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Preface

Dynamic models of robots play an important role in their design and control. Most
publications that are meant to teach computation of dynamic models of (rigid and/or
flexible) parallel robots are general works defining general equations that can be
applied to constrained or closed-loop systems. However, they usually suffer from
lack of the following information:

e they usually miss the fact that the Jacobian matrices used in a dynamic model to
set up dynamic constraints are not so simple to compute, and no straightforward
way to compute them is provided.

e most of these works do not propose efficient ways to reduce computational
complexity of dynamic models. However, this reduction of complexity is crucial
for obtaining models able to predict robot behavior for simulation and control,
and to speed up a robot’s optimal design process.

o they totally miss the facts that (i) in the presence of certain types of singularities,
the dynamic models may degenerate and that (ii) this degeneracy can be avoided
thanks to optimal trajectory planning.

¢ they do not provide experimental results to show that, even if they are complex,
dynamics models of parallel robots can be very accurate.

The present book, based on material published by the two authors over the last
fifteen years, aims at filling all these gaps and thus providing some tools for
engineers, master and Ph.D. students dealing with the dynamics of parallel robots.

Some results given in the book were reached in collaboration with Vigen
Arakelian, Nicolas Bouton, Frédéric Boyer, Etienne Dombre, Maxime Gautier,
Coralie Germain, Sylvain Guégan, Ouarda Ibrahim, Philip Long, Philippe Martinet
and Georges Pagis. The authors acknowledge each of them for their contributions.

The interested reader will also find within the book some links or references to
free software or portions of Mathematica codes in which the presented algorithms
for computing the kinematics and dynamics of some studied robots are already
encoded.
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The authors will be also genuinely grateful to the readers for any critical feed-
back on the material presented in the book and for any suggestion for its
improvement.

Nantes, France Sébastien Briot
March 2015 Wisama Khalil
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Symbols and Abbreviations

Throughout the book, vectors are represented by bold lowercase symbols and
matrices by bold uppercase symbols.

Symbols

a;

a

aVl

a" (k)

a(j)

a? ﬁ7 y7 ¢7 97 1/’

g m e

~.

The vector characterizing the axis of the joint j

The unit twist characterizing the displacement of the joint j at O;
A list containing the number of the intermediate frames separating
the frame .7, from the frame %

The k-th element of the list a”

Gives the number of the body antecedent to the body %;

Some angles

A unit twist

The kinetic energy of a system

A vector of force

A force along one given direction

The local frame, composed of the origin O; and the axes x;, y; and
z; and attached to the body %;

The inertia matrix for body %;, expressed at the origin of the local
frame #; attached to this body

The inertia matrix for body %, expressed at the center of mass of
this body

The (j x j) identity matrix

The Lagrangian of a system

Lagrange multipliers

The length of the segment PQ

A vector of moment

A moment along one given direction

The mass of the body %;
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Xvi Symbols and Abbreviations

Ao The number of degrees of freedom of the mobile platform of the
parallel robot

Naof The number of degrees of freedom of the parallel robot

o The rotational velocity of body Z; with respect to the fixed
Galilean frame and expressed in the local frame 7

& The rotational acceleration of body 2, with respect to the fixed
Galilean frame and expressed in the local frame 7

q,.9,q Some vectors of generalized coordinates, velocities and acceler-
ations, respectively

R The (3 x 3) rotation matrix from the frame i to the frame j

R; The (6 x 6) augmented rotation matrix from the frame i to the
frame j

Jrp The position of point P expressed in the local frame & ;

Tpo The vector P—Q) expressed in a local frame % ;

t The time variable

t, For a manipulator, the twist of its end-effector

tp For a manipulator, the acceleration of its end-effector

T, The (4 x 4) transformation matrix from frame & to frame % ;

T; The (6 x 6) augmented screw transformation matrix from frame
F; to frame Z

T An input joint effort

T a vector of input joint effort

U The potential energy of a system

Ivp The velocity of point P with respect to the fixed Galilean frame
expressed in the local frame 7

Ivp The acceleration of point P with respect to the fixed Galilean
frame expressed in the local frame & ;

w A wrench, composed of a force and a moment

Xj, ¥js Zj The axes of the frame 7

X, For a manipulator, the Cartesian position of its end-effector

XXj, YYj, 2% The axial moments of inertia around x;, y; and z; axes,
respectively, for body %, expressed at the origin of the local
frame 7

XYjy XZj, Y3 The inertial cross-moments for body %;, expressed at the origin
of the local frame 7

& A unit wrench

Abbreviations

atan2 The four-quadrant inverse tangent function

COM Center of mass

DDM Direct dynamic model
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DOF
FGM
FKM
IDM
IGM
IKM
IRCCyN

LPITS
PKM
PPM
SPM
T&T
TPM
W.rI.t.

Degree of freedom

Forward geometric model

Forward kinematic model

Inverse dynamic model

Inverse geometric model

Inverse kinematic model

Institut de Recherche en Communications et Cybernétique de
Nantes (Research Institute in Communications and Cybernetics of
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Leg Passive Joint Twist System

Parallel kinematic machine

Planar parallel mechanism

Spatial parallel mechanism

Tilt-and-Torsion

Translational parallel mechanism
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Chapter 1
Generalities on Parallel Robots

Abstract This introductory chapter presents generalities about parallel robots. After
a general description and the definition of several important terms that will be used
in this book, we present a general overview of the different types of parallel robots.
We classify them as a function of the type of motions of their platform. We also show
that parallel robots are already used for different types of applications. At the end of
this chapter, we explain the reasons why we think that a book on the dynamics of
parallel robots is necessary.

1.1 Introduction

Parallel robots, also called parallel manipulators or parallel kinematic machines
(PKM), are defined in (Leinonen 1991) as robots that control the motion of their
end-effectors by means of at least two kinematic chains going from the end-effector
towards the fixed base.

From this definition, we see that the PKM are composed of different elements
(Fig. 1.1):

e the (fixed) base, which is the fixed element of the robot

e the (moving) platform on which is usually mounted the end-effector,

e the kinematic chains, linking the base to the platform, and also called the robot
legs. A leg is usually a kinematic chain of serial or tree-structure type (Figs. 1.2
and 1.3).

Parallel robots are very attractive for several applications because the manipulated
load is shared by several legs of the system. Consequently, each kinematic chain
carries only a fraction of the total load, which allows the creation of intrinsically
more rigid robots. Such architectures also make it possible to reduce the mass of
the movable links (all the actuators are mainly fixed on the base and many legs are
stressed by tension/compression efforts) and, as a result, make it possible to use
less powerful actuators. Such characteristics promised to create structures with high
payload, high dynamic capacities and high accuracy. Nowadays, parallel robots are
used for several applications, such as (the list is not exhaustive):
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Fig. 1.3 Schematics a tree-structure open kinematic chain
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Fig. 1.5 The Hermes milling module (courtesy of Tecnalia)

e pick-and-place in food industry, pharmaceutical industry (Fig. 1.4),
e milling (Fig. 1.5),

e motion simulators (Fig. 1.6),

e measuring systems (measuring accuracy of some nanometers for the Delta Cube
developed by the Robotic Lab. from the Ecole Polytechnique Fédérale de Lausanne
(EPFL)),

micro-positioning systems,

haptic devices (Fig. 1.7),

medical environment (Fig. 1.8),

accessing offshore structure (Fig. 1.9).
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Fig. 1.7 The Oméga6 based on a Delta-like architecture (courtesy of Force Dimension)

1.2 General Definitions

Throughout this book, we define the following terms as:

e mobility: the mobility of a body is defined in this book as the number and types of
independent components of its twist (rotational and translational velocity compo-
nents). It is equal to six for a free body in space and three for a body in plane.

e degree of freedom: the number of degree of freedom (DOF) of a body is defined
as the number (only) of independent components of its twist.

e lower mobility robot: a robot with a mobility of the platform inferior to six.

e robot with a mobility iTjR: a robot whose platform encounters i translational
DOF and j rotational DOF.
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Fig. 1.9 The Ampelmann platform (courtesy of Ampelmann)
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Jjoint: A joint connects two successive links, thus limiting the number of degrees
of freedom between them. The resulting number of degrees of freedom, m, is also
called joint mobility, such that 0 < m < 6. When m = 1, which is frequently
the case in robotics, the joint is either revolute or prismatic. A complex joint with
several degrees of freedom can be constructed by an equivalent combination of
revolute and prismatic joints. For example, a spherical joint can be obtained by
using three revolute joints whose axes intersect at a point.

e active joint: a joint which is actuated.

passive joint: a joint which is not actuated.

e R joint: a revolute joint (Fig. 1.10), allowing a rotation around a given axis. If the

letter is underlined (R joint), the joint is actuated. If not, it is passive.

P joint: a prismatic joint (Fig. 1.11), allowing a rotation around a given axis. If the
letter is underlined (P joint), the joint is actuated. If not, it is passive.

U joint: a universal joint, allowing two independent rotations around two given
axes. These joints are usually passive and can be represented by two R joints with
orthogonal and intersecting axes.

S joint: a spherical joint (Fig. 1.12), allowing three independent rotations. These
joints are usually passive and can be represented by 3R joints with orthogonal and
intersecting axes.

Jjoint variable / coordinate: a variable/coordinate associated to the motion of a
given joint.

Cartesian variable / coordinate: a variable/coordinate associated to the Cartesian
position and orientation system. It is generally used to characterize the motion of
the platform.

singularity or singular configuration: a configuration for which the mechanism
loses the ability to move along one given direction of the workspace and/or gains
one uncontrollable motion. Moreover, locally, the robot mechanical performance
(stiffness, accuracy, etc.) are locally decreased.

@@} Q) =)
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s

Fig. 1.10 Symbolic representation of a revolute joint
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Fig. 1.11 Symbolic representation of a prismatic joint
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Fig. 1.12 Symbolic
representation of a spherical
joint

- .

1.3 Types of PKM Architectures

There exists a large variety of PKM architectures. In a very simple approximation,
if we consider that a PKM has six legs, and that all legs are made of six joints,
the number of possible PKM topologies is equal to the number of possible serial
legs to the power six. Therefore, it is impossible to show in this book all possible
PKM architectures.

A large number of PKM architectures have been given in the books (Gogu 2008,
2009,2010,2012,2014; Kong and Gosselin 2007). As no classification methods have
been proposed, we group them as a function of the number and types of DOF of
their platform.! We briefly introduce some of them in the following of this section.

It should be mentioned that the number of independent DOF of the platform of a
PKM can be found by analyzing the rank of the parallel kinematic Jacobian matrix
A defined in Sect.7.3.1, when the robot is not in a singular configuration. Methods
to compute the mobility of mechanisms are given in Appendix A.

1.3.1 Planar Motions of the Platform

Many PKM have been designed in order to be able to move their platform in a plane.
We call them the Planar Parallel Manipulators (PPM). We can classify them into
three main groups:

1. robots with 2 DOF able to position a point in a plane (Fig. 1.13),

2. robots with 2 DOF able to position a device with constant orientation in a plane
(two translational DOF in the plane and one constrained (constant) platform
orientation around the axis normal to the plane—Fig. 1.14),

3. robots with 3 DOF able to position a device in a plane (two translational DOF in
the plane and one rotational DOF around the axis normal to the plane—Fig. 1.15).

There obviously exist other types of possible mobilities (1T1R), but they are not
common.

Most of the robots of this category are planar, i.e. all their elements are constrained
to move in parallel planes. However, in order to increase the stiffness of robots with

I'Throughout this book, when we mention the number and types of DOF of the PKM, we refer to
the number and types of DOF of its mobile platform. The number of DOF of the mobile platform
is denoted n4,y while the number of DOF of the entire robot is denoted Ny, ¢
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Fig. 1.13 Examples of robots with 2 DOF able to position a point in a plane. a The Dextar: a planar
five-bar mechanism (RRRRR planar architecture) designed at ETS Montreal (Campos et al. 2010).
b The ParaPlacer (PRRRP planar architecture) from the IFW (Hesselbach et al. 2002)

Fig. 1.14 Examples of robots with 2 DOF able to position a device with constant orientation in a
plane: Robot PacDrive Delta 2 (courtesy of Schneider Electrics)

planar motions of the platform, especially in the direction normal to the displacement
plane, a recent idea was to design spatial robots able to achieve planar motions of
their platform (Fig. 1.16).

1.3.2 Spatial Motions of the Platform

The large majority of PKM have been designed in order to be able to move their
platform in the space. We call them the Spatial Parallel Manipulators (SPM).

The robots of this category are too numerous to mention all of them. However,
we can cite:
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(b)

Fig. 1.15 Examples of robots with 3 DOF able to position a device in a plane. a Prototype of
a 3-PRR robot (Wei and Simaan 2010). b A decoupled planar robot designed at ETS Montreal
(Joubair et al. 2012)

(a) — (b) K .

R

Actuated arms

| Passive arms

Fig. 1.16 Examples of spatial robots with 2 DOF able to position a device in a plane with a
constant orientation of the platform. a The Par2 from the LIRMM, France (Pierrot et al. 2009). b
The IRSBot-2 robot from the IRCCyN, France (Briot et al. 2012b)

e robots with three translational DOF (also called translational parallel manipulators
(TPM)): among them, we can mention the Delta robot (Clavel 1990) (Fig. 1.17a),
the Orthoglide (Chablat and Wenger 2003) (Fig. 1.17b), the Tripteron (Gosselin
2009) (Fig. 1.17c¢), etc.

e robots with three rotational DOF (also called spherical PKM): most of them allow
the platform to rotate around one given fixed point (Bonev and Gosselin 2006).
The most known is probably the Agile Eye (Gosselin et al. 1996) (Fig. 1.17d),

e robots with three exotic DOF: such types of robots have usually some DOF of rota-
tion which are constrained with the DOF of translation [(see e.g. (Bonev 2008)].
Some of them have been designed with an additional wrist which compensates for
the undesirable rotations and have found some industrial applications, especially
for milling (Fig. 1.18)
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Fig. 1.17 Examples of spatial robots with 3 translational or rotational DOF. a The Delta robot by
Clavel (1990), a TPM. b The Orthoglide of IRCCyN (Chablat and Wenger 2003). ¢ The Tripteron
developed by Gosselin (2009), a TPM . d The Agile Eye developed by Gosselin et al. (1996)

(a) (b)

Fig. 1.18 Examples of spatial robots with 3 exotic DOF. a The Tricept. b The Exechon
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(b)

Amm

Rod

Force/torque

Fig. 1.19 Examples of spatial robots with 6 DOF. a A Hexapod (courtesy of Symétrie). b The
Hexa (Pierrot et al. 1990)

e robots with three translational DOF and one rotational DOF around one given
axis (also called Schonflies motion generators): they are usually used for pick-
and-place operations, most often at high-speed. The most functional robot of this
type is probably the Adept Quattro (Fig. 1.4)

e robots with six DOF': such as the Hexapod (also known as the Gough-Stewart
platform—Fig. 1.19a) and the Hexa (Pierrot et al. 1990) (Fig. 1.19b).

1.3.3 Redundant PKM

Redundancy occurs when the number of active joints, n,, is greater than the num-
ber ngor of independent variables required to define the platform configuration.
Redundancy in PKM is usually used in order to avoid their singularities which are
considered as one of the main drawbacks of such robots (see Sect.7.5).
Redundancy in parallel manipulators can be divided into two main groups:

1. Kinematic redundancy: in such a case, n, = Ngor > Rdof,
2. Actuation redundancy: in such a case, ny > Nyof.

1.3.3.1 Kinematic Redundancy

Kinematic redundancy (Ebrahimi et al. 2008) is obtained when the fotal number Ny, ¢
of DOF for the robot exceeds the number 4, of independent variables necessary to
define the robot’s platform configuration. In such a case, we have n, = Nyof > naof,
n, being the number of actuators. It results in an infinitude of possible solutions to
the inverse kinematic problem giving the joint coordinates of the robot in terms of
the platform coordinates (see Sect.7.3.2.4). This type of redundancy occurs when
extra active joints and links are added to a manipulator (Fig.1.20a). Advantages
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Fig. 1.20 Examples of redundant robots. a A kinematically redundant PPM(3-(P) RRR robot)
from the institute of mechatronics systems, Germany (Kotlarski et al. 2010). b The DualV from the
LIRMM, France (van der Wijk et al. 2011): an actuation redundant PPM(4-RRR robot)

can include larger reachable workspace, avoidance of kinematic singularities, and
dexterity improvement (Ebrahimi et al. 2008).

1.3.3.2 Actuation Redundancy

Actuation redundancy occurs when the number n, of actuators is greater than the
number of robot DOF Ny, r. Mathematically speaking, we have n, > Nyof.
As a consequence,

e we cannot independently choose the active joint variables as they are constrained
by n. equations.

e there are an infinite number of possible solutions to the inverse dynamic problem
(see Sect. 8.5). Internal constraint efforts may appear.

e the wrench capabilities are affected (Firmani et al. 2007) and forces of greater
magnitudes can be generated.

e as an advantage, the robot workspace becomes usually free of singularity.

An example of an actuation redundant robot named the DualV is provided in
Fig. 1.20b.

1.3.4 Other Types of PKM

1.3.4.1 Hybrid PKM

The hybrid robots are composed of serially connected parallel modules like the
Logabex LX4 robot (Fig. 1.21) (Charentus and Renaud 1989) and bio-mimetic snakes
robots (Chablat and Wenger 2005; Khalil et al. 2007a). The serial form of these
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Fig. 1.21 The hybrid Logabex LX4 robot

hybrid manipulators overcomes the limited workspace of parallel manipulators and
improves overall stiffness and response characteristics.

1.3.4.2 Cable-Driven Parallel Robots

Cable-driven parallel robots are quite recent types of PKM in which the rigid links
are replaced by cables. The cables being used in tension only, it results that, for fully
controlling the six DOF of the platform, at least seven cables must be used.

The most known example of cable-driven parallel robots is probably the Skycam.
An example of cable-driven parallel robots is given in Fig. 1.22.

Please note that the dynamics of hybrid PKM and of cable-driven parallel robots
are not investigated in the present book. However, the interested reader could inves-
tigate the works (Ibrahim and Khalil 2010; Notash and Kamalzadeh 2007).

1.4 Why a Book Dedicated to the Dynamics of Parallel
Robots?

The dynamic model of robots plays an important role in their design and control. For
robot design, the inverse dynamic model can be used to select the actuators (Chedmail
and Gautier 1990; Potkonjak 1986), while the direct dynamic model is employed to
carry out simulations for the purpose of testing the performance of the robot and to
study the relative merits of possible control schemes. Regarding robot control, the
inverse dynamic model is used to compute the actuator torques, which are needed to
achieve a desired motion (Khalil and Dombre 2002). It is also used to identify the
dynamic parameters that are necessary for both control and simulation applications.
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Fig. 1.22 A cable-driven parallel robot developed at the LIRMM

Most of the works that can be used for computing the dynamic models of (rigid

and/or flexible) parallel robots are general works defining general equations that
can be used for constrained or closed-loop systems (Angeles 2003; Bauchau 2011;
Cammarata et al. 2013; Dwivedy and Eberhard 2006a; Gallardo et al. 2003; Khalil
and Dombre 2002; Khalil and Guégan 2002; Khalil and Ibrahim 2007; Moon 2007,
Miiller 2005; Ozgiir etal. 2013; Park et al. 1999; Rognant et al. 2010; Shabana 2005;
Shah et al. 2013; Wang and Mills 2006; Wittbrodt et al. 2006). However, they usually
suffer from the following (already mentioned above) shortage of information:

they usually miss the fact that the Jacobian matrices used in the dynamics model to
set up the dynamic constraints are not so simple to compute, and no straightforward
way to compute them is provided.

most of these works do not propose efficient ways to compute dynamic models,
in terms of the reduction of the operators ‘+’, ‘—’, *x” and ‘/’ used for obtaining
the expression of an individual model. However, this optimization is crucial for
obtaining models able to predict robot behavior for simulation and control, and to
speed up the robot optimal design process.

they totally miss the facts that (i) in the presence of certain types of singularities,
the dynamic models may degenerate and that (ii) this degeneracy can be avoided
thanks to an optimal trajectory planning (optimal with respect to a criterion based
on the dynamic model).
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e they do not provide experimental results to show that, even if they are complex,
dynamics models of parallel robots can be very accurate.

The present book aims at filling all these gaps. As a result, the book is organized
as follows:

e Part I recalls some basic concepts, common to any types of robots, that are also
necessary for computation of the dynamic models of PKM. The main Chapters of
this Part contain

— In Chap. 2, basics recalling the ways to parameterize the displacements of any
body by using homogeneous transformations are given. Several types of para-
meters for characterizing the body orientation are shown (Euler angles, Tilt-
and-Torsion parameters, Quaternions, etc.)

— In Chap. 3, the concept of screw is introduced, in order to parameterize the
velocity (twist) of a body and the efforts (wrench) exerted on it. Moreover, the
expression of the acceleration of a body is derived.

— In Chap. 4, the minimal set of parameters required for parameterizing the con-
figuration of any type of robots is disclosed.

— In Chap. 5, the geometric and first/second-order kinematic models of serial and
tree-structure robots are investigated, because these models are useful for the
computation of the kinematic relationships of PKM.

— In Chap.6, the basic dynamic principles used in this book are introduced
(Lagrange equations, Newton-Euler principle, principle of virtual works).

e Part II deals with the dynamic modeling of rigid parallel robots:

— In Chap.7, the generic computation of the geometric and kinematic models of
PKM is detailed. Moreover, the problem of the singularity of parallel robots is
introduced.

— In Chap. 8, the computation of the inverse and direct dynamic model of parallel
robots (with and without redundancy) is treated. This computation is based on
the knowledge of the dynamic models of a virtual tree structure, and the ways to
optimize this model in terms of operators is shown. At the end of this Chapter,
other types of models are provided (energy model and ground reaction model)
and the concept of base parameters is introduced.

— In Chap.9, the degeneracy of the dynamic models of PKM is investigated.
Criteria to respect around singularities in order to avoid the dynamic model
degeneracy are provided.

e Part III introduces the dynamic modeling of flexible parallel robots. The goal of
this Part is not to provide a complete lecture on mechanics of deformable bodies,
but to show how to obtain the dynamics of a flexible PKM starting from basic
considerations in mechanics of deformable bodies. As a result, it is organized as
follows:


http://dx.doi.org/10.1007/978-3-319-19788-3_2
http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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— In Chap. 10, the full elastodynamic model of the PKM is provided. For obtaining
it, itis necessary to investigate the dynamics of free flexible bodies and of flexible
tree structure.

— In Chap. 11, the algorithm provided in Chap. 10 is simplified in order to obtain
the expressions of the stiffness and inertia matrices of PKM, which are necessary
for the computation of the natural frequencies.

Finally, it should be mentioned that, in Parts II and III, comparative results with
dynamic modeling of rigid and flexible robots and experiments are provided.


http://dx.doi.org/10.1007/978-3-319-19788-3_10
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Chapter 2
Homogeneous Transformation Matrix

Abstract The transformation of frames is a fundamental concept in the modeling
and programming of a robot. In this Chapter, we present a notation that allows us to
describe the relationship between different frames and objects of a robotic cell. This
notation, called homogeneous transformation, has been widely used in computer
graphics to compute the projections and perspective transformations of an object on
a screen. Currently, this is also being used extensively in robotics. We will show how
the points, vectors and transformations between frames can be represented using this
approach. We also make an overview of different set of parameters that are used for
characterizing the orientation of a body.

2.1 Homogeneous Coordinates and Homogeneous
Transformation Matrix

Let (Yxp, J yp, Jzp) be the Cartesian coordinates of an arbitrary point P with
respect to the frame .7, which is described by the origin O; and the axes x;,
Y z; (Fig.2.1). The homogeneous coordinates of P with respect to frame .7 are
defined by W /xp, w /yp, w /zp, w), where w is a scaling factor (Newman and
Sproull 1979; Roberts 1965). In robotics, w is taken to be equal to 1 (Paul 1981;
Pieper 1968). Thus, we represent the homogeneous coordinates of P by the (4 x 1)
column vector:

ixp
. j
ip=1|""]. 2.1)

Tzp
1

A direction (free vector) is also represented by four components, but the fourth
component is zero, indicating a vector at infinity. If the Cartesian coordinates of a unit
vector u with respect to frame .%; are (Yuy, /uy, /u;), its homogeneous coordinates
will be:
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Fig. 2.1 Transformation of
a vector

j
Uy
0

Jii = 2.2)

The coordinates of the point P can be defined in another frame .%; by 'p =
[ixp iypizp I]T and they can be obtained as a function of /p by (Fig.2.1):

if)=iji§j+jypiﬁj +jZPiﬁj+if‘j=iTjj[~) (2.3)

where ‘s, ‘n; and ‘a; are unit vectors directed along the x;, y ; and z; axes with cor-
responding homogeneous coordinates 'S, fi;, 'a;, respectively, and are expressed
in frame .%;; 'F; is the homogeneous vector representing the coordinates (parame-
terized by the 3D vector 'rj = 'rg,0,) of the origin O; of frame .7; expressed in
frame .%;.

In Eq. (2.3), the matrix ‘T ; allows us to calculate the coordinates of a vector
Jp with respect to frame .%; in terms of its coordinates in frame .7 ;. This (4 x 4)
matrix is called the transformation matrix. It permits us to define the transforma-
tion, translation and/or rotation, of the frame .%;(O;, x;, y;, z;) towards the frame
Zj(0j, xj, yj, zj) (Fig.2.1) and it is represented by:

. L iR: ir.
'Tj=[’sj’nj’aj’l‘j]=[0 0 0 1’} 24

where 'R ; is the rotation matrix expressing the orientation of the frame .%#; with
respect to frame .%; (see Sects.2.2.2 and 2.4).
In summary:

e The matrix ‘T, represents the transformation from frame .%; to frame .7;
e The matrix ‘T can be interpreted as representing the frame .%; (three orthogonal
axes and an origin) with respect to frame .%;.
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2.2 Elementary Transformation Matrices

2.2.1 Transformation Matrix of a Pure Translation

A general pure translation matrix from frame .%; to frame .#; is denoted by
Trans(a, b, c¢), where a, b and ¢ denote the translation along the x, y and z axes
respectively, where (Fig.2.2):

100a
010b
001c¢
0001

iTj = Trans(a, b, ¢) = = Trans(x, a) Trans(y, b) Trans(z, c)

(2.5)
taking any order of the multiplication.
2.2.2 Transformation Matrices of a Rotation About

the Principle Axes x, y and 7

Let us consider a rotation of angle 6 around the axis x and let us denote this trans-
formation as Rot(x, 6). From Fig.2.3, we deduce that:

10 00 0

i _|0co—s9 0| | rot(x,0) O

T; = Rot(x, ) = 0so co 0| = 0 (2.6)
00 01 0 0 01

where cg and sy represent cos and sin 6 respectively, and rot(x, 9) denotes the
(3 x 3) orientation matrix.

Fig. 2.2 Transformation of pure translation
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Fig. 2.3 Transformation of a pure rotation about the x—axis

Similarly, the rotation of angle 6 around the axis y axis is given by:

cyg 0sp 0 0
~lo100| | roty. o) o0

Roty. )= | " ool = 0 2.7)
0 001 0 0 01

and the rotation of angle 6 around the axis z axis is given by:

09—8900 0
s9p cg 00 rot(z, ) O

Rotz. )= |y o 10l= @ 9 ol (2.8)
0 0 01 0 0 01

2.3 Properties of Homogeneous Transformation Matrices

Before going further, we need to define the following properties of the homogeneous
transformation matrices.

Property 1 From (2.4), a transformation matrix can be written as:

Sx Ny Ax Iy
_|synyayry| |smar| R r
T= Sz Ny ag ry _[00011|_|:0001j|' (2:9)

0001
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The matrix R = [S n a] represents the rotation whereas the vector r represents

the translation. For a transformation of pure translation, R = 13 (13 represents the
identity matrix of order 3), whereas r = 0 for a transformation of pure rotation.

Property 2 The matrix R is orthogonal and its determinant is equal to 1. Conse-
quently, its inverse is equal to its transpose:

R ' =RT (2.10)

where the superscript “T ” indicates the transpose of the matrix.

Property 3 The inverse of a matrix 'T j is the matrix IT;. Thus, to express the
components of a vector ' py into frame F;, we write:

Ipr =7T;'p @2.11)
with:
T, =i (2.12)
Property 4 We can easily verify that:
Rot ' (u, 6) = Rot(u, —0) = Rot(—u, 6) (2.13)
Trans_l(u, d) = Trans(u, —d) = Trans(—u, d). (2.14)

Property 5 The inverse of a transformation matrix represented by Eq. (2.9) can be
obtained as:

—s'r
T T T T
-1 _| R —m'r| | R* —-R'r
T = —alr _[o 00 1 ] 2.15)
000 1

Property 6 Composition of two matrices: The multiplication of two transformation
matrices gives a transformation matrix:

_ R1 r R2 ry
T1T2_[0 00 1][0 00 1]
_ |: RiR; R11’2+l‘1]

0 0 0 1 (2.16)

In general, T Ty # T,T.

Property 7 If a frame Fy is subjected to k consecutive transformations (Fig.2.4)
and if each transformation i (i = 1,..., k) is defined with respect to the current
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Fig. 2.4 Composition of transformations: multiplication on the right

frame Fi_1, then the transformation °Ty can be deduced by multiplying all the
transformations on the right as

k
OTk :Hi_lT,‘ =0T1 . 1T2-2T3-~-k_lTk. (2.17)

i=1

Property 8 Consecutive transformations about the same axis: We note the following
properties:

Rot(u, 61)Rot(u, 6>) = Rot(u, 61 + 6>), (2.18)

Rot(u, 6)Trans(u, d) = Trans(u, d)Rot(u, 6). (2.19)

2.4 Parameterization of the General Matrices of Rotation

The orientation of a body with respect to any frame can be obtained through the use
of the rotation matrix R. It can be calculated by using a different set of parameters.
The most used representations in parallel robotics are described below.

2.4.1 Rotation About One General Axis u

The pure rotation of angle 6 around any axis u parameterized by the unit vector
u = [uy uy u;]" can be represented by (Khalil and Dombre 2002):
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R =rot(u, 9)
u%(l —cp)+co  uxuy(l —cg) —uzse uyu (1 —co) +uysg
= |ucuy(l —co) +uzsg  us(l—co)+co  uyu (1 —cp) — uysp
uxtz(1 —co) —uysg uyur (1 —co) +uxse  u(l —cp) + cg
(2.20)
Inverse problem. Let R be any arbitrary rotational transformation matrix such that:
Sy Ny dy
R=|synyay]. 2.21)
Sz Nz dg
We solve the following expression for u and 6:

R =rot(u, ), with0 <0 <. (2.22)

Adding the diagonal terms of Egs. (2.20) and (2.21), we obtain:

1
cp = E(sx +ny+a; —1). (2.23)
From the off-diagonal terms, we obtain:

2uysg =n; — ay
2uysg = ay — s;
2uzsp = sy — Ny (2.24)

yielding:

1
Sp = 5/ (nz — ay)? + (ax — 522 + (sy — n)2. (2:25)
From Egs. (2.23) and (2.25), we deduce that:
6 = atan2(sg, cg), with0 <6 < (2.26)

where “atan2” is the four-quadrant inverse tangent function.

uy, uy and u, are calculated using Eq.(2.24) if sy # 0. When sy is small, the
elements u,, uy and u; cannot be determined with good accuracy by this equation.
However, in the case where ¢y < 0, we obtain u,, u, and u, more accurately using
the diagonal terms of rot(u, 6) as follows:
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. Sx —Co
u, = sign(n; — ay) o
. ny — Cy
uy = sign(ay — ;) 1}_ -
—cC
u, = sign(sy —ny) alz_ c: (2.27)

where “sign(.)” indicates the sign function of the expression between brackets, thus
sign(e) = +1ife > 0, sign(e) = —1 if e < 0 and sign(e) = 0if e = 0.

2.4.2 Quaternions

The quaternions are also called Euler parameters or Olinde-Rodrigues parameters.
This is another way of parameterizing the rotation of an angle 6 (0 < 6 < ) about
an axis u. In this representation, the orientation is expressed by four parameters. We
define the quaternions as:

Q1 =cop
02 = uys9)2
03 = uySy2
Q4 = uz89)3. (2.28)
From these relations, we obtain:
01+ 03+ 03+ 05=1. (2.29)

The transformation matrix T is deduced from Eq. (2.20), defining rot(u, 6)
(Sect.2.4.1), after rewriting its elements as a function of Q ;. Thus, the orientation
matrix is given as:

2001 +0) -1 2(0203—0104) 2(0204+ Q103)
R=[2(0203+0104) 207+0) -1 2(0304— 0102 |. (230)
200204 — 0103) 2(0304+ 0102  2(07+ 07 —1

Inverse problem. Let us find the expression of the quaternions as functions of the

direction cosines of the general matrix R of (2.21). Equating the elements of the
diagonals of the right sides of Egs. (2.21) and (2.30) leads to:

1
01 = zﬁ/sx—i—ny—i—az—i—l (2.31)
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which is always positive. If we then subtract the second and third diagonal elements
from the first diagonal element, we can write after simplifying:

403 =5y —ny —a; + 1. (2.32)

This expression gives the magnitude of Q;. For determining the sign, we consider
the difference of the (3,2) and (2,3) matrix elements, which leads to:

40102 =n; — ay. (2.33)

The parameter O being always positive, the sign of Q5 is that of (n, —a,), which
allows us to write:

1
0y = Esign(nZ —ay)\/Sx —hy —az; + 1. (2.34)

Similar reasoning for O3 and Q4 gives:

1
03 = Esign(ax —s)y/—sx +ny—a; +1 (2.35)

1
Q4 = Eslgn(s), - nx)\/_sx - ny + az + L. (2'36)

Contrary to Euler angles, roll-pitch-yaw angles and T&T angles (see next sec-
tions), quaternion representation is free of singularity. For more information on the
algebra of quaternions, the reader can refer to (de Casteljau 1987).

2.4.3 Euler Angles

The orientation of frame .%; expressed in frame .%; can be determined by specifying
three angles, ¢, 0 and ¥ corresponding to a sequence of three rotations (Fig.2.5).

Let us consider two intermediate frames .#; and .7 defined by .7; (0;, x;,
Y z;) and ﬁj/ (Ojr, xj, Y z ;) and characterized by:

ez; =z andy j is the intersection between the two planes (O;, x;, y;) and
(Oi, Xr, y1)»
ey =y;andzj =z.

Taking into account these considerations, the Euler angles are defined as:

e ¢: precession angle between y; and y; about z; = zj, with 0 < ¢ < 27m; that
angle characterizes the pure rotation of angle ¢ around z; (see Sect.2.2.2) that
transforms the frame .%; into the frame .%;
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Fig. 2.5 The successive rotations that define the ZY Z Euler angles: a precession and nutation,
b spin

e 0: nutation angle between z; and z ;- about Y=y, with 0 < 6 < m; that angle
characterizes the pure rotation of angle 6 aroundy ; (see Sect. 2.2.2) that transforms
the frame .%; into the frame .%/;

e V: spin angle between y;; = y; and y; about zjs = zx, with 0 < ¢ < 2x; that
angle characterizes the pure rotation of angle v around z; (see Sect.2.2.2) that
transforms the frame .7/ into the frame .7;.

The transformation matrix is given by:

R = rot(z, ¢)rot(y, O)rot(z, V)
CpCoCyr — SepSyr —CpCoSyr — S¢pCyr  CopSo
= | SpChCy +CySy  —SpCeSy +CpCy  SeSo | . (2.37)
—Sng 5951// Co

Inverse problem. Let us find the expression of the Euler angles as functions of the
direction cosines of the general matrix R of (2.21). Premultiplying Eq. (2.37) by
rot(z, ¢), we obtain:

rot(z, )R = rot(y, 0)rot(z, V) (2.38)
which results in
CpSx T S¢Sy  Colx +SpNy  Cepdx + Spay CoCy  —ChSy Sp
—SpSy + CpSy —Sphyx + CopNy —Spdx +Cypay | = | Sy cy 0. 239
Sz n; a; —S9Cy SpSyr Cp

From the elements on the second raw, third column of (2.45), we obtain:

— S¢pay + Cpay = 0 (2.40)
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thus:

¢ = atan2(ay, ay)
¢' = atan2(—ay, —ay) = ¢ + 7. (2.41)

There is a singularity if a, and a, are zero. In that case, 6 = km (k =0, 1).

In the same way, from the elements on the first and third rows, and third column
of (2.39), and then from those of the second row, first and second columns, we deduce
that:

0 = atan2(cgay + Spay, a;)
Y = atan2(—S¢sx + CySy, —Sphy + Cohy). (2.42)

The described Euler angles convention is denoted as the ZY Z convention, where
ZY Z denotes that we have a first rotation around z;, then a second rotation around
y; and finally a last rotation around z . There exists in total 12 different sequences
of the three rotations, and, hence, there can be 12 Euler conventions: XY Z, XZY,
YXZ,YZX,ZXY,ZYX, XYX, XZX,YXY,YZY,ZXZ, and ZY Z, where the
convention P Q R denotes that we have a first rotation around p;—axis, then a second
rotation around ¢ j—axis and finally a last rotation around r j—axis.

2.4.4 Roll-Pitch-Yaw Angles

Following the convention shown in Fig. 2.6, the angles ¢, 6 and ¥ indicate roll, pitch
and yaw respectively. If we suppose that the direction of motion (by analogy to the

Fig. 2.6 Roll-Pitch-Yaw angles



30 2 Homogeneous Transformation Matrix

direction along which a ship is sailing) is along the z; axis, the transformation matrix
can be written as:

R =rot(z, ¢)rot(y, 0)rot(x, )

CpCo  CySoSy — SpCyr  CpSeCyr + SpSyr
= | S¢Co S¢SeSyr + CopCyr S¢SeCy — CpSyr | - (2.43)
—Sg CoSyr CoCyr

This description is analogous to the ZY X Euler angle convention.

Inverse problem. Let us find the expression of the Roll-Pitch- Yaw angles as functions
of the direction cosines of the general matrix R. We use the same method discussed
in the previous section. Premultiplying Eq. (2.43) by rot(z, ¢), we obtain:

rot(z, )R = rot(y, 6)rot(x, V) (2.44)
which results in:
CopSx T S¢Sy  Coplix + Spny  Copdyx + Spdy Co SeSy SeCy
—SgSx + CpSy —SpNx + CoNy —Spdy + Cpdy | = 0 Cy —Sy |- (2.45)
Sz n; a; —Sg CoSyr CoCy;

From the elements on the second raw, first column of (2.45), we obtain:
— S¢Sy + CpSy = 0 (2.46)
thus:

¢ = atan2(sy, sy)
¢’ = atan2(—sy, —sx) = ¢ + 7. (2.47)

There is a singularity if s, and sy are zero. In that case, 6 = £ /2.

In the same way, from the elements on the first and third rows, and first column
of (2.45), and then from those of the second row, second and third columns, we
deduce that:

0 = atan2(—s;, CpSy + S¢Sy)
Y = atan2(S¢pay — Cydy, —SeNyx + Cphy). (2.48)
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2.4.5 Tilt-and-Torsion Angles

A novel three-angle orientation representation, later called the Tilt-and-Torsion
(T&T) angles, was proposed in (Bonev and Ryu 1999). These angles were also
independently introduced in (Huang et al. 1999), (Crawford et al. 1999) and (Wang
1999). They had been also proposed in (Korein 1984) under the name halfplane-
deviation-twist angles. In (Bonev et al. 2002a), the advantages of the 7&T angles in
the study of spatial parallel mechanisms were further demonstrated. It was shown
that there is a class of 3-DOF mechanisms that have always a zero torsion, that
we now call zero-torsion parallel mechanisms. Furthermore, it was demonstrated
in (Bonev and Gosselin 2005a) and (Bonev and Gosselin 2006) that the workspace
and singularities of symmetric spherical parallel mechanisms are best analyzed using
the T&T angles.

The T&T angles are defined in two stages: a tilt and a torsion. This does not,
however, mean that only two angles define the T&T angles but simply that the axis
of tilt is defined by another angle. In the first stage, illustrated in Fig.2.7a, the body
frame is tilted about a horizontal axis, u, at an angle 6, referred to as the tilt. The axis
u is defined by an angle ¢, called the azimuth, which is the angle between the axes
u and y;, u being at the intersection of the planes (O;, x;, y;) and (O;, xi, y;). In
the second stage, illustrated in Fig.2.7, the body frame is rotated about the body z;
axis at an angle o, called the forsion.

For space limitations, we will omit the otherwise quite interesting details of the
derivation process [see (Bovev et al. 2002a)], and write directly the resulting trans-
formation matrix of the T&T angles, which is

Fig. 2.7 The successive rotations of the 7&T angles: a tilt, b torsion
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R =rot(u, O)rot(z, o)

CpCoCo—¢p — S¢pSo—¢ —CpCoSo—¢p — SpCo—¢p CpSp
= | $¢CoCo—¢ + CpSo—¢ —S¢CoSo—¢ + CpCo—¢p  S$SO (2.49)
—S0Co—¢ S80S0 —¢ Co

where rot(u, 9) = rot(z, ¢)rot(y, 0)rot(z, —¢).
From the above, we see that the T&T angles (¢, 6, o) are equivalent to the ZY Z
Euler angles (¢, 0, 0 — ¢), i.e., the spin angle v has been replaced with o — ¢.

Inverse problem. From the previous consideration, the inverse problem of the 7&T
angles can be solved as shown in Sect.2.4.3, from which we find that:

¢ = atan2(ay, ay) or ¢ = atan2(—ay, —ay)
0 = atan2(cgpay + Spay, a;)
0 = atan2(=S¢sx + CgSy, —Sphx + Conty) + . (2.50)

There is a singularity if 6 = 0+ kx (k =0, 1).

One of the properties of three-angle orientation representation is that a given
orientation can be represented by at least two triplets of angles. In our case, the triplets
{¢,0,0} and {¢p = 7, —60, o} are equivalent. To avoid this and the representational
singularity at & = 7 (which is hardly achieved by any parallel mechanism), we set
the ranges of the azimuth, tilt, and torsion as, respectively, ¢ € (—mw, 7], 0 € [0, ),
and 0 € (—m, ]. Then, probably the most valuable property of the T&T angles
is that for the ranges just defined, the angles (6, ¢, o) can be represented in a
cylindrical coordinate system (r, ¢, i) through a one-to-one mapping. In other words,
any orientation (except # = ) corresponds to a unique point within a cylinder
in the cylindrical coordinate system, and vice versa. The reason is that the T&T
representational singularity at & = 0 is of the same nature as the singularity of the
cylindrical coordinate system occurring at zero-radius (r = 0).



Chapter 3
Representation of Velocities
and Forces/Acceleration of a Body

Abstract In this Chapter, we will use the concept of screw to describe the velocity
of a body in space, as well as the forces acting on it. The definition of twists and
wrenches is introduced. We also give the transformation matrices between two twists
or wrenches. Finally, we define also some relations for computing the accelerations
at any point of a given body.

3.1 Definition of a Screw

A vector field, h, on R? is a screw if there exists a point O; and a vector €2 such that
for all points O; in R3:

hj =hi+QXI‘0i0j (3.1

where h; is the vector of h at O; and the symbol “x” indicates the vector product.
The vector h; is called the moment at O;, whereas €2 is called the resultant of the
SCrew.

Thus, the screw at a point O is well defined by the vectors h; and €2, which can
be stacked in a single (6 x 1) vector.

3.2 Kinematic Screw (or Twist)

Since the set of velocity vectors at all the points of a body defines a screw field, the
screw at a point O; can be defined by:

e v; representing the linear velocity at O; with respect to the fixed frame %, such
thatv; =to,0; = 517 |,% L000;5

e o; representing the angular velocity of the body with respect to the frame .Z. It
constitutes the resultant vector of the screw of the velocity vector field.
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Thus, the velocity v; of a point O; is calculated in terms of the velocity of the
point O; by the following equation:

Vi =V +®; X ro,0;- (3.2)

The components of v; and w; can be concatenated to form the kinematic screw
vector t;, i.e.:

t=[v o] (3.3)

The kinematic screw is also called the twist.

3.3 Representation of Forces and Moments (wrench)

A collection of forces and moments acting on a body can be reduced to a wrench w;
at point O;, which is composed of a force f; at O; and a moment m; about O;. The
moment at O, denoted as m;, can be obtained as:

m; =m; +f; x ro,0;- 3.4)

The components of f; and m; can be concatenated to form the wrench vector
w;, 1.e.:

T
wi = [t m[] (3.5)
Note that, contrary to the twist representation for which the moment of the screw
(the translational velocity v; ) is located above the resultant of the screw (the rotational

velocity w;), we prefer to invert in (3.5) the order for the wrench representation so
that the resultant f; is located above the moment m; .

3.4 Condition of Reciprocity
A twist t7 = [vT @] is said to be reciprocal to a wrench w/ = [f7 m’] if
tfw=vl f+o m=0. (3.6)

In other words, the power induced by the wrench w for moving the body with a twist
t is null.
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3.5 Transformation Matrix Between Twists

Let 'v; and ‘w; be the vectors representing a screw in O;, origin of frame .%;,
expressed in frame .%;. To calculate /v; and / w; representing the kinematic screw
in O; expressed in frame .7, we first note that:

W, = w; (37)

Vi =V +®; X ro,0;- (3.8)

Equations (3.7) and (3.8) can be rewritten as:

Vil 13 _f'O,-Oj Vi
)=l ][]

where 13 and 03 represent the (3 x 3) identity matrix and zero matrix respectively and
n . . . . T .
ro,0; 18 the cross-product matrix associated with the vector rop, o ;= [rx ry rz] ,1.e.

0 —r; ry
f'Oin = ry O —ryx . (310)
—ry ry 0

Projecting relation (3.9) in frame .%;, we obtain:
i in i
Vj _ 13 — I'j ) Vi
AR @

Since /v; = /R;'v; and /@; = /R;'w;, Eq. (3.11) gives:

Vil g [
|:j('°j:| = [iwi] 612

where /T; is the (6 x 6) transformation matrix between screws:

._ JIR: —/R:iT:
T, = [031 P f] (3.13)

where 't; = fo,0;

The transformation matrices between screws have the following properties:

Property 1 Product:

j
OT; = [Tk = '"T,°T5 - /7' T, (3.14)
k=1
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Property 2 Inverse:

it _ [RER] i
T =y R =T (3.15)

3.6 Transformation Matrix Between Wrenches

Similarly to what is written in the previous section, we have

im;] R —iRi#;] ['mi] e [P,
|:jfj i| N |:03 jRi ifl- ='T; ifi (316)

or also
|:jmji| B [—fRiifj IR | | 'my (3.17)

which, from (3.15), can be rewritten as

Jwj =T w. (3.18)

3.7 Acceleration of a Body

From the differentiation with respect to time of the Eq. (3.2), we can find that
Vi =V +®; XTo,0; +® X (®; XT0,0;) (3.19)
where V; is the linear acceleration of the point O;, v; is the linear acceleration of the

point O; and w; is the angular acceleration of the body.
Equation (3.19) can be put under the matrix form:

Vj _ 13 —IA'OiO' \",’ ®; X ((,)i X rO,-O«)
[(;)J - [03 13 ]] |:wi| + [ 0 ’ } (3.20)

Projecting this relation in frame .%;, we obtain:

,i‘.]j |13 —if'j -i\'/',' iwiX(iffiwi)
R P
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Since /v; = /R;'v; and /&; = /R;'@;, Eq. (3.21) gives:

jfj = jTiiii + jbj
where /T; is defined at Eq. (3.13),
. Jv; . iy,
J¢ . — J le __ l
PR
are acceleration vectors and

: i
Y 3 |:l(x)i X ((’)rj ’wi)}

with /R; the augmented rotation matrix between frames .%; and .%;, i.e.

. IR; 03
jRi = |:03l lej| .

37

(3.22)

(3.23)

(3.24)

(3.25)



Chapter 4
Kinematic Description of Multibody Systems

Abstract The design and control of a robot requires the computation of some math-
ematical models such as the transformation models between the joint space (in which
the configuration of the robot is defined) and the task space (in which the location of
the end-effector is specified). These transformation models are very important since
robots are controlled in the joint space, whereas tasks are defined in the task space.
The modeling of robots in a systematic and automatic way requires an adequate
method for the description of their structure. Several methods and notations have
been proposed. The most popular among these is the Denavit-Hartenberg method.
This method is developed for serial structures and presents ambiguities when applied
to robots with closed or tree chains. For this reason, we will use the notation of Khalil
and Kleinfinger, which gives a unified description for all mechanical articulated sys-
tems with a minimum number of parameters.

4.1 Kinematic Pairs and Joint Variables

In the approach adopted in this book, we consider joints with only one degree of
freedom between the bodies, such as revolute (R) joints or prismatic (P) joints (see
Sect. 1.2).

The R joint is parameterized by a variable denoted as 6 which represents the
angle of the rotation about the R joint axis. The P joint is parameterized by a variable
denoted as » which represents the distance of translation along the P joint direction.

Using these two types of joints, it is possible to build more complex multi-
DOF joints as long as their axes are properly arranged. For example, a spherical
(S) joint having three rotational DOF may be composed of three R joints with lin-
early independent intersecting axes. However we define as a joint the connection
between two and only two bodies. The S joint will therefore involve two virtual
massless bodies that will be treated in the calculations as any physical body. How-
ever, the reader must be warned that parameterizing a S joint through the use of three
R joints is equivalent to parameterizing the displacement of the considered body with
three Euler angles. This parameterization is not free of representation singularities
(see Sect.2.4.3).
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To generalize the joint coordinates for both types of connections, we define the
generalized joint coordinate ¢; of the body %; associated with the joint i by

gi = 0i0; + oir; 4.1

where

e 0; = 0if jointi is a R joint;
e 0; = 1l if joint i is a P joint;
e 0, =1—o0;.

To characterize the case that a body %; can be rigidly attached to a body %;:
o; = 2. In that case, g; is set to 0 and 4; is not defined.

4.2 Modified Denavit-Hartenberg Parameters

The modeling of robots in a systematic and automatic way requires an adequate
method for the geometric description of their structure. Several methods and notations
have been proposed (Craig 1986; Denavit and Hartenberg 1955; Sheth and Uicker
1971). The most popular among these is the Denavit-Hartenberg method (Denavit
and Hartenberg 1955). This method is developed for serial structures and presents
ambiguities when applied to robots with closed or tree chains.

The modified Denavit-Hartenberg (MDH) geometric parameters proposed in
(Khalil and Kleinfinger 1986) allows the definition of a systematic parameteriz-
ing of the relative location of any body of the considered system. We consider here
directly the general case, i.e. an open tree-structure kinematic chain as shown in
Fig.4.1. We will see how a structure with closed loops can be reduced to the study of

Fig. 4.1 Symbolic representation of a tree-structure open kinematic chain
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an open tree-structure and we will present the additional settings required to describe
structures including closed loops.

4.2.1 Parameterizing Tree-Structure Open Kinematic Chains

Let us consider a tree-structure kinematic chain consisting of n 4+ 1 (physical or
virtual) bodies (the body i is denoted as ;). That kinematic chain is composed of n
joints associated with the bodies %; (i = 1, ..., n) as shown in Fig.4.1. We number
each body i increasingly from the base denoted as the body %. For an industrial
robot fixed on the ground, the body %, would be the body fixed on the ground.

We define a relationship for the antecedence between the bodies. If the body %;
is antecedent to body % ;, then

i =a(j). 4.2)

The numbering rules then ensure that i < j. By definition, in a tree-structure
kinematic chain, a body can at most have one antecedent body (none in the case of
the base) but several succeeding bodies. If a body has no succeeding body, this is
one of the terminal bodies of the chain. A system where all the bodies have only one
succeeding body is called a simple open chain. The values of a(j) fully define the
topology of the structure which can be seen as a graph (see Fig.4.1).

To each body % is fixed a local .%; with origin O;. The MDH parameterization
allows to build each frame .%; in a straightforward way by applying the following
rulesfori =1,...,n:

e The frame .%; = (O;, x;, y;, z;) is fixed with respect to the body %;;

e The axis z; is along the axis of the joint i;

e The axisx; is taken along the common normal between z; and one of the succeeding
joint axes, which are fixed on link %;. The following cases are then possible:

— The body %; is a terminal body and has no succeeding body; x; can be set
arbitrarily (as long as it remains orthogonal to z;);

— The body %;, i = a(j), has only one succeeding body; x; must be then along
the common perpendicular to z; and z;;

— The body %; has several succeeding bodies; one of the succeeding bodies must
then be chosen to build the axis x;. Practically, the succeeding body on which
x; is defined can be selected as the one on the path leading to the main terminal
link, but this is not an obligation;

e The axis y; is taken by the right-hand rule such that {x;, y;, z;} is an orthonormal
basis.

In the case where, for the body #; succeeding the body %; (i = a(j)), x; is not
orthogonal to z;, we build an additional vector u; along the common orthogonal to
z; and z;. Note that u; is fixed on the body %;.

Practically, the axes z; of the whole bodies are first defined. Then we set the
direction of the axes x; (and uy if needed). With the systematic definition of each
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body frame, it is possible to define a set of 6 parameters for each frame .%; which
are denoted as the MDH parameter, that are for i = a(j):

y;j: angle between x; and u; around z;;
b;: distance between x; and u; along z;;
a;: angle between z; and z; around u;
d;: distance between z; and z; along uj;
0;: angle between u; and x; around z;
rj: distance between u; and x; along z;.

Those six parameters are necessary when the axis x; of the antecedent body %;
is not perpendicular to z; and when an additional vector u; has been built. For other
cases, only four parameters are necessary: o, d;, 0; and r;. Indeed, in the last case,
the vector u; has no role since it is aligned to x; and the MDH parameters becomes:

a: angle between z; and z; around x;;
d;: distance between z; and z; along x;;
0;: angle between x; and x; around z;;
rj: distance between x; and x; along z;;

with y; =0and b; = 0.

Figures4.2 and 4.3 illustrate that way of parameterizing.

In order to describe the system in a practical way, the parameters are given in a
table (see Table4.1).

Using those parameters, the homogeneous transformation matrix allowing us to
transform the frame .%; fixed to the body %; into the frame .7 fixed to the body %;
can be written as:

T, =
;=
Rot(z, y;j)Trans(z, b;)Rot(x, a;j)Trans(x, d;)Rot(z, 6;) Trans(z, r;)
Cy;CO; — Sy;Ca;S0; —Cy;80; — Sy;Ca;C0; Sy;Sa; djCy; +TjSy;Sa;
Sy;€0; + Cy;Ca;80; —Sy;80; + Cy;Ca;Co; —Cy;Sa; djSy; —1jCy;Sa
Sar; 86 Sa;Co; Ca; rjCa; +b;
0 0 0 1

_ djcy; +71jSy;Sa;
i . . —
R; djsy, —rjcy;Sq;

= rica; + by . 4.3)
1000 1
The inverse of ! T ;j can be thus written as
—bjSajSQj — de@j.
iRT , ,
iprl =T, = ‘Rj —bjsa;co; +djsy, ) (4.4)

J —bjCaj —7rj
000 1
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Fig. 4.2 MDH parameters
in the case of a simple serial
chain

Fig. 4.3 MDH parameters in the case of a tree-structure open kinematic chains

Table 4.1 The MDH parameters of the 4 DOF tree-structure robot

j a(j) oj Vi b a; dj 0; rj
1 0 0 0 0 0 0 01 0
2 1 1 0 0 —/2 0 0 r
3 2 1 0 0 /2 0 0 r3
4 1 0 —/2 0 0 N 04 r4
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Fig. 4.4 Example of 4 P4
DOF tree-structure robot

4.2.1.1 Example of MDH parameters for a tree-structure

Let us consider the 4 DOF tree-structure robot depicted in Fig. 4.4. Straightforwardly
following the rules given in the present section, its MDH parameters are given in
Table4.1.

4.2.2 Parameterizing Kinematic Chains Including Closed
Loops

As previously, the kinematic chain is composed of n 4 1 (physical or virtual) bodies.
However, now, the joint number m is greater than #. This characterizes the presence
of kinematic loops in the considered structure. The number of closed loops is equal
to:

B=m-—n 4.5)

Indeed, one single joint is only able to link two (and only two) consecutive bodies
and this relation indicates that the kinematic chain necessary makes a loop, as it has
more joints than bodies. Closed loops consequently lead to the fact that some joint
variables depend on another due to the geometric constraints involved by the kine-
matic coupling. Let us denote as n, the number of independent joint variables (that
are also the active joint variables in the case of PKM without actuation redundancy).
The remaining m — n, variables (that are also the passive joint variables in the case
of PKM without actuation redundancy) can be obtained by solving the loop-closure
equations, i.e. the equations corresponding to the kinematic constraints. We will see
in Chap. 7 the ways to solve those equations.

To characterize the active and passive variables, an additional parameter is defined
for each joint j of the analyzed system:
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e 1 = 1if the joint j is active;
e 1 = 0if the joint j is passive.

Then, the study of systems including closed loops is assimilated to the study of
tree-structure chain by virtually cutting each of the B loops at one joint (passive, if
possible). In order to solve the loop-closure equations, it is necessary to introduce
additional frames and to adapt the previous parameterization of the system as follows:

1. Constructing an equivalent tree structure: construct a tree structure having » joints
by virtually cutting each closed chain at one of its joints (passive, if possible).
Since a closed loop contains several passive joints, select the joint to be cut in such
a way that the difference between the number of links of the two branches from
the root of the loop to the links connected to the cut joint is as small as possible.
This choice reduces the computational complexity of the dynamic model (Khalil
and Kleinfinger 1986). The geometric parameters of the equivalent tree structure
are determined as described in the previous section;

2. Definition of frames on one of the links of the cut joints: number the cut joints
from n + 1 to m. For each cut joint k, assign a frame .%; fixed on one of the
links connected to this joint, for instance link j. The z; axis is taken along the
axis of joint k, and the x; axis is taken along the common normal between zj
and z; (Fig.4.5). Leti = a(k) where link i denotes the other link of joint k. The
transformation matrix from frame .%; to frame .%; can be obtained as a function
of the usual six (or four) geometric parameters yx, b, ?k, di, O and r, where gi
is either ry or 6; as usual;

3. Definition of the cut joint frames with respect to the other link: since frame %
is fixed on link j, the transformation matrix from frame .% ;j and to frame Ty 1s
constant. To avoid any confusion, this transformation will be denoted by /Ty 5,
with B is the number of loops and j = a(k + B). The frame .%; g is aligned
with frame %, thus zx4+p = zx along the cut joint, and x4 g = Xy, thus only 4
parameters non zero (at most) are needed to define i Ti4p. Infact yr4+p and by p

Fig. 4.5 Frames of a cut
joint
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Fig. 4.6 Frames of a cut
joint

will permit us to align x ; with x4 p then oy p and dy4 g will align z; with z ¢ p,
both 64 p and r4 p are zero. The case where x4 g is along x; will lead to have
also both x4+ p and by p equal to zero. Figure 4.6 shows a case where three cut
joints take place on the terminal link n. Thena(n + 1+ B) =a(n +2+ B) =
am+3+B)=n.

