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Preface

Dynamic models of robots play an important role in their design and control. Most
publications that are meant to teach computation of dynamic models of (rigid and/or
flexible) parallel robots are general works defining general equations that can be
applied to constrained or closed-loop systems. However, they usually suffer from
lack of the following information:

• they usually miss the fact that the Jacobian matrices used in a dynamic model to
set up dynamic constraints are not so simple to compute, and no straightforward
way to compute them is provided.

• most of these works do not propose efficient ways to reduce computational
complexity of dynamic models. However, this reduction of complexity is crucial
for obtaining models able to predict robot behavior for simulation and control,
and to speed up a robot’s optimal design process.

• they totally miss the facts that (i) in the presence of certain types of singularities,
the dynamic models may degenerate and that (ii) this degeneracy can be avoided
thanks to optimal trajectory planning.

• they do not provide experimental results to show that, even if they are complex,
dynamics models of parallel robots can be very accurate.

The present book, based on material published by the two authors over the last
fifteen years, aims at filling all these gaps and thus providing some tools for
engineers, master and Ph.D. students dealing with the dynamics of parallel robots.

Some results given in the book were reached in collaboration with Vigen
Arakelian, Nicolas Bouton, Frédéric Boyer, Etienne Dombre, Maxime Gautier,
Coralie Germain, Sylvain Guégan, Ouarda Ibrahim, Philip Long, Philippe Martinet
and Georges Pagis. The authors acknowledge each of them for their contributions.

The interested reader will also find within the book some links or references to
free software or portions of Mathematica codes in which the presented algorithms
for computing the kinematics and dynamics of some studied robots are already
encoded.
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The authors will be also genuinely grateful to the readers for any critical feed-
back on the material presented in the book and for any suggestion for its
improvement.

Nantes, France Sébastien Briot
March 2015 Wisama Khalil
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Symbols and Abbreviations

Throughout the book, vectors are represented by bold lowercase symbols and
matrices by bold uppercase symbols.

Symbols

aj The vector characterizing the axis of the joint j
�aj The unit twist characterizing the displacement of the joint j at Oj

an A list containing the number of the intermediate frames separating
the frame Fn from the frame F0

anðkÞ The k-th element of the list an

aðjÞ Gives the number of the body antecedent to the body Bj

α;β; γ;φ; θ;ψ Some angles
$ A unit twist
E The kinetic energy of a system
f A vector of force
F A force along one given direction
Fj The local frame, composed of the origin Oj and the axes x j; y j and

zj and attached to the body Bj

IOj The inertia matrix for body Bj, expressed at the origin of the local
frame Fj attached to this body

ISj The inertia matrix for body Bj, expressed at the center of mass of
this body

1j The ð j� jÞ identity matrix
L The Lagrangian of a system
λ Lagrange multipliers
lPQ The length of the segment PQ
m A vector of moment
M A moment along one given direction
mj The mass of the body Bj

xv



ndof The number of degrees of freedom of the mobile platform of the
parallel robot

Ndof The number of degrees of freedom of the parallel robot
jωj The rotational velocity of body Bj with respect to the fixed

Galilean frame and expressed in the local frame Fj
j _ωj The rotational acceleration of body Bj with respect to the fixed

Galilean frame and expressed in the local frame Fj

q; _q; €q Some vectors of generalized coordinates, velocities and acceler-
ations, respectively

iRj The ð3� 3Þ rotation matrix from the frame i to the frame j
iRj The ð6� 6Þ augmented rotation matrix from the frame i to the

frame j
jrP The position of point P expressed in the local frame Fj
irPQ The vector PQ

�!
expressed in a local frame Fi

t The time variable
tp For a manipulator, the twist of its end-effector
_tp For a manipulator, the acceleration of its end-effector
iTj The ð4� 4Þ transformation matrix from frame Fi to frame Fj
iTj The ð6� 6Þ augmented screw transformation matrix from frame

Fi to frame Fj

τ An input joint effort
τ a vector of input joint effort
U The potential energy of a system
jvP The velocity of point P with respect to the fixed Galilean frame

expressed in the local frame Fj
j _vP The acceleration of point P with respect to the fixed Galilean

frame expressed in the local frame Fj

w A wrench, composed of a force and a moment
x j; y j; z j The axes of the frame Fj

xp For a manipulator, the Cartesian position of its end-effector
xxj; yyj; zzj The axial moments of inertia around xj, yj and zj axes,

respectively, for body Bj, expressed at the origin of the local
frame Fj

xyj; xzj; yzj The inertial cross-moments for body Bj, expressed at the origin
of the local frame Fj

ξ A unit wrench

Abbreviations

atan2 The four-quadrant inverse tangent function
COM Center of mass
DDM Direct dynamic model

xvi Symbols and Abbreviations



DOF Degree of freedom
FGM Forward geometric model
FKM Forward kinematic model
IDM Inverse dynamic model
IGM Inverse geometric model
IKM Inverse kinematic model
IRCCyN Institut de Recherche en Communications et Cybernétique de

Nantes (Research Institute in Communications and Cybernetics of
Nantes)

LPJTS Leg Passive Joint Twist System
PKM Parallel kinematic machine
PPM Planar parallel mechanism
SPM Spatial parallel mechanism
T&T Tilt-and-Torsion
TPM Translational parallel mechanism
w.r.t. With respect to

Symbols and Abbreviations xvii
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Chapter 1
Generalities on Parallel Robots

Abstract This introductory chapter presents generalities about parallel robots. After
a general description and the definition of several important terms that will be used
in this book, we present a general overview of the different types of parallel robots.
We classify them as a function of the type of motions of their platform.We also show
that parallel robots are already used for different types of applications. At the end of
this chapter, we explain the reasons why we think that a book on the dynamics of
parallel robots is necessary.

1.1 Introduction

Parallel robots, also called parallel manipulators or parallel kinematic machines
(PKM), are defined in (Leinonen 1991) as robots that control the motion of their
end-effectors by means of at least two kinematic chains going from the end-effector
towards the fixed base.

From this definition, we see that the PKM are composed of different elements
(Fig. 1.1):

• the (fixed) base, which is the fixed element of the robot
• the (moving) platform on which is usually mounted the end-effector,
• the kinematic chains, linking the base to the platform, and also called the robot

legs. A leg is usually a kinematic chain of serial or tree-structure type (Figs. 1.2
and 1.3).

Parallel robots are very attractive for several applications because themanipulated
load is shared by several legs of the system. Consequently, each kinematic chain
carries only a fraction of the total load, which allows the creation of intrinsically
more rigid robots. Such architectures also make it possible to reduce the mass of
the movable links (all the actuators are mainly fixed on the base and many legs are
stressed by tension/compression efforts) and, as a result, make it possible to use
less powerful actuators. Such characteristics promised to create structures with high
payload, high dynamic capacities and high accuracy. Nowadays, parallel robots are
used for several applications, such as (the list is not exhaustive):

© Springer International Publishing Switzerland 2015
S. Briot and W. Khalil, Dynamics of Parallel Robots,
Mechanisms and Machine Science 35, DOI 10.1007/978-3-319-19788-3_1
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Fig. 1.1 A general parallel robot (the gray joints denote the actuated joints)

Fig. 1.2 Schematics of a serial open kinematic chain

Fig. 1.3 Schematics a tree-structure open kinematic chain
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Fig. 1.4 Adept Quattro robots picking and placing chocolates (courtesy of Adept)

Fig. 1.5 The Hermes milling module (courtesy of Tecnalia)

• pick-and-place in food industry, pharmaceutical industry (Fig. 1.4),
• milling (Fig. 1.5),
• motion simulators (Fig. 1.6),
• measuring systems (measuring accuracy of some nanometers for the Delta Cube
developed by theRobotic Lab. from theÉcole Polytechnique Fédérale deLausanne
(EPFL)),

• micro-positioning systems,
• haptic devices (Fig. 1.7),
• medical environment (Fig. 1.8),
• accessing offshore structure (Fig. 1.9).
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Fig. 1.6 A flight motion simulation (courtesy of Rexroth)

Fig. 1.7 The Oméga6 based on a Delta-like architecture (courtesy of Force Dimension)

1.2 General Definitions

Throughout this book, we define the following terms as:

• mobility: the mobility of a body is defined in this book as the number and types of
independent components of its twist (rotational and translational velocity compo-
nents). It is equal to six for a free body in space and three for a body in plane.

• degree of freedom: the number of degree of freedom (DOF) of a body is defined
as the number (only) of independent components of its twist.

• lower mobility robot: a robot with a mobility of the platform inferior to six.
• robot with a mobility iT j R: a robot whose platform encounters i translational

DOF and j rotational DOF.
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Fig. 1.8 The SurgiScope, a Delta robot carrying a 70kg microscope (courtesy of ISIS)

Fig. 1.9 The Ampelmann platform (courtesy of Ampelmann)
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• joint: A joint connects two successive links, thus limiting the number of degrees
of freedom between them. The resulting number of degrees of freedom, m, is also
called joint mobility, such that 0 ≤ m < 6. When m = 1, which is frequently
the case in robotics, the joint is either revolute or prismatic. A complex joint with
several degrees of freedom can be constructed by an equivalent combination of
revolute and prismatic joints. For example, a spherical joint can be obtained by
using three revolute joints whose axes intersect at a point.

• active joint: a joint which is actuated.
• passive joint: a joint which is not actuated.
• R joint: a revolute joint (Fig. 1.10), allowing a rotation around a given axis. If the
letter is underlined (R joint), the joint is actuated. If not, it is passive.

• P joint: a prismatic joint (Fig. 1.11), allowing a rotation around a given axis. If the
letter is underlined (P joint), the joint is actuated. If not, it is passive.

• U joint: a universal joint, allowing two independent rotations around two given
axes. These joints are usually passive and can be represented by two R joints with
orthogonal and intersecting axes.

• S joint: a spherical joint (Fig. 1.12), allowing three independent rotations. These
joints are usually passive and can be represented by 3R joints with orthogonal and
intersecting axes.

• joint variable / coordinate: a variable/coordinate associated to the motion of a
given joint.

• Cartesian variable / coordinate: a variable/coordinate associated to the Cartesian
position and orientation system. It is generally used to characterize the motion of
the platform.

• singularity or singular configuration: a configuration for which the mechanism
loses the ability to move along one given direction of the workspace and/or gains
one uncontrollable motion. Moreover, locally, the robot mechanical performance
(stiffness, accuracy, etc.) are locally decreased.

Fig. 1.10 Symbolic representation of a revolute joint

Fig. 1.11 Symbolic representation of a prismatic joint
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Fig. 1.12 Symbolic
representation of a spherical
joint

1.3 Types of PKM Architectures

There exists a large variety of PKM architectures. In a very simple approximation,
if we consider that a PKM has six legs, and that all legs are made of six joints,
the number of possible PKM topologies is equal to the number of possible serial
legs to the power six. Therefore, it is impossible to show in this book all possible
PKM architectures.

A large number of PKM architectures have been given in the books (Gogu 2008,
2009, 2010, 2012, 2014;Kong andGosselin 2007). As no classificationmethods have
been proposed, we group them as a function of the number and types of DOF of
their platform.1 We briefly introduce some of them in the following of this section.

It should be mentioned that the number of independent DOF of the platform of a
PKM can be found by analyzing the rank of the parallel kinematic Jacobian matrix
A defined in Sect. 7.3.1, when the robot is not in a singular configuration. Methods
to compute the mobility of mechanisms are given in Appendix A.

1.3.1 Planar Motions of the Platform

Many PKM have been designed in order to be able to move their platform in a plane.
We call them the Planar Parallel Manipulators (PPM). We can classify them into
three main groups:

1. robots with 2 DOF able to position a point in a plane (Fig. 1.13),
2. robots with 2 DOF able to position a device with constant orientation in a plane

(two translational DOF in the plane and one constrained (constant) platform
orientation around the axis normal to the plane—Fig. 1.14),

3. robots with 3 DOF able to position a device in a plane (two translational DOF in
the plane and one rotationalDOF around the axis normal to the plane—Fig.1.15).

There obviously exist other types of possible mobilities (1T1R), but they are not
common.

Most of the robots of this category are planar, i.e. all their elements are constrained
to move in parallel planes. However, in order to increase the stiffness of robots with

1Throughout this book, when we mention the number and types of DOF of the PKM, we refer to
the number and types of DOF of its mobile platform. The number of DOF of the mobile platform
is denoted ndof while the number of DOF of the entire robot is denoted Ndof

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 1.13 Examples of robots with 2 DOF able to position a point in a plane. a The Dextar: a planar
five-bar mechanism (RRRRR planar architecture) designed at ETS Montrèal (Campos et al. 2010).
b The ParaPlacer (PRRRP planar architecture) from the IFW (Hesselbach et al. 2002)

Fig. 1.14 Examples of robots with 2 DOF able to position a device with constant orientation in a
plane: Robot PacDrive Delta 2 (courtesy of Schneider Electrics)

planar motions of the platform, especially in the direction normal to the displacement
plane, a recent idea was to design spatial robots able to achieve planar motions of
their platform (Fig. 1.16).

1.3.2 Spatial Motions of the Platform

The large majority of PKM have been designed in order to be able to move their
platform in the space. We call them the Spatial Parallel Manipulators (SPM).

The robots of this category are too numerous to mention all of them. However,
we can cite:
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Fig. 1.15 Examples of robots with 3 DOF able to position a device in a plane. a Prototype of
a 3-PRR robot (Wei and Simaan 2010). b A decoupled planar robot designed at ETS Montrèal
(Joubair et al. 2012)

Fig. 1.16 Examples of spatial robots with 2 DOF able to position a device in a plane with a
constant orientation of the platform. a The Par2 from the LIRMM, France (Pierrot et al. 2009). b
The IRSBot-2 robot from the IRCCyN, France (Briot et al. 2012b)

• robots with three translationalDOF (also called translational parallel manipulators
(TPM)): among them, we can mention the Delta robot (Clavel 1990) (Fig. 1.17a),
the Orthoglide (Chablat and Wenger 2003) (Fig. 1.17b), the Tripteron (Gosselin
2009) (Fig. 1.17c), etc.

• robots with three rotational DOF (also called spherical PKM): most of them allow
the platform to rotate around one given fixed point (Bonev and Gosselin 2006).
The most known is probably the Agile Eye (Gosselin et al. 1996) (Fig. 1.17d),

• robotswith three exoticDOF: such types of robots have usually someDOF of rota-
tion which are constrained with the DOF of translation [(see e.g. (Bonev 2008)].
Some of them have been designed with an additional wrist which compensates for
the undesirable rotations and have found some industrial applications, especially
for milling (Fig. 1.18)
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Fig. 1.17 Examples of spatial robots with 3 translational or rotational DOF. a The Delta robot by
Clavel (1990), a TPM. b The Orthoglide of IRCCyN (Chablat and Wenger 2003). c The Tripteron
developed by Gosselin (2009), a TPM . d The Agile Eye developed by Gosselin et al. (1996)

Fig. 1.18 Examples of spatial robots with 3 exotic DOF. a The Tricept. b The Exechon
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Fig. 1.19 Examples of spatial robots with 6 DOF. a A Hexapod (courtesy of Symétrie). b The
Hexa (Pierrot et al. 1990)

• robots with three translational DOF and one rotational DOF around one given
axis (also called Schönflies motion generators): they are usually used for pick-
and-place operations, most often at high-speed. The most functional robot of this
type is probably the Adept Quattro (Fig. 1.4)

• robots with six DOF: such as the Hexapod (also known as the Gough-Stewart
platform—Fig. 1.19a) and the Hexa (Pierrot et al. 1990) (Fig. 1.19b).

1.3.3 Redundant PKM

Redundancy occurs when the number of active joints, na , is greater than the num-
ber ndof of independent variables required to define the platform configuration.
Redundancy in PKM is usually used in order to avoid their singularities which are
considered as one of the main drawbacks of such robots (see Sect. 7.5).

Redundancy in parallel manipulators can be divided into two main groups:

1. Kinematic redundancy: in such a case, na = Ndof > ndof ,
2. Actuation redundancy: in such a case, na > Ndof .

1.3.3.1 Kinematic Redundancy

Kinematic redundancy (Ebrahimi et al. 2008) is obtainedwhen the total number Ndof

of DOF for the robot exceeds the number ndof of independent variables necessary to
define the robot’s platform configuration. In such a case, we have na = Ndof > ndof ,
na being the number of actuators. It results in an infinitude of possible solutions to
the inverse kinematic problem giving the joint coordinates of the robot in terms of
the platform coordinates (see Sect. 7.3.2.4). This type of redundancy occurs when
extra active joints and links are added to a manipulator (Fig. 1.20a). Advantages

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 1.20 Examples of redundant robots. a A kinematically redundant PPM(3-(P) RRR robot)
from the institute of mechatronics systems, Germany (Kotlarski et al. 2010). b The DualV from the
LIRMM, France (van der Wijk et al. 2011): an actuation redundant PPM(4-RRR robot)

can include larger reachable workspace, avoidance of kinematic singularities, and
dexterity improvement (Ebrahimi et al. 2008).

1.3.3.2 Actuation Redundancy

Actuation redundancy occurs when the number na of actuators is greater than the
number of robot DOF Ndof . Mathematically speaking, we have na > Ndof .

As a consequence,

• we cannot independently choose the active joint variables as they are constrained
by nc equations.

• there are an infinite number of possible solutions to the inverse dynamic problem
(see Sect. 8.5). Internal constraint efforts may appear.

• the wrench capabilities are affected (Firmani et al. 2007) and forces of greater
magnitudes can be generated.

• as an advantage, the robot workspace becomes usually free of singularity.

An example of an actuation redundant robot named the DualV is provided in
Fig. 1.20b.

1.3.4 Other Types of PKM

1.3.4.1 Hybrid PKM

The hybrid robots are composed of serially connected parallel modules like the
LogabexLX4 robot (Fig. 1.21) (Charentus andRenaud 1989) and bio-mimetic snakes
robots (Chablat and Wenger 2005; Khalil et al. 2007a). The serial form of these

http://dx.doi.org/10.1007/978-3-319-19788-3_8
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Fig. 1.21 The hybrid Logabex LX4 robot

hybrid manipulators overcomes the limited workspace of parallel manipulators and
improves overall stiffness and response characteristics.

1.3.4.2 Cable-Driven Parallel Robots

Cable-driven parallel robots are quite recent types of PKM in which the rigid links
are replaced by cables. The cables being used in tension only, it results that, for fully
controlling the six DOF of the platform, at least seven cables must be used.

The most known example of cable-driven parallel robots is probably the Skycam.
An example of cable-driven parallel robots is given in Fig. 1.22.

Please note that the dynamics of hybrid PKM and of cable-driven parallel robots
are not investigated in the present book. However, the interested reader could inves-
tigate the works (Ibrahim and Khalil 2010; Notash and Kamalzadeh 2007).

