.0025 .001339 Type
212 141 187.077 −4.4866 .000004 Antitype
221 1462 1455.056 .5995 .274420
222 238 229.914 .7910 .214471

aThis antitype is the result of the first in the sequence of steps in F-CFA.
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The largest residual in Table 10.6 was calculated for Cell 1 1 1 (z = −13.83).
In the next step, we blank this cell out and reestimate the CFA. The design
matrix for this run is

X =
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where the last column has the effect that Cell 1 1 1 is blanked out.

The results from this run are displayed in Table 10.7. The overall
goodness-of-fit for this run is dramatically and significantly reduced, from
LR − X2 = 271.86 (d f = 4; p < 0.01) to LR − X2 = 31.17 (d f = 3; p < 0.01).
Still, this result indicates that significant model-data discrepancies remain.
We, therefore, expect types and antitypes to emerge again.
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Table 10.7 shows that two types and two antitypes remain. The
procedure, therefore, continues its iterations. The next cell to be blanked
out is 1 2 1 (see Table 10.7). After blanking out Cell 1 2 1, the overall
goodness-of-fit is significantly reduced again, to LR − X2 = 9.17 (d f = 2;
p = 0.01). This reduction in LR − X2, however, is still not enough to result
in a fitting base model. The CFA table after blanking out Cells 1 1 1 and 1 2
1 (not shown here) suggests that there is no cell left that, under protection
of α, would constitute a type or an antitype. Considering, however, that
this base model does not fit either and that Cell 2 1 2 comes with a z score
that would be significant without α protection, we proceed and blank this
cell out also. The design matrix for the extended base model for this run is

X =































































1 1 1 1 0 0
1 1 −1 0 0 0
1 −1 1 0 0 0
1 −1 −1 0 1 0
−1 1 1 0 0 0
−1 1 −1 0 0 1
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−1 −1 −1 0 0 0
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The results from this run appear in Table 10.8. Table 10.8 shows that no
cell is left that could be considered constituting a type or an antitype. The
overall goodness-of-fit is significantly reduced once more, to LR−X2 = 0.21
(d f = 1; p = 0.646). This result suggests that model fit is close to perfect.

Table 10.8 also shows that, in the third step, two configurations were
blanked out instead of only one. The decision to blank out two cells if
certain conditions are met is discussed in the next section, 10.2.

The result of this analysis is that the alternative sequential CFA yielded
two types and three antitypes. The first type is constituted by Configuration
1 2 2. It indicates that the two strategies of Pattern Comparison (P) and
Change of Viewpoint (V) were used more often in tandem than expected.
The second type, constituted by Configuration 2 2 2, shows that all three
strategies are used together more often than expected. The first antitype,
constituted by Configuration 1 1 1, suggests that using no strategy at all
was reported less often than expected. The second antitype, constituted by
Configuration 1 2 1, suggests that Pattern Comparison is rarely used as the
sole strategy. The third antitype, constituted by Configuration 2 1 2, shows
that the two strategies Mental Rotation (R) and Change of Viewpoint (V)
were less often used together than expected. For a more detailed analysis
of these data, see Glück and von Eye (2000).

When compared with the results of standard CFA (Table 10.6), the
results of von Eye and Mair’s functional sequential CFA are more
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TABLE 10.8. First Order CFA of Glück’s Spatial Strategy Data; Cells 1 1 1, 2 1 2, and
1 2 2 Blanked Out

Configuration
R P V

m m̂ z p Type/Antitype

111 30 — — — Antitypea

112 59 61.59 −.4581 .323440
121 304 — — — Antitypea

122 77 74.41 .4581 .323440
211 1215 1212.41 .4581 .323440
212 141 — — — Antitypea

221 1462 1464.59 −.4581 .323440
222 238 — — —

aThese antitypes is the result of earlier steps in the sequence of steps in
F-CFA.

parsimonious. Two types instead of four, and three antitypes instead
of four, resulted. In other words, 37.5% of the cells that standard CFA
marked as types and antitypes may not be needed for the description of the
configural characteristics of Glück’s spatial strategy data, under the base
model of first order CFA.

To compare Kieser and Victor’s approach with von Eye and and Mair’s
approach, we also analyzed Glück’s (1999) spatial strategy data, using
Kieser and Victor’s sequential CFA. The results of this analysis are the
same as the results from von Eye and Mair’s analysis. Therefore, they are
not reported here in any detail. However, it should be emphasized that, in
many data sets, the two alternative strategies can yield different appraisals
of the type-antitype structure in a table (for examples, see von Eye & Mair,
2008b).

In general, it is not only possible but likely that the two methods yield
different outcomes. The choice between the two methods is clear. If
researchers focus on fitting a base model, Kieser and Victor’s method is
selected. If, however, the focus is, at each step, on the largest model-data
discrepancy, that is, on types and antitypes, von Eye and Mair’s method
is selected. Both methods prevent researchers from interpreting phantom
types and antitypes.

10.2 Special Case: One Dichotomous Variable

An interesting case that can have effects on the selection of cells to be
blanked out in F-CFA was discussed by von Eye and Mair (2008b) and is
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TABLE 10.9. First Order CFA of Wurzer’s Waiting Data

Configuration
W P

m m̂ z p Type/Antitype

11 173 142.102 5.2366 .0000 Type
12 76 106.898 −5.2366 .0000 Antitype
21 50 54.216 −.9555 .3393
22 45 40.784 .9555 .3393
31 15 15.409 −.1627 .8707
32 12 11.591 .1627 .8707
41 51 61.064 −2.1765 .0295
42 56 45.936 2.1765 .0295
51 27 39.948 −3.3343 .0009 Antitype
52 43 30.052 3.3343 .0009 Type
61 15 18.262 −1.1985 .2307
62 17 13.738 1.1985 .2307

given in Table 10.8 in Section 10.1.2. Consider the situation in which one of
the variables used to span a table is dichotomous. For this table, standard
CFA can be performed.

So far, the decision as to which cell to blank out next was based on the
largest absolute value of a residual. If two scores are exactly the same,
this rule is no longer applicable. When the standardized Pearson residual
is used, as was the case in the data example in the last chapter (see Table
9.1), or Lehmacher’s asymptotic hypergeometric test, the residual scores
for corresponding categories of the dichotomous variable will be the same
(see Table 10.8), and a single largest absolute value of residual scores is
not defined any more. Therefore, von Eye and Mair propose that, in these
cases, the cells with exactly the same absolute residual be blanked out
simultaneously. An illustration is given in the following data example.

Data Example 2: Consider the following data example (from Wurzer,
2005). The variable Weather is crossed with the variable Waiting at a Public
Internet Terminal (self-reported). Weather (W) has the six categories 1 =
dry and warm, 2 = dry and cold, 3 = raining and warm, 4 = raining and
cold, 5= snowing and warm, and 6= snowing and cold. Waiting at a Public
Internet Terminal (P) had categories 1= yes, and 2 = no. Table 10.9 displays
the results of first order CFA of Wurzer’s waiting data. The standardized
Pearson residual was used. The LR − X2 for this model is 31.82 (d f = 5;
p < 0.01).

Clearly, when, for dichotomous data, the standardized Pearson residual
(or Lehmacher’s test) is used, identical ri scores (in absolute values) result
for corresponding cells. When F-CFA is used, the corresponding type- and
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antitype-constituting cells have to be blanked out simultaneously. In the
analysis of Wurzer’s data, the first iteration step would involve blanking
out both Cells 1 1 and 1 2.

10.3 F-CFA II: Explaining Types and Antitypes

In Section 10.1, we presented two approaches to F-CFA that lend a new
meaning to CFA types and antitypes. In contrast to standard CFA where
the base model may not fit, types and antitypes in functional CFA indicate
deviations from an otherwise fitting base model. In the present section, we
present a second approach to F-CFA. We ask which effects in a log-linear
model explain the types and antitypes in a table, given a particular base
model. The term explain is used when the effects are identified that have
the following characteristics: They

1. are not included in the base model;

2. make types and antitypes completely disappear;

3. do not result in new types and antitypes; and

4. are most parsimonious in the sense that the effects used for
explanation are as small in number as possible and of the lowest
possible order.

Effects that have these characteristics will be termed type-constituting or
antitype-constituting. Both hierarchical and nonhierarchical models are
considered. Two strategies are discussed. The first is called ascending,
inclusive. The second is called descending, exclusive1. Both methods examine
all models that fulfill specified conditions. Both methods can result in
nonhierarchical models. They can also result in nonstandard models (for
the distinction between non-hierarchical and nonstandard models, see Mair
& von Eye, 2007) when covariates are part of the base model, cells need
to be blanked out for reasons other than configural analysis, or if the table
contains structural zeros. In the remainder of this chapter, we focus on
log-linear base models. However, other types of base models can be used
in the context of functional CFA also.

1Note that, for the descending, exclusive strategy, the concept of explaining a type/antitype
pattern is slightly changed from the present definition (see Section 10.3.2).



Functional CFA 191

10.3.1 Explaining Types and Antitypes: The Ascending, Inclusive
Strategy

The CFA base model serves two purposes (von Eye, 2004a). First, it
provides the basis for the estimation of expected cell frequencies that are
used when testing cell-wise CFA null hypotheses. Second, it represents the
variable relationships that describe the population that types and antitypes
deviate from. Using CFA, these types and antitypes are identified.

Log-linear modeling is usually employed to pursue different goals.
Under the assumption that all respondents belong to the same population,
the method is used to model the variable relationships present in a
population (Goodman, 1984). If this goal can be reached, deviations from
the estimated expected cell frequencies will be random, and types and
antitypes will not emerge.

The variant of F-CFA to be introduced in this chapter combines these
two goals. This variant is used to find those variable relationships that
explain types and antitypes. The ascending, inclusive strategy involves
systematically adding/removing terms and effects to/from a base model
until a model is found that fits and the four characteristics listed above are
fulfilled.

To describe the method, consider a cross-classification that is spanned
by d variables. Then, the ascending, inclusive strategy to F-CFA involves
the following steps:

1. Estimate the CFA base model of interest. This can be any base model
(except, naturally, the saturated model).

2. Proceed to add the lowest hierarchical-level effect to the base model. If
the base model is a global base model, proceed to the next higher hierarchical
level. If, however, there are terms at this hierarchical level that are not part
of the base model, select any of these terms and perform a CFA that includes
this extra term. For this model, ask (1) whether all types and antitypes have
disappeared, (2) whether no new types or antitypes have emerged, and (3)
whether the model fits. If all three conditions are fulfilled, continue the
model-fitting-plus-CFA at this hierarchical level, until all possible models
at this hierarchical level have been tested. Completing these hierarchical
steps one hierarchical level at a time is necessary to determine whether
alternative models exist that are equally parsimonious and also explain all
types and antitypes. These models differ from one another because they
contain, in addition to the base model that they share, individual terms
that are unique to a model. Consider, for example, the base model of a
first order CFA of the three variables A, B, and C. This model contains all
main effects of these three variables. The next higher hierarchical model



192 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

includes two-way interactions. So, the first model to be considered would
include the three main effects and, say, the interaction [A,B]. The next
model to be considered would include the three main effects and, say, the
interaction [A,C]. Suppose this model explains the types and antitypes
that had emerged under the base model. Then, the search would continue
with the last possible model at this hierarchical level. This is the model
that includes the interaction [B,C]. After estimation of this model, the
search can stop. Models with more than one interaction do not need to be
considered, because they are less parsimonious, even if they also explain
types and antitypes2.

3. If the individual terms that are examined in the second step do not
allow one to explain the types and antitypes, proceed and create all pairs
of interaction terms. Include each of them in the base model. For each
model, ask the questions listed above, under Step 2. For the three variables
A, B, and C, in the example under Step 2, this step involves estimating
the models that include the three pairs of two-way interactions [A,B] and
[A,C], [A,B] and [B,C], and [B,C] and [A,C].

4. Proceed, if needed, by creating all possible triplets, quadruplets, etc.
of two-way interactions. For the three variables A, B, and C, there is
only one triplet of two-way interactions that can be formed, the triplet
[A,B][A,C][B,C].

5. If needed, proceed to the next higher hierarchical level.

6. Combine the effects from the lower levels with those from the higher
levels of the hierarchy of effects. Note that this can lead to nonhierarchical
models when higher order effects are used without the corresponding lower
order effects. Focusing on hierarchical models may reduce the number of
models to be estimated. However, the risk that comes with this decision is
that more parsimonious models may be overlooked.

7. Move up in hierarchical level as long as needed for an explanation of all
types and antitypes.

Data Example 3: For the following example, we use data from a study on the
satisfaction of welfare recipients in Mexico with the services provided by the

2Note that, in the present context, the term parsimonious is defined as using terms at a
hierarchical level as low as possible. Other definitions also include degrees of freedom.
Under these alternative definitions, nonhierarchical models that include terms from higher
hierarchical levels can be more parsimonious than models at lower hierarchical levels if they
use fewer degrees of freedom. In addition, nonstandard models can be more parsimonious
than standard hierarchical models.
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TABLE 10.10. First Order CFA of the Cross-Classification of Desire to Use Services
Again (A), Recommendation (R), and Satisfaction (S)

Configuration
A R S

m m̂ z p Type/Antitype

111 63 11.505 15.1819 .000000 Type
112 10 7.755 .8063 .210029
113 1 6.166 −2.0803 .018748
121 8 14.457 −1.6983 .044727
122 6 9.745 −1.1996 .115147
123 0 7.748 −2.7835 .002689 Antitype
131 2 14.763 −3.3217 .000447 Antitype
132 0 9.951 −3.1545 .000804 Antitype
133 0 7.912 −2.8127 .002456 Antitype
211 18 15.468 .6439 .259817
212 8 10.426 −.7512 .226254
213 0 8.289 −2.8791 .001994 Antitype
221 42 19.437 5.1177 .000000 Type
222 31 13.101 4.9450 .000000 Type
223 9 10.417 −.4389 .330362
231 2 19.848 −4.0062 .000031 Antitype
232 6 13.378 −2.0172 .021838
233 5 10.637 −1.7283 .041967
311 7 24.160 −3.4912 .000241 Antitype
312 3 16.285 −3.2920 .000497 Antitype
313 3 12.948 −2.7646 .002850 Antitype
321 19 30.360 −2.0618 .019614
322 18 20.464 −.5447 .292987
323 9 16.271 −1.8025 .035736
331 20 31.002 −1.9759 .024081
332 40 20.896 4.1791 .000015 Type
333 70 16.614 13.0974 .000000 Type

state again (Lobato et al., 2007). 400 respondents indicated on three-point
scales whether they found the variety of services satisfactory (S), whether
they would use the services again (A), and whether they would recommend
the services they received (R). The Satisfaction scale was coded as 1 = little
or no satisfaction, 2 = average satisfaction, and 3 = high satisfaction. The
other two scales were coded in a parallel fashion. In the first step of
analysis, we perform a first order CFA of variable independence on the 3 ×
3 × 3 cross-classification of these three variables. We use the z-test and the
Holland-Copenhaver procedure of α protection. Results of this analysis
appear in Table 10.10. The LR − X2 for the model is large and significant,
449.18 (d f = 20; p < 0.01). Types and antitypes are, therefore, bound to
emerge.

As expected based on the large LR − X2, the table contains many
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types and antitypes. Three of the five types describe respondents who
give the same score to each of the three questions. For example, the
first type is constituted by Configuration 1 1 1. These are respondents
who express negative attitudes throughout. Configuration 2 2 2 describes
respondents who express medium levels of satisfaction, and Configuration
3 3 3 describes respondents who express high levels of satisfaction. The
two remaining types, constituted by configurations 2 2 1 and 3 3 2, show
deviations from uniform responses by only one scale point.

In contrast, each of the nine antitypes shows at least one deviation
among responses by two scale points. For example, it is very unlikely that
a respondent indicates that he/she will probably not use the services again,
that he/she is ambivalent about recommending the services provided by
the state to someone else, but that he/she is highly satisfied with the services
(Antitype 1 2 3). Similarly, it is also very unlikely that a respondent indicates
that he/she will most likely use the services again, that he/she will not
recommend the services provided by the state, and that he/she is highly
dissatisfied with the services (Antitype 3 1 1).

We now ask, which combination of the four possible interactions causes
these many types and antitypes to emerge. The four possible interactions
are [A,R], [A, S], [R, S], and [A,R, S]. If the three-way interaction is used
alone or in combination with some of the three two-way interactions,
the model that explains the types and antitypes in Table 10.10 will be
non-hierarchical. None of the main effects can be omitted because they are
part of the base model that resulted in this type/antitype pattern shown in
Table 10.10.

Proceeding as indicated above, we first add each of the two-way
interactions to the base model separately. The entry order of terms in
this process is of no importance. This results in three models. If none of
the three two-way interactions singly explains all 14 types and antitypes in
Table 10.11, we create all possible pairs of two-way interactions. This
results in three more models. If this is still not enough, we consider
all three two-way interactions simultaneously, which requires one more
model. Taken together, we need to perform seven CFAs before we even
consider the three-way interaction (this number includes the original CFA).

Table 10.11 summarizes the results from the search for a model that
explains all five types and nine antitypes in Table 10.10. The table shows
the LR − X2 for each model, the degrees of freedom; it indicates whether
all types and antitypes disappeared and whether new types or antitypes
emerged.

Table 10.11 shows an interesting result. Two models, with different
degrees of freedom but located at the same hierarchical level, fulfill the
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TABLE 10.11. Ascending, Inclusive Search for and Explanation of the Five Types and
Nine Antitypes in Table 10.10

New Terms in Model LR − X2 d f p Types/Antitypes
Disappeared?

New
Types/Antitypes?

[A,R] 170.07 16 0.00 No Yes
[A,S] 329.62 16 0.00 No Yes
[R,S] 308.09 16 0.00 No Yes
[A,R][R,S] 28.98 12 0.00 No Yes
[A,S][R,S] 188.53 12 0.00 No No
[A,R][A,S] 50.51 12 0.00 Yes No
[A,R][A,S][R,S] 10.08 8 0.26 Yes No

TABLE 10.12. Second Order CFA of the Cross-Classification of Desire to Use Services
Again (A), Recommendation (R), and Satisfaction (S)

Configuration
A R S

m m̂ z p

111 63 62.200 .1015 .459592
112 10 11.178 −.3523 .362308
113 1 .622 .4787 .316072
121 8 9.797 −.5742 .282921
122 6 3.980 1.0126 .155615
123 0 .223 −.4722 .318402
131 2 1.003 .9956 .159733
132 0 .842 −.9178 .179366
133 0 .155 −.3933 .347040
211 18 17.976 .0056 .497751
212 8 6.457 .6074 .271789
213 0 1.567 −1.2519 .105298
221 42 40.792 .1891 .425004
222 31 33.119 −.3682 .356366
223 9 8.089 .3203 .374355
231 2 3.232 −.6852 .246622
232 6 5.425 .2471 .402423
233 5 4.344 .3149 .376431
311 7 7.824 −.2946 .384142
312 3 3.366 −.1993 .421025
313 3 1.810 .8842 .188295
321 19 18.411 .1374 .445369
322 18 17.901 .0233 .490693
323 9 9.688 −.2211 .412514
331 20 19.765 .0528 .478952
332 40 39.733 .0423 .483116
333 70 70.502 −.0597 .476185
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conditions that (1) all types and antitypes disappeared and (2) no new types
or antitypes emerged. The first of these models adds the interactions [A,R]
and [A, S] to the base model (second row from bottom in Table 10.11). The
largest z-score for this model is 2.85 for Cell 2 3 3. The tail probability for this
score is 0.007, a value that is larger than the protected α∗ = 0.002. Therefore,
Cell 2 3 3 does not constitute a type. From a pure CFA perspective, this
model does not yield any types or antitypes. However, overall, the model
does not fit. The overall goodness-of-fit LR − X2 for this model is 50.51.
This value indicates that significant model-data discrepancies exist. For this
reason, we decide that all three pairs of two-way interactions are needed
to explain the data (this is the model shown in the last row of Table 10.11).
This model does not result in any types or antitypes at all. The largest
z-score is −1.252, for Cell 2 1 3. The tail probability for this score is 0.895. In
addition, there is no significant model-data discrepancy, as is indicated by
the LR−X2 in Table 10.11. This model, therefore, fulfills all three conditions,
and we retain it as the one that explains the five types and nine antitypes
in Table 10.10.

The CFA results that are based on this model appear in Table 10.12.
Because it includes all possible two-way interactions, this model is
equivalent to the base model of second order CFA. The z-test and the
Holland-Copenhaver procedure were used again. No types or antitypes
emerged.

In the following paragraphs, we show how the design matrix for the
first order CFA base model that was used for Table 10.10 changed for the
model that was used for Table 10.12. This is done for two reasons. First, it
illustrates the models that are used in F-CFA. These models are not always
the same as the ones used in standard CFA. Second, these design matrices
are used to briefly describe an alternative strategy to explaining types and
antitypes by using F-CFA. The first design matrix shown here is that of the
first order CFA model.
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X =











































































































































































































































0 1 1 0 1 0
0 1 0 0 1 1
0 1 −1 0 1 −1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 −1 1 1 −1
0 −1 1 −1 1 0
0 −1 0 −1 1 1
0 −1 −1 −1 1 −1
1 1 1 0 0 0
1 1 0 0 0 1
1 1 −1 0 0 −1
1 0 1 1 0 0
1 0 0 1 0 1
1 0 −1 1 0 −1
1 −1 1 −1 0 0
1 −1 0 −1 0 1
1 −1 −1 −1 0 −1
−1 1 1 0 −1 0
−1 1 0 0 −1 1
−1 1 −1 0 −1 −1
−1 0 1 1 −1 0
−1 0 0 1 −1 1
−1 0 −1 1 −1 −1
−1 −1 1 −1 −1 0
−1 −1 0 −1 −1 1
−1 −1 −1 −1 −1 −1











































































































































































































































The order of effects in this design matrix is: main effects of A2

(Categories 2 vs. 3), R1 (Categories 1 vs. 3), S1 (Categories 1 vs. 3), R2

(Categories 2 vs. 3), A1 (Categories 1 vs. 3), and S2 (Categories 2 vs. 3). For
main effects, two vectors in the design matrix are needed when a variable
has three categories. The order of the columns in the design matrix has no
consequences for the estimates of parameters or expected cell frequencies.
Therefore, we reproduce the design matrices here as they are printed by
the CFA program discussed in Chapter 13.

The design matrix for the final model, results for which are printed in
in Table 10.12, appears next. This is the model that includes, in addition to
the three main effects, all three two-way interactions.
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X =





















































































































0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0
0 1 −1 0 1 −1 0 −1 −1 0 0 −1 −1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0
0 0 −1 1 1 −1 0 0 0 −1 −1 −1 −1 0 1 0 0 0
0 −1 1 −1 1 0 0 −1 0 −1 0 1 0 −1 −1 0 0 0
0 −1 0 −1 1 1 0 0 −1 0 −1 0 1 −1 −1 0 0 0
0 −1 −1 −1 1 −1 0 1 1 1 1 −1 −1 −1 −1 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1
1 1 −1 0 0 −1 0 −1 −1 0 0 0 0 0 0 −1 −1 1
1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0
1 0 −1 1 0 −1 1 0 0 −1 −1 0 0 0 0 −1 −1 0
1 −1 1 −1 0 0 −1 −1 0 −1 0 0 0 0 0 1 0 −1
1 −1 0 −1 0 1 −1 0 −1 0 −1 0 0 0 0 0 1 −1
1 −1 −1 −1 0 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1
−1 1 1 0 −1 0 0 1 0 0 0 −1 0 −1 0 −1 0 −1
−1 1 0 0 −1 1 0 0 1 0 0 0 −1 −1 0 0 −1 −1
−1 1 −1 0 −1 −1 0 −1 −1 0 0 1 1 −1 0 1 1 −1
−1 0 1 1 −1 0 −1 0 0 1 0 −1 0 0 −1 −1 0 0
−1 0 0 1 −1 1 −1 0 0 0 1 0 −1 0 −1 0 −1 0
−1 0 −1 1 −1 −1 −1 0 0 −1 −1 1 1 0 −1 1 1 0
−1 −1 1 −1 −1 0 1 −1 0 −1 0 −1 0 1 1 −1 0 1
−1 −1 0 −1 −1 1 1 0 −1 0 −1 0 −1 1 1 0 −1 1
−1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1





















































































































This design matrix contains 18 column vectors. The first 6 of these
are for the main effects. These are the same vectors as in the first design
matrix shown in this section. The remaining 12 are for the three two-way
interactions among A, R, S. The order of these 12 vectors is A2R2, R1S1,
R1S2, R2S1, R2S2, A1S1, A1S2, A1R1, A1R2, A2S1, A2S2, and A2R1. Again, the
order of vectors is of no importance for the results of computation.