In summary, the geometric description of a structure with closed loops is defined
by an equivalent tree structure that is obtained by cutting each closed loop at one of
its passive joints and by adding two aligned frames, but with different antecedent,
at each cut joint. The total number of frames is equal to n + 2B and the geometric
parameters of the last B frames are constant.

Let us define a vector q7 = [an qg qCT] of dimension n, in which:

e (, is the vector containing the n, active joint variables;

e (g is the vector containing the ny = n —n, passive joint variables of the equivalent
tree structure;

e (. is the vector containing the B variables of the cut joints. When a cut joint has
several degrees of freedom (spherical, universal, ...), we can consider all of its
joint variables to be belonging to q.

Only the n, active variables q, are independent. Thus, there are ¢ = ny — nq
independent constraint equations between the joint variables q. These relations form
the geometric constraint equations satisfying the closure of the loops. Since .%; and
Fk+p are aligned, the geometric constraint equations for each loop can be written
as:

BT, =14, fork=n+1,....,n+B (4.6)

where 14 is the (4 x 4) identity matrix.
It should be mentioned that in terms of velocities, such equations can be expressed
as:
tirp —t, =0, fork=n+1,...,n+B 4.7)

where t; is the twist of the body ;.
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Fig. 4.7 Example of 2 DOF closed loop

Table 4.2 The MDH parameters of the 2 DOF closed loop

J a(j) | K oj Vi bj aj dj 0 rj
1 0 1 0 0 0 0 0 o1 0
2 1 0 1 0 0 72 |0 0 r
3 0 1 0 ¥3 0 0 ds 05 0
4 3 0 0 0 0 0 dy 04 0
5 4 0 0 0 0 0 ds 0 0
6 2 0 2 0 0 —7/2 |0 0 0

4.2.2.1 Example of MDH parameters for a closed loop

Let us consider the single planar closed loop shown in Fig.4.7, which is composed
of four revolute joints and one prismatic joint. The system’s mobility is equal to 2
(see Appendix A). We suppose that the active joints are the joints 1 and 3 which
are fixed on the base. According to the above mentioned notations, it is possible to
assign the frames of the system in the way presented in Fig.4.7.

The geometric parameters are given in Table4.2.

4.2.3 Computation of the Homogeneous Transformation
Matrix Representing the Location of the Frame %, with
Respect to the Frame .7;

Let us denote as a¥ = {0 ... a(a(k)) a(k) k} a list containing the number of

each intermediate frames separating the frame .%; from the frame %y, ordered by



48 4 Kinematic Description of Multibody Systems

successive frames. To compute the location of frame % with respect to the frame
Z;, two cases can arise:

e Cuase 1: i € a*; in that case, let us denote as a%®) = {i ... a(a(k)) a(k) k} a
sub-list of a¥ with a length n; containing the number of each intermediate frames
separating the frame .%; from the frame .%;, ordered by successive frames. The
transformation allowing the computation of the position and orientation of the
frame .7 with respect to the frame .%; can be deduced from (2.17) and is given by:

ng

. k) (i
= T (0T 0n) (4.8)

j=2

where a %) (j) denotes the jth component of the list at**).

e Cuase 2: i ¢ a*; in that case, we create a new lista’ = {0 ... a(a(i)) a(i) i}
containing the number of each intermediate frames separating the frame .%; from
the frame .%), ordered by successive frames. Let us denote as r. the highest number
common to both lists. Body 2, is thus the body where the sub-chain going from
the ground to body % makes a bifurcation from the sub-chain going from the
ground to body %;. Let us denote as a"<* = {r. ... a(a(k)) a(k) k} a sub-
list of aF with a length n; containing the number of each intermediate frames
separating the frame .%,, from the frame .%;, ordered by successive frames, and
ale) = (r. ... a(a(i)) a(i) i} asub-list of a’ with a length n; containing the
number of each intermediate frames separating the frame .%#,_ from the frame .%;,
ordered by successive frames. The transformation allowing the computation of
the position and orientation of the frame .%; with respect to the frame .%; is here
given by:

-1
n;

ny
[ (reii) (re:k) (5
iT, = H (a @] DTa(’c*")(j)) H (a @ I)Ta(’t'i’f)(j)) 4.9)

j=2 j=2

where a"<*)(j) denotes the jth component of vector a"<*) and a <) ( j) denotes
the jth component of vector a'"<).

The control of a robot manipulator requires fast computation of its different mod-
els. An efficient method to reduce the computation time is to generate a symbolic
customized model for each specific robot. To obtain this model, we expand the matrix
multiplications to transform them into scalar equations. Each element of a matrix
containing at least one mathematical operation is replaced by an intermediate vari-
able. This variable is written in the output file that contains the customized model.
The elements that do not contain any operation are kept without modification. We
propagate the matrix obtained in the subsequent equations. Consequently, customiz-
ing eliminates multiplications by one and zero, and additions with zero. Moreover,
if the robot has two or more successive revolute joints with parallel axes, it is more
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interesting to replace the corresponding product of matrices by a single matrix, which
is calculated using Eq. (2.18).

4.2.3.1 Example 1: Computation of the Homogeneous Transformation

Matrices for a Tree-Structure Robot

Let us consider the tree-structure robot depicted in Fig. 4.4. For this robot, accordingly
to the parameterization given on the picture, we have:

o, =01, 'y (4.10)

o1y =0T, 'T, %T4 4.11)

-1
3T, = (1T2 2T3) T,

-1 -1
_ (2T3) (1T2) T, 4.12)
=T, 2T, 'Ty.

4.2.3.2 Example 2: Computation of the Homogeneous Transformation
Matrices for a Closed Loop

Let us consider the closed loop depicted in Fig.4.7. For this chain, accordingly to
the parameterization given on the picture, we have:

05 = O3 3T, 4T (4.13)
0T = OT; T, > Te. (4.14)
As the frame .5 is aligned to the frame %4, we have

Oy — O, (4.15)
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Chapter 5
Geometric, Velocity and Acceleration
Analysis of Open Kinematic Chains

Abstract This chapter recalls the computation of the pose, velocity, acceleration
and kinematic Jacobian matrix of any body belonging to an open (serial or tree
structure) kinematic chain. The concept of singularity for serial or tree structure
robots is introduced. Moreover, recursive and efficient algorithms able to decrease
the computational complexity for the calculation of the velocity, Jacobian matrices
and acceleration of any body are provided.

5.1 Geometric Analysis of Open Kinematic Chains

In the following of the present book, we will use the term “geometry” when speaking
about the models defining the robot configuration, whereas the term “kinematics”
will be used when studying velocities. This is quite unusual in English where the
term “kinematics” is often used for both geometric and velocity study, however
this confusion in the English terminology was pointed out by Bernard Roth during
his keynote lecture at the 1987 International Conference on Advanced Robotics.
Therefore it is more appropriate to make the separation between “geometry” and
“kinematics”.

5.1.1 Direct Geometric Model of Open Kinematic Chains

Direct geometric model refers to the computation of the pose x,, of the terminal link
P, with respect to the base frame % in terms of the active joint coordinates qq.
Here, body %, is a terminal link but in the case of a tree-structure, other terminal
links will exist. In the following, we develop computation for the body %, but the
generalization to other terminal links is straightforward.

For open kinematic chain (serial or tree-structure) robots, all joints are active.
Thus the vector q, is a vector of joint coordinates q of dimension m, which groups
the joint coordinates of the sub-chain connecting the fixed base % to the considered
terminal link %,,.

© Springer International Publishing Switzerland 2015 51
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Let us denote as a” = {0/ ... a(a(n)) a(n) n} alist of size s containing the
number of each intermediate frame separating the frame %, from the frame .%,
ordered by successive frames and in which a(/) = 0. From Sect.4.2.3 and Eq. (4.8),

it turns out that:
R, Or u nj—
OTn |: On 1ni| I I (a (k Dvla”(k)) (5.1

where a”" (k) is the kth element of the list a”.

Thus, with (5.1), we can compute directly the homogeneous transformation matrix
giving the relative pose of the frame .%; w.r.t. the frame .%. Vector °r, denotes the
position of the frame .%,—and of the terminal link %, —w.r.t. . %y and °R,, is the ori-
entation matrix of the frame .%,,—and of the terminal link %,—w.r.t. .%. From that
orientation matrix, any set of orientation parameters can be obtained (Euler angles,
Tilt and Torsion, Quaternions, etc.) by using the inverse problem methodologies
given in Sect.2.4.

5.1.2 Inverse Geometric Model of Open Kinematic Chains

Inverse geometric model refers to the computation of the vector of joint coordinates
q once the pose x, of the terminal link %, with respect to the base frame .% is
known. Finding the solution of the inverse geometric model of an open kinematic
chain is important for the study of PKM whose legs connecting the platform to the
base are open kinematic chains. Indeed, if we fix the PKM platform pose and that
we want to know the leg configuration, the inverse geometric model of each open
chain constituting the legs must be solved.

Solving an inverse geometric model of an open kinematic chain could be difficult
to achieve. However, methods have been developed to solve that problem in a general
manner, such as the methods proposed in (Khalil and Dombre 2002; Pfurner and
Husty 2010). Those methods are not detailed here, because most proposed PKM are
made of simple legs that do not require the use of complex methods for solving their
inverse geometric models. More details will be given in Sect.7.1.

5.2 Velocity Analysis of Open Kinematic Chains

5.2.1 Forward Kinematic Models

The forward kinematic model of a serial or tree-structure robot manipulator gives the
velocity of the terminal link t/ = [v]" @I'] in terms of the joint velocities ¢, which
is defined here as a vector of dimension m and which groups all joint velocities of
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Fig. 5.1 Case of a prismatic
joint l

|
gk ‘z

°0

the sub-chain connecting the fixed base % to the considered terminal link Z,. It is
written as:

t, = J.(@)q (5.2)

where J,, (q) denotes the (6 x m) kinematic Jacobian matrix. The matrix J,(q) can
be computed as follows.

The velocity gi of joint k produces linear and angular velocities (denoted as vy,
and wy , respectively) at the terminal frame .%,. Two cases are considered:

e if joint k is prismatic (in that case, from Chap.4, o, = 1, Fig.5.1):

| Ven | Ak -
tin = [wk’n} = [0} d (5.3)

where ay, is the unit vector along the z; axis;
e if joint k is revolute (in that case, from Chap.4, o = 0, Fig.5.2):

o |:Vk,ni| _ [aka x l’oko,,i| _ [ak x l‘okon} i (5.4)

Wk 5 gy ay

where rg, o, denotes the position vector connecting Oy to Oy, i.e. the origins of
the frames .%; and .%, linked respectively to bodies %y and %),.
Thus, v , and @, , can be written in the following general form:

v oray +or(ap X r . .
to = [l | = [ 120 Ol X000 | gy (55)

where $; is a unit twist representing the displacement of the terminal link when
actuator k is moving only.


http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_4

54 5 Geometric, Velocity and Acceleration Analysis of Open Kinematic Chains

Fig. 5.2 Case of a revolute
joint

Now considering all joints of the studied chain, linear and angular velocities of
the terminal frame can be written as:

K K

Vgn .

t, = Z a(k)y.n | _ Z $a"(k)¢]a"(k)

i LOa"®)n k=2
= = (5.6)

K _

= Z [Ga’l(k)a“n(k) + Oa’ (k) (aa”(k) x rOa"(k> 0")

- g n k
G (k)Ban (k) ]qa ©

k=2

where a" (k) is defined at (5.1).
Writing Eq. (5.6) in matrix form and using Eq. (5.2), we deduce that:

J, = oja; +oj(a; x rO/O,l) o Oa()@q(n) T &a(n)(aa(n) X rOH(,,)O,,) Onap
" oa; .. Oa(n)Aa(n) onay,

= [$1 - $a(n) $n] .
5.7)

Expressing the vectors of J, with respect to frame .%;, we obtain the (6 x m)
kinematic Jacobian matrix ' J,, such that:

t, = "J(qQ)q. (5.8)

By extension of (5.7) and (5.8), the velocity of the jth body of the chain is given by:

itj = iJj(q)q (5.9
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where ' J ; is the projection into the frame .%; of the matrix J; defined by

J.— |:G]a] + oy(a; x rOIO_/) s Oa(HAa(j) T Fa(j)@q(j) X rOa(j)Oj) oja; 0 ... 0]
J oja; . Oa(j)@a(j) cgja; 0...0

=[$l ---$a(j) $; 0...0].
(5.10)

5.2.2 Inverse Kinematic Models

5.2.2.1 Inverse Kinematic Model of Non-redundant Open Chains

In this section, we will deal with the inverse kinematic problems of non-redundant
open kinematic chain, i.e. chains for which the size m of the vector q is equal to the
rank of the matrix 'J,,.

If the size of q is m = 6, the inverse kinematic model is:

a="73"@'t, (5.11)

as long as J,, is not rank-deficient (see Sect.5.2.3).
If the size of q is m < 6, this means that the terminal body %, cannot produce 6
independent motions, but only m independent motions. Let us denote as:

e 't’ the vector containing the m independent coordinates of ‘t,,,
e 't = D,'t, the constraint equations between the coordinates of ‘t,.

Equation (5.8) can thus be reduced to:

‘th="J(@q (5.12)
and the inverse kinematic model is:
a="3"@'t, =3 (@D, t, = Jin(@'t, (5.13)
Whpre iJinv_(q) =1 J,_1 (q)D,,. Note once again that this expression is valid as long
as'J, (and 'J,) is not rank-deficient (see Sect.5.2.3).
5.2.2.2 Inverse Kinematic Model of Redundant Open Chains
For redundant open kinematic chain, the size m of the vector  is strictly greater than

the maximum rank of the matrix J,,. This means that, for any terminal-link pose,
there can exist a non-null vector (g such as

0 ="J,(q)do. (5.14)
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Consequently, the robot inverse kinematic model can have infinite number of solu-
tions that are given by:

q="J"t, + (lm - "J,;“'Jn) & (5.15)

where, if ' J,, is of maximal rank, ' J;7 =3I (‘J,,'JI )71 is the pseudo-inverse of the
Jacobian matrix ! J,, and & is an arbitrary vector in the q space, which, once defined,
fix the solution (Khalil and Dombre 2002).

Consequently, as & can be defined arbitrarily, secondary performance criteria can
be optimized, such as:

minimizing the norm of the joint velocities (Whitney 1969),

avoiding obstacles (Baillieul 1986; Maciejewski and Klein 1985),

avoiding singular configurations (Yoshikawa 1984),

avoiding joint limits (Fournier 1980; Klein 1984),

minimizing driving joint torques (Baillieul et al. 1984; Hollerbach and Suh 1985).

The reader interested in the control of redundant open chains should refer
to (Khalil and Dombre 2002).

5.2.3 Inverse Kinematic Models Degeneracy/Notions
of Singularity

As mentioned in Sect.5.2.2, the inverse geometric and kinematic models of a robot
can be computed as long as the robot is not at a singular configuration (also called
singularity).

Mathematically speaking, a singularity for a serial chain (or a serial sub-chain
of a tree-structure robot) is defined when, at a given configuration, the rank of the
kinematic Jacobian matrix J,, defined in (5.7) is lower than its maximal rank.

Physically speaking, and from the analysis of Eq. (5.2), there can exist one (or
several, depending on the loss of rank of J,) non zero unit vector ¢y which belongs
to the null space of J,, that, locally, cannot produce a velocity of the end-effector, i.e.

Jn (qn)(ls =0. (516)

Thus, the robot is unable to generate an arbitrary velocity along some given axes.
Moreover, its inverse geometric model may have an infinity of solutions.

If J,, is rank-deficient, by definition, this is also the case of the square matrix J,
defined in (5.12). Thus, the singularity can also be characterized by:

det(J,(q,)) = 0. (5.17)
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Those singularities divide the joint space in several aspects (Borrel 1986). The aspects
are the connected regions of the joint space inside which no minor of order k extracted
from the kinematic Jacobian matrix J, is zero, except if this minor is zero every-
where in the joint domain. For a non-redundant robot manipulator, the only minor
of order J, is the kinematic Jacobian matrix itself. Therefore, the aspects are limited
by the singularity branches (i.e. the connected components of the set of singular
configurations of the joint space) and the joint limits. Consequently, they represent
the maximum singularity-free regions of the joint space.

For a long time, it has been thought that the aspects also represent the uniqueness
domains of the inverse geometric model solutions. Although this is indeed the case for
most industrial robots with simple architectures, which are classified as non-cuspidal
robots (E1 Omri 1996; Wenger 1992), the inverse geometric model of cuspidal robots
can have several solutions in the same aspect.! Thus, a cuspidal robot can move from
one inverse geometric model solution to another without encountering a singularity.

More details on the singularity analysis are given in Sect.7.5.

5.2.4 Recursive Computation of Velocities and Kinematic
Jacobian Matrix for Open Kinematic Chains

Let us consider two bodies %; and %; (where i = a(j)) on which are attached the
frames .%; and .%;, respectively. The twist of %; projected in the frame .%; and
expressed at O; (origin of .%;) is denoted as itiT = [iviT i wiT] and the twist
of #; projected in the frame .%; and expressed at O; (origin of .%;) is denoted as
I = vl T,

J
2; being the antecedent of %, we have (from Sect.5.2.1):
wj=wi+6jajqj (5.18)
Vi =V, +o; xroio_/.+ojajq'j. (5.19)

Thus, by identification with the relation (3.12), and by projecting the equations
in the frame .%;, we have

jtj — jTiiti + jﬁjq.j (5.20)

~_ oil3] ; oila;] . . .

where /a; = |/ Slia; = |25 ,in which /a; = [0 0 1]7.
Oj 13 ojfaj

Let us now consider that those two bodies belong to a kinematic chain (serial or

tree structure) composed of n bodies whose motions are described by the vector of

1For parallel robots, a cuspidal robot is usually considered to have several solutions of the forward
geometric model in the same workspace aspect (Zein et al. 2008).
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joint velocities ¢. From (5.9) and (5.13), we have ‘t; = 'J;q and /t; = /] ;q. Thus,
from (5.20), we find that:

13; =T 3 + /A, (5.21)
with
IA;j=[0...73;...0] (5.22)
defined such that:
Jajq; ='A;q. (5.23)

Those recursive equations will be used for optimizing the computation of the
dynamic model of the parallel robots. They are implemented in the free software
OpenSYMORO (Khalil et al. 2014).

5.3 Acceleration Analysis of Open Kinematic Chains

The second-order kinematic model of a serial or tree-structure robot manipulator
gives the acceleration of the terminal link %, in terms of positions ¢, velocities
(» and accelerations ,, of the joints of the considered sub-chain. By differentiating
Eq. (5.2) with respect to time, we obtain the following expression:

However, it is most efficient from the computational cost point of view to obtain
t, using the recursive algorithm given below.

Let us consider once more two bodies %; and % (where i = a(j)). The accelera-
tion of %; projected in the frame .%; and expressed at O; (origin of .%;) is denoted as
iiiT = i'iT l(z)lT ] and the acceleration of %; projected in the frame .%; and expressed
at O; (origin of .%}) is denoted as -/iJT = [j\"]T -/d)JT].

%; being the antecedent of %, by expressing the derivative of w; and v; w.r.t.
time, we also have (from Sect.5.2.1 and Eq. (3.19)):

. . d, _ .- .. .
(oj=wi+5(ojajqj)=wi+aj(ajqj+wixajqj) (5.25)

L d d _
Vj =i+ ®i xr0o,0; + 0i x 7 (ro,0;) + 3 (02;d;)

=Vi+®; XTg,0; + ®; X (0 XT0,0;) +0;(@;j; +2w; X a;q;)

(5.26)
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because % (1‘0,- oj) = ®; X ro;0; + a;g; in the case of a prismatic joint and
(‘f—t (ro;0;) = @i X rg,0; in case of revolute joint.

Expressing the vectors of (5.25) and (5.26) within frame .%;, they can also be
rewritten as:

Jo; =IR'@; +6;(a;d; +/@; xa;q;) (5.27)
IV =R (Vi +'Ui'rj) +o;(a;d; + 2@ x Ta;q;) (5.28)
where 'r; = 'ro,0, and

U =0 + 0o (5.29)
in which /&, is the cross-product matrix associated with '®; and '®; is the cross-

product matrix associated with ' w;.
Eqgs. (5.27)—(5.29) will be used for optimizing the computation of the dynamic
model of the parallel robots. They are implemented in the free software OpenSY-

MORO (Khalil et al. 2014).
Finally, (5.27) and (5.28) can also be rewritten in the matrix form

is j' i i .. i3
tj = [,:,’J =73t +7'b; (5.30)

where /J j is given in (5.21) and

ib, — T, 4+ |:20jjw,- xJa;q; +70; x Jo; x jl‘o,-o_,-)] (531)
= JT;b; 9. S .
J Ojj(x)i X fajqj-
which can be deduced from the fact that:
Iv; = [V 20/w; xJaig;i +70; x (w; xIrp,0)] - .
ol =JT | Jo 747, L ! i O] ia.d:.
[“i’/] ’ ["bi} " [ ojlwi x /a4 B

(5.32)



Chapter 6
Dynamics Principles

Abstract In this chapter, some brief recalls of the main dynamics principles are
made, as they will be used in the following chapters of the book. We detail the main
dynamics principles: the Lagrange formulation, the Newton-Euler equations and the
principle of virtual powers. We also recall the static model giving the relation between
a wrench exerted on the end-effector of any type of robot and the input effort of its
actuators.

6.1 The Lagrange Formulation

6.1.1 Introduction to the Lagrange Formulation

The Lagrange formulation describes the behavior of a dynamic system in terms of
work and energy stored in the system. The Lagrange equations are written in the

form:
d (oL\T [oL\T
r=—(—=) - (= (6.1)
dr \ 9q aq

e 7 is the vector of generalized forces applied on the system, which are equal to the
input joint torques or forces,

e ( is the vector of generalized coordinates, i.e. the vector of independent parame-
ters that describe the configuration of the system such that, for any body %; the
homogeneous transformation matrix °T ; of its corresponding frame .%; can be
expressed as a function of q:

where

O7; =T (q). (6.2)

For rigid robots, q is equal to the vector of active joint variables q,. Thus, in the

case of robots without any closed loops, q is the vector of the joint coordinates.
e ( is the vector of generalized velocities, the vector of parameters that describe the

velocity of any body Z; of the system such that we can obtain, for any body % ;:

© Springer International Publishing Switzerland 2015 61
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ti =Jj(@q (6.3)

where t; is the twist of the frame F I8
e L is a function called the Lagragian:

L=E—-U (6.4)

in which E is the kinetic energy of the system and U its potential energy (due to
gravity effects, deformations, etc.).

For any rigid robot, the Lagrange formulation leads to a dynamic model of the
form (Khalil and Dombre 2002):

T =M(q)4q +c(q. Q) (6.5)
where M(q) is the robot generalized inertia matrix (also called in this book ro-

bot inertia matrix and defined in Sect.6.1.2) and c(q, q) is the vector of Coriolis,
centrifugal and gravity effects. This model is called the inverse dynamic model.

6.1.2 Computation of Kinetic Energy

The kinetic energy E; of a body %; is given by the equation:

1 T
Ej=> /ﬁ Vhan (6.6)

where vy, is the velocity of a point M belonging to #; that can be expressed as a
function of the frame 7; twist t] = [v] @]]:

. \7
VM; =Vjt®; XTo;m; = [13 rngj:I |: ].] : (6.7)

@,

Introducing (6.7) into (6.6) and expressing all equations in .%; leads to:

7 1)/, e I ) 2]
-

1T m13H/l§T 1T
=§g[i; St =Mt (6.8)
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in which:

e m; is the body %; mass,

e ms; is the cross-product matrix associated with the vectorms ; = f z’'ro;m;dm =
mjeriS.i’ with §; the center of mass (COM) of the body %;; ms; is called
the vector of the first moments of inertia (also known as the vector of the static
moments) and represents the mass of the body %; multiplied by the position of
its COM w.r.t. frame .7, i.e. ms; = [mx; my; mz;]", where mx; = mjxs,,
my; =mjys; and mzj =m;zs;,

e Iy, is the inertia matrix of the body % at the origin of the frame .7; and expressed
in the same frame,

. - XXj XYyj XZj
Ip, = /%Jroij]rOijdm = | xyj yyj ¥zj (6.9)
Z XZj ¥z 2%j

in which xx, yy;, zz; are the axial moments of inertia around x ;, y j and z; axes,
respectively, for body %, expressed at the origin of the local frame Fiie.,

xxj = / (ry + r2)dm (6.10)
B
_ 2,2
Yy _/ (ry +r))dm (6.11)
38
_ 2.2
27 —/ (ry +ry)dm (6.12)
B
with rgj M; = [ry ry r;], and xy;, xz;, yz; are the inertial cross-moments for

body £ j» expressed at the origin of the local frame F j.ie.,

xy; = —/ ryrydm (6.13)

xzj = —/ ryr dm (6.14)
B

yzj = —/ ryrzdm. (6.15)

e M; is the body #; (6 x 6) generalized inertia matrix at the origin of the frame
Z; and expressed in the same frame.

The total kinetic energy E of the system is given by:



64 6 Dynamics Principles

E:ZE,-:%Z(&!TM,-H,-). (6.16)

J J

Introducing (6.3) into (6.16), it comes:

1 ; ; 1
£=3 B =50 3 ((@M@)a=3a"M@i  617)
J J

where M(q) = 3_; (j J]T (@QM;/]; (q)) is the system inertia matrix.

6.1.3 Computation of Potential Energy

In this section, we will give the value of the potential energy due to gravity effects.
Elastic potential energy is not considered as elasticity is the subject of Part III.
The potential energy of a body % due to gravity effects is given by the equation:

Uj= —mngrOOSj (6.18)

where

e g is the vector of gravitational acceleration,
e ro,s; is the position of the COM of the body #; w.r.t. the origin of the global
frame .%.

Equation (6.18) can be rewritten in the base frame .% as:

Uy ==¢" (m,ro,0, +m;°ro;5,) = ~"8" (m,roy0, +"R;/ms;) (6.19)

Uj = —["g" 0]°T; (q)[ mﬂ (6.20)

Finally, the total potential energy of the system is:

U= ZU,- = —[°%" 0] Z( T;(q) [ “‘]SJ]) . (6.21)

J
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6.1.4 Lagrange Equations with Constraints

For closed loop robots, such as parallel robots, the expression of kinetic and potential
energies is difficult to obtain as a function of the active joint variables q, and veloc-
ities q, only. Therefore, it is preferable to introduce into the vector of generalized
coordinates q additional variables, denoted here as qg, that will help in obtaining
kinetic and potential energies in a simpler form. Those variables will be, in the case
of a parallel robot, all passive joint variables and platform Cartesian coordinates.
Obviously, the variables qg are not independent and can be linked to the active joint
variables q, through the use of constraint equations (see Sect.7.1):

h(qs, q4) =0 (6.22)
and:
A(Qa, 94)4d +B(Qa, 9a)Ga = 0 (6.23)
where A = [%] and B = [%] are two matrices depending on q, and qg.

Taking into account those constraints, the Lagrange equations must be rewritten
by using the Lagrange multipliers A (see Appendix B):

BTy N d (oL\" oL\
T = T4, Wheret, = — | — —
¢ Tt 994 9qq

d (aL\T aL\"
ATy = T4, Wherety = — | — —-{— .
dr \9qq 0qq

(6.24)

We will consider two cases:

e Case 1: the matrix A is square and of full rank (this particularity will appear for
computation of the kinematics of parallel robots without redundancy and with
kinematic redundancy). In such a case, rewriting (6.23), we also have

40 = —A"'Bdo = J4a (6.25)
where J is the Jacobian matrix relating the velocities g to the active joint velocities

a-
Eliminating A from (6.24), we thus obtain

A= AiT‘rd

(6.26)
t=1,-B'A Tr,=7,+)"z,.

Note that (6.26) can also be rewritten as:

o +[*’M]Tr 6.27)
= ‘ta 304 d- :
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Since h is not an explicit function in time, we may notice that
094 [ _ | 94a
[ ] = [5de]. (6.28)

e Case 2: the matrix A is rectangular with more rows than columns (this particular-
ity will appear for computation of the kinematics of parallel robots with actuation
redundancy) but the matrix B is square and of full rank. In such a case, rewrit-
ing (6.23), we also have

4o = B 'Ady = Jinvla (6.29)

where J;,, is the inverse Jacobian matrix relating the velocities ¢, to the active
joint velocities q4. Note that J;,,, has more rows than columns.
Eliminating A from (6.24), we now obtain

r=-B T(r—-1,

1.=-ATB Tx-1)=J) (-1,

iny

(6.30)

which can be rewritten as
It =T+ 14 6.31)

Equation (6.31) represents the dynamic model. The matrix JZ.T,W having more
columns than rows (i.e. the system (6.31) having more unknowns than equations),
there is an infinity of solutions for the vector of the input efforts T which are all
given by

=1, +3 Tty + A —=JHIT (6.32)

12A% v

in which JlTn:r is the pseudo-inverse of the matrix JiTnV and » is an arbitrary vector
in the T space which is called the overconstraint. If = 0, we get the solution for

7 with the minimal norm.

This formalism will be used for obtaining the dynamic model of the rigid parallel
robots in Part II, in which more detailed examples will be provided.

6.1.5 Dynamic Model Properties

In this section, we summarize some important properties of the dynamic model of
robots:

1. The system inertia matrix M(q) is symmetric and positive definite, as well as
the body %, generalized inertia matrix M ;
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2. The energy of body Z; is a function of q and q,

3. The kinetic energy, the potential energy and the inverse dynamic model are linear
in the elements of the standard inertial parameters m ;, Jms ;j and 1o ;- Grouping
all those parameters in the vector x*', we can write:

E=e(qqx", U=u@yx", t=Cq,q4x". (6.33)

This property is exploited to identify the inertial parameters [(see (Briot and
Gautier 2012)], to reduce the computation burden of the dynamic model, and to
develop adaptive control schemes (Khalil and Dombre 2002).

6.2 The Newton-Euler Equations

The Newton-Euler (NE) equations allow computation of the sum of external forces
Zf; and moments Xmyg; (including gravity effects) acting on the COM S of body
% that are equal to:

Xf; =m; ‘.'Sj
. 6.34
rmg; = I5;0; +w; x (Is;@;) (039

in which:

e Vg, is the acceleration of the COM of link %,
e ®; is the rotational acceleration of link %;,
ol s is the inertia matrix of link %, expressed at its COM.

The NE equations can be also expressed at the origin of the frame .%; attached to
the body Z;. In that case, they take the form (Khalil and Dombre 2002):

Eszmjifj—i—(i)jxmsj—l—(ojx(wjxmsj) (6.35)
Xm; =Ioj(;)j +mij"/j+(ojx(10jwj) ’

in which:

¥m; is the sum of external moment applied at the origin of the frame .%,
v, is the acceleration of the origin of the frame .7,

ms; is the vector of the first moments of inertia defined in Sect. 6.1.2,

Io i is the inertia matrix defined in Sect.6.1.2.

Using the screw notation, we can rewrite these equations as

) 1. msl] v, : : i .
ij:[ij]:[m] 3msjj||:\‘rji|+|:wl, x(wjxmsl)]:thj_i_cj

Xm; ITI\SJ' Ioj j ®; X (Iijj)
(6.36)
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where

e M; is the (6 x 6) augmented inertia matrix of the body %;,
e ¢; is the vector of Coriolis and centrifugal effects,
e t; is the derivative of the body %; twist w.r.t. time.

The NE equations will be used in Part II to obtain the symbolic expression of the
dynamic model of rigid parallel robots.

6.3 The Principle of Virtual Powers

The principle of virtual powers (PVP) (le Rond d’Alembert, 1743) states that, at
equilibrium, the power P.. developed by the inertial effects of a body (or a system
of bodies) moving with a virtual velocity v* is equal to the power P}, developed
by the external forces applied on the body (or on the system of bodies) plus the
power P} developed by the internal forces applied in the body (or in the system of
bodies). Throughout this book, all quantities followed by the superscript “*”” will be
considered as virtual quantities.

Let us consider a single rigid link %; on which is attached the frame .%; (the
case of flexible bodies will be considered in Part III). For that body, the PVP can be
written as:

P;cc = PiTn + Peict' (6.37)

By definition, the virtual power due to the inertial effects is equal to:
Pt = / Vi Vi dm. (6.38)
2

Note that vy, dm are the NE equations applied to a particle of mass dm.

The velocity and acceleration of point M can be expressed as a function of the
twist t; and acceleration quantities t; of the frame .%; through the use of (3.2) and
(3.19):

VM; =Vj+®@; XT0o,uM; (6.39)
VMJ.=ifj+wjx(wjerij)~|—(i)jxr0ij. (6.40)

Substituting (6.39) into (6.38), it turns out that:

T T
P;L,C = (/ \"dem) ij + (/ ro;M; X ‘."Mj dm) &)7. (6.41)
; 3

J

Adding (6.40) into (6.41) and developing the result leads to:
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T
( 1‘0 M; 1‘0 M, dm) (ﬂj) (Jt)}xf (6.42)

which can be simplified as, from (6.8),

P;ch(mj"’j—i-(x)jX(Q)jXIIlSj)—i-(;)le’nSj)TVj 6.43)
+ (msj XVji+ ;X (Ioj(x)j) +10j(;)j)Tw§. '

It should be mentioned that (6.43) could be rewritten as:

* T % T %
Poee = 28 Vi + Tm; @] (6.44)
where Xf; and X¥m; are defined in (6.35) as the NE equations.
The virtual power of the external efforts can be divided into two parts,
PE*.X'[ = Pg*rav + PV*EQC (6'45)
where .
Pl = /@ (Vj{,,j) g dm (6.46)

]

is the virtual power of the gravity field g and P . is the virtual power of other
T

external effects. In the case where two wrenches wy, = [f 5 _ mg ] applied on point
J J J

O;j and ng = [fgj mIng] applied on point B; act on the link,

Pl = fgjvjf + mgj @i+ fgj Vg, + mgj . (6.47)

Thus, introducing (6.39) in the previous expressions,

T T
Poray = (/ g dm) v+ (/ rom; X g dm) w; (6.48)
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which, from (6.8), can be rewritten as:

__ \T
Pl = mngij + (ms;g) @} (6.49)
and
T T
Pr*eac = (fO.,' + fBJ-) V;’f + (moj + mgp; + ro;B; X fBj) (:)7. (6.50)

Finally, the virtual power due to the internal effects is null for a free rigid body
(no deformation and no dissipative effects), i.e. Pl.’;t =0.

Thus, introducing (6.43), (6.49) and (6.50) into (6.37), and taking into account the
fact that the virtual velocities V;’f and wj are independent, two equilibrium equations
can be obtained:

f0j+f3j+mjg=mj\"j+wjx(wjxmsj)—}—(bjxmsj (6.51)

mo, +mg; +ro;; X fp, +ms; xg=ms; xv; + w; x (Ip;0;) +1p,®;
(6.52)

which are equivalent to the NE equations of a rigid body on which are applied the
gravitational effects and two wrenches Wo, and w B;-
The expression (6.37) can be easily extended to be used for a system of bodies.

6.4 Computation of Actuator Input Efforts Under a Wrench
Exerted on the End-Effector

A well-known relation in robotics, called the static model which gives the joint
torques in terms of the external wrench on the end-effector, states that:

r=1"w, (6.53)

where 7 the vector of the input efforts, J,, is the kinematic Jacobian matrix defined
at (5.7) relating the end-effector twist to the actuated joint velocities, and w,, is a
wrench applied on the end-effector. This formula can be demonstrated through the
use of the PVP as follows.

Let us consider a virtual twist t at the end-effector which is obtained thanks to
the virtual joint velocity vector . In the absence of any other effects, the wrench
w,, leads to the robot input efforts 7. So, the power conservation states that:

alr=t"Tw,. (6.54)
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From (5.8), we have
th=J.q;. (6.55)

Introducing (6.55) in (6.54) leads to:
CTr=q"Iw,. (6.56)

The virtual velocity ¢ being arbitrary, we can simplify the relation (6.56) to (6.53).
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Dynamics of Rigid Parallel Robots



Chapter 7
Kinematics of Parallel Robots

Abstract The study of parallel robot dynamics cannot be done without using their
kinematic relationships and studying their singularities. Therefore, in the present
chapter, we investigate the computation of inverse and forward geometric and kine-
matic models of the usual PKM. The models of several robots will be solved:

The planar five-bar mechanism,

The planar 3—RPR planar parallel mechanism (PPM),
The Orthoglide,

The Gough-Stewart platform.

These robots have been chosen because they are typical examples found in the liter-
ature and/or their dynamic model will be defined later in the book.

7.1 Inverse Geometric Model

7.1.1 General Methodology

Let us consider a general PKM composed of a rigid fixed base (denoted as the
element % on which s attached the global frame .%((0, xo, ¥, z0)),arigid moving
platform (element %) and n legs. Each leg is a kinematic chain (which is serial most
of the time, but can also be composed of closed-loop or tree-structure sub-chains')
composed of bodies connected by m; joints located at points A;; (revolute, prismatic,
universal,etc.—i = 1,...,n,j =1,...,m;) (Fig.7.1—in this figure, the gray pairs
denote the actuated joints). The jth link of the leg i will be denoted in what follows
as the link Z;;. Moreover, the joint located at point A;; will be parameterized by the
variable g;;.

1At the end of the Chap.7 on the kinematics of PKM, we will present the geometry and kinematic
equations by considering PKM made of serial legs only. However, the methodology can be extended
to any types of legs. Moreover, the equations of the dynamics presented in Chap. 8 are general and
can be used for any types of legs made of serial, closed-loop or tree-structure chains.

© Springer International Publishing Switzerland 2015 75
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Fig. 7.1 A general parallel Mowving platform
robot (the gray pairs denote
the actuated joints)

A actuated
Joint

Fixed base A

The actuated variables are stacked into the vector q, and the leg passive variables
into the vector qq4. The platform coordinates are denoted as x,; they represent the
location of the frame .# p(P,xp, y pr 2 p») attached to the end-effector w.r.t. the base
frame .%(. Only n o coordinates of x,, are independent, where 74, is the number
of DOF of the platform the PKM. They will be denoted as x and are related to all
platform coordinates by the constraint equations:

cp(x,x,) = 0. (7.1)

The size n, of q, must be equal or superior to the number n4, of DOF of the
platform of the PKM. All the active and passive variables are grouped into the vector
q; of sizen, = >, m;.

The inverse geometric model (/IGM) consists in obtaining the value of the joint
coordinates q, as a function of the platform coordinates X, i.e. q, = 5 (x). For
usual PKM, this problem is relatively easy to solve in a closed form solution. An
additional problem, which must be solved for computing the dynamic model of the
PKM, consists in finding all joint variables q; as a function of the platform coordinates
X, i.e. q; = JH(X).

The most used approach for solving these two problems consists in considering
the loop-closure equations of the PKM through the serial chain i going from point
O to point P. In that case, the location of the end-effector frame .% p can be obtained
by considering all the displacements of the considered chain, similarly as for an open
chain robot (Sect.4.2.3).

By using the results of Sect.4.2.3, the transformation allowing computation of the
position and orientation of the frame .%,, with respect to the frame % is given by:

m;
'T,x) ="Tug) [ | (“-"”Tl-j(qi,-)) i, fori=1,...,n (7.2)
j=2
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where

o T p(x) is the homogeneous matrix defining the transformation from the base frame
F to the end-effector frame .7,

X
0
0 pr
T, =
p z
0 0 01

where R, is the rotation matrix between the frames .% and .7, that can be defined
by any set of parameters presented in Chap. 2, and x, y and z are the translational
components of x,, expressed in the base frame %y,

e 0T} (gi1) is the homogeneous matrix defining the transformation between the base
frame .%( and the frame .%;; attached to the link %;,

e {U=DTy(g;) is the homogeneous matrix defining the location between the frame
Fi(j—1) attached to the link %;(;j_1) and the frame .%;; attached to the link %;;.
Note that, in the case of a constant transformation, g;; is a constant parameter,

e T, is the homogeneous matrix defining the constant transformation between
the frame .%;,,; attached to the link %;,,; and the platform frame .%,. It can be
determined by the MDH method with only four parameters at most if x;,,; is
defined along the common orthogonal of z,, and z;y; .

All these homogeneous transformation matrices are defined in Chap. 2.
Thus, Eq. (7.2) allows us to get implicit relations between the joint and platform
coordinates ¢, and x, which can be written in the form:

h;;(x) —hyi(q,)
h(x, q)) = ; =0, (7.3)
hy, (x) —hy,(q)

In general, each row of (7.3) is similar to the IGM of tree-structure robots whose
solutions can give q; in terms of X, q; being the joint coordinates of the sub-chain i.
Many methods have been developed to solve that problem in a general manner, such
as the methods proposed in Khalil and Dombre (2002), Pfurner and Husty (2010).
Those methods are not recalled here, because most of proposed PKM are made of
simple legs that do not require the use of complex methods for solving the IGM.
Note that each row of (7.3) can be solved independently.

In most cases, the problem complexity can be reduced by eliminating q4 such
that the active actuator coordinates q, are directly linked to the moving platform
coordinates X using a relation of the form:

h,(x,q,) =0 (7.4)
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where h),(x, q) is a vector for which we can define:

e 1, = ngor independent equations for parallel robots without redundancy,

e n, equations among which only ng, are independent for parallel robots with
actuation redundancy (for which n, > n4.p) (Miiller 2005),

e ng4yr independent equations for parallel robots with kinematic redundancy (for
which also n, > ngef) (Kotlarski et al. 2010).

In a general manner, the active joint coordinates of the leg i which are grouped in
the vector q,; can be obtained by solving the reduced problem:

hpi (x, qai) =0 (75)

where h,,; is a part of the vector h, defined in (7.4).

Equation (7.4) is usually quite easy to solve under the form q, = .77 (x), as shown
in the examples developed below. It is necessary to mention that the solution may
not be unique. In the case when more than one solution exist, the different solutions
are called the working modes of the robot. They correspond, for one given set of
platform coordinates, to all the possible ways to assembly the mechanism legs (see
the Sects.7.1.2.1-7.1.2.5).

Finally, once the values of q, are found from (7.4) as a function of x, it is possible
to introduce them into (7.3) in order to express all joint coordinates q; as a function of
x. Note that sometimes, q, and qg can be obtained in the same step. Once again, this
problem could be difficult to solve in the most general case. However, it is generally
easy for usual PKM and, even for more complicated cases, it can now be solved
using the advanced mathematical methods mentioned above (Khalil and Dombre
2002; Pfurner and Husty 2010).

In order to simplify and/or clarify the problem understanding, the following geo-
metrical approach could be also used. The idea is to virtually cut the leg i at one
given joint (generally located at the middle of the leg—but not necessarily—e.g.
without loss of generality at the joint located at point A;2—denoted in the following
as joint A;7). Then, virtually considering that the platform is fixed (and as a result
the location of point A, ;) and that all joints can freely move, the configuration loci
of the frame associated with joint A;, (in terms of translations plus rotations) when
belonging to the lower part of the leg (loci denoted as 6;;—(Fig.7.2a) and when
belonging to the upper part of the leg (loci denoted as 4;,—(Fig. 7.2b) can be com-
puted. The solutions of the /IGM are at the intersections of those two configuration
loci (Fig.7.2c).

It must be mentioned that, in usual cases, the obtained configuration loci ¢}; are
defined by algebraic equations. Therefore, for having an idea of the maximal number
of intersection points, usual methods (such as the Bézout bounds Bézout 1764) can
be used.

In the next sections we present the IGM of some PKM that are solved by analytical
methods and/or by geometrical approaches.
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(a) « ., Configuration loci
of joint A, when
belonging to the lower
part of the leg i (base fixed)

Fixed base A.
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Fig. 7.2 The solutions of the IGM of a general PKM
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Fig. 7.3 The planar five-bar
mechanism (the gray pairs
denote the actuated joints)

7.1.2 Examples

7.1.2.1 Inverse Geometric Model of the Planar Five-Bar Mechanism

The planar five-bar mechanism (Fig.7.3) is a 2 DOF parallel robot able to achieve
two translations in the plane (O, xg, y,) (see Appendix A) and which is composed
of two legs:

e A leg composed of 3 R joints whose axes are parallel, directed along zo and located
at points A11, A12 and Aq3, the joint located at point A1 being actuated, and

e Aleg composed of 2 R joints whose axes are parallel, directed along zo and located
at points A»; and A»», the joint located at point A, being actuated.

All other joints are passive. Thus, the vector of actuated coordinates is q! =
[g11 g21]. The end-effector is located at point A3 and its controlled coordinates
along x¢ and y, are denoted as x and y, respectively.

The MDH parameters of the five-bar legs are shown in Table7.1. It should be
mentioned here that frame .%»3 is the same as the frame %3, but its antecedent is
the frame .%»;.

As the robot has only 2 DOF, the orientation ¢ of the end-effector depends on the
coordinates x and y. The constraint relations on the platform coordinates (7.1) can
be written as:

Y= Yan Yy —dnsing)

tan ¢ = =
X — XA, X —dxncosqr —da

(7.6)

in which [x4,, ¥ Azz]T is the position of the point Ay; in the base frame. The value
of g7 is a function of x and y that will be determined below.

From Table 7.1, the right-hand side of (7.2) can be computed. Considering in the
present example that the end-effector location is parameterized by the homogeneous
transformation
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Table 7.1 The MDH parameters of the five-bar legs

ij a(i) | w ajj Vi bjj ajj dij Oij ij
11 0 1 0 0 0 0 diy = —loay | q11 0
12 11 0 0 0 0 0 dio =1lan4 | 912 0
13 12 0 0 0 0 0 diz =lapa; | q13 0
21 0 1 0 0 0 0 dy1 =loay, | g1 0
22 21 0 0 0 0 0 dy =lpyay | 92 0
23 22 0 2 0 0 0 dy3 =lpna; | O 0

cos¢ —sing 0 x

oy _ sin¢g cos¢p 0y

L 0 0 10

0 0 01

we get:

[x} _ I:dil + d;z cos gj1 + d;z cos(qi1 + qi2)

: . ,fori =1,2 7.7
y diz sing;1 + dj3 sin(gi1 + gi2) } : @7

where dy3 = la,,4,5, and

¢ = q11 + q12 + q13, when considering leg 1
¢ = q21 + g22, when considering leg 2. (7.8)

Rearranging the terms of (7.7), it can be found that

x —diy —dizc0sqi1 | _ | di3cos(qi1 + gi2) (7.9)
y —d;jz sing; djzsin(gi1 +¢qi2) |’ '

Then, squaring both sides of (7.9) and equating both lines of (7.8), the reduced
form (7.4) of the loop-closure equations can be obtained as:

(x —di1 —dipcos q11)? + (v — diz singi)? — d123]
h,(x.q,) = ! -0 (7.10
p(X. da) |:(x —dy1 — dxcosqa1)? + (y — dap sing1)* — da (7.10)
which can be simplified as:
_ |a1cosqii +bisingi +cr| _
hy (X, 4a) = |:az cos g21 + by singay + 62] =0 .10

where a; = —2dip (x — dj1), bi = —2dppy, ci = (x —di))* + y* + d}y — d.
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Taking into account the half-angle formula:

/R 20 (7.12)
cosqjj = —5, sing;; = —, .
i 1 +1;
where t;; = tan(g;;/2), and introducing those expressions into (7.11), we get:
(c1 —a)t} +2biti + (a1 + 1)
h,(x, = 11 =0 7.13
p(X. Ga) |:(Cz — a3, + 2batay + (a2 + c2) (7.13)
from which we can find that
—b; :I:,/bi2 —ci2 +al.2
i1 = (7.14)
Ci —a;
or also
—b; + /b7 — 7 +a?
gi1 =2tan”" (7.15)
Ci — a;
Note that:

e the value of ¢ can be found from (7.7) for i = 1 without considering the Eq. (7.7)
fori =2.

e the value of g1 can be found from (7.7) fori = 2 without considering the Eq. (7.7)
fori = 1.

This means that Eq. (7.7) can be solved independently.

In (7.15), the sign “£” correspond to the different working modes of the robot
(Fig.7.4). From a geometric point of view, solving these equations is equivalent to
finding the intersection points of two circles (Fig.7.4):

e Circle % centred in A;; of radius d;», which corresponds to the vertex space of
the point A;» when considering that it belongs to the link A;1 A;»>,

e Circle %, centred in A;3 (considered as fixed if the coordinates x and y are
known) of radius d;3, which corresponds to the vertex space of the point A;» when
considering that it belongs to the link A;7A;3.

The values of g12 and g2 can be obtained using (7.9) as
qi2 = atan?2 (y — d,‘z sinqil, X — d,'] — dl'z COSqil) —d{il, fori = 1, 2 (7.16)

where “atan2” is the four-quadrant inverse tangent function.
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Fig. 7.4 The two working
modes of the leg i of the
planar five-bar mechanism

' mode 1
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N\ working |

Finally, the value of g13 can be directly obtained by introducing (7.15) and (7.16)
into the last equation of (7.13), i.e. g13 = ¢21 + ¢22 — 911 — q12.

7.1.2.2 Inverse Geometric Model of the 3—-RPR Planar Parallel
Manipulator

The 3—RPR PPM (Fig.7.5) is a 3 DOF parallel robot able to achieve two translations
in the plane (O, x9, y,) and one rotation around z¢ and which is composed of three
legs, each leg being made of two passive R joints (with respective axes (A;1, Zo) and
(A3, z0)) and one active P joint whose direction is contained in the plane (O, xg, y)
and whose configuration is parameterized by the variable gj» i = 1, ..., 3)
Thus, the vector of actuated coordinates is qg = [q12 922 g22]. The end-effector
is located at point P and its coordinates along x( and y, are denoted as x and y,
respectively. The orientation ¢ of the platform is defined as the angle between xg
and the segment A3 A»3.
The MDH parameters of the 3—RPR PPM legs are shown in Table7.2. In this
table, y; = atan2(yo4;,, X04;;), Where xp4,;, and yp4,, are the coordinates of the

points O A; expressed in the base frame .%.
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Fig. 7.5 The 3-RPR PPM.
a Kinematic architecture (the
gray pairs denote the
actuated joints). b Frames
associated to the MDH
parameters

(b)

Table 7.2 The MDH parameters of the 3-RPR PPM legs (i = 1,...,3)

g la@) | wi oy |vi | by | o dij bij ij
il 0 1 0 Vi 0 0 div =loa;, qi1 +vyi —m/2 0

i2 il 0 1 0 0 /2 0 0 qi2
i3 i2 0 0 0 0 —n/2 0 qiz — /2 0
p* i3 0 2 0 0 d,'4 = lA,’:;P —&; 0
Note ‘%’ the upperscript p denotes the platform frame

e = atan2(Pya;;p, Pxa;p), Where Pxu,,p and Py, p are the coordinates of the points A;3

expressed in the moving platform frame .7,

From Table 7.2, the right-hand side of (7.2) can be computed. Considering in the
present example that the end-effector location is parameterized by the homogeneous
transformation
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cos¢p —sing 0 x

o _ sing cos¢ Oy
P 0 0 10
0 0 01
it turns out that:
x X0A; + qizcosqi1 + digcos(gi1 + qi3)
Y| = | Yoay + qiasingi1 +diasin(gi1 +¢q;3) |, fori =1,...,3. (7.17)
] qi1 +qiz — &

Rearranging the terms of the two first rows of (7.17) and introducing the fact that
¢ + i = qi1 + qi3 which is deduced from the third line, it can be found that

X —x04; —discos(p + &) | _ |gi2c0sqi (7.18)
y = Yoa; —diasin(¢ +&;) gizsingiy | ’

Squaring both sides of (7.18) and summing the two rows, it comes that:

2 2
(x0A13 - )COAH)2 + ()’OAB - yOAn)2 - ‘1122
h,(x,q,) = (x0A23 — on21)2 + (yOA23 — y0A21)2 — q222 = 0. (7.19)
(XOA33 _x0A31) + (y0A33 - yOA}l) - 51322
where xp4,; = x —discos(@ +¢€;), yoa; =Y —diasin(¢ + ;) are the coordinates

of points O A;3 expressed in the base frame .%g.
It can be finally deduced from (7.19) that, fori =1, ...,3:

gi2 = i\/(XOA,g —x04,)" + (Yoas — yoay) - (7.20)

Finally, the passive variables can be found by:

gi1 = atan2 (yoa;; — Yo A, > X0A;; — X04;) » if gio > 0

qgil1 = atan2 (YOAB — YOA;1»X0A;z — xOA,'l) + 7, ifCIiz <0 (721)

and

qgiz=¢ +¢& —qi1. (7.22)

In (7.20), the sign “£” correspond to the different working modes of the robot
(which are, in that particular case, equivalent—Fig.7.6). From a geometric point of
view, solving these equations is equivalent to finding the distance between the points
A il and A,‘3.
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(a) moving (b) moving
platform platform

1

95

2_,1
7;‘1_91‘1”{
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7,= _qzé

Fig. 7.6 The two working modes of the leg i of the 3-RPR PPM. a Working mode 1. b Working
mode 2

Fig. 7.7 The Orthoglide (a) (b)
robot. a Prototype. b ;
Kinematic chain (Courtesy
of Philippe Wenger and
Damien Chablat)

Moving platform

7.1.2.3 Inverse Geometric Model of Other Planar Parallel Manipulators

The geometrical and analytical methodologies presented in Sects.7.1.2.1 and 7.1.2.2
can be easily extended to any types of planar parallel robots and will not be developed
here. The reader is referred to Bonev (2002) for further investigations.

7.1.2.4 Inverse Geometric Model of the Orthoglide

The Orthoglide is a parallel robot composed of three identical legs (Fig. 7.7) allowing
three translational DOF of its end-effector (parameterized by the variables x, y and z
that represent respectively the translation along x, y, and zg of the base frame .%p).
Each leg is made of one linearly actuated link (parameterized by the variables ¢;1,
i=1,...,3,1e. qg = [q11 921 ¢31]) linked at its extremity to a spatial parallelogram
(Fig.7.8a). The parallelogram is also attached to the mobile platform. Kinematically
speaking for obtaining the inverse kinematics, and without loss of generality, each
parallelogram chain can be replaced by an equivalent chain composed of two Ujoints
connected by a rigid link (Fig.7.7b).

The directions of the three linear actuators of the Orthoglide are orthogonal
(Fig.7.7b). The purpose is to create a mechanism with a workspace shape close
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Fig. 7.8 Description of the
Orthoglide kinematic chain.
a Kinematics of one leg.

b Equivalent kinematics of

one leg. ¢ Fixed base
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Table 7.3 MDH parameters for the first frames corresponding to the first bodies of the Orthoglide

legs

ij a() | Ky % Vi bij aij i O ij

11 0 1 1 0 0 0 0 0 qn

21 0 1 1 /2 a /2 0 0 q21 —a
31 0 1 1 0 a /2 |0 0 g31 —a

to a cube and whose behavior is close to the isotropy (Merlet 2006a) wherever it is
located in its workspace (Chablat and Wenger 2003).
The leg MDH parameters of the equivalent kinematic chains for the legs are given

in Tables7.3 and 7.4.

From Tables 7.3 and 7.4, the right-hand side of (7.2) can be computed. Consid-
ering in the present example that the end-effector location is parameterized by the

homogeneous transformation,

OTP —

100x
010y
001z
0001
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Table 7.4 MDH parameters for the frames corresponding to the leg i of the Orthoglide (i =

1,....3)
i a@) | wi | o Vi bij aij dij bij ij
2 il 0 0 0 0 —n/2 0 qi2 0
i3 |2 0 0 0 0 —n/2 0 qi3 0
i4 |3 0 0 0 0 0 da gia 0
i5 | i4 0 0 0 0 /2 0 gis 0
P i5 0 2 0 0 ap=7/2, | ds 0 0
azpy =—m/2
0{3[; = -7

it get that, for leg 1:

X dscosqipcosqiz + de
y| = —dysing3 (7.23)
b4 q11 — dacosq13singi;

for leg 2:
(x|  [—a+ g2 —dscosqrssing |
y|= d4 cos gy cos g3 + dg (7.24)
_Z_ L a — d4 sin q23
and for leg 3:
(x| [ dscosgspcosqsz +ds
y| =|—a+¢g3 —dscosqgszsings (7.25)
| ] L a + dy sin g33

where a, d4 and dg are geometric parameters defined in Fig.7.8a, and, to take into
account the parallelogram constraints, we have

0 gi2 + qiS]
- 7.26
[O} [%’3 + qia (7.26)
Simplifying (7.23)—(7.25), it turns out that:
(x —de)* +y* + (z — q)* — di
hy=|Gx+a—q)?+(—do)?+@z—a)—dj | =0. (7.27)
(x—de)*+(y+a—q)?+@—a) —dj

Developing, each row of (7.27) leads to a polynomial of the second order in g;;

g3 +citgin +cio=0, fori=1,...,3 (7.28)
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where

c11 = —2z2
cl0 = (x —d6)2+y2+Z2 —df
1 =—2(x+a)
c0=x+a) +(y—de)+ (z—a)? —d}
31 =—2(y+a)
0= —de)*+(y+a)+(z—a)? —di

from which we can find:

—ci1 £, /ciz1 —4cip
qi1 = 2 . (7.29)

Finally, the passive variables can be found from (7.23) by:

q12 = —qi5 = atan2 (q11 — z, x — de) (7.30)
g22 = —q25 = atan2 (q21 —x —a, y —de) (7.31)
g3 = —q3s = atan2 (q31 — y —a, x —ds) (7.32)
q13 = —q14 = atan2 (—y, (x —de)/c0sqi2) (7.33)
q23 = —q24 = atan2 (—z, (y —de)/ cos q22) (7.34)
q33 = —q34 = atan2 (z, (x —ds)/ cos g32) (7.35)

In (7.29), the sign “£” corresponds to the two different working modes of the robot
(Fig.7.9). From a geometric point of view, solving these equations is equivalent to
finding the intersection between a line .%; defining the displacement of the active
prismatic joints and a sphere .#; that represents the displacement of the point A;
when the platform is fixed and the leg is virtually broken at point A;> (Fig.7.9).

7.1.2.5 Inverse Geometric Model of the Gough-Stewart Platform

The 6-UPS PKM, also called the Gough-Stewart platform, is a robot composed of
six legs, each leg being made of a passive U joint fixed on the base, followed by an
active P joint and then a passive S joint (Fig.7.10).

