Intelligent Systems, Control and Automation:
Science and Engineering

Suril Vijaykumar Shah
Subir Kumar Saha
Jayanta Kumar Dutt

Dynamics of
Tree-Type
Robotic Systems

@ Springer

Dynamics of Tree-Type Robotic Systems

International Series on
INTELLIGENT SYSTEMS, CONTROL AND AUTOMATION:
SCIENCE AND ENGINEERING

VOLUME 62

Editor

Professor S. G. Tzafestas, National Technical University of Athens, Greece

Editorial Advisory Board

Professor P. Antsaklis, University of Notre Dame, IN, U.S.A.

Professor P. Borne, Ecole Centrale de Lille, France

Professor D. G. Caldwell, University of Salford, U.K.

Professor C. S. Chen, University of Akron, Ohio, U.S.A.

Professor T. Fukuda, Nagoya University, Japan

Professor S. Monaco, University La Sapienza, Rome, Italy

Professor G. Schmidt, Technical University of Munich, Germany
Professor S. G. Tzafestas, National Technical University of Athens, Greece
Professor F. Harashima, University of Tokyo, Japan

Professor N. K. Sinha, McMaster University, Hamilton, Ontario, Canada
Professor D. Tabak, George Mason University, Fairfax, Virginia, U.S.A.
Professor K. Valavanis, University of Southern Louisiana, Lafayette, U.S.A.

For further volumes:
http://www.springer.com/series/6259

http://www.springer.com/series/6259

Suril Vijaykumar Shah ¢ Subir Kumar Saha
Jayanta Kumar Dutt

Dynamics of Tree-Type
Robotic Systems

@ Springer

Dr. Suril Vijaykumar Shah Dr. Subir Kumar Saha

Postdoctoral Fellow Department of Mechanical Engineering
McGill University IIT Delhi
Canada New Delhi

India

Dr. Jayanta Kumar Dutt

Department of Mechanical Engineering
IIT Delhi

New Delhi

India

ISBN 978-94-007-5005-0 ISBN 978-94-007-5006-7 (eBook)
DOI 10.1007/978-94-007-5006-7
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012954613

© Springer Science+Business Media Dordrecht 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Robots have evolved since birth of first industrial robot in 1961. Rapid
industrialization, automation, high rate of production and maximizing human
comfort in the modern times have necessitated various multifaceted applications of
robots, which are required to perform complex tasks. As a result, multiple-chain
tree-type robotic systems such as multi-fingered robotic arms, legged vehicles,
humanoid robots, etc. have emerged. Successful as well as fast operation of such
robots calls for systematic, efficient, and as far as possible generic computational
framework to predict dynamic behavior. The framework should be useful in robot
operation, trajectory planning, simulation and control. Driven by this motivation,
an attempt has been made in this book to present a modular framework for dynamic
modeling and analysis of tree-type robotic systems.

Robots having general tree-type architectures have been considered first. The
concept of kinematic modules, where each module is essentially a serial-chain
system, has been introduced. Macroscopically, module may be viewed similar to
a link in the serial chain system. Next, module-level decoupled form of velocity
transformation matrix, i.e., Decoupled Natural Orthogonal Complement matrices
(DeNOC), is obtained by following the recursive relationships between any two
adjoining modules. The constrained equations of motion are then obtained by using
the module-level DeNOC matrices. Modular framework offers many advantages.
For example, it makes the kinematic as well as dynamic representations compact,
allows module-level expressions for various entities, and enables repeated use of
module-level computations. A novel concept of Euler-Angle-Joints (EAJs) is also
introduced to represent a spherical joint, which allows for unified representation of
multiple-DOF joints that commonly appear in spatial systems.

Following the DeNOC-based approach, it is possible to obtain module-level
analytical expression of the Generalized Inertia Matrix (GIM), which is used for
module-level decomposition of the GIM. The decomposition allows one to invert
the GIM analytically. The analytical inversion provides recursive forward dynamics
algorithm, an insight into the associated dynamics, and help in predicting any
inconsistency in the dynamic behavior of a robot.

vi Preface

Empowered with the modular framework, studies of dynamic behavior of fixed-
base as well as floating-base robotic systems have been taken up. Initially, motion
and force analyses of several fixed-base tree-type systems, e.g., a robotic gripper,
biped, and hyper-degrees-of-freedom (hyper-DOF) system, are presented. This is
followed by the approach where the legged robots are modeled as a floating-
base with several branches (limbs or legs) emanating from the floating-base. Such
approach provides more realistic modeling of the legged robots. In order to show
the effectiveness of the modeling approach, legged robots are simulated under
model-based control laws (e.g., computed-torque and feedforward). Computational
complexities in terms of operation counts and CPU times are also reported to show
that the methodology presented performs much better than many commonly used
methodologies reported in literature. The efficacy of the approach increases with
the complexity, primarily with total number of links and number of multiple-DOF
joints in the system.

In summary, the book addresses dynamic modeling methodology and analyses
of tree-type robotic systems. Such analyses are required to visualize the motion of a
system without really building it. The book contains novelty in the form of treatment
of the tree-type systems using concept of kinematic modules, unified representation
of the multiple-degrees-of-freedom joints, efficient recursive dynamics algorithms,
and detailed dynamic analyses of several legged robots.

This book is useful for teaching graduate-level (Master’s and Ph.D.) courses
specialized in Robot Dynamics and Legged robots. This book will also help
researchers and practicing engineers in virtual testing, trajectory planning, designing
and controlling complex robotic systems. In order to help the readers to quickly
analyze their systems the ReDySim (Recursive Dynamic Simulator) developed
based on the methodologies presented in this book is made freely available through
the website http://www.redysim.co.nr/book.html.

Units and Notation

The international System of Units (SI) is used throughout this book. The
boldface Latin/Greek letters in lower and upper cases denote vectors and matrices,
respectively, whereas light face Latin/Greek letters in lower case with italic font
denote scalars. In the case of any deviation in the above definitions, an entity is
defined as soon as it appears in the text. Moreover, symbol ‘-’ over an entity
signifies that it is associated with a kinematic module of the tree-type systems under
study.

http://www.redysim.co.nr/book.html

Acknowledgments

We would like to thank all who have directly or indirectly helped in the preparation
of this book. Special thanks are due to Indian Institute of Technology (IIT)
Delhi where the first author did his Ph.D. We also thank people of Mechatronics
Laboratory at IIT Delhi, and others with whom we had many discussions about life
and education that may have influenced the presentation of this book indirectly.
Special thanks are also due to our respective family members, Kruti and Arjav
(with Suril Vijaykumar Shah), Bulu and Esha (with Subir Kumar Saha), and Mitali
and Anabil (with Jayanta Kumar Dutt) for their patience and understanding while
this book was under preparation. In addition, we express our sincere gratitude to
Ms. Nathalie Jacobs of Springer Netherlands and anonymous reviewers for readily
accepting the book for publication.

IIT Delhi Suril Vijaykumar Shah

Subir Kumar Saha
Jayanta Kumar Dutt

vii

Contents

1 Introduction i 1
1.1 Tree-Type Robotic Systems...........ccooiiiiiiiiiiiiiiiiieeniinnn. 2

1.2 DYNamICS . ..veeeiii ettt 3

1.3 Important Features of the Book.....................oooiii 4

1.4 Book Organizationcoeeiiiiiiiiiiiieiiiiieeeennannn. 5

2 Dynamics of Robotic Systemscooiiiiiiiiiiiiiiiiiii 9
2.1 RoObOtC SYStEMSuutteit et 9
2.1.1 Serial RODOtSvveiiiiii 9

2.1.2 Tree-Type RoboticHandooooia. 12

2.1.3 Legged RobOtscooviiiiiiiiiiiiii i 12

2.2 Representations of Rotationsoooiiiiiiiii 15
2.2.1 Denavit-Hartenberg Parameters............................ 15

2.2.2 Euler-Angle-Joints............cciiiiiiiiiiiiiiiii e, 15

2.3 Dynamic Modeling............oooiiiiiiiiiiiiiiiiiiiii i 16
2.3.1 Equationsof Motion.............ccooiiiiiiiiiiiiiiiian. 16

2.3.2 Orthogonal Complementsccoviiiieeeenn... 17

2.3.3 Other Formulationscccooiiiiiiiiiiiiiiieennnn. 18

234 Openvs.Closed Chainsccoooiieiiiiiiiiieeennnn. 18

2.3.5 Dynamics of Legged Robotsoooooeia. 19

2.4 Robot DynamiCs..........ccooviiiiiiiiiiiiiii i 20
24.1 Model-Based Control............ccoooiiiiiiiiiiiiiiann. 20

2.4.2 Recursive Algorithms ... 22

243 Inverse DynamiCs.............ccoiiiiiiiiiiiiiiiiieeannn. 22

2.4.4 Forward Dynamicsccoiiiiiiiiiiiiiiiiineennnn. 22

2.5 SUIMMATY .ttt eeeeeeeeees 24

3 Euler-Angle-Joints (EAJS) ... 27
3.1 Buler ANIES ...t 28

3.2 Denavit-Hartenberg (DH) Parameters...........ccccceeviviiiinnnnn. 29

3.3 Euler-Angle-Joints (EAJS)uuuiiiiiiiiiiiiiiiiiiiiiiieeeees 32
3.3.1 DH Parameterization of Euler Angles 33

ix

Contents

3.3.2 Elementary Rotations............c.ooviiiiiiiiiiiienn. 33
3.3.3 Composite Rotationscccoviiiiiiiiiiiiiieeann. 35
3.4 Euler Angles Using Euler-Angle-Joints (EAJS)oouuite 37
340 ZYZ-EAJS.ooniii 37
342 ZXZ-EAJS..oiiii i 40
343 ZXY-EAJS. oo 41
344 XYX-EAJS .ot 43
345 Other-EAJS. ..ot 45
3.5 Representation of a Spherical Joint Using EAJs.................... 51
3.6 Singularity in EATS ...t 51
3.7 Multiple-DOF JOINtSooviiiniiiiiit i 52
3.8 SUMMAIY ...ttt e 52
Kinematics of Tree-Type Robotic Systems........................oooo0l 57
4.1 Kinematic Modulesooiiiiiiiiiiiii 57
4.2 Intra-modular Velocity ConstraintS.............cceeeviiiiiieeeennnn. 60
4.2.1 Presence of Multiple-DOF Jointscccovviuuueen... 62
4.2.2 AnIllustration: A Spatial Double Pendulum.............. 64
4.3 Inter-modular Velocity COnstraintsooeeeeeeiiuuneeeeennnn. 65
4.4 EXAMPILS tonnttiet e e 68
4.4.1 A RODOtIC GIiPPer ... cevviiiiieiiiiiiii e 68
442 APlanarBiped........ccooiiiiiiiiii 70
443 ASpatial Bipedcoooiiiiiiii 71
4.5 SUMMATY .ttt ettt 72
Dynamics of Tree-Type Robotic Systemscoooennne 73
5.1 Dynamic Formulation Using the DeNOC Matrices 73
5.1.1 NE Equations of Motion for a Serial Module.............. 73
5.1.2 NE Equations of Motion for a Tree-Type System......... 76
5.1.3 Minimal-Order Equations of Motion 76
5.1.4 Wrench due to External Force, W'cccooiviii... 77
5.2 Generalized Inertia Matrix (GIM)cooiiiiiianea, 78
5.3 Module-Level Decomposition of the GIMooeuee 80
54 Inverseof the GIM ... 83
5.5 EXAMPIES ..ottt 85
5.5.1 A RObOtC GIipper.....ooouuiiiiiiiiiiiii e 85
552 ABIPed c.iiiii 86
5.6 Advantages of Modular Framework....................oooooi. 88
5.7 SUMMATY . ..ettttt et e 88
Recursive Dynamics for Fixed-Base Robotic Systems.................. 89
6.1 Recursive Dynamicsoooiiiiiiiiiiiiiiiiii 89
6.1.1 Inverse DynamicCs..............cccoiiiiiiiiiiiiiiiieeann. 90
6.1.2 Forward Dynamicscccoiiiiiiiiiiiiiiiieeannn. 92
6.2 APPHCALIONS ...ttt e 97

6.2.1 RODOLIC GIIPPeT....coviiiiiiii it 97

Contents

10

Xi

6.2.2 An Industrial Manipulator: KUKA KRS Arc............. 102

623 ABIPed ...oiiii 103

6.3 Computational Efficiencyccooiiiiiiiiiiiiiiiiiiiiii, 110
0.4 SUMMATY ...ttt 115
Recursive Dynamics for Floating-Base Systems......................... 117
7.1 Recursive DynamicCsoovvuuiieiiiiiiiiiiiiiiiiiie e, 118
7.1.1 Inverse Dynamics.........cc.veeeiiiiiiiiiiiiiiiiieeennnn. 119

7.1.2 Forward DynamicCsccoviiiiiiiieiiiiiiiiieeennn. 124

T2 BIPCA . 128
7.2.1 APlanar Biped.......ccoooiiiiiii i 129

7.2.2 Spatial Biped.......coooiiiiiiiiii 133

7.3 Quadrupedoooiii 137
T4 HeXaPOd ...oeeeiiii 144
7.5 Computational Efficiencycccooiiiiiiiiiiiiiiiiii i, 147
7.6 SUMMATY ...ttt ettt e e e 153
Closed-Loop Systems...........ooviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeens 155
8.1 Tree-Type Representation of Closed-Loop Systems................ 155
8.2 Dynamic Formulationccooiiiiiiiiiiiiiiiiiiiii i, 156
8.2.1 Inverse Dynamics...........cccoviiiiiiiiiiiiiiieiennnnnnn. 156

8.2.2 Forward Dynamicscoiviiiiiiiiiiiiieeeennnnn. 157

8.3 Four-Bar Mechanism...............cooiiiiiiiiiiiiiiii i, 158
84 ARODOUCLEZ .ottt 161
8.5 3-RRR Parallel Manipulatoroovouuiiiiiiiiiiiiieennnnnn. 165
8.0 SUMMAIY ...ttt e 169
Controlled Robotic Systems ..o, 173
9.1 Model-Based Controluuuuuiiiiiiiiiiiiiiieeeeees 173
9.1.1 Computed-Torque Controlcoviiiiiee.nn. 174

9.1.2 Feedforward Controlcoiiiiiiiiiiiiin..... 176

0.2 BIPed .. 177
9.2.1 PlanarBiped ... 177

9.2.2 Spatial Biped........ccoooiiiiiiiii 179

9.3 Quadrupedooiiii 180
9.4 Hexapodcoiiiii 181
0.5 SUMMATIY......oiiiii e 185
Recursive Dynamics Simulator (ReDySim).............................. 187
10.1 Howto Use ReDySim? ..., 187
10.2 Fixed-Base Systemsccooiiiiiiiiiiiiiiiiiiii e 188
10.2.1 Inverse DynamicCS..........oooiviiiiiiiiiiiiiienniinnn... 188

10.2.2 Forward Dynamicscooeiiiiiiiiiiieniiiinn... 193

10.3 Floating-Base SyStemscooiiiiiiiiiiiiiiiiieiiiiieeeennn. 200
10.3.1 Inverse DynamicS.........coooiuiiiiiiiiiiiiiinniiinnn... 200

10.3.2 Forward Dynamicscooiiiiiiiiiiienniiine... 203

104 SUMMATY ..o 204

xii Contents

APPENAICES 205
A Computational Complexity........uuueeeeeriiiiieeiiiiiiee e 205

A.1 Elementary Computations............eeeeeiiiiieeeeennnnnnaeen.. 205

A.2 A Vectorin a Different Frameooo 206

A.3 Matrix in a Different Frameooon 207

A4 Spatial Transformationscoceeiiiiiieeiiiiiinee... 209

A.5 Special Computationsooeviieieiiiiiiiiieiiiiiiiee... 211

A.6 Mass Matrix of a Composite Bodyooooiieeet. 212

A.7 Mass Matrix of an Articulated BodyoooL. 215

B Trajectory Generation for Legged Robotsoooceeeia. 218

Bl Biped .o 218

B.2 Quadruped and Hexapodccoeiiiiiiiiiiiiiiiiine... 224

C EnergyBalance 224

C.1 Kinetic Energy (KE) and Potential Energy (PE) 224

C.2 Work Done by Actuator and Energy Dissipation by Ground .. 225

C.3 EnergyBalanceccooiiiiiiiiiiiii 225

D Foot-Ground Interaction..............ooeeiiiiiiiiiiiiiiineiienennn... 228

D.1 Ground Modelsoooiuiiiiiiiiii i 228

D.2 Multi-point and Whole Body Contactsoouveee... 230
References......... ..o 233

Chapter 1
Introduction

Robots find applications in automobile, electronics, chemical and many other
industries. The field of robotics has evolved since the development of industrial
robots, which have mainly fixed base with serial-chain architecture. Since then many
new applications like maintenance task of industrial plants, operations in dangerous
and emergency environments, surveillance, maneuvering in unknown terrains, tele-
surgery, human care, grasping and manipulation of complex objects, multi-point
force and tactile feeling, etc. have come into existence. As a result, multiple-
chain tree-type robotic systems such as multi-fingered robotic arm, legged vehicle,
humanoid robot, etc. have emerged. They are referred to as tree-type robotic systems
in this book. Trajectory planning, dynamic analysis, obtaining stability criterion, and
control are some of the basic issues with such systems. Research in these areas has
growing interest and is active field of the robotics.

Dynamic analysis involves either force or motion analysis or both. Whereas force
analysis attempts to find the driving and reactive forces for given input motion,
the motion analysis obtains system’s configuration under the input forces. Force
analysis helps in design and control of robotic systems, whereas motion analysis
allows one to study and test a design virtually without really building a real
prototype and is called “virtual prototyping.”

There has been significant increase in the use of computational dynamics for
simulation, analysis, design, and model-based control of various robotic systems.
Hence, an efficient framework is essential for the dynamic analysis of complex
robotic systems. In this context, recursive dynamics algorithms play an important
role. They are attractive due to simplicity and computational uniformity regardless
of ever growing complex robotic systems. Recursive formulations in robotic
applications have significantly helped in achieving real-time computations and
model-based control laws.

In this book, an attempt has been made to present modular framework for
kinematic and dynamic modeling of tree-type robotic systems, and recursive
algorithms for predicting their dynamic behavior with or without control.

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 1
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _1,
© Springer Science+Business Media Dordrecht 2013

2 1 Introduction
1.1 Tree-Type Robotic Systems

The concept of robots has been around since medieval times in the form of human-
like toys. Earlier perception of the robots was in the form of machine that performs
human-like work or imitates animals. It wasn’t until 1960s that the first modern
day industrial robot was built. Since then the field of robotics has grown a lot
and many new applications of robot have come into existence. An industrial robot
is like a human arm and of many applications it finds maximum utility in pick
and place operation. It has a fixed-base wherefrom bodies or links emanate one
after another in a serial fashion, as shown in Fig. 1.1. The developments in the
field of industrial robots have encouraged researchers to build robots which imitate
mammals. As a result, many complex robotic systems have emerged. These robotic
systems have multiple chains connected by single as well as multiple-degrees-
of-freedom joints, and, in general, are referred to as tree-type robotic systems.
Figure 1.2 shows several examples of tree-type robotic systems. Figure 1.2a is a
multi-fingered gripper. Figure 1.2b illustrates an industrial robot, as in Fig. 1.1, with
a secondary manipulator carrying the camera subsystem towards the end-effector,
and hence forms a tree. A quadruped legged robot and a humanoid robot are shown
in Fig. 1.2c, d, respectively.

Tree-type robotic systems have essentially multiple branches, like in a tree, with
variable constraint topology. The base of the systems may be fixed or floating
depending on the type of the robotic system. The robotic systems in Fig 1.2a, b
may be considered to have a fixed-base whereas the systems in Fig. 1.2¢ or d have
floating bases. Modeling and control of such robots are difficult due to their variable
architecture. For example, the legged robot in Fig. 1.2¢ forms a closed-loop system
when it is standing on the ground. However, when the robot lifts one or two of
its legs to move forward or backward, the legs form open-chain architecture with
respect to the trunk. The complexity involved with the tree-type robotic systems
necessitates efficient computational framework for the dynamic analyses, which can
be useful in simulation, design, trajectory planning, and control of those systems.

Bodies or links

Fixed base

Fig. 1.1 An industrial robot

1.2 Dynamics 3

b

Camera subsystem

Trunk

Joints

Pelvis

Joints

Fig. 1.2 Examples of tree-type robotic systems. (a) Multi-fingered gripper. (b) Industrial robot
with camera subsystem. (¢) A legged robot. (d) Humanoid

1.2 Dynamics

Computer-aided dynamic analysis of robotic systems has been a prime motive of the
engineers since the evolution of high speed facilities using computers. In order to
perform computer-aided analysis, the actual system is represented with its dynamic
model, which has information in terms of link parameters, joint variables and
constraints. Dynamic model of a robotic system is represented by a set of equations
governed by physical laws of motions. For a system with few links, it is easier to
obtain explicit expressions for the equations of motion. However, finding equations
of motion is not an easy task for complex systems with many links. Sometimes
even with four or five links, say, a 4-bar mechanism, it is difficult to find an explicit

4 1 Introduction

expression for the system inertia in terms of the link length, mass and joint angle.
Various techniques are available in the literature for automatic generation of the
equations of motion. Development of the equations of motion is an essential step
for dynamic analysis. Objective of dynamic analysis is mainly two fold.

1. First, to perform force analysis. This is referred to as inverse dynamics, in which
driving forces of the system are computed for a given set of input joint motions.
Knowledge of the driving forces help not only in control but also in actuator
design of the robot. One may also obtain the reaction forces, which may be used
for the design of associated linkages and joints from the strength point of view.

2. Second is motion analysis. This is called forward dynamics, where joint motions
are computed under the application of external forces. This along with numerical
integration helps in obtaining the configuration or state of the system at any
instant of time. In other words, forward problem lets one to simulate the actual
working of the system.

Whereas inverse dynamics requires only evaluation of algebraic expression of
the equations of motion, forward dynamics requires the solution of the equations of
motion. So, the forward dynamics problem may involve solutions of either Ordinary
Differential Equations (ODE) or algebraic and differential equations together, i.e.,
Differential Algebraic Equations (DAE). Closed form solutions of the ODE or DAE
for simple systems may be trivial, however, for a complex system they are not
possible. Most common approach to solve them is to use numerical methods. It
is worth noting here that no numerical method can give exact solution and, hence, it
is prone to errors, either round-off or truncation or otherwise. Error propagation
affects accuracy of the results leading to even numerical instability. The round-
off error is caused mainly due to limitation of the computing system, whereas the
truncation error depends on the algorithm used. Since the latter error is reduced
with the reduced number of computational steps, so the computational count of
an algorithm should be reduced as much as possible for numerical stability and
efficiency. This reduction will certainly reduce the truncation errors as the computer
needs to evaluate less number of functions. As a result, efficient computational
framework to obtain the solution of the equations of motion for the dynamic analysis
of tree-type robotic system is called for. To achieve efficiency, modular framework
for the dynamic analysis of tree-type robotic systems consisting of multiple-degrees-
of-freedom joints is presented in this book.

1.3 Important Features of the Book

The important features of this book are outlined below:

1. The concept of Euler-Angle-Joints (EAJs) for the representation of a spherical
joint and its generalization for 1-, 2-, and 3-degrees-of-freedom joints.

1.4 Book Organization 5

. Generalization of the link-to-link kinematic transformation of velocities, i.e.,

twist-propagation, to module-to-module twist-propagation using the concept of
kinematic modules. As a consequence, definition of the Decoupled Natural
Orthogonal Complement (DeNOC) matrices for a serial chain system is extended
to a tree-type robotic system.

. Dynamic modeling of a tree-type robotic system using the concept of the module-

DeNOC matrices giving module-level expressions for the vectors and matrices
appearing in the equations of motion.

. Module-level analytical block UD U” decomposition of the Generalized Inertia

Matrix (GIM) for the tree-type robotic system using the Block Reverse Gaussian
Elimination (BRGE), where U and D are the block upper triangular and
block diagonal matrices, respectively. Subsequently analytical expressions of the
inverse of the GIM are derived providing deeper insight into the dynamics.

. Efficient recursive algorithms for the inverse and forward dynamics of the fixed-

and floating-base tree-type robotic systems consisting of multiple-degrees-of-
freedom joints introducing inter- and intra-modular recursions.

. Dynamic analyses of several tree-type practical robotic systems, namely, (i) a

robotic gripper, (ii) planar and spatial biped, (iii) a quadruped, and (iv) a hexapod,
which would help researchers and practicing engineers to use these results for
design, simulation and control of those robots.

. Closed-loop control simulation of several robots, mainly, those listed in item 6

above, to study their controlled behaviors.

1.4 Book Organization

The book contains ten chapters which are organized as follows:

1

Introduction

The motivation and scope of the book are presented in this chapter. The important
features and organization of the book are also highlighted.

Dynamics of Robotic Systems

Background and development in the field of dynamic modeling and tree-type
robotic systems will be reviewed in this chapter.

Euler-Angle-Joints (EAJs)

A spherical joint in robotic literature is typically modeled as three-intersecting
revolute joints. It is shown in this chapter that it is nothing but a variant of well-
known Euler angle representation. Hence, the term Euler-Angle-Joints (EAJs) is
introduced. The evolutions of different EAJs with examples will be shown in this
chapter.

6 1 Introduction

4 Kinematics of Tree-Type Robotic Systems

The concept of kinematic modules for the tree-type systems is introduced in this
chapter. The recursive kinematic relationships in the form of twist-propagations
are first obtained at intra-modular level (inside the module). Using the concept
of Euler-Angle-Joints introduced in Chap. 3, it was possible to generalize
1-, 2-, and 3-degrees-of-freedom rotary joints, namely, revolute, universal and
spherical joint, respectively. Next, inter-modular (between the module) kinematic
constraints, i.e., module-level twist-propagations, are derived. This allows one to
generalize the definition of the DeNOC matrices for a serial system to tree-type
systems.

5 Dynamics of Tree-Type Robotic Systems

Dynamic modeling of the tree-type robotic system is presented in this chapter.
The module-level expressions for the matrices and vectors appearing in the
equations of motion are presented. Following the analytical expression of the
Generalized Inertia Matrix (GIM), its module-level decomposition is obtained.
The GIM is decomposed in the form of UD U’ using the concept of Block
Reverse Gaussian Elimination (BRGE), where U and D are the block upper
triangular and block diagonal matrices. This leads to physical interpretations of
the terms associated with the dynamics. The decomposition helps in obtaining
explicit analytical inversion of the GIM and the recursive forward dynamics.

6 Recursive Dynamics of Fixed-Base Systems

In this chapter, dynamic analyses of fixed-base robotic systems are presented.
For this, recursive algorithms for inverse and forward dynamics are obtained.
Dynamic analyses of robotic gripper, spatial biped and hyper-degrees-of-freedom
system are presented in this chapter.

7 Recursive Dynamics of Floating-Base Systems

Modeling of a system with floating or mobile base is proposed in this chapter.
Recursive algorithms for inverse and forward dynamics of floating-base robotic
systems are derived here. Analyses for biped, quadruped and hexapod robotic
systems are presented.

8 Closed-Loop Systems

In this chapter, dynamic analysis of a closed-loop system is presented using the
algorithms presented for the tree-type robotic systems. It will be shown how the
algorithm for a tree-type system can be suitably adopted when a closed-loop
system is cut-open to form tree-type architecture.

9 Controlled Robots

Two model-based control schemes, namely, feedforward and computed-torque
control, have been discussed with the help of proposed dynamic framework.
Simulation of biped, quadruped and hexapod is presented by using them.

http://dx.doi.org/10.1007/978-94-007-5006-7_3

1.4 Book Organization 7

10 Recursive Dynamic Simulators (ReDySim)

Used of a MATLAB based solver, developed based on the algorithms presented
in Chap. 6 and 7, will be illustrated in this chapter.

Appendices

A: Computational Complexity

B: Trajectory Generation of Legged Robot
C: Energy Balance

D: Foot-Ground Interaction

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

Chapter 2
Dynamics of Robotic Systems

The field of robotics has grown a lot in last three to four decades. In this chapter,
background and developments in the field of dynamics of robotic systems are
presented.

2.1 Robotic Systems

A robotic system can be divided into two categories based on their topology, i.e.,
open-chain or closed-chain. Robots with serial and tree-type architecture are open-
chain systems, e.g., a PUMA industrial robot and multi-fingered robotic hands
shown in Figs. 2.1a and 2.2, respectively. The cooperating industrial robot and
robots with parallel architecture, e.g., Stewart platform and delta manipulator, are
examples of closed-chain systems. Figure 2.3 shows a Stewart platform. On the
contrary, legged robots as shown in Fig. 2.4 have time varying topology, i.e., a
combination of open- and closed-chains. A legged robot may also be viewed as
a robotic system with floating- or mobile-base with intermittent ground contacts.
Thus, a robotic system has its base either fixed or floating. Industrial robots and
parallel robots are examples of fixed-base systems while the space manipulators and
legged robots are examples of floating-base systems. This book addresses dynamics
of tree-type robotic systems with both fixed-base and floating-base. The analysis
of closed-chain systems can be carried out by cutting appropriate joints to form a
tree-type system, where the opened joints are substituted with appropriate constraint
forces.

2.1.1 Serial Robots

Industrial robot (Fig. 2.1) is a classical example of a fixed-base serial-chain robotic
system. Industrial robots have the capability to perform manipulation task similar

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 9
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 2,
© Springer Science+Business Media Dordrecht 2013

10 2 Dynamics of Robotic Systems

Fig. 2.1 Industrial robots. (a) Puma Robot. (b) UNIMATE robot (http://ijts). (¢) Sanford arm
(http://www.dipity)

to human arm. Development of such robots started after World War II. The first
industrial robot, UNIMATE of Fig. 2.1b, was used in the assembly line in General
Motors way back in 1961. The first electrically powered, computer-controlled
robot, Stanford Arm (Fig. 2.1c), was developed in 1969. Research on industrial
robots started in late 1970s and has gone a long way in the areas of kinematics,
path planning, dynamics, simulation, control and design. Denavit and Hartenberg
(1955), Hollerbach and Gideon (1983), Goldenberg et al. (1985), Khatib (1986),
Ma and Angeles (1990), Coset et al. (2005) and others worked on different issues
of kinematics and path planning of industrial robots. The issues of dynamics were
addressed by Hollerbach (1980), Luh et al. (1980), Walker and Orin (1982), Khalil
et al. (1986), Angeles et al. (1989), and Balafoutis and Patel (1991). Simulation

http://ijts
http://www.dipity

2.1 Robotic Systems 11

Fig. 2.2 Robotic hands. (a) Utah/MIT hand (Jacobsen et al. 1986). (b) Stanford/JPL hand (Mason
and Salisbury 1985). (¢) TUM hand (Pfeiffer 1996)

aspects were attempted by Featherstone (1987), Bae and Haug (1987), Rodriguez
(1987), Lilly and Orin (1991), McMillan and Orin (1995), and Saha (1997). Issues
on control of industrial robots were investigated in detail by Lewis et al. (2004)
and Kelly et al. (2005), whereas aspects on design were reported by Asada (1984),
Yoshikawa (1985), Kahtib and Burdick (1987), Craig (2006) and Saha et al. (2006).
In this book, serial-chain robotic systems are assumed as special cases of a tree-type
robotic system.

12 2 Dynamics of Robotic Systems

Fig. 2.3 Closed-chain
Stewart-platform (Bhagat
etal. 2011)

2.1.2 Tree-Type Robotic Hand

A robotic hand shown in Fig. 2.2 is a human-hand-like manipulating system. It has
tree-type topology, where several links emanate from a common rigid link, i.e., the
palm. The architecture of each finger is the same as that of a serial robot shown
in Fig. 2.1. These robotic systems essentially perform the task of restraining an
object and manipulating the same. In the task of restraining, fingers play the role of
keeping the object rigidly attached to the palm. On the other hand, manipulation
involves controlled motion of the grasped object with respect to the palm. This
is also known as dexterous manipulation. Early groundwork on robotic hand was
laid down by Salisbury and Craig (1982), whereas Mason and Salisbury (1985)
and Jacobsen et al. (1986) designed early dexterous systems. As a result, several
multi-fingered robotic hands such as the Stanford/JPL hand (Mason and Salisbury
1985), the Utah/MIT hand (Jacobsen et al. 1986), the TUM hand (Pfeiffer 1996) and
others were developed. The Utah/MIT hand, Stanford/JPL hand, and TUM hand are
shown in Fig. 2.2. Pons et al. (1999) and Bicchi (2000) presented various issues
and comprehensive review of dexterous robotic hands. More recently, emphasis has
been given on achieving dynamic re-grasping (Hasegawa et al. 2003; and Furukawa
et al. 2006) with the help of a robotic hand.

2.1.3 Legged Robots

Desire to make devices that imitate mammals and to explore the unknown terrain
has compelled the need for developing legged robots. In early twentieth century,

2.1 Robotic Systems 13

building walking machines was viewed as the task of designing kinematic linkages
that would generate suitable stepping motion. However, later, it had become clear
that a linkage providing fixed motion would not do the trick of walking or running.
A walking machine, as shown in Fig. 2.4, would need control. The scientific study
of legged locomotion began just over 50 year ago when Muybridge (1957) studied
the motion of a horse. The first machine that balanced actively was based on
automatically controlled inverted pendulum. Miura and Shimoyama (1984) built the
first walking machine that balanced actively (Fig. 2.4a). According to Mark Raibert
(1986) there are two main purposes for interest in legged locomotion, namely, (1)
its potential for high mobility, and (2) the necessity to understand the motions
of animals and humans. It is obvious that high mobility aspect is predominant as
wheeled locomotion is primarily restricted to level surfaces. Raibert (1986) showed
the advantage of legged robots in comparison to the wheeled systems, by illustrating
that legs use isolated footholds for support, whereas wheels or tracks require a
continuous path of support.

Note that during the flight phase of a legged robot, its degrees-of-freedom are
more than the number of actuators, which makes them underactuated. Moreover,
the dynamic model of the legged robot is highly nonlinear and it is difficult to
model the interaction of the robot with its unknown environment. This makes
control of a legged robot difficult. A controller plays major role in achieving
stable periodic motion of the legged robot. The goal of the controller is to control
velocity and posture of the robot while maintaining a cyclic gait. A statically
balanced robot can be controlled in a kinematic way by neglecting the inertial
forces. On the contrary, dynamically balanced robot can only be balanced through
its motion, by taking into account the inertial forces and manipulating them in the
right way. As a result, dynamics plays an important role in the control of legged
robots. Research in the field of legged robots has made great stride in the last two
decades. Various issues related to dynamics, trajectory planning and control have
been addressed by researchers till date to obtain walking or running of the legged
robots. As a result, various prototypes of the legged robots have been built. Raibert
(1984), Ringrose (1997), Brown and Zeglin (1998), Ahmadi and Buehler (1999)
and Hyon et al. (2003) have contributed in the development of monopod hopper.
Development of bipedal robot and their issues were reported in the work by Miura
and Shimoyama (1984), Vukobratovic et al. (1989), McGeer (1990), Shih et al.
(1993), Hirai et al. (1998), Sakagami et al. (2002), Kuroki et al. (2003), Collins
and Ruina (2005), and Kaneko et al. (2008). Various issues on quadruped robots
have been investigated in the work by Buehler et al. (1998), Fukuoka et al. (2003),
Marhefka et al. (2003), and Kimura et al. (2007), whereas development of hexapod
robot was attempted by Espenschied et al. (1996), Nelson and Quinn (1998), Cham
et al. (2002), and Saranli et al. (2004). Some of the legged robots are shown
in Fig 2.4.

14 2 Dynamics of Robotic Systems

Fig. 2.4 Legged robots. (a) Biper4 (Miura and Shimoyama 1984). (b) Monopod (Raibert 1986).
(c) Hexapod (Saranli et al. 2001). (d) Biped (Collins and Ruina 2005). (e) Quadruped legged robot
(Raibert 1986)

2.2 Representations of Rotations 15
2.2 Representations of Rotations

Rotation representation of a rigid link moving in a 3-dimensional Cartesian space is
important. Selection of appropriate co-ordinates is vital, particularly, with multiple
Degree-of-Freedom (DOF) joints, e.g., universal and spherical joints, connecting
two neighboring links. Many schemes are available to represent a rotation in
space as shown by Nikravesh (1988), Shuster (1993) and Shabana (2001). The
representation of the rotation matrix with the help of nine direction cosines is
one such scheme. However, it is not preferred by many as it uses dependent
co-ordinates. Use of Euler angles (Shabana 2001) is the alternative choice. It
has wide acceptability in the field of aerospace, bio-mechanics, and others due
to its independent representation. The use of Euler parameters (Nikravesh 1988)
is another popular choice, which uses four parameters though DOF of a rigid
body rotation in three dimensional Cartesian space is three. Rodriguez parameters
(Shabana 2001) consisting of essentially three independent Euler parameters are
also used for rotation representations.

It may be noted that the Euler angles have three independent parameters but
suffer from inherent numerical singularities, which, however, can be overcome by
switching from one type of Euler angle set to another (Shuster and Oh 1981; Singla
et al. 2004). On the other hand, Euler parameters have no singularity but they are
not independent, and may suffer from constraint violations that may in turn lead to
numerical instability. They are also difficult to visualize.

2.2.1 Denavit-Hartenberg Parameters

In robotic applications, the links are joined mainly with one-DOF joints, e.g.,
revolute and prismatic. Well-known Denavit-Hartenberg (DH) parameters (Denavit
and Hartenberg 1955) are used to define the configuration of a link with respect
to its previous one. Many modern robotic systems such as humanoid robot, legged
robot, robotic hand, etc. contain multiple-DOF joints, say, universal, cylindrical or
spherical joints. Such joints are generally modelled as several intersecting one-DOF
joints, i.e., revolute or prismatic (Duffy 1978). Such representations suffer from
unnecessary calculations associated with zero lengths and masses of the virtual links
that need to be introduced to define the DH parameter of the system.

2.2.2 Euler-Angle-Jjoints

Recently Shah et al. (2009, 2012b) showed that there exists interesting correlation
between Euler Angles and DH parameters. It was shown that the Euler Angles can

16 2 Dynamics of Robotic Systems

be described by the rotation about intersecting revolute joints represented by the DH
parameters. Hence, it is formally introduced in this book and their benefits are also
presented. The term Euler-Angle-Joints (EAJs) is coined to represent multi-DOF
rotary joints. Moreover, it is shown that significant simplifications in the algorithms
for dynamics can be obtained by not computing for the zero lengths and masses of
the virtual links. This helped in obtaining recursive, fully O(n), forward dynamics
algorithm (as will be explained in Sect. 6.2), which would have not been possible to
construct by using original definition of the Euler angles (Shabana 2001).

2.3 Dynamic Modeling

Over the last two decades, applications of multibody dynamics have spread over the
fields of robotics, automobile, aerospace, bio-mechanics, molecular modeling and
many more. With continuous development in the field of robotics, and evolution
of complex robotic systems, application of multibody dynamics has become more
important. History of dynamics goes back to seventeenth century when Newton in
1686 presented the dynamics of a free particle and later Euler in 1776 introduced
the concept of rigid body. This gave birth to Newton-Euler equations of motion.
Lagrange in 1788 provided the systematic approach for mathematical formulation
of the constrained rigid body systems. Since then multibody dynamics has grown a
lot. Comprehensive discussion on dynamic formalisms can be found in the seminal
text by Roberson and Schwertassek (1988), Schiehlen (1990), Stejskal and Valasek
(1996), and Wittenburg (2008). Recent trends in dynamic formalisms can also be
found in the work by Schiehlen (1997), Featherstone and Orin (2000), and Eberhard
and Schiehlen (2006).

2.3.1 Egquations of Motion

Derivation of the equations of motion is an important step in order to study the
dynamics of any system. This is also referred to as dynamic modeling. There are
several fundamental methods to formulate the equations of motion of a system under
study. For example, Newton-Euler (NE) formulation, Euler-Lagrange principle,
Gibbs-Appel approach, Kane’s method, and D’ Alembert’s principle. All the above
mentioned approaches, when applied to a robotic system, have their own advantages
and disadvantages. Newton-Euler (NE) approach is one of the classical methods for
dynamic formulation. This approach is based on the concept of “free-body.” If it
is constrained, associated forces of constraints are included in the free-body with
those, which are externally applied. Mathematically, NE equations of motion lead
to two vector equations, which in scalar form is equivalent to three translational
equations of motion of the Centre-Of-Mass (COM), and three equations determining
the rotational motion of the rigid body. The NE equations are related simply by

http://dx.doi.org/10.1007/978-94-007-5006-7_6

2.3 Dynamic Modeling 17

the constraint forces and hence for an open-chain system they can easily be solved
recursively. For closed-loop systems, however, some of the NE equations need to be
solved simultaneously in order to obtain constraint and driving forces. Hence, the
use of the NE equations of motion for closed-chain systems is not as efficient as
those for serial-chain systems.

Euler-Lagrange (EL) formulation is another classical approach widely used
for dynamic modeling. The EL formulation uses the concept of generalized co-
ordinates instead of Cartesian co-ordinates. It is based on minimization of a
functional called “Lagrangian” which is nothing but the difference between kinetic
energy and potential energy of the system at hand. For open-chain systems, where
typically the number of generalized coordinates equals the DOF of the system, the
constraint forces do not appear in the equations of motion. For the closed-chain
systems, however, forces of constraints appear as Lagrange’s multipliers. Kane’s
formulation, which is same as the Lagrange’s form of D’ Alembert’s principle, has
also been used by few researchers for the development of the equations of motion. It
is found to be more beneficial than other formulations when used for systems with
nonholonomic constraints.

2.3.2 Orthogonal Complements

It is pointed out here that NE equations of motion are still found popular in
the literature to obtain recursive algorithms. However, it requires solution of the
constraint forces and moments, which do not play any role in the motion of a
system. Hence, in motion studies extra calculations are required. To avoid such extra
calculations, there are formulations proposed in the literature where equations of
motion in the EL form are obtained from the NE equations. Huston and Passerello
(1974) were first to introduce computer oriented method to reduce the dimension
of the unconstrained NE equations by eliminating the constraint forces. Later, Kim
and Vanderploeg (1986) derived the equations of motion in terms of relative joint
coordinates from Cartesian coordinates through the use of a velocity transformation
matrix. A velocity transformation matrix relates linear and angular velocities of the
links with joint velocities. It is worth noting that the vector of constraint forces and
moments is orthogonal to the columns of the velocity transformation matrix. More
precisely, the null space of the transpose of the velocity transformation matrix is
orthogonal complement of the column space of the velocity transformation matrix.
Hence, velocity transformation matrix is also referred to as orthogonal complement
matrix. The concept of ‘orthogonal complement” was first used by Hemami and
Weimer (1981) for the modeling of nonholonomic systems. Orthogonal complement
is not unique; in some approaches it was obtained numerically using singular value
decomposition or Eigen value problem (Wehage and Haug 1982; Kamman and
Huston 1984; Mani et al. 1985), which is computationally inefficient.
Alternatively, Angeles and Lee (1988) presented a methodology where they
derived an orthogonal complement naturally from the velocity constraints. Hence,

18 2 Dynamics of Robotic Systems

the name Natural Orthogonal Complement (NOC) matrix was attached to their
methodology. The NOC matrix, when combined with the uncoupled NE equations
of motion, leads to minimal-order constrained dynamic equations of motion by
eliminating the constraint forces. This facilitates the representation of the equations
of motion in Kane’s form that is suitable for recursive computation in inverse
dynamics or in the EL form that is suitable for forward dynamics and integration.
Later, Angeles and Ma (1988), Cyril (1988), Angeles et al. (1989), and Saha and
Angeles (1991) showed the effectiveness of the use of the NOC matrix while
applied to systems with holonomic and nonholonomic constraints. Subsequently,
Saha (1997, 1999a, b) presented the decoupled form of the NOC matrix for the serial
chain systems. The two resulting block matrices, namely, an upper block triangular
and a block diagonal matrices, are referred to as the Decoupled NOC (DeNOC)
matrices. In contrast to NOC, the DeNOC matrices allow one to recursively obtain
the analytical expressions of the vectors and matrices appearing in the equations
of motion. This in turn helps to analytically decompose the Generalized Inertia
Matrix (GIM) of the system at hand, allowing one to obtain a recursive algorithm
for forward dynamics. The DeNOC based formulation was later employed for the
analysis of closed-chain systems (Saha and Schiehlen 2001; Khan et al. 2005; and
Chaudhary and Saha 2007) and flexible manipulators (Mohan and Saha 2007).
Blajer et al. (1994) also presented an orthogonal complement based formulation
for constrained multibody systems.

2.3.3 Other Formulations

Several other dynamic formulations were also proposed in the literature. For
example, Khatib (1987) presented the operational-space formulation, Park et al.
(1995) presented robot dynamics using a Lie group formulation, while Stokes and
Brockett (1996) derived the equations of motion of a kinematic chain using concepts
associated with the special Euclidean group. McPhee (1996) showed how to use
linear graph theory in multibody system dynamics. Cameron and Book (1997)
described a technique based on Boltzmann-Hamel equations to derive dynamic
equations of motion for serial-chain systems.

2.3.4 Open vs. Closed Chains

It is worth noting that the relative joint coordinates are independent in open-chain
systems. As a result, a large number of unconstrained NE equations of motion
can easily be converted into a reduced form of constrained equations using the
velocity transformation matrix. On the other hand, the relative joint coordinates
are not independent in the case of closed-chain system as they have to satisfy the
loop closure constraints. In order to solve such a problem, methodology based on

2.3 Dynamic Modeling 19

cut-joints can be used where the closed kinematic loops are opened by cutting at
appropriate joints and incorporating unknown Lagrange multipliers, A’s, at the cut
joints as shown by Nikravesh and Gim (1993). Recently, Chaudhry and Saha (2009)
proposed a methodology to obtain driving and constraint forces in a closed-chain
system using a two-level recursion. They also used the cut-joint method but wrote
the dynamic equations of motion using the DeNOC matrices for the system.

As far as the forward dynamics and simulation are concerned, one generally
uses Differential Algebraic Equations (DAEs) for the closed-loop system whereas
Ordinary Differential Equations (ODEs) are used for an open-chain system. Typi-
cally, three different approaches, namely, direct integration method, the constraint
stabilization method (Baumgarte 1972; Yu and Chen 2000), and the generalized
coordinate partitioning method (Wehage and Haug 1982; Yen and Petzold 1998),
are used for the solution of the DAEs.

2.3.5 Dynamics of Legged Robots

In contrast to industrial robots, legged robots have time varying topology, as their
feet-contacts vary during the motion cycle. Several methods of dynamic formulation
for different legged robots were proposed by Freeman and Orin (1991), Shih et al.
(1993), Perrin et al. (1997), McMillan and Orin (1998), Ouezdou et al. (1998),
Berkemeier (1998), Hu et al. (2005), Vukobratovic et al. (2007) and others. These
methods for formulating the dynamics of legged robots can be divided into two
categories. In the first category contact is defined using a hard constrained model.
Doing so increases the number of constraint forces in the system. The number
is further increased with increase in the number of feet in a legged robot. This
results into variable closed-open type of system for different combinations of feet-
ground interactions. As a result, a robot has different sets of equations of motion
for different configurations of movement, e.g., single support phase, double support
phase, flight phase, etc. This is referred to as configuration-dependent approach. In
the second approach, a legged robot is modeled as a floating- or mobile-base tree-
type robotic system where foot-ground interactions are modeled as external forces
and moments. This is referred to as the configuration-independent approach. The
latter approach is generally preferred as it allows for a single set of dynamic equa-
tions of motion for the legged robots irrespective of their different configurations.
Under this approach, as mentioned earlier, foot-ground interactions are modeled
as contacts, where reactions on feet can be computed by using analytical method
(Baraff 1994; Stewart and Trinkle 2000; Lloyd 2005), impulse based approach
(Mirtich and Canny 1995), or penalty based method (Gerritsen et al. 1995; Nigg and
Herzog 1999). In penalty based approach, the vertical reactions are approximated
by using visco-elastic (spring-damper) model, whereas the horizontal reactions are
approximated by using Coulomb or viscous friction. Variety of walking and running
surfaces can be simulated by varying the parameters of the spring-damper and co-
efficient of friction. In this book, configuration independent approach is preferred
even though both the approaches are showed for the legged robots.

20 2 Dynamics of Robotic Systems
2.4 Robot Dynamics

As discussed in Sect. 1.3, analysis of robotic systems involves problems of inverse
and forward dynamics. Inverse dynamics problem attempts to find the joint torques
and forces for a given set of joint motions, which are known for a given set of end-
effector motion using inverse kinematic solution, as indicated in Fig. 2.5. Forward
dynamics on the other hand attempts to find the joint motions from the knowledge
of the external joint torques and forces. These joint motions are used to obtain
the end-effector configurations using forward kinematics, as shown in Fig. 2.5.
Inverse dynamics problem helps in control and design of a robot, while the forward
dynamics enables simulation studies to obtain the configuration of the system at
hand, and so helps in evaluation of a new design without actually building the
physical robot.

2.4.1 Model-Based Control

With the advent of high speed processors, the dynamic model-based feedforward
and computed-torque control schemes have shown better motion control perfor-
mances of a robotic system than the conventional PID controller (Lewis et al.
2004; and Kelly et al. 2005). Figure 2.6 shows the application of inverse and
forward dynamics algorithms to feedforward and computed-torque control schemes.
In feedforward control scheme, as shown in Fig. 2.6a, the joint torques computed
by using the dynamic model of a robot are fed forward to the controller, while linear
servo feedbacks take care of any error in the trajectory to be followed. Selection
of control gains is not very straightforward in the case of feedforward control and
one may use the design methodology proposed by Kelly et al. (2005) to find the
gains. On the other hand, computed-torque control showed in Fig. 2.6b works on the

Inverse
kinematics

Inverse
Dynamics

Forward
Dynamics

Forward
kinematics

Generalized forces Joint motions End-effector motions
(7, T) q (41,924, § (2, Q.)

Fig. 2.5 Inverse and forward dynamics

2.4 Robot Dynamics 21

Forward dynamics

a (Simulation)
Inverse dynamics
q;
: . q
i Dynamic Robotic .
¢ Model Manipulator ?1
q, Position gain
Desired Actual
motion motion
b Forward dynamics
Inverse dynamics (Simulation)
qcf T
. Dynamic T Robotic '1
44 Model Manipulator g
q,
Desired Actual
motion motion

Fig. 2.6 Model-based control laws. (a) Feedforward control. (b) Computed torque control

principle of the feedback linearization (Craig 2006). In this control scheme, robot
dynamic model is used along with linear servo feedback to calculate the driving
torque. As the system reduces to a linear one controlled with a simple servo law,
setting of control gains is much simpler. Estimating correct dynamic model and
its real-time computation are the two major challenges in any model-based control
scheme. Even if the dynamic model of the robot is not very accurate, computed-
torque scheme eliminates some of the nonlinearities due to robot’s inertia, and it is
easy to remove the remaining nonlinearity using the associated PID controller.

It is evident from the above two schemes that the inverse dynamics is very
essential for computation of control inputs. In the absence of a real robot, forward
dynamics followed by numerical integration (i.e., simulation) will allow one to study
the actual working of the robot. Accordingly, design modification in the robot can
be made at design stage itself. Further, real-time simulation during actual working
helps one in taking any preventive control measures. Hence, real-time computation
of the robot’s inverse and forward dynamics is very important. It is more crucial
in the case of legged robots due to their complex dynamics and the presence of
intermittent contact. Therefore, efficient computation of the robot dynamics should
be of prime importance.

22 2 Dynamics of Robotic Systems
2.4.2 Recursive Algorithms

The formalisms of multibody dynamics, as described by Schiehlen (1990), can
be divided into two, (a) symbolical formalism and (b) numerical formalism. In
symbolical formalism, the equations of motion are obtained symbolically first,
before using them for solving inverse or forward dynamics problems. However, the
use of symbolical formalism is limited to smaller systems. In numerical formalism,
the inverse and forward problems are solved at each time instant numerically. It may
be noted that from numerical point of view recursive formulation is found to be the
most efficient. With the advent of digital computers, various recursive formulations
for dynamic analyses of robotic systems have emerged. Recursive formulations
in dynamics are attractive due to simplicity and computational uniformity. This
helps in achieving real-time computations and consequently helps in model-based
control.

2.4.3 Inverse Dynamics

Study of dynamics in multibody systems is a classical problem. It was limited to
analytical results for systems with small number of links. However, with emergence
of high speed computers many methods have evolved to solve the dynamics
problem of complex systems with many links. Uicker (1965) and then Kahn and
Roth (1971) were first to develop methods based on the Euler-Lagrange equations
to predict dynamic behavior of a system consisting of rigid bodies. Thereafter,
several recursive algorithms for inverse dynamics were proposed in the literature.
Recursive Newton-Euler Algorithm (RNEA) proposed by Luh et al. (1980) is one
of the popular algorithms for inverse dynamics. Several other algorithms were also
proposed by Walker and Orin (1982), Kane and Levinson (1983), Khalil et al.
(1986), Featherstone (1987), Cyril (1988), Angeles et al. (1989), Balafoutis and
Patel (1991), Li and Sankar (1992), and Saha (1999b). These algorithms were based
on different methodologies but their main objective was to develop an efficient
recursive algorithm. Typically, the computational complexity of a recursive inverse
dynamics algorithm is of Order (n), where n is the number of joint variables in
the system. Recently, Fang and Pollard (2003) presented an efficient algorithm
to obtain partial derivatives of inverse dynamics problem with respect to design
parameters.

2.4.4 Forward Dynamics

Forward dynamics problem require solution of nonlinear differential equations
arising out of the equations of motion. An important step in forward dynamics

2.4 Robot Dynamics 23

is to compute the joint accelerations, which require inversion of the Generalized
Inertia Matrix (GIM), i.e., = I_l(p, where (is the vector of joint accelerations,
I is the GIM, and ¢ is the vector of generalized forces containing terms due to
Coriolis, centrifugal, gravity, and external forces and moments. Forward dynamics
algorithms can be divided based on the explicit or implicit inversion of the GIM. In
explicit inversion of the GIM, it is inverted numerically using Gaussian elimination
or Cholesky decomposition (Strang 1998). This method of inversion commonly
leads to O(n?) algorithm. Walker and Orin (1982) proposed one such algorithm
after introducing the concept of composite body. The algorithm is also referred
to as Composite Rigid Body Algorithm (CRBA). Later, improved versions of the
said algorithm were proposed by Featherstone (1987), Balafoutis and Patel (1991),
Lilly and Orin (1991), Lilly (1993), McMillan and Orin (1995) and others. On the
contrary, implicit inversion obtains joint accelerations analytically without actually
inverting the GIM. Implicit inversion is complex but leads to O(n) algorithms. In
literature (Featherstone 2005) these explicit and implicit methods of inversion are
also referred to as the “Inertia Matrix Method” and the ‘“Propagation Method”,
respectively.

2.4.4.1 Implicit Inversion

Implicit inversion method is further divided into two categories. In the first category
(type I) (Featherstone 1983; Bae and Haug 1987), one starts with the calculating
unknowns, i.e., joint acceleration and joint constraint forces, locally at link-level
and then transfers those to adjacent links till a link is obtained where dynamics can
be solved locally. Adjacent links are then solved. In the second category (type-II)
(Saha 1997), the GIM is factorized and then solved for the joint accelerations using
backward and forward substitutions. Both the approaches are analogous. However,
the latter looks at the global picture of the whole system while the former focuses at
the local link level. Several such algorithms were also proposed in the literature for
serial manipulators. Vereshchagin (1975) was first to propose a recursive algorithm
for forward dynamics. Later, Armstrong (1979) presented a recursive algorithm
for serial systems with 3-degrees-of-freedom spherical joints. Featherstone (1983)
introduced recursive algorithm based on the concept of articulated-body inertia
from the NE equations of motion of a free-body interacting with its neighboring
bodies, whereas Bae and Haug (1987) used variational approach based on the
principle of virtual work. In both the approaches, recursion was obtained from
the recursive relationships of velocities and accelerations between the neighboring
bodies. Later, Brandl et al. (1988), and McMillan and Orin (1995) presented efficient
implementation of the Featherstone’s articulated body algorithm. Rodriguez (1987)
presented a complex algorithm based on Kalman filtering and smoothing theory.
Soon after, they (Rodriguez et al. 1991, 1992) introduced the concept of spatial
operator algebra for recursive forward dynamics. Rosenthal (1990) and Anderson
(1991) also presented recursive formulations based on the use of Kane’s equations of
motion. Saha (1997) proposed a recursive formulation for the serial-chain systems

24 2 Dynamics of Robotic Systems

based on linear algebra theories and the DeNOC matrices. Several other algorithms
were also proposed in the literature by Stejskal and Valasek (1996), Ascher et al.
(1997), Critchley and Anderson (2003), Lee and Chirikjian (2005), and Mohan and
Saha (2007).