F-CFA, as it is described in the present chapter, operates at the level
of main effects and interactions. By implication, as soon as variables have
more ki > 2 categories, ki − 1 > 1 vectors are added for the main effect of
variable i, (ki−1)(k j−1) vectors are added for each two-way interaction (i ,
j), (ki−1)(k j−1)(kl−1) vectors are added for each three-way interaction (i ,
j , l), and so on. Now, using design matrices, F-CFA can be reformulated
so that individual vectors are added to the design matrix instead of all
vectors for a particular effect. This procedure would increase the number
of steps to perform by F-CFA. However, each step would be simple, and the
final solution has the potential of being more parsimonious. Consider the
model used for Table 10.12. This model, for which the parameter estimates
are given in Table 10.13, was estimated by using SYSTAT 12.

As can be seen, not all parameters of the model are significant. For
example, the parameter for the A2 × S2 part of the A × S interaction (sixth
row from bottom of Table 10.13) comes with a z-score of −0.108 (p = 0.46).
Similarly, the parameter for the R1 × S2 part of the R× S interaction (fourth
row from bottom of Table 10.13) comes with a z-score of −0.699 (p = 0.24).
Based on these results, one can attempt to make the final model more
parsimonious by eliminating nonsignificant parameters as long as possible,



Functional CFA 199

TABLE 10.13. Parameter Estimates for the Model in Table 10.12

Effect Parameter se z-value

S1 0.686 0.136 5.054
S2 0.278 0.140 1.978
R1 −0.092 0.159 −0.577
R2 0.396 0.136 2.912
A1 −1.085 0.277 −3.917
A2 0.319 0.165 1.932
[A1,R1] 1.426 0.200 7.138
[A1,R2] −0.364 0.212 −1.717
[A2,R1] −0.267 0.160 −1.672
[A2,R2] 0.610 0.143 4.274
[A1,S1] 0.763 0.262 2.918
[A1,S2] 0.242 0.279 0.868
[A2,S1] −0.189 0.164 −1.153
[A2,S2] −0.018 0.170 −0.108
[R1,S1] 0.657 0.167 3.944
[R1,S2] −0.129 0.184 −0.699
[R2,S1] 0.111 0.126 0.885
[R2,S2] 0.141 0.129 1.091
CONSTANT 1.774 — —

that is, as long as (1) the model still fits, (2) all types and antitypes disappear,
and (3) no new types or antitypes emerge.

10.3.2 Explaining Types and Antitypes: The Descending,
Exclusive Strategy

The ascending, inclusive strategy described in the last section guarantees
that one or more models will be found that explain all types and antitypes.
These models can be hierarchical, nonhierarchical, or nonstandard. The
main characteristic of these models is that they are built by adding terms
to a base model, and this inclusive strategy makes the model increasingly
complex. Based on the sparsity of effects principle that is discussed in the
context of design (e.g., Wu & Hamada, 2000), it can be expected that
most systems are driven largely by a limited number of main effects and
interactions of a low order. This topic is taken up in more detail in Chapter
12. Higher order interactions are, therefore, relatively unimportant, in
many circumstances. Therefore, the most complex terms that could
possibly be included, interactions of high order, will rarely be needed to
explain the data or a type/antitype pattern. This implies that, in log-linear
modeling, the contributions made by the corresponding effects are not
considered because they are set to zero. These contributions are typically
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small and nonsignificant. However, the contribution to model fit made by
the individual effect can still change if the higher order effects are made part
of the model. Similarly, patterns of types and antitypes can change even
if nonsignificant terms are included in the base model. Therefore, as an
alternative to the ascending, inclusive strategy described in the last section,
the descending, exclusive strategy can be considered for the exploratory
explanation of CFA types and antitypes.

In contrast to the ascending, inclusive strategy, which starts from
the CFA base model, the descending, exclusive strategy starts from the
saturated model. It is also the goal of the descending, exclusive search
procedure to explain types and antitypes. However, the term explanation
now has a different meaning. The term now means that types and antitypes
are explained when all those effects are identified without which (1) types or
antitypes disappear, or (2) new types and antitypes emerge. The resulting
model will not fit the data. However, it will contain all effects that are
unrelated to the types and antitypes. The types and antitypes found with
the original base model will still be in the table. By implication, the effects
that were excluded from the model caused the types and antitypes. These
effects will be termed type- and antitype-constituting.

The descending, exclusive strategy excludes, step by step, terms from
the saturated model, that is, effects are set to zero. This is achieved in an
iteration that proceeds as follows (von Eye & Mair, 2008b):

1. Starting with effects that are located at the same hierarchical level as the
base model (or one above, if the base model is global), exclude one effect,
at this hierarchical level, after the other from the saturated model, with
replacement. All higher order terms are still part of the model. Determine,
for each model, whether (1) the observed pattern of types and antitypes
is still present, and (2) no new types and antitypes have emerged. If
both conditions are fulfilled, complete the examination of models at this
level of the hierarchy. Completion is necessary to see whether there are
competing models that are equally parsimonious. This concludes the
search. Alternatively, if either or both of the two conditions are not fulfilled,
proceed to the next iteration step.

2. If needed for the complete explanation of all types and antitypes,
combine terms.

3. Proceed to the next higher level of the hierarchy. Select out only the
terms of this level of the hierarchy.

4. Combine these terms with the terms from the lower levels of the
hierarchy and with one another.
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5. Proceed until the model is found that yields only the types and the
antitypes of the original base model.

Here, as with the ascending, inclusive strategy, the search can fail in the
sense that no model can be found that is more parsimonious than the
saturated model.

The total number of models that can be examined is the same as for the
ascending, inclusive strategy. However, different models are considered.
With the exception of the model that requires that all effects be considered as
constituting types and antitypes, the models for the descending, exclusive
strategy are always nonhierarchical, and many are nonstandard. When
structural zeros, covariates, or special effects are part of the model, the
models for both search strategies will always be nonstandard.

To illustrate, we now compare models that are used under the two
search strategies, considering the 2 × 2 × 2 cross-classification of the
variables A, B, and C. This table is, in a first step, analyzed under the
first order base model of Lienert’s classical CFA, that is, the main effect
model [A], [B], [C]. The design matrix for this model is

X =































































1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1
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In the first step of the search, the ascending, inclusive search strategy adds
the effect of the interaction between the first two variables. The design
matrix becomes

X =































































1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 −1
−1 1 1 −1
−1 1 −1 −1
−1 −1 1 1
−1 −1 −1 1































































,

where the last column represents the [A,B] interaction. In contrast, the
design matrix for the descending, exclusive strategy becomes, in its next
step, the saturated model minus the vector for the interaction parameter
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between variables A and B. This matrix is

X =































































1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 −1 1 1 −1 −1
1 −1 −1 −1 1 1
−1 1 1 −1 1 −1
−1 1 −1 1 −1 1
−1 −1 1 −1 −1 1
−1 −1 −1 1 1 −1































































,

where the last column represents the three-way interaction [A,B,C] and
the two columns before the last column represent the two-way interactions
[A,C] and [B,C]. The design matrices from the two search strategies differ in
two respects, highlighting the differences between the two strategies. First,
the interaction between the first and the second variables is the only column
vector that the ascending, inclusive strategy adds, in this step, to the design
matrix of the base model. In contrast, the very same vector is the only one
not included in the design matrix under the exclusive, descending search
strategy. The goal of both strategies is the same. With both strategies,
researchers attempt to determine the role that this interaction (and the
following ones, in the sequence of steps) plays in the explanation of types
and antitypes. The second difference is that the descending, exclusive
strategy includes the effects for all higher order terms in the design matrix.
Thus, the unique role is examined that individual effects play. The number
of degrees of freedom for the design matrix under the ascending, inclusive
strategy is 3. For the design matrix under the descending, exclusive
strategy, we obtain d f = 1.

Regarding model identification, it should be noted that, under the
search routines discussed in this chapter, models may be overspecified.
That is, models can come with negative degrees of freedom. For example,
consider the base model for a 2 × 2 × 2 × 2 cross-classification in which
four cells are structural zeros. If this model is analyzed using a first
order CFA, there are 7 residual degrees of freedom (1 degree of freedom
had been invested in the constant, 4 in the main effect terms, and 4 in
the blanked-out zeros) and nine estimated parameters. The ascending,
inclusive search strategy adds, in the first step of the search, one vector
for an interaction to the design matrix. The residual degrees of freedom
for this model are now 6 (if the model can be estimated). In contrast,
for the following model for the descending, exclusive search strategy, −3
residual degrees of freedom result. The reason for this negative number is
that the model starts from the saturated model, with 0 degrees of freedom.
From this model, one interaction term is removed, which results in d f = 1.
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TABLE 10.14. First Order CFA of Three Consecutive Observations of Aggressive
Impulses

Configuration
A1 A2 A3

m m̂ z p Type/Antitype

111 31 12.589 5.1888 .000000 Type
112 5 10.191 −1.6262 .051957
121 7 16.700 −2.3737 .008806
122 10 13.519 −.9571 .169255
211 8 14.490 −1.7049 .044110
212 5 11.730 −1.9650 .024710
221 17 19.221 −.5066 .306226
222 31 15.560 3.9143 .000045 Type

However, 4 degrees of freedom are still invested in blanking out four cells.
Therefore, the resulting degrees of freedom are negative, and the model
cannot be estimated. Similarly, when covariates are included or more cells
are blanked out, more complex models may not be estimable even under the
ascending, inclusive strategy. It is also important to note that the number
of parameters, including the intercept, is only a necessary but not sufficient
condition for identifiability. In particular, when nonstandard models are
considered, it is important to make sure that the columns of the design
matrix be linearly independent.

Data Example 4: In the following example, we use data from the study on
aggression in adolescence (Finkelstein et al., 1994) again. 114 adolescents
who were 11 years of age at the first interview were asked to indicate the
degree to which they feel they have aggressive impulses. For the following
analyses, we use the variable Aggressive Impulses, observed on three
consecutive occasions (A1, A2, and A3). The scores were dichotomized
at the grand mean. We first ask whether particular longitudinal patterns
stand out. To answer this question, we perform a first order CFA, using the
z-test and the Holland-Copenhaver procedure. The base model of variable
independence fails to describe the data well (LR − X2 = 51.08; d f = 4;
p < 0.01). We thus anticipate types and antitypes to emerge. Table 10.14
displays the CFA results.

The table shows that, surprisingly, aggressive impulses show stability
during adolescence. Two types emerge. The first is constituted by
Configuration 1 1 1. It describes those adolescents who report consistently
below average aggressive impulses. The second type, constituted by
Configuration 2 2 2, describes the adolescents at the other end of
the spectrum. These respondents indicate consistently above average
aggressive impulses.
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TABLE 10.15. Descending, Exclusive Search for an Explanation of the Two Types in
Table 10.14

Effects Removed LR −X2 d f p Type/Antitype
Disappeared?

New
Types/Antitypes?

[A1,A2] 12.65 1 < .01 Yes No
[A1,A3] 2.84 1 .09 Yes No
[A2,A3] 12.64 1 < .01 Yes No
[A1,A2][A1,A3] 27.03 2 < .01 No Yes
[A1,A3][A2,A3] 24.55 2 < .01 Yes Yes
[A1,A2][A2,A3] 37.22 2 < .01 No Yes
[A1,A2][A1,A3][A2,A3] 49.84 3 < .01 No No
[A1,A2,A3] 1.39 1 .24 Yes No

We now ask which interactions explain these two types. To answer this
question, we employ the descending, exclusive search strategy of F-CFA.
We perform the following steps. Please note that, with the exception
of the very last model (Step 3), each of the models discussed here is
non-hierarchical.

1. We proceed to the hierarchy level right above the one used for the base
model of first order CFA. This is the level of two-way interactions. From
the saturated model, we remove systematically each of the three two-way
interactions (with replacement) and ask, for each of the resulting models,
(1) whether the two types still exist, and (2) whether no new types and
antitypes emerged. In the present example, three models are estimated at
this step. These are the models that include (1) [A1], [A2], [A3], [A1,A3],
[A2,A3], [A1,A2,A3]; (2) [A1], [A2], [A3], [A1,A2], [A2,A3], [A1,A2,A3];
and (3) [A1], [A2], [A3], [A1,A2], [A1,A3], [A1,A2,A3]. If none of these
three models leads to affirmative answers to both of the two questions, we
proceed to Step 2 of the search.

2. At this step, we remove pairs of two-way interactions from the three
two-way interactions in the saturated model. In the present example, the
following three models result: (1) [A1], [A2], [A3], [A2,A3], [A1,A2,A3];
(2) [A1], [A2], [A3], [A1,A2], [A1,A2,A3]; and (3) [A1], [A2], [A3], [A1,A3],
[A1,A2,A3]. If none of these three models leads to affirmative answers to
the both of two questions, we have only two more options.

3. At this step, we remove all three two-way interactions. The resulting
model is [A1], [A2], [A3], [A1,A2,A3].

4. If the model at Step 3 also fails to explain the two types, we specify the
last possible model of the search, that is, the one in which we remove the
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TABLE 10.16. First Order CFA of Three Consecutive Observations of Aggressive
Impulses; Base Model Includes the Three-Way Interaction [A1,A2,A3]

Configuration
A1 A2 A3

m m̂ z p Type/Antitype

111 31 13.923 4.5768 .000002 Type
112 5 9.160 −1.3746 .084625
121 7 14.958 −2.0577 .019808
122 10 14.958 −1.2820 .099913
211 8 12.958 −1.3774 .084189
212 5 12.958 −2.2108 .013524
221 17 21.160 −.9044 .182882
222 31 13.923 4.5768 .000002 Type

three-way interaction from the saturated model, which gives a base model
that includes the terms [A1], [A2], [A3], [A1,A2], [A1,A3], [A2,A3].

Table 10.15 summarizes the results from this search. The results in Table
10.15 show that

• when just one of the three two-way interactions is removed from the
saturated model, the two types disappear in all three models and, in one
instance, the resulting model fit is acceptable (second model in Table 10.15:
[A1], [A2], [A3], [A1,A2], [A2,A3], [A1,A2,A3]);

• when two of the three two-way interactions are removed, the two types
disappear in one model and remain in the two other models, but new
types/antitypes emerge in all three instances;

• when all three pairs of two-way interactions are removed from the
saturated model, the model does not fit, the types remain, and no new
types or antitypes emerge; this model is a candidate for the solution;

• when only the three-way interaction is removed from the saturated
model, the resulting model fits, the two types disappear, and no new
types/antitypes emerge; this is the model that includes all three two-way
interactions.

In sum, there is only one model that fulfills the two conditions that (1)
the original types and antitypes remain, and (2) no new types or antitypes
emerge. This is the model that excludes all three two-way interactions
but retains the three-way interaction. From this result, we conclude
that the three two-way interactions [A1,A2], [A1,A3], and [A2,A3] are
type-constituting.
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A CFA that uses this model as its base model yields the same types
(and antitypes) as the original CFA, although the estimated expected cell
frequencies can differ. This is exemplified in Table 10.16 in which the result
of a CFA are presented that includes, in addition to the main effects, the
three-way interaction [A1,A2,A3]. The original CFA results were given in
Table 10.14.

The design matrix for this model is

X =































































1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
−1 1 1 −1
−1 1 −1 1
−1 −1 1 1
−1 −1 −1 −1































































.

In this design matrix, the first three columns represent the main effects, and
the last column represents the three-way interaction.

10.4 Chapter Summary

Models of functional CFA (F-CFA) focus on the role that specific elements of
a configural analysis play in the identification of types and antitypes. Two
elements are considered. The first is the test performed for an individual
cell (configuration) in a cross-classification. It is well known that the
cell-wise tests in CFA are never completely independent. Because of this
(partial) dependence, there is a risk that standard one-step CFA identifies
phantom types/antitypes. These are types or antitypes that exist only because
other types and antitypes exist. Sequential examination of cells in a table
alleviates this problem, to a degree.

Two procedures of sequential examination of cells are discussed
and compared. The first is Kieser and Victor’s procedure, which
aims at minimizing the overall lack-of-fit statistic. At each step, those
configurations are selected as types and antitypes that have the potential of
minimizing the overall goodness-of-fit statistic. The second is von Eye and
Mair’s procedure, which aims at identifying, at each step of the sequence,
the most extreme residual. Because of these differences in the goal function,
the two procedures do not always yield the same results, and types and
antitypes have to be interpreted with these differences in mind. However,
the two procedures share the characteristics that they (1) result in more
parsimonious solutions than a standard base model, in most applications,
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and (2) prevent one from falling for phantom types and antitypes. That is,
the number of types and antitypes from the sequential methods is typically
smaller than the number of types and antitypes from standard, one-step
CFA.

The second element that is evaluated with respect to the role it plays for
the identification of types and antitypes is the individual effect in a model.
In general, CFA types and antitypes result because, at the level of variables,
one or more of those effects exist that are not included in the CFA base
model. Two strategies are discussed for the identification of those effects
that explain the existence of types and antitypes.

The first of these two strategies is ascending and inclusive. Beginning
with the base model, effects are added to the model until a pattern of effects
is identified for which (1) no type or antitype remains (2) without new
types or antitypes emerging. The effects that have these two characteristics
are called type- or antitype-constituting. The second strategy starts from the
saturated model. It systematically removes effects from this model. The
goal of this strategy is to remove as many effect terms as needed without
affecting the original type/antitype pattern. The result of this procedure
is the model that lacks only those effects that are needed for the types
and antitypes to emerge. In the second strategy, it is called the descending
strategy, and these effects are also termed type- or antitype-constituting.

The difference between these two strategies lies in the treatment of
higher order interactions. The ascending strategy begins with adding
effects of the lowest possible order. Higher order effects are set to
zero. They will be included in the base model only when lower order
effects cannot explain all types and antitypes. In contrast, the descending
strategy removes higher order effects only when the removal does not
affect the resulting type/antitype pattern. The ascending strategy is more
parsimonious only when higher order effects play either no role or a very
limited role. On the plus side of the descending strategy is that all possible
effects are considered, including all higher order effects.



11
CFA of Intensive Categorical
Longitudinal Data

Another new step in the development of CFA methods is taken in
Chapter 11. This chapter presents two approaches to analyzing
intensive data, that is, data that involve more than the usual number
of variables or repetitions. Using the sample case of number of
repetitions, a first method is proposed that uses the concept of runs
to describe the data. Runs identify series of scores that exhibit a
particular characteristic. For example, they are all the same, they are
ascending, etc. Information that describes runs can then be categorized
and analyzed by using standard methods of CFA. A second method of
configural analysis of intensive data involves the examination of lags. A
lag is defined as an interval in a series of scores. A lag of 1 is used
to relate, for example, information from one day to information from the
next. By performing CFA of lags, one can find types and antitypes that
indicate whether configurations are more (or less) likely to be observed
than expected over a predefined number of lags.

Until 2006, when Walls and Schafer published their book Models for
Intensive Longitudinal Data, an interesting gap existed in the arsenal of
methods for the analysis of longitudinal data. There were no methods
of analysis available for series of medium length. Consider, for example, a
comparative study on the effects of various forms of psychotherapy with
30 repeated observations. Data from this design are hard to analyze.
Unless the sample is very large (or the model conceptualizes change in
behavior in rather broad strokes), 30 observation points are too many for
structural modeling. For repeated measures ANOVA with polynomial
decomposition, polynomials of up to the 29th order would have to be
estimated (which is the easy part) and interpreted (which is the hard
part). This applies accordingly to hierarchical linear models of this design.
So, whereas for some methods of analysis the 30 observation points are
too many, for others, these 30 are not enough. Consider, for example,

208
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longitudinal, P-technique factor analysis. For this method, at least 100
observations are needed. Methods of time series analysis also require large
numbers of (equidistant) observation points.

Intensive longitudinal data can be defined as data that come from more
than the usual three or four observation points in time, yet from fewer than
the 100 or more assessments required, for example, for longitudinal factor
analysis. In brief, data that are intensive in the sense that more observations
are made over time than usual pose specific analytic problems.

This situation gets even worse when categorical data are analyzed.
Crossing the data from 30 observation points is out of the question. When
only one dichotomous variable is analyzed, the number of cells of this
cross-classification will be 230 = 1, 073, 741, 824, that is, over a billion cells.
When multiple categorical variables are analyzed, the situation becomes
even more complex. Poisson regression models and marginal models are
among the few options available for analysis (for overviews, see, e.g.,
Agresti, 2002; Lawal, 2003). However, these options constrain the types
of questions that can be asked.

In this chapter, we present two new variants of CFA that allow one to
analyze intensive categorical longitudinal data. The first new variant uses
concepts that have first been discussed in the context of the well-known
runs tests (Stevens, 1939; Swed & Eisenhart, 1943; Wald & Wolfowitz, 1940).

To introduce runs tests, consider a series of K scores. For this series,
a run is defined as the uninterrupted sequence of k ≤ K scores that fulfill
specified conditions. Sample conditions are introduced in Section 11.1.
Runs tests are used to detect nonrandomness in a series of scores that can
be observed, for instance, in the form of serial correlation. The classical
runs test is a permutation test or a randomization test (Lunneborg, 2005).
Under the null hypothesis, the observed number of runs does not differ
from the number expected based on a reference distribution.

To detect nonrandomness of runs, univariate and multivariate as well
as one-sample and two-sample tests have been proposed. These tests are
reviewed in textbooks of nonparametric statistics (e.g., Bortz, Lienert, &
Boehnke, 1990; Siegel, 1956), or encyclopedias (e.g., Lunneborg, 2005), and
will not be described here. For the present purposes, we are not concerned
with the runs tests themselves. Instead, we discuss the type of information
created for runs tests and the use of this information for the analysis of
intensive categorical longitudinal data.

The method presented here allows one to pursue both variable-oriented
analysis, for example, log-linear modeling, and person-oriented analysis
(Bergman & Magnusson, 1997; von Eye & Bergman, 2003). In the present
context, the reader will not be surprised if we focus on the application of
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the runs concept in CFA (von Eye & Bogat, 2009). The second new variant
is Configural Lag Analysis. It allows one to identify types and antitypes of
predictability of behavior over lags, that is, intervals of time.

11.1 CFA of Runs

In this section, we begin with sample definitions of runs. We then apply
these definitions in the CFA of intensive longitudinal data. We present five
definitions of runs. More definitions are easily conceived.

1. A run can be defined as the length, k, of an uninterrupted series of scores of
the same value. Consider the series 1111335222. This series contains 4 runs,
including a run of k = 4 (value 1), a run of k = 2 (value 3), a run of k = 1
(value 5), and a run of k = 3 (value 2). To establish this sequence of 4 runs,
the scale level of the scores is of no importance. All that is asked is whether
adjacent scores are equal or different. Therefore, runs of scores of the same
value use no more than nominal scale information.