1.4 Why a Book Dedicated to the Dynamics of Parallel
Robots?

The dynamic model of robots plays an important role in their design and control. For
robot design, the inverse dynamicmodel can be used to select the actuators (Chedmail
and Gautier 1990; Potkonjak 1986), while the direct dynamic model is employed to
carry out simulations for the purpose of testing the performance of the robot and to
study the relative merits of possible control schemes. Regarding robot control, the
inverse dynamic model is used to compute the actuator torques, which are needed to
achieve a desired motion (Khalil and Dombre 2002). It is also used to identify the
dynamic parameters that are necessary for both control and simulation applications.
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Fig. 1.22 A cable-driven parallel robot developed at the LIRMM

Most of the works that can be used for computing the dynamic models of (rigid
and/or flexible) parallel robots are general works defining general equations that
can be used for constrained or closed-loop systems (Angeles 2003; Bauchau 2011;
Cammarata et al. 2013; Dwivedy and Eberhard 2006a; Gallardo et al. 2003; Khalil
and Dombre 2002; Khalil and Guégan 2002; Khalil and Ibrahim 2007; Moon 2007;
Müller 2005; Özgür et al. 2013; Park et al. 1999; Rognant et al. 2010; Shabana 2005;
Shah et al. 2013;Wang andMills 2006;Wittbrodt et al. 2006). However, they usually
suffer from the following (already mentioned above) shortage of information:

• they usually miss the fact that the Jacobian matrices used in the dynamics model to
set up the dynamic constraints are not so simple to compute, and no straightforward
way to compute them is provided.

• most of these works do not propose efficient ways to compute dynamic models,
in terms of the reduction of the operators ‘+’, ‘−’, ‘×’ and ‘/’ used for obtaining
the expression of an individual model. However, this optimization is crucial for
obtaining models able to predict robot behavior for simulation and control, and to
speed up the robot optimal design process.

• they totally miss the facts that (i) in the presence of certain types of singularities,
the dynamic models may degenerate and that (ii) this degeneracy can be avoided
thanks to an optimal trajectory planning (optimal with respect to a criterion based
on the dynamic model).
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• they do not provide experimental results to show that, even if they are complex,
dynamics models of parallel robots can be very accurate.

The present book aims at filling all these gaps. As a result, the book is organized
as follows:

• Part I recalls some basic concepts, common to any types of robots, that are also
necessary for computation of the dynamic models of PKM. The main Chapters of
this Part contain

– In Chap.2, basics recalling the ways to parameterize the displacements of any
body by using homogeneous transformations are given. Several types of para-
meters for characterizing the body orientation are shown (Euler angles, Tilt-
and-Torsion parameters, Quaternions, etc.)

– In Chap.3, the concept of screw is introduced, in order to parameterize the
velocity (twist) of a body and the efforts (wrench) exerted on it. Moreover, the
expression of the acceleration of a body is derived.

– In Chap.4, the minimal set of parameters required for parameterizing the con-
figuration of any type of robots is disclosed.

– In Chap.5, the geometric and first/second-order kinematic models of serial and
tree-structure robots are investigated, because these models are useful for the
computation of the kinematic relationships of PKM.

– In Chap.6, the basic dynamic principles used in this book are introduced
(Lagrange equations, Newton-Euler principle, principle of virtual works).

• Part II deals with the dynamic modeling of rigid parallel robots:

– In Chap.7, the generic computation of the geometric and kinematic models of
PKM is detailed. Moreover, the problem of the singularity of parallel robots is
introduced.

– In Chap.8, the computation of the inverse and direct dynamic model of parallel
robots (with and without redundancy) is treated. This computation is based on
the knowledge of the dynamic models of a virtual tree structure, and the ways to
optimize this model in terms of operators is shown. At the end of this Chapter,
other types of models are provided (energy model and ground reaction model)
and the concept of base parameters is introduced.

– In Chap.9, the degeneracy of the dynamic models of PKM is investigated.
Criteria to respect around singularities in order to avoid the dynamic model
degeneracy are provided.

• Part III introduces the dynamic modeling of flexible parallel robots. The goal of
this Part is not to provide a complete lecture on mechanics of deformable bodies,
but to show how to obtain the dynamics of a flexible PKM starting from basic
considerations in mechanics of deformable bodies. As a result, it is organized as
follows:

http://dx.doi.org/10.1007/978-3-319-19788-3_2
http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_9
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– In Chap.10, the full elastodynamicmodel of thePKM is provided. For obtaining
it, it is necessary to investigate the dynamics of free flexible bodies and of flexible
tree structure.

– In Chap.11, the algorithm provided in Chap. 10 is simplified in order to obtain
the expressions of the stiffness and inertiamatrices ofPKM, which are necessary
for the computation of the natural frequencies.

Finally, it should be mentioned that, in Parts II and III, comparative results with
dynamic modeling of rigid and flexible robots and experiments are provided.

http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_11
http://dx.doi.org/10.1007/978-3-319-19788-3_10


Chapter 2
Homogeneous Transformation Matrix

Abstract The transformation of frames is a fundamental concept in the modeling
and programming of a robot. In this Chapter, we present a notation that allows us to
describe the relationship between different frames and objects of a robotic cell. This
notation, called homogeneous transformation, has been widely used in computer
graphics to compute the projections and perspective transformations of an object on
a screen. Currently, this is also being used extensively in robotics. We will show how
the points, vectors and transformations between frames can be represented using this
approach. We also make an overview of different set of parameters that are used for
characterizing the orientation of a body.

2.1 Homogeneous Coordinates and Homogeneous
Transformation Matrix

Let ( j xP , j yP , j zP ) be the Cartesian coordinates of an arbitrary point P with
respect to the frame F j , which is described by the origin O j and the axes x j ,
y j , z j (Fig. 2.1). The homogeneous coordinates of P with respect to frame F j are
defined by (w j xP , w j yP , w j zP , w), where w is a scaling factor (Newman and
Sproull 1979; Roberts 1965). In robotics, w is taken to be equal to 1 (Paul 1981;
Pieper 1968). Thus, we represent the homogeneous coordinates of P by the (4 × 1)
column vector:

j p̃ =

⎡
⎢⎢⎣

j xP
j yP
j zP

1

⎤
⎥⎥⎦ . (2.1)

A direction (free vector) is also represented by four components, but the fourth
component is zero, indicating a vector at infinity. If the Cartesian coordinates of a unit
vector u with respect to frameF j are ( j ux ,

j uy,
j uz), its homogeneous coordinates

will be:

© Springer International Publishing Switzerland 2015
S. Briot and W. Khalil, Dynamics of Parallel Robots,
Mechanisms and Machine Science 35, DOI 10.1007/978-3-319-19788-3_2
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Fig. 2.1 Transformation of
a vector

j ũ =

⎡
⎢⎢⎣

j ux
j uy
j uz

0

⎤
⎥⎥⎦ . (2.2)

The coordinates of the point P can be defined in another frame Fi by i p̃ =[
i xP

i yP
i zP 1

]T
and they can be obtained as a function of j p̃ by (Fig. 2.1):

i p̃ = j xP
i s̃ j + j yP

i ñ j + j zP
i ã j + i r̃ j = i T j

j p̃ (2.3)

where i s j , i n j and i a j are unit vectors directed along the x j , y j and z j axes with cor-
responding homogeneous coordinates i s̃ j , i ñ j , i ã j , respectively, and are expressed
in frame Fi ; i r̃ j is the homogeneous vector representing the coordinates (parame-
terized by the 3D vector i r j = i rOi O j ) of the origin O j of frame F j expressed in
frameFi .

In Eq. (2.3), the matrix i T j allows us to calculate the coordinates of a vector
j p̃ with respect to frame Fi in terms of its coordinates in frame F j . This (4 × 4)
matrix is called the transformation matrix. It permits us to define the transforma-
tion, translation and/or rotation, of the frame Fi (Oi , xi , yi , zi ) towards the frame
F j (O j , x j , y j , z j ) (Fig. 2.1) and it is represented by:

i T j = [
i s̃ j

i ñ j
i ã j

i r̃ j
] =

[
i R j

i r j

0 0 0 1

]
(2.4)

where i R j is the rotation matrix expressing the orientation of the frame F j with
respect to frame Fi (see Sects. 2.2.2 and 2.4).

In summary:

• The matrix i T j represents the transformation from frame Fi to frameF j ;
• The matrix i T j can be interpreted as representing the frameF j (three orthogonal
axes and an origin) with respect to frameFi .
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2.2 Elementary Transformation Matrices

2.2.1 Transformation Matrix of a Pure Translation

A general pure translation matrix from frame Fi to frame F j is denoted by
Trans(a, b, c), where a, b and c denote the translation along the x, y and z axes
respectively, where (Fig. 2.2):

i T j = Trans(a, b, c) =

⎡
⎢⎢⎣
1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦ = Trans(x, a) Trans(y, b) Trans(z, c)

(2.5)
taking any order of the multiplication.

2.2.2 Transformation Matrices of a Rotation About
the Principle Axes x, y and z

Let us consider a rotation of angle θ around the axis x and let us denote this trans-
formation as Rot(x, θ). From Fig. 2.3, we deduce that:

i T j = Rot(x, θ) =

⎡
⎢⎢⎣
1 0 0 0
0 cθ −sθ 0
0 sθ cθ 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
rot(x, θ) 0

0
0 0 0 1

⎤
⎥⎥⎦ (2.6)

where cθ and sθ represent cos θ and sin θ respectively, and rot(x, θ) denotes the
(3 × 3) orientation matrix.

Fig. 2.2 Transformation of pure translation
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Fig. 2.3 Transformation of a pure rotation about the x–axis

Similarly, the rotation of angle θ around the axis y axis is given by:

Rot(y, θ) =

⎡
⎢⎢⎣

cθ 0 sθ 0
0 1 0 0

−sθ 0 cθ 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
rot(y, θ) 0

0
0 0 0 1

⎤
⎥⎥⎦ (2.7)

and the rotation of angle θ around the axis z axis is given by:

Rot(z, θ) =

⎡
⎢⎢⎣
cθ −sθ 0 0
sθ cθ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
rot(z, θ) 0

0
0 0 0 1

⎤
⎥⎥⎦ . (2.8)

2.3 Properties of Homogeneous Transformation Matrices

Before going further, we need to define the following properties of the homogeneous
transformation matrices.

Property 1 From (2.4), a transformation matrix can be written as:

T =

⎡
⎢⎢⎣

sx nx ax rx

sy ny ay ry

sz nz az rz

0 0 0 1

⎤
⎥⎥⎦ =

[
s n a r
0 0 0 1

]
=

[
R r

0 0 0 1

]
. (2.9)
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The matrix R = [
s n a

]
represents the rotation whereas the vector r represents

the translation. For a transformation of pure translation, R = 13 (13 represents the
identity matrix of order 3), whereas r = 0 for a transformation of pure rotation.

Property 2 The matrix R is orthogonal and its determinant is equal to 1. Conse-
quently, its inverse is equal to its transpose:

R−1 = RT (2.10)

where the superscript “T ” indicates the transpose of the matrix.

Property 3 The inverse of a matrix i T j is the matrix j Ti . Thus, to express the
components of a vector i p̃1 into frame F j , we write:

j p̃1 = j Ti
i p̃1 (2.11)

with:

j Ti = i T−1
j . (2.12)

Property 4 We can easily verify that:

Rot−1(u, θ) = Rot(u, −θ) = Rot(−u, θ) (2.13)

Trans−1(u, d) = Trans(u, −d) = Trans(−u, d). (2.14)

Property 5 The inverse of a transformation matrix represented by Eq. (2.9) can be
obtained as:

T−1 =

⎡
⎢⎢⎣

−sT r
RT −nT r

−aT r
0 0 0 1

⎤
⎥⎥⎦ =

[
RT −RT r

0 0 0 1

]
. (2.15)

Property 6 Composition of two matrices: The multiplication of two transformation
matrices gives a transformation matrix:

T1T2 =
[

R1 r1
0 0 0 1

] [
R2 r2

0 0 0 1

]

=
[

R1R2 R1r2 + r1
0 0 0 1

]
. (2.16)

In general, T1T2 �= T2T1.

Property 7 If a frame F0 is subjected to k consecutive transformations (Fig.2.4)
and if each transformation i (i = 1, . . . , k) is defined with respect to the current
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Fig. 2.4 Composition of transformations: multiplication on the right

frame Fi−1, then the transformation 0Tk can be deduced by multiplying all the
transformations on the right as

0Tk =
k∏

i=1

i−1Ti = 0T1 · 1T2 · 2T3 · · · k−1Tk . (2.17)

Property 8 Consecutive transformations about the same axis: We note the following
properties:

Rot(u, θ1)Rot(u, θ2) = Rot(u, θ1 + θ2), (2.18)

Rot(u, θ)Trans(u, d) = Trans(u, d)Rot(u, θ). (2.19)

2.4 Parameterization of the General Matrices of Rotation

The orientation of a body with respect to any frame can be obtained through the use
of the rotation matrix R. It can be calculated by using a different set of parameters.
The most used representations in parallel robotics are described below.

2.4.1 Rotation About One General Axis u

The pure rotation of angle θ around any axis u parameterized by the unit vector
u = [ux uy uz]T can be represented by (Khalil and Dombre 2002):
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R = rot(u, θ)

=
⎡
⎣

u2
x (1 − cθ ) + cθ ux uy(1 − cθ ) − uzsθ ux uz(1 − cθ ) + uysθ

ux uy(1 − cθ ) + uzsθ u2
y(1 − cθ ) + cθ uyuz(1 − cθ ) − ux sθ

ux uz(1 − cθ ) − uysθ uyuz(1 − cθ ) + ux sθ u2
z (1 − cθ ) + cθ

⎤
⎦ .

(2.20)

Inverse problem. Let R be any arbitrary rotational transformation matrix such that:

R =
⎡
⎣

sx nx ax

sy ny ay

sz nz az

⎤
⎦ . (2.21)

We solve the following expression for u and θ :

R = rot(u, θ), with 0 ≤ θ ≤ π. (2.22)

Adding the diagonal terms of Eqs. (2.20) and (2.21), we obtain:

cθ = 1

2
(sx + ny + az − 1). (2.23)

From the off-diagonal terms, we obtain:

2ux sθ = nz − ay

2uysθ = ax − sz

2uzsθ = sy − nx (2.24)

yielding:

sθ = 1

2

√
(nz − ay)2 + (ax − sz)2 + (sy − nx )2. (2.25)

From Eqs. (2.23) and (2.25), we deduce that:

θ = atan2(sθ , cθ ), with 0 ≤ θ ≤ π (2.26)

where “atan2” is the four-quadrant inverse tangent function.
ux , uy and uz are calculated using Eq. (2.24) if sθ �= 0. When sθ is small, the

elements ux , uy and uz cannot be determined with good accuracy by this equation.
However, in the case where cθ < 0, we obtain ux , uy and uz more accurately using
the diagonal terms of rot(u, θ) as follows:
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ux = sign(nz − ay)

√
sx − cθ

1 − cθ

uy = sign(ax − sz)

√
ny − cθ

1 − cθ

uz = sign(sy − nx )

√
az − cθ

1 − cθ

(2.27)

where “sign(.)” indicates the sign function of the expression between brackets, thus
sign(e) = +1 if e > 0, sign(e) = −1 if e < 0 and sign(e) = 0 if e = 0.

2.4.2 Quaternions

The quaternions are also called Euler parameters or Olinde-Rodrigues parameters.
This is another way of parameterizing the rotation of an angle θ (0 ≤ θ ≤ π ) about
an axis u. In this representation, the orientation is expressed by four parameters. We
define the quaternions as:

Q1 = cθ/2

Q2 = ux sθ/2

Q3 = uysθ/2

Q4 = uzsθ/2. (2.28)

From these relations, we obtain:

Q2
1 + Q2

2 + Q2
3 + Q2

4 = 1. (2.29)

The transformation matrix T is deduced from Eq. (2.20), defining rot(u, θ)

(Sect. 2.4.1), after rewriting its elements as a function of Q j . Thus, the orientation
matrix is given as:

R =
⎡
⎣

2(Q2
1 + Q2

2) − 1 2(Q2Q3 − Q1Q4) 2(Q2Q4 + Q1Q3)

2(Q2Q3 + Q1Q4) 2(Q2
1 + Q2

3) − 1 2(Q3Q4 − Q1Q2)

2(Q2Q4 − Q1Q3) 2(Q3Q4 + Q1Q2) 2(Q2
1 + Q2

4) − 1

⎤
⎦ . (2.30)

Inverse problem. Let us find the expression of the quaternions as functions of the
direction cosines of the general matrix R of (2.21). Equating the elements of the
diagonals of the right sides of Eqs. (2.21) and (2.30) leads to:

Q1 = 1

2

√
sx + ny + az + 1 (2.31)
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which is always positive. If we then subtract the second and third diagonal elements
from the first diagonal element, we can write after simplifying:

4Q2
2 = sx − ny − az + 1. (2.32)

This expression gives the magnitude of Q2. For determining the sign, we consider
the difference of the (3,2) and (2,3) matrix elements, which leads to:

4Q1Q2 = nz − ay . (2.33)

The parameter Q1 being always positive, the sign of Q2 is that of (nz −ay), which
allows us to write:

Q2 = 1

2
sign(nz − ay)

√
sx − ny − az + 1. (2.34)

Similar reasoning for Q3 and Q4 gives:

Q3 = 1

2
sign(ax − sz)

√−sx + ny − az + 1 (2.35)

Q4 = 1

2
sign(sy − nx )

√−sx − ny + az + 1. (2.36)

Contrary to Euler angles, roll-pitch-yaw angles and T&T angles (see next sec-
tions), quaternion representation is free of singularity. For more information on the
algebra of quaternions, the reader can refer to (de Casteljau 1987).

2.4.3 Euler Angles

The orientation of frameFk expressed in frameFi can be determined by specifying
three angles, φ, θ and ψ corresponding to a sequence of three rotations (Fig. 2.5).

Let us consider two intermediate frames F j and F j ′ defined by F j (Oi , x j ,

y j , z j ) and F j ′ (O j ′, x j ′ , y j ′, z j ′) and characterized by:

• z j ≡ zi and y j is the intersection between the two planes (Oi , xi , yi ) and
(Oi , xk, yk),

• y j ′ ≡ y j and z j ′ ≡ zk .

Taking into account these considerations, the Euler angles are defined as:

• φ: precession angle between yi and y j about zi ≡ z j , with 0 ≤ φ < 2π ; that
angle characterizes the pure rotation of angle φ around zi (see Sect. 2.2.2) that
transforms the frame Fi into the frame F j ;



28 2 Homogeneous Transformation Matrix

(a) (b)

Fig. 2.5 The successive rotations that define the ZY Z Euler angles: a precession and nutation,
b spin

• θ : nutation angle between zi and z j ′ about y j ≡ y j ′ , with 0 ≤ θ < π ; that angle
characterizes the pure rotation of angle θ around y j (see Sect. 2.2.2) that transforms
the frame F j into the frameF j ′ ;

• ψ : spin angle between y j ′ ≡ y j and yk about z j ′ ≡ zk , with 0 ≤ ψ < 2π ; that
angle characterizes the pure rotation of angle ψ around z j ′ (see Sect. 2.2.2) that
transforms the frame F j ′ into the frameFk .