Stelzle et al. (1995) compared different algorithms and showed that for n> 7,
an O(n) forward dynamics algorithm is more efficient than an O(n*) algorithm with
proper selection of reference point and reference frame. Number of bodies in many
robotic applications such as legged robot, humanoid, etc. is much more than seven.
Hence, the use of O(n) recursive algorithm is certainly beneficial. Moreover, an O(n)
algorithm is also reported to be numerically more stable than an O(»*®) algorithm due
to smooth acceleration plots as shown by Ascher et al. (1997), and Mohan and Saha
(2007). As a result numerical integrations are much faster in O(n) algorithms which
were also reported by Ascher et al. (1997).

2.4.4.2 Other Forward Dynamics Algorithm

Other than explicit and implicit inversion of the GIM in ODE formulation, there is
a third approach shown by Nikravesh (1988), Baraff (1996), Shabana (2001), and
others, in which the equations of motion of individual bodies are clubbed together
with kinematic constraint equations. This leads to the well-known DAE formulation
which is more suitable to closed-chain systems. There are also forward dynamics
algorithms that use parallel computations, e.g., those proposed by Bae et al. (1988),
Fijany et al. (1995), Featherstone (1999), Anderson and Duan (2000), Yamane and
Nakamura (2002), and Critchley and Anderson (2004).

2.5 Summary

Rapid development in the field of robotics has given birth to complex robotic
systems. These robotic systems are very sophisticated and require intricate control.
Hence, it is very important to predict their dynamic behavior at design stage itself.
This necessitates efficient computational framework, which can be very useful in
design, analysis, simulation, trajectory planning, and control of robotic systems.

These modern day robotic systems contain multiple-DOF joints, e.g., a spherical
joint, in contrast to only one-DOF joints as in the case of industrial robots. One
approach to model a spherical joint is to represent it by Euler angles. Modeling
of a spherical joint can also be done by using three intersecting revolute joint
axes that can be identified with DH parameters. It was revealed from the literature
(Shah et al. 2012b) that the Euler angles can be described by using intersecting
revolute joints, whose axes are identified with DH parameters. An attempt has been
made here to correlate them by introducing a concept of Euler-Angle-Joints (EAJs).
The concept was later adopted for a unified representation of multiple-DOF joints
and to develop efficient recursive algorithms.

2.5 Summary 25

The Newton-Euler (NE) equations of motion are popular in dynamic modeling
due to their simplicity, but, they do not give the minimal set as compared to
Euler-Lagrange equations of motion. The velocity transformation matrix is used for
systematic reduction of dimension of the unconstrained NE equations of motion.
The DeNOC matrices are one such decoupled form of the velocity transformation
matrix that gives the minimal set of equations of motion. The DeNOC-based
methodology for serial systems showed several advantages, viz., (1) Analytical
expressions for the elements of the vectors and matrices in the dynamic equations
of motion (Saha 1999a); (2) Analytical decomposition of the GIM (Saha 1997);
(3) Analytical inversion of the inertia matrix which gives deeper insight into
the associated dynamics (Saha 1999b); (4) Uniform development of recursive
inverse and forward dynamics algorithms; and (5) Extendibility to closed-chain
systems (Saha and Schiehlen 2001). Hence, it is used in this book for the dynamic
formulation of robotic systems including legged robots. In this book, the DeNOC
based formulation for serial-chain systems proposed by Saha (1999b) is extended
to dynamic modeling and analysis of more complex tree-type robotic systems
consisting of multiple-DOF joints introducing the concept of kinematic modules
(Shah et al. 2012a). Each kinematic module consists of a set of serially connected
rigid links. In comparison to the work by Saha (1999b), where link-to-link velocity
transformation was used to derive the DeNOC matrices, in this book, general
module-to-module velocity transformation is used, instead, for the derivation of the
DeNOC matrices of a tree-type system. This approach generalizes the concept of
link-to-link transformation, and the work done by Saha (1999b) turns out to be a
special case of the methodology presented here.

Chapter 3
Euler-Angle-Joints (EA]Js)

As frequently noted in the literature on robotics (Sugihara et al. 2002; Kurazume
et al. 2003; Vukobratovic et al. 2007; Kwon and Park 2009) and mechanisms (Duffy
1978; Chaudhary and Saha 2007), a higher Degrees-of-Freedom (DOF) joint, say, a
universal, a cylindrical or a spherical joint, can be represented using a combination
of several intersecting 1-DOF joints. For example, a universal joint also known as
Hooke’s joint is a combination of two revolute joints, the axes of which intersect
at a point, whereas a cylindrical joint is a combination of a revolute joint and
a prismatic joint. Similarly, the kinematic behavior of a spherical joint may be
simulated by the combination of three revolute joints whose axes intersect at a point.
The joint axes can be represented using the popular Denavit and Hartenberg (DH)
parameters (Denavit and Hartenberg 1955). For the spherical joints, an alternative
approach using the Euler angles can also be adopted, as there are three variables. For
spatial rotations, one may also use other minimal set representations like Bryant (or
Cardan) angles, Rodriguez parameters, etc. or non-minimal set representation like
Euler parameters, quaternion, etc. The non-minimal sets are not considered here
due the fact that the dynamic models obtained in this book are desired in minimal
sets. The minimal sets, other than Euler/Bryant angles, are discarded here as they do
not have direct correlation with the axis-wise rotations. It is worth mentioning that
the fundamental difference between the Euler and Bryant angles lies in a fact that
the former represents a sequence of rotations about the same axis separated with
a rotation about a different axis, denoted as a—f—«, whereas the latter represents
the sequence of rotations about three different axes, denoted as a—f—y. They are
also commonly referred to as symmetric and asymmetric sets of Euler angles in the
literature. For convenience, the name Euler angles will be referred to both Euler and
Bryant angles, hereafter.

Euler Angles are defined as rotations about three orthogonal axes, which may
be identified using DH parameters. However, the only difficulty is that, under the
DH parameter scheme the variable rotations always occur about Z axis, whereas
the Euler Angles are defined by rotation about all three axes, i.e., X, Y and Z. In

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 27
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _3,
© Springer Science+Business Media Dordrecht 2013

28 3 Euler-Angle-Joints (EAJs)

this chapter, a method will be presented to correlate these rotations so that one can
take the advantage of the DH notations in defining the Euler angles to simulate
the kinematic behavior of spherical joints. Such correlations are termed as Euler-
Angle-Joints (EAJs) (Shah et al. 2012b). The EAJs have the specific advantage
that they make a unified representation of multiple-DOF joints and also provide
computational efficiency in formulating dynamics algorithms, as highlighted in
Sects. 4.2.1 and 6.3, respectively. Such advantage is not available by following the
Euler Angle representation.

3.1 Euler Angles

The definition of Euler angles is first revisited in this chapter before the Euler-Angle-
Joints are introduced. According to Euler’s rotation theorem (Shabana 2001), any
three-dimensional spatial rotation can be described using three sequential angles of
rotations about three independent axes. These angles of rotation are called Euler
angles. Figure 3.1a—c show the sequence of rotations, (a) by an angle 6, about Zy
axis, (b) by an angle 6, about rotated Yy axis, and (c) by an angle 05 about the
current Zy; axis. The Or-XgrYrZr and Op-XymYmZMm denote the reference frame
and moving frame, respectively. The three angles 01, 0,, and 63 are called the ZYZ
Euler angles. In a similar way, one can define 12 such sets of Euler/Bryant angles
depending on the sequence of axes about which the rotations are carried out. They
are ZYZ, ZXZ,ZXY, ZYX, YXY, YZY, YXZ, YZX, XYX, XZX, XZY, and XYZ.
Out of these twelve Euler angle sets, the ZYZ scheme is widely used in the rotation
representation of a robotic system, whereas the ZXZ scheme is more popular in
formulating problems in multibody dynamics.

Fig. 3.1 ZYZ Euler angles

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6

3.2 Denavit-Hartenberg (DH) Parameters 29

If ZYZ scheme of Euler angles is used, the elementary rotation matrices Qy,
Q.. and Q5 are given by

Co —S6, 0 Co, 0 S6 Ch; —S0; 0
Q=S50 Cco 0[.Qu=| 0 1 0 |.andQs=|S6; C6 0
0 0 1 —S6, 0 Ch, 0 0 1

3.1)

The overall rotation matrix between the frames Or-Xgr YrZr and Op-Xm YMmZMm
can then be obtained by multiplying the elementary rotation matrices, i.e.,
Q=0Q; Q2 Qs. The result is as follows:

C0,CH,CH; —S0,50; —C6,CH,S0; —S0,CO; CO,S6,
Q(E szz): S6,CL,CO; +CO,S0; —S6,CO,S0; +CH,CO; S6,S6,
—S6,C0; S6,565 Co,
(3.2)

In a similar fashion, overall rotation matrices for all other Euler angle sets may
be obtained. They are shown in Table 3.1.

3.2 Denavit-Hartenberg (DH) Parameters

The DH parameters were originally proposed by Denavit and Hartenberg in 1955,
and widely used in robotics for the representation of the configuration of a link with
respect to its previous one connected by a one degree-of-freedom (DOF) revolute or
prismatic joint. Later, Khalil and Kleinfinger (1986) showed that the DH parameters
form a powerful tool for serial robots but lead to ambiguity in the case of closed-
loop and tree-type systems. In order to do away with the ambiguity they presented
a scheme called Modified DH (MDH) parameters by retaining all the benefits of the
original definition. The use of MDH parameters can be found in the work of Craig
(2006).

In this section, the MDH notation, as proposed by Khalil and Kleinfinger (1986)
is presented, and will be used throughout this book. For that, a co-ordinate frame is
attached to each link. The frame O-X;YZ, denoted by Fy, is rigidly attached to
the kth link, as shown in Fig. 3.2. The joint k couples links (k— 1) and k. The axis Z;
represents the kth joint axis. Moreover, the origin of Fy, namely, Oy is located at a
point where the common normal to Z; and Z;; intersects Z;, whereas the common
normal defines the axis X;. Furthermore, the axis Y is such that axes X, Yy, and
Z; form a right-handed triad, i.e., the unit vectors parallel to the axes Xy, Y, and Z;
denoted by iy, ji, and kg, satisfy iy x ji = K;. The co-ordinate frame is referred to as

3 Euler-Angle-Joints (EAJs)

30

(DD +55%sls— S0+ DWW D] DD SIS+ %D DS — 9D
vaND| mUN.U NVA N%| mUN.U m%«b
L DS+ %D s+ D%D— DD D5 90— D% DD+ WS]
= X24Q XZA = 710 ZXA
[0'D +59DIs— Wls 9D —DDIs—] 1§ =D WD DT — DD]
vaN% N.U m.UN% m.UN%| N.U m%«h
L DS+ 55D Wo— Ws—DDD | 510+ DD s DD+ DS
= 1249 AZX = x40 AXA
1D+ IS DS 10— DS [DD DT+ WD SIS+ DD
01§ — 9% DD s+ DWD DIs— DD+ FWIS— LD+ D%
m%NU N%| mUNU] L Nrn m%~0| mUNU]
= X9 AZX = 79 ZAX
2D+ $DIS— D+ DD WIS [s =D DI+ DD Wo—|
DI —DD— s —DDD WD 10 —DDIs— DD+ 8DIs— W'
m%N% mUNrA| NU mUNrA m%m.@ NU
= X2xQ XZX = XX XAX
r 591%) 9 £gCHy— T 39 1%) Xy%) [T
SIS+ 00— DD DS+ WD (10 —DW'IS DD+ tsisls DS
L §'D+ O%ls DIs— DD+ IS | SIS+ %D DT =D DD
= AX2Q) AXZ = Y79 XAZ
B %) £9g £g e T %) £glg £)ig— T
o= s =DV DS+ DD Sls 0D+ DIS— D+ DS
L 'S 1D —=0D2DI§— DD+ DI | 1D DI —EDD— s — DD |
270 ZXZ = 220 ZAZ
XLIJeW uonejoy S9[3uy Jo[ng XLIjew uonejoy S9[3uy I9[ng

So[3uy Io[ny Sulsn seoLeW UOTIRIOY T°€ d[qEL

3.2 Denavit-Hartenberg (DH) Parameters 31

Frame, F,

Fig. 3.2 Frame convention for modified Denavit and Hartenberg (DH) parameters

MDH frame or simply DH frame. Note that the frame attached to the fixed link, i.e.,
00-X0Y0Zy, can be chosen arbitrarily and hence one can choose Z; coincident with
Z;. Once the link frames are established using the above scheme, the position and
the orientation between any two frames, say, F.; and Fy, can be specified using four
parameters known as MDH or DH parameters. As the system consists of 1-DOF
joints only, out of the four DH parameters one is variable whereas the other three
are constant. These parameters are now defined below:
Referring to Fig. 3.2,

o Twist angle (o) is the angle between Z;—; and Z; about X;_;
e Link length (ay) is the distance from Z;—; to Z; along X;—;

» Joint offset (by) is the distance from X;—; to Xy along Z;

» Joint angle (0;) is the angle between X;_; and X; about Z;

Depending on the type of joints, i.e., revolute or prismatic, 8 or by is a variable
quantity. Based on the definition of the above DH parameters, the homogeneous
transformation matrix (Ty) defining the orientation and position of the frame Fy
with respect to frame Fj—; can be obtained as

|:Qk [ar—1 k)i }
T, = 3.3)
07 1

32 3 Euler-Angle-Joints (EAJs)

where the 3 x 3 orientation matrix Qy is defined as

1 0 0 Co, =SS0, 0
Qi = Qx)Qz@) =| 0 Cap —Say SO CO. 0
_0 S(xk COLk 0 0 1
[Co —S0, 0
=| S6Ca; COCar —Sa
| SO Sax COSar Cay (3.4)

In Eq. (3.3), the position vector a;_ i, measured from the origin O_ of the
frame Fi_ to the origin Oy of fame F (Fig. 3.2), in the frame F}_; is given by

aj
[3k—1,k]k_1 = | —bSoy 3.5
by C oy,

Note that, in Egs. (3.4) and (3.5), C(¢) = Cos(®) and S(*) = Sin(e).

3.3 Euler-Angle-Joints (EAJs)

As discussed in Sect. 3.2, DH parameters are widely used for representation of links
connected by 1-DOF joints. Many modern day robotic systems, however, consist
of multiple-DOF joints, e.g., universal and spherical. One approach to model such
multiple-DOF joints is to represent them using intersecting 1-DOF revolute joints.
Similarly, a spherical joint can be modeled using three intersecting 1-DOF revolute
joints axes of which are identified with DH parameters. On the contrary, the Euler
angles that are popular in representing any 3-dimensional spatial rotation can be
employed to model a spherical joint as well.

Since the modeling of a spherical joint can be done using either Euler angles
or three intersecting revolute joint defined with DH parameters, an attempt is
made here to correlate them by introducing a concept of Euler-Angle-Joints (EAJs)
(Shah et al. 2012b). EAJs are three intersecting revolute joints but their axes
are defined using DH parameters such that they provide a rotation equivalent
to the one described by a particular set of Euler angles. The concept is later
adopted for a unified representation of revolute joint based rotations, i.e., revolute,
universal and spherical, and used to develop an efficient fully O(n) recursive
algorithm. A fully recursive algorithm is not possible if the representation of a
spherical joint is done using the definition of Euler angles. This is highlighted in
Sect. 6.1.2.

http://dx.doi.org/10.1007/978-94-007-5006-7_6

3.3 Euler-Angle-Joints (EAJs) 33

Fig. 3.3 A spherical joint Znt
represented by three
intersecting revolute joints M # 1 4R Zr
X X=Z
|3 Yr
Y 4> :

3.3.1 DH Parameterization of Euler Angles

As mentioned earlier, the EAJs are intersecting revolute joints that give Euler angle
rotations. Architecture of an EAJ is shown in Fig. 3.3, where a spherical joint
connects a moving link #M to a reference link #R. The spherical joint is described
by using three intersecting revolute joints, where joint 1 connects real link #R to
an imaginary link #1, whereas joint 2 connects two imaginary links #1 and #2, and
joint 3 connects imaginary link #2 with a real link #M. Two coordinate frames Oy-
XMmYMmZy and Or-XgrYRrZg are rigidly attached to links #M and #R, respectively.
If these frames are denoted as Fy; and Fg, the rotation matrix between these frames
can be obtained by using any of the Euler angle sets defined in Sect. 3.1. If the
ZYZ Euler angle set is used, one obtains the orientation matrix Q given in Eq. (3.2).
Interestingly, the same rotation matrix is obtained by treating the spherical joint as a
combination of three intersecting revolute pairs and by defining their axes using the
DH parameters.

However, it is worth reminding that the definitions of DH parameters include
(1) constant rotation about X axis representing twist angle o, and (2) variable
rotation about Z axis representing joint angle 6. As a result, first step towards the
development of EAJs, i.e., to correlate DH parameters with axes of Euler angle
rotations, is to represent any Euler angle rotation with respect to Z or X axis only.
Since the variable joint rotation in the DH parameter definitions is with respect to
Z axis only, an Euler angle rotation about X or Y axis has to be expressed as a
rotation about Z axis. This can be done by first orienting Z axis parallel to X or Y
axis through a fixed set of rotations, typically, by 90°s, followed by the actual or
variable rotation about the Z axis. The fixed rotations are then reversed. These will
be clear from the following subsection where each elementary rotation about X, Y
and Z axes is expressed as a rotation about Z axis only.

3.3.2 Elementary Rotations

In order to obtain Euler-Angle-Joints (EAJs) corresponding to a particular Euler
angle set, it is necessary that every elementary rotation, say, about X and Y axes, is
finally be considered as rotation about Z axis only. The concept is illustrated below:

34 3 Euler-Angle-Joints (EAJs)

Fig. 3.4 Rotation about Z 7,7

>

axis denoted as Qz)

a b c
z z z
7
= —
O Y, Y, Y, Z,
X X, X
X X, Xi Y 0 X) Y2
Qx(-00) Qzo)

Fig. 3.5 Rotation about Y axis

3.3.2.1 Rotation About Z Axis

Figure 3.4 shows the elementary rotation about Z axis. In DH parameter definition,
a rotation is defined about an axis that is identified as Z axis. The rotation matrix
defining the rotation of frame O’-X'Y’Z’ with respect to frame O-XYZ is denoted
as Q) or Qg for brevity.

3.3.2.2 Rotation About Y Axis

An elementary rotation about Y axis is shown in Fig. 3.5a. As per the DH
nomenclature, a variable rotation has to be about Z axis only. Hence, Z axis of
Fig. 3.5a has to be first brought parallel to Y axis before the desired rotation is
applied. This can be done by rotation of the frame O-XYZ about X axis by —90°
(clockwise rotation is negative), as shown in Fig. 3.5b. The new frame is indicated
with O-X;YZ,. The rotation is indicated with Qx(—9¢). The desired rotation by an
angle 6 is now given about Z; axis as shown in Fig. 3.5¢c, where the corresponding
rotation is indicated by Qz). The new frame is O-X;,Y,Z,. Finally, to take care
of the initial rotation about X axis by —90°, an opposite rotation about X, axis
is applied, which is indicated by Qxo), as shown in Fig. 3.5d. The final frame is
o'-XY'Z.

3.3 Euler-Angle-Joints (EAJs) 35

X,25,Z3 X.25,23.X'

Q90 Qux90) Q290

Fig. 3.6 Rotation about X axis

The resultant of three elementary rotations is the desired rotation about Y axis,
which is given by

Qr =Q-xQyQ+x (3.6)

where for brevity, Qs = Qz(9), Q—x = Qx(—o0), Q+x = Qx (o) are used.

3.3.2.3 Rotation About X Axis

Similar to the rotation about Y axis, rotation about X axis is equivalent to five
elementary rotations shown in Fig. 3.6. They are

. Rotation about Z axis by 90° to reach O-X;Y,Z; (Fig. 3.6b).

. Rotation about X; axis by 90° to reach O-X,Y,Z, (Fig. 3.6¢).

. Rotation about Z, axis by 6 to reach O-X3Y3Z;3 (Fig. 3.6d).

. Rotation about X3 axis by —90° to reach O-X4Y4Z4 (Fig. 3.6¢).

. Rotation about Z, axis by —90° to reach the final orientation, O-X'Y'Z’
(Fig. 3.6f).

[I S OST \ R

The above five rotations can be represented as

Qx = Q+2z0Q+xQyQ-xQ—z 3.7

where Q17 = Qz(o0), Q+x = Qx90), Qs = Qz), Q-x = Qx(—90), and Q7 =
Qz(—90)-

3.3.3 Composite Rotations

Resultant of two elementary rotations, say, first about X followed by about Y,
denoted as a composite rotation XY, can be obtained by using the elementary
rotation representations derived in Sect. 3.3.2. They are shown below:

36 3 Euler-Angle-Joints (EAJs)

a b c d e f
7, %, 23 7,7, . zz Z,2,X'
. » = | [
Y. Z, Y. 2.2y, Y. 2.2, X, o ¥ XX Jo Yy XXXl Y
(6]
XX W X, XLY: Y, X, XY, 7' XY XY.Z, Yo XYool N,
Qx00) Qz-90) Qx00) Qz(-90) Qx00) Qz(-90)

Fig. 3.7 Equivalent transformation

3.3.3.1 Rotation About X and Y Axes

Rotation matrix Qxy due to rotations about X axis followed by about Y axis
can be shown to be a combination of rotation matrices Qx and Qy representing
the elementary rotations about X and Y axes, obtained in Egs. (3.7) and (3.6),
respectively, i.e.,

X Y

Qxr = QxQr = Q+2Q+xQ¢,Q—x Q-7 Q—x Qp, Q+x (3.8)

where Qg, and Qg, represent rotation matrices due to the rotations about X and Y
axes by angles 6 and 6, respectively. Note that in Eq. (3.8), Q_z represents the
rotation matrix due to rotation about the Z axis by —90°. Since DH nomenclature
requires all rotations about Z axis must be variable, such a term in the middle will
not allow one to express the axes of rotations in terms of DH parameters. A close
look into the underlined terms of Eq. (3.8), i.e., Q_yx Q—z Q_x, however reveals
that it is equal to Q—_z Q_x Q—z, as evident from Fig. 3.7. The same can be proven
using matrix representation as well.

For any three sequential rotations of 90° represented by the rotation
matrix Qg(+90) Qp(+£90) Qu(xo0) 18 equal to Qp(+90) Qu(x90) Qp(+90), Where a and
P represent rotation about X, Y or Z axis.

Hence, replacing Q—y Q—z Q_x by Q_z Q_x Q_2, one obtains Eq. (3.8) as

Qxr =Q+2zQ:xQ5 Q-z0Q-x Q-7 Qp, Q4 x (3.9)

In Eq. (3.9), even if Q_z appears in the middle, but it is next to Qp, which
represents a variable rotation about Z axis. The two consecutive rotations about Z
axis is equivalent to one rotation by (0;—90)°. As a result, no difficulty is faced in
defining the DH parameters.

It is worth mentioning here that the rotation matrix Qyy due to the sequence of
rotations about Y axis followed by X axis can be obtained by using the transpose
rule of matrix multiplication, i.e.,

Qrx =Q4y =Q-x Qs Q17 Q+x Q17 Qs, Q—x Q7 (3.10)

3.4 Euler Angles Using Euler-Angle-Joints (EAJs) 37

where Qg, actually represents ng (= Q—p,) because the first joint rotation in com-
posite rotation is denoted with 6. Similarly, Qg, of Eq. (3.10) can be interpreted.
The composite rotation matrix Qyy can also be verified independently using the
expressions given in Egs. (3.6) and (3.7), as done for Qyy in Eq. (3.8).

3.3.3.2 Rotations About Y and Z Axes

Rotation about Y axis followed by a rotation about Z axis can be shown to be a
combination of rotations about Y and Z axes obtained in the Sect. 3.3.2. This is
given by

/—Lf—’z\
Qrz=0QyQz=0Q-xQsQ+x Qy (3.11)

Similar to Qyy in Eq. (3.10), Qzy, can be shown to be equal to

Qz = Qf, = Qs Q-x Qs Q4 x (3.12)

3.3.3.3 Rotations About Z and X Axes

As shown above for XY rotations, Qyz can be obtained as

X z
Qxz=0QxQz=0Q+2z0Q+x Qg Q-xQ-z Qg (3.13)

Again using the transpose rule, one can show

Qz = Qy, = Q4,Q+2Q4+xQs,Q-xQ_7 (3.14)

3.4 Euler Angles Using Euler-Angle-Joints (EAJs)

In this section, it will be shown how the Euler angle sets can be obtained by using
the concept of Euler-Angle-Joints (EAJs) and the elementary rotations explained in
Sects. 3.3.2 and 3.3.3.

3.4.1 ZYZ-EAJs

The rotation matrix for the ZYZ Euler angles set can be obtained as the combination
of the rotation representation about Z and the composite rotation YZ, i.e.,

38 3 Euler-Angle-Joints (EAJs)

Table 3.2 DH parameters o a b 0,0V)

for ZYZ EAJs
1 0 ap 0 01
2 =9 0 0 0,
3 9 0 0 05
JV joint variable
Fig. 3.8 Representation of 7YZ EAJs 7 7
DH frames for ZYZ EAJs oM
#1 Zy
#M 1 #R
X, X\ X X ;R
13 Yr
Z,, Y\ V#2
VA YZ
——
Qzz =QzQrz= Qs Q-xQy, Qtx Qy, (3.15)

In Eq. (3.15), Qg, for k=1, 2, 3, represent the rotation matrices corresponding to
angles 01, 0,, and 03 about Z, Y and Z axes, respectively. Since, the variable rotation
is always abut Z axis, 6k, for k =1, 2, 3, is interpreted as the variable DH parameter
or the joint angle. Moreover, the rotation about X axis, i.e., Q+x, is interpreted as
the rotation due to the twist angle a. Note that, according to the definition of the
DH parameters given in Sect. 3.2, the transformation due to the twist angle precedes
the one due to the joint angle. This is evident from Eq. (3.4). Therefore, the DH
parameters for the ZYZ Euler angles can be extracted from Eq. (3.15) as

* First rotation matrix Qg, (= 1Qg,, 1 being an identity matrix) corresponds to the
rotation &y = 0 about X axis, followed by a rotation of 8 about Z axis.

 The next rotation matrices Q_y and Qg, correspond to the rotation of o = —90°
about X axis, followed by a rotation of 8, about Z axis.

* Finally, the rotation matrices Q4 x and Qy, correspond to a rotation of o3 = 90°
about X axis followed by a rotation of 83 about Z axis.

The DH parameters thus obtained for the ZYZ Euler-Angle-Joints (EAJs) are
shown in Table 3.2.

Now, a spherical joint connecting the moving link #M with the reference link #R
can be represented using the ZYZ EAJs as indicated in Fig. 3.8. Frames Fy,, i.e.,
Om-XmYMZm, and Fg, i.e., Or-XrYRZR, are rigidly attached to the links #M and
#R, respectively. The other frames are assigned in such a manner that they satisfy
the DH parameters specified in Table 3.2. These are explained below:

e For oy =0°, axis Z; is parallel to Zg and it represents the joint axis of revolute
joint 1 connecting the imaginary link #1 to the reference link #R.

3.4 Euler Angles Using Euler-Angle-Joints (EAJs) 39

e For oy = —90°, axis Z; is orthogonal to Z; and it represents the joint axis of the
revolute joint 2 connecting the imaginary link #2 to the imaginary link #1. It is
worth noting that the axis Z; is initially parallel to Yg, as the second Euler angle
rotation is about Y axis.

e For a3 =90°, the third joint axis is orthogonal to Z, and parallel to Zy. It
connects the link #M to the imaginary link #2. The axis Zy; is initially parallel to
the axis Zg as final Euler angle rotation is about Z axis.

The resulting DH frames are shown in Fig. 3.8. With the simultaneous movement
of the three revolute joints, the frame Fy; attached to #M will then change its
orientation with respect to the frame Fy attached to #R. Using the DH parameters in
Table 3.2, the rotation matrices Qy of Eq. (3.4), for k=1, 2, 3, are obtained as

co, —S6, 0 CH —-S6, 0 CO; —S0; 0
Q=] SO, COH 0 |,Q= 0 0 1 |,and Q3 = 0 0 -1
0 0 1 -S6, —CH, 0 S6; CO; 0

(3.16)

where Q; represents the orientation of Frame F, with respect to (w.r.t.) Fg.
Similarly, Q, and Q3 represent the orientations of F, w.r.t. F| and Fy; w.r.t. Fy,
respectively. Successive multiplications of Q;, Q2 and Qj3, i.e., Qzyz = Q1Q2Q3,
will then provide the overall orientation of #M w.r.t. #R. Matrix Qzyy is given by

CO,CH,CH; —SH,S0; —C6,CH,S0;—S6,CO; C6O,S6,
Qzyz = S$S6,CL,CO; +CO;S0; —S0,CH,50; +C0O,CH; S6,56,
—S6,CH; S6,S565 Co,
3.17)

The matrix elements of Q given in Eq. (3.17) are nothing but those appearing
in Eq. (3.2) that was obtained using the ZYZ Euler angle set. This proves that the
three intersecting revolute joints shown in Fig. 3.8 are equivalent to the spherical
joint whose rotations are denoted with ZYZ Euler angles. Hence, the revolute joints
in Fig. 3.8 are termed as ZYZ Euler-Angle-Joints (EAJs). Note that the above
derivations could also be done by combining ZY rotations given by Eq. (3.12),
followed by the rotation about Z axis to be denoted as Qg,, i.e.,

zY z
Qzvz = QzvQz = Qg Q-xQp,Q+x Qq, (3.18)

where Qzyz in Eq. (3.18) is nothing but the one obtained in Eq. (3.15) or Eq. (3.17).
It may also be proved that Qqg, is associative in nature provided the sequence of
rotations is maintained, i.e.,

QotBy = QotBQy = QuQBy (3.19)

40 3 Euler-Angle-Joints (EAJs)

Table 3.3 DH parameter for o a b 6,0V)
ZXZ EAJs
1 0 aq 0 6,49
2 % 0 0 6,
3 -9 0 0 6;—9

JV joint variable

Fig. 3.9 Representation of 7X7Z EAJs 7 7
DH frames for ZXZ EAJs L &M
#l ,
R
#M | | I #R
O X
73 K R
K Y
Xy, X5, Yy #2

3.4.2 ZXZ-EAJs

The rotation matrix for the symmetric ZXZ Euler angles can be obtained as the
combination of rotation about Z and a composite rotation XZ as

z Xz
Qzxz = QzQxz = Qp Q+zQ+xQp,Q-xQ-zQp, (3.20)

Once again, in Eq. (3.20), Q+x is the rotation matrix corresponding to the twist
angle, and Qg, and Q47 correspond to the joint angles. Based on Eq. (3.20), the
DH parameters are shown in Table 3.3.

Like the previous section, one can relate the rotation matrix by using ZXZ Euler
angles as a combination of three intersecting revolute joints. The representations of
DH frames, however, differ from what has been done for ZYZ EAJs. Assignment
of the DH frames for the three intersecting revolute joints representing ZXZ EAJs
is shown in Fig. 3.9.

The corresponding rotation matrices between F; and Fg, F, and F;, and Fy; and
F, are given below:

-S6; —C6; 0 Cct, —S6, 0 S0 C6H; 0
Qi=| CH -S6; 0|, Q= 0 0 -1 |,andQ3= 0 0 1
0 0 1 S6, C#H, 0 Co; —S03 0

The overall rotation matrix, Qzxz, between the frames Fy; and Fy is then given by

—S60,C0,80; + CH,CH; —S6,CH,CH; —CH,SH; S6,56,
QZXZ: C91C92S93+S91C93 C91C92C93—591S93 —C91S92
S92593 592C93 C92
(3.22)

3.4 Euler Angles Using Euler-Angle-Joints (EAJs) 41

Table 3.4 DH parameters

for ZXY EAJs Ok ag by 0, V)
1 0 a 0 6,+9
2 9 0 0 6, —90
3 -9 0 0 63 —90
4 9% 0 0 0 (Constant)

JV joint variable

Here too, it can be seen that the orientation matrix Qzxz of Eq. (3.22) is same as
that of the ZXZ Euler angles set given in Table 3.1.

3.4.3 ZXY-EAJs

In the previous subsections, ZYZ and ZXZ are referred to as symmetric Euler angle
sets. In order to show how EAJs evolve for asymmetric Euler angle or Bryant
(Cardan) angle set, the ZXY set is considered next in which the third rotation is
not about Z. Similar to the previous subsections rotation matrix for the ZXY Euler
angles can also be obtained as a combination of the rotation matrix Qz and the
composite rotation matrix Qyy as in Eq. (3.9). Hence

VA XY

——
Quy =QzQxy = Qo Q+20Q+xQp,0-20Q-xQ-2Qp,Q+x (3.23)

The above equation forms the basis for the definition of the DH parameters for
the ZXY EAJs, which are extracted from Eq. (3.23) as

 The first two terms Qyp, (= 1Qy,) and Q. correspond to the twist angle o; = 0°
and the net joint angle of (6 + 90°).

* Next, three terms Q4 x, Qp, and Q_z correspond to the twist angle o, =90°,
and the net joint angle of (6, — 90°), respectively.

o The terms Q_x, Q—_z and Qy, correspond to twist angle o3 = —90° and the net
joint angle of (63 — 90°), respectively.

* Finally, a constant rotation matrix Q4 x remains. This necessitates an additional
set of DH parameters. It is worth mentioning here that the system under study
has three joints and 3-DOF. As a result, three sets of DH parameters should
be sufficient for defining its configuration. However while obtaining the DH
parameters for ZXY Euler angle the term Q4 y is inevitable. It corresponds to
a fourth set of all constant DH parameters, namely, as = 90°, 84 = 0°. Presence
of a constant rotation matrix Q4 y is the result of the final rotation of the Euler
angles about Y axis. This is an important observation.

The DH parameters for ZXY Euler angles are now shown in Table 3.4. Based on
the DH parameters obtained in Table 3.4, the ZXY EAlJs are represented in Fig. 3.10,
for which the DH frames are assigned using the following rules:

42 3 Euler-Angle-Joints (EAJs)

Fig. 3.10 Representation of
DH frames for ZXY EAJs

e For oy =0°, axis Z; is parallel to Zg and it represents the joint axis of revolute
joint 1 connecting the imaginary link #1 to the reference link #R. Moreover, for
the joint angle (6, + 90°), X; is perpendicular to Xy initially.

* For ap =90°, axis Z, is perpendicular to Z; and it represents the joint axis of
revolute joint 2 connecting the imaginary link #2 to the imaginary link #1. Once
again, X, is perpendicular to X; for initial joint angle of (6, — 90°). It is worth
noting that axis Z, in its initial configuration is parallel to Xy as the second Euler
angle rotation is about X axis.

e For a3 = —90°, the third joint axis is perpendicular to Z,. It is important to note
that the third frame is attached to the moving link #M, however Zy; cannot be
chosen as the third joint axis, as X;||Zy, which violates the definition of DH
parameters. As a result, an intermediate frame On-X'MY'mMZ'Mm was assigned
whose 7'\ axis is perpendicular to Z, and X; both. Axis Z/y is parallel to Yy in
the initial configuration. Both the frames Fy; and Fy are attached to the moving
link #M and have constant rotation between them.

 Finally, for a4 =90°, i.e., corresponding to Q4x, the location of frame Oy-
XmYmZy is obtained by 90° rotation of the frame Op-X'vY'MZ'm about X'y

Additional constant rotation matrix at the end, i.e., Q4x, may be interpreted as
the rotation required to make the DH frame Oy-X'vY'MZ v parallel to the moving
frame Op-XmYMmZym in order to obtain the rotation matrix same as ZXY Euler
angles. The above DH parameters are then used to obtain rotation matrices Q;, Q»,
Q3 and Q. x representing the rotations between the frames Fr and Fy, F| and F»,
and F, and FY;, and Fy; and Fy, respectively, as

[[—S6, —C6, 0 S0, C6, 0
Q1 = C@l —S@l 0 ,QQE 0 0 -1 B
0 0 1 —C6, S6, 0
[S6; C6; 0 10 0
Q3E 0 0 1 ,andQ+XE 00-1
_C93 —5930 010 (324)

The overall rotation matrix between Fr and F) is obtained from the above
successive frame rotations as

3.4 Euler Angles Using Euler-Angle-Joints (EAJs) 43

Qzy = Q1Q2Q3Q+x

—856,56,56; +C6,CH; —S0,CH, S6,56,CO; +CH,S0;
= CO0,S6,50; 4+ S0,CH; CO,CH, —COH,;S6,CO; + S6,S50;
—C6,506; S6, C0,C0,
(3.25)

The matrix expression of Qzxy in Eq. (3.25) is same as the one corresponding
to ZXY Euler angles shown in Table 3.1. Interestingly, it may be concluded
that one always encounters an additional constant rotation matrix Q4x when DH
parameterization of the Euler Angles is done with final rotation about Y, e.g., XZY,
YXY, etc.

3.4.4 XYX-EAJs

The existence of constant rotation matrix for the ZXY EAJs, as shown in Eq.
(3.25), leads to the exploration of how the EAJs evolve when the initial and/or final
rotation is given about the X axis. Hence, the XYX Euler angles are considered next.
Rotation matrix for the XYX Euler angles is written as a combination of rotation
matrix Qx and composite rotation matrix Qyy as obtained in Egs. (3.7) and (3.10),
respectively, i.e.,

X YX

Qxrx = QxQrx = Q+2Q+xQ9,Q-x Q-2 Q-xQ4,Q+2zQ+xQ+2Qs,Q-x Q-7
(3.26)

where the underlined terms Q_x Q—z Q—_x can be replaced by Q-7 Q_x Q—~,

using the property shown in Fig. 3.7. As a result, Eq. (3.26) is rewritten as

Qxrx = Q+2zQ+xQ0Q-zQ-xQ-7Qy,Q+7z0Q+xQ+2Qp,Q-xQ-z (3.27)

Simplifying further, the terms Q_z Qp,Q+z may be clubbed to result in the
rotation matrix as Qp, for a net rotation of 6, about Z axis. Thus Qxyx is given
by

Qxrx = Q12zQ+xQ6Q-2Q-xQ6,Q4+xQ+7Q6,Q-xQ_2z (3.28)

The DH parameters for the XYX EAJs are then extracted with the help of
Eq. (3.28),1i.e.,

e The first term Q4+ z(=1Q42, 1 being an identity matrix) corresponds to the twist
angle g = 0° and the joint angle 6y = 90°.

44 3 Euler-Angle-Joints (EAJs)

Table 3.5 DH parameters o a b 6,0V)

for XYX EAJs
0 0o 0 0 90 (Constant)
1 9 0 by 60;—90
2 -9 0 0 0,
3 9 0 0 05 +90
4 -9 0 0 —90 (Constant)
JV joint variable
Fig. 3.11 Representation of XYXEAJs Zy,

DH frames for XYX EAJs

e The terms Q4x, Qp,, and Q_z are corresponding to twist angle oy =90° and
net joint angle of (6; —90°), respectively.

* Next, the terms Q_x and Qy, correspond to twist angle o = —90° and joint angle
of 92.

* Subsequently, the terms Q4 x, Q+z and Qp, correspond to twist angle a3 = 90°
and net joint angle of (63 + 90), respectively.

 Finally, the constant terms Q_x and Q_ correspond to twist angle gy = —90°
and joint angle of 64 = —90°.

It is worth noting here that while constructing XYX EAlJs, the constant orien-
tation terms Q4 in the beginning and Q_y Q- at the end are inevitable. The
resulting DH parameters for the XYX EAJs are given in Table 3.5. This results into
two additional constant set of DH parameters in the beginning and at the end as may
be seen in Table 3.5.

Like any other Euler angle sets, shown earlier, Qxyx can also be obtained by
XY and X rotations, respectively. The resulting XYX EAJs are shown in Fig. 3.11,
where the DH frames are assigned using the following rules:

e For the constant terms oo =0° and 6y=90° ie., 1Qtz, the DH frame
O’R-X'rRY'RZ'R is obtained from frame Or-Xgr YrZR by rotating Or-Xg YrZr by
90° about Zg. Both the frames are rigidly attached to the reference link #R.

e For a1 =90°, axis Z; is perpendicular to Z'g and it represents the joint axis
of revolute joint 1 connecting the imaginary link #1 to the reference link #R.
Moreover, for the joint angle (6, —90°), X is perpendicular to X' initially.

* For ay = —90°, axis Z; is perpendicular to Z; and it represents the joint axis of
revolute joint 2 connecting the imaginary link #2 to the imaginary link #1. It is
worth noting that axis Z, in initial configuration is parallel to Yr as second Euler
angle rotation is about Y axis.

3.4 Euler Angles Using Euler-Angle-Joints (EAJs) 45

e For a3 =90° and the net joint angle of (634 90°), the third joint axis is
perpendicular to Z,. Third frame is attached to the moving link #M, however,
7\ is not the obvious choice for the third joint axis as X;||Zy, which violates
the definition of the DH notations. Hence, frame Oy-X'vY'MZ ' is assigned
such that Z/'y; L(Z, and X3) and obviously axis Z'y; is parallel to Xy in the initial
configuration.

e Finally, og =—90° and 64 = —90°, i.e., the result of constant rotation matrix
Q_xQ-_z, give constant orientation of frame On-XymYwmZMm, With respect to
OMm-X'MY'MZ . Both the frames are attached to the moving link #M.

Using the DH parameters in Table 3.5, the rotation matrices Q4 7, Q;, Qz, Qs,
and Q_yx representing rotations between frames Fg and F 1/27 F 1/2 and F, F| and F>,
F, and Fy;, and F{; and Fy, respectively, are obtained using Eq. (3.4) as

0-10 S0, C6; 0 co, —-S6, 0
Qiz=|[1 0 0|,Q= 0 0 —-11],Q= 0 o 1/,
0 0 1 —-C6; S6; 0 -S6, —C6H, 0
-S6; —C6O; 0 010
Q; = 0 0 -11.Qxz=QxQz=|001
Co; —S6; 0 100
(3.29)

The overall rotation matrix between the frames Fr and Fy is obtained as

Qxrx = Q+2Q1Q2Q:Q-x~
Cco, S6,S65 S6,C0s
= §6,56, —-S6,C6,S0;+CO,CH; —S0,CH,CH;—CH,S0,
—CH6;5S0, CH,CH,S50;+ S6,C0Os CO,CO,CH; — S6,S6,
(3.30)

where Qxyx represents the XYX Euler angles. Interestingly enough, EAJs for the
Euler angle sets with first rotation about X, e.g., XYX, XYZ, XZY, require constant
orientation of Q47 in the beginning, whereas the one with third rotation about X,
e.g., XYX, ZYX, YZX, require constant orientation of Q_xz at the end.

3.4.5 Other-EAJs

Similarly, Euler-Angle-Joints (EAJs) (Shah et al. 2012b) for all 12 Euler angle sets
were obtained. Table 3.6 shows the EAJs and their overall rotation matrices Qqgy,

3 Euler-Angle-Joints (EAJs)

46

mUNU N% m%mb|
Ig+ 90— DD DIg+ WD = 0 06 ¥
mrwA ﬁQ + mUN%_vA N.Uﬁ%| m.U ﬁQ + mrwAN%_rwA| 06 — mQ 06— ¢
X+DDWDD = 42D 06— %9 06 T
06+ '6 0 I AXZ €
N.U vaN% mUNvA|
Qs DD+ EDIg— €O+ DDs | =
W DIe—8DH— 8Ig—-9DD1D €9 06 ¢
OO0 = Z2Y ‘0 06— C
'o 0 I ZAZ 4
Lo) s fges
Wo— g =99 DIg+EDD =
NVA ﬁﬂ m% _.U - mUN.U ~%| m.U ﬁQ + m%«b ~%| 06— mQ 06— ¢
z
f00'0 = 220 0 06 T
"2 stva 7xz 06+'6 0 I ZXZ I
SVH 2y jo siojowered H(9y SuIsn XLIjBW UONRIOY SVH JuseAnbyg 19 RF) J[3uy 1oy

s1ojowrered HQ

sutof-o[Suy-1[ng 9°¢ AqeL

3.4 Euler Angles Using Euler-Angle-Joints (EAJs)

(panunuod)
DD SIS+ DD DS
N%| mUNU m%NU
NUW@ m.mLU|mUNM;% mU_UnT m.m‘Nrm;.mA Om|m® 06— €
i 06+ %9 06 z
0°0'0 = %0 06+ '6 06— 1 ZXA
mU_UnT m%~0~%| N.mirn mMLU|mU~U~%|
m%N% NU mUN% = 0 06 14
DIg+ DD Wo— g —DDD ‘0 06— €
C
0 06 C
XITOMONOﬁO = 4240
'0 06— [AZX
m.mirn — mUmU_U NMLU mU~% — m%mU~U|
mUNvA| NU vaN% = .O 06 14
m.mLUITmUNU_% Nrm;% mU~U+m%NU~%| O®|w% 06— €
Y 06 C
X+OmONO~O = AXLQ)
06+ '9 06— I AXA
mUNU mrnmb N%|
1D —9%ls DD+ 85l DIg | = 06— 06— ¥
m.mirn + mUN% _U mU~% - m%m.@ _U N,U _U 06 + mw 06 ¢
ZX—0ODD = MY 06+ %9 06— T
'g 0 I XAZ

3 Euler-Angle-Joints (EAJs)

48

mUﬁU — m%~0~%| mrn ﬁU + mUNUﬁmA N.mirn O@| 06— 14
m.Uﬁﬂ — MWNU~U| mvi% — m.UNUﬁQ NVLU = w% 06 €
m%N% mUN%| NU M% 06— C
. 0 06 1
NXIOMONO~ON+O = XZXQ) 06 0 0 X7X o1
mVLVA — mUN.UﬁQ m.Uﬁﬂ + m%NU~U NVLU| 06— 06— 14
m.mLU|mUNU~MA| mUﬁUAT m%~0~%| N.mirn = OmnTm% 06 €
m.UN% m%«h NU NQ 06— C
) 06—'0 06 I
ZX—DfDW0'0Z10 = XD Wz SIVAXAX 06 0 0 XAX 6
Iy 4 €giglg— €9l 4 €9tglg THylg— WX X 7
51— Lo | = > R 06— 06— ¥
DIg+ 5D Wig+DED— DD e g 9 06 ¢
¥ u# | | | w#
ZX—DOWDID) = XD iz # 06+ %9 06 T
NZSZSIvA XZA 'o 06— 1 XZA 8
SfVH 21 Jo s1o1owered HA 2y m:mm: X1neuw uonejoy SIVH HQQRZBUM «% 10 oﬁw:/x oy

s1ojowered HQ

(PoNUNUOd) 9°¢ AQEL

49

3.4 Euler Angles Using Euler-Angle-Joints (EAJs)

DD+ 5gls DS

m.Uﬁﬂ — vaN%_.U
vaNU NVA|
DD DS +ED
NU~W| mUﬂU + mhmvi%|
Nrn mrANU|

mrm;U — mUm.erA

DD SIS+ DD

0D
OO0 ZTD

mrm;% + mUNM;U|
€10+ 0%'s
FoLe)

mONOAON;vO

AZX, O

ZAX, O

)> .NN
YATIX 1%
X T X XQN
W_Nf_N # y Ve W
SIVd ZAX

z

£g
06—°%0
06—"0
06

06
06—
06—
06

06
06—
06

S — AN on <t

S — AN on

AZX

ZAX

cl

I

50 3 Euler-Angle-Joints (EAJs)

Table 3.7 Required constant matrix multiplication/Additional set of DH parameter for the EAJs
(See last column of Table 3.6)

Constant matrix multiplication/Additional set of DH parameter

Required at Required at
Not required the beginning Required at the end both the ends
EAJs with three rotations 7ZYX
(Euler angles) Y7 YZX XYX
7ZXZ XYZ ZXY X7ZX
YXZ YXY XZY
YZY

for a, B, y =X, Y, Z, corresponding to all the 12 Euler angles sets. The EAJs not
only establish correlation between the DH parameters and Euler angles but also
facilitates the systematic use of the intersecting revolute joints to describe the Euler
Angle rotations even though the configurations of the links are defined using the DH
parameters.

While developing EAJs from Euler angles it was seen that the definition of some
of the EAJs required additional constant set of DH parameters other than the three
regular sets corresponding to three physical revolute joints. As a result, a constant
rotation matrix is required either in the beginning or at the end. Interestingly, the
existence of constant rotation matrix depends on the axis about which the Euler
angle is defined. This is summarized below:

1. EAJs having first rotation about Z or Y axis do not require any fixed rotation
matrix in the beginning.

2. If the first rotation is about X axis, a fixed rotation matrix of Q7 in the beginning
is required to achieve EAJs.

3. The EAJs having third rotation about Z axis do not require any fixed rotation at
the end.

4. If the third rotation is about Y or X axis, it requires a fixed rotation matrix of
Q4 x or Q_yz at the end.

Table 3.7 summarize of the requirement of constant matrix multiplication in the
beginning or at the end or the both.

Table 3.7 provides an interesting conclusion. The symmetric EAJs ZYZ and
ZXZ, and asymmetric EAJs YXZ are free from the requirement of multiplication
of any constant rotation matrix. More specifically, only three sets of DH parameters
are required to define these EAJs. Hence, one should use ZYZ and ZXZ EAlJs
if symmetric set is chosen for representing a three-dimensional rotation. On the
other hand, YXZ EAJs is preferred if asymmetric set is chosen for the rotation
representation of a 3-DOF joints.

3.6 Singularity in EAJs 51

Fig. 3.12 Representation of
a spherical joint using YXZ

EAJs 1
#(k-1)
X
= / O/{-l
Yk-]

3.5 Representation of a Spherical Joint Using EAJs

The spherical joint shown in Fig 3.3 connects the reference link #R with the moving
link #M. In practice, a robotic system may have serial- or tree-type architecture
with several multiple-DOF joints. This calls for a systematic numbering scheme
for intersecting revolute joints and the associated imaginary or physical links. So,
the use of Euler-Angle-Joints (EAJs) and the associated numbering scheme are
presented here for the systematic representation of a spherical joint. For example,
Fig. 3.12 shows a link, #(k — 1), coupled to its neighboring link, #k, by a spherical
joint, k, which has three rotational DOF. In order to represent the spherical joint
using YXZ EAlJs, links #(k— 1) and #k are considered to be connected by three
orthogonally placed revolute joints, denoted as k, k», and k3, connecting two virtual
links (#k; and #k;), each of zero length and mass. The link #k3 is the actual physical
link #k, which is attached to the third revolute joint, i.e., k3. The corresponding
frame assignment using the DH notation is shown in Fig. 3.12.

The YXZ scheme of EAJs is chosen and will be used throughout this book
because (1) it does not require any fixed rotation at the beginning or at the end,
and (2) unlike ZYZ scheme of EAJs, it does not lead to a singularity in zero-
configuration. Zero-configuration is defined here as the one where all the joint
angles are set to zeros.

3.6 Singularity in EAJs

Any three-parameter description of rotations including the Euler angles suffers from
singularity. Singularity is encountered in EAJs when two joint axes become parallel.
This phenomenon is also known as gimbal lock (Wittenburg 2008). All symmetric
EAJs have zero-configurations as singular whereas all asymmetric EAJs are singular
for 6, = 90. Discussion on the singularity of EAJs is beyond of the scope of this
book, hence, no further discussion on how to avoid them is provided in this chapter.
One may, however, be referred to Shuster and Oh (1981) and Singla et al. (2004)
for the singularity avoidance algorithm. In reality, most of the physical joints have
restricted motion, and hence, areas of gimbal lock stay outside the domain of the

52 3 Euler-Angle-Joints (EAJs)

Fig. 3.13 EAIJs and singularity. (a) A constrained spherical joint. (b) Use of ZYZ EAJs (Singular
configuration). (¢) Use of YXZ EAJs (Nonsingular configuration)

movement of joints. Typically, a spherical joint used in practice is constrained to
move as shown in Fig. 3.13a. In such a situation, wise selection of EAJs helps in
avoiding the singular configuration. For example, if one uses ZYZ EAJs as shown in
Fig. 3.13b, singularity is encountered in the zero-configuration. This happens when
axis of joint 1 coincides with that of joint 3. On the contrary, use of YXZ EAlJs,
as shown in Fig. 3.13c, has no singularity corresponding to the zero-configuration.
Singularity occurs when joint 2 is rotated by 90° about X axis. However, such a
configuration is never encountered due to the constrained movement of the spherical
joint and hence singularity is avoided.

3.7 Multiple-DOF Joints

The concept of EAJs can conveniently be used for the representation of a universal
joint by using the composite rotations as discussed in Sect. 3.3.3. Table 3.8 shows
EAlJs for 2-DOF rotations by universal joints. Such EAJs representation will allow
one to treat the velocity transformation relation in a similar way to that of a revolute
joint as given by Eq. (4.11). Thus, the concept of EAJs allows one to treat any
rotational joint, be it 1-, 2- or 3-DOF, in a unified manner. This will be more clear
in Chap. 4, where the kinematics is presented for a system with multiple-DOF
joints. Besides, such relations lead to fully recursive O(n) dynamics algorithms,
as highlighted in Sect. 6.1, and is not possible with the original definition of the
Euler angles. Moreover, it is also shown in Chap. 6 that by careful treatment of zero
lengths and masses, the most efficient algorithms can be obtained for a tree-type
system consisting of multiple-DOF joints.

3.8 Summary

In this chapter, Euler angles and modified DH parameters were first revisited. The
concept of the Euler-Angle-Joints (EAJs) was then introduced. Euler-angle-joints
(EAJs) are essentially orthogonally intersecting revolute joints so connected by

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6

53

(panunuod)
Xz
Z
DD wH §— { 06— 06— €
W— D 0 |=Z0DD=MD y W i 06 + %9 06 z
Dls wis D "z SIVE XA 06+ '9 06— I XA €
%) 0 g— 0 06 €
g 1y Hlg | = X+HOQOID = 42D 29 06— z
iy Ig— 9Hly g 0 1 AZ (4
) 5 0 omml 06— €
wwih— 9Ol g = NX\ONO_O = XNO 0 06 4
wls D= D nz iz SIVAXZ 06+ '6 0 1 XZ 1
S[vH oy jo sxojowered H(oy Suisn XLjew UONRIOY S[vHd juoreambyg 19 1o J[3uy 19y

s1ojowrered HJ

3.8 Summary

jurof [esoAmun e Jo uonejudsaidor 10y syutof-o[Suy-Iong §°¢ IqEL

3 Euler-Angle-Joints (EAJs)

54

D Ds @iy

06— %0 06— [

Ig— ly Wiy | = QPIDZ+D = 2O g 06 I
0 %= O 06 0 0 ZX 9

[2a)! 1 olny—

. 2 06—°9 06— C

s 0 06— 19 06 I
X+9OI0Z 0= XD 06 0 0 AX S

_U Nrn ~MA NU ~%|

0 D T [=D0=%0 00 ¢

Is @Wlo— 9O 4 SIVAZA g 06— ! ZA 14
S[vH 9y jo sxorewrered H(q oy Suisn XLIjeUW UOTIRIOY S[vH Jusreambyg 19 1o J[8uy 1o[nyg

s1orowrered H(

(Ponunuoo) §'¢ AqEL

3.8 Summary 55

imaginary links with zero lengths and masses that they represent a particular set
of Euler angles. These EAJs are represented using the well-known DH parameters.
Different evolutions of EAJs corresponding to different rotation sequences are also
shown. The proposed EAJs are used in representing multiple-DOF joints of several
robotic systems studied in this book.

Chapter 4
Kinematics of Tree-Type Robotic Systems

Kinematic modeling of a tree-type robotic system is presented in this chapter. In
order to obtain kinematic constraints, a tree-type topology is first divided into a set
of modules. The kinematic constraints are then obtained between these modules
by introducing the concepts of module-twist, module-joint-rate, etc. This helps
in obtaining the generic form of the Decoupled Natural Orthogonal Complement
(DeNOC) matrices for a tree-type system with the help of module-to-module
velocity transformations. Using the present derivation, link-to-link velocity trans-
formation (Saha 1999b) turns out to be a special case of the module-to-module
velocity transformation (Shah et al. 2012a) presented in this chapter.

4.1 Kinematic Modules

Conventionally, a tree-type system is considered to have a set of links or bodies
connected by kinematic pairs as shown in Fig. 4.1a. However, here a more generic
approach is introduced, where the tree-type architecture is considered to have
a set of kinematic modules (Shah et al. 2012a). Each module is defined as a
set of serially connected links. This is shown in Fig. 4.1b, where the kinematic
modules are depicted by dotted boundaries. For the purpose of analysis, the tree-type
system is first modularized before its kinematic constraints are obtained. In order to
modularize a tree-type system, a link in the tree-type system is first identified as
its base, for example, link #0 in Fig. 4.1b, which may be fixed or floating. This is
referred to as module Mj. Once the base module is established, the system is then
modularized outward such that each module

1. contains serially connected links only;
2. emerges from the last link of its parent module.