2. A run can be defined as the length of an uninterrupted series of scores of
increasing value. The series 1234533234 contains 2 runs. The first contains
the first five scores, and the second contains the last three scores. To describe
the runs of increasing series of scores, ordinal information is needed.

3. A run can be defined as the length of an uninterrupted series of scores of
decreasing value. The series 1234533234, used already under (2), contains
2 runs using this defintion. The first contains the scores 5 and 3, and the
second contains the scores 3 and 2. To describe the runs of decreasing series
of scores, ordinal information is needed.

4. A run can be defined as the length of an uninterrupted series of scores
with values that go up-and-down or down-and-up (runs up-and-down test,
Wallis & Moore, 1941). The series 1234533234 contains two runs, under the
current definition. It is constituted by the series 4, 5, and 3 and by the
series 323. To describe the runs of up-and-down series of scores, ordinal
information is needed.

5. A run can be defined as the length of an uninterrupted series of scores
within a prespecified range. Consider, for example, a machine tool that is
supposed to produce parts for mechanical watches that do not deviate from
a prespecified size by more than 2µ. Suppose this machine has produced
parts with the following deviations in µ: 0 1 2 1 2 6 6 2 2. This series
contains two runs of tools within specification. The first run involves the
first five parts, and the second involves the last two parts. These two runs



CFA of Intensive Longitudinal Data 211

are separated by a run of two parts that are outside the admissible range.
To describe these runs, ratio scale information is used. In general, however,
the type of information used for this definition of runs depends on the scale
level used to specify the range.

Taking an algorithmic perspective, the following sample variables describe
runs in series of K scores:

1. Number of runs of any sort, kr, with kr ≤ K;

2. Length of jth run of equal scores, ke
j
, with ranges 1 ≤ ke

j
≤ K and

1 ≤ j ≤ K;

3. Length of jth run of increasing scores, ka
j
, with range 2 ≤ ka

j
≤ K − 1;

4. Length of jth run of decreasing scores, kd
j
, with range 2 ≤ kd

j
≤ K − 1;

5. Length of jth run of up-and-down scores (or down-and-up), ku
j
, with

range 3 ≤ ku
j
≤ K − 3;

6. Length of jth run of scores within a prespecified interval, kw
j

, with

0 ≤ kw
j
≤ K.

Of these six variables, the second is the one used in standard runs tests.
These tests ask whether the number of runs, ke

j
, is smaller or larger than

expected based on a null distribution. When ke
j

is smaller than expected,

there may be a process that prevents scores from changing. When ke
j

is

larger than expected, there may be a process that causes overly frequent
change. This applies accordingly to all types of runs.

Length of run information is partially dependent on the number of runs.
This number sets limits to both the maximum and the minimum run length.
Still, the length of runs is of importance. Consider, for example, a study on
the effects of psychotherapy on compulsive behavior. After establishing a
baseline run pattern, the beginning of therapy can be expected to cause a
run pattern that suggests improvement. This can be indicated by a pattern
of decreases in the frequency of compulsive behavior occurrences over time.
Other indicators of improvement include interrupted series (= shorter runs)
of compulsive acts and longer periods with no compulsive acts. Therapy
success can be measured by using, among other indicators, length of run
information. The number of runs, in this example, has an upper limit that
is determined by the number of therapy sessions.

Now, let x j be the score obtained at time j, and 1 ≤ j ≤ K. Then, the
number of runs of equal scores, re, can be calculated in the following two steps
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(von Eye & Bogat, 2009):

δ j =















1 if x j = x j+1

0 else
,

where δ j compares the scores x j and x j+1, for j = 1, . . . ,K− 1, and re =
∑

j δ j.
Accordingly, the number of runs of increasing scores, ra, can also be

calculated in the two steps

δ j =















1 if x j < x j+1

0 else

and ra =
∑

j δ j.
The number of runs of decreasing scores, rd, can be calculated in the two

steps

δ j =















1 if x j > x j+1

0 else

and rd =
∑

j δ j.
The number of runs of up-and-down scores, ru, can be calculated in the two

steps

δ j =















1 if x j < x j+1 and x j+1 > x j+2

0 else

and ru =
∑

j δ j.
Finally, the number of runs of scores within a prespecified interval, rw, can

be calculated in the two steps

δ j =















1 if |x j − x| < ε
0 else

,

where x is the prespecified target score and ε indicates the prespecified
threshold, for j = 1, . . . ,K, and rw =

∑

j δ j.
Each of these steps can be performed by using the appropriate

commands in general purpose statistical software packages, for example,
the TRANSFORM command in SYSTAT. Similar operations are easily
implemented in spreadsheet programs such as Lotus 1-2-3, Quattro Pro,
or Excel. The result of these calculations is one value that indicates the
number of runs per case per series of scores.

Runs scores can be directly compared only if the number of observation
points is the same for each case. If this number varies, as is natural in
training or therapy studies, the observed number of runs can be related to
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the maximum number of runs, rmax = R, where R can vary by the definition
of runs used. For example, R = K for runs of equal, increasing, or decreasing
scores and for series of scores within a prespecified interval. The resulting
relative number of runs, rr = r/rmax, can be directly compared with other
rr scores, both intra- and inter-individually. In the following section, we
illustrate the use of number of runs, r, in the context of configural data
analysis.

Data Example 1: The following example uses data from the longitudinal
project on intimate partner violence again (Bogat et al., 2006) that was
used in Chapter 5, on prediction models of CFA. For the example, we use
data from the first five observation points (during pregnancy and when the
children were at ages 1, 2, 3, and 4), and analyze the variables Posttraumatic
Stress Disorder symptoms (PTSD; P) and Violence Status (V). PTSD was
coded as 1 = respondent exceeds cutoff for clinical-level PTSD symptoms,
and 0 = else. The following analyses could have been performed using the
raw scores also. Here, however, we focus on runs of clinical-level PTSD (P
= 1 vs. P = 0). Violence Status was coded as 1 = respondent reports one or
more incidents of intimate partner violence that equal or exceed threats of
moderate violence in the preceding year, and 0 = no violence or violence
below cutoff.

For each of these two variables, each woman was assigned a score for
runs of equal numbers. The maximum score per variable and respondent
was 5 (5 time-adjacent scores were created for each variable; thus, the
maximum number of runs of scores of equal value is 5; a comparison of
these numbers allows one to describe the change in score from every point
in time to the next). The number of cases with 5 runs in either variable was
so small that these cases were subsumed under the rubric of “4 or more”
runs. The resulting four scores per respondent were crossed to form a 4 ×
4 contingency table with 16 cells. This table was first analyzed by using
standard first order CFA. No cell was blanked out, and no covariate was
included. For the CFA, we used the z-test and the Holland-Copenhaver
procedure to protect α. For the base model, we obtain a LR − X2 = 126.85
(d f = 9; p < 0.01) and, therefore, expect types and antitypes to emerge.
Table 11.1 displays the CFA results.

The results in Table 11.1 suggest that runs in violence and PTSD covary
in an interesting way. Four types emerge, each indicating that the number
of runs is more often the same in these two variables than expected. The
three antitypes suggest that particular patterns of discrepant numbers of
runs occur less often than expected.

One characteristic of the runs variable is that it can be considered
ordinal. Therefore, one can improve the model by taking into account
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TABLE 11.1. CFA of Runs of PTSD (P) and Intimate Partner Violence (V), over Five
Observation Points

Configuration
P V

m m̂ z p Type/Antitype

11 64 36.235 4.6124 .000002 Type
12 19 27.294 −1.5876 .056191
13 7 17.882 −2.5734 .005035 Antitype
14 6 14.588 −2.2486 .012271
21 6 18.873 −2.9631 .001523 Antitype
22 31 14.216 4.4516 .000004 Type
23 10 9.314 .2249 .411039
24 3 7.598 −1.6681 .047648
31 2 13.588 −3.1437 .000834 Antitype
32 7 10.235 −1.0113 .155946
33 19 6.706 4.7475 .000001 Type
34 8 5.471 1.0814 .139751
41 5 8.304 −1.1465 .125787
42 1 6.255 −2.1011 .017814
43 2 4.098 −1.0364 .150009
44 14 3.343 5.8284 .000000 Type

the ordinal nature of this variable in the base model. For the present data,
both variables that span the cross-classification in Table 11.1 are ordinal.
Therefore, we decide to use Goodman’s (1979) linear by linear interaction
model as the CFA base model. For the present case with two ordinal runs
variables, labeled as V and P, this model can be specified as

log m̂ = λ + λV
i + λ

P
j + γxiw j,

where the xi and the w j are the quantitative levels of the variables V and P,
respectively, and γ is the parameter that is estimated for the linear by linear
interaction term. If, as is the case in the present example, the quantitative
levels are evenly spaced, this model is equivalent to

log m̂ = λ + λV
i + λ

P
j + γ(i)( j).

The parameters γ in these two equations are identical if xi = i and w j = j.

Using the linear by linear interaction model as the CFA base model
implies including a covariate with entries that result from calculating the
outer product of the two vectors that contain the quantitative levels. In the
present example, both of these vectors have entries {1, 2, 3, 4}. The outer
product of the two vectors yields a vector with the entries {1, 2, 3, 4, 2, 4, 6,
8, 3, 6, 9, 12, 4, 8, 12, 16}. The design matrix for the new, nonstandard base
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model thus becomes

X =







































































































































1 0 0 1 0 0 1
1 0 0 0 1 0 2
1 0 0 0 0 1 3
1 0 0 −1 −1 −1 4
0 1 0 1 0 0 2
0 1 0 0 1 0 4
0 1 0 0 0 1 6
0 1 0 −1 −1 −1 8
0 0 1 1 0 0 3
0 0 1 0 1 0 6
0 0 1 0 0 1 9
0 0 1 −1 −1 −1 12
1 −1 −1 1 0 0 4
1 −1 −1 0 1 0 8
1 −1 −1 0 0 1 12
1 −1 −1 −1 −1 −1 16
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The first six columns of this design matrix are standard for effects coding
of two 4-category variables. Each variable has 4 categories. Therefore, for
each variable, three contrast vectors are needed. The last column contains
the vector for the linear by linear interaction. The log-linear model that uses
this design matrix yields a LR − X2 = 53.92 (d f = 8; p < 0.01). Clearly, the
part of the interaction between the runs from violence and PTSD that can
be explained based on the ordinal nature of the two runs variables covers a
considerable portion of the variability in the P×V cross-classification. Still,
the LR − X2 suggests significant model-data discrepancies. Therefore, we
expect types and antitypes to emerge. The results of the CFA that uses this
extended base model, the z-test, and the Holland-Copenhaver procedure
are summarized in Table 11.2.

The results in Table 11.2 suggest that none of the antitypes from Table
11.1 and only one of the types (Configuration 2 2) remain. In addition,
there is a new type, constituted by Configuration 4 1. This type indicates
that more women were found than expected who exhibit the maximum
number of runs in PTSD but only one run in violence. The estimated
expected frequency for this type is small. Therefore, we consider it with
the recommendation of conducting a replication study to make sure this
type is not sample-specific.
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TABLE 11.2. CFA of Runs of PTSD and Intimate Partner Violence, over Five Observation
Points; with Linear by Linear Interaction

Configuration
P V

m m̂ z p Type/Antitype

11 64 54.806 1.2419 .107143
12 19 29.041 −1.8633 .031213
13 7 9.603 −.8400 .200455
14 6 2.550 2.1609 .015353
21 6 16.734 −2.6239 .004346
22 31 17.001 3.3952 .000343 Type
23 10 10.779 −.2372 .406265
24 3 5.487 −1.0617 .144188
31 2 4.720 −1.2520 .105285
32 7 9.194 −.7237 .234628
33 19 11.177 2.3401 .009640
34 8 10.909 −.8807 .189240
41 5 .740 4.9522 .000000 Type
42 1 2.764 −1.0609 .144357
43 2 6.442 −1.7500 .040058
44 14 12.055 .5603 .287635

11.2 Configural Lag Analysis 1

The method of CFA for intensive, longitudinal, categorical data to be
presented in this section allows one to answer questions that, so far, had
been inaccessible to configural analysis. The same applies to configural lag
analysis, to be discussed here. Consider the concept of a lag. Let temporal
observations take place at T points in time. Then, with reference to an
observation that is made at time t, an observation that takes place at point
in time t+ k is said to occur with a k time units lag (for k > 0). Accordingly,
negative lags can be defined, with k < 0. An observation that takes place
at point in time t− k is said to occur with a negative lag of k time units, or k
time units before the observation at time t.

Lag analysis has been discussed extensively in the context of methods
for the analysis of longitudinal data (e.g., Finkel, 2008; Greenberg, 2008;
Sanders & Ward, 2008), including the context of intensive longitudinal data
(Ho, Shumway, & Ombao, 2006; Rovine & Walls, 2006). The application of
the concept of lags is new in the context of CFA.

To describe lag analysis of intensive, categorical longitudinal data,

1The idea for the method presented in this section was proposed by Peter Molenaar and
Mike Rovine in June 2007. We are grateful for this idea, apologize for possibly having
distorted it, and confer on both of them the title of “Co-Conspirator”.
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TABLE 11.3. Strings with Lag 1, Lag 2, and Lag 3

Time Original
Observations

Observations
with Lag 1

Observations
with Lag 2

Observations
with Lag 3

1 x1 — — —
2 x2 x1 — —
3 x3 x2 x1 —
4 x4 x3 x2 x1

5 x5 x4 x3 x2

...
...

...
...

...
n − 1 xn−1 xn−2 xn−3 xn−4

n xn xn−1 xn−2 xn−3

TABLE 11.4. Cross-Classification of One Variable with Itself, for a Lag of 1

Lag 1 Observations
Original Observations I = 1 I = 2 I = 3

I = 1 m11 m12 m13

I = 2 m21 m22 m23

I = 3 m31 m32 m33

consider a string of observations of the same variable, X, with the scores
x1, . . . , xn. Let the subscripts denote observation points in time, and let the
observations describe just one individual. For this string of observations, a
corresponding one can be created, with a lag of 1. This string will contain
the same scores, just shifted down by one point in time so that xi of the
original string of observations is now positioned next to xi+1 of the second
string, with i ≥ 1. The number of scores in the second string is n − 1. A
second corresponding string can be created, with a lag of 2. It contains
the scores x1, ..., xn−2, and so forth. Obviously, the second string contains
one fewer score than the first, the third string contains one fewer than the
second or, in general, a string with a lag of k contains k fewer scores than
the original string. This is illustrated in Table 11.3.

Now, suppose we cross two of these strings, say the original string of
scores with the second string, that is, the one with lag 1. The result will be
a contingency table with I × I cells, where I is the number of categories of
the observed variable. A sample cross-classification is given in Table 11.4,
for the case of I = 3.

Entry i j (for i, j = 1, . . . , I) in this table indicates the frequency with which
an observation of Category i at Time t was preceded by an observation of
Category j, at Time t − 1. The cross-classifications in Table 11.4 can be
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• extended to any number of lags (number of observations permitting);

• created for one or more variables;

• crossed with variables that were observed only once, e.g., covariates
or stratification variables; and

• analyzed by using standard methods of categorical variables analysis
such as log-linear modeling, logistic regression, and CFA.

In the following sections, we present two applications of CFA of lagged
data.

Data Examples 2 and 3: For the following two examples, we use data
from a project on the development of alcoholism (Perrine, Mundt, Searles,
& Lester, 1995). A sample of alcoholic adult males provided information
every morning about their drinking the day before, their subjective ratings
of mood, health, or quality of the day. Here, we ask, whether the mood of
Respondent 49 can be predicted from one day to the next. The interesting
aspect of lagged configural analysis is that the days are required to be
consecutive. They do not need to be equidistant, but for comparability the
distance pattern should be the same for each participant. In the CFA of the
lagged mood data, we do not ask whether mood is predictable from one
particular day to another. Instead, we ask whether mood is predictable for
any 2 consecutive days. The respondent had provided information for an
uninterrupted series of 792 days, that is, 2 years and 3 months. The sample
size of mood self-ratings thus is, for the following analysis, 791 days.

Mood was rated on a 10-point Likert scale, with 1 indicating terrible
mood and 10 indicating “just wonderful”. Respondent 49 tended to not
use the lower end points on this scale. Therefore, scores 5 and below were
condensed into a single category. Similarly, this respondent practically
never used scores 9 or 10. Therefore, scores 8-10 were condensed into a
single category also. The resulting scale thus ranged from 1 to 4, with 1
indicating average mood or below and 4 indicating good or better mood.
For the analysis of the resulting 4 × 4 table, we use the z-test and the
Holland-Copenhaver procedure. For the base model of first order CFA, we
obtain a LR − X2 = 109.37 (d f = 9; p < 0.01). Therefore, we anticipate that
types and antitypes emerge. Table 11.5 summarizes the CFA results.

The type-antitype pattern in Table 11.5 is clear. The four types,
constituted by Configurations 1 1, 1 2, 2 2, and 4 4, suggest that, more often
than expected based on chance, the mood on any given day is the same as
the mood on the day before (Configurations 1 1, 2 2, 4 4), or slightly better
(Configuration 1 2). The three antitypes, constituted by Configurations 2 4,
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TABLE 11.5. First Order CFA of Lag-1 Analysis of Mood Data for Respondent 49 for a
Period of 791 Days

Configuration
Mood Lag-1-Mood

m m̂ z p Type/Antitype

11 12 2.338 6.3199 .000000 Type
12 11 4.186 3.3306 .000433 Type
13 8 15.710 −1.9453 .025869
14 12 20.766 −1.9237 .027198
21 9 4.186 2.3530 .009310
22 21 7.496 4.9326 .000000 Type
23 30 28.133 .3520 .362402
24 17 37.186 −3.3102 .000466 Antitype
31 14 15.765 −.4445 .328343
32 32 28.230 .7095 .238996
33 110 105.954 .3930 .347153
34 134 140.051 −.5113 .304580
41 8 20.712 −2.7932 .002610 Antitype
42 13 37.088 −3.9554 .000038 Antitype
43 141 139.202 .1524 .439448
44 219 183.997 2.5804 .004934 Type

4 1, and 4 2, suggest that mood swings by two or more scale points are
rather unlikely, in particular swings toward worse mood.

Considering that this respondent was an alcoholic (as per his own,
self-reported diagnosis), we ask whether this pattern of types and antitypes
remains the same if we take into account the amount of alcohol consumed
on the day before the first mood rating was given. In different words, we
ask whether alcohol consumption corresponds with the mood rating on the
next day and the following one.

Alcohol consumption was, for this particular respondent, measured
in units of 12-ounce beer bottles or cans consumed per day (amount of
consumption refers to the day before mood was observed). The number of
beers consumed by Respondent 49 ranged between the extremes of 0 and
18 (included). However, the respondent rarely had fewer than 4 beers a
day. Therefore, 0-4 beers were condensed into a single category. Similarly,
the respondent rarely had more than 9 beers a day. Therefore, 9 and more
beers were condensed into a single category also. The resulting scale had
six categories, with 1 indicating 4 beers or fewer, and 6 indicating 9 beers
or more.

For the following CFA, the beer consumption variable was crossed with
the two mood variables. The resulting 6 × 4 × 4 cross-classification was
analyzed under the first order CFA base model by using the z-test and
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TABLE 11.6. First Order CFA of Alcohol Consumption and Mood on the Following 2 Days

Configuration
Beer Mood Lag-1-Mood

m m̂ z p Type/Antitype

111 4 1.001 2.9966 .001365
112 4 1.793 1.6480 .049676
...

...
...

...
...

143 68 59.633 1.0835 .139289
144 116 78.616 4.2162 .000012 Type
211 0 .264 −.5135 .303802
...

...
...

...
...

344 16 16.281 −.0698 .472193
411 2 .210 3.9021 .000048 Type
412 0 .377 −.6137 .269695
...

...
...

...
...

544 25 20.933 .8888 .187046
611 5 .391 7.3701 .000000 Type
612 3 .700 2.7481 .002997
...

...
...

...
...

621 1 .700 .3581 .360117
622 5 1.254 3.3452 .000411 Type
623 6 4.707 .5962 .275529
...

...
...

...
...

643 16 23.289 −1.5103 .065480
644 29 30.702 −.3072 .379343
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the Holland-Copenhaver procedure. For this base model, we obtain a
LR − X2 = 228.27 (d f = 84; p < 0.01). Therefore, we are reasonably certain
that types and antitypes will emerge. Table 11.6 presents a selection of the
CFA results.

Table 11.6 shows four types and no antitype. These types are constituted
by Configurations 1 4 4, 4 1 1, 6 1 1, and 6 2 2. The estimated expected cell
frequencies for Types 4 1 1 and 6 1 1 are rather small. Therefore, we refrain
from interpreting these configurations as type-constituting. The first of the
two remaining types, 1 4 4, suggests that, if Respondent 49 consumed 4
beers or fewer on any given day, his mood was more often than expected
good or better during the following two consecutive days. In contrast, Type
6 2 2 also suggests that when the respondent had 9 beers or more on any
given day, his mood on the following 2 days was more often than expected
average (that is, rated as a 2 on a scale from 1 to 4 where 1 indicates average
mood or below). This may be described as a “hangover type”.

Table 11.6 shows again that CFA focuses on model-data discrepancies
instead of the magnitude of cell frequencies. Consider Configuration 6
2 2, which constitutes a type. In clearly more instances than observed
for this configuration, 9 or more beers correspond with good or very
good mood on the following 2 days (e.g., Configurations 6 3 4 and 6 4
4). However, these instances do not deviate significantly from expectation
and, therefore, do not constitute a type under the current base model of
variable independence.

11.3 Chapter Summary

Intensive longitudinal data are characterized by a number of observation
points that lies between what can easily be processed by using methods of
ANOVA, on one end, and what is required for longitudinal factor analysis
and methods of time series analysis, on the other. When categorical
variables are analyzed, crossing all variables is out of the question because
the resulting table would have a colossal number of cells.

For analysis with CFA or log-linear modeling, two strategies are
proposed for the analysis of intensive longitudinal data. The first is based
on the concept of runs. A run is defined as an uninterrupted string of
scores that fulfill a particular condition. For example, a run can be a string
of equal numbers, a string of increasing numbers, a string of odd numbers,
etc. Using CFA, one can then analyze numbers of strings and length of
strings.

The second strategy focuses on the structure of series of scores. One
characteristic of a structure can be captured by using lags. A lag of 1 allows
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one to predict, from each day, the scores observed on the following day.
A lag of 2 allows one to predict the scores observed 2 days later, a lag of
7 allows one to predict the scores observed 1 week later, etc. For analysis
with CFA, one can cross a series of scores and the lagged series. Results
emerge in the form of types and antitypes that indicate which score can be
expected with beyond chance probability one, two, ..., seven, or a larger
number of observation points later.



12
Reduced CFA Designs

Chapter 12 addresses an issue that is rarely discussed in social
science categorical data analysis. It concerns the completeness of a
cross-classification. In particular, when higher order effects are not
considered interesting, interpretable, or important, so-called fractional
factorial designs can be considered. These designs result in incomplete
tables that, depending on the fraction of a complete design that is
realized, allow one to interpret effects up to a specific order. The
application of fractional factorial designs in CFA can be interesting when
higher order interactions are considered unimportant as causes for types
and antitypes. The advantage of such designs is that, given the sample
size, far more variables can be analyzed than in complete designs.
In Chapter 12, base models are derived, and patterns of types and
antitypes are compared for complete and fractional factorial designs by
using data examples.