The transformation matrix is given by:

R = rot(z, φ)rot(y, θ)rot(z, ψ)

=
⎡
⎣
cφcθcψ − sφsψ −cφcθ sψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθ sψ + cφcψ sφsθ

−sθcψ sθ sψ cθ

⎤
⎦ . (2.37)

Inverse problem. Let us find the expression of the Euler angles as functions of the
direction cosines of the general matrix R of (2.21). Premultiplying Eq. (2.37) by
rot(z, φ), we obtain:

rot(z, φ)R = rot(y, θ)rot(z, ψ) (2.38)

which results in
⎡
⎣

cφsx + sφsy cφnx + sφny cφax + sφay

−sφsx + cφsy −sφnx + cφny −sφax + cφay

sz nz az

⎤
⎦ =

⎡
⎣

cθcψ −cθ sψ sθ
sψ cψ 0

−sθcψ sθ sψ cθ

⎤
⎦ . (2.39)

From the elements on the second raw, third column of (2.45), we obtain:

− sφax + cφay = 0 (2.40)
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thus:

φ = atan2(ay, ax )

φ′ = atan2(−ay,−ax ) = φ + π. (2.41)

There is a singularity if ax and ay are zero. In that case, θ = kπ (k = 0, 1).
In the same way, from the elements on the first and third rows, and third column

of (2.39), and then from those of the second row, first and second columns, we deduce
that:

θ = atan2(cφax + sφay, az)

ψ = atan2(−sφsx + cφsy,−sφnx + cφny). (2.42)

The described Euler angles convention is denoted as the ZY Z convention, where
ZY Z denotes that we have a first rotation around zi , then a second rotation around
y j and finally a last rotation around z j ′ . There exists in total 12 different sequences
of the three rotations, and, hence, there can be 12 Euler conventions: XY Z , X ZY ,
Y X Z , Y Z X , Z XY , ZY X , XY X , X Z X , Y XY , Y ZY , Z X Z , and ZY Z , where the
convention P Q R denotes that we have a first rotation around pi–axis, then a second
rotation around q j–axis and finally a last rotation around r j ′–axis.

2.4.4 Roll-Pitch-Yaw Angles

Following the convention shown in Fig. 2.6, the angles φ, θ andψ indicate roll, pitch
and yaw respectively. If we suppose that the direction of motion (by analogy to the

(a) (b)

Fig. 2.6 Roll-Pitch-Yaw angles
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direction along which a ship is sailing) is along the zi axis, the transformation matrix
can be written as:

R = rot(z, φ)rot(y, θ)rot(x, ψ)

=
⎡
⎣
cφcθ cφsθ sψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθ sψ + cφcψ sφsθcψ − cφsψ
−sθ cθ sψ cθcψ

⎤
⎦ . (2.43)

This description is analogous to the ZY X Euler angle convention.

Inverse problem. Let usfind the expressionof theRoll-Pitch-Yawangles as functions
of the direction cosines of the general matrix R. We use the same method discussed
in the previous section. Premultiplying Eq. (2.43) by rot(z, φ), we obtain:

rot(z, φ)R = rot(y, θ)rot(x, ψ) (2.44)

which results in:
⎡
⎣

cφsx + sφsy cφnx + sφny cφax + sφay

−sφsx + cφsy −sφnx + cφny −sφax + cφay

sz nz az

⎤
⎦ =

⎡
⎣

cθ sθ sψ sθcψ

0 cψ −sψ
−sθ cθ sψ cθcψ

⎤
⎦ . (2.45)

From the elements on the second raw, first column of (2.45), we obtain:

− sφsx + cφsy = 0 (2.46)

thus:

φ = atan2(sy, sx )

φ′ = atan2(−sy,−sx ) = φ + π. (2.47)

There is a singularity if sx and sy are zero. In that case, θ = ±π/2.
In the same way, from the elements on the first and third rows, and first column

of (2.45), and then from those of the second row, second and third columns, we
deduce that:

θ = atan2(−sz, cφsx + sφsy)

ψ = atan2(sφax − cφay,−sφnx + cφny). (2.48)
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2.4.5 Tilt-and-Torsion Angles

A novel three-angle orientation representation, later called the Tilt-and-Torsion
(T&T ) angles, was proposed in (Bonev and Ryu 1999). These angles were also
independently introduced in (Huang et al. 1999), (Crawford et al. 1999) and (Wang
1999). They had been also proposed in (Korein 1984) under the name halfplane-
deviation-twist angles. In (Bonev et al. 2002a), the advantages of the T&T angles in
the study of spatial parallel mechanisms were further demonstrated. It was shown
that there is a class of 3–DOF mechanisms that have always a zero torsion, that
we now call zero-torsion parallel mechanisms. Furthermore, it was demonstrated
in (Bonev and Gosselin 2005a) and (Bonev and Gosselin 2006) that the workspace
and singularities of symmetric spherical parallel mechanisms are best analyzed using
the T&T angles.

The T&T angles are defined in two stages: a tilt and a torsion. This does not,
however, mean that only two angles define the T&T angles but simply that the axis
of tilt is defined by another angle. In the first stage, illustrated in Fig. 2.7a, the body
frame is tilted about a horizontal axis, u, at an angle θ , referred to as the tilt. The axis
u is defined by an angle φ, called the azimuth, which is the angle between the axes
u and yi , u being at the intersection of the planes (Oi , xi , yi ) and (Oi , xk, yk). In
the second stage, illustrated in Fig. 2.7, the body frame is rotated about the body zk

axis at an angle σ , called the torsion.
For space limitations, we will omit the otherwise quite interesting details of the

derivation process [see (Bovev et al. 2002a)], and write directly the resulting trans-
formation matrix of the T&T angles, which is

(a) (b)

Fig. 2.7 The successive rotations of the T&T angles: a tilt, b torsion
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R = rot(u, θ)rot(z, σ )

=
⎡
⎣
cφcθcσ−φ − sφsσ−φ −cφcθ sσ−φ − sφcσ−φ cφsθ
sφcθcσ−φ + cφsσ−φ −sφcθ sσ−φ + cφcσ−φ sφsθ

−sθcσ−φ sθ sσ−φ cθ

⎤
⎦ (2.49)

where rot(u, θ) = rot(z, φ)rot(y, θ)rot(z, −φ).
From the above, we see that the T&T angles (φ, θ, σ ) are equivalent to the ZY Z

Euler angles (φ, θ, σ − φ), i.e., the spin angle ψ has been replaced with σ − φ.

Inverse problem. From the previous consideration, the inverse problem of the T&T
angles can be solved as shown in Sect. 2.4.3, from which we find that:

φ = atan2(ay, ax ) or φ = atan2(−ay,−ax )

θ = atan2(cφax + sφay, az)

σ = atan2(−sφsx + cφsy,−sφnx + cφny) + φ. (2.50)

There is a singularity if θ = 0 + kπ (k = 0, 1).
One of the properties of three-angle orientation representation is that a given

orientation can be represented by at least two triplets of angles. In our case, the triplets
{φ, θ, σ } and {φ ± π,−θ, σ } are equivalent. To avoid this and the representational
singularity at θ = π (which is hardly achieved by any parallel mechanism), we set
the ranges of the azimuth, tilt, and torsion as, respectively, φ ∈ (−π, π ], θ ∈ [0, π),
and σ ∈ (−π, π ]. Then, probably the most valuable property of the T&T angles
is that for the ranges just defined, the angles (θ , φ, σ ) can be represented in a
cylindrical coordinate system (r ,φ, h) through a one-to-onemapping. In other words,
any orientation (except θ = π ) corresponds to a unique point within a cylinder
in the cylindrical coordinate system, and vice versa. The reason is that the T&T
representational singularity at θ = 0 is of the same nature as the singularity of the
cylindrical coordinate system occurring at zero-radius (r = 0).



Chapter 3
Representation of Velocities
and Forces/Acceleration of a Body

Abstract In this Chapter, we will use the concept of screw to describe the velocity
of a body in space, as well as the forces acting on it. The definition of twists and
wrenches is introduced.We also give the transformation matrices between two twists
or wrenches. Finally, we define also some relations for computing the accelerations
at any point of a given body.

3.1 Definition of a Screw

A vector field, h, onR3 is a screw if there exists a point Oi and a vector Ω such that
for all points O j in R3:

h j = hi + Ω × rOi O j (3.1)

where h j is the vector of h at O j and the symbol “×” indicates the vector product.
The vector h j is called the moment at O j , whereas Ω is called the resultant of the
screw.

Thus, the screw at a point O j is well defined by the vectors h j and Ω, which can
be stacked in a single (6× 1) vector.

3.2 Kinematic Screw (or Twist)

Since the set of velocity vectors at all the points of a body defines a screw field, the
screw at a point Oi can be defined by:

• vi representing the linear velocity at Oi with respect to the fixed frame F0, such
that vi = ṙO0O j = d

dt

∣∣
F0

rO0O j ;
• ωi representing the angular velocity of the body with respect to the frame F0. It
constitutes the resultant vector of the screw of the velocity vector field.

© Springer International Publishing Switzerland 2015
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Thus, the velocity v j of a point O j is calculated in terms of the velocity of the
point Oi by the following equation:

v j = vi + ωi × rOi O j . (3.2)

The components of vi and ωi can be concatenated to form the kinematic screw
vector ti , i.e.:

ti =
[
vT

i ωT
i

]T
. (3.3)

The kinematic screw is also called the twist.

3.3 Representation of Forces and Moments (wrench)

A collection of forces and moments acting on a body can be reduced to a wrench wi

at point Oi , which is composed of a force fi at Oi and a moment mi about Oi . The
moment at O j , denoted as m j , can be obtained as:

m j = mi + fi × rOi O j . (3.4)

The components of fi and mi can be concatenated to form the wrench vector
wi , i.e.:

wi =
[
fT
i mT

i

]T
(3.5)

Note that, contrary to the twist representation for which the moment of the screw
(the translational velocity vi ) is located above the resultant of the screw (the rotational
velocity ωi ), we prefer to invert in (3.5) the order for the wrench representation so
that the resultant fi is located above the moment mi .

3.4 Condition of Reciprocity

A twist tT = [vT ωT ] is said to be reciprocal to a wrench wT = [fT mT ] if

tT w = vT f + ωT m = 0. (3.6)

In other words, the power induced by the wrench w for moving the body with a twist
t is null.
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3.5 Transformation Matrix Between Twists

Let i vi and iωi be the vectors representing a screw in Oi , origin of frame Fi ,
expressed in frame Fi . To calculate j v j and jω j representing the kinematic screw
in O j expressed in frame F j , we first note that:

ωi = ω j (3.7)

v j = vi + ωi × rOi O j . (3.8)

Equations (3.7) and (3.8) can be rewritten as:

[
v j
ω j

]
=

[
13 −r̂Oi O j

03 13

] [
vi
ωi

]
(3.9)

where 13 and 03 represent the (3×3) identity matrix and zeromatrix respectively and
r̂Oi O j is the cross-product matrix associated with the vector rOi O j =

[
rx ry rz

]T , i.e.

r̂Oi O j =
⎡
⎣

0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎦ . (3.10)

Projecting relation (3.9) in frameFi , we obtain:

[
i v j
iω j

]
=

[
13 −i r̂ j

03 13

] [
i vi
iωi

]
(3.11)

where i r̂ j = i r̂Oi O j

Since j v j = j Ri
i v j and jω j = j Ri

iω j , Eq. (3.11) gives:

[
j v j
jω j

]
= j Ti

[
i vi
iωi

]
(3.12)

where j Ti is the (6× 6) transformation matrix between screws:

j Ti =
[

j Ri − j Ri
i r̂ j

03 j Ri

]
. (3.13)

The transformation matrices between screws have the following properties:

Property 1 Product:

0T j =
j∏

k=1

k−1Tk = 1T2
2T3 · · · j−1T j . (3.14)
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Property 2 Inverse:

j T
−1
i =

[
i R j

i r̂ j
i R j

03 i R j

]
= i T j . (3.15)

3.6 Transformation Matrix Between Wrenches

Similarly to what is written in the previous section, we have

[
j m j
j f j

]
=

[
j Ri − j Ri

i r̂ j

03 j Ri

] [
i mi
i fi

]
= j Ti

[
i mi
i fi

]
(3.16)

or also
[

j f j
j m j

]
=

[
j Ri 03

− j Ri
i r̂ j

j Ri

] [
i fi

i mi

]
(3.17)

which, from (3.15), can be rewritten as

j w j = i T
T
j

i wi . (3.18)

3.7 Acceleration of a Body

From the differentiation with respect to time of the Eq. (3.2), we can find that

v̇ j = v̇i + ω̇i × rOi O j + ωi × (ωi × rOi O j ) (3.19)

where v̇i is the linear acceleration of the point Oi , v̇ j is the linear acceleration of the
point O j and ω̇i is the angular acceleration of the body.

Equation (3.19) can be put under the matrix form:

[
v̇ j
ω̇ j

]
=

[
13 −r̂Oi O j

03 13

] [
v̇i
ω̇i

]
+

[
ωi × (ωi × rOi O j )

0

]
. (3.20)

Projecting this relation in frame Fi , we obtain:

[
i v̇ j
i ω̇ j

]
=

[
13 −i r̂ j

03 13

] [
i v̇i
i ω̇i

]
+

[iωi × (i r̂T
j

iωi )

0

]
. (3.21)
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Since j v̇ j = j Ri
i v̇ j and j ω̇ j = j Ri

i ω̇ j , Eq. (3.21) gives:

j ṫ j = j Ti
i ṫi + j b j (3.22)

where j Ti is defined at Eq. (3.13),

j ṫ j =
[

j v̇ j
j ω̇ j

]
, i ṫi =

[
i v̇i
i ω̇i

]
, (3.23)

are acceleration vectors and

j b j = j Ri

[iωi × (i r̂T
j

iωi )

0

]
(3.24)

with j Ri the augmented rotation matrix between frames Fi and F j , i.e.

j Ri =
[

j Ri 03
03 j Ri

]
. (3.25)



Chapter 4
Kinematic Description of Multibody Systems

Abstract The design and control of a robot requires the computation of some math-
ematical models such as the transformationmodels between the joint space (in which
the configuration of the robot is defined) and the task space (in which the location of
the end-effector is specified). These transformation models are very important since
robots are controlled in the joint space, whereas tasks are defined in the task space.
The modeling of robots in a systematic and automatic way requires an adequate
method for the description of their structure. Several methods and notations have
been proposed. The most popular among these is the Denavit-Hartenberg method.
This method is developed for serial structures and presents ambiguities when applied
to robots with closed or tree chains. For this reason, we will use the notation of Khalil
and Kleinfinger, which gives a unified description for all mechanical articulated sys-
tems with a minimum number of parameters.

4.1 Kinematic Pairs and Joint Variables

In the approach adopted in this book, we consider joints with only one degree of
freedom between the bodies, such as revolute (R) joints or prismatic (P) joints (see
Sect. 1.2).

The R joint is parameterized by a variable denoted as θ which represents the
angle of the rotation about the R joint axis. The P joint is parameterized by a variable
denoted as r which represents the distance of translation along the P joint direction.

Using these two types of joints, it is possible to build more complex multi-
DOF joints as long as their axes are properly arranged. For example, a spherical
(S) joint having three rotational DOF may be composed of three R joints with lin-
early independent intersecting axes. However we define as a joint the connection
between two and only two bodies. The S joint will therefore involve two virtual
massless bodies that will be treated in the calculations as any physical body. How-
ever, the reader must be warned that parameterizing a S joint through the use of three
R joints is equivalent to parameterizing the displacement of the considered body with
three Euler angles. This parameterization is not free of representation singularities
(see Sect. 2.4.3).
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To generalize the joint coordinates for both types of connections, we define the
generalized joint coordinate qi of the body Bi associated with the joint i by

qi = σ̄iθi + σi ri (4.1)

where

• σi = 0 if joint i is a R joint;
• σi = 1 if joint i is a P joint;
• σ̄i = 1 − σi .

To characterize the case that a body Bi can be rigidly attached to a body B j :
σi = 2. In that case, q̇i is set to 0 and σ̄i is not defined.

4.2 Modified Denavit-Hartenberg Parameters

The modeling of robots in a systematic and automatic way requires an adequate
method for the geometric description of their structure. Severalmethods andnotations
have been proposed (Craig 1986; Denavit and Hartenberg 1955; Sheth and Uicker
1971). The most popular among these is the Denavit-Hartenberg method (Denavit
and Hartenberg 1955). This method is developed for serial structures and presents
ambiguities when applied to robots with closed or tree chains.

The modified Denavit-Hartenberg (MDH) geometric parameters proposed in
(Khalil and Kleinfinger 1986) allows the definition of a systematic parameteriz-
ing of the relative location of any body of the considered system. We consider here
directly the general case, i.e. an open tree-structure kinematic chain as shown in
Fig. 4.1. We will see how a structure with closed loops can be reduced to the study of

Fig. 4.1 Symbolic representation of a tree-structure open kinematic chain
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an open tree-structure and we will present the additional settings required to describe
structures including closed loops.

4.2.1 Parameterizing Tree-Structure Open Kinematic Chains

Let us consider a tree-structure kinematic chain consisting of n + 1 (physical or
virtual) bodies (the body i is denoted asBi ). That kinematic chain is composed of n
joints associated with the bodiesBi (i = 1, . . . , n) as shown in Fig. 4.1. We number
each body i increasingly from the base denoted as the body B0. For an industrial
robot fixed on the ground, the body B0 would be the body fixed on the ground.

We define a relationship for the antecedence between the bodies. If the body Bi

is antecedent to body B j , then
i = a( j). (4.2)

The numbering rules then ensure that i < j . By definition, in a tree-structure
kinematic chain, a body can at most have one antecedent body (none in the case of
the base) but several succeeding bodies. If a body has no succeeding body, this is
one of the terminal bodies of the chain. A system where all the bodies have only one
succeeding body is called a simple open chain. The values of a( j) fully define the
topology of the structure which can be seen as a graph (see Fig. 4.1).

To each bodyB j is fixed a localF j with origin O j . The MDH parameterization
allows to build each frame F j in a straightforward way by applying the following
rules for i = 1, . . . , n:

• The frame Fi = (Oi , xi , yi , zi ) is fixed with respect to the body Bi ;
• The axis zi is along the axis of the joint i ;
• The axis xi is taken along the commonnormal between zi and one of the succeeding
joint axes, which are fixed on link Bi . The following cases are then possible:

– The body Bi is a terminal body and has no succeeding body; xi can be set
arbitrarily (as long as it remains orthogonal to zi );

– The body Bi , i = a( j), has only one succeeding body; xi must be then along
the common perpendicular to zi and z j ;

– The bodyBi has several succeeding bodies; one of the succeeding bodies must
then be chosen to build the axis xi . Practically, the succeeding body on which
xi is defined can be selected as the one on the path leading to the main terminal
link, but this is not an obligation;

• The axis yi is taken by the right-hand rule such that {xi , yi , zi } is an orthonormal
basis.

In the case where, for the body B j succeeding the body Bi (i = a( j)), xi is not
orthogonal to z j , we build an additional vector u j along the common orthogonal to
zi and z j . Note that u j is fixed on the body Bi .