The first condition defines a module while the second one defines its connectivity
with the adjoining modules. The resulting modules are indicated with M;, M5, etc.

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 57
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _4,
© Springer Science+Business Media Dordrecht 2013

58 4 Kinematics of Tree-Type Robotic Systems

A kinematic
module

Fig. 4.1 Tree-type architectures (a) Conventional (b) Multi-modular

It is worth noting that any tree-type system can be modularized such that it follows
the above two conditions. For a given tree-type system, however, there may be
several module architectures which obey the above conditions. This is evident from
Fig. 4.2a, b which represent two different module architectures of the same tree-
type system shown in Fig. 4.1a. Moreover, if we consider each link in the tree-type
system as one module then the resultant module architecture will follow the above
two modularization conditions. As a result, Fig. 4.1a turns out to be a special case
of the proposed architecture in Fig. 4.1b. Figure 4.2c shows another arbitrary way
of modularization that satisfies only the first modularization condition, i.e., each
module is a serial-chain, but does not satisfy the second one as modules M, and M3
do not emanate from the last link of their parent module M. Such modularization is
not advisable as one has to keep track of the links wherefrom the modules M, and M3
emanate, which is essential to compute the velocities and accelerations of the links
of those modules. The tracking index of parent bodies will cause additional burden
on the computational resources, thereby, slowing down the analysis or simulation
speed.

Referring to Fig. 4.1b, it is assumed that each module, other than the base, is a
child module (M;) that emerges from its parent module (Mg). Obviously the child
module bears a higher module number than its parent, i.e., i > 8. The links inside the
ith module M; are denoted as #1/, ..., #k', ..., #n', where the superscript i signifies
the module number and 7 represents the total number of links in the ith module.
Moreover, the joints are denoted as 1/, ..., k', ..., i, whereas the joint variables

4.1 Kinematic Modules 59

Fig. 4.2 Different module architectures for the tree-type system shown in Fig 4.1a

associated with joint k' is denoted as &;. As a result, total number of joint variables
in the ith module, denoted as ', is given by

ni = €k (4.1)

Total number of modules excluding the base module M is denoted as s, whereas
total number of links in the s modules is denoted as 1. Also, the total number of
joint variables in s modules is n. Next, the kinematic constraints at the velocity level
are derived amongst the links of a module.

60 4 Kinematics of Tree-Type Robotic Systems
4.2 Intra-modular Velocity Constraints

As mentioned in the previous section, module i, for i=1, ..., s, in a tree-type
system contains only serially connected links. Let us consider two serially connected
links in the ith module, as shown in Fig. 4.3. The kth link, denoted as #k (or #'),
is connected to the #(k — 1)th link, i.e., #(k — 1), by a 1-DOF revolute or prismatic
joint k (or k). The velocity constraints are then written in terms of the twist of these
links. The 6-dimensional vector of twist associated with the angular velocity, wy,
and linear velocity of the origin of link, 0y, of #k, is defined as t; = [(o,f (')Z]T.

The origin of the kth link is defined using the Denavit-Hartenberg (DH)
parameters described in Sect. 3.2, and shown in Fig. 4.3 by point Oy. This is chosen
to simplify some of the calculations during dynamic analyses. Next, the twist of #k,
tr, can be written in terms of the twist of #(k— 1), t;—;, as

te = Aps_itios + pibi (4.2)

In Eq. (4.2), Oy is the time rate of change of angular or translational displace-
ment of the kth joint depending on the type of joint, i.e., revolute or prismatic,
respectively. The matrix Ay x—; is the 6 x 6 twist-propagation matrix, and pi is the
6-dimensional motion-propagation vector. They are given by

Apk—1 = [1 o } and py = [Z‘} (for revolute)
’ 4.3)

= [0 :| (for prismatic)
€k

where ay;—; X 1 is the 3 x3 cross-product tensor associated with the vector

T .
arj—1(= —ag—1x = [—ar biSay —brCay]) which when operates on any 3-
dimensional Cartesian vector, X, results in a cross-product vector, ax x—; X X. The
tensor ay x—; x 1 has the following representation:

O;: Origin of the ™ link

Fig. 4.3 The kth and
(k— 1)th links coupled by
joint k

http://dx.doi.org/10.1007/978-94-007-5006-7_3

4.2 Intra-modular Velocity Constraints 61

0 b Coy b Say
a1 x1=|—-bCor 0 ak 4.4)
—bSa, —ay 0

In Eq. (4.3), e is the unit vector along the axis of rotation or translation of the
kth joint. The notations ‘O’, ‘1’ and ‘0’ in Eq. (4.3) represent null matrix, identity
matrix and null vector of compatible dimensions, respectively. The matrix Ay z—
and vector py, in Eq. (4.3), have the following physical interpretations:

e Matrix Ay x—; transforms the twist or velocities of the #(k— 1) to the twist of
#k as if they are rigidly attached and therefore referred to as “twist propagation
matrix”, which has the following properties

Apj—iAk—1k— = Ark—; Axx =1 and A , = Ar_ix 4.5)

e Vector p; contributes to the additional motion due to joint k. Hence, it is named
as “‘joint-motion propagation vector.”

Next, the vectors of generalized twist and the generalized independent joint-rates
for the n-coupled links of a serial module are defined as

t= [tlT---t,f---t,ﬂT, and § = [él---ék---é,,]T (4.6)

where t and q are the 61- and n-dimensional vectors, respectively. Substituting
Eq. (4.2) into Eq. (4.6),fork=1, ..., n, the expression for the generalized twist of
a serial module, t, is obtained as

t = Nq, where N = N;Ny, 4.7

In Eq. (4.7), 61 x 61 matrix N; and 61 X n matrix N, are given by

1 (0] e 0] P 0's
A2,1 - 1 .
N, = . Aot . O |,andNy = Px
LAy Appr 1 0's Py
(4.8)

The matrices N; and N are referred here as the Decoupled Natural Orthogonal
Complement (DeNOC) matrices of the serial-module of a tree-type system, which
are nothing but those reported by Saha (1997) for a serial robot. Now, the velocity
constraints for the module M), consisting of the fixed or floating-base #0 only, are
derived. The twist of #0 can be expressed as

to = Poqo if the base is floating

4.9)
=0 if the base is fixed

62 4 Kinematics of Tree-Type Robotic Systems

where the 6 x 6 matrix Py and the 6-dimensional vector ¢y have the following

representations:
Lo O) 0o
dgo = 4.1
[0 1 } and qo [60} (4.10)

In Eq. (4.10), éo, Ly and ¢ are the time-rates of the independent rotation co-
ordinates, the corresponding transformation matrix, and the linear velocity vector,
respectively. Vector 0, contains the time-rates of Euler angles if the Euler angles are
used to define the rotation of the floating-base in the three-dimensional Cartesian
space. The dimensions of Ly, and 0o change if the rotation is represented, say, by
using Euler parameters. For planar rotations, the expression greatly simplifies, i.e.,
Ly and éo both become scalar quantities. More specifically, Ly is a scalar one, i.e., 1,
whereas scalar 0 is the rotation about the axis perpendicular to the plane of rotation.

P

4.2.1 Presence of Multiple-DOF Joints

The DeNOC matrices for a serial module obtained in Eq. (4.8) pertain to a system
with 1-DOF joints only. However, a robotic system, e.g., a humanoid or quadruped,
may contain multiple-Degrees-of-Freedom (multiple-DOF) joints, say a universal
or a spherical one. One way of treating multiple-DOF joints is to treat them
as a combination of several one-DOF joints connected by links of zero length
and mass as shown by Duffy (1978), and Chaudhary and Saha (2007). Such
consideration, however, increases unnecessary computations in the kinematic and
dynamic algorithms, as zero link lengths and masses will not yield any non-zero
results when operated on other variable. Therefore alternatively, Euler angles or
Euler parameters are commonly used to represent the three-dimensional rotations
due to the presence of, say, a spherical joint. Such representation, however, do
not lead to unified representation of multiple-DOF joints. Moreover, one cannot
avoid the inversion of 3 x 3 matrices in the recursive forward dynamics algorithm
as pointed in Sect. 6.1.2. On the contrary, Euler-Angle-Joints (EAJs) introduced in
Chap. 3 can be used, as this will avoid the above drawbacks present in the Euler
angle representation. The EAJs can be used for unified representation of a generic
multiple-DOF joint with the significant simplification in dynamics algorithms (Shah
et al. 2009). The general expressions for the velocity constraints associated with the
links connected by a multiple-DOF joint, Fig. 4.4, can then be given by

forj=1:e t; = Ak,k—lt(k—l)g(k_l) + P, ékj ifj =1
) (4.11)
b, =tk/.71+pk/.9k/. if j >1

where g; corresponds to the joint variable associated with the kth joint, e.g., &y =1
for 1-DOF joint, g =2 for 2-DOF and &; = 3 for 3-DOF joints. Next, the twists of
associated links and corresponding joint rates are written as

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_3

4.2 Intra-modular Velocity Constraints 63

a b #k,

i

#(k-1) #k #(k-1) #k (or #k,)
#kz
c #k,
#(k-1) #k (or #ks)

Fig. 4.4 Representation of multiple-DOF joints (a) A revolute joint (¢, = 1) (b) A universal joint
(ex = 2) (c) A spherical joint (g = 3)

T . . . T
t, = I:t]{l . ~t/€Ek)j| ,and 0 = [le e Qk(ek)] (4.12)
Using Eqgs. (4.11) and (4.12), t; can be written in terms of t;_; as
tr = Aps—itior + Py (4.13)

where the 6¢; X 6&;,— | matrix Ay ;—; and 6&; X g, matrix P are represented as

O---0A i Pr, 0's
Apj—1 = : Do ,andPp=| @ - (4.14)
O---0OA;i P - Py

where ‘O’ and ‘0’ stand for the 6 x 6 null matrix and 6-dimensional null vector,
respectively. Furthermore, Ay x—1 is the 6 x 6 twist-propagation matrix, and py; is
the 6-dimensional motion-propagation vector, as obtained in Eq. (4.3). It is worth
mentioning that the unique form of Ay x—; and P can only be attained if the origin
is selected as the reference point. It is evident from Eq. (4.14) that the sizes of block
matrices A x—; and P, change depending on the number of joint variables &; and
ex—1 associated with kth and (k — 1)th joints, respectively. For example, if kth joint
is universal, i.e., &y = 2, and (k — 1)th joint is spherical, i.e., £ — 1) = 3, then the sizes
of matrices Ay x—; and Py are 12 x 18 and 12 x 2, respectively. They are expressed
as follows:

OO0 Akk—1i| [Pk 0 }
Ari_g = ’ and Py = ! 4.15
et [0 O Agi—1 ‘ Pr, Pk,)

64 4 Kinematics of Tree-Type Robotic Systems

Fig. 4.5 A spatial double
pendulum

#1

#2

Similarly if the kth joint is revolute, i.e., & = 1, and (k — 1)th joint is spherical,
i.e., &x—1 =3, then the sizes of matrices Ax,—; and P; are 6 x 18 and 6 x 1,
respectively. The matrices are given by

Apj—1 = [O O Ari—]and Pr = pi, (4.16)

In case a serial system has only 1-DOF joints then, Ay x—; = Ak x—; and P, =
Px. As a result Eq. (4.13) simplifies to Eq. (4.2). This shows that Eq. (4.2) is the
special case of Eq. (4.13). Next, the general expression of the DeNOC matrices for
a serial-chain system with multiple-DOF joints is obtained, similar to Eq. (4.8), as

1 O .. 0O P,O---0
A2,l 1 .. 0O oOP,---0

N[= L . ,ande = .. (417)
Agr Ay 1 00---P,

where N; and N, are the 6n x 6n and 6n X n matrices. In contrast to Saha (1997),
Eq. 4.17 represent a general form of the DeNOC matrices of a serial-chain system
with multiple-DOF joints.

4.2.2 An Illustration: A Spatial Double Pendulum

The concept of the DeNOC matrices for a serial-chain system with multiple-DOF
joints is illustrated next using a spatial double pendulum with a spherical and a
revolute joint, located at 1 and 2, respectively, as shown in Fig. 4.5. The DeNOC
matrices for this system can be obtained using Eq. (4.17) as

_[1o0 _[PO
N] = |:A2,1 1i|, ande = |:O P2:| (4.18)

4.3 Inter-modular Velocity Constraints 65

where the 6 x 18 matrix A, , the 18 x 3 matrix P, and the 6 x 1 vector P, are
obtained using Eq. (4.14) as

pll 0 0
A1 =[00A,.Pi=|p;p, 0 |andP, =p; (4.19)
P1, P1, P13

in which the 6 x 6 matrix A, ; and the 6-dimensioinal vector px , are defined in
Eq. (4.3).

4.3 Inter-modular Velocity Constraints

Tree-type robotic systems have more than one kinematic module. Hence, the
velocity constraints between the modules, i.e., at the inter-modular level, will be
derived in this section. For this, recursive relationships between any two adjoining
modules are established first. Figure 4.6 shows module M; and its parent module Mg
(‘B’ signifies a parent). For the module M;, the 6n'-dimensional vector of module-
twist, t;, that has »’ link twists, and the n’-dimensional vector of module-joint-rate,
ﬁi , having 7/ joint rates are defined as

i . i

t 0,
t=|t |and q = | 6, (4.20)
tU 677

Fig. 4.6 Module M; and its
parent Mg

66 4 Kinematics of Tree-Type Robotic Systems

A bar (‘=) over an entity in Eq. (4.20) signifies that the quantity is related to
a module and the superscript, i, outside the bracket identifies the module. As a
consequence, the generic notation ti (or t;:) in Eq. (4.20) is the 6-dimensional twist
vector for the kth link in the ith module. Next, it is shown that the module-twist t;,
for M;, can be written in terms of the module-twist tg (or) tg, of its parent Mg as

t = A pts, + Niq; 4.21)

where A, 4, and N; are the 61’ x 6n module-twist propagation and 61’ x n' module-
joint-motion propagation matrices, respectively, which are given by

O+ 0 A P 0 07’
_ : : : _ Avipt - Pr—t
Aig=1| O (0] Ak;‘nﬁ ,and N; = . . (4.22)
) . o Ak k—1Pk—1
0O:---0 Anfﬂﬂ An.lpl An,n—lpn—l Py

In Eq. (4.22), Kiﬁ propagates the twist of the parent module (Sth) to the child
module (ith); the last column contains the twist propagation matrix from the nth
link of the Sth module wherefrom the ith module emanates, to the different links
of the ith module. Matrix Ay s in the expression of K,-,lg denotes the 6 x 6 twist-
propagation matrix from the twist of link #1# in M, 4 to the twist of link #k' in M;.
Its expression is obtained similar to Ay x—; of Eq. (4.3) and is associated with the
vector a;i s, as indicated in Fig. 4.6. Moreover for any three adjoining modules i, &
and j, module-twist propagation matrix satisfies the following property

AjAn =Aj, (4.23)

Equation (4.23) is, however, not true for non adjoining module. For example,
referring to Fig. 4.2a, K3,1K1,o = K3,0 but K3,2K2,1 #* Km as modules M, and
M3 belong to different branches. It is worth noting that in Eq. (4.22), matrix Ay
and vector pi are corresponding to the system with only 1-DOF joints. If higher-
DOF joints are present then Ay; and pi are to be replaced with A;; and Pj of
Eq. (4.17). Moreover, for a fixed-base serial system with only 1-DOF joints, the
expression in Eq. (4.21) is effectively the one given by Eq. (4.7), as the parent
module is the fixed-base and t3 = 0. As a result, the module-joint-rate propagation
matrix N; of Eq. (4.22) is the same as the NOC of a serial-chain system. Now, the
module twist for module M is expressed from Eq. (4.9) but written in the form of
Eq. (4.21) as

to = Noqy. if the base is floating
=0, if the base is fixed

(4.24)

4.3 Inter-modular Velocity Constraints 67

where Ny = Py and ﬁo = (o. Considering all the links and joints, the generalized
twist vector, t, consisting of all module-twists, and the generalized joint-rate vector,
q, consisting of all module-joint-rates are defined next as:

_EO - _ﬁo -
El ql
t=|. |andq=| . (4.25)
6 i
LG .]

In Eq. (4.25), the vectors of module-twists t; and module-joint-rates ﬁi contain
link twists and joint rates, respectively, as defined in Eq. (4.20). Hence, Eq. (4.25)
treats modules of a tree-type system similar to the links in a serial system. This
analogy helps one to extrapolate many concepts of the serial-chain systems directly
to the tree-type systems. One such example is the formulation of Eq. (4.21) from Eq.
(4.2). Substituting Eq. (4.21) into Eq. (4.25), the generalized twist t is expressed as

t = At + Nyq (4.26)

where A and N; are the 6(n + n9) X 6(n + 19) and 6n x (n + ny) matrices, where
ng = np =0 for a fixed-base, and ny = 1 and ny = 6 for a floating-base. Matrices A
and Ny are given by

O O/s N() O/S
Kl,ﬂ ..) O .. -
A= o) ,and N; = N; 4.27)
t. Ai,ﬂ t. .
O/S . Asﬁ O O's NS

In Eq. (4.27), B in Kiﬁ corresponds to the parent of i, fori =1, ..., s. Moreover,
O’s are the null matrices of compatible dimensions. Rearranging Eq. (4.26), the
6(n + np)-dimensional generalized twist is given by

t = N)N;q, where N; = (1 — A)™! (4.28)

The 6(n + np) x 6(n + np) matrix N; is as follows:

1
XI,O Il O/S
N =| A A1 b A;; =0,if M; ¢v,) (4.29)

AS,O As,l As,s—l ls

68 4 Kinematics of Tree-Type Robotic Systems

Fig. 4.7 Definition of y; — « Modules

Detail inside
the module

where 1; is the 6n' x 6n' identity matrix and y; stands for array of all the modules
upstream from as well as including the module M;, as shown within the dashed
boundary of Fig. 4.7. Hence, if module M; does not belong to y; then A i vanishes.
This means that the twist of any link belongmg to module M; does not depend on
any link of any module originating from M;. This essentially takes care of branch-
induced sparsity.

The matrices N; and N, of Eq. (4.28) are nothing but the DeNOC matrices
for the tree-type system under study, written in terms of the module information
rather than in terms of the link information. Hence, Eqs. (4.27) and (4.29) are the
generic versions of Eq. (4.8). Under the special case, when the base is fixed, all
the terms containing subscript ‘0’, i.e., A; o, 1y, and N, (the elements in the Ist
row and column), vanish. Moreover, if each module consists of one link with no
branching, and is connected by 1-DOF joint only, then N; = p;, A; ; ; = A;; and
A; jAjr = A; k. As aresult, the expressions of N; and Ny degenerate to Eq. (4.8),
which shows that the work by Saha (1999b) is a special case of what is proposed
here. This brings up an important fact that, for different module architectures,
the NOC can be decoupled into different module-DeNOC matrices N; and Nj.
This generalizes the DeNOC concept from a serial system of Saha (1997) to a tree-
type system with general module architecture and multiple-DOF joints.

4.4 Examples

In order to illustrate the concept of the module-DeNOC matrices, and branch
induced sparsity, several planar and spatial examples are given next.

4.4.1 A Robotic Gripper

Figure 4.8 shows a 4-link tree-type robotic gripper. The gripper is divided into
four modules, as indicated in Fig. 4.8, using the scheme presented in Sect. 4.1.

4.4 Examples 69
Fig. 4.8 A robotic gripper

and its modularization

Module architecture

They are My, M, M,, and M3, where M, is the fixed-base. The expression for the
module-level DeNOC matrices N; and N, are then obtained by using Eqgs. (4.27)
and (4.29) as

Il O/S N] O/S
N=|A, 1, ,and N; = N (4.30)
K371 (0] 13 O/S N3

where N; and N, are the 24 x 24 and 24 x 4 matrices, respectively. It is worth noting
that M, is fixed. Hence, the elements with subscripts ‘0’, i.e., KI,O, Kz,o, K3,o, 1o,
and Ny, in the expression of N; and N vanish. It may also be noted that in Eq. (4.30)
Klz = O. This is due to the fact that module M3 does not belong to the modules
originating from the module M;, i.e., M3 ¢ 7y,. Moreover, 1,, 1,, and 15 are the
6x 6, 12 x 12 and 6 x 6, identity matrices, respectively. The block elements Kz, 1,
A3, Ni, N,, and N; are obtained using Eq. (4.22) as

2

- A - NG NG P1 0 ~
A=Y A=A, Ny =p1,N, = ,and N3 = p2
21 I:A2211:| 31 1311, N1 | R b) [A21p1 p2:| an 3=P3

4.31)

where matrix A s denotes the 6 x 6 twist-propagation matrix from the twist of
link #n” in Mj to the twist of link #&' in M;. In Eq. (4.31), A1, A3 and N; are the
12 x 6, 6 x 6 and 12 x 2 matrices, respectively, and N, and Nj are the 6-dimensional
vectors. It is pointed out here that the size of block elements in N; and N, depends
on the number of links and joint variables present in the modules. For example,
K2,1 corresponds to the module-twist propagation from module M; with one link to
module M, with two links. Hence, its size is 12 x 6. Next, matrix N, corresponds to
the module-joint-motion propagation for module M, containing two joint variables.
Hence, its size is 12 x 2.

70 4 Kinematics of Tree-Type Robotic Systems

Fig. 4.9 A planar biped and

. e Module architecture
its modularization

4.4.2 A Planar Biped

The concept of the DeNOC matrices is illustrated next for a 7-link floating-base
biped. Torso of the biped is assumed to be the floating-base, My, and two legs form
modules M; and M, as shown in Fig. 4.9. The DeNOC matrices are then obtained
using Eqgs. (4.27) and (4.29) as

io O/S NO O/S
N[= A10 11 , and Nd = Nl (432)
A2 0 (0) 12 O/S NQ

where N; and N, are 42 x 42 and 42 x 12 matrices. Moreover, 1y, 1;, and 1, are the
6 x 6, 18 x 18 and 18 x 18 identity matrices, respectively. The block elements A o,
A2 05 N1, Nz, and NO are obtained by using Eqs. (4.22) and (4.24) as

i i

B Ao | Pi O O
Aio=| Ao | Ni=| Asipr P2 O |fori =12
Az Azip1 Asop2 ps
and Ng = Py (4.33)

where superscript i outside of the brackets indicates the module. Moreover, matrices
Alo, Ajp, Nl, Nz and No are of sizes 18 x6, 18 x 6, 18 x 3, 18 x3, and 6 X6,
respectively.

4.4 Examples 71

Module architecture

(1)
() ()

#0 ()

/ Spherical joints at hips

Fig. 4.10 A spatial biped and its modularization
4.4.3 A Spatial Biped

In order to study the application of the proposed concept for a spatial system with
multiple-DOF joints, a 7-link spatial biped, as shown in Fig. 4.10, is considered. It
has spherical joints at the hips, universal joints at the ankles and revolute joints at
the knees. Again torso of the biped is assumed to be the floating-base, M, and legs
form modules M; and M,. The module-level DeNOC matrices are then obtained
using Eqgs. (4.27) and (4.29) as

I() O’s NO O's
N =| A 1, ,and Ny = N, (4.34)
szo (0] iz O’s Nz

where N; and N, are 78 x 78 and 78 x 18 matrices. It is worth noting that the
module-level expressions in Eq. (4.34) are exactly the same as Eq. (4.32) as they
possess same number of modules and similar module architecture, however the size
of their block elements differs. For example, 1o, 1;, and 1, are the 6 x 6, 36 x 36
and 36 x 36 identity matrices. The block elements K1,0, Kz,o, Ni, Ny, and Ny are
obtained by using Eqs. (4.22) and (4.24) as

i i

_ Ao P o O
Aio=|Azo | ;Ni=]| AyP; P, O | ;fori=1,2andNy=Py
Asp A3 1Py AP Ps

(4.35)

72 4 Kinematics of Tree-Type Robotic Systems

In contrast to the example of the planar biped in Sect. 4.4.2, Ax; and pi in
the expression of A; and N; are replaced by A;; and P; due to the presence of
multiple-DOF joints. The expressions of matrices A, and Py in Eq. (4.35) depend
on the number of joint variables associated with the joints, and are obtained by
using Eq. (4.14). For example, the element [A 0] in the expression of A; ¢, and the
elements [A,]’ and [P,]' in the expression of N; are obtained by using Eq. (4.14)
as

i i

. Ao 4 ; 4 p, 0 O
Aol = | Ao | . [A21) =[O0 O Ay |.[P) =] p1, P1, O |:
Ao P, P, P
fori =1,2; (4.36)

Other elements of K,;O and N; can similarly be obtained. Moreover, A; ; and Pk;
in Eq. (4.36) can be obtained by using Eq. (4.3).

4.5 Summary

In this chapter, kinematics of a tree-type robotic system was presented with the
help of the concept of kinematic modules. The kinematic constraints were obtained
first at intra-modular level after introducing the efficient generic representation of
multiple-DOF joints. Kinematic constraints were then obtained at inter-modular
level. The modular representation enables one to extrapolate the concept of link-
to-link velocity transformation to module-to-module velocity transformation. The
modular approach lends its utility in writing module-level DeNOC matrices, which
is a generic form of the DeNOC matrices developed for serial chain robotic system.
In this way, several module-level concepts like module-twist propagation, module
joint-motion propagation, etc. evolved and these concepts were found to be very
useful in treating large tree-type robotic system with multiple-degrees-of-freedom
joints.

Chapter 5
Dynamics of Tree-Type Robotic Systems

As reviewed in Chap. 2, Newton-Euler (NE) equations of motion are found to be
popular in dynamic formulations. Several methods were also proposed by various
researchers to obtain the Euler-Langrage’s form of NE equations of motion. One of
these methods is based on velocity transformation of the kinematic constraints, e.g.,
the Natural Orthogonal Complement (NOC) or the Decoupled NOC (DeNOC), as
obtained in Chap. 4. The DeNOC matrices of Eq. (4.28) are used in this chapter to
obtain the minimal order dynamic equations of motion that have several benefits.

5.1 Dynamic Formulation Using the DeNOC Matrices

The DeNOC-based methodology for dynamic modeling of a general multibody
system, be it serial, tree-type or closed-loop, begins with the uncoupled Newton-
Euler (NE) equations of motion of all the links constituting the system. The
NE equations of motion are first formulated in a matrix-vector form for a serial
kinematic module followed by a tree-type system consisting of the modules.

5.1.1 NE Equations of Motion for a Serial Module

Let us consider the ith module of Fig. 4.6. The ith module contains 7' serially
connected links. The NE equations of motion for the kth link of the ith module
can be written as (Greenwood 1988)

Koy + o xow, =n)
¢ ‘ v k 5.1
miCi = t7<

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 73
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _5,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_2
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_4

74 5 Dynamics of Tree-Type Robotic Systems

Fig. 5.1 Motion of link &' in

. th;
module M C,: Center of mass of the k" link

O, Origin of the k" link

where n,f and fg are the resultant moment about and force applied at the Centre of
Mass (COM), Ci, whereas, I,f is the inertia tensor about Cy, and my; is the mass of
kth link. Moreover, ¢ is the linear acceleration of C; and wy is the angular velocity
of the link. It is worth mentioning that the main objective of dynamic analysis is to
calculate either joint torques or joint motions. Hence, if the origin of a link, which
lies on the joint axis, is selected as a reference point, instead of the COM, efficient
recursive inverse and forward dynamics algorithms can be obtained. This was also
shown by Stelzle et al. (1995). In order to represent Eq. (5.1) with respect to the
origin, O, of the kth link, Fig. 5.1, the entities &, IC, f{ and nf, respectively, are
represented in terms of the linear acceleration of origin Oy, i.e., O, the inertia tensor
about Oy, namely, Ix, the resultant force applied at Oy, f, and the resultant moment
about Oy, ny, as

¢ =0 —di X @ — g X (dx X wg)
IC =T + m;(dp x 1)(dg x 1)
fe =i

(5.2)

niznk—dk ka

where d; is the 3-dimensonal vector from the origin of the kth link to its COM, as
shown in Fig. 5.1, whereas d; x 1 is the 3 x 3 cross-product tensor associated with
d,=[d, d» d3]". The product of d; x 1 with any vector x gives the cross-product
vector d; X x. Tensor d; x 1 is defined as

0 —ds d
dk x1= d3 0 —dl (53)
—dy di 0

Substituting Eq. (5.2) into Eq. (5.1), the NE equations of motion for the kth link
can be represented with respect to the origin Oy as

5.1 Dynamic Formulation Using the DeNOC Matrices 75

Lioy +mpdy X 0 + 0 X Lo, = ny
.) 5.4)
mpoxy —mydy X 0 — 0 X (mpd; X i) = fi

The above equations of motion are then written in terms of the 6-dimensioinal
twist t;, twist-rate t; and wrench w; (Saha and Schiehlen 2001) as

Mkiik + M E;t;, = w, where w;, = ka + W](Cj + W,I: (5.5)

where My, 2, and E; are 6 x 6 mass, angular velocity and coupling matrices,
respectively, and wy is the 6-dimensional vector of wrench for the kth link. The
wrench vector w is composed of ka, the wrench due to driving moments and
forces, w]f, the wrench due to constrained moments and forces, and w,f , the wrench
due to external moments and forces other than driving. The matrices My, 2, and
Ey, and the vector w; are obtained by comparing the Eqs. (5.4) and (5.5). They are
given by

My

—mpde x 1 myl 0O wix1

1 O ny
E, = d =
¢ [0 0} e [fk}

In Eq. (5.6), w; x 1 is the 3 x 3 cross-product tensor associated with vector
. For the ith module, i.e., M;, comprising of ni serially connected links the NE
equations of motion, Eq. (5.5), can be combined in a compact form as

[Ik mkdkxli| _|:(okx1 (0] i|
sSlk =)

(5.6)

Mii[+ §,‘M,‘E,‘Ei =W 5.7

where the matrices M;, ﬁ,-, and E;, are of sizes 6n' x 6n' each instead of 6 x 6 for
a link in Eq. (5.6). Moreover, W; is the 6n‘-dimensional vector of module-wrench
associated with the module M;. Matrices M;, R;, E;, and vector w; are defined as

i

J— [Wi

M; = diag[M, ---M; --- M, |, :

Q= diag[@, - Q- 2,], andW = | wy (5.8)
E; = diag[E, ---E - E, |,

Wy

where superscript i to the bracket ‘[]” of matrix and vector definitions corresponds
to the ith module.

76 5 Dynamics of Tree-Type Robotic Systems
5.1.2 NE Equations of Motion for a Tree-Type System

The uncoupled NE equations of motion developed in Eq. (5.7) for a module are put
together for (s + 7o) modules as

Mt + MEt = w, where w = w” + w’ + w’ (5.9)

In Eq. (5.9), M, @, and E are the 6(n+ ny) x 6(n+ 1) generalized matrices
of mass, angular velocity, and coupling, respectively, and w is the 6(n + ny)-
dimensional generalized vector of wrenches. They are defined as

M = diag[My M, --- M, --- M, |, 2 Ediag[§0§1 §§]

E =diag[EoE; ---E;--- Eg | .andw = [w] W[---w/] ---W!],

where matrices M, @;, E;, and vector W; are defined in Eq. (5.8).

5.1.3 Minimal-Order Equations of Motion

Power due to constraint wrenches is equal to zero (Angeles and Ma 1988). As a
result, the vector of constraint forces and moments is orthogonal to the columns of
the velocity transformation matrix, i.e., the NOC or the resulting DeNOC matrices
of Eq. (4.28), and one may show that the pre-multiplication of Eq. (5.9) by NgN,T
yields the minimal set of equations of motion eliminating the constraint wrenches.
More specifically, NgN,TWC = 0. Thus Eq. (5.9) leads to

NIN/ (Mt + @MEt) = N/N/ (w” + w") (5.11)

Now, substitution of t = N;N,q, from Eq. (4.28), and its time derivative into
Eq. (5.11) yields the following equations of motion:

Ig+Cq=1+F (5.12)

where the expressions of the (n + ng) x (n + np) generalized inertia matrix (GIM) I,
(n4+np) X (n+ ng) matrix of convective inertia (MCI) terms C, and the
(n + ng)-dimensional vectors of the generalized driving forces T and the external
forces t¥ are given as

I=N"MN,C = N"(MN + MEN),t = N'w” andt/ = N"wl" (5.13)
where N = N;N;. Equation (5.13) represents the minimal-order dynamic equations

of motion for a tree-type robotic system with general kinematic module architecture.
Note that the formulation can also suitably be used to analyze a closed-loop system.

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_4

5.1 Dynamic Formulation Using the DeNOC Matrices 77

Fig. 5.2 External forces and
moments on link #k

/

For that appropriate joints must be cut to form several open-loop serial or tree-type
sub-systems. The cut joints are to be substituted by the constraint forces known as
Lagrange multipliers. These constraint forces can then be treated as external forces
to the resulting open-loop sub-systems, serial- or tree-type. Chapter 8 will illustrate
the dynamic analyses of closed-loop systems using the proposed methodology.

Finally, it is to be noted that Eq. (5.12) has similar representation as that of a
single-chain serial system (Saha 1999b), however, the elements of the matrices and
vectors differ, and this will be evident in Sect. 5.2.

5.1.4 Wrench due to External Force, w*

The forces and moments due to gravitational acceleration or link-ground interac-
tions are two typical examples of external forces that one needs to take care of,
particularly, for the robotic systems analyzed in this book. Figure 5.2 shows the kth
link subjected to external forces and moments at the points 1, 2 and 3. The vectors
connecting the origin of the link Oy, to the points of application of these forces and
moments are represented by sy 1, Sk 2, and si 3, respectively. Resultant wrench acting
at the origin of the link £ is then defined as

F
wh = [n"] (5.14)

£

where n,f and f,f are the resultant moment about and the resultant force at O, for
the kth link. If there are n; points of application of the external forces and moments,
then wrench w} is given by

ny 1 S, X 1 nF'
W,I: _ Zsk,jwlf,j’ where Sk,j = [O k,jl i|and wlf,j = |:f1]f“’]i|
j=1 ki

(5.15)

In Eq. (5.15), Sk ; is the 6 x 6 matrix, and s; ; x 1 is the cross-product tensor
associated with vector sy ;, for j=1, 2, 3, as shown in Fig. 5.2.

http://dx.doi.org/10.1007/978-94-007-5006-7_8

78 5 Dynamics of Tree-Type Robotic Systems
5.2 Generalized Inertia Matrix (GIM)

The elements of the GIM, I, obtained in Eq. (5.13) will be derived in this section.
These not only enable the factorization of the GIM but are also required for
formulating the inverse dynamics algorithm reported in Chap. 7. For that, the GIM
is written as

I=N/MN,;, where M=N/MN, (5.16)

In Eq. (5.16), the matrix M is referred to as the generalized mass matrix of
composite modules, and the matrices N; and N, are the module-DeNOC matrices.
Substituting the expressions for N; and the mass matrix M from Eqgs. (4.29) and
(5.10), respectively, into Eq. (5.16), the symmetric matrix M is obtained as

~M0 y sym
MAy M, 3
M= M2A20 M2A2’1 Mz (ijj,i = O,lf Mj ¢ yi)

_MSKSO MSKS,I MSKS,S—I Ms n

(5.17)

where Ki, ; is the 6n' x 6#/ module-twist-propagation matrix defined similar to A 8
in Eq. (4.22). Once again y; in Eq. (5.17) stands for array of all the modules

originating from the module M; including M;, and MJK];,‘ =0,when M; ¢y, It
is worth noting that in Eq. (5.17), the 6n' x 6n' matrix M; represents the mass and

inertia properties of the system comprising of rigidly connected links of modules
which are upstream from the ith module as depicted in Fig. 5.3 inside the dotted

boundary (y;). Matrix M; is referred to as the mass matrix of composite-module. It
is obtained as

M =M + > A, MA, (5.18)
J€Yi

In Eq. (5.18), ﬁ,- is expressed in terms of the module mass matrix Mj of all

the modules upstream from module M;, i.e., M ; forall j € ;. Instead, M, may
be expressed in terms of the already computed mass matrices of the composite-
modules that are immediate children (§;) of the ith module as shown in Fig. 5.3. If

these composite modules are denoted by M j>then forall j €§;

M =M + Y A MA;, (5.19)

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_4

5.2 Generalized Inertia Matrix (GIM) 79

Fig. 5.3 The ith composite Composite
module module 7
= =~

\
\
N
Detail inside

the module

Modules

where §; denotes the array of children of module M;. If a module has no child, say,
g, ={}, itis referred to as the leaf or the terminal module. For the terminal modules,
the mass matrix of composite-module is simply equal to module mass matrix, i.e.,

Ml‘ = Ml‘.

Here the concept of composite-module is introduced, and this is the general-
ization over the similar concept of composite-body used by Featherstone (1983),
Rodriguez et al. (1991) and Saha (1999b). It may be shown that their mass matrix
of composite-body is a special case of Eq. (5.19), where each module has only one
link, i.e., ni =1,fori=1, ..., s. Finally, using the expression in Eq. (5.16), i.e.,
I= NgMNd, the block elements of the GIM are given by

Ino sym
i1,0 il,l

I= LoL, L, (5.20)

where the n' x 1/ block element I, ; is given, fori=1, ...,sand j=1, ...,ias

- - T — — R
Ii,j = Ij’,' = Ni M,’Ai’ij,lfMi € yj(FOI’l = j,Ai’j = 1) (521)
= O, otherwise

The analytical expression derived in Eq. (5.21) is the foundation for obtaining
the analytical decomposition of the GIM, and thus Eq. (5.21) enables one to find
analytical module-level inverse of the GIM and the recursive forward dynamics
algorithm. Note that the word analytical is used as the expressions are obtained
analytically, however it does not provide the explicit closed form expressions. It is
just a compact representation.

80 5 Dynamics of Tree-Type Robotic Systems

5.3 Module-Level Decomposition of the GIM

Saha (1997) showed the UDUT™—U and D are upper triangular and diagonal
matrices, respectively—decomposition of the generalized inertia matrix for a
single-chain serial system. More recently, Featherstone (2005) proposed a similar
LTDL factorization, where L is lower triangular matrix for branched kinematic tree.
However, the approach followed by the Featherstone was numerical in contrast to
the analytical approach taken by Saha. In both the approaches the decomposition
was carried out at the link-level. As compared to link-level approaches of Saha
(1997) and Featherstone (2005), module-level decomposition is presented in this
book for a tree-type system with general kinematic module architecture. This
provides suitable recursive module-level expressions to obtain the implicit inverse
of the GIM resulting in a recursive forward dynamics algorithm (Shah et al. 2012a).
The proposed UDU” decomposition is based on the Block Reverse Gaussian
Elimination (BRGE) of the GIM that generalizes the concept of the Reverse
Gaussian Elimination (RGE) of the GIM arrived from the link-level velocity
transformation matrix, namely, the DeNOC matrices of a serial system proposed by
Saha (1997). It is worth noting that here matrices U and D are block upper triangular
and diagonal matrices, respectively. Gaussian Elimination (GE), as commonly used
in linear algebra (Stewart 1973), begins with the annihilation of the first column
of a matrix, whereas in Reverse Gaussian Elimination annihilation starts from the
last column of the matrix. Hence the adjective ‘Reverse’ is added. It actually helps
in obtaining various element of the decomposed matrix by establishing recursive
relationships from the terminal link or module to the zeroth link or module, a
process otherwise not possible with the conventional GE. The RGE or BRGE also
preserves the sparsity pattern of the elements of the GIM into its factor U. It is worth
noting that BRGE is performed on the block elements of the GIM, which are square
matrices of variable sizes based on the module architectures.

The BRGE of the GIM given by Eq. (5.20) starts with the annihilation of the
s-th block column and proceeds to the 1st block column by using elementary Block
Upper Triangular Matrices (EBUTM), i.e.,

BI = L,whereB=B,---B; ---B; (5.22)

where the (n+ ng) x (n 4+ np) B and L are the block upper and lower triangular
matrices. In Eq. (5.22), the (n + ng) x (n + ng) EBUTM B; is obtained as

B =1-T;V, (5.23)

In Eq. (5.23), the (n + ng) x n’ matrices U, and V; have the following represen-
tation

— —T T T
U = [Uo,i . T,,0 - 0] and V;=[0 - 01 -0 (524

5.3 Module-Level Decomposition of the GIM 81

where U;; and 1; are the #/ x n’ and n’ x n' matrices, respectively, and O is the > null
matrix of compatible dimension. Using Eqgs. (5.23) and (5.24), the structure of B; is
obtained as

1, O --- —Uy; - O
w Ly Uiy -+ O
B, = ' 5.25
: o (5.25)
i O’s 15 |
The GIM after following the BRGE may be represented as
I=B'L, where B'=8, ---B ---B; (5.26)

In the above, matrix Ei_l is the inverse of EBUTM which can be obtained as
B =1-UV/)' =1+UV, (5.27)

Next, the multiplication of the inverse of two neighboring EBUTMs are required
which can be given by

——1=1 = =T = I
B, B, =(1+UV,)1+U_V,_))

Y (5.28)
=1+UV;, +U;1V,_,;
Similarly, the product Es_l .. .E_l .. .El_l is obtained as
-1 — o7 —= =T
B =1+U,V, +...+ U1V, (5.29)

Using Egs. (5.24) and (5.29), the inverse of the EBUTM B™!, denoted by U, is
represented as

i 1() ﬁO,l N ﬁoy,‘ e U()’S
- 1o Uiy, Ui,
U=B"'= : e i (5.30)
1; Ui

O/S ls

82 5 Dynamics of Tree-Type Robotic Systems

where the (n+ np) x (n+ np) matrix U in Eq. (5.30) is a upper block triangular
matrix. Now, the GIM of Eq. (5.26) may also be expressed as I = UL. Since, I is
a symmetric positive definite matrix, the lower block triangular matrix L can be
written as

L =DU” (5.31)
As a result the GIM is decomposed as
I=UDU" (5.32)

where the expression for the block upper triangular matrix U is obtained in (5.30)
and the block diagonal matrix D is given by

D= _ (5.33)

where the n' x n' matrix I; is essentially the block pivot of the BRGE. It is worth
noting that the elements of the matrices resulting from the UDUT decomposition of
the GIM of a serial system (Saha 1997) are scalars, whereas here the elements of

the matrices U;. ; and I;, in Egs. (5.30) and (5.33), respectively, are matrices. They
are given by

—T—T — o
Ui,j ENi Aj,i\I’j’ lfj € yi

= O, otherwise (5.34)

i = NITE,
In Eq. (5.34), the 6n x n' matrices E,- and E,- are as follows:
E,’ = E,’i'_l and Ei = ﬁ,’ﬁ,’ (535)

The 6n' x 6n' matrix M; in Eq. (5.35) contains the mass and inertia properties of
the articulated-module i, which is obtained as

o . T — & _—
M, =M, + ZAj,i‘DijAj~f (5.36)

5.4 Inverse of the GIM 83

where if &; = {}, then ﬁ,- = M, . The articulated-module corresponding to ﬁ,- is
nothing but the composite-module of Fig. 5.3 in which fixed joints are replaced

with actual joints. The n' x n' matrix I; in Eq. (5.34), on the other hand, may
be interpreted as the generalized 1nert1a matrlx of the articulated-module. The

relationship between the matrices M and I can be viewed same as that between
M and I of Egs. (5.9) and (5.13), respectively. Moreover, the 6n' x 6n' matrix O jin
Eq. (5.36) is obtained as
®, =1-¥,N, (5.37)
Matrix Ej is referred to as the matrix of articulated-module transformation.
Similar matrix, however at link-level was also derived by Lilly and Orin (1991)
and Saha (1997). The one introduced here is more generic as it is applicable to any
general tree-type system in contrast to only a single-chain serial system. Comparing
Eqgs. (5.19) and (5.36) it may be seen that it is P j» that distinguishes mass matrix
of the composite-module, M;,, from the mass matrix of the articulated module, M.
Again the concept of articulated-body inertia (Featherstone 1983; Rodriguez et al.
1991; Saha 1997) is generalized to tree-type system consisting of several kinematic
modules. If each module of a tree-type system has only one link, the matrix of the
articulated-module degenerates to the articulated-body inertia.

5.4 Inverse of the GIM

The block UDU” decomposition of the GIM presented in the previous section
facilitates the analytical inversion of the GIM expressed in the form of Eq. (5.20).
The inverse is given by

I''=u'p'u’! (5.38)

In Eq. (5.38), D™! is the block diagonal matrix, and, U™! (=B of Eq. 5.22) is
block upper triangular matrix. From Eq. (5.22), U™! or B is given by

U_IEBZBl...Ei...ES (5.39)

Using the definition of the EBUTM, the multiplication of the two neighboring
EBUTM is obtained as

— E— — T
BB, =(1-U;V,_)A-U;V,;)

=1-U,_V,_, -GV, -T_,V,_GV))

=1 _ﬁi—lvi_l - (U; —Ui _ﬁi—l,i)vi (5.40)

84 5 Dynamics of Tree-Type Robotic Systems

where ﬁi_l,,- (= V,-T _lﬁi) is the last nonzero b_lock e_lemerg of U; as obtained in Eq.
(5.24). The product of EBUTM, i.e., U~! =B,...B;...B,, is then calculated as

U'=B,..B,..B,=1+U,V, +...UV, ...+ U,V (5.41)
where ﬁ,-, fori=1,...,s,is given by
ﬁi = —(ﬁi _ﬁi—lﬁi—l,i — —ﬁlﬁl,i);ﬁl = ﬁ] and ﬁj,,’ =0ifi ¢ yj
(5.42)

Based on Eq. (5.41) the (n + ng) x (n + np) block upper-triangular and diagonal
matrices U™ and D! have the following forms:

1y ﬁO,l .. Ul,s i()_1 O’s
. i
U= Lo] lanap! = b (5.43)
- Us—l,s ’ -~
O's 1, O's I!

where the block elements U; ; and I, are obtained as

~

= T 77 .
Ui'j = _Ni Aj!iT\I’j,lfj €y,
= O, otherwise

~

=N v,y (5.44)

InEq. (5.44), A ;i may be interpreted as the articulated module-twist propagation
matrix, and has following representation:

Aji=A;,PA, (5.45)

where /1 is any intermediate serially connected module between modules j and i.
Interestingly, it is shown in Eq. (4.23) that the module-twist propagation matrix A ; ;
is represented as A ; ,A; ;. Hence, once again it is the matrix of articulated module
transformation, Eh, that separates matrix A i from matrix A j.i- Moreover for any
two adjoining modules, i.e., module j and its parent 3, the articulated module-twist

propagation matrix A j.p is simply equal to module-twist propagation matrix, i.e.,

>

Ajp=Ajp (5.46)

http://dx.doi.org/10.1007/978-94-007-5006-7_4

5.5 Examples 85
5.5 Examples

For the clearer understanding of the proposed concepts, the module-level expression
of the GIM, its decomposition, and the inverse are shown for a robotic gripper and
a biped.

5.5.1 A Robotic Gripper

The GIM of the tree-type robotic gripper with four modules, as shown in Fig. 4.7,
is obtained by using Eqgs. (5.20) and (5.21) as
T —
N, M|N; sym
I= N§ﬁ2K2,1N1 Ngﬁzﬁz (5-47)
N:M:A; N, O N.M:N;
where I is the 4 x 4 matrix. In Eq. (5.47), the block elements N; and A i are obtained

in Eq. (4.22). Moreover, the mass matrix of composite-module M, fori=3,2,1,
is obtained by using Eq. (5.19) as

ﬁ3 =M;, ﬁ2 =M,, ﬁl =M, + Z AJT ﬁ K (5.48)
j=32

Following the block reverse Gaussian elimination, the GIM of Eq. (5.47) is
decomposed as I = UDU”, where the expressions of the elements of matrices
U and D are obtained using Eq. (5.34) as

7=

1, N{K;laz N{K;lax Nl v, R O's
U= 1, 0 ,and D = NZT@ (5.49)
O's 13 O's N3T§3

where U and D are the 4 x 4 matrices. The block elements Ei and Ei ,fori=1,2,
3, can be obtained using Eq. (5.35) as

-~ ~ A

N W, (550

fori =1,2,3 \II ﬁﬁi anda Ei , where I;

In Eq. (5.50), the mass matrix of articulated-module M;, fori=3, 2, 1, are then
evaluated using Eq. (5.36), i.e.,

M3 :M3, MZ :Mz, Ml Zﬁl =+ Z Kfl M K (5.51)
=32

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_4

86 5 Dynamics of Tree-Type Robotic Systems
The 61’ x 6n' matrix Ej in Eq. (5.51) is obtained below using Eq. (5.37):
®; =1-W,N forj =23 (5.52)

The inverse of the decomposed GIM, i.e., U~! and D! are obtained next from
Eqgs. (5.43) and (5.44) as

B —T2T — —T2T —
1, —N; Ay ¥, —N, A3, V3
U= 1, 0 , and
L O/S 13
o (5.53)
(N, W) ! O's
-1 _ _TL
b= NV
[0% (N; W)
where K; 1 and K§ | are available from Eq. (5.45), namely,
Ay =Ay . and Ay = Ay, (5.54)

In Eq. (5.54), the expressions for KZ_J and Ki 1 are simply corresponding to
module twist-propagation matrices, i.e., A, | and As |, respectively, as module M,
is the parent of modules M, and M.

5.5.2 A Biped

The gripper mechanism presented in the previous subsection has its base fixed. In
this subsection, the proposed concept is illustrated for a floating-base biped as shown
in Fig. 4.8. The GIM of the biped with three modules is obtained using Eqgs. (5.20)
and (5.21) as
N, M,No sym
I= N{ﬁ1K1,0N0 Nfﬁlﬁl (5.55)
N;MA, N, O N,MN,

where I is the 12 x 12 matrix. After decomposition of the GIM in Eq. (5.55) the
12 x 12 matrices U and D are obtained by using Eq. (5.34) as

http://dx.doi.org/10.1007/978-94-007-5006-7_4

5.5 Examples 87

T T — __T—T — —T—
1, NoA ¥, NoA, ¥, No¥ Ofs
U= 1, 0 ,and D = N W, | 636
O's 12 O’s Ngﬁz

In Eq. (5.56), the block elements E,- and E,-, for i =0, 1, and 2, are obtained by
using Eq. (5.35) as

A A

fori =0,1,2,%; = M;N; and ¥, = ¥, 17! where I, = N, ¥, (5.57)

The mass matrix of articulated-module M;, fori = 2, 1, 0, is then evaluated using
Eq. (5.36) as

o — & L — R
M, =My, M; =M. My =M+ Y A;,®,M;A; (5.58)
j=2.1

The 6n' x 6n' matrix @ ; in Eq. (5.58) is obtained below using Eq. (5.37):

@, =1-¥,N;, forj =12 (5.59)

Accordingly, the inverses of the matrices U and D are obtained by using Eqgs.
(5.43) and (5.44) as

B =TT — =TT —
1o —NyAio¥1 —N, Az 0¥,
Ul = 1, 0 , and
_O/S 12
- s (5.60)
(NO W) O's
-1 _ _TL _
D™ = (N} W) ! R
0% (N Wy)!

where U™! and D! are 12 x 12 block upper triangular and diagonal matrices.

Moreover, Az 1 and A'; | are available from Eq. (5.45), namely,

Aig=A0 and Ay = Ay (5.61)

88 5 Dynamics of Tree-Type Robotic Systems
5.6 Advantages of Modular Framework

The concept of kinematic modules consisting of serially connected links in tree-type
systems brings several advantages. They are:

e Generalization of the body-to-body velocity transformation relationships to
module-to-module velocity transformation relationships where the former is a
special case of the latter.

e Compact representation of the system’s kinematic and dynamic models.

e Provision of module-level analytical expressions for the matrices and vectors
appearing in the equations of the motion. It is worth noting that the module-level
expressions of the vectors and matrices appearing in the equations of motion
facilitate the physical interpretation of many associated terms, decomposition of
the GIM, and analytical inversion of the GIM.

e Macroscopic purview of several kinematic and dynamic properties like matrix of
articulated-module, articulated-module transformation, etc.

e Uniform development of inverse and forward dynamics algorithms with inter-
and intra-modular recursions, which will be presented in the following two
chapters.

* Ease of adopting already developed serial-chain algorithms (Saha 1997, 1999b)
for each individual serial module of a tree-type system at hand.

* Possibility of repeating the computations of a module to another module if the
tree-type system has same number of links in each module.

* Ease of investigating any inconsistency in the results of a tree-type system by
examining the results of one module at a time.

e Hybrid parallel-recursive dynamics algorithms can be obtained, where for a
given module architecture, modules are solved parallelly whereas the links inside
modules are solved recursively.

5.7 Summary

In this chapter, dynamic modeling of a tree-type robotic system is proposed based
on kinematic modularization obtained in Chap. 4. The dynamic equations of motion
are obtained using the concept of module-DeNOC matrices. The module-level
expressions are obtained for the Generalized Inertia Matrix (GIM) which helped
in introducing the concept of mass matrix of composite-module. The analytical
expression of the GIM is then utilized to decompose it in the form of UDU”. The
decomposition enables one to obtain many physical interpretation and analytical
inversion of the GIM. The results of the analytical inversion will be used in Chaps.
6 and 7 to obtain recursive forward dynamics algorithms for several fixed- and
floating-base robotic systems with tree-type structure and multiple-DOF joints.

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

Chapter 6
Recursive Dynamics for Fixed-Base
Robotic Systems

In this chapter, dynamic analyses of fixed-base robotic systems are presented using
the dynamic modeling presented in Chap. 5. For this, recursive inverse and forward
dynamics algorithms are developed. The algorithms take care of the multiple-DOF
joints in an efficient manner, as explained in Sect. 4.2.1; in contrast to treating them
as a combination of several 1-DOF joints by taking into account the total number of
links equal to number of 1-DOF joints or joint variables. In the presence of many
multiple-DOF joints in a robotic system the latter approach is relatively inefficient
due to the burden of unnecessary computations with zeros. The improvement in
the computational efficiency in the presence of multiple-DOF joints are addressed
in this chapter. Dynamic analyses, namely, the inverse and forward dynamics, of
several systems are performed in this chapter.

6.1 Recursive Dynamics

As reviewed in Chap. 2, recursive algorithms are popular due to their efficiency,
computational uniformity, and numerical stability. These essentially help in real-
time computations, realistic visualization and model-based control of a robotic
system. Recursive inverse dynamics algorithm helps in force analysis and control,
whereas the recursive forward dynamics algorithm enables one to perform motion
analysis. It is worth noting that the recursive algorithms available in the literature,
e.g., Featherstone (1987) and Rodriguez et al. (1992), exploit only body-level
recursions; however, here the recursion is obtained first amongst the kinematically
serial modules followed by the body-level recursions inside a module (Shah 2011).
In fact the latter approach encapsulates the former. As result, the problem is solved
in a much elegant manner where a system has several modules, which in turn
have several bodies or links in them. Hence, the inter-modular recursion with
intra-modular recursion inside each module is a logical consequence of the system

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 89
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _6,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_2

90 6 Recursive Dynamics for Fixed-Base Robotic Systems

architecture. All of the above steps are achieved by defining suitable module-level
Decoupled Natural Orthogonal Complement (DeNOC) matrices for a tree type
system.

6.1.1 Inverse Dynamics

The problem of inverse dynamics attempts to find the joint torques and forces for a
given set of joint motions of a robot under study. It is formulated with the help of
Eq. (5.11) as

t = NINT'w*, where w* = Mt + MEt 6.1)

where w* represents inertia wrench and < is the vector of joint torques and forces to
be applied at the joint actuators to achieve the given motions. The dimension of t is
‘n’, that is equal to the joint variables of the robot at hand. The matrices N; and Ny
are the module-DeNOC matrices, derived in Eq. (4.28), whereas M, £, and E are
defined in Sect. 5.1.2. Equation (6.1) can then be evaluated recursively in two steps,
similar to the one for a serial system (Saha 1999b), however, at the module level.

Stepl: Forward recursion: Computation of t, t and w*

In this step, the generalized twist t, generalized twist-rate t, and inertia wrench
w* are obtained recursively using two-level recursions, namely, the inter- and intra-
modular levels. They are shown below:

A. Inter-modular computations: Fori=1,...,s

t = A pts, + N

W =Mt + @,MEf{, (6.2)

where W;-" represents inertia wrench of the ith module, i.e., the value of the
left-hand side of the NE equations given by Eq. (5.7). Moreover, Ki,ﬁ and N;
are module-twist propagation and module-joint-motion propagation matrices
obtained in Eq. (4.22), whereas Mi,ﬁi,and E; are defined in Eq. (5.8). To
find out the above expressions one actually requires computations at the intra-
modular level, which are shown next.