There is an interesting principle that seems to be at work when higher order
interactions among factors of experimental designs or categorical variables
that span a cross-classification are examined, the Sparsity of Effects Principle.
According to this principle, which is discussed in the contexts of linear
models and design (e.g., Hamada & Wu, 1992; Kutner, Neter, Nachtsheim,
& Li, 2004; Wu & Hamada, 2000), responses in most systems are driven
largely by a limited number of main effects and lower order interactions.
Higher order interactions are, therefore, usually relatively unimportant.
In the context of CFA, the sparsity of effects principle would have the
effect that patterns of types and antitypes result from main effects or lower
order interactions, and higher order interactions rarely affect these patterns
(von Eye, 2008b). Exceptions include distributions in which higher order
interactions define the variable relationships, for example, distributions
that reflect Meehl’s (1950) paradox (see von Eye, 2002a) or the well-known
Simpson paradox.

In addition to this principle, three other issues are of concern when
planning study designs in which factors are completely crossed. The

223
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first issue involves cost and effort. Creating large numbers of treatment
combinations is complex and cost-intensive. The second issue concerns
interpretation. Interactions of very high order are hard to interpret. Third,
theories in the social and behavioral sciences rarely imply hypotheses that
require the testing of high order interactions.

Because of these issues and the sparsity of effects principle, full factorial
designs, that is, designs that fully cross all factors, are often not only
cost-intensive when many factors are taken into account. They can also be
wasteful and may yield little information above and beyond designs that
allow one to consider only the main effects and lower order interactions that
are sufficient to explain what is going on in a table1. Consider, for example,
the cross-classification of six dichotomous variables. The analysis of this
design comes with 1 d f for the intercept, 6 d f for the main effects, 15 d f
for the two-way interactions, 20 d f for the three-way interactions, 15 d f for
the four-way interactions, 6 d f for the five-way interactions, and 1 d f for
the six-way interaction. Now, suppose that only the intercept, the main
effects, and the first order interactions are needed to explain the frequency
distribution in the table. In this case, two-thirds of the degrees of freedom
in this design are used to estimate parameters that are not of interest and
will not be interpreted.

Fractional factorial designs use only a subset of the treatment
combinations, or cells, of a completely crossed design. This subset can
be chosen based on the sparsity of effects principle. Specifically, fractional
designs allow the data analyst to estimate the effects of interest. Based on
the sparsity of effects principle, these effects are assumed to be of low order.
In fractional factorial designs, higher order effects are either not estimable
or confounded. More details follow below.

In this chapter, we discuss the use of fractional factorial designs
in the context of CFA. We treat the categorical variables that span a
cross-classification as if they were factors of an experimental design. We
focus on Box-Hunter designs (Box, Hunter, & Hunter, 2005; Wu & Hamada,
2000) because they allow one to specify designs based on the order of
interactions that are of importance in a study. We discuss these designs
from the perspective of the order of effects that cause types and antitypes
to emerge. We then show that fractional factorial designs can fruitfully
be applied when the outcome variables are categorical, in particular in
applications of CFA (for fractional factorial designs in log-linear modeling,
see von Eye, 2008b).

In the following sections, we introduce specific fractional factorial

1It is important to note that higher order interaction effects can still be used for a better error
estimate. So, they can still be useful.



Reduced CFA Designs 225

designs, give examples, and discuss the application of such designs in
CFA.

12.1 Fractional Factorial Designs

Optimal designs are specified with the goal of obtaining efficient parameter
estimates and maximum power of statistical tests while minimizing
cost and effort (Berger, 2005; Dodge, Fedorov, & Wynn, 1988; Liski,
Mandal, Shah, & Sinha, 2002; Pukelsheim, 2006). For example, optimal
designs have been devised to estimate kinetic model parameters in
pharmacological research (e.g., Reverte, Dirion, & Cabassud, 2006), to
improve the accuracy of parameter estimates in research on the physiology
of rats (e.g., Verotta, Petrillo, La Regina, Rocchetti, & Tavani, 1988), to
maximize the information content of measured data while observing safety
and operability constraints in process control research (e.g., Bruwer &
MacGregor, 2005), to discriminate between two or more rival regression
models in applied statistics (e.g., Atkinson & Fedorov, 1975), or to compare
the probabilities from binomial data with misclassifications (Zelen &
Haitovsku, 1991).

Often, additional, mostly statistical, criteria are set for optimality as well
as the criterion of parsimony (Pukelsheim, 2006; Stigler, 1971). Using these
criteria, researchers attempt to maximize the information content of data
and the precision of parameter estimates while minimizing the necessary
effort or pecuniary cost of an experiment. These criteria are optimized when
the number of treatment combinations (cells) of a design (in the context of
fractional factorial designs, this number is called the number of runs) is
minimized without compromising the interpretability of the parameters of
interest or, in the context of CFA, distorting the resulting pattern of types
and antitypes. Clearly, here the sparsity of effects principle comes into play
again. If higher order effects are unimportant, omitting these effects in the
model or design does not pose much risk of biased results. Similarly, if
less important effects are confounded, the damage that is caused by the
confounds is unimportant also.

Fractional factorial designs are sample cases of optimal designs. They
include only a fraction of the cells of a completely crossed design. That
is, they contain only one-half, one-quarter, or an even smaller portion of
the cells of a completely crossed factorial design. The earliest fractional
factorial design discussed in the literature is the well-known Latin square
(Euler, 1782). This design allows one to estimate only the main effects of the
factors. Therefore, Latin squares are only of importance in the application
of zero order CFA, which uses the null model as its base model. Because of
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the limited utility of zero order CFA, Latin squares will not be discussed in
more detail in this volume.

The theory of fractional designs was developed originally by Finney
(1945, 1946) and Kempthorne (1947). Recent treatments include the text by
Mukerjee and Wu (2006). Statistical software packages such as Minitab,
Statistica, and SYSTAT contain modules that allow one to create fractional
factorial designs (Kessels, Goos, & Vandebroek, 2006).

A key characteristic of a fractional factorial design is its resolution, that
is, the degree to which main effects and interactions can be independently
estimated and interpreted. Expressed differently, the resolution of a design
indicates the order of effects that can be estimated without their being
confounded with one another. Box et al. (2005) describe the hierarchy of
resolution of designs for metric outcome variables as follows. For designs
with Resolution I, no effect is independently estimable. Therefore, designs
with Resolution I are not interesting. Similarly, Resolution II is largely useless.
Main effects would be confounded with other main effects. In the analysis of
metric outcome variables, the most useful fractional factorial designs have
Resolution III, IV, and V. At Resolution III, main effects can be estimated, but
they are confounded with two-way interactions.

More interesting to researchers is often Resolution IV. At this level, main
effects can be uniquely estimated, and they are not confounded with any of
the two-way interactions. Two-way interactions, however, are confounded
with one another.

Resolution IV designs are of interest in particular when researchers seek
to determine whether two-way interactions are important at all without
specifying which interaction in particular. Designs at Resolution level
IV will leave some of the two-factor interactions unconfounded. If the
researchers are interested in these interactions in particular, Resolution IV
can be viable.

Moving up the resolution ladder, designs with Resolution V allow one
to estimate main effects and two-way interactions independently, and
neither will be confounded with each other, but possibly with higher-order
interactions. Three-way interactions can be estimated also. However,
they are confounded. Designs with Resolution V are needed to guarantee
that two-way interactions are not confounded. Accordingly, designs
with Resolution VI allow one to estimate three-way interactions such that
they are not confounded with one another, but four-way interactions are
confounded with one another.

When categorical dependent variables are analyzed, one has to take
into account that, in order to estimate the same effect, interactions of one
order higher need to be included in the design than is necessary for metric
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outcome variables (this issue is explained in more detail below). Thus,
when the outcome variables are categorical, designs with

• Resolutions I, II, and III are largely uninteresting and of little or no
use (see the discussion of Data Example 1, in Section 12.2);

• Resolution level IV allows one to estimate main effects (in the
form of two-way interactions) that are confounded with three-way
associations;

• Resolution level V allows one to uniquely estimate main effects and
two-way interactions such that interactions are not confounded with
one another.

In general, in the analysis of categorical outcome variables, beginning
with Resolution level V, interactions of an increasingly higher order can
be estimated without confounds. Therefore, designs with resolution levels
V or higher are needed for the analysis of fractional factorial designs with
categorical dependent variables when predictor-criterion relationships are
of interest. Application examples of such designs are given in the following
sections.

Clearly, as the resolution level increases, a design becomes more
complex and requires more runs (= cells in a table). Designs with higher
resolution levels carry more information. Fractional factorial designs allow
researchers to balance the need for parsimony and the desire for information
by making decisions concerning the point from which higher order
interactions carry no additional useful, important, variance-explaining
information.

Types of Fractional Factorial Designs: As one can imagine, the number
of fractional factorial design types is large. Here, we review just a selection
of design types (for more types, see, e.g., Box et al., 2005; Wu & Hamada,
2000). Practically all of the following design types can be generated by
using numerical algorithms. Therefore, they are also called computer-aided
designs.

The first type listed here includes homogeneous fractional factorial
designs. In these designs, all factors have the same number of levels.
Mixed-level fractional factorial designs include factors that differ in number of
levels.

A subtype of homogeneous fractional factorial designs is known as
Box-Hunter designs (Box et al., 2005). As was indicated above, these designs
use only a fraction of the completely crossed design, for example, one-half,
one-quarter, or an even smaller fraction of the total number of runs. For each
factor, the number of factor levels in Box-Hunter designs is two, and the
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number of runs is a power of two. If each factor has three levels, Box-Behnken
designs (Box & Behnken, 1960) can be considered. These designs do not use
those treatment combinations for which all factors assume extreme values
(e.g., treatment combinations 3-3-3 or 1-1-1). Whereas Box-Hunter designs
can be considered for nominal-level factors, Box-Behnken designs require
factors that are assessed at least at the ordinal scale level. The number of
runs in Box-Behnken designs is a multiple of three.

Plackett-Burman designs (Plackett & Burman, 1946; Ledolter & Swersey,
2007), also called screening designs, operate at Resolution level III. They
are very economical in that the number of runs can be very small, when the
dependent variable is metrical. For example, up to 11 dichotomous factors
can be studied by using only 12 runs; up to 19 factors can be studied by
using 20 runs, and up to 23 factors can be studied by using 24 runs. These
designs are used to explore whether main effects exist in metric variables.
However, one has to assume that two-way interactions are absent. These
designs are also called saturated main effect designs, because all available
degrees of freedom go into the estimation of main effects. These designs are
used to determine the factors that may have (main) effects on the outcome
variable.

Plackett-Burman designs will simplify to fractional factorial designs
with binary factors if the number of runs is 2k. For example, for 8, 16, or 32
runs, they are the same as fractional factorial designs with binary factors.
However, they are unique for 12, 20, 24, etc. runs.

To increase the resolution of Plackett-Burman designs, the use of foldover
designs has been proposed. These designs result from reversing the signs
of all scores in the design matrix, and appending the thus mirrored design
matrix to the original one. The resulting design allows one to estimate
all main effects such that they are no longer confounded with two-way
interactions, at the expense of doubling the number of runs.

As was noted above, a main effect in the context of the General Linear
Model relates a predictor to a criterion. In contrast, in the General
Log-linear Model, a main effect allows statements about the univariate
marginal distribution of a variable. To describe the relationship between a
predictor and a criterion variable in a log-linear model or in CFA, a two-way
interaction is needed. Therefore, standard Plackett-Burman designs are of
lesser importance in the context of categorical variable analysis. To create
a screening design for categorical outcome variables, Resolution at level IV
is needed.

Generating Fractional Designs: Many general purpose software
packages contain modules that allow one to create a wide variety of
fractional and optimal designs. In this section, we present an algorithmic
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description of how fractional factorial designs can be generated. We focus
on Box-Hunter designs (see Box et al., 2005). Consider the number of
dichotomous variables, p, and the number of runs, 2p−k, where p − k is
the number of factors whose main effects can be coded as usual, in a
completely crossed design (k < p). The main effects of the remaining k
factors have to be coded differently, because, in fractional factorial designs,
the number of rows in the design matrix can be reduced by at least 50%
when compared to a completely crossed design. Then, a Box-Hunter design
and the corresponding design matrix can be generated as follows (note that
all factors have two levels):

1. For the first p−k factors, create a design matrix with main effects specified
just as in a completely crossed design with 2p−k cells (= rows in the design
matrix).

2. For the remaining factor p − k + i, create the main effect as if it were the

interaction among the factors in the first of the
( p−k
p−k−1

)

=
(p−k

1

)

combinations

of the first p − k factors. In other words, the remaining k main effects are
expressed in terms of the (p − k)-way interactions of those factors that can
be coded as in a (p − k)-factorial design. Thus, confounds will exist at least
at the level of the (p − k)-way interactions.

3. Repeat Step 2 a total of k times, until all main effects are created for the
p factors.

4. Generate two-way interactions as in a standard ANOVA design, that
is, by element-wise multiplication of vector elements from two different
factors.

5. Generate three-way interactions also as in a standard ANOVA design,
that is, by element-wise multiplication of vector elements from three
different factors.

6. Repeat generating interactions until either the design is saturated or
all unconfounded and important interactions are included in the design
matrix.

It is important to realize that the number of designs that can be created this
way is p!/(p − k)!. This number results from selecting different factors that
are coded as in a completely crossed design with p − k cells, and changing
their order. This process is also called randomizing the runs. Expressed
differently, for fractional designs, alternatives often exist at the same level
of resolution.
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TABLE 12.1. Box-Hunter Design with 8 Runs from 4 Factors; Resolution = III; All
Interactions Included

Int. Main Effects 2-Way Interactions 3-Way Interactions 4-Way

1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12.2 Examples of Fractional Factorial Designs

In this section, we present sample fractional factorial designs, with
an emphasis on Box-Hunter designs, that is, designs for dichotomous
variables. For each of the designs, we discuss the savings in the number
of necessary runs, in comparison to the corresponding completely crossed
design, the resolution, and the interpretation of parameters. Typically,
parameters are not tested in CFA. Parameter interpretability, however, is
of importance. If parameters cannot be interpreted, types and antitypes
cannot be traced back to particular effects in a clear-cut way. Therefore, the
interpretation of a selection of parameters is presented.

Two perspectives will be taken. In the first, we seek to create
parsimonious designs, mostly based on resolution levels (Data Examples 1
and 3). In the second, we seek to create parsimonious designs with a specific
method of analysis (P-CFA and logistic regression) in mind (Data Example
4). We also show an example in which Box-Hunter and Plackett-Burman
designs coincide (Data Example 2).

Data Example 1: Box-Hunter Design with 8 Runs from 4 Factors;

Resolution Level III. We begin with a Box-Hunter design in which we
study the four dichotomous variables A, B, C, and D. The complete
cross-classification of these variables has 24 = 16 cells (runs). We decide to
create a design that has 50% fewer cells, that is, 8 runs. The matrix with all
main effects and interactions for this design appears in Table 12.1.

The matrix in Table 12.1 has eight rows (runs) and 16 columns. Thus,
it is bound to be nonorthogonal. The main effect vectors are pairwise
orthogonal. However, the following confounds are in the matrix:

• Interaction AD is confounded with Interaction BC: AD = BC

• Interaction AC is confounded with Interaction BD: AC = BD
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• Interaction AB is confounded with Interaction CD: AB = CD

• Main effect D is confounded with Interaction ABC: D = ABC

• Main effect C is confounded with Interaction ABD: C = ABD

• Main effect B is confounded with Interaction ACD: B = ACD

• Main effect A is confounded with Interaction BCD: A = BCD; and

• The Intercept I is confounded with Interaction ABCD: I = ABCD.

Because of these confounds, the application of this design requires the
assumption that all three- and four-way interactions are zero. In addition,
the model cannot be fitted when all two-way interactions are included,
because X would not be orthogonal, and X′X would have no inverse. There
would be more unknowns (parameters) than equations (rows in X). This
design has a Resolution of III, that is, two-way interactions are confounded
with one another. When estimating parameters, only up to three of the
six two-way interactions can be uniquely estimated. When the outcome
variable is categorical, this design is saturated.

From the perspective of interpreting types and antitypes, it is important
to remember that main effects in metric variables correspond to two-way
interactions in categorical variables. Therefore, a design such as the one in
Table 12.1 is of interest in CFA only if a zero order base model (that is, a
null model) is considered. The fact that some of the two-way interactions
are confounded places constraints on the interpretability of types and
antitypes. The foregoing list of confounds shows which of the two-way
interactions (main effects in categorical variables) can be estimated, but
they are confounded. If any of these two-way interactions turns out to
be significant, all one can conclude is that either this or the corresponding
confounded interaction, or both, are important. Which of the two-way
interactions actually exist, remains unknown until a design with higher
resolution is used. Thus, if types and antitypes emerge from this design,
one can conclude that they are caused by, for instance, the interaction
between variables A and D, B and C, or both; A and C, B and D, or both;
or A and B, C and D, or both. If researchers wish to specify which of these
interactions are the main causes for the emergence of types and antitypes,
a design with Resolution level IV or higher needs to be implemented.

Data Example 2: Plackett-Burman Design with 4 Runs from 3 Factors;

Resolution Level III. When the number of runs is small and the resolution
level is the same, it can occur that designs that were created by using
different models are the same. Consider the Plackett-Burman design with
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TABLE 12.2. Plackett-Burman Design with 4 Runs from 3 Factors; Resolution Level III;
All Interactions Included

Int. Main Effects 2-Way Interactions 3-Way Interaction
I A B C AB AC BC ABC

1 1 1 −1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1

3 variables and 4 runs (Resolution Level = III) in the Intercept and Main
Effect panels of Table 12.2. This design is identical to a Box-Hunter design
with 3 variables and 4 runs.

Here again, the savings, measured in the number of runs, over the
completely crossed design is 50%. The main effect vectors are mutually
orthogonal. However, there are confounds with the two- and the three-way
interactions. Specifically,

• A = −BC
• B = −AC
• C = −AB, and
• Intercept I = −ABC.

The design matrix for this design appears in Table 12.2.

Parameters for this model cannot be estimated unless confounded
vectors are eliminated from the design matrix. Typically, the vectors for
the interactions are taken out, reflecting the assumption that only the main
effects are of interest (which is rarely the case in CFA). One has to make the
assumption that none of the interactions explains important aspects of the
data.

Data Example 3: Box-Hunter Design with 16 Runs from 5 Factors;

Resolution Level V. Naturally, higher levels of resolution can be achieved
only with more factors. The following example presents a Box-Hunter
design in which 16 runs are realized for five factors. This design has a
Resolution level of V. Table 12.3 displays the design matrix for the main
effects.

The confounds in this design are as follows:

• A = BCDE
• C = ABDE
• D = ABCE
• E = ABCD
• AB = CDE
• AC = BDE
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TABLE 12.3. Main Effects in Box-Hunter Design with 16 Runs from 5 Factors; Resolution
Level V; Intercept Omitted

Factor
A B C D E

−1 −1 −1 −1 1
−1 −1 −1 1 −1
−1 −1 1 −1 −1
−1 −1 1 1 1
−1 1 −1 −1 −1
−1 1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1

1 −1 −1 −1 −1
1 −1 −1 1 1
1 −1 1 −1 1
1 −1 1 1 −1
1 1 −1 −1 1
1 1 −1 1 −1
1 1 1 −1 −1
1 1 1 1 1

• AD = BCE
• AE = BCD
• BC = ADE
• BD = ACE
• BE = ACD
• CD = ABE
• CE = ABD
• DE = ABC, and
• Intercept I = ABCDE.

This confound pattern shows again how the sparsity of effects principle
can be translated into a parsimonious design. If indeed three- and four-way
effects are unimportant, then this design allows one to estimate main effects
and two-way interactions that are mutually independent. In addition
to the vector for the intercept, the design matrix will then include only
the 5 vectors for the main effects and the 10 vectors for the two-way
interactions. When the outcome variable is categorical, this model is
saturated. Only if interactions are either set equal or taken out of the
model, will a nonsaturated model result.

Models with a Resolution level of V are of interest when the
relationships in pairs of variables are targeted. Methods of factor analysis,
latent variables analysis, multidimensional scaling, cluster analysis, or
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correspondence analysis often start from similarity matrices (e.g., a
correlation matrix) that only reflect the relationships in pairs of variables.
Models with a Resolution level of V can also be of interest in P-CFA and
logistic regression. This is illustrated in Data Example 4, below.

To illustrate the confounds, consider the researcher who first estimates
the model for the current design that includes all 10 two-way interactions.
This model can be estimated, and the parameters can be interpreted
as indicated in the design matrix. For example, the parameter for the
interaction effect between variables D and E is estimated using the vector
{−1, −1, 1, 1, 1, 1, −1, −1, 1, 1, −1, −1, −1, −1, 1, 1}. The resulting parameter
has the interpretation

λDE = 1/16( − log m22221 − log m22221 + log m22122 + log m22111

+ log m21222 + log m21211 − log m21121 − log m21112

+ log m12222 + log m12211 − log m12121 − log m12112

− log m11221 − log m11212 + log m11122 + log m11111).

In this equation, a subscript of 1 corresponds to a score of 1 in the
design matrix given in Table 12.3. A subscript of 2 corresponds to a score
of −1. Now, in a follow-up step, the same researcher decides to estimate
the hierarchical model that only includes the two-way interactions AB, AC,
AD, AE, BC, BD, and BE. The interactions CD, CE, and DE are replaced
by the three-way interactions ABE, ABD, and ABC. This model can also
be estimated. However, because of DE = ABC, the three-way interaction,
ABC, comes with exactly the same interpretation as the substituted two-way
interaction DE, and λABC = λDE. This applies accordingly to λCD and λDE

because λDE = λABC and λCD = λABE. Thus, because of these confounds, no
new information is gained by replacing the three two-way interactions with
the corresponding three-way interactions. In other words, substituting, in
this type of design, a two-way interaction with its confounded three-way
interaction makes sense only if the assumption is entertained that the
two-way interaction is zero.

Designs with Resolution level V are positioned, in the analysis of
categorical outcome variables, one resolution level above Plackett-Burman
designs in the analysis of metric variables. Therefore, interactions of higher
order that are untestable with screening designs can be examined using
designs at Resolution level V. Specifically, at Resolution level V, one is
able to examine all pairwise relationships between predictor and criterion
variables. Interestingly, when the categorical variables in such a design are
grouped into predictors and criteria, the model is not necessarily saturated.
If one assumes that the p predictors are independent of one another and
the q criterion variables are also independent of one another, the number of
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interactions that need to be part of the model is pq. This number is always
less than or equal to the number

(p+q
2

)

of interactions for the model in which
the distinction between predictors and criteria is not made and all pairwise
interactions are estimated. The remaining degrees of freedom can be used
to make statements about model fit or to include covariates.

Data Example 4: Box-Hunter Designs for P-CFA or Logistic

Regression. Instead of creating designs based on resolution, we now create
a design based on the analytic goals of a study that aims at the analysis
of predictor-criterion relationships. Here, the analytic goals determine
the required resolution. Consider P-CFA or a logistic regression model
(Agresti, 2002; von Eye et al., 2005). Standard logistic regression models
make no assumptions about interactions among predictors. Therefore,
these models are often saturated in the predictors by default, and the
standard design is completely crossed (if all predictors are categorical).
The models typically focus on bivariate predictor-criterion relationships.
To examine these relationships, two-way interactions are estimated. Higher
order interactions are often deemed unimportant. In these cases, a
fractional factorial design like the one shown in Data Example 3, that is, a
design with Resolution level V, will do the job, at a savings of 50% of the
cells.

To illustrate, suppose that variable A in Table 12.3 (Data Example 3)
is the criterion variable in a logistic regression model, and variables B, C,
D, and E are the predictors. If only the predictive power of individual
predictors is of interest, the logistic regression model can be cast in the
form of the following standard hierarchical log-linear model,

log m̂ = λ + λAB + λAC + λAD + λAE + λBCDE,

where m̂ is the array of model frequencies, the λ are the model parameters,
and the superscripts indicate the interacting variables. All lower order
terms are implied. If the three-way interactions among pairs of predictors
and the criterion are also of interest, the model becomes

log m̂ = λ + λABC + λABD + λABE + λACE + λADE + λBCDE,

and if the four-way interactions among predictors and the criterion are of
interest, the model becomes

log m̂ = λ + λABCD + λABCE + λABDE + λACDE + λBCDE.