Practically, the axes z j of the whole bodies are first defined. Then we set the
direction of the axes x j (and uk if needed). With the systematic definition of each
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body frame, it is possible to define a set of 6 parameters for each frame F j which
are denoted as the MDH parameter, that are for i = a( j):

• γ j : angle between xi and u j around zi ;
• b j : distance between xi and u j along zi ;
• α j : angle between zi and z j around u j ;
• d j : distance between zi and z j along u j ;
• θ j : angle between u j and x j around z j ;
• r j : distance between u j and x j along z j .

Those six parameters are necessary when the axis xi of the antecedent body Bi

is not perpendicular to z j and when an additional vector u j has been built. For other
cases, only four parameters are necessary: α j , d j , θ j and r j . Indeed, in the last case,
the vector u j has no role since it is aligned to xi and the MDH parameters becomes:

• α j : angle between zi and z j around xi ;
• d j : distance between zi and z j along xi ;
• θ j : angle between xi and x j around z j ;
• r j : distance between xi and x j along z j ;

with γ j = 0 and b j = 0.
Figures4.2 and 4.3 illustrate that way of parameterizing.
In order to describe the system in a practical way, the parameters are given in a

table (see Table4.1).
Using those parameters, the homogeneous transformation matrix allowing us to

transform the frameFi fixed to the bodyBi into the frameF j fixed to the bodyB j

can be written as:

i T j =
Rot(z, γ j )Trans(z, b j )Rot(x, α j )Trans(x, d j )Rot(z, θ j )Trans(z, r j )

=

⎡
⎢⎢⎣
cγ j cθ j − sγ j cα j sθ j −cγ j sθ j − sγ j cα j cθ j sγ j sα j d jcγ j + r j sγ j sα j

sγ j cθ j + cγ j cα j sθ j −sγ j sθ j + cγ j cα j cθ j −cγ j sα j d j sγ j − r jcγ j sα j

sα j sθ j sα j cθ j cα j r jcα j + b j

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

i R j

d jcγ j + r j sγ j sα j

d j sγ j − r jcγ j sα j

r jcα j + b j

0 0 0 1

⎤
⎥⎥⎦ . (4.3)

The inverse of i T j can be thus written as

i T−1
j = j Ti =

⎡
⎢⎢⎣

i RT
j

−b j sα j sθ j − d jcθ j

−b j sα j cθ j + d j sθ j

−b jcα j − r j

0 0 0 1

⎤
⎥⎥⎦ . (4.4)
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Fig. 4.2 MDH parameters
in the case of a simple serial
chain

Fig. 4.3 MDH parameters in the case of a tree-structure open kinematic chains

Table 4.1 The MDH parameters of the 4 DOF tree-structure robot

j a( j) σ j γ j b j α j d j θ j r j

1 0 0 0 0 0 0 θ1 0

2 1 1 0 0 −π/2 0 0 r2
3 2 1 0 0 π/2 0 0 r3
4 1 0 −π/2 0 0 d4 θ4 r4
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Fig. 4.4 Example of 4
DOF tree-structure robot

4.2.1.1 Example of MDH parameters for a tree-structure

Let us consider the 4DOF tree-structure robot depicted in Fig. 4.4. Straightforwardly
following the rules given in the present section, its MDH parameters are given in
Table4.1.

4.2.2 Parameterizing Kinematic Chains Including Closed
Loops

As previously, the kinematic chain is composed of n +1 (physical or virtual) bodies.
However, now, the joint number m is greater than n. This characterizes the presence
of kinematic loops in the considered structure. The number of closed loops is equal
to:

B = m − n (4.5)

Indeed, one single joint is only able to link two (and only two) consecutive bodies
and this relation indicates that the kinematic chain necessary makes a loop, as it has
more joints than bodies. Closed loops consequently lead to the fact that some joint
variables depend on another due to the geometric constraints involved by the kine-
matic coupling. Let us denote as na the number of independent joint variables (that
are also the active joint variables in the case of PKM without actuation redundancy).
The remaining m − na variables (that are also the passive joint variables in the case
of PKM without actuation redundancy) can be obtained by solving the loop-closure
equations, i.e. the equations corresponding to the kinematic constraints. We will see
in Chap.7 the ways to solve those equations.

To characterize the active and passive variables, an additional parameter is defined
for each joint j of the analyzed system:

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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• μ j = 1 if the joint j is active;
• μ j = 0 if the joint j is passive.

Then, the study of systems including closed loops is assimilated to the study of
tree-structure chain by virtually cutting each of the B loops at one joint (passive, if
possible). In order to solve the loop-closure equations, it is necessary to introduce
additional frames and to adapt the previous parameterization of the system as follows:

1. Constructing an equivalent tree structure: construct a tree structure havingn joints
by virtually cutting each closed chain at one of its joints (passive, if possible).
Since a closed loop contains several passive joints, select the joint to be cut in such
a way that the difference between the number of links of the two branches from
the root of the loop to the links connected to the cut joint is as small as possible.
This choice reduces the computational complexity of the dynamic model (Khalil
and Kleinfinger 1986). The geometric parameters of the equivalent tree structure
are determined as described in the previous section;

2. Definition of frames on one of the links of the cut joints: number the cut joints
from n + 1 to m. For each cut joint k, assign a frame Fk fixed on one of the
links connected to this joint, for instance link j . The zk axis is taken along the
axis of joint k, and the xk axis is taken along the common normal between zk

and z j (Fig. 4.5). Let i = a(k) where link i denotes the other link of joint k. The
transformation matrix from frameFi to frameFk can be obtained as a function
of the usual six (or four) geometric parameters γk , bk , αk , dk , θk and rk , where qk

is either rk or θk as usual;
3. Definition of the cut joint frames with respect to the other link: since frame Fk

is fixed on link j , the transformation matrix from frame F j and to frame Fk is
constant. To avoid any confusion, this transformation will be denoted by j Tk+B ,
with B is the number of loops and j = a(k + B). The frame Fk+B is aligned
with frame Fk , thus zk+B = zk along the cut joint, and xk+B = xk , thus only 4
parameters non zero (at most) are needed to define j Tk+B . In fact γk+B and bk+B

Fig. 4.5 Frames of a cut
joint
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Fig. 4.6 Frames of a cut
joint

will permit us to align x j with xk+B then αk+B and dk+B will align z j with zk+B ,
both θk+B and rk+B are zero. The case where xk+B is along x j will lead to have
also both γk+B and bk+B equal to zero. Figure4.6 shows a case where three cut
joints take place on the terminal link n. Then a(n + 1 + B) = a(n + 2 + B) =
a(n + 3 + B) = n.

In summary, the geometric description of a structure with closed loops is defined
by an equivalent tree structure that is obtained by cutting each closed loop at one of
its passive joints and by adding two aligned frames, but with different antecedent,
at each cut joint. The total number of frames is equal to n + 2B and the geometric
parameters of the last B frames are constant.

Let us define a vector qT = [qT
a qT

d qT
c ] of dimension nq in which:

• qa is the vector containing the na active joint variables;
• qd is the vector containing the nd = n−na passive joint variables of the equivalent
tree structure;

• qc is the vector containing the B variables of the cut joints. When a cut joint has
several degrees of freedom (spherical, universal, …), we can consider all of its
joint variables to be belonging to qc.

Only the na active variables qa are independent. Thus, there are c = nq − na

independent constraint equations between the joint variables q. These relations form
the geometric constraint equations satisfying the closure of the loops. SinceFk and
Fk+B are aligned, the geometric constraint equations for each loop can be written
as:

k+BTk = 14, for k = n + 1, . . . , n + B (4.6)

where 14 is the (4 × 4) identity matrix.
It should bementioned that in terms of velocities, such equations can be expressed

as:
tk+B − tk = 0, for k = n + 1, . . . , n + B (4.7)

where ti is the twist of the body Bi .
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Fig. 4.7 Example of 2 DOF closed loop

Table 4.2 The MDH parameters of the 2 DOF closed loop

j a( j) μ j σ j γ j b j α j d j θ j r j

1 0 1 0 0 0 0 0 θ1 0

2 1 0 1 0 0 π/2 0 0 r2
3 0 1 0 γ3 0 0 d3 θ3 0

4 3 0 0 0 0 0 d4 θ4 0

5 4 0 0 0 0 0 d5 θ5 0

6 2 0 2 0 0 −π/2 0 0 0

4.2.2.1 Example of MDH parameters for a closed loop

Let us consider the single planar closed loop shown in Fig. 4.7, which is composed
of four revolute joints and one prismatic joint. The system’s mobility is equal to 2
(see Appendix A). We suppose that the active joints are the joints 1 and 3 which
are fixed on the base. According to the above mentioned notations, it is possible to
assign the frames of the system in the way presented in Fig. 4.7.

The geometric parameters are given in Table4.2.

4.2.3 Computation of the Homogeneous Transformation
Matrix Representing the Location of the Frame Fk with
Respect to the Frame Fi

Let us denote as ak = {0 . . . a(a(k)) a(k) k} a list containing the number of
each intermediate frames separating the frame Fk from the frame F0, ordered by
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successive frames. To compute the location of frame Fk with respect to the frame
Fi , two cases can arise:

• Case 1: i ∈ ak ; in that case, let us denote as a(i :k) = {i . . . a(a(k)) a(k) k} a
sub-list of ak with a length nk containing the number of each intermediate frames
separating the frame Fk from the frame Fi , ordered by successive frames. The
transformation allowing the computation of the position and orientation of the
frameFk with respect to the frameFi can be deduced from (2.17) and is given by:

i Tk =
nk∏
j=2

(
a(i :k)( j−1)Ta(i :k)( j)

)
(4.8)

where a(i :k)( j) denotes the j th component of the list a(i :k).
• Case 2: i /∈ ak ; in that case, we create a new list ai = {0 . . . a(a(i)) a(i) i}
containing the number of each intermediate frames separating the frameFi from
the frameF0, ordered by successive frames. Let us denote as rc the highest number
common to both lists. BodyBrc is thus the body where the sub-chain going from
the ground to body Bk makes a bifurcation from the sub-chain going from the
ground to body Bi . Let us denote as a(rc:k) = {rc . . . a(a(k)) a(k) k} a sub-
list of ak with a length nk containing the number of each intermediate frames
separating the frame Frc from the frame Fk , ordered by successive frames, and
a(rc:i) = {rc . . . a(a(i)) a(i) i} a sub-list of ai with a length ni containing the
number of each intermediate frames separating the frameFrc from the frameFi ,
ordered by successive frames. The transformation allowing the computation of
the position and orientation of the frame Fk with respect to the frame Fi is here
given by:

i Tk =
⎛
⎝

ni∏
j=2

(
a(rc :i)( j−1)Ta(rc :i)( j)

)⎞
⎠

−1 ⎛
⎝

nk∏
j=2

(
a(rc :k)( j−1)Ta(rc :k)( j)

)⎞
⎠ (4.9)

where a(rc:k)( j) denotes the j th component of vector a(rc:k) and a(rc:i)( j) denotes
the j th component of vector a(rc:i).

The control of a robot manipulator requires fast computation of its different mod-
els. An efficient method to reduce the computation time is to generate a symbolic
customizedmodel for each specific robot. To obtain thismodel, we expand thematrix
multiplications to transform them into scalar equations. Each element of a matrix
containing at least one mathematical operation is replaced by an intermediate vari-
able. This variable is written in the output file that contains the customized model.
The elements that do not contain any operation are kept without modification. We
propagate the matrix obtained in the subsequent equations. Consequently, customiz-
ing eliminates multiplications by one and zero, and additions with zero. Moreover,
if the robot has two or more successive revolute joints with parallel axes, it is more

http://dx.doi.org/10.1007/978-3-319-19788-3_2
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interesting to replace the corresponding product ofmatrices by a singlematrix, which
is calculated using Eq. (2.18).

4.2.3.1 Example 1: Computation of the Homogeneous Transformation
Matrices for a Tree-Structure Robot

Let us consider the tree-structure robot depicted inFig. 4.4. For this robot, accordingly
to the parameterization given on the picture, we have:

0T4 = 0T1
1T4 (4.10)

0T3 = 0T1
1T2

2T3 (4.11)

3T4 =
(
1T2

2T3

)−1
1T4

=
(
2T3

)−1 (
1T2

)−1
1T4

=3T2
2T1

1T4.

(4.12)

4.2.3.2 Example 2: Computation of the Homogeneous Transformation
Matrices for a Closed Loop

Let us consider the closed loop depicted in Fig. 4.7. For this chain, accordingly to
the parameterization given on the picture, we have:

0T5 = 0T3
3T4

4T5 (4.13)

0T6 = 0T1
1T2

2T6. (4.14)

As the frame F5 is aligned to the frame F6, we have

0T5 = 0T6. (4.15)

http://dx.doi.org/10.1007/978-3-319-19788-3_2


Chapter 5
Geometric, Velocity and Acceleration
Analysis of Open Kinematic Chains

Abstract This chapter recalls the computation of the pose, velocity, acceleration
and kinematic Jacobian matrix of any body belonging to an open (serial or tree
structure) kinematic chain. The concept of singularity for serial or tree structure
robots is introduced. Moreover, recursive and efficient algorithms able to decrease
the computational complexity for the calculation of the velocity, Jacobian matrices
and acceleration of any body are provided.

5.1 Geometric Analysis of Open Kinematic Chains

In the following of the present book, we will use the term “geometry” when speaking
about the models defining the robot configuration, whereas the term “kinematics”
will be used when studying velocities. This is quite unusual in English where the
term “kinematics” is often used for both geometric and velocity study, however
this confusion in the English terminology was pointed out by Bernard Roth during
his keynote lecture at the 1987 International Conference on Advanced Robotics.
Therefore it is more appropriate to make the separation between “geometry” and
“kinematics”.

5.1.1 Direct Geometric Model of Open Kinematic Chains

Direct geometric model refers to the computation of the pose xn of the terminal link
Bn with respect to the base frame F0 in terms of the active joint coordinates qa .
Here, body Bn is a terminal link but in the case of a tree-structure, other terminal
links will exist. In the following, we develop computation for the body Bn but the
generalization to other terminal links is straightforward.

For open kinematic chain (serial or tree-structure) robots, all joints are active.
Thus the vector qa is a vector of joint coordinates q of dimension m, which groups
the joint coordinates of the sub-chain connecting the fixed baseB0 to the considered
terminal link Bn .

© Springer International Publishing Switzerland 2015
S. Briot and W. Khalil, Dynamics of Parallel Robots,
Mechanisms and Machine Science 35, DOI 10.1007/978-3-319-19788-3_5
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Let us denote as an = {0 l . . . a(a(n)) a(n) n} a list of size s containing the
number of each intermediate frame separating the frame Fn from the frame F0,
ordered by successive frames and in which a(l) = 0. From Sect. 4.2.3 and Eq. (4.8),
it turns out that:

0Tn =
[
0Rn

0rn

0 1

]
=

s∏
k=2

(
an(k−1)Tan(k)

)
(5.1)

where an(k) is the kth element of the list an .
Thus,with (5.1), we can compute directly the homogeneous transformationmatrix

giving the relative pose of the frameFn w.r.t. the frameF0. Vector 0rn denotes the
position of the frameFn—and of the terminal linkBn—w.r.t.F0 and 0Rn is the ori-
entation matrix of the frameFn—and of the terminal linkBn—w.r.t.F0. From that
orientation matrix, any set of orientation parameters can be obtained (Euler angles,
Tilt and Torsion, Quaternions, etc.) by using the inverse problem methodologies
given in Sect. 2.4.

5.1.2 Inverse Geometric Model of Open Kinematic Chains

Inverse geometric model refers to the computation of the vector of joint coordinates
q once the pose xn of the terminal link Bn with respect to the base frame F0 is
known. Finding the solution of the inverse geometric model of an open kinematic
chain is important for the study of PKM whose legs connecting the platform to the
base are open kinematic chains. Indeed, if we fix the PKM platform pose and that
we want to know the leg configuration, the inverse geometric model of each open
chain constituting the legs must be solved.

Solving an inverse geometric model of an open kinematic chain could be difficult
to achieve. However, methods have been developed to solve that problem in a general
manner, such as the methods proposed in (Khalil and Dombre 2002; Pfurner and
Husty 2010). Those methods are not detailed here, because most proposed PKM are
made of simple legs that do not require the use of complex methods for solving their
inverse geometric models. More details will be given in Sect. 7.1.

5.2 Velocity Analysis of Open Kinematic Chains

5.2.1 Forward Kinematic Models

The forward kinematic model of a serial or tree-structure robot manipulator gives the
velocity of the terminal link tT

n = [vT
n ωT

n ] in terms of the joint velocities q̇, which
is defined here as a vector of dimension m and which groups all joint velocities of

http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_2
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 5.1 Case of a prismatic
joint

the sub-chain connecting the fixed baseB0 to the considered terminal linkBn . It is
written as:

tn = Jn(q)q̇ (5.2)

where Jn(q) denotes the (6× m) kinematic Jacobian matrix. The matrix Jn(q) can
be computed as follows.

The velocity q̇k of joint k produces linear and angular velocities (denoted as vk,n

and ωk,n respectively) at the terminal frame Fn . Two cases are considered:

• if joint k is prismatic (in that case, from Chap.4, σk = 1, Fig. 5.1):

tk,n =
[

vk,n
ωk,n

]
=

[
ak

0

]
q̇k (5.3)

where ak is the unit vector along the zk axis;
• if joint k is revolute (in that case, from Chap.4, σk = 0, Fig. 5.2):

tk,n =
[

vk,n
ωk,n

]
=

[
ak q̇k × rOk On

ak q̇k

]
=

[
ak × rOk On

ak

]
q̇k (5.4)

where rOk On denotes the position vector connecting Ok to On , i.e. the origins of
the frames Fk and Fn linked respectively to bodies Bk and Bn .

Thus, vk,n and ωk,n can be written in the following general form:

tk,n =
[

vk,n
ωk,n

]
=

[
σkak + σ̄k(ak × rOk On )

σ̄kak

]
q̇k = $k q̇k (5.5)

where $k is a unit twist representing the displacement of the terminal link when
actuator k is moving only.

http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_4
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Fig. 5.2 Case of a revolute
joint

Now considering all joints of the studied chain, linear and angular velocities of
the terminal frame can be written as:

tn =
s∑

k=2

[
van(k),n
ωan(k),n

]
=

s∑
k=2

$an(k)q̇an(k)

=
s∑

k=2

[
σan(k)aan(k) + σ̄an(k)(aan(k) × rOan (k)On )

σ̄an(k)aan(k)

]
q̇an(k)

(5.6)

where an(k) is defined at (5.1).
Writing Eq. (5.6) in matrix form and using Eq. (5.2), we deduce that:

Jn =
[
σlal + σ̄l(al × rOl On ) . . . σa(n)aa(n) + σ̄a(n)(aa(n) × rOa(n)On ) σnan

σ̄lal . . . σ̄a(n)aa(n) σ̄nan

]

= [
$l . . . $a(n) $n

]
.