B. Intra-modular computations: For k=1/,..., o'

Forj =1:¢
ti; = Axplsy;) +Pk,~6"k,~,j =1

= tﬂ(kj) + Pk; ij, j>1

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5

6.1 Recursive Dynamics 91

t, = Ak,ﬂiﬂ(k‘,) + Akptpu,) + i Pr; O, +Pr; Ok] =1

= iﬂ(kj) + 82k, Px; ék./‘ + Pr; ék./" Jj>1
w;, =0, J <&k
=My, b, + @i, My, Eg ty, J =& (6.3)

where Ay g and Pi; are defined in Eq. (4.3), whereas My, Slkj, and Ey; are
obtained in Eq. (5.6). Moreover, §; = (k-1) for k > 1 and g is the DOF of the kth
joint. Hence, if the kth link is connected to its parent link by a higher-DOF joint
k,i.e., gz > 1, then there are g, — 1 virtual links which have no dimensions and
masses. As a result, many computations associated with these links are carefully
avoided as evident from Eq. (6.3).

Step 2: Backward recursion: Computation of t

In this step, joint torques and forces are obtained by using Eq. (6.1) as
tv = NJ'W, where w = N/ w* (6.4)

As N [T is a block upper-triangular matrix, W is obtained using backward
substitutions, while the evaluation of T is straightforward as Ng is a block diagonal
matrix. Hence, having the results of w* from the above forward recursion step, this
step computes the joint torques/forces using another set of inter- and intra-modular
level computations that start from the last module and last body, respectively. They
are shown below.

A. Inter-modular computations: Fori=s, ..., 1

J €§;
— <=
T, = Ni W; (65)
where W; = w’ if §;={}, and the intra-modular computations required to
complete the above calculations are shown below:
B. Intra-modular computations: For k = n, ...,1

For j =¢...1

VNij = WZ]_ + Z A{k\i’l,j =g,k = ni

I€tu)
=wp + AL W =&k <
= Wy, k+1kWhk+1)5 J = €, n
=V~Vk‘/.+l,j < &

T, = Pi, Wi, (6.6)

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5

92 6 Recursive Dynamics for Fixed-Base Robotic Systems

where Wy, szj if E(k,)Z{}- Once again, similar to Eq. (6.3), many compu-
tations in Eq. (6.6) associated with the links of multiple-DOF joints that do
not have any length and mass are not carried out, thus, reducing the overall
computational complexity. It may be noted that the computer implantation of
the above steps requires assignment of an integer index for each of the link in a
tree-type system. This is obtained as follows: An integer index for the link k' of
the ith module is

i—1
=k+>y 7' 6.7)
h=1

where 1" represents total number of links in the Ath module. Accordingly, the
computer implementation of the proposed inverse dynamics algorithm is given
in Table 6.1. The computational complexities of the different steps in Table 6.1
and comparison of the computational complexity with those available in the
literature are shown in Sect. 6.3.

6.1.2 Forward Dynamics

Forward dynamics problem attempts to find the joint motions from the knowledge of
the external joint torques and forces. This enables simulation studies which provide
configuration of the system at hand. Unlike the recursive inverse dynamics algorithm
presented above, a recursive forward dynamics algorithm is rather complex. Inverse
dynamics calculations require only matrix-vector operations which comprise of
algebraic multiplications/divisions and additions/subtractions. In the case of forward
dynamics, one needs to solve for the joint accelerations from a set of equations
of motion, Eq. (5.12). A straightforward solution based on established Gaussian
Elimination or Cholesky decomposition techniques (Strang 1998) require order
(n?) calculations. So for large n, typically n > 7 (Stelzle et al. 1995), computations
increase so drastically that the overall computational efficiency is largely sacrificed.
Moreover, such algorithms are known to have problems with numerical stability
(Ascher et al. 1997; Mohan and Saha 2007). Hence, recursive order (n) forward
dynamics algorithms are preferred. One such algorithm is presented here for the
tree-type systems consisting of several kinematic modules and multiple-DOF joints.
It is done by analytically decomposing the GIM, resulting out of the constrained
equations of motion of a system, as derived in Sect. 5.3. The decomposed GIM
allows one to calculate the joint accelerations recursively, as highlighted below:

+ Based on the UDU” decomposition of the GIM obtained in Eq. (5.32), the
constrained equations of motion, Eq. (5.12), are rewritten as follows:

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5

6.1 Recursive Dynamics

Table 6.1 Recursive O(n) inverse dynamics algorithm for fixed-base robotic

systems

Step 1 (forward recursion): t;, t j, and w’;‘

Step 2 (backward recursion): T;

;=0

Fori = 1 : s (Inter-modular)

Fork = 1:n' (Intra-modular)

r =1 (Joint level)
j=i+1
if (B; # 0)

t; = Acpty, +p,0;

-

i = Ak,ﬂiﬂ,- + Ak.ﬂtﬂ,- +

2;p,0; +p,0;

j = DOF

Fori = s : 1 (Inter-modular)

For k = n' : 1 (Intra-modular)

For r = ¢; : 2 (Joint level)

T/' =pTVV/
Wg, = W;
j=i-1

end

r =1 (Joint level)

else 1= pjrﬁlj
t; =p,0; if (B; # 0)
=200, +p6; +p Wp, = Wp, + AW,
end end
W, =0 J=Jj—1
Forr =2:¢g; end
j=j+1 end
t; =t_ +p,0;
=t +9;p0; +p;6,
W, =0
end
wi = Mit; + @ MEt;
W =wj
end
end
Note: The 6-dimensional vector p = [07 g”]” , where ‘g’ is the 3-dimensional

vector due to gravitational acceleration, is added to the links emanating from the
base to take into account the effect of gravity to other links of the modules.

UDUT(‘i = @, where ¢ = tf —handh = cq—tF

93

(6.8)

The matrices U and D were obtained in Egs. (5.30, 5.32, 5.33, and 5.34).
Moreover, vector h is obtained recursively using any recursive inverse dynamics

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5.34

94 6 Recursive Dynamics for Fixed-Base Robotic Systems

algorithm (Walker and Orin 1982), say, the one presented in Sect. 6.1.1, where
q = 0 is substituted in step 1.

e The joint accelerations are then solved using the following three sets of linear
algebraic equations:

(i) Up = ¢, where § = DU’ §
(i) D = ¢, where § = U g
(i) U'g = ¢ 6.9)
Using Eq. (6.9), the recursive algorithm, comprising of backward and forward
recursions, for a general tree-type system is given next.

Step 1: Backward recursion: Computation of ¢ and @

As U is a block upper-triangular matrix, @ is obtained using backward substitu-
tions, while the solution for @ is straightforward as D is a block diagonal matrix. The
vectors @ and @ are obtained using the inter- and intra-modular level computations
given below:

A. Inter-modular computations: Fori=s, ..., 1
@) $i =9; _NiTﬁis where, ﬁi = iniﬁjs
J €&
andm; = Ejéj +ﬁj
(i) 9 =179, (6.10)
Yvhere ﬁ and Y, are the 6n'-dimensional vectors, and ﬁi = 0,if &, = {}. Moreover

I; and ¥; are obtained in Egs. (5.34-35). Intra-modular level computations
needed to complete the above steps are shown below:
B. Intra-modular computations: For k = n,...,1

For j =¢...1

=

= Al Mgt J = ek <7
=MiyyJ <k
andn; = V¥;¢ + W
ii) g, = Pr,; /i ©.11)

6.1 Recursive Dynamics 95

where 1), and n, are the 6-dimensional vectors. It is worth noting that if the
original definition of the Euler angles (Shabana 2001) is used to define the
motion of the 3-DOF spherical joint instead of EAJs as introduced in Chap. 3,
P« of Eq. (4.3) would have the size of 6 x 3 instead of 6 x 1 for EAJs. Hence,
my; = p,{j Mk/pk/ of Eq. (6.11), which has been found as a scalar quantity
using EAJs, would have been a 3 x 3 matrix using Euler Angles. As a result, it
would require some extra computations to invert the 3 x 3 matrix in the range of
O(3%), which is certainly disadvantageous computationally.

Step 2: Forward recursion: Computation of ¢ from U7 q = ¢

As U7 is a block lower triangular matrix, the joint accelerations () are solved
next by using forward substitutions. These also require inter- and intra-modular level
computations that are given below:

A. Inter-modular computations: Fori=1,...,s

~ —T ~ ol < —
q =9, — ¥, 1, where i; = A, gy,
and g = Ng, g+, (6.12)

where |; and &; are the 6n'-dimensional vectors, and &; = 0, if ith module
emanates from the module M. Intra-modular level computations required for
the above step are given next.

B. Intra-modular computations: Fork=1,..., '

Forj =1:¢
O, = Gr, — Wi iy, where i = Arp g, L J =1
= M‘kjfl’j > 1

and Wgu,) = pﬁ(kj)eﬂ(kj) + llﬁ(kj) (6.13)

In Eq. (6.13), b, and fi; are the 6-dimensional vectors and 8y = (k-1) for k> 1.
Similar to the inverse dynamics, in forward dynamics also several computations
associated with the dimension-less and mass-less virtual links in the multiple-DOF
joints are not carried out. This was possible due to the introduction of the concept
of Euler-Angle-Joints (EAJs) in Chap. 3. It may be noted that the derivation of
the intra-modular steps from the inter-modular steps are not straightforward as in
the case of inverse dynamics. Here, one essentially requires the analytical UiDiUiT

decomposition of the matrix I; obtained in Eq. (5.34). Next, ﬁ, of Eq. (6.12) in terms
of the block expressions 6,» , W, and w;, are written to find ék of Eq. (6.13),fork=1,

..., n'. The actual computer implementation of the forward dynamics algorithm is
shown in Table 6.2. The computational counts for various steps in Table 6.2 and

http://dx.doi.org/10.1007/978-94-007-5006-7_3
http://dx.doi.org/10.1007/978-94-007-5006-7_3
http://dx.doi.org/10.1007/978-94-007-5006-7_5

96

6 Recursive Dynamics for Fixed-Base Robotic Systems

Table 6.2 Recursive O(n) forward dynamics algorithm for fixed-base robotic systems

Initialization

Step 1: ¢; and ¢;

Step 2: 9]

J=0

Fori =1:s

(Inter-modular)

Fork =1:n'

(Intra-modular)

Forr =1:¢;

(Joint level)

j=J+1
W, =
ﬁj =0
TL,- =0
end
M; = M;
end
end

j = DOF
Fori = s : 1 (Inter-modular)
For k = n' : 1 (Intra-modular)
For r = g : 2 (Joint level)
call function_1

call function_2

M =M,
f'I/;l:'lj
J=Jj—1
end
r=1

call function_1

if (B; # 0)

call function_2

My, =My, + AL ;M Acs

ﬁﬂj = ﬁﬂj + A/:ﬂ"j
end
j=i-1
end

end

¢ =, [m;
function_2

A

M;; =M, —

n; =¢j®j+

<>

T
v

=

J

Jj=0
Fori =1 : s (Inter-modular)
Fork = 1: n' (Intra-modular)

r = 1 (Joint level)

j=j+1
if (B; #0)
= Axphg,

call function_3

else
b; = ¢;
B =P, b,
end

Forr =2:¢g
J=Jj+1
I1j =R
call function_3

end

function_3
0; = (731' - ‘|’/T'l~JL j

W, =pjéj +ii;

6.2 Applications 97

comparison of forward dynamics algorithm with those available in the literature are
given in Sect. 6.3.

6.2 Applications

In this section, the developed recursive algorithms are applied to analyze several
robotic systems and to present the efficiency of the algorithms. Numerical results are
obtained using the Recursive Dynamics Simulator (ReDySim), a MATLAB-based
software developed as a part of the research reported in Shah (2011), developed
during this research work. Detailed discussion on use of ReDySim is provided in
Chap. 10.

6.2.1 Robotic Gripper

A tree-type robotic gripper, as shown in Fig. 6.1, can hold objects to be manipulated
by a robotic manipulator. It has four kinematic modules, namely, My, M, M,, and
M;. Module M| is the fixed-base, whereas module M, has one link, module M, has
two links, and module M3 has one link. The expressions of the DeNOC matrices,
the GIM, and its factors U and D, were already obtained in Egs. (4.30), (5.47) and
(5.49), respectively. Next, the steps of inverse and forward dynamics algorithms,
given in Sects. 6.1.1 and 6.1.2, are shown in Tables 6.3 and 6.4, respectively.

Numerical results for inverse dynamics, i.e., to find the joint torques for a given
set of input motions, are obtained using the inverse dynamics module of ReDySim.
The detailed steps are shown in Table 6.3. The motion for each joint for this purpose
was computed for the time function of the trajectory given below:

Module architecture

Fig. 6.1 A tree-type robotic
gripper and it modularization

http://dx.doi.org/10.1007/978-94-007-5006-7_10
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_5

6 Recursive Dynamics for Fixed-Base Robotic Systems

98

so[npou ay) Jo SYUI| JoYI0

01 K31ABIS JO J09JJ0 Y} JUNOJOE OJUT AYe) O} ‘Iz Anpowr JO YUI] ISIY Y} JO 11} UOTILIS[O0E dY) 0] PIPPE ST ‘UOTIBI[AI0R [EUOTJEIIARIS
0} 9Np J0JOAA [BUOISUSWIP-€ 3 ST 3, d19yM ;[;8 ;0] = d J0J09A [RUOISUSWIP- 3y} || =1 10} “I'T ‘¢'9 J[qRL, Jo [dos ur ‘Jeyy dJON

:B:QH 1y ¢ 13:2<+ apyiled TV + U= 1lm =y _BMZH _p,m3~m<+ﬁ$:<+ =M =1
‘ - ko~ L ~
N;‘@NMQ” NS-.NNNMOﬁ &<+ N&MB” wa@ Nﬁ”v\
M = @ T = am 2= SWMZ =atim="m =1
m;bmiﬂ sl = elm =Y @w»mZI €2:fm = 2\ c=1
[(9'9) pue (¢'9) 'sbyg uo paseq] uorsmoar premyoreg 'z doig
NN G 4 PN = M DPINS + VN =
m_%m;m + mﬁ%m_ﬂmﬁﬂm + Zal,m_< + _;Z,l< — m; meZ + m| N + :~ m< + :~ m< — ma
dgid 4 sy =<y (=Y TNt Y =9 g=1
441 NNHNNENNQ + QLN = NMB
gad 4 pedlyy 4 e’y + N;.N_.NN< =
N ' %) ad + Yty = 9 =Y
Myl s 4 I = Gy YHINCE + SNE =
dgeld + clgeldelgs + pldly + ity = <y DN + DN + 7V + ey = ﬁ
wimw:ﬂl_l _;Z.N~<” NJ Nﬁ”v\ NUNZI_I ;~N<| NH =1
UG 4 TN = s
d4 tlgid 4 lgdiig = 11y DTAN'S + NN = m
w:.m_iﬂ il 1=y a+;:Z+ ZH J&@ZH) =1
[(€'9) pue (z'9) sbg uo paseq] uorsinoar premio] '| doig
Ie[npow-eajuy A ury Ie[npoOW-Iaju] ' SINPOIA

Joddug onoqoi 10y sorweuAp as1oaur jo sdoi§ €9 dqel,

6.2 Applications 99

Table 6.4 Steps of forward dynamics for robotic gripper

Module M; Inter-modular Link K Intra-modular
Step 1. Backward Recurs10n Computatlon of @ (p and @ (p [Based on Egs. (6.10) and (6.11)]
i=3 63 =03 <p3 =1 <p3 k=1 ¢p = @i gn = g3/
=2 <P2—<Pz»<Pz—Iz [k=2> @p = @p;@p = @p /iy
k=1 ¢ =g —pLiipfip =A% 2y
_ N2 A= ﬂfAzz(ﬁzZ
. - P12 = @i2/my2
i=1 9 =9, —Nn; k=1! o =<P11—P1Tl'~l11§
ﬁl =AM, +K3T,153§ i =A% mpe =A1T311n13;
W, = ¥,0,1; = ¥50, iz = Vafpe + i
= _3_ = N =V pdp;
¢ =10, Py = Qu/myp
Step 2. Forward recursmn Computation of ¢ [Based on Eqs (6.12) and (6.13)]
i=1 (h—‘Pl k=1"" 6y =¢p
i=2 6= — Wiy k=12 G =Go— Wl .
|L2_A21|L15|L1_N1q1 e =Apnpp;pp =pnon

k=2? ézzf P — U hilp:
Wy = Azzz.lzp,lz;
R =ppede +iip

i = =T~ » ~ ~
i=3 a4 = @3 __‘1’3“«3; . k=1 0 =<ﬂ13—‘l'1T3IL13§ .
B3 =As sk = Niq, B =Apnppspp =ppbdn
Table 6.5 Joint motions for Joints 1! 12 22 13
robotic gripper 9.0 0 0 0 90°
60 (T) 60° 80° 80° 120°
0(T)—6(0 T . (2%
0(t) = 0(0) + M t — —sin| —1¢ (6.14)
T 2w T

where 0(0) and 6(T") denote the initial and final joint angles, respectively, as given
in Table 6.5. The joint trajectory in Eq. (6.14) is so chosen that the initial and final
joint rates and accelerations for all the joints are zeros. These ensure smooth motion
of the joints. The length and mass of the links were taken as /{1 = 0.1m, /> = [=
[= 0.05m, m;1 = 0.4Kg, and m2 = my = m3 = 0.2Kg. The joint torques for
the robotic gripper are then plotted in Fig. 6.2.

In order to validate the results a CAD model of the gripper mechanism was
developed in ADAMS (2004) software and used for the computation of the joint
torques. The results are also shown in Fig. 6.2, which show close match between
the values obtained using the proposed inverse dynamics algorithm of ReDySim.
Hence, the numerical results are validated. As far as CPU time is concerned,
ReDySim took only 0.025 s on Intel T2300@1.66 GHz computing system. The

100 6 Recursive Dynamics for Fixed-Base Robotic Systems

Simulated o ADAMS

b
1 009800, 0.5
%
— % — q
€ . £
£ 05 z 0
o N
®
0~ -0.5
0 0.5 1 0 0.5 1
time(s) time(s)
c d
0.1 0.05
q
E £
= 0 < 0¢
NN -
e e
-0.1 T -0.05 T %o
0 0.5 1 0 0.5 1
time(s) time(s)

Fig. 6.2 Joint torques for robotic gripper. (a) Torques at joints 1'. (b) Torques at joints 12.
(¢) Torques at joints 22. (d) Torques at joints 13

ADMAS software, however, took 1.95 s, which is longer as expected for general
purpose software whose efficiency cannot really be compared with the customized
program like ReDySim. The comparison of the efficiency with other existing
algorithms is provided later in Sect. 6.3.

For simulation studies of the robotic gripper, forward dynamics module of the
ReDySim based on the recursive algorithm in Table 6.2 is used. Numerical results
for the acceleration were obtained for the free-fall of the gripper, i.e., it was left
to move under gravity without any external torques applied at the joints. The
accelerations were then numerically integrated twice using the Ordinary Differential
Equation (ODE) solver ‘ode45’ (default in ReDySim) of MATLAB. The ‘ode45’
solver is based on the explicit Runge-Kutta formula given in Dormand and Prince
(1980). The initial joint angles and rates are taken as ;1 = —60°, 6,1 = 0, =
03 = 0,and 01 = 62 = 6p = O3 = 0, respectively. Figure 6.3 shows a
comparison of the simulated joint angles with the same obtained in ADAMS (by
using RKF45 solver) over the time duration of 1 s with the step size of 0.001 s.
The ReDySim took 0.29 s in contrast to 39 s required by ADAMS. In order to
show the convergence of the results, a variation of the simulated joint angle 6,
using the proposed algorithm and that of using the ADAMS software is plotted in
Fig. 6.4. The resulting plot is a 45° line, and thus shows a close match between the
results.

6.2 Applications

101

a Simulated ° ADAMS
60 b 20
g 2
s z 0
S -100 RN
-120 + 20 +
0 02 04 06 08 1 0
time(s)
c d
20 50
R g
k) 0 o 0
NN ™~
[«=) (==
20+ 50 +
0 02 04 06 08 1 0

time(s)

o
[
N

0.2 0.4 0.6
time(s)

-

0.2 0.4 0.6 0.8
time(s)

Fig. 6.3 Simulated joint angles for robotic gripper. (a) Joint 1'. (b) Joint 22. (c) Joints 12.

(d) Joint 13

-50 T
—60 A
—70
—80 A

-90 A

ADAMS

—100 ~

~110

—120 A

61 (deg)

/’,
-,

-130

-130

-120 -110 -100 -90 -80

Simulated

Fig. 6.4 Convergence of the simulated joint angle 6,1

102 6 Recursive Dynamics for Fixed-Base Robotic Systems

2463
1412
620 115
o
«
£
l
3]
© o
- Q
© ~
o
I\
N
o
=)
<
1052 531 881 118

Fig. 6.5 KUKA KRS robot (All the dimensions are in mm)
6.2.2 An Industrial Manipulator: KUKA KR5 Arc

Industrial robot is a serial manipulator and can be assumed as a special case of
tree-type robot, where only one branch emanates from the fixed base. Hence, link
index can be assumed to be the same as module index for the sake of simplicity.
The kinematic architecture of the KUKA KRS Arc industrial robot is used with
user defined mass and inertia properties in order to study its dynamic behavior. The
kinematic architecture of the KUKA robot is shown in Fig. 6.5. The DH parameters
based on Fig. 6.5 are shown in Table 6.6. The assumed mass and inertia properties
of the KUKA KRS are also shown in Table 6.6.

First, inverse dynamics of the KUKA robot is performed for initial and final
angles of all the six joints as 0° and 60°, respectively. Once again cycloidal trajectory
of Eq. 6.14 was used as the input joint motion. The joint torques are shown in
Fig. 6.6. Note that the torque required at joint 1 is zero in the beginning and at
the end, as joint 1 is not affected by gravitational acceleration. Moreover, torque
requirement at joint 2 is maximum, which is very obvious as this joint is required
to overcome the effect of gravity on links 2, 3, 4, 5, and 6. Next forward dynamics
of the KUKA robot was performed for the free-fall under gravity. For this both the
initial joint angles and velocities are assumed to be zeros. Figure 6.7 show the joint

6.2 Applications

Table 6.6 DH parameter and inertia properties of the KUKA KR5S

103

a; o; b,' 6,‘ m; Ii,).).
i (m) (deg) (m) (deg) (kg) I xx (kg-m®) I
1 0 0 0400 6, 16.038 0.1769 0.2665 0.2622
2 0.180 99 0 0, 7.988 0.2716 0.2768 0.0218
3 0.600 0 O 05 12.973 0.3889 0.3765 0.1041
4 0.120 90 0.620 6, 2.051 0.0047 0.0101 0.0121
5 0 90 0 05 0.811 0.0007 0.0017 0.0018
6 0 9 0 06 0.008 0.000003 0.000001 0.000001
a b c
40 200 25
20 1 20
— —~ 150 —
IS S €
< 01 < Z 15
S < 100 e’
-20 1 10
-40 50 + 5 -
0 1 2 0 1 2 0 1 2
time(s) time(s) time(s)
d e f
x 10°
0.15 0.1 5
0.1 1 0
= . 0
2 0051 £ o1 s
N 0 L 5
0 -0.2
-0.05 -+ -0.3 - A0
0 1 2 0 1 2 0 1 2
time(s) time(s) time(s)

Fig. 6.6 Torque requirement at joints of the KUKA KRS. (a) 7). (b) 75. (¢) 73. (d) 4. (€) 5.
®) 76

angles for the time period of 1 s. Total energy is also plotted in Fig. 6.8, which
remains unchanged. This validates the simulation results.

6.2.3 A Biped

In order to study the effectiveness of the proposed algorithms for tree-type systems
consisting of multiple-DOF joints, a spatial biped, as shown in Fig. 6.5a, is
considered next. It has spherical joints at the hips, revolute joints at the knees,

104 6 Recursive Dynamics for Fixed-Base Robotic Systems

a b c
3 0 200
g 2 g -50 g 100
[*) [e2] (o))
(9] [0 [}
z z z
= 1 < -100 = 0
0 -150 - -100 +
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)
d e f
20 100 1000
0 z 0 0
8 0 g g 500
i > 100 2
g g g
s 2 = 200 = 9
-40 S0/ S0
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)

Fig. 6.7 Simulated joint angles of the KUKA KRS5. (a) 6. (b) 6,. (¢) 05. (d) 64. (e) 05. (f) O¢

and universal joints at the ankles. Biped motion was analyzed for a single support
phase where one of the feet (the supporting foot during walking) is assumed to
have no relative motion with respect to the ground. This is indicated in the figure
with hatched lines. Hence, the biped dynamics can be solved as an open tree-type
system (Shih et al. 1993). However, the following aspects distinguish the proposed
modeling and simulation of the biped under study:

1. Treatment of multiple-DOF joints using the concept of Euler-Angle-Joints
(EAJs) as proposed in Chap. 3.

2. Clever avoidance of the unnecessary operations with zeros associated with the
dimensions and the masses of the intermediate links, as pointed out in Sect. 6.1.

3. The use of modularization of the biped. The biped is divided into three modules,
My, My and M,, as shown in Fig. 6.9b. Such modularization helps one to treat
module M, and M, in a similar manner as each module consists of three links, one
spherical joint, one revolute joint, and one universal joint. Hence computationally
one can use the same set of computer instructions. This result into a more elegant
approach.

The model parameters for the biped are given in Table 6.7. In order to perform
dynamic analysis, the desired trajectories of the swing foot and the Center-of-Mass

http://dx.doi.org/10.1007/978-94-007-5006-7_3

6.2 Applications 105

Total ===== Potential *======r= Actuator =====r= Kinetic
150 ~
100 - P el
Xe ‘s,
0’ ~0
K See
50 A ’ .
Xl S
—~ = ~.
) PR S
5 e
[%) S
LIC.I N\\\ "_---
N PR g
—50 \\ ”¢
S 4
SO s
~ R
-100 ~ Ve
N~---——"”
-150 T T T T ,
0 0.2 0.4 0.6 0.8 1
time (s)
Fig. 6.8 Energy balance for the KUKA KR5
a b
Spherical joints
at hips
1
Revote joints
at knees M,

Universal joints

/ at ankles

Z. (Vertical)

Fig. 6.9 A 7-link biped and its module architecture

(COM) of the trunk are synthesized first. The trunk’s COM trajectory is designed
based on the Inverted Pendulum Model (Kajita and Tani 1991; Park and Kim 1998),
which assumes that the mass of the biped is concentrated at the trunk, the feet
remain horizontal throughout the robot’s motion and trunk moves horizontally with
constant height from the ground. The swing foot trajectory is defined as cosine
function. The trajectories of the trunk’s COM and the swing foot are functions

106 6 Recursive Dynamics for Fixed-Base Robotic Systems

Table 6.7 Model parameters Link Length (m) Mass (Kg)
for the biped 32 05 1
11,22 06 1
12,22 0.15 0.2
3! 0.1 x0.1(width) 5
a
0.2 0.02 21
‘l B
& 0 2 0.01 N
0 B
-0.2 0 -1
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)
b
0.5 0 0.1
0.02
<x® 0 >° N0
0.04
-0.5 -0.06 -0.1
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)

Fig. 6.10 Designed trajectories of the trunk’s COM and ankle of the spatial biped. (a) Trunk’s
COM. (b) Ankle of the swing foot

of cycle time (T), co-ordinates of the COM x((0), yo(0) and zo(0) at T =0, stride
length (I;), and maximum foot height (4y), as derived in Appendix B. For the spatial
biped under study, T, xo(0), y0(0), z0(0), Iy, and hy are assumed to be 0.5 s, —0.15,
0.08, 0.92, 0.3, and 0.1 m, respectively. The resulting trajectories of the COM of
the trunk and the ankle of the swing foot are shown in Fig. 6.10. Based on the
motion of the trunk and ankles, the desired joint level trajectories, i.e., 0,1 =

[91} elé]T, 0,05 = [93} X 93§]T,elz - [91% 0 Glg]T,sz,andOy =

T
93% 93%] , were calculated using the inverse kinematics relationships, which are

also provided in Appendix B. The joint trajectories thus obtained are shown in
Fig. 6.11.

Next, the inverse dynamics module of ReDySim was used to perform the force
analyses of the biped. The detailed steps (like the robotic gripper of Sect. 6.2.1, as
given in Table 6.3) are avoided here for brevity. Figure 6.12 shows the joint torques
for a single support phase of the biped. It is worth noting that a complete walking

6.2 Applications 107

[

48

46
0.5
44

e] 1 (degree)
EN &) AN
o o o o
1
91’2 (degree)
o _
e; (degree)

42

o
o
o
o
o
2]
o
o
o

time (sec) time (sec) time (sec)

181 1

-90.5 180 1

1
0, (degree)
IN & Y AN
o o o o
1
93'2 (degree)
o o
= o
1
93’3 (degree)

179 -

o
o
o
<)
o
]
o
<)
<]

time (sec) time (sec) time (sec)

o

ef 1 (degree)
o -
92 (degree)
12
& &
o © o *®
IS)) © o
02 (degree)
13
A & RN
o o o o

14

o
o
S
o
<
)
o
o
o

time (sec) time (sec) time (sec)

70 0
60
50

40 -40

eg (degree)
02 (degree)
3,1
N <)
o EN o
92 (degree)
32
&) AN
o o o

o
o
[¢)]
o
o
[¢)]
o
o
(9]

time (sec) time (sec) time (sec)

Fig. 6.11 Joint trajectories of the spatial biped obtained from trunk and ankle trajectories.
(a) Support leg (Module 1). (b) Swing leg (Module 2)

sequence of a biped consists of single support phase as well as a momentary double
support phase for change in legs forming a closed-loop system. The changeover of
the legs demands the changing the equations of motion. Though the double support
phase may be analyzed by following the approach given in Chap. 8, yet, the same is
not an efficient one. More elegant way of analysis is reported in Chap. 7.

http://dx.doi.org/10.1007/978-94-007-5006-7_8
http://dx.doi.org/10.1007/978-94-007-5006-7_7

108

a
10
E E
Z 9 <
= N
- -
-10
0 0.5
time(s)
15
g 10 z
< s £
\—Pf') 0 \—P('J
54)
0 0.5
time(s)
b
1.5
— 1 —
€ €
£ 05 =
- N
N N
e 0 e
-0.5
0 0.5
time(s)
5
E O £
z z
NPN 5 Np:i
-10
0 0.5
time(s)

6 Recursive Dynamics for Fixed-Base Robotic Systems

10
0
8 £
£
6 -~ <10
4+ -20
0 0.5 0 0.5
time(s) time(s)
6
4 2
T 1
0 -3 0
i
2 1
44
0 0.5 0 0.5
time(s) time(s)
4 10
2
= 0
) S
] @
2 ~F 10
-4 4
6 -20
0 0.5 0 0.5
time(s) time(s)
6.
41 4
€
2 £ 2
N
Nl_.m' o1
0.
2
0 0.5 0 0.5
time(s) time(s)

Fig. 6.12 Torque requirement at joints of the biped. (a) Support leg (Module 1). (b) Swing leg

(Module 2)

Forced simulation is performed next, where the motion of the biped is studied
under the application of joint torques calculated above in Fig. 6.12. The joint
motions were calculated using the forward dynamics module of ReDySim. The
plots for the simulated joint angles are shown in Fig. 6.13 along with the desired
one. It can be seen that the simulated joint angles match with the desired joint
anglesup to 0.1 s, i.e., until 0.1 s movement of the biped. After this, system behaves
unexpectedly as evident from the divergent plots of the simulated angles in Fig. 6.13.

6.2 Applications

(degree)

1
1.1

0

(degree)

2
1,1

0

o

(degree)

2
1,1

0

(degree)

2
62

50

500

-500 -
0

200

100

-100
0

80

(<2}
o

40

time (sec)

time (sec)

time (sec)

time (sec)

time (sec)

Simulated ===== Desired
10
o
o
(2}
(9]
k=2
o
A =
0.5
0 400
0
o -50 300
o
- [}
)
~ -100 , 200
N —
D
-150 ° 100
0.5 0 0.5
time (sec)
0
n
o -50
(2]
(9]
z
- ~ -100
R
D
-150 - -200
0.5 0 0.5
time (sec)
20 -10
N N
2 10 e 20
{2 (2]
[} [0}
z z
- 0 - ~ -30
N ™ N
[«=) D
-10 ¢ -40
0 0.5

109

time (sec)

0.5
time (sec)

0.5

0.5

time (sec)

Fig. 6.13 Simulated joint angles of the biped. (a) Support leg (Module 1). (b) Swing leg

(Module 2)

The deviation in the simulated angles is mainly attributed to what is known in the
literature as zero eigen-value effect (Saha and Schiehlen 2001). The real system may
also not behave as expected due to disturbances caused by unmodeled parameters
like friction, backlash, etc. and non-exact geometrical and inertia parameters. Hence,
a control scheme must be considered, as this forms a part and parcel of achieving
proper walking. The application of control scheme will be explained in Chap. 9.

http://dx.doi.org/10.1007/978-94-007-5006-7_9

110 6 Recursive Dynamics for Fixed-Base Robotic Systems

Total ==m=m==- Potential = =ssssssaes Actuator =smsm= Kinetic

70 7

65

60 A S

Energy (J)

55 N

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time (s)

Energy (J)

-50

Fig. 6.14 Energy balance for the biped (Maximum error in total energy = 0.0058)

The computational complexity of the biped using the proposed algorithms with
those in the literature is provided later in Sect. 6.3. In order to validate the simulation
results the law of energy conservation was used (as shown in Appendix C) where the
total energy of the biped while walking remains constant. The energy plots for the
biped are shown in Fig. 6.14, where the total energy remains constant throughout
the simulation period with maximum error in total energy of the order 1073, This
validates the simulation results.

6.3 Computational Efficiency

In order to find the computational efficiency of the recursive inverse and forward
dynamics algorithms given in Tables 6.1 and 6.2, complexities of the different steps
are counted in terms of arithmetic operations, namely, Multiplications/Divisions (M)
and Additions/Subtractions (A), as shown in Tables 6.8 and 6.9, respectively.

Note that, in Table 6.9, wherever required, a 6-dimensional vector, say, 3 j» Was
represented as

N
Njs

n; = (6.15)

where n;, and n; , represent top and bottom three elements, respectively, of n ;.

http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

6.3 Computational Efficiency 111

Table 6.8 Computational count for the recursive inverse dynamics of a fixed-base system

Forward recursion: For k = 1:n, r = 1:¢; (Given Iy, dy, my, mdy, ag))

Forr=1 Counts For r=2:¢; Counts
1t = Axpty, +p;6; tp=ti—1+p;6

®; = QJwy() +e,6; 8M5A ©; =QJw;— +e;6; 4M3A

0. = Q7 (¢ a < ofe ++

0; = Qj (6py) + @p(y X Apos) 0; =Qjo; -

2 ij = Akﬁtﬁj +Ak,/9t/9j

+9ij9f+I{{-9f ‘ t =t +92;p,0 +p,8
®; =Q @p)+e0;+(w; xe;)0; I0MIA &; =Qd;—; +e;0; 6M5A
+ (w; xe;)6;
6; = Q/ (0p()) + @ (i) apw k) 1TMI3A §; = Q} 6, 4M2A
For r =g, For r = 1:(g-1)
3w =0, +6;, 6MIA w; =0 -
4 W;:=Mkij+ﬂijEktj;\7Vj=W;: VV/ =0
n=Lé; + (0; xL;) ISMI5A n' =0 -
i = [0 + (med x 6;)] 6M6A 1, =0 -
£, = [mio; + @ ;midi] 12M9A f; =0 —
Backward recursion: For k= n:1, r =¢;:1
Forr=1 For r =¢;:2
Lt=p;W, T =P W
Tj=e;ﬁj - Tj=e;ﬁj -
2 Wﬂ] = Wﬂ] +A]€13Wj Wj_l = \”VV/'
A{ 4w, (Eq. A.16) 20MI2A 1§ = Q;q; 4M2A
W, + ArpTW; OM6A £ = Q,f; 4M2A
Total 94M82A + 22M14A

(ex-1)
Note: (1) If parent of a link is fixed then only 13M7A counts are required instead of 94M82A.
(2) *not required in the algorithm and hence no computations.
(3) See Appendix A for detailed computational complexity.

The computational counts for the recursive inverse and forward dynamics of the
k™ link connected by a multiple-DOF joint is summarized in Table 6.10.

It may be concluded from Table 6.10 that if a system consists of total number
of ny, ny and n3 joint variables associated with 1-, 2- and 3-DOF joints, then the
computational count of the recursive inverse and forward dynamics algorithms are
obtained as

For inverse dynamics: (94n; + 58n, +46n;—81) M (82n + 48n, + 36%713 —T75)A

For forward dynamics: (135n1 4+ 991, + 87n3 — 116)M (1311 + 92n;, + 79%)13 —
123)A

The resulting computational complexities of the recursive inverse and forward
dynamics algorithms are compared in Tables 6.11 and 6.12, respectively. It is
interesting to note that the complexities are proportional to n (=n; + ny + n3)
the total numbers of joint variables associated with 1-DOF, 2-DOF, and 3-DOF
joints, respectively. It is pointed out here that the computational complexities of

http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

112

6 Recursive Dynamics for Fixed-Base Robotic Systems

Table 6.9 Computational count for the recursive forward dynamics of a fixed-base system

Backward recursion: For k =n:1, r =¢;:1

Forr=1 Counts For r =¢;:2 Counts
¥ =M, ¥, =M,
\lr/l =I'ej - 1"][=I'ej -
1|r/b—Fej — ‘l'jb—Fe/ -
2 -—p]\lr, -—p,llfj
Aj_e‘l’]r - Aj_eﬂ’jt -
3 i _‘l' /m/ j _‘V /mj
wr,, \lr,,/m/ IMOA® xlrj, \lrj,/m/ IMOA
"’/b_"’/b/mj 3MOA ‘l'jb—\l'jb/mf 3MOA
4§ =9;— p,n, %—w, p,n,
b =9; —el i OM1A o =q; —el N OM1A
5 9 =04 /m; IMOA 9 = @,/m, A IMOA
6 M//_M ‘i' ‘I'T IAV[]J =AM/'A_‘|’] /T
L, =1 q;],\p 3M3A =1 =¥, ¥j, IMIA
9' i \l’j b‘l’/b 6M6A 9// =f;j _’}lr/bll’ij 6MO6A
F;,; = ﬂr/bﬂt/, 6M6A F//=Fj—1]tjyb1|r/, 3M3A
7 n,~—\|f,<pj+n, n; =V;¢; +7;
'Ijt=‘|’/t¢/ +ﬁ]r 2M3A nj,r_‘l'/t@j +ﬁ]t IM2A
n/b ﬂ’jbfﬂ/ +'Ijb 3M3A ‘fl,h 1",}7901 +'Ijb 3M3A
8 My, =My +Af M As My, =M,
AkﬁM”Akﬂ 64M63A M;; 24M23A
Mﬂ Mﬂj +AkﬂM”Ak5 15A
9 Wi, =Algm; 20MI2A g =1, 8M4A
Forward recursion: For k= 1:n, r = l:¢;
Forr=1 For r =2:¢;
[Lj = Akﬁuﬂ] 20M12A |L = uﬂ] 8M4A
2 6'—901 ‘l’ 9 "’
b =9 —(w,,u], + ¥, SM6A ; —soj (\Ir,,u,, 4M5A
i i)
3 u'j=pj6.j:+i1j l‘«/':Pj@.j"‘i‘llj
n;, =e0; +ii, OMI1A n;, =e0; +ii, OMI1A
Wip =|1j,b - Wjp =ii'j,b -
Total 135M131A + 63M53A (g-1)

Note: (1) For the terminal link (link with no child) only I9M8A counts are required instead of

135 M131.

(2) “The last element of ¥ ;, is always identity, i.e., ¥ ;, =[x X 1]T
(3) See Appendix A for detailed computational complexity.

the algorithms reported in the literature depend on total number of joint variables
n, irrespective of the type of joints present in the system. Hence, number of
links to be treated in the algorithm is equal to the number of joint variables,
whereas in the algorithm presented here it is equal to number of joints. As a
result, algorithms perform much faster when a system has multiple-DOF joints.

6.3 Computational Efficiency 113

Table 6.10 Summary of computational counts for the & link

Inverse dynamics Forward dynamics

94M82A + 22M14A(g-1) 135M131A + 63M53A(ek-1)

Joint type Joint type

1-DOF 2-DOF 3-DOF 1-DOF 2-DOF 3-DOF
g =1 g =2 g =3 g =1 g =2 e =3

Count per joint ~ 94M82A 116M96 138M110A 135MI131A 198MI184 261M237A
(CPJ)
Countper DOF ~ 94M82A 58M48 46M362A4 135MI31A 99M92A 87TM79A
(CPJ/ &)

Table 6.11 Computational complexity of recursive O(n) inverse dynamics algorithm for fixed-
base systems

Gripper Industrial robot Biped
Computational nm=4n=0,n=06n=0n=2n=4
Algorithms complexity m=0,n=4 n3=0,n=6 n3=6n=12
Proposed (94n; +58n,4+46n;—81)M 295M253A 615M497A 615M497A
(82n;+48m,+362n;—-75)A
Balafoutis and (93n-69)M(81n-65)A 303M259A 1047M907A 1047M907A
Patel (1991)
Angeles et al. (1051-109)M(90n-105)A 31IM255A 1151M957A 1151M957A
(1989)
Saha (1999b) (120n-44)M(97n-55)A 436M333A 1396M1109A 1396M1109A
Featherstone (130n-68)M(101n-56)A 452M348A 1492M1156A 1492M1156A
(1987)

Note: (1) M: Multiplications/Divisions, A: Addition/Subtraction; (2) n =n; + n + ns.

This is evident from Figs. 6.15 and 6.16. Figure 6.15 shows comparisons of
computational complexities for the inverse dynamics algorithms, when the system
consists of only 1-DOF (Fig. 6.15a), 2-DOF (Fig. 6.15b), 3-DOF (Fig. 6.15¢), and
equal numbers of 1- 2- and 3-DOF joints (Fig. 6.15d). It may be seen that the
inverse dynamics algorithm performs as fast as the fastest algorithm available in the
literature when the system consists of only 1-DOF joints, as shown in Fig. 6.15a.
However, when multiple-DOF joints are introduced in the system the algorithm out
performs the algorithms available in the literature and significant improvement in
the computational efficiency can be obtained as seen in Figs. 6.15b, c, d.

From Fig. 6.16, it is clear that the forward dynamics algorithm performs better
than any algorithm available in the literature. More the number of multiple-
DOF joints more the improvement in the computational efficiency, as shown in
Fig. 6.16¢,d. This is mainly due the implicit inversion of the GIM using UDU”
decomposition and simplification of the expressions associated with the multiple-
DOF joints. Moreover, many of the computations required for the evaluation of the
elements of U need not be repeated while performing the calculation of U”. As a
result, a computer code developer can combine many steps to enhance efficiency. In

114 6 Recursive Dynamics for Fixed-Base Robotic Systems

Table 6.12 Computational complexity of recursive O(n) forward dynamics algorithm for fixed-base
systems

Gripper Industrial robot ~ Biped
Computational m=4nmn=0 n=6n=0 n=2n=4
Algorithms complexity n=0,n=4 n=0,n=6 n=6,n=12
Proposed (135n;+99n,+87n3—116)M 444 M 401A 1072M981A 1072M981A
(131n;+92n,+793n3—123)A
Mohan and (173n-128)M(150n-133)A 564 M 467A 1948M1667A 1948M1667A
Saha (2007)
Saha (2003) (191n-284)M(187n-325)A 480 M 423A 2008M1919A 2008M1919A
Featherstone (1991-198)M(174n-173)A 598 M 523A 2190M1915A 2190M1915A

(1983)
Lilly and Orin (£ 4 103n% +405n —51)M 305 M 275A 2377MISSSA 2377MI855A
(1991) in® 4+ 7n® +503n — S1A

Proposed ===== Balafoutis =**=======" Featherstone ===+ ="~ Angeles
a b
10000 1 . 10000 1
8000 8000 1
[23 [2]
S €
3 3
O 6000 A O 6000 A
] T
c [=
S g
£ 4000 4 £ 4000 A
> >
o o
£ £
Q Q
O 20004 © 2000 1
0 0
0 10 20 30 40
Joint variables (n)
c d
10000 1 10000 1
8000 - g 8000 1
[} [2]
< €
g =]
8 6000 1 8 6000
S 4000 S 4000 1
2 3
£ £
Q
O 2000 4 © 2000 1
0 0
0 10 20 30 40 0 10 20 30 40
Joint variables (n) Joint variables (n)

Fig. 6.15 Performance of the proposed inverse dynamics algorithm for a system with multiple-
DOF joints. (a) All 1-DOF joints. (b) All 2-DOF joints. (¢) All 3-DOF joints only. (d) Equal
number of 1-, 2- and 3-DOF joints

6.4 Summary 115

Proposed ===—=—=— Mohan and Saha ~ ========== Feather stone ===-=-= Lilly and Orin

4

4 x 10
a 2_x10 b

-
o
~

Computational Counts
Computational Counts

&
~

1.54

Computational Counts
Computational Counts

0 10 20 30 40
Joint variables (n) Joint variables (n)

Fig. 6.16 Performance of the proposed forward dynamics algorithm for a system with multiple-
DOF joints. (a) All 1-DOF joints. (b) All 2-DOF joints. (¢) All 3-DOF joints only. (d) Equal
number of 1-, 2- and 3-DOF joints

the tree-type robotic systems, such as biped, quadruped, etc., where the DOF of the
system is more than 30, and the system consists of many multiple-DOF joints, the
proposed algorithms significantly improves the computational efficiency.

6.4 Summary

In this chapter, efficient recursive inverse and forward dynamics algorithms are
presented for open-chain tree-type robotic systems consisting of multiple-DOF
joints. The algorithms are applicable to any serial or tree-type systems. The
proposed algorithms performed better or as good as the fastest algorithm present
in the literature when the systems consisted of only 1-DOF joints. However, with
multiple-DOF joints in a system the algorithms performed much better. Several
systems like robotic gripper, a serial manipulator, and spatial biped were analyzed
using the recursive algorithms.

Chapter 7
Recursive Dynamics for Floating-Base Systems

Robotic systems studied in Chap. 6 have their bases fixed, however, in reality many
robotic systems have their bases mobile or floating. In the case of a fixed-base
robotic system, the base does not influence the dynamics, whereas it significantly
influences the dynamics in the case of a floating-base robotic system. Space
manipulators and legged robots are examples of floating-base robotic systems.
Legged robots find applications in maintenance task of industrial plants, operations
in dangerous and emergency environments, surveillance, maneuvering unknown
terrains, human care, terrain adaptive vehicles and many more. In the case of legged
robots they are either classified based on the number of legs, e.g., biped, quadruped,
hexapod, etc., or the way it balances, e.g., statically or dynamically balanced. As
reviewed in Chap. 2, legged robots (1) have variable topology, (2) move with high
joint accelerations, (3) are dynamically not balanced if Center-of-Mass (COM)
moves out of the polygon formed by the support feet, and (4) are under actuated.
Hence, objective of achieving stable motion is difficult to decompose into actuator
commands. Therefore, control of legged robots is intricate and dynamics plays vital
role in achieving stable motion.

As mentioned above, legged robots have variable topologies. One approach
for their dynamic analyses is to have separate dynamic models for different
topologies or configurations as shown by Shih et al. (1993), Raibert et al. (1993),
Ono et al. (2001) and others. For example, when one foot of a biped is on the
ground it can be treated as a fixed-base tree-type system, as analyzed in Chap. 6,
whereas it is as a closed-loop system when both the feet are on the ground.
Such configuration-dependant dynamic analysis is inconvenient when the system
has many configurations, which are frequently changing as the robot walk. An
alternative approach is to treat a biped or a quadruped as a floating-base system
as proposed by Freeman and Orin (1991), Ouezdou et al. (1998) and Vukobratovic
et al. (2007). In this approach, a foot touching the ground is a contact rather than
fixed as in the configuration-dependant approach of Chap. 6. Hence, it may be
referred to as the configuration-independent approach. The latter approach is more
generic and helps in modeling legged robots in a unified manner, which is presented
in this chapter.

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 117
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 7,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_2
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6

118 7 Recursive Dynamics for Floating-Base Systems

Contact problem for configuration-dependent approach is essentially to solve
the kinematic constrains together with the equations of motion. In this approach,
a single point contact is assumed and the contact remains fixed during the support
phase, which is however not valid in reality. On the contrary, contact problem for
configuration-independent approach can be divided into three categories, viz., (a)
analytical, (b) impulse-based, and (c) penalty-based. Analytical method of contact
formulation (Baraff 1994; Stewart and Trinkle 2000; Lloyd 2005) involves equality
and inequality constraints, and solution of constraint forces is an optimization
problem. This approach is useful when the contact environment is composed of
small number of objects of relatively simple shapes. Presence of friction makes
analytical approach quite complex. In the impulse-based method (Mirtich and
Canny 1995), the contact between bodies is modeled as collisions at points. Impulse-
based contact has limitation, particularly, when the objects have continuous or
stable contacts. In penalty-based approach (Bogert et al. 1989; Gerritsen et al.
1995; Marhefka and Orin 1996; Nigg and Herzog 1999), the constraint forces at
the contact points are modeled by the deformation of linear or nonlinear visco-
elastic model and its time derivatives. Penalty base approach, however, requires
precise integration with refined time steps during collision. Recently, Yamane and
Nakamura (2006) and Drumwright (2008) showed that the penalty based approach
can be used to obtain fast and stable simulations.

It is worth mentioning that the number of Degrees-of-Freedom (DOF) of legged
robots is generally high. For example, a humanoid robot has 40 DOF, as shown
by Yamane and Nakamura (1999). Moreover, motion of the legged robots is
very complex. Hence, the role of recursive dynamics, which leads to efficient
algorithms for systems with many DOF, is inevitable for trajectory planning and
control of such robots. Recursive algorithms are also known to provide numerically
stable simulation results and thus make the prediction of a robot’s motion more
realistic.

The main objective of this chapter is to present dynamic analyses of several
legged robots, which have spatial joints, e.g., a spherical or a universal joint, in
addition to the revolute joints. In this chapter, a legged robot is considered as a
floating-base system with intermittent contact of feet. The penalty-based contact
modeling is used to take into account the intermittent foot-ground interaction. The
concept of kinematic modules introduced in the Chaps. 4 and 5 is used to obtain
efficient algorithms for recursive dynamics of the floating-base robotic systems like
biped, quadruped and hexapod consisting of multiple-DOF joints.

7.1 Recursive Dynamics

Recursive dynamics of a floating-base robotic system, e.g., a legged robot, is
important due to following reasons: (1) The DOF of the robot is as high as 40 or
more.; (2) system consists of many multiple-DOF joints; (3) The inverse dynamics

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5

7.1 Recursive Dynamics 119

problem also requires solution of differential equations for the base motion; and (4)
The foot-ground interaction inherently consumes substantial time for computation.
As aresult, the use of recursive algorithms outperforms all other methods for solving
the problem of dynamics. Two dynamics algorithms are presented next.

7.1.1 Inverse Dynamics

In contrast to the fixed-base robotic systems, inverse dynamics problem of a floating-
base system involves solution of the accelerations for floating-base, followed by the
computation of the joint torques. Therefore, in order to solve the inverse dynamics
problem, the equations of motion given by Eq. (5.12) are rewritten after separating
the floating-base accelerations, (fo, from the joint accelerations, (g, i.e.,

R o
[Ieo Ip | Lde T hy @.1)

where I is the 6 x 6 matrix associated with the floating base, I is the n x n matrix

_ T
associated with the rest of the tree-type legged robot, and Iyy = [Iio e Iio] is

. . =T el — —T T
the n x 6 matrix. Moreover, qg = [ql qs] and Ty = [rl ---rs] are the
n-dimensional vectors and [hg hg] =h = Cq— tF is the (n + ny)-dimensional
vector.

The inverse dynamics of the legged robot is then formulated by using Eq. (7.1) as

(j() = —Ialflo, where ﬁ() = Igoiie + h()
t9 = Ipoqo + ﬁ@, where flg = Ipqg + hy (7.2)

It is evident from Eq. (7.2) that the inverse dynamics of a floating-base legged
robot involves the solution of accelerations for the floating-base, o, followed by
evaluation of the joint torques, tg, by using the algebraic equations. The above
calculations are done using following three steps:

Step 1: Computation of t,t’, and w* = (Mt' + MEt) — w’

Step 2: Computation of h = [h] ﬁg]T = NINTw*. 1, Elnd Igo

Step 3: Computation of ¢y = —Ialho and Tty = Igoqo + hg

where t' is the generalized twist-rate vector while §o = 0. The algorithm to

compute the above three steps require inter- and intra-modular recursions, that are
explained next.

http://dx.doi.org/10.1007/978-94-007-5006-7_5

120 7 Recursive Dynamics for Floating-Base Systems

Step 1: Forward recursion: Computation of t’, t, and w*

In this step, the generalized twist t, twist-rate t’, and wrench w* are calculated.
Inter- and intra-modular computations involved are shown below:

A. Inter-modular computations:
For module M,

Eo = Noao,i/o = NOaO +p
W; = Moi /0 + §0MOE0i0 — W(I; (7.3)

Formodule M; i=1, ...,5s)
t = A ptg, + Niﬁi
t'; = Aipts + Aipt's + Niq; + Niq;

Wl* = M,’i/i +§iMiEiti _WiF (74)

Intra-moduler steps for the above inter-modular steps are given next.
B. Intra-modular computations:
For floating base #0

to = Poqo. t'o = Pogo + p
wi = Mot'g + 2MoEoty — wi (7.5)

In Eq. (7.5), the vector p = [07 g”]”, where ‘g’ is the 3-dimensional vector due
to gravitational acceleration, has been added to the acceleration of the floating-base
to take into account the effect of gravity on the links. Moreover, t' is the twist-rate
of floating-base, when ¢y = 0.

For link #&' (k' =1/, ..., n")
Forj =1:¢
t, = Arptoy,, + Pi; 0k, J = 1
=tge, + 0,0, > 1
t;ﬁ - Ak'ﬁt;3<kj> +Akﬁtﬂ(k,~> + R, ékj + Pk,-ékj,j =1
= t;ﬂk,) + Slkjpkjék,- + Pk,-ék,-, j>1

* .
wkj:O, J <ek

=Myt + M Bt —w(, = (7.6)

where = (k—1), for k> 1.

7.1 Recursive Dynamics 121
Step 2. Backward Recursion: Computation of ﬁ, Iy and Iy

Having the results of Step 1 available, this step computes h, Iy and Ig, with the
help of another set of inter- and intra-modular steps given below:

A. Inter-modular computations:
For module M; (i=s, ..., 1)

= ~ = = — -T ~
h; =N, w;, wherew; =W, + E AW,

J €E;
ﬁi = K,-Y: OK, where K; = ﬁiﬁi
and M, = M, + A M;A (7.7)
J €t
Wher§ g, stands for array of the children of module M;. Morgover, v;v,- = Wi*

and M; = M; if §; = {}, i.e., having no children. In Eq. (7.7), M; represents the
mass matrix of the i composite-module which is defined in Eq. (5.19).
For module M,

= =T~ ~ —x -1 ~
hy = N, Wy, where Wy = W, + E AW,

J €&
1070 = Kgﬁo, where Ko = M()N()
=~ — T = —
and M() = M() + Z Aj’OMjAj’() (78)
J €&

The above inter-modular steps require the following sets of intra-modular
computations.

B. Intra-modular computations:
For link #k' (k=1n', ..., 1)

For j = ¢...1

hkj = p]fj\'kaj, where ij = WZI, + Z AIT,kW[,j =g,k = ni
€k ;)

T o« - ‘
= WZ, + A Wk,] = Bk k<
= VNijJrl,j < &

(7.9)

~ T v
Ki, = Ak’oxkj, where Ki, = Mkjpkj

andej =My, + Z AIT,kMIA[,k,j =g k=1

€k ;)
= My, + AL M, Akt J = ek <

ZMkH_l,j < €

122 7 Recursive Dynamics for Floating-Base Systems
For floating base #0
hy = PgWO, where Wy = W + ZA{OW,
ek,
Ioo = KI'Py, where Ky = MyP,
and My = Mo + Y~ AJ(M/Ag (7.10)
L€k

Step 3. Forward recursion: Computation of o and <

In this step, ¢o, and < are obtained by using the following inter- and intra-modular
computations:

A. Inter-modular computations:
For module M,

2o —1=
qo = _Io,ohO
Q) = Nog, (7.11)
For module M; (i=1, ..., s)
T =K'G, +hy (7.12)

It is worth noting that in Eq. (7.12), ﬁiTﬁO = (NiTﬁi Aio) (Noﬁo) = i,-,oﬁo where
— = — —
ILO = Tqi hdi[\horqo.
B. Intra-modular computations:
For floating base #0

do = —I;oho
qo = Podo (7.13)

For link #&' (Fork=1, ...,)

Forj =1:¢

Tdo + hi (7.14)

Once again in Eq. (7.14), E]Z(]o = (p,{MkAk,o)(Poijo) = I; oo where I,) =
pZMkAk,OPO. It may be noted that the inter-modular steps are nothing but the
compact representation of the intra-modular steps. For example, the expression for
T in Eq. (7.14), fork = 11 R Qi, is obtained after writing T; in Eq. (7.12) in terms
of the block elements of K; and h;. Hence, they are equivalent.