If the five-way interaction is included, the model becomes saturated.
Based on the sparsity of effects principle, interactions become less and
less interesting as their hierarchical order increases. If this applies to
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the interactions among the predictors also, the first of these logistic
regression models can be made more parsimonious by setting the four-
and three-way interactions among the predictors to zero. If (1) only the
two-way interactions between predictors and the criterion are considered,
and (2) the three- and four-way interactions among predictors are set to
zero, we obtain the following hierarchical model:

log m̂ = λ + λAB + λAC + λAD + λAE + λBC + λBD + λBE + λCD + λCE + λCD.

If (1) only the two-way interactions among predictors and the criterion are
considered, and (2) only the four-way interaction is set to zero, we obtain
the hierarchical model

log m̂ = λ + λAB + λAC + λAD + λAE + λBCD + λBCE + λBDE + λCDE.

Other models can be specified in which both the order of interactions that
involve predictors and criteria and the interactions among predictors are
varied.

From the perspective of creating parsimonious designs, we now ask
whether logistic regression parameters can be estimated, using fractional
factorial designs. The model in Table 12.3 operates at Resolution level V. It
thus allows one to estimate main effects and all two-way interactions such
that they are not confounded with one another. Thus, if we set all three-,
four-, and five-way interactions to zero, the second last of the above logistic
regression models — that is, the one with only two-way interactions — can
be estimated by using the Box-Hunter design in Table 12.3. To estimate the
logistic regression model that includes three-way interactions, a Resolution
level of VI is needed. A Box-Hunter design that allows one to estimate such
a model requires six variables and 32 runs. The completely crossed factorial
design for six variables would require 64 runs. For 64 runs, a Box-Hunter
design for seven variables with a Resolution level of VII can be created, or
a screening design with 11 variables with a Resolution level of IV. This last
design would represent a savings of 96.88% over the completely crossed
design, which has 2,028 cells.

12.3 Extended Data Example

In this section, we present a data example in which we explore the
cross-time association structure of social welfare reception, and ask whether
social welfare reception is related to depression (see von Eye & Bogat,
2006). In addition, we compare results from fractional and from completely
crossed designs.
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M3 M4 M5 M6 D6

FIGURE 12.1. Social welfare (Medicaid) and depression.

In a study on the effects of social welfare on mental health in battered
women, von Eye and Bogat (2006) asked (cf. Levendosky, Bogat, Davidson,
& von Eye, 2000), whether depression is linked to receiving social welfare
in the form of food stamps and Medicaid. Longitudinal data from six
observation points are available, each collected at 1-year intervals. The first
observation occurred during the last trimester of the women’s pregnancy,
and the second was 3 months after birth. The second observation was
performed to collect information about the child. In the following analyses,
we focus on the data from the third and the following three observation
points. For the following illustration of the application of fractional
factorial designs in the analysis of categorical outcome variables, we use
the following measures:

• Social welfare (Medicaid) received at observation points 3, 4, 5, and
6 (M3, M4, M5, and M6; all scored as 1 = did not receive and 2 = did
receive); and

• Depression at observation point 6 (D6; scored as 1 = below the cutoff
for clinical-level depression and 2 = above cutoff; depression was
measured by using the BDI; Beck, Ward, & Mendelson, 1961).

Completely crossed, these five variables span a contingency table with
25 = 32 cells. For the following analyses, we hypothesize that

1. Social welfare (Medicaid) reception predicts itself over time; and

2. At Time 6, social welfare reception predicts concurrent depression.

This model is depicted in Figure 12.1.
The model in Figure 12.1 shows that only two-way interactions

are needed to test the hypothesized relationships. From a modeling
perspective, the hierarchical log-linear model that corresponds to this
graphical model is

log m̂ = λ + λM3,M4 + λM4,M5 + λM5,M6 + λM6,D6.

This model can be enriched by also testing whether social welfare reception
at observation points 3, 4, and 5 is also predictive of depression at Time 6,
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above and beyond their auto-regressive chain effect via M6. The enriched
model is

log m̂ = λ + λM3,M4 + λM4,M5 + λM5,M6 + λM6,D6 + λM3,D6 + λM4,D6 + λM5,D6,

where the new interactions appear in the last three terms of the
equation. The interactions tested in the enriched model are also two-way
interactions. An analysis of this model based on all 32 cells of the complete
cross-classification comes with a maximum of 32 degrees of freedom. Of
these, 16, that is, 50%, are needed for the three-, four-, and five-way
interactions that are not of interest, as they are not included in the model
depicted in Figure 12.1 or in the enriched model. Therefore, there is no need
to screen women in all 32 cells of the design. Instead, a more parsimonious
design will allow one to make a decision concerning the parameters in these
models as well as about overall model fit.

A fractional factorial design that, in categorical variable analysis,
allows one to estimate all two-way interactions so that they are not
confounded with main effects or one another requires Resolution level
V. The Box-Hunter design given in Table 12.3 has these characteristics.
Therefore, we employ, for the following analyses, this design. Table 12.4
shows the design matrix with all two-way interactions that are part of the
model in Figure 12.1 and the enriched model. The design has 16 runs. This
represents a savings of 50% over the completely crossed design, which has
32 cells. A complete cross-classification table is shown in Table 12.7.

In the following paragraphs, we present four applications of CFA to the
social welfare data. These include the first applications of CFA to fractional
factorial designs reported in the literature:

1. First order CFA of the social welfare data created for the fractional
factorial design application in Table 12.4. Only main effects are included
in the base model. If types and antitypes emerge, they must be caused by
two-way interactions. The model is

log m̂ = λ + λM3 + λM4 + λM5 + λM6 + λD6.

2. First order CFA of the social welfare data created for the completely
crossed design in Table 12.7. Again, only main effects are included in
the model (first order CFA). However, because higher order effects can,
in principle, exist, types and antitypes can be caused by interactions of
any order. Based on the enriched log-linear model discussed above, we
conclude, based on the completely crossed design, that there are no higher
order interactions needed to explain this data set (LR−X2 = 29.96; d f = 19;
p = 0.052). Therefore, the type-antitype patterns are expected to be very
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TABLE 12.4. Box-Hunter Design with 16 Runs from Five Factors; Resolution = V;
Intercept Omitted; Interactions Included for the Model in Figure 12.1 and the Enriched
Model; Cell Frequencies in Last Column

Main Effectsa Two-Way Interactions m

−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 45
−1 −1 −1 1 −1 1 1 −1 −1 1 1 1 0
−1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 0
−1 −1 1 1 1 1 −1 1 1 −1 −1 1 2
−1 1 −1 −1 −1 −1 −1 1 1 1 −1 1 0
−1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 0
−1 1 1 −1 1 −1 1 −1 −1 −1 1 1 1
−1 1 1 1 −1 −1 1 1 −1 1 −1 −1 1

1 −1 −1 −1 −1 −1 1 1 1 −1 1 1 0
1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 1
1 −1 1 −1 1 −1 −1 −1 −1 1 −1 1 2
1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 1 −1 1 1 −1 7
1 1 −1 1 −1 1 −1 −1 −1 −1 −1 1 0
1 1 1 −1 −1 1 1 −1 1 −1 −1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 55

aNote that the codes −1 and 1 represent 1 (= did receive social welfare)
and 2 (= did not receive social welfare), respectively, based on the original
codes (see also the Appendix to this chapter). The codes for D6 indicate
1 = low depression (originally 1) and −1 = high depression (originally 2).
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similar in the analyses for the completely crossed and the fractional factorial
designs. The base model for this analysis is the same as the base model for
the first analysis.

3. The first two applications use straight main effect base models. None
of the interactions is included. Therefore, in principle, types and antitypes
can emerge from those two-way interactions that link earlier social
welfare reception with depression at Time 6, that is, from those two-way
interactions among the social welfare scores that were not included in the
model. Specifically, these are the interactions [M3,M5], [M3,M6], [M4,M6],
[M3,D6], [M4,D6], and [M5,D6]. The good fit of the enriched model (not
reported in detail here) suggests that none of these terms is needed to
explain the social welfare data in the fractional design. Here, we focus on
the long-term prediction of depression, and we ask whether including the
interactions [M3,D6], [M4,D6], and [M5,D6] in the base model alters the
pattern of types and antitypes from the first CFA. Therefore,we now include
these interactions in the base model. If types and antitypes still emerge,
they indicate the relationships among the variables that are depicted in
Figure 12.1, and, possibly, additional cross-time relationships among the
social welfare scores. The model for CFA thus becomes

log m̂ = λ + λM3 + λM4 + λM5 + λM6 + λD6 + λM3,D6 + λM4,D6 + λM5,D6.

4. Same as CFA 3, just from the completely crossed design.

CFA 1: First-Order CFA from Fractional Factorial Design: For the base
model in this application, we use the design matrix that is displayed in
the main effects panel of Table 12.4. To perform the cell-wise tests, we use
the z-test, and we protect α by using the Holland-Copenhaver procedure.
Table 12.5 displays results of this CFA.

The base model does not fit, LR − X2 = 218.16, d f = 10, p < .01.
Correspondingly, the results in Table 12.5 show that CFA identified two
types and five antitypes. The first type, constituted by Configuration
1 1 1 1 1, indicates that more women than expected with reference to the base
model exhibit low depression when they never received Medicaid or food
stamps over the entire observation period. The second type, constituted
by Configuration 2 2 2 2 1, shows that more women than expected who
did receive social welfare over the entire observation period show also
below-threshold depression. These two types seem to suggest that having
received Medicaid or food stamps is unrelated to later depression (see von
Eye & Bogat, 2006).

However, the five antitypes show that a relationship between social
welfare and depression does exist. The first antitype, constituted by
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TABLE 12.5. First Order CFA of Fractional Factorial Design for Social Welfare Data

Configurationa

M3 M4 M5 M6 D6
m m̂ z p Type/Antitype

11111 45 9.285 11.7205 .000000 Type
11122 0 .263 −.5132 .303913
11212 0 .293 −.5410 .294242
11221 2 11.776 −2.8489 .002194 Antitype
12112 0 .314 −.5603 .287631
12121 0 12.631 −3.5540 .000190 Antitype
12211 1 14.039 −3.4800 .000251 Antitype
12222 1 .398 .9537 .170110
21112 0 .337 −.5804 .280815
21121 1 13.553 −3.4099 .000325 Antitype
21211 2 15.065 −3.3660 .000381 Antitype
21222 1 .427 .8762 .190459
22111 7 16.158 −2.2782 .011356
22122 0 .458 −.6770 .249217
22212 1 .509 .6875 .245899
22221 55 20.492 7.6229 .000000 Type

aConfiguration labels indicate, for M3-M6: 1=Did not receive social welfare; 2= did receive
social welfare; D6: 1 = low depression; 2 = high depression. (See the footnote under the
design matrix in Table 12.4.)

Configuration 1 1 2 2 1, suggests that fewer women than expected
show below-threshold, subclinical-level depression when they were placed
on social welfare reception between Time 4 and Time 5. Similarly,
fewer women than expected show subclinical-level depression when they
received social welfare only at Times 4 and 6 (Antitype 1 2 1 2 1). The same
applies when social welfare was received only at Times 4 and 5 (Antitype
1 2 2 1 1). The remaining antitypes (2 1 1 2 1 and 2 1 2 1 1) also show that
fewer than expected women who experience an unstable pattern of social
welfare reception are able to remain at below-threshold depression. We
thus conclude that stability in social welfare reception over time seems to
be linked to subclinical levels of depression. In contrast, unstable patterns
of social welfare reception make it less likely than expected to maintain low
levels of depression.

CFA 2: First-Order CFA from Completely Crossed Design: First-order
CFA of the table from the completely crossed factors of the social welfare
data also used the z-test and the Holland-Copenhaver procedure. In
addition, the log-linear base model was the same as before. However, the
design matrix was that of a completely crossed design instead of a fractional
factorial design. If the fractional design does not lead to a distortion of the
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relationships in the table, results of the two analyses should be largely
the same, even at the level of individual cells. Indeed, the results (not
shown here) show strong overlap with the results from the fractional design.
Specifically, the overall model for the completely crossed design did not fit,
LR − X2 = 292.16, d f = 26, p < 0.01. In addition, the same types, 1 1 1 1 1
and 2 2 2 2 1, surfaced again.

However, the results from the fully crossed design differ from the
ones for the fractional design in a few interesting ways. Specifically,
none of the configurations that previously constituted antitypes differed
from expectation strongly enough to constitute antitypes again, under the
stricter levels of α protection that result for the larger table. Therefore,
we asked whether they constitute a composite antitype (see von Eye,
2002a). The Stouffer Z = −5.78 (p < 0.01) suggests that this is the case.
We, therefore, conclude that this difference between the two analyses
may be due to the stricter α levels that result from α protection in larger
tables. Equally important is that a new type emerged. It is constituted
by Configuration 2 2 2 2 2, indicating that those women who received
social welfare annually throughout the 4-year period are more likely than
expected to show clinical-level depression. Types 2 2 2 2 2 and 2 2 2 2 1
differ only in the last digit. Therefore, they can be aggregated. The five
antitypes were constituted by Configurations 1 1 1, 1 2 2, 2 1 1, 2 2 2, and
2 3 1. Of these, two aggregate antitypes can be created: the first and third
and the second and fourth antitypes can be aggregated. Specifically, when
aggregating the first and third antitypes, we obtain the composite antitype

1 1 1

2 1 1

. 1 1

From aggregating the second and fourth antitypes, we obtain

1 2 2

2 2 2

. 2 2

From aggregating the types 2 2 2 2 1 and 2 2 2 2 2, we obtain

2 2 2 2 1

2 2 2 2 2

2 2 2 2 .

to form the aggregated type 2 2 2 2 ., where the . indicates the variable
aggregated over. The aggregated type suggests that more women than
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TABLE 12.6. CFA of Fractional Factorial Design for Social Welfare Data; Design Matrix
Given in the First and Third Panels of Table 12.4

Configuration
M3 M4 M5 M6 D6

m m̂ z p Type/Antitype

11111 45 9.610 11.416 .000000 Type
11122 0 0 −.000 .499996
11212 0 .312 −.559 .282716
11221 2 11.690 −2.834 .002298 Antitype
12112 0 0.001 −.028 .499995
12121 0 13.017 −3.608 .000154 Antitype
12211 1 13.682 −3.429 .000303 Antitype
12222 1 .688 .376 .343199
21112 0 0.001 −.028 .499995
21121 1 13.992 −3.473 .000257 Antitype
21211 2 14.707 −3.313 .000416 Antitype
21222 1 .688 .376 .439396
22111 7 16.377 −2.317 .010251
22122 0 0.002 −.042 .499994
22212 1 1.311 −.272 .447382
22221 55 19.922 7.859 .000000 Type

expected under the assumption of variable independence received social
welfare in all 4 years, and that receiving social welfare for 4 years in a row,
in and of itself, does not increase one’s risk for clinical-level depression.
Clearly, this result is an example that shows that CFA can lead to a more
detailed and differing description of the relationships in data than log-linear
modeling.

CFA 3: Long-Term Prediction of Depression: CFA from Fractional

Factorial Design: In the following sample application, we ask whether
those of the six interactions that would suggest long-term predictability of
depression from social welfare reception indeed play no role in the detection
of types and antitypes in the social welfare data. These are the interactions
[M3,D6], [M4,D6], and [M5,D6]. None of these is among the interactions
that were needed to explain the data. Another way of presenting this
analysis is that we ask which types and antitypes emerge when we no
longer consider the associations among the social welfare scores M3, M4,
and M5 and depression at Time 6. The log-linear base model for this CFA
is

log m̂ = λ + λM3 + λM4 + λM5 + λM6 + λD6 + λM3,D6 + λM4,D6 + λM5,D6.

Considering that (1) the design for this analysis is fractional factorial
with Resolution at level V (three- and higher-way interactions either
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cannot be estimated or are confounded), and (2), the two-way interactions
[M3,M4], [M4,M5], [M5,M6], and [M6,D6] are not part of the base model,
types and antitypes from this CFA base model reflect, by necessity, the
cross time associations among the social welfare reception variables, and
the association between social welfare reception and depression, at Time
6. If the three interactions [M3,D6], [M4,D6], and [M5,D6] indeed play no
role in the detection of types and antitypes in the social welfare data, the
same types and antitypes will emerge from this analysis, as in the first data
example (first order CFA base model). The design matrix for this design
appears in the first and the third panels of Table 12.4. For the CFA that
uses this design matrix in its base model, we again employ the z-test and
the Holland-Copenhaver procedure. The overall goodness-of-fit LR − X2

for the model that uses the fractional factorial design is 214.15 (d f = 7;
p < 0.01). This indicates major discrepancies between model and data, and
also provides evidence that predicting depression from social welfare over
a span of more than 2 years does not add unique information above and
beyond the effects on depression of receiving social welfare concurrently.
We thus can expect types and antitypes to emerge. Table 12.6 displays the
results of this CFA.

The CFA types and antitypes in Table 12.6 are, with no exception,
identical to the ones in Table 12.5. We thus conclude that the long-term
associations between social welfare reception and depression have no effect
on the pattern of types and antitypes. In other words, there are no lagged
effects of social welfare on depression. Therefore, the types and antitypes
in Tables 12.5 and 12.6 result solely from the cross-time associations among
the social welfare scores and the concurrent association of social welfare
reception and depression at Time 6.

Note that alternative base models are conceivable. For example, instead
of asking which effects do not cause the types and antitypes in Table 12.5,
one can ask which effects do cause these types and antitypes. To answer this
question, a base model is needed that includes the cross-time associations
among the social welfare scores and the association between social welfare
and depression at T6. This is the base model

log m̂ = λ+λM3+λM4+λM5+λM6+λD6+λM3,M4+λM4,M5+λM5,M6+λM5,D6.

If the interactions in this model are the causes for the types and antitypes
in Table 12.5, they all will disappear under this base model (they do).

CFA 4: Long-Term Prediction of Depression: CFA from Completely

Crossed Design: Using the table from the completely crossed variables and
the hierarchical log-linear base model that includes the three interactions
[M3,D6], [M4,D6], and [M5,D6], we obtain CFA results that mirror the ones
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from the second CFA, above (details not shown here). Configurations 1 1 1
1 1 and 2 2 2 2 1 constitute types. Also as before, each of the configurations
that constituted antitypes in the first analysis was observed less frequently
than expected, and the composite antitype exists. The additional type was
not observed again. Thus, these results are even closer to the ones from
Data Example 3 than the results from Data Example 2 were to the ones from
Data Example 1.

We conclude that using the fractional factorial design can lead to
appraisals of data structures that differ only minimally from those found
by using the complete design.

12.4 Chapter Summary

The Sparsity of Effects Principle proposes that most systems (1) are carried
by a small number of effects, and (2) these effects are of low order. If this
principle applies, designs may be wasteful that allow one to model those
higher order effects that (1) may not exist in the first place, (2) may be hard
to interpret when they exist, and (3) may explain only minuscule portions
of variability, when they exist.

Therefore, it is proposed to adopt fractional factorial designs into the
canon of methods for the analysis of categorical data. Fractional designs
are discussed that are orthogonal and contain only a fraction of the cells of
a complete design. Because the number of cells is smaller, these designs
allow one to estimate only lower order effects. Depending on the number of
cells, higher order effects may be estimable without confound. The highest
order effects can be estimated only when a design is complete.

For analysis with CFA, this chapter focuses on Box-Hunter designs.
These are fractional factorial designs for binary variables. It is shown that,
to be able to estimate effects of a particular order, one needs a design with
a higher resolution (more cells) than one would need for an analysis in the
context of the General Linear Model. As in standard CFA of completely
crossed designs, CFA focuses on configurations instead of relationships
among variables. Resulting types and antitypes are interpreted as usual,
based on (1) the meaning of the categories that define a configuration and
(2) the base model. The only difference to a standard, completely crossed
design is that the choice of base models is limited by the level of effect that
a design allows one to estimate.

To be able to employ a fractional factorial design in categorical data
analysis, standard observational methods of data collection can no longer
be applied. Screening of respondents is needed. Only those respondents
who display the profile needed for a fractional design are included in a
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TABLE 12.7. Complete Cross-Classification for the Social Welfare Data Example

T6 Depression [D6]a

M3 M4 M5 M6 1 2

1 1 1 1 45 2
1 1 1 2 5 0
1 1 2 1 4 0
1 1 2 2 2 0
1 2 1 1 2 0
1 2 1 2 0 0
1 2 2 1 1 0
1 2 2 2 5 1
2 1 1 1 7 0
2 1 1 2 1 0
2 1 2 1 2 1
2 1 2 2 4 1
2 2 1 1 7 0
2 2 1 2 4 0
2 2 2 1 9 1
2 2 2 2 55 9

aBold-faced numbers in the last two columns indicate observed frequencies shown in Tables
12.4, 12.5, and 12.6 with Box-Hunter design with 16 runs.

study. In an empirical example, the same data are analyzed using the
fractional part of the design as well as the complete part. It is illustrated
that fractional designs can yield the same results as complete designs. This
applies in particular when the sparsity of effects principle applies.



13
Computational Issues

Chapter 13 presents computer applications of programs that can
be obtained free of charge. The application of three programs is
demonstrated. The first of these is a stand-alone, specialized CFA
program. The second program is a package in the R environment for
statistical computing. The third program is `EM, a general program
for the analysis of categorical data. The first two programs provide
output that is specific to CFA. `EM does not allow one to directly test
CFA hypotheses. However, as is shown, the output of `EM contains
information that can be used for CFA. The detailed applications are
described in Chapter 13 and are presented step by step on the book’s
companion website, which can be accessed from www.guilford.com/
p/voneye.

In this chapter, we present sample commands for a selection of the CFA
models proposed in this book, using several programs. Our focus is on
base models that are log-linear. CFA can be performed by using most of the
log-linear modules in specialized or general-purpose statistical software
packages or using specialized CFA programs. In this chapter, we illustrate
the application of three program packages, all of which can be obtained
free of charge. The first package is a specialized CFA package (von Eye,
2007). It can be requested by sending an e-mail to voneye@msu.edu. The
second program is a new CFA package within the R environment (Funke,
Mair, & von Eye, 2008). This program can be downloaded from the website
of the R Development Core Team (2007), http://www.R-project.org, also
free of charge. It requires that the R kernel be available, which can be
downloaded from the same web site. The third program is `EM, a general
program for the analysis of categorical data (Vermunt, 1997). It can be
downloaded from http://www.uvt.nl/faculteiten/fsw/organisatie/
departementen/mto/software2.html, also free of charge.

247
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13.1 A CFA Program

In the following sections, we first describe a specialized CFA program.
Then, we present application examples.

13.1.1 Description of CFA Program

The CFA program was written in FORTRAN 90 and compiled by using
the MS PowerStation. It contains two subroutines from Numerical Recipes
(Press, Flannery, Teukolsky, & Vetterling, 1989). These subroutines, used
for the z- and the χ2-tests, are part of the PowerStation. The program
was compiled and tested under the 32-bit Windows operating systems XP
Professional, Vista Business, and Windows 7 Professional.