The MDH parameters associated to the frames of Fig.7.11 for one leg are given
in Table7.5. For simplifying the computation, the base connecting points A;; are
considered to all belong to the same plane (O, xo, yq).
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platform

working
mode 2

Fig. 7.10 The Gough-Stewart platform (6-UPS SPM)

Table 7.5 MDH parameters for the frames corresponding to the first three joints of the leg i of the
6-UPS SPM

i al@p) | wij ojj Vi bij % dij O rij
il 0 0 0 Yi 0 —n/2 |d; a 0
i2 il 0 0 0 0 /2 |0 qin 0
i3 i2 1 1 0 0 72 |0 0 qi3

yi = atan2 (ya,,, x4;,)
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Fig. 7.11 Frames associated with the MDH parameters of the Gough-Stewart platform. a Frames
associated to the base of the Gough-Stewart platform. b Frames associated to the leg i

The parameters corresponding to the S joint are deliberately omitted. The com-
putation of the S joint coordinates is of no interest in that section as they have no
effect on the dynamic model if their corresponding friction are neglected (Khalil and
Ibrahim 2007). We will deliberately limit the analysis of the IGM of the Gough-
Stewart to the computation of the active joint coordinates only (that can be obtained
through the use of the translational part of (7.2) only). The computation of the passive
coordinates could be a good exercise for the interested reader. In particular, the first
and second joints of each leg which are needed in the dynamic model (Khalil and
Ibrahim 2007).

Using the general loop-closure equations, it can be seen that the implicit equations
linking the active coordinates to the platform coordinates are:

(xAl(, - xA11)2 + (yAm - yA11)2 + (ZA1() - ZA11)2 - q123
(xAz(, - xAz])z + ()’A26 - yAz1)2 + (ZA26 - ZAz]) - q223
h, = (XA36 - xA31)2 + (}’A36 - yA31)2 + (ZAS() - ZA%I) - q§3 =0
P = 2 2 = (7.36)
(xA46 - xA41) + ()’A46 - )’A41) + (ZA46 - ZA41) - q4
(xass — xA51)2 + (Vass — )’/‘\51)2 + (2ass — ZAsl)2 523
(a6 — xAﬁl)z + (Yag — yAm)z + (Zags — ZA61)2 - q623

where x4,,, y4,;, and z4,, are the coordinates of the connecting points A;; in the base
frame %, (i =1, ...,6) and



92 7 Kinematics of Parallel Robots

XAjs X 0 XAjs
Yai | = | Y|+ Rp | Pya
ZAje z ZAis

in which Px4,4, Pya, and Pz, are the (constant) coordinates of the connecting
points A;¢ in the platform frame .%, (i = 1,...,6) and ORP is the rotation matrix
between the frames .%, and .%.

Finally, we get

63 = £/ g — Xa)% + Oig — ¥a)% + Gatg — 24, (737)

which is the solution of the IGM reduced to the active coordinates. Here also, the sign
“+” corresponds to the two different working modes of the leg i. From a geometric
point of view, solving these equations is equivalent to finding the distance between
the points A;1 and Aje.

7.2 Forward Geometric Model

7.2.1 General Methodology

The forward geometric model (FGM) consists in obtaining the value of platform
coordinates x as a function of the active joint coordinates q,, starting from the
expressions (7.3) or (7.4), i.e. to obtain x = %_l(qa) = 9(qq). An additional
problem is to obtain the passive joint coordinates qg (which are needed for the
computation of the dynamic model) as a function of the active joint variables qq,
i.e. ¢ = 9;(qy). The main idea that is usually followed is to adequately rearrange
the Eq. (7.4) in order to suppress the translation parameters of the vector x so that a
polynomial depending on the tangent, sine and/or cosine of the rotation parameters
of the vector x can be obtained. To simplify the calculations, it is generally necessary
to set the base frame origin O at one robot base anchor point (e.g. point Ay in
Fig.7.1) and the moving platform frame origin P at one robot platform anchor point
(e.g. point Ay,,, in Fig.7.1). Note that this choice can also be taken while solving
the IGM.

In order to simplify and/or clarify understanding of the problem, the following
geometrical approach could be also used. The idea is to virtually disconnect a leg
from the robot moving platform, e.g. without loss of generality at the joint located at
point Ay ,,, (Fig.7.12a). This joint will be denoted as joint Ay ,,,. In that case, even
when all the actuators are fixed, the moving platform gains one or more DOF and
the joint Ay,,, can freely describe a configuration loci (translations plus rotations)
denoted as .. As joint Ay, also belongs to the first leg, it also describes, when the
actuator of the leg 1 is fixed, another configuration loci denoted as ¢ and called the
vertex space of the considered leg (Fig.7.12b). The solutions of the FGM are at the
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Fig. 7.12 The solutions of the FGM of a general PKM
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intersection of the configuration loci . and ¥ (Fig.7.12c). The different solutions
are called the assembly modes of the robot. They correspond, for one given set of
active joints, to all the possible assembly configurations of the mechanism.

Let us recall that the different solutions of the IGM are called the working modes
(see Sect.7.1).

It must be mentioned as previously that, in usual cases, the obtained configura-
tion loci ¥ and . are defined by algebraic equations. Therefore, to get an idea of
the maximal number of intersection points, the usual methods (such as the Bézout
bounds Bézout 1764) can be used.

Sections 7.2.2.1-7.2.2.5 present the FGM of some PKM that are solved by ana-
lytical methods and/or by geometrical approaches. Moreover, in Sect.7.2.2.6, a list
of reference papers dealing with the FGM of other SPM is provided.

7.2.2 Examples

7.2.2.1 Forward Geometric Model of the Planar Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect.7.1.2.1. Starting
from (7.10) and developing the expressions, we get

x2+y2+a1x+b1y+c1]:0 (738)

h,(x,q,) = |:x2 + y2 +axx + by + 2

where a; = —2(d;1 +di> cos gi1), bi = —2djp sing;1 and ¢; = (d;1 +din cos gi1)? +
all.z2 sin? qi1 — di23.

From a geometric point of view, solving the two first equations of (7.38) is equiv-
alent to finding the intersection points of two circles (Fig.7.13):

e Circle % centered in A of radius d;3, which corresponds to the vertex space of
the point A3 when considering that it belongs to the link A2 A3,

e Circle %, centered in Aj; of radius dp3, which corresponds to the vertex space of
the point A3 when considering that it belongs to the link A2 A13.

Thus, the two robot assembly modes correspond to the intersection points of
circles %] and 6> whose expressions are, if b; # by,

3 —HEJE—4A

2fh
y=ex+e (7.39)

X

where

fi=1+ef
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Fig. 7.13 The two assembly
modes of the planar five-bar

mechanism assembly
mode 1
4 23
fo =2e1e2 +ay + biey
f3= e% + brex + ¢y
el = —dl /d2
er = —dz/d»
di=a—a
dr) =by — by
dy = cr— ¢ (7.40)
or,if by = by
_ a-—cq
o a) —dajp
—b £ /02 — 42+ arx o)
y= 5 . (7.41)

Once the values of x and y are found, the expressions of the passive joint coordi-
nates g12, 13 and g»> can be obtained using the expressions given in Sect.7.1.2.1.

7.2.2.2 Forward Geometric Model of the 3—-RPR Planar Parallel
Manipulator

Let us consider again the 3-RPR PPM presented in Sect.7.1.2.2. The way to obtain
the equations has been introduced in Gosselin et al. (1992) and this section makes
only a recall of the mentioned work.

For reasons of simplicity of calculations, but without loss of generality, let us now
consider that

e The base frame .% is center in Ay (i.e. O = Aj;) and that axis x is along the
—_—
vector A11421,
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e The moving platform frame .%, is center in A3 (i.e. P = A3;) and that axis x,,
———
is along the vector A13A33 (as previously).

In that case, Eq.(7.19) can be rewritten as

x4y —q
2 . 2 2
h,(x,q4) = (x + 143,45, COS QP — lAnAlz) + (x + ZA3|A32251H ¢) —q5 | =0

(x + 1 a5 A5; cOS(@p + €3) — I 4,4, COS y3) +c— q322
(7.42)
where ¢ = (y + a3, 45 Sin(@ + £3) — l4;, 4,5 SiD )/3)2 and y3 is defined in Sect.
7.1.2.2.
After developing, one can obtain the algebraic form

x2+yr—q}
h,x,qs)=| Rx+Sy+0 | =0 (7.43)
Ux+Vy+W
with

R = 2143 43, €08 ¢ — 2,4,

S =2la3 45, sin ¢

Q = —2la3 45 a4, cO80 + 11%1311‘\32 + lillAlZ o q122 + qu
U = 245,45, c08(¢ + £3) — 204;,4,5 €OS 13

V = 2la5 45 sin(@ + €3) — 2l 4,5 SIN Y3

W = 2143435 1411413 €08(P + €3) cOS¥3 — 215,433 La; A5 SIN(P + €3) sin y3
2 2 2 2
T lasias Hlana — a2 tan (7.44)

The two last equations of (7.43) are linear in x and y and a solution that depends
on ¢ is given by:

—-SW+VQ
xX=———
RV —-SU
—RW+U
_“RWHUQ (7.45)
RV —SU
which is valid as longas RV — SU # 0.
Introducing (7.45) into the first row of (7.43) leads to

(—SW4+V QP+ (—RW4+UQ)?—gHL(RV—-SU)=0 (7.46)

which is a function that depends on cos ¢ and sin ¢. Taking into account that:
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Fig. 7.14 Coupler surface vertex spaces of

for a 3-RPR PPM when leg the 2nd and 3rd legs
1 is disconnected and when the lengths q
actuators of legs 2 and 3 are emmne J J >
fixed coupler N and g, are fixe

curve ./ 7

coupler curve ./ ——+,

cos¢p = ——, sing = ‘o (7.47)

where 74 = tan(¢/2), and introducing those expressions into (7.46), it is shown in
Gosselin et al. (1992) that a polynomial of degree 6 in 7, can be obtained:

co +city + Cztdz, + C3l‘q35 + C4tg + C5l‘£ + Cﬁtg =0 (7.48)

in which the coefficients ¢; depend on the robot constant geometrical parameters and
actuated variables g;7. It must be mentioned that the coefficients are not given here
and finding them could be a good exercise for the interested reader.

Thus, from (7.48), it can be deduced that the FGM can have up to 6 solutions, i.e.
up to 6 assembly modes.

It is necessary to mention that the present equations miss some degenerated kine-
matic conditions that appear when R V — S U = 0. This problem is investigated in
Wenger et al. (2007) and the interested reader should have a look at the mentioned
paper.

From the geometric point of view, one could observe that, when the first leg of the
robot is disconnected from point A3 and for constant values of the actuated variables
g2 and ¢33, the resulting mechanism is equivalent to a passive four-bar linkage whose
legs can freely rotate around the R joints located at Ay and A3y (Fig.7.14). As a
result, the curve drawn by the point A3 (also called the coupler curve) when the
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Fig. 7.15 Examples of vertex spaces of
possible assembly modes for coupler T the 2nd and 3rd legs
a3-RPR PPM

curve ./
circle V- '
vertex space of 1413
the 1st leg \ _-Q

g coupler curve .

four-bar linkage is freely moving is a sextic curve .¥, i.e. an algebraic curve of
degree 6.

As point A3 also belongs to the first leg, it moves on a circle € centered in Ay
and of radius ¢g12 when the leg 1 actuated joint is fixed. The circle € is the vertex
space of the leg 1. As a result, the solutions of the FGM of the 3-RPR PPM are at
the intersection of the sextic curve . and the circle %" and at most 6 solutions may
exist (the proof is given in Merlet 2006b) (Fig.7.15).

Once the values of x, y and ¢ are found, the expressions of the passive joint
coordinates ¢g;1 and g;3 can be obtained using the expressions given in Sect.7.1.2.2.

7.2.2.3 Forward Geometric Model of the Other Planar Parallel
Manipulators

The geometrical and analytical methodologies presented in Sects.7.2.2.1 and 7.2.2.2
can be easily extended to other types of planar parallel robots. The reader is referred
for instance to Briot et al. (2008) and Merlet (1997, 2006b) for further investigations.

7.2.2.4 Forward Geometric Model of the Orthoglide

Let us consider again the Orthoglide robot presented in Sect.7.1.2.4. Rewriting the
Eq.(7.27), we get

24+ y2 4+ 22+ 2c1x + 202z + ¢ + 3 —df
h, = x2+y2+z2+2C3x+2C4y+2csz+c§+c§+c§—dg =0 (749
x2 +y2 + 22 + 2c6x + 207y + 2082 + ¢ + ¢ + 5 — di
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where

Ccl = —d(,

2 = —(q11

3 =a—q2

c4 = —dg

c5s = —a

c6 = —do

¢71=a—qs3]

cg = —d.

Solving (7.49), it can be found that

X =9z +C10

y=cnz+c
—cig £ \/ci, — deizers
.= (7.50)
2c13
where
c9g = —(c2 — c5)c7/(c1c4 + €107 — €3C7 — €4C6)
2,2 2 2 2
c10 = —(cf + 5 — ¢35 —cj —c5)ca/(creq + c107 — €307 — c4¢6)
c11 = (c2 — cg)(c1 — cg)/(c1c4 + €107 — €3¢7 — C4C6)
_ 2,2 2 2 2
ci2 = —(c7 + 3 —cg — 7 —cg)(cr — ¢3)/(cic4 + ci1e7 — €3¢7 — cac6)

c13 :cg—i—c%l +1
c14 = 2(cgc10 + cr1c12 + c1c9 — €2)

cl15 = C%o + c%z + 2cic10 + c% + c% - df.

The sign “+” in (7.50) corresponds to the two robot assembly modes (Fig.7.16).
Once the values of x, y and z are found, the expressions of the passive joint coordinates
qi2, 4i3, gi4 and g;5 can be found using the expressions given in Sect.7.1.2.4.

From a geometric point of view, Eq.(7.49) are three equations of spheres .#;
centered respectively in O1(0, 0, ds+q11), O2(ds—a+q21, 0, a)and O3(0, dg—
a + q31, a). Thus, the solutions of the FGM are the intersection points of those
spheres (Fig.7.16).
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Fig. 7.16 The two assembly
modes of the Orthoglide

assembly
mode 2

7.2.2.5 Forward Geometric Model of the Gough-Stewart Platform

The FGM of the Gough-Stewart platform is probably one of the most complicated
topics of the field. The ways to solve it will not be detailed here, but the aim of this
section is to make brief recalls on the most relevant works concerning this problem so
that the reader can have an idea of what could be interesting w.r.t. his own objectives.

In the most general case, 6-UPS PKM can have up to 40 assembly modes. This
result was first shown in Ronga and Vust (1992), and then confirmed through different
approaches proposed in Husty (1996), Lazard (1993), Mourrain (1993), Raghavan
(1993) and Wampler (1996).

The first researchers who were able to give the expression of the univariate
polynomial of degree 40 whose roots correspond to the assembly modes of the
6-UPS PKM were Husty in Husty (1996) and Wampler in Wampler (1996).

The number of solutions considerably decreases for special arrangement of the
legs. For example, with the design proposed in Fig.7.17 for which the legs 1, 2 and
3 (4 and 5, resp.) are linked to the same platform point Aj¢ (Asg, resp.), the number
of solutions is decreased to 8 and all of them can be obtained in a closed-form using
the following method (Hunt and Primrose 1993; Nanua and Waldron 1991):

1. Knowing the lengths ¢13, g23 and ¢33 of the legs 1, 2 and 3, compute the position
of point Aj¢ (that will be considered here as the platform controlled point with
coordinates (x, y, z)) which is at the intersection of the three spheres centers in
A11, Az1 and A3p of radius ¢13, ¢o3 and ¢33, respectively; thus the translational
part of the vector x is found,

2. Knowing the position of A ¢ the lengths g43 and g53 of the legs 4 and 5, compute
the position of point A4¢ which is at the intersection of the spheres centered in
Aje of radius /4,4, and the two spheres centered in A4y and As; of radius
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Fig. 7.17 An example of 6-UPS PKM with simplified FGM

q43 and gs3, respectively; thus two independent platform orientation parameters
can be obtained while the rotation angle around the line A13A43 still cannot be
computed,

3. Finally, knowing the position of Aj¢ and A4¢ and the length ge3 of the leg 6,
compute the position of point Ags Which is at the intersection of the spheres
centered in A1g, A4 and Age of radius [4,4 44, [A46A4¢s a0 63, TEspectively; thus
the rotation angle around the line A1¢A4e is found.

Table 7.6 proposes a (non-exhaustive) list of reference papers concerning manip-
ulators with a special leg arrangement leading to a decrease of the number of
FGM solutions.

7.2.2.6 Forward Geometric Model of Some Other Spatial Parallel
Manipulators

It is not possible in this book to deal with the FGM of too many PKM. So, in this
section, Table 7.7 presents a list of papers dealing with the FGM of some interesting
SPM. It should be mentioned that this list is far from being exhaustive but only
presents SPM quite often met in the literature.

7.2.3 Assembly Mode Selection and Numerical Methods
Jor Solving the FGM

Previous sections have shown some methodologies to find all the possible assembly
modes corresponding to a given value q, of the active joint coordinates. However,
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Table7.6 Listofreferences dealing with the FGM of the 6-U PS PKM with special leg arrangement
allowing one to decrease the complexity of the FGM

Type of robot* Number of solutions for the FGM | References

6-5 10 Yin and Liang (1994)

64 32 Hunt and Primrose (1993),
Innocenti (1995)

16 Innocenti and Parenti-Castelli
(1991a)
Husain and Waldron (1994)
Zhang and Song (1991)

6-3 8 Hunt and Primrose (1993)
Nanua and Waldron (1991) (robot
depicted at Fig.7.17)

5-5 24 Hunt and Primrose (1993)

5-4 32 Lin et al. (1994)

24 Innocenti and Parenti-Castelli
(1993)
Faugere and Lazard (1995)
16 Innocenti and Parenti-Castelli
(1991b)
Lin et al. (1994)
8 Nair (1994)

5-3 16 Faugere and Lazard (1995)

8 Faugere and Lazard (1995)

4-4 24 Lin et al. (1992)

16 Lin et al. (1992)
Innocenti and Parenti-Castelli
(1992)

8 Bruyninckx (1998)

4-3 16 Faugere and Lazard (1995)

8 Faugere and Lazard (1995)

3-3 16 Dedieu and Norton (1990)

8 Faugere and Lazard (1995)

4The symbol m-n robot corresponds to a robot with m attachment points on the base and n
attachment points on the mowing platform

one point was not discussed which is: among all the possible assembly modes, how
to choose the one that corresponds to the real platform pose?

This problem is still an open problem for research on PKM, even if some method-
ologies have already been proposed. To get the assembly mode knowledge, it is
possible to use additional encoders mounted in the passive joints (Arai et al. 1990;
Inoue et al. 1985). Such additional information can help to find the real posture of
the robot, and can also help to simplify the computation of the pose. For example, if
all active and passive joint coordinates of the leg k of the general robot presented in
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Table 7.7 List of references dealing with the FGM of some interesting SPM

Type of DOF? Robot name References
2T1R Zero-torsion PKM Bonev (2008)
3T Delta Clavel (1989)
Orthoglide-like family® Company et al. (2002), Pashkevich
et al. (2006)
3-UPU Tsai and Joshi (2000)
Decoupled TPM Gogu (2004), Kong and Gosselin
(2002)
Carricato and Parenti-Castelli
(2002)
Pantopteron Briot and Bonev (2009a)
3R Agile Eye Bonev et al. (2006)
3-RSS wrist Di Gregorio (2004a)
3-UPU wrist Di Gregorio (2003)
3 exotic DOF PKM with 3 legs Di Gregorio (2005)
3T1IR Quattro/Par4 Nabat (2007)
H4, 14, 1AL Company and Pierrot (1999)
PAMINSA Briot et al. (2008)
MacGill SMG Alizadeh (2009)
Quadrupteron Kong and Gosselin (2011a)
Pantopteron—4 Briot and Bonev (2010)
3T2R 5-RPUR Tale-Masouleh et al. (2011)
Verne Machine Kanaan et al. (2007)
3T3R Gough-Stewart platform family See Sect.7.2.2.5
Hexa family (6-RUS/6—PUS) Same approach as for
Gough-Stewart platforms
Hexapteron Seward and Bonev (2014)

4In that column, the symbol “iTjR” denotes that the considered mechanism has i translational
DOF and j rotational DOF

bOrthoglide-like family regroups all 3 T robots with linear actuators mounted onto the base (whatever
is their orientation) followed by passive legs of the Orthoglide type (Fig.7.8)

Fig.7.1 are measured, the problem remains to find the direct geometric model of a
serial structure, which has a direct and unique solution (Khalil and Dombre 2002).

Another solution is to use exteroceptive sensors such as cameras. The most com-
mon approach consists of the direct observation of the end-effector pose (Espiau
et al. 1992; Horaud et al. 1998; Martinet et al. 1996). However, some applications
prevent visual observation of the end-effector of a parallel mechanism. For instance,
it is not wise to imagine observing the end-effector of a machine-tool while it is
generally not a problem to observe its legs that are most often designed with slim
and rectilinear rods (Merlet 2014).

The platform pose reconstruction based on visual observation of the robot legs
was proposed in Andreff et al. (2005) where vision was used to derive a visual
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servoing scheme based on the observation of a Gough-Stewart platform. After these
preliminary works, the approach was extended to control of the robot directly in the
image space by observation of the leg edges (from which the leg direction can be
extracted), which has proven to exhibit better performances in terms of accuracy than
the previous approach (Andreff et al. 2007). The approach was applied to several
types of robots, such as the Adept Quattro and other robots of the same family
(Andreff and Martinet 2006; Ozgur et al. 2011).

It is to be noticed that, for some particular cases, this last approach may not be
able to give an estimation of the platform pose (Andreff and Martinet 2006), and the
mapping between the leg space and Cartesian space may not be free of singularity
(Briot and Martinet 2013).

Numerical methods can also be used to get information about the robot’s
assembly mode. The probably most efficient ones are the Interval Analysis (IA)
(Merlet 2004) and other methodologies based on Cylindrical Algebraic Decomposi-
tion (CAD) (Chablat et al. 2011) that are able to give the intervals of PKM poses that
belong to the same workspace aspect (i.e. a workspace area that is singularity-free and
bounded by singularities (Merlet 2006b)). This does unfortunately not bring a 100 %
guarantee that the assembly mode can be known as, for some robots, a workspace
aspect can regroup several assembly modes (Zein et al. 2008).

To solve this problem, it can be interesting to solve the FGM iteratively. Know-
ing at a time ¢ the exact pose of the PKM, the idea is to take advantage of the fact
that the unknown current pose at time ¢t + §¢ will be close to the pose that was
known at time ¢. Several well-known approaches that have solved non-linear numer-
ical systems can be used. Probably, the most efficient one is the Newton-Raphson
Scheme.

When it is not possible to find a closed-form solution to the constraint geometric
equation (7.4) giving X in terms of q,, we can use the Newton-Raphson Scheme as
follows.

Based on Eq. (7.4), we derive the following differential model, which can be used
to numerically compute the variables x for a given q:

(SX :Jx (Sqa (751)

where J, is the robot Jacobian matrix that will be fully defined in Sect.7.3, §x is a
small increment of the platform pose x and 8q, is a small increment of the active
joint coordinates q_.

To calculate the pose x ¢ corresponding to the active joint values qq ,, we use the
following algorithm:

1. initialize by the current values q,, of q, and x¢ of x if known (by random if not);
2. compute the platform pose Xi at the iteration k + 1 by

X1 =Xk +Jx (Ao, — o) (7.52)
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where q,, = J7(X¢) is the solution of the /KM corresponding to the platform
pose value xg,

3. if ||qaf —qq || < &, where ¢ is a number small enough to be fixed by the user,
the algorithm can stop. If not, the second step must run again.

If the algorithm does not converge within a relatively large number of iterations,
or to obtain another solution, we have to restart the calculation using a new random
value of Xg; if no convergence occurs for many different trials, it can be stated that
there is no solution or that the robot is too close from a singularity (see Sect.7.5).

More information on the convergence conditions of this algorithm can be found
in Merlet (2006b).

7.3 Velocity Analysis

In this section, the kinematic relations linking the active joint velocities to the plat-
form twist and passive joint velocities are defined and analyzed.

7.3.1 Computation of the Kinematic Constraint Relations

The kinematic relations linking the active joint velocities to the platform twist could
be obtained by differentiating (7.4) w.r.t. time. However, this solution may not be
computationally efficient. Therefore, we propose to use the following methodology
which can take advantage of the recursive algorithms defined in Sect.5.2.4.

Let us consider the input-output relation of the chain i (Fig.7.1) which expresses
the platform twist (which will be denoted below as °t »» the superscript “0” denoting
that the vector is given in the reference frame .%) as a function of all joint velocities
q; for the considered chain. From (5.6) and (5.7), we have

Ot,, = Oin(']i = [0$i1 0$im,-] qi- (7.53)

where 9$;; is a unit twist representing the displacement of the end-effector when
joint ik is moving only and m; is the number of joints in the considered chain.?
Let us rewrite (7.53) by reorganizing matrix °J p; SO that we can group:

e in a sub-matrix °$;, the unit twists corresponding to the active joints of velocities
Qai> and

e in a sub-matrix °$;; the unit twists corresponding to the passive joints of velocities
di-

2Here, we express directly (7.53) at the center of the platform. However, all the expressions presented
in this section could have also been obtained by expressing (7.53) at the last joint of the chain i,
such as presented in Sect.7.3.3.
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Thus (7.53) becomes

%t) = [*8i °8ud] [gj} =8 Gui + "8 Gur- (7.54)

i

To eliminate the passive joint velocities ¢g; from (7.54), Otp can be multiplied by a
wrench ¢; which is reciprocal to all passive joint twists 08,4 but NOT to the active
joint twists 08,,. In other words, this means that (see Sect.3.4)

¢ %y =0and ¢! %8, £ 0 (7.55)

¢, is an actuation wrench which, if applied to the platform, can be resisted using only
the actuators of the chain i. Examples of wrenches reciprocal to some usual systems
of twists are given in Appendix C.

As aresult, the following scalar equation can be obtained:

¢l 0%ty = ¢! %) Guie (7.56)

If the chain i has n,; active joints, n,4; independent vectors ¢; can be found. Finally,
considering all legs, Eq.(7.56) can be rewritten under the matrix form:

T

ng ¢T 08, Tg 0

:2 Otp — 0 CZ $2a A 0 qa (1.57)
C"{ 0 0 ...cro,

where ¢ is a (6 x cx) matrix groups all ¢, independent unit wrenches due to the n,
actuators of the kth leg. As a result, the system (7.57) is a system of n,, = >, cx
equations.

Thus, from (7.57), we define two matrices A and B such that

i
A= |52 (7.58)
:
and
¢Fo%, o ... 0
T 0
B = 0 &5 $0 ... 0 (7.59)

0 0 ...zI'%s,
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The matrix A is of dimension (1,, x 6) and the matrix B is of dimension (n,, X n,).
Then, we rewrite (7.57) as

A%, +Bg, = 0. (7.60)

From (7.58), it is necessary to point out that the row i of A is a unit wrench which
is aligned along the direction of the wrench applied by the actuator i on the platform
through the leg when it is developing an input effort in a static mode of operation
and in absence of any other type of external effects.

7.3.2 Kinematic Models

7.3.2.1 Condensed Form of Kinematic Constraint Relations

Let us define a vector °t, which groups a set of n4or independent coordinates in Ot »
such that:

O, = o, % o Ot = &0, (7.61)

where W, is a (6 x ngy) matrix while ¥ is a (n4r x 6) matrix. Note that ¥/
is a constant matrix composed of 0 and 1 only while ¥, may not be constant (see
examples in Sect.7.3.4).

Using (7.61), we can rewrite (7.60) as:

At +Bd. =0 (7.62)

where A, = A W, isa (n,, X ngy) matrix. A, is a part of the matrix A defined in (7.60)
that relates the ng4,r independent coordinates of the platform twist 0t, to the actuated
joints q,. Thus, it has exactly the same property as A, i.e. its row i contains ngos
independent coordinates of the unit wrenches which are aligned along the direction
of the wrench applied by the actuator i on the platform through the legs when it is
developing an input effort in a static mode of operation and in absence of any other
type of external effects.

Matrices A, and B are crucial for computation of the dynamic model of the PKM.

In a general manner, it can be proven that, for a PKM:

e without redundancy, the total number n,, of independent actuation wrenches is
equal to the total number n,, of actuators and also to the number 74, of independent
DOF for the platform (n,, = n, = n4.), and thus matrices A, and B are square
of dimension (n, X ng,),

e with actuation redundancy for which n, > ngqy, the total number n,, of indepen-
dent actuation wrenches is equal to n,. Thus matrix B is a (n, X n,) square matrix
while matrix A, is rectangular of dimension (n, X ngep),
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o with kinematic redundancy for which n, > nyqy, the total number n,, of indepen-
dent actuation wrenches is equal to n4,r. Thus matrix A, is a (nger X ngof) square
matrix while matrix B is rectangular of dimension (n4of X ng).

7.3.2.2 Kinematic Models of PKM Without Redundancy

Matrices A, and B being square for a PKM without redundancy, the forward kine-
matic model (FKM) is given by:

%t = —A;'Bg, = Jdq (7.63)

J = —A, !B is the kinematic Jacobian matrix of the PKM. This expression is valid
as long as matrix A, is not singular. The singularity conditions of matrix A, are
disclosed in Sect.7.5.

The inverse kinematic model (IKM) is given by:

d. = -B7'A,%, = J;,,0t, (7.64)

where J;,, = —B~!A, is the inverse kinematic Jacobian matrix. For PKM without
redundancy, J;,, = J~! which is not the case for other types of PKM. The expres-
sion (7.64) is valid as long as matrix B is not singular. The singularity conditions of
matrix B are disclosed in Sect.7.5.

Please note that J and J;,,,, are NOT the Jacobian and inverse Jacobian matrices of
the robot, but the kinematic Jacobian and inverse kinematic Jacobian matrices. This
is because they do not relate the actuated joint velocities q, to the derivative w.r.t.
time of the platform coordinates (denoted as X) but to the platform twist 0t,. The
Jacobian and inverse Jacobian matrices are defined at Sect.7.3.2.5.

7.3.2.3 Kinematic Models of PKM with Actuation Redundancy
In that case, matrix A, being rectangular while matrix B is square, the IKM can be
defined without any problem using (7.64)—as long as matrix B is not singular—while

the FKM becomes:

Ot, = JF da (7.65)

L.

my

matrix J;,, defined at (7.64).

-1 . . . . . .
where J; = (J ;WJ inv) J ifw is the pseudo-inverse of the inverse kinematic Jacobian
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7.3.2.4 Kinematic Models of PKM with Kinematic Redundancy

In that case, matrix B being rectangular while matrix A, is square, the FKM can be
defined without any problem using (7.63)—as long as matrix A, is not singular—
while the /KM becomes:

Q=3+ (1, —JT))& (7.66)

where J* = J7 (JJ 7)71 is the pseudo-inverse of the kinematic Jacobian matrix J
defined at (7.63) and & is an arbitrary vector in the q, space (Khalil and Dombre
2002).

7.3.2.5 Relation Between the Platform Coordinate Derivatives
with Respect to Time and the Platform Twist

In Sects.7.1 and 7.2, we denote as x the ng4,r independent platform coordinates. As
a result, the vector X is different from the platform twist °t p» and corresponds only
to the vector of the derivatives w.r.t. time of the independent platform coordinates.

From the differentiation w.r.t. time of (7.1), X is related to X,, i.e. the vector of
the derivatives w.r.t. time of all platform coordinates by

% = ¥, %, oralso X, = U™ (7.67)

where ¥, and \II;”V are usually constant matrices but not necessarily.

X, is usually a vector composed of 6 coordinates (it can be greater than 6 if
homogeneous transformation matrices, quaternions, or other less usual parameters
are used to define the platform pose, such as the Study parameter (Pfurner and Husty
2010), but that case will not be treated here). Let us consider here that those 6
components are:

e X, y, 7 the three components of the translational velocity of the platform frame
? p W.IL % and expressed in %, and

e ¢, 0, the derivatives w.r.t. time of the three ZY Z Euler angles characterizing
the rotation of .7, w.r.t. Z.

Thus, X0 =[x 3 2 ¢ 6 V1.
In that case, the rotational velocity of the platform is given by:

%Sgclp — Q.S¢
Y0, = | ¥rsass + Ocy (7.68)
¢+ Ve

which can be rewritten in the matrix form
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0 —sg sgcy ¢ qb
%w, =10 cp spsp | |6 |=D]|6|. (7.69)
1 0 ¢ v v

Thus, we can deduce that the platform twist Otp is equal to:

0 0], .
t, = [03 D} %, = Dx,. (7.70)

Similar equations can be found whatever are the types of parameters.
Now, left-multiplying (7.70) by the matrix ¥ defined in (7.61) and introduc-
ing (7.67) in it, we get

O, = U™ D W™y =D,x (7.71)
where D, = W™ D W is a (n40r X n4of) invertible matrix.
7.3.2.6 Obtaining the Kinematic Models by Differentiating
the Geometric Constraint Equations

If the relation (7.4) is available, the kinematic relationships can be obtained through
its differentiation w.r.t. time, which leads to:

Agx+Byq, =0 (7.72)
where,
oh,,
Ag=|—L (7.73)
ox
and
oh,,
B, = . (7.74)
9qq

Introducing (7.71) into (7.62), we can link the usual equations (7.72) to the kine-
matic relationships defined in Sect.7.3.2.1 by

A.D,x +Bg, = 0. (7.73)
By identification between (7.72) and (7.75), we thus obtain
Ay =A,D, (7.76)

B, =B (7.77)
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which gives the relations between the usual equations (7.72) and the kinematic con-
straints defined in Sect.7.3.2.1.

Please note that, from (7.72), we can define the expression of the Jacobian matrix
which is, for a mechanism without redundancy:

J.=-A;'B (7.78)
so that the following relations hold:
X =JQq (7.79)
and

4o = J; % (7.80)

7.3.3 Computation of the Passive Joint Velocities

The computation of the passive joint velocities is necessary for the computation of
the dynamic model. Therefore, the way to compute them is defined in this section.

All joint velocities could be obtained by differentiating (7.3) w.r.t. time. However,
this solution may not be computationally efficient. Therefore, we propose to use the
following methodology which is based on equating the twist at the terminal frame of
each chain as a function of the platform twist 0¢ p from one side, and as a function of
the joint velocities of the chain from the other side. This method can take advantage
of the recursive algorithms defined in Sect.5.2.4.

Let us consider the chain i of the PKM, which is composed of m; joints (Fig.7.1).
From (3.2), we can compute the twist of the platform at point A;,,; (that will be
denoted as t;) as:

0 0
040 0 (Op X rPAl-mi
t, =, +[ o ] (7.81)

which can also be rewritten in the matrix form:

13 =%%p 4
o _ |13 —"FPa,, |o, _ v o0
th = [0 1 } t, =J.%, (7.82)

where J;; is a (6 x 6) matrix.
As the joint located at A; ,;; also belongs to the chain i, its twist can be obtained
by using the relation (5.8) as:

Ot = OF; s = [°$flm,~ ...0$%mf] Q (7.83)

im;


http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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where ¢; represents the vector of all joint velocities of the chain i, °J; m; =
OR; m,i "™ J; m; s the chain i kinematic Jacobian matrix of dimension (6 x m;) and
$§Ijni is a unit twist representing the displacement of the chain tip A;,,, when joint
ik is moving only. The expression of /" J; m; can be obtained by the recursive algo-
rithm (5.21).

Equation (7.83) can be rewritten by reorganizing the matrix °J; m; SO that we can
group:

e in a sub-matrix °J,; the unit twists 0$fkml_ corresponding to the active joints of
velocities qg;, and

e in a sub-matrix °J 4 the unit twists 0$§km. corresponding to the passive joints of
velocities qg;. ’

Thus (7.83) becomes

Otﬁ, = Tim @i = ["3ai °Jai] [gﬂ = 34ifai + “JaiQai (7.84)
1
or also
%t = OTaidai (7.85)

where Ot;i = Ot; — 0 iGlai-
As qg; is a vector of dimension ng; < 6, only ng; components of Ot;’ are inde-
pendent. Let us define a vector tfi of ng; independent components such that

=, %) (7.86)

with ¥;; a (ng x 6) matrix. Note that usually, the matrix ¥;; can be found by
projecting the Eq.(7.85) in the last frame (or the last one before) of the chain (see
the examples in Sect.7.3.4).

Introducing (7.61), (7.82) and (7.86) into (7.84) and (7.85) leads to:

I 0t — Juaillai = JiaiQai (7.87)
with
I =9,J,%, (7.88)
a (ng; X ngef) matrix,
Jiai = ¥ °Jai (7.89)

a (ng; X ng;) matrix (ngy; being the number of actuated joints in the chain i), and

Juai = 9, OJai (7.90)


http://dx.doi.org/10.1007/978-3-319-19788-3_5
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a (ng; X ng;) matrix.

Thus, as the platform twist °t, and active joint velocities §; are considered known
by using the equations presented in Sects.7.3.1 and 7.3.2, the joint velocities ¢g; of
the chain i can be found by inverting the matrix J;4 in (7.87). The conditions of
singularity of matrix J,4; are disclosed in Sect.7.5.2.

Now, considering all legs, we have

Jala = J: %t — Jiuda (7.91)
with
Jiar Ougixngy -+ Ongy xcngn
I T (7.92)
O Qs -+« i

a (ng x ng) matrix (ng being the total number of passive joints).
Moreover,

Ji
Je=1: (7.93)
I
a (ng X ngop) matrix,
Jtal Ondlxnul cee Ondlxnan
0 a Jia2 .0 wn
| (7.94)
Ond,lxnal Ond,,xnaz e Jtan
a (ng X ng) matrix.
Finally, we get
40 =J;' J: %t — Jiada). (7.95)

It is necessary to mention that the matrices J;, J;q and Jiq are crucial for com-
putation of the dynamic model of the PKM.

7.3.4 Examples

In this section, we present the first-order kinematic models of some PKM described
in the previous section.
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7.3.4.1 First-Order Kinematics of the Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect.7.1.2.1. For this
mechanism, one can show that the relation (7.53) can be expressed as:

%t, = [°811 %812 °$15] au, (7.96)
Oty =821 "$22] @2, (7.97)
with

. T
98y = [~dipsingi) —dizsia1 diacosqi +dizeizr 0 0 0 1]7, (7.98)

0817 = [~dizs121 dizerzr 0 0 0 1]7, (7.99)
%3=[0 0 0 o o 1], (7.100)
and

. T
9851 = [—dansingy —dysiza  dmcosqa +disciz 0 0 0 1],
(7.101)

0$22=[—d23S122d230122 0 0 O 1]T, (7.102)

where Ot, = [x Y000 ¢17, &1 = [¢11 ¢12 G137, and &> = [§21 42217, and
C12i = cos(gi1 + gi2) and s12; = sin(gi1 +gi2) (i =1, 2).

From (7.54) and the fact that the first revolute joint of each leg are actuated only,
it turns out that:

Qa1 = 411, Qa2 = 4§21,

a1 = [412 g1317, Qa2 = ¢22,
98,1 =981, 98,0 = 8,,,

98,1 =812 %8131, %840 = O$00.

The system of wrenches ¢; satisfying the Eq. (7.55) (and which are thus reciprocal
to the passive joint twists and NOT to the active joint twists) are:

e Fortheleg1,¢; =[ciz1 siz1 0 0 0 O]T,
e Fortheleg2,¢,=[ci22 siz1 0 0 0 O]T.

Let us note that ¢ is a pure force along A, A3 reciprocal to “$1, and "$;3 (and not
98,)). Taking into account that the motion is planar, this vector is uniquely defined.
—

Similarly, ¢, is a pure force along A2y A3 reciprocal to 08,5 (and not 8, 1)-
Thus, the matrices A and B of (7.60) can be written as

_[ef] e si 0 0 0 0
A_|:§2T T e s;21 0 0 0 O (7.103)
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T O
B—— [cl 0$]a 1 (0>$2J (7.104)

with, for i = 1, 2 (after simplifications),
¢! 981 = dipsingio. (7.105)

As already mentioned, the five-bar mechanism has only two DOF, which are
parameterized by the coordinates x = [x y]”. As a result, we choose the two first
components of the twist %t p as the independent velocities. Thus, O, =[x y]” and
the matrix W™ defined in the relation (7.61) as the matrix relating 0t to Ot p by
Ot, = Wm0t , is equal to

(7.106)

; 100000
o= [100000].

010000

The matrix ¥, defined in the relation (7.61) as the matrix relating °t, to Otp by
Otp = W, %, can be found from the following proof. By differentiating w.r.t. time
the constraint relationship on the platform coordinates (7.6) defined in Sect.7.1.2.1,
we obtain:

¢ (y — da2g21 cos g21) (x — dp2 cos qa1 — da1)

cos? ¢ (x — dxncosqa — da)?
_ (X 4+ dngaisingy)(y — dyasingay)

5 (7.107)

(x —dxcosqa —day)

or also, after grouping the terms
¢ = ari +ayy +agdn (7.108)
with
cos? )
ay, = ,
Y X — d22 COSg21 — d21
(y —dysingay) cos? )
ay = —

(x —dxncosqa — da1)?’

(x —da1)cosqo1 + ysinga) —doo
(x —dy cosqa1 — da1)?

a; = —dn 0s? ¢.
Finally, introducing (7.112) into (7.108), we have:

¢ = (ar +ag ji)i + (ay + a4 j2)y (7.109)
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where jiif;v is the term in the ith row and jth column of the matrix J;,, that will be
defined later.
At the end, the matrix ¥, is defined by

1 0
0 1
0 0
U, = 0 0 (7.110)
0 0
(ax +agq ji) (ay +agjpm)
As a result, the first-order IKM and FKM are given by:
%, = —A"'Bq, = Jq. (7.111)
and
do = -B7'A% =Tt (7.112)
where
A =AT, = [Cm Sm} . (7.113)
€122 S122

Now that the first-order IKM and FKM of the five-bar mechanism are computed,
let us find the expression of the passive joint velocities.
By identification between the relations (7.96), (7.97) and (7.85), we have:

i1 =841, %Jar =82 (7.114)
01! =, — 98,1411, %52 =t — 842401 (7.115)

As the matrix °J1 (°J42, resp.) is of rank 2 (rank 1, resp.), only two components
(one component, resp.) of Otf,l (9t¢2, resp.) are independent.

Projecting the matrices 03 in the frame of the link %;, (i = 1, 2), their expression
becomes

(7.116)

0d300017"
000001

Rya =R I = [

and

23 =R Jun = [0d 000 1]" (7.117)
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where
‘ c12i s12i 0
Ry = | —s12i c12: 0 | . (7.118)
0 01

In (7.116), we can see directly that the second and last rows of the matrix 234
are independent. From (7.116), the second row of 2230 is independent. Thus, by
identification between (7.116), (7.117) and (7.86), the matrices W, and W¥,, are
defined by

_ 010000 29 _ —8121C1210000
‘I’"—[oooom} RO_[ 0 0 0001] (7.119)
T, =[010000]*Ro =[-s122¢1220000]. (7.120)

Then, by straightforwardly using the Egs. (7.87)-(7.90), we obtain the kinematic
relationship:

I3 — Jiala — JiaGa = 0 (7.121)
with
—S8121 C121
Ji = | (ax +agj2) (ay +a,j3) (7.122)
—S8122 C122
d1 cos g21 + d31 0
Jia = 1 0 (7.123)
0 drp cos gy +d3n
di30 0
Ju=1110 (7.124)
0 0dx

with 7 = [¢11 121 and ¢} = [§21 ¢31 ¢22], from which we deduce:

40 =J;' 3%t — Jiada). (7.125)

7.3.4.2 First-order Kinematics of the 3-RPR Planar Parallel
Manipulator

In this section, we study only the input/output kinematic relations of the 3—RPR planar
parallel manipulator introduced in Sect. 7.1.2.2. The computation of the passive joint
velocities is not introduced and left as an exercise for the reader.
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Following the method of Sect.7.3.1, and by using the results presented in the
Appendix C.3.1, we have a matrix A equal to:

AT =t ¢, &3] (7.126)

with ¢; a unit wrench reciprocal to the unit twists of joints i1 and i3 and not to the
unit twist of joint ;2. It is a force along A;1 A;3 whose expression is given by:

1
T T
& = — [Ori.,A,g (Orpa;; x Ora; a;) ]
qi2 A
= [cosgi1 singi1 000 ya,pcosgil — xa,p singii | (7.127)
where the points A;; are described at Fig.7.5, g2 = ||rA,~]A,-3 || is the active joint

variable for leg i, whose expression is given at (7.20), xa,;p = x — djs cos(¢ + &;)
and ya,,p =y — diacos(¢ + &), di4 and &; being defined in Sect.7.1.2.2.

Moreover, as shown in the Appendix C.4.1, for any leg of the robot, $;, = $;, is
a twist representing a pure translation along the P joint direction. As a result,

1
07 _ L [o.r
$ia - qgin I: rA,']Ai:; 01X3:|

= [cos gi1 sSing;1 000 0] . (7.128)
Thus, the matrix B is equal to:
¢ og, 0 0
B=—| 0 ¢I9%,, o0 (7.129)
0 0 §3T 0$3a
with
¢r 0, =1. (7.130)

The 3—RPR planar parallel manipulator having 3 DOF in the plane (O, xo, y),
Ot, = ¥, °t, with
74 t U

100
010
000

=000l (7.131)
000

001
As a result,

Al = WA = [¢7 ¢ ¢4 (7.132)
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with
¢ = ¢l W, = [cosgi singi1 ya,pcosgil — xa,psingi]. (7.133)
Finally, we have

A%t +Bq, =0. (7.134)

7.3.4.3 First-Order Kinematics of the Orthoglide

In this section, we study only the input/output kinematic relations of the Orthoglide
introduced in Sect. 7.1.2.4. The computation of the passive joint velocities is tedious,
this is the reason why it is not detailed here but is given in:
http://www.irccyn.ec-nantes.fr/~briot/Books.html.

Following the method of the Sect.7.3.1, and by using the results presented in the
Appendix C.4 and using the fact that, when the actuator i is blocked, the leg shown
in Fig.7.8b is a UU passive system, we have a matrix A equal to:

AT =t ¢, &3] (7.135)

with

1
T T
¢ = [orgim4 Orpa x ") ] (7.136)

where the points A;j are described at Fig.7.8, and d4 = |ra;;4,, | is a constant length

—
defined in Table7.3. &; is a force directed along A;3A;4.

Moreover, for any leg of the robot, $;1 = $;, is a twist representing a pure
translation along the P joint direction. As a result,

087 =[00105.3] (7.137)
087, =100 03] (7.138)
087 =01005.3]. (7.139)

Thus, the matrix B is equal to:

] ¢T %, o 0
B=—— 0o ¢I'0s, 0 (7.140)
dy 2 ‘o )
0 0 ¢35 834

with
C{ 0$la = ZA13A14 (7141)


http://www.irccyn.ec-nantes.fr/~briot/Books.html
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¢7 "800 = XAy i (7.142)
and
¢3 830 = yapau (7.143)
in which xa;;4,4, Ya;34;,4 and za;;4,, are the coordinates of the vector OI‘A,3A,~4

expressed in the base frame.
The Orthoglide having 3 translational DOF, Ot =9, Ot, with

v, = [0:;} : (7.144)
As aresult,
Al = ¢ ¢4 ¢4] (7.145)
with
et =0 4 (7.146)
Finally, we have
A%t +Bq, = 0. (7.147)

7.3.4.4 First-Order Kinematics of the Gough-Stewart Platform

In this section, we study only the input/output kinematic relations of the Gough-
Stewart platform introduced in Sect.7.1.2.5.

Following the method of Sect.7.3.1, and by using the results presented in the
Appendix C.4.1, we have a matrix A equal to:

AT =t ... &) (7.148)

with

1 T
o = (97 e Crpag x ranag) | (7.149)
1

where the points A;; are described at Fig.7.10 and ¢;3 = || YA Az ” is the active joint

variable for leg i, whose expression is given at (7.37). ¢; is a pure force along A; A;e
which is reciprocal to all passive joint twists of the leg i (and not the active joint
twists).
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Moreover, as shown in the Appendix C.4.1, for any leg of the robot, $;3 = $;, is
a twist representing a pure translation along the P joint direction. As a result,

1
o8l = — [OriﬂAm 01><3] : (7.150)
qi3

Finally, the matrix B is equal to:

¢Fo%, o ... 0
T 0
B — 0 &5 $a ... 0 (7.151)
0 0 ...l %8,
with
¢r 0, =1. (7.152)

The Gough-Stewart platform having 6 DOF, A = A,, Otp = O, and we finally
have

A%, +Bq, = 0. (7.153)

7.4 Acceleration Analysis

7.4.1 Kinematic Constraint Relations of the Second Order

The second-order kinematic relations could be obtained by differentiating (7.62) w.r.t.
time. However, this solution may not be computationally efficient. Therefore, we
propose to use the following methodology which can take advantage of the recursive
algorithms defined in Sect.5.3. From (5.30), we can express for the chain i the
acceleration of the platform as a function of all joint accelerations of the considered
leg as:

0.
. v - — . =
°t, = [od,ﬂ =23,.4 + %y, = [8i1 ... %8, ] i + D), (7.154)

where °J, is defined at (7.53) and °b,,, = °R,”b,,, with b, defined at (5.31).
As previously, let us rewrite (7.154) by reorganizing matrix °J p; S0 that we can
group:

e in a sub-matrix °$;, the unit twists °$;; corresponding to the active joints of
velocities qg;, and

e in a sub-matrix °$;, the unit twists °$;; corresponding to the passive joints of
velocities qg;.


http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Thus (7.154) becomes
%, =84 tiai + "$ia Gai + by, (7.155)
Similarly as in Sect.7.3.1, to eliminate the passive joint accelerations ¢g; from
(7.155), Otp can be multiplied by the wrench ¢; which is reciprocal to all passive
joint twists 08,4 but NOT to the active joint twists 0$;,. As a result, the following
scalar equation can be obtained:

¢ O, = &7 %8i) G+ 27 %), (7.156)

Finally, considering all legs, Eq. (7.156) can be rewritten under the matrix form:

g; e '8 00 3 ggm
2o, | 0 & S P ¢ e (7.157)
o7 00 ..l o7 05,
Thus, by introducing (7.58) and (7.59) into (7.157), we obtain
A%, + B, =D, (7.158)
with
£ by,
b, = 2 :b”z . (7.159)
! %),

7.4.2 Forward and Inverse Second-Order Kinematic Models

7.4.2.1 Condensed Form of the Second-Order Kinematic Constraint
Relations

Let us define the vector %, as the derivative w.r.t. time of the twist °t,. Thus,
from (7.61), the following relations hold :

%, =@, %, + ¥,% & % = om0, (7.160)
Using (7.160), we can rewrite (7.158) as:

A% +Bi, =, (7.161)
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where A, = A ¥, is defined in (7.62) and

%, =, — A®, ‘.. (7.162)

7.4.2.2 Second-Order Kinematic Models of PKM Without Redundancy

Matrices A, and B being square for a PKM without actuation redundancy, the second-
order FKM is given by:

°t, = —A; ' Bijo +°by) = Jio + 2, (7.163)

with J = —A B is defined in (7.63) and a, = —A"! ®b,,. This expression is valid
as long as matrix A, is not singular. The singularity conditions of matrix A, are
disclosed in Sect.7.5.

The second-order IKM 1is given by:

iia = _Bil (Aroir + OBp) = Jinvoir + a, (7.164)

with Ji;y = —B~1A, is defined in (7.64) and a; = —-B! 05,7. This expression is
valid as long as matrix B is not singular. The singularity conditions of matrix B are
disclosed in Sect.7.5.

7.4.2.3 Second-Order Kinematic Models of PKM with Actuation
Redundancy

In that case, matrix A, being rectangular while matrix B is square, the second-order
IKM can be defined without any problem using (7.164)—as long as matrix B is not
singular—while the second-order FKM becomes:

%, = —ASBi, +°b,) =T . +a] (7.165)

—1 . . . . .
where A = (ATA,)"" AT is the pseudo-inverse of the inverse Jacobian matrix

+ _ (T 1. \" L7 . . . . .
AT, = (J iwd mv) Ji, 18 the pseudo-inverse of the inverse kinematic Jacobian

matrix Jj,, defined at (7.64) and a] = —A " OBP.

7.4.2.4 Second-Order Kinematic Models of PKM with Kinematic
Redundancy

In that case, matrix B being rectangular while matrix A, is square, the second-order

FKM can be defined without any problem using (7.163)—as long as matrix A, is
not singular—while the second-order /KM becomes:

o = —BT (A%, + ")) + (1,, —BB) &, = I, + a (7.166)
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where Bt = BT (BBT)_1 is the pseudo-inverse of the Jacobian matrix B, &, is an

arbitrary vector in the g, space (Khalil and Dombre 2002), J* = JT (JJ T)_1 is
the pseudo-inverse of the kinematic Jacobian matrix J defined at (7.63) and a(’] =

—B* %, + (1,, —B"B) &,.

7.4.2.5 Relations Between the Derivative of the Platform Twist
and the Derivatives of the Platform Coordinates w.r.t. Time

Considering as in Sect.7.3.2.5 that )'(IT, = [£ yZ¢ 6], and thus that iIT, =
[¥ ¥ Z ¢ 6 4], the rotational acceleration of the platform is given by:

%S@C(p — éS¢ + 1/:/(9:C9C¢ — (?S@S(p) — (]:59:C¢
Od)p = | ¥sgsy + Ocy + 1//£9098¢ + PspCy) — POsy (7.167)
¢+ e —OYrsy

which can be rewritten in the matrix form

¢ r(Bcocy — Psasy) — Py é
G, =D | 6 | + | ¥(Bcosy + psocy) —dbss | =D | 6 | +e  (7.168)
Ip —ég'ﬁSQ 1//

where D is defined in (7.69).
Thus, we can deduce that the derivative of the platform twist t, is equal to:

0f, = DX, + [‘e’] =Dk, +¢ (7.169)

where D is defined in (7.70).
Similar equations can be found whatever are the types of parameters.

7.4.2.6 Obtaining the Second-Order Kinematic Models
by Differentiating the First-Order Kinematic
Constraint Equations

Usually, the second-order kinematic relationships are obtained through the differen-
tiation of (7.72) w.r.t. time, which leads to:

Ak + Agx + Byl + Bag, = 0 (7.170)
from which we can get (for a non-redundant PKM)

% = Jola — A" (Auk + Buda) (7.171)
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or also

o = J7'% - B! (Aux +Buq.) - (7.172)

7.4.3 Computation of the Passive Joint Accelerations

Computation of the passive joint accelerations is necessary for the computation of
the dynamic model. Therefore, the way to compute them is defined in this section.

Once again, all joint accelerations could be obtained by differentiating (7.3) w.r.t.
time twice. However, this solution may not be computationally efficient. Therefore,
we propose to use the following methodology which can take advantage of the
recursive algorithms defined in Sect.5.3.

Let us consider the chain i of the PKM, which is composed of m; joints (Fig.7.1).
From (3.20), we can compute the acceleration of the platform at point A; ,, (that
will be denoted as f;,) as:

; 13 —O%py, . Y9, x Cw, xrps ) .
0 3 PAlm,- 0 P P PAIINi 0 .
t; = |:03 15 } t, + |: 0 ] =J, t, +d;. (7.173)

From (5.30), and as the joint located at A; ,,,; also belongs to the chain i, we also
have

0t = OFi i + “Dim, (7.174)

where ij, represents the vector of all joint accelerations of the chain i, J, m; =
R m ’J, m; 1s the chain i Jacobian matrix also found in (7.83), and Op; m; =
ORI m; mity,; m;» where imify, m; can be obtained by the recursive algorithm (5 31).

As in the Sect.7.3.3, Eq. (7.174) can be rewritten by reorganizing matrix °J; m; SO
that we can regroup:

e in a sub-matrix °J; the unit twists O$fkm, corresponding to the active joints of
velocities ¢4, and I

e in a sub-matrix °J; the unit twists 0$fkmi corresponding to the passive joints of
velocities qg;.

Thus (7.174) becomes

Oil OJt m; qz + bl m; — [OJal OJd] [gzl] + OBi m; = OJaiiiai + OJdiiidi + OBi mi
i
(7.175)


http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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or also
0,0 0 .
ay, = Jailai (7.176)
where Oa; = Oi; — Jaiiai — OBj ;-
As qg; is a vector of dimension ng; < 6, only ng; components of Oa‘p are indepen-
dent. Let us define a vector af,i of ng; independent components such that

%' = ¥,%’ = W, °t) — “Juidiai — “Dim,) (7.177)

with ¥4 a (ng; x 6) matrix defined in Sect.7.3.3. Introducing (7.160), (7.173) into
(7.177) leads to

ay =35t — Juaidiai + d (7.178)
where in and J;,; are defined in (7.88) and (7.89), and
< =, (J,,. @, %, +d; — °b; ,,,,.) . (7.179)
Introducing (7.90) and (7.178) into (7.176), then
IOt — Jigitiar + 45 = Jigitiar. (7.180)
Thus, as the platform twist/acceleration and active joint velocities/accelerations
are considered known by using the equations presented in the previous Sections, the
vector a%' is known and the joint accelerations (g; of the chain i can be found by
inverting the matrix J4; in (7.180). The conditions of singularity of matrix J,4; are
disclosed in Sect.7.5.2.
Now, considering all legs, we have

3%t — Jiatio + de = Jiaia (7.181)

with J;, J;, and J,; three matrices defined in (7.93), (7.94) and (7.92), and
d.=| : (7.182)

or also

o =3, — Jiatia +do). (7.183)
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7.4.4 Examples

In this section, we present the second-order kinematic models of some PKM desc-
ribed in previous sections.

7.4.4.1 Second-Order Kinematics of the Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect.7.1.2.1. For this
mechanism, one can show that the relation (7.154) can be expressed as:

t, = [$11 °$12 °815] d1 + by, (7.184)
%, = [°$21 °$22] > + °b,,, (7.185)

where the unit twist 0$,-j are defined at (7.96) and (7.97), in =[¥¥000¢]",
i1 = [G11 Gi2 G1317, and G2 = [G21 G2]", and

—d;2gi1 cos gi1 — dizc12i(gi1 + Gi2) —dizci2;
—di2qi1 sinqi1 — dizs12i (Gi1 + ¢i2) —d;3812i
— 0 . 0 .. .
Obpi = 0 qi1 + 0 qi2(gi1 + gi2).
0 0
0 0

(7.186)
Then, using the fapt that the wrenches ¢; are already defined in Sect.7.3.4.1, as
well as the matrix ¥{", the relation (7.161) is given by

A%t +Bi, = b, (7.187)

where the matrices A, and B are defined in (7.104) and (7.113) and
. T 0f
%, = [ClT l_"’l] (7.188)

From (7.187), the second-order FKM and IKM can be straightforwardly defined.
Then, starting from the fact that the relation (7.174) for the five-bar mechanism
is already defined in (7.184) and (7.185) by assimilating the fact that, fori = 1, 2,

o 0t =0,
o OJim, =811 9812 9813]. OJom, = [°821 9822].
. Ob,-mi = Obpi,
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the passive joint acceleration given by the relation (7.183) can be straightforwardly
computed as
o =3, 3t — Juida +do) (7.189)

where the matrices J;, J;, and J4 are given in (7.122)—(7.124) and
c
d, = [dg] (7.190)
d;

withd¢ = ¥, (J, ¥, °t, + d; — Ob; ;) in which the matrices ; defined in (7.119)
and (7.120).