7.1 Recursive Dynamics

123

Table 7.1 Recursive O(n) inverse dynamics algorithm for floating-base robotic systems

Step 1: Compute: t;, t’,-, and w7

Step 2: Compute: /;j and M

Step 3: Compute: {o and 7

i=0k=0,=0
to = Poqo

t'o =Podo + p

Ago =1

wo™ = Mot'o + RoMoEoto — wl
Wy = wg,Mo =M,
Fori = 1 : s (Inter-modular)
Fork = 1: 7 (Intra-modular)
r = 1 (Joint level)
j=Jj+1
t; = Apsts, +p;0;
;= Arpt's, + Arpts, +
2,p;0; +p,0;
Aro = Ak pAro
W; =0M; =0
Forr =2 : g
j=i+1
t; =t +p,6
vy =t 1+ ;0 +p;0
Aro = Axp
W, =0M; =0
end
Wi =Mt + @ MEct; —wh
W = WZ,M]- = My
end

end

j = DOF

Fori = s : 1 (Inter-modular)

i=0k=0,j=0

do = _Ia(} hy

For k = 5’ : 1(Intra-modular) qo = Podo

For r = g; : 2 (Joint level)

call function_1

W, =W,

Mﬂj = M}'

j=i-1
end

r = 1 (Joint level)

call function_1

Wp, =W, + A/{.ﬁvv/’

Mg, = Mg, +A[,M;A;
j=j-1

end

end

i=0k=0,j=0

hy = P o,
Ko = MoPy
Ino = K] P,
function_1
hy =p]W,
k; =M,;p;

- T
kKj = Agokj

Fori = 1 : s (Inter-modular)
Fork = 1: 7 (Inter-modular)
Forr = 1 : g (Joint level)
j=i+1

T = EJT(N]O +h;
end
end

end

The algorithmic implementation of the above steps is shown in Table 7.1. The
computational counts for the various steps in Table 7.1 and a detailed comparison of
the inverse dynamics algorithm with those existing in the literature will be provided

in Sect. 7.5.

124 7 Recursive Dynamics for Floating-Base Systems
7.1.2 Forward Dynamics

Main objective of the forward dynamics is to find independent joint accelerations
for a given set of actuator torques, which are integrated twice to obtain the joint
velocities and positions. In order to perform the forward dynamics, the equations of
motion obtained in Eq. (5.12) are rewritten as follows:

I =t —h, whereh = Cq— 1t/ = N/N/w* (7.15)

where w* = (Mt' + MEt) — w’. In contrast to the inverse dynamics algorithm,
where t’ corresponds to the twist-rate when {o = 0, here, t’ corresponds to the twist
rate when (o = 0. Similar to the forward dynamics of a fixed-base system proposed
in Sect. 6.1.2, the accelerations of the floating-base system are solved recursively
following the UDU” decomposition of the GIM given by Eq. (7.15). Based on the
block UDU” decomposition of the GIM, the equations of motion, Eq. (7.15), are
presented as

UDU G=t—h (7.16)

where U and D are the (n+ ng) X (n+ ng) block upper-triangular and diagonal
matrices, respectively. It may be noted that vector h can be obtained by using the
inverse dynamics algorithm of Sect. 7.1.1. However, the use of inverse dynamics
for the computation of h is not computationally efficient as it involves computation
of the terms associated with GIM, i.e., Mk and I . On the contrary, here, h is
computed efficiently together with the computation of the joint accelerations. Next,
the generalized acceleration, q, is calculated by using three sets of linear algebraic
equations, namely,

(i) Uy =t —h, where § = DU g

(ii)) D§ = @, where = UT g

(i) UTg= ¢ (7.17)

Equations (7.16) or the above steps actually require inter- and intra-modular
recursions as given next.

Step 1. Forward recursion: Computation of t, t’, and w*

This step has similar inter- and intra-modular recursions as shown in step 1 of
the inverse dynamics algorithm given in Sect. 7.1.1. However, here t’ corresponds
to the generalized twist-rate when q = 0.

Step 2. Backward recursion: Computation of @, and @

In this step, ¢ and @ are obtained using backward substitutions based on inter-
and intra-modular recursions, which are given below:

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_6

7.1 Recursive Dynamics 125

A. Inter-modular computations:
For module M; (i=s, ..., 0)

0 ﬁi =7 —NiT(ﬁ,. + W), where, ﬁi = iniﬁj,and
. _ J€E;
ﬁj = ‘I’j@ + (ﬁj +Wi*) (7.18)
~ ~—1 A
(i), =1 @

In Eq. (7.18), ﬁi and W; are the 6n'-dimensional vectors, and ﬁi =0,if &, = {}.
Also, W, is added to W; in order to take into account the effect of h, appearing in

Eq. (7.17). Moreover, I and E,- are already obtained in Egs. (5.34) and (5.35),
respectively. Intra-modular computations for the above step are carried out as
follows:

B. Intra-modular computations:
For link #k' (k=1n', ..., 1)

For j = ¢g...1

() ¢, =, — L, (fy, + Wi,), where §,, = Y " Afym;,j = ek =1
1€k

= Alp M, = ek <1f
andn;, = V¥,¢r + (i, + w))
= W, —P/{,ﬁkj» where i, =m;, | J <&
and g =V G+ (7.19)
(i) @x; = @k, /mx;
For floating base #0
() G = to —Pg (il + Wp).

where 1), = ZA{0n17 andn;, =¥, ¢, + (0, + W;k) (7.20)
IS

(i) o =I5 ¢y

126 7 Recursive Dynamics for Floating-Base Systems

Step 3. Forward recursion: Computation of ¢

Finally, the generalized independent accelerations () are computed using inter-
and intra-modular steps, which are given below:

A. Inter-modular computations:
For module M,

qQ = 9 (7.21)

For module M; (i=1, ...,5s)

= =T~ = - —
q =¢; — ¥, 1, where p; = A gy,
and Wy = Np, g + W, (7.22)
in which w; and ﬁ, are the 6n'-dimensional vectors. Intra-modular computations
for the above step are given next.

B. Intra-modular computations:

For floating base #0

G = 9 (7.23)

For link #k' (k=1, ..., n)
Forj =1:¢
ék‘/- = @y, —ng iy, where i, = Ak,ﬂlkﬁ(kj),j =1
=W, > 1
and wg, = Ppu,, Op,) + kg, (7:24)

In the above step Sy = (k— 1), for k> 1.

It may be noted that the derivation of the intra-modular steps from the inter-
modular steps are not straightforward as in the case of ipverse dynamics. This
essentially requires analytical U;D; U’ decomposition of I;. Next, writing ﬁ, of
Eq. (7.22) in terms of the block expressions of 6,- , W, and IL;, the expressions of Ok,
fork=1, ..., ni, as in Eq. (7.24) are obtained.

Algorithmic implementation of the recursive forward dynamics is shown in
Table 7.2. Computational counts of different steps in Table 7.2 and comparison of

the forward dynamics algorithm with those existing in literature will be provided in
Sect. 7.5.

7.1 Recursive Dynamics 127

Table 7.2 Recursive O(n) forward dynamics algorithm for floating-base robotic systems

Step 1: Compute t, t', and w™ Step 2: Compute ¢y and ¢ Step 3: Compute I
i=0k=0j=0 j = DOF i=0k=0,j=0
to = Poqo Fori = s : 1 (Inter-modular) Go = 9
t'o = RoPoGo + p Fork = n' : 1 (Inter-modular) Ry = PoGo
wi = Mot'o + oMoty — w(For r = & : 2(Joint level) Fori = 1 : s (Inter-modular)
M, = M, call function_2 For k = 1 : n° (Intra-modular)
Fori =1 : s (Inter-modular) ¢, =1 — p/Tﬁ/ r = 1 (Joint level)
Fork = 1: 7' (Intra-modular) ;= ¢;/m; j=j+1
r = 1 (Joint level) M, =1\A/[j—{l}]_\|,/T, i, = Acpig;
J=Jj+1 n, =0, call function_4
tj = Agpts, +pjéj 1\7[]._1 =1\A/[j.j Forr =2:¢
t; = Ak-ﬁt,ﬂj +Ak-ﬁtﬂj M=y j=i+l
+2,p,0; J=i=1 By = by
M}_ =0 end call function_4
Forr =2 :¢ r=1 end
j=Jj+1 call function_2 end
t; =t +p0; o=v-pj@;+w) TTTTT T
()=t + 2,056, b = b/ Fanction.4
M, =0 M, =N, — ¥, ¢! 0 =8, = VY],
end n; =V;¢; +@; +w) w =0+ ik
Wi =Mt'; + ;M Eit; —wh Mg, = My, + Al M, ;A p
M, = M fig, =g, + ALy,
end j=j—1
end end
end

i=0k=0,=0
¥o = MoPy

io = Pg‘i’o

=10~ Pg(ﬁo +wg)
6= io_] o

function 2

v, = 1\A/Ij Pj

128 7 Recursive Dynamics for Floating-Base Systems

The recursive algorithms for inverse and forward dynamics of floating-base
systems are implemented in MATLAB. These form the sub-modules of Recursive
Dynamics Simulator (ReDySim). The ReDySim has been used for the analysis of
floating-base systems presented in this chapter. Detailed discussion on ReDySim is
provided in Chap. 10.

7.2 Biped

There have been significant contributions in the fields of dynamics, control, and
gait planning of biped robots over the last two decades. Research in the area of
biped walking can be categorized into active (Sakagami et al. 2002; Kuroki et al.
2003; Kurazume et al. 2003; Kaneko et al. 2008) and passive walking (McGeer
1990; Collins and Ruina 2005; Wisse et al. 2005). Active walking further can be
categorized into static and dynamic walking. In static walking, Center-Of-Mass
(COM) remains within the convex hull of the support feet, whereas in dynamics
walking, Zero-Moment-Point (ZMP) (Vukobratovic et al. 1989) stays within the
convex hull. Concept of the ZMP has played a significant role in achieving dynamic
walking for biped. The ZMP-based walking pattern generation of a biped can mainly
be divided into two. In the first approach, walking pattern is obtained from the
equation of the ZMP, as shown by Hirai et al. (1998), Yamaguchi et al. (1999),
Kagami et al. (2002), and Huang et al. (2001). Trajectory generation with the
help of equations of ZMP results into computationally expensive procedure as it
is a problem of solving complex differential equations involving many dynamic
parameters. Second approach is based on the Inverted Pendulum Model (IPM), as
shown by Kajita and Tani (1991). This approach assumes that the mass of the biped
is concentrated at the hip. The IPM based trajectory generation is much simpler
and relies on the feedback control. It has been successfully implemented to attain
dynamic walking by Park and Kim (1998), Kajita et al. (2003), Harada et al. (2004)
and Morisawa et al. (2005). The discussion on ZMP and trajectory generation for
a 3-dimenisonal walk using IPM is provided in Appendix B. In this section, an
IPM based trajectory is used to obtain planar and spatial bipedal dynamically stable
walking. In contrast to the work by Park and Kim (1998) and Kajita et al. (2003),
where a controller plays the major role in achieving the stable gait, here, the input
joint torques are obtained purely based on the inverse dynamics model of the biped
robot under study.

Note that a biped negotiates three topologies, viz., double support, single support,
and flight, during different phases of its walking or running. Analysis of biped
dynamics may be either configuration-dependent or configuration-independent.
The former approach uses different sets of equations of motion for different
configurations, while the latter uses a single set of equations of motion for the
complete dynamic analysis. Here, the configuration-independent approach, based
on the dynamics of floating-base systems presented in Sect. 7.1 is followed. For the
feet contact, penalty-based model, as shown in Appendix D is used.

http://dx.doi.org/10.1007/978-94-007-5006-7_10
http://dx.doi.org/10.1007/978-94-007-5006-7_BM1
http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

7.2 Biped 129

Module architecture

Fig. 7.1 A 7-link planar biped. (a) Module architecture. (b) Joint variables

7.2.1 A Planar Biped

In the configuration-independent approach, a floating-base is identified first. Know-
ing the motions of the floating-base, and other joint motions, dynamic analyses may
be performed. Figure 7.1 shows a 7-link planar biped. Trunk of the biped is assumed
to be the floating-base that forms module My, and two legs form modules M; and
M,, as shown in Fig. 7.1a. Note that the expression of the DeNOC matrices for
the system under study is obtained in Chap. 4, whereas the GIM, its inverse and
decomposition are shown in Chap. 5. The coordinates of the Center-of-Mass (COM)
(x05 Y0, z0) and the YXZ Euler angles (o, 89, Vo) are assumed to be the generalized
independent coordinates for the trunk #0, as shown in Fig. 7.1b. It is assumed that
the biped moves in a sagittal plane and hence xy, yo, and ¢y are the only variable
coordinates and others are constant. Moreover, 0,1, 6,1, 631, 0,2, 6,2, andfs are the
generalized coordinates associated with the joint variables, which are also shown in
Fig. 7.1b.

The length and mass of the links are taken as [y =0.5m, I;i = [, = [=
122 = 05m, 131 = 132 = 015m, moy = SKg, and mir = My = Mp2 = My2 =
1 Kg, and m31 = myp = 0.2Kg. The trajectories for the COM of trunk and the
swing foot are synthesized first. The COM trajectories are designed based on the
Inverted Pendulum Model (IPM), whereas the swing foot trajectory is defined as
cosine function. These trajectories are function of cycle time (T), co-ordinates of
COM x0(0), y0(0) and zo(0) at T =0, stride length (/;,) and maximum foot height
(h) which are synthesized in Appendix B. For the planar biped under study, T,
x0(0), y0(0), z0(0), Is, and hy are assumed as 1 s, —0.15, 0, 0.96, 0.3 and 0.1 m,

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

130 7 Recursive Dynamics for Floating-Base Systems

a
0.2 3
2
<> 0 o
1
-0.2 + 0
0 0.5 1 0 0.5 1
time (sec) time (sec)
b
0.5 0.2
0.1
<° 0 N
0
-0.5 + -0.1 +
0 0.5 1 0 0.5 1
time (sec) time (sec)

Fig. 7.2 Designed trajectories of the trunk COM and ankle of the planar biped. (a) Trunk’s COM.
(b) Ankle of the swing foot

respectively. The resulting trajectories of the COM of the trunk and the ankle of the
swing foot are shown in Fig. 7.2. The COM and feet trajectories are then used to
obtain the joint trajectories using the inverse kinematics relationships provided in
Appendix B. The joint trajectories thus obtained are shown in Fig. 7.3.

Recursive inverse dynamics algorithm derived in Sect. 7.1.1 is then used to obtain
the motion of the trunk and the driving toques for one cycle of the bipedal walking.
The motion of the trunk in Fig. 7.4 depicts that the biped travels distance of 0.3 m
in one second. During the waking cycle, variation of the angle g is found to be
3°, which is acceptable. The corresponding joint torques are shown in Fig. 7.5. The
torques are continuous in nature. However, the discontinuity appears after 0.83 s that
is due to the touchdown of the swing foot. This is evident from Fig. 7.6, where the
vertical and horizontal reactions for the swing and support feet are shown. The swing
foot touches the ground after 0.83 s. As a result, vertical reaction on foot changes
from O to 100 N and the horizontal reaction changes from 0 to —50 N. Two types
of ground models, namely, dusty-ground model and firm-ground, have been used
for modeling the foot-ground interactions. Biped walking is successfully achieved
using both the models, however the results are reported for the firm ground model.
The ground model ensures that the vertical reaction force remains always positive
throughout the walking cycle. Hence, ground never pulls the legs. Moreover, the
horizontal friction force was approximated by using a pseudo-Coulomb friction
model. Details of the ground models are provided in Appendix D.

http://dx.doi.org/10.1007/978-94-007-5006-7_BM1
http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

7.2 Biped 131

a
30 -25 120
8 20 8 8 110
o 10 iy ~ 100
D [« D
0~ -35+ 90 + T)
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)
b
40 -20 140
3 8 -0 8 120
e 20 o 53
z z z
N~ N~ -60 N ™ 100
D [«n) D
0~ -80 + 80 +
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)

Fig. 7.3 Joint trajectories of the planar biped obtained from trunk and ankle trajectories.
(a) Support leg (Module 1). (b) Swing leg (Module 2)

Deggned|
-80

by (degree)
o
o

) 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)

Fig. 7.4 Motions of trunk (Floating-base) of the planar biped. (a) xo (COM). (b) zo (COM). (¢) ¢o

Next, the forward dynamics is performed to simulate the motion of the biped
by using the torque obtained from the inverse dynamics algorithm. The recursive
forward dynamics algorithm given in the Sect. 7.1.2 was used to simulate the
biped shown in Fig. 7.1a. It is evident from Fig. 7.7 that the biped moves in the
forward direction (i.e., X) with stable periodic motion. Simulation results in Fig. 7.8
show that the biped follows all the desired joint trajectories without any feedback
control.

132 7 Recursive Dynamics for Floating-Base Systems

a
50 20 5
B 0 g 0 B
< z Z 0
e 50 & 20 S
-100 -40 -5
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)
b
100 100 50
€ 50 € 50 € 0 —r
< I < <
N 0 NN 0 N 50
5L -50 -100
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)

Fig. 7.5 Joint torques at different joints of the planar biped. (a) Support leg (Module 1). (b) Swing
leg (Module 2)

a
20 100
z 10 z
¥ ¥ 90
T 0 >
-10 4 : 0
0 0.5 1 0 0.5 1
time (s) time (s)
b
0 100
z 20 s
¥ ¥ 950
T 40 >
-60 T 0 T
0 0.5 1 0 0.5 1
time (s) time (s)

Fig. 7.6 Horizontal Reaction (HR) and Vertical Reaction (VR) on the feet of the planar biped.
(a) Support foot (Module 1). (b) Swing foot (Module 2)

7.2 Biped 133

Simulated ° Desired
a b c
0.2 1.4 -80 -
n
= =)
E 0 E 12%eee0eeeee® > o-o-n-o-m‘\o
L N Z
=
-0.2 1 -100
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)

Fig. 7.7 Simulated motions of trunk of the planar biped. (a) xo (COM). (b) zo (COM). (¢) ¢o

Simulated ° Desired
a 30 -25 120
8 20 8 g 110
= 10 g — 100
D > D
0+ -35+ T 90 + g]
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)
b
40 -20 140
3 8 4o 8 120
D [en) D
0~ -80 - g 80 +
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)

Fig. 7.8 Simulated joint motions of the planar biped. (a) Support leg (Module 1). (b) Swing leg
(Module 2)

7.2.2 Spatial Biped

In the previous subsection, dynamics of planar biped was studied, where all the
joints are 1-DOF revolute joints, however, a real-life biped, e.g., a human, has
many multi-DOF joints as shown in Fig. 7.9. The ankle, for example, allows 2-
DOF motion which can be modeled as a universal joint. Similarly, each leg at
the hip has a spherical joint, which may be modeled as Euler-Angles-Joints as
proposed in Chap. 3. The spatial biped in Fig. 7.9 has seven links and 18-DOF.

http://dx.doi.org/10.1007/978-94-007-5006-7_3

134 7 Recursive Dynamics for Floating-Base Systems

Module architecture

(15
CHO

Spherical joints at hips

Revote joints at knees

Universal joints at ankles

Z (Vertical)
2Y (Sidewise)

X (Forward)

Fig. 7.9 A spatial biped and its modularization

The biped is divided into three modules, as shown in Fig. 7.9. Inverted Pendulum
Model is again used to obtain the motion of the trunk, whereas trajectory of swing
foot is obtained as a cosine function. For this, T, x0(0), yo(0), z0(0), I, and hy are
assumed as 0.5 s, —0.15, 0.08, 0.92, 0.3 and 0.1 m, respectively. The trajectories are
designed to achieve dynamic walk of the biped with the forward velocity of 0.6 m/s.
The trajectories of trunk’s COM and swing foot are shown in Fig. 7.10. Note that
(x0, Yo, 20) represent the co-ordinates of the Trunk’s COM, i.e., Oy in Fig. 7.9, in
the inertial frame (O-XYZ), whereas (¢q, 0o, ¥ o) represent the YXZ Euler Angles
between frames O-XYZ and Oy-XoYoZo.

The desired joint trajectories, i.e., 0,1 = [911 9@ Hlé]T,Glé,Oy = [93} 93%]T,

0. = [91% 91% 91§]T ,03, and 03 = [93% 93%]”, calculated from the trunk
and feet trajectories using inverse kinematics relationships, are shown Fig. 7.11.
The length and mass of the links are taken as l[p=0.1 m, wo = 0.lm [} =
Iy =1l = 1lp = 05m, I3 = [p = 0.15m, my = 5Kg, and mjn =
my = mp2 = mp = 1Kg, and myi = m3z = 0.2Kg. It may be noted
that four points of the foot plane are monitored to check the status of contact
in contrast to two points as in the case of planar biped. This is outlined in
Appendix D.

Inverse dynamics of the biped was then performed to obtain the motion of the
trunk and the joint torques for given input joint motions. Figure 7.12 shows that for
the given joint motions the biped travels the distance of 0.3 m in 0.5 s in the forward
direction (i.e., X), whereas motion along Z remains unchanged. This happened due
to the assumption that the COM always maintains a specified height. The orientation
of the trunk represented in terms of Euler angles is limited to 2°. Corresponding
torques are shown in Fig. 7.13. It is worth noting that at touch down the joint torques

http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

7.2 Biped 135

a
0.2 0.02 2
1 4
& 0 > 0.01 N
0
-0.2 0 -1
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)
b
0.5 0 0.1
-0.02
><m 0 >sm Nm 0
-0.04
-0.5 -0.06 -0.1
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)

Fig. 7.10 Designed trajectories of the trunk’s COM and ankle of the spatial biped. (a) Trunk’s
COM. (b) Ankle of the swing foot

are smoother than that of the planar biped. This is mainly due to the spatial motion
of the biped and the presence of the multiple-DOF joints at the ankles and hips.

It may be pointed out that the single support phase of a spatial biped with the
same model parameters was also analyzed in Chap. 6. There, the biped was assumed
to be a fixed-base robotic system, where the foot is the fixed-base. For the sake of

. .. T T

comparison, the joint torques t;1 = [tli T rl%] L, Tol, T3l = [T3i ‘IZ3£] STz =
T T - .

[72 72 72] .tz and Ty =[7p 7] asshowninFig. 7.13 for the floating-base
. T T

system, may be compared with t31 = [13% 731 1’3%] ,Tol, Tyl = [fli ‘L’l%] , T2 =

T T
[72 72 72] .72, and vy = [z 73] given in Fig. 6.6 for the fixed-base
system. The comparison of the figures, namely, Figs. 6.6 and 7.13, leads to the
following observations:

* Joint torques for the swing leg match immediately after the lift-off and before the
touchdown.

* For the support leg, torques match at the hip and the knee, but torques at the ankle
differ. The difference in torques at the ankle is mainly due to the assumption of
the foot remaining fixed during the support phase.

* The dynamic modeling of the biped as a floating-base system not only gives rise
to unified approach to model different phases of motion but also allows one to
simulate the biped on a variety of surfaces just by changing the parameters of the
ground model.

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6

136 7 Recursive Dynamics for Floating-Base Systems

-90.5

©
2

1
61 1 (degree)
N o -
1
912 (degree)
o
o
o,
. <
1
613 (degree)
& N N
o o o

[¢)]
o
o
[¢)]

time (sec) time (sec) time (sec)

48

-

6; (degree)
1
93,1 (degree)
o
o o
o .
o |>
1
032 (degree)
&) EN
o o o

(9]
ot
o
(9]

46

44

42—

time (sec) time (sec) time (sec)

1 -88.5

9?1 (degree)
N o
02 (degree)
12
&
o © &
o (&)} [(e]
92 (degree)
13
IS &) N
o o o o

[S)
o
o
[S)
o
3
[S)
o
3

time (sec) time (sec) time (sec)

70 0
60

50 - -1

5 (degree)
02 (degree)
3,1
<)
o
92 (degree)
32
& Y EN
o o o

40 -1.5 -40

[S)
o
o
[S)
o
)]
o
o
o

time (sec) time (sec) time (sec)

Fig. 7.11 Joint trajectories of the spatial biped obtained from the trunk and ankle trajectories.
(a) Support leg (Module 1). (b) Swing leg (Module 2)

Forward dynamics was then performed with the values of the torques obtained
in inverse dynamics calculations. Simulated motions of the trunk are shown in
Fig. 7.14. Here, the attitude of the biped is uncontrollable after 0.1 s, as depicted
in Fig. 7.14b. Corresponding simulated joint angles are shown in Fig. 7.15 from
which it may be seen that the biped is unable to follow the desired trajectory after
0.1 s. This is attributed to the propagation of numerical errors in computation,

7.3 Quadruped 137

a
0.2
& 0 R ———— 1}
-0.2
0 0.5
time (sec) time (sec)
b
2
8 0 f——mmmzmmm—c: 3
& 5y
= =
< £
_4 r—
0 0.5

time(s) time(s) time(s)

Fig. 7.12 Motions of the trunk of the spatial biped. (a) Center-of-Mass. (b) Euler angles

which is expected for complex systems. In an actual system, it may not happen
if all parameters were identified accurately. However, in real systems inaccuracy is
inevitable due to the manufacturing errors in the components of the biped. Moreover,
many unmodeled phenomenon like backlash in the actuators, joint frictions, etc.
may lead to the deviation of the system’s behavior.

Hence, a system like the biped must be controlled. The issue of control will be
taken up in Chap. 9.

7.3 Quadruped

Apart from the biped robots, extensive research work in the field of quadruped
legged robots has been reported. Muybridge (1957) was first to present a systematic
study on different gaits of a quadruped horse. Later, Gambaryan (1974) provided
the detailed study of different gaits and mechanics of quadruped mammals. Raibert
(1990) used symmetry in quadruped motion and built a hydraulically actuated
quadruped. Inspired by the work of Raibert, Furusho et al. (1995), Kimura
et al. (1999), Ridderstrom et al. (2000), Marhefka et al. (2003) and Poulakakis
et al. (2006) built several quadruped machines. The major research in the field
of quadruped is on achieving dynamic walking and running. This work mainly
attempts dynamic walking of the quadruped. Early work on quadruped walking can

http://dx.doi.org/10.1007/978-94-007-5006-7_9

138 7 Recursive Dynamics for Floating-Base Systems

a
2 10 20
€ 1 € 5 € 10
£ £ £
= N @
A 0 A 0 A 0
-1 -5+ -10
0 0.5 0 0.5 0 0.5
time(s) time(s) time(s)
10 1 10
g 0 £ E
é £ o0 £ o
N -10 V_P; ‘_l—g
=20+ -1+ -10
0 0.5 0 0.5 0 0.5
time(s) time(s) time(s)
b
2 5 10
€ 1 = OL—r € 0
£ = £
- o 3
NS 0 \’\/L NS -5 NS -10
-1 -10 -20
0 0.5 0 0.5 0 0.5
time(s) time(s) time(s)

5 (Nm)
IS o
15, (Nm)
O. (4]
T;z (Nm)
o [6;] 8

0 0.5 0.5
time(s) time(s) time(s)

o
o
]
o

Fig. 7.13 Joint torque at different joints of the spatial biped. (a) Support leg (Module 1). (b) Swing
leg (Module 2)

be found in the reference of Miura et al. (1985). Buehler et al. (1999) presented
the open loop dynamic walking, where quadruped with one actuator per leg was
considered. The work done by Ridderstrom et al. (2000) mainly pertains to achieve
statically balanced gait where three feet always remain on the ground. Kurazume
et al. (2001) presented an adaptive attitude control scheme of a quadruped during
support phase. Later, Doi et al. (2005) presented quadruped walking on steep slope.

7.3 Quadruped 139

Simulated ====== Desired
1w -
————— L4
0.9
NO
0.8
0.7
0 0.5
time(s)
b
0 bl 100 0 e
0} 2 50 A
I [}
2 g 5 -200
@ -500 @ 3
S S o0 =Y~ =
> = = 400
-1000 ——m— 50— 600 ———
0 0.5 0 0.5 0 0.5
time(s) time(s) time(s)

Fig. 7.14 Simulated motions of trunk of the spatial biped. (a) Center-of-Mass (b) Euler angles

Here, the dynamic analysis of a spatial quadruped is reported based on trotting
gait, where diagonal legs move in synchronized manner. In order to study the
spatial behavior, a 9-link, 18-DOF spatial quadruped as shown in Fig. 7.16 is
considered. It has universal joints at the hips, whereas knees contain revolute joints.
The quadruped is divided into five modules, as shown in Fig. 7.16b. The Inverted
Pendulum Model (IPM) and cosine function were again used to attain the trajectory
of the COM of trunk and swing foot, respectively. For this, the cycle time (T), the
co-ordinates of COM x((0), yo(0) and zo(0), the stride length (/;,) and the maximum
foot height (/) are taken as 1 s, —0.15, 0, 0.5, 0.3 and 0.08 m, respectively. The
trajectory was designed to attain the forward velocity of 0.4 m/s. The trajectories
are show in Fig. 7.17.

. T
The desired trajectories at the joint levels, i.e., 81 = [Gli 915] ,0,,0 =

[62 6131 02,80 = [63 613165, = [6ys 641", and O, calculated from
the COM and the feet trajectories using inverse kinematics, are shown in Fig. 7.18.
The length and mass of the links were taken as [p = 1 m, [;1 = [= [p =
lp=l3 = lp = ljs = Iy = 03m, my = 4Kg, and my1 = my = mp =
My=mp = My = M = My = 1Kg.

Trunk’s motions were obtained from the joint motions using inverse dynamics
algorithm shown in Table 7.1. The motions of trunk are shown in Fig. 7.19. Note
that the given joint motions provide finer attitude control as the maximum change
in the Euler angles as seen in Fig. 7.19b, associated with trunk is limited to 2°.

140 7 Recursive Dynamics for Floating-Base Systems

a Simulated =====-= Desired
600 0 200
n n ©
2 400 Q o 0 =
g g 00T 28
s s - z
- 200 o~ o -200
= = R
0! 200 ——mMm88™ ™ 400 ——mMm ™
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)
150 500 400
< © 0
o 100 o 0 f -_—— 200
Y =] =)
@ [} [}
° z z
>, 50 ——— < 500 § O el
@ = =
o— -1000 ———mm™88™ ™ 200 ——mMm88 ™
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)
b
200 0 0
© n n
) 0 === o 2 200
g g - 2
= g 100 S
- -200 o~ « -400
D N N~
D [« [en}
400 ——mMm ™8 ™ 200 ——Mm88 ™ -600 °
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)
200 100 0 o
“
= n n ul
8 © o .50
g 100 g g
S = =
N\:\‘ S —‘~‘§ N = AR N g’ -100
S - =) =)
o —- S50 -150 °
0 0.5 0 0.5 0.5
time (sec) time (sec) time (sec)

Fig. 7.15 Simulated joint motions of the spatial biped. (a) Support leg (Module 1). (b) Swing leg
(Module 2)

The joint torques were then calculated for the prescribed trunk and joint motions.
Figure 7.20 shows joint torques at hip and knee for swing and support legs. The
discontinuity in the torque after 0.8 s is due to the touchdown of the swing legs.
The simulation was performed, based on the torques obtained in Fig. 7.20. The
forward dynamics algorithm used for simulation is presented in Table 7.2. The
variation of the COM of the trunk and the Euler angles are shown in Fig 7.21,
which depicts that the quadruped moves in the forward direction (X). It is unable

7.3 Quadruped 141

Trunk (Floating-base)

Feet Contacts

Fig. 7.16 A quadruped and its modularization

a
0.2 1 2
1
£ 0 < 0 N
0
0.2+] -1 -1 T
0 0.5 1 0.5 0 0.5 1
time (sec) time (sec) time (sec)
b 0.5 1 0.1
& 0 S0 N® 0.05
-0.5+ -1 0~
0 0.5 1 0.5 0 0.5 1
time (sec) time (sec) time (sec)

Fig. 7.17 Designed trajectories of the trunk’s COM and ankle of the quadruped. (a) Trunk’s COM.
(b) Ankle of the swing foot

to follow the desired trajectory after 0.8 s. Figure 7.22 shows the variation of the
joint angles, which also follow the desired trajectories till 0.8 s. Once again, the
deviation of the actual trajectories from the desired one is due to the propagation
of numerical errors. As discussed at the end of Sect. 7.2.2, these deviations may
not actually happen in real system if the quadruped is correctly modeled. However,
uncertainty is inevitable and a control strategy must be introduced, which is done in
Chap. 9.

http://dx.doi.org/10.1007/978-94-007-5006-7_9

142 7 Recursive Dynamics for Floating-Base Systems

a
-89 60 -55
= N <N
S5 S5 40 < -60
2 90 o o
° S, 20 65
-z 2 =
D D
9N 0 -70
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)
b
-89 1 60 -40
- N
mc\— 0‘)@\— 40 f")@N —60
2 .90 2 2
© @© ©
~ = «~ ﬁ 20 NCDN -80
D D
9+ 0 -100
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)

Fig. 7.18 Joint trajectories of the quadruped obtained from trunk and ankle trajectories.
(a) Support leg (Modules 1 and 4). (b) Swing leg (Modules 2 and 3)

a
0.2
E B]
- = e L Ly
e >
0.2+
0 0.5 1 0.5 1
time(s) time(s)
b
5
o g 0
° =)
s &
~ ~ -5
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)

Fig. 7.19 Motions of trunk of the quadruped. (a) Center-of-Mass. (b) Euler angles

7.3 Quadruped

a
5
E 0 E
£ £
- o
= 5 -
-10 +
0 0.5 1
time(s)
b
20
E 10 E
< <
- o
N‘_T 0 1 NP\—
-10 -
0 0.5 1

time(s)

20

i

0 0.5
time(s)

N

7, (Nm)

5 (Nm)

143

10
0
-10
0 0.5 1
time(s)
100
50 I
0 4
HOt—
0 0.5 1
time(s)

Fig. 7.20 Joint torques at different joints of the quadruped. (a) Support leg (Module 1). (b) Swing

leg (Module 2)

Simulated ====== Desired |

a
0.2
2 OI/ %
>
-0.2+
0 0.5 1
time(s)
b
15
o 10 0
o o
g 5 3
z =
s 0 _,’-\ =
-5+
0 0.5 1
time(s)

-0.1
0 0.5 1
time(s)
5
0 PR T
-5
10+
0 0.5 1
time(s)

2, (m)

\Vo(degree)

0.5 A
0.4
0 0.5 1
time(s)
5
-5
-10
0 0.5 1
time(s)

Fig. 7.21 Simulated motions of trunk of the quadruped. (a) Center-of-Mass. (b) Euler angles

144 7 Recursive Dynamics for Floating-Base Systems

a Simulated ====== Desired
-80 60
n n
o 2 40
()] (2]
3 S
- T~ 20
- =
0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)
b
-80 60 o -40
— — \\
3 8 B S
S 90 p——————mggm— g 40 o -60
) 9] o
= R=A °
- -100 ~ 20 ~w 80
oA oA @
10— 0 -100
0 0.5 1 0 0.5 1 0 0.5 1
time (sec) time (sec) time (sec)

Fig. 7.22 Simulated joint motions of the quadruped. (a) Support leg (Module 1). (b) Swing leg
(Module 2)

7.4 Hexapod

Dynamic analyses of a hexapod walking are carried out next to understand its
behavior by using algorithms presented in Sects. 7.1.1 and 7.1.2. For such systems,
tripod gait is the most popular one, where the triangularly placed legs move in
synchronization. Hence, if the COM of the hexapod remains within the polygon
formed by the support feet, the hexapod walking is statically balanced. Any
trajectory that follows the above condition will be able to achieve a stable gait.
However, this limits the speed of walking. Moreover, walking on rough terrain,
self-righting (Saranli et al. 2004), etc. lead to dynamic walking. Figure 7.23 shows
13-link 18-DOF spatial hexapod, where all the joints are assumed to be revolute. In
order to use the modular dynamics algorithm presented in this chapter, the hexapod
was divided into seven modules, as shown in Fig. 7.23b. Using IPM approach,
trajectory of the COM of the trunk was obtained in order to make the hexapod move
at a speed of 0.8 m/s. For this, T, x0(0), y0(0), z0(0), I, and hy are assumed as 0.5 s,
—0.20, 0, 0.55, 0.4 and 0.08 m, respectively. The trajectories of trunk‘s COM and
the ankle of swing foot thus obtained are shown in Fig. 7.24.

The desired trajectories at the joint levels, i.e., 011, 051, 0)2, 022, 013, 0,3, 014, 64,
015, 055, 016, and O,6, are shown in Fig. 7.25. The length and mass of the links were
takenaslp = 1m,lpn =y =lp=lp =l =l =ls=hs =15 =1y =
lie = e = 03m,mg = 4Kg, and my = my = mp = myp = mpy = my =
M4 = Mos = M5 = Mys = M6 = My = 1 Kg.

7.4 Hexapod 145

Trunk (Floating-bas¢€
- Zof™Ng
S b :

Fig. 7.23 A hexapod and its modularization

a
0.5 2 1
1
& 0 5 N0
0
-0.5 -1 -1
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)
b
0.5 1 0.1
& 0 ¢ 0 P————— © 0.05
-0.5 -1 0
0 0.5 0 0.5 0 0.5
time (sec) time (sec) time (sec)

Fig. 7.24 Designed trajectories of the trunk COM and ankle of the hexapod. (a) Trunk COM.
(b) Ankle of the swing foot

Inverse dynamics results are shown in Figs. 7.26 and 7.27. The motions of the
trunk (Fig. 7.26) show that the hexapod travels 0.4 m in 0.5 s in the forward direction
(X), whereas the orientations of trunk shown by Euler Angles vary within 0.3° only.
This shows that fine control over attitude of the trunk can be achieved by appropriate
selection of the parameters of the trajectory. Figure 7.27 shows that the joint torques
needed to achieve the desired motion of the trunk that was synthesized using IPM.
It is worth noting that for the given joint motions the joint torques are continuous,
and the tendency of discontinuity is much less pronounced in comparison with the
biped and quadruped even after the touchdown at 0.45 s.

7 Recursive Dynamics for Floating-Base Systems

146
a
-40 -20
‘0@‘_ Lnom
-60 -30
5 <~ N
80 @ 40
A X
-100 -50 -
0 0.2 0.4 0 0.2 0.4
time (sec) time (sec)
b
0 0
© © N
=] [e=]
° -50 he]
f c
© © -50
™ ™ N
<@ -100 @
N_— NN
(=] D
-150 + -100 -
0 0.2 0.4 0 0.2 0.4
time (sec) time (sec)

Fig. 7.25 Joint trajectories of the hexapod obtained from trunk and ankle trajectories. (a) Support
leg (Modules 1, 4 and 5). (b) Swing leg (Modules 2, 3 and 6)

Actual ====== Designed
a
0.5
E
> 0
-0.5
0
time(s) time(s) time(s)
b
m o n
o o <]
g 2 g
s ke °
£ & =

time(s) time(s) time(s)

Fig. 7.26 Motions of trunk of the hexapod. (a) Center-of-Mass. (b) Euler angles

7.5 Computational Efficiency 147

a
20 5
— 0 — 0
£
3 $
TS 20 5
40 -10
0 0.5 0 0.5
time(s) time(s)
b
20 20
g 0 £
£ £ 0
NS 20 At
-40 -20
0 0.5 0 0.5
time(s) time(s)

Fig. 7.27 Joint torque at different joints of the hexapod. (a) Support leg (Module 1). (b) Swing
leg (Module 2)

Like the other walking robots in the previous section, the motion of hexapod was
simulated for the joint torques shown in Fig. 7.27. Simulation results, in Fig. 7.28,
show that the hexapod moves in the forward direction (X), while its orientation
shown by the Euler angles deviate only at the end of the walking cycle. Similarly,
the hexapod is able to follow the desired joint angles with little variations at the end
as depicted in Fig. 7.29.

7.5 Computational Efficiency

Since recursive algorithms are well known for computational efficiencies when the
Degrees-of-Freedom (DOF) are many, it was decided to look into this aspect for the
floating-base system. Computational counts for different steps of recursive inverse
and forward dynamics algorithms of floating-base system, obtained in Tables 7.1
and 7.2, are shown in Tables 7.3 and 7.4, respectively.

The computational count for the recursive inverse and forward dynamics of the
kth link connected by a multiple-DOF joint is summarized in Table 7.5.

148 7 Recursive Dynamics for Floating-Base Systems

Simulated ====== Desired
a
0.2 0.02
0.56
E o E 0 . E o055
><O >? NO
0.54
-0.2 -0.02 0.53
0 0.5 0 0.5 0 0.5
time(s) time(s) time(s)
b
0.5
n <o 0.2 o 0.2
g .B 8
o 7 o 0 =~ 2 0
[Y/ [0) = (]
T ke 2
& 05 &£ 02 5 0.2
0.4 -0.4
0 0.5 0 0.5 0 0.5
time(s) time(s) time(s)

Fig. 7.28 Simulated motions of the trunk of the hexapod. (a) Center-of-Mass. (b) Euler angles

Based on Table 7.5, the computational count for the recursive inverse and forward
dynamics for floating-base system is obtained as

For inverse dynamics: (164n,+113n,4+96n3+60) M (156141 13n2+82§n3 +66)A

For forward dynamics: (2091, + 139%n2 + 116%n3 + 60)M(201n; + 1301, +
106513 + 72)A

where n1, ny and n3 are the total number of joint variables associated with 1-, 2- and
3-DOF joints, respectively. Next, the computational efficiencies for the inverse and
forward dynamics algorithms are compared in Tables 7.6 and 7.7, respectively, with
those available in the literature.

As expected, the computational complexities depend on the total number of joint
variables, n (=n; + ny + n3). As evident form Tables 7.6 and 7.7 and Figs. 7.30 and
7.31, the algorithms obtained are computationally more efficient than those available
in the literature. The efficiencies were mainly achieved from novel modeling of the
multiple-DOF joints proposed in Chap. 3. On this aspect, Yamane and Nakamura
(1999) showed that 40 DOF humanoid has 12 spherical joints and 4 revolute joints.
Each spherical joint can be represented as three intersecting revolute joints. Such
an approach will require one to have 41 links connected by 40 revolute joints. On
the contrary, the use of Euler Angles Joints (EAJs) in Chap. 3 treats each spherical
joint as three intersecting 1-DOF revolute joints, but no physical link between 1st
and 2nd, and 2nd and 3rd joints. As a result, only 17 links, instead of 41 links, are

http://dx.doi.org/10.1007/978-94-007-5006-7_3
http://dx.doi.org/10.1007/978-94-007-5006-7_3

7.5 Computational Efficiency 149

a Simulated =====' Desired
-40 -20
o 60 o -30
(@)} [}
(] (]
kel ke
. -80 < 40
D D
-100 -50
0 0.5 0 0.5
time (sec) time (sec)
b
0 50
& 50 . & 0
ao -100 aa 90

0
0

-150 -100

o
o
[¢)]
o
o
[¢)]

time (sec) time (sec)

Fig. 7.29 Simulated joint motions of the hexapod. (a) Support leg (Module 1). (b) Swing leg
(Module 2)

required for the analysis of the above-mentioned biped, which has 12 spherical and
4 revolute joints. This brings significant savings in the computational complexity.
Similar benefits were achieved in other walking robots reported in this chapter. This
was not possible in the work reported by Sugihara et al. (2002), Kurazume et al.
(2003), Vukobratovic et al. (2007), Kwon and Park (2009) and others.

It may be noted that biped, quadruped and hexapod analyzed in the previous
subsection contain different combinations of multiple-DOF joints, however, have
a total of 12 joint variables. Hence, the use of any existing algorithms for the
analysis will require the same computational counts as shown in Tables 7.4 and
7.5. However, with the use of the proposed algorithms the quadruped requires less
computational counts than the hexapod. This is due to the presence of universal
joints in the quadruped. Moreover, the biped requires even less computational
count than the quadruped, as shown in Tables 7.4 and 7.5, due to presence of
spherical joints. This is also evident from Figs. 7.30 and 7.31, where the slopes
for the systems with multiple-DOF joints are much less in both inverse and
forward dynamics. It is pointed out here that in contrast to the inverse dynamics
algorithm for fixed-base system, the same for floating-base systems requires some
additional computations, mainly, to compute elements of the Generalized Inertia
Matrix (GIM) as evident from Eq. (7.1). Computational counts for such inverse

150

7 Recursive Dynamics for Floating-Base Systems

Table 7.3 Computational count for recursive inverse dynamics of floating-base system

Forward recursion:

Counts Counts
For k = 0 (Floating-base #0)
1 to = Poqo = qo(Py = 1) -
2 Yo =Podgo+p = p@ = 0)
Ao =1 -
3 wr = Moty + oMoEoty — w(’; 24M30
VNVO = WE;, 1\7[0 = Mo
Fork= 1, r=1l:g;
Forr=1 For r =2:¢;
4ty =Arpts, +0;9; 8MS5A =t +p6, 4M3A
5t =Awpts + Aty 27M20A vy =t 1+ Q;p;0; 10M7A
+R,p;0; +p,9; +p,8;
6 Aro = ArpAgo Aro = Ao
[aO-k]j = QJT [aO-ﬁ(k) + aﬁ(k)vk]j—l SM7A [aO-k]j = QJT [ao-k]j—l 4M2A
For r=z¢; For r=1:(g,—1)
T w =0 +;6; 6MIA w; =0 OMOA
8 wp =Mt'; + @, MEt; —wi; 39M45 W, =0M; =0 OMOA
VNV,' = W:,M/ = Mk
Backward recursion:
For k=n:1, r = g;:1
Forr=1 For r=¢;:2
1 hy = p;W; %j =p;W,
hj =e/T»ﬁj - hj =e/T»ﬁj -
2k =M;p, kj =M;p;
Kt =ijej - Kt =ije,- -
jp =—@; x e; - jp =—@; x e; -
3 Ej=A50K/’ Ej=A50Kj
‘IE;'V}, =Kjh - .lej,b =Kjb -
o=k + [a{o]/x b 6M6A o=k + a{o]/n b 6M6A
4 W =W AL W 20M18A Wp, =W, SM4A
5 Mg =Mg, + A M;Ag 34M40A Mg, =M; 16M10A
For k = 0 (Floating-base #0)
6 ﬁo = PgGVO -
7 Ko = MyPy; Ipg = KIPy = M, -
Forward recursion:
For k = 0 (Floating-base #0)
1 do=—Ij ho 36M36A
2 qo="Pyq = qo -
Fork=1m, r=1:
Forr=1 For r =2:¢;
[, Q]
30 (G, = 16MSA [do], = SM4A
Q/[dos]; Q/[dos];
4 v =[] + hy 6M7A v =% [qol; + 6M7A
Total: (1) kth link 164M156A + 62M46A (e, —1)
(2) Floating-base (#0) 60M66A

7.5 Computational Efficiency 151
Table 7.4 Computational count for recursive forward dynamics of the floating-base system
Forward recursion
(In this step t;, t/j (9 ; = 0) and w; are calculated similarly as in forward recursion of inverse dynamics)
Counts Counts
For k= 0 (Base #0): to, t, and w;' 24M30A
For k= 1:n, r= 1:er
Forr=1: tj, ; and w,f T4M66A For r=2:¢; : tj, ; 14M10A
Backward recursion
Fork=n:1, r=¢g:1
Forr=1 Forr=sk'2
1 ‘I"—M/P/ - “"—M/P/ -
2 ;=0 - j=pj¥, -
3 =¥, /i, 5MOA =¥, /i, 4MOA
4 <7>j =1, —p (i, +w)) OM2A @, =1, —pjii; OM2A
5 (p, —(p,/m, IMOA (p, —(p,/m, IMOA
6 M,,_M -7 18M18A M“-—M -7 10M10A
7 =1, q>,+(n,+wk) 5M18A ! 1|IIAq>1+r|1 AM11A
8 M,g = M;; + AkﬁM”Akg 64M78A M;;J. =M;; 24M23A
9 fig, = AL, 20M12A fig, =, SM4A
Fork=0 (Floatmg base #O)
10 \uo = MOPO M, OMOA
11 i =PI¥, =¥, OMOA
12 &0 = 1o —P{ (o +w) OM6A
= —(p + W)
13 3o =174, 36M36A
Forward recursion
For k = 0 (Floating-base #0)
1 G = @, OMOA
2 o = Podo = qo
Fork=1m, r=1:g
Forr=1 For r =2:¢;
i = A s 20M12A = g, SM4A
9 =@; — \lf i; 5SM6A 19 =¢; — \lf it 4MS5A
5 |L/»=p,é +ik OMIA u,:pjé) +it; OMIA
Total: 1) kth link 209M201A + 70M59A (g,—1)
2) Floating-base (#0) 60M72A
Table 7.5 Summary of computational count for the kth link
Inverse dynamics Forward dynamics
164M156A+62M46A (g, —1) 209M201A+70M59A (g, —1)
1-DOF 2-DOF 3-DOF 1-DOF 2-DOF 3-DOF
g =1 g =2 g =3 g =1 g =2 g =3
Count per joint 164M156A 226M202 288M248A 209M201A 279M260 349M319A

(CP))
Count per DOF 164M156A 113M101 96M82§A
(CPJ/ey)

2090M201A 1393 M 1304 1165 M1063A

152

7 Recursive Dynamics for Floating-Base Systems

Table 7.6 Computational complexity of the recursive O(n) inverse dynamics algorithm for floating-base

systems
Biped Quadruped Hexapod
n1=2, n1=4, n1=12,
ny =4, ny =38, ny =0,
. . Floating M =6, m3=0, n3 =0,
Computational complexity base n=12, n=12, n=12,
Algorithms in terms of n=n; +ny +n3 WO‘Z 6 =6 =6 =6
Proposed (164n; + 113n; + 96n3)M 60M 1416M 1620M 2028M
(156n; + 113n; + 822n3)A 66A 13224 1594A 1938A
“Balafoutis and (93n — 69)M(81n—65)A+ 60M 3011M 3011M 3011M
Patel (1991) 3 66A 2222A 2222A 2222A
(105113 + 1ln — 42) M
Uy @ s4)a
a2,
2 2
“Featherstone (130n—68)M(101n—56) A+ 60M 3479M 3479M 3479M
(1987)
a 02310 — 41 ™M 66A 2644A 2644A 2644A
(6n*+40n — 46)A
Saha (1999b), (120n—44)M(97n—55)A+ 60M 3682M 3682M 3682M
Bhangale et al. 66A 27824 2782A 2782A
(2004) (11n2+42n — 18)M

(Tn*+44n — 53)A

Note: M Multiplications/Divisions, A Addition/Subtraction

2Complexity assumed as the computation of Recursive Newton Euler Algorithm (RNVEA) and Composite Rigid

Body Algorithm (CRBA) proposed by the same author

Table 7.7 Computational complexity of the recursive O(n) forward dynamics algorithm for
floating-base systems

Biped Quadruped Hexapod

ny =2, ny =4, n1=12,
m=4 n=8§ ny =0,
. . Floating 3= 6, n3=0, n3 =0,
Computational complexity base n=12, n=12, n=12,
Algorithms (n=n; +ny +ns) no =6 =6 ny=6 no =6
Proposed (209n; + 13950, 4 116503) M 60M 1430M 2008M 2568M
McMillan and (201n; + 130n; + 1063n3) A 66A 1624A 1910A 2478A
Orin (1998) (224mM 158M 2846M 2846M 2846M
(205m)A 131 2591A 2591A 2591A
Stejskal and (226m)M 158M 2870M 2870M 2870M
Valasek — (206m)A 131° 2603A 2603A 2603A

(1996)

McMillan (n + 17303 +1755n) M 137M 508IM 5081M 5081M
*(i?gg%rin (Ln® + 130 4+ 1602n) A 91A 4181A 4I81A 4181A

Note: (1) M Multiplications/Divisions, A Addition/Subtraction; (2) DOF = ny + n.
“When implemented on floating base systems

bAssumed same as that of McMillan et al. (1995) as both use articulated body algorithm

7.6 Summary 153

Proposed ===== Balafoutis ===*====** Featherstone =+=+ == Saha
a b
12 12]
€ kS
=3 p=}
Q Q
(&) o
© ©
[= =
kel o
© ©
=] 5
Q Q
£ £
Q Q
(@] o
0 10 20 30 40
Joint variables (n) Joint variables (n)
c d
x 10
3
25
[} [}
€ <
3 3 2
(@] o
g E
kel re] 1.5
© S
5 5
a a 1
€ €
8 8
0.5
0
0 10 20 30 40 0 10 20 30 40
Joint variables (n) Joint variables (n)

Fig. 7.30 Performance of the proposed inverse dynamics algorithm for a system with multiple-
DOF joints. (a) All 1-DOF. (b) All 2-DOF joints. (c¢) All 3-DOF. (d) Equal number of 1-, 2- and
3-DOF joints

dynamics algorithm for floating-base system are not found in the literature. Hence,
the computational count of the proposed inverse dynamics algorithms is compared
with the total computational count of Recursive Newton-Euler Algorithm (RNEA)
and Composite-Rigid-Body Algorithm (CRBA) proposed by the same author.

7.6 Summary

In this chapter, efficient recursive Order (n) inverse and forward dynamics algo-
rithms were presented for the analyses of floating-base robotic systems consisting
of multiple-DOF joints. Several important legged robots were analyzed using these

154 7 Recursive Dynamics for Floating-Base Systems

Proposed ===== McMillan =sssssssss Valasek =====-= McMillan
a b
2 -
2 £ 1.5
[= c
=3 3
Q Q
o o
g =
S s 1]
© ®
= 3
g g
8 8 0.5 1
0
0 10 20 30 40 0 10 20 30 40
Joint variables (n) Joint variables (n)
c d
x 10
2 -
2 2 1.5
(= c
=3 =3
Q Q
o o
© ©
s s
© ©
E} =]
g g
8 8 0.5 1
0
0 10 20 30 40 0 10 20 30 40
Joint variables (n) Joint variables (n)

Fig. 7.31 Performance of the proposed forward dynamics algorithm for a system with multiple-
DOF joints. (a) All 1-DOF. (b) All 2-DOF joints. (c¢) All 3-DOF. (d) Equal number of 1-, 2- and
3-DOF joints

algorithms, which required for their design and control. The algorithms performed
little better than the fastest algorithm available in the literature when the robots
consist of only 1-DOF joints but performed much better when the robot have many
multiple-DOF joints.

Chapter 8
Closed-Loop Systems

Closed-loops are inherent in many practical robotic systems. In this chapter,
analyses of closed-loop systems are presented using the dynamic formulation given
in Chaps. 5, 6, and 7.

8.1 Tree-Type Representation of Closed-Loop Systems

Figure 8.1a shows schematic diagram of a general closed-loop system. The closed-
loop system has 7 links and 7, joints, and there exists n; = (. — 1) independent
kinematic loops. One of the approaches to analyze a closed-loop system is to convert
it into equivalent tree-type architecture by cutting suitable joints. A closed-loop
system with 7; independent loops is required to cut at n; joints in order to convert
it into a tree-type system as shown in Fig. 8.1b. For complex systems, the joints to
be cut may be identified using the concept of Cumulative DOF (CDOF) in graph
theory (Deo 1974) as suggested by Chaudhary and Saha (2007). The concept will
be illustrated in Sect. 8.4. The cut opened joints are then substituted with suitable
constraint forces denoted with A\’s, which are also known as Lagrange multipliers.
These multipliers are treated as external forces to the resulting open tree-type
system. As a result, the problem is converted into solving a tree-type system with
externally applied constraint forces. Therefore equations of motion of the closed-
loop system in terms of the externally loaded open-loop system are written as

IG+Cq=t+" +J"2 8.1

In Eq. (8.1), J represents the / x n constrained Jacobian matrix (Nikravesh 1988)
for the closed-loop system, where / is the total number of constraints imposed by the
joints of the n; loops and n is total number of joint variables of the open tree-type
system. It is defined in a way so that J§ = 0. Moreover, X is the /-dimensional
vector of Lagrange multipliers representing the constraint forces at the cut joints.

It is worth noting here that Eq. (8.1) can further be written in terms of the
independent coordinates, i.e., DOF of the closed-loop system at hand, by eliminating

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 155
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _8,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

156 8 Closed-Loop Systems

ubsystem III:
erial type

Subsystem II:
Serial type

Subsystem I:

Tree type

Fig. 8.1 Tree-type representation of a closed-loop system. (a) Closed-loop system. (b) Tree-type
representation of (a)

the Lagrange multipliers (Shabana 2001). This, however, will not allow one to use
the recursive algorithms obtained in Chaps. 6 and 7 for solving the closed-loop
system. Hence, the latter approach will not be followed in this chapter.

8.2 Dynamic Formulation
Dynamic formulation of a closed-loop system, namely, inverse and forward dynam-
ics formulation, is explained in the following sections.