The CFA program is interactive and keyboard-oriented. Data are either
read from ASCII files (raw data or frequency tables) or interactively typed
in via the keyboard when prompted (frequency tables). Output is written
into ASCII files that can be read by using virtually any word processor.
The current version of the CFA program (the most recent change was
implemented in 2009) has the following characteristics:

• Size of executable program file: 410 KB

• Operating systems: Windows XP, Windows Vista, Windows 7

• Number of subroutines: 37

• Input options:

Raw data: from ASCII files

Frequency tables: from ASCII files or keyboard

• Output: written into ASCII file; parts of output appear on screen

• Number of variables that can be simultaneously analyzed: up to 10

• Number of categories per variable: up to 9

• Memory allocation: dynamic

• Variants of CFA: This CFA program can, in principle, perform any
model that can be expressed as a log-linear model. A selection of
frequently used models is preprogrammed. These are (1) all global
base models, that is, zero order, first order, second order, and any
higher order base models, and (2) two-group models. Any other
models as well as the search algorithms described in Chapters 6
(mediation), 8 (moderation), and 10 (functional CFA) can be applied
also, but some of the design matrices for these models need to be
typed in vector-by-vector. For models with covariates, the covariates
need to be typed in, cell-wise. The same applies to models with
special effects.
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• Statistical tests for global base models:

Exact binomial test (CFA Option 1)

Binomial test that uses Stirling’s approximation of factorials (CFA
Option 2)

Pearson’s X2 test (CFA Option 3)

z-test (CFA Option 4)

Normal approximation of the binomial test (CFA Option 5)

Lehmacher’s asymptotic hypergeometric test (CFA Option 6)

Lehmacher’s test with Küchenhoff’s continuity correction (CFA
Option 7)

Anscombe’s z approximation (CFA Option 8)

The Freeman-Tukey test (CFA Option 9)

• Statistical tests for two-group CFA:

X2 test for 2 × 2 tables

X2 test with continuity correction

Normal approximation of the binomial test

z-test

λ, the log-linear interaction with a significance test that is based
on jackknife procedures

λ̃ the marginal-dependent version of λ (Goodman, 1991) with a
jackknife significance test

ρ, the correlation in 2 × 2 tables with a significance test that is
based on jackknife procedures

δ, the absolute value of ρwith a significance test that is based on
jackknife procedures;

θ, the marginal-free log-odds ratio plus asymptotic significance
test.

• Descriptive measures for global CFA:

Relative risk ratio, RR (see DuMouchel, 1999)

log P, the Poisson probability of the observed cell frequency, given
the estimated expected cell frequency.

Rank of RR

Rank of log P
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• Descriptive measure for two-group CFA: coefficient π, which
describes the goodness-of-fit in cross-classifications (Rudas, Clogg,
& Lindsay, 1994); here, the variant for 2 × 2 tables is used
(Gonzáles-Debén & Méndez-Ramı́rez, 2000).

• Additional significance test: Stouffer’s Z to test hypotheses about
composite types or composite antitypes

• Protection of α: Three procedures are currently available:

Bonferroni (Option 1)

Holm (Option 2)

Holland-Copenhaver (Option 3)

13.1.2 Sample Applications

In this section, we present sample applications of the CFA program.
The applications exemplify models discussed in this text. For additional
examples, see von Eye (2002a). For readers to replicate the sample runs
presented in this section, they need the executable program file CFA.EXE.
When an ASCII data file is read, this file needs to be in the same directory
as the program file. If this is not the case, the complete path to the data file
needs to be typed in.

Data Example 1: Multiple, Multivariate Prediction CFA with Multiple
Predictors: For this illustration, we use the example from Table 5.13.
Violence at Time 1 (V1) and Time 2 (V2) is used to predict PTSD at
Time 2 (P2) and Time 3 (P3). As was indicated in Section 5.1.2, the
cross-classification V1 × V2 × P2 × P3 is analyzed by using the P-CFA
base model

log m̂ = λ + λV1 + λV2 + λV1,V2 + λP2 + λP3 + λP2,P3,

where the double-superscripted terms indicate two-way interactions. From
this base model, types and antitypes can emerge only if there is a
relationship between violence and PTSD. For this example of P-CFA, we
use the z-test and the Holland-Copenhaver procedure. The following steps
result in a P-CFA of the violence data. The table is typed in via the keyboard.

• Click shortcut to CFA program: Starts CFA program; black program
window appears on screen; the program asks the user whether data will
be input via file (= 1) or interactively (= 2). For this example, we select
interactive data input and type “2”.

• The program responds by asking for the number of variables. For
our example, type “2”. This number indicates that we use both the two
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predictors and the two criterion variables as two composite variables. The
composites result from crossing the variables that constitute the composite.
For example, the variable Violence has two categories. Crossed with each
other, the two observations of violence constitute four combinations. These
combinations are the categories of the new composite violence variable.
This applies accordingly for the composite PTSD variable. Note that,
alternatively, we could tell the program that there are four variables.
If we do this, the interaction vector for the violence variables and the
interaction vector for the PTSD variables need to be typed in as two
covariates. The results from these two approaches will be identical, in
overall goodness-of-fit, degrees of freedom, and the emerging type and
antitype pattern.

• The program now asks for the number of categories of the first
(composite) variable. We type “4”.

• To indicate the number of categories of the second (composite) variable,
we type “4”.

• The program now presents the number of cells of the table, and it prompts
the individual cell frequencies. For the first cell, 1 1, we type “82” as the
cell frequency (see Table 5.13). For Cell 1 2, we type “7”. This is done until
all 16 cell frequencies are typed in, one-by-one. The program responds by
presenting the sample size (N = 204) and by asking whether we wish to
save the frequency table. We indicate that “yes” by typing “1”.

• The name of the data file is then given by typing “V1V2P2P3.dat” (the
maximum length of the name plus path is 80 characters).

• The program follows up by asking about the base model for this analysis.
We type “1” to request that a first order CFA be performed. By forming the
composite variables, all main effects and the associations between the two
violence observations and between the two PTSD observations are taken
into account.

• The program now needs to know whether the Delta option of adding a
constant to each cell is invoked. We type “2” to indicate that no constant
is added to each cell. The program responds by presenting the marginal
frequencies. In the present example, these are the cell frequencies of the 4
× 4 cross-classifications of the violence and the PTSD variables.

• The program now asks whether covariates will be typed in. To indicate
that this is not the case, we type “2”.
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• In response, the program presents the currently available nine options for
type/antitype tests. We select the z-test and type “4”. To set the significance
threshold to 0.05, we type “.05”, and to select the Holland-Copenhaver
procedure of α protection, we type “3”.

• The program now requests the name of the output file. We type
“V1V2P2P3.out”.

• The program then responds by asking whether we wish to test
hypotheses about composite types or composite antitypes. In the present
example, we do not entertain such hypotheses and type “2”.

• Finally, by typing “1” we indicate that we would like the design matrix
included in the output file. The program window now disappears, and the
output file is complete. The output file V1V2P2P3.out can be accessed in
the same directory as the program file, CFA.EXE.

The above series of commands resulted in the following (slightly edited)
output file, V1V2P2P3.out:

Configural Frequency Analysis

---------- --------- --------

author of program: Alexander von Eye, 2002

last revision: March 2007

Marginal Frequencies

--------------------

Variable Frequencies

-------- -----------

1 149. 17. 19. 19.

2 85. 10. 61. 48.

sample size N = 204

the normal z-test was used

with Holland-Copenhaver protection

a CFA of order 1 was performed

Table of results

----- -- -------

Configuration fo fe statistic p

------------- ---- -------- --------- -------

11 82.00 62.083 2.5277 .005740

12 7.00 7.304 -.1125 .455231

13 47.00 44.554 .3665 .357011

14 13.00 35.059 -3.7255 .000097 Antitype

21 3.00 7.083 -1.5342 .062484

22 3.00 .833 2.3735 .008811

23 .00 5.083 -2.2546 .012078

24 11.00 4.000 3.5000 .000233 Type
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31 .00 7.917 -2.8137 .002449 Antitype

32 .00 .931 -.9651 .167253

33 12.00 5.681 2.6509 .004014 Type

34 7.00 4.471 1.1963 .115791

41 .00 7.917 -2.8137 .002449 Antitype

42 .00 .931 -.9651 .167253

43 2.00 5.681 -1.5445 .061236

44 17.00 4.471 5.9258 .000000 Type

chi2 for CFA model = 109.4

df = 9 p = .00000000

LR-chi2 for CFA model = 114.5

df = 9 p = .00000000

Descriptive indicators of types and antitypes

---------------------------------------------

cell Rel. Risk Rank logP Rank

-------- --------- ---- ---- ----

11 1.321 6 2.18342 4

12 .958 8 .325107 10

13 1.055 7 .717484 8

14 .371 10 3.59177 2

21 .424 9 .387703 9

22 3.600 2 1.28143 6

23 .000 12 .000000 16

24 2.750 3 2.54978 3

31 .000 16 .000000 14

32 .000 13 .000000 15

33 2.112 4 1.86858 5

34 1.566 5 .799061 7

41 .000 14 .000000 13

42 .000 15 .000000 12

43 .352 11 .322998 11

44 3.803 1 5.31589 1

Design Matrix

------ ------

.0 .0 .0 1.0 .0 1.0

.0 1.0 .0 1.0 .0 .0

.0 .0 1.0 1.0 .0 .0

.0 -1.0 -1.0 1.0 .0 -1.0

.0 .0 .0 .0 1.0 1.0

.0 1.0 .0 .0 1.0 .0

.0 .0 1.0 .0 1.0 .0

.0 -1.0 -1.0 .0 1.0 -1.0

1.0 .0 .0 .0 .0 1.0

1.0 1.0 .0 .0 .0 .0

1.0 .0 1.0 .0 .0 .0

1.0 -1.0 -1.0 .0 .0 -1.0

-1.0 .0 .0 -1.0 -1.0 1.0
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-1.0 1.0 .0 -1.0 -1.0 .0

-1.0 .0 1.0 -1.0 -1.0 .0

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0

CARPE DIEM

Reading from the top, this output can be interpreted as follows.
After information about the version of the program, the first numerical
information contains the marginal frequencies of the two four-category
composite variables that we created for the current run. Note that this part
of the output is different from the one reproduced in Table 5.13, where we
had used the four individual variables plus the interactions between V1
and V2 and between P2 and P3. The design matrix for the run in Table 5.13
is shown below (constant vector is implied).

X =







































































































































1 1 1 1 1 1
1 1 1 −1 1 −1
1 1 −1 1 1 −1
1 1 −1 −1 1 1
1 −1 1 1 −1 1
1 −1 1 −1 −1 −1
1 −1 −1 1 −1 −1
1 −1 −1 −1 −1 1
−1 1 1 1 −1 1
−1 1 1 −1 −1 −1
−1 1 −1 1 −1 −1
−1 1 −1 −1 −1 1
−1 −1 1 1 1 1
−1 −1 1 −1 1 −1
−1 −1 −1 1 1 −1
−1 −1 −1 −1 1 1
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The design matrix for the current run (4 × 4 table) is

X =







































































































































1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 −1 −1 −1
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 −1 −1 −1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 1 −1 −1 −1
−1 −1 −1 1 0 0
−1 −1 −1 0 1 0
−1 −1 −1 0 0 1
−1 −1 −1 −1 −1 −1







































































































































.

These two design matrices differ in the sense that, whereas the first
allows one to estimate the main effect parameters of all four variables and
the parameters for the [V1,V2] and the [P2,P3] interactions, the second
treats the same frequencies as if they had been created for two variables
with four categories each. However, the estimated expected cell frequencies
and the overall model fit are exactly the same for both design matrices. The
first design matrix can be created in the CFA program by indicating that
four dichotomous variables are being used and then typing the last two
vectors, that is, the interaction vectors, as covariates.

After the marginal frequencies, the program indicates the size of the
sample and confirms the selections of significance test, the procedure for
the protection of α, and the base model. The Table of results contains the
observed and the estimated expected frequencies for each of the 16 cells, the
test statistic, its one-sided tail probability, and the type/antitype decision.

The next block of output information contains the Pearson and the
LR − X2 tests for the base model. If these tests indicate that the base
model describes the data well, types and antitypes are extremely unlikely
to emerge. In the present example, the base model was rejected, and types
and antitypes did emerge.

The next block of information contains the descriptive information
specified above. It is interesting to see that the rank orders of the relative risk
measure and log P are strongly correlated (rs = 0.81). Only Configuration
1 4 shows a larger discrepancy in rank.
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The last block of output information presents the design matrix used for
this run. It is identical to the one shown above (only the order of vectors is
arranged differently, but this has no effect on results). CARPE DIEM means
SEIZE THE DAY.

Data Example 2: Predicting a Trajectory: In the following example, we
illustrate how the data example in Section 5.3 can be calculated. We
reproduce Table 5.15 (the only difference between the present solution and
the one in Table 5.15 is that here we use the Freeman-Tukey instead of the
z-test; see below). In this example, we predict the development of physical
aggression against peers (PAAP1 and PAAP2) from aggressive impulses
(AI). The base model for predicting the PAAP1-PAAP2 trajectory from AI
is

log m̂ = λ + λAI
i + λ

PAAP1
j + λPAAP2

k + λPAAP1,PAAP2
jk

.

As was discussed in Section 5.3, this model can be contradicted only if
one or more of the following interactions exist: [AI,PAAP1], [AI,PAAP2],
and [AI,PAAP1,PAAP2]. If types and antitypes emerge, they indicate
trajectories that occur more likely or less likely than chance, conditional on
AI.

As in the last example, the base model used here is not global. That is,
not all possible two-way interactions are included. We have two options to
incorporate the [PAAP1,PAAP2] interaction into the base model. The first
involves creating a composite variable by crossing PAAP1 with PAAP2.
This option was illustrated in the first application example. The second
option involves typing in the interaction vector in the form of a covariate.
This option is illustrated in the present example. The following commands
are issued:

• Click shortcut to CFA program: Starts CFA program; black program
window appears on screen; the program asks whether data will be input
via file (= 1) or interactively (= 2). For this example, we select interactive
data input and type “2”.

• The program responds by asking for the number of variables. We type
“3”.

• This is the real number of variables, as we do not use composite variables.
The program now prompts, for each variable, the number of categories. In
this example, all variables are dichotomous. Therefore, we answer each
question by typing “2”.

• The program now prompts the frequencies for each cell. We type “23”
for Cell 1 1 1, “11” for Cell 1 1 2, and so forth, until the frequency table is
completed (for the frequencies, see Table 5.15).
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• We now type “1” to indicate that we wish to save the table, and we give
the name of the file as “AIP1P2.dat”.

• We now select the first order CFA base model by typing “1”.

• We opt against invoking the Delta option by typing “2”.

• The program now offers for covariates to be included. In this example,
we need to type in the vector for the [PAAP1,PAAP2] interaction. We type
“1” to indicate that a covariate will be typed in.

• The program now prompts the cell-wise covariate scores. The vector that
we include in the design matrix is [1,−1,−1, 1, 1,−1,−1, 1]. We type “1” for
the first score, −1 for the second, and so forth until the entire vector is typed
in.

• The program now asks whether we wish to include a second covariate,
and it indicates that only two more covariates can be included before the
model becomes saturated. Because we have no more covariates to include,
we type “2”.

• We then type “9” to select the Freeman-Tukey test, and “.05” to set
the significance threshold to 0.05. We also type “3” which selects the
Holland-Copenhaver procedure of α protection.

• We specify the name of the output file to be “AIP1P2.out” and by typing
“2” we indicate that we do not wish to test hypotheses about composite
types or antitypes.

• Finally, we type “1” which makes the program print the design matrix
into the output file. This is the last question the program asks. The program
window closes, and the output file can be opened.

The above commands result in the following, slightly edited output file,
AIP1P2.out:

Configural Frequency Analysis

---------- --------- --------

author of program: Alexander von Eye, 2002

last revision: March 2007

Marginal Frequencies

--------------------

Variable Frequencies

-------- -----------

1 54. 60.

2 55. 59.



258 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

3 50. 64.

sample size N = 114

the Freeman-Tukey test was used

with Holland-Copenhaver protection

a CFA of order 1 was performed

Table of results

----- -- -------

Configuration fo fe statistic p

------------- ---- -------- --------- -------

111 23.00 14.684 1.9658 .024658

112 11.00 11.368 -.0364 .485468

121 10.00 9.000 .3961 .346001

122 10.00 18.947 -2.2841 .011184

211 8.00 16.316 -2.3118 .010395

212 13.00 12.632 .1690 .432888

221 9.00 10.000 -.2408 .404837

222 30.00 21.053 1.8140 .034836

chi2 for CFA model = 17.21

df = 3 p = .00064005

LR-chi2 for CFA model = 17.94

df = 3 p = .00045251

Descriptive indicators of types and antitypes

---------------------------------------------

cell Rel. Risk Rank logP Rank

-------- --------- ---- ---- ----

111 1.566 1 1.61491 1

112 .968 5 .388057 7

121 1.111 3 .470132 5

122 .528 7 1.03960 3

211 .490 8 .983709 4

212 1.029 4 .447687 6

221 .900 6 .338436 8

222 1.425 2 1.48532 2

Design Matrix

------ ------

1.0 1.0 1.0 1.0

1.0 1.0 -1.0 -1.0

1.0 -1.0 1.0 -1.0

1.0 -1.0 -1.0 1.0

-1.0 1.0 1.0 1.0

-1.0 1.0 -1.0 -1.0

-1.0 -1.0 1.0 -1.0

-1.0 -1.0 -1.0 1.0

CARPE DIEM
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This output differs from the one in the first example in two important
respects. First, the marginal frequencies are those of the original variables
instead of composite variables. Second, the design matrix at the end of the
output displays effects coding vectors for the main effects of the original
variables and the interaction between the two PAAP observations instead
of the main effects of composite variables. Thus, this output may be easier
to interpret than the first. However, the price that must be paid for this ease
of interpretation is that the effects coding vector for the [PAAP1,PAAP2]
interaction must be determined and typed into the program. As was
said before, it does not matter whether composite variables are used
or the original variables plus interactions. The estimated expected cell
frequencies, the CFA test results, and the overall goodness-of-fit will be
exactly the same.

The CFA tests in this output differ from the ones in Table 5.15 in that,
here, we used the Freeman-Tukey test instead of the z-test. This was done to
illustrate that the z-test typically has more power than the Freeman-Tukey
test. In fact, with only one exception (Configuration 2 1 2), each of the tail
probabilities here are larger than those in Table 5.15. The Freeman-Tukey
test can be expected to suggest more conservative decisions than the z-test,
under most conditions.

Data Example 3: Auto-Association CFA with Covariate: For the following
illustration, we use the example from the third panel of Table 7.4. The five
variables child gender (G), Violence at Time 1 (V1), Violence at Time 3 (V3),
Diagnosis at Time 1 (DX1), and Diagnosis at Time 3 (DX3) were crossed.
For the analysis of this cross-classification, we use

log m̂ = λ + λG
i + λ

V1
j + λ

V3
k
+ λDX1

l + λDX3
m

+ λV1,V3
jk

+ λDX1,DX3
lm

+ λG,V1
i j
+ λG,V3

ik
+ λG,DX1

il
+ λG,DX3

im

+ λG,V1,V3
i jk

+ λG,DX1,DX3
ilm

+ λV1,DX1
jl

+ λV1,DX3
jm

+ λV3,DX1
kl

+ λV3,DX3
km

+ λV1,V3,DX1
jkl

+ λV1,V3,DX3
jkm

+ λV1,DX1,DX3
jlm

+ λV3,DX1,DX3
klm

+ λV1,V3,DX1,DX3
jklm

.

There are 17 interactions in this base model. One can be tempted to
use composite variables, as in the first application example. However,
the equation contains first, second, and third order interactions among
individual variables such that composite variables cannot be used. Instead,
the interactions of the base model have to be typed in individually (in
Section 13.2, we show how interactions can be specified more easily by
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using the program `EM). The design matrix for this base model is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 1 −1 1 1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 −1 −1
1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1
1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1
1 1 −1 1 −1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 −1 1 1
1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 1 1 1 −1 1 −1 1 1 1 −1 1 −1 −1 1 1 −1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 1
1 −1 1 −1 1 −1 −1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 −1 1 −1 1
1 −1 1 −1 −1 −1 1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 1 −1 1 −1
1 −1 −1 1 1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 1 1 −1
1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 −1 1 −1 −1 1 1 1 −1
1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1
−1 1 1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1
−1 1 1 1 −1 1 −1 −1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1 −1
−1 1 1 −1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 1 −1 1 −1 −1 −1
−1 1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 −1 −1 −1 −1 1 1 1
−1 1 −1 1 1 −1 1 −1 1 −1 −1 1 1 1 1 1 −1 −1 −1 1 −1 −1
−1 1 −1 1 −1 −1 −1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 1 1
−1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 1
−1 1 −1 −1 −1 −1 1 −1 1 1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1
−1 −1 1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1
−1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 1
−1 −1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 1 1 1 −1 1
−1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 1 1 −1 1 −1 −1 1 −1
−1 −1 −1 1 1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1
−1 −1 −1 1 −1 1 −1 1 1 −1 1 1 −1 −1 1 −1 1 1 1 1 1 −1
−1 −1 −1 −1 1 1 −1 1 1 1 −1 1 −1 1 −1 1 −1 −1 −1 1 1 −1
−1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1 −1 1 −1 −1 1

Each of the columns of this table represents one of the terms in the
equation of the above base model. The first five columns represent the
main effects of the five variables G, V1, V3, DX1, and DX3. The sixth
column represents the [V1,V3] interaction, . . . , and the last column
represents the [V1,V3,DX1,DX3] interaction. The order of vectors in the
design matrix is the same as the order of main effect and interaction terms
in the above equation.

In the application of the CFA program, the first five columns of this
design matrix do not need to be typed in. The program generates
these columns when told that the cross-classification is spanned by 5
dichotomous variables and that a first order base model is used. The
remaining 17 columns must be typed in. The complete output from this
run is not reproduced here. However, the CFA test data are given in Table
5.15 (see also Data Example 7 in Section 13.3).

Data Example 4: CFA Based on Fractional Factorial Designs: This section
illustrates how to perform a CFA when a fractional factorial design was
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used for data collection. The unique situation we are in is that the table is
smaller than it would be for a completely crossed design. We, therefore,
have to type in a number of vectors.

In the following data example, we use the design matrix in Table 12.4
to reproduce the data reflected in Table 12.5. The five variables that span
the table are social welfare reception in Years 3, 4, 5, and 6 of the study
(variables M3, M4, M5, and M6), and depression in Year 6 (D6). Each of
these variables is dichotomous. Completely crossed, these variables span
a table with 25 = 32 cells. However, only 16 runs were realized, using a
Box-Hunter design with Resolution V.

The main effects part of the design matrix in Table 12.4 shows that the
first four variables can be coded, as in a completely crossed table, from four
dichotomous variables. The main effect for the fifth variable, D6, is coded
as if it were the four-way interaction among M3, M4, M5, and M6. If we use
only these 5 vectors for the CFA base model, the analysis is equivalent to a
first order CFA, and types and antitypes can emerge from any combination
of the 10 two-way interactions that can be specified for the five variables in
the model.

In the application of the CFA program, we tell the program that four
dichotomous variables span the table, which gives us the 16 cells that would
result from completely crossing these four variables. The main effect of
the fifth variable is typed in, in the form of a covariate. The following
commands are issued.

• Click shortcut to CFA program: Starts CFA program; black program
window appears on screen; the program asks whether data will be input
via file (= 1) or interactively (= 2). For this example, we select interactive
data input and type “2”.

• The program responds by asking for the number of variables. We type
“4”. This is one fewer than the real number of variables. Later, we will
type in the main effect coding vector for the remaining variable, D6.

• The program now prompts, for each variable, the number of categories.
In this example, all variables are dichotomous. Therefore, we answer each
question by typing “2”.

• The program now prompts the frequencies for each cell. We type “45”
for Cell 1 1 1 1, “0” for Cell 1 1 1 2, and so forth, until the frequency table is
completed (for the frequencies, see the right-hand columns in Table 12.7).

• We now type “1” to indicate that we wish to save the frequency table.
We name the file “Medicaid.dat”.



262 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

• The program now needs to know which base model we are using. We
type “1” to indicate that we use the base model for first order CFA.