7.4.4.2 Second-Order Kinematics of the Orthoglide

The second-order kinematics are tedious, this is the reason why they are not detailed
here but are given in:
http://www.irccyn.ec-nantes.fr/~briot/Books.html.

7.5 Singularity Analysis

In the present Section, we will deal with the problem of singular configurations of
PKM. The aim of the information given below is not to present a straightforward way
to analyze and find the singularity of a PKM, but to show the most current singular
configurations that we can meet, and above all, to disclose information about the
configurations that impact the robot dynamic model.

For a complete and comprehensive discussion about the singularity problem, the
reader is referred to Conconi and Carricato (2009) and Zlatanov et al. (1994a, b).

7.5.1 Input-Output Singularities

The first kind of singular configurations we will analyze are those that we call input-
output singularities. They can be defined through analysis of the input-output kine-
matic relationship described in (7.62), from which three main types of singularity
can be defined (Gosselin and Angeles 1990):

e when matrix B is rank-deficient: such kind of singularity is called a Type I sin-
gularity.? In such singularities, the PKM loses the ability to move along one (or
more) direction of the workspace, i.e. a motion of the actuators does not lead to
the displacement of the robot platform (Fig.7.18).

3They are also called serial singularities in some works because it is similar to the singularities of
serial robots. However, in the present book, a serial singularity has another meaning.
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Fig. 7.18 Example of a
parallel robot (here, a
five-bar mechanism) in a
Type 1 singularity

Fig. 7.19 Example of
parallel robot (here, a
five-bar mechanism) in a
Type 2 singularity

to move along
this direction

22

Uncontrollable
motion along
A this direction

e when matrix A, (as well as matrices A and Ay) is rank-deficient: such kind of

singularity is called Type 2 singularity.* In such singularities, the PKM gains one
(or more) uncontrollable motion, i.e. it becomes shaky. Kinematically speaking,
there can exist a non-null vector t; defined such that A,t; = 0 (which means that
t; is in the null space of A,) while ¢, = 0, i.e. the actuators are fixed (Fig.7.19).
Statically speaking, the robot cannot resist an external wrench applied on the plat-
form. This can be easily proven as follows.

Let us consider a virtual platform twist t* linked from (7.62) to the virtual joint
velocity ¢ by

Ati+Bq; =0 (7.191)
which, in the case of PKM without kinematic redundancy can be rewritten as

Q= -B At = Jinth (7.192)

4They are also called parallel singularities in some works. However, we do not want to use this

term because it may concern also the constraint singularities and thus may be confusing.
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Let us now consider a wrench w, applied on the PKM platform. The vector w;
denotes the components of w/, corresponding to the independent coordinates of t;'.
In the absence of any other effects, the wrench w, leads to the robot input efforts
7. So, the power conservation states that:

qlr=t"w, (7.193)
which can be rewritten as, from (7.64)

Tyt =tTw,. (7.194)

iny
Thus,
J t=-AlB Tt =w,. (7.195)

As A, is rank deficient in Type 2 singularities, J;,, is also singular. Thus, this
means that there can exist a non-null input effort vector T corresponding to a
null wrench w,.. Thus, the linear system (7.195) has an infinity of solutions and the
robot is not in equilibrium. Another consequence is that in the neighborhood of the
singularity, the active joint efforts T may increase considerably as their expression
is proportional to the inverse of the determinant of A,A!, which is close to zero
in that area.

Note that a similar proof can be given for the kinematically redundant PKM.

e when matrices A, and B are simultaneously rank-deficient: such kind of singularity
is called Type 3 singularity and are a combination of both Type 1 and Type 2
singularities. For such configurations, the mechanism loses locally the ability to
move along one (or more) direction of the workspace and gains one (or more)
uncontrollable motion along another direction.

7.5.2 Serial Singularities

The second kind of singular configurations we will analyze are those that we call the
serial singularities, i.e. the singularities that are due to the degeneracy of the leg i
configuration only. Type 1 singularities are a particular case of serial singularities.
If the leg i meets such a configuration, the matrix °J; ,,, of (7.83) becomes rank-
deficient.
From (5.7) and (7.83), the matrix °J; ; has the following form:

i =080, 082, .8} (7.196)
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Fig. 7.20 Case 1 of serial Actuator 3

singularity: in that case, the N Robot moving platform
axes of actuators 1 and 3 are
aligned and if g1 = —¢3 (g;
being the velocity of the
actuator i), actuator 1 and 3
motions do not lead to a
platform motion

Robot fixed base

where 0$fkmi is a unit twist parameterizing the displacement of the leg’s tip (expressed
in the reference frame .%;) when the joint located at A;; is moving only. Thus,
singularity conditions appear when the basis B; defined by the unit twists
{0$§Imi 0$§%71i .. .0$§Z‘;} is degenerated.

Let us rewrite this basis into two sub-bases written under a matrix form as: B; =
{Biu Big}: [OJai 0Jd,'],where Bia : %34 groups the columns of °J; m; corresponding
to the active joints and Biz : °J4 the columns corresponding to the passive joints.
Three cases can then be met:

e Case 1: the sub-system °J,; is rank-deficient (this also corresponds to the degen-
eracy of the matrix J,,; in (7.87) and, as a result, to the degeneracy of the matrix
Ji in (7.91))—in that case, a displacement of the active joints of the leg does
not necessarily bring a displacement of the end-effector along one given direction
(Fig.7.20). We will call them Leg Active Joint Twist System (LAJTS) singularities.

e Case 2: the sub-system °J; is rank-deficient (this also corresponds to the degen-
eracy of the matrix J,4; in (7.87) and, as a result, to the degeneracy of the matrix
Jwa in (7.91))—in that case, a displacement of the passive joints of the leg does
not necessarily bring a displacement of the end-effector along one given direction.
Moreover, in such configuration, the leg instantaneously gains an uncontrolled
motion (Fig.7.21). Later in the book, we will call them Leg Passive Joint Twist
System (LPJTS) singularities.

e Case 3: the system [OJai OJdi] is rank-deficient, while the systems 0y, and0J; are
not—in that case, a displacement of any types of the leg joint does not necessarily
bring a displacement of the end-effector along one given direction (Fig. 7.22). Such
singularities are usually similar to the Type 1 singularities (see Sect.7.5.1).

It will be shown later that the degeneracy of the system °J; lead to the degeneracy
of the PKM dynamic model.
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Fig. 7.21 Case 2 of serial
singularity: in that case, the
actuator being fixed, the leg
gains one internal mobility
and the motion of the passive
joints does not lead to a
platform motion

Fig. 7.22 Case 3 of serial
singularity: in that case, the
motion of all joints does not
lead to a platform motion in
the vertical direction
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Uncontrolled
internal motion

Robot fixed base

Loss of motion
ability along this

direction

Robot moving platform

7.5.3 Other Types of Singularities

Other types of singularities appearing for lower-mobility PKM (for which ngr < 6),
such as the constraint singularities (Zlatanov et al. 2002), can also appear. They are
due to the degeneracy of the constraint wrenches applied on the platform by the legs
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and lead to the apparition of uncontrollable motions of the platform. They are quite
analogous to Type 2 singularities. However, their main specificity is that, in con-
straint singularities, the mobility of the platform is changed. For example, if a robot
with three translational DOF encounters a constraint singularity, the uncontrollable
motion will be a rotation of the platform.

They have been discovered for the first time on a 3—U PU mechanism with special
arrangement of the U joints.

Constraints singularities are not the last case of singularities that a PKM can meet
(see for example Amine et al. 2012a) but all such types of singularities are not crucial
for the dynamic model computation and are therefore out of the scope of our book. As
mentioned above, for a complete and comprehensive discussion about the singularity
problem, the reader is referred to Conconi and Carricato (2009) and Zlatanov et al.
(1994a, b).

7.5.4 Finding Robot Singular Configurations

For simple robots (see Sect. 7.5.6), the singular configurations can be found by ana-
lyzing the conditions of vanishing the determinant of the corresponding Jacobian
matrices (in the case where they are square). However, such kind of analysis can
be rapidly complicated and other methods should be preferred. Note that the singu-
larity conditions of matrix B in (7.62) are usually simple and do not require more
complicated analysis.

There exists two main methods in the literature that allows one to find robot sin-
gular configurations: the Grassmann geometry and the Grassmann-Cayley algebra.
The next Sections present brief summaries of both methods. However, first of all,
we define a methodology for finding the unit wrenches ¢ which are the rows of the
matrix A in (7.58) and that represent the wrenches applied by the legs on the platform
when the actuators are developing an input effort in a static mode of operation and
in absence of any other type of external effects (Bonev 2002).

7.5.4.1 Computation of the Static Wrenches Applied by the Legs
on the Platform

Let us consider the robot leg i whose kinematic Jacobian matrix is given at expres-
sion (7.196). As mentioned above, the columns of °J; ,,, = [03%’_ 0$fzml_ . 0$§2§]
are unit twists which compose a basis B; and that can be divided into two sub-systems
B; , (which regroups the twists corresponding to the active joints) and B; 4 (which
groups the twists corresponding to the passive joints).
Let us denote as & .; the system of wrenches defined such as:
¢l 0gik =0 (7.197)

im;
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fork =1, ..., m;. Wrenches ¢ .; are reciprocal to all unit twists of the leg i and are
defined as the constraint wrenches applied by the legs on the platform.
Let us now denote as ¢, ; the system of wrenches defined such as:

¢ %Ju=0 (7.198)

where J; is defined in Sect.7.5.2 and groups the columns of °J; m; corresponding
to the passive joints. Vectors ¢,; are reciprocal to the unit twists of the leg i due
to the passive joints. By definition, ¢,; = {¢.; ¢,;}, where ¢,; are defined as the
actuation wrenches, i.e. the wrenches applied by the leg i on the platform when its
actuators are developing an input effort in a static mode of operation and in absence
of any other type of external effects (Bonev 2002).

C,i» 1 = 1,...,n, are the vectors representing the rows of matrix A and is
reciprocal to all unit twists of the leg i, except those corresponding to the active
joints. Examples of computations of vectors ¢ ,; and £ .; are given in Appendix C.

7.5.4.2 Basics of Grassmann Geometry

The use of the Grassmann geometry is based on the fact that the rows of matrix A
in (7.60) (or the columns of matrix OJ,'ml. in (7.196)) are unit screws which can be
seen as a Pliicker representation of lines.

Using the Pliicker representation, a line .Z can be represented by a direction vector
u and a moment (given w.r.t. any frame, e.g. here %) ro,m X u, where M is any
point belonging to the line .. Thus:

[ u ] (7.199)

oo X u

which corresponds typically to the expression of a screw (see Sect.3.1) and
Appendix C.

If k Pliicker vectors are linearly independent (which may correspond to the linear
dependency of k rows of matrix A or also k columns of matrix °J; m;)> they will span
a variety with dimension k < 6. The idea of Grassmann geometry is to show that
the linear dependency of Pliicker vectors induced geometric relations between the
corresponding lines.

The varieties of dimension 1 and 2, which are quite common and easy to use for
PPM, are defined as follows:

e Variety of dimension I: it is represented by a single Pliicker vector.
e Variety of dimension 2: it is spanned by:

— (2a) either two lines that are skew, i.e. that do not intersect and are not parallel,

— (2b) or by more than two lines that are (i) all parallel or (ii) are lying in the
same plane and are intersecting in a single point. Such conditions are called flat
pencil of lines.
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e Variety of dimension 3: it is spanned by:

— (3a) a regulus, i.e. a set of lines able to intersect three other skew lines,

— (3b) the union of two flat pencils having a line in common but lying in distinct
planes and with distinct centers,

— (3c) all lines through a point,

— (3d) all lines in a plane.

e Variety of dimension 4: it is spanned by:

— (4a) an elliptic congruence: the variety is spanned by four skew lines such that
none of these lines intersect the regulus generated by the other three,

— (4b) a hyperbolic congruence: all the lines intersect two given skew lines,

— (4c) aparabolic congruence: all the lines belong to the union of three flat pencils
of lines, in different planes but with a common line.

— (4d) a degenerate congruence: all lines lie in a plane or meet a a common point
that lies within that plane.

e Variety of dimension 5: it is spanned by:

— (5a) a non-singular complex: generated by five skew lines,
— (5b) a singular complex: all the lines meeting one given line.

For more explanations, the reader is invited to read (Merlet 1989, 2006b).

7.5.4.3 Basics of Grassmann-Cayley Algebra

The Grassmann-Cayley algebra was developed by H. Grassmann as a calculus for
linear varieties operating on extensors with the join “v” and meet “A” operators.
The latter are associated with the span and intersection of vector spaces. Grassmann-
Cayley algebra makes it possible to work at the symbolic level, and therefore, to
produce coordinate-free algebraic expressions for the singularity conditions of SPM.
For further details on Grassmann-Cayley algebra, the reader is referred to Ben-Horin
and Shoham (2006, 2009), Kanaan et al. (2009) and White (2008).

In order to use the Grassmann-Cayley algebra, we need to build a system of screws
composed of at least 6 screws. However, for lower mobility PKM, i.e. PKM with
Ndof < 6, the system of wrenches ¢,; (i =1, ..., n) composing the matrix A is not
of dimension 6. Thus, in order to be able to use that tool, we need to complete the
system of wrenches by adding the constraint wrenches ¢.; (i = 1, ..., n) defined
at (7.197).

Let us denote as W = [¢, ¢ ] the matrix composed of {, = [, .--¢,,] and
¢.=1[&.1...8.p] Letus consider first that W is a (6 x 6) matrix. The superjoin of
the six wrenches composing W corresponds to the determinant of W up to a scalar
multiple, which is the superbracket in Grassmann-Cayley algebra (White 2008).
Thus, a singularity occurs when this superbracket vanishes. The superbracket is an
expression involving 12 points selected on the six lines (for which the six wrenches
represent the Pliicker coordinates) and can be developed into a linear combination of
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24 bracket monomials (Ben-Horin and Shoham 2006), each one being the product
of three brackets of four projective points:

24
[ab, cd, ef, gh, ij, kIl =>y (7.200)

i=1
where

y1 = —[abed][efgi][hjkl] y, = [abed][efhi][gjkl] y3 = [abcd][efgj][hikl]

y4 = —[abed][efhj][gikl] ys = [abce][dfgh][ijkl]] ys = —[abde][cfgh][ijKI]
y7 = —[abef][degh][ijkl] ys = [abdf][cegh][ijkl] yo = —[abce][dghi][fjkl]
yio = [abde][cghi][fjkl] y;; = [abcf][dghi][ejkl] yi> = [abce][dghj][fikl]
y13 = —[abdf][cghi][ejkl] yi4 = —[abde][cghj][fik]] yi5 = —[abcf][dghj][eik]]
vie = [abdf][cghj][eikl] y;7 = [abcg][defi][hjkl] y;3 = —[abdg][cefi][hjKI]
y19 = —[abch][defi][gjKl] y20 = —[abcg][defj][hikl] y>; = [abdh][cefi][gjkl]
y22 = [abdg][cefj][hikl]  y,3 = [abch][defj][gikl] y»4 = —[abdh][cefj(]7[g2igi])
In (7.200), the notation ab denotes the line passing through the points of homoge-
neous coordinates a and b, while in (7.200), the notation [abcd] (called a bracket)
is for the determinant of the (4 x 4) matrix whose columns are composed of the
homogeneous coordinates a, b, ¢ and d. As a result, [abed] represents the volume
of a tetrahedron passing through the points of homogeneous coordinates a, b, ¢ and
d and it vanishes if and only if those points are coplanar.

The used points for computing the bracket [abed] can be in real space or on a plane
at infinity. In that case, the last component of the homogeneous coordinate vector is
equal to zero and the representation of that point is similar to the representation of a
vector in the homogeneous representation (see Sect.2.1).

In the case where the matrix W is not a square matrix, the problem must be
divided into k sub-problems, by defining the k possible (6 x 6) matrices W’ that
regroup subsets of columns of matrix W and by making the intersection of the found
solutions.

The smart definition of the points whose coordinates are represented in the super-
bracket al.lows the simplification of its expression (Amine et al. 2012a; Ben-Horin
and Shoham 2006, 2009; Kanaan et al. 2009). Note that, to simplify the use of the
Grassmann-Cayley algebra, a Matlab interface has been proposed in Ben-Horin et al.
(2008).

7.5.5 Finding Robot Serial Singular Configurations

As the columns of the matrix °J; m; are unit screws which can be seen as a Pliicker
representation of lines, the methods proposed in Sect.7.5.4 can be applied to find
serial singularities.
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7.5.6.1 Singular Configurations of the Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect.7.1.2.1. From the
analysis of its input-output kinematic relations defined in Sect.7.3.4.1, we can see

that:

e Type 1 singularities (when matrix B defined at (7.104) is rank-deficient) appear
when gj» = 0 or m, i.e. when the leg is full stretched or folded. An example of
such type of singularity for the five-bar mechanism was provided in Fig.7.18.

Table 7.8 List of references dealing with the singularity problem of some interesting SPM

Type of DOF? Robot name References

2TIR Zero-torsion PKM Briot and Bonev (2008)

3T Delta Di Gregorio (2004b)
Orthoglide-like family® Pashkevich et al. (2006)
3-UPU Zlatanov et al. (2002)
Pantopteron Briot and Bonev (2009b)

3R Agile Eye Boneyv et al. (2002b)
3—RSS wrist Di Gregorio (2004a)
3-UPU wrist Di Gregorio (2003)
other types of spherical SPM Bonev and Gosselin (2005b)

Gosselin and Sefrioui (1992)

3TIR Quattro/Par4 Nabat (2007)
H4, 14, 14L Company and Pierrot (1999)
PAMINSA Briot et al. (2008)
MacGill SMG Alizadeh (2009)
Quadrupteron Kong and Gosselin (2011a)
Pantopteron—4 Briot and Bonev (2010)
4-RUU Amine et al. (2011)

3T2R 5-RPUR Amine et al. (2012b)
Verne Machine Kanaan (2008)

3T3R Gough-Stewart platform family Ben-Horin and Shoham (2006, 2009)

Husty and Karger (2000), Merlet
(1989)

Innocenti and Parenti-Castelli (1992)

Hexa family (6-RUS/ 6-PUS)

Same approach as for Gough-Stewart
platforms

Hexapteron

Seward and Bonev (2014)

In that column, the symbol “;TjR” denotes that the considered mechanism has i translational
DOF and j rotational DOF
bOrthoglide-like family regroups all 3 T robots with linear actuators mounted onto the base (whatever
is their orientation) followed by passive legs of the Orthoglide type (Fig.7.8)
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e Type 2 singularities (when matrix A, defined at (7.113) is rank-deficient) appear

when q11 4+ q12 — q21 — g22 = 0 or 7, i.e. when the points A2, A3 and Ay; are
aligned. An example of such type of singularity for the five-bar mechanism was
provided in Fig.7.19.
It can be also shown that, when g11 + q12 — q21 — q22 = 0 or 7, there exists a
non zero vector t; = [—sin(g11 + q12) cos(q11 + qlz)]T such that: Aty = 0. tg
is orthogonal to the direction defined by the line passing through the points Ay,
A1z and Ajp and represents the direction of the uncontrollable motion inside the
singularity (Fig.7.19).

For the five-bar mechanism, there are no other types of singular configurations.

7.5.6.2 Further Readings

The singularities of all PPM have been deeply studied in Bonev (2002), Bonev et al.
(2003) and Briot et al. (2008).

Moreover, the Table 7.8 presents a list of papers dealing with the singularity prob-
lem of some interesting SPM. It should be mentioned that this list is far from being
exhaustive but only presents SPM quite often met in the literature. For a longer list
of references, please visit the website of Merlet (2014).



Chapter 8
Dynamic Modeling of Parallel Robots

Abstract In this chapter, we present the computation of the dynamic models of
redundant and non-redundant parallel robots. In order to obtain the inverse and direct
dynamic models, first, all closed loops must be virtually opened to make the platform
virtually disassembled from the rest of the structure which becomes a tree structure
with all joints actuated. The dynamic model of the tree structure and of the free
platform is then computed using a systematic procedure based on the Newton-Euler
principle, that makes it possible to reduce the computational complexity of the model.
Then, the loops are closed using the loop-closure equations and the principle of virtual
powers. As a matter of fact, after an introductory section, this chapter will present an
effective way to compute the dynamic models of the tree structure robots. Then, the
computation of the dynamic models of redundant and non-redundant parallel robots
is investigated. Other types of models are also detailed, such that the energy models
and the ground reaction models. The chapter ends with a section on the computation
of the base dynamic parameters of parallel robots. The dynamic models of some
examples of parallel robots are detailed and compared with experiments.

8.1 Introduction

The work on the dynamics of parallel manipulator started with the dynamic analy-
sis of Stewart platforms (Fichter 1986; Hoffman and Hoffman 1979). Those stud-
ies mostly dealt with either the oscillation or the inverse dynamics problem under
very simple frameworks. Later, other works presented more elaborated analysis to
solve the dynamic modeling of parallel manipulators using different mechanical for-
malisms. For example Lee and Shah (1988), Geng et al. (1992), Lebret et al. (1993),
Ait-Ahmed (1993), Bhattacharya et al. (1997, 1998), Liu et al. (2000), Abdellatif
and Heimann (2009), Gugliemetti and Longchamp (1994) and Miller (2004) used
Lagrange-Euler formalism. The principle of virtual work has been used by Codourey
and Burdet (1997) and Tsai (2000). On the other hand, Newton-Euler equations
have been used by Sugimoto (1989), Reboulet and Berthomieu (1991), Ji (1993),
Gosselin (1993), Dasgupta and Choudhury (1999), Dasgupta and Mruthyunjaya
(1998a, b). However, recently, Fu et al. (2007), Vakil et al. (2008), Carricato and
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Gosselin (2009) and Afroun et al. (2012) have pointed out common errors in many
methods related to parametrization and instantaneous kinematic behavior of the legs.
These errors may cause kinematic and dynamic miscalculation. The aim of this chap-
ter is to present (i) a systematic procedure that provide the full dynamics of rigid
bodies, taking into account all the dynamics of the legs and the platform and (ii) to
highlight the effect of singularities.

This chapter is based on the works (Briot and Arakelian 2008; Briot and Gautier
2014; Khalil and Guégan 2004; Khalil and Ibrahim 2007). It gives a simple and
general closed form solution for the inverse and direct dynamic models of parallel
robots. Four types of models will be investigated:

e the Inverse Dynamic Model (IDM) that provides actuator torques and forces in
terms of active joint positions, velocities and accelerations. It is described by:

7 = idm (G, Gas Qa» We) (8.1)

where

— v is the vector of the input efforts (torque in the case of a revolute actuator, force
in the case of a prismatic actuator), i.e. the efforts produced by the actuators for
moving the mechanism along the trajectory defined by (¢4, 44, qa),

— W, is the system of wrenches applied by the robot on the environment.

We call Eq. (8.1) the inverse dynamic model because it defines the system input
T as a function of the output variables (4, 44, qs)- This form of model which is
expressed in terms of Lagrangian variables (joint variables and their derivatives) is
called “Lagrangian Model”. The Euler model makes use of the Eulerian variables
(linear and rotational Cartesian velocities and accelerations).

e the Direct Dynamic Model (DDM) that provides active joint accelerations as a
function of the input effort and the active joint positions and velocities. It is de-
scribed by:

Go = ddm(qq, qa, T, We) (8.2)

o the Ground Reaction Model (GRM) that computes the wrench w, transmitted on

the ground by a moving robot as a function of its active joint positions, velocities
and accelerations. It is described by:

W = grm(4a, 4a, qa> We) (8.3)

e the Energy Model that computes the robot’s total energy as a function of its active
joint positions and velocities. It is described by:

H=E+U, E=Ea ), U=U(qa) (8.4)

where H is the total energy, E is the kinetic energy and U the potential energy
(see Sect.6.1).
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The IDM and DDM of robots play an important role in design and control. For
robot design, the IDM can be used to select actuators (Chedmail and Gautier 1990;
Germain et al. 2013; Potkonjak 1986), while the DDM is employed to carry out
simulations that test the performance of the robot and to study the relative merits of
possible control schemes. Regarding robot control, the /DM is used to compute the
actuator efforts, which are needed to achieve a desired motion (Khalil and Dombre
2002). It is also used to identify the dynamic parameters that are necessary for both
control and simulation applications (Gautier 1986; Gautier and Briot 2011a, b, 2012;
Hollerbach et al. 2008; Khalil et al. 2007b).

The GRM is less known but can be used to identify the robot dynamic parame-
ters (Ayusawa et al. 2008; Raucent et al. 1992) or for design purpose in shaking
force and shaking moment balancing (Briot and Arakelian 2009; Briot et al. 2012a;
Foucault and Gosselin 2004).

Finally, energy models can also be used to identify the robot’s dynamic para-
meters (Gautier 1997; Gautier and Briot 2013) or for design purpose or trajectory
planning to reduce the robot’s energy consumption (Ur-Rehman et al. 2009).

To obtain the desired equations for the IDM and DDM of PKM, we will use a
method proposed in (Ibrahim and Khalil 2010). The main idea for the /DM compu-
tation is to decompose the problem into two steps:

1. first, all closed loops are virtually opened to make the platform virtually dis-
assembled from the rest of the structure (Fig.8.1b); each leg joint is virtually
considered actuated (even for unactuated actual joints) so that the robot becomes
a tree structure and a free body: the platform. The dynamic model of the tree
structure and of the free platform is then computed using a systematic procedure
based on the Newton-Euler principle, that makes it possible to obtain

7, = idm;(4;. qr, qr, Wr) (8.5)
wy, = idm,(t,, t,, X, W,) (8.6)

where idm; represents the /DM of the tree structure, idm,, the IDM of the plat-
form, q; are the joint coordinates of the tree structure, and t,, X, are the platform
twist and pose, w; is the system of wrenches applied by the tree-structure robot
on the environment and w, is the system of wrenches applied by the free platform
on the environment.

2. then, the loops are closed using the loop-closure equations presented in Sect. 7.3—
that relate t,, and q; to ¢,—and the Lagrange multipliers presented in Sect. 6.1 4.1

Computation of the DDM is a bit different, even if obtained in a similar manner,
and is based on calculation of the inertia matrix and vector of Coriolis, centrifugal
and gravity effects of its virtual structure. The way to compute it will be detailed
later.

IFor closing the loops, the PVP could also be used.
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Fig. 8.1 A general parallel (a) Mowving platform
robot (the gray circles denote
the actuated joints).

a Kinematic chain (A j; k is
the joint j of the leg k, and
my is the total number of
joints for the leg k). b Virtual
tree structure and free
moving platform

Fixed base 4,

As a result, the present chapter is organized as follows:

e Section 8.2 introduces a systematic formulation based on the NE principle for the
computation of the dynamics of tree-structure robots; this formulation is optimized
so that the number of operators “+”, “—", “x” and *“/” used for computing the
models is minimized.

e Section 8.3 presents the dynamic model of the free moving platform;

e Sections 8.4 and 8.5 present the computation of the dynamic models of:

1. non-redundant PKM,
2. PKM with actuation redundancy.

Note that the computation of the dynamic models of PKM with kinematic redun-
dancy is obtained in the same way as for non-redundant PKM.



8.1 Introduction 143

e Section8.6 presents the computation of the robot energy and ground reaction
models.

e Section 8.7 presents the computation of the robot base dynamic parameters which
constitute the minimal number of parameters needed to compute the dynamic
models.

8.2 Dynamics of Tree-Structure Robots

It is straightforward to get expressions of the IDM, inertia matrix and vector of
Coriolis/centrifugal/gravity/friction effects of any tree-structure robot “by hand”.
This will be of course tedious, but in such a case, the simplest method is probably to
use the Lagrange equations which state that:

d (aL\" (oL
n=—(—) - (= (8.7)
dr \ 9q; aq;
where L; is the Lagrangian of the virtual tree-structured robot.
In the present section, we prefer to give an efficient Newton-Euler formulation

based on a recursive algorithm which allows for decreasing the computational com-
plexity of the model.

8.2.1 Newton-Euler Formulation for Computation of the
Inverse Dynamic Model

Letus consider the tree-structure of the general PKM presented in Sect.7.1.1 obtained
when disassembling the platform from the rest of the robot and by virtually actuating
all passive joints (Fig. 8.1b). This tree-structure is made of n legs (see Fig. 8.1a), each
leg being a kinematic chain (which is serial or tree-structure type most of the time,
but can also be composed of closed-loop sub-chains) composed of m; — 1 links
connected by m; joints located at points A;;. The jth link of the leg i will be denoted
in what follows as the link %;;. Moreover, the joint located at point A;; will be
parameterized by the variable g;;.

Let us recall from Sect.6.2 the NE equations giving the total forces X'f;; and
moments X'm;; on link %;; at the origin O;; of frame .%;;:

Xfij =mijvij + "")ij X ms;; + ;; X (W;; X ms;;)
2m;; = IO,-J-(:‘)ij +ms;; X V;j + o;; X (IO,-jwij) (8.8)
in which:

e V;; is the acceleration of the origin of the frame .%;;,
e w,;; is the rotational velocity of body %;;,
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e ®;; is the rotational acceleration of body %;;,

e ms;; is the vector of the first moment of inertia which represents the mass of the
body %;; multiplied by the position of its , w.r.t. frame .%;; (see Sect.6.1.2),

° Iol-j is the inertia matrix expressed at O;; defined in Sect.6.1.2.

The inverse dynamic model of a tree-structure can be obtained by using two re-
cursive algorithms sequentially (Khalil and Kleinfinger 1987; Luh et al. 1980).

Forward recursive computation: To compute Xf;; and ¥m;; fori = 1,...,n
and j = 1,...,m;, using (8.8), we need v;;, w;; and ®;;. Let us denote as link
%1 the antecedent of link 28;;. The velocities are given by the recursive Eqgs. (5.18)
and (5.19) rewritten hereafter as:

Ywij =Yy +0ij Yaij gij 8.9)
y y . y N
Yvij =i+ YRy (Cwy x rij) +oij Vagg gij (8.10)

where il = a(ij).
Moreover, the accelerations are given by the recursive Eqgs. (5.27)—(5.29) rewritten
hereafter as:

U6 =Ry ey + 615 (Vai; Gij +Tou x Vagj ij) (8.11)
Ui =Ry (i + 10y Trij) + 01y (Tayj Gij + 2% en x Vagj ¢ij)  (8.12)

With . B . . .
My =@+ "6y ey (8.13)

The initial conditions for a robot with a fixed base are wg = 0, %@y = 0, Ovy = 0
and %vy = 0.

Finally, we compute the expressions of X'f;; and X'm;; given in (8.8) and we
project them into the frame .%;;.

Backward recursive computation: Let us suppose that the notation ik denotes
all the links such that a(ik) = ij (Fig.8.2). An algorithm for computation of the
dynamic model is based on writing for each link 2;;, for j = m;, ..., 1, for all i,
the NE equations at the origin O;;, as follows (Fig.8.2):

ij ij ij i i
T2t =" =D Uty +my; g =i,
k
ijzmij = ijmij - Z (inik *my + ey x ijfik) +ms;; X Vg — ijmei,
k
(8.14)
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Fig. 8.2 Forces and
moments on link %;;

where

L4 l]rik zfj'rO,'jOik’ -

® ms;; X l"g = rO,‘jS,‘j X mijljg,

e f;; and m;; are the reaction force and moment, respectively, exerted by the body
;1 on the body %;; at point O,

e fi; and m;; are the reaction force and moment, respectively, exerted by the body
% on the body Z; at point Oy,

° feij and m,,; represent the force and moment exerted by link %;; on the envi-
ronment. Their values are assumed to be known, or at least to be calculated from
known quantities.

We can cancel the gravity terms from Eq. (8.14) and take into account their effects
by setting up the initial linear acceleration such that:

%% = —Vg. (8.15)
Thus, using Eq. (8.14), we obtain:

ijf,'j = ijEf,'j + Zi'/fik + ijfel.j

k
ijmij = ijZ‘mij + z (inik ikmik + ijl‘,‘k X ijf,‘k) + ijmeij. (8.16)
k
This backward recursive algorithm is initialized by ‘™if; j,+1) = 0 and

imim; (m;i+1) = 0, the body %, ,,,; being a terminal body of the tree-structure.
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Finally, the joint effort 7 ;;; (each joint is considered virtually active, see Sect.8.1)
can be obtained by projecting V/; j or m; j on the joint axis, depending whether the
joint is prismatic or revolute respectively.

Practical form of the VE algorithm: Since Ioij and ms;; are constants whenreferred
to their own link coordinates, the NE algorithm can be efficiently computed by
referring the velocities, accelerations, forces and moments to the local link coordinate

system (Luh et al. 1980). The forward recursive equations becomes, fori =1, ..., n,
j=1,...,m;:
Yy =Ry ey (8.17)
Yaij =" +6ij Yaij gij (8.18)
U =Ry "oy +aij(Vay Gij +Teu x Tay ¢ij) (8.19)
Yij =R (i + "0y Mgy + 035 (Tayj Gij + 27 0 x Yayj dij)  (8.20)
U0 =+ é; Y éy; (8.21)
st =miUvi + YU Yms;; (8.22)
Y rmij = 1o, 6 + Umsi; x Ui + e x ('710,.]. ffmij) . (8.23)

For a stationary base, the initial conditions are 0wy =0,% ) = 0and Ovy = —Og.

The use of /U, saves 21n, multiplications and 6n, additions (n, = > m;)
in the computation of the inverse dynamic model of a general robot (Khalil and
Kleinfinger 1986).

The backward recursive equations, for j = m;, ..., 1, for any i are:
Uty =S8+ D g+ Ve, (8.24)
k
il =Ry VE; (8.25)
Umy; =V 2m;; + Z (inik Fmy + Uy x ijfik) +Ym,, (8.26)
k
T4, = (o3 Ui + & Tm)T Uay;. (8.27)

The previous algorithm can be numerically programmed for a general tree struc-
ture robot. Its computational complexity is O (n;), which means that the number of
operations is linear in the number of degrees of freedom. However, as we will see in
Sect. 8.7, the use of the base inertial parameters in a customized symbolic algorithm
considerably reduces the number of operations of the dynamic model.



8.2 Dynamics of Tree-Structure Robots 147

Note that:

e The symbol iy, j means ij ROOV,- j» and not the time derivative of iy, -

e Asmentioned in Sect.4.1, we use 0;; = 2 to define a fixed frame .%;; with respect
to .%;;. In that case, ¢;; and §;; are set to 0 and 6;; is not defined. Moreover, 7, i
defined at (8.27) has no physical meaning and should not be calculated, whereas
the velocity and acceleration equations can be used after eliminating the terms
multiplied by o;; and o;;.

8.2.2 Considering the Inertia of Actuators

The kinetic energy of the rotor (and transmission system) of actuator ij is given by
the expression %I aijc}izj. The inertial parameter /a;; denotes the equivalent inertia
referred to the joint velocity. It is given by:

lajj = Nj; Im; (8.28)

where Im;; is the moment of inertia of the rotor and transmissions of actuator ij,
Nijj is the gear transmission ratio of joint ij axis, equal to Ni; = qm,;/qij where gm;;
denotes the rotor velocity of actuator i j while g;; denotes the joint ij velocity. In the
case of a prismatic joint, /a;; is an equivalent mass.
In order to consider the rotor inertia in the dynamic model of the robot, (8.27)
becomes N N Ny
Ty = (0ij ”f,’j + 0ij l]ml'j)T ”a,-j + 1a;jjgij (8.29)

Note that such modeling neglects the gyroscopic effects of the rotors, which take
place when the actuator is fixed on a moving link. However, this approximation is
justified for high gear transmission ratios. For more accurate modeling of the rotors
the reader is referred to (Chedmail et al. 1986; Llibre et al. 1983; Murphy and Ting-
Yung Wen 1993; Sciavicco et al. 1994) where the rotor is considered as a body
articulated on the link on which it is fixed.

8.2.3 Considering Friction

Friction plays a dominant role in limiting the quality of robot performance. Non-
compensated friction produces static error, delay, and limit cycle behavior (Canudas
de Wit and Aubin 1990). Many works have been devoted to studying friction torque
in joint and transmission systems. Various friction models have been proposed in
the literature (Armstrong 1988, 1991; Canudas de Wit et al. 1989; Dahl 1977). In
general, three kinds of frictions are noted: Coulomb friction, static friction, and
viscous friction.
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Fig. 8.3 Friction model (a)  Tr (b) Tri

(c) i (@ Ty

- 4 - 4

/

The model based on Coulomb friction assumes a constant friction component
that is independent of the magnitude of the velocity. The static friction is the torque
necessary to initiate motion from rest. It is often greater than the Coulomb friction
(Fig. 8.3a). The viscous friction is generally represented as being proportional to the
velocity, but experimental studies (Armstrong 1988) have pointed out the Stribeck
phenomenon that arises from the use of fluid lubrication. It results in decreasing
friction with increasing velocity at low velocity, then the friction becomes propor-
tional to velocity (Fig. 8.3b). A general friction model describing these components
is given by:

Trij = fsisign(dij) + fvijdi; + (Fsij — fsi)sign(dij)e 191 (8.30)

In this expression, 7;; denotes the friction torque of jointij, f's;; and fv;; indicate
the Coulomb and viscous friction parameters respectively. The static torque is equal
to fsyijsign(gij)-

The most often employed model is composed of Coulomb friction together with
viscous friction (Fig. 8.3c). Therefore, the friction torque at joint ij is written as:

Trij = fsijsign(qi;) + fvijqij- (8.31)

This friction model can be approximated by a piecewise linear model as shown in
Fig.8.3d.
In order to consider the friction effects in the dynamic model of the robot, (8.29)
becomes N N N
T4y = (o i+ 6 Tmi)" Vag; + Tagjgi; + Ty (8.32)
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Remark on the Friction Models

In Robotics, we usually made the assumption that the terms fs;; and fv;; in the
model (8.31) are constant. Of course, in reality, this is not the case as they should
vary as a function of the load in the joints (Hamon et al. 2010; Leonesio and Bianchi
2009).

However, this assumption is made usually for two main reasons:

e the obtained model is linear and thus simpler to use,
o for robots with accelerations lower than the acceleration of the gravity field, the
load in joints is mainly due to the gravity effects and its variation is quite small.

8.2.4 Computing the Vector of Coriolis, Centrifugal, Gravity
Effects, Friction and External Wrenches

As mentioned in Sect. 6.1.1, for any rigid robot, the IDM can be written in the form
(Khalil and Dombre 2002):

Ty
T = = idm; (G, qr, q;, We) = M;(q,)4; + ¢ (qr, 4r) (8.33)

T thmy

where ¢, groups all joint variables, M;(q;) is the inertia matrix of the robot tree-
structure and ¢;(qy, q;) is the vector of Coriolis, centrifugal, gravity effects, friction
and external wrenches.

Computation of the inertia matrix M, (q;) and vector ¢;(q;, q;) of the tree structure
is important for obtaining the DDM of the PKM. Therefore, in the present section
and the following one, procedures for computing them are given.

By analyzing the expression (8.33), we can deduce that T, = ¢;(q;, q;) if ¢, = 0.
As a result, the simplest and most effective way to obtain the vector ¢;(q;, q;) is to
run Egs. (8.17)—(8.27) by imposing q; = 0.

In the next section, the computation of the inertia matrix is investigated.

8.2.5 Computing the Inertia Matrix

The inertia matrix can be calculated one column at a time, using NE IDM Eqgs. (8.17)—
(8.27) (Walker and Orin 1982). From relation (8.33), we deduce that the rth column
of M; isequal to 7, if, fors = 1, ..., n;.

iit = U, q[ =07 g:(), fes :01 meS :0 (834)

where u, is an (n; x 1) unit vector with 1 in the rth row and zeros elsewhere. Iterating
the procedure for r = 1, ..., n; leads to construction of the entire inertia matrix.
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To reduce the computational complexity of this algorithm, we can make use of its
base inertial parameters and its customized symbolic techniques. Moreover, we can
take advantage of the fact that the inertia matrix M; is symmetric. A more efficient
procedure for computing the inertia matrix using the concept of composite links is
described below (Khalil and Dombre 2002; Walker and Orin 1982).

8.2.5.1 Inertial Parameters of a Composite Link

The composite link %l"’ is composed of link %;; and of the links supported by
link %;; (Fig.8.4). The idea is to compute, using the well-known Huygens-Steiner
theorem, the first and second moment of inertia of this link %’f as a function of the
inertial parameters of all the links composing it and of the joint variables.

The inertial parameters of the composite link %’; can be calculated using the
following recursive algorithm:

1. Initialization: for j =1, ..., m;, for any i:
ijy+ i oot e, +
JIO,- jIOlJ’ Jmsij_ Jms;;, mj; = mij.
2. Initialization: for j = m;, ..., 2, for any i: We recall that i/ is the number of the

link that is antecedent to link %;;;

i+ _ il iR R, il = il ot HpT o+
Ip, ="1p, +"Rj IO,-,- R;; [r] ms;; —|—( Fij msj) ]—i— Bt

ijMij
(8.35)
Ims = sll—i—’lR,]’/ms + Tr;; m;; (8.36)

(8.37)

Yz

i ite i +
Fig. 8.4 The composite link %; y
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8.2.5.2 Computation of the Inertia Matrix

We have seen above that the rth column of the inertia matrix M; can be computed
by the Newton-Euler inverse dynamic algorithm by setting §; = u,, ¢, = 0,g = 0,
f,, =0andm,, =0fors =1,...,n;, where u, is an (n, x 1) vector with a 1in
the rth row and zeros elsewhere.

Under these conditions, the forward recursive equations of the NE inverse dynamic
(Sect.8.2.1) are only applied to link %{;

T =0, "oy =0, "v;=0, "f; =0, "Xm;; =0, forl < (8.38)

i i; = 0 (8.39)
U = 6i" ay; (8.40)
Uvii = oi;" a;; (8.41)

VEtij = mf i+ Ve x Ymsf (8.42)

VEmy; =15 Ve +Ums; x Ui, (8.43)

We deduce that:

e if joint ij is prismatic (ijd)ij =0and ij\"ij =100 119), then:
- 7
i 5f,; = [o 0 m,.j] (8.44)
, T
YEm;; = [my;]r —mx; 0] (8.45)
e if joint ij is revolute (Vv;; = 0 and Y @;; = [0 0 1]7), then:
» T
i = [—myi“; ma; 0] (8.46)
- T
YXm;; = [xz;; yz;; zz;;] . (8.47)

The recursive backward computation starts by link %;; and ends with link %;1,
where a(i1) = 0. The algorithm is given by the following equations:

e if joint i is prismatic, then:
iy y T
g, = o = [0 0 m*;] (8.48)
iy . T
Ym;; =" Ym;; = [myj; —mx:; 0] (8.49)

M,(I’l,’j, n,‘j) = m:; + Ia,-j (8.50)
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where M, (n;;, n;;) denotes the elements of the n;;th row and n;;th column of the
matrix My, n;; being the position of the variable ¢;; in the vector q;.
e if joint ij is revolute, then:

. iy T
g, =15 = [—my; ma; o] (8.51)
iy - T
Ymj; =Y Xm;; = [xz;; yz;; zziﬂ (8.52)
M,(n,-j,n,'j) =ZZZT;+ICZ,'/'. (8.53)
Then, the following equations are computed for u = ij, a(ij), a(a(ij)),...,il,
where a(il) = 0:
a(u)fa(u) = a(u)Ru ufu (854)
‘W, =19R, “m, +Wr, x WOt (8.55)
M; (Ma@)» 1)) = Oa@) ““fawy + Ga@y ““Ma)’ ““aga, (8.56)

na(u) being the position of the variable g, () in the vector q,.
Note that:

o the element M, (n;;, n;;) of the inertia matrix is set to zero if link Z;; does not
belong to the path between the base and link %;;;

e this algorithm provides the elements of the lower part of the inertia matrix. The
other elements are deduced using the fact that the inertia matrix M; is symmetric.

8.2.6 Automatic Computation of the IDM, Inertia Matrix and
Vector of Coriolis, Centrifugal/Gravity/Friction Effects

In order to finally obtain symbolic equations for the model with a minimum number of
operations, the following method is used. First, the rigid kinematics of each element
are modeled using the modified Denavit-Hartenberg notations (Sect.4.2). Then, the
customized algorithms defined in Sects.8.2.1, 8.2.4 and 8.2.5 are run.

For each computation, the elements of a vector or a matrix containing at least one
mathematical operation are replaced by an intermediate variable. This variable is
written in an output file which contains the model. The elements that do not contain
any operations are not modified. The obtained vectors and matrices are propagated
in the subsequent equations. Consequently, at the end, the models are obtained as
a set of intermediate variables. Those that have no effect on the desired output can
be eliminated by scanning the intermediate variables from the end to the begin-
ning. With this procedure, it is also possible to know the exact number of operators
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necessary for computation of the model. These algorithms have been successfully
implemented with Mathematica (Khalil and Creusot 1997) and are now freely avail-
able in Python (Khalil et al. 2014).

8.3 Dynamic Model of the Free Moving Platform

The dynamic equations of a free moving platform are given by the NE Eq.(6.35)
rewritten here as

W — £, | _[mpls ms| Vp‘— g], [@px (0, xms,)| [
p m, ms, I, o, 0, x I,w),) m;x’
=M,t, +c¢, (8.57)

where

m is the platform mass,

ms,, is the vector of the fist moment of inertia of the platform,

I, is the matrix of inertia for the platform,

tg = [v; w[T,] is the platform twist, while fg = [Vg (Iog] represents the platform
acceleration,

o wl = [f] m]]is the total wrench applied by the platform,

o Wit T =f o T m! T is the interaction wrench applied by the platform on the

environment,

e M,, is the platform inertia matrix,

e ¢, is the vector of Coriolis, centrifugal, gravity and external effects for the platform
(the gravity forces can be eliminated from ¢, by adding —g to fp).

8.4 Inverse and Direct Dynamic Models of Non-redundant
Parallel Robots

The dynamic equations of the virtual tree structure (Sect. 8.2) and of the free moving
platform (8.57) do not take into account the closed-loop characteristics of paral-
lel robots: among all joint and platform coordinates q; and x of the virtual robot
(Fig.8.1b), resp., only a subset denoted as q, is independent in the real robot (the
actual actuated joints positions, that are indeed a subset of q,). All these variables
are linked through the loop-closure equations of the real robot defined in Sect.7.3
that will be used to define a set of Lagrange equations based on the use of Lagrange
multipliers (Sect.6.1.4).
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8.4.1 Inverse Dynamic Model

8.4.1.1 Prerequisite Notions

Before computing the PKM IDM, it is necessary to note the two following things:

e By identification between (6.1), which gives the general form of the Lagrange
equations, and (8.33), which gives the general form of the IDM of the virtual tree
structure, we have:

. , d (L \" [oL,\"
T, =M () +¢(qr, q) = — _t (== (8.58)
dr \ 9q; aqy

where L, is the Lagrangian of the virtual tree-structured robot. We decompose the

. T .
vector T, into two sub-parts 7, and 7,4 defined such as T, = E; [rm]’ with E;
td

a square matrix of dimension n; which is used to sort the vector t; so that:

o o d L \" oL\ L
Tra = Mia(qy) iu +¢a(qs, Q) = — - = idm (qy, qr, qr, Wr)

dr \ 94, 9qq
(8.59)
i . d oL \" caL\" ..
Tid = My (qr) ga +ctd(qtsql‘)=7(%) —(7[) = idmy(q,, 47, q¢, Wr)
qq dr \ 0qq 0qq
(8.60)

where

— Tyq 18 a (n, x 1) which corresponds to the virtual input efforts of the virtual
structure in the joints corresponding to the actuated joints of the real parallel
robot,

— Tyq is a (ng x 1) which corresponds to the virtual input efforts of the virtual
structure in the joints corresponding to the passive joints of the real parallel
robot,

- M;, is a (n, x ny) matrix and M,y is a (ng X n,) matrix,

— ¢4 1s a vector of dimension n, and ¢4 is a vector of dimension ng.

M;, and M, are defined such that

M;q

M; =E. |:Mtd

]EZ < EIME, = miﬂ (8.61)

¢;, and ¢;4 are defined such that

¢, =E, [cf"} S Ele = [C’“} . (8.62)


http://dx.doi.org/10.1007/978-3-319-19788-3_6
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Please note that E; can also be used to sort the vector ¢, so that
El§ = [gd] & G =E, [9“} : (8.63)

e Byusing the PVP and the Eq. (7.61) that links, for a PKM with alower mobility (i.e.
a spatial robot with less than 6 DOF), the independent platform twist coordinates
0t, to all the twist components Otp by Otp = ¥, %, we can prove that:

O¢x T 0 _04xT O
t) =g

W, w, &0 T Wl Oy, = 0¢ T Oy, (8.64)

or also, by identifying the terms of the right-hand side of the equation,
Ow, =idm, (i), t,, x,, w,) = 7 w, (8.65)
where “w, represents the independent components of the platform wrench ‘w P

Moreover, by using (7.71) which states that Ot, = ﬁ,)’(, where X is the vector of
the independent platform coordinates, we can prove that:

0 T Oy, =T 7, & x* ' D, ‘w, =x*" 7, (8.66)
or also, by identifying the terms of the right-hand side of the equation,
1,=D w, &%, =D, 1, (8.67)
where ﬁrT is a square and invertible matrix and,
1 I I

in which L, is the Lagrangian of the free moving platform.

8.4.1.2 Computation of the Inverse Dynamic Model
By considering the two constraints relations (7.62) and (7.91) which state that:
A%t +Bq, =0 (8.69)

3% — Jiaa = Jiada, (8.70)


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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we can now use the Lagrange equations with multipliers (see Sect. 6.1.4) (or directly
the PVP) to obtain the IDM of the PKM as:

=1, +I W, + 31y = [1,, JT]El 7, + 37w, (8.71)

where T is the (n, x 1) vector of the real robot input efforts, the matrix J is defined
in Eq. (7.63) as
J=-A"'B (8.72)
and, by using (7.95), we get
Jo =T33 3 = Jia). (8.73)

In these expressions,

T, is the vector of the virtual tree structure input efforts provided in Sect. 8.2.

Ow, is the wrench of the free platform expressed in the base frame .% and given

at (8.65).

e E. is a matrix ordering the vector 7, into two sub-parts 7, and 7,4 and is defined
at (8.61).

e J is the PKM kinematic Jacobian matrix defined in (7.63), J = [8°t,/8q,].

e J:, J:;s and J;4 are defined in (7.93), (7.94) and (7.92), respectively.

Equation (8.71) shows that the torque of the actuated joints of the closed loop is
the sum of 7,, and the projection of 7,5 and Ow, on the joint axes via the rules of
the transpose of the Jacobian matrix.

Proof
Let us first rewrite (8.69) as

Agk +Bi, =0 (8.74)

where, from (7.76),
Aq=A,D, oralsoA, = A,D, . (8.75)

Moreover, let us also express (8.70) as a function of x:
IDr X — Jiaa = Jrada. (3.76)

Using (8.74) and (8.76) in combination with the Lagrange equations with multi-
pliers, we have

BTX JT)» ith id ( . ) d dL; r dL; T

T=Tia — — with 74 = 1dm, Qs qr,We) = — | — - —

ta 1 ta™?2 ta aqr, qt, 4z, We A 94a
(8.77)

T T
N d (oL, dL,
Tp:AdX] _DrJt lz Wlth'l'p:a(g — W (878)
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. L d (oL \"  (oL\T
1 = 3fha wit vg = iamg i v = 5 (5) - (Ger) (8.79)

where A1 is a first vector of Lagrange multipliers of dimension n,, and A, is a second
vector of Lagrange multipliers of dimension n4. Their physical meaning is disclosed
below. .
Left multiplying Eq. (8.78) by D, , we get:
D,"Alx, —D.'D J'2, =D, "1, (8.80)
Now introducing (8.67) and (8.75) into (8.80), Eq. (8.78) can be rewritten as
ATA =T =Ow,. (8.81)

Thus, we have the new set of equations

T=1,4—-B'A —JI 0, (8.82)
Ow, = ATx; —JT2, (8.83)
T = I\ (8.84)

which is simpler to explain in terms of physics than the previous set (8.77) and (8.78).
Please note that:

e In the case of a PKM without redundancy, matrix Al is square and can thus be
inverted as long as there are no Type 2 singularities (see Sect.7.5.1),

o Jer is always square and can thus be inverted as long as it is not singular (see
Sect.7.5.2).

Indeed, the physical meaning of the Eqgs. (8.82)—(8.84) is the following:

e For Eq. (8.84): first, we must recall from Sect.7.3.3 that the matrix J;4 is the
kinematic Jacobian matrix which links the displacement of the leg extremities to
the displacement of the passive joints. Thus, from Sect. 6.4, we can see that the
vector A; is composed of all wrenches applied by the virtual tree-structure by its
terminal links on the platform in points A; ,,; when the joints corresponding to the
passive joints of the real robot are moving (Fig.8.5),

e For Eq. (8.83): this equation represents the platform equilibrium equation. The
wrenches A, are projected towards the platform controlled point through the use
of the matrix J ,T . Moreover, as explained in Sect. 7.3.1, the column i of the matrix
AT is a unit wrench which is proportional to the wrenches applied by the leg i
on the platform when its actuator is developing an input effort in a static mode
of operation and in absence of any other type of external effects. Thus, A are the
norm of those wrenches. So, Eq. (8.83) represents the platform equilibrium so that
the virtual structure can have the same motion as the real parallel robot.


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 8.5 Platform Mowving platform (free body)
equilibrium
1 “Rp
4, ; > x Y ) 4,
1 n
ﬁ P m
1(m1-1) A. An(m -1)
p im; W
A, oA,
4, 4,
A nl

Fixed base A,

From (8.84), the values of A, can be found:

)"2 = Jt_dTTtd = Jt_dTidmd (tilv ql‘a q, W[). (885)
Then, introducing (8.85) into (8.83), we have

ATh =, + 3700 =W, + 373 11

er=AT (Ow, +J7 J;dTr,d) . (8.86)
Finally, the IDM of the PKM is given from (8.82) and (8.86) by:

T=1,— BN = I,
ST =Ty — BTAr_T (Owr + J,TJ,_dT‘ttd) - J,TaJt_dTrtd

ST=10+I W +ATI —TDI v
& T=10+3 W, + I 110 (8.87)
Note that the matrix J; defined in (8.73) is the matrix that allows us to express
the passive joint velocities ¢4 as a function of the active joint velocities q, only. This

can be proven as follows.
Let us recall that, from (7.91), we have

3% — Ji0la = Jiada (8.88)

From (7.63), we also have
Ot = Jqa- (8.89)


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Introducing (8.89) into (8.88), we obtain
JidQa = J1 J4a — JiaQa = (J: J — J1a)la (8.90)

which leads to
Q=30 T - T = Jada. (8.91)

8.4.2 Direct Dynamic Model

The DDM of the PKM which expresses the input joint accelerations ¢, as a function
of the input efforts 7 is given by

o =M '(q0) (7 — €(qa. 4u) | (8.92)

where

M(q.) = [1na JT | ETMLE, [le] +JT e 'M, ¥, J (8.93)

is the inertia matrix of the PKM, and

. 0
¢(qa- 4a) = [1na J7 ] BT (c, +ME, [ ”;JID +I7 @] M, a] + )

(8.94)

is the vector of Coriolis, centrifugal, gravity and external effects of the PKM, in
which
as=J '+ Ja) (8.95)

and )
a =W, a + %%, (8.96)

Moreover, in these expressions,

e ‘M p 1s the inertia matrix of the free platform and O¢ p is its vector of Coriolis,
centrifugal, gravity and external effects expressed in the base frame .%. They are
defined from (8.57) by

'M, = °R,"M, R, (8.97)
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(PM,, being a constant matrix) and
0 _0p pr
¢, = RpP¢, (8.98)

in which OEI, is the (6 x 6) rotation matrix between the frames .7, and .%.

e M is the inertia matrix of the virtual tree structure and ¢, is its vector of Coriolis,
centrifugal, gravity and external effects. Their expression is provided in Sect. 8.2.

e E; is an ordering matrix defined at (8.61).

e J; is defined in (8.73) and is the matrix that allows expression of the passive joint
velocities g as a function of the active joint velocities q, only.

e ¥, is a (6 x ngor) matrix defining the independent coordinates of the platform
twist (see Eq. (7.61)).

e J is the PKM kinematic Jacobian matrix defined at (7.63).

e a;, J;, J;s and d. are defined in (7.163), (7.93), (7.92) and (7.182), respectively.

Proof
To obtain the DDM of the PKM, we first need to develop the IDM equations in order

to obtain an expression in the form:

T = M(qu)Gs + ¢(qa, qa)- (8.99)

So, starting from (8.71), let us decompose the expression into two sub-terms 7
and T, such as

T=11+1 (8.100)

with
71 = [1,, JT]El 7, (8.101)

and
75 = J O, (8.102)

Let us first concentrate on the term 7. Introducing (8.58) into (8.101) leads to
11 = [1,, IV EL My + ). (8.103)
Then, from (8.63), we deduce that
71 =1, JT]El (M,Ef [gﬂ +c,) . (8.104)
Equation (7.183) states that

da =3, 3t — Jiao +do) (8.105)


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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which can be expanded by introducing (7.163) into it as
o =34 U Jda + ) — Jialia + do) =35/ AT = Tidiia + T,/ @de + Jiay).
(8.106)
Then, from (8.73), we deduce that
Ga = Jala +ag (8.107)

with ag = J, ' (d + Joa,).
Introducing (8.107) into (8.104), we get

1, |.. 0, «
7y =[1,, JT]ET (M,ET ([J;} dq + [ o 1]) —i—ct)
1,] . 05,
= (1, 3F1ETME [ 1, 97767 (v, [ 4.
(8.108)

Let us now consider the term 7,. Introducing (8.65) first and then (8.57)
into (8.102) leads to

7 =JT0! Ow, = JT 9T O°M,%, +Oc)). (8.109)
Then, from (7.160) and (7.163), we have
%, = ¥, % + ¥, % = ¥, Ji, +a, wherea, = ¥, a, + ¥, %,  (8.110)
which can be introduced into (8.109) in order to obtain
72 =370 OM, (¥, Ji, +a) + °c)) 8.111)

or also
7 =30 'M, ¥, J4, + 7! M, a] +c)). (8.112)

By summing (8.108) and (8.112), we obtain
T=M(, +c¢ (8.113)

with
lna

M = [1,, JI]EIME, |:Jd

} +J el ™M, v, J (8.114)
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and
0,
¢ =1, JI]ET (ct +M,E, [ :;1}) +J7®l M, a) +%,).  (8.115)

Finally, the DDM in (8.92) can be obtained by solving the Eq.(8.113).