(5.7)

Expressing the vectors of Jn with respect to frame Fi , we obtain the (6 × m)

kinematic Jacobian matrix i Jn such that:

i tn = i Jn(q)q̇. (5.8)

By extension of (5.7) and (5.8), the velocity of the j th body of the chain is given by:

i t j = i J j (q)q̇ (5.9)
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where i J j is the projection into the frame Fi of the matrix J j defined by

J j =
[
σl al + σ̄l (al × rOl O j ) . . . σa( j)aa( j) + σ̄a( j)(aa( j) × rOa( j)O j ) σ j a j 0 . . . 0

σ̄l al . . . σ̄a( j)aa( j) σ̄ j a j 0 . . . 0

]

= [
$l . . . $a( j) $ j 0 . . . 0

]
.

(5.10)

5.2.2 Inverse Kinematic Models

5.2.2.1 Inverse Kinematic Model of Non-redundant Open Chains

In this section, we will deal with the inverse kinematic problems of non-redundant
open kinematic chain, i.e. chains for which the size m of the vector q̇ is equal to the
rank of the matrix i Jn .

If the size of q̇ is m = 6, the inverse kinematic model is:

q̇ = i J−1
n (q)i tn (5.11)

as long as Jn is not rank-deficient (see Sect. 5.2.3).
If the size of q̇ is m < 6, this means that the terminal bodyBn cannot produce 6

independent motions, but only m independent motions. Let us denote as:

• i tr
n the vector containing the m independent coordinates of i tn ,

• i tr
n = Dn

i tn the constraint equations between the coordinates of i tn .

Equation (5.8) can thus be reduced to:

i tr
n = i Jr (q)q̇ (5.12)

and the inverse kinematic model is:

q̇ = i J−1
r (q)i tr

n = i J−1
r (q)Dn

i tn = i Jinv(q)i tn (5.13)

where i Jinv(q) = i J−1
r (q)Dn . Note once again that this expression is valid as long

as i Jr (and i Jn) is not rank-deficient (see Sect. 5.2.3).

5.2.2.2 Inverse Kinematic Model of Redundant Open Chains

For redundant open kinematic chain, the size m of the vector q̇ is strictly greater than
the maximum rank of the matrix i Jn . This means that, for any terminal-link pose,
there can exist a non-null vector q̇0 such as

0 = i Jn(q)q̇0. (5.14)
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Consequently, the robot inverse kinematic model can have infinite number of solu-
tions that are given by:

q̇ = i J+n i tn +
(

1m − i J+n i Jn

)
ξ (5.15)

where, if i Jn is of maximal rank, i J+n = i JT
n

(
i Jn

i JT
n

)−1
is the pseudo-inverse of the

Jacobian matrix i Jn and ξ is an arbitrary vector in the q̇ space, which, once defined,
fix the solution (Khalil and Dombre 2002).

Consequently, as ξ can be defined arbitrarily, secondary performance criteria can
be optimized, such as:

• minimizing the norm of the joint velocities (Whitney 1969),
• avoiding obstacles (Baillieul 1986; Maciejewski and Klein 1985),
• avoiding singular configurations (Yoshikawa 1984),
• avoiding joint limits (Fournier 1980; Klein 1984),
• minimizing driving joint torques (Baillieul et al. 1984; Hollerbach and Suh 1985).

The reader interested in the control of redundant open chains should refer
to (Khalil and Dombre 2002).

5.2.3 Inverse Kinematic Models Degeneracy/Notions
of Singularity

As mentioned in Sect. 5.2.2, the inverse geometric and kinematic models of a robot
can be computed as long as the robot is not at a singular configuration (also called
singularity).

Mathematically speaking, a singularity for a serial chain (or a serial sub-chain
of a tree-structure robot) is defined when, at a given configuration, the rank of the
kinematic Jacobian matrix Jn defined in (5.7) is lower than its maximal rank.

Physically speaking, and from the analysis of Eq. (5.2), there can exist one (or
several, depending on the loss of rank of Jn) non zero unit vector qs which belongs
to the null space of Jn that, locally, cannot produce a velocity of the end-effector, i.e.

Jn(qn)q̇s = 0. (5.16)

Thus, the robot is unable to generate an arbitrary velocity along some given axes.
Moreover, its inverse geometric model may have an infinity of solutions.

If Jn is rank-deficient, by definition, this is also the case of the square matrix Jr

defined in (5.12). Thus, the singularity can also be characterized by:

det(Jr (qn)) = 0. (5.17)
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Those singularities divide the joint space in severalaspects (Borrel 1986). The aspects
are the connected regions of the joint space insidewhich nominor of order k extracted
from the kinematic Jacobian matrix Jn is zero, except if this minor is zero every-
where in the joint domain. For a non-redundant robot manipulator, the only minor
of order Jn is the kinematic Jacobian matrix itself. Therefore, the aspects are limited
by the singularity branches (i.e. the connected components of the set of singular
configurations of the joint space) and the joint limits. Consequently, they represent
the maximum singularity-free regions of the joint space.

For a long time, it has been thought that the aspects also represent the uniqueness
domains of the inverse geometricmodel solutions.Although this is indeed the case for
most industrial robots with simple architectures, which are classified as non-cuspidal
robots (El Omri 1996;Wenger 1992), the inverse geometric model of cuspidal robots
can have several solutions in the same aspect.1 Thus, a cuspidal robot can move from
one inverse geometric model solution to another without encountering a singularity.

More details on the singularity analysis are given in Sect. 7.5.

5.2.4 Recursive Computation of Velocities and Kinematic
Jacobian Matrix for Open Kinematic Chains

Let us consider two bodies Bi and B j (where i = a( j)) on which are attached the
frames Fi and F j , respectively. The twist of Bi projected in the frame Fi and
expressed at Oi (origin of Fi ) is denoted as i tT

i = [i vT
i

iωT
i ] and the twist

of B j projected in the frame F j and expressed at O j (origin of F j ) is denoted as
j tT

j = [ j vT
j

jωT
j ].

Bi being the antecedent of B j , we have (from Sect. 5.2.1):

ω j = ωi + σ̄ j a j q̇ j (5.18)

v j = vi + ωi × rOi O j + σ j a j q̇ j . (5.19)

Thus, by identification with the relation (3.12), and by projecting the equations
in the frameF j , we have

j t j = j Ti
i ti + j ā j q̇ j (5.20)

where j ā j =
[
σ j 13
σ̄ j 13

]
j a j =

[
σ j

j a j

σ̄ j
j a j

]
, in which j a j = [0 0 1]T .

Let us now consider that those two bodies belong to a kinematic chain (serial or
tree structure) composed of n bodies whose motions are described by the vector of

1For parallel robots, a cuspidal robot is usually considered to have several solutions of the forward
geometric model in the same workspace aspect (Zein et al. 2008).

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_3
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joint velocities q̇. From (5.9) and (5.13), we have i ti = i Ji q̇ and j t j = j J j q̇. Thus,
from (5.20), we find that:

j J j = j Ti
i Ji + j A j (5.21)

with

j A j =
[
0 . . . j ā j . . . 0

]
(5.22)

defined such that:

j ā j q̇ j = j A j q̇. (5.23)

Those recursive equations will be used for optimizing the computation of the
dynamic model of the parallel robots. They are implemented in the free software
OpenSYMORO (Khalil et al. 2014).

5.3 Acceleration Analysis of Open Kinematic Chains

The second-order kinematic model of a serial or tree-structure robot manipulator
gives the acceleration of the terminal link Bn in terms of positions qn , velocities
q̇n and accelerations q̈n of the joints of the considered sub-chain. By differentiating
Eq. (5.2) with respect to time, we obtain the following expression:

ṫn =
[

v̇n
ω̇n

]
= Jn(qn)q̈n + J̇n(qn, q̇n)q̇n . (5.24)

However, it is most efficient from the computational cost point of view to obtain
ṫn using the recursive algorithm given below.

Let us consider oncemore two bodiesBi andB j (where i = a( j)). The accelera-
tion ofBi projected in the frameFi and expressed at Oi (origin ofFi ) is denoted as
i ṫT

i = [i v̇T
i

i ω̇T
i ] and the acceleration ofB j projected in the frameF j and expressed

at O j (origin of F j ) is denoted as j ṫT
j = [ j v̇T

j
j ω̇T

j ].
Bi being the antecedent of B j , by expressing the derivative of ω j and v j w.r.t.

time, we also have (from Sect. 5.2.1 and Eq. (3.19)):

ω̇ j = ω̇i + d

dt

(
σ̄ j a j q̇ j

) = ω̇i + σ̄ j (a j q̈ j + ωi × a j q̇ j ) (5.25)

v̇ j = v̇i + ω̇i × rOi O j + ωi × d

dt

(
rOi O j

) + d

dt

(
σ j a j q̇ j

)

= v̇i + ω̇i × rOi O j + ωi × (ωi × rOi O j ) + σ j (a j q̈ j + 2ωi × a j q̇ j )

(5.26)

http://dx.doi.org/10.1007/978-3-319-19788-3_3
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because d
dt

(
rOi O j

) = ωi × rOi O j + a j q̇ j in the case of a prismatic joint and
d
dt

(
rOi O j

) = ωi × rOi O j in case of revolute joint.
Expressing the vectors of (5.25) and (5.26) within frame F j , they can also be

rewritten as:
j ω̇ j = j Ri

i ω̇i + σ̄ j (
j a j q̈ j + jωi × j a j q̇ j ) (5.27)

j v̇ j = j Ri (
i v̇i + i Ui

i r j ) + σ j (
j a j q̈ j + 2 jωi × j a j q̇ j ) (5.28)

where i r j = i rOi O j and

i Ui = i ˙̂ωi + i ω̂i
i ω̂i (5.29)

in which i ˙̂ωi is the cross-product matrix associated with i ω̇i and i ω̂i is the cross-
product matrix associated with iωi .

Eqs. (5.27)–(5.29) will be used for optimizing the computation of the dynamic
model of the parallel robots. They are implemented in the free software OpenSY-
MORO (Khalil et al. 2014).

Finally, (5.27) and (5.28) can also be rewritten in the matrix form

j ṫ j =
[

j v̇ j
j ω̇ j

]
= j J j q̈n + j b j (5.30)

where j J j is given in (5.21) and

j b j = j Ti
i bi +

[
2σ j

jωi × j a j q̇ j + jωi × ( jωi × j rOi O j )

σ̄ j
jωi × j a j q̇ j

]
(5.31)

which can be deduced from the fact that:
[

j v̇ j
j ω̇ j

]
= j Ti

[
i v̇i
i ω̇i

]
+

[
2σ j

jωi × j a j q̇ j + jωi × ( jωi × j rOi O j )

σ̄ j
jωi × j a j q̇ j

]
+ j ā j q̈ j .

(5.32)



Chapter 6
Dynamics Principles

Abstract In this chapter, some brief recalls of the main dynamics principles are
made, as they will be used in the following chapters of the book. We detail the main
dynamics principles: the Lagrange formulation, the Newton-Euler equations and the
principle of virtual powers.We also recall the staticmodel giving the relation between
a wrench exerted on the end-effector of any type of robot and the input effort of its
actuators.

6.1 The Lagrange Formulation

6.1.1 Introduction to the Lagrange Formulation

The Lagrange formulation describes the behavior of a dynamic system in terms of
work and energy stored in the system. The Lagrange equations are written in the
form:

τ = d

dt

(
∂L

∂q̇

)T

−
(

∂L

∂q

)T

(6.1)

where

• τ is the vector of generalized forces applied on the system, which are equal to the
input joint torques or forces,

• q is the vector of generalized coordinates, i.e. the vector of independent parame-
ters that describe the configuration of the system such that, for any body B j the
homogeneous transformation matrix 0T j of its corresponding frame F j can be
expressed as a function of q:

0T j = 0T j (q). (6.2)

For rigid robots, q is equal to the vector of active joint variables qa . Thus, in the
case of robots without any closed loops, q is the vector of the joint coordinates.

• q̇ is the vector of generalized velocities, the vector of parameters that describe the
velocity of any bodyB j of the system such that we can obtain, for any bodyB j :

© Springer International Publishing Switzerland 2015
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t j = J j (q)q̇ (6.3)

where t j is the twist of the frameF j ,
• L is a function called the Lagragian:

L = E − U (6.4)

in which E is the kinetic energy of the system and U its potential energy (due to
gravity effects, deformations, etc.).

For any rigid robot, the Lagrange formulation leads to a dynamic model of the
form (Khalil and Dombre 2002):

τ = M(q)q̈ + c(q, q̇) (6.5)

where M(q) is the robot generalized inertia matrix (also called in this book ro-
bot inertia matrix and defined in Sect. 6.1.2) and c(q, q̇) is the vector of Coriolis,
centrifugal and gravity effects. This model is called the inverse dynamic model.

6.1.2 Computation of Kinetic Energy

The kinetic energy E j of a body B j is given by the equation:

E j = 1

2

∫
B j

vT
M j

vM j dm (6.6)

where vM j is the velocity of a point M j belonging to B j that can be expressed as a
function of the frameF j twist tT

j = [vT
j ωT

j ]:

vM j = v j + ω j × rO j M j =
[
13 r̂T

O j M j

] [
v j
ω j

]
. (6.7)

Introducing (6.7) into (6.6) and expressing all equations in F j leads to:

E j = 1

2

[
j vT

j
jωT

j

] (∫
B j

[
13

j r̂O j M j

] [
13 j r̂T

O j M j

]
dm

) [
j v j
jω j

]

= 1

2

[
j vT

j
jωT

j

] (∫
B j

[
13 j r̂T

O j M j
j r̂O j M j

j r̂O j M j
j r̂T

O j M j

]
dm

) [
j v j
jω j

]

= 1

2
tT

j

[
m j 13 m̂sT

j
m̂s j IO j

]
t j = 1

2
tT

j M j t j (6.8)
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in which:

• m j is the body B j mass,
• m̂s j is the cross-productmatrix associatedwith the vectorms j = ∫

B
j rO j M j dm =

m j
j rO j S j , with S j the center of mass (COM) of the body B j ; ms j is called

the vector of the first moments of inertia (also known as the vector of the static
moments) and represents the mass of the body B j multiplied by the position of
its COM w.r.t. frame F j , i.e. ms j = [mx j my j mz j ]T , where mx j = m j xS j ,
my j = m j yS j and mz j = m j zS j ,

• IO j is the inertia matrix of the bodyB j at the origin of the frameF j and expressed
in the same frame,

IO j =
∫
B

j r̂O j M j
j r̂T

O j M j
dm =

⎡
⎣

xx j xy j xz j

xy j yy j yz j

xz j yz j zz j

⎤
⎦ (6.9)

in which xx j , yy j , zz j are the axial moments of inertia around x j , y j and z j axes,
respectively, for body B j , expressed at the origin of the local frameF j , i.e.,

xx j =
∫
B

(r2y + r2z )dm (6.10)

yy j =
∫
B

(r2x + r2z )dm (6.11)

zz j =
∫
B

(r2x + r2y )dm (6.12)

with rT
O j M j

= [rx ry rz], and xy j , xz j , yz j are the inertial cross-moments for
body B j , expressed at the origin of the local frameF j , i.e.,

xy j = −
∫
B

rxrydm (6.13)

xz j = −
∫
B

rxrzdm (6.14)

yz j = −
∫
B

ryrzdm. (6.15)

• M j is the body B j (6 × 6) generalized inertia matrix at the origin of the frame
F j and expressed in the same frame.

The total kinetic energy E of the system is given by:
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E =
∑

j

E j = 1

2

∑
j

(
j tT

j M j
j t j

)
. (6.16)

Introducing (6.3) into (6.16), it comes:

E =
∑

j

E j = 1

2
q̇T

∑
j

(
j JT

j (q)M j
j J j (q)

)
q̇ = 1

2
q̇T M(q)q̇ (6.17)

where M(q) = ∑
j

(
j JT

j (q)M j
j J j (q)

)
is the system inertia matrix.

6.1.3 Computation of Potential Energy

In this section, we will give the value of the potential energy due to gravity effects.
Elastic potential energy is not considered as elasticity is the subject of Part III.

The potential energy of a bodyB j due to gravity effects is given by the equation:

U j = −m j gT rO0S j (6.18)

where

• g is the vector of gravitational acceleration,
• rO0S j is the position of the COM of the body B j w.r.t. the origin of the global
frame F0.

Equation (6.18) can be rewritten in the base frameF0 as:

U j = −0gT
(

m j
0rO0O j + m j

0rO j S j

)
= −0gT

(
m j

0rO0O j + 0R j
j ms j

)
(6.19)

or also:

U j = − [
0gT 0

] 0T j (q)

[
j ms j

m j

]
. (6.20)

Finally, the total potential energy of the system is:

U =
∑

j

U j = − [
0gT 0

] ∑
j

(
0T j (q)

[
j ms j

m j

])
. (6.21)
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6.1.4 Lagrange Equations with Constraints

For closed loop robots, such as parallel robots, the expression of kinetic and potential
energies is difficult to obtain as a function of the active joint variables qa and veloc-
ities q̇a only. Therefore, it is preferable to introduce into the vector of generalized
coordinates q additional variables, denoted here as qd , that will help in obtaining
kinetic and potential energies in a simpler form. Those variables will be, in the case
of a parallel robot, all passive joint variables and platform Cartesian coordinates.
Obviously, the variables qd are not independent and can be linked to the active joint
variables qa through the use of constraint equations (see Sect. 7.1):

h(qa, qd) = 0 (6.22)

and:
A(qa, qd)q̇d + B(qa, qd)q̇a = 0 (6.23)

where A =
[

∂h
∂qd

]
and B =

[
∂h
∂qa

]
are two matrices depending on qa and qd .

Taking into account those constraints, the Lagrange equations must be rewritten
by using the Lagrange multipliers λ (see Appendix B):

τ + BT λ = τ a, where τ a = d

dt

(
∂L

∂q̇a

)T

−
(

∂L

∂qa

)T

AT λ = τ d , where τ d = d

dt

(
∂L

∂q̇d

)T

−
(

∂L

∂qd

)T

.

(6.24)

We will consider two cases:

• Case 1: the matrix A is square and of full rank (this particularity will appear for
computation of the kinematics of parallel robots without redundancy and with
kinematic redundancy). In such a case, rewriting (6.23), we also have

q̇d = −A−1Bq̇a = Jq̇a (6.25)

where J is the Jacobianmatrix relating the velocities q̇d to the active joint velocities
q̇a .
Eliminating λ from (6.24), we thus obtain

λ = A−T τ d

τ = τ a − BT A−T τ d = τ a + JT τ d .
(6.26)

Note that (6.26) can also be rewritten as:

τ = τ a +
[

∂qd
∂qa

]T
τ d . (6.27)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Since h is not an explicit function in time, we may notice that

[
∂qd
∂qa

]
=

[
∂q̇d
∂q̇a

]
. (6.28)

• Case 2: the matrix A is rectangular with more rows than columns (this particular-
ity will appear for computation of the kinematics of parallel robots with actuation
redundancy) but the matrix B is square and of full rank. In such a case, rewrit-
ing (6.23), we also have

q̇a = −B−1Aq̇d = Jinvq̇d (6.29)

where Jinv is the inverse Jacobian matrix relating the velocities q̇a to the active
joint velocities q̇d . Note that Jinv has more rows than columns.
Eliminating λ from (6.24), we now obtain

λ = −B−T (τ − τ a)

τ d = −AT B−T (τ − τ a) = JT
inv(τ − τ a)

(6.30)

which can be rewritten as
JT

invτ = JT
invτ a + τ d . (6.31)

Equation (6.31) represents the dynamic model. The matrix JT
inv having more

columns than rows (i.e. the system (6.31) having more unknowns than equations),
there is an infinity of solutions for the vector of the input efforts τ which are all
given by

τ = τ a + JT +
inv τ d + (1 − JT +

inv JT
inv)η (6.32)

in which JT +
inv is the pseudo-inverse of the matrix JT

inv and η is an arbitrary vector
in the τ space which is called the overconstraint. If η = 0, we get the solution for
τ with the minimal norm.