• Following this, we type “2” to indicate that we are not invoking the Delta
option. Thus far, the program still thinks we are using only four variables.

• Now, however, we type “1” to indicate that we are going to type in the
scores of a covariate. These are the scores for the main effect of the fifth
variable. We type “1” for the first score, −1 for the second score, etc., until
the entire vector is typed in. The rest of the program specification is routine.

• By typing “4” we select the z-test, and by typing “.05” we set the
significance threshold to 0.05. The Holland-Copenhaver procedure for
the protection of α is selected by typing “3”.

• We now indicate that the output file is named “Medicaid.out”.

• By typing “2” we indicate that we do not wish to test hypotheses
about composite types or antitypes, and by typing “1” we request that the
design matrix be printed into the output file. This concludes the program
specification. The program window closes.

The output file Medicaid.out contains the following, (slightly edited) lines.

Configural Frequency Analysis

---------- --------- --------

author of program: Alexander von Eye, 2002

last revision: March 2007

Marginal Frequencies

--------------------

Variable Frequencies

-------- -----------

1 49. 67.

2 51. 65.

3 53. 63.

4 56. 60.

sample size N = 116

the normal z-test was used

with Holland-Copenhaver protection

a CFA of order 1 was performed

Table of results

----- -- -------

Configuration fo fe statistic p

------------- ---- -------- --------- -------
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1111 45.00 9.285 11.7205 .000000 Type

1112 .00 .263 -.5132 .303913

1121 .00 .293 -.5410 .294242

1122 2.00 11.776 -2.8489 .002194 Antitype

1211 .00 .314 -.5603 .287631

1212 .00 12.631 -3.5540 .000190 Antitype

1221 1.00 14.039 -3.4800 .000251 Antitype

1222 1.00 .398 .9537 .170110

2111 .00 .337 -.5804 .280815

2112 1.00 13.553 -3.4099 .000325 Antitype

2121 2.00 15.065 -3.3660 .000381 Antitype

2122 1.00 .427 .8762 .190459

2211 7.00 16.158 -2.2782 .011356

2212 .00 .458 -.6770 .249217

2221 1.00 .509 .6875 .245899

2222 55.00 20.492 7.6229 .000000 Type

chi2 for CFA model = 260.3

df = 10 p = .00000000

LR-chi2 for CFA model = 218.2

df = 10 p = .00000000

Descriptive indicators of types and antitypes

---------------------------------------------

cell Rel. Risk Rank logP Rank

-------- --------- ---- ---- ----

1111 4.846 1 16.4627 1

1112 .000 16 .000000 12

1121 .000 12 .000000 14

1122 .170 7 1.63290 6

1211 .000 13 .000000 16

1212 .000 15 .000000 15

1221 .071 10 2.75622 3

1222 2.511 3 .483597 8

2111 .000 14 .000000 11

2112 .074 9 2.60144 4

2121 .133 8 2.57424 5

2122 2.340 4 .458888 9

2211 .433 6 1.16393 7

2212 .000 11 .000000 13

2221 1.963 5 .399096 10

2222 2.684 2 9.67723 2

Design Matrix

------ ------

1.0 1.0 1.0 1.0 1.0

1.0 -1.0 1.0 1.0 -1.0

1.0 1.0 1.0 -1.0 -1.0

1.0 -1.0 1.0 -1.0 1.0

1.0 1.0 -1.0 1.0 -1.0

1.0 -1.0 -1.0 1.0 1.0
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1.0 1.0 -1.0 -1.0 1.0

1.0 -1.0 -1.0 -1.0 -1.0

-1.0 1.0 1.0 1.0 -1.0

-1.0 -1.0 1.0 1.0 1.0

-1.0 1.0 1.0 -1.0 1.0

-1.0 -1.0 1.0 -1.0 -1.0

-1.0 1.0 -1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0 -1.0

-1.0 1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 1.0

CARPE DIEM

This output file is unusual in two important respects. First, the number of
variables is indicated as four, but we analyze five. The program does not
display the marginal frequencies of the fifth variable, D6. Still, the program
analyzes the data correctly, using the five vectors we placed in the design
matrix. Without the vector for D6, the CFA-specific block of the output
would have looked as follows:

Configuration fo fe statistic p

------------- ---- -------- --------- -------

1111 45.00 4.752 18.4637 .000000 Type

1112 .00 5.091 -2.2564 .012024

1121 .00 5.648 -2.3766 .008736

1122 2.00 6.052 -1.6470 .049774

1211 .00 6.056 -2.4609 .006929

1212 .00 6.489 -2.5473 .005428

1221 1.00 7.199 -2.3104 .010434

1222 1.00 7.713 -2.4172 .007821

2111 .00 6.497 -2.5490 .005402

2112 1.00 6.961 -2.2594 .011928

2121 2.00 7.723 -2.0594 .019728

2122 1.00 8.275 -2.5290 .005720

2211 7.00 8.281 -.4451 .328116

2212 .00 8.872 -2.9787 .001448 Antitype

2221 1.00 9.843 -2.8187 .002411 Antitype

2222 55.00 10.546 13.6884 .000000 Type

chi2 for CFA model = 604.7

df = 11 p = .00000000

LR-chi2 for CFA model = 351.1

df = 11 p = .00000000

Clearly, the variable Depression at Time 6, D6, plays a major role in
the explanation of these data. This can be seen in the large cell-wise
residuals and in the differences in the overall goodness-of-fit tests. The
second difference between the above and a standard CFA output is that
the design matrix that is reproduced at the end of the output contains four
standard main effect vectors and one “covariate”. This covariate, however,
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is not a covariate in the usual sense. Instead, it serves as the vector that
represents the main effect of the last variable. Interpretation of types and
antitypes can proceed as indicated in Section 12.3.

13.2 The cfa Package in R

R (R Development Core Team, 2009) is an integrated open source suite of
software facilities for data manipulation, calculation, data analysis, and
graphical display. R has an effective data handling and storage facility,
a suite of operators for calculations on arrays, in particular matrices, a
large, coherent, integrated collection of intermediate tools for data analysis,
graphical facilities for data analysis and output on either the computer
screen or in print, and a well-developed, simple, and effective programming
language, called S (Becker, Chambers, & Wilks, 1988). This language
includes conditionals, loops, user-defined recursive functions as well as
input and output facilities. The term environment characterizes R as a fully
planned and coherent system rather than an incremental accretion of very
specific and inflexible tools.

R can be used as a vehicle for newly developing methods of interactive
data analysis. It has developed rapidly, and now contains a large collection
of packages. Within the community of computational statistics it can be
considered as the lingua franca. R can be thought of as an environment
within which many classical and modern statistical techniques have been
implemented. A few of these are built into the base R environment, but
many are supplied in the form of packages. There are about 25 packages
supplied with R (called “standard” and “recommended” packages), and
many more are available through the CRAN family of Internet sites (via
http://CRAN.R-project.org). At these sites, users can also find task views
that collect R packages for areas of interest. Many readers of this book might
be interested in the Social Science and the Psychometrics Task View (Mair
& Hatzinger, 2007). Another important development environment is the
R-forge platform (http://R-forge.R-project.org).

There is an important difference in philosophy between R and other
general purpose statistical software packages. In R, a statistical analysis is
done in a series of steps, with intermediate results being stored in objects.
Whereas SAS and SPSS give copious output from, for instance, a regression
or discriminant analysis, R will give minimal output and stores the results
in a fit object for subsequent processing by other R functions. In R, results
are not some sort of “isolated islands” without any possibility for personal
customization. Instead, results are objects that can be customized and
plotted easily. In addition, the package source code is fully accessible.
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In the R environment for statistical computing, the package cfa
(Funke et al., 2008) has recently been developed, with more functions and
arguments being developed. The most recent version of the cfa package
offers the following functions:

• cfa(): Performs first order CFA of variable independence.

• mcfa():Allows for two-group (or more) CFA.

• bcfa(): Bootstrap-CFA, which tries to replicate the pattern of
significant configurations by resampling.

• hcfa(): Recursively eliminates variables in the cross-classification to
generate all possible subtables, and performs a global chi-squared
test on them.

• fcfa(): Performs Functional CFA.

• kvcfa(): Computes Kieser-Victor CFA.

Each function is implemented in an object-oriented manner, and,
consequently, methods such as print(), summary(), and various plot()
methods can be applied.

Performing CFA in the comprehensive R environment is a crucial benefit
over stand-alone programs. The results, which are stored as R objects, can
be processed toward performing additional customized statistical analyses
and computations, and results, tailored to one’s specific needs, can be
exported into various formats. In addition, R provides a very powerful
plot engine (see Murrell, 2005) that enables the user to easily produce
customized plots. For visualizing contingency tables, the vcd package
(Meyer, Zeileis, & Hornik, 2006) might be very useful within a CFA context.
This package implements visualization techniques proposed by Friendly
(2000).

Furthermore, the R system can be used with diverse operating systems:
binary distributions are available for MS Windows (NT, 95 and later),
MacOS, and various versions of Linux. Last but not least, R and
all installable packages (about 1,800 user contributed and maintained
packages at the time we wrote this book, covering most recent statistical
technology) on CRAN are completely open source. The underlying GPL
licence guarantees that users have also full access to the source code.

The R base distribution can be downloaded, free of charge, from
http://CRAN.R-project.org. Once the base R is installed and started,
the cfa package can be installed and loaded in the R command window by
typing
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install.packages("cfa")

library("cfa")

To obtain an overview of the options provided by the package, the user can
type

help(cfa)

By using HTML-help, the user can navigate through the package
functions listed above. Basic CFA can be performed by means of the
function

cfa(cfg, cnts = NA, sorton = "chisq", sort.descending = TRUE,

format.labels = TRUE, casewise.delete.empty = TRUE, binom.test = FALSE,

exact.binom.test = FALSE, exact.binom.limit = 10, perli.correct = FALSE,

lehmacher = FALSE, lehmacher.corr = TRUE, alpha = 0.05, bonferroni = TRUE)

The arguments are the following (taken from the R help file):

• cfg: Contains the configurations. This can be a dataframe or a matrix.
The dataframe can contain numbers, characters, factors, or Booleans.
The matrix can consist of numbers, characters, or Booleans (factors
are implicitely reconverted to numerical levels). There must be more
than three columns.

• cnts: Contains the counts for the configuration. If it is set to NA, a
count of 1 is assumed for every row. This allows untabulated data to
be processed. cnts can be a vector or a matrix/dataframe.

• sorton: Determines the sorting order of the output table.

• sort.descending: Sort in descending order.

• format.labels: Format the labels of the configurations. This makes
the output wider but improves readability.

• casewise.delete.empty: If set to “TRUE” all configurations
containing a NA in any column will be deleted. Otherwise NA is
handled as the string ”NA” and will appear as a valid configuration.

• binom.test: Use z approximation of binomial test.

• exact.binom.test: Perform an exact binomial test.

• exact.binom.limit: Maximum n for which an exact binomial test is
performed (n > 10 causes p to become inexact).
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• perli.correct: Use Perli’s correction for multiple testing.

• lehmacher: Use Lehmacher’s test.

• lehmacher.corr: Use a continuity correction for Lehmacher’s test
(default setting).

• alpha: Alpha level (default setting = 0.05).

• bonferroni: Bonferroni adjustment for multiple testing (default
setting).

Using Glück’s spatial strategy data from Section 10.1.2, we now show how
a first order CFA can be performed in R. First, we specify the observed
frequency column vector:

ofreq <- c(30, 59, 304, 77, 1215, 141, 1462, 238)

Then the matrix containing the configurations

confmat <- cbind(gl(2, 4, 8), gl(2, 2, 8), gl(2, 1, 8))

The function gl() generates combinations of factor levels. For example,
gl(2, 4, 8), indicates that the first column vector of cell indices has
two levels. Each of these levels is repeated four times, so that the total
length of the vector is eight. Now, we can compute a first order CFA
straightforwardly. Using the standard settings for the arguments, all we
have to type is

cfa (confmat, ofreq, sorton="label", sort.descending=FALSE)

which gives us

*** Analysis of configuration frequencies (CFA) ***

label n expected Q chisq p.chisq sig.chisq

1 1 1 1 30 164.47953 0.040005565 109.951331 0.000000e+00 TRUE

2 1 1 2 59 28.13250 0.008824663 33.868395 5.896890e-09 TRUE

3 1 2 1 304 236.87328 0.020408675 19.022813 1.291649e-05 TRUE

4 1 2 2 77 40.51469 0.010467784 32.856664 9.921042e-09 TRUE

5 2 1 1 1215 1069.46687 0.059243299 19.804158 8.579583e-06 TRUE

6 2 1 2 141 182.92110 0.012539669 9.607305 1.938049e-03 TRUE

7 2 2 1 1462 1540.18032 0.039369294 3.968472 4.635982e-02 FALSE

8 2 2 2 238 263.43171 0.007794996 2.455178 1.171379e-01 FALSE

z p.z sig.z

1 -10.779168 1.000000e+00 TRUE

2 5.748365 4.505517e-09 TRUE

3 4.482200 3.693873e-06 TRUE

4 5.686283 6.491712e-09 TRUE

5 5.313288 5.383224e-08 TRUE
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6 -3.221201 9.993617e-01 TRUE

7 -2.671478 9.962241e-01 TRUE

8 -1.660957 9.516390e-01 FALSE

Summary statistics:

Total Chi squared = 231.5343

Total degreed of freedom = 4

p = 0

Sum of counts = 3526

Levels:

V1 V2 V3

2 2 2

The results (based on the estimated expected cell frequencies) are the same
as in Table 10.6. The two sets of type/antitype decisions differ from what
was shown in Table 10.6, because different statistical CFA tests and different
procedures for the protection of the family-wise α were used. In Chapter
10, the standardized Pearson residual test and the Holland-Copenhaver
procedure were used. Here, Pearson’s X2-test (CFA Option 3) and the
standard normal z-test (CFA Option 4) were used along with the Bonferroni
procedure. In addition, here the type/antitype labels are replaced by true or
false statements concerning the cell-wise CFA null hypotheses. Hierarchical
and more-group CFA can be performed in the same way. F-CFA and
Kieser-Victor CFA can be computed by means of the functions fCFA()
and kvCFA(). Internally, both versions use the glm() function to fit the
log-linear model within a GLM framework. Hence, we have to define the
design matrix (effect coding) of dimension 8 times 4 as follows:

X <- matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1,

+ -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1), ncol = 4)

In addition, both stepwise CFA functions require that the dimension of the
table be given in the form of a vector. In our example, we specify

tabdim <- c(2,2,2)

To perform F-CFA, we call

res.fcfa <- fCFA(ofreq, X, tabdim = tabdim)

print(res.fcfa)

which gives us

Results of fCFA-fit:

LR Xˆ2 df p
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Step 0 271.86 231.53 4 0.00000

Step 1 31.17 31.60 3 0.00000

Step 2 9.17 9.06 2 0.01018

Step 3 0.21 0.21 1 0.64649

Excluded Cell Type/Antitype

Step 1 111 antitype

Step 2 121 antitype

Step 3 212 antitype

Note that we used standardized Pearson residuals for stepwise
elimination. A more comprehensive output results from invoking the
summary method.

summary(res.fcfa)

which returns

Results of fCFA-fit:

LR Xˆ2 df p

Step 0 271.86 231.53 4 0.00000

Step 1 31.17 31.60 3 0.00000

Step 2 9.17 9.06 2 0.01018

Step 3 0.21 0.21 1 0.64649

Final log-linear model:

Design Matrix:

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 1 1 1 1 0 0

[2,] 1 1 1 -1 0 0 0

[3,] 1 1 -1 1 0 1 0

[4,] 1 1 -1 -1 0 0 0

[5,] 1 -1 1 1 0 0 0

[6,] 1 -1 1 -1 0 0 1

[7,] 1 -1 -1 1 0 0 0

[8,] 1 -1 -1 -1 0 0 0

Expected frequencies:

[1] 30.00 61.59 304.00 74.41 1212.41 141.00 1464.59 238.00

which adds the final design matrix and the vector of expected
frequencies for the final model.

A Kieser-Victor CFA can be performed by calling

res.kvcfa <- kvCFA(ofreq, X, tabdim = tabdim)

The results that can be obtained by print(res.kvcfa) and
summary(res.kvcfa) are the same.
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To conclude, the cfa package within the R environment offers a powerful
and flexible way to perform various forms of CFA. The results are returned
as objects, and they can be further analyzed and visualized. Readers can
find introductory R documents on CRAN. For an introductory book, we
recommend Venables and Smith (2001). Further introductory and advanced
books are currently published by Springer in their UseR! series.

13.3 Using `EM to Perform CFA

Vermunt’s (1997) `EM is a general program for the analysis of nominal,
ordinal, or interval level categorical data. `EM can be downloaded, free
of charge, from http://www.uvt.nl/faculteiten/fsw/organisatie/departementen/
mto/software2.html. A more advanced version of this program, named
Latent Gold, is available for purchase. For the current purposes, we use
`EM because it can be used to estimate any of the models discussed in this
text. Based on our experience, `EM runs well under practically all versions
of Windows, including XP and Vista Business.

In contrast to the CFA program that was illustrated in the last section,
`EM is not interactive. It requires that a command file be written. For
the following illustrations, we create command files in which we include
the frequency tables. We perform all analyses, using the module for
hierarchical log-linear models for manifest variables. For this module,
`EM expects at least the following four elements of information:

• Number of variables,

• Number of categories of each variable,

• Model specification, and

• Frequency table.

As with the CFA program in the last chapter, the model specification does
not require that a design matrix be typed when the base model is standard
hierarchical. For nonstandard models, at least some of the vectors of the
design matrix need to be specified in the command file. These vectors are
presented as covariates. In the following sections, we show how to perform
the data examples from Section 13.1, by using `EM.
`EM was not designed to perform CFA. Therefore, it does not provide

a selection of cell-wise CFA tests. Of the nine tests available in the CFA
program, it only provides the square root of the Pearson X2 statistic, but
not the corresponding tail probability. In addition, it does not allow users
to protect α by using any of the procedures. These are elements of CFA that
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`EM does not provide. The advantage of `EM over the CFA program is that
it is more flexible and convenient when it comes to specifying models.

Data Example 5: Multiple, Multivariate Prediction CFA: For this first
illustration of `EM, we use the example from Table 5.13. Repeating from
Section 13.1.2, Violence at Time 1 (V1) and Time 2 (V2) is used to predict
PTSD at Time 2 (P2) and Time 3 (P3). As was indicated in Section 2.1, the
cross-classification V1 × V2 × P2 × P3 is analyzed by using the P-CFA base
model

log m̂ = λ + λV1 + λV2 + λV1,V2 + λP2 + λP3 + λP2,P3.

The following command file results in a P-CFA of the violence data.

* P-CFA of violence data using LEM

* A = V1

* B = V2

* C = P2

* D = P3

*

* Note: intercept implied

*

man 4

dim 2 2 2 2

lab A B C D

mod {A, B, C, D, AB, CD}

dat [82 7 47 13 3 3 0 11 0 0 12 7 0 0 2 17]

Reading from the top of the command file, we first see eight lines that
begin with asterisks. These are lines that `EM interprets as commentary
lines. Usually, these lines are used to describe the runs.

Command lines do not begin with an asterisk. The first of these states
man 4. This indicates that four manifest variables are being analyzed. The
second statement, dim 2 2 2 2, specifies that each of the four variables has
two categories. The third command line, lab A B C D, assigns labels to the
four variables. In the next line, the CFA base model is specified. Inside the
curly brackets, we first find the labels of the four variables. This indicates
that we wish to include the main effects of the four variables. The terms
AB and CD specify the interactions included in the base model. `EM creates
hierarchical log-linear models. This implies that all possible lower order
effects of higher order interactions are part of the model, even if they were
not explicitly included in the model specification. Therefore, in the present
example, the result would have been exactly the same without including
the main effects in the model statement. The last line of the command file
contains the frequency table.

When the command file is complete, one starts the run by clicking File
and Run. `EM places the results in a separate output window. In the present
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example, the output window contains the following, slightly shortened and
edited file:

LEM: log-linear and event history analysis with missing data.

Developed by Jeroen Vermunt (c), Tilburg University, The Netherlands.

Version 1.0 (September 18, 1997).

*** INPUT ***

* P-CFA of violence data using LEM

* A = V1

* B = V2

* C = P2

* D = P3

*

* Note: intercept implied

*

man 4

dim 2 2 2 2

lab A B C D

mod {A, B, C, D, AB, CD}

dat [82 7 47 13 3 3 0 11 0 0 12 7 0 0 2 17]

*** STATISTICS ***

Number of iterations = 2

Converge criterion = 0.0000000000

X-squared = 109.3915 (0.0000)

L-squared = 114.5127 (0.0000)

Cressie-Read = 105.9638 (0.0000)

Dissimilarity index = 0.2593

Degrees of freedom = 9

Log-likelihood = -426.91949

Number of parameters = 6 (+1)

Sample size = 204.0

BIC(L-squared) = 66.6496

AIC(L-squared) = 96.5127

BIC(log-likelihood) = 885.7477

AIC(log-likelihood) = 865.8390

Eigenvalues information matrix

292.2804 214.4182 211.3787 75.9852 70.3900 50.5419

*** FREQUENCIES ***

A B C D observed estimated std. res.
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1 1 1 1 82.000 62.083 2.528

1 1 1 2 7.000 7.304 -0.112

1 1 2 1 47.000 44.554 0.366

1 1 2 2 13.000 35.059 -3.725

1 2 1 1 3.000 7.083 -1.534

1 2 1 2 3.000 0.833 2.373

1 2 2 1 0.000 5.083 -2.255

1 2 2 2 11.000 4.000 3.500

2 1 1 1 0.000 7.917 -2.814

2 1 1 2 0.000 0.931 -0.965

2 1 2 1 12.000 5.681 2.651

2 1 2 2 7.000 4.471 1.196

2 2 1 1 0.000 7.917 -2.814

2 2 1 2 0.000 0.931 -0.965

2 2 2 1 2.000 5.681 -1.544

2 2 2 2 17.000 4.471 5.926

*** LOG-LINEAR PARAMETERS ***

* TABLE ABCD [or P(ABCD)] *

effect beta std err z-value exp(beta) Wald df prob

main 1.7952 6.0208

A

1 0.4871 0.1033 4.714 1.6275

2 -0.4871 0.6144 22.22 1 0.000

B

1 0.5427 0.1033 5.252 1.7206

2 -0.5427 0.5812 27.58 1 0.000

C

1 -0.3092 0.0965 -3.204 0.7340

2 0.3092 1.3623 10.27 1 0.001

D

1 0.5949 0.0965 6.165 1.8129

2 -0.5949 0.5516 38.01 1 0.000

AB

1 1 0.5427 0.1033 5.252 1.7206

1 2 -0.5427 0.5812

2 1 -0.5427 0.5812

2 2 0.5427 1.7206 27.58 1 0.000

CD

1 1 0.4751 0.0965 4.923 1.6082

1 2 -0.4751 0.6218

2 1 -0.4751 0.6218

2 2 0.4751 1.6082 24.24 1 0.000

At the beginning of the output file, the program identifies itself and
its author. It then reproduces the command file. Results are presented,
beginning with the Statistics block of information. After information about
the number of iterations and convergence, we find the Pearson X2, the
LR−X2, and the Cressie-Read X2. Each of these suggests that the CFA base
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model be rejected. This is a precondition for types and antitypes to emerge.
The tail probabilities of each of these statistics are included in parentheses.

We now move to the Frequencies block of information. This block is
structured in a way similar to the CFA test block of the CFA program. Cell
indices are listed on the left-hand side of the table, followed by the observed
and the estimated expected cell frequencies and the standardized residuals
(CFA Option 4: z-test). As was mentioned, the standardized residual is the
square root of the Pearson X2 statistic, or

std. res. =

√

(m − m̂)2

m̂
.