8.4.3 Examples

8.4.3.1 Example 1: The Five-Bar Mechanism

Let us deal here with the example of the five-bar mechanism (Fig. 7.3). Its MDH pa-
rameters, geometric and kinematic models have been presented in Sects.7.1.2.1,
7.2.2.1,7.3.4.1,7.4.4.1 and will be reused in the present example.

To follow the approach presented in the present Chapter, let us first virtually open
the closed loop to obtain a virtual tree-structure robot which is presented in Fig. 8.6.
The obtained virtual robot is composed of:

e one 3R serial planar robot composed of the links %, %> and %3 with all joints
active,

e one 2R serial planar robot composed of the links %,; and %,;, with all joints
active.

Both of the chains are fixed on the ground denoted as the body %,. Moreover, the
end-effector is modeled by a punctual mass.

Computation of the IDM: Following the approach proposed in Sect.8.2.1, we can
prove, using the developed symbolic form, that the IDM of the 3R serial planar branch
of the first leg is given by:

(b)

Fig. 8.6 The planar five-bar mechanism (the gray pairs denote the actuated joints) and the corre-
sponding virtual tree-structure. a Kinematic chain of the real robot. b Virtual tree structure (virtually
opened)
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T, = 2211RrG11 + 2z212(G11 + G12)
+ diamx12 (2411 + q12) cos 12 — 12(2411 + G12) sing12)
+ diamy12 (2411 + G12) singi2 + g12(2411 + §12) €08 q12)
+ fsusign(@i) + fviigu (8.116)

Ty, = 2z12(G11 + G12) + diomxy2 (51'11 cos g1z + ¢ sin qu)

+ diamyr2 (61'11 sin g12 — ¢ cos 6]12) + fsi2sign(gi2) + fvizgiz (8.117)

Ty = fs138ign(q13) + fvi3q13 (8.118)

where
zz1R = 2z11 + Lay + dimi (8.119)

and d» is given in Table7.1.
For the 2R serial planar branch of the second leg, we can prove that the IDM is
given by:

Try, = 2221RG21 + 2222(G21 + §22)
+ daamx2z ((2G21 + G22) €08 22 — G22(2421 + ¢22) Sing22)
+ daomy2 (2421 + G22) sin g2z + G22(2G21 + ¢22) €08 G22)
+ fsarsign(ga1) + fv21421 (8.120)

Try, = 2222(G21 + G22) + doomxp ((']'21 cos g2 + ¢3, sin 6]22)

+ doomyn (521 sin g2y — 43, cos qzz) + fs2osign(g22) + fv22g2n (8.121)

where
2221R = 2221 + lag) + d3mpn (8.122)

and d»» is given in Table 7.1.
Note that:

e forthe 3R serial planar robot, the last body %3 is a virtual body which is considered
massless as that body has been added to close the loop,

e for both chains, the term /a;; is canceled for the passive joints as such terms
concern only the real active joints.

Supposing that a desired trajectory (X, X, X) for the terminal point is given, the
corresponding variables g1, gi2, and g;3 and their derivatives are computed using
the geometric and kinematic models presented in Sects.7.1.2.1, 7.2.2.1, 7.3.4.1 and
7.4.4.1.
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For this robot, the end-effector is a punctual mass fixed on body %,,. The dynamic
model of the end-effector (denoted as the body %4) is given by:

Owl =my[¥50000] (8.123)

or in the reduced form, by keeping only the non-null components

Ow, = T0wT = m, [’y“] (8.124)
where W, is defined at (7.110) and X and ¥ are given by the desired trajectory.

Following the procedure described in Sect. 8.4.1, the IDM of the five-bar mecha-
nism is given from Eq. (8.71) by:

T = [g] =10+ 3" W, + 1 704 (8.125)

where

Ow, is given in (8.124),

Tia = [Ty, Ty 17 is given in the Egs.(8.116) and (8.117),

Tid = [Try Ty 7,17 is given in the Eqgs. (8.116) and (8.117),

J = —Ar_lB can be obtained from the Egs. (7.104)—(7.113),

o J,= J;il J:J — J:4) can be obtained from the Eqs. (7.122)—(7.124).

Computation of the DDM: Following the approach proposed in Sects.8.2.4
and 8.2.5, or by a direct analysis of the Eqs.(8.116) and (8.117), we can prove
that the IDM of virtual tree-structure can be written in the following matrix form:

T, = M;(q)q; + ¢ (qr, qr) (8.126)
where ] = [q11 q12 921 922 923),
My M0 0O 0
M5 zz120 0 0
M;(q;) = 0O 000 O (8.127)
0 0 0 Myy Mys
0 0 0Ms4zz
with

Mi1 = zz11R + 2212 + 2d1omx12 cos 12 + 2d12my12 sin g2 (8.128)

My = M) = zz12 + diamx1acos g1 + diomyi2 singi2 (8.129)
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My = zz21R + 2202 + 2dopmx12 €08 g22 + 2danmy2) Sin g2 (3.130)
Mys = Ms4 = 2220 + dromx22 cos g2 + dyppmyr) singo (8.131)

and ¢;(q;, 4;) = [c1 ¢2 ¢3 ¢4 cs5]” with

c1 = — diomx12412(2411 + ¢12) singp2
+ d12my12G12(2q11 + 412) cos q12
+ fs1sign(gin) + fviign (8.132)

2 = dipmx1247; sin gz — diamy1241, €08 qi2 + fsi2sign(di2)+ fvizgiz (8.133)

c3 = fs13sign(qi3) + fvi3qi13 (8.134)

¢4 = — dpmx22G22 (221 + G22) singa
+ doamyng22 (2421 + G22) c0s g2

+ fso1sign(ga1) + fv21421 (8.135)

5 = dypymxands singrn — dypmynds, cosqn + fsnsign(¢n) + fvadan.
(8.136)
Then, by noticing that 7,, = [t 17 and T;4 = [T, Try Trs]’ and that
qf =[q11 g21] and (15 = [q12 q13 g22], the sorting matrix E; can be defined such

that
10000

00010

E.=]01000 (8.137)
00100
00001

The dynamic model of the end-effector which is a punctual mass can be put in
the matrix form:

P
Ow, ="M, | 5 |+, (8.138)
041
where
OM, = my 1o 024 (8.139)
b 0452 04x4 '

and Ocp = 0px1.-
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Following the procedure described in Sect. 8.4.1, the inertia matrix and Coriolis,
centrifugal, gravity effects, friction and external wrenches of the five-bar mechanism
is given from Egs. (8.93) and (8.94) by:

1
M =L, JJ]ETM,E, [Jz] +J7M, J (8.140)
with 'M, = &7 'M,, ¥, = m41, and
c=[1, JT]E! (c, + ME, [0;;1]) +J7w" Oc, +0,) (8.141)

with %c, = M, a = 0.
In these equations,

o Ow, is given in (8.124),

e U1 is givenin (7.110)

o J= —Ar_lB can be obtained from the Eqgs. (7.104)—(7.113),

o Ji= Jt_d1 J:J — J:a) can be obtained from the Eqs. (7.122)—(7.124),
e a; can be deduced from the Eq. (8.96),

e a; from the Eq.(8.95).

Finally:

o = [?“] =M ' (r—¢) (8.142)
i1

Experimental validation of the model: Let us now validate experimentally the
IDM of the five-bar mechanism presented in Fig.8.7.

Fig. 8.7 The prototype of
planar five-bar mechanism
used for the experimentation,
and designed at IFMA
(Clermont-Ferrand, France)
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For this mechanism, the constant geometric parameters given in Table7.1 and
Eq. (7.7) are:

] d11 =-0.14 m, d12 =0.213 m, d13 =0.1878 m,
e d); =0.14m, dyy =0.213 m, dpz3 = 0.1878 m.

Its dynamic parameters have been calculated using identification procedures de-
tailed in (Briot and Gautier 2014; Gautier et al. 2013). Their values are:

o zz11g =2.11-102 kg m?, fv; = 6.76 Nm/s, fs1; =2.94 Nm,

e 7712 = 2231073 kg m?, mx15 = 0.012 kg m, my;» = Okgm, fvio = 0N m/s,
fs12=0Nm,

e fvi3=0Nm/s, fs;3=0Nm,

e zz21r =2.24- 1072 kgm?, fvy; = 6.75 N m/s, fs31 = 2.95Nm,

o 7707 =2.44.107 kg m2, mxy; = 0.012 kg m, myz»» = 0kgm, fvi, = 0Nm/s,
fs20=0Nm,

e my = 0.272 kg.

So now, let the robot move on the trajectory shown in Figs. 8.8 and 8.9.

To validate the model, we compare the robot input torques with those predicted
by the model. The comparison is shown in Fig.8.10. It can be shown that the error
between the prediction and the measure is very small.

8.4.3.2 Example 2: The Orthoglide

Let us treat here the example of the Orthoglide (Figs.7.7 and 7.8). Its MDH para-
meters, geometric and kinematic models and kinematic Jacobian matrices useful for
the dynamic model computation have been presented in Sects.7.1.2.4 and 7.2.2.4.

Fig. 8.8 Cartesian
displacement (scaled) the
five-bar mechanism

Trajectory



http://dx.doi.org/10.1007/978-3-319-19788-3_7
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http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Due to the symbolic complexity of the Orthoglide IDM and DDM, they are not
detailed here, but are given in (using customized symbolic techniques):

http://www.irccyn.ec-nantes.fr/~briot/Books.html
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Fig. 8.10 Measured and
computed torques of the
five-bar mechanism (the
torques are expressed in joint
side units, not on the motor
side)
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Table 8.1 Dynamic parameters of the Orthoglide with non-null values and explicitly appearing in

the dynamic model (SI units)

Param. Val. Param. Val. Param. Val.

my 1.32 my) 1.25 ms) 6.26- 107!
lay 7.13 lay 7.13 las 7.82

v 79.70 fvor 100.00 fvai 79.40

fsi 3.21 fsa1 3.23 fs31 2.21

fs12 0.00 fs2 0.00 fs32 1.28

XX13 8.69-107% | xxn3 8.69-107% | xx33 8.69-107°
Y13 7911073 | yyx 7.91-1073 | yys3 7.91-1073
2213 7911073 | zz03 791-1073 | zz33 7.91-1073
mxi3 3.81-107%  |mxp3 3.81-107% | mx33 3.81-1072
mi3 2461071 mo3 2.46-107! ms3 2.46-1071
fs14 1221073 | fso4 0.00 s34 0.00

me 5.13.107!
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Its standard dynamic parameters have been estimated using identification proce-
dures detailed in (Briot and Gautier 2014; Gautier et al. 2013). The parameters with
non-null values and explicitly appearing in the model are given in Table 8.1. In that

Table, the body % is the moving platform.

So now, we make the robot move on the trajectory shown in Figs.8.11 and 8.12.
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Then we compare the robot input torques with those predicted by the model.
The comparison is shown in Fig.8.13. It can be shown that the error between the
prediction and the measure is very small: thus the model is accurate.

8.5 Inverse and Direct Dynamic Models of Parallel Robots
with Actuation Redundancy

The dynamic model of PKM with actuation redundancy has a particularity. To better
understand it, let us consider the simple example shown in Fig. 8.14. This mechanism
with 1 DOF is moved using two actuators mounted in parallel that can apply, on the
moving body of mass m, two independent forces denoted as f; and f>. For moving the
mechanism, there exists an infinity of possible forces to apply, e.g. [ f1 f2] = [mx 0],
or also [f; f2] = [0 mX] and even [f; f2] = 0.5[mX mX] or many other force
combinations [ f1 fo] = mxX[(1 —«) a] (@ € R) such that f; + f» = mx. The
function n = | fi — f2| = |(1 — 2«) mX| is called the overconstraint and represents
the additional forces in the system that do not impact the motion but add internal
constraints in it.

The infinity of possible solutions for IDM of PKM with actuation redundancy
is the particularity of such type of mechanisms. Let us now understand the way to
compute it.

8.5.1 Inverse Dynamic Model

Contrary to the PKM without actuation redundancy, in the two constraints rela-
tions (7.62) and (7.91) which state that:

At +Bq. =0 (8.143)
3%t — Jialla = Jiada- (8.144)
Fig. 8.14 A simple parallel — f
mechanism with actuation
redundancy
m

—»fé
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The matrix B is square of dimension (n, X n,), and the matrix A, is of dimension
(ng X ngor), while the matrices J;, J;o and J;4 being still of respective dimensions
(ng X ngor), (ng x ng) and (ng x ng). We should remark here that the dimensions
of the rectangular matrix A, relates to the second case of Lagrange equations with
multipliers defined in Sect. 6.1.4.

Thus, the IDM of the PKM with actuation redundancy can be written as:

JI' v =Ow, +J7

v 12(2%

Ta + I t0 =", + [JT JT]ET, (8.145)

nv

where T is the (n, x 1) vector of the real robot input efforts, the matrix
Jinw = —B7'A, (8.146)
is defined in Eq. (7.64) and
I =34 Q= Tiadim). (8.147)

In these expressions,

e 7, is the vector of the virtual tree structure input efforts whose expression is
provided in Sect. 8.2.
Ow, is the wrench of the free platform expressed in the base frame .% and given
at (8.65).

e E; is a matrix ordering the vector t; into two sub-part T, and 7;4 and is defined
at (8.61).

e J;,., is the PKM inverse kinematic Jacobian matrix defined at (7.64).

e J;, Ji; and J;4 are defined in (7.93), (7.94) and (7.92), respectively.

Matrix JZ.T,W having more columns than rows, there is an infinity of solutions for

T that can satisfy (8.145). All those solutions are given by:

ot I On ) + ()] e

123%

where J ITnV+ is the pseudo-inverse of J iTnV and p is an arbitrary vector in the T space
which is called the overconstraint. If n = 0, we get the solution for T with the
minimal norm. This solution is usually kept as it leads to a minimal power energy
consumption for a given set of active joint velocity ¢,. However this is not always
the case as a proper use of the overconstraint  can help, for instance, increasing
the acceleration or payload capacities (Nahon and Angeles 1989) or reducing the
backlash in the joints of the robot (Miiller 2005).

Note also that, even if (8.145) is not valid when B is singular, the singularity of
B does not impact (8.148) in which there is no inversion of that matrix.


http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Proof

For PKM with actuation redundancy, the Eqgs. (8.82)—(8.84) are still valid. Let us
rewrite them for reason of clarity of the demonstration. We thus still have

T=1,4—-B"A I, (8.149)
Ow, = ATx; —JT2y (8.150)
g =J 0. (8.151)

In these equations, the matrices B and J;4 are still square and invertible, as long as
the robot does not encounter any singularity. Thus, they can be inverted to compute
the value of the Lagrange multipliers A; and A,. As a result, from (8.151), we obtain

=Tt (8.152)
Then, introducing (8.152) into (8.149), we find
T=1 BN =3I T (8.153)
from which we can get the value of A as
M=-B -1, +ILT ). (8.154)
Finally, introducing (8.152) and (8.154) into (8.150), we obtain

0 Tp—T T y—T Ty-T
Wy = —Ar B (t — 14 +JzaJ;d Tid) — J, Jtd Ttd

S ENC RTINS (1 pr SR L pr S (8.155)
Then, expanding and rearranging, we get

0 T T T T Ty-T
Wr =Jipny T = JinyTia + idia = J: ;g ) T1a

=3t =t =3 1 (8.156)

where J, = J ' (J; — JraJiny)-
Thus, we have
It =" + 3t + I T4 (8.157)

Note that the matrix J, defined in (8.147) is the matrix that allows expressing the
passive joint velocities g as a function of the platform twist °t, only. This can be
proven as follows.

Let us recall that, from (7.91), we have

3% — Ji0l = Jrada (8.158)


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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From (7.64), we also have
4o = Jins "t (8.159)

Introducing (8.159) into (8.88), we obtain
Jiaa = 3:°t = Jeadin "t = (e = Jradin) 'ty (8.160)
which leads to
a0 =37 i = Tiadin) 't = 3,08, (8.161)
8.5.2 Direct Dynamic Model
Contrary to the DDM of the PKM without redundancy for which the input joint
accelerations (, is expressed as a function of the input efforts 7, for the PKM with

actuation redundancy, the DDM expresses the platform acceleration %, as a function
of the input efforts 7. It is given by

0t = M, (0 (37,7 — ¢rea(x, °t,) (8.162)

where

Jinv

M, (x) = [J,Tnv JZ] EZMZ‘ET |: 7,

] +vIM, ¥, (8.163)

is the inertia matrix of the PKM with actuation redundancy, and

a .
crea(x, °t,) = [J7,, IV | E] (c, +ME; [;D + ] (O, +'M, ¥, t,)

r

(8.164)

is the vector of Coriolis, centrifugal, gravity and external effects of the PKM with
actuation redundancy, in which

a, =J ' (d, — Jiaay) (8.165)

In these expressions,

e ‘M p is the inertia matrix of the free platform and Oc p 1s its vector of Coriolis,
centrifugal, gravity and external effects. They are defined in (8.97) and (8.98).

e M; is the inertia matrix of the virtual tree structure and ¢; is its vector of Coriolis,
centrifugal, gravity and external effects. They are defined in (8.58).

e E; is an ordering matrix defined at (8.61).

e J, is defined in (8.147) and is the matrix that allows expressing the passive joint
velocities ¢ as a function of the platform twist °t, only.


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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o W, is a (6 x ngyr) matrix defining the independent coordinates of the platform
twist (see Eq. (7.61)).

e J;,., is the PKM inverse kinematic Jacobian matrix defined at (7.64).

e a,, J;, Jig and d; are defined in (7.164), (7.93), (7.92) and (7.182), respectively.

The present form of the DDM is quite unusual as it does not give the value of
the acceleration of the active joint as a function of their position, velocity and input
efforts, but it gives the value of the platform acceleration as a function of the platform
velocity, pose and input efforts. All other variables can be obtained by solving the
inverse geometric and kinematic problems presented in Chap. 7.

Proof
To obtain the DDM of the PKM with actuation redundancy, we first need to develop
the IDM equations in order to obtain an expression under the form:

JZ;,WT =M;ea (X)Oir + Crea (X, Otr)- (8.166)

So, starting from (8.71), let us decompose the expression into two sub-terms T
and 7., such as

T=T1T1+1) (8.167)

with
v =[J7 JT|Elr, (8.168)

and
7 = Ow,. (8.169)

Let us first concentrate on the term 7. Introducing (8.58) into (8.101) leads to

v =[J], IT1EL ML, + o). (8.170)

v

Then, from (8.63), we deduce that

v =[J7 JT|EL(ME, [9 ]+c,). (8.171)

.
Equation (7.183) states that
4o =33 Ot — Jialie + de) (8.172)
which can be expanded by introducing (7.164) into it as

o =3, 3% — JQintr +2g) +do)
=3 Fr = Jiadin)’t + T (e — Jiay). (8.173)


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Then, from (8.73), we deduce that
s = 3%t +a, (8.174)

with a, = J' (d. — Jiaa,).
Introducing (7.164) and (8.174) into (8.171), we get

= =35, I/ 1B (ME ([JJ] O + [:4}) + c,)

=[I7 JT]ETM,E, [Jj'”f] Ot + (37, JT]E] (M,ET [2"} + c,) . (8.175)

Let us now consider the term 7 7. Introducing (8.65)first and then (8.57) into (8.169)
leads to )
7 =0 'w, = ®7 °M,°t, + Oc)). (8.176)
Then, from (7.61) and (7.163), we have
%, = o, % + ¥, %, (8.177)
which can be introduced into (8.176) in order to obtain
=¥ M, ¥, %, + M, ¥, °t, + %)) (8.178)

or also ) )
1, = 7 OM, W, %, + w7 (OM,,\I/, 0f, 4+ Oc,,) . (8.179)

By summing (8.175) and (8.179), we obtain

It =M%t + Crea (8.180)
with
_ [T T T Jiny TO
M,cq = [J},, I} | E; M/E, e M, (8.181)
r
and

a .
crea = [J7, JT]ET (M,Er [aﬂ + c,) + (OM,,\II, Ot + Oc,,) . (8.182)

Finally, the DDM in (8.162) can be obtained by solving Eq. (8.180).


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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8.5.3 Example: The DualV

8.5.3.1 Description of the DualV

The DualV (Fig. 8.15) is a prototype of a planar parallel robot with actuation redun-
dancy developed at the LIRMM (van der Wijk et al. 2011). This robot has 3 controlled
dof (two translations in the plane (x Oy) and one rotation around the z axis) but 4
identical legs, with one actuator by leg. Thus, its degree of redundancy is equal to 1.
Each leg is composed of one proximal and one distal link. The proximal link A; B;
is attached to the base by one actuated revolute joint and to the distal link B;C; by
one passive revolute joint. The distal link is also attached to the moving platform by
one passive revolute joint.

The geometric parameters of the virtual open-loop tree structure are described
in Table 8.2 using the MDH notation (in this table, y;; = 15.52°, y»1 = 164.48°,
y31 = —164.48° and y41 = —15.52°). The platform and payload are considered as
supplementary bodies, the payload being fixed on the platform. They are respectively
numbered as bodies %4 and As.

(b)

Fig. 8.15 The DualV. a The prototype (Courtesy of Sébastien Krut). b Kinematic description:
in that picture, the DualV configuration is such that the base frame (x,0y,) coincides with the
platform frame (x, Py,)

Table 8.2 MDH parameters for the frames corresponding to ith robotleg (i =1, ...,4)

ij o |aij | i | oij | v | eij | di 0ij rij
il 0 1 0 Vil 0 dit =1lpa, =041 m gi1—v1 |0
2 il |0 |0 |0 |0 |do=layp =028m an 0
i3 i2 0 0 0 0 diz =lp,c;, =028 m qi3 0
p |3 (o |2 Jo [0 |r2=01Im 0, 0

“p” denotes the platform frame.
epl = 0p2 =m/2, 91)3 = 9p4 =-m/2
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The DualV is actuated by four ETEL RTMBO0140-100 direct drive actuators, which
can deliver maximal torques of 127 Nm. The robot is able to achieve accelerations
of 25 G in its workspace. The current amplifier can provide directly the measure of
the input torque produced by the actuator.

8.5.3.2 Forward Kinematic Model of the Real Parallel Robot

For the DualV, the loop-closure Egs. (7.3) can be written in the base frame % as
(fori =1...4):

0=x—rpsin(g + kmw) — xa;, — dip cos gi1 — dj3 cos(g;1 + gi2)
0=y+rpcos(¢+kmw) —ya, —dixsingi1 — d;3sin(gi1 + gi2) (8.183)
0=¢ +kmr —qit —qi2 — qi3

where

e x, y and ¢ are the platform coordinates (x and y are the position of the platform
center, ¢ the platform orientation defined as the angle between the axes x¢ and
xp)& -

oy is the half platform length (r, = Ic,¢c;/2), k =0(k = 1) ifi = 1,2,k =1
(k=0)ifi = 3,4, and

e x4, and y,, are the position coordinates along x and y, axes for the point A;.

From the two first lines of (8.183), the reduced loop-closure Eq. (7.4) that directly
relate the displacements of the actuated joints to the moving platform coordinates
can be obtained after deleting from these expressions the terms in cos g;» or sin g;2
(fori =1...4):

di23 = (XC,- —XB,-)2 + (yc,- - yB,-)2 (8.184)

where xc; = x — rpsin(¢ + k) and y¢; = y + rp cos(¢ + km) are the position
coordinates along xo and y, axes for the point C;, and xp, = x4, + dj2 cos ¢;1 and
YB; = YA, +di2 sin g;; are the position coordinates along x( and y, axes for the point
B;.

Noticing that

x_xC1+xC3 _ yc, +yC3
2 2
¢ = tan™! (—M) (8.185)
yc, — Yci

the FGM can be solved by finding the expressions of x¢; and y¢; (j = 1,3) as a
function of g;; (i = 1...4). These expressions are quite simple to find as the loops
formed by the legs 1 and 2, or the legs 3 and 4, are five-bar linkages. Thus, the
expressions of xc; and yc; as a function of g are (for j =1 or j = 3):


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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—-p; £ /p? —4gjr;

xc; = fiye;, +kj, yo; = rs (8.186)
J
where
YBj11 — YB;
fi=-E = 41
XBj11 — XB;
2 2 2 2
B VB T X8 T VB
! 2(-xBj+1 —XBj)
pj =2fjkj —xp;) —2ys;
rj=xp, + v, —dis + k5 —2k;xg;. (8.187)

In (8.186), the sign “+” denotes the two robot assembly modes, that are considered
a priori fixed in the identification process as no parallel singularities are crossed.
Then, it comes easily from (8.183) that:

gi2 = atan2 (yc, — yB;, Xc; — XB;) — i1, i3 = ¢ + kv — qi1 —gin.  (8.188)

Then, differentiating (8.183) and (8.184) with respect to time, and simplifying,
the matrices A, and B of (7.62) can be found:

Ali = dj3 [c12i s12i — sin(¢ + km)s12i — cos(¢ + k)ci2; | (8.139)
where A|; is the ith row of A,, c12; = cos(gi1 + ¢i2) and s12; = sin(gi1 + gi2),
bi; = dj»d;3sing;> (8.190)

where b;; is the ith term of the diagonal matrix B.
Differentiating (8.183) w.r.t. time, we get

10 —rpcos(¢p + k) X —djp singi1 —d;3812; 0 .
01 —rpsin(¢p +km) | | y|— | dizcosqgir | gin = | dizcrzi O [12}
00 1 é 1 11| L9
191)
Now projecting (8.191) into the frame .%;; of the link %;,, we obtain
Cr2i S12i jtizi || X diz singi2 00 in
—s12i C12i jiozi | | ¥ | — | dizcosgin | Gi1 = | di3 0 |:l } (8.192)
0 0 1 é 1 11| L3
where jt13; = —C12i7)p cO8(¢p +km) —s12i7p sin(¢p+km) and jtr3; = s12;1p cos(Pp+

k) — crairp sin(¢ + k).


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Noticing that the first row of (8.192) does not depend on the passive joint velocities
gi2 and ¢;3, the relation (7.87) can be identified as

. 0t = JiaiGai = JraiQai (8.193)

where °t, = [%y d'J]T, dai = Gi1. 41; = [di2 i3]

¢ _ | —s12i c12i jhozi
Jti—[ o o] ] (8.194)
Jiai = — [d” . q"z} (8.195)
and
di3 0
MF[fJ. (8.196)

Now, considering all legs, we have

3% — Jiaa = Jia@a (8.197)
with
J = i’z (8.198)

an (8 x 3) matrix,
Jia1 02x1 0251 0251
0251 Jia2 02x1 021
= 8.199
Ja 02,1 0251 Jia3 0241 ( )

0251 0251 0251 Jraa
an (8 x 4) matrix, and

Jia1 0252 0252 0252
0252 Jra2 02x2 0252

8.200

Jua 0252 022 Jia3 0242 ( )
0252 0252 0252 Jrg4

an (8 x 8) matrix.

Then, all joint velocities can be computed from (7.62) and (8.88) as a function
0t. or Aa-

Finally, the accelerations can be computed from (7.161) and (7.180) using the
previous expressions and their derivatives w.r.t. time.


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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8.5.3.3 Computation of the IDM

The inverse dynamic model of the open-loop virtual structure can be obtained by
noticing that each leg is indeed a planar 3R robot in which the last body is massless.
Its inverse dynamic model is then equal to (Gautier et al. 1994):

Ty, = 2zilRGi1 + 2zi2(Gi1 + Gi2)
+ diomxiz ((2Gi1 + Gi2) €08 iz — 4i2(2qi1 + ¢i2) sinqi2)
+ diomyiz ((2gi1 + gi2) singi2 + i2(2gi1 + Gi2) c0s gi2)
+ fsisign(gi1) + fvi1gi (8.201)

Ty, = 22i2(Gi1 + Gi2) + diomxjo (iiil cos gi2 + g7 sin q,-z)
+ dipmyin (51}'1 singiz — 7 cos Qiz)
+ fsiasign(gi2) + fviagiz

Ty = fsizsign(giz) + fvi3gi3

where zzi1r = (zzi1 + Tai1 + d3mi2) 1y, is the torque of the virtual actuator located
at point A;, 14, is the torque of the virtual actuator located at point B;, and 7y, is the
torque of the virtual actuator located at point C;.

The dynamic model of the free body corresponding to the platform with the
payload in the virtual system is equal to Ow, = [w; wy w3]? with:

wi = (ma 4 ms)X — (mxs + mxs)(¢ sin g + ¢* cos ¢)

+ (mys 4+ mys)(— cos ¢ + ¢* sin @) (8.202)
w2 = (m4 + ms)§ + (mxg + mxs)(¢ cos ¢ — ¢* sin ¢)
— (mys + mys)(é&' sin ¢ + é&z cos ¢) (8.203)

w3 = (224 + 225) + (mx4 + mxs)(J cos ¢ — ¥ sin ¢)
— (myq + mys)(y sin ¢ + X cos ¢). (8.204)

Following the procedure described in Sect.8.5.1, the IDM of the DualV is given
from Eq. (8.145) by:
I, =W+ v+ T (8.205)

with TtTa = [t Ty Ty Tl th;l = [Ty Ty Ty Ty Ty Trys Tigy Trgz] and Jipny =
—B7IA,.

Here, we give the expression of the /DM only. We leave the computation of the
DDM as training for the interested reader.
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Fig. 8.16 Trajectory for 0.2
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8.5.3.4 Experimental Validation of the Model:

The dynamic parameters of the DualV have been estimated using identification pro-
cedures detailed in (Briot and Gautier 2014; Gautier et al. 2013). Their values are:

e 77iig =4.92- 1072 kgm?, fv;; =0Nm/s, fs;; =0Nm,

e 7zi» = 2.23-107° kg m?, mxj> = 0.012 kg m, my;» = 0 kg m, fvj> = O N m/s,
fsir=0Nm,

e fvi3z=0Nm/s, fsiz =0Nm,

o my = 192kg, zz4 = 2.06 - 1072 kg m?, mx4 = 0 kg m, mys = 0 kg m,

o ms =5.42kg, zz5 = 1.61 - 1072 kg m?, mxs = —1.27 - 10~ kg m, mys = 0 kg
m.

So now, we make the robot move on the trajectory shown in Fig. 8.16.

Then we compare the robot input torques with those predicted by the model.
The comparison is shown in Fig.8.17. It can be shown that the error between the
prediction and the measure is very small: thus the model is accurate.

8.6 Other Models

8.6.1 Computation of the Ground Reactions of PKM

The GRM which computes the ground reactions as a function of the robot’s con-
figuration, velocity and acceleration is less known but can be used to identify its
dynamic parameters (Ayusawa et al. 2008; Raucent et al. 1992) or for design pur-
pose in shaking force and shaking moment balancing (Briot and Arakelian 2009;
Briot et al. 2012a; Foucault and Gosselin 2004). An efficient way to obtain it is
described thereafter.
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8.6.1.1 Ground Reaction Model

This model computes the values of the force °fy and moment “m exerted by the
moving robot on the fixed ground. The force °fy and moment “my are equal to:

n

Oty of Tl
= p il i
|:0m0:| - |:0mp +%0p x 0fpi| + Z T, I:zlm“] (8.206)

i=1
where

o iIf;; and 'm;; are the reaction force and moments of the base on the first link of
leg i. They are defined at (8.16),

e 'm p and of p are the components of the wrench Ow p givenin (8.57), and

o 9T}, is the screw transformation matrix defined at (3.13).

Fig. 8.17 Measured (red 40 i
lines) and estimated (blue 30 [l - %i;‘;‘lfrteegi
lines) input torques rebuilt Error
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parameters of the DualV 10 h \ ) f\
; ot
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20| m WL |
-30
-40
-0 6.5 7 7.5 8
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40 7%4;@?“6(17
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—~ 20 1l mll | |
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Thus, its expression can be recursively computed by using the algorithm given in
Sect.8.2.1.

8.6.1.2 Example: The Five-Bar Mechanism

For the five-bar mechanism of the Sect. 8.4.3.1, the value of the moment ‘'m;; is

Tm; =[00my] (8.207)
with
myi = (zzi1 + dhmi)iin + zzi2(Gin + Gi2)
+ diomxiz ((2Gi1 + Gi2) cos gi2 — qi2(2qi1 + gi2) singqi2) (8.208)

+ diomy;iz ((2Gi1 + Gi2) sin g2 + Gi2(2Gi1 + §i2) cos g;2)
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while the value of the force {1f;] is

) —myii ) mxiy
Uy =G | mxin | — 4¢3 | myn
0 0
—myj2 COs gi2 — Sin g2 (mxi2 + mj2d;2)
+ (Git + din) | (mxi2 + miadio) cos gin — my;z singi» (8.209)

0

(mxjz + mjadiz) cos gip — my;s sing;n
— (i1 + ¢i2)* | (mxia + mizdin) sin g + myiz cos gi2

0
Moreover, we have
&
%, =m, | § (8.210)
0
and
'm,, = 0. 8.211)
Then, for the leg i, OTi 1 is equal to
0 A L T (8.212)
0 —OR; 11 OR; :
with
cosgj1 —sing;1 0
OR;; = | sing;1 cosg1 O (8.213)
0 0 1
and
di1
rii=k| 0 (8.214)
0

where k = —1ifi =1,k =+1ifi =2.
Then, the ground reaction model of the five-bar mechanism can be obtained from

Of, Op " il
0 p il il

= + E Ty |; 8.215
[01110} |:0mp +%op x Ofp} = 0 [’lmil] ( )
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8.6.2 Energy Models of PKM

Energy models can be used to identify robot’s dynamic parameters (Gautier 1997,
Gautier and Briot 2013) or for design purpose or trajectory planning to reduce robot’s
energy consumption (Ur-Rehman et al. 2009). An efficient way to obtain them is
described thereafter.

8.6.2.1 Calculation of the Energy

From (6.8), the kinetic energy of the body %;; is given by

1 mijl3 msl ] [y,
R Jvl ijT ij ij
Eij =3 [ Vi w”] |:’fms g, | |7 wij
1.. Tii ..
= St IM (8.216)

ij,T i i Ti i i T /i i
= E(mij le-j JVij + J(’)ij /IOij J(a)ij +2/msij(fvij X J(x)ij)).

Moreover, the kinetic energy due to the inertia of the actuator k is

1
Er= Elakq,f (8.217)
where ¢y is the velocity of the actuator k.
As aresult, the total kinetic energy of the parallel robot including the end-effector
is
m;

E=E, +ZZE,,+ZE1<

i=1j=1

Na
= z(mp ”Vg Pv, + ”wlT, 1, 7w, +2”ms£(”vp xPw,) + Zlakq',f
k=1

(8.218)

ij T ij ij o T iy ij ij T i ij
+Z E (mj; fvj Ivij + Yl i Lo, Yo +2Yms; (Vv x Y wij)).
i=1 j=I

From (6.20), the potential energy of the body %;; is given by

Uiy = —[°8" 0]°T; (q)[ “‘ﬂ (8.219)


http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_6
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As a result, the total potential energy of the parallel robot including the end-
effector is

n mj
U=Up+ > > U
i=1 j=1

m;

= —[°" 0]°T, (q)[ ms!’] ZZ( O]OTj(q)|: mj’JD. (8.220)

i=1 j=1

Expressions (8.218) and (8.220) are valid for PKM with or without redundancy
and can be recursively computed by using the algorithm for the velocity calculation
given in Sect. 8.2.1.

8.6.2.2 Example: The Five-Bar Mechanism

For the Five-bar mechanism of the Sect. 8.4.3.1, the link velocities can be obtained as

0
lyi =0, "e;;=1]0 (8.221)
gi1
' —sing;; _ 0
ia =dingi | cosgin |, Pop=| 0 (8.222)
0 gi1 + qi2
while the end-effector velocity is
X 0
v, =17, "w, = 0 : (8.223)
0 421 + g2

As a result, the kinetic energy of the links %;| and %; is

1 )
Ej1 = Ezz“qﬁ (8.224)

Eip = 5 (mi2di22q,'21 +22i2(gi1 +4i2)* 4 2dindi1 (Gi1 + Giz) (mxia cos gia +my;z sin gi2))

(8.225)
and the kinetic energy of the end-effector is

E, = tm 2 4+ 3. (8.226)
p 2 p
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The kinetic energy of the actuators is
E = —1(161 ] + la / 8.227
act =5 11911 21451)- (8.227)

Thus the total kinetic energy is £ = E, + Eq¢r + Zizzl (Eij1 + Epp).

If the gravity field Og is directed along zo, so the potential energy is constant
(which is the case for the example proposed in Sect. 8.4.3.1).

If the gravity field Og is not directed along z¢ (for instance, OgT = [0 g 0]), so
the potential energy of the links %;| and %;, is

U;1 = —(mx;1 sing;1 + my;1 cos qi1)8 (8.228)

Uiz = —(mx;z sin(gi1 + gi2) + myiz cos(gi1 + gi2) + dimiz singi1)g  (8.229)
and the potential energy of the end-effector is

Up=—mpyg. (8.230)

Thus the total potential energy is U = U, + Ziz:] (Ui1 + Uip).

8.7 Computation of the Base Dynamic Parameters

In this section, we study the concept of base dynamic parameters or identifiable
parameters. We develop a straightforward numerical method to determine them.
These parameters constitute the minimum set of inertial parameters that are needed
to compute the dynamic model of a robot (Mayeda et al. 1990). The use of the base
dynamic parameters in a customized Newton-Euler algorithm reduces its computa-
tional cost (Khalil and Kleinfinger 1987; Khalil et al. 1986). The determination of the
base parameters is also essential for identification of the dynamic parameters (Briot
and Gautier 2014; Gautier 1991; Gautier and Khalil 1990; Khalil and Dombre 2002),
since they constitute the only identifiable parameters. The base dynamic parameters
can be deduced from standard parameters by eliminating those that have no effect
on the dynamic model and by grouping some others.

The determination of the base parameters of tree structure robots and some par-
ticular closed-loop architectures can be obtained using symbolic algorithms (Khalil
and Bennis 1995). For PKM, the numerical method developed in (Briot and Gautier
2014; Gautier 1991; Khalil and Guégan 2004) can be used for this purpose. This
method is presented below.
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8.7.1 Expressing the Dynamic Model Linearly as a Function
of the Standard Dynamic Parameters

In this section, we will demonstrate that the energy of the robot, and also the IDM,
is linear with respect to the dynamic parameters.
8.7.2 Linearity of the Energy w.r.t. the Inertial Parameters

Let us consider the energy of the body %;;. From (8.216), we can easily prove that:

o Z(mss Uy T iy LT i :: sl (Vv:: x Vs
Eij = z(mlj Vi TVij T o IO,",- w;j +2 msl-j( Vij x Y w;5))

- (8.231)

where x;; is the vector of the link inertial parameters that have been defined in
Sect.6.1.2,

T
Xij = [xxij XYij XZij YYij YZij 2Zij MXij myij MzZ;;j m,-j] (8.232)

and e;; is a vector of function also called the Jacobian matrix of the kinetic energy
w.r.t. the inertial parameters of the link %; s

aE,»j
e —
Y Xij
= [exx,'j €xyij €xzij €yyij €yzij €zzij €mx;j €my;; €mz;; em,_/-] (8.233)
with
1
Cxxij = Ewlijwlij (8.234)
€xy;; = W1ijW2ij (8.235)
€xz;; = W1ijW3ij (8.236)
1
Cyyij = 5602:']'6025]' (8.237)
Cyz;; = W2ijW3ij (8.238)
1
Czij = §w3ija)3ij (8.239)
Cmx;; = W3ijV2ij — W2ijV3ij (8.240)
€my;; = W1ijV3ij — W3ijV1ij (8.241)
Cmz;; = W2ijV1ij — W1ijV2ij (8.242)

1.. ..
em;; = EUV.T.’-/V,»,- (8.243)


http://dx.doi.org/10.1007/978-3-319-19788-3_6
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in which ¥ @, ij = [w1ij w2ij w3ij]and ’JV = [viij va2ij v3ijl-
As aresult, the platform kinetic energy E can also be written as a function of its
inertial parameters x , such that

Ep,=epx,. (8.244)

Finally, from (8.218), the total kinetic energy can be written as

noom
EZEP+ZZEij

i=1 j=1

n m;
=epXp+ DL D i

i=1 j=1

= [ep e epn... en,rnn] [Xp}

Xt
= [e, &] [’)ﬂ (8.245)

t

where

e ¢; is the kinetic energy function of the tree-structure,
° )(,T =[x 1T1 xsz X ,{ m, ] 1s the vector of standard dynamic parameters of the
tree structure.

Similarly, the potential energy of the body %;; can be linearly written as a function
of the vector of the link inertial parameters x;;. From (8.219), we can prove that:

Uij = = [g" 0] °Tij(@) [ ‘“S”]
mij
— Xy (8.246)
where
aU,-,-
W = ——
Xij
= [tanyy oy Uzyy Wyyyy Uy Uzzyy Umsyy Umyyy Umzg; U ) (8.247)
with
Uxxi; = Uxy; = Uxz; = Uyy,; = Uyz; = Uzz; =0 (8.248)
ums; = — [°g” 0]°;; (8.249)

Umy, = —[°g" 0] *d;; (8.250)
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Uumz,; = —[%g" 0] %4y (8.251)
um; = —[°g" 0]°F; (8.252)

in which

05;; is the first column of matrix °T;;,
Ofi;; is the second column of matrix T,
03; ; is the third column of matrix o, iz
0%, j 1s the fourth column of matrix oT,; iz

As aresult, the platform potential energy U, can also be written as a function of
its inertial parameters x , such that

Up=upx,. (8.253)

Finally, from (8.220), the total kinetic energy can be written as

n o m;

U= Up—i-ZZUij
i=1 j=1
no m;
zupo"‘ZZ“inij

i=1 j=1

= [up uppup ... un,mn] |:Xp:|
Xt

= [u, u] [XP] (8.254)
Xt

where u; = [u 11U2 ... Uy, m”] is the potential energy function of the tree-structure.
As a result, the Lagrangian of the system can be linearly written as a function of
the robot inertial parameters x, such that
L=FE-U
— Xp X p]
=le,e —|u,u
e ][ %] = o w1 [ X
= [ep —up e —uf] |:))((fi|
=1,1] [X 1’} (8.255)
Xt

where 1, = e, — u,, is the Lagrangian function of the platform and I, = ¢, — u, is
the Lagrangian function of the tree-structure.
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8.7.3 Linearity of the IDM w.r.t. the Dynamic Parameters

193

From (8.59), (8.60) and (8.255), we can see that the input efforts of the virtual tree-
structure can be linearly written as a function of the robot inertial parameters:

Tia =

:i ol x, ol x;
dr \ 94, 09,

d (oL \T oL \T
dr \ 94, 3qa

T

)
i () » <“’ )
(56 -Go) )~

=DaX;
where
D, = [D!' D> ... D;"™].
Thus,
«=[DV D2 .. Dy,
n m;
=2 > DXy
i=1 j=I
Similarly,
Tid = Daxy
= [Dll D}? ...Dy"™] x,
> > 0,
i=1 j=1
where

D, = [D}' D}? ... D}"™].

In these expressions,

(8.256)

(8.257)

(8.258)

(8.259)

(8.260)

e D;/ is the Jacobian matrix of the effort 7, w.r.t. the inertial parameters x;; of the

body %;;,

eD d] is the Jacobian matrix of the effort 7,4 w.r.t. the inertial parameters x;; of the

body %;;.
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Previous expressions do not take into account the inertia of the robot actuators
and the friction effects into the joints (see Sects.8.2.2 and 8.2.3). Let us recall that,
for the joint ij, when the inertia of the robot actuators and the friction effects are
taken into account, the input effort becomes:

Ty, = Ty + Laijgij + fsijsign(qij) + fvijqij (8.261)

where Ty, is the component of T, or 7,4 defined at (8.258) and (8.259) corresponding
to the joint ij.
As aresult, T;, and T;4 can be rewritten as

Tig = Z Zna Xij + diag(do)ia” + diag(qa)fv* + diag(sign(qq))fs’
i=1 j=I

_ ZZDLJ st S[

i=1 j=I
_Dtot l()t (8262)

with
o D/ = [Dla’ Gij qij Slgn(q:’j)]
° Dflat — [Dclt“t D(112st DZ,mn Sl]_

Moreover,

Tid = ZZD Xij+ diag(ga)ia + diag(qq)fv + diag(sign(qq))fs®
i=1 j=1

_ ZZDust st

i=1 j=I
_Dtot tot (8.263)

with
ij st (] . o . .
e D/" = [DZJ dij qij Slgn(%’j)]
Dtot [Dllst DIZAI . DZ,mn ST]'
In all the previous expressions

S10...0

OS2...0
e for a vector s = [s sz...sn]T,diag(s): R

00...s,
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e ia? (ia%)is a (ng x 1) vector ((ng x 1), resp.) grouping the inertia of the actuators
of the virtual structure in the joints corresponding to the active (passive, resp.)
joints of the real robot,

o fv¢ (fv?)is a (ng x 1) vector ((ng x 1), resp.) grouping the viscous friction terms
of the virtual structure in the joints corresponding to the active (passive, resp.)
joints of the real robot,

o fs* (fsd) isa (ng x 1) vector ((ng x 1), resp.) grouping the Coulomb friction terms
of the virtual structure in the joints corresponding to the active (passive, resp.)
joints of the real robot,

tot T _ystT st T st T
® Xt =1 X2 - Xum s

st T -
o Xij ' = lxxij xyij xzij yyij yzij zzij mxij myij mzij mij aij fvij fsij] is

called the vector of standard dynamic parameters of the link %;;,

° Dflj *" the Jacobian matrix of the effort ,, w.r.t. the standard dynamic parameters
xfj’ of the body %;;,

. Di{ *" the Jacobian matrix of the effort 7,4 w.r.t. the standard dynamic parameters
x;} of the body ;.

In a fully similar way to what is written above, the vector w, of (8.71) can be
written linearly as a function of the end-effector inertial parameters x , such that

‘w, =Dy . (8.264)

Finally, from (8.71), (8.262) and (8.263), the dynamic model of the real robot can
be linearly written w.r.t. the standard dynamic parameters x,,, such as:

T = Tyq +JT0Wr + JdTrtd
— DZmX;m + JTDpo + JZ;DZOZ‘X;OI
— JTDpo + (Dlaal +J5Dtdol) X;Ol
~ 7, g+ a7o)] | 1]
t
= Dtot (qa’ (.Ia’ da)Xtoz (8265)

where Dior (qa. Ga. Ga) = [J7D, (D +I7D)")] and xf,, =[x} xi” '].
This demonstration has been done for the IDM of the PKM without actuation
redundancy, but similar relations can be obtained for PKM with actuation redundancy.

8.7.4 Numerical Method Based on a QR Decomposition

The symbolic approach of computing the base parameters is based on determining the
independent elements of the IDM represented by the row matrix D;,; (Eq. (8.265)).
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Numerically this problem is equivalent to study of the space spanned by the columns
of a matrix W;,; formed from Dy, using r random values of q, ¢, and q,. This study
can be carried out using the singular value decomposition (SVD) or the QR decom-
position of W,,; (Gautier 1991). In this section, we develop the numerical method
that is based on the QR decomposition of a matrix W, which is derived from the
IDM.
To determine the base parameters, we construct a matrix W;,; by calculating the

rows of D,o, for » random values of joint positions, velocities and acceleration q(l)

(') and G, ® (the upperscript (i) denotes the ith random value of the concerned vector
qa, qq or q,) for r >> dim x,;,, = nss andi = 1, ..., r. The matrix W;,, with
dimension ((r X ng) X ng) :

1
Wi
W[gl = (8266)
Wig:
where G ) ) 1
dzot) (qz((zzi» q%Z;’ qg ))
i d ] ( ’ ’ )
wo) = | Grortda _q“ i (8.267)

a2 @a?, . q")

in which d"/) is the jth line of the matrix D;,,.

An inertial parameter has no effect on the dynamic model if the elements of its
corresponding column in Wy, are all equal to zero. By eliminating such parameters
and the corresponding columns, the matrix W;,, is reduced to a matrix W, with
¢ columns and r rows. However, some columns in Wy , are linearly dependent
and their corresponding parameters can be grouped in order to obtain a set of ny
base parameters (n; < ny), i.e. the base parameters are those corresponding to ny
independent columns of W}, (and thus of W,,).

Application of the foregoing statements can be achieved by the use of the OR de-
composition of Wj ,, which is given by:

T R
Q'W;, = [0 H)xj (8.268)

where Q is an (r x r) orthogonal matrix, R is a (¢ x ¢) upper-triangular matrix, and
0 —c)xc 1s the ((r — ¢) x ¢) matrix of zeros.

Theoretically, the non-identifiable parameters are those whose corresponding el-
ements on the diagonal of the matrix R are zero (Forsythe et al. 1977; Golub and van
Loan 1983). Let a be the numerical zero which is different from 0 because of round-
off errors (« can be chosen such that « = ¢ max |R il
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depending on the level of perturbations in Wj,, (due to noise measurement—in the
case of a model identification procedure—and/or error modeling) and max |R j j| is
the largest diagonal absolute value of R (Gautier 1991).

If the absolute value | Rix| of the kth component located on the diagonal of R is
inferior to «, the kth column Wy, of Wi, can be deleted because it depends on the
other.

On the contrary, if | Rgx| > a, then the corresponding column in Wy, is indepen-
dent and constitutes a base of the space span by Wi, (and thus W,y ). Let the np,
independent columns be collected in the matrix W1, and the corresponding parame-
ters be collected in the vector yx ;. The other columns and parameters are represented
by W, and x, respectively, such that:

Wi, x = [Wi Wa] [i j : (8.269)

The matrix W» which groups the non independent columns of W/, can be written
in terms of W as:
W, =W,8. (8.270)

Consequently:

Wix = [Wi Wa] |, *? 8.271)
001, —np)x1

where yx, is the vector of the base parameter given by

X» = X1+ Bxa (8.272)

Thus, the matrix 8 allows to obtain the grouping equations of the parameters x,
with ) ;. The matrix B, can be computed using (8.270) by:

B=WW, (8.273)

Because the QR algorithm starts from the last columns to the first of W;,;, the
(ng; —nyp) standard parameters to delete are dependent on the ordering of the columns
of that matrix. For serial robots, the matrix W, is build such that the columns with
smaller indices are those corresponding to the links closest from the base. Thus,
using the previous algorithm, the parameters with the smallest influence (those of
the wrist) are eliminated from the base parameters.

For parallel robots, to take into account the symmetry in the leg dynamic para-
meters, it is preferable to order the columns of W, such that

1:n
— 1 L1 Xnstype ot
Wior = [we, st wztn o] (8.274)
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where ngy,, is the number of standard parameters for one leg, matrix W’ is the
observation matrix corresponding to the platform inertial parameters and matrices

W& concatenates the columns of matrix W, corresponding to the parameters
X« that are a priori identical for the n robot legs. Then, (n5; — np) columns of Wy,
can be deleted using the previous approach based on the QR factorization to obtain
a new observation matrix Wy associated with a set of symmetrical base parameters
denoted as x,.

8.7.5 Examples

8.7.5.1 The Five-Bar Mechanism
For the five-bar mechanism presented in Sect. 8.4.3.1, and using the proposed proce-
dure for computation of the base parameters, we get the following grouping relations

for the parameters in x,:

zzZi1R = zzi1 + Ta;j1 — 0.24158 mxjp + 0.045369 m;»
zzi2R = zzi2 — 0.1878 mx;» (8.275)

for the legs i = 1, 2, and also
m3g = m3 + 5.3248 mx1y + 5.3248 mxy) (8.276)

for the end-effector parameters.

8.7.5.2 The Orthoglide
For the Orthoglide presented in Sect. 8.4.3.2, and using the proposed procedure for
computation of the base parameters, we get the following grouping relations for the
parameters in x:

mer = me+3.2258 mx13+m4+3.2258 mxoz+moqa+3.2258 mxzz+maq (8.277)

for the end-effector,

miir =mi1 + layg + mpp — 3.2258 mx13 +my4
moir = my1 + lax; + mop — 3.2258 mxp3 + moy
m31r = m31 +ms3py — 3.2258mx33 + may (8.278)

for the actuated joints, and
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2Zi2R = 2Zi2 + yyi3 — 0.31 mx;3 + yyia

myjop = my;j2 +mz;3 + mzs4

fvior = fvia + fvis

fsiar = fsi2 + fsis

XXi3R = xX;3 — yyi3 + 0.31mx;3

xzi3r = xzi3 — 0.31mz;4

zzi3R = 22i3 — 0.31 mx;3

fvisr = fviz+ fvia

fsizr = [fsiz+ [sia (8.279)

for the other bodies of the legs.

As can be observed, the same grouping relations appear for each robot leg. There
is a small difference concerning the grouped parameter m;g: as actuated joint 31 is
vertical, contrary to joints 11 and 21 that are horizontal, this joint must support the
gravity effects applied on the foot of leg 3 (link 31). This is not the case for joints
11 and 21. Thus, this is the reason why parameters m31r and /a3z| are not grouped
together.



Chapter 9
Analysis of the Degeneracy Conditions
for the Dynamic Model of Parallel Robots

Abstract The conditions of degeneracy of the dynamic model of parallel robots
have been little investigated. In this chapter, we present an exhaustive study of the
conditions of degeneracy of the dynamics models of PKM. We will show that two
types of singularity impact their dynamics: Type 2 singularities and LPJTS singulari-
ties. We define criteria, based on analyses of dynamic models, that allows a definition
of optimal trajectories that can avoid the degeneracy of the dynamic model and make
it possible to cross the singularities. Simulations and experiments show the efficiency
of such types of trajectories.

9.1 Introduction

Parallel robots have been used increasingly for a few decades. This is due to their main
advantages over serial counterparts that are: (i) higher intrinsic rigidity, (ii) larger
payload-to-weight ratio, and (iii) higher velocity and acceleration capacities (Merlet
2006b). However, their main drawback is probably the presence of singularities
in the workspace which divide their workspace into different aspects (each aspect
corresponding to one or more assembly modes (Merlet 2006b)) and near which their
performance are drastically reduced.

As already mentioned, various types of singularity exist. In general, singularities
lead to two different types of phenomena (that can be combined at the same robot
configuration):

1. The loss of the ability for the robot to move along one given direction (instan-
taneously or not): this is the case of the so-called Type I singularities (Gosselin
and Angeles 1990) which correspond to workspace boundaries,

2. The gain of some uncontrollable robot motions (instantaneously or not): the so-
called Type 2 singularities (Gosselin and Angeles 1990) and constraint singular-
ities (Zlatanov et al. 2002) belong to this category. Another type of singularity,
which is less known than the two previously mentioned ones, also belongs to this
category: the LPJTS singularities presented in Sect.7.5.2 which are due to the
degeneracy of the leg passive joint twist system. Near these configurations, the
robot stiffness is considerably decreased and the robot capabilities in terms of
effort transmission deteriorates.
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It should be mentioned that, historically, the first designed parallel robots were
made of quite simple legs (in terms of joint arrangement) and encountered only Type
1 and Type 2 singularities. However, due to the problem of the non homogeneity of the
performance inside the robot workspace, designers have tried to propose mechanisms
with more complex leg architectures but with better performance distribution all
along the workspace, such as the decoupled robots (Carricato and Parenti Castelli
2002; Gogu 2004; Kong and Gosselin 2002) which are fully isotropic with regard
to their input/output kinematic performance. However, the increased complexity of
the leg arrangement has led to the appearance of other kinds of singularities, such as
the LPJTS singularities. The best known examples of decoupled robots whose legs
encounter LPJTS singularities are the Tripteron-like or Isoglide-like robots from three
to six degrees of freedom (Carricato and Parenti-Castelli 2002; Gogu 2004; Gosselin
2009; Kong and Gosselin 2002, 2011b; Rizk et al. 2007; Seward and Bonev 2014).

In order to increase the workspace size, several approaches have been envisaged
in the literature, such as:

e The design of parallel robots without singularities. This can be done by using the
optimal design approach (Briot et al. 2010; Liu et al. 2006) or by creating fully-
isotropic mechanisms (Carricato and Parenti-Castelli 2002; Gogu 2004; Kong and
Gosselin 2002) (which have no Type 2 singularities but usually have LPJTS sin-
gularities). This solution is the most usual one, but it often leads to the design of
robots with a small ratio workspace size/robot footprint or to the design of robot
architectures with very low practicability.

e The use of redundancy (Kotlarski et al. 2010; Kurtz and Hayward 1992; Miiller
2005; Yi et al. 1994) or the use of mechanisms with variable actuation modes
(Arakelian et al. 2008; Rakotomanga et al. 2008). These mechanisms can change
the actuation mode without adding additional actuators, but this change can only
be carried out when the mechanism is stopped, thus increasing the time necessary
to perform the task.

e Planning working mode changing trajectories. The main way to proceed is to cross
a Type 1 singularity by reaching the workspace boundary and changing the leg
configuration (Bourbonais et al. 2014). By changing the leg configuration, the
singularity loci appearing in the workspace for the initial configuration disappear
and are replaced by other singularity loci linked to the new leg configuration. Thus,
the robot is able to access new workspace zones (Campos et al. 2010). It should
be mentioned that:

— Type 1 singularities are a special type of serial singularities (Conconi and Carri-
cato 2009) due to the degeneracy of the leg twist systems including active joint
twists.

— For the moment, changing the leg configuration by crossing a Leg Passive Joint
Twist System (LPJTS) singularity has not been investigated, even if this process
could allow accessing new workspace zones.
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e Planning assembly mode changing trajectories. A first way to do this is to bypass
a cusp point (Zein et al. 2008). However, this solution is hardly practical for two
main reasons: (i) it forces the mechanism to follow a particular trajectory, which
can be very different from the desired one; (ii) only a few mechanisms have cusp
points. A second solution is to go directly through a Type 2 singularity (Briot and
Arakelian 2008; Hesselbach et al. 2004; Ider 2005).

The last two solutions (i.e. changing the leg configuration or changing the assem-
bly mode) are promising, since they can considerably increase the workspace size
of any parallel mechanism by using only trajectory planning approaches. However,
as shown in (Briot and Arakelian 2008) for changing assembly modes by passing
through the Type 2 singularities, a physical criterion based on the analysis of the
degeneracy conditions of the PKM IDM must be respected. We will show below that
another criterion must be satisfied if we need to cross the LPJTS singularities.

In the next section, the degeneracy conditions of the /DM of PKM are disclosed
and optimal trajectory planning approaches through singularities are proposed.

9.2 Analysis of the Degeneracy Conditions
of the IDM of PKM

In the following section, we will only focus on the analysis of the degeneracy condi-
tions of the IDM of PKM without redundancy as PKM with redundancy are especially
designed for avoiding the presence of singularities inside their workspace.