8.2.1 Inverse Dynamics

Once the equivalent tree-type system of a closed-loop system is obtained, one can
solve for the Lagrange multipliers and the actuated forces or torques together. For
that, Eq. (8.1) is written as

1+ JA=14+Cq—Ff (8.2)

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

8.2 Dynamic Formulation 157

Next, the vector of generalized forces t can be written in terms of the torques
required at the actuated joints, namely, T = J!t,. Hence, substituting T = J' <,
into Eq. (8.2), one obtains

Jv, +J"1 = ¥, where t¥ = I + Cq — (8.3)

In Eq. (8.3), J, is the n, x n matrix for n, joint variables associated with the
actuated joints. Rearranging Eq. (8.3), one can solve for t, and A as

[;“i| =F 't where F = [J7 JT] (8.4)

In (8.4), t¥ is obtained using any recursive inverse dynamics algorithm, say, the
one proposed earlier in Chap. 6, whereas F is the n X n matrix.

Alternatively, Chaudhary and Saha (2007) proposed a concept of “determinate”
and “indeterminate” subsystems, which requires inversion of several smaller ma-
trices corresponding to the number of subsystems in the large tree. This approach
has been proven to be more powerful and elegant in comparison to the inversion of
the matrix F given by Eq. (8.4). Hence, the methodology of Chaudhary and Saha
(2007) will be adopted in Sects. 8.3, 8.4, and 8.5 for the inverse dynamic of closed-
loop systems.

8.2.2 Forward Dynamics

In forward dynamics, independent joint acceleration (¢) and constraint forces (A)
are the unknown. As the system has n unknowns for q and / unknown for A,
forward dynamics problem requires solution of (n 4 /) unknowns using n equations
of motion and / kinematic constraint equations resulting out of the joints of the
loops. Conventionally (Shabana 2001), ¢ and A are solved together by combining
the equations of motion given by Eq. (8.1), and the second derivative of constraint
equations given by Jq = —Jq They are put together as

T .
[} '1):||:_qk:|:[_(gq:|,where(pzt+tc—cq (8.5)

The formulation in Eq. (8.5) is popularly known as Differential Algebraic
Equations (DAE). Using Eq. (8.5), ¢ and A can be solved simultaneously, which
requires O(n + [)* computations. Alternatively, A can also be obtained first by
rearranging Eq. (8.5) as

A=—Ar)7 O te + Ja) (8.6)

http://dx.doi.org/10.1007/978-94-007-5006-7_6

158 8 Closed-Loop Systems

Next, the solution of the joint accelerations is obtained as
G=T"J"A+9) (8.7)

As a result, the solution of A requires at the worst O(/*) computations, whereas
the joint accelerations can be solved recursively using the recursive forward
dynamics algorithm of the tree-type systems presents in Chap. 6. The latter requires
only O(n) computations. Hence, the overall efficiency is expected to be better
compared to the O(n + [)* computations. Moreover, numerical stability associated
with the recursive algorithm is expected to provide more realistic behavior of the
closed-loop systems under study.

8.3 Four-Bar Mechanism

Four-bar mechanism is the simplest closed-loop system, which constitutes sub-
system of many robotic and industrial systems. Hence, the dynamic analysis of
a four-bar mechanism is undertaken in this section. Figure 8.2 shows a four-
bar mechanism (links #0 —#1 —#3 —#2 —#0). In order to analyze the four-bar
mechanism using the methodology prescribed in Sect. 8.2, its equivalent tree-type
representation is first obtained. As the four-bar mechanism has only one loop, it
needs to be cut at one joint. Figure 8.2b, c illustrate two different methods of cutting
the loops. In Fig. 8.2b, the mechanism is cut at joint 3, whereas joint 4 is cut in
Fig. 8.2c. It is worth noting that both the approaches lead to two subsystems.
Referring to Fig. 8.2b, subsystem-I has two links. Hence, it will have two
constrained equations of motion. However, it has three unknowns, namely, two com-
ponents of the constraint forces at the cut joint denoted by A, and the driving torque
7,4. As aresult, subsystem-I is indeterminate subsystem (Chaudhary and Saha 2007).
Similarly, subsystem-II is also indeterminate as it has one constrained equation of
motion with two unknowns, i.e., two components of A. For the solution of inverse
dynamics problem one needs to combine both the indeterminate systems, resulting
into three equations with three unknowns and thus making it a determinate system.

Subsystem 11

T Subsystem I T

Fig. 8.2 A four-bar mechanism and its tree-type representations

http://dx.doi.org/10.1007/978-94-007-5006-7_6

8.3 Four-Bar Mechanism 159

On the contrary, in Fig. 8.2c, subsystem-I has one hinged link. It has one equation
of motion and three unknowns, namely, two components of A, and 7,. As a result,
subsystem-I is indeterminate. However, subsystem-II is determinate as it has two
equations of motion with two unknowns. Hence, one can solve for A first. With two
components of A are known, the subsystem-I becomes determinate which will allow
to solve for 1, from its only constrained equation of motion. This way, a subsystem-
level recursion has been formed that makes the resultant algorithm computationally
very efficient (Chaudhary and Shah 2009). The following steps explain the inverse
dynamics algorithm for the four-bar mechanism:

e The one independent loop (Fig. 8.2a) is identified as joints (1-2-3-4-1). Based
on the loop closure equations, the kinematic constraints are obtained in the form

Jg=0as
[Jr1 Jia] [31} = [gi| (8.8)
i

where J;.1, and J;; are of sizes 2 x 1 and 2 x 2, respectively, whereas q; = §1

and 4, = [G]T are the 1- and 2-dimensional vectors.
e Using Egs. (8.3) and (8.8), the equations of motion for the determinate
subsystem-II can be written as

J7 A = v, where tj; = Iy, + Cpay, — 1y (8.9)

In the above equation T}, is known from the input joint motions and A is
calculated subsequently.

* Knowing the A the subsystem-I becomes determinate. As a result, the driving
torque is calculated using the only equation of motion which is

T, :tf—JITJ/\l,where W=Ld +Crq —tF (8.10)

It may be noted that t};, and t in Egs. (8.9) and (8.10) were obtained using the
recursive inverse dynamics algorithm, as shown in Table 6.1 of Chap. 6. In order to
use the dynamic formulation presented in Chaps. 5, 6, and 7, the open architecture
in Fig. 8.2 is modularized using the definition of Chap. 4. This way, the system has
two modules M, and M, as shown in Fig. 8.3. The resulting joint variables are also
shown in Fig. 8.3. The model parameters of the four-bar mechanism are given in
Table 8.1.

For the generation of the numerical results, the input motion was provided as one
complete rotation of the link #1' with angular velocity of 3y/2 rad/s. The motions
for the other dependent joint angles were obtained using the loop-closure equations.
The independent and dependent joint angles are shown in Fig. 8.4. Numerical values
for the two component of the Lagrange multiplier A are plotted in Fig. 8.5a, whereas
driving torque t, is shown in Fig. 8.5b.

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_4

160 8 Closed-Loop Systems

Fig. 8.3 Module architecture
and the joint variables for
four-bar mechanism

Table 8.1 Model parameters Mass (Kg) Length (m)
of the four-bar linkage 15 0.038
12 3 0.1152
225 0.2304
a b
8 5
g 6 1 g 4 - ~___;.-"' ,
2 33 Oy =====" o,
D 4 4
& C
g z 2
< =
S 2 S /X/
1
o,
0 y T | 0 T T ,
0 0.5 1 15 0 0.5 1 15
time (s) time (s)

Fig. 8.4 Input joint trajectory of four-bar linkage (a) 6;:. (b) 6,2 and 6,

Next, the forward dynamics of the four-bar mechanism was performed using
Egs. (8.6) and (8.7). The torque obtained using the inverse dynamics was assumed
to be the input. The joint acceleration ¢ was numerically integrated using ode45
with relative and absolute tolerance of 107> and 1077, respectively. Simulation
results for the actuated joint angle (6,1) are plotted in Fig. 8.6a. Comparison of
the simulated joint angle with the desired one, i.e., Fig. 8.4a, as shown in Fig. 8.6b
depicts negligible error. Hence, the correctness of the results is validated.

8.4 A Robotic Leg 161

a b
~ 100 -~ 2
é l’ \\\ —
N A0 N, £
o 1x I \\ zZ
=y ! Se -
S 50{ =——=—-- A1 N © 0
= VI ~ =)
> O
€ S
p I
2 2 -2
o = .
& a 2
—

-4

1.5 0 0.5 1 1.5
time (s) time (s)

Fig. 8.5 Inverse dynamics of four-bar linkage. (a) Components of X. (b) Driving torque 7, (= 1)

b x 10

8 6
3 5
% 6 g
o (0]
2 o 9
- &
£ 4 =
keX o 01
= e
Q@ £
3 2 o Desired g 2
<L() Actual w

0 -4

0 0.5 1 1.5 0 0.5 1 1.5
time (s) time (s)

Fig. 8.6 Simulation of four-bar linkage. (a) Joint angle of the input link. (b) Error in joint angle

8.4 A Robotic Leg

A one-DOF closed-loop robotic leg (Ottaviano et al. 2004) shown in Fig. 8.7a is
under taken here to demonstrate the proposed concepts to multiple-loop systems.
The four-bar mechanism (#0 — #1 — #3 — #2) generates the approximate straight line
which is amplified by the Pantograph mechanism (#0 —#4 —#5 —#7 —#6). The
robotic leg has seven links and ten joints and, thus, it has 10 —7 = 3 independent
loops. Hence, in order to convert it into a tree-type system it has to be opened at
three joints. In order to cut the closed-loop system, its graph representation is drawn
in Fig. 8.7b, where the links or bodies are indicated with circles while the lines
joining the circles indicate the joints. The joints to be cut are then identified using

162 8 Closed-Loop Systems

a
:::::::::::::::::: #0
R Z-j/jzi-i
wfo o ag] b
8 AE)OP\' #2
.’/ AE".’P\ #4
3 ~./f#5 6
3 -\
ALoop/.
9, 10 =
w7 #6
7

Fig. 8.7 A robotic leg and its graph representation. (a) Robotic leg. (b) Graph representation

the concept of Cumulative DOF (CDOF) provided in graph theory (Deo 1974). The
CDOF is defined as the total DOF of all the joints lying between the base link (#0)
and a link (say kth) of the system along any path. The path giving minimum CDOF is
chosen as the way for cutting a close-loop system. Based on the CDOF, the graph in
Fig. 8.7b is cut at joints 8, 9 and 10. The resulting tree-type system is then shown in
Fig. 8.8a, where subsystem-I has one link, subsystem-II has two links and the tree-
type subsystem-III has four links. The module architecture of the resulting system
and associated joints variables are shown in Fig. 8.8b.

Once the tree-type system is formed, the determinate and indeterminate sub-
systems are identified in order to perform inverse dynamics. Referring to Fig. 8.8a,
subsystem-I has only one hinged link. Hence, it will have one constrained equation
of motion. However, it has three unknowns, i.e., two components of the constraint
forces at the cut joint denoted by A;, and the driving torque 7,. As a result,
subsystem-I is indeterminate. Similarly, subsystem-II has two constrained equations
of motion with four unknowns, i.e., two components of A; and A, each. Hence,
it is also an indeterminate subsystem. On the other hand, subsystem-III has four
constrained equations of motion with four unknowns, i.e., two components of A,
and A3 each. Hence, subsystem-III is determinate as the four constraint equations
of motion allow one to solve for all four unknowns of the constraint forces due
to the cut at the joints 9 and 10. So, the subsystem III is solved first. With four

8.4 A Robotic Leg 163

Subsystem I

e
Subsystem 11
A

Ay

Subsystem 11

Fig. 8.8 Tree-type representation and module architecture and of the robotic leg. (a) Tree-type
representation. (b) Module architecture

components of A, and A3 together known, the subsystem-II becomes determinate
which then allows to solve for A; from its two constrained dynamic equations of
motion. Finally, with the knowledge of the two component of A |, the driving torque
(t,) at the actuated joints can immediately be computed from the only constrained
equation of motion for determinate subsystem-I. The following steps explain the
inverse dynamics algorithm:

e The three independent loops (Fig. 8.7a) for the robotic leg are identified as
(1-2-3-8-1), (2-3-9-5-4-2), and (4-5-6-7-10-5-4). Based on the three loop closure
equations, the kinematic constraints are obtained in the form Jq = 0 as

Jii Jin O q, 0
O Ji Jio q; | =10 (8.11)
O O Ju a 0

where J;1, Jr2, Jir1, Jiro, Jmr are of sizes 2x 1, 2x2, 2x2, 2x4 and

2 x4 respectively, whereas 4; = Gp, Gy = [§p g»]T, and q,; =

[iz Gis Gis Gos]T are the 1-, 2- and 4-dimensional vectors.

164 8 Closed-Loop Systems

Table 8.2 Model parameters Mass (gms) Length (mm)
of the robotic leg 1! 10 25

12 20 62.5

2250 125

I 80 200

14 30 75

1° 120 300

2’ 60 150

» Using Eqgs. (8.3) and (8.11), the equations of motion for the tree-type determinate
subsystem-III can be written as

J1T1,2)~2 + J1T11)~3 = Tzl’ where T(1/)11 = ImQyy + Curqyy — Tgl (8.12)

In the above equation t¥, is known from the input joint motions and Ay =
T.
[AT AT is calculated subsequently.

¢ Knowing the A ,, subsystem-II becomes determinate. Hence A, is calculated from
the following equation of motion:

Ikt =t —], Ao, where), = Iydiy + Cqy — 7 (8.13)

* Knowing A, the subsystem-I becomes determinate. As a result, the driving torque
is calculated using the only equation of motion which is

T, = r‘f —J{lkl,where t‘f =1;q; + Crq; — tf (8.14)

It may be noted that ty,, T}, and % in Egs. (8.12), (8.13) and (8.14) were
obtained using the proposed recursive inverse dynamics algorithm of Chap. 6. The
model parameters of the robotic leg are given in Table 8.2. The input motion
provided was one complete rotation of the input link #1' with angular velocity
of 3¢/2 rad/s. The other dependant joint angles are obtained from loop-closure
equations. The independent and dependent joint angles are shown in Fig. 8.9.

Numerical values for the Lagrange multipliers A, A, and A3, and the torque T,
at the actuated joint 1! are calculated using Eq. (8.12), (8.13), and (8.14), which are
plotted in Fig. 8.10. Such a multi-loop mechanism was also used as a device for
carpet scrapping mechanism (Saha 2003). The results of inverse dynamics for the
carpet scrapping mechanism reported in Chaudhary and Saha (2009) were used here
as a reference to validate the results generated for the robotic leg.

Now, the forward dynamics of the robotic leg is performed using Eqgs. (8.6) and
(8.7). Simulation results of the actuated joint angle (6,1) for the robotic leg are given

http://dx.doi.org/10.1007/978-94-007-5006-7_6

8.5 3-RRR Parallel Manipulator 165

-2

Joint angle (rad)
A
Joint angle (rad)
R
N
1
1
1
1
!
S
N

-6

-8 4

Joint angle (rad)
Joint angle (rad)

0 0.5 1 1.5
time (s) time (s)

Fig. 8.9 Input joint trajectory of robotic leg. (a) 6;1. (b) 6,2 and 6,2 (¢) 6;3 and 6,4 (d) 65 and 6,5

in Fig. 8.11a by using the torque obtained in Fig. 8.10a as a solution of the inverse
dynamics problem. Comparison of the joint angle with the desired one is also shown
in Fig. 8.11b. The error between the desired and the actual joint angle is found to be
small, as shown in the Fig. 8.11b. Hence, the correctness of the results is validated.

8.5 3-RRR Parallel Manipulator

Another important robotic application consisting of multiple closed-loops is a par-
allel manipulator. Figure 8.12 shows one such planar 3-DOF parallel manipulator,
which is also popularly known as 3RRR manipulator. The 3RRR manipulator has
7 moving links, 9 joints, and 2 (=9 — 7) independent loops, as shown in Fig. 8.12.
Therefore, in order to obtain an equivalent tree-type representation, it is opened at
joints 7 and 8 using the concept of minimum CDOF. The resulting tree-type system
is shown in Fig. 8.12b, where subsystem-I has five link, and subsystem-II and III

166

Driving torque (Nm)

Lagrange multiplier (N)

time (s)

1

5

8 Closed-Loop Systems

b
5
z
g
=
3
1S
o
[}
c
o
D
©
-
1.5
time (s)
3
= A emm—
z
< 5 3x 3y
o
£ 1
>
€
1) 0 P ——
o)) 2’ =
é Il \\\ ’,"‘
% - ,' ~u-" “
- y N
2 - ")
0 0.5 1 1.5
time (s)

Fig. 8.10 Inverse dynamics of robotic leg. (a) Driving torque 7, (= t;1). (b) Components of ;.
(¢) Components of X,. (d) Components of A3

a
~ 04
g ° Desired
E - Actual
&)
C
©
€ -4
L,
3
= 6
>
g

-8

0 0.5 1 1.5
time (s)

o

Error in joint angle (rad)

0.015

0.01

0.005

—-0.005

-0.01

0.5 1 1.5

time (s)

Fig. 8.11 Simulation of robotic leg. (a) Joint angle of the input link (b) Error in joint angle

8.5 3-RRR Parallel Manipulator 167

T
a3 Subsystem 11

7,

Subsystem I

T
al Subsystem II

Ta2

Fig. 8.12 Tree-type planar manipulator

has one link each. It is worth noting that the subsystem-I is determinate as it has
five equations of motion with five unknowns (t,; and two components of A; and
X, each). On the other hand subsystems II and III are indeterminate as both have
one equation of motion with three unknown (t,; and two components of A or T3
and two components of X,). Inverse dynamics of 3RRR manipulator is solved as
follows:

e The two independent loops (Fig. 8.12a) for the 3-RRR manipulator are identified
as (1-2-3-8-4-6-1) and (6-4-8-5-9-7-6). Based on the two loop closure equations,
the kinematic constraints are obtained in the form Jq = 0 as

q, 0
Jii Jin O } .
' y =10 8.15
|:J11,1 O Jis 9” (8.13)
Ay 0

where J;1, Jr2, Jir1, and Jy73 are of sizes 2x5, 2x1, 2x5 and 2x1,

respectively, and §; = [c'jll Gor Gt G2 Gy]T, d; = G+, and gy = G5 are
the 5-, 1- and 1-dimensional vectors.

» Using Egs. (8.3) and (8.15), the equations of motion for the tree-type determinate
subsystem-I can be written as

I A+ I A+ It =), where v =L,4, + C,;q, — 7] (8.16)

168 8 Closed-Loop Systems

Fig. 8.13 Module architecture and joint variables for 3-RRR manipulator

where J,1 is of sizes 1 x 5 and ©¥ is known from the input joint motions. Using
the above equation five unknowns, namely, t,;, and two components of A; and
)\, each, are calculated.

e Knowing A and X,, subsystem-II and III become “determinate”. Hence 7, and
7,43 are calculated from the following equations of motion:

_ ¢ _qT o _ 1 = . F
T2 = Ty — Jj A1, where v, = Inq + Cuqy — vy
" T o _ 1 . F
T3 = Ty — Jp7242, where vy = Lnqyy + CinQuy — Ty (8.17)

In order to perform the inverse dynamics using the dynamic formulation
presented in Chaps. 5, 6, and 7, the open architecture in Fig. 8.12b is modularized
as shown in Fig. 8.13. The associated joint variables are shown in Fig. 8.13. The
model parameters of the 3-RRR manipulator are given in Table 8.3.

Circular trajectory was provided to end-effector (#3). The joint trajectories were
then obtained from end-effector’s trajectory using inverse kinematics and shown in
Fig. 8.14. Numerical values for the Lagrange multiplier A;, and joint torque t,; at
the actuated joints are shown in Fig. 8.15.

Forward dynamics is performed next for the free fall under gravity. The initial
joint position and velocity is shown in Table 8.4. The simulated joint angles are
shown in Fig. 8.16.

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

8.6 Summary

Table 8.3 Model parameters
of the3-RRR manipulator

a
3.5
T 3
g
Q<
o 25
C
©
€
é 2
— e
1.5
0 1 2
time (s)
d
1
—_ N, /'—-\“s
@ 01 s’ S
----- 1
2 05
c
o -2
) -\/\
-3
0 1 2
time (s)

time (s)

N

time (s)

169

Mass (Kg) Length (m)
'3 0.4
21 4 0.6
318 0.4%
12 4 0.6
1 4 0.6
4 3 0.4
P’ 3 0.4

drepresents the side of equilat-
eral triangular link

c

0.5

0 1 2
time (s)

Fig. 8.14 Input joint trajectory of 3-RRR manipulator. (a) 6;1. (b) 8;s. (¢) 6;5. (d) 61 and 651.

(&) 02. (F) 0,3

8.6 Summary

Dynamic analysis of closed-loop systems has been presented using the dynamic
formulation presented in Chaps. 5, 6, and 7. In order to analyze closed-loop system
itis opened at several joints and these joints are replaced with Lagrange multipliers.

http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

170 8 Closed-Loop Systems

[
o
(1]

10 10 10
£ 9
z 5 5 5
[}
&
§ 0 0 0
(o]
£
2 5 -5) -5 5
a R —
21 i
-10 -10 -10
0 1 2 0 1 2 0 1 2
time (s) time (s) time (s)

o
(1]

20
z z
® o 10
2 2
£ £ o
=} =}
IS €
o o -10
o jo2}
8 8
5} o -20
© ©
— —
-30 T T T) -30 T - -)
0 0.5 1 1.5 2 0 0.5 1 1.5 2
time (s) time (s)

Fig. 8.15 Inverse dynamics of 3-RRR manipulator (Joint torques and Lagrange multipliers).
(@) Ta1 (= T11)- (b) T02(= 114). (€) Te3(= 115). (d) X2 (€) A3

Table 8.4 Initial condition

for free fall Joint 6 (rad) 0 (rad/s)

1! 1.0472 0
2! —0.8727 0
3! 37525 0
12 1.3090 0
13 29322 0
1* 41888 0
1’ 57596 0

As a result the problem of solving closed-loop system boils down to that of solving
tree-type system with externally applied forces due to cutting of the joints. Several
systems were analyzed for the better comprehension of the methodology.

8.6 Summary 171

a b c
4 7 7
0 o? 03
1 1 1
~ 2 6 6
©
g
Y 5 °
@ 0
e
2 4 4
£
]
S -2 3 3
-4 2 2
0 1 2 0 1 2 0 1 2
time (s) time (s) time (s)
d e f
15 2 4
2 2 3
0 0
s s\ 15 1 3 !
~ 10 ol Y4
° 4
) 0
= ’ 1 2
=S [A R —— 0!
c i 2 3
o 0.5 1
c
o
c e \/\,\ 0 0
5 -0.5 -1
0 1 2 0 1 2 0 1 2
time (s) time (s) time (s)

Fig. 8.16 Simulation of 3-RRR manipulator. (a) 6,1. (b) 8. (¢) 6;5. (d) 6,1 and 651. (e) 6,2. (f) 6,3

Chapter 9
Controlled Robotic Systems

A controller is an essential part of a robotic system in achieving desired motion.
A Proportional Integral Derivative (PID) controller is the simplest form of controller
used for this purpose. A PID controller is widely used in industries for the control of
processes or machines. In a robotic system, e.g., an industrial robot, a PID controller
independently controls motion of each joint ignoring the effects of the system’s
dynamics. However, for accomplishing complex motion or task, a PID controller
does not always result into best performance, as shown by Lewis et al. (2004), Kelly
et al. (2005), and Craig (2006). The legged robots discussed in Chaps. 6 and 7
are meant to perform a variety of complex tasks. As a result, the use of a PID
controller without taking into account dynamics of the legged robots would result
into poor control performance. On the other hand, the use of model-based controllers
(Lewis et al. 2004; Kelly et al. 2005) has become popular in order to improve the
performance of the conventional PID controllers. The model-based controllers work
based on the information of the dynamic model of a system. If the dynamic model
of a robot is not very accurate, the model-based control approach will still be able to
eliminate major nonlinearities due to the robot’s inertia. In this chapter, simulation
of model-based control of several robotic systems will be carried out.

9.1 Model-Based Control

Since model-based controllers work well on precise information of the dynamic
model of a robot, the recursive algorithms for inverse and forward dynamics
proposed in Chaps. 6 and 7 are valuable in the control of robots due to their
efficiency, computational uniformity, and less numerical errors produced during the
dynamic computations. While the inverse dynamics algorithm helps in calculating
the controlling torques of the actuators located at different joints, the forward
dynamics algorithm predicts the behavior of the robot. The latter also allows
real time simulation, which helps in predicting the future state of a system for

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 173
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 _9,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

174 9 Controlled Robotic Systems

corrective control measures. Model-based controller, e.g., computed-torque control
and feedforward control, are developed next for the fixed and floating-base robotic
systems.

9.1.1 Computed-Torque Control

The dynamic equations of motion obtained in Eq. (5.12) are rewritten as
I +h =1, whereh = Cq—t" 9.1)

Equation (9.1) is nonlinear as the elements of the Generalized Inertia Matrix
(I) are nonlinear functions of the state variable q, and the elements of Matrix of
Convective Inertia (C) are nonlinear functions of the state variables q and q. Hence,
the use of a classical PID controller will lead to a set of nonlinear differential
equations for the closed-loop system that will still have the nonlinear terms I and h
as shown below:

I('j—i—h:er—i-KDé—i—KI/edt 9.2)

where Kp, Kp and K; are diagonal matrices with constant gains on the diagonal,
whereas e and € are the vectors of the error in position and velocity, respectively.
On the contrary, the computed-torque control works on the principle of feedback
linearization of the nonlinear system under study. Accordingly, the controller torque
T is given by

t=Ix+h 9.3)

Substituting Eq. (9.3) into Eq. (9.1) the resulting equations of motion of the
closed-loop control system are represented as ¢ = «. For o being the linear function
of the state variables, say,

o = qdes + Kp(qdes - q) + KD(qdes - q) (94)
the closed-loop equations are rewritten as
e+ Kpée+K,e=0 9.5)

where e = qg.s — q. Equation (9.10) represents the resulting close-loop control
system, which is described by a set of linear differential equations. It may be shown

that the origin of the closed loop system, [e! &”]T = 0, is asymptotically stable
(Kelly et al. 2005), i.e.,

http://dx.doi.org/10.1007/978-94-007-5006-7_5

9.1 Model-Based Control 175

- Vo
9= gain .
Kpe
. + Real robot q
.. q, + ® Oy | Dynamic Model | T or q
4a 4 (Inverse dynamics) Dynamic model q
(Forward Dynamics)
” K
4, _ﬁ@_) POS'IFlon Pe Plant
/ gain
Desired Actual
motion motion
Fig. 9.1 Computed-torque control scheme
lime=0and limeé=20 (9.6)
—>00 —>00

The resulting closed-loop control system in Eq. (9.10) is multivariable linear
system where error in each joint position is governed by an independent lin-
ear differential equation. Hence, the gains Kp and Kp are chosen as Kp =
diag [kp, -+-k,,|Kp = diag[kg, ---ka,]. The gains k,, and kg, can be obtained
by assuming critically damped response, i.e., ks, = 2\/k_p,. . Equations (9.3) and
(9.4) together form the computed torque law for fixed-base systems (Craig 2006).
The schematic diagram of computed-torque control scheme is shown in Fig. 9.1. It
may be noted that in Fig. 9.1, the robot can be represented by its dynamic equations
of the motion.

For the floating-base system, the components of t associated with the generalized
forces of the floating-base are zeros. Hence, Eq. (9.3) is rewritten by using Eq. (7.1)

as
==l vl L] o
Ty Ioo To | e hy .
which is further simplified as

ag = —I; ' (I},@q + ho) (9.8)

Ty = Ipoao + (Ipatg + hy) 9.9)

Substituting Eq. (9.8) into Eq. (9.9), the computed-torque control law for the
floating-base system is obtained as

0 0
T = = _ -~ (9.10
[19 } [(19 Lo 5)t + (e — Lol ho) })

176 9 Controlled Robotic Systems

In. Eq. (9.10), Ty is the required actuator torque, whereas oy representing the
servo part is given by

g = tgq + Kp(qodes — q0) + Kp(Qo_ges — 4s) (9.11)

It is worth noting that for floating-base system the direct use of Eq. (9.7) to
compute the driving torque, T4, is computationally inefficient as the equations
cannot be solved recursively due to the presence of the terms Ipo Iy llgo and
Io0I; 'hy. On the contrary, Eqgs. (9.8) and (9.9) have representations similar to Eq.
(7.2). As aresult, they can be solved recursively using the proposed recursive inverse
dynamics algorithm by substituting qy = &y and gy = « in Eq. (7.2).

9.1.2 Feedforward Control

In practice, any robotic system including legged robots is digitally controlled.
Hence, sampling of the state variables, calculation of the joint torques, and
communication of the appropriate commands to the actuators in a proper sequence
form three essential tasks of a controller. For legged robots, where the system moves
very fast, the above tasks have to be performed at a high rate. Out of the three tasks,
computation of the joint torque is the most time consuming one. Hence, an efficient
computation of the joint torques is of primary importance. In the case of known
path to be followed by the robot, one may compute the joint torques in advance.
These may then be stored in the controller’s memory in the form of a look-up table.
As a result, when the control actions need to be performed, these values are read
out from the controller memory. This type of control is referred to as feedforward
control and this reduces computational burden of the controller significantly. Simply
forwarding the torque obtained from an inverse dynamics algorithm to the robot,
as shown in Chap. 7, is the simplest form of the feedforward control. However,
this suffers from several disadvantages caused by unmodeled parameters, backlash,
uncertainty, external disturbances, etc. Hence, it is commonly used along with a PD
controller. Thus, feedforward control scheme consists of a linear servo feedback
and a feedforward of the nonlinear robot dynamic model, as shown in Fig. 9.2. It is
the simplest form of the non-linear controller, which can be employed for motion
control of robots. The control law for fixed-base system is given by

T=1Tp+ Kp(qdes - q) + Ky ((.Ides - (I) (912)

whereas the same for floating-base system is given by

T = |: 0 :| = |: 0 i| (9.13)
Tg 70 + K, (qo_des — q0) + Ka (qo_des — qo) '

where K, = diag [k,,l ---kpn] and K; = diag [kq, ---kq,], and torques, 7p, are
obtained from the recursive inverse dynamics algorithm. It is worth noting that the

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7

9.2 Biped 177

. +<5 ——
qq é Velocity gain
Real robot q
- Dynamic Model Tip or ..
da (Inverse dynamics) Dynamic model !
(Forward Dynamics) q
+ .
Qa ? Position gain Plant
Desired _ Actual
motion motion

Fig. 9.2 Feedforward control scheme

feedforward control can achieve performance as good as computed-torque control
with the proper tuning of the control gains. The gains can be calculated using, for
example, a design procedure proposed by Kelly et al. (2005).

9.2 Biped

The computed-torque and feedforward control schemes presented in the previous
sections are applied to simulate the controlled motion of the floating-base planar
and spatial bipeds presented in Sect. 7.2. It may be noted that the recursive inverse
dynamics algorithm proposed in Sect. 7.1.1 is used to implement the control law,
whereas the recursive forward dynamics algorithm obtained in Sect. 7.1.2 is used
for the simulation studies. Two control schemes are used mainly to study the
effectiveness of one control scheme over the other.

9.2.1 Planar Biped

As presented in Sect. 7.2, it was observed that for the given joint torques, calculated
using the inverse dynamics algorithm, the biped was able to walk for one cycle
as shown in Figs. 7.7 and 7.8. However, the biped was unable to follow the desired
trajectories after one cycle. This is due to zero Eigen value problem. However, in real
life such deviation occurs due to unmodeled parameters, uncertainty, backlash, etc.
Hence, control is inevitable in practical systems. Simulation of the controlled motion
of the planar biped is presented next using the computed-torque and feedforward
control schemes.

9.2.1.1 Computed-Torque Control

In order to achieve the motion of the biped using the computed-torque control
scheme, the expressions in Eqgs. (9.8), (9.9), and (9.11) were used. Control gains k , ,

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7

9 Controlled Robotic Systems

178

Computed-torque o Desired

2 -80
©
= 1 — o

E E 12 g -90
X 0 N o
£

-1 1.15 -100

0 2 4 0 2 4 0 2 4
time(s)

time(s) time(s)

Fig. 9.3 Simulated motion of the trunk of the planar biped under computed-torque control

a Computed-torque 0 Desired
—20 140
o 40 © o
o o -40 © 120
o} o o}
2 20 = 60 = 100
[e=} D [«=}
0 -80 80
0 2 4 0 2 4 0 2 4
time (sec) time (sec) time (sec)
b
-20 140
< 40 @ —
9 —40 g 120
g g g
© 20 S 60 $ 100
0 -80 80
0 2 4 0 2 4 0 2 4
time (sec) time (sec) time (sec)

Fig. 9.4 Simulated joint motions of the planar biped under computed-torque control. (a) Support
leg (Module 1). (b) Swing leg (Module 2)

and kg4, are chosen as 49 and 14, respectively, such that k;, = 2 \/E . Joint torques
are solved recursively by substituting g = o and 9 = o in the inverse dynamics
algorithm presented in Sect. 7.1.1. Recursive forward dynamics was then used to
obtain the motions of the trunk (floating-base) and the joint angles. Figures 9.3 and
9.4 show simulated motion of the trunk and the joint angles obtained for the time
span of 4 s, chosen tacitly. Comparison of the results with desired one is also shown
in Figs. 9.3 and 9.4. Figure 9.3 shows that the biped moves in the forward direction

http://dx.doi.org/10.1007/978-94-007-5006-7_7

9.2 Biped 179

Feedforward o Desired

2 -80
©
— 1 —_ 9]
£ E 2 & -90
< 0 N)
o
<
-1 1.15 -100
0 2 4 0 2 4 0 2 4
time(s) time(s) time(s)

Fig. 9.5 Simulated motion of the trunk of the planar biped under feedforward control

(X) without falling for four steps. The slight variation in ¢, is due to the assumption
that the biped mass is concentrated at the trunk. The joint angles associated with
the legs are also shown in Fig. 9.4. The joint angles follow the desired trajectory
using computed-torque control scheme. It may be noticed that without the control
action the simulated and desired trajectories was found to deviate after a time of 1 s,
however in comparison, the control action ensures a close match of the trajectories
(shown in Fig. 9.4) even after 4 s. The simulation was run for times more than
4 s and the same close match between the trajectories was noticed. This shows the
importance and necessity of implementing control scheme for achieving desired
motion of the biped robot.

9.2.1.2 Feedforward Control

Next, the feedforward control scheme was applied for the controlled simulation of
the planar biped under study. For this, the joint torques, obtained from the inverse
dynamics algorithm, were fed forward to the controller by using the control law
given in Eq. (9.13). The gains were taken as k, =49 and k; = 7. Figures 9.5
and 9.6 depict the motion of the trunk and joint angles. Simulation results in
Fig 9.5 show that the biped moves in the forward direction with periodic motion.
Moreover, the controller is able to follow the desired joint motion as evident form
Fig. 9.6. Hence, the feedforward control scheme performs as good as computed
torque control for a given set of gains.

9.2.2 Spatial Biped

Next, the computed-torque and feedforward control schemes were applied to
simulate the controlled motion of the spatial biped discussed in Sect. 7.2.2. The
proportional and derivative gains were taken as k, =200 and k4, =40 for both

http://dx.doi.org/10.1007/978-94-007-5006-7_7

180 9 Controlled Robotic Systems

Feedforward O Desired
a
—20 140
—~ 40 — —
$ 8 —40 8 120
(@)} (o))
g 20 S 60 S 100
-— s —_
0 -80 80
0 2 4 0 2 4 2 4
time (sec) time (sec) time (sec)
b
—20 140
g 40 3 3
o Q -40 © 120
g g g
o 20 ©)
et 3o, 60 3, 100
D> D>
0 -80 80
0 2 4 0 2 4 0 2 4
time (sec) time (sec) time (sec)

Fig. 9.6 Simulated joint motions of the planar biped under feedforward control. (a) Support leg
(Module 1). (b) Swing leg (Module 2)

the control schemes. Simulated motions of the trunk and the joint angles using
both the control schemes are shown in Figs. 9.7 and 9.8, respectively. The desired
motions are also depicted in Figs. 9.7 and 9.8. It can be seen that the biped moves
in the forward direction (X) under both the control schemes, however, feedforward
control scheme performs little better than computed torque scheme, as evident from
Figs. 9.7 and 9.8. It is worth noting that without the control action the simulated and
desired trajectories were found to deviate after a time of 0.1 s, as shown in Figs.
7.14 and 7.15, however in comparison the control action ensures a close match of
the trajectories even after 2 s. For the given set of gains feedforward scheme shows
better tracking of the trajectories than the computed torque control.

9.3 Quadruped

Simulation of controlled motion of the spatial quadruped is attempted next.
Dynamic simulation of quadruped was also presented in Sect. 7.3 (Figs. 7.21 and
7.22), where the torques obtained using the inverse dynamics algorithm were inputs
to the actuators. The results showed that the quadruped was able to follow the
trajectory for 0.8 s only before deviations occur. This is due to zero Eigen value
problems. However, in real life such deviation occurs due to unmodeled parameters,

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7

9.4 Hexapod 181

a Computed-torque =====" Feedforward ====*=====' Desired
2 0.1 1
g 1 g o P e g 0.98
< 0 = N 0.96
-1 -0.1 0.94
0 1 2 0 1 2 0 1 2
time(s) time(s) time(s)
b
4
g -4 2 g
s 9 R s s
S -2 & -2 g
-4 -4
0 1 2 0 1 2
time(s) time(s) time(s)

Fig. 9.7 Simulated motion of the trunk of the spatial biped under control. (a) Center-of-mass.
(b) Euler Angles

uncertainty, backlash, etc. Hence, appropriate control is required. Here, the motions
of the quadruped under computed-torque and feedforward control schemes are
studied for the periodic walking. Values of the gains are taken as k,, = 49 and
kq, = 14 for both the feedforward and computed-torque control schemes. The
variations of the COM of the trunk and the Euler angles are shown in Fig. 9.9,
which depict that the quadruped moves in the forward direction (X) with stable
periodic motion. Figure 9.10 shows the variations of joint angles of the legs, where
the quadruped follows the desired trajectories. The simulation was run for more
than 4 s and the same close match between the trajectories was noticed. It is worth
mentioning that for selected values of the gains, feedforward control performs little
better than the computed-torque control scheme.

9.4 Hexapod

As discussed in Sect. 7.4, the dynamics plays important role in hexapod walking.
In this section, simulation of hexapod walking is presented using feedforward and
computed-torque control schemes. The gains were taken as k,, = 49 and k,, = 14.
Hexapod was simulated for the periodic walking for the time duration of 2 s. The
simulated motions of the trunk are shown in Fig. 9.11. The hexapod moves along the
forward direction (X) with the velocity of 0.8 m/s. For both the control scheme, the

http://dx.doi.org/10.1007/978-94-007-5006-7_7

182 9 Controlled Robotic Systems

a — Computed-torque = m—— Feedforward =======s=s: Desired

91 ’ (degree)
o
1
1
1
1
1
0, (degree)
1
9143 (degree)
b
o o

0 1 2 0 1 2
time (sec) time (sec)
70
©
© 60
[}
D
o
- 50
N -
D
40
0 1 2 0 1 2 0 1 2
time (sec) time (sec) time (sec)
b
©
Q
o
[0}
°
o :‘ M/
fe=}
1 2
time (sec) time (sec) time (sec)
70
3 60
(2]
[0}
°
a o 50
D
40 + +
0 1 2 1 2

time (sec) time (sec) time (sec)

Fig. 9.8 Simulated joint motions of the spatial biped under control. (a)Support leg (Module 1).
(b) Swing leg (Module 2)

Euler angles associated with the trunk are in close match with those of the desired
one. Figure 9.12 shows the variation of the joint angles, which are in close match
with the desired ones for both the control schemes. It is pointed out that without the
control action the simulated and desired trajectories as shown in Figs. 7.28 and 7.29
was found to deviate after a time of 0.9 s, however in comparison, the control action
ensures a close match of the trajectories even after 2 s.

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7

9.4

Hexapod 183
Computed-torque ====== Feedforward ==========: Desired
a
2 0.05 0.52
g ! = £ 05
= < 0 =
o > N
0
0.48
» -0.05
0 2 4 0 2 4 0 2 4
time(s) time(s) time(s)
b
5 0.5
_ —~ 2 —~
o o 8
o) o o -
g 0 g ° s 0 s
o o o
f<>) = - >
-5 -0.5
0 2 4 0 2 4 0 2 4
time(s) time(s) time(s)

Fig. 9.9 Simulated motion of the trunk of the quadruped under control. (a) Center-of-mass.

-100

(b) Euler Angles
Computed-torque =====" Feedforward **********' Desired
a
-89.8 60 -40
n n i~
o 2 40 g -60
o g >
s e z 2
- ~ 20 =, 80
= - =
-90.2 0 -100
0 2 4 0 2 4
time (sec) time (sec) time (sec)
b
-89.8 60 -40
n n I~
o © 40 2 -60
3 g 2
z 9 = 3
- o 20 w80
RN RN @
0
0 2 4 0 2 4

time (sec)

time (sec)

time (sec)

Fig. 9.10 Simulated joint motions of the quadruped under control. (a) Support legs (Module 1).

(b) Swing legs (Module 2)

184 9 Controlled Robotic Systems

a Computed-torque =====" Feedforward ***====="* Desired [
2 0.01 0.555
1 — 4 —~ 055
g E 0 E
\>:C> o o
0 > N 0.545 ~
-1 -0.01 0.54
0 1 2 0 1 2 0 1 2
time(s) time(s) time(s)
b
—~ 04 —_ —~ 04
o S o
‘;'; 0.2 B‘) ,g) 0.2
T 0 S T 0 =
S 02 & = 02 !
04 -0.4
0 1 2
time(s) time(s) time(s)

Fig. 9.11 Simulated motion of the trunk of the hexapod under control. (a) Center-of-mass.
(b) Euler angles

Computed-torque =====" Feedforward =======""" Desired
a 0 0
g 50 3
—« -100 cw
[en} D
-150 -100
0 1 2 0 1 2
time (sec) time (sec)
b
0 0
g 50 3
N -100 N\T\l
[en) [en}
-150 -100
0 1 2 0 1 2
time (sec) time (sec)

Fig. 9.12 Simulated joint motions of the hexapod under control. (a) Support legs (Module 1).
(b) Swing legs (Module 2)

9.5 Summary 185
9.5 Summary

Two model-based control schemes, namely, the computed-torque control and the
feedforward control, have been presented for the controlled motion study of several
robotic systems. Simulations of the biped, quadruped and hexapod were performed.
The simulation study showed that the desired trajectory was attained using both the
control schemes for longer simulation time, and this was not achievable if the control
schemes are not implemented. Feedforward control scheme, however, showed better
tracking of the desired trajectories than computed-torque for the spatial biped and
quadruped, whereas both controllers showed good tracking ability in the case of
planar biped and hexapod.

Chapter 10
Recursive Dynamics Simulator (ReDySim)

Based on the recursive algorithms presented in Chaps. 6 and 7, a Recursive
Dynamics Simulator (ReDySim) is developed in MatLab (2009) platform for
analyses of fixed- and floating-base tree-type, and closed-loop systems. Its usage
is shown in this chapter.

10.1 How to Use ReDySim?

The ReDySim can be downloaded using the link provided on the webpage http://
www.redysim.co.nr/book.html. The downloaded folder needs to be extracted before
actually start working using ReDySim. The folder has directory tree as shown in
Fig. 10.1. The Dynamics of Tree-type Robotic Systems forms the root directory
whose immediate folders are Help and Recursive Dynamic Simulator (ReDySim).
The Help folder contains Instruction Manual and definition of the Denavit-
Hartenberg (DH) Parameters, whereas Recursive Dynamic Simulator (ReDySim)
contains the program modules. The user is required to have MATLAB 2009 or any
higher version before start using ReDySim.

Note that the folder Recursive Dynamic Simulator (ReDySim) has two program
modules, namely, Fixed-base Systems and Floating-base systems. The folder Fixed-
base systems has further two modules Closed-loop Systems and Tree-type Systems.
The modules Closed-loop Systems, Tree-type Systems and Floating-base Systems
have directories named Forward Dynamics and Inverse Dynamics, which contain
several MATLAB functions and protected files (pcodes), and folders containing files
to be inputted for the problems solved in this book. Use of the three modules in
ReDySim is illustrated in the following sections.

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 187
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7 10,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://www.redysim.co.nr/book.html
http://www.redysim.co.nr/book.html

188 10 Recursive Dynamics Simulator (ReDySim)

Fig. 10.1 Directory tree = |2) Dynamics of Tree-type Robotic Systems
|2 Help
= |Z0) Recursive Dynamics Simulator (ReDySim)
=) Fixed-base Systems
__) Forward Dynamics
) Inverse Dynamics
=) Tree-type Systems
") Forward Dynamics
) Inverse Dynamics
(= |2 Floating-base Systems
|2) Forward Dynamics
() Inverse Dynamics

10.2 Fixed-Base Systems

Analysis of fixed-base systems involves either inverse or forward dynamics. The
program module for the fixed-based system is generic and can solve any arbitrary
tree-type and closed-loop systems. The user inputs for both the inverse and forward
dynamics are discussed in the following subsections.

10.2.1 Inverse Dynamics

Inverse dynamics attempts to find the joint torques and forces for a given set of
joint motions to the system under study. In order to perform inverse dynamics, the
following input parameters are required:

Model Parameters

1. Type of system (type), i.e., open-loop or closed-loop.

2. Degree-of-freedom of the system.

3. Number of modules (s).

4. Vector containing number of links in each module (ny).

5. Vector containing number of joint variables associated with each joint (n;).

6. Parent of each link (8).

7. Constant Denavit-Hartenberg (DH) parameters for revolute joints (a, & and b).

8. Vector d; measured from origin Oy to the Center-of-Mass (COM) C; of the kth
link.

9. Mass of each link ().

10. Inertia tensor of each link about COM and represented in body-fixed frame

Ic).

11. Vector of gravitational acceleration (g) in the inertial frame.

10.2 Fixed-Base Systems 189

Fig. 10.2 A tree-type robotic
gripper and it modularization

Module architecture

@2

12. Actuated joint in the system (g;).
13. Time period (Tp) and step size (dt).

The above values are entered in the function file named inputs.m and are common
for both tree-type and closed-loop systems.

10.2.1.1 Tree-Type Systems

In this subsection the inputs required for the inverse dynamics of the tree-type
robotic gripper of Chap. 6 is discussed. It is worth noting that the efficient imple-
mentation of the proposed recursive algorithms in ReDySim requires assignment of
an integer index for each of the link in a tree-type system. As discussed in Sect.
6.1.1, an integer index for the link k' of the ith module is obtained as

i—1
integer index for k' = k + Z ' (10.1)
h=1

where 1" represents the total number of links in the #th module. The robotic gripper,
as shown in Fig. 10.2, has three modules where modules M; and M3 have one link
each (i.e., n' =n° =1), and module M, has two links (i.e., n> =2). Integer index
corresponding to links 1!, 12, 23 and 13 can then be assigned from Eq. (10.1) as

'=14+0=1
P=1+4+n'=1+1=2
2=2+n'=2+1=3

P=1+0'+)=1+1+2)=4 (10.2)

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_6

190 10 Recursive Dynamics Simulator (ReDySim)

b

Link indices Link lengths

Fig. 10.3 A tree-type robotic gripper. (a) Link indices. (b) Link lengths

The resulting integer indexes are shown in Fig. 10.3. The link lengths are
indicated in Fig. 10.3. It is worth noting that Eq. (10.1) ensures that each child
link has as an index higher than its parent. A typical input file, i.e., inputs.m, for the
robotic gripper is shown in Table 10.1.

Next, the user defined trajectory can be entered in the file trajectory.m. The
cycloidal trajectory of Eq. (6.14) is used by default as this ensures zero velocities
and accelerations in the beginning and at the end. The function file trajactory.m is
shown in Table 10.2. It is worth noting that the cycloidal trajectory for each joint
requires initial and final joint angles as inputs. The joint torques are then calculated
by calling protected function runinv.p. The joint torques are stored in data file for.dat
and can be plotted by using the file plot_tor.m which are shown in Fig. 6.2. The
numerical results of the joint trajectories are stored in statevar.dat and the same can
be plotted using the file plot_motion.m.

Note that if a user wants to use ReDySim without having gone through Chaps.
4,5, 6, and 7, i.e., the concept of kinematic modules and the resulting modular
framework, number of modules can be assumed to be equal to the number of
links. Therefore, the number of links in each module can be provided as one, i.e.,
n.s=[1, 1, 1, 1], in the item 4 above. One must ensure that the index of
child link is always higher than its parent. The results, i.e., torque required at each
joint, are however same. One can also visualize input joint trajectory by using file
animate.m. The file animate.m is not generic and need to be modified for animating
different systems. For the benefit of users animate.m file has been provided for all
the problems solved in this book.

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

10.2 Fixed-Base Systems 191

Table 10.1 The file inputs.m for the fixed-base robotic gripper

function [type dof sn.s n.l n.j bt al alp a b dx dy dz m g Icxx Icyy
Iczz Icxy Icyz Iczx aj Tp step]=inputs()

% SYSTEM:GRIPPER

%1: Type of system
type=0; %0 for open-loop and 1 for Closed-loop

%2: Degree-of-freedom of the system
dof=4;

%3 : Number of modules excluding fixed base(s)
s=3;

%4 : Number of links in each module
n.s=[1,2,1];

%$Total number of links
n_l=sum(n.s) ;

%5: Parent of each link (bt)
bt=[0, 1,2, 1];

%$6: Joint variables associated with each joint in s modules
nj=[1,1,1,1];

% Link lengths
al=1[0.10, 0.05, 0.05, 0.05] ;

%7: Constant DH parameters, i.e., (alp, a, b)
alp=1[0, 0, 0, 0] ;

a=[0,0.10, 0.05, 0.05];

b=1[0;0; 0; 0];

%8: Vector di=[dxi, dyi, dzi]lT from the origin(Ok) to Center-
$of-mass (Ck)

dx=1[0.1/2, 0.05/2, 0.05/2, 0.05/2];

dy=1[0, 0, o, 0];

dz=1[0, 0, 0, 0] ;

%9:Mass of each link (m)
m=[0.4,0.2,0.2,0.2];

%$10: Inertia tensor (Ic) of thekthlinkabout Center-0Of-Mass (COM) in
$kth frame, which is rigidly attached to the link

Icxx=zeros (n,1l) ;Icyy=zeros(n,1l);Iczz=zeros(n,1l) ;%Initialization
Icxy=zeros (n,1l) ;Icyz=zeros(n,1l);Iczx=zeros(n,1l);%Initialization

(continued)

192 10 Recursive Dynamics Simulator (ReDySim)

Table 10.1 (continued)

Icxx (1) =0;Icyy(1)=(1/12)*m(1)*0.1%0.1;
Iczz(1)=(1/12)* (l)*O 1«0.1;

Icxx (2)=0; Icyy(2)=(1/12)*m(2)*0.05%0.05;
Iczz (2)=(1/12)+m(2)*0.05%0.05;

Icxx(3)=0; Icyy(3)=(1/12)*m(3)*0.05%x0.05;
Iczz (3)=(1/12)+m(3)*0.05%0.05;

Icxx (4)=0; Icyy(4)=(1/12)*m(4)*0.05%x0.05;
Iczz (4)=(1/12)+m(4)*0.05%0.05;

%11: Gravitational acceleration (g) in the inertial frame
g=[0;-9.81;0];

%$12: Actuated joints of the equivalent open-tree
aj=1I[1,1,1,1]; %$enter 1 for actuated joints and 0 otherwise

%$13: Time period (Tp) and step size (dt)
Tp=1;ts=0.01;

Table 10.2 The file trajectory.m for robotic gripper

function [th_-ind,dth_ind,ddth_ind] =trajectory(time, dof, Tp)

Cycloidal Trajectory (Default)

Initial(thi) and final (thf)joint wvariables in radians
thi=[0, 0, 0, pi/2]

t2r=pi/180;%Degree to radian conversion factor
thf=[pi/3, 80%t2r, 80xt2r, pi/2+pi/6]

o
o
o

T

for i=1:n

th_ind(i)=thi(i)+ ((thf(i)-thi(i))/Tp) * (time-
(Tp/ (2xpi)) *sin((2«pi/Tp) *tlme)) ;
dth.ind (i) = ((thf (i) -thi(i))/Tp)* (1-cos ((2xpi/Tp) xtime)) ;
ddth_ind (i) = (2+pix (thf (i) th1 (1)) / (Tp*Tp)) *sin((2xpi/Tp) *time) ;
end

10.2.1.2 Closed-Loop Systems

In contrast to an open-loop tree-type system, some of the joint variables in closed-
loop systems are dependent. Hence the joint trajectories of all the joints cannot be
entered independently; rather, one requires relationships between the independent
and dependent joint variables. Moreover, one also requires the information of
the Jacobian matrix resulting out of the loop-closure equations. In order to solve
the inverse dynamics of a closed-loop system first trajectories of the independent
joints are calculated using the function trajectory.m whereas the dependent joint
trajectories and Jacobian matrix are calculated in the function file inv_kine.m. The
inv_kine.m file is specific to a given system and the user is required to modify it

10.2 Fixed-Base Systems 193

0.0895
Link indices Link lengths

Fig. 10.4 A four-bar mechanism. (a) Link indices. (b) Link lengths

depending on the type of system to be analyzed. Figure 10.4 shows the integer
indices, link lengths and joint variables of the four-bar mechanism presented in
Chap. 8. The files inputs.m, trajectory.m and inv_kine.m for the four-bar mechanism
are shown in Tables 10.3, 10.4, and 10.5.

Next, the joint torques and Lagrange multipliers at the cut opened joint are
calculated by calling protected function runinv.p. They are stored in data file for.dat
and can be plotted by using function file plot_tor.m. They are shown in Fig. 8.5.

10.2.2 Forward Dynamics

Forward dynamics problem attempts to find the joint motions from the knowledge
of external joint torques and forces. This enables simulation studies, which provide
configuration of a system at hand. In order to perform forward dynamics, input
parameters are provided in the file inputs.m. These input parameters are nothing but
the model parameters, i.e., the first twelve items of Table 10.1, which are explained
in Sect. 10.2.1. In addition to these input parameters, following parameters are
required for the purpose of integration:

1. Initial conditions yo(= [9T éT E..:]7), where 0,0 and E,, are initial joint
positions, joint rates, and actuator energy (0 by default).

2. Initial time (#;) and final time (#;) of simulation, and step size (step).

3. Relative tolerance (1) and absolute tolerance (a), and the type of integrator.
Note that one may use either adaptive solver ode45 (for non-stiff problem) or
odel5s (for stiff problem) or fixed step solver ode5 by specifying the index 0, 1
or 2, respectively.

These parameters are entered in the function file named initials.m.

http://dx.doi.org/10.1007/978-94-007-5006-7_8
http://dx.doi.org/10.1007/978-94-007-5006-7_8

194 10 Recursive Dynamics Simulator (ReDySim)

Table 10.3 The file inputs.m for the four-bar mechanism

function [type dof sn.s n.l nj bt al alp ab dx dy dz m g Icxx
Icyy Iczz Icxy Icyz Iczx aj Tp stepl=inputs/()

% SYSTEM: GRIPPER

%1: Type of system
type=1; $0 for open-loop and 1 for Closed-loop

%2: Degree-of-freedom of the system
dof=1;

%3 : Number of modules excluding fixed base(s)
s=2;

%4 : Number of links in each module
n.s=1[1, 2];

$Total number of links
n_l=sum(n.s) ;

%$5: Parent of each link (bt)
bt=1[0, 0, 2];

%$6: Joint variables associated with each joint in smodules
nj=I[1,1,1];

% Link lengths

al=0.038; $crank

a2=0.1152; %$connecting link
a3=0.1152;%output link
a4=0.0895;%fixed base
al=1[al, a2, a3, a4];

%$7: Constant DH parameters, i.e., (alp, a, b)
alp=1[0, 0, 0] ;

a=1[0, 0, a2];

b=1[0, 0, 0] ;

$8: Vector di=[dxi, dyi, dzilT from the origin(Ok) to Center-
$of-mass (Ck)

dx=1[al/2, a2/2, a3/21;

dy=I[0, 0, 01;

dz=1[0, 0, 0l;

%$9: Mass of each link (m)
m=[1.5, 3, 5];

(continued)

10.2 Fixed-Base Systems 195

Table 10.3 (continued)

%10: Inertia tensor (Ic) of the kth link about Center-0Of-Mass (COM) in
$kth frame, which is rigidly attached to the link
Icxx=zeros (n,1) ;Icyy=zeros(n,1l) ;Iczz=zeros(n,1l); nitialization

$I
Icxy=zeros(n,1l) ;Icyz=zeros(n,1l) ;Iczx=zeros(n,1l); $Initialization
)

Icxx(1)=(1/12)*m(1)*.01%.01; Icyy(l)=(1/12)xm(1)*al(1l)*al(l);
Iczz (1)=(1/12)*m(1)*al(1)*al(1l);
Icxx(2)=(1/12)*m(2)*.01%.01; Icyy(2)=(1/12)xm(2)*al(2)*al(2);
Iczz (2)=(1/12)*m(2)*al(2)xal(2);
Icxx(3)=(1/12)*m(3)%.01x.01; Icyy(3)=(1/12)*m(3)*al(3)*al(3);
Iczz (3)=(1/12)*m(3)*al(3)xal(3);

%$11: Gravitational acceleration (g) in the inertial frame
g=1[0;-9.81;0];

%12: Actuated joints of the equivalent open-tree
aj=1[1, 0, 0] ; $enter 1 for actuated joints and 0 otherwise

%13: Time period (Tp) and step size (dt)
Tp=4/3;ts=0.01;

Table 10.4 The file trajectory.m for the four-bar mechanism

function [th_ind,dth_ind,ddth_ind] =trajectory(time, dof, Tp)

$Constant angular velocity
omega=45;

dth_ind (1:dof) =omegax2xpi/60;
ddth_ind (1:dof)=0;
th_ind(1l:dof)=dth_ind(1:dof) *time;

10.2.2.1 Tree-Type Systems

For the tree-type gripper shown in Fig. 10.3, the input parameters are provided in
Table 10.1 whereas the initial conditions are provided in the file initials.m as shown
in Table 10.6.