To determine the tail probability for the standardized residuals, one can
consult a z-table as it is included in introductory textbooks of statistics, or
one can use one of the z-calculators that can be found on the Internet, for
example at http://www.stat.sc.edu/˜west/applets/normaldemo.html.
The calculators give the probability to the left of a z-score for a normal
distribution with a given mean and standard deviation. For example, the
first standardized residual (µ = 0, σ = 1) in the present output is 2.528. The
corresponding z-score is 0.9943. Considering that the observed frequency
is larger than the expected frequency, we calculate 1− 0.9943 = 0.0057. This
value is the same as the one listed in Data Example 1 in Section 13.1.2.
With reference to the Bonferroni-protected α∗ = 0.05/16 = 0.003125, this
configuration does not constitute a CFA type.

The next block of the output presents the log-linear parameters. In most
CFA applications, these parameters are not of particular interest. The same
applies to the information in the last block of information. This block — it
is not reproduced here — contains the conditional probabilities of the cells
of the table.

Data Example 6: Predicting a Trajectory: In this section, we replicate, using
`EM, Data Example 2 from Section 13.1.2, that is, the data example in Table
5.15 in Chapter 5. To repeat from Section 13.1.2, we predict the development
of physical aggression against peers (PAAP1 and PAAP2) from aggressive
impulses (AI). The base model for predicting the PAAP1-PAAP2 trajectory
from AI is

log m̂ = λ + λAI
i + λ

PAAP1
j + λPAAP2

k + λPAAP1,PAAP2
jk

.

This base model can be contradicted only if one or more of the following
interactions exist: [AI,PAAP1], [AI,PAAP2], [AI,PAAP1,PAAP2]. If types
and antitypes emerge, they indicate trajectories that occur more likely or
less likely than chance, conditional on AI. The following `EM command file
produces the results we need for CFA.
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* predicting a trajectory

* A = AI

* B = PAAP1

* C = PAAP2

*

* Intercept implied

*

man 3

dim 2 2 2

lab A B C

mod {A, BC}

dat [23 11 10 10 8 13 9 30]

Evidently, this command file has the same structure as the one in the last
example. In the present case, we did not list the main effects of variables
B and C. They are implied by the hierarchical nature of the BC interaction
that is implemented in `EM. The output file, slightly edited and shortened,
follows.

LEM: log-linear and event history analysis with missing data.

Developed by Jeroen Vermunt (c), Tilburg University, The Netherlands.

Version 1.0 (September 18, 1997).

*** INPUT ***

* predicting a trajectory

* A = AI

* B = PAAP1

* C = PAAP2

*

* Intercept implied

*

man 3

dim 2 2 2

lab A B C

mod {A, BC}

dat [23 11 10 10 8 13 9 30]

*** STATISTICS ***

Number of iterations = 2

Converge criterion = 0.0000000000

X-squared = 17.2092 (0.0006)

L-squared = 17.9403 (0.0005)

Cressie-Read = 17.3609 (0.0006)

Dissimilarity index = 0.1634

Degrees of freedom = 3

Log-likelihood = -232.56102

Number of parameters = 4 (+1)
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Sample size = 114.0

BIC(L-squared) = 3.7317

AIC(L-squared) = 11.9403

BIC(log-likelihood) = 484.0668

AIC(log-likelihood) = 473.1220

Eigenvalues information matrix

143.3052 113.6860 107.6453 82.3101

*** FREQUENCIES ***

A B C observed estimated std. res.

1 1 1 23.000 14.684 2.170

1 1 2 11.000 11.368 -0.109

1 2 1 10.000 9.000 0.333

1 2 2 10.000 18.947 -2.056

2 1 1 8.000 16.316 -2.059

2 1 2 13.000 12.632 0.104

2 2 1 9.000 10.000 -0.316

2 2 2 30.000 21.053 1.950

*** LOG-LINEAR PARAMETERS ***

* TABLE ABC [or P(ABC)] *

effect beta std err z-value exp(beta) Wald df prob

main 2.6168 13.6919

A

1 -0.0527 0.0938 -0.562 0.9487

2 0.0527 1.0541 0.32 1 0.574

B

1 -0.0053 0.0973 -0.055 0.9947

2 0.0053 1.0053 0.00 1 0.956

C

1 -0.1221 0.0973 -1.255 0.8850

2 0.1221 1.1299 1.57 1 0.210

BC

1 1 0.2501 0.0973 2.570 1.2841

1 2 -0.2501 0.7787

2 1 -0.2501 0.7787

2 2 0.2501 1.2841 6.60 1 0.010

In the Statistics block of this output file, we find the overall
goodness-of-fit information, which, as it should be, is identical to the figures
calculated by the CFA program. Accordingly, the estimated expected cell
frequencies in the Frequencies block are the same also. The standardized
residuals are smaller than Lehmacher’s z statistics in Table 5.15. This is not
surprising, considering that Lehmacher’s test uses the exact variances for
the calculation of the standard error of the statistics. Based on the results
shown here, none of the configurations constitutes a type or an antitype
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(compare the std. res. with the critical value of z = 2.497706 for the
Bonferroni-protected α∗ = 0.05/8 = 0.00625). In contrast, Table 5.15 shows
that two types and two antitypes emerge from the CFA program.

Data Example 7: Auto-Association CFA with Covariate: For the following
illustration of `EM, we replicate Data Example 3 in Section 13.1.2, that is,
the example from the third panel of Table 7.4. Repeating from the earlier
introduction of this example, the five variables Gender (G), Violence at Time
1 (V1), Violence at Time 3 (V3), Diagnosis at Time 1 (DX1), and Diagnosis
at Time 3 (DX3) were crossed. Gender is the covariate. For the analysis of
this cross-classification, we use the A-CFA base model as given in Section
7.2.2 (equation at bottom of p. 141).

There are 17 interactions in this base model. As was discussed in the last
section, composite variables cannot be used. Instead, the interactions of
the base model have to be specified as needed for a hierarchical log-linear
model. In this section, we show how this can be accomplished in an
economical way by using the program `EM. The command file is

* Auto-Association CFA

* A = Gender

* B = V1

* C = V3

* D = DX1

* E = DX3

*

* Intercept implied

*

man 5

dim 2 2 2 2 2

lab A B C D E

mod {AB, AC, AD, AE, ABC, ADE, BCDE}

dat [28 0 5 1 3 1 1 0 10 0 11 9 10 1 14 5 23 1 5 3 5 0 0 1 6 0 9 1 17 3

12 8]

The first part of this command file is parallel to the ones in the first
two examples. Beginning with the model specification, this command file
contains new elements. Considering that `EM creates hierarchical log-linear
models, one can, in the present example, include the four-way interaction
[V1,V3,DX1,DX3]. All lower order interactions among the variables in
this four-way interaction are part of the base model. Specifically, these
are the two-way interactions [V1,V3], [V1,DX1], [V1,DX3], [V3,DX1],
[V3,DX3], and [DX1,DX3], and the three-way interactions [V1,V3,DX1],
[V1,V3,DX3], [V1,DX1,DX3], and [V3,DX1,DX3]. The base model also
contains two- and the three-way interactions that include Gender. These
are not covered by the four-way interaction [V1,V3,DX1,DX3] and must,
therefore, be specified separately. Specifically, these are the interactions
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[G,V1], [G,V3], [G,DX1], [G,DX3], [G,V1,V3], and [G,DX1,DX3]. The
resulting output file, slightly edited and shortened, is shown below.

LEM: log-linear and event history analysis with missing data.

Developed by Jeroen Vermunt (c), Tilburg University, The Netherlands.

Version 1.0 (September 18, 1997).

*** INPUT ***

* Auto-Association CFA

* A = Gender

* B = V1

* C = V3

* D = DX1

* E = DX3

*

* Intercept implied

*

man 5

dim 2 2 2 2 2

lab A B C D E

mod {AB, AC, AD, AE, ABC, ADE, BCDE}

dat [28 0 5 1 3 1 1 0 10 0 11 9 10 1 14 5 23 1 5 3 5 0 0 1 6 0 9 1

17 3 12 8]

*** STATISTICS ***

Number of iterations = 5

Converge criterion = 0.0000000057

X-squared = 11.5207 (0.2417)

L-squared = 13.4589 (0.1429)

Cressie-Read = 11.8062 (0.2245)

Dissimilarity index = 0.0812

Degrees of freedom = 9

Log-likelihood = -560.63931

Number of parameters = 22 (+1)

Sample size = 193.0

BIC(L-squared) = -33.9053

AIC(L-squared) = -4.5411

BIC(log-likelihood) = 1237.0578

AIC(log-likelihood) = 1165.2786

Eigenvalues information matrix

690.5117 484.5904 417.0929 393.6328 290.8560 281.9331

233.1671 191.4042 189.7486 178.3932 146.0271 131.7933

104.8420 75.8714 65.0764 42.7926 22.4045 19.5614

15.9985 15.9303 15.0522 -0.0000

WARNING: 1 (nearly) boundary or non-identified (log-linear) parameters

WARNING: 2 zero estimated frequencies
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*** FREQUENCIES ***

A B C D E observed estimated std. res.

1 1 1 1 1 28.000 25.989 0.394

1 1 1 1 2 0.000 0.399 -0.632

1 1 1 2 1 5.000 5.458 -0.196

1 1 1 2 2 1.000 2.153 -0.786

1 1 2 1 1 3.000 3.667 -0.348

1 1 2 1 2 1.000 0.351 1.096

1 1 2 2 1 1.000 0.495 0.718

1 1 2 2 2 0.000 0.487 -0.698

1 2 1 1 1 10.000 10.112 -0.035

1 2 1 1 2 0.000 0.000 * 0.000

1 2 1 2 1 11.000 13.303 -0.631

1 2 1 2 2 9.000 6.584 0.941

1 2 2 1 1 10.000 11.231 -0.367

1 2 2 1 2 1.000 1.250 -0.224

1 2 2 2 1 14.000 11.744 0.658

1 2 2 2 2 5.000 5.775 -0.323

2 1 1 1 1 23.000 25.011 -0.402

2 1 1 1 2 1.000 0.601 0.514

2 1 1 2 1 5.000 4.542 0.215

2 1 1 2 2 3.000 1.847 0.849

2 1 2 1 1 5.000 4.333 0.321

2 1 2 1 2 0.000 0.649 -0.806

2 1 2 2 1 0.000 0.505 -0.711

2 1 2 2 2 1.000 0.513 0.680

2 2 1 1 1 6.000 5.888 0.046

2 2 1 1 2 0.000 0.000 * 0.000

2 2 1 2 1 9.000 6.697 0.890

2 2 1 2 2 1.000 3.416 -1.307

2 2 2 1 1 17.000 15.769 0.310

2 2 2 1 2 3.000 2.750 0.151

2 2 2 2 1 12.000 14.256 -0.598

2 2 2 2 2 8.000 7.225 0.288

*** LOG-LINEAR PARAMETERS ***

* TABLE ABCDE [or P(ABCDE)] * (WARNING: 1 fitted zero margins)

effect beta std err z-value exp(beta) Wald df prob

main 1.0683 2.9105

A

1 -0.0143 0.1396 -0.103 0.9858

2 0.0143 1.0144 0.01 1 0.918

B

1 -0.5588 0.2070 -2.699 0.5719

2 0.5873 1.7991 7.28 1 0.007

C

1 0.2054 0.2304 0.891 1.2280
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2 -0.2216 0.8013 0.79 1 0.373

D

1 -0.0428 0.2122 -0.202 0.9581

2 0.0675 1.0698 0.04 1 0.840

E

1 0.7844 0.2347 3.342 2.1911

2 -0.7696 0.4632 11.17 1 0.001

AB

1 1 -0.0412 0.1009 -0.409 0.9596

1 2 0.0412 1.0421

2 1 0.0412 1.0421

2 2 -0.0412 0.9596 0.17 1 0.683

AC

1 1 0.1357 0.0965 1.406 1.1453

1 2 -0.1357 0.8731

2 1 -0.1357 0.8731

2 2 0.1357 1.1453 1.98 1 0.160

BC

1 1 0.4703 0.1623 2.898 1.6005

1 2 -0.4936 0.6104

2 1 -0.3876 0.6787

2 2 0.4541 1.5747 8.40 1 0.004

AD

1 1 -0.0887 0.1293 -0.686 0.9151

1 2 0.0887 1.0927

2 1 0.0887 1.0927

2 2 -0.0887 0.9151 0.47 1 0.493

BD

1 1 0.3375 0.2004 1.684 1.4014

1 2 -0.3375 0.7136

2 1 -0.4015 0.6693

2 2 0.3011 1.3514 2.84 1 0.092

CD

1 1 -0.2511 0.2323 -1.081 0.7779

1 2 0.1382 1.1482

2 1 0.1884 1.2073

2 2 -0.1382 0.8710 1.17 1 0.280

AE

1 1 0.0598 0.1275 0.469 1.0617

1 2 -0.0598 0.9419

2 1 -0.0598 0.9419

2 2 0.0598 1.0617 0.22 1 0.639

BE

1 1 0.1125 0.1733 0.649 1.1191

1 2 -0.0811 0.9221

2 1 -0.0525 0.9489

2 2 0.0281 1.0285 0.42 1 0.516

CE

1 1 0.2084 0.1947 1.071 1.2318

1 2 -0.2732 0.7609

2 1 -0.2084 0.8118
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2 2 0.2049 1.2274 1.15 1 0.284

DE

1 1 0.5197 0.1694 3.068 1.6816

1 2 -0.5562 0.5734

2 1 -0.5197 0.5947

2 2 0.5504 1.7339 9.41 1 0.002

ABC

1 1 1 -0.0844 0.0956 -0.883 0.9191

1 1 2 0.0844 1.0881

1 2 1 0.0844 1.0881

1 2 2 -0.0844 0.9191

2 1 1 0.0844 1.0881

2 1 2 -0.0844 0.9191

2 2 1 -0.0844 0.9191

2 2 2 0.0844 1.0881 0.78 1 0.377

BCD

1 1 1 0.0610 0.1498 0.407 1.0629

1 1 2 0.0883 1.0923

1 2 1 0.0410 1.0419

1 2 2 -0.1162 0.8903

2 1 1 -0.1948 0.8230

2 1 2 -0.0577 0.9440

2 2 1 -0.0046 0.9954

2 2 2 0.0855 1.0893 0.17 1 0.684

BCE

1 1 1 0.1008 0.2024 0.498 1.1060

1 1 2 -0.1008 0.9041

1 2 1 -0.1378 0.8712

1 2 2 0.1378 1.1478

2 1 1 -0.0492 0.9520

2 1 2 0.0984 1.1034

2 2 1 0.1349 1.1445

2 2 2 -0.1349 0.8738 0.25 1 0.618

ADE

1 1 1 0.0523 0.1272 0.411 1.0537

1 1 2 -0.0523 0.9490

1 2 1 -0.0523 0.9490

1 2 2 0.0523 1.0537

2 1 1 -0.0523 0.9490

2 1 2 0.0523 1.0537

2 2 1 0.0523 1.0537

2 2 2 -0.0523 0.9490 0.17 1 0.681

BDE

1 1 1 0.1085 0.2350 0.462 1.1146

1 1 2 -0.1085 0.8972

1 2 1 -0.1085 0.8972

1 2 2 0.1085 1.1146

2 1 1 -0.0841 0.9193

2 1 2 0.2174 1.2429

2 2 1 0.0841 1.0878

2 2 2 -0.1087 0.8970 0.21 1 0.644
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CDE

1 1 1 0.1239 0.2652 0.467 1.1319

1 1 2 -0.1144 0.8919

1 2 1 -0.1239 0.8835

1 2 2 0.1116 1.1180

2 1 1 -0.1239 0.8835

2 1 2 0.0572 1.0589

2 2 1 0.1239 1.1319

2 2 2 -0.1116 0.8944 0.22 1 0.640

BCDE

1 1 1 1 -0.0095 ****** ***** 0.9906

1 1 1 2 0.0000 1.0000

1 1 2 1 0.0095 1.0095

1 1 2 2 0.0028 1.0028

1 2 1 1 0.0095 1.0095

1 2 1 2 0.0572 1.0589

1 2 2 1 -0.0095 0.9906

1 2 2 2 -0.0028 0.9972

2 1 1 1 0.0095 1.0095

2 1 1 2 ****** 0.00E+0000

2 1 2 1 -0.0095 0.9906

2 1 2 2 -0.0028 0.9972

2 2 1 1 -0.0095 0.9906

2 2 1 2 -0.0572 0.9444

2 2 2 1 0.0095 1.0095

2 2 2 2 0.0028 1.0028 0.00 1 1.000

This output file can be interpreted similarly to the earlier examples.
From a CFA perspective, the most important elements given in this file
are the overall goodness-of-fit statistics and the frequencies table. From a
modeling perspective, we note that only a small number of the effects in
this model is significant, but the frequency distribution is explained very
well. The model can, possibly, be made more parsimonious. From an
estimation perspective, it is important to note that some of the frequencies
are estimated to be zero (marked with asterisks). The estimates are correct.
However, researchers interested in the substantive parts of this example
may wish to replicate the study, using a larger sample.

Data Example 8: CFA Based on Fractional Factorial Designs: This section
illustrates how to use `EM to perform a CFA when a fractional factorial
design was used for data collection. As was explained before, the table
that is being analyzed is smaller than it would be for a completely crossed
design. We, therefore, have to type in a number of vectors.

In the following section, we use the design matrix in Table 12.4 again
to reproduce the data example in Table 12.5. The five variables that span
the table are social welfare reception in Years 3, 4, 5, and 6 of the study
(variables M3, M4, M5, and M6), and Depression in Year 6 (D6). Each of
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these variables is dichotomous. Completely crossed, these variables span
a table with 25 = 32 cells. However, only 16 runs were realized, using a
Box-Hunter design with Resolution V.

As was discussed in the context of the application of the CFA program
in Section 13.1.2, 16 cells result when four dichotomous variables are
completely crossed. Hence, we tell the program that the cross-classification
is spanned by four variables, and we specify the main effect of the fifth
variable in the form of a covariate. This is accomplished by the term
cov(ABCD,1) in the mod line. In the parentheses of this term, we find all
four variables listed. This implies that the covariate can assume different
scores for each of the 16 cells. The 1 indicates that one covariate is specified.
The values of the covariate are given using the des[...] command. These
values are taken from the design matrix in Table 12.4 (last column in the
main effects block). The `EM command file is

* CFA based on a fractional factorial design

* A = M3

* B = M4

* C = M5

* D = M6

* covariate = D6

*

* constant implied

*

man 4

dim 2 2 2 2

mod {A, B, C, D, cov(ABCD,1)}

des [1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

dat [ 45 0 0 2 0 0 1 1 0 1 2 1 7 0 1 55]

As was introduced in Data Example 3, covariates can be used to
augment the design matrix. In the present case, the covariate is specified
to capture the main effect of the fifth variable. The covariate vector, given
in the des[...] line, is taken from the design matrix in Table 12.4. The
slightly edited and shortened output that results from this command file is

LEM: log-linear and event history analysis with missing data.

Developed by Jeroen Vermunt (c), Tilburg University, The Netherlands.

Version 1.0 (September 18, 1997).

*** INPUT ***

* CFA based on a fractional factorial design

* A = M3

* B = M4

* C = M5

* D = M6
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* covariate = D6

*

* constant implied

*

man 4

dim 2 2 2 2

mod {A, B, C, D, cov(ABCD,1)}

des [1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

dat [ 45 0 0 2 0 0 1 1 0 1 2 1 7 0 1 55]

*** STATISTICS ***

Number of iterations = 61

Converge criterion = 0.0000008303

X-squared = 260.3030 (0.0000)

L-squared = 218.1559 (0.0000)

Cressie-Read = 233.5689 (0.0000)

Dissimilarity index = 0.6197

Degrees of freedom = 10

Log-likelihood = -252.39733

Number of parameters = 5 (+1)

Sample size = 116.0

BIC(L-squared) = 170.6200

AIC(L-squared) = 198.1559

BIC(log-likelihood) = 528.5626

AIC(log-likelihood) = 514.7947

Eigenvalues information matrix

118.3903 114.0995 113.3695 112.6715 11.7035

*** FREQUENCIES ***

A B C D observed estimated std. res.

1 1 1 1 45.000 9.285 11.721

1 1 1 2 0.000 0.264 -0.514

1 1 2 1 0.000 0.293 -0.541

1 1 2 2 2.000 11.776 -2.849

1 2 1 1 0.000 0.314 -0.561

1 2 1 2 0.000 12.630 -3.554

1 2 2 1 1.000 14.039 -3.480

1 2 2 2 1.000 0.399 0.952

2 1 1 1 0.000 0.337 -0.581

2 1 1 2 1.000 13.553 -3.410

2 1 2 1 2.000 15.064 -3.366

2 1 2 2 1.000 0.428 0.875

2 2 1 1 7.000 16.157 -2.278

2 2 1 2 0.000 0.459 -0.677

2 2 2 1 1.000 0.510 0.686

2 2 2 2 55.000 20.492 7.623



286 ADVANCES IN CONFIGURAL FREQUENCY ANALYSIS

*** LOG-LINEAR PARAMETERS ***

* TABLE ABCD [or P(ABCD)] *

effect beta std err z-value exp(beta) Wald df prob

main 0.8106 2.2494

A

1 -0.1561 0.0940 -1.661 0.8555

2 0.1561 1.1690 2.76 1 0.097

B

1 -0.1209 0.0935 -1.292 0.8862

2 0.1209 1.1285 1.67 1 0.196

C

1 -0.0858 0.0932 -0.921 0.9177

2 0.0858 1.0896 0.85 1 0.357

D

1 -0.0330 0.0929 -0.355 0.9676

2 0.0330 1.0335 0.13 1 0.723

cov(ABCD)

1 1.8136 0.2923 6.204 6.1322 38.49 1 0.000

As in the first three examples, and as it should be, the overall
goodness-of-fit results, the estimated expected cell frequencies, and the
standardized residuals from the CFA program and from `EM are identical.
`EM also indicates that the “covariate”, that is, the main effect of the
depression variable, has a significant effect (see the z-test or the Wald
statistic in the last line of the output).

13.4 Chapter Summary

This chapter described three application programs that can be used for
CFA. The first application involves using a specialized CFA program. This
program uses a log-linear modeling module and offers a large selection
of CFA tests and CFA base models. To use base models that are not
pre-programmed, vectors of design matrices need to be determined and
typed in.

The second option involves using the CFA module in the package R.
This module contains a selection of CFA base models, and allows one to
perform two versions of Functional CFA. This makes this module unique.
In addition, this module is part of the R package, which allows users to
use the CFA output as objects, and, thus, as input for other R modules, for
further analysis.

The third option involves using `EM, a general purpose program for
the analysis of categorical data. The downside to using this program
is that specific CFA hypotheses cannot be tested directly. The main
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advantage of this program is that the specification of just any CFA base
model is very easy, as long as it is log-linear. In this chapter, we
present sample commands for a selection of the CFA models proposed
in this book, using several programs. Our focus is on base models that
are log-linear. CFA can be performed by using most of the log-linear
modules in specialized or general purpose statistical software packages
or using specialized CFA programs. In this chapter, we illustrate the
application of three program packages, all of which can be obtained free
of charge. The first package is a specialized CFA package (von Eye,
2007). It can be requested by sending an e-mail to voneye@msu.edu. The
second program is the cfa package within the R environment (Funke
et al., 2008). This program can be downloaded from the R website,
http://CRAN.R-project.org, also free of charge. The third program is
`EM, a general program for the analysis of categorical data (Vermunt,
1997). It can be downloaded from http://www.uvt.nl/faculteiten/fsw/
organisatie/departementen/mto/software2.html, also free of charge.
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