To assure clarity, let us rewrite here the equations of the dynamic model including
the Lagrange multipliers developed in Sect. 8.4 and defined in Egs. (8.82)—(8.84):

t=1,—-B'A I, 9.1)
Ow, = Afx; — 3] %, 9.2)
Ya = k. 93)

Analysing the Egs. (9.1)—(9.3), we get:

e if the matrix A, is rank deficient, which appears in Type 2 singularities (see
Sect.7.5.1), or

o if the matrix J,4 is rank deficient, which appears in LPJTS singularities (see
Sect.7.5.2),

the Lagrange multipliers cannot be computed and the dynamic model degenerates.

The conditions of rank-deficiency of matrices A, and J;; have been presented
in Sect.7.5. The impact of their degeneracy on the robot input efforts is disclosed
thereafter.
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9.2.1 Degeneracy Conditions of the IDM Due to the Matrix A,

As already mentioned in Sect. 7.5, the matrix A, becomes rank-deficient if and only if
the robotis in a Type 2 singularity. In Type 2 singularities, at least one platform motion
becomes uncontrollable. Moreover, Type 2 singularities separates the workspace
aspects (Merlet 2006b) and prevent the robot from reaching all possible workspace
configurations.

From Eq. (9.2), it can be deduced that, when matrix A, becomes rank-deficient in
Type 2 singularities, a non-null vector A corresponding to a null value of Ow, +J tT A
can exist. This also means that there is an infinity of solutions for A; and that the robot
platform is not in equilibrium. Another consequence is that in the neighborhood of
the Type 2 singularities, the active joint effort T may increase considerably as their
expression is proportional to the inverse of the determinant of A, which is close to
zero in that area. Such singularity may thus lead to a breakdown of the mechanism
(if the joints cannot support the load) or to the impossibility of tracking the desired
trajectory due to the technological limitations in terms of maximal input efforts for
the actuators.

9.2.2 Degeneracy Conditions of the IDM Due to the Matrix J;q

For reason of simplicity, but without loss of generality, let us consider that the robot
legs are made of serial chains. In that case, as explained previously (see Sect.7.3.3),
the matrix J;4 is block-diagonal. As a result, J;4 is rank-deficient if and only if at
least one block J;4; on the diagonal is rank deficient.

Ifthe ith block J,4; is rank-deficient (Iet us recall that J4; is the kinematic Jacobian
matrix that relates the twist of the last link of the leg i to the passive joint velocities
q; of the same leg), then the sub-chain composed of the passive joints of the leg i is
in a singular configuration. Such kind of singularity has been described in Sect.7.5.2
and is called in this book a LPJTS singularity (Leg Passive Joint Twist System
singularity). In LPJTS singularities, at least one leg gets an internal and uncontrollable
motion while the platform remains rigid. Moreover, LPJTS singularities separate the
passive joint space aspects and thus prevent the leg from reaching all the possible
joint configurations (Conconi and Carricato 2009).

As mentioned in the introduction, LPJTS singularities are encountered in numer-
ous robot architectures among which the best known examples are probably the
Tripteron-like or Isoglide-like robots (Carricato and Parenti-Castelli 2002; Gogu
2004; Gosselin 2009; Kong and Gosselin 2002, 2011b; Rizk et al. 2007; Seward and
Bonev 2014).

From Eq. (8.85), it can be deduced that, when matrix J;4; (and consequently the
matrix J;4) becomes rank-deficient in LPJTS singularities, there can be a non-null
vector A; corresponding to a null value of t;4. This also means that there is an infinity
of solutions for A, and that the leg i is not in equilibrium. Another consequence is
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that in the neighborhood of the LPJTS singularities, the value of A, and as a result
the active joint efforts T, may increase considerably as its expression is proportional
to the inverse of the determinant of J;4, which is close to zero in that area. As for Type
2 singularities, a LPJTS singularity may thus lead to a breakdown of the mechanism
(if the joints cannot support the load) or to the impossibility of tracking the desired
trajectory due to the technological limitations in terms of maximal input efforts for
the actuators.

9.3 Avoiding Infinite Input Efforts While Crossing Type 2
or LPJTS Singularities Thanks to an Optimal Trajectory
Planning

In this section, conditions for avoiding infinite input efforts while approaching and
crossing the Type 2 or LPJTS singularities are disclosed.

9.3.1 Optimal Trajectory Planning Through Type 2
Singularities

In this section, we consider that only the matrix A, is not invertible. So, let us
rewrite (9.2) such as
ATAy = wy ©.4)

where w is equal to
wa ="w, + 7% =W, + JTT [y 9.5)
As previously explained, Eq. (9.4) represents the platform equilibrium so that the

loops of the parallel robot can be closed. As a result, the term w, represents the sum
of:

e The inertial/gravitational effects and external efforts applied on the platform,
e The reactions applied by the legs on the robot platform.

Let us also express (9.1) again such as
_ T
T—Wb—B l], (9-6)
where w;, is equal to

Wo = Ta — I A2 = Ta — 3,3, a. 9.7)
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As a result, the dynamic model is parameterized by the system of equations:

T=Wp, — BTll
i %)
If A, is rank deficient, so a non-null vector t; exists, defined such as
At; =0 tIAl = 0. (9.9)

From (7.58), t,!

e is a twist reciprocal to all the wrenches defining the rows of the matrix A, (see
Eqgs. (7.58) and (7.62)), and

e describes the uncontrollable motion of the platform inside the Type 2 singular-
ity (Briot and Arakelian 2008; Merlet 2006b).

Multiplying the left side of (9.4) by t!, one obtains
t'ATx = 0. (9.10)

As aresult, for the IDM to be consistent, the right-hand part of (9.4) must strictly
follow the condition
t'w; =0 9.11)

which involves that:

For avoiding infinite input efforts while crossing a Type 2 singularity, the sum
of the wrenches applied on the platform by the legs, inertia/gravitational effects
and external environment w,; must be reciprocal to the uncontrollable motion of
the platform inside the singularity t; (in other words, the power of these wrenches
along the platform uncontrollable motion must be null).

This physical criterion was first provided in (Briot and Arakelian 2008) and can
be satisfied through a proper robot trajectory planning.

However, to better understand the phenomenon, let us consider the five-bar mech-
anism depicted in Fig.9.1. As already mentioned, the five-bar mechanism is a pla-
nar parallel mechanism composed of two actuators located at the revolute joints
located at points A1 and Ay and three passive revolute joints at points A2, A2
and Aj3 = A3 = P.

Considering that the mechanism is not moving and that the gravity effects are
canceled. A force f is applied on the end-effector. An analysis of the effort trans-
mission shows that the reactions in the passive joints located at points A2 and P

(A2 and P, resp.) are collinear to the vector Ay P (A2 P, resp.) for any mechanism
configurations and that f = ry + rp (with r; the force in the joint of the leg 7).

In this chapter, we consider rank-deficiency of matrices A, and J;; of order 1, as this is the
most usual case. However, the methodology could be extended to matrices with higher order of
rank-deficiency.
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Fig. 9.1 Kinematic chain of
the five-bar mechanism

Fig. 9.2 The five-bar
mechanism in a Type 2
singularity: the
uncontrollable motion is
described by the vector t

——— —_—
In Type 2 singularity, A» P is collinear to A2, P and, as a result, r; is collinear to
r;. It can be proven that, in such a case, the robot gets an uncontrollable motion along
the vector t; which is perpendicular to rzP and m (Fig.9.2). To compensate a
force £ which is not collinear to ry and r, (i.e. for which the criterion (9.11) is not
satisfied as tST f will be different from zero in this case), the reactions r; and r, must
have infinite norms. If the force f is collinear to ry and r; (i.e. the criterion (9.11) is
respected as tsTf = 0 in this case), the reactions r; and r, will have finite norms.
This simplified problem gives an insight into the general theory presented in this
section.

9.3.2 Optimal Trajectory Planning Through
LPJTS Singularities

In this section, we consider that only the matrix J;4 is not invertible. To be clear, let
us rewrite here Eq.(9.3):
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3T A = 1,y where 1y = 3 (2L EEIAY 9.12)
=tggwherety=—(—) —(—) . )
td®2 = td =4 A dqq

Thus, t;4 represents the virtual input efforts in the joints of the virtual system that
correspond to the passive joints of the real robot. Moreover, as previously mentioned,
A stacks the wrenches k% to A5 (Fig. 8.5) applied by the virtual tree structure on the
platform at points Ay, , so that this virtual structure can have the same motion as
the real parallel robot. Then, (9.12) represents the equations of the dynamics of the
passive legs in contact with the external environment (here the platform on which is
applied the wrenches A,).

If J;4 is rank deficient, then a non-null vector ¢, exists, defined as

Jud, =04 ¢ 7)., =o. (9.13)

Thus, ¢, represents the passive joint velocities describing the uncontrolled motion
of the legs inside the LPJTS singularity.
Multiplying the left-hand side of (9.12) by q3 T one obtains

4 I =o0. (9.14)

As aresult, for the IDM to be consistent, the right-hand part of (9.12) must strictly
follow the condition
& ta=0 (9.15)

which involves that:

For avoiding infinite input efforts while crossing a LPJTS singularity, the input
efforts of the virtual system in the joints that correspond to the passive joints of
the real robot must be reciprocal to the uncontrollable motion of the passive legs
inside the singularity (in other words, the power of these efforts along the leg
uncontrollable motion must be null).

As for crossing the Type 2 singularities, we will show thereafter that the crite-
rion (9.15) can be respected through a proper robot trajectory planning.

To better understand the phenomenon, let us consider the Tripteron proposed by
Gosselin et al. (2002) depicted in Fig.9.3. The robot is composed of three identical
legs made of an active prismatic (P) joint mounted onto the base and followed by a
serial 3R passive chain. In each leg, all P and R joint axes are collinear (i.e. the 3R
chain is planar and its displacement is orthogonal to the one of the P joint). The legs
are mounted so that each leg is orthogonal to the two others.

This special arrangement of the leg leads to a fully-isotropic robot with 3 trans-
lational degrees of freedom, i.e.

4. =", (9.16)

where § are the input velocities and v p 1s the platform translational velocity. As a
result, the Jacobian matrix is the identity matrix of dimension 3. From Sect. 6.4, if a
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Fig. 9.3 The

Tripteron (Kong and
Gosselin 2002). a CAD view
(courtesy of C.M. Gosselin).
b Kinematic architecture of
the leg i

End-effector

Actuated prismatic joint
mounted onto the ground
with a direction %,

force £, is applied on any point of the platform (and in absence of any other effects),
the robot input efforts T are equal to

T=f,. 9.17)

It is considered in this example that the mechanism is not moving and that the
gravity effects are canceled. A force f (which could represent any kind of effort
applied on the leg, e.g. gravity, inertia, interaction with the environment, etc.) is
applied on leg 1 at point A3 (Fig.9.3b). A simple analysis of the effort transmission
shows that the reactions in the passive joints located at points A> and A3 (A3 and

_
A4, resp.) is collinear to the vector AjpA13 (A13A14, resp.) for any robot configu-
rations and that f = ry| + rj2 (with ry; the force in the joint of the element j of the
leg 1). Moreover, as the force —ry; is applied on the platform through the passive
joint located at A4, from (9.17), we have

T=—rp. (9.18)
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Fig. 9.4 Legi of the T
Tripteron in a
LPJTS singularity A /

End-effector

Actuated prismatic joint
mounted onto the ground
with a direction z,

In a LPJTS singularity (Fig.9.4), A12A13 is collinear to Aj3A14 and, as a result,
rq; is collinear to ry». It can be proven (see Sect.9.5) that, in such a case, the robot
gets an uncontrollable motion given by ¢, that produces a displacement Vin of point

A3 (Fig.9.4). Vi‘” is contained in the plane x; O; y; and is perpendicular to A2 A3

—
and A13A14.

Let us denote as J4,, the Jacobian matrix linking the velocity v4,, of point A3
to the passive joint velocities ¢g such that:

Vai; = Ja1344- (9.19)

As aresult, from the principle of virtual powers, T;4 is the vector of the efforts in
the virtual structure defined such that

e =Jh,f=1=J" . (9.20)
The virtual power due to f and the displacement of the point A3 is thus equal to
ngf = qugn ngttd = qgttd (921)

To compensate a force f which is not collinear to ry; and r, and thus not recip-
rocal to v4,5, (i.e. for which the criterion (9.15) is not respected as q T,y = vi‘ﬁf
will be different from zero in this case), the reactions rq; and ri» must have infinite
norms, thus leading to infinite input efforts from (9.18). If the force f is collinear
to ry1 and rq2, and thus reciprocal to v4,, (i.e. the criterion (9.15) is respected as
(']il Tq,y = vf41T3f = 0 in this case), the reactions ry; and rj will have finite norms,
and the input efforts T will also remain finite.

This simplified problem gives an insight into the general theory presented in this
section.

Examples of trajectories for crossing Type 2 or LPJTS singularities are shown in

the next section.
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9.4 Example 1: The Five-Bar Mechanism Crossing a Type 2
Singularity

9.4.1 Trajectory Planning Through the Type 2 Singularities

From the analysis of matrices A, and J,4, the five-bar mechanism encounters only

Type 2 singularities, but no LPJTS singularity. So, let us analyze the degeneracy

conditions of the expression (9.4), and first, let us compute the term w, of (9.5).
For that, let us rewrite the vector T4 in the form:

Td = Ma(qe) [gﬂ + ¢1d(qs, qy) 9.22)
where My, can be defined by using the Eq. (8.127) as

Mi; 0 zz0;0 0
Mg=|0 0 000 (9.23)
0 Msq4 0 02zz2m

and ¢;y = [62 c4 C5]T where the terms ¢, ¢4 and c5 are defined in Eqgs. (8.133),
(8.135) and (8.136) and can be rewritten as:

diomxyp singz — diamyi2 cos q12 0 .5
Ca = 0 0 [‘?121}
0 dyymxa) sin qay — dyymyy cos gy | L921
fvie 0 0 412 fs12sign(g12)
+ 1 0 fviz O q13 | + | fs13sign(gi13)
0 0 fval |4z fs22sign(gaz)
)
=Cy |:q121] +FoaQa +f4.
q>1
(9.24)

Now, let us express the values of §, and @y as a function of °t,. From (7.187), we
obtain

Gu = Jinvoi:r + . (9.25)
Then, introducing (9.25) into (7.189), we get
¢ =1t +a, (9.26)

with
3 =33 — iadiny) (9.27)


http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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and
a, =J ' (e — Jiaay). (9.28)

Introducing (9.25)—(9.28) into (9.23), simplifying and skipping all mathematical
derivations, we get

Ta = M3, + ¢} (9.29)
where
M = My [JJ} (9.30)
and
c; =My [aQ] + ¢ (9.31)
a,
with
(jgl) Otr)z 0
Crqg = C;rd I(%)O 2 +Foadin tr +1£54 (9.32)
(-]inv t’)
in which Jffl)v corresponds to the jth row of the matrix J;,,.

Then, introducing (9.29) into (9.5), we obtain

wa =", + 37T g ©33)
= ma%, + 3737 V0% + ) '
which, for one given robot configuration, is a function of °t, and °t, only.

From the degeneracy analysis of matrix A, of (7.113) (see Sect.7.5.6.1), the
gained motion inside the Type 2 singularity can be expressed as:

—sin(g;1 + gi2)
t. = . 9.34
) |: cos(gi1 + qi2) ] ©3

Thus, the criterion (9.11) to respect in order to cross the Type 2 singularity takes
the general form

t7'wy = [—sin(gi1 + gi2) cos(git + gi2) | (st + 37 I,F VM°E +¢§) =0
(9.35)
which, for one given singularity configuration, is a function of °t, and °t, only.
Therefore, it is possible to plan, for one given singularity configuration, a Cartesian
trajectory which respects (9.35).


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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9.4.2 Simulations and Experimental Results

In order to validate the theoretical results presented above, we will test the proposed
criterion for crossing the Type 2 singularities on the five-bar mechanism prototype
designed at the Institut Pascal from Clermont-Ferrand (France) and presented in
Sect.8.4.3.1.

Taking into account the real identified parameters of the robot givenin Sect. 8.4.3.1,
the following model fully describes the robot dynamics of the studied mechanism:

t=w, —BTA, (9.36)
Ay =wy (9.37)
with
o]
Y (9.38)

_zznr gn Hgn fs11sign(gir)
wp = - + . + . . .
Z221R §21 fr214921 fs218ign(g21)
From (9.35) and (9.37), the criterion for crossing the Type 2 singularities becomes

t7wq =[—sin(gi1 + gi2) cos(git + gi2) | ma’t,

) . N (9.39)
=my(—sin(gi1 + gi2)¥ + sin(gi1 + gi2)¥) =0

or also
y = X tan(g;1 + gi2). (9.40)

Then, let us define two different types of trajectory with a duration 5 = 1.5s
between the points Py (xp, = [x,,o ypo]T = [0; 0.338]Trn) and Py (fo =
[xp, ypf]T = [0.1; 0.117 m) which are separated by a Type 2 singularity (Fig.9.5):
e A trajectory defined using a fifth-degree polynomial which can fix the position,

velocity and acceleration of the robot at the trajectory extremities only; for this
polynomial, those conditions are:

X(t =0) =xp, (1 =0)=0, ¥t =0) =0 (9.41)
Yt =0)=yp, y¢=0)=0,y¢=0=0 (9.42)
X(t=tp)=xp,, i(t=17)=0,i(=17)=0 (9.43)

yt =tp)=yp;, Yt =15) =0, @t =17) =0 (9.44)


http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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Fig. 9.5 Starting point Py and ending point Py of the Type 2 singularity crossing trajectory

which lead to the following polynomials for x and y:

x(1) = 0.2962961° — 0.2962961* + 0.0790127° (9.45)
y(t) = 0.338175 — 0.7057047> + 0.705704¢* — 0.188188¢°. (9.46)

Note that for the reader who doesn’t know how to plan a trajectory between two
points, the Appendix D explains the procedure.

e A trajectory using an eighth-degree polynomial law which can fix the position,
velocity and acceleration of the robot at the trajectory extremity plus the position
and acceleration of the robot in the singular configuration; for this polynomial,
those conditions are fixed at

xt=0)=0, x¢t=0=0 i¢t=0=0 (9.47)
y(t =0)=03381, y¢=0)=0, $@t=0)=0 (9.48)
x(t=tp) =01, x(t=t5)=0, ¥(¢t=tr)=0 (9.49)
yt=17)=01, y(t=17)=0, §@t=17)=0 (9.50)
x(t =1;) = 0.0543, ¥(t=1;) = 6.8¢* 9.51)
y(t =1,)=0.2, ¥ =t)=-0.01 (9.52)

with #; = 0.75 s the time at which the robot must cross the singularity and X (r = #;)
and (¢t = t,) values that respects the criterion (9.40). These conditions lead to the
following polynomials for x and y:

x(r) =0.03062¢ 4 0.36498:* — 0.089641°

(9.53)
— 0.63889:° + 0.55539:7 — 0.13198¢%
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Fig. 9.6 Input torques simulated for the five-bar mechanism crossing the Type 2 singularity locus
at t; = 0.75s without respecting the dynamic criterion. a Actuator 1. b Actuator 2 (9.40)

y(1) =0.33818 4 0.40308:> — 1.95392r* + 0.14907°

p . g (9.54)
+ 3.13259¢” — 2.56936¢" 4 0.60008¢°.
First, let us simulate the behavior of the robot when perfectly tracking the two
different trajectories. The input torques for both trajectories are shown in Figs.9.6
and 9.7. It can be observed that, for the trajectory that respects the criterion (9.40)
(Fig.9.7), the input torques remain finite while in the other case (Fig.9.6), they tend
to infinity when crossing the singularity at 7, = 0.75s.
Now, let us launch each trajectory on the five-bar mechanism prototype. The
results in terms of

e robot displacements are shown in Figs. 9.8 and 9.9
e input torques are shown in Figs.9.10 and 9.11.
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Fig. 9.7 Input torques simulated for the five-bar mechanism crossing the Type 2 singularity locus
at t; = 0.75s with respecting the dynamic criterion. a Actuator 1. b Actuator 2 (9.40)
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singularity followed trajectory

Fig. 9.8 The five-bar mechanism tracking the trajectory which does not respect the dynamic crite-
rion (9.40)

It can be observed that for the trajectory that satisfies the criterion (9.40), the robot
can cross the singularity with finite torques while in the other case, it stays blocked
in it. Note that:

e when the robot fails to cross the singularity, the data are not recorded after 0.7 s
because we activated the emergency stop,

e experimental results in terms of input torques are different from the simulated ones
because the robot is not able to perfectly track the desired trajectory.

9.5 Example 2: The Tripterion Crossing a LPJTS Singularity

9.5.1 Geometric Description of the Tripteron

As already mentioned, the Tripteron is a spatial parallel mechanism with three degrees
of freedom composed of three actuators located at the prismatic joints attached to
the ground and three passive revolute joints per leg at points A;7, A3 and Aj4. The
MDH parameters of the virtual open-loop tree structure are described in Tables9.1
and 9.2 and Figs.9.3b and 9.12. The end-effector is considered as a supplementary
body numbered as body 5.

The gravity field is directed along zp.
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Fig. 9.9 The five-bar mechanism tracking the trajectory respecting the dynamic criterion (9.40)

For this mechanism:

o the end-effector coordinates are x = [x yzl,

o the active joint coordinates are q!' = [g11 ¢21 ¢31],

e the passive joint coordinates are qg = [qg1 qu q53] with qgi = [qi2 i3 qial
i=1223).
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Fig. 9.10 Input torques measured for the five-bar mechanism crossing the Type 2 singularity locus
at t; = 0.75 s without respecting the dynamic criterion (9.40). a Actuator 1. b Actuator 2
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Fig. 9.11 Input torques measured for the five-bar mechanism crossing the Type 2 singularity locus
at t; = 0.75s with respecting the dynamic criterion (9.40). a Actuator 1. b Actuator 2

Table 9.1 MDH parameters for the frames corresponding to robot active joints

ij aij Mij oij aij Yij bij dij 0ij rij
11 0 1 1 0 0 b1 dii =010 q11
12 0 1 1 72 |72 |bn=al|d2=00 g1 —a
13 0 1 1 —/2 |0 biz3=al|diz=0|—-m/2 |g31+a

9.5.2 Kinematics of the Tripteron

For the Tripteron, the loop-closure Eq.(7.4) can be expanded in the leg i frame
(Fig.9.3b) as

0= l:xAm - ’:XA“ —dj2 cos gi» — dj3 cos(gi2 + qi3)
0="ya, —"'yay — diasingj>» — dj3sin(gi2 + gi3) (9.55)
0="za, —ri1


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Table 9.2 MDH parameters for the frames corresponding to the passive joints of the ith robot leg
i=1,...,3)

ij ajj Mij 0ij Yij dij bij rij

i2 il 0 0 0 dip =0 qi2 0

i3 i2 0 0 0 diz = qi3 0
lanan

i4 i3 0 0 0 dis = qis 0
lAi3Ai4

Fig. 9.12 Kinematic
description of the actuated
prismatic joint arrangement
for the Tripteron.eps

o4 A g

%0y Z11
/ lyoy_)'n

X0, X11

and
0 =gi2 +qi3 + qia (9.56)

where ‘x4,,, 'y4,, and ‘z4,, are the point A;4 coordinates expressed in the frame of
the leg i,

l-xA14 =X, lyA14 =) IZA14 =z (957)
XAy =Y TVAr =7, Tay =X (9.58)
3)CA34 =z, SYA34 =X, 3ZA34 =). (959)

"xA” , iyAiI and izAil are the point A;1 coordinates (also regrouped in the vector X4, )

expressed in the frame of the leg i, x4, p = A;4 P (P is the platform center) and r;
is defined in the Table9.1.
From the last line of (9.55), we directly get:

X =d12 —a
y=gqi3+a (9.60)
Z=dq11.
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From (9.55), by deleting the terms in cos(g;2 + ¢;3) or sin(gi2 4 ¢i3), it is possible

to obtain (fori = 1...3):

d[24 = (-xA,'zA,'4 - di3 Ccos qi2)2 + (yAl‘zA,‘4 - di3 sin in)z

where xa; 4, = "Xa; — 'xa; and ya, 44 ="Yau — YAy
Then, expanding (9.61),

0= A;1cos8qi2 + Ajpsingin + A3
where
Ai] = _2di3xA,'|A,’4
AiZ = _2di3yA,'1A,'4
2 2 2 2
Az = Xanduy T YA A T diz —diy

Finally, by using the tangent half-angle formula, we can obtain

1 —App v Ai22 - A123 + Aizl

Az — Aj

qip = 2tan”

In (9.64), the sign “+” denotes the two robot leg working modes.
Then, we get easily from (9.55) and (9.56) that:

i i
- YAis — YA;
gi3 = tan 1(% ,
XAy — XA

with ’xAB = le” + djp cos qi2, ’yA,.3 = ’yA“ + djp sin qi2, and

qi4 = —qi2 — {i3.

(9.61)

(9.62)

(9.63)

(9.64)

(9.65)

(9.66)

Now, differentiating (9.60) with respect to time, and simplifying, the matrices A,

and B of (7.62) can be found:
010
A, =13,B=(001
100

where 13 is the identity matrix of dimension 3 leading thus to

X q11 x qi1
A |y |[+Blgr|=|V|—|q2]|=0
z 413 Z q13

(9.67)

(9.68)


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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from which we get:
%, = Jqa. (9.69)

with °t, = [ 3217, da = [411 421 43117 and J = 13.
Differentiating (9.69) w.r.t. time, we also get:

°t, = Jda (9.70)
Now, differentiating (9.55) and (9.56) with respect to time, it can be found that:

0 =%, + diz singingio + di3 sin(gi2 + qi3) (G2 + ¢i3)
0 ="Ya, — di2c0sgi2Gi» — di3 cos(qi2 + ¢i3)(Gi2 + Gi3) (9.71)
0="2a,4 — qi1

0=gi2 + 43 + Gia 9.72)

fori = 1,2, 3 and where ‘%4,,, V4, and 'Z 4,, are the point A;4 velocities along the
axes of the frame of the leg i,

15CA14 =1, 1_)‘1A14 = _)‘)’ 12A14 =z (9.73)
Dioe = Vs VA = 2, 2any = X (9.74)
35CA34 =z, 3_).)A34 =X, 32A34 = ).) (9.75)

Combining (9.71), (9.72) and (9.75) and noticing that the last line of (9.71) can
be disregarded as the velocities of the passive joints are not included in this equation,
we get

X 0 dip sing; + dj3 sin(gi2 + gi3)  dizsin(gia +gi3) 0| | Giz
Ji|y|=10]|dgin+| —dizcosqgir — dizcos(gir + gi3) —dizcos(gia +¢qi3) 0| | ¢i3
0

z 1 1 1] | gia
(9.76)
which can be rewritten as
3ii 't — Jeaidin — JeaiGai = 0 9.77)
with
100 010 001
J1=(010(,J2=|001]|,J;3=]100 (9.78)
000 000 000

Jai=[000]" (9.79)
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diz sing;s + diz sin(giz + gi3)  dijzsin(gi2 +¢qi3) 0
Jiai = | —di2 cos g2 — djz cos(qi2 + qi3) —d;3cos(giz + qi3) 0 (9.80)
1 1 1

and %! = [¥ y 2], and qj; = [di2 Gi3 Gial-
Now, considering the legs 1 to 3, we obtain

3%t = Jiala — JiaGa = 0 (9.81)
with
Jtl
Ji=1In (9.82)
Jl3
Jia = 0953 (9.83)

with 093 a (9 x 3) zero matrix and

Jia1 03x3 033
Jia = | 03x3 Jia2 033 (9.84)
0353 033 Jra3

with 033 a (3 x 3) zero matrix and ¢} = [q}, 47, 4751.
Now, introducing (9.69) into (9.81), we obtain:

a0 =71t (9.85)

with
3 =J3J =3 =31 (9.86)

Finally, after differentiating (9.81) w.r.t. time and by introducing (9.70) in it, we
obtain
4o = J,°t + 390, (9.87)

with )
I = =3, 314l (9.88)

From (9.67) and (9.84), it is possible to observe that

e matrix J;4 is singular if one block matrix J;4; is singular; J;4; is singular if and
only if g3 = 0 or w (i.e. x;j7 is collinear to x;3—Fig.9.4),

e matrix A, is constant and never singular; as a result, the robot does not encounter
Type 2 singularities.
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9.5.3 Full IDM of the Tripteron

As mentioned above, the Tripteron encounters only LPJTS singularities. Thus, let us
now compute the criterion (9.15).

The inverse dynamic model of the open loop virtual structure of the Tripteron can
be obtained by noticing that each leg is composed

e of a first active prismatic joint,
e followed by a planar 3R robot in which the last body is massless.

The inverse dynamic model of the leg i is:
Ty = (mi1 +mio +miz + Lai)gin + fsiisign(gi) + fvirgin + 7g,  (9.89)
Ty = (ZZiz + d,~23mi3) gi2 + zzi3(gi2 + Gi3)
+ dizmx;3 ((24i2 + Gi3) €08 i3 — 4i3(2qi2 + ¢i3) sing;3) (9.90)

+ dizmy;3 ((24i2 + Gi3) sing;3 + gi3(2gi2 + gi3) c0s q;3)
+ fsizsign(gi2) + fviagi + Tg;

Ty =22i3(Gi2 + Gi3) + dizmx;3 (51'1'2 cos gi3 + ¢ sin 61:'3)

+ dizmyi3 (51}'2 singiz — g5 cos qz's) ©.91)
+ fsizsign(giz) + fvizgiz + Tg;5
Ty = [Siasign(gia) + fviagia (9.92)
where
Toy = & (M1 +ma1 +m31), Tg, = Tg3 =0 (9.93)
Tgy =0, T4, = g (mXj2 + m;3d;3) COs giz — gmyzsing + Ty, fori =2,3
(9.94)
Tgsy = 0, Ty = gmx;3 cos(giz + gi3) — g my;3 sin(giz + g;3) fori = 2,3
(9.95)
and

e parameters ¢g;; and length d;3 are defined in Tables 9.1, 9.2 and Figs.9.3b and 9.12
(j=1...4),

e 1, is the torque of the virtual actuator located in the prismatic pair, 7y, is the torque
of the virtual actuator located at point A;3, 7y, is the torque of the virtual actuator
located at point A;3 and 1y, is the torque of the virtual actuator located at point A;4.
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The vector T, of (8.59) stacks all vectors t;, = ['Ct“ Try 1,13]T while the vector

T . T
1,4 of (8.60) stacks all vectors t;; = [ttd, Tip rm] with 7, = [Tt,-z Tyis tm] .

The inverse dynamic model of the free body corresponding to the end-effector
(body 5) in the virtual system is

w| =msX
w3y =ms(Z+g)

with w; being the jth components of the vector *w, of (8.65); ms is the end-effector
mass.

Combining these expressions into the equations of Sect. 8.4, the inverse dynamic
model of the Tripteron can be straightforwardly computed.

9.5.4 Trajectory Planning Through the LPJTS Singularities

Let us rewrite the vector 1,4 in the form:

Ta = My (qo)ds + ¢a(9s, qr) (9.97)
where
0353 My1 033 03%3
My = | 0343 03x3 Mg 0343 (9.98)
0353 033 03x3 My3
and
c41
Cqg = | Ci2 (999)
Cd3
in which 0o
mg; mg; 0
My = | ml# zzi3 0 (9.100)
0O 0O
with

o mhl = zzip + dimiz + zzi3 + 2d;3(mx;i3 cos g3 + my;3 sin g;3),
o ml? = zz;3 + d;3(mx;3 cos i3 + my;3 sin g;3),


http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8

9.5 Example 2: The Tripterion Crossing a LPJTS Singularity 225

and
0 cii 2c | [ aia
Cqi = di3mx,~3 - d,~3my,~3 COS ¢;3 sin qi3 0 0 q123
0 0 0 q4i3qin
fvio 00 gi2 Ssizsign(gin)
+| 0 fviz O gi3 | + | fsizsign(gi3) (9.101)
0 0 fvia] |Gia fsiasign(qia)
2
.| 92 .
= Cdi . ql3 + de,' qdi + dei
4i3qi2
with ¢}? = —d;3(mx;3 sin g;3 + my;3 cos ¢;3).

Introducing (7.64), (7.91), (7.164) and (7.183) into (9.97), simplifying and skip-
ping all mathematical derivations, we get

Ta = Mj(x, q)°t + ¢ (x, q,. °t;) (9.102)
where »
t=my |t (9.103)
d = |, '
and R
X 0353 0 cﬁl
¢; =M | | + | ¢ (9.104)
' Ca3
with 1 )
Gyt
ct);i = CZl . %]%totrz)zo + dequdiOtr + fsd,- (9105)
Gl 5t
in which

e J, and J‘ri are three matrices defined at (9.86) and (9.88),

) ji ; the line of the matrix J, corresponding to the variable gg4;;, i.e. the jthcomponent
of the vector qg;.

Thus, for one given robot configuration, T4 is a function of 0t, and %, only.
From the degeneracy analysis of matrix J;4; of (9.80), the gained motion inside
the LPJTS singularity of the leg i can be expressed as:

di
Qy = | —(di2 +di3) |- (9.106)
d;


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Thus,

o If the leg 1 encounters a LPJTS singularity, ¢, T = [q) lT 05 03],
o If the leg 2 encounters a LPJTS singularity, ¢ T =105 qj,{ 03],
o If the leg 3 encounters a LPJTS singularity, ¢, T = 10505 ('1‘213T],

where 03 is a zero vector of dimension 3.
Thus, the criterion (9.15) to satisfy in order to cross the LPJTS singularity of the
leg i takes the general form

Qv =0=q; "M%, +c) (9.107)

which, for one given singularity configuration, is a function of °t, and °t, only.
Therefore, it is possible to define, for one given singularity configuration, a Cartesian
trajectory which respects (9.107).

9.5.5 Simulations and Experimental Results

For the simulations, we have decided to simulate the behavior of a Tripteron during
the crossing of a LPJTS singularity for the leg 1 with the following hypothesis which
does not affect the genericity of the example: we consider that only the elements of
the leg 1 have mass and inertia properties (all other terms are canceled).

This hypothesis which may seem strong does not affect the problem because,
when crossing the leg 1 LPJTS singularity, from the equations of the sections above,
it can be seen that only the mass and inertia parameters of the legs can make the
dynamic model degenerate. Moreover, this hypothesis brings the following main
advantage: we do not have any Tripteron prototype in our laboratory, but we will be
able to experimentally simulate the Tripteron behavior during the LPJTS singularity
crossing by using the five-bar mechanism prototype presented in Sect. 8.4.3.1. Indeed,
this experimental simulation can be done by taking into account that:

e the passive planar 3R serial chain Aj2A13A14 of the leg 1 of the Tripteron is
equivalent to the passive chain A1y P Ay, of the five-bar mechanism (see Figs. 9.1
and 9.3b);

e if we brake the active joint of the five-bar mechanism prototype located at A1y,
the joint A1, of the five-bar prototype mechanism is equivalent to the passive joint
A1 of the Tripteron (Fig.9.13)

e then, the crossing of the singularity of the chain Aj2A13A14 of the leg 1 of the
Tripteron which is equivalent to the passive chain A, P Ay of the five-bar mecha-
nism can be driven by the active link A1 A2> of the five-bar mechanism prototype
that will simulate the end-effector displacement of the Tripteron when motors 2
and 3 are moving (see Figs.9.2 and 9.4).


http://dx.doi.org/10.1007/978-3-319-19788-3_8
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Second active
link of the frve-bar
mechanism which
can simulate the end-
effector motion of the

Tripteron
4,
Actuated prismatic joint Actuated revolute joint
mounted onto the ground mounted onto the ground
of the Tripteron of the frve-bar mechanism
with a direction z, which which is braked
is braked

Fig. 9.13 Equivalence between the leg i of the Tripteron and the five-bar mechanism architecture

Due to this analogy, the mass and inertia parameters of the leg 1 of the Tripteron
must be equal to:

mi3 = 0.40 £ 0.02 kg, mippg =mjp = Okg,
la;) = zzi» = 723 = Okgm?,

mxjy = mx;3 = myj2 = my;3 = 0kgm,
fsi2 = fs13 = fsig = ONm,

fvi2 = fvi3 = fvia = O0Nm/rad,

while the length parameters are d13 = 0.1888 m and di4 = 0.1878 m in order to fit
to the five-bar mechanism prototype parameters.

From (9.107) and (9.102) and by using the parameters given above, the criterion
for crossing the LPJTS singularities of the leg 1 becomes

(lfj Tftd = m31d,'33é]'221 =0= 61122 =0= J(lj1 Oir + ng Otr (9.108)

where JZ“ is the first line of the matrix JZ.

Let us now define for the point A3 of the leg 1 two different types of trajectory with
adurationy = 1s between the points A130 (Xa,3, = [*4,5 yA130]T =[00.338]"m)
and Aj3f (Xa;5, = [xap; yas,]” = [00.0878]"m) which are separated by a
LPJTS singularity (Fig.9.14):

e A trajectory defined using fifth-degree polynomial which can fix the position,
velocity and acceleration of the robot at the trajectory extremity only; for this
polynomial, those conditions are:
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Fig.9.14 Starting point A 20 and ending point A5 of the LPJTS singularity crossing trajectory for
the Tripteron. a Trajectory for the Tripteron leg. b Equivalent trajectory of the five-bar mechanism

YAi3 (t = O) = YA30>» ).)A13(t = 0) = Oa j;Alg(t = 0) =0 (9109)
YAi3 (t = tf) = yA13fv )')Alg(t = tf) = 0, j;A13 (t = tf) =0 (9110)
() = Xap, +/dh + Gan(®) — yap)? ©.111)
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which lead to the following polynomials for y (see Appendix D):
ya,s (1) = 0.33818 — 2.50350¢ + 3.75525¢* — 1.50210¢°. (9.112)

e A trajectory using an eighth-degree polynomial law which can fix the position,
velocity and acceleration of the robot at the trajectory extremity plus the position
and acceleration of the robot in the singular configuration; for this polynomial,
those conditions are:

Yap(t =0)=03381, 4, =0)=0, Fa,(=0)=0 9.113)
Vau(t =17) =0.0878, ya(t=1;)=0, Fa,(t=15)=0  (9.114)
Yap(t =1) = 02021, Ja,(t =15) =0.147, §4,,(t =1;) = —0.693

(9.115)

xa3(1) = xap, + \/dl% + (A (0) = yay)? (9.116)
which lead to the following polynomials for y (see Appendix D):

yas (1) = 0.33818 +3.051727° — 23.59052¢* + 43.558971° o117

— 26.660841% — 0.25459¢7 + 3.64490¢%.

First, let us simulate the behavior of the robot when following the two different
trajectories. The input torques for both trajectories are shown in Figs.9.15 and 9.16
(71 is not shown as it is null at any time). It can be observed that, for the trajectory
that respects the criterion (9.108), the input torques remain finite while in the other
case, they tend to infinity.

Now, let us launch each trajectory on the prototype. The results in terms of five-
bar mechanism displacement are shown in Figs.9.17 and 9.18. The torque in the

(@) ®)
El
g 2 S z S
\Z/ 0 ] 4 Torque —
8 o 3 discontinuity
3
g 2 =
8 5 2
5 4 3
= Torque g 1
g -6 discontinuity — S
< o
=
% -8 S 1
K 3
=10 N
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (sec) Time (sec)

Fig.9.15 Inputtorques simulated for the Tripteron crossing the LPJTS singularity locusatz; = 0.5
without respecting the dynamic criterion (9.108). a Actuator 2. b Actuator 3
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Fig.9.16 Inputtorquessimulated for the Tripteron crossing the LPJTS singularity locusatzy = 0.5
with respecting the dynamic criterion (9.108). a Actuator 2. b Actuator 3

singularity Jfollowed trajectory

Fig. 9.17 The five-bar mechanism tracking the trajectory which does not respect the dynamic
criterion (9.108)

actuator 2 of the five-bar mechanism prototype are given as information, to show
their evolution and check their degeneracy (Fig.9.19). It can be observed that for the
trajectory that respects the criterion (9.108), the robot leg can cross the singularity
configuration which is equivalent to the LPJTS singularity of the Tripteron with
finite torques while in the other case, it stays blocked in it at 0.7 s (in order to prevent
harming the mechanism, a security stopped the mechanism). Thus, with the trajectory
defined at (9.112) without respecting the criterion (9.108), the Tripteron would not
be able to cross the LPJTS singularity while the singularity would have been crossed
by using the trajectory defined at (9.117) without respecting the criterion (9.108).
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Fig. 9.18 The five-bar mechanism tracking the trajectory respecting the dynamic criterion (9.108)
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Fig. 9.19 Input torques of the actuator 2 of the five-bar mechanism when tracking two types of
trajectories. a Without respecting the dynamic criterion (9.108). b With respecting the dynamic
criterion (9.108)

9.6 Discussion

In this book, we have shown that it is possible to cross the Type 2 and LPJTS singular-
ities of the robots without degeneracy of the robot input efforts. We have deliberately
chosen to treat each problem separately. However, it is of course possible to cross at
the same time a Type 2 and a LPJTS singularity, whereas we cannot show it experi-
mentally. In such a case, the trajectory must ensure that the criteria (9.11) and (9.15)
are satisfied in the same time.

It should also be mentioned that, in the present book, we have considered that
the robot was able to perfectly track the desired trajectories, which is not the case in
reality. In order to deal with such a problem, adequate and robust controllers must
be developed, such as the one proposed in (Pagis et al. 2014, 2015) for crossing
Type 2 singularities. However, developing adequate controllers for crossing Type 2
or LPJTS singularities is out of the scope of the present book, even if this problem is
interesting and can make singularity crossing more attractive in an industrial context.

Finally, in the present chapter, we have considered case studies for which it was
easy to define analytically the vectors of the gained motions inside the singularities
(ty and ¢)) for any robot configurations. However, for more complex robots these
analytical expressions may not be possible to obtain. The same problem could arise
for the definition of the singularity loci that the robot will cross. In such a case, a
numerical approach must be used which could, for instance for crossing a Type 2
singularity, follow the steps:

1. numerically find a robot singular configuration through which it must pass.

2. then, numerically compute the value of the vector t;. For that, we can use the
“eig” function in Matlab, as t, is an eigenvector of the matrix A, corresponding
to a null eigenvalue «. Of course, due to numerical problems, the corresponding
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eigenvalue o may not be null, but its absolute value will be lower than a small
number €, i.e. || < €.

3. compute the value of wy as a function of X, X; and X;, where x; represents (X;, X,
resp.) the platform pose (velocity, acceleration, resp.) at the singular configuration.
X; can be numerically defined at the first step, while X; and X; must be for the
moment taken as variables. At the end of this step, the expressions of each term of
w, can be obtained under the form of polynomials in X; and X; whose coefficients
can be numerically computed.

4. finally, define the criterion (9.11) which must have the form of a polynomial in
X; and X; whose coefficients can be numerically computed.

Obviously, to avoid numerical issues due to round-off problems, the maximal com-
putational accuracy in Matlab must be used.

The reader interested in these results can find videos of some robots crossing
singularities in the following webpages:

e http://www.irccyn.ec-nantes.fr/~briot/Books.html
e http://www.irccyn.ec-nantes.fr/~briot/SingControl.html
e http://www.irccyn.ec-nantes.fr/~briot/SingExit.html

Moreover, note that the case of flexible PKM crossing Type 2 singularities has
been investigated in (Briot and Arakelian 2010, 2011).


http://www.irccyn.ec-nantes.fr/~briot/Books.html
http://www.irccyn.ec-nantes.fr/~briot/SingControl.html
http://www.irccyn.ec-nantes.fr/~briot/SingExit.html
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Dynamics of Flexible Parallel Robots



Chapter 10
Elastodynamic Modeling of Parallel Robots

Abstract The present chapter deals with computation of the dynamic model of flex-
ible parallel robots. In order to obtain the elastodynamic model, as in the rigid case,
all closed loops must be virtually opened to make the platform virtually disassem-
bled from the rest of the structure which becomes a tree structure with all joints
actuated. The elastodynamic model of the tree structure and of the free platform
is then computed using a systematic procedure based on the generalized Newton-
Euler principle, that makes it possible to reduce the computational complexity of the
model. Then, the loops are closed using the principle of virtual powers. As a matter
of fact, after an introductory section, this chapter will introduce an effective way to
compute the elastodynamic models of a single clamped-free flexible link and of a
tree structure robot. Then, the computation of the elastodynamic model of parallel
robots is investigated. The simulation results obtained with the dynamic model of a
flexible parallel robot are compared with experiments.

10.1 Introduction

Many studies have been devoted to computation of the full dynamic model of rigid
parallel robots, however there are still many open questions concerning the compu-
tation of their elastodynamic model. One of them concerns reduction of the com-
putational time that is generally huge and prevents the use of such models in many
applications, such as real-time control, design optimization process, etc. To decrease
the computational cost, it is either (i) possible to decrease the number of variables
(using model reduction methods (Briot et al. 2011; Craig 1981; Craig and Bampton
1968) and truncated series of shape functions (Blevins 2001)) or (ii) to efficiently
compute the symbolic model in order to minimize the number of operators (sim-
ilarly to what has been done for rigid robots (Khalil and Dombre 2002), robots
with lumped springs (Khalil and Gautier 2000) or for serial robots with distributed
flexibilities (Boyer and Khalil 1998)). Both methods can obviously be combined.
For the computation of the elastodynamic models of robots, two main approaches
are generally proposed (see (Dwivedy and Eberhard 2006b) for a large literature
review): (i) lumped modeling (Khalil and Gautier 2000; Kruszewski et al. 1975;
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Wittbrodt et al. 2006) and (ii) modeling using distributed flexibilities (Bauchau 2011;
Boyer and Coiffet 1996; Boyer and Khalil 1998; de Jalon and Bayo 1994; Rognant et
al. 2010; Shabana 2005; Stachera and Schumacher 2008). Lumped modeling is gen-
erally simpler to use by non-experts in finite element methods but, to obtain a model
with sufficient accuracy, a higher number of elements is required, thus increasing
the computational time. The most relevant works in lumped modeling methods are
probably (Khalil and Gautier 2000) (for serial robots) and (Wittbrodt et al. 2006)
(for any type of robots). In Khalil and Gautier (2000), the flexibilities are modeled
by one DOF springs and a systematic procedure for the symbolic computation of the
model is proposed. This procedure allows minimization of the number of operators
in the model. In Wittbrodt et al. (2006), springs of higher dimension are used, but it
is shown that, to obtain good accuracy, the number of elements must be high, thus
leading to longer computational time.

Contrary to lumped modeling, using distributed flexibilities allows improvement
of the model accuracy. However, such methods require highly-skilled users. In
Bauchau (2011), de Jalon and Bayo (1994), Rognant et al. (2010), Shabana (2005),
some general methodologies based on the Lagrange principle that can be applied
to any system are proposed. In the case of closed-loop mechanisms, some Jacobian
matrices are computed that allow taking into account the kinematic dependencies.
The work (Stachera and Schumacher 2008) combines the Lagrange principle and
the principle of virtual work for computing the elastodynamic model of parallel
robots. However, the main drawback of such general methodologies is that they are
not specifically designed for parallel robots and that they do not guarantee mini-
mization of the number of operators for the symbolic computation of the model.
A first approach for systematic computation of the required Jacobian matrices has
been proposed in Bouzgarrou et al. (2005). However, this approach was not designed
so that a minimal number of operators for the model symbolic computation can be
obtained. The objective of this chapter is to present a systematic procedure to com-
pute the elastodynamic model (using distributed flexibilities) of parallel robot with
a minimal numbers of operators. This model is useful for several different reasons:

e In design optimization processes, optimization algorithms that test thousands of
robot parameters are used. If the computational time required for the calculation
of one iteration of the elastodynamic model of the robot is not minimized, several
days, and even months, can pass before the results are obtained.

e Symbolic expressions, with a minimized number of variables and operators, are
requested for computing the identification model, in order to decrease the risk of
error propagation due to noisy measured data.

In order to minimize the number of operations, a generalized NE model (which is
known to reduce the number of operators (Boyer and Khalil 1998; Boyer et al. 2007;
Khalil and Dombre 2002; Shabana 1990)) is used and combined with the PVP. The
Jacobian matrices defined in the PVP are computed using recursive algorithms that
decrease the number of operators.
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In this part, we will consider a parallel robot composed of one rigid fixed base
(denoted as the element 0), one rigid moving platform and 7 legs, each leg being
a serial kinematic chain composed of m; — 1 bodies linked by m; joints (revolute,
prismatic or even fixed joints—i = 1, ..., n) (Fig.8.1a). The actuated variables are
denoted by q, (of size n,) and the leg passive variables by q4 (of size ny). The
platform coordinates are denoted as x,.

To obtain the desired equations for the IDM and DDM, we will use a method
similar to the one used in Chap. 8 for the rigid case. The problem will be once again
divided into two steps (Briot and Khalil 2014a):

1. first, all closed loops are virtually opened to make the platform virtually disas-
sembled from the rest of the structure (Fig. 8.1b) so that the robot becomes a tree
structure and a free body: the platform; The leg joints are virtually considered
actuated (even for unactuated actual joints). The dynamic model of the tree struc-
ture (being composed of flexible bodies) and of the free platform is then computed
using a systematic procedure based on the Newton-Euler principle, which makes
it possible to obtain

T . v .
[Ot:| :dml(qh qlv qls qev q€1 qevwl) (101)
Ne

w, = idm, (i), ty, Xp, We) (10.2)

where dm; represents the dynamic model of the flexible tree structure, idm, the
IDMof the platform, q, are the joint coordinates of the tree structure, q, is the
vector of the elastic coordinates of dimension 7., and t, X, are the platform twist
and pose, w; is the system of wrenches applied by the tree-structure robot on the
environment and w, is the system of wrenches applied by the platform on the
environment.

2. Then, the loops are closed using the PVP.

As a result, the present chapter is organized as follows:

e Section 10.2 presents the generalized NE equations for the considered body. The

99 G 9

generalized NE equations are optimized so that the number of operators “+”, ,

x” and “/” used for computing the models is minimized.
e Sections 10.3-10.5 present the computation of the dynamic models of

1. the mechanism composed of the virtual tree-structure and the free body corre-
sponding to the platform,
2. the flexible PKM.

e Section 10.6 treats the practical implementation of the algorithm.
e Section 10.7 shows a case study.


http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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10.2 Generalized Newton-Euler Equations of a Flexible Link

This section aims at presenting the generalized NE model of a flexible clamped-free
body (Boyer and Coiffet 1996; Boyer et al. 2007; Shabana 1990; Sharf and Damaren
1992).

Remark

The goal of this chapter and of the following is not to provide a complete lecture on
mechanics of deformable bodies, but to show for people having some basic knowl-
edge in this field how to obtain the dynamics of a flexible PKM starting from basic
considerations in mechanics of deformable bodies (such as the fact that the defor-
mation of a body can be parameterized as a truncated series of Rayleigh-Ritz shape
functions, or such as the expression of the potential energy due to elastic deforma-
tions, etc.).

If the reader requires additional information on mechanics of deformable bodies,
he/she is invited to read the reference books of Shabana (2005) and of Bauchau
(2011).

10.2.1 Geometry and First-Order Kinematics
of a Clamped-Free Flexible Body

In this part, we consider the model of the flexible body depicted in Fig. 10.1. This
body, denoted as body %;, is supposed to have small elastic deformations around
its reference (rigid) configuration Og;Ag;. The body is clamped at O; such that
Oo; = O;. The position of any point M; belonging to Z; can be computed as the
superposition of

Fig. 10.1 Schematics of one A
flexible link #; 0/

undeformed

configuration
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e arigid state ro; um,, characterizing the position of the point M; with respect to the
local frame .%; in absence of deformation (in that case, M; = Mj;) and,

e an elastic deformation u,; (Mo;) which can be parameterized as truncated series
of Rayleigh-Ritz shape functions (Blevins 2001) such that:

u; (Moj) = ®a;(Mo)qe, (10.3)

with

- %y = [<I>d1]., ceey <1>de/,], ®k; (Moj) being the kth shape functions for the
displacement of the flexible body expressed at point My,

- qu; = I:‘Zel_,'a ceey qu_/,-]’ gek; being the kth generalized elastic coordinate of
the body %; and N; the number of considered shape functions.

Asaresult, the vectorro, u; characterizing the position of any point M j belonging
to the body %; is given by:

rOij = rOjMoj + qu(MOj) = rOjMoj + (I’dj (MOJ)qL’] (104)

Moreover, the orientation of the body 2; at any point M ; belonging to this body
can also be computed as the superposition of

e arigid state defined by the orientation matrix 'R’; = °R j characterizing the rigid
orientation of the point M; with respect to the global frame .%g in absence of
deformation (in that case, M; = My;) and,

e an elastic deformation state parameterized by the three angles qu. (Mo;), 9; (Mo;)
and 1//;. (Mo;) characterizing the respective rotations around x, y; and z jl which
can be defined as truncated series of Rayleigh-Ritz shape functions (Blevins 2001)
such that:

¢5(Moj)
05 (Moj) | = ¥e;(Moj) = ®,;(Mo)qe, (10.5)
v§ (Moj)

with <I>,j = [<I>,1j, el <I>,ij], <I>,kj (My;) being the kth shape functions for the
rotation of the flexible body expressed at point My;.

As aresult, the rotation matrix °R; (M ;) characterizing the orientation of the body
%, at any point M ; is given by:

OR;(M;) = "R’ rot(x, ¢4 (Mo;)) rot(y, 65(Mo;)) rot(z, ¥§(Mo;)).  (10.6)

Based on these considerations, the twist of any free flexible body #; at any point
M can always be expressed as (Boyer et al. 2007):

I'The order of the rotations is not important as we consider small deformations.
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el ) o

(.!)Mj
where
T
ot; = I:V/T, wlT] is the twist of the local frame .7 fixed on the body %, expressed
atpoint O}, v; and w ; being the translational and rotational velocities, respectively,

® Ve, (M;) and 0, (M) are the translational and rotational velocities due to the
body elasticity.

Ve; (M) and w,; (M) can be obtained such that:

I:Vej(Mj)i| _ |:‘I)dj(M0j)
(!)eJ(M])

P, (Moj)i| Qe; = ®;(Moj)qe; (10.8)

with qu/, = [c]e]j, ey qe ij], qek; being the kth elastic generalized velocity of the
body and N; the number of considered shape functions.
Thus, (10.7) can be rewritten as:

V| gy [ @ X oM, Tt (I’dj(MOj)(Ie_,-)] [‘I’d, (Moj')} . 109
[‘”Mj] /+[ 0 i @/, (Mo;) G- (109

Equations (10.4)-(10.7) define the kinematic model of the flexible body ;. This
model is thus parameterized by the following set of variables:

e t; that are the Euler variables characterizing the rigid velocity of the body %, at
the origin of the local frame,

e (., that are the Lagrange variables characterizing the elastic displacement of the
body %;.

Thus, the kinematics model of a flexible free body is parameterized by N; sup-
plementary variables q.; and N; shape functions compared to the free rigid body
case.

It should be noted that this description can be applied to both robot segments
and joints, as long as all the shape functions can be defined. Many expressions of
shape functions can be found in Blevins (2001). Moreover, the shape functions for
3D Bernoulli beams are given in Appendix F.

10.2.2 Computation of the Elastodynamic Model
of the Flexible Free Body Using the PVP

In Boyer et al. (2007), the PVP is used for computing the elastodynamic model of a
free flexible body. This principle, which has been given in Sect. 6.3 in the case of a
rigid link, can be rewritten for a flexible body as:


http://dx.doi.org/10.1007/978-3-319-19788-3_6
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* * *
Pace = Py + Poy (10.10)

where P . is the virtual power due to the acceleration quantities, P, is the virtual

power due to the internal elastic efforts and P}, is the virtual power of the external
efforts. Let us recall that the superscript “x’ stands for a virtual quantity.

10.2.2.1 Computation of the Virtual Power Due to the Acceleration
Quantities

By definition, the virtual power due to the acceleration quantities is equal to (Boyer
et al. 2007),
. T
P;CC:/%.VMJ_VX,dem (10.11)

J
where 4, is the body under consideration, dm is a small quantity of mass and
“]Mj =V] + (de (MOJ)qEJ + 2(&)1 X ¢d.f (MOJ)qu
+w; X ((x)le'Oij)—i-(bj XT0o;M; (10.12)

is the translational acceleration of the point M ; with respect to the base frame, with
®; the rotational acceleration of the considered body at point O; with respect to the
base frame. The expression of Vy;; can be obtained through the differentiation w.r.t.
time of the expression of vy; given in (10.7).

The expression of Vy; can be straightforwardly obtained by differentiating w.r.t.
time the upper part of the Eq. (10.9) which states that:

VM; =Vj+®; X (Xo;my; + Pa;(Moj)qe;) + Pa; (Moj)qe; (10.13)
which implies that

Vi, =Vj+ g, (Moj)Ge; + @ x ®a;(Mo;j)qe;
+6; x (Xo;my; + Pa; (Moj)qe;)
+w; x (0; XTo;My; + @ X Pa;(Moj)qe; + Pa;(Moj)qe;). (10.14)

Equation (10.12) can be thus obtained by factorizing the expression (10.14).
Introducing (10.12) into (10.11), it turns out that:

T
P = / CSwdm ) Vi
B
T
/ ro,m; X "/dem wj +
Zj
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T
(/ P (Moj)vM,.dm) q;, (10.15)
B, ‘

By introducing the expression (10.12) in (10.15) and after simplifications, detailed
in Appendix E, we get

P =fl vt

* T
acc accy ' j accz(‘oj +f

. %
accs qe‘,-

(10.16)

in which

fuocr = [ dm ¥+ [ o (0 am i,
# B

J &

+ d)j X (/ roijdm)

J

+2w; x (/% ‘I)dj(Moj)dm qej)

J

+o; x (@) x / ro,m,dm (10.17)
Bj
faccz = (/ rOijdm) X V] +/ f‘Oij(de(MOj)dm ijej'
B B

J

AT ~ .
+/ Yo,m;To;m;dm @;
i

AT A
to; X ((/@ roijrO_/M./dm) “’j)
]

N;
+2 Z( /% £ (Moj) D, (Moj-)dm) © jqek;
k=1 J
N;
+2 >
=

(/g i*gij(M()j)&)dkj(Moj)dm)quei_jqek_i (10.18)
i,k=1 Zj

in which 'ink ; is the cross-product matrix associated with the vector ® g R and

T
fucesli = ( /E cbd,<M0j>dm) ¥

J
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T
+(/§9 f'Oij{)dj(MOj)dm) i @;

J

+ ( /2 ®]) (Mo;)@dj(M0j>dm) e,

7

N; T
+2Z(/Z Par; (Moj) x i (MOj)dm) @ jqek;
k=1 '

%
J

T
— (g)]T (/% f‘j]-w(Moj)@dij (M()j)dm) ®;

]
N;j
>l (/% ®j; (Moj) Py, (Moj)dm) @ qek; (10.19)
k=1 Hj

where the symbol ‘|;” denotes the line i of the considered vector or matrix.