The joint torques, which are input for the simulation study, can be entered in
the function file torque.m. Their default values are zeros. There is also a commented
subroutine for PD control in forque.m file where a user may test control performance
of the system for the different gain values. Moreover, one may also write his/her own
control algorithm in function forgue.m as it has both position and velocity feedback.
The function file forque.m is shown in Table 10.7. Finally, simulation is performed
by running protected function file runfor.p. The output joint motions are stored in
data file statevar.dat whereas the time history is stored in timevar.dat. The joint
motions can be plotted by using the function plot_motion.m. The simulated motion
is shown in Fig. 6.3. Moreover, the total energy can be calculated by running the file

196 10 Recursive Dynamics Simulator (ReDySim)

Table 10.5 The function inv_kine.m for the four-bar mechanism

function [th dth ddth J]=inv_kine (th_ind, dth_ind, ddth_ind)

% Four-bar mechanism
[n dof type alp a b bt dx dy dz m g Icxx Icyy Iczz Icxy Icyz
Iczx aj all=inputs() ;

al(l)=al(1l); a2=al(2);a31=al(3);al2=al(4);
th f=pi; %angle with fixed link

$Independent joint motions thl, dthl and ddthl
th(1,1)=th_ind;

dth (1) =dth_ind;

ddth (1) =ddth_ind;

$Computation of the dependent joint angles th2 and th3
alpl=th(1);

pl=alxcos (alpl)-al2xcos(thfl);

gl=al*sin(alpl) -al2+sin(thfl) ;

xl=(ql/al) ;

yl=(pl/al);
z11=(pl*pl4+qglxgl+a3l+a3l-a2*a2)/(2+xa3lxal) ;
alp3=2xatan2 (xl-sqgrt (xl+xl+yl+yl-z11%z11) ,yl+z11l) ;
z12= (plxpl4+glxgl+a2+a2-a3lxa3l)/ (2xa2*al) ;
alp2=2xatan2 (x1+sqgrt (x1*xl+yl+yl-z12%z12) ,y1+z12) ;
th(2,1) =alp2;

th(3,1)=(2«pi4alp3)-th(2);

%$Jacobian J: Ixdthh+Cxdth=tau+J’'xlamda and Jxdth=0
Jll=[al*sin(alpl)
-alxcos(alpl) 1;

J121= [-a2*sin(alp2)-a3lxsin(alp3)
a2xcos (alp2) +a3lxcos(alp3)];
J122= [-a31lxsin(alp3)

a3l+cos(alp3)];
J1l2=[J121 J12217;
J=[J11 J12];

$Computation of the dependent joint velocities dth2 and dth3
c1=J12\J11;
dthd=-clxdth(1) ;
dth=[dth (1)
dthd] ;

$Computation of the dependent joint acceleration ddth2 and ddth3
dalpl=dth (1) ;

dalp2=dth(2) ;

dalp3=dth(2)+dth(3);

(continued)

10.2 Fixed-Base Systems 197

Table 10.5 (continued)

dJll=[al*cos (alpl) xdalpl
alxsin(alpl) «xdalpl] ;
dJl21= [-a2xcos (alp2) *xdalp2-a3lxcos (alp3) xdalp3l
-a2xsin(alp2) xdalp2-a3lxsin(alp3)*dalp3];
dJl22= [-a31lxcos (alp3)+dalp3
-a3l+sin(alp3) +xdalp3];

dJgi2=[dJ121 dJiz22];
c2=-dJ11xdth (1) -dJ12+dthd-J11+ddth (1) ;
ddthd=J12\c2;
ddth=[ddth (1)
ddthd] ;

$Indepedent and depedent joint motions
th=th’ ;dth=dth’ ;ddth=ddth’ ;

Table 10.6 The file initials.m for the robotic gripper

function [y0, len.sum, ti, tf, incr, rtol, atol, step, int_typel =initials()

% SYSTEM: GRIPPER
%1: Initial Conditions: State variables gand dq, and actuator
energy E_act

th=1[0, 0, 0]
dth=1[0, 0, 0, 0] ;
E.act=0;

y0=[th, dth, E_.act];

%2:Simulation time and steps

ti=0; $Initial time

tf=3; $Final time

step=0.01; $Sampling time for adaptive solver and step size
for fixed step solver

%3: Integration tolerances

rtol=1le-3; %$relative tolerance in integration
atol=1le-6; %absolute tolerances in integration
int_type=0; %0 for ode45,1 for odelS5s, 2 for odeb

energy.p and plotted using plot_en.m. This can be used for the purpose of validating
the simulation results. The system can also be animated using the file animate.m.

10.2.2.2 Closed-Loop Systems

In the case of closed-loop systems the Jacobian matrix and its time derivative are
also inputted in addition to model parameters and initial conditions. For the four-bar

198 10 Recursive Dynamics Simulator (ReDySim)

Table 10.7 The file rorque.m for the robotic gripper

function [tau.d] =torque (time,dof,tf, th,dth)

%$Driving Torque

o

% 1 Free-fall under gravity (Default)
tau.d=zeros (dof,1) ;%$For free fall under gravity

°

%2 Controlled simulation: PD control

o

$Desired trajectories
[thd,dthd,ddthd] =trajectory(time, dof, tf) ;

o° o° o°

kp=49; kd=14;
taud=kp=* (thd(1l:n)’-th(1:n))+kdx(dthd(1l:n)’'-dth(1l:n));

o° o

Table 10.8 The file initials.m for the four-bar mechanism

function [y0, ti, tf, incr, rtol, atol, step, int_type]l =initials()

%$1: Initial Conditions: State variables g and dg, and actuator
energy E_act

th=[0 0.9844 4.3144];

dth=1[4.7124 1.4045 -0.0000];

E_act=0;

y0=[th, dth, E.act] ;

%2: Simulation time and steps

ti=0; $Initial time

tf=1.33; $Final time

step=0.01; $Sampling time for adaptive solver and step size
for fixed step solver

%3: Integration tolerances

rtol=1le-5; $relative tolerance in integration
atol=1le-7; %absolute tolerances in integration
int_type=0; %0 for ode45, 1 for odels5s, 2 for odeb

mechanism shown in Fig. 10.4 the model parameters are provided in Table 10.3, and
the initial conditions and the Jacobian matrix are provided in the file initials.m and
jacobian.m in ReDySim as shown in Tables 10.8 and 10.9.

Similar to tree-type gripper, the torques can be entered in the function file
torque.m and the simulation is carried out by running function runfor.p. Once again
the output joint motions are stored in data file statevar.dat where the time history
is stored in timevar.dat. The joint motions can be plotted by using function file
plot_motion.m, whereas the total energy can be plotted using files energy.p and
plot_en.m. The four-bar mechanism can be animated using the file animate.m.

10.2 Fixed-Base Systems 199

Table 10.9 The file jacobian.m for the four-bar mechanism

function [J, ddJ] =jacobian (th,dth)

[n dof type alp ab bt dx dy dz m g Icxx Icyy Iczz Icxy Icyz
Iczx aj all=inputs();

$Link length
al(l)=al(1l); a2=al(2);a31l=al(3);

% Jacobian

alpl=th(1);
alp2=th(2);
alp3=th(2)4+th(3)-2%pi;

Jll=[al*sin(alpl)
-alxcos (alpl)
1
J121= [-a2*sin(alp2)-a3lxsin(alp3)
a2xcos (alp2) +a3lxcos (alp3)
1
J122= [-a31lxsin(alp3)
a3lxcos (alp3)
1
J12=[J121 J122];
J=[J11 J12];

$Derivative of the Jacobian
dalpl=dth (1) ;

dalp2=dth(2) ;
dalp3=dth(2)+dth(3);

dJll=[alxcos (alpl) xdalpl
al+sin(alpl) xdalpl
1
dJl21= [-a2xcos (alp2) xdalp2-a3l*cos (alp3) xdalp3
-a2xsin(alp2) *dalp2-a3l+sin(alp3) xdalp3
1
dJl22= [-a31lxcos (alp3)+dalp3
-a3lxsin(alp3) *dalp3
1

dJl2=[dJ121 dJjlz2];
dJ=[dJ1l1l dJiz];

200 10 Recursive Dynamics Simulator (ReDySim)
10.3 Floating-Base Systems

In the cases of floating-base systems, the base is assumed to be floating and the
interaction of the link with environment is modeled as a contact problem. The
contact points on a link may vary depending on the shape of the link. In contrast to
the modules of fixed-base systems, the same for floating-base systems are specific to
examples of planar and spatial biped, quadruped and hexapod discussed in Chap. 7.
This is due to the complexity involved in contact modeling. However, any system
can be solved if each link is assumed to be a slender rod. The user inputs for
inverse and forward dynamics for floating-base tree-type systems are discussed in
the following subsections.

10.3.1 Inverse Dynamics

Inverse dynamics analysis requires input parameters similar to the model parameters
i.e., items 2 to 11 of Table 10.1. In addition to the input parameters, the parameters
for the ground model discussed in Appendix D are also required. They are listed
below:

Ground Parameters

1. Spring stiffness (k), over-damping factor (odf), and maximum velocity of the
foot tip (Vzmax) to represent ground model in vertical direction.

2. Co-efficient of the friction () and damping co-efficient (c;) to represent the
ground model in horizontal direction.

3. A vector containing information of gravitational acceleration (g).

Figure 10.5 shows the equivalent link indices, joint variables and link lengths of
the floating base biped discussed in Sect. 7.2.1. A typical input file for the biped is
shown in Table 10.10.

As discussed in Chap. 7, inverse dynamics of a floating-base system requires
solution of the base acceleration. This calls for additional initial parameters for
integrating the base accelerations. They are as follows:

1. Initial conditions yy = [qg qg E,: E g,]T, where qo, o, E4c and E, are initial
position and velocity associated with the floating-base, actuator energy, and
ground energy, respectively.

2. Initial time (#;) and final time (#y) of simulation and step size (step).

3. Relative tolerance (ry,) and absolute tolerance (ay)

The initial conditions for the floating-base planar biped are entered into the file
initials.m, as shown in Table 10.11. The trajectory of a biped is entered in the
file trajectory.m as discussed in Appendix B. The joint torques are then obtained
by running the file runinv.p. The joint torques are stored in the result file for.dat
whereas the data of joint trajectories are stored in statevar.dat. The output torques,
can be seen using the filr plot_tor.m, whereas the trajectories can be animated using
animate.m.

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_BM1
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_BM1

10.3 Floating-Base Systems 201

Link indices Link lengths

Fig. 10.5 A floating-base planar biped. (a) Link indices. (b) Link lengths

Table 10.10 The file inputs.m for the floating-base planar biped

function [dof s n-s n.1 n.j bt al alp ab dx dy dz m g Icxx Icyy
Iczz Icxy Icyz Iczx g-prop]=inputs/()

% SYSTEM: Planar Biped
%1: Degree-of-freedom of the system
dof=12;

%2 : Number modules including floating base (s)
s=3;

%$3: Number of links in each module
n-s=[1, 3, 3]

$Total number of links
n_l=sum(n.s) ;

%4 : Parent module of each link (bt)
bt=[0,1,2,3,1,5,6];

%$5: Joint variables associated with each joint in s modules
n=[6,1,1,1,1,1,1];

% Link lengths
al=[0.5,0.5,0.5,0.15,0.05,0.5,0.15,];

(continued)

202 10 Recursive Dynamics Simulator (ReDySim)

Table 10.10 (continued)

%6: Constant DH parameters, i.e., (alp, a, b)
alp=[0,0,0,0,0,0,0];
=[0,0.25,0.5,0.5,0.25,0.5, 0.5];
b=7J[0,0,0,0,0,0,0];

%7: Vector di=[dxi, dyi, dzi]T form the origin(Ok) to Center-of-
$mass (Ck)

dx=[0, 0.5/2, 0.5/2, 0, 0.5/2, 0.5/2, 01;

dy=I[0, O, 0, 0, O, 0, 01 ;

dz=[0, O, 0, o, O, 0, 0l;

%8: Mass of each link (m)
=[5,1,1,0.2,1,1,0.2];

%9: Inertia tensor (Ic) of the kth link about Center-Of-Mass
(COM) in

$kth frame, which is rigidly attached to the link
Icxx=zeros(n,1l) ;Icyy=zeros(n,1l) ;Iczz=zeros(n,1l);%Initialization
Icxy=zeros(n,1l) ;Icyz=zeros(n, 1) Iczx=zeros(n,1l);%Initialization
Texx(1)=1(1/12)%0.1%0.1; Icyy(1l)=(1/12)*m(1)*(0.5%¥0.540.1%0.1) ;
Iczz (1/12) *m (1) *0.5%0.5;
=0; Icyy(2)=(1/12)*m(2)*0.5%0.5;

(1/12) *xm(2) *0.5%0.5;
0; Icyy(3)=(1/12)*m(3)*0.5%0.5;

(1/12) *m(3) *0.5%0.5;

(1
Icxx)
)
)=1(1/12)%m(4)%0.15%0.15;
)
)
)

Iczz

Icxx

Iczz

Icxx =0; Icyy (4
= 4)%0.15%0.15;
Icxx =0; Icyy(5)=(1/12)*m(5)*0.5%0.5;

Iczz (1/12) *m(5) *0.5%0.5;

0; Icyy (6)=(1/12) +m(6) «0.5%0.5;
(1/12) *m(6) *x0.5%0.5;

0; Icyy(7)=(1/12)*m(7)%0.15%x0.15;

(1/12) *m(7) *0.15%0.15;

Icxx

(

(

(1/12) #m(

(

Iczz (

(1) =
(2)
(2)=
(3)
(3)
(4)
Iczz(4)
(5)
(5)
(6)
(6)
Icxx (7)

(7)

Iczz

%$10: Gravitational acceleration (g) in the inertial frame
g=1[0;-9.81;0];

%11: Ground parameters

%$Parameters for vertical reaction
k=2000; odf=10;

cv=odfx*2*sqgrt (K«sum(m)) ;
vz_max=4.5;

%$Parameters for horizontal reaction
mu=.7;ch=1000;

gr=[2,1, 3];
g-prop=[K, Cv, vz_.max, mu, ch, gr];

10.3 Floating-Base Systems 203

Table 10.11 The file initials.m for the floating base planar biped

function [y0, ti, tf, incr, rtol, atol, step,
int_type] =initials()

%1: Initial Conditions: State variables g0 and dg0, actuator
and ground energy

s=0;

[th dth ddth Xh Yh Zh dXh dYh dzh] =trajectory(s) ;

%$Base motions

g0=[Xh, Yh, zh, (0/180) *pi, (0/180)+pi, (0/180)*pi];

dg0=[dXh, dYh, dZh, 0, 0, 0] ;

E_act=0; Egr=0;

yo=1[q0, dq0, E_.act, Egr] ;

%2: Simulation time and steps

ti=0; $Initial time

tf=3; $Final time

step=0.01; $Sampling time for adaptive solver and step size
for fixed step solver

%3: Integration tolerances

rtol=1le-4; $relative tolerance in integration
atol=1le-6; $absolute tolerances in integration
int_type=0; %0 for ode45,1 for odels5s, 2 for odeb

10.3.2 Forward Dynamics

In order to perform the forward dynamics, input parameters are provided in the file
inputs.m. These input parameters are the same as discussed in the case of inverse
dynamics of floating-base system, as explained in Sect. 10.3.1. In addition to the
input parameters, following parameters are also required in the file initials.m for the
purpose of integration:

1. Initial conditions yo = [q7 7 Euer Egr]T, where q, q, Eq, and Eg, are the
initial values of generalized coordinates, their derivatives, actuator energy, and
ground energy, respectively.

2. Initial time (#;) and final time (#r) of simulation and step size (step).

3. Relative tolerance (r,) and absolute tolerance (ayo)

A typical example of the file initials.m is shown in Table 10.12. The joint torques
can be entered in the function file forque.m. Next, simulation is performed by
running function file runfor.p. The generalized motions are stored in the result file
statevar.dat, whereas the time history is stored in timevar.dat. Generalized motion
can be plotted using the function plot_motion.m.

204 10 Recursive Dynamics Simulator (ReDySim)

Table 10.12 The file initials.m for planar biped

function [y0, ti, tf, incr, rtol, atol, step,
int_type] =initials()

%$1: Initial Conditions: State variables g and dg, and actuator
energy

s=0;

[th dth ddth Xh Yh Zh dXh dYh dzh]=trajectory(s);

%$Base motions

g0=[Xh, Yh, zh, (0/180) *pi, (0/180)+pi, (0/180)*pi];

dg0=[dXh, dYh, dZh, 0, 0, 0] ;

E_act=0; Egr=0;

Y0=[qgO, th, dg0, dth, E_act, E_gr] ;
%2: Simulation time and steps
ti=0; % Initial time

tf=3; % Final time

step=0.01; % Step size

%$3: Integration tolerances

rtol=1le-4; $relative tolerance in integration
atol=1le-6; %absolute tolerances in integration
int_type=0; %0 for ode45, 1 for odels5s

10.4 Summary

The detailed use of Recursive Dynamic Simulator (ReDySim), a MATLAB based
computer algorithm for the dynamic analyses of robotic and multibody systems,
has been presented for the problems illustrated in this book. The ReDySim contains
program module, each for fixed-base system and floating-base system. The input
parameters required for inverse and forward dynamics of the above systems were
discussed and corresponding MATLAB files were illustrated.

Appendices

A Computational Complexity

In this Appendix, computational complexity of the various matrix—vector operations
required in dynamic algorithms provided in Chaps. 6 and 7 are shown. For that,
vectors and matrices associated with the kth link, e.g., vector t; or matrix My, are
represented in the frame attached to link k and referred to as the kth frame. However
for brevity as well as simplicity of writing, the frame of reference will not explicitly
be mentioned. If a vector or matrix is represented in the frame other than kth frame,
say the jth frame, it will then be expressed as [ry]; or [My];.

A.1 Elementary Computations

Computations of the terms ey ék, elz r;, and (e, X ry) are shown in this section. For
this, the 3-dimensional vector e; denoting the unit vector along the axis of rotation
. C . T

or translation of a joint is represented in the body-fixed frame k as e; = [O 01] .
.. : . . T

Hence, for a scalar joint rate 6, and the 3-dimensional vector r; = [rk 1 Tk rk3] ,

the terms ej ék, e{rk, and (e; X r) are calculated as

0 —rk2
€0 =1 0 | (OMOA), e,{rk = ri3(OMOA), e X 1p = Tkl (OMOA)
ék 0

(A1)

The numbers within the parenthesis, i.e., (OMOA), denote the numbers of
Multiplications/Divisions (M) and Additions/Subtractions (A) required to compute
the expressions.

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 205
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7

206 Appendices
A.2 A Vector in a Different Frame

A rotation matrix Qy representing the rotation between kth and jth frame, where j is
the parent of &, can be considered as two successive rotations about X- and Z-axes
(Eq.3.4),1i.e.,

1 0 0 Co, =S, 0
Qi=Qy Q4 =| 0 Cop —Sux SO, C6. 0 (A.2)
0 Sor Coy 0 0 1

A vector 1y can then be represented in the jth frame as

[re]; = Qurk

= Qq, 1t where r; = Qg rx (A.3)

where rf and Qg 1 are computed as follows

Tk rin C Ok — ri2 SO
Dri=|rf | = | S0k + r2COx | (4M2A);
rk3 rk3
rki
2) Quth = | rf2Cay —rizSoy | (4M2A) (A.4)

rhaSoy + ri3C oy

So, the transformation Qr; requires computational count of 8M4A. Similarly,
one may also represent vector r; in kth frame as Q,{r i, e,

[rj]k = Q/frj

= ngr} where rj = QOTLkrj (A.5)

/ Ty
where rj and Q, r; are computed as follows

r}l rj1
D=7 | = rjaCax + 13S0 | (4M2A4);
I‘;‘3 —rszock + I‘j3C0Lk

r}lcek + I‘}zsek
2)Qfrj = | —rii SO +r/2CO; | (4M24) (A.6)

/
rj3

http://dx.doi.org/10.1007/978-94-007-5006-7_3

Appendices 207

In the case of multiple-DOF universal or spherical joints, a is typically taken
as 90°, i.e., joint axes intersecting orthogonally. Hence, r’ does not require any
computation.

A.3 Matrix in a Different Frame

A 3 x 3 matrix F; can be represented in the jth frame as

[Fi];, = QuFiQf
= Qu, F'rQ], where F'; = Q4 FQj, (A7)

Note that in Eq. (A.7), the 3 x 3 rotation matrix Q; denotes the orientation of
the kth frame with respect to jth where j is parent of k. Moreover, Q,, and Qy, have
the same representations as given in Eq. (A.2). Equation (A.7) is computed in the
following two steps:

Step 1: Computation of F/;, = ngFngk

Ju—d Juo+d> J13C 0, — f2350k
Fi = S+ d> S+ d S1380r + f3C0; | (BM8A)
S31C0 — f280, f3150k + f3C 0 33
where
diy = biti + batr, dy = bits — bot1, by = (f11 —). b2 = (f12 + f21)(4M44)
t = S80S0k, 1, = COLSOL(2MOA) (A.8)

In Eq. (A.8), the term f, is the (r, s)th element of matrix Fy.

Step 2: Computation of [Fy]; = Qu, F'x Q[

fh f12Cox — fisSax flaSox+ f13C o
(Fel; = | faCoax—fi1Soy fa—di fa+ds (8M84)
nSar+ 3 Cox fh+ds [h+di

where
di = biti + bats, ds = bits — byt1, bl = (f — f3). b2
= (/5 + f3)(4M44)
11 = SaxSay, 1y = Coy Sax (OMO0A) (off-line) (A9)

208 Appendices

In Eq. (A.9), the term f7, is the (r, s)th element of matrix F’s. The terms
t{ and t5 in Eq. (A.9) may be computed offline as ¢ is the constant DH parameter.
Computation of Eqgs. (A.8) and (A.9) need computational counts of 14M12A and
12M12A, respectively, and the total count of 26M24A 1is required to calculate
[Fi];. In the case of multiple-DOF universal or spherical joints, the angle between
the intersecting revolute joint axes are 90°, so, Eq. (A.9) does not require any
computation as it is simply

fu —fis fi2
Fel, = =f5 [—f5 | (0M04) (A.10)
fa —fn fo

If F; is a symmetric matrix, then F'; and [Fy] j are obtained as shown below:

Ju—di sym
F/k = d2 f22 —+ dl (4M4A)
f31C0 — f3280r f3180 + f32C01 f33

where

di =biti + fats,dy = bitr — forts, by = (fi1 — f22)(4M3A)
(=S8, S0k, 1 = COLSOp. 13 = 210,14 = 21, — 1: (4M14) (A.11)

fh sym
[Fel; = | faCox — fiiSax fh —di (4M44)
fauSu+ f5Car dr f+di

where

di = biti + fits, dr = bith — fith, bl = (f2 — f53)(4M34)
t = SoSa, 15 = CaxSay, 15 = 265,15 = 2t] — 1; (OMOA) (off-line) (A.12)

Equations (A.11) and (A.12) require computational counts of 12M8A and 8M7A,
respectively. As a result, the total computational count for the calculation of [Fy] f
is 20M15A. Moreover, if 6 is constant then the computational count is 16M14A. In
the case of multiple-DOF joints with a; =90, Eq. (A.12) is simply

fh sym
Fel; = | =f5 f3 (OM0A) (A.13)

fo —f [

Appendices 209
A.4 Spatial Transformations

The 6 x 6 matrix Ay ; (where j is the parent of k) in Eq. (4.3) represents the twist-
propagation matrix whereas wj in Eq. (5.6) is the 6-dimesional wrench vector.
Matrix A ; and vector wy have the following representations:

Arj = [1 O} and w; = [“k} (A.14)

ak,jxll fk

In Eq. (A.14), a; ; x 1 is the cross-product tensor associated with the vector

ap; = [—ar bpSoy —brCoy]T, where a; and by, are the DH parameters, which are
the link length and the joint offset, respectively. The tensor a; ; x 1, when operates
on any 3-dimensional Cartesian vector, X, results in the cross-product vector a; ; XX.
The tensor a ; x 1 has the following representation:

0 b Coy bpSoy
ak,j x1= —bkCOLk 0 aj (A.IS)
b Sa, —ay 0

If matrix A ; and vector wy are available in jth and kth frame, respectively, the
transformation [A,Z jwk]j in the jth frame may be calculated as

. T
AL Wi, = [(1) (@ XD } [%’;‘fﬂ (A.16)

The above equation is written as

, T
[A;f,jwk]j _ [%k (ak j EZ) Qki| [I;:} (A17)

Now, Eq. (A.17) can also be rewritten as

T T
AL wil = [Q(;k o Qak] [% b Qek} [ffﬂ (A18)

In Eq. (A.18), (ax x 1) and (by x 1) are cross-product tensors associated with the
vectors a;y = [—ay 0 O]T and by = [0 0 —by]T. Moreover, the matrices

Qy (ax x1)7Qy, Qs (b x 1)7Qq,
|: O Qak i|and|: O Qek :|

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5

210 Appendices

may be interpreted as planar screw transformation (Featherstone 1987) about X and
Z axes, respectively. Now Eq. (A.18) is computed in two steps as

;[_ [Qe bk x)7 Qo] [
l)wk_[f’k}_[o Qqo, ka}

T /
2) [Alf,jwk]j _ |:Q001k (ax XQI) Qotk:| I:I;,::| (A.19)

These two steps are explained below:

Step 1: Computation of w'y

Wy = [Qeknk + (bx x 1)TQekfk} (A.20)
Qq, fx
Equation (A.20) is computed next as
B I’lklcek — nszGk — bk]’lz
Qo + (b x D' Qufi = | n41 SOk + ni2C O + bihy | (6M4A)
L W3
-
Qufi = | hy | (0M0OA)
| fi3
where hy = friCOr — fiaSOk, hy = fi1 SOk + fiaCOr(4M2A).
(A.21)
Step 2: Computation of [A[; wil,
T [Quns + (ar x 1) Qq, Fi
(A jwil, = [Qu.f (A.22)
Eq. (A.22) is computed as
i Nk
Qu'i + (ax x)" Qufx = | nfoCoy —njzSayx —arhs | (6M4A)
| njoSay + ni3Coy + aihi
[fh
Qufv=| h |(0M0A) (A.23)
L 7

where i = floCox — frzSar, hb = floSox + fr3Car(4M2A4).

Appendices 211

Steps 1 and 2 require computational count of 10M6A each and hence a total
computational count of 20M12A is required to find AT.kW ; in the kth frame.
Similarly, it may also be shown that the computational count to find out (A xti] ; is
20M12A, where t; is the 6-dimensional twist vector as defined in Eq. (4.2).

A.5 Special Computations

The linear acceleration (0) of the kth link in terms of its parent link, j, is obtained as
6k=Q/€[6j+(bj Xaj,k—i-(bjx(wj xaj,k)] (A.24)

where w; and w; are the 3-dimensional vectors of angular velocity and angular
acceleration, respectively, of the jth link. Equation (A.24) may also be rewritten as

o = Qf [6; + w,aji]where w; = (&, x 1) + (0; x I)(w; x1) (A.25)

In Eq. (A.25), »; x 1 and w; x 1 are the cross-product tensors associated with
w; and @, respectively. The 3 x 3 matrix @ is computed efficiently as follows:

—w33—wy —03+opn 0+ o3
W = oy +wp —wpn—ow —o + oy | (OM9A) (A.26)
-+ w3z o +ws —wn—on

where w13 = wW3, W33 = WW3, W3 = WW3, W] = VW], W) = WIW), W33 =
ws3w; (6MOA). Moreover, wy and @y, for s=1,...,3, are the sth element of the
vectors, w; and ®;, respectively. Hence, w requires a computational count of
6MO9A, whereas computation of 0 requires a computational count of 17M13A.

Next, the Euler equations of motion (as obtained in Eq. 5.4) for the kth link is
given as

n, = Lo, + o x Liwg + mid; x 0 (A.27)

In Eq. (A.27), Iy o) + ok X [ywg is efficiently computed as

n =ILor + o x Lo
w1l — W31i12 + Wiz + i3(wn — w33) — prwss
= | @iz — Wiz + Wi + i3(wsz —w11) — paiwz | (1SM154)
W3l — Wiz + Wisins + (w11 — W) — P2
(A.28)

where p)3 = (ixp —1i33), p31 = (i3s3 —i11), and pjp = (i1; —i22), which are constant
terms and may be calculated offline. Moreover, i,; and @, are the (r,s)th elements
of the matrices I} and w, respectively. Note that, matrix @ is already computed

http://dx.doi.org/10.1007/978-94-007-5006-7_4
http://dx.doi.org/10.1007/978-94-007-5006-7_5

212 Appendices

while obtaining the linear acceleration, as in Eq. (A.26). Hence, the computation of
n; requires a total computational count of 21M21A.

A.6 Mass Matrix of a Composite Body

The mass matrix of a composite body is expressed as
Mj =M; + Ag’ijAk’j (A.29)

where M, M; and Ay ; have the following representations:

. .d - ~ ~. . T
M,E[I m,d,xl]MjE[L G,x1) }Ak’jz[1 0}

—dejxl mjl f)jXI l’;’ljl ﬁk’j 1
(A.30)

in whichd; x 1 and p j % 1 are the cross-product tensors associated with vectors
d; and p;, respectively. In Eq. (A.29), evaluating A,? ijAk, ; in jth frame of

reference is computationally very expensive step as M is available in the kth frame
of reference. The transformation, A,{ ijAk, ; in the jth frame is obtained as

[AJZ,ijAk,j]j
=[l(ak,,»x1)TH QL.Qf Qk(ﬁkxl)TQ,fM 1 0}

0 1 QP x DQ! Qurik1Qf ar; x11
(A.31)

Equation (A.31) may also be rewritten as
_—
(A MicA ;]

[Qk (g x 1)TQk} [L (py x 1)1 [Q’ 0
(0] Qx (P x 1) nyl Q/ (a; x 1) Qf

} (A.32)

The above equation is now expressed in terms of the planar screw transformations
about X and Z axes as

~ T T
AT VA], = [Q(;k (ax lej Qak} [ng (b le6> Qek}

L @exD’ Qj, o Q, o (A33)
(P x 1) gl Qf (b x 1) Qf || Qf (ar x 1) QF, '

Appendices 213

Equation (A.33) is then obtained in two steps as shown below:
e @oxD’
@ x1) ml

:[Qek (bkxl)TQek][i (mxl)T} Q O
0 Qo, (TS VIS | Qjf, (b x 1) Qf,

1)M'k=[

2) (AL MiA,],

_[Qak (akxl)TQakH 1 (5'kx1)T} 0
Lo Q. @ x1) gl QI (ax x 1) QT
(A.34)

These above steps are expanded below:
Step 1: Computation of M’

@ xD gl

W, = |: T (@ x 1)T:|

Qo (B < DQ{, + Qo i 1Qf, (b X 1) Qo 71 1Qf,

_ [QeﬁkQ& + Qo B X DTQY by X 1) + (b X 1Y Qo Br X DQY, + Qo i 1Q], (b X 1) sym]
(A.35)

The transformation Qekingk is obtained by using Eq. (A.11), whereas
Qo 1Qf, = mQy, Q) = skl as Qp,Qf = 1. Computation of Qg I;Qf
and QekmleeTk require, counts of 12M8A and OMOA, respectively. Moreover,
Qq, (Pg X l)QeTk is obtained efficiently as follows:

Qs (Bi x DQg, = (Qo,py x D(4M24) (A.36)

The block elements of Eq. (A.35) are obtained as

_ i+ i i+ pibe
I'y = i + ¢2 i3+ paby | 2M4A);
| sym i33
[0 a1
@ xD=|—c1 0 —p | (0MO0A) (A37)
L—p2p1 O

where ¢; = ¢3—p3, 2 = (c1 + p3)br (1M 2A); and c3 = m b (0M0A) (off-line).

214 Appendices

In Eq. (A.37), i,s and p; are the (r,5)" and s elements of the matrix Qp, ierTk
and vector Qpg, p, respectively. The total computational count for step 1 is I9M16A.

Step 2: Computation of [A[M Ay, /]j

Af; MkAk.j]j

_ | QuTiQT, 4+ Qu 3 x DTQT, (a X 1)+ (@ X D' Qo 34 X DQE, + Qu ik 1Q], (3 X 1) sym
Qu, (0 X DQL, + Quemi1Q] (ay X< 1) Qu, 4 1Q7,

(A.38)

In Eq. (A.38), Quki’ngk is obtained using Eq. (A.12) and has computational
count of 8M7A, whereas Qaknﬁ;{ngk = m; 1(0M 0A) requires no computations.
Moreover Qg (p’; X I)ng is obtained as

Qu (0'x x DQL, = (Qu ', x (4M24) (A.39)

Now, the block elements of Eq. (A.38) are given by

Qu Tk Q) +Qu, (3% x D' QL (ar x 1) + (a x D' Qu (" x DQL

ifr itz + phay ifs + piax
+ Qo 1Q] (ar x 1) = ih+cs ik (2M4A)
sym %3+ ch

Qo (' x DQL + Qo 1Q] (ar x 1)

0 —piph
=| ;i 0 ¢ [(0M04) (A.40)
—pp —c{ 0
where ¢f = ¢ — pl.cb = (cf — pl)axr(1IM2A)and ¢ = #far(OMOA)

(off-line).

In Eq. (A.40), i;s and p/, are the (r,s)th and sth elements of the matrix Qg r onTLk
and vector Qq, p’;, respectively. Computational count for step 2 is obtained as
15M15A. Hence, the total count required for [A,{ ; M A, j]j is 34M31A. In the
case of a prismatic joint it would have required a computational count of 31M30A
instead. Finally, the computation of M; + [Ag j MkAk, j]j has a computational count

of OM9A for the summation. So the final computational count to obtain M; is
34M40A.

Appendices 215
A.7 Mass Matrix of an Articulated Body

The mass matrix of an articulated body is expressed as
Mj =M; + A]{,ij,kAk,js where I\A/Ik’k = <I>kMk (A41)

The matrices M j»and I\A/Ik,k in Eq. (A.41) have the following representations:

TR i BT }
M; =7 J [and My, = | £ WK A.42
J [P, GJ} K.k [Fkk Gt ()

In Eq. (A.41), evaluating Ag’jl\A/Ik,kAk, ; in the jth frame of reference is com-

putationally a very expensive as I\A/Ik,k is available in the kth frame. The term
Ag’ j M A ;in the jth frame is obtained as

1 (a; x 1)T} [Qkika; Qk?;{Q;{ } |: 1 Oi|
o 1 QFuQ QuGuQ[| [ar,; x11
(A.43)

T —
[Ai; MickAxj], = [

Similar to Eq. (A.31), the above equation may also be represented in terms of
planar screw transformations as

[AZ,ij,kAk,j]j
_ [Qak (ax x I)TQak} [Qek (b I)TQek] [ikk ka}
0 Qq, o Qo Fi G
[o o] o o
QeTk (br x 1) QeTk QZL—k (ax x 1) Qo{k (A.44)

Equation (A.44) is then obtained in two steps as

ot Je B[G i Fu || Q@ O
e P Gl o Qo Fu G | [Qp (b x 1) Q;,

T 1] = Qq (ar x 1)TQﬂtk ilik IE‘IG(Z; o
2) [Akijk,kAk,J]j - [0 Qak F/kk G/kk ng (akkx 1) ng

(A.45)

216 Appendices

These above two steps are expanded below:

Step 1: Computation of M;_,

1/
My,

a AT A A
_ |:QeklkaeTk + Qo Q7 (b X 1) + (b X 1) Qq FuQf, + Qo GuQj (b X 1) sym :|

Qs P QeTk + Qq, Gu QeTk (bx x 1) Qs Gu QeTk
(A.46)

In Eq. (A.46), ikk apd Gkk are the symmetric matrices. For the kth joint being
revolute one, matrices I;; and Fy; have the following forms:

x x 0 x x 0
Ikk: x X 0 and Fkk = x x 0 (A47)
000 x x 0

where “x* denotes non-zero value of elements. In order to compute Eq. (A.46),
first Qg, Fkae is obtained using Eq. (A.8), whereas Qg, Ikae and Qg, Gkae are

obtained by using Eq. (A.11). Many computations in Qg, Ikaek and Qg, Fkaek are

simplified for ikk and I?kk because theiy have many zero elementsA as indicated in
Eq. (A.47). The transformations QekaerTk , Qg Ikagk and Qy, Gka@Tk have the
following representations:

. [in i1z O . Su fiz 0
Qo 1uQf = | i1z i 0 [(8M6A), Qo FuQf = | fu f 0 |(BMI0A),
L 0 00 fir f2 0
. g1 g2 g
and Qp, Gy Qy, = g» g | (8MT7A) (A.48)
L sym 833

Given Eq. (A.48), the block elements of Eq. (A.46) are obtained below:

in—(cs+ fi)bi i1+ (c2— fo)br O

I = i+ (c3+ fi)be 0 |;(3M64)
sym 0
Cr C3 0
F]lck = Cyq fzz + 1 0 1; (2M3A)

S31 —brgas fo+brgiz 0

where ¢; = bigi2,¢c2 = fit —c1.¢3 = fio +bigii.ca = fo1 —bign(3M3A)
(A.49)

Appendices 217

The total computational count for step 1 is 32M35A. Next, step 2 is evaluated.

Step 2: Computation of [A] ; My c A j]j

r o
(A, Mik A1,

| QuTQl + QuFLQL (e x D F (e X DT Qu FuQl, + Qu GuQf e x D) ym }

Qu Q] + Qu, 61 Q7 (ar X 1) Qu, G'uQl,
(A.50)

Here, Q,, ¥’ Qg is obtained using Eq. (A.9), whereas Qaki;ﬁngk and
Qq, G kaZk are obtained using Eq. (A.12). The representations and computational

complexity of the transformations Qaki;’(onTLk, Qakﬁ‘/kagk and Qakf}/kagk are
shown below:

./ Y / / /
R i 112 113 R fu f12 f13
Q. 1kQl, = i% i% | AMI1A), QuF'wQl = | fh f5 f% | (10M6A),
sym i3 S5 [
(A.51)
/ / /
R g1 812 813
and Q,, G'uQ}, = g5 ghs | (BMTA)
sym g5
Now, the block elements of Eq. (A.50) are obtained as
Qu 1iQl, + Qu FLQL (ar x 1) + (ar x 1) Qo F'uQY, + Qu, G'uQl, (e x 1)
i i — fha i3+ fhax
= in—(f+char i+ (f—chax |;(5M8A)
| sym %+ (f% + c)ag
Qu FuQl, + Qo G'uQl, (ar x 1) (A.52)
fii flo—ghar fis+ glaak
=| fu fh—d ¢} ; (2M34)
fa ch b

/ / 4 / / 4 / / /7 / / .
where ¢i = gaar,c) = fi3+ 1,3 = f23 + gnar,ci = f3 — giar; BM3A)

The computational count for step 2 is obtained as 32M28A. Hence, the total
computational count to compute [A,? ; I\A/Ik,kAk, j]j (i.e., stepl + step2) is 64M63A.
The proposed computational count is little better than that obtained by McMillan
and Orin (1995), who reported the count as 70M71A. If the kth joint is prismatic, the
computational count will be 60M62A as 6 is constant. Finally, the computational
count of OM15A is required for summation M; + [A,f, ; I\A/Ik,kAk, /]j' So, the final

count to obtain M ;is 60M77A.

218 Appendices
B Trajectory Generation for Legged Robots

The trajectories used for the dynamic analyses of legged robots are presented in this
appendix.

B.1 Biped

The motion of a biped is generally designed such that the Zero-Moment-Point
(Vukobratovic et al. 1989) remains within the convex hull of the supporting feet.
Hence, the concept of Zero-Moment-Point (ZMP) is introduced first.

B.1.1 Zero-Moment-Point (ZMP)

Zero-Moment-Point (ZMP) is a point on the walking surface about which the
horizontal components (i.e., X and Y) of the resultant moment generated by the
active forces and moments acting on the links are zero. This is illustrated in Fig. B.1.
In other words, it is a point about which the sum of the moments caused by the
inertia and gravitational forces is equal to zero. Hence, with the assumption that
ZMP remains within the convex hull of the supporting feet, a biped requires no
external moment to attain instantaneous equilibrium.

Fig. B.1 Zero-Moment-
Point

Appendices 219

Fig. B.2 Parameters of biped

Zk
The ZMP (X, Yzmp> 0) can be calculated as
Do mieGr + g)xk — mpXizk — ik yyor.y]
k=1
Xemp = n
> mi(G + 8)
k=1
Yo [miGr + &)y — mi iz — ik xx@r]
k=1
Vemp = - (B.1)
> mp(Gk +8)
k=1

where (xi, yi, Zx) are the Cartesian coordinates of the center-of-mass C; of the kth
link and 1 is the mass of the link as shown in Fig. B.2. Moreover, iy ., and i ,, are
the mass moments of inertia about X and Y axes, wy » and wy , are the X and Y
components of the vector of angular acceleration @, and g =9.81.

B.1.2 Hip Trajectory: Inverted Pendulum Model (IPM)

Trajectory generation of the hip of a biped based on the equations of ZMP in
Eq. (B.1) results into computationally expensive procedure as it requires first the
evaluation of the expression in Eq. (B.1) followed by the solution of complex
differential equations involving many dynamic parameters. Alternatively, Inverted-

220 Appendices

Fig. B.3 Inverted-Pendulum-Model

Pendulum-Model (IPM), shown by Kajita and Tani (1991), assumes that mass of
the biped is concentrated at the hip, i.e., the floating base, as shown in Fig. B.3.
As a result, the biped motion can be approximated by considering it as an inverted
pendulum. For the IPM, the moment equation about the ZMP can be written as

a, x (may) —a, x (mg) =0 (B.2)

T . .
where a, = [x;, y;, z;,] represents a vector from the origin O to the point mass m

andg=[00g]T. Equation (B.2) may be rewritten in component form as

YhZ—znVn + gnyn =0
znXp — xpZn — gnzn = 0
XpYn — ynXn =0 (B.3)
The IPM assumes that the trajectory is such that the height of the hip remains

constant, i.e., z, = constant, throughout the motion cycle of the biped. Hence, the
above equations get simplified as

Appendices 221

. g
Xp — —Xp = 0
Zh

. g
Vn—=—=yn=0 (B.4)
Zh
Solutions of the above equations are then obtained as
ForO<tr<T
xp(t) = cre™ + cre™"

yu(t) = cze™ + cue™ (B.5)

If the biped moves in the sagittal plane, i.e., in the XZ-plane, then y,(t) = 0.
Given the initial positions x;(0) and y,(0) and the velocities x,(0) and y;(0), the
coefficient ¢, ¢, ¢3, and ¢4, are obtained as follows

Cl:% |:Xh(0)+th(0):| ,szl |:xh(0) - l)'Ch(o)}
w 2 w

=1 [yh O+ (0)} o [yh 0 - L, (oﬂ (B.6)
w 2 w

where w = /g /z, . Substituting Eq. (B.6) into Eq. (B.5) the coordinates of the hip
are obtained

For0<tr<T
x5 () = x;,(0) cosh (wt) + (xhvio)) sinh (wt)
Yu(t) = yu(0) cosh (wr) + (y hvio)) sinh (wt) (B.7)

In order to obtain the periodic and symmetric biped pattern, the following
repeatability conditions are used:

xp(0) = =xp(T); X1 (0) = % (T)
yi(0) = yu(T); yu(0) = —yu(T) (B.8)
The above repeatability conditions help in obtaining the values of initial
velocities x;(0) and y,(0), i.e.,
+ —wT _ ,—wT

. 1+e . 1—e
Xh(O) = WWX},(O) and yh(O) = WW_Y},(O) (B9)

222 Appendices

Fig. B.4 Parameters of ankle

trajectories

Table B.1 ifrajéctory T x,(0) y4(0) Z I hy

parameters for biped (Sec) (m) (m) m) m (m)
Planar biped 1 —-0.15 — 096 03 0.1
Spatial biped 0.5 —0.15 —0.08 092 03 0.1

B.1.3 Ankle Trajectories

Ankle trajectories are synthesized as cosine functions, i.e.,
b4
xq(t) = —I; cos (Tt)

h f T
a0y = L [1=cos (%1)] B.10
(t) =~ T (B.10)
In Eq. (B.10), [, and Ay are stride length and maximum foot height, respectively,
as indicated in Fig. B.4.
For the planar and spatial bipeds discussed in Chap. 7, the parameters of hip and
ankle trajectories are shown in Table B.1.

B.1.4 Joint Motions

The joint motions or variables associated with the leg of a biped are shown
in Fig. B.5. Based on the hip and ankle trajectories calculated in the previous
subsections, the joint motions can be obtained using inverse kinematics.

Using the geometry of a leg shown in Fig. B.6, the associated joint variables are
obtained as follows:

http://dx.doi.org/10.1007/978-94-007-5006-7_7

Appendices 223

Fig. B.5 Joint motions of a
biped

Zk 7' YAy

|
- = = = £(X, Vi Z1)
1 N

,(,:(xm Yar Za)) éV,_ (X5 Ya» Za)

/ 6T
/95:

YZ plane XZ' plane

Fig. B.6 Geometry of a biped to determine the joint motions. (a) YZ plane. (b) XZ' plane

92 = —95 = tan_l (u)

Zh — 2
P2 —a?—a?
64 = cos™! (—0 2 3) where ag = \/(xh =X 4+ On = ya)?* + (zn — 20)°
2611611
— sin 6
63 = 04— (B1 + v1), where By = sin™" (u) ,y1 = sin”! (u)
ap aop

b6 =B1+v1 (B.11)

224 Appendices

Table B.2 Trajectory T x(0) w(0) z I, hy

parameter for legged robots Sec) (m))) m m)
Quadruped 1 —-0.15 — 050 03 0.09
Hexapod 0.5 —020 — 055 04 0.08

Moreover, angle 6y, in XY plane, is assumed to be zero, i.e., §; = 0. Similarly,
the joint motion may also be obtained for the other leg of the biped.

B.2 Quadruped and Hexapod

Motion of the trunk of the quadruped and hexapod used in Chap. 7 was also
approximated by using the Inverted Pendulum Model discussed in Sect. B.1.2. The
trajectory parameters for the quadruped and hexapod are shown in Table B.2.

C Energy Balance

Law of energy conservation states that energy cannot be created or destroyed, but, it
can only be transformed from one form to another. Energy in a system takes different
forms such as kinetic, potential, heat, etc., and the total energy remains constant. As
a result, the principle of energy conservation can be used to validate the numerical
results obtained during the dynamic simulation of legged robots reported in Chaps.
6,7, and 9. For the systems studied in this thesis, energy was present in four forms.
They are kinetic energy, potential energy, work done by the actuator, and the energy
dissipation by the ground.

C.1 Kinetic Energy (KE) and Potential Energy (PE)

Kinetic energy of a system is a function of velocities and positions of the consti-
tuting bodies, whereas and potential is function of position only. If ¢, ¢, and wy
denote the 3-dimesional vectors of the position, linear velocity and angular velocity
of the Center-of-Mass of the kth link, then the total kinetic and potential energy of
the system are calculated as

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_6
http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_9

Appendices 225

1 ! T - T
KE = - ; (mp&l & + o Lioy)

U
PE = kagzck (C-l)
k=1

where 7 is total number of links, my; is mass of the kth link and g is the vector due
to gravitational acceleration.

C.2 Work Done by Actuator and Energy Dissipation by Ground

Both, work done by the actuator and energy dissipation by the ground can be
calculated by integrating the power delivered by the actuating torques and forces,
and the power dissipated due to ground interaction, respectively. If t;, and gx
denote the actuating torque/force and the corresponding joint rate associated with
the kth link then the energy input by the actuator may be calculated as

1
Work done by actuator = / (Z tkék)dt (C.2)
k=1

Similarly, the energy dissipation by the ground is calculated as

1
Energy dissipation by ground = / (Z f,{vk>dt (C.3)
k=1

where f; and vy are the vectors of ground reactions and linear velocity of the contact
point on the kth link.

C.3 Energy Balance

The sum of kinetic energy, potential energy, actuator work, and ground dissipation
over a period of simulation time must remain constant. Hence, checking the energy
balance validates the simulation results. The energy balance for the planar and
spatial biped, quadruped and hexapod, simulated in Chaps. 7 and 8, are shown in
Figs. C.1, C.2, C.3, and C.4. It is evident form Figs. C.1, C.2, C.3, and C.4 that
the total energy remains constant throughout the simulation period. Moreover, the
maximum error in the total energy is negligible, i.e., of the order of 1072~107>. This
validates the simulation results.

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_8

226

Energy (J)

79.5 7

79 A

Appendices

3

785 - Y L
L L
78 ’ L Vi
k] kY
5
775
_____ Total steressess PE

0 REuSINmmeS

C
e)
-

~——
I DL L)

time (s)

Fig. C.1 Energy balance for planar biped (Maximum error in total energy = 8.48E-04)

68 1

_____ Total **==***=** PE)
. o, .
. . . o * '.' ’." *, :.' ‘.“
o K - 0 % K . R .
66 1 K LRI e o Y e 4 K
Q " . e AN CRA TSN LA
K " . ' E e S e .
ee? Y K o
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)
______ Actuators *==****==* Ground ="=+=+= KE -
R s
- PP srrsmeeeaas _.
L. "—-_._-.‘":,‘_J,,."nln.u.u,g:~-_',"' S T N

time (s)

Fig. C.2 Energy balance for spatial biped (Maximum error in total energy = 3.6E-03)

Appendices

41

40

Energy (J)

227

% . .
DY R Oald W
S s B SRS
- . i . . -
. % » % ; . . .
: 3 ; " : . : %
i N ‘ % 0 s
- . g - o . - '
D . N . - - - %
; 4 A . s .
N 3
s s < H : .
. : J . N K ; .
> - - - - M - -
. H N . - . » .
. - . . N - . .
3 ERRY s LR s T ; S
s s Wt s Lo ; L K PR
. - . - Q . . .
0 5 R : Y% D S 3 Py
s, of . . ., 3 cy 5 <
by J . J s K
. .o . o
tend LT
T T T T T T T

Energy (J)

Dreree —.u;:-_u-

-

.....é';_.--.

time (s)

Fig. C.3 Energy balance for quadruped (Maximum error in total energy = 6.28E-05)

507

48 1

46

Energy (J)

44 1

42

- N
o o
L J

Energy (J)

) L
o o o
1 1 L

@
S
o

Fig. C.4 Energy balance for hexapod (Maximum error in total energy = 3.31E-02)

228 Appendices
D Foot-Ground Interaction

As discussed in Chap. 7, methods of contact modeling can mainly be divided into
analytical, impulse and penalty-based approaches. In this book, the penalty-based
approach was used for contact modeling. In penalty-based approach the vertical
reactions are approximated by using visco-elastic (spring-damper) model such that
the foot does not bounce back while landing and the ground does not pull the
leg while lift off. On the other hand, sliding of the foot is approximated by using
Coulomb or viscous friction.

Various penalty based models were proposed in the literature in order to take into
account the foot ground interactions. For example, Bogert et al. (1989) presented a
penalty-base model, where the foot ground interaction was approximated vertically
by linear spring-damper and horizontally by Coulomb friction. Later, Gerritsen et al.
(1995) used nonlinear spring-damper model to simulate the heel-toe impact phase
while running. Marhefka and Orin (1996) presented a contact simulation using the
nonlinear damping model. Nigg and Herzog (1999), and Begg and Rahman (2000)
showed typical ground reaction forces for walking and running for human foot hav-
ing heel-toe shape. Mistri (2001) showed nonlinear visco-elastic model representing
firm and dusty ground, which was later successfully used by Shah et al. (2006).
Recently Yamane and Nakamura (2006), and Drumwright (2008) showed that a fast
and stable simulation can be obtained by using the penalty-based approach.

D.1 Ground Models

The visco-elastic model used in Chap. 7 was inspired by the work of Mistri (2001)
whereas the friction model was inspired by the work of Gerritsen et al. (1995). Two
ground models, namely, firm and dusty ground, are introduced next.

D.1.1 Firm Ground Model

In the firm ground model, as shown in Fig. D.1, the vertical reaction is approximated
by visco-elastic model, which is represented by

F.=kz+c(®)z D.1)

where k and c are spring stiffness and damping coefficient, respectively. In the above

visco-elastic model spring is assumed to be linear, whereas the damper is chosen as
nonlinear in a sense that the damping coefficient is a function of §, the penetration
of foot into ground. In the case of negative foot velocity, i.e., downward motion of
the foot, the damping co-efficient offered by the firm ground model is assumed to
remain constant as given below:

http://dx.doi.org/10.1007/978-94-007-5006-7_7
http://dx.doi.org/10.1007/978-94-007-5006-7_7

Appendices 229

Fig. D.1 Firm ground model Ground Surface
\ +ve
-ve

c k
c=c If Voo <O
c=0toc' If vpoor>0
(Cubic polynomial) \

k=k andc = ¢, if vigor < 0 (D.2)

On the contrary, for positive foot velocity, the damping coefficient is a function of
the penetration (8), varying from zero to a maximum value at a specified penetration,
and then remains constant, i.e.,

k =k"and ¢ = ag + a8 + a28% + a38>, if vigor > 0 (D.3)

where the positive and negative foot velocities refer to upward and downward
motion of the foot, and § stands for foot penetration into the ground. Moreover,
the cubic polynomial of Eq. (D.3) is solved to obtain damping coefficient ¢ using
initial conditions, (a) ¢ = ¢ = 0for§ = 0, and (b) c=c¢’ and ¢ = 0 for § = Smax,
where ¢’ is calculated assuming an over-damped behavior as

(D.4)

In Eq. (D.4), ¢, k', and m; are the over-damping factor, spring stiffness and mass
of the ith link, respectively.

To avoid sliding/slipping, ground is represented by pseudo-Coulomb friction
forces (Gerritsen et al. 1995) in the horizontal directions, i.e., X and Y directions
represented by the horizontal plane. The pseudo-Coulomb friction force may be
represented as

. 2 Xy
Fx—_(qu)Jtan (MFzE)

2 e
F, = —(qu)Jtan ! (fﬁé %) (D.5)

230 Appendices

Fig. D.2 Dusty ground Ground Surface

model \
% Dust layer

c=c" If viou <0
c= 0 If Vo0

7/

In Eq. (D.5), p is coefficients of friction and ¢, and c, are the coefficients of
damping. The above sliding model behaves as a Coulomb friction model if x >>
W F;/cy, and viscous friction model when X < W F./c.

D.1.2 Dusty Ground Model

With the introduction of the restriction on damping coefficient, energy dissipation
may not be sufficient and foot may bounce off the ground a little. In order to increase
the dissipation, the dusty ground model shown in Fig. D.2 was also used. Initial
sinking of the foot contributes only to energy dissipation, while the lowered spring
ensures that the foot does not sink without stopping. When the foot moves upwards,
damping is switched off to prevent ground pull. By changing the extent to which
spring is lowered, different ground characteristics can be obtained. This model re-
quires higher computational time for simulation. In the case of dusty ground model
(Fig. D.2) values of k and c are assumed for different dust layer thickness of 7, i.e.,

k=0andc = ¢, and vipor <O and § > t,
k =k andc = ¢/, and vioor < 0 and § < t4

k=kandc =0, if vipot > 0 (D.6)

D.2 Multi-point and Whole Body Contacts

The number of contact points to take into account for a foot depends on the contact
area and shape of the foot. Quadruped and hexapod discussed in Chap. 7 have point

http://dx.doi.org/10.1007/978-94-007-5006-7_7

Appendices 231

Joints

Contdct pomts

=
:"__)
52
o
b

f:
fil £, If,

Fig. D.3 Difterent types of foot contact (a) Point contact (b) Line contact (¢) Surface contact

contacts with the ground, as shown in Fig. D.3a, whereas feet of planar and spatial
biped have line and surface contact, respectively, as shown in Fig. D.3b, c. As a
result, one contact point per foot is required for analysis of quadruped and hexapod,
on the other hand two and four contact points per foot are sufficient for analysis of
planar and spatial biped, respectively.