This formalism will be used for obtaining the dynamic model of the rigid parallel
robots in Part II, in which more detailed examples will be provided.

6.1.5 Dynamic Model Properties

In this section, we summarize some important properties of the dynamic model of
robots:

1. The system inertia matrix M(q) is symmetric and positive definite, as well as
the body B j generalized inertia matrix M j ;
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2. The energy of body B j is a function of q and q̇,
3. The kinetic energy, the potential energy and the inverse dynamicmodel are linear

in the elements of the standard inertial parameters m j , j ms j and j IO j . Grouping
all those parameters in the vector χ st , we can write:

E = e(q, q̇)χ st , U = u(q)χ st , τ = C(q, q̇, q̈)χ st . (6.33)

This property is exploited to identify the inertial parameters [(see (Briot and
Gautier 2012)], to reduce the computation burden of the dynamic model, and to
develop adaptive control schemes (Khalil and Dombre 2002).

6.2 The Newton-Euler Equations

The Newton-Euler (NE) equations allow computation of the sum of external forces
�f j and moments �mS j (including gravity effects) acting on the COM Sj of body
B j that are equal to:

�f j = m j v̇S j

�mS j = IS j ω̇ j + ω j × (IS j ω j )
(6.34)

in which:

• v̇S j is the acceleration of the COM of link B j ,
• ω̇ j is the rotational acceleration of linkB j ,
• IS j is the inertia matrix of link B j , expressed at its COM.

The NE equations can be also expressed at the origin of the frameF j attached to
the body B j . In that case, they take the form (Khalil and Dombre 2002):

�f j = m j v̇ j + ω̇ j × ms j + ω j × (ω j × ms j )

�m j = IO j ω̇ j + ms j × v̇ j + ω j × (IO j ω j )
(6.35)

in which:

• �m j is the sum of external moment applied at the origin of the frame F j ,
• v̇ j is the acceleration of the origin of the frameF j ,
• ms j is the vector of the first moments of inertia defined in Sect. 6.1.2,
• IO j is the inertia matrix defined in Sect. 6.1.2.

Using the screw notation, we can rewrite these equations as

�w j =
[

�f j

�m j

]
=

[
m j 13 m̂sT

j
m̂s j IO j

] [
v̇ j
ω̇ j

]
+

[
ω j × (ω j × ms j )

ω j × (IO j ω j )

]
= M j ṫ j + c j

(6.36)
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where

• M j is the (6 × 6) augmented inertia matrix of the body B j ,
• c j is the vector of Coriolis and centrifugal effects,
• ṫ j is the derivative of the body B j twist w.r.t. time.

The NE equations will be used in Part II to obtain the symbolic expression of the
dynamic model of rigid parallel robots.

6.3 The Principle of Virtual Powers

The principle of virtual powers (PVP) (le Rond d’Alembert, 1743) states that, at
equilibrium, the power P∗

acc developed by the inertial effects of a body (or a system
of bodies) moving with a virtual velocity v∗ is equal to the power P∗

ext developed
by the external forces applied on the body (or on the system of bodies) plus the
power P∗

int developed by the internal forces applied in the body (or in the system of
bodies). Throughout this book, all quantities followed by the superscript “∗” will be
considered as virtual quantities.

Let us consider a single rigid link B j on which is attached the frame F j (the
case of flexible bodies will be considered in Part III). For that body, the PVP can be
written as:

P∗
acc = P∗

int + P∗
ext . (6.37)

By definition, the virtual power due to the inertial effects is equal to:

P∗
acc =

∫
B j

v̇T
M j

v∗
M j

dm. (6.38)

Note that v̇M j dm are the NE equations applied to a particle of mass dm.
The velocity and acceleration of point M j can be expressed as a function of the

twist t j and acceleration quantities ṫ j of the frame F j through the use of (3.2) and
(3.19):

vM j = v j + ω j × rO j M j (6.39)

v̇M j = v̇ j + ω j × (
ω j × rO j M j

) + ω̇ j × rO j M j . (6.40)

Substituting (6.39) into (6.38), it turns out that:

P∗
acc =

(∫
B j

v̇M j dm

)T

v∗
j +

(∫
B j

rO j M j × v̇M j dm

)T

ω∗
j . (6.41)

Adding (6.40) into (6.41) and developing the result leads to:

http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_3
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P∗
acc =

(∫
B j

13 dm v̇ j

)T

v∗
j +

(
ω j ×

(
ω j ×

∫
B j

rO j M j dm

))T

v∗
j

+
(

ω̇ j ×
∫
B j

(rO j M j ) dm

)T

v∗
j +

((∫
B j

rO j M j dm

)
× v̇ j

)T

ω∗
j

+
(

ω j ×
(∫

B j

r̂O j M j r̂
T
O j M j

dm

)
ω j

)T

ω∗
j

+
((∫

B j

r̂O j M j r̂
T
O j M j

dm

)
ω̇ j

)T

ω∗
j (6.42)

which can be simplified as, from (6.8),

P∗
acc = (

m j v̇ j + ω j × (
ω j × ms j

) + ω̇ j × ms j
)T v∗

j

+ (
ms j × v̇ j + ω j × (IO j ω j ) + IO j ω̇ j

)T
ω∗

j .
(6.43)

It should be mentioned that (6.43) could be rewritten as:

P∗
acc = �fT

j v∗
j + �mT

j ω∗
j (6.44)

where �f j and �m j are defined in (6.35) as the NE equations.
The virtual power of the external efforts can be divided into two parts,

P∗
ext = P∗

grav + P∗
reac (6.45)

where

P∗
grav =

∫
B j

(
v∗

M j

)T
g dm (6.46)

is the virtual power of the gravity field g and P∗
reac is the virtual power of other

external effects. In the case where two wrenches wT
O j

= [fT
O j

mT
O j

] applied on point
O j and wT

B j
= [fT

B j
mT

B j
] applied on point B j act on the link,

P∗
reac = fT

O j
v∗

j + mT
O j

ω∗
j + fT

B j
v∗

B j
+ mT

B j
ω∗

j . (6.47)

Thus, introducing (6.39) in the previous expressions,

P∗
grav =

(∫
B j

g dm

)T

v∗
j +

(∫
� j

rO j M j × g dm

)T

ω∗
j (6.48)
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which, from (6.8), can be rewritten as:

P∗
grav = m j gT v∗

j + (
m̂s j g

)T
ω∗

j (6.49)

and

P∗
reac = (

fO j + fB j

)T v∗
j + (

mO j + mB j + rO j B j × fB j

)T
ω∗

j . (6.50)

Finally, the virtual power due to the internal effects is null for a free rigid body
(no deformation and no dissipative effects), i.e. P∗

int = 0.
Thus, introducing (6.43), (6.49) and (6.50) into (6.37), and taking into account the

fact that the virtual velocities v∗
j and ω∗

j are independent, two equilibrium equations
can be obtained:

fO j + fB j + m j g = m j v̇ j + ω j × (
ω j × ms j

) + ω̇ j × ms j (6.51)

mO j + mB j + rO j B j × fB j + ms j × g = ms j × v̇ j + ω j × (IO j ω j ) + IO j ω̇ j

(6.52)

which are equivalent to the NE equations of a rigid body on which are applied the
gravitational effects and two wrenches wO j and wB j .

The expression (6.37) can be easily extended to be used for a system of bodies.

6.4 Computation of Actuator Input Efforts Under a Wrench
Exerted on the End-Effector

A well-known relation in robotics, called the static model which gives the joint
torques in terms of the external wrench on the end-effector, states that:

τ = JT
n wn (6.53)

where τ the vector of the input efforts, Jn is the kinematic Jacobian matrix defined
at (5.7) relating the end-effector twist to the actuated joint velocities, and wn is a
wrench applied on the end-effector. This formula can be demonstrated through the
use of the PVP as follows.

Let us consider a virtual twist t∗n at the end-effector which is obtained thanks to
the virtual joint velocity vector q̇∗

n . In the absence of any other effects, the wrench
wn leads to the robot input efforts τ . So, the power conservation states that:

q̇∗ T
n τ = t∗ T

n wn . (6.54)

http://dx.doi.org/10.1007/978-3-319-19788-3_5
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From (5.8), we have
t∗n = Jn q̇∗

n . (6.55)

Introducing (6.55) in (6.54) leads to:

q̇∗ T
n τ = q̇∗ T

n JT
n wn . (6.56)

Thevirtual velocity q̇∗
n being arbitrary,wecan simplify the relation (6.56) to (6.53).

http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Chapter 7
Kinematics of Parallel Robots

Abstract The study of parallel robot dynamics cannot be done without using their
kinematic relationships and studying their singularities. Therefore, in the present
chapter, we investigate the computation of inverse and forward geometric and kine-
matic models of the usual PKM. The models of several robots will be solved:

• The planar five-bar mechanism,
• The planar 3–RPR planar parallel mechanism (PPM),
• The Orthoglide,
• The Gough-Stewart platform.

These robots have been chosen because they are typical examples found in the liter-
ature and/or their dynamic model will be defined later in the book.

7.1 Inverse Geometric Model

7.1.1 General Methodology

Let us consider a general PKM composed of a rigid fixed base (denoted as the
elementB0 onwhich is attached the global frameF0(O, x0, y0, z0)), a rigidmoving
platform (elementBp) and n legs. Each leg is a kinematic chain (which is serial most
of the time, but can also be composed of closed-loop or tree-structure sub-chains1)
composed of bodies connected by mi joints located at points Aij (revolute, prismatic,
universal, etc.—i = 1, . . . , n, j = 1, . . . , mi ) (Fig. 7.1—in this figure, the gray pairs
denote the actuated joints). The j th link of the leg i will be denoted in what follows
as the linkBij. Moreover, the joint located at point Aij will be parameterized by the
variable qij.

1At the end of the Chap.7 on the kinematics of PKM, we will present the geometry and kinematic
equations by considering PKMmade of serial legs only. However, the methodology can be extended
to any types of legs. Moreover, the equations of the dynamics presented in Chap.8 are general and
can be used for any types of legs made of serial, closed-loop or tree-structure chains.

© Springer International Publishing Switzerland 2015
S. Briot and W. Khalil, Dynamics of Parallel Robots,
Mechanisms and Machine Science 35, DOI 10.1007/978-3-319-19788-3_7
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Fig. 7.1 A general parallel
robot (the gray pairs denote
the actuated joints)

The actuated variables are stacked into the vector qa and the leg passive variables
into the vector qd . The platform coordinates are denoted as xp; they represent the
location of the frameFp(P, xp, yp, zp) attached to the end-effector w.r.t. the base
frame F0. Only ndof coordinates of xp are independent, where ndof is the number
of DOF of the platform the PKM. They will be denoted as x and are related to all
platform coordinates by the constraint equations:

cp(x, xp) = 0. (7.1)

The size na of qa must be equal or superior to the number ndof of DOF of the
platform of the PKM. All the active and passive variables are grouped into the vector
qt of size nt = ∑n

i=1 mi .
The inverse geometric model (IGM) consists in obtaining the value of the joint

coordinates qa as a function of the platform coordinates x, i.e. qa = H (x). For
usual PKM, this problem is relatively easy to solve in a closed form solution. An
additional problem, which must be solved for computing the dynamic model of the
PKM, consists in finding all joint variablesqt as a function of the platformcoordinates
x, i.e. qt = Ht (x).

The most used approach for solving these two problems consists in considering
the loop-closure equations of the PKM through the serial chain i going from point
O to point P . In that case, the location of the end-effector frameFp can be obtained
by considering all the displacements of the considered chain, similarly as for an open
chain robot (Sect. 4.2.3).

By using the results of Sect. 4.2.3, the transformation allowing computation of the
position and orientation of the frame Fp with respect to the frame F0 is given by:

0Tp(x) = 0Ti1(qi1)

mi∏
j=2

(
i( j−1)Tij(qij)

)
imi Tp, for i = 1, . . . , n (7.2)

http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_4
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where

• 0Tp(x) is the homogeneousmatrix defining the transformation from the base frame
F0 to the end-effector frame Fp,

0Tp =

⎡
⎢⎢⎣

x
0Rp y

z
0 0 0 1

⎤
⎥⎥⎦

where 0Rp is the rotationmatrix between the framesF0 andFp that can be defined
by any set of parameters presented in Chap.2, and x , y and z are the translational
components of xp expressed in the base frameF0,

• 0Ti1(qi1) is the homogeneous matrix defining the transformation between the base
frame F0 and the frame Fi1 attached to the link Bi1,

• i( j−1)Tij(qij) is the homogeneous matrix defining the location between the frame
Fi( j−1) attached to the link Bi( j−1) and the frame Fij attached to the link Bij.
Note that, in the case of a constant transformation, qij is a constant parameter,

• imi Tp is the homogeneous matrix defining the constant transformation between
the frame Fimi attached to the link Bimi and the platform frame Fp. It can be
determined by the MDH method with only four parameters at most if ximi is
defined along the common orthogonal of zp and zimi .

All these homogeneous transformation matrices are defined in Chap.2.
Thus, Eq. (7.2) allows us to get implicit relations between the joint and platform

coordinates qt and x, which can be written in the form:

h(x, qt ) =
⎡
⎢⎣

h11(x) − h21(qt )
...

h1n(x) − h2n(qt )

⎤
⎥⎦ = 0. (7.3)

In general, each row of (7.3) is similar to the IGM of tree-structure robots whose
solutions can give qi in terms of x, qi being the joint coordinates of the sub-chain i .
Many methods have been developed to solve that problem in a general manner, such
as the methods proposed in Khalil and Dombre (2002), Pfurner and Husty (2010).
Those methods are not recalled here, because most of proposed PKM are made of
simple legs that do not require the use of complex methods for solving the IGM.
Note that each row of (7.3) can be solved independently.

In most cases, the problem complexity can be reduced by eliminating qd such
that the active actuator coordinates qa are directly linked to the moving platform
coordinates x using a relation of the form:

hp(x, qa) = 0 (7.4)

http://dx.doi.org/10.1007/978-3-319-19788-3_2
http://dx.doi.org/10.1007/978-3-319-19788-3_2
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where hp(x, qa) is a vector for which we can define:

• na = ndof independent equations for parallel robots without redundancy,
• na equations among which only ndof are independent for parallel robots with
actuation redundancy (for which na > ndof) (Müller 2005),

• ndof independent equations for parallel robots with kinematic redundancy (for
which also na > ndof) (Kotlarski et al. 2010).

In a general manner, the active joint coordinates of the leg i which are grouped in
the vector qai can be obtained by solving the reduced problem:

hpi (x, qai) = 0 (7.5)

where hpi is a part of the vector hp defined in (7.4).
Equation (7.4) is usually quite easy to solve under the form qa = H (x), as shown

in the examples developed below. It is necessary to mention that the solution may
not be unique. In the case when more than one solution exist, the different solutions
are called the working modes of the robot. They correspond, for one given set of
platform coordinates, to all the possible ways to assembly the mechanism legs (see
the Sects. 7.1.2.1–7.1.2.5).

Finally, once the values of qa are found from (7.4) as a function of x, it is possible
to introduce them into (7.3) in order to express all joint coordinates qt as a function of
x. Note that sometimes, qa and qd can be obtained in the same step. Once again, this
problem could be difficult to solve in the most general case. However, it is generally
easy for usual PKM and, even for more complicated cases, it can now be solved
using the advanced mathematical methods mentioned above (Khalil and Dombre
2002; Pfurner and Husty 2010).

In order to simplify and/or clarify the problem understanding, the following geo-
metrical approach could be also used. The idea is to virtually cut the leg i at one
given joint (generally located at the middle of the leg—but not necessarily—e.g.
without loss of generality at the joint located at point Ai2—denoted in the following
as joint Ai2). Then, virtually considering that the platform is fixed (and as a result
the location of point Ai mi ) and that all joints can freely move, the configuration loci
of the frame associated with joint Ai2 (in terms of translations plus rotations) when
belonging to the lower part of the leg (loci denoted as Ci1—(Fig. 7.2a) and when
belonging to the upper part of the leg (loci denoted as Ci2—(Fig. 7.2b) can be com-
puted. The solutions of the IGM are at the intersections of those two configuration
loci (Fig. 7.2c).

It must be mentioned that, in usual cases, the obtained configuration loci Cij are
defined by algebraic equations. Therefore, for having an idea of the maximal number
of intersection points, usual methods (such as the Bézout bounds Bézout 1764) can
be used.

In the next sectionswe present the IGM of somePKM that are solved by analytical
methods and/or by geometrical approaches.



7.1 Inverse Geometric Model 79

(a)

(b)

(c)

Fig. 7.2 The solutions of the IGM of a general PKM
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Fig. 7.3 The planar five-bar
mechanism (the gray pairs
denote the actuated joints)

7.1.2 Examples

7.1.2.1 Inverse Geometric Model of the Planar Five-Bar Mechanism

The planar five-bar mechanism (Fig. 7.3) is a 2 DOF parallel robot able to achieve
two translations in the plane (O, x0, y0) (see AppendixA) and which is composed
of two legs:

• A leg composed of 3 R joints whose axes are parallel, directed along z0 and located
at points A11, A12 and A13, the joint located at point A11 being actuated, and

• A leg composed of 2 R joints whose axes are parallel, directed along z0 and located
at points A21 and A22, the joint located at point A21 being actuated.

All other joints are passive. Thus, the vector of actuated coordinates is qT
a =

[q11 q21]. The end-effector is located at point A13 and its controlled coordinates
along x0 and y0 are denoted as x and y, respectively.

The MDH parameters of the five-bar legs are shown in Table7.1. It should be
mentioned here that frame F23 is the same as the frame F13, but its antecedent is
the frame F22.

As the robot has only 2 DOF, the orientation φ of the end-effector depends on the
coordinates x and y. The constraint relations on the platform coordinates (7.1) can
be written as:

tan φ = y − yA22

x − xA22

= y − d22 sin q21
x − d22 cos q21 − d21

(7.6)

in which [xA22 yA22 ]T is the position of the point A22 in the base frame. The value
of q21 is a function of x and y that will be determined below.