10.2.2.2 Computation of the Virtual Power of External Efforts

The virtual power of external efforts can be divided into two parts

Peﬁ(t = Pg*rav + Prtac (1020)
where ,
Pl = / (vjlj) g dm (10.21)
#j
is the virtual power of the gravity field g, and
T T T T
Ploge =0, Vi +mp oF —f4 v} —my o} (10.22)

is the virtual power due to the reactions at point O; and A; (Fig.10.1), where fo,
and mg; are the force and moment applied at point O; while f4; and m,; are the
force and moment applied at point A ;.

Thus, introducing (10.7) in the previous expressions, we get

T
Pg*rav:(/;ggdm) V>jk+

J
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( /@ g’ @y, (MOj)dm) q;, (10.23)

J

which can be expanded as
P¥ = (/ dm)gT vid
grav J
Zj
T
m; d p
((/ﬁ/ To;M; m)xg) ®;+

(gr L B, (Mo j)dm) i, (10.24)

J

and

* T _x
Prege = (foj - fAj) Vit
T &
(mo; —ma; —ro;a; xfa;)" 07—

(f{j By, (Agj) +m} B, (Ao‘,)) Q- (10.25)

10.2.2.3 Computation of the Virtual Power Due to Internal Elastic
Efforts

For computing this quantity, it is first necessary to compute the elastic potential
energy of the body %;.
The elastic potential energy of any body is given by (Shabana 2005):

1
U, = E/V. ol Le;dV (10.26)
J

where

e V; is the volume of the body %;,

e 0, and €; are the six-dimensional stress and strain vectors due to the small elastic
displacement u,; (Mo;) = ®4,(Mo;)qe; in body #;,

e I; is a (6 x 6) diagonal matrix. The first three diagonal terms are equal to one,
whereas the last three diagonal terms are equal to two, because of the two multi-
pliers associated with the shear strains (Shabana 2005), i.e.
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The strain vector is defined as €;

€jn
€j12
€13
with
Vv ue_,' (M()])

247

13 0343
I, = . 10.27
! |:03><3 213} ( )
T
= [5111 €jn €j33 €ji2 €)1 l‘31'23] , where:
€j12 €j13 1
e e | = 5 (Vi (Mop) + (Vu, (o)) (1028)
€jx €j33
[ ou, . ou,,
= I /(Mo ) 3y ad (Mo;) sz (MOj):|
3<I>(1) 8<I>(1) 8<I>(1) ]
_(MOJ)qc, _y(MOJ)qc, _(MOJ)qe,
B <I>(2) <I>(2) <I>(2)
= —(MOJ)(—Ie, —y (Mo)q, —(MOJ)qe, (10.29)
3(I>(3) 3(1)(3) 8@(3)
i ( Oj)ch j —( OJ)QL, j (MOJ)qe,

where <I>gj) corresponds to the kth row of matrix @dj, k=1,2,3. As aresult,

| = N =

N —

(I,(l)

A

—(Moj)+—(Mo/)

6L 35

The stress vector is expressed as:

o)

3‘I>(2)
—(M()j) + _(M()])

92
—(MOJ) + _(MOJ)

<I>(3)

Qe; = Pe;4e;

— [ ) , . , 1" =H
= [0.111 Ojx Oj33 Ojiz Oji3 ‘7/23] =Hjg;

(10.30)

(10.31)
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where matrix H; is given by Hooke’s law (Shabana 2005), and is equal to, for an
isotropic elastic material with elastic modulus E; and Poisson coefficient v;,

H, - Ej ' 053 (10.32)
P40 =2v) | 03,3 1*22”113
in which
1—1)]' Vj vj
HY = | v 1—v v | (10.33)
1)]' l)j l—vj

Thus, introducing (10.30) and (10.31) into (10.26) leads to:

1
Ue, = quTj Kee, qe; (10.34)

where K., is the stiffness matrix of body %, and takes the form:
_ Tyl
Kee;, = / <I>8jH/. L&, dv. (10.35)
V; ’

The resulting expression of the virtual power due to internal elastic efforts is thus
given by (Boyer et al. 2007):

T
P = — e ) g = — T Kee, @ (10.36)
nt — 8qej qe/- - qej eejqej. .

The stiffness matrices for 3D Bernoulli beams are given in Appendix F.

10.2.2.4 Computation of Equilibrium Equations

Thus, introducing (10.16), (10.24), (10.25) and (10.36) into (10.10), developing and
simplifying the expressions, and taking into account the fact that the virtual velocities

vj., wjf and c}:ij are independent, three sets of equilibrium equations can be obtained:

Xfj=m; ("’j - g) “FMSdeJ'('iej + 20 x Msdejqu

—ms; X @ +®; x (w; x ms;) (10.37)

Im; =ms; x (V; — g) + MS.,dc,
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Nj
+2 Z Iee,»;g“’j‘]ei,-‘}ekj + IO_/' (;)j
ik=1
Nj
+ @ x (I0;@) 42D Loy, (10.38)
k=1

and

Tsjli =MSJ, |i (V; —8) +MS;, |i ®; +Mee; li e,

Nj
T ; T
+2 Z i @jqek; — 0 1, @;
k=1
N
=D 0 Leeyy @ qet; + Kee,li g, (10.39)
k=1

where the symbol |;” denotes the row i of the considered vector or matrix. Equa-
tions (10.37)—(10.39) represent respectively the linear rigid equilibrium, the angular
rigid equilibrium and the elastic equilibrium.

In the expressions (10.37)—(10.39), m is the mass of the body %; and the terms
ms;, MSdej, MS,ej, Ioj, Ire,.j, Ie%,, Meej, Xf;, ¥m; and X's; are defined in the
following expressions:

ms,-:/ ro;m;dm
Pie

J

:/ rOjMOjdm—i-/ (I)dj(MOj)dm qe/'
%j '-%’j

=ms,; + MSq,;q.; (10.40)

is the global vector of the first moments of inertia in which

erj = /ﬁ l'o].MOjdm (104])

J

is the (3 x 1) constant vector of the first moments of inertia of the rigid link,

msdex
MSdejz msdey :/ <I>dj(M0j)dm (10.42)
msdez B

is a (3 x N;) constant matrix when expressed in the frame .%;,
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Sy, = / 0, 4, (Mo;)dm
B

J

/ fo,y, Baydm + / (@a, (o)), ) Ba, (Mo;)dim

/

[Bl,+zk VM ek - B+ T M ety | (1043)

where
Bkj =/ ro;My; X q’dkj (Mo j)dm (10.44)
Bj
and
Mei; = /@ P; (Moj) x Pai;(Moj)dm (10.45)
B

are two (3 x 1) constant vectors when expressed in the frame ﬁ,-j in which, let us
recall,

° 'I’d,-,. corresponds to the ith column of the matrix <I>d/. s
e P ; corresponds to the kth column of the matrix ®g4;,

N AT A
IO_/ —/ rOijroijdm
i

:/@ rOjMo fo, Mojdm +/ Zro Mo <I:'dk (MOJ)‘]ek dm

Bj k=1
N.
/ Z% (Mo)F0; Mo, Gek, dm
%) k=1

/ Z ®L (Moj)®ar; (Moj)qei; qor; dm

Bj i,k=1
Nj Nj
= rr/ + Z( regj + Irek ) qgk + Z Iee,k]‘hl]qgk (1046)
i,k=1

is the global matrix of the second moments of inertia, in which:
AT A
Ly, = /%. T0, M0, £0; Mo, dm (10.47)
2

is the (3 x 3) constant inertia matrix of the rigid body when expressed in the frame
Fiji
s
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AT 2
Loy = /% Y0, My, Rak; (Moj)dm (10.48)
J

and
Le,, = /% @;}_(Moj)@dkj(Moj)dm (10.49)
Fj

are (3 x 3) constant matrices when expressed in the frame .%;,
M., = /@ <1>§j (Moj)®a,(Moj)dm (10.50)
Zj

isa (N; x N;) constant matrix when expressed in the frame .%;;, and
Xfj =1fo, —f4; (10.51)

and
Emj =mMp; —My; —rp;4; X fA_/. (10.52)

represent the total external forces and moments at point O, and
Ts; = f/{j B4, (Aoj) + mﬁj B, (Aoj). (10.53)

represents the generalized elastic forces and moments at Ao;.

10.2.2.5 Remark on Computation of the Terms Bkj s Nkij» I,ekj, Ieeikj and
Meej

The elements of the matrices and vectors Bkj, ki » I,ek,., Ieeikj and M., ; are not
independent and can be computed via the use of a limited set of parameters.
Let us consider the (3 x 3) matrix defined by

JexXikj jexyirj jexzik
Jeew, = | Jeyxixj jeyyig jeyzig | = / ®yi; (MOj)‘I’ij (Mpj)dm.  (10.54)
jezxij jezyij Jjezzik Z
By definition, we have Jee,-kj = JeTek,-j~
As a result, it turns out that the element on the ith row and kth column of the
matrix M., (denoted as the element M, (i, k)) is equal to:

Mee, (i, k) = jexxig + jeyyikj + jezzikj- (10.55)
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Moreover, we have also
Jjezyiky — jeyzik

Mei; = Jjexzj — jezxi (10.56)
jeyxikj — jexyik

and
Jjeyyi + jezzikj —jeyXik —Jjezxik
Leey; = —jexyuwj  jexxiyj+ jezziyi  —jezvik . (10.57)
—jexzij —Jjeyzigy  Jjexxi + jeyyir

Now, let us consider the (3 x 3) matrix defined by

JrXXig jrxyg jrxzi ; ;
Jrey = | Jryxig jryyi jryzig | = /6 X0, mo; ar; (Moj)dm. (10.58)
Jraxi jrzyig jrizi #;

As aresult, it turns out that the matrix Irekj is equal to:

Jryye + jrzzij  —jryxyg —Jjrzxg
Loy = —jrxyy  Jjrxxg+jrzzg o —jravkg . (10.59)
—Jrxz) —jryzij  Jjrxxi+ jryyg

Moreover, we have
Jryzij — jrzyi
Bi, = | Jrexy — Jrxzy | - (10.60)
JrXyij — jryxi

10.2.3 Matrix Form of the Generalized Newton-Euler Model
Jor a Flexible Clamped-Free Body

The generalized NE model of a flexible free body presented in the previous section
can be put in the following matrix form:

>t mjls ms; MSqu; | [V fin; 0 £,
Emj = l/n\STl IO% MS,ej (x)j + C,’nj —+ 0 =+ ng
ESJ' Msdej Msrej Meej er Sin/- Keej qej ng
M, [}j ] +e (10.61)
qe]'
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where

e ms; is the (3 x 3) cross-product matrix corresponding to the vector ms; defined
at (10.40),
T

M . T . . . . 3

ot; = [V]T ® j] is the acceleration of frame .%; expressed at point O; with v;
and @; the translational and rotational accelerations of the local frame fixed on
the body %, at point O, respectively,

° fi,,j and Cipn; are vectors of the inertial force and torques, respectively,

fin; = wj x (n’ﬁfwj +2MSde,-qe,-) (10.62)
N;
Cin; =®Wj X (Ioj(s.)j) +zzlr€kjqu‘€kj
k=1
N;
+2 Z Ieeikj(’)eri_;Qek_,' (10.63)
i,k=1

® Sin; is the vector of the generalized elastic forces,

N;
. TxT
Sin, li =ZZin,-quekj —o;l,.0;
k=1
N.I
T
— Za) Moe @ ek, (10.64)
k=1

o f,, and c,; are vectors of the gravity force and torques plus the other external
forces, respectively,

fo, = —mjg (10.65)
¢, = —mS;g (10.66)

e s, is the vector of the generalized elastic forces due to gravity,
sg; = —MSg, g (10.67)

m; 13 I/n\Sf MSdej
e M; = ms i Io_/. MSre_/ is the generalized inertia matrix of the body %;,
MST MS! M,
dej re; j
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finj 0 fgj
ec; = |Cin; | + 0 + | ¢g; | is the global vector of the centrifugal,
Sin Keejqej Sg;

Coriolis, gravity and elastic forces of the body ;.

The Eq.(10.61) generalizes for a flexible body the NE model of the rigid case. In
fact, by eliminating the elastic terms in (10.61), we get the NE model for the rigid
body defined in (6.35).

Note that we can see that the gravity effects can be automatically taken into
account in (10.61) by adding —g to the acceleration v;. As a result, the Eq.(10.61)
becomes:

Efj m; 15 H/I\Sf Msdej VJ — £ finj 0
Emj = ITI\SJ' IO‘/. MS,ej d)j + Cin; + 0 . (10.68)
2s; Msge_/ MSrTej M, 4e, Sin; Kee;Qe;

This formulation is better in terms of computational cost.

This generalized NE model is known to reduce the number of operators necessary
for computation of the elastodynamics behavior of a flexible link (Boyer and Khalil
1998).

10.3 Dynamic Model of Virtual Flexible Systems

In this section, we compute the elastodynamic model of the virtual tree-structure and
of the free moving platform by applying the PVP.

Let us consider a parallel robot composed of one rigid fixed base (denoted as the
element 0), one rigid moving platform and »n legs, each leg being a serial kinematic
chain composed of m; — 1 bodies linked by m; joints (revolute, prismatic or even fixed
joints—i = 1, ..., n) (Fig.8.1a). The actuated variables are denoted by q, and the
leg passive variables by q. The platform coordinates are denoted as x,. The size n, of
(. must be equal or superior to the number of DOF of the parallel robot. The number
of shape functions by element is denoted as Nj; (j = 1,...,m; — 1). As a result,

there are n, = |, Z',"’:Il Nj;j elastic variables grouped in the vector q.. All the

active, passive and elastic variables are grouped into the vector th = [qg, qg, qu]

10.3.1 Application of the PVP

Considering the jth body of leg i (denoted in the following as the body %), the
PVP states that:

T  xT xT Efij . «T t(ij)
[Vz'j @i qe,-,] Tm; =47 | (10.69)
Xsjj Ne
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where 'lf(j) is the vector of the virtual input torques of the tree structure (Fig.8.1b)
due to the movement of the link %ij and 0,, a null vector of dimension #,.

The twist tj‘jT = [V;;T i ] and generalized elastic velocities g, are linked to

the generalized velocities q; by the relation:

t; :
[. i } = Ty (10.70)
Qe;;

where J;; is the Jacobian matrix of the body %; j whose expression will be given in

the following section.
Equation (10.69) can thus be rewritten as:

R L2 R )
Q" J; | Zmy | =4 [Of] 10.71)
ZS,’j e

which leads to, for any virtual velocity q;:
OS2
[0’ } = Jij Zm; | . (10.72)
" Xs;j
Thus, now considering all the links of the robot, it turns out that
2t

(lj)
{Tt - j| ZJ Emlj

Xsjj

—ZJ( [ }—i—c,,) (10.73)

where T, is the vector of the tree-structure input efforts.
In the next section, recursive algorithms for the computation of the vectors t;;, t;;
and of the Jacobian matrices J;; are developed.

10.3.2 Recursive Computation of Velocities and Jacobian
Matrices

Let us consider Fig. 10.2 describing the displacement of the body ;. From (10.7),

we get that
Va, @i X TouA, Ve, (Ain)
il : , 10.74
|:“’A,-zi| i [ 0 ] * |:“’eiz(Ail) ( :
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Fig. 10.2 Assembly of two
flexible links %;; and %;;

If a body %; is linked at A;; by an actuated joint moving at a velocity g;;
(Fig. 10.2—if the joint is a fixed joint, ¢;; = 0), we get that:

VA . gjjajj
o=lon] ol

i

where a;; is the unit vector direction along the joint axis (see Sect.5.2.4).

As a result, for the element %;; of the global robot, it can be demonstrated that
(in the following expressions, the preceding superscript indicates the frame in which
the vector expression is given and it is considered that the body %;; is antecedent to
the body %;;, i.e. il = a(ij)) (Boyer and Khalil 1998):

Uty = Ty ta + "Ru®iu( 0y e, + 4i"a; (10.76)

where

Equation (10.76) can also be written as:
Uty = Ty (10.77)
with
Jiy = "Tudiy + ®q, + Ay (10.78)
where

qu_j — [0 ijﬁil@ﬂ(oij) ()]
Aj=[0---Va; .- 0]. (10.79)
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In the matrix (qug/., the term ijﬁ,-;@,-l(O,-j) is located at the columns corresponding
to the variables ¢, and, for the matrix A;, the term i a;; is located at the column
corresponding to the variable g;;.

In the previous expressions, matrix ®;; is the matrix containing all shape func-
tions for the element %; and ¥T;; and YR;; are defined at Egs.(3.13) and (3.25) in
Chap. 3. However, the reader must not forget to take into account the rigid and elastic
displacements of each body in the computation of these matrices.

Finally, the global Jacobian matrix J;; of (10.70) can be computed as:

Jij }
Jij = [ v (10.80)
v O‘lcij
where Og,; is defined such that

ey = Oqﬂ'qu'

10.3.3 Recursive Computation of the Accelerations

Differentiating (10.74), it can be shown that (Boyer and Khalil 1998):
Uiy = T "t + G + Thy + TR @40y, (10.81)
where:
o ]
ij
Uhli”lj = URilil(’)il X URil (zq)dﬂ(Oij)qeil + il(”il X ieriIO,»j)
+ Gijoi Rit" (2wt + @1, (0)dey) x Vay)
Thang, = TRir (45"0i + B, (Oitey) x 5yay)
+ TRy (i x TRy, (0 ) - (10.82)
Equation (10.81) can be then put into the form
Uty = Jiydr + g (10.83)
with

Ug; = Thy + T gy (10.84)
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initialized with %g;o = 0 if the base is fixed.” Thus,

) _[ I ]y 8] _ y g
|:(.ie,:/:| B [Oq;,:| 4+ |: o | =it +7g; (10.85)

Proof
From (10.75), we have the velocity expressed in a fixed frame:

Vij = Vil + @iy X T0,0; + qualjal] + Vef,(Oij) (10.86)
W = ; + q',;;&ijal;,' + @, (0jj). (10.87)
Differentiating (10.86) and (10.87) w.r.t. time, it turns out that

. . . d
Vij =Vii + @i X Tg,0; + @i X a (1'0,-10,-,-)

da; dve, (0

+ gijoija; + q,/a,/? a1 (10.88)
) ) . - . - da; do (0
w;; = W; + g;iojja + qijaijd_tl] %. (10.89)
Expanding (10.88) and from the fact that:
Ve (0p)] _ [®a, (0] 10,90
|:w5’il(0ij) (I)riz(oij) e (10-50)
we get:
Vij = Vil + @ X T0,0;
+ 0y X (@i X ro,0; + Gijoia;)
+ @i X g, (0)qe;
+ Gioya + 4o (Wit + @) x ay)
+ ®; X ((Pd,-l(oij)qeﬂ)
+ 4,(0p)ie, (10.91)

or after simplifications and expressing it in the frame .7,

2Note that, as mentioned in Segt. 10.2.3, in order to decrease the computational cost, it is better
to initialize the algorithm with logiTo = [—g” 0]. In such a case, the model (10.68) must be used
instead of (10.61).
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U_IJR ile . il o il
vij =Ry ("vir + @i x "ro, 0,
il il . il il
+ "W X [T X r0,0; + gijoij” ajj

+ ilwil X Qd,’](ol'j)qeil

. il . il il il
+ Qijaijl ajj + qijoij (( Wi+ " 0,) X aij)

+ @y x (P4, (0i))dey)
+ @y, (0i))ey)

or also
Ty =i — o0, 0u
+ Gijoi"ajj + "RiPa; (0y) e,
+ ij(‘)il X ijwil X ier”OU
+ oy (27w + Twe,) x Vayj)
+ 20 x (Riy®q, (0ij)de;) -
Now, expanding (10.89) and using (10.90), we get
ij(.;)ij = ij(;)l'] + qijéijljaij
+ i ((Twir + Vo, x Tay)
+ ijwil X (inil‘I’r,-I(Olj)qe,-[)
+ "Riy®,, (0y) e,

Finally, introducing the facts that
wy =Ry "oy

l]weﬂ =" Ril (I)r,-,(oij)(le”

and

- IRy —URy e

jo. 1 N ij
Tir= [ 0; YRy
Eq.(10.81) can be obtained.

in which r;j = ro,0;,
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(10.92)

(10.93)

(10.94)

(10.95)

(10.96)

(10.97)

(10.98)
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10.3.4 Elastodynamic Model of the Virtual System

Introducing (10.85) into (10.73) leads to:
T ..
[0’ ] = > I My + ¢} (10.99)
Ne ..
ij

where
¢ =1Jj (Cif + sz-”gfj) (10.100)

in which M; and ¢;; are projected into .%;;.
The NE equations for a rigid moving platform are given by (from Eq. (8.57)):
Ow, ="'M,°%, + °c, (10.101)
where Ow p is the platform reaction wrench, M p is the platform mass matrix
expressed in the base frame and is defined at (8.97), Oi:p is the platform acceler-
ation and ®c p the centrifugal, Coriolis, gravity effects and external efforts applied on

the platform defined at (8.98).
Finally, the global elastodynamic model of the virtual structure can be put into

the form:
T TM..T.: =
L] ) )
w, p P 14
_ M éil‘
= My | 0; + ¢ (10.102)
tp
where
> JiMd; 0 }
[ Ml = [ LIy N
0 ™M,
.
o C = |:0(;l] .
p

Adding the contributions of the motor inertia and friction effects (from Sect. 8.2):

T | .. .. . L
q: LOo||a F,q, fosign (q:)

0, :M[.]+c+[ }[H n

L 1%, "T100] %, 0 0

Wp

= MyorGror + Cror (10.103)
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where

e I; is a diagonal matrix whose jth element corresponds to the value of the inertia
of the rotor of joint j (the jth element of I, is equal to zero if the joint is passive
or if it corresponds to an elastic coordinate),

e F,, (f;,resp.) adiagonal matrix (a vector, resp.) of viscous (Coulomb, resp.) friction
parameters,

e M,,, =M, + |:Iot g] is the global inertia matrix of the virtual system,

® Cpr=C + |:Fv0(h:| + fsSlgg (q’):| is the vector of Coriolis, centrifugal/ gravity/

friction/elastic effects of the virtual system.

10.4 Dynamic Model of a Flexible Parallel Robot

The model of the virtual tree structure and of the free moving platform does not
consider the closed-loop kinematic chains. As a matter of fact, the n;, components
of the generalized velocity vector ¢/, = [q/ Ot;] are dependent. The independent
components are gathered in vector ¢ (dim q = n,; < n4,) and their determination is
described thereafter.

10.4.1 Determination of the Joint and Platform Velocities
as a Function of the Generalized Velocities q
of the Parallel Robot

For determining one possible subset of generalized coordinates for the parallel robot,
let us express the relations between the vector of generalized velocities of the tree
structure (; and the twist of the last element m; for each leg i. Using (10.70) to
compute the twist /i t; »; of the extremity of each leg, it turns out that:

Bt g = T, (10.104)

where J;'i ,,. 1s expressed in the frame Fim,; (the preceding superscript is omitted
for reason of clarity) and can be obtained from J;, by extracting the columns

corresponding to the vector q,f = [anl , ('151, , qul_], i.e. the vector concatenating all

active, passive and elastic variables of the leg i.

As the leg extremity is also linked to the platform, which is supposed to be rigid
(for flexible platform, see Long et al. 2014), its twist can be related to the platform
twist Ot p via the rigid displacement relation:
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(10.105)

o . o [13 =OF,,
l’m’ti,m,- — leOtp , where sz — z,m,RO [ 3 Aim; P

0 13

in which J ’p isa (6 x 6) matrix expressed in the frame .%; ,,,; (the preceding superscript
is omitted for reason of clarity), °¢ Ai,m; P 18 the cross product matrix of vector Op A, P
that characterizes the position of the attachment point A; ,, with respect to the
platform center position P (Fig.8.1a) and ™Ry is the (6 x 6) rotation matrix
between the global frame and the local frame attached to body %; ;.

Thus, expressing the twist “"it; ,,. for each leg in relation with the platform twist
Ot » and generalized coordinates q;, the following set of equations is obtained:

Tow o O JTa@] I
SRR = % =0 (10.106)
0 -3, 1L, I
or also
3 =3ty = [J =0, ] [J{ } = JiorGior =0 (10.107)
p

where J;or is a (¢ X nyyr) matrix (¢ = r n), ny; > ¢ (r = 6 for a spatial robot, r = 3
for a planar robot). This means that q,,, contains a subset of ¢ dependent variables
Qaep- This subset is not unique. An idea could be to put all passive joints and platform

variables in this subset, i.e., qgep = [qg Ot;]. However, for over-constrained parallel

robots, dim (qdep) < c¢. As aresult, this vector should be completed using some other
elastic variables that could be chosen arbitrarily. Meanwhile, it must be mentioned
that most parallel robots have identical legs and that such a methodology will lead
to an asymmetrical description of the leg variables, which is not ideal. In order to
avoid this problem, we better put in g, the last » components q{ of each vector q;,

that is now divided into two parts: q,{ = [qu ('1,}; T]. Thus, variables ('1,}; are related

to the others using (10.107):

-0
f1 . 01 1
Jl],ml e 0 qt]; Jtl.ml e 0 _Jp qtl
— Do D= Do : : (10.108)
. .. . . . . (.19
0 ...Jéfiﬂn qlJ; 0 ...Jgf’)’ln I Ot:,

which can be written in the form

i, i

~ 1 .
-3 | = -8 (10.109)

f q;,

('lt,, Otp
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or also
=0
) q
qi{ N —1 .tl Ja, - Jay, Jay i
: :quI’:_(if) [37 = J»] o =1 o la=Jaq
q[’; (()ltln Jdn.l U Jdn,n Jdn,nJrl
P
(10.110)
where
° Jg’m (J fim; , resp.) are the columns of matrix J ;i ,,. corresponding to variables ('12
(qt s reSP )
° Jd,.j is the matrix that relates the variable q[{ to q?j, j=1...,n

o J4 ., is the matrix that relates the variable q,{ to %t

It is noteworthy that the inversion of matrix J tf involves only inversion of the n (r xr)

matrices J’,(Jl my? which is more efficient in terms of computational time. Moreover,

when 3D beam elements are used for leg i, if the coordinates q,]; are the elastic

coordinates of uth element of this leg (denoted as body Z;,), it can be proven from
Sect. 5.2 and Appendix F that the kth column of matrix J’Zu corresponds to a unit twist
that describes the displacement of the leg extremity due to the kth coordinate of vector
qtf Taking into account the fact that, for a 3D beam, the first three components of qtf

correspond to translations along x;,, y;, and z;, and that the last three components
of qt correspond to rotations around x;,, y;, and z;,, the matrix JfZ is equal to:

i,miQ 13 _iufoizloim-
Y —imiR,, [0 1 (10.111)
or also
i,m; i,m; i
fi ’ IR. - IR. roi.mi Oiu
J., = |: . iu iJZRm ] (10.112)

where " R;, (™ R;,, resp.) is the (3 x 3) ((6 x 6), resp.) rotation matrix between
the local frame .%; ,,; and the local frame .%;, and "“to,,0,,, is the cross-product
matrix of the vector “ro,, 0;., that characterizes the position of the leg extremity
with respect to the frame .%;,. Thus its inverse is equal to

—1 i m,RT mr i m[RT
(47 =[ 0" g } (10.113)

which does not require much calculation. If 2D beam elements are used, some similar
relations can be obtained.
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Finally, the Jacobian matrix relating all variables ¢y, to the configuration variables

q" = [q?lT e q?nT Otp] can be obtained as:

.0 _ _

Gy I, - 0 0
qtl Jdl,l Jd],n Jdl,n+1 q?.
Gor=1| 0 |=| o "~ 1 5| =Ja (10.114)
ql 0 o e lcn 0 qtn
qti Jdn,l T Jdn,n Jdn,n-H Otp
0 0 .- 0 1
. tp_ -

where 1, is the (¢; x ¢;) identity matrix, ¢; being the size of vector ('12.

10.4.2 Determination of Joint and Platform Accelerations
as a Function of the Generalized Accelerations
of the Parallel Robot

Expressing the acceleration » f,-)m ; of the extremity of each leg using (10.85) and
combining this expression (7.173), it turns out that:

G + " g = Ity + d;. (10.115)

i,mig. — T
tim; = Jz,-,ml.

Thus, considering all the robot legs,

Jl‘ll,ml 0 q[] J}) l’mlgl,ml _dl
Do I I I s : =0 (10.116)
0 e JZ’-"UZ qt” J’I/l’ S gn’mn - dn
or also )
Jede — 3%, +0 = [J =J1,] [O?}H)/ =0 (10.117)
p
l,mlg —-d
1,m 1
where b’ =

n,m
: ngn,mn - dn

As aresult, by analogy with (10.110), it can be demonstrated that

—1
Gq = Jag + (J,f) b" = JaG + by (10.118)

where by = (J{;‘)_l b'.
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Finally, similarly to expression (10.114),

.0 _ —

q 0
iizle ba1
Gror = 0 =Ji+| : |=J4g+b (10.119)
q 0
1
qt)j bdn
Ot, L 0

where by; is the part of the vector by (b} = [0 bZ, ... 0 b] 0]) corresponding to
the accelerations q,{ .

10.4.3 Elastodynamic Model of the Actual Parallel Robot

Considering the actual robot, the PVP states that:

\ o . T
qngT (MiorGror + €ror) = qu* |:0 :| (10.120)
ne

where

e §, = E;q, in which E, is a matrix that makes it possible to sort vector ¢ in such
a manner that ¢/ = [qg ch] in which the first n, rows of q, correspond to the
vector (. of the actual active variables, and the last n. = ny — n, rows of g,
correspond to the vector (. of the actual non constrained variables,

e T is the vector of the actual actuator input efforts and 0, is a zero vector of
dimension 7.

Introducing (10.114) into (10.120), we get,
. .. . T
a7 "Eqd" Maordivor + €io) = 4/ * [0 } : (10.121)
ne
Equation (10.121) must be true for any value of ¢ *, thus
T T .
0, |~ E;J° MiorGror + Cror) - (10.122)
Finally, introducing (10.119) into (10.122) leads to:

T .
[O } = EgJ Mo JE Gy +EgJ" Miorb + ¢ior)
ne

=Mgi, +c¢ (10.123)
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where M = E,J" M, JE] and ¢ = EJ7" (Myo/b + ¢10r).
Equation (10.123) is the full elastodynamic model of the parallel robot, and it can

also be rewritten as
T Maa Mac qa Ca
= .|+ 10.124
|:0”6i| |:Mc{c MCCi| |:QC Cc ( )

with
| Mag Mg | . . . . .. . .
oM = T its generalized inertia matrix, in which M, is a (ng, X ng)
Mac MCC
matrix, M. is a (n, X n.) matrix, and M, is a (n, X n.) matrix.

e Cc= z“ the global vector of the centrifugal, Coriolis, gravity and elastic effects,
C

in which ¢, is a (n, x 1) vector and ¢, is a (n. x 1) vector.

Inverse Problem

Giving q4, . and {4, but also q., §. at the previous step of the iteration, first calculate
(. from the second row of (10.124) by inverting M,.. Then, by injecting it in the
first row of (10.124), calculate .

Direct Problem

Giving 1, q, and ¢, but also q, q., calculate q, from (10.123) by inverting M.

10.5 Including the Actuator Elasticity

The presence of actuated joint flexibility is a common feature of many current indus-
trial robots. The joint elasticity may arise from several sources, such as elasticity
in the gears, transmission belts, harmonic drives, etc. It follows that a time-varying
displacement is introduced between the position of the driving actuator and the joint
position. The joint elasticity is modeled as a linear torsional spring for revolute
joints and a linear spring for prismatic joints (Khalil and Dombre 2002; Spong 1987)
(Fig. 10.3). Consequently, the vector of joint deformations is given by (qq, — qu),
where q s denotes the vector of the actuator positions, while q, represents the vector
of the actuated link positions.

Fig. 10.3 Modeling of joint g ) q
flexibility Mj J

rotor / gear j joint ;
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The dynamic equations (10.124) becomes:

T L O, xng) Oy xne) | | M Foy am + 5 — Ka(qa — qu)
O”a = O(Hu Xng) Maq Mg Gq |+ ca +Ka(qa —qu)

0n, 002, xng) Mgc Mcc 4c Cc
(10.125)

where 1, = diag([lay...Ia,,]) is the (n, x n,) diagonal matrix containing the
inertia of the rotors, Fys is the (n, x n) matrix containing the viscous friction
parameters of the actuators and transmissions referred to the joint side and £, is a
(ny x 1) vector containing Coulomb friction parameters.

Note that in the case where all robot elements are considered rigid, while the
elasticity is located only in the actuated joints, the model becomes:

T _ I, 01, x10) qm + Foyr qm + £ — Ko (qe — qur)
Ona O(na Xng) My qa ¢, + Ku(qe — qu)
(10.126)

where:

e the matrix M, becomes the inertia matrix of the rigid PKM and is defined at (8.93)
in the case of a PKM without redundancy,

e the vector ¢, becomes the vector of Coriolis, centrifugal/gravity/friction effects of
the rigid PKM and is defined at (8.94) in the case of a PKM without redundancy.

10.6 Practical Implementation of the Algorithm

Finally, in order to obtain symbolic equations for the model with a minimum number
of operations, the following method is used. First, the rigid kinematics of each element
are modeled using the modified Denavit-Hartenberg notations (Sect.4.2). If body
%; is flexible, N;; supplementary elastic variables g, are introduced in combination
with Nj; shape functions. Then, the previously developed equations are used in the
following sequence:

e Step 0: Initialization of the algorithm
Variables considered known: qy,, qsr- They constitute the state variables of the
robot
Computation of:

®4,(0), ®,,(0;), Pii(0y) from (10.8); ill‘o,-lo,;, from (10.4);
- Mj;, Keew fgl.j, Cg;j> gy from (10.61);

- "M, %, from (10.101);

— URy, Ty from (10.97) and (10.98); ¥a;; from (10.75);

— Ajj, ®q,; from (10.79);
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e Step 1: Forward recurrence (computation of the twist and acceleration of each
body, and computation of the Jacobian matrices required for applying the PVP on
the virtual tree structure)

Computation of:

— Ut;; from (10.76);

= finy» Ciny» Siny;» € from (10.61);

- Jy; from (10.78); Jjj from (10.80);

— h;; from (10.82); /g;; from (10.84); g}; from (10.85);

e Step 2: Computation of the global inertia matrix and global vector of the centrifu-
gal, Coriolis, gravity and elastic forces of the virtual tree structure
Computation of:

- M;, ¢; from (10.102);
— My, €10 from (10.103);

e Step 3: Computation of the global inertia matrix and global vector of the centrifu-
gal, Coriolis, gravity and elastic forces of the parallel robot
Computation of:

- J:. Jp from (10.107);

f A
— 3/ from (10.108); (Jt) from (10.113);
— Jg from (10.110); J from (10.114);
— Ji, from (10.115);
— b’ from (10.117); by from (10.118); b from (10.119);
— M, c¢ from (10.123);

e Step 4: Solving the model

— Inverse dynamic model: computation of T and g, as a function of q, q and ¢,
— Forward dynamic model: computation of ¢ as a function of q, ¢ and <.

To reduce the number of operations of this model, customized symbolic techniques
based on the use of intermediate variables can be used (Khalil and Creusot 1997).
For each computation, the elements of a vector or a matrix containing at least one
mathematical operation are replaced by an intermediate variable. This variable is
written in an output file which contains the model. The elements that do not contain
any operations are not modified. The obtained vectors and matrices are propagated in
the subsequent equations. Consequently, at the end, the dynamic model is obtained
as a set of intermediate variables. Those that have no effect on the desired output
(t and the n, last values of q, corresponding to the elastic variables in the case
of the inverse model, q, for the direct model) can be eliminated by scanning the
intermediate variables from the end to the beginning. With this procedure, it is also
possible to know the exact number of operators necessary for the computation of the
model. This algorithm has been successfully implemented with Mathematica and is
used in the next section for computing the elastodynamic model of a flexible planar
parallel robot.
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10.7 Case Study: The DualEMPS

The previous equations are used to compute the elastodynamic model of the
DualEMPS, a prototype of flexible planar PRRRP robot designed and manufactured
at IRCCyN (Fig. 10.4). This robot is actuated by two rotary actuators controlled by a
dSPACE card in which simple PD control laws are introduced (the cut-off pulsation
is set to 100rad/s). The actuator movements are transmitted to the prismatic pairs
via the use of ball screws (the stroke of the prismatic pairs is of 25cm). The two
prismatic pairs are parallel and are linked to the two legs via passive revolute joints.

Fig. 10.4 The DualEMPS
flexible parallel robot.

a Picture of the prototype.
b Schematics of the
kinematic chain

(a) End-effector —> 4

Passive
revolute
joints

_ Actuated
N prismatic
joints

(b)
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Fig. 10.5 Top view of the CAD drawings of the two robot legs

Each leg can be divided into a succession of rigid and elastic links (Fig. 10.5) attached
all together. The elastic links are very thin when compared to the rigid links. Their
cross-sections are rectangular with a width of 4 mm and height of 50 mm and they
are made of Duralumin (AU4G). The two legs are connected via a passive revolute
joint (Fig. 10.4).

The modified Denavit-Hartenberg parameters corresponding to the architectural
description of the Fig. 10.5 are given in Table 10.1, where the parameters d;; and g;;
are detailed in Fig. 10.4. The gravity is directed along z¢. The a priori rigid dynamic
parameters of the links have been extracted from CAD and are described in Table 10.2.
In this table, m;; is the mass of the link %;;, mx;; its first moment of inertia around
the axes of the plane (y;;0;zj), zz;j the second moment of inertia around z;;, fvjj

Table 10.1 Modified Denavit-Hartenberg parameters of the DualEMPS robot

ij a(ij) Hij oij oij dij 0ij rij
11 0 1 1 0 0 0 q11
12 1 0 0 72 0 an 0
13 12 0 2 0 di3 =0.0675m |0 0
14 13 0 2 0 di4 =04505m |0 0
15 14 0 2 0 di5 = 0.082 m 0 0
16 15 0 2 0 dig = 0.065 m 0 0
17 16 0 2 0 di7 =0.14m 0 0
18 17 0 2 0 dig = 0.035 m 0 0
21 0 1 1 0 d21 =04m 0 q21
22 21 0 0 /2 0 q2 0
23 22 0 0 0 dy3; =0.0675m |0 0
24 23 0 0 0 dyg =0.4505m |0 0
25 24 0 0 0 drs = 0.082 m q25 0
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Table 10.2 Rigid dynamic parameters for the links of the DualEMPS robot (SI units)

ij mij mx;; 22ij Ssij fvij
11 95.196 0.000 0.000 25 250
12 0.843 0.004 7.06e — 4 0.02 0.08
13 0.252 0.057 0.017 0.00 0.00
14 0.396 0.030 0.003 0.00 0.00
15 0.000 0.000 0.000 0.00 0.00
16 0.078 0.005 5.12¢ — 4 0.00 0.00
17 0.177 0.006 2.56e — 4 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00
21 95.196 0.000 0.000 25 250
22 0.843 0.004 7.06e — 4 0.02 0.08
23 0.252 0.057 0.017 0.00 0.00
24 0.190 0.011 9.44e — 4 0.00 0.00
25 0.000 0.000 0.000 0.01 0.005

the viscous friction parameter and fs;; the Coulomb inertia parameter. Note that the
values of the friction terms have been identified so that the obtained results best fit
with experimental data. The elastic links are modeled as planar beam finite elements
(one element by elastic link, i.e. there are 3 elastic coordinates per flexible link giving
9 elastic coordinates in total). Their corresponding elastic dynamic parameters can be
computed using the formulas given in Sect. 10.2 applied to the beam shape functions
given in Appendix F and are given in Tables 10.3, 10.4, 10.5 and 10.6.
For this mechanism,

e the active joint coordinates are qg = [g11 g21] (Fig.10.4b).

Table 10.3 Terms of the vectors MS,, ; for the flexible links of the DualEMPS robot (SI units)

ij msdex;; msdex;; msdex;;
13 0.1261 0.1261 —0.0095
16 0.392 0.392 —9.1467¢ — 4
23 0.1261 0.1261 —0.0095

Table 10.4 Non zero terms of the matrices J rex for the flexible links of the DualEMPS robot (SI
units)

ij Jrxxyj JrXyiij Jryxiij Jrxysij

13 0.0379 0.0398 —7.4667¢ — 7 —0.0026

16 0.0037 0.0038 —7.4667¢ — 7 —7.6832¢ — 5
23 0.0379 0.0398 —7.4667e¢ — 7 —0.0026
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Table 10.6 Non zero terms of the matrices K., ; for the flexible links of the DualEMPS robot (SI

273

units)
ij ki1 koij k23ij k32ij k33ij
13 3.2852¢7 2.5900e3 —583.3942 —583.3942 175.2127
16 1.0571e8 8.6297¢4 —6.0403¢3 —6.0403¢3 563.8095
23 3.2852¢7 2.5900e3 —583.3942 —583.3942 175.2127
kuy;j represents the element on the uth row and vth column of the matrix Kee,-j
ka3ij = k32;j because the stiffness matrices are symmetric
Motion A
7%
Generator > Jp ~
. . A
qm‘e 4 qar( > qan’ q .
/ \ i 17'3}1) 2" > 17)/,,,_,5, E
PD > Low-pass | ¢ >
> Robot | q, P 9. >
Controller | 7 > filter (J Model
+ | < d/dt est
(/i >
t d/dt}—

Fig. 10.6 Measured and estimated data for the experimental tests

The passive joint coordinates are qg = [q12 922 g25] (Fig. 10.4b).

The platform coordinates are x’ = [x y] (Fig. 10.4b).

The elastic coordinates are qu = [qu13 qul . quB],in which quI_j = [qei;1 Geijr Geija]
is a vector of dimension 3 parameterizing the deformation of the body %;;
(Fig. 10.5); the two first components of g,; represent the translations along the
x;j and y;; axes of the frame .%;; while the last component represents the rotation
around z;;.

The vector q, which represents the generalized coordinates of the parallel robot
and which is defined in (10.121) is equal to q! [qf q!1, with q”
(912 922 925 X Y Gey3; Gersr Gersr Gerss]-

The vector qq.p which represents the dependent coordinates of the parallel robot
and which is defined in (10.110) is equal to qgep = [Gerzr Ge133 Gers Dersa Gerssl-

The model is thus calculated with Mathematica applying the proposed methods
and then included in a S-function solved using Matlab/Simulink. The model includes
1041 intermediate variables and 1287 ‘4’ or ‘-’ and 1555 “x’ or ¢/’ operators. The
model is given on the webpage:
http://www.irccyn.ec-nantes.fr/~briot/Books.html

For reasons of comparison, an Adams model interfaced with Simulink via the use
of the module Adams/Controls is also created. In this model, the elastic links are


http://www.irccyn.ec-nantes.fr/~briot/Books.html
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Fig. 10.7 The first reference trajectory. a Path in the joint space. b Velocity profile along each
square edge

modeled using discrete flexible elements (after several tests on the Adams model
accuracy, we decided to use 8 discrete flexible element by elastic link).

The experimental tests are described hereafter. Some reference trajectories are
introduced in the robot controller. During the robot displacements, three types of
data are recorded (Fig. 10.6):

o the reference input torques T,.r given by the controller to the actuators;

e the actuator displacements q, given by the robot encoders;

e the acceleration '7§p of the point P (in the local y direction) measured via the use
of a uniaxial accelerometer with a sensitivity of 995 mV/g.

Then, to make sure that the models give a correct estimation of the robot input torques
and elastic displacements, the real measured actuator displacements are given as the
model inputs, as well as the computed actuator velocities and accelerations, estimated

Fig. 10.8 The reference 1
trajectories in the workspace L&
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from differentiation and low-pass filtering of the encoders data (Fig. 10.6). Results
in terms of end-effector accelerations !’ Vpes: and computed input torques T,y are
finally compared with the real robot.

The first reference trajectory is a square in the joint space (Fig. 10.7a). The result-
ing displacement of the end-effector is a path following the workspace boundaries
(Fig. 10.8). On each square edge, the velocity profile represented in Fig. 10.7b is
applied: the actuator moves during 1.8 s and then stops so that the free vibration of
the robot can be observed. The measured acceleration !”§p of point P, low-pass fil-
tered at 100 Hz in order to suppress high-frequency noise, is plotted at Fig. 10.9 and
compared with the acceleration computed with our model and with Adams. There are
very good correlations between the measurements and the simulations (with better
results for our model), even if the damping is higher in the simulations which can be
due both to solver problems and to too large model approximation for the dissipative
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terms. For the simulations, Adams gives the result after several hours of computation
while our model sends the results in 6’05 min (for a Pentium 4 2.70 GHz, 8 Go of
RAM).

The motor torques prediction (in prismatic joint side) is also compared with the
measured actuator torques in Figs. 10.10 and 10.11. The torque prediction is better
for our model even if there are some problems of noise when the actuator velocity
is very low (mainly due to problem of Coulomb friction modeling with the ‘sign’
function).

A second reference trajectory is introduced in the robot controller. This is a circle
of radius 0.1 m centered in [0.28, 0.90] m along which is applied a constant velocity
profile of 0.20 m/s (Fig. 10.8). The predictions of the acceleration 7§ p of point P and
of the input torques using our model are shown in Figs. 10.12, 10.13 and 10.14. There
is still a very good correlation between the measurements and the simulations. Note
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Fig. 10.12 Comparison of
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Fig. 10.13 Comparison of
the measured and computed
actuator 1 input torque for
the second reference
trajectory

Fig. 10.14 Comparison of
the measured and computed
actuator 2 input torque for
the second reference
trajectory
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that for this second simulation, data provided by Adams are not presented as we have
just shown that Adams gives similar results and requires much longer computational

time.



Chapter 11
Computation of Natural Frequencies

Abstract The frequencies at which a PKM tends to vibrate when hit, struck or some-
how disturbed are known as the natural frequencies. The determination of the natural
frequencies of PKM is needed for both design and control purposes. In this chapter,
we present the computation of natural frequencies of parallel robots. We adapt the
algorithm presented in Chap. 10 to make it efficient for calculation of the stiffness
and inertia matrices of a parallel robot, matrices which are necessary for comput-
ing natural frequencies. The simulation results obtained through the use of natural
frequency models of two flexible parallel robots are compared with experiments.

11.1 Introduction

In many applications of robot design (Bouzgarrou et al. 2005; Briot et al. 2009;
Voglewede and Ebert-Uphoff 2005) and control (Pelaez et al. 2005; Singer and
Seering 1988; Singh and Singhose 2002), the computation of the full elastodynamic
model of a robot is not necessary, while the knowledge of its natural frequencies is
required.

The natural frequencies are evaluated for a given robot configuration around its
undeformed state (Wittbrodt et al. 2006) and they can be obtained through the use

of the expression:
fi= i,/eig (M~'K) (11.1)
‘T om

where

fi is the ith natural frequency of the robot,

eig(Q) is the Matlab function which returns the eigenvalues of the matrix Q,

M is the robot inertia matrix evaluated at the undeformed configuration, i.e.q, = 0,
K the robot stiffness matrix evaluated at the undeformed configuration, i.e. q. = 0.

The aim of the present chapter is to provide an efficient method for calculation of
the matrices K and M evaluated for q, = 0 (Briot and Khalil 2014b).
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11.2 Stiffness and Inertia Matrices of the Virtual System

Once again, let us consider a parallel robot composed of a rigid fixed base (denoted as
the element 0), a rigid moving platform and n legs, each leg being a serial kinematic
chain composed of m; — 1 bodies linked by m; joints (revolute, prismatic or even
fixed joints —i = 1, ..., n) (Fig.8.1a). The actuated variables are denoted by q, (of
size n,) and the leg passive variables by qg (of size ng). The platform coordinates
are denoted as x,.

The size n, of the vector q, must be greater than or equal to the number of degrees
of freedom of the parallel robot.

The number of shape functions for the body %;; is denoted by N;; (j = 1, ...,
m; — 1). As a result, the dimension n, of the vector of elastic variables q, is equal
to X7 3 N

As mentioned in the introduction of the present chapter, the natural frequencies
are evaluated for a given robot configuration parameterized by q,, q4 and q. = 0
around its undeformed state (Wittbrodt et al. 2006). As a result, under the assumption
of an elastic deformation, the variations in the joint and platform variables (which
represent the coordinates of the free displacement of robot bodies around the nominal
configuration q4, q¢ and q, = 0.) are denoted by 3q,, 6qs and 5x,, respectively.

The vector of generalized coordinates of the tree-structure is thus defined q,T =
[59..8q].q] ], where 8q) = [8qa, ---84a,, 1. 845 = [54a, ---84d,,]- 34a 5Qa
and q, are the vectors of the actuated, passive and elastic generalized coordinates for
the tree structure and represent the coordinates of the free displacement of the robot
bodies around the nominal configuration parameterized by q,, qz and q. = 0.

Finally, it should be mentioned that the vector of generalized velocities of the
tree-structure is now given by 4/ = [q7, 4], q! ], where 4, = d(8qq)/dt, 44 =
d(8qy)/dt. Moreover, we denote as Ot,, = d(dx,)/dt.

To compute the inertia and stiffness matrices of the virtual tree structure, we need
to compute its kinetic and potential elastic energies. The elastic potential energy of
the tree structure system can be expressed as:

U = D Us, (11.2)
ij

with U,,; the elastic potential energy of the body %;; defined at (10.34), and its
kinetic energy is given by

E = E; (11.3)
ij

where E;; is the kinetic energy of the body %;;.
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11.2.1 Kinetic Energy and Elastic Potential Energy
of the Body %;;

The kinetic energy of the body %;; is defined from (6.6) by

1
E;j = E/@ v@iij,.jdm (11.4)
- ,'j

where vy, is the velocity of a point M belonging to %;; given from (10.7) by:
VM = Vij + 0ij X Yo, m;; + Pay; (Moij)qe;, (11.5)

Equation (11.5) can be put into a matrix form such that:

Vij
Vi, = [13 f‘}[)ile.j @y, (MOij)] wij |- (11.6)
qe,-j
Introducing (11.6) in (11.4), we obtain
1 Vij T R 13 o7 Vij
Eij = 5/ wij rO,'jM,'j [13 rOijMij le‘j (MOIJ):I (x)ij dm (117)
Bij qe,./. ‘1’5!.1. (Moij) qe;j
or also,
Ej; = 1 [t.T. qZ.]Mi, Gij (11.8)
p 2 1j ij p qeij
where
15 fg,,_/. My D, (Moij)

Mij = /% fOijMij f(T);_/M,-erijMij foijMij Qdij (MOU) dm. (119)
o ‘1’5[1. (Moij) '1’5[1. (MOij)rgU My ‘I>dTU. (Moij)®a,; (Moij)

By identification with the expressions defined in Sect. 10.2.2.4, we have

mij13 II’I\SITJ MSdel.j
Mij = I/l’l\sl’j Iij MSreij (11.10)

T T
Msdeij MSVE,'J' Meeij
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where

ms;; is defined at (10.40),
MSe,; is defined at (10.42),
MS;.,; is defined at (10.43),
I;; is defined at (10.46),
M,.,; is defined at (10.50).

Asmentionedin Sect. 11.1, the natural frequencies are evaluated for a robot around
an undeformed state for which g, ;= 0. In such a case, the matrix M;; becomes

m;jl3 ms, MSde,.j

M;j(Qe;; = 0) = Mijo = ms;; Ly Ms;e,-j (11.11)
MSj,,;, MS;;, Me;
where
MS..,; = (B - Bwiyy] (11.12)
and

e ms;,; is defined at (10.41),
e I, is defined at (10.47),
° Bk’,/, is defined at (10.44).

Matrix M;jo is the inertia matrix of the body %;; in the undeformed state.
The elastic potential energy of the body %;; given in Sect. 10.2.2.3 is equal to

1
Ueij = quTi_/ Kee;je;; (11.13)

where K., i is the stiffness matrix of body %;; defined in (10.35).
The expressions of the matrices M;jo and ngij in the case of a flexible 3D
Bernoulli beam are given in Appendix F.

11.2.2 Kinetic Energy and Elastic Potential Energy
of the Virtual Tree Structure

Introducing (11.8) and (11.13) into (11.2) and (11.3), we obtain

1
Uet = 5 290, Kee ey (11.14)
iJ
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and | .
o ijt .
E, = EZ[W’S qu[j]MijO [qﬂ (11.15)
i,j Y
in which M; o is projected into .%;;.
We need to rewrite these expressions as functions of the tree structure generalized
coordinates q, and velocities ;. For that, let us recall from Sect. 10.3.1 that we have

Tl _po
. Jz]qt (1116)
qe,-j

where the computation of the matrix J;; is detailed in Sect. 10.3.2.
From the same section, we may also find that:

Qe;; = Oq,;; Q- (11.17)

Introducing (11.16) and (11.17) into (11.14) and (11.15), we obtain

1
Uer ) th Oci,,» j Keei; O, qr
iy
1 T T
=54/ ZOqeineei,Oqeij @ (11.18)
L]

and

1 T T .
E, =3 Zq, JiiMijodijar
iJ

1.7 T .
=74 ZJ[]'MUOJU q:. (11.19)
ij

11.2.3 Kinetic Energy of the Free Moving Platform
The kinetic energy of the free rigid platform is given from (6.8) by

10 TO 0
Ep =3t ‘M, (11.20)

where "M p is the inertia matrix of the platform expressed in the base frame .7 and
is defined at (8.97).
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As a result, the total kinetic and potential energies can be written as

1
Et+Ep— Q, ZJ,, M;jo0d;j q: + OtTOM Ot

2 14
1 T 04T |: "J'T‘Mij']ij 0 q;
— q t LJ vy
2 Lar 7] 0 oM, ]| [°t,
1. .
=5q3;,qu,m (11.21)

with
e/, =[4f °t§T],
o« M, = I:Zi,jJiéMijJij N }

M,
and,
_1 T T Oql Kee,j Oqezj 0 q:
Uer =5 [a/ ox]] [ 10 o||5x,
1 7
ziqtotht Qrot (11.22)
where

® 0X), is a small variation of the platform position,
o ¢/, =[af 8x]].

0! K, Oq,; 0
o Ky = |:zl T e 110 ceij el 0:| is the stiffness matrix of the virtual system.

11.2.4 Introducing the Actuator Inertia Effects

Adding the contributions of the motor inertia (from Sect. 8.2), the total kinetic energy

becomes:
Leorocr Lo qr
po = a7 1 ([ ]) |3

I, .
=§th(,metqm (11.23)


http://dx.doi.org/10.1007/978-3-319-19788-3_8

11.2  Stiffness and Inertia Matrices of the Virtual System 285

where

e I; is a diagonal matrix whose jth element corresponds to the value of the inertia
of joint j (the jth element of I, is equal to zero if the joint is passive or if it
corresponds to an elastic coordinate),

o M;,, =M; + |:I(; g] is the global inertia matrix of the virtual system.

11.3 Stiffness and Inertia Matrices of the PKM

As mentioned in Sect. 10.4, the model of the virtual tree structure and of the free
moving platform does not consider the closed-loop kinematic chains and only a
subset q in the variables q;,; are independent.

An efficient way to find this subset has been provided in Sect. 10.4, from which
we have defined the relation:

Qror = Jq (11.24)

where the matrix J is defined in (10.114).
As amatter of fact, as the natural frequencies are evaluated around a nominal state
for the robot, we also have
9ror = Jq (11.25)

in which the variables q;,; (and q) represent indeed small displacements around the
nominal configuration. Let us recall that q;,; = [qu, sql,q, SXIT,].
Introducing (11.24) and (11.25) into (11.18) and (11.23), we finally obtain

1 1 1
U = EqTJTKm,Jq = EqTKq = zq,TK,qr (11.26)
and ) | |
Eir = 56"V MipJa = 54" Mg = 54/ M4 (11.27)
where

¢ q, = E;q, in which E, is a matrix that makes it possible to sort vector q in such
a manner that q/ = [8q] q!] in which the first n, elements of q, correspond
to the vector dq, of the actual active displacements, and the last n, = ngy — ny
elements of q, correspond to the vector (. of the actual non constrained variables
(including the vectors 8qq, 6x, and the parts of q.),

o K, = EgJ TK,O,JEq is the stiffness matrix of the PKM,

o M, = EqTJ TM,[,,JEq is the inertia matrix of the PKM.
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Finally, we have

K. K 1)
o = 5 oad af ] i || (11.29)
and
M,. M )
Eror = [a] qc][ % } [‘;J (11.29)

Since the natural frequencies are evaluated around an undeformed state (Wittbrodt
et al. 2006), this means that the actuators are considered completely fixed, i.e. that
3qy = 0 and q, = 0. As a result, the equations (11.28) and (11.29) become

1
Uer = qu Kccqc (11.30)
and
.7 .
Eior = ch M,.q,. (11.31)

The Lagrangian of the system is thus:

1. . 1
L=E,—U;= EqZMc'cqc - quchQu (11.32)

The two (n. x n.) matrices K., and M,

e are evaluated in the robot nondeflected configuration, namely, for q, = 0,
e depend on the robot configuration q, and q, but not on the variables q. and q..

As a result, the Lagrange equations lead to

d /oL oL
— — = M.,.q K =0. 11.33
Q& (aqc) e ccle + Keeqe ( )

A solution ¢} of this equation satisfies:
(waCC - ch) ¢ =0 (11.34)
where wy; = 2n f;, f is the natural frequency associated with the sth natural mode
of vibrations and ¢ is its associated eigenvector.

Therefore, the natural frequencies of the parallel robot are evaluated by solving
the following eigenvalue problem:

det (waCC — KCC) =0 (11.35)
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11.4 Including the Actuator Elasticity

In case of actuator elasticity (see Sect. 10.5), Egs. (11.29) and (11.29) become

0 0 0 7 [Squ

1
Uer = 7 [0}, 507 9] | 0 Ko + Ky Koe | | 30, (11.36)
0 KaTc K. qc
and
L, 0 07 [du
Etol = [(.1;, qZ; qZ] 0 Muu Muc qa (1 137)
0 M. M. | | G
where

3qps represents the displacements of the motors,

qm = d(8qu)/de,

I, = diag([Ia; ... Iay,,]) is the (n, X n,) diagonal matrix containing the inertia
of the rotors, and

K, = diag([kay . . . kay,]) is the (n, x n,) diagonal matrix containing the stiffness
of the gearboxes.

Since the natural frequencies are evaluated for a given robot configuration around
its undeformed state (Wittbrodt et al. 2006), the actuators are considered completely
fixed, i.e. that §qp = 0 and qs = 0 while now éq, # 0 and q, # 0.

As a result, to compute the natural frequencies of the system, instead of con-
sidering only the matrices K., and M. in (11.35), we have to consider the new
matrices

K. +K; K,
K, = | taa T 8a Rac 11.38
[ KZL KCC] ( )
and
M,. M
M, = ga A 11.39
=[] (11.39)

associated to the generalized coordinates q/ = [8q] q[].
As a result, the Lagrange equations become

C(EY L _ng 4 Kq =0 (11.40)
dr aqr aqr - rqr rqr = V. .
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A solution ¢} of this equation satisfies:
(war — Kr) Q=0 (11.41)

where wy; = 2n f;, f is the natural frequency associated with the sth natural mode
of vibrations and q; is its associated eigenvector.