The contact model presented above has also been extended for the modeling of
whole body contact of the robot, i.e., for the links other than feet. The effect of the
contact forces for the kth link having ny contact points can then be taken into account
in the dynamic model as shown in Sect. 5.1.4. In order to simulate the whole body
contact, several free simulations of legged robots were performed under gravity, and
these showed realistic motions.

http://dx.doi.org/10.1007/978-94-007-5006-7_5

References

Ahmadi, M., & Buehler, M. (1999). The ARL Monopod II Running Robot: Control andEnergetic.
IEEE International conference on robotics and automation (pp. 1689-1694), Detroit, Michigan,
USA.

Anderson, K. S. (1991). An order-N formulation for the motion simulation of general multi-rigid
tree systems. Journal of Computers and Structures, 46(3), 547-559.

Anderson, K. S., & Duan, S. (2000). Highly parallelizable low order algorithm for the dynamics
of complex multi rigid body systems. Journal of Guidance Control and Dynamics, 23(2),
355-364.

Angeles, J., & Lee, S. (1988). The formulation of dynamical equations of holonomic mechanical
systems using a natural orthogonal complement. ASME Journal of Applied Mechanics, 55,
243-244.

Angeles, J., & Ma, O. (1988). Dynamic simulation of N-axis serial robotic manipulators using a
natural orthogonal complement. International Journal of Robotics Research, 7(5), 32-47.

Angeles, J., Ma, O., & Rojas, A. (1989). An algorithm for the inverse dynamics of N-axis general
manipulator using Kane’s formulation of dynamical equations. Computers and Mathematics
with Applications, 17(12), 1545-1561.

Armstrong, W. W. (1979). Recursive solution to the equations of motion of an N-link manipulator.
World Congress on theory of machines and mechanisms (ASME) (vol. 2, pp. 1343-1346),
Montreal, Canada.

Asada, H. (1984). Dynamic analysis and design of robot manipulators using inertia ellipsoids.
IEEE International Conference on Robotics and Automation, 1, 94—102.

Ascher, U. M., Pai, D. K., & Cloutier, B. P. (1997). Forward dynamics, elimination methods, and
formulation stiffness in robot simulation. International Journal of Robotics Research, 16(6),
749-758.

Automated Dynamic Analysis of Mechanical System (ADAMS). (2004). Version 2005.0.0, MSC.
Software.

Bae, D. S., & Haug, E. J. (1987). A recursive formulation for constrained mechanical system
dynamics: Part I, open loop systems. Mechanics of Structure and Machine, 15, 359-382.

Bae, D., Kuhl, J. G., & Haug, E. J. (1988). A recursive formation for constrained mechanical
system dynamics: Part III, parallel processing implementation. Mechanisms, Structures, and
Machines, 16, 249-269.

Balafoutis, C. A., & Patel, R. V. (1991). Dynamic analysis of robot manipulators: A Cartesian
tensor approach. Boston: Kluwer Academic.

Baraff, D. (1994). Fast contact force computation for nonpenetrating rigid bodies. In Proceedings
of SIGGRAPH, Orlando, FL.

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 233
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7,
© Springer Science+Business Media Dordrecht 2013

234 References

Baraff, D. (1996). Linear-time dynamics using Lagrange multipliers. In Proceedings of ACM
SIGGRAPH (pp. 137-146), New Orleans.

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion. Computer methods in
Applied Mechanics and Engineering, 1, 1-16.

Begg, K. R., & Rahman, S. M. (2000). A method for the reconstruction of the ground reaction
force-time characteristics during gait from force platform recording of simultaneous foot faults.
IEEE Transactions on Biomedical Engineering, 47(4), 547-551.

Berkemeier, M. D. (1998). Modeling the dynamics of quadrupedal running. International Journal
of Robotics Research, 17,971-985.

Bhagat, R., Choudhury, S. B., & Saha, S. K. (2011). Design and development of a 6-DOF parallel
manipulator. International conference on multuibody dynamics (pp. 15-24), Vijaywada, India.

Bhangale, P. P, Saha, S. K., & Agrawal, V. P. (2004). A dynamic model based robot arm selection
criterion. International Journal of Multibody System Dynamics, 12(2), 95-115.

Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward
simplicity. I[EEE Transactions on Robotics and Automation, 16(6), 652—-662.

Blajer, W., Bestle, D., & Schiehlen, W. (1994). An orthogonal complement matrix formulation for
constrained multibody systems. ASME Journal of Mechanical Design, 116, 423-428.

Bogert, A. J., Schamhardt, H. C., & Crowe, A. (1989). Simulation of quadrupedal locomotion
using a rigid body model. Journal of Biomechanics, 22(1), 33-41.

Brandl, H., Johanni, R., & Otter, M. (1988). A very efficient algorithm for the simulation of
robots and similar multibody systems without inversion of the mass matrix. In Theory of robots
(pp. 95-100). Oxford: Pergamon Press.

Brown, B., & Zeglin, G., (1998). The Bow Leg Hopping robot. IEEE International conference on
robotics and automation (pp. 781-786), Leuven, Belgium.

Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., & Yamazaki, K. (1998). SCOUT:
A simple quadruped that walks, climbs and runs. IEEE international conference on Robotics
and Automation (pp. 1707-1712), Leuven, Belgium.

Buehler, M., Cocosco, A., Yamazaki, K., & Battaglia, R. (1999). Stable open loop walking in
quadruped robots with stick legs. IEEE international conference on robotics and automation
(pp. 2348-2353), Detroit, Michigan, USA.

Cameron, J. M., & Book, W.J. (1997). Modeling mechanisms with nonholonomic joints using the
Boltzmann-Hammel equations. International Journal of Robotics Research, 16(1), 47-59.
Cham, J. G., Bailey, S. A., Clark, J. E., Full, R. J., & Cutkosky, M. R. (2002). Fast and robust:
Hexapedal robots via shape deposition manufacturing. International Journal of Robotics

Research, 21(10), 869-882.

Chaudhary, H., & Saha, S. K. (2007). Constraint wrench formulation for closed-loop systems using
Two-level recursions. ASME Journal of Mechanical Design, 129, 1234—1242.

Chaudhary, H., & Saha, S. K. (2009). Dynamics and balancing of multibody systems. Berlin:
Springer.

Collins, S. H., & Ruina, A. (2005). A Bipedal walking robot with efficient sand human-like gait.
IEEE international conference on robotics and automation (pp. 1983-1988).

Coset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S.
(2005). Principle of robot motion: Theory, algorithms, and implementations. Cambridge, MA:
MIT Press.

Craig, J. J. (2006). Introduction to robotics, mechanics and control. Delhi: Pearson Education.

Critchley, J. S., & Anderson, K. S. (2003). A generalized recursive coordinate reduction method
for multibody system dynamics. Multibody System Dynamics, 9, 185-212.

Critchley, J. H., & Anderson, K. S. (2004). Parallel logarithmic order algorithm for general
multibody system dynamics. Journal of Multiscale Computational Engineering, 12(1), 75-93.

Cyril, X. (1988). Dynamics of flexible link manipulators. Ph.D. dissertation, McGill University,
Canada

Denavit, J., & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on
matrices. Journal of Applied Mechanics, 22, 215-221.

References 235

Deo, N. (1974). Graph theory with application in engineering and computer science. Englewood
Cliffs: Prentice-Hall.

Doi, T., Hodoshima, R., Hirose, S., Fukuda, Y., Okamoto, T., & Mori, J. (2005). Development
of a Quadruped walking robot to work on steep slopes, TITAN XI. IEEE/RSJ international
conference on intelligent robots and systems (pp. 2067-2072), Edmonton, Alberta, Canada.

Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge—Kutta formulae. Journal
Computational and Applied Mathematics, 6, 19-26.

Drumwright, E. (2008). A fast and stable penalty method for rigid body simulation. /EEE
Transactions on Visualization and Computer Graphics, 14(1), 231-240.

Dufty, J. (1978). Displacement analysis of the generalized RSSR mechanism. Mechanism and
Machine Theory, 13, 533-541.

Eberhard, P., & Schiehlen, W. (2006). Computational dynamics of multibody systems: History,
formalisms, and applications. ASME Journal of Computational and Nonlinear Dynamics, 1(1),
3-12.

Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based distributed
control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and
Autonomous Systems, 18(1-2), 59-64.

Fang, A. C., & Pollard, N. S. (2003). Efficient synthesis of physically valid human motion. ACM
Transactions on Graphics (SIGGRAPH), 22(3), 417-426.

Featherstone, R. (1983). The calculation of robotic dynamics using articulated body inertias.
International Journal of Robotics Research, 2, 13-30.

Featherstone, R. (1987). Robot dynamics algorithms. Boston: Kluwer Academic.

Featherstone, R. (1999). A divide-and-conquer articulated body algorithm for parallel O.Log.N
calculation of rigid body dynamics. Part 1: Basic algorithm. International Journal of Robotics
Research, 18(9), 867-875.

Featherstone, R. (2005). Efficient factorization of the joint-space inertia matrix for branched
kinematic tree. International Journal of Robotics Research, 24(6), 487-500.

Featherstone, R., & Orin, D. (2000). Robot dynamics: Equations and algorithms. /IEEE Interna-
tional Conference on Robotics and Automation, 1, 826-834.

Fijany, A., Sharf, 1., & D’Eleuterio, G. M. T. (1995). Parallel O(Log N) algorithms for computation
of manipulator forward dynamics. IEEE Transactions on Robotics and Automation, 11(3),
389-400.

Freeman, P. S., & Orin, D. E. (1991). Efficient dynamic simulation of a quadruped using a
decoupled tree structured approach. International Journal of Robotics Research, 10, 619-627.

Fritzkowski, P., & Kaminski, H. (2008). Dynamics of a rope as a rigid multibody system. Journal
of Mechanics of Materials and Structures, 3(6), 1059-1075.

Fritzkowski, P., & Kamiriski, H. (2010). Dynamics of a rope modeled as a multi-body system with
elastic joints. Computational Mechanics, 46(6), 901-909.

Fukuoka, Y., Kimura, H., & Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot
on irregular terrain based on biological concepts. International Journal of Robotics Research,
22, 187-202.

Furukawa, N., Namiki, A., Taku, S., & Ishikawa, M. (2006). Dynamic regrasping using a high-
speed multifingered hand and a high-speed vision system. /EEE International Conference on
Robotics and Automation, 2006, 181-187.

Furusho, J., Sano, A., Sakaguchi, M., & Koizumi, E. (1995). Realization of bounce gait in a
Quadruped robot with articular-joint-type legs. IEEE international conference on robotics and
automation (pp. 697-702), Nagoya, Aichi, Japan.

Gambaryan, P. P. (1974). How mammals run: Anatomical adaptations. New York: Wiley.

Gatti-Bono, C., & Perkins, N. C. (2002). Physical and numerical modelling of the dynamic
behavior of a fly line. Journal of Sound and Vibration, 255(3), 555-577.

Gerritsen, K. G. M., Van Den Bogert, A. J., & Nigg, B. M. (1995). Direct dynamics simulation of
the impact phase in heel-toe running. Journal of Biomechanics, 28(6), 661-668.

Goldenberg, A. A., Benhabib, B., & Fenton, R. G. (1985). Complete generalized solution to the
inverse kinematics of robots. IEEE Journal Robotics and Automation, RA-1(1), 14-20.

236 References

Greenwood, D. T. (1988). Principles of dynamics. New Delhi: Prentice-Hall.

Harada, K., Kajita, S., Kanehiro, F., Fujiwara, K., Kaneko, K., Yokoi, K., & Hirukawa, H.
(2004). Real-time planning of humanoid robot’s gait for force controlled manipulation. /EEE
International Conference on Robotics and Automation, 1, 616-622.

Hasegawa, Y., Higashiura, M., & Fukuda, T. (2003). Simplified generation algorithm of regrasping
motion — Performance comparison of online-searching approach with EP-based approach.
IEEE International Conference on Robotics and Automation, 2, 1811-1816.

He, G., Tan, X., Zhang, X., & Lu, Z. (2008). Modeling, motion planning, and control of one-legged
hopping robot actuated by two arms. Mechanism and Machine Theory, 43(1), 33—49.

Hemami, H., & Weimer, F. C. (1981). Modeling of nonholonomic dynamic systems with
applications. ASME Journal of Applied Mechanics, 48(1), 177-182.

Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid
robot. 1EEE international conference on robotic and automation (pp. 1321-1326), Leuven,
Belgium.

Hollerbach, J. M. (1980). A recursive Lagrangian formulation of manipulator dynamics and a
comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man,
and Cybernetics, 10(11), 730-736.

Hollerbach, J. M., & Gideon, S. (1983). Wrist-partitioned inverse kinematic accelerations and
manipulator dynamics. International Journal of Robotics Research, 4, 61-76.

http://ijts-jrirc.blogspot.ca/2010/11/history-of-industrial-robotics.html. Retrieved on May 7, 2012

http://www.dipity.com/RoboticsResearch/History-of-Robotics/?mode=fs. Retrieved on May 7,
2012

Hu, W., Marhefka, D. W., & Orin, D. E. (2005). Hybrid kinematic and dynamic simulation of
running machines. IEEE Transactions on Robotics, 21(3), 490-497.

Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Aral, H., Koyachi, N., & Tanie, K. (2001). Planning
walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 17(3),
280-289.

Huston, R. L., & Passerello, C. E. (1974). On constraint equations-a new approach. ASME Journal
of Applied Mechanics, 41, 1130-1131.

Hyon, S., Emura, T., & Mita, T. (2003). Dynamics-based control of a one-legged hopping robot.
Journal of Systems and Control Engineering, 217(2), 83-98.

Jacobsen, S. C, Iversen, E. K., Knutti, D. F,, Johnson, R. T., & Biggers, K. B. (1986). Design of
the Utah/MIT Dextrous Hand. IEEE international conference on robotics & automation (pp.
1520-1532), San Francisco, California, USA.

Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., & Inoue, H. (2002). A fast dy-
namically equilibrated walking trajectory generation method of humanoid robot. Autonomous
Robots, 12(1), 71-82.

Kahn, M. E., & Roth, B. (1971). The near minimum-time control of open-loop articulated
kinematic chains. ASME Journal of Dynamics Systems Measurement and Control, 91,
164-172.

Kahtib, O., & Burdick, J. (1987). Optimization of dynamics in manipulator design: The operational
space formulation. International Journal of Robotics and Automation, 2(2), 90-98.

Kajita, S., & Tani, K. (1991). Study of dynamic biped locomotion on rugged Terrain. IEEE
international conference on robotic and automation (pp. 1405-1411), Sacramento, California,
USA.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H.
(2003). Biped walking pattern generation by using preview control of zero-moment point. /[EEE
International Conference on Robotics and Automation, 2, 1620-1626.

Kamman, J. W., & Huston, R. L. (1984). Constrained multibody system dynamics: An automated
approach. Computers and Structures, 18(6), 999-1003.

Kane, T. R., & Levinson, D. A. (1983). The use of Kane’s dynamical equations for robotics.
International Journal of Robotics Research, 2(3), 3-21.

http://ijts-jrirc.blogspot.ca/2010/11/history-of-industrial-robotics.html
http://www.dipity.com/RoboticsResearch/History-of-Robotics/?mode=fs

References 237

Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot HRP-
3. IEEE/RSJ international conference on intelligent robots and systems (pp. 2471-2478), Nice,
France.

Kelly, R., Santibanez, V., & Loria, A. (2005). Control of robot manipulators in joint space. London:
Springer.

Khalil, W., & Kleinfinger, J. (1986). A new geometric notation for open and closed-loop robots.
IEEE International Conference on Robotics and Automation, 3, 1174-1179.

Khalil, W., Kleinfinger, J. F, & Gautier, M. (1986). Reducing the computational burden of
the dynamical models of robots. IEEE international conference on robotics & automation
(pp. 525-531), San Francisco, California, USA.

Khan, W. A., Krovi, V. N., Saha, S. K., & Angeles, J. (2005). Recursive kinematics and inverse
dynamics for a planar 3R parallel manipulator. Journal of Dynamic Systems, Measurement, and
Control, 127(4), 529-536.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research, 5(1), 90-98.

Khatib, O. (1987). Unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal of Robotics and Automation, RA-3(1), 43-53.
Kim, S. S., & Vanderploeg, M. J. (1986). A general and efficient method for dynamic analysis of
mechanical systems using velocity transformations. ASME Journal of Mechanisms, Transmis-

sions, and Automation in Design, 108(6), 176—182.

Kimura, H., Akiyama, S., & Sakurama, K. (1999). Realization of dynamic walking and running of
the quadruped using neural oscillator. Autonomous Robots, 7(3), 247-258.

Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot
on natural ground based on biological concepts. International Journal of Robotics Research,
26(5), 475-490.

Kurazume, R., Hirose, S., & Yoneda, K. (2001). Feedforward and feedback dynamic trot gait
control for a quadruped walking vehicle. IEEE International Conference on Robotics and
Automation, 3,3172-3180.

Kurazume, R., Hasegawa, T., & Yoneda, K. (2003). The sway compensation trajectory for a biped
robot. IEEE International Conference on Robotics and Automation, 1, 925-931.

Kuroki, Y., Fujita, M., Ishida, T., Nagasaka, K., & Yamaguchi, J. (2003). A small biped entertain-
ment robot exploring attractive applications. IEEE international conference on robotics and
automation (pp. 471 —476).

Kwon, O., & Park, J. H. (2009). Asymmetric trajectory generation and impedance control for
running of biped robots. Autonomous Robots, 26(1), 47-78.

Lee, K., & Chirikjian, S. G. (2005). A new perspective on O(N) mass-matrix Inversion for
serial revolute manipulators. IEEE conference on robotics and automation (pp. 4733-4737),
Barcelona, Spain.

Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2004). Robot manipulator control: Theory and
practice. New York: Marcel Dekker Inc.

Li, C., & Sankar, T. S. (1992). Fast inverse dynamics computation in real-time robot control.
Mechanism and Machine Theory, 27(6), 741-750.

Lilly, K. W. (1993). Efficient dynamic simulation of robotic mechanisms. Boston: Kluwer
Academic.

Lilly, K. W., & Orin, D. E. (1991). Alternate formulations for the manipulator inertia matrix.
International Journal of Robotics Research, 10(1), 64-74.

Lloyd, J. (2005). Fast implementation of Lemke’s algorithm for rigid body contact simulation.
IEEE international conference on robotics and automation (pp. 4538-4543), Barcelona, Spain.

Luh, J. Y. S., Walker, M. W,, & Paul, R. P. C. (1980). On-Line computational scheme for
mechanical manipulators. ASME Journal Of Dynamic Systems Measurement and Control, 102,
69-76.

Ma, O., & Angeles, J. (1990). The concept of dynamic isotropy and its applications to inverse kine-
matics and trajectory planning. /EEE International Conference on Robotics and Automation, 1,
481-486.

238 References

Mani, N. K., Haug, E. J., & Atkinson, K. E. (1985). Application of singular value decomposition
for analysis of mechanical system dynamics. ASME Journal of Mechanisms, Transmissions,
and Automation in Design, 107(1), 82-87.

Marhefka, D. W., & Orin, D. E. (1996). Simulation of contact using a nonlinear damping model.
IEEE International Conference on Robotics and Automation, 2, 1662-1668.

Marhetka, D. W., Orin, D. E., Schmiedeier, J. P, & Waldron, K. J. (2003). Intelligent control of
quadruped gallops. IEEE/ASME Transactions on Mechatronics, 8(4), 446—456.

Mason, M., & Salisbury, J. K. (1985). Robot hands and the mechanics of manipulation. Cambridge,
MA: MIT Press.

Matlab. (2009). Version 7.4 Release 2009a, MathWorks Inc.

McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2),
62-82.

McMillan, S., & Orin, D. E. (1995). Efficient computation of articulated-body inertias using
successive axial screws. IEEE Transactions on Robotics and Automation, 11(2), 606-611.
McMillan, S., & Orin, D. E. (1998). Forward dynamics of Multilegged vehicles. IEEE international

conference on robotics and automation(pp. 464-470).

McMillan, S., Orin, D. E., & McGhee, R. B. (1995). Efficient dynamic simulation of an underwater
vehicle with a robotic manipulator. /EEE Transactions on Systems, Man, and Cybernetics,
25(8), 1194-1205.

McPhee, J. J. (1996). On the use of linear graph theory in multibody system dynamics. Nonlinear
Dynamics, 9, 73-90.

Mirtich, B., & Canny, J. (1995). Impulse-based simulation of rigid bodies. Symposium on
interactive 3D graphics (pp. 181-188), Monterey, CA.

Mistri, B. D. (2001). Simulation of Quadruped Gallop. M.Tech. thesis. Bombay: Mechanical
Department, Indian Institute of Technology.

Miura, H., & Shimoyama, 1. (1984). Dynamic walk of a biped. International Journal of Robotics
Research, 3(2), 60-74.

Miura, H., Shimoyama, I., Mitsuishi, M., & Kimura, H. (1985). Dynamical walk of quadruped
robot (collie-1). In International symposium on robotics research (pp. 317-324). Cambridge:
MIT Press.

Mohan, A., & Saha, S. K. (2007). A recursive, numerically stable, and efficient algorithm for serial
robots. Multibody System Dynamics, 17(4), 291-319.

Morisawa, M., Kajita, S., Kaneko, K., Harada, K., Kanehiro, F., Fujiwara, K., & Hirukawa,
H. (2005). Pattern generation of biped walking constrained on parametric surface. IEEE
international conference on robotics and automation (pp. 2405-2410), Barcelona, Spain.

Muybridge, E. (1957). Animals in motion. New York: Dover Publications.

Nelson, G. M., & Quinn, R. D. (1998). Posture control of a cockroach-like robot. IEEE
international conference on robotics and automation (pp. 157-162), Leuven, Belgium.

Nigg, B. M., & Herzog, W. (1999). Biomechanics of the musculo-skeletal system. Chichester:
Wiley.

Nikravesh, P. E. (1988). Computer-aided analysis of mechanical systems. Englewood Cliffs:
Prentice-Hall.

Nikravesh, P. E., & Gim, G. (1993). Systematic construction of the equations of motion for
multibody systems containing closed kinematic loops. ASME Journal of Mechanical Design,
115, 143-149.

Ono, K., Takahashi, R., & Shimada, T. (2001). Self-excited walking of a biped mechanism.
International Journal of Robotics Research, 20(12), 953-966.

Ottaviano, E., Ceccarelli, M., & Tavolieri, C. (2004). Kinematic and dynamic analyses of a
pantograph-leg for a biped walking machine. International conference on climbing and walking
robots CLAWAR, Madrid.

Ouezdou, F. B., Bruneau, O., & Guinot, J. C. (1998). Dynamic analysis tool for legged robots.
Multibody System Dynamics, 2(4), 369-391.

References 239

Park, J. H., & Kim, K. D. (1998). Biped robot walking using gravity-compensated inverted
pendulum mode and computed torque control. IEEE international conference on robotics and
automation (pp.3528-3533), Leuven, Belgium.

Park, F. C., Bobrow, J. E., & Ploen, S. R. (1995). A Lie Group formulation of robot dynamics.
International Journal of Robotics Research, 14(6), 606—618.

Perrin, B., Chevallereau, C., & Verdier, C. (1997). Calculation of the direct dynamic model of
walking robots: Comparison between two methods. IEEE international conference on robotics
and automation (pp. 1088-1093), Raleigh, North Carolina, USA.

Pfeiffer, F. (1996). Grasping with hydraulic fingers — An example of mechatronics. I[EEE/ASME
Transactions on Mechatronics, 1(2), 158-167.

Pons, J. L., Ceres, R., & Pfeiffer, F. (1999). Multifingered dextrous robotics hand design and
control: A review. Robotica, 17(6), 661-674.

Poulakakis, 1., Papadopoulos, E., & Buehler, M. (2006). On the stability of the passive dynamics of
quadrupedal running with a bounding gait. International Journal of Robotics Research, 25(7),
669-687.

Raibert, M. H. (1984). Hopping in legged system- modeling and simulation for the two-
Dimensional one-legged case. I[EEE Transactions on Systems, Man, and Cybernetics, 14(3),
451-463.

Raibert, M. H. (1986). Legged robot that balance. Cambridge, MA: MIT Press.

Raibert, M. H. (1990). Trotting, pacing and bounding by a quadruped robot. Journal of Biome-
chanics, 23(1), 79-98.

Raibert, M., Tzafestas, S., & Tzafestas, C. (1993). Comparative simulation study of three control
techniques applied to a biped robot. IEEE International Conference on Systems Man and
Cybernetics, 1,494-502.

RecurDyn. (2009). Multibody Simulation Software. FunctionBay Inc.

Ridderstrom, C., Ingvast, J., Hardarson, F., Gudmundsson, M., Hellgren, M., Wikander, J.,
Wadden, T., & Rehbinder, H. (2000). The basic design of the quadruped robot Warpl.
International conference on climbing and walking robots, Madrid, Spain.

Ringrose, R. (1997). Self-stabilizing running. /EEE International Conference on Robotics and
Automation, 1,487-493.

Roberson, R. E., & Schwertassek, R. (1988). Dynamics of multibody systems. Berlin: Springer.

Rodriguez, G. (1987). Kalman filtering, smoothing, and recursive robot Arm forward and inverse
dynamics. IEEE Journal of Robotics and Automation, 3(6), 624—639.

Rodriguez, G., Jain, A., & Kreutz-Delgado, K. (1991). A spatial operator algebra for manipulator
modeling and control. International Journal of Robotics Research, 10(4), 371-381.

Rodriguez, G., Jain, A., & Kreutz-Delgado, K. (1992). Spatial operator algebra for multibody
system dynamics. Journal of the Astronautical Sciences, 40(1), 27-50.

Rosenthal, D. E. (1990). An order n formulation for robotic systems. Journal of Astronautical
Sciences, 38(4), 511-529.

Saha, S. K. (1997). A decomposition of the manipulator inertia matrix. /[EEE Transactions on
Robotics and Automation, 13(2), 301-304.

Saha, S. K. (1999a). Analytical expression for the inverted inertia matrix of serial robots.
International Journal of Robotic Research, 18(1), 116-124.

Saha, S. K. (1999b). Dynamics of serial multibody systems using the decoupled natural orthogonal
complement matrices. ASME Journal of Applied Mechanics, 66, 986-996.

Saha, S. K. (2003). Simulation of industrial manipulators based on the UDUT decomposition of
inertia matrix. International Journal of Multibody System Dynamics, 9(1), 63-85.

Saha, S. K. (2008). Introduction to robotics. New Delhi: Tata Mcgraw Hill.

Saha, S. K., & Angeles, J. (1991). Dynamics of nonholonomic mechanical systems using a natural
orthogonal complement. ASME J of Applied Mechanics, 58, 238-243.

Saha, S. K., & Schiehlen, W. O. (2001). Recursive kinematics and dynamics for closed loop
multibody systems. International Journal of Mechanics of Structures and Machines, 29(2),
143-175.

240 References

Saha, S. K., Shirinzadeh, B., & Gl, A. (2006). Dynamic model simplification of serial manipulators.
Mexico: ISRA.

Sakagami, Y., Watanabe,R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002).
The intelligent ASIMO: System overview and integration. IEEE international conference on
intelligent robots and systems (pp. 2478-2483), Lausanne, Switzerland.

Salisbury, J. K., & Craig, J. J. (1982). Articulated hands: Force and kinematic issues. International
Journal Robotics Research, 1(1), 4-17.

Saranli, U., Buehler, M., & Koditschek, D. E. (2001). Rhex — A simple and highly mobile hexapod
robot. International Journal of Robotics Research, 20(7), 616-631.

Saranli, U., Rizzi, A. A., & Koditschek, D. E. (2004). Model-based dynamic self-righting
maneuvers for a hexapedal robot. International Journal of Robotics Research, 23(9), 903-918.

Schiehlen, W. (1990). Multibody systems handbook. Berlin: Springer.

Schiehlen, W. (1997). Multibody system dynamics: Roots and perspectives. Multibody System
Dynamics, 1, 49-188.

Shabana, A. A. (2001). Computational dynamics. New York: Wiley.

Shah, S. V. (2011). Modular framework for dynamics modeling and analysis of tree-type robotic
system. Ph.D. thesis. Delhi: Mechanical Engineering Department, IIT.

Shah, S. V., Mistri, B. D., & Issac, K. K. (2006). Evaluation of foot ground interaction model
using monopod forward hopping. International conference on recent trends in automation and
its adaptation to industries, Nagpur, India

Shah, S. V., Saha, S. K., & Dutt, J. K. (2009). Denavit-Hartenberg parameters of Euler-Angle-
Joints for order (N) recursive forward dynamics. ASME International conference on multibody
systems, nonlinear dynamics and control, USA

Shah, S. V., Saha, S. K., & Dutt, J. K. (2012a). Modular framework for dynamics of tree-type
legged robots. Mechanism and Machine Theory, Elsevier, 49, 234-255.

Shah, S. V., Saha, S. K., & Dutt, J. K. (2012b). Denavit-Hartenberg (DH) Parametrization of Euler
Angles. ASME J of Nonlinear and Computational Dynamics, 7(2).

Shih, C. L., Gruver, W. A., & Lee, T. T. (1993). Inverse kinematics and inverse dynamics for control
of a biped walking machine. Journal of Robotic Systems, 10(4), 531-555.

Shuster, M. D. (1993). A survey of attitude representations. Journal of the Astronautical Sciences,
41(4), 439-517.

Shuster, M. D., & Oh, S. D. (1981). Three-axis attitude determination from vector observation.
Journal of Guidance, Control and Dynamics, 4(1), 70-77.

Singla, P, Mortari, D., & Junkins, J. L. (2004). How to avoid singularity for Euler Angle Set?.
AAS space flight mechanics conference, Hawaii.

Stejskal, V., & Valasek, M. (1996). Kinematics and dynamics of machinery. New York: Marcel
Dekkar Inc.

Stelzle, W., Kecskeméthy, A., & Hiller, M. (1995). A comparative study of recursive methods.
Archive of Applied Mechanics, 66, 9-19.

Stewart, G. W. (1973). Introduction to matrix computations. Orlando: Academy Press.

Stewart, D., & Trinkle, J. (2000). An implicit time-stepping scheme for rigid body dynamics with
coulomb friction. IEEE international conference on robotics and automation (pp. 162-169),
San Francisco, California, USA.

Stokes, A., & Brockett, R. (1996). Dynamics of kinematic chains. International Journal of
Robotics Research, 15,393-405.

Strang, G. (1998). Linear algebra and its applications. Orlando: Harcourt, Brace, Jovanovich,
Publisher.

Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Realtime Humanoid motion generation through
ZMP manipulation based on inverted pendulum control. IEEE International Conference on
Robotics and Automation, 2, 1404-1409.

Uicker, Jr., J.J. (1965). On the dynamic analysis of spatial linkages using 4x4 matrices. Ph.D.
thesis. Evanston: Northwestern University.

Vereshchagin, A. F. (1975). Gauss principle of least constraint for modeling the dynamics of
automatic manipulators using a digital computer. Soviet Physics — Doklady, 20(1), 33-34.

References 241

Vukobratovic, M., Borovac, B., Surla, D., & Stokic, D. (1989). Biped locomotion: Dynamics,
stability, control and application. Berlin: Springer.

Vukobratovic, M., Potkonjak, V., Babkovic, K., & Borovac, B. (2007). Simulation model of general
human and humanoid motion. Multibody System Dynamics, 17(1), 71-96.

Walker, M. W., & Orin, D. E. (1982). Efficient dynamic computer simulation of robotic mecha-
nisms. ASME Journal of Dynamic Systems, Measurement and Control, 104, 205-211.

Wehage, R. A., & Haug, E. J. (1982). Generalized coordinate partitioning for dimension reduction
in analysis of constrained dynamic systems. ASME Journal of Mechanical Design, 104,
247-255.

Wisse, M., Schwab, A. L., van der Linde, R. Q., & van der Helm, F. C. T. (2005). How to keep from
falling forward: Elementary swing leg action for passive dynamic walkers. /EEE Transactions
on Robotics, 21(3), 393-401.

Wittenburg, J. (2008). Dynamics of multibody systems. Berlin: Sprnger.

Wong, C. W., & Yasui, K. (2006). Falling chains. American Journal of Physics, 74(6), 490-496.

Yamaguchi, J., Soga, E., Inoue, S., & Takanishi, A. (1999). Development of a bipedal humanoid
robot — Control method of whole body cooperative dynamic biped walking. IEEE international
conference on robotics and automation (pp. 368-374), Detroit, Michigan, USA.

Yamane, K., & Nakamura, Y. (1999). Dynamics computation of structure-varying kinematic
chains for motion synthesis of humanoid. /EEE International Conference on Robotics and
Automobiles, 1, 714-721.

Yamane, K., & Nakamura, Y. (2002). Efficient parallel dynamics computation of human figures.
IEEE International Conference on Robotics and Automation, 1, 530-537.

Yamane, K., & Nakamura, Y. (2006). Stable penalty-based model of frictional contacts. IEEE
international conference on robotics and automation (pp. 1904-1909), Orlando, Florida, USA.

Yen, J., & Petzold, L. R. (1998). An efficient Newton-type iteration for the numerical solution
of highly oscillatory constrained multibody dynamic systems. SIAM Journal on Scientific
Computing, 19(5), 1513-1534.

Yoshikawa, T. (1985). Manipulability of robotic mechanisms. International Journal of Robotics
Research, 4(2), 3-9.

Yu, Q., & Chen, I. M. (2000). A direct violation correction method in numerical simulation of
constrained multibody systems. Computational Mechanics, 26(1), 52-57.

Index

A

Actuator, 225

ADAMS software, robotic gripper, 99-101
Ankle trajectories, 222

Articulated body, mass matrix, 215-217

B
Biped, 14
dynamics walking, 128
floating-base systems, recursive dynamics
for
planar biped, 129-133
spatial biped, 133-137
Generalized Inertia Matrix, 86-87
planar biped
computed-torque control, 177-179
feedforward control, 179
floating-base systems, ReDySim,
200-204
spatial biped, 179-182
trajectory generation for legged robots
ankle trajectories, 222
hip trajectory, inverted pendulum
model, 219-221
joint motions, 222-224
parameters of, 219
Zero-Moment-Point (ZMP), 218-219
Biper4, 14
Block Reverse Gaussian Elimination (BRGE),
80
Bryant angles, 27

C
Center-of-Mass (COM), 106, 181, 183, 184
for floating-base systems, 137, 139, 142,
143, 146, 148

Closed-chain systems, 9, 18, 19
Closed-loop system
computed-torque control, 174, 175
dynamic formulation
forward dynamics, 157-158
inverse dynamics, 156-157
forward dynamics, 197
file initials.m for four-bar mechanism,
198
file jacobian.m for four-bar mechanism,
199
four-bar mechanism
driving torque, 159, 161
equations of motion, 159
input joint trajectory, 160
inverse dynamics, 159, 161
joint angle, 161
model parameters, 160
module architecture and joint variables,
160
simulation of, 161
subsystem-I and subsystem-II, 158, 159
tree-type representations, 158
inverse dynamics
file inputs.m for four-bar mechanism,
194-195
file trajectory.m for four-bar
mechanism, 195
four-bar mechanism, link indices and
lengths, 193
function inv kine.m for four-bar
mechanism, 196-197
robotic leg, 161-166 (see also Robotic leg)
3-RRR parallel manipulator (see 3-RRR
parallel manipulator)
tree-type representation, 155-156
Composite body, mass matrix, 212-214

S.V. Shah et al., Dynamics of Tree-Type Robotic Systems, Intelligent Systems, Control 243
and Automation: Science and Engineering 62, DOI 10.1007/978-94-007-5006-7,
© Springer Science+Business Media Dordrecht 2013

244

Computational complexity
3-dimensional vectors, 211
elementary computations, 205
Euler equations of motion, 211
Jjth frame, 206, 207, 209, 212, 215
linear acceleration of kth link, 211
mass matrix
of articulated body, 215-217
block elements, 213, 214, 216, 217
of composite body, 212-214
matrix in different frame, 207-208
spatial transformations
cross-product tensor, 209
planar screw transformation, 210
twist-propagation matrix and
6-dimesional wrench vector, 209
vector in different frame, 206-207
Computed-torque control, 21
closed-loop equations, 174, 175
dynamic equations of motion, 174
floating-base system, 175, 176
linear function of state variables, 174
planar biped, 177-179
scheme, 175
servo part, 176
Configuration-dependent approach, 19
Configuration-independent approach, 19, 128,
129
Contact points, 230-231
Controlled robotic systems
biped
planar biped, 177-180
spatial biped, 179-182
hexapod, 181-182, 184
model-based control
computed-torque control, 174176
feedforward control, 176-177
inverse and forward dynamics, 173
Proportional Integral Derivative (PID)
controller, 173
quadruped, 180-181, 183
Cosine functions, ankle trajectories, 222
Coulomb friction model, 230
Cumulative DOF (CDOF), 162

D

Damping coefficient, 228, 229

Decoupled Natural Orthogonal Complement

(DeNOC) matrices, 18, 25

inter-modular velocity constraints, 67, 68
intra-modular velocity constraints, 61, 64
minimal-order equations of motion, 7677
NE equations of motion

Index

for serial module, 73-75
tree-type system, 76
planar biped, 70
robotic gripper, 69
spatial biped, 71
wrench, external force and moments, 77
Degrees-of-Freedom (DOF) joints, 15, 27
Denavit and Hartenberg (DH) parameters, 15,
50
of Euler angles, 33
XYX-EAJs, 43-44
ZXY EAls, 41
ZXZ7 EAJs, 40
ZYZ-EAJs, 38
frame convention, 31
homogeneous transformation matrix, 31
KUKA KRS arc, 103
modified DH (MDH), 29, 31
orientation matrix, 32
position vector, 32
Dexterous manipulation, 12
Differential Algebraic Equations (DAE), 157
Driving torque, 159, 161, 164, 166
Dusty ground models, 230
Dynamic analysis of robotic systems, 1, 3—4
Dynamic modeling
formulations, 18
legged robots, 19
motion equations, 16-17
open vs. closed chains, 18—-19
orthogonal complements, 17-18

E
EAlJs. See Euler-Angle-Joints (EAJs)
Elementary Block Upper Triangular Matrices
(EBUTM), 80, 81, 83, 84

Elementary computations, 205
Energy balance

for biped, 110

energy dissipation by ground, 225

for hexapod, 227

kinetic energy and potential energy,

224-225

for KUKA KRS5 arc, 105

for planar biped, 226

for quadruped, 227

for spatial biped, 226

work done by actuator, 225
Energy dissipation by ground, 225
Euler-Angle-Joints (EAJs), 15-16

composite rotations

equivalent transformation, 36
X and Y axes, 36-37

Index

Y and Z axes, 37
Z and X axes, 37
constant matrix multiplication/additional
set of DH parameter, 50
DH parameterization of, 33, 50
elementary rotations
X axis, 35
Y axis, 34
Z axis, 34-35
multiple-DOF joints, 52
numbering scheme, 51
overall rotation matrices, 4649
singularity in, 51-52
spherical joint, representation, 33, 51
three intersecting revolute joints, 32,
33
universal joint, representation, 53-54
XYX-EAJs, 48
DH frames, 4445
DH parameters, 43-44
overall rotation matrix, 45
rotation matrix, 43, 45
XYZ EAJs, 49
XZX EAJs, 48
XZY EAJs, 49
YXY EAJs, 47
YXZ EAlJs, 47, 51, 52
YZX EAJs, 48
YZY EAls, 47
zero-configuration, 51, 52
ZXY-EAJs, 46
DH frames, 42
DH parameters, 41
overall rotation matrix, 43
rotation matrix, 41, 42
7ZXZ7Z-EAJs, 4041, 46
ZYX-EAJs, 47
ZYZ-EAlJs, 46
DH frames, 38, 39
DH parameters, 38
overall orientation, 39
rotation matrix, 37-39
singularity, 52
Euler angles, 27, 137, 139, 142, 143, 146, 148,
181, 183, 184
definition, 28
elementary rotation matrices, 29
overall rotation matrices, 29, 30
7ZYZ scheme, 28, 29
Euler equations of motion, 211
Euler-Lagrange (EL) formulation, 17

245

F
Feedforward control, 21, 176-177, 179
Firm ground models
damping coefficient
negative foot velocity, 228, 229
positive foot velocity, 229
over-damped behavior, 229
pseudo-Coulomb friction force, 229
visco-elastic model, 228
Fixed-base system
feedforward control, 176
forward dynamics, ReDySim
closed-loop systems, 197-199
parameters for integration, 193
tree-type systems, 195, 197, 198
inverse dynamics, ReDySim
closed-loop systems, 192-197
model parameters, 188—189
tree-type systems, 189-192
recursive dynamics (see Recursive
dynamics for fixed-base robotic
systems)
Floating-base system
computed-torque control, 175, 176
feedforward control, 176
forward dynamics, ReDySim
file initials.m for planar biped, 204
parameters, 203
inverse dynamics, ReDySim
base acceleration, parameters for, 200
file initials.m for planar biped, 203
file inputs.m for planar biped, 201-202
ground parameters, 200
planar biped, link indices and lengths,
201
recursive dynamics (see Recursive
dynamics for floating-base systems)
Foot-ground interaction
ground models
dusty, 230
firm, 228-230
multi-point and whole body contacts,
230-231
penalty-based approaches, 228
Force analysis. See Inverse dynamics
Forward dynamics, 4, 20, 21, 157-158
algorithm, 24
explicit inversion, 23
for fixed-base robotic systems
algorithm, 92, 96
backward recursion, 94-95

246

Forward dynamics (cont.)

computational efficiency, 111-115
EAJs, 95
equations of motion, 92
forward recursion, 95
inter-modular computations, 94, 95
intra-modular computations:, 94, 95
joint accelerations, 92, 94, 95
multiple-DOF joints, performance of,
115
robotic gripper, 99
implicit inversion, 23-24
numerical method, errors, 4
recursive algorithm, 23, 24
recursive dynamics for floating-base
systems
algorithm, 127
backward recursion, 124-125
computational efficiency, 148, 151, 152,
154
forward recursion, 124, 126
GIM, decomposition of, 124
inter-modular computations, 125, 126
intra-modular computations, 125, 126
joint accelerations, 124, 126
recursive dynamics simulator
fixed-base systems, 193, 195, 197-199
floating-base systems, 203, 204

Four-bar mechanism

driving torque, 159, 161

equations of motion, 159

file initials.m for, 198

file inputs.m for, 194-195

file jacobian.m for, 199

file trajectory.m for, 195

function inv kine.m for, 196-197

input joint trajectory, 160

inverse dynamics, 159, 161

joint angle, 161

link indices and lengths, 193

model parameters, 160

module architecture and joint variables, 160
simulation of, 161

subsystem-I and subsystem-II, 158, 159
tree-type representations, 158

Generalized Inertia Matrix (GIM), 23, 174

articulated module-twist propagation
matrix, 84

biped, 86-87

block elements, 79, 84

decomposition of, 124

Index

inverse of, 83-84
ith composite module, 79
mass matrix of composite modules, 78
module-level decomposition of
articulated-module, 82, 83
BRGE, 80
diagonal matrix, 82
EBUTM, 80, 81
lower block triangular matrix, 82
upper triangular matrix, 81
robotic gripper, 85-86
Gimbal lock, 51
Gripper. See Robotic gripper
Ground models, 228-230

H
Hexapod, 14
control schemes, 181-182
simulated joint motions, 184
simulated motion of trunk, 184
energy balance, 227
recursive dynamics for floating-base
systems, 144—149
trajectory parameters, 224
Hip trajectory, inverted pendulum model,
219-221
Humanoid robot, 3

|
Implicit inversion method, 23-24
Industrial robot, 2, 3
Inertia Matrix Method, 23
Inertia wrench, 90
Integer index, 92, 189, 190
Inter-modular velocity constraints, 65-68
Intra-modular velocity constraints, 60-65
Inverse dynamics, 4, 20-22
closed-loop systems
dynamic formulation, 156-157
four-bar mechanism, 159, 161
robotic leg, 163—-164, 166
3-RRR parallel manipulator, 167-168,
170
fixed-base robotic systems
algorithm for, 93
backward recursion, 91-92
forward recursion, 90-91
generalized twist and generalized
twist-rate, 90
inertia wrench, 90
integer index, 92
inter-modular computations, 90, 91

Index

intra-modular computations, 90-92
joint torques and forces, 90, 91
multiple-DOF joints, performance of,
114
robotic gripper, 98
recursive dynamics for floating-base
systems
accelerations, 119
algorithm for, 123
backward recursion, 120-121
computational efficiency, 148, 150, 152,
153
forward recursion, 120, 122
inter-modular computations, 120-122
intra-modular computations, 120-122
joint torques, 119
legged robot, 119
twist, twist-rate and wrench, 120
recursive dynamics simulator
fixed-base systems, 188—197
floating-base systems, 200-203
Inverted Pendulum Model (IPM), 128, 219
coefficient, 221
component form, 220
coordinates, 221
moment equation, 220
repeatability conditions, 221
values of initial velocities, 221

J
Jacobian matrix, 198, 199
Joint accelerations, 92, 94, 95, 158
Joint angles, 161, 166, 171
Joint motions, 99
of biped, 222-224
simulation study (see Simulation study,
control schemes)
Joint torques, 100, 119, 132, 138, 143, 176

K
Kinematics
inter-modular velocity constraints
array of modules, 68
DeNOC matrices, 67, 68
joint-rate vector, 67
module and parent module, 65
module-joint-motion propagation
matrices, 66

module-joint-rate, 65, 67
module-twist, 65-67
twist propagation matrix, 66

247

intra-modular velocity constraints
cross-product tensor, 60, 61
DeNOC matrices, 61, 64
6-dimensional motion-propagation
vector, 60, 63, 64
kth and (k-1)th link, 60
multiple-DOF joints, presence of,
62-64
revolute, universal and spherical joint,
63
spatial double pendulum, 64—65
twist of, 60, 61, 63
twist-propagation matrix, 60, 61, 63, 64
modules
advantages of, 88
base module, 58
conventional and multi-modular
architectures, 58
number of joint variables in ith module,
59
tree-type system, 57-59
planar biped, 70
robotic gripper, 68—69
spatial biped, 71-72
Kinetic energy (KE), 224-225
KUKA KRS arc, recursive dynamics, 102
DH parameter and inertia properties, 103
energy balance for, 105
simulated joint angles, 104
torque requirement at joints, 103

L

Lagrange multipliers, 155, 161, 166, 170

Legged robots, 3, 12-14, 117-119
configuration-dependent approach, 19
configuration-independent approach, 19
trajectory generation, 218-224

Line contact, 231

M
Mass matrix
of composite modules, 78
computational complexity
of articulated body, 215-217
of composite body, 212-214
MATLAB based computer algorithm. See
Recursive dynamics simulator
(ReDySim)
Matrix in different frame, computational
complexity, 207-208
Matrix of Convective Inertia, 174

248

Model-based control, 20-21
computed-torque control
closed-loop equations, 174, 175
dynamic equations of motion, 174
floating-base system, 175, 176
linear function of state variables, 174
scheme, 175
servo part, 176
feedforward control
fixed-base system, 176
floating-base system, 176
scheme, 177
real-time computation, 21
Modeling. See Dynamic modeling
Modified Denavit and Hartenberg (MDH)
parameters, 29, 31
Modular framework, advantages of, 88
Moment equation, Zero-Moment-Point, 220
Monopod, 14
Motion analysis. See Forward dynamics
Motion equations, 16-17, 155, 159, 164, 167,
168
Multi-fingered gripper, 3
Multiple-Degree-of-Freedom (DOF) joints, 52,
114, 115, 208
intra-modular velocity constraints,
kinematics, 62-64
recursive dynamics
for fixed-base robotic systems, 89,
113-115
for floating-base systems, 148, 149,
153, 154
Multi-point contacts, 230-231

N
Natural Orthogonal Complement (NOC)
matrix, 18
Newton-Euler (NE) equations of motion
formulation, 16, 17
for serial module
kth link of ith module, 73, 74
mass, angular velocity and coupling
matrices, 75
matrix and vector definitions, 75
origin of link, 74
tensor, 74
wrench vector, 75
tree-type system, 76

(0]
Open-chain systems, 9, 18
Orthogonal complements, 17-18

Index

P
Penalty-based approaches, 118, 228
Planar biped
computed-torque control
simulated joint motions, 178, 179
simulated motion of trunk, 178
energy balance, 226
feedforward control
simulated joint motions, 180
simulated motion of trunk, 179
floating-base systems, ReDySim, 200
file initials.m for, 203, 204
file inputs.m for, 201-202
link indices and lengths, 201
kinematics, 70
recursive dynamics for floating-base
systems
designed trajectories of trunk COM and
ankle, 130
horizontal reaction (HR) and vertical
reaction (VR) on feet, 130, 132
joint torques, 132
joint trajectories from trunk and ankle
trajectories, 131
length and mass of links, 129
7-link, module architecture and joint
variables, 129
motions of trunk, 131
simulated joint motions, 133
simulated motions of trunk, 133
Planar screw transformation, 210, 212, 215
Point contact, 231
Potential energy (PE), 224-225
Pseudo-Coulomb friction force, 229
Puma robot, 10

Q
Quadruped, 14
control schemes, 180-181
simulated joint motions, 183
simulated motion of trunk, 183
energy balance, 227
recursive dynamics for floating-base
systems, 137-144
trajectory parameters, 224

R
Recursive algorithms, 22
Recursive dynamics for fixed-base robotic
systems
biped, 104

Index

designed trajectories of trunk’s COM
and ankle of spatial biped, 106
energy balance, 110
joint trajectories of spatial biped, from
trunk and ankle trajectories, 107
7-link biped and module architecture,
105
model parameters, 106
simulated joint angles, 109
torque requirement at joints, 108
computational efficiency
6-dimensional vector, 110
forward dynamics, 112, 114, 115
inverse dynamics, 111, 113, 114
kth link, 113
multiple-DOF joints, 113-115
O(n) algorithm, computational
complexity, 113, 114
forward dynamics
algorithm, 96
backward recursion, 94-95
forward recursion, 95
inverse dynamics
algorithm for, 93
backward recursion, 91-92
forward recursion, 90-91
KUKA KRS arc, industrial manipulator,
102
DH parameter and inertia properties,
103
energy balance for, 105
simulated joint angles, 104
torque requirement at joints, 103
robotic gripper
ADAMS software, CAD model, 99-101
convergence of simulated joint angle,
101
forward dynamics, steps of, 99
inverse dynamics, steps of, 98
joint motions, 99
joint torques, 100
joint trajectory, 99
Ordinary Differential Equation (ODE)
solver ‘ode45’, 100
simulated joint angles, 100, 101
tree-type gripper and modularization, 97

Recursive dynamics for floating-base systems

biped
planar biped, 129-133
spatial biped, 133-137
computational efficiency
computational complexity, O(n)
algorithm, 152
forward dynamics, 148, 151, 152, 154

249

inverse dynamics, 148, 150, 152, 153
kth link, 151
multiple-DOF joints, 148, 149, 153, 154
configuration-dependent approach, 117,
118
contact problem, 118
forward dynamics
algorithm, 127
backward recursion, 124—-125
forward recursion, 124, 126
hexapod
designed trajectories of trunk COM and
ankle, 144, 145
joint torque, 147
joint trajectories from trunk and ankle
trajectories, 144, 146
and modularization, 145
motions of trunk, 145, 146
simulated joint motions, 149
simulated motions of trunk, 148
inverse dynamics
algorithm for, 123
backward recursion, 120-121
forward recursion, 120, 122
legged robots, 117, 118
quadruped, 137, 138
designed trajectories of trunk’s COM
and ankle, 139, 141
joint torques, 143
joint trajectories from trunk and ankle
trajectories, 139, 142
and modularization, 141
motions of trunk, 142
simulated joint motions, 144
simulated motions of trunk, 143

Recursive dynamics simulator (ReDySim)

directory tree, 187, 188
fixed-base systems
forward dynamics, 193, 195, 197-199
inverse dynamics, 188-197
floating-base systems
forward dynamics, 203, 204
inverse dynamics, 200-203

Reverse Gaussian Elimination (RGE), 80
Robotic gripper

file initials.m for, 197

file inputs.m for fixed-base, 191-192
file torque.m for, 195, 198

file trajectory.m for, 190, 192
Generalized Inertia Matrix, 85-86
kinematics, 68—69

link indices and lengths, 190

and modularization, 189

recursive dynamics, 97-101

250

Robotic hand, 11, 12
Robotic leg
cumulative DOF (CDOF), 162
driving torque, 164, 166
equations of motion, 164
graph representation, 162
input joint trajectory, 165
inverse dynamics, 163-164, 166
joint angle, 166
kinematic constraints, 163
model parameters, 164
module architecture, 163
simulation of, 166
subsystem, 162-164
tree-type representation, 163
Rotation matrix, 206
Rotation representation
Denavit-Hartenberg parameters, 15
Euler-Angle-Joints, 15-16
3-RRR parallel manipulator, 165
equations of motion, 167, 168
initial condition for free fall, 170
input joint trajectory, 169
inverse dynamics, 167-168, 170
joint angles, 171

joint torques and Lagrange multipliers,

170
kinematic constraints, 167
model parameters, 169

module architecture and joint variables,

168
simulation of, 171
subsystem, 167, 168
tree-type planar manipulator, 167

S
Scalar joint rate, 205
Serial module, NE equations of motion,
73-75
Serial robots, 9—11
Simulation study, control schemes
joint motions
hexapod, 184
planar biped, 178-180
quadruped, 183
spatial biped, 182
simulated motion of trunk
hexapod, 184
planar biped, 178, 179
quadruped, 183
spatial biped, 181
Spatial biped, 103, 107
control schemes, 179-180

Index

simulated joint motions, 182
simulated motion of trunk, 181
energy balance, 226
kinematics, 71-72
recursive dynamics for floating-base
systems
designed trajectories of trunk’s COM
and ankle, 134, 135
joint torque, 135, 138
joint trajectories from trunk and ankle
trajectories, 134, 136
and modularization, 134
motions of trunk, 137
simulated joint motions, 140
simulated motions of trunk, 139
Spatial double pendulum, 64—65
Spatial transformations, computational
complexity, 209-211
Spherical joints, 27, 33, 51, 63
Stanford Arm, 10
Stanford/JPL hand, 11
Stewart-platform, 12
Surface contact, 231
Symmetric matrix, computational complexity,
208, 216

T
Trajectory generation for legged robots
biped
ankle trajectories, 222
hip trajectory, inverted pendulum
model, 219-221
joint motions, 222-224
parameters of, 219, 222
Zero-Moment-Point (ZMP), 218-219
quadruped and hexapod, 224
Tree-type systems
forward dynamics, 195
file initials.m for robotic gripper, 197
file torque.m for robotic gripper, 195,
198
inverse dynamics
file inputs.m for fixed-base robotic
gripper, 191-192
file trajectory.m for robotic gripper,
190, 192
integer index, 189, 190
robotic gripper and modularization, 189
robotic gripper, link indices and lengths,
190
Trunk’s COM, 106, 130, 135, 141, 145
Trunk, simulation study, 178, 179, 181, 183,
184

Index

TUM hand, 11
Twist-propagation matrix, 209

U

UNIMATE robot, 10
Universal joint, 53-54, 63
Utah/MIT hand, 11

A\
Vector in different frame, computational
complexity, 206207

251

Velocity transformation matrix, 17
Visco-elastic model, 228

W
Whole body contacts, 230-231

Z
Zero-Moment-Point (ZMP), 128,
218-219

	Dynamics of Tree-Type Robotic Systems
	Preface
	Acknowledgments
	Contents
	Chapter 1: Introduction
	Chapter 2: Dynamics of Robotic Systems
	Chapter 3: Euler-Angle-Joints (EAJs)
	Chapter 4: Kinematics of Tree-Type Robotic Systems
	Chapter 5: Dynamics of Tree-Type Robotic Systems
	Chapter 6: Recursive Dynamics for Fixed-Base Robotic Systems
	Chapter 7: Recursive Dynamics for Floating-Base Systems
	Chapter 8: Closed-Loop Systems
	Chapter 9: Controlled Robotic Systems
	Chapter 10: Recursive Dynamics Simulator (ReDySim)
	Appendices
	References
	Index