From Table7.1, the right-hand side of (7.2) can be computed. Considering in the
present example that the end-effector location is parameterized by the homogeneous
transformation
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Table 7.1 The MDH parameters of the five-bar legs

ij a(ij) μij σij γij bij αij dij θij rij

11 0 1 0 0 0 0 d11 = −lO A11 q11 0

12 11 0 0 0 0 0 d12 = lA11 A12 q12 0

13 12 0 0 0 0 0 d13 = lA12 A13 q13 0

21 0 1 0 0 0 0 d21 = lO A21 q21 0

22 21 0 0 0 0 0 d22 = lA21 A22 q22 0

23 22 0 2 0 0 0 d23 = lA22 A13 0 0

0Tp =

⎡
⎢⎢⎣
cosφ − sin φ 0 x
sin φ cosφ 0 y
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

we get:

[
x
y

]
=

[
di1 + di2 cos qi1 + di3 cos(qi1 + qi2)

di2 sin qi1 + di3 sin(qi1 + qi2)

]
, for i = 1, 2 (7.7)

where d23 = lA22 A13 , and

φ = q11 + q12 + q13, when considering leg 1

φ = q21 + q22, when considering leg 2. (7.8)

Rearranging the terms of (7.7), it can be found that

[
x − di1 − di2 cos qi1

y − di2 sin qi1

]
=

[
di3 cos(qi1 + qi2)

di3 sin(qi1 + qi2)

]
. (7.9)

Then, squaring both sides of (7.9) and equating both lines of (7.8), the reduced
form (7.4) of the loop-closure equations can be obtained as:

hp(x, qa) =
[
(x − d11 − d12 cos q11)2 + (y − d12 sin q11)2 − d2

13
(x − d21 − d22 cos q21)2 + (y − d22 sin q21)2 − d2

23

]
= 0 (7.10)

which can be simplified as:

hp(x, qa) =
[

a1 cos q11 + b1 sin q11 + c1
a2 cos q21 + b2 sin q21 + c2

]
= 0 (7.11)

where ai = −2di2 (x − di1), bi = −2di2y, ci = (x − di1)
2 + y2 + d2

i2 − d2
i3.
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Taking into account the half-angle formula:

cos qij = 1 − t2ij
1 + t2ij

, sin qij = 2tij
1 + t2ij

, (7.12)

where tij = tan(qij/2), and introducing those expressions into (7.11), we get:

hp(x, qa) =
[
(c1 − a1)t211 + 2b1t11 + (a1 + c1)
(c2 − a2)t221 + 2b2t21 + (a2 + c2)

]
= 0 (7.13)

from which we can find that

ti1 =
−bi ±

√
b2i − c2i + a2

i

ci − ai
(7.14)

or also

qi1 = 2 tan−1

⎛
⎝−bi ±

√
b2i − c2i + a2

i

ci − ai

⎞
⎠ . (7.15)

Note that:

• the value of q11 can be found from (7.7) for i = 1 without considering the Eq. (7.7)
for i = 2.

• the value of q21 can be found from (7.7) for i = 2 without considering the Eq. (7.7)
for i = 1.

This means that Eq. (7.7) can be solved independently.
In (7.15), the sign “±” correspond to the different working modes of the robot

(Fig. 7.4). From a geometric point of view, solving these equations is equivalent to
finding the intersection points of two circles (Fig. 7.4):

• Circle Ci1 centred in Ai1 of radius di2, which corresponds to the vertex space of
the point Ai2 when considering that it belongs to the link Ai1Ai2,

• Circle Ci2 centred in Ai3 (considered as fixed if the coordinates x and y are
known) of radius di3, which corresponds to the vertex space of the point Ai2 when
considering that it belongs to the link Ai2Ai3.

The values of q12 and q22 can be obtained using (7.9) as

qi2 = atan2 (y − di2 sin qi1, x − di1 − di2 cos qi1) − qi1, for i = 1, 2 (7.16)

where “atan2” is the four-quadrant inverse tangent function.
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Fig. 7.4 The two working
modes of the leg i of the
planar five-bar mechanism

Finally, the value of q13 can be directly obtained by introducing (7.15) and (7.16)
into the last equation of (7.13), i.e. q13 = q21 + q22 − q11 − q12.

7.1.2.2 Inverse Geometric Model of the 3–RPR Planar Parallel
Manipulator

The 3–RPR PPM (Fig. 7.5) is a 3 DOF parallel robot able to achieve two translations
in the plane (O, x0, y0) and one rotation around z0 and which is composed of three
legs, each leg being made of two passive R joints (with respective axes (Ai1, z0) and
(Ai3, z0)) and one active P joint whose direction is contained in the plane (O, x0, y0)
and whose configuration is parameterized by the variable qi2 (i = 1, . . . , 3).

Thus, the vector of actuated coordinates is qT
a = [q12 q22 q22]. The end-effector

is located at point P and its coordinates along x0 and y0 are denoted as x and y,
respectively. The orientation φ of the platform is defined as the angle between x0
and the segment A13A23.

The MDH parameters of the 3–RPR PPM legs are shown in Table7.2. In this
table, γi = atan2(yO Ai1, xO Ai1), where xO Ai1 and yO Ai1 are the coordinates of the
points O Ai1 expressed in the base frameF0.
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Fig. 7.5 The 3–RPR PPM.
a Kinematic architecture (the
gray pairs denote the
actuated joints). b Frames
associated to the MDH
parameters

(a)

(b)

Table 7.2 The MDH parameters of the 3–RPR PPM legs (i = 1, . . . , 3)

ij a(ij) μij σij γij bij αij dij θij rij

i1 0 1 0 γi 0 0 di1 = lO Ai1 qi1 + γi − π/2 0

i2 i1 0 1 0 0 π/2 0 0 qi2

i3 i2 0 0 0 0 −π/2 0 qi3 − π/2 0

p∗ i3 0 2 0 0 di4 = lAi3 P −εi 0

Note ‘∗’ the upperscript p denotes the platform frame
εi = atan2(p yAi3 P , pxAi3 P ), where pxAi3 P and p yAi3 P are the coordinates of the points Ai3
expressed in the moving platform frame Fp

From Table7.2, the right-hand side of (7.2) can be computed. Considering in the
present example that the end-effector location is parameterized by the homogeneous
transformation
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0Tp =

⎡
⎢⎢⎣
cosφ − sin φ 0 x
sin φ cosφ 0 y
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

it turns out that:
⎡
⎣

x
y
φ

⎤
⎦ =

⎡
⎣

xO Ai1 + qi2 cos qi1 + di4 cos(qi1 + qi3)

yO Ai1 + qi2 sin qi1 + di4 sin(qi1 + qi3)

qi1 + qi3 − εi

⎤
⎦ , for i = 1, . . . , 3. (7.17)

Rearranging the terms of the two first rows of (7.17) and introducing the fact that
φ + εi = qi1 + qi3 which is deduced from the third line, it can be found that

[
x − xO Ai1 − di4 cos(φ + εi )

y − yO Ai1 − di4 sin(φ + εi )

]
=

[
qi2 cos qi1
qi2 sin qi1

]
. (7.18)

Squaring both sides of (7.18) and summing the two rows, it comes that:

hp(x, qa) =
⎡
⎢⎣

(
xO A13 − xO A11

)2 + (
yO A13 − yO A11

)2 − q2
12(

xO A23 − xO A21

)2 + (
yO A23 − yO A21

)2 − q2
22(

xO A33 − xO A31

)2 + (
yO A33 − yO A31

)2 − q2
32

⎤
⎥⎦ = 0. (7.19)

where xO Ai3 = x − di4 cos(φ + εi ), yO Ai3 = y − di4 sin(φ + εi ) are the coordinates
of points O Ai3 expressed in the base frameF0.

It can be finally deduced from (7.19) that, for i = 1, . . . , 3:

qi2 = ±
√(

xO Ai3 − xO Ai1

)2 + (
yO Ai3 − yO Ai1

)2
. (7.20)

Finally, the passive variables can be found by:

qi1 = atan2
(
yO Ai3 − yO Ai1 , xO Ai3 − xO Ai1

)
, if qi2 ≥ 0

qi1 = atan2
(
yO Ai3 − yO Ai1 , xO Ai3 − xO Ai1

) + π, if qi2 < 0 (7.21)

and

qi3 = φ + εi − qi1. (7.22)

In (7.20), the sign “±” correspond to the different working modes of the robot
(which are, in that particular case, equivalent—Fig. 7.6). From a geometric point of
view, solving these equations is equivalent to finding the distance between the points
Ai1 and Ai3.
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(a) (b)

Fig. 7.6 The two working modes of the leg i of the 3–RPR PPM. a Working mode 1. b Working
mode 2

Fig. 7.7 The Orthoglide
robot. a Prototype. b
Kinematic chain (Courtesy
of Philippe Wenger and
Damien Chablat)

(a) (b)

7.1.2.3 Inverse Geometric Model of Other Planar Parallel Manipulators

The geometrical and analytical methodologies presented in Sects. 7.1.2.1 and 7.1.2.2
can be easily extended to any types of planar parallel robots andwill not be developed
here. The reader is referred to Bonev (2002) for further investigations.

7.1.2.4 Inverse Geometric Model of the Orthoglide

TheOrthoglide is a parallel robot composed of three identical legs (Fig. 7.7) allowing
three translational DOF of its end-effector (parameterized by the variables x , y and z
that represent respectively the translation along x0, y0 and z0 of the base frameF0).
Each leg is made of one linearly actuated link (parameterized by the variables qi1,
i = 1, . . . , 3, i.e. qT

a = [q11 q21 q31]) linked at its extremity to a spatial parallelogram
(Fig. 7.8a). The parallelogram is also attached to the mobile platform. Kinematically
speaking for obtaining the inverse kinematics, and without loss of generality, each
parallelogram chain can be replaced by an equivalent chain composed of two Ujoints
connected by a rigid link (Fig. 7.7b).

The directions of the three linear actuators of the Orthoglide are orthogonal
(Fig. 7.7b). The purpose is to create a mechanism with a workspace shape close
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Fig. 7.8 Description of the
Orthoglide kinematic chain.
a Kinematics of one leg.
b Equivalent kinematics of
one leg. c Fixed base

(a) (b)

(c)

Table 7.3 MDH parameters for the first frames corresponding to the first bodies of the Orthoglide
legs

ij a(ij) μij σij γij bij αij dij θij rij

11 0 1 1 0 0 0 0 0 q11
21 0 1 1 π/2 a π/2 0 0 q21 − a

31 0 1 1 0 a −π/2 0 0 q31 − a

to a cube and whose behavior is close to the isotropy (Merlet 2006a) wherever it is
located in its workspace (Chablat and Wenger 2003).

The leg MDH parameters of the equivalent kinematic chains for the legs are given
in Tables7.3 and 7.4.

From Tables7.3 and 7.4, the right-hand side of (7.2) can be computed. Consid-
ering in the present example that the end-effector location is parameterized by the
homogeneous transformation,

0Tp =

⎡
⎢⎢⎣
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

⎤
⎥⎥⎦
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Table 7.4 MDH parameters for the frames corresponding to the leg i of the Orthoglide (i =
1, . . . , 3)

ij a(ij) μij σij γij bij αij dij θij rij

i2 i1 0 0 0 0 −π/2 0 qi2 0

i3 i2 0 0 0 0 −π/2 0 qi3 0

i4 i3 0 0 0 0 0 d4 qi4 0

i5 i4 0 0 0 0 π/2 0 qi5 0

p i5 0 2 0 0 α1p = π/2,
α2p = −π/2,
α3p = −π

d6 0 0

it get that, for leg 1:
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

d4 cos q12 cos q13 + d6
−d4 sin q13

q11 − d4 cos q13 sin q12

⎤
⎦ (7.23)

for leg 2:
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

−a + q21 − d4 cos q23 sin q22
d4 cos q22 cos q23 + d6

a − d4 sin q23

⎤
⎦ (7.24)

and for leg 3:
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

d4 cos q32 cos q33 + d6
−a + q31 − d4 cos q33 sin q32

a + d4 sin q33

⎤
⎦ (7.25)

where a, d4 and d6 are geometric parameters defined in Fig. 7.8a, and, to take into
account the parallelogram constraints, we have

[
0
0

]
=

[
qi2 + qi5
qi3 + qi4

]
(7.26)

Simplifying (7.23)–(7.25), it turns out that:

hp =
⎡
⎣

(x − d6)2 + y2 + (z − q11)2 − d2
4

(x + a − q21)2 + (y − d6)2 + (z − a)2 − d2
4

(x − d6)2 + (y + a − q31)2 + (z − a)2 − d2
4

⎤
⎦ = 0. (7.27)

Developing, each row of (7.27) leads to a polynomial of the second order in qi1

q2
i1 + ci1qi1 + ci0 = 0, for i = 1, . . . , 3 (7.28)
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where

c11 = −2z

c10 = (x − d6)
2 + y2 + z2 − d2

4

c21 = −2(x + a)

c20 = (x + a)2 + (y − d6)
2 + (z − a)2 − d2

4

c31 = −2(y + a)

c30 = (x − d6)
2 + (y + a)2 + (z − a)2 − d2

4

from which we can find:

qi1 =
−ci1 ±

√
c2i1 − 4ci0

2
. (7.29)

Finally, the passive variables can be found from (7.23) by:

q12 = −q15 = atan2 (q11 − z, x − d6) (7.30)

q22 = −q25 = atan2 (q21 − x − a, y − d6) (7.31)

q32 = −q35 = atan2 (q31 − y − a, x − d6) (7.32)

q13 = −q14 = atan2 (−y, (x − d6)/ cos q12) (7.33)

q23 = −q24 = atan2 (−z, (y − d6)/ cos q22) (7.34)

q33 = −q34 = atan2 (z, (x − d6)/ cos q32) (7.35)

In (7.29), the sign “±” corresponds to the two differentworkingmodes of the robot
(Fig. 7.9). From a geometric point of view, solving these equations is equivalent to
finding the intersection between a line Li defining the displacement of the active
prismatic joints and a sphere Si that represents the displacement of the point Ai2
when the platform is fixed and the leg is virtually broken at point Ai2 (Fig. 7.9).

7.1.2.5 Inverse Geometric Model of the Gough-Stewart Platform

The 6–UPS PKM, also called the Gough-Stewart platform, is a robot composed of
six legs, each leg being made of a passive U joint fixed on the base, followed by an
active P joint and then a passive S joint (Fig. 7.10).

The MDH parameters associated to the frames of Fig. 7.11 for one leg are given
in Table7.5. For simplifying the computation, the base connecting points Ai1 are
considered to all belong to the same plane (O, x0, y0).
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Fig. 7.9 The two working modes of the Orthoglide leg i

Fig. 7.10 The Gough-Stewart platform (6–UPS SPM)

Table 7.5 MDH parameters for the frames corresponding to the first three joints of the leg i of the
6–UPS SPM

ij a(ij) μij σij γij bij αij dij θij rij

i1 0 0 0 γi 0 −π/2 di1 qi1 0

i2 i1 0 0 0 0 π/2 0 qi2 0

i3 i2 1 1 0 0 π/2 0 0 qi3

γi = atan2
(
yAi1 , xAi1

)
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(a) (b)

Fig. 7.11 Frames associated with the MDH parameters of the Gough-Stewart platform. a Frames
associated to the base of the Gough-Stewart platform. b Frames associated to the leg i

The parameters corresponding to the S joint are deliberately omitted. The com-
putation of the S joint coordinates is of no interest in that section as they have no
effect on the dynamic model if their corresponding friction are neglected (Khalil and
Ibrahim 2007). We will deliberately limit the analysis of the IGM of the Gough-
Stewart to the computation of the active joint coordinates only (that can be obtained
through the use of the translational part of (7.2) only). The computation of the passive
coordinates could be a good exercise for the interested reader. In particular, the first
and second joints of each leg which are needed in the dynamic model (Khalil and
Ibrahim 2007).

Using the general loop-closure equations, it can be seen that the implicit equations
linking the active coordinates to the platform coordinates are:

hp =

⎡
⎢⎢⎢⎢⎢⎢⎣

(xA16 − xA11)
2 + (yA16 − yA11)

2 + (z A16 − z A11)
2 − q2

13
(xA26 − xA21)

2 + (yA26 − yA21)
2 + (z A26 − z A21)

2 − q2
23

(xA36 − xA31)
2 + (yA36 − yA31)

2 + (z A36 − z A31)
2 − q2

33
(xA46 − xA41)

2 + (yA46 − yA41)
2 + (z A46 − z A41)

2 − q2
43

(xA56 − xA51)
2 + (yA56 − yA51)

2 + (z A56 − z A51)
2 − q2

53
(xA66 − xA61)

2 + (yA66 − yA61)
2 + (z A66 − z A61)

2 − q2
63

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (7.36)

where xAi1 , yAi1 and z Ai1 are the coordinates of the connecting points Ai1 in the base
frameF0 (i = 1, . . . , 6) and
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⎡
⎣

xAi6

yAi6

z Ai6

⎤
⎦ =

⎡
⎣

x
y
z

⎤
⎦ + 0Rp

⎡
⎣

pxAi6
p yAi6
pz Ai6

⎤
⎦

in which pxAi6 ,
p yAi6 and pz Ai6 are the (constant) coordinates of the connecting

points Ai6 in the platform frame Fp (i = 1, . . . , 6) and 0Rp is the rotation matrix
between the frames Fp and F0.

Finally, we get

qi3 = ±
√

(xAi6 − xAi1)
2 + (yAi6 − yAi1)

2 + (z Ai6 − z Ai1)
2 (7.37)

which is the solution of the IGM reduced to the active coordinates. Here also, the sign
“±” corresponds to the two different working modes of the leg i . From a geometric
point of view, solving these equations is equivalent to finding the distance between
the points Ai1 and Ai6.

7.2 Forward Geometric Model

7.2.1 General Methodology

The forward geometric model (FGM) consists in obtaining the value of platform
coordinates x as a function of the active joint coordinates qa , starting from the
expressions (7.3) or (7.4), i.e. to obtain x = H −1(qa) = G (qa). An additional
problem is to obtain the passive joint coordinates qd (which are needed for the
computation of the dynamic model) as a function of the active joint variables qa ,
i.e. qd = Gd(qa). The main idea that is usually followed is to adequately rearrange
the Eq. (7.4) in order to suppress the translation parameters of the vector x so that a
polynomial depending on the tangent, sine and/or cosine of the rotation parameters
of the vector x can be obtained. To simplify the calculations, it is generally necessary
to set the base frame origin O at one robot base anchor point (e.g. point A11 in
Fig. 7.1) and the moving platform frame origin P at one robot platform anchor point
(e.g. point A1m1 in Fig. 7.1). Note that this choice can also be taken while solving
the IGM.

In order to simplify and/or clarify understanding of the problem, the following
geometrical approach could be also used. The idea is to virtually disconnect a leg
from the robot moving platform, e.g. without loss of generality at the joint located at
point A1m1 (Fig. 7.12a). This joint will be denoted as joint A1m1 . In that case, even
when all the actuators are fixed, the moving platform gains one or more DOF and
the joint A1m1 can freely describe a configuration loci (translations plus rotations)
denoted asS . As joint A1m1 also belongs to the first leg, it also describes, when the
actuator of the leg 1 is fixed, another configuration loci denoted as C and called the
vertex space of the considered leg (Fig. 7.12b). The solutions of the FGM are at the
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(a)

(b)

(c)

Fig. 7.12 The solutions of the FGM of a general PKM
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intersection of the configuration loci S and C (Fig. 7.12c). The different solutions
are called the assembly modes of the robot. They correspond, for one given set of
active joints, to all the possible assembly configurations of the mechanism.