Therefore, the natural frequencies of the parallel robot are evaluated by solving
the following eigenvalue problem:

det (war - Kr) —0. (11.42)

11.5 Practical Implementation of the Algorithm

In order to finally obtain symbolic equations for the model with an optimized number
of operations, the following method is used. First, the rigid kinematics of each element
are modeled using the modified Denavit-Hartenberg notations (Sect. 4.2). If the body
i taken into consideration is flexible, N;; supplementary elastic variables q,,; are
introduced in combination with N;; shape functions. Then, the previously developed
equations are used in the following sequence:

e Step 0: Initialization of the algorithm
Variables considered known: q;s, Qror
Computation of:

- <I>d,.l(01~.,-), ‘I)r”(O,'j), ‘I’,’[(O,’j) from (10.8); ilr0i10,-j from (10.4);
— Mij, Kee;; from (10.61) and (11.11);

oM, from (10.101);

— Ry, VT from (10.97) and (10.98); ¥/ a;; from (10.75);

- Ajj, ®,,,; from (10.79);

e Step 1: Forward recurrence (computation of the twist of each body, and compu-
tation of the Jacobian matrices required for applying the PVP on the virtual tree
structure)

Computation of:

- in_/ from (10.78); J;; from (10.80);

e Step 2: Computation of the global inertia and stiffness matrices of the virtual tree
structure
Computation of:

— M; from (11.21);
— M;o:, Ky from (11.22) and (11.23);
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e Step 3: Computation of the global inertia and stiffness matrices of the parallel
robot
Computation of:

- Ji, Jp from (10.107);

. -1
— J/ from (10.108); (J[) from (10.113);
— Jg from (10.110); J from (10.114);
- M,, K, from (11.26) and (11.27);

e Step 4: Solving the model

The Mathematica algorithm for automatically computing the global inertia and
stiffness matrices of the parallel robot is freely available on the webpage:
http://www.irccyn.ec-nantes.fr/~briot/Books.html

11.6 Case Studies

11.6.1 Natural Frequencies of DualEMPS

Some experimental tests are carried out for measuring the natural frequencies of
DualEMPS (see Sect. 10.7) using the setup presented in Fig. 11.1. The application
of experimental modal testing to the DualEMPS is done through impact hammer
excitation, a 3-D accelerometer response and data post-processing, conducted using
the DataBox software developed at IRCCyN and commercialized by MITIS com-
pany. The impact point is near point P (Fig. 10.4) and the directions of excitation
are contained in the horizontal plane in order to get the resonance frequencies that
involves planar displacements of the robot. Piezoelectric triaxial accelerometers with
a sensitivity of 1000mV/g are used to measure the three acceleration responses. The
acquisitions are performed for several robot configurations. However, the natural
frequencies of the DualEMPS are near constant anywhere in the workspace, and
all tested configurations lead to almost the same results. Therefore, only the results
for the nominal configuration q1; = g1 = 0 will be presented. Each measurement
resolution is equal to 1 Hz as the acquisition time and the sampling time are equal to
1's and 40 us, respectively.

The resonance frequencies are obtained with a fast Fourier transform of the signals
given by the triaxial accelerometer. As a result, the measured resonance frequencies
between 0 and 200Hz are given in Table 11.1. It is noteworthy that the resonance
frequencies of the DualEMPS amount to its natural frequencies as the damping
is considered negligible. The obtained results show that the five first frequencies
predicted with our model are very close to the measured ones. However, as the model
is made of three beam elements only, the frequency prediction after the fifth mode
is not correct anymore. This prediction could be improved by introducing a higher
number of elements, but this will increase the computational time. Nevertheless,
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Accelerometer

Computer
with data

acquisition
software

Fig. 11.1 Experimental setup for measuring natural frequencies

Table 11.1 Comparison of natural frequencies of the DualEMPS robot computed with the proposed

model, computed with Adams and experimentally measured for g1; = g21 =0
(Hz) f 12 f3 fa f5 fe
Adams 14.41 24.92 49.78 97.91 110.86 219.60
Model 14.22 25.09 48.22 92.37 109.08 423.39
Measured (£1Hz) | 14.00 25.00 48.00 93.00 108.00 163.00

having a good prediction for all frequencies in the interval [14, 110]Hz is already a
very good result. Note that the prediction of the Adams model mentioned in Sect. 10.7
gives almost the same result as our model for the five first frequencies and is not
correct for the sixth frequency (even if it is closer to reality than our model).

11.6.2 Natural Frequencies of the NaVARo

11.6.2.1 Description of the NaVARo

The NaVARo (acronym for Nantes Variable Actuation Robot) is developed at IRC-
CyN and is shown in Fig. 11.2a. The NaVAROo is a 3-DOF planar parallel manipu-
lator composed of three identical legs and one moving platform made up of three
segments E1 P, E> P and E3 P rigidly linked at point P. The ith leg contains four
links A; B;, B;C;, C; E;, A; D; (named link i2, link i3, link i4 and link i 1, respectively)
connected with five revolute joints in such a way that A; B; C; D; is a parallelogram
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(a)

(b) link 13

Fig. 11.2 The NaVARo. a Prototype of the NaVARo located at IRCCyN, Nantes, France.
b Schematics of the NaVARo

linkage, i = 1,2, 3. The base frame .%o (O, x0. ¢, 20) (not shown in Fig.11.2b)
is defined with point O being located at the geometric center of the equilateral tri-
angle AjAyA3. Frame %, (P,xp,yp, zp) is attached to the moving platform. In
the home configuration shown in Fig. 11.2, % and .%), coincide. (xp, yp) are the
Cartesian coordinates of point P expressed in frame .%, and 6, is the orientation
angle of the moving platform, namely, the angle between x( and x .
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Table 11.2 MDH parameters of the ith leg

i a(ji) | oij Vij bij aij dij 0ij ij
il 0 0 Vi 0 0 di =04041m | g1 —y |0
i2 0 0 Vi 0 0 di =04041m g —y |0
i3 i2 0 0 0 0 d; =02100m | g3 0
i4 i3 0 0 0 0 dy =02100m | qu 0
i5 i4 0 0 0 0 ds = 0.4200m | gs; 0

gi1 denotes the angle between axis xog and link i 1. ¢;» denotes the angle between
link i1 and link i2. Three double clutches are mounted to the base and located at
points A;, i = 1, 2, 3, in order to actuate either angle ¢;1 or angle g;». As a conse-
quence, the NaVARo has eight actuation modes as described in (Arakelian et al. 2008;
Rakotomanga et al. 2008). Therefore, the moving platform can be moved through-
out the manipulator workspace without reaching any parallel singularity thanks to a
judicious actuation scheme.

The kinematics of the ith leg is described by the modified Denavit-Hartenberg
parameters given in Table 11.2, in which y; = n/2ifi =1, y; = —5n/6ifi =2
and y; = —n /6 if i = 3. Besides, the circumradius of the moving-platform is equal
to 0.2027 m, i.e., Is; = 0.2027 m.

Each link of the rectangular c ross-section is made up of duraluminum alloy
(E = 74000MPa, G = 28900MPa, p = 2800kg/m3). Table 11.3 gives the cross-
section area and the moments of inertia of the robot links.

In the experimental setup, the rotation of links i 1 and i2 about point A;,i = 1, 2, 3,
is locked thanks to the double clutch mechanisms. The elasto-dynamic modeling of
the NaVAROo is complex due to the closed-loop chain in each leg and is obtained by
following those three steps:

1. Computation of the mass and stiffness matrices of the virtual system assuming
that the moving platform is cut at point P and the parallel linkages are opened at
points D;,i = 1,2, 3;

2. Computation of the mass and stiffness matrices of the legs including the closed-
loop chains;

3. Computation of the mass and stiffness matrices of the NaVARo.

A single 3D beam element is used to model links i1, i2,i3and iS5 (i = 1,2,3 -
see Appendix F) while two 3D beam elements of equal lengths I (I = I¢c;p;, = Ip,E;)
are used to model links i4. Links i4 are divided into two beam elements in order to
close the loops as mentioned in step 2.

Table 11.3 Characteristics of the beam cross-sections

link Aij (m?) Iy, (m*) I, (m*) Iy, (m*) Ip,; (m*)
i1,i2,i3,i4 |24.107* 1.152-107% |2.000-107° |1.352-10"% [5.902-107°
i5 4.1074 3.333-107% [5.333.107% |8.666-10"% |1.123-10°8
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Thus, the NaVARo is modeled as a spatial mechanism and its elasto-dynamic
model contains 144 generalized coordinates: (i) 108 elastic coordinates; (ii) 12 pas-
sive joint coordinates, i.e., four passive joint angles per leg; (iii) 18 intermediary
coordinates for the assembly of the legs; (iv) 6 coordinates for the moving-platform
pose. From Sect. 11.3, it turns out that there are only 90 independent coordinates
among those 144 coordinates.

11.6.2.2 Numerical Analysis

The model has been calculated using the proposed procedure and compiled into C
code to obtain the robot’s natural frequencies. The computation involves the use of
36183 ‘+’ or ‘=" and 37341 ‘X’ or ‘/° operators, while 21383 variables are defined.
For reasons of comparison, the obtained frequencies are validated by means of an
equivalent model developed using Cast3M software. Cast3M aims to determine the
elastodynamic model of structures modeled with beams. Both models give the same
values for the first 90 natural frequencies of the NaVARo. Table 11.4 gives the first five
natural frequencies of the NaVARo for the eight robot postures shown in Fig. 11.3.

For the simulations, Cast3M gives the result after around 6 s of computation while
our model send the results in around 0.01 s (for a Pentium 4 2.70 GHz, 8 Go of RAM).

The natural frequencies of the NaVARo are the same for poses 3, 5 and 7 (4, 6
and 8, resp.) as they correspond to a rotation of the robot base frame of £120deg
with respect to pose 3 (pose 4, resp.).

11.6.2.3 Experiments
Some experimental tests are carried out using the setup presented in Fig. 11.4. The

application of experimental modal testing to the NaVARo was done through impact

Table 11.4 Comparison of the natural frequencies obtained with Cast3M and the Matlab model

(Hz) Pose 1 |Pose2 |Pose3 |Pose4 |PoseS5 |Pose6 |Pose7 |Pose8
f1(Cast3M) 44.10 |45.71 |36.98 |40.17 |36.98 |40.17 |36.98 |40.17
fi(Matlab model) |44.10 |45.71 |36.98 |40.17 |36.98 |40.17 |36.98 |40.17
Jf2(Cast3M) 4410 |45.71 |49.31 |50.32 [49.31 |50.32 [49.31 |50.32
f>(Matlab model) |44.10 |45.71 |49.31 |50.32 [49.31 |50.32 |49.31 |50.32
f3(Cast3M) 53.98 |54.58 |53.37 |5299 |53.37 |52.99 |53.37 |52.99
f3(Matlab model) |53.98 |54.58 |53.37 |5299 |53.37 |52.99 5337 |52.99
fa(Cast3M) 60.63 |6535 |67.28 |67.36 |67.28 |67.36 |67.28 |67.36
fa(Matlab model) |60.63 |6535 |67.28 |67.36 |67.28 |67.36 |67.28 |67.36
f5(Cast3M) 95.62 [9792 |91.80 |91.52 |91.80 |91.52 [91.80 |91.52
fs(Matlab model) [95.62 |97.92 |91.80 |91.52 |91.80 |91.52 |91.80 |91.52
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Fig. 11.3 The eight poses used for the experiments. a Pose 1 x =0m, y =0m, 6 = 0 rad. b Pose
2x=0m,y=0m, § =—n/3 rad. ¢ Pose 3 x =0.117m, y = 0.068m, 6 = —n/3 rad. d Pose
4x=0.182m, y =0.105m, 6 = 7/3 rad. e Pose 5 x=.0.117m, y= 0.068 m, 6 = —n/3 rad. f Pose
6x=0.182m,y=0.105m,0 = —7/3. gPose 7x=0m, y =.0.135m, 6 = —n/3. h Pose 8§ x =0m,
y=021m,0 =—-n/3

hammer excitation, a 3-D accelerometer response and data post-processing, con-
ducted using the DataBox software developed at IRCCyN and sold by MITIS com-
pany. The points and directions of excitation were chosen on points B; and E; of
each leg along all axes in order to get the maximal number of resonance frequencies.
Piezoelectric triaxial accelerometers with a sensitivity of 1000mV/g were used to
pick up the three acceleration responses. The acquisitions were performed for the
eight robot postures shown in Fig. 11.3. Each measurement resolution is equal to 1 Hz
as the acquisition time and the sampling times are equal to 1 s and 40 us, respectively.

The resonance frequencies are obtained with a fast Fourier transform of the signals
given by the triaxial accelerometer. As a result, the measured resonance frequencies
between 0 and 80 Hz for poses 1 to 4 are given in Table 11.5. As the results for poses 3,
5 and 7 (poses 4, 6 and 8, resp.) are similar due to the manipulator symmetry, only
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Computer
with data

acquisition
software

Fig. 11.4 Experimental setup: DataBox

the results for poses 3 and 4 are given in Table 11.5 and the redundant poses were
used to highlight some resonance frequencies with low energy level.

It is noteworthy that the resonance frequencies of the NaVARo amount to its
natural frequencies as the damping is supposed to be negligible.

It is apparent that the results given Table 11.5 do not match with those shown in
Table 11.4. As a matter of fact, the elasticity of the clutches has not been modeled
and the joint masses have been omitted with Cast3M software as the latter cannot
model lumped masses. Thus, a refined Matlab model was written in order to consider
joint masses (about 300 g per joint) and elasticities in clutches (about 2000 Nm/rad).
The natural frequencies of the NaVARo computed with this refined model and the
measured frequencies are gathered in Table 11.5 by comparing the computed mode
shapes with the hammer impact direction and the direction of the vibration signals,
the latter being measured by the triaxial accelerometer.

We can notice that there is a good correlation between the measured frequencies
and the computed natural frequencies. Nevertheless, few predicted frequencies do
not match with the measurements and vice-versa. Indeed, the theoretical and exper-
imental results may differ due to the following reasons:

e The geometric parameters of the NaVARo have not been calibrated yet and there
are some errors in the estimated moving platform pose;

e The passive joint elasticity has not been considered;

e The robot links are supposed to be coplanar in the theoretical model, whereas they
are not in the prototype for collision avoidance;

e The robot links are not perfect beams as both ends are widened to insert ball
bearings;

e The theoretical elastodynamic model does not consider any damping effect.
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Table 11.5 NaVARo natural frequencies (measured and computed using refined model) between
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0 and 80Hz

(Hz) Pose 1 Pose 2 Pose 3 Pose 4
/1 meas. 22 19 17 18

S calc. 19.25 19.46 17.91 18.44
f> meas. 24 21 19 20

S calc. 20.43 20.49 19.71 19.26
f3 meas. 32 - 23 22

f3 calc. 40.25 41.88 20.91 21.28
f4 meas. - 44 27 33

fa calc. 43.16 45.55 - 36.88
f5 meas. 42 45 32 43

f5 calc. 44.10 47.05 36.88 40.60
fe meas. 50 53 43 44

fe calc. - - 41.86 46.13
f7 meas. 52 54 46 50

f7 calc. - 56.37 45.61 55.29
f3 meas. 62 56 48 56

f3 calc. 67.94 - 50.52 57.81
fo meas. 66 60 57 58

fo calc. 68.81 63.10 55.45 62.27
f1o0 meas. 77 - 60 66
Sio calc. 79.79 - 61.04 -

f11 meas. - - 61 -

f11 calc. - - - -

f12 meas. - - 65 -

f12 calc. - - 65.00 -

However, from those experiments, we can claim that the theoretical model is
satisfactory and the proposed modeling procedure is efficient for reproducing the
real behavior of any parallel robot.

11.7 Conclusion

In this Part, we have introduced the dynamic modeling of flexible parallel robots. The
goal of this Part was not to provide a complete lecture on mechanics of deformable
bodies, but to show for people having some basic knowledge in this field how to obtain
the dynamics of a flexible PKM starting from basic considerations in mechanics
of deformable bodies. The reader requiring additional information on mechanics of
deformable bodies is invited to read the reference books of Shabana (2005) and of
Bauchau (2011).
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We have proposed customized elastodynamic models for PKM able to minimize
the number of operators, and thus to decrease the computational cost. Two types of
models have been proposed:

e In Chap. 10, the full elastodynamic model of the PKM has been provided. In order
to obtain it, it was necessary to investigate the dynamics of free flexible bodies
and of flexible tree structure.

e In Chap. 11, the algorithm provided in Chap. 10 has been simplified in order to
obtain the expressions of stiffness and inertia matrices of PKM, which are necessary
for computation of the natural frequencies.

To go further in a decrease of the computational cost, it is also possible to combine
our approach with the use of model reduction methods and with the definition of
efficient truncated series of shape functions. The interested reader is referred to
Blevins (2001), Briot et al. (2011), Craig (1981), Craig and Bampton (1968).

Note also that the elastodynamic model of parallel robots is not free of singularities
which can be passed through a proper trajectory planning, such as defined in Chap. 9.
The reader should read (Briot and Arakelian 2010, 2011) for more information.


http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_9

Appendix A
Calculation of the Number of Degrees
of Freedom of Robots with Closed Chains

A.1 Introduction

Let us recall first that the mobility, or number of DOF, of a robot is defined as the
number of independent joint variables required to specify the location of all the links
of the robot in space. It is equal to the minimal number of actuated joints to control
the system.

The number of degrees of freedom N, ¢ of arobot is equal to the number of joints
in the case of tree structure system L. In the case of a closed-loop mechanism, the
calculation of the mobility Ng,r can be expressed by the following relation:

Naof =L —c (A1)

where L is the number of joints of the structure and c is the number of independent
relationships (constraints) between the joint variables, i.e. the number of dependent
joints.

Since 1854 with the work of P.A. Chebycheyv, several researchers have proposed
different formulas that can be used to find the mobility of complex systems. Recently,
Gogu (2008) has evaluated 35 methods that have been proposed to calculate the
mobility of complex systems. He concluded that the majority of methods cannot
properly calculate mobility for all mechanisms, and only those that require the con-
struction of the kinematic constraint equations can give a good result.

In case of a single loop, ¢ represents the number of independent kinematic con-
straint equations of the loop. Consequently ¢ < 6 for a spatial loop and ¢ < 3 for
a planar loop. Consequently, Ng,s gives the dimension of the space in which the
situation of all the links belong. It is possible to calculate it by calculating the max-
imum rank of the Jacobian matrix of the serial structure constructed by cutting one
link in the loop. This result can be interpreted by the fact that the open structure has
L degrees of freedom, and since the ¢ degrees of freedom of the terminal link will
be lost when closing the loop, thus the number of remaining degrees of freedom is
equalto L — c.

© Springer International Publishing Switzerland 2015 299
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In case of a system composed of B independent closed loops, the mobility of the
system may be calculated by:

B
Naop =L = ¢j. (A.2)
j=I

This simple formula gives good results for most robot structures but it can yield bad
results for certain complex systems and does not give information about the type of
motion of the system. However, for some robots, the exact solution is obtained by
analyzing the kinematic constraints and taking into account the coupling between
the loops (Hervé 1978; Le Borzec and Lotterie 1975). In the following, we present
two methods: the Morokine’s method and the Gogu’s method.

A.2 Moroskine’s Method

The mobility can be calculated correctly using the rank of the matrix J. defined in
the following equation:

c= m(?X(rank(Jc(Q))) (A.3)

where J. is the Jacobian of the constraint equations between the joint variables such
that:

Je(@)q =0. (A.4)

Jc(q) can be calculated by derivation of the geometric constraint equations of the
loops or by constructing the constraint equations of the velocities through the loop. In
fact, from this equation, we deduce that ¢ belongs to the null space of J.. Therefore,
at a given configuration, the number of degrees of freedom is equal to the dimension
of the null space of J.. Consequently:

Naof = mqin(dim(e/V(Jc(q)))) (A.5)

where 4 (J.(q)) is the null space of the matrix J..

In general, the rank of J.(q) must be calculated for q satisfying the closure con-
straints of the loops. For a single closed loop, the rank can be calculated using random
values of its joints.

This method yields the correct result, but it is significantly more difficult to exe-
cute. In order to find the rank of the Jacobian matrix defining a mechanism with closed
loops, the kinematic constraint equations must be solved. The kinematic constraint
equations display the relationship between the joint variables in the mechanism in
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order to ensure loop closure. In general it is difficult to solve these equations symbol-
ically though it is possible to solve them numerically in order to obtain some random
configurations satisfying the closure conditions.

A.3 Gogu’s Method

In order to overcome the drawbacks of the previous method, Gogu proposed a method
that does not require the construction of the kinematic constraint equations, but will
yield the correct mobility for all mechanisms including complex parallel mecha-
nisms. We present here how to use Gogu’s method to calculate the mobility for:

e single loop kinematic chains,
e parallel mechanisms with simple legs, and
e parallel mechanisms with complex legs.

The proposed solution makes use of the mobility of the terminal link of simple open
loop which is equal to the rank of the Jacobian matrix between the terminal link or
the mobile platform in the case of a PKM and the base. In fact the mobility M, o
of the terminal link with respect to the base of an open loop chain is equal to the
dimension of the task (Cartesian) space dim(E (x)).

M, 0 = M = rank(J,) = dim(E(x)). (A.6)

A.3.1 Mobility of Single Loop Kinematic Chains

A link must be opened to obtain an equivalent simple open loop. If the number of
joints is equal to L, and the chain is opened around joint L such thatthe links 1, ..., L
constitute a serial structure, then the rank of the Jacobian matrix J; gives the number
of joint variables that lose their independence after loop closure. Thus the mobility
of the closed loop is given by:

Naof = L —rank(J1) (A7)

where rank(J) = M o is the mobility of link L w.r.t. link Oin the open chain.
A second method to calculate the mobility is to open the structure around a joint
k < L, in order to obtain two serial branches with n; and n; joints respectively.
Supposing rank(J,,) = dim(E(x;)) is the dimension of the task (Cartesian) space
of branch i, with i = 1,2, and dim(E(x1) N E(x3)) gives the dimension of the
common task space that the two branches share. Thus, the number c of joints losing
their independence will be obtained as follows:
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¢ =rank(J;) =dim(E(x;)) + dim(E (x2)) — dim(E (x1) N E(x3)) (A.8)
=rank(J,,) + rank(J,,) — dim(E(x1) N E(x2)).

The mobility can be calculated using Nyor = L — c.
If there is no kinematic redundancies such that rank(J,,) = N and rank(J,,) =
N>, the mobility of the mechanism is given by:

Naof = L —rank(J) = dim(E(x1) N E(X2)). (A.9)
In case of redundancy, the mobility will be:

Ngor = dim(E(x1) N E(x2)) + number of redundant joints in both branches.
(A.10)

A.3.2 Mobility of Parallel Mechanisms with Serial Legs

Let us consider a parallel mechanism with a base platform and a mobile platform
that are connected together with m simple open kinematic chains. The number of
joints of each chain is denoted by n; fori = 1, ..., m. The mobility of the platform
M with respect to the base is given by the dimension of the common task spaces
of the simple legs associated with the parallel mechanism, as seen in the following
equations as long as there are no redundancy:

Npjo = dim(E(x)) N E(x2) -+ - N E(Xy)). (A.11)

The number of joints that lose their independence after loop closure is equal to
the difference between the sum of mobilities of the terminal links of simple chains
and the mobility of the platform:

m
¢ =Y dim(E(x;)) — dim(E(x)) N E(Xp) -+ N E(Xp)). (A.12)
j=1
Thus the mobility of the structure is given by
m m
Naop = D _nj— D dim(E(x))) + dim(E(x)) N E(xy) ... N E(x))  (A.13)
j=1 j=1

where Z?:] n; = L, the number of total joints.
Note that in case of non-redundant legs, n; = dim(E (X)), thus leading to mobil-
ity as the dimension of the common space between all the legs.
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A.3.3 Mobility of Parallel Mechanisms with Complex Legs

A parallel mechanism with complex legs is a complex mechanism with L joints in
which the mobile platform is connected to the base by m > 2 legs, of which at least
one leg contains at least one closed loop. Theoretically in this case the platform is not
uniquely defined, but in practice it is easy to select an appropriate one. The mobility
of the mechanism in this case is calculated by:

Niop = L — Y dim(E(x;)) + dim(Ex) N E(X) ... N E®)) — Ca (A.14)
j=1

where C; = ZZ‘:I ci is sum of the additional joint variables that lose their indepen-
dence in the closed loops belonging to the complex legs. C; can be calculated using
the previous cases in Sects. A.3.1 and A.3.2 depending on whether the leg contains
loops connected serially or in parallel respectively.

A.4 Examples

In this section we calculate the mobility of some robot architectures treated in the
different chapters of this book.

A.4.1 The Planar Five-Bar Mechanism

This structure is shown in Fig.7.3. It consists of five revolute joints with parallel
axes. The system ensures motion in the plane perpendicular to the joint axes. The
mobility can be calculated using different interpretation:

1. The number of independent constraint equations around the loop is equal to 3,
specifying the equality of x, y and the orientation ¢. Thus, the mobility is equal
to 2.

2. We open the loop at the terminal joint L, to obtain a serial architecture with five
revolute joints. It is intuitive to deduce that the rank of this serial system is equal to
the mobility of its terminal link, i.e. 3. Thus, connecting the terminal link with the
base leads to a loss of these three degrees of freedom. Consequently, the mobility
of the system is equal to 2.

3. We open the structure to obtain two serial chains connected with the base, such
that one chain contains 3 joints and the other contains 2 joints. The dimension
of the terminal link spaces of these chains are respectively 3 and 2. The motion
of the first chain can be classified as: Tx (translation along x), Ty (translation
along y,) and Rz (rotation about zp), whereas the motion of the terminal link of


http://dx.doi.org/10.1007/978-3-319-19788-3_7
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the second chain, whose mobility is equal to 2, can be any two degrees of freedom
among: Tx, Ty and Rz.

Consequently the common motion when connecting the two terminal links together
will be of dimension 2, and can be represented by any two variables among (Tx,
Ty, Rz). Thus the number of degrees of freedom of the terminal link (point) and the
number of degrees of freedom of the system are respectively:

nd(,f =2

2
Naof = L — D dim(E(x;)) + dim(E(x1) N E(x2)) = 2.
j=1

Consequently, two axes should be actuated. We selected the actuators near the
base. In case of actuating more than two joints, the system will be redundantly
actuated.

A.4.2 The Planar 3—RPR Parallel Robot

This PKM is shown in Fig.7.5. It has three legs, each being composed of three joints
(R, P, and R joints) ensuring planar motions.

The mobility of each leg is composed of Tx, Ty and Rz.

Thus

E(x;) =Tx, Ty,Rzfori = 1,2,3

and thus the common space consists of: Tx, Ty and Rz.
Consequently, the mobility is equal to 3. The three prismatic joints are selected
to be the actuated joints.

A.4.3 The Orthoglide

The Orthoglide (Fig.7.7) is composed of three legs, each of them having a prismatic
joint and a spatial parallelogram. The prismatic joints are perpendicular. The mobility
of the Orthoglide will be analyzed using the equivalent kinematic chain of each leg,
which is considered to be composed of PUU architecture, with U a universal joint
represented by two intersecting revolute axes. Thus the motion of terminal link of
each leg is composed of a prismatic joint, then two rotational and two translation


http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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degrees of freedom perpendicular on the prismatic axis of the first joint. The mobility
of the three legs can be written respectively as:

E(x1) = Tz, Rx, Ry, Tx, Ty
E(xp) = Tx, Ry, Rz, Ty, Tz
E(x3) = Ty, Rx, Ry, Tx, Tz.
Thus
ngor = dim(E(x1) N E(x2) N E(X3)) =3
E(xp) =Tx, Ty, Tz
3
Naop = L — D dim(E(x;)) + dim(E(x1) N E(x2) N E(x3)) = 3.
j=1

We selected the three prismatic joints as actuators.

A.4.4 The Tripteron

This PKM is shown in Fig.9.3. It is composed of three legs, each of them having a
serial architecture with 4 joints. The first joint is prismatic and the other joints are
revolute. All the P and R joints of the same leg have parallel axes.

We can easily deduce that:

E(x1) = Tx, Ty, Tz, Rx
E(xp) = Tx, Ty, Tz, Ry
E(x3) = Tx, Ty, Tz, Rz.
Thus
ndof = dim(E(x1) N E(x2) N E(x3)) =3

E(xp) =Tx, Ty, Tz

3

Naog = L — > dim(E(x))) + dim(E(x;) N E(x2) N E(x3)) = 3.
j=1


http://dx.doi.org/10.1007/978-3-319-19788-3_9
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We selected the three prismatic joints as actuators.
Remarks

Note that the simple relation of (A.2) can give the correct result for the first two
examples (planar five-bar mechanism, and 3—RPR), but it does not give the correct
result for the Orthoglide nor for the Tripteron.



Appendix B
Lagrange Equations with Multipliers

Let us consider a mechanical system whose Lagrangian L can computed by the
knowledge of the generalized coordinates q (and ¢). Let us assume that q groups

two sets of variables q, and qq (q7 = [qg qg] and q7 = [q({ qg]) which are not

independent and are related through the expressions:

h(qs,qs) =0 (B.1)

and:

A(Qa: 94)4a +B(Qa, qa)qa =0 (B.2)

where A and B are two matrices depending on q, and qg:

oh(qu.
AUy, q1) = [—(quqd)} (B.3)
and
oh(qu.
B(qo, q0) = [%} . (B.4)

Moreover, we consider that the variables q, are some variables corresponding (in
the frame of this book) to motor coordinates, motors which are exerting some input
efforts T on the system. This is not the case for the coordinates q.

The usual Lagrange equations (6.1) cannot be derived because all coordinates in
q are not independent. In order to modify the Lagrange equations (6.1) to take into
account the constraints (B.1) and (B.2), we must include some generalized constraint
forces Y, and Y4 such that:
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d (oL\” aL\!
T+ Y, = T4, Where T, = I (Bqu) — (aqa) (B.5)
d foL\T AL\
Ya = 14, where Ty = dt (@) — (@)

Of course, these generalized constraint forces ¥, and Y, are internal to the system
and produce no work, i.e. the PVP states that we have, for any arbitrary velocities

308

q; and q7,
a;" Ve +a; v =0. (B.6)
Now, taking the transposed expression of (B.2), we obtain
afAT +q/B" =o0. (B.7)

This expression is also true if we right-multiply it by any arbitrary vector X

aGATV+ @ B v =0. (B.8)
By identification between (B.6) and (B.8), we can see that we have
Yo =BT (B.9)
and
Yo =A"2 (B.10)

from which we obtain the new set of Lagrange equations, in which \ is called the

vector of Lagrange multipliers:

- d N EIAN
T+B '\ =1,, where t, = — — (B.11)
dr aqa 0qqy
d
dr

oL oL
AT\ = 14, where 1y = (—) - (—)
994 9qq



Appendix C
Computation of Wrenches Reciprocal
to a System of Twists

In this Appendix, we compute the actuation and constraint wrenches associated to
some common PKM legs.

C.1 Definitions

The twist t of a body is parameterized by two vectors, the translational velocity v
and the rotational velocity w, such that we can define a vector of dimension 6:

Vv
t= [w] . .1

The twist t is also called the velocity screw. w is the resultant of the screw and v is
its moment.

A wrench w is parameterized by two vectors, the force f and the moment m, such
that we can define a vector of dimension 6:

W= [Iﬂ : (C.2)

The wrench w is a screw in which f is the resultant and m is the moment of the screw.
Let us define the screws:

e $ which describes a unit twist; as a result, if

— $ characterizes a pure translation, it can be written as

up
= C3
5 M ©3)
in which u; represents the direction of the translation and |ju; || = 1.
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— $ characterizes a pure rotation, it can be written as

u; Xr
$ = [ : } (C4)
uj
in which u; represents the axis of the rotation (Jlu;|| = 1) and r is the vector
defining the distance between the axis of rotation and the point at which $ is

expressed.
e ¢ which describes a unit wrench.

— & characterizes a pure moment, it can be written as

= [0] C5)

up

in which u represents the direction around which the moment is applied and

luz| = 1.
— & characterizes a pure force, it can be written as
_ uw
= |:u2 X r] (C.6)
in which u, represents the direction along which the force is applied (Jluz|| = 1)

and r is the vector defining the distance between the point on which the force
is applied and the point at which & is expressed.

C.2 Condition of Reciprocity

A twist $ is reciprocal to a wrench ¢ if their product is null, i.e. $7¢ = ¢7$ = 0.
This means that the power developed by the wrench ¢ along the motion defined by
$ is null.

From the definition of the unit twist and wrench $ and £, we can define the
following rules (Zhao et al. 2009):

e for a revolute joint with axis along the direction u, the reciprocal wrenches are:

— forces coplanar to u, i.e. forces directed along an axis either parallel to u or
intersecting u at a point,
— moments whose axes are orthogonal to u.

e for a prismatic joint with axis aligned along u, the reciprocal wrenches are:

— forces whose directions are orthogonal to u,
— any moment.
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These rules can be used to find the (6 — n) reciprocal wrenches for a system of n
twists.

Similarly, we can define the twists reciprocal to a given wrench or system of
wrenches. The interested reader could find more details in (Zhao et al. 2009).

C.3 Computation of Wrenches Reciprocal to a System
of Twists Constrained in a Plane

This case where a system of twists is constrained in a plane appear for the PPM (planar
parallel manipulators). These mechanisms are made of joints whose displacements
are all constrained in the same plane. The most common legs of PPM are presented
in Fig. C.1. They are all made of three joints, one of them being actuated (the joints
in gray).

Let us consider that the plane of motion is the (O, x9, y() plane. As a result, any
twist $; associated to the motion of a joint i has the following form:

$i = [vxi 1, 000 wy]" . (C.7)

This means that, for any twist system of dimension n (representing a planar leg
composed of n active or passive joints —n € [1, +00[) defined by § = [$1 .. $,,],
three constraint wrenches &1, §., and & 3 (i.e. the wrenches reciprocal to all twists
representing the passive and active joint motions) can be easily defined as

g =[001000]" (C.8)
which represents a force along z,

ta=[000100]" (C.9)

which represents a moment around x¢, and

ts=[000010]" (C.10)

which represents a moment around y,.

These three constraint wrenches prevent the translation along zg and the rotations
around x¢ and y, of the body located at the leg extremity. All legs presented in the
Fig.C.1 impose these three constraint wrenches to the platform.

Now, let us consider that one joint of the legs depicted in Fig.C.1 is actuated
(the joints in gray). This is the case for the most usual PPM. Starting from this
consideration, only two cases can appear:

1. the passive system is made of two R joints (Fig.C.2a),
2. the passive system is made of one P joint and one R joint (Fig. C.2b).
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Fig. C.1 Usual legs for
PPM. a RRR leg. b RRR leg.
¢ RPR leg. d RPR leg. e PPR
leg. f PPR leg. g PRR. h PRR
leg. i PRP leg. j RRR leg

Fig. C.2 General passive
systems for the usual legs of
PPM. a RR passive system
(g,is aligned with (01 0y)).
b PR passive system

€ Lw

(b) ¢ .
\V Yo
B o" %o
A

(b)

Yo g”ﬁ
@)

@)
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C.3.1 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of Two Passive R Joints

For a system composed of two R joints (one located at point O; and the second
one at point O», point O; having the coordinates (x;, y;) in the plane (Og, X9, ¥¢)—
Fig.C.2a, it is possible to define two twists $z; and $, parameterized by (when
expressed at point O»):

O$p1 = [~ —yDx2—x10001]" (C.11)

%$gy=[000001]", (C.12)

The constraint wrenches &.; (i = 1,2, 3) are reciprocal to $z; and $z, but one
additional wrench, denoted as the actuation wrench &, is reciprocal to these twists.
It can be easily seen from (Zhao et al. 2009) that

O, =[x2—x1 32 —»0000]" (C.13)

i.e. it is a force passing through the centers of the two R joints (see Fig.C.2a). It
should be noted that £, must not be reciprocal to the twist of the third (actuated) joint

C.3.2 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of One P Joint and one R Joint

For a system composed of P joint of direction w; = [u1y uyy 017 and one R joint
located at point Oy (Fig.C.2b), it is possible to define two twists $p; and $g»
parameterized by (when expressed at point O3):

8 p1 = [u1x u1,0000]" (C.14)
%%z =[000001]". (C.15)
The constraint wrenches &.; (i = 1,2, 3) are reciprocal to $p; and $z, but one

additional wrench, denoted as the actuation wrench &, is reciprocal to these twists
(¢, must not be reciprocal to the twist of the third (actuated) joint). It can be easily
seen from (Zhao et al. 2009) that

O¢, = [~ury u1, 0000]" (C.16)

i.e. it is a force lying in the plane (Oop, x9, y() passing through O and orthogonal
to the prismatic joint direction (see Fig. C.2b).
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C.4 Computation of Wrenches Reciprocal to Other Types
of Twist Systems

For SPM, other types of twist systems appear. Due to the large number of possible
leg architectures for the existing SPM, it is impossible to deal with all possible twist
systems in this Appendix. However, we will compute the wrenches reciprocal to the
twist systems corresponding to:

e UPS legs (legs of the Gough-Stewart platform—see Sect.7.2.2.5)

e UPU legs (legs of the Tsai mechanism (Tsai and Joshi 2000)),

e RUS legs (legs of Hexa-like robots, and most of Delta-like robots (Clavel 1989;
Company et al. 2002; Pashkevich et al. 2006)).

C.4.1 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of a UPS Leg

Let us consider a UPS leg composed of an actuated P joint of direction ‘u =
[ty O u;]7 in the leg frame .%; (Fig.C.3), one passive U joint which can be rep-
resented as an assembly of two R joints whose axes a; and a; are orthogonal to
the direction of the P joint, i.e. a; = [1 0 0]” and a = [0 1 0]” in the leg frame
Z;, and one passive S joint allowing three independent rotations around three axes
a;=[100]"a =[010]7 and a3 = [0 0 117 without loss of generality in the
leg frame .%; (Fig.C.3).

Aﬁga

Fig. C.3 A UPS leg (in this configuration, u = z;, however, this is not the general case)
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As a result, the twist system representing the motion of the leg in the frame .%;
and expressed at the center A of the S joint is given by:

'$=[0-240100]" (C.17)
"$,=[24 0 —x4 010]" (C.18)
"$3 = [uy 0u; 000]" (C.19)
‘g, =[000100]" (C.20)
‘$s=[000010]" (C.21)
i$s=[000001]" (C.22)

where x4 and z4 are the coordinates of the point A along the axes x; and z; of the
frame .%;.

The total twist system $ = [$1 ... 8] is of rank 6. Therefore, there are no
constraint wrenches.

Now, let us compute the actuation wrench when the P joint is considered actuated.
We must thus consider the twist system $; = [$1 $, $4 85 $6]. It automatically
gives that the actuation wrench &, is equal to, from (Zhao et al. 2009):

e, =[us 0u; 000]" (C.23)

i.e. it is a force directed along the direction connecting the centres of the U and
S joints. We note that this force is not reciprocal to the actuated prismatic joint axis.

C.4.2 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of a UPU Leg

Letus consider a UPU leg composed of an actuated P joint of directionu = [u, 0 uZT
in the leg frame .%;, and two passive U joints. Each passive U joint can be represented
as an assembly of two R joints whose axes a; and a; are orthogonal to the direction
of the P joint, i.e.a; = [1 0 0]” anday = [0 1 0]” in the leg frame .%; (Fig.C.4).

As a result, the twist system representing the motion of the leg in the frame .%;
and expressed at the center A of the second U joint is given by:

i$ =[0—-z4 ya100] (C.24)
'$,=[24 0 —x4 010]" (C.25)
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Fig. C.4 A UPU leg (in this
configuration, u = z;,
however, this is not the
general case)

"$3 = [ux 0u; 000]" (C.26)
‘g, =[000100]" (C.27)
‘g5 =[000010]". (C.28)

The total twist system $ = [$1 .. $5] isof rank 5. As aresult, there is a constraint
wrench given from (Zhao et al. 2009) by

it,=[000001]" (C.29)

i.e. it is a moment around the z; axis (Fig.C.4).

Now, let us compute the actuation wrench when the P joint is considered actuated.
We must thus consider the twist system $; = [$1 $) $4 $5]. It automatically gives
that the actuation wrench &, is equal to, from [Zhao et al.., 2009]:

i, = [ux 0u; 000]" (C.30)

i.e. it is a force directed along the direction of the prismatic joint (Fig. C.4).

C.4.3 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of a RUS Leg

Let us consider a RUS leg composed of an actuated R joint of direction a; =

[1 0 0]7 in the base frame .%, one passive U joint which can be represented as an
assembly of two R joints whose axes are a; and a,, witha; = [1 0 017 and a; =
[0 ay a;]" in the leg frame .%;, and one passive S joint allowing three independent
rotations around three axesa; = [1 0 0]7 a3 = [0 1 0]7 andas = [0 0 1]7 without
loss of generality in the leg frame .%; (Fig.C.5).
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Fig. C.5 ARUS leg

As a result, the twist system representing the motion of the leg in the frame %
and expressed at the center B of the § joint (with coordinates in the base frame xp,
yp and zp) is given by:

'$; =[0—z5 yp 100]" (C.31)

'$, = [0 —zap yap 100]" (C.32)

i3 = [ayzAB — a;YAB a;xAB —ayxap 0 ay aZ]T (C.33)
‘g, =[000100]" (C.34)
i$s=[000010]" (C.35)
‘$s=[000001]" (C.36)

. —>
where x4 p, yop and z4p are the coordinates of the vector AB along the axes of the

-
frame .%(. Note that AB Lay, i.e. that yspa, + zapa; = 0.

The total twist system $§ = [$ 1oe $6] is of rank 6. Therefore, there are no
constraint wrenches.
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Now, let us compute the actuation wrench when the first R joint is considered
actuated. We must thus consider the twist system $; = [$2 e $6]- It automatically
gives that the actuation wrench &, is equal to, from (Zhao et al. 2009):

» T
‘¢, = [xaB yaB 248 000]" /\/x%p + ¥ip + 745 (C.37)

—
i.e. it is a force directed along the direction given by the vector AB (Fig.C.5). We
can verify that £, is not orthogonal to the unit twist of the actuated joint.



Appendix D
Point-to-Point Trajectory Generation

Let us consider a robot displacement between an initial configuration Ag parame-
terized by the Cartesian variables X( and a final configuration A y parameterized by
the Cartesian variables x y. The trajectory between these two configurations can be
defined by the functions

X(t) = s(1) (X —X0) +Xo (D.1)
X(1) = 3(t) (xf — Xo) (D.2)
(1) = 5(1) (x — Xo) (D.3)

where:

o t € [0, 7], where t = O s is the time at which the robot starts to move from the
initial configuration Ag and ¢ is the time at which the robot arrives at the final
configuration A f

e Xx(7) denotes the robot Cartesian variables at the time z,

e X(7) denotes the first derivative w.r.t. time of the robot Cartesian variables at the
time ¢,

e X(¢) denotes the second derivative w.r.t. time of the robot Cartesian variables at
the time ¢,

e 5(1) is an interpolation function.

We can deduce from (D.1) that the path in the Cartesian space will be defined by
a straight line. The boundary conditions for s(¢) are deduced as:

s(t=0s)=0 (D.4)
st =1f)=1. (D.5)
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Moreover, if at the initial and final configurations, the velocities and accelerations
are null, we have

s(t=0s8)=0 (D.6)
§t=1t5)=0 D.7)
§t=0s)=0 (D.3)
§t=1tr)=0. (D.9)

From these boundary conditions, and assuming that the interpolation function s (¢)
is a polynomial of the form:

s(1) = Zak £k (D.10)
k=0

we can find the coefficients ay.

For high speed robots or when a robot is handling heavy or delicate loads, it is
worth ensuring the continuity of the position, velocity, and accelerations as well, in
order to avoid exciting resonances in the mechanics. The trajectory is said to be of
class C2. Thus, from (D.2) and (D.3), we must define the functions §(¢) and §(z),
given by

§) =D kag i (D.11)
k=1
and
§0) =D k=1 a 172, (D.12)
k=2

Since six constraints (D.4)—(D.9) have to be satisfied, the interpolation requires a
polynomial of at least fifth degree (Binford et al. 1977).
Solving the six constraints yields the following interpolation function:

\3 A\ \S
s(t) =10 (—) —6(—) +15 (—) . (D.13)
Iy ly ly
Obviously, if we increase the number of boundary conditions to take into account,

the order of the polynomial will increase. For example, if n, constraints have to be
satisfied, the interpolation requires a polynomial of at least n, — 1 degree.



Appendix E

Calculation of the Terms f,..,, f4cc, and f,¢c,

in Chapter 10

E.1 Calculation of the Term f,,

From (10.12) and (10.15), we get that f,., is given by

faccl :/, \"dem
Z

Fj

= [ B M) e + 200 ¢ B (o) dm

+/% (wj x () x rOij) + o x rOij)dm
B

which can be expanded to be rewritten as

face, Z/ dem +/ q)d,- (MOj)dmtiei
%] %, '

J ]

=+ (;)j X (/ rOijdm)

J

+20; x (/% D4, (Mo;)dm Qe_/)

J
~|—(x)jX ®; X / rO/.dem .
Bi

E.2 Calculation of the Term f,.,

From (10.12) and (10.15), we get that £, is given by
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faccz =/ rOij X VMJdm
s

7

:/% ro,u; x (Vi + @, (Moj)de, +20; x ®q;(Moj)qe;) dm

<]

+/gg ro,M; X ((oj X (wj X rOij) +o; x rOij)dm

J

which can be expanded to be rewritten under a sum of five terms:

where:

ag =/ YoM, x vjdm

“J

:(/ rOijdm) X Vj
B

p erij X (QdJ(MOJ)qL)/)dm

J

a

8

to,m; Py, (Moj)de;dm
2 JMjaj /e

( / R0, 1, (MOj)dm) i,
2

az = ro.m; x(d)jer.M.)dm
B 77 77T
7]

=—/7 l‘Oij X (rOij X (;)j) dm
Z;

1=
u-
I

<]

2/@ ro;m; X ((x)j X @y, (Moj)(']ej)dm.

(E.3)

(E4)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)
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To simplify the term a4, let us recall the well-known identity for the double cross-
product of three arbitrary vectors u, v and w:

UX (VvXw +wx@xv)+vx(wxu)=0. (E.10)
Ifu= ro;M;,V=0;,W=®; XT0;M,;,SOW X (u x v) = 0 which leads to
ux(VXw)=—vx(wWxu) (E.11)
or also, replacing the vectors u, v and w by their corresponding values
ro,u; X (0 X (@) xro,u;)) =—0; x (0; XTo,m;) XTo;m;). (E.12)

Thus, a4 becomes

®; x ((@; x rOij) X ro;m;) dm

®; X (ijMjf'Oij‘!)j) dm (E.13)

((/ f‘g,M_f‘Ofodm)(ﬂj).
B ST
J

Now, introducing (10.4) into (E.9), the expression of a5 becomes

/.
Z—/% w; X (I'Oij X (I‘Oij X (x)j)) dm
/.

Il
£
X

as = 2(as| + asy) (E.14)

where

as| =/@ rOjM()j X ((,Oj X @dj (Moj)qe])dm (EIS)

J

= —/% Yo;My; X (((I)dj(MOj)qej) % wj)dm

]

a5 =‘/33 (‘I)a'/- (MOj)er) X ((u)j X ‘I>dj (Moj)qej) dm (E.16)

J

_— /} (@, 0)a,,) (0, (Mo i) ) i

&L
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In order to simplify these two expressions, let us consider the fact that:

Nj

D4, (Moj)qe; = z Pk (Moj)qex, (E.17)
k=1
Nj

B, (Moj)e; = D, Rar; (Moj)dek; (E.18)
k=1

Introducing (E.18) into (E.15) leads to:

Nj
as1 =— [ To;Mmy; X @dk‘(Moj)q‘ekA X ®; dm
J ] J J
Bj k=1
Nj
= Z(/ ro;Mo; X ((Pak; (Moj)ger;) X @) dm) (E.19)
k=1 \’%;
Nj
:—Z(/ ro;My; X (q)dkj(MOj) X (x)j) dm Qek_/)
k=1 \'Zj
Nj
=Z( / £0, 0, Bat; (MOj)dm) ;e
B
k=1 J

Then, introducing (E.17) and (E.18) into (E.16) leads to:

i i
asy) = — /% Z‘I’di_,- (Moj)qei; | % Z‘I)dkj (Moj)qek; | x @; | dm
i \i=l k=1

A

= _ ZZ(/ <Il'dij (MOj)CIeij) X (((I’dkj (Moj)qekj) X wj) dm)
=— ZZ(/ By, (Moj) x (Pax;(Moj) x wj) dm qeijc}ekj) (E.20)
— Z Z(/ ®dij (MO,/')édkj (M()J)(;)Idm qeijq'ekj)

i=1 k=1
Nj Nj

(/@ <i’§,-j (Moj) Dy, (MOj)dm) ®jei;Gek; -
B

i=1 k=1

Finally, introducing expressions (E.5), (E.6), (E.7), (E.13), (E.14), (E.19), and
(E.20) into (E.4), the expression (10.18) can be obtained.
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E.3 Calculation of the Term f,.,

From (10.12) and (10.15), we get that f,., is given by
face; = / q)de (MOj)“’M_,- dm
Zj

=/% BT (Moy) (¥, + By (Mo )i, + 20, x B, (Mo))d) dim

J

+/ B (Mo)) (@) x (@) X To,m;) +Gj x o) dm  (E21)

A j

which can be expanded to be rewritten under a sum of five terms:

5
face; = D _bx (E.22)
k=1
where:
by :/ By, (Moj)"vjdm (E.23)
B
T
:(/ @dj(Moj)dm) \fi
Bj
by = /ﬂ <1>§j (Moj) (®a; (Mo)ie;) dm (E.24)
7j

=( [ @0, (Moj')dm) i

J

b3 =/Q @de(Moj) ((;)j X rOij)dm

]

_ T . g
=— /P,gj ‘E'dj (Mo;) (I‘oij X (:.)J) dm

_ / ) (Mo))fo, 1, ;dm (E.25)
B

J

:(/ <I>§] (Moj)f'(T)ijdm) (;)j
Bj
T
:(/ f'O;Mi(I’dj(MOj)dm) (;)j
B
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by =/ﬁ B (Mo)) (@) x (@) x o)) dm (E.26)
A

bs = 2/53 ‘ng (Mo) (@) x ®4;(Mo)qe;) dm. (E.27)
J

Considering the ith component by|; of the vector by, we can rewrite (E.26) as
bsl; = /93 «1>§,.j (Moj) (@) x (®; xT0,,)) dm (E.28)
%j

in which ®,4;; (Mo ) is the ith column of the matrix ®4,(Mo;).
Now, introducing (10.4) into (E.28), the expression of b4|; becomes

bali = bai1 + baiz (E.29)

where

baiy :[% @;/_ (Mo;) ((x)j X ((x)j X l'o/.MOj)) dm (E.30)

7

Z/@ ¢§i/‘ (Moj) ((romy; x @) x @;) dm

7

bain = /% By (Mo)j) (@) x (@) x (®4;qc;))) dm. (E.31)

A j

To simplify the term by4;1, let us recall the well-known identity for the triple product
of three arbitrary vectors u, v and w:

u’ (vxw)=w! (uxv). (E.32)

Now, replacing u by ®4i;(Mo;), v by ®; X ro;m,;, and w by o, we get

bai1 =/ wJT» (®ai; (Moj) x (ro,my; x @;))dm

Bj

=wj ( /ﬂ ®ai, (Moo, my, dm) @ (E33)

]

T &7 .
=—-0; (/% (I)dij (MOj)rOjMojdm) ®;
B
T
= — (x)}w (/% f';[)jMoj (I)dij (Moj)dm) ;.

J
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Now, in order to simplify the term ba4;2, let us consider the fact that:

N;
B4, (Moj)qe; = D Rar;(Moj)qex; - (E.34)
k=1
Thus, b4i» can be rewritten as
N;
bsiz =/7 ‘PL,(MOJ') wj x| @; x| D ®ar;(Moj)qex,; dm
Bi k=1
N;
:Z /g <I>§ij (Moj) (w) x (0 x ap; (Moj)qer;)) dm (E.35)
k=1"7"J

Nj
ZZL ‘I‘gij(Moj) ((a)j X ((n)j X q’dkj(MOj))) dm qGek; -
k=1 7

Once again, using the identity (E.32) by replacing u by ®;, v by ®; x ®gx; (Mo;),
and w by ‘I’dij (My}), we can obtain

N;

biz =2 /@ 0] (@) x Pak;(Mo))) x Rai;(Mo;)) dm ger,
k=17

:Zw? (/@ q)dij (MO.,') X ((I)dkj (M()j) X (x)j) dm) Qekj

B
N;

_ T

—Z‘*’j (

=— Zw/T (/3? ‘ih?ij (Moj)‘i’dkj (MOj)dm) @ qek; -

k=1 J

/ @i, (Mo;) ®ar,(Moj) o ,-dm) qek; (E.36)

Bi

Now, considering the ith component bs|; of the vector bs, we can rewrite (E.27) as
bs|; =2 /ﬁ @5,.]_ (Mo) (@ x ®4;,(Mo;)qe,) dm. (E.37)
J

In order to simplify the term bs|;, let us consider the fact that:

Nj

D4, (Moj)qe; = Z Par; (Moj)qek; - (E.38)
k=1
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Thus, bs|; can be rewritten as

Nj

bsl; =2 /j ®F, (Moj) (@) % [ D Bk, (Mo, | | dm
(/j 1

k=
Nj

=2;(/% By; (Moj) (@) x Pax; (Mo;)) dm qekj) (E-39)
= <

Nj
=-2 ; ( /%j @7, (Moj) (ar;(Moj) x @) dm 4ekj)-

Using the identity (E.32) by replacing uby ®4i; (M), vby @ ;,and w by ®ai; (Mo;),
we can obtain

N;
bs|; = — ZZ(/% ‘1’5” (Mo) (®ar; (Moj) x @) dm éekj)
k=1 \"%i

N;
=— 22([ ij (‘I’Zij (Moj) x P, (MOj)) dm f]ek_,)

k=1 \%i

-~

N.
) ( / ! ('Imk,. (Moj) x ®1, (Mo j)) dm qekj) (E.40)
=1 \’/%;

N .

T
22(/%_ Pak; (Moj) x ‘I>§,-j (Mo‘/)dm) Ojqek; -
v

k=1 ‘

Finally, taking the ith rows of expressions (E.23), (E.24) and (E.25) and summing
them with the expressions (E.33), (E.36) and (E.40), the expression (10.19) can be
obtained.
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Appendix F

Dynamics Equations for a Clamped-Free
Flexible Beam

F.1 Shape Functions for a Free Flexible Beam

Computation of the mass and stiffness matrices of 3D beams is useful for elastody-
namic modeling of parallel manipulators.

The Bernoulli model describes beam deformation under the assumption that the
shear effect is negligible, that the cross-sections remain perpendicular to the neutral
axis and that the rotational inertia of sections is assumed to be zero Blevins (2001).
With such a model, the 3D beam deformation u; (My;) (see Sect.10.2.1) can be
characterized with the six shape functions 'I>dx_/, 'I>dyj, i’dz_,, 'I>rx_/., '1’,},_/ and 'I>rz_/,
i.e. Nj = 6, defined as:

P4, =[£00000] (F.la)
gy, =[0367 2670001 (67 —&?)] (E.1b)
D, =[00352-28%0—1; (&7 — &%) 0] (F.1c)
®.,;, =[000£00] (F.1d)
®,,, =[00—6(5—£%)/1; 038> —2£ 0] (F.le)
@, =[06(5—&%)/1; 000382 —2¢] (F.1f)

where & = x/[; and [; is the beam length.
x, y and z denote the Cartesian coordinates of point Mo; expressed in the local
frame .%; and ®, ; (M) defined at (10.3) is a (3 x 6) matrix that takes the form:

édx_,' - yérzj + Z‘I’ry_/
(I)dj (Myj) = <I)dyj - Z(}rx(,’ (F.2)
(I)de + yérx]-
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while 'I>rj (My;) defined at (10.5) is a (3 x 6) matrix equal to:

P
B, (Mo)) = | @y, | (F3)
P

F.2 Stiffness Matrix for a Free Flexible Beam

In the beam model, it is assumed that (Shabana 2005)

Ojpy =0j33 =0jp; =0 (F.4)
Ejp = Ejy3 =&jy3 =0 (E5)
ojin = Ejej, (F.6)
oj, = Gjgj, (E7)
0jiz = Gjejs (F.3)

where E; is the Young modulus of body j and G; = E;/(2(1 + v;)) is its shear
modulus, v; being the Poisson’s coefficient.

Introducing (F.1a) to (F.8) into (10.35), the stiffness matrix of body %, takes the
form:

EjAjl; 0 0 0 0 0
0 12EjL, 0 0 0 —6E;L,l,
1|0 0 ' 12Ejl,, 0 6EjLl; 0
Kej =31 o 0 0 1G22 0 0 &)
1o 0 6EiLl; 0 4E;LZ 0
| 0 —6E;jlL;l; 0 0 0 4E;LL |

where A is the beam cross-section area, Iy i and /, ; are the second moments of area
around axes y and z of the local frame, I i is the torsion constant.

F.3 Evaluation of the Inertia Matrix of a Free Flexible 3D
Bernoulli Beam for q.; = 0

For q, ;= 0, the inertia matrix of the flexible 3D Bernoulli beam becomes, from
Sect. 10.2.24: .
mjlg erj MSdej

M; =| ms,;, L, MS], (F.10)
MSj, MS; M.,


http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10

Appendix F: Dynamics Equations for a Clamped-Free Flexible Beam 331
where
After simplifications, we get that
m;j
— 0 00 O 0
_ mj m;l;
MSge; =| 0 > 00 O 7 (F.12)
mi mil;
0 0o 2o0o-2LL o
2 12
pilil
0 0 0 ] ; oo 0
2
Tm 1 m;l5
U o myly _
MS., = |0 0 ~pily; — 5 o 0 | ED
0 p,1;, + 2l 0 0 il
Pitsi ™ o0 20
and
s 0 0 0 0 0 ]
.6l Um jlj+21p; 1,
0 132’;/ LS/I - 0 0 0 e 319 L
= J
13m ; 6pjly; Umjl;j+21pjly;
0 0 st 0 0
Meej = pililp;
0 0 0 L 0 0
U jlj+21p; 1y, mil5+14p; 1y,
0 0 — 210 105 ) 0
Umjij+21p;1; mj3+14p; 1 1
| 0 — 55—+ 0 0 0 SRR A
(F.14)

where I, = I, + I; is the polar moment of inertia.
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