Let us recall that the different solutions of the IGM are called the working modes
(see Sect. 7.1).

It must be mentioned as previously that, in usual cases, the obtained configura-
tion loci C and S are defined by algebraic equations. Therefore, to get an idea of
the maximal number of intersection points, the usual methods (such as the Bézout
bounds Bézout 1764) can be used.

Sections7.2.2.1–7.2.2.5 present the FGM of some PKM that are solved by ana-
lytical methods and/or by geometrical approaches. Moreover, in Sect. 7.2.2.6, a list
of reference papers dealing with the FGM of other SPM is provided.

7.2.2 Examples

7.2.2.1 Forward Geometric Model of the Planar Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect. 7.1.2.1. Starting
from (7.10) and developing the expressions, we get

hp(x, qa) =
[

x2 + y2 + a1x + b1y + c1
x2 + y2 + a2x + b2y + c2

]
= 0 (7.38)

where ai = −2(di1+di2 cos qi1), bi = −2di2 sin qi1 and ci = (di1+di2 cos qi1)
2+

d2
i2 sin

2 qi1 − d2
i3.

From a geometric point of view, solving the two first equations of (7.38) is equiv-
alent to finding the intersection points of two circles (Fig. 7.13):

• Circle C1 centered in A12 of radius d13, which corresponds to the vertex space of
the point A13 when considering that it belongs to the link A12A13,

• Circle C2 centered in A22 of radius d23, which corresponds to the vertex space of
the point A13 when considering that it belongs to the link A22A13.

Thus, the two robot assembly modes correspond to the intersection points of
circles C1 and C2 whose expressions are, if b1 �= b2,

x =
− f2 ±

√
f 22 − 4 f1 f3

2 f1
y = e1x + e2 (7.39)

where

f1 = 1 + e21
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Fig. 7.13 The two assembly
modes of the planar five-bar
mechanism

f2 = 2e1e2 + a1 + b1e1

f3 = e22 + b1e2 + c1
e1 = −d1/d2
e2 = −d3/d2
d1 = a2 − a1
d2 = b2 − b1
d3 = c2 − c1 (7.40)

or, if b1 = b2

x = − c2 − c1
a2 − a1

y =
−b1 ±

√
b21 − 4(x2 + a1x + c1)

2
. (7.41)

Once the values of x and y are found, the expressions of the passive joint coordi-
nates q12, q13 and q22 can be obtained using the expressions given in Sect. 7.1.2.1.

7.2.2.2 Forward Geometric Model of the 3–RPR Planar Parallel
Manipulator

Let us consider again the 3–RPR PPM presented in Sect. 7.1.2.2. The way to obtain
the equations has been introduced in Gosselin et al. (1992) and this section makes
only a recall of the mentioned work.

For reasons of simplicity of calculations, but without loss of generality, let us now
consider that

• The base frame F0 is center in A11 (i.e. O ≡ A11) and that axis x0 is along the
vector

−−−−→
A11A21,
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• The moving platform frame Fp is center in A31 (i.e. P ≡ A31) and that axis xp

is along the vector
−−−−→
A13A23 (as previously).

In that case, Eq. (7.19) can be rewritten as

hp(x, qa) =
⎡
⎢⎣

x2 + y2 − q2
12(

x + lA31 A32 cosφ − lA11 A12

)2 + (
x + lA31 A32 sin φ

)2 − q2
22(

x + lA31 A33 cos(φ + ε3) − lA11 A13 cos γ3
)2 + c − q2

32

⎤
⎥⎦ = 0

(7.42)
where c = (

y + lA31 A33 sin(φ + ε3) − lA11 A13 sin γ3
)2 and γ3 is defined in Sect.

7.1.2.2.
After developing, one can obtain the algebraic form

hp(x, qa) =
⎡
⎣

x2 + y2 − q2
12

R x + S y + Q
U x + V y + W

⎤
⎦ = 0 (7.43)

with

R = 2lA31 A32 cosφ − 2lA11 A12

S = 2lA31 A32 sin φ

Q = −2 lA31 A32 lA11 A12 cosφ + l2A31 A32
+ l2A11 A12

− q2
12 + q2

22

U = 2lA31 A33 cos(φ + ε3) − 2lA11 A13 cos γ3

V = 2lA31 A32 sin(φ + ε3) − 2lA11 A13 sin γ3

W = −2 lA31 A33 lA11 A13 cos(φ + ε3) cos γ3 − 2 lA31 A33 lA11 A13 sin(φ + ε3) sin γ3

+ l2A31 A33
+ l2A11 A13

− q2
12 + q2

22. (7.44)

The two last equations of (7.43) are linear in x and y and a solution that depends
on φ is given by:

x = −−S W + V Q

R V − S U

y = −R W + U Q

R V − S U
(7.45)

which is valid as long as R V − S U �= 0.
Introducing (7.45) into the first row of (7.43) leads to

(−S W + V Q)2 + (−R W + U Q)2 − q2
12(R V − S U ) = 0 (7.46)

which is a function that depends on cosφ and sin φ. Taking into account that:
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Fig. 7.14 Coupler surface
for a 3–RPR PPM when leg
1 is disconnected and
actuators of legs 2 and 3 are
fixed

cosφ = 1 − t2φ
1 + t2φ

, sin φ = 2tφ
1 + t2φ

, (7.47)

where tφ = tan(φ/2), and introducing those expressions into (7.46), it is shown in
Gosselin et al. (1992) that a polynomial of degree 6 in tφ can be obtained:

c0 + c1tφ + c2t2φ + c3t3φ + c4t4φ + c5t5φ + c6t6φ = 0 (7.48)

in which the coefficients ci depend on the robot constant geometrical parameters and
actuated variables qi2. It must be mentioned that the coefficients are not given here
and finding them could be a good exercise for the interested reader.

Thus, from (7.48), it can be deduced that the FGM can have up to 6 solutions, i.e.
up to 6 assembly modes.

It is necessary to mention that the present equations miss some degenerated kine-
matic conditions that appear when R V − S U = 0. This problem is investigated in
Wenger et al. (2007) and the interested reader should have a look at the mentioned
paper.

From the geometric point of view, one could observe that, when the first leg of the
robot is disconnected from point A13 and for constant values of the actuated variables
q22 and q32, the resultingmechanism is equivalent to a passive four-bar linkagewhose
legs can freely rotate around the R joints located at A21 and A31 (Fig. 7.14). As a
result, the curve drawn by the point A13 (also called the coupler curve) when the
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Fig. 7.15 Examples of
possible assembly modes for
a 3–RPR PPM

four-bar linkage is freely moving is a sextic curve S , i.e. an algebraic curve of
degree 6.

As point A13 also belongs to the first leg, it moves on a circle C centered in A11
and of radius q12 when the leg 1 actuated joint is fixed. The circle C is the vertex
space of the leg 1. As a result, the solutions of the FGM of the 3–RPR PPM are at
the intersection of the sextic curve S and the circle C and at most 6 solutions may
exist (the proof is given in Merlet 2006b) (Fig. 7.15).

Once the values of x , y and φ are found, the expressions of the passive joint
coordinates qi1 and qi3 can be obtained using the expressions given in Sect. 7.1.2.2.

7.2.2.3 Forward Geometric Model of the Other Planar Parallel
Manipulators

The geometrical and analytical methodologies presented in Sects. 7.2.2.1 and 7.2.2.2
can be easily extended to other types of planar parallel robots. The reader is referred
for instance to Briot et al. (2008) andMerlet (1997, 2006b) for further investigations.

7.2.2.4 Forward Geometric Model of the Orthoglide

Let us consider again the Orthoglide robot presented in Sect. 7.1.2.4. Rewriting the
Eq. (7.27), we get

hp =
⎡
⎣

x2 + y2 + z2 + 2c1x + 2c2z + c21 + c22 − d2
4

x2 + y2 + z2 + 2c3x + 2c4y + 2c5z + c23 + c24 + c25 − d2
4

x2 + y2 + z2 + 2c6x + 2c7y + 2c8z + c26 + c27 + c28 − d2
4

⎤
⎦ = 0 (7.49)
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where

c1 = −d6
c2 = −q11

c3 = a − q21
c4 = −d6
c5 = −a

c6 = −d6
c7 = a − q31

c8 = −a.

Solving (7.49), it can be found that

x = c9z + c10
y = c11z + c12

z =
−c14 ±

√
c214 − 4c13c15

2c13
(7.50)

where

c9 = −(c2 − c5)c7/(c1c4 + c1c7 − c3c7 − c4c6)

c10 = −(c21 + c22 − c23 − c24 − c25)c4/(c1c4 + c1c7 − c3c7 − c4c6)

c11 = (c2 − c8)(c1 − c6)/(c1c4 + c1c7 − c3c7 − c4c6)

c12 = −(c21 + c22 − c26 − c27 − c28)(c1 − c3)/(c1c4 + c1c7 − c3c7 − c4c6)

c13 = c29 + c211 + 1

c14 = 2(c9c10 + c11c12 + c1c9 − c2)

c15 = c210 + c212 + 2c1c10 + c21 + c22 − d2
4 .

The sign “±” in (7.50) corresponds to the two robot assembly modes (Fig. 7.16).
Once thevalues of x , y and z are found, the expressions of thepassive joint coordinates
qi2, qi3, qi4 and qi5 can be found using the expressions given in Sect. 7.1.2.4.

From a geometric point of view, Eq. (7.49) are three equations of spheres Si

centered respectively in O1(0, 0, d6+q11), O2(d6−a+q21, 0, a) and O3(0, d6−
a + q31, a). Thus, the solutions of the FGM are the intersection points of those
spheres (Fig. 7.16).
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Fig. 7.16 The two assembly
modes of the Orthoglide

7.2.2.5 Forward Geometric Model of the Gough-Stewart Platform

The FGM of the Gough-Stewart platform is probably one of the most complicated
topics of the field. The ways to solve it will not be detailed here, but the aim of this
section is tomake brief recalls on themost relevant works concerning this problem so
that the reader can have an idea of what could be interesting w.r.t. his own objectives.

In the most general case, 6–UPS PKM can have up to 40 assembly modes. This
result was first shown inRonga andVust (1992), and then confirmed through different
approaches proposed in Husty (1996), Lazard (1993), Mourrain (1993), Raghavan
(1993) and Wampler (1996).

The first researchers who were able to give the expression of the univariate
polynomial of degree 40 whose roots correspond to the assembly modes of the
6–UPS PKM were Husty in Husty (1996) and Wampler in Wampler (1996).

The number of solutions considerably decreases for special arrangement of the
legs. For example, with the design proposed in Fig. 7.17 for which the legs 1, 2 and
3 (4 and 5, resp.) are linked to the same platform point A16 (A46, resp.), the number
of solutions is decreased to 8 and all of them can be obtained in a closed-form using
the following method (Hunt and Primrose 1993; Nanua and Waldron 1991):

1. Knowing the lengths q13, q23 and q33 of the legs 1, 2 and 3, compute the position
of point A16 (that will be considered here as the platform controlled point with
coordinates (x, y, z)) which is at the intersection of the three spheres centers in
A11, A21 and A31 of radius q13, q23 and q33, respectively; thus the translational
part of the vector x is found,

2. Knowing the position of A16 the lengths q43 and q53 of the legs 4 and 5, compute
the position of point A46 which is at the intersection of the spheres centered in
A16 of radius lA16 A46 and the two spheres centered in A41 and A51 of radius
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Fig. 7.17 An example of 6–UPS PKM with simplified FGM

q43 and q53, respectively; thus two independent platform orientation parameters
can be obtained while the rotation angle around the line A13A43 still cannot be
computed,

3. Finally, knowing the position of A16 and A46 and the length q63 of the leg 6,
compute the position of point A66 which is at the intersection of the spheres
centered in A16, A46 and A66 of radius lA16 A66 , lA46 A66 and q63, respectively; thus
the rotation angle around the line A16A46 is found.

Table7.6 proposes a (non-exhaustive) list of reference papers concerning manip-
ulators with a special leg arrangement leading to a decrease of the number of
FGM solutions.

7.2.2.6 Forward Geometric Model of Some Other Spatial Parallel
Manipulators

It is not possible in this book to deal with the FGM of too many PKM. So, in this
section, Table7.7 presents a list of papers dealing with the FGM of some interesting
SPM. It should be mentioned that this list is far from being exhaustive but only
presents SPM quite often met in the literature.

7.2.3 Assembly Mode Selection and Numerical Methods
for Solving the FGM

Previous sections have shown some methodologies to find all the possible assembly
modes corresponding to a given value qa of the active joint coordinates. However,
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Table 7.6 List of references dealingwith theFGM of the 6–UPS PKM with special leg arrangement
allowing one to decrease the complexity of the FGM

Type of robota Number of solutions for the FGM References

6–5 10 Yin and Liang (1994)

6–4 32 Hunt and Primrose (1993),
Innocenti (1995)

16 Innocenti and Parenti-Castelli
(1991a)

Husain and Waldron (1994)

Zhang and Song (1991)

6–3 8 Hunt and Primrose (1993)

Nanua and Waldron (1991) (robot
depicted at Fig. 7.17)

5–5 24 Hunt and Primrose (1993)

5–4 32 Lin et al. (1994)

24 Innocenti and Parenti-Castelli
(1993)

Faugère and Lazard (1995)

16 Innocenti and Parenti-Castelli
(1991b)

Lin et al. (1994)

8 Nair (1994)

5–3 16 Faugère and Lazard (1995)

8 Faugère and Lazard (1995)

4–4 24 Lin et al. (1992)

16 Lin et al. (1992)

Innocenti and Parenti-Castelli
(1992)

8 Bruyninckx (1998)

4–3 16 Faugère and Lazard (1995)

8 Faugère and Lazard (1995)

3–3 16 Dedieu and Norton (1990)

8 Faugère and Lazard (1995)
aThe symbol m-n robot corresponds to a robot with m attachment points on the base and n
attachment points on the mowing platform

one point was not discussed which is: among all the possible assembly modes, how
to choose the one that corresponds to the real platform pose?

This problem is still an open problem for research on PKM, even if some method-
ologies have already been proposed. To get the assembly mode knowledge, it is
possible to use additional encoders mounted in the passive joints (Arai et al. 1990;
Inoue et al. 1985). Such additional information can help to find the real posture of
the robot, and can also help to simplify the computation of the pose. For example, if
all active and passive joint coordinates of the leg k of the general robot presented in
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Table 7.7 List of references dealing with the FGM of some interesting SPM

Type of DOFa Robot name References

2T1R Zero-torsion PKM Bonev (2008)

3T Delta Clavel (1989)

Orthoglide-like familyb Company et al. (2002), Pashkevich
et al. (2006)

3-UPU Tsai and Joshi (2000)

Decoupled TPM Gogu (2004), Kong and Gosselin
(2002)

Carricato and Parenti-Castelli
(2002)

Pantopteron Briot and Bonev (2009a)

3R Agile Eye Bonev et al. (2006)

3–RSS wrist Di Gregorio (2004a)

3–UPU wrist Di Gregorio (2003)

3 exotic DOF PKM with 3 legs Di Gregorio (2005)

3T1R Quattro/Par4 Nabat (2007)

H4, I4, I4L Company and Pierrot (1999)

PAMINSA Briot et al. (2008)

MacGill SMG Alizadeh (2009)

Quadrupteron Kong and Gosselin (2011a)

Pantopteron–4 Briot and Bonev (2010)

3T2R 5–RPUR Tale-Masouleh et al. (2011)

Verne Machine Kanaan et al. (2007)

3T3R Gough-Stewart platform family See Sect. 7.2.2.5

Hexa family (6–RUS/6–PUS) Same approach as for
Gough-Stewart platforms

Hexapteron Seward and Bonev (2014)
aIn that column, the symbol “iT jR” denotes that the considered mechanism has i translational
DOF and j rotational DOF
bOrthoglide-like family regroups all 3T robotswith linear actuatorsmountedonto the base (whatever
is their orientation) followed by passive legs of the Orthoglide type (Fig. 7.8)

Fig. 7.1 are measured, the problem remains to find the direct geometric model of a
serial structure, which has a direct and unique solution (Khalil and Dombre 2002).

Another solution is to use exteroceptive sensors such as cameras. The most com-
mon approach consists of the direct observation of the end-effector pose (Espiau
et al. 1992; Horaud et al. 1998; Martinet et al. 1996). However, some applications
prevent visual observation of the end-effector of a parallel mechanism. For instance,
it is not wise to imagine observing the end-effector of a machine-tool while it is
generally not a problem to observe its legs that are most often designed with slim
and rectilinear rods (Merlet 2014).

The platform pose reconstruction based on visual observation of the robot legs
was proposed in Andreff et al. (2005) where vision was used to derive a visual
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servoing scheme based on the observation of a Gough-Stewart platform. After these
preliminary works, the approach was extended to control of the robot directly in the
image space by observation of the leg edges (from which the leg direction can be
extracted), which has proven to exhibit better performances in terms of accuracy than
the previous approach (Andreff et al. 2007). The approach was applied to several
types of robots, such as the Adept Quattro and other robots of the same family
(Andreff and Martinet 2006; Ozgur et al. 2011).

It is to be noticed that, for some particular cases, this last approach may not be
able to give an estimation of the platform pose (Andreff and Martinet 2006), and the
mapping between the leg space and Cartesian space may not be free of singularity
(Briot and Martinet 2013).

Numerical methods can also be used to get information about the robot’s
assembly mode. The probably most efficient ones are the Interval Analysis (IA)
(Merlet 2004) and other methodologies based on Cylindrical Algebraic Decomposi-
tion (CAD) (Chablat et al. 2011) that are able to give the intervals of PKM poses that
belong to the sameworkspace aspect (i.e. aworkspace area that is singularity-free and
bounded by singularities (Merlet 2006b)). This does unfortunately not bring a 100%
guarantee that the assembly mode can be known as, for some robots, a workspace
aspect can regroup several assembly modes (Zein et al. 2008).

To solve this problem, it can be interesting to solve the FGM iteratively. Know-
ing at a time t the exact pose of the PKM, the idea is to take advantage of the fact
that the unknown current pose at time t + δ t will be close to the pose that was
known at time t . Several well-known approaches that have solved non-linear numer-
ical systems can be used. Probably, the most efficient one is the Newton-Raphson
Scheme.

When it is not possible to find a closed-form solution to the constraint geometric
equation (7.4) giving x in terms of qa , we can use the Newton-Raphson Scheme as
follows.

Based on Eq. (7.4), we derive the following differential model, which can be used
to numerically compute the variables x for a given qa :

δx = Jx δqa (7.51)

where Jx is the robot Jacobian matrix that will be fully defined in Sect. 7.3, δx is a
small increment of the platform pose x and δqa is a small increment of the active
joint coordinates qa .

To calculate the pose x f corresponding to the active joint values qa f , we use the
following algorithm:

1. initialize by the current values qa0 of qa and x0 of x if known (by random if not);
2. compute the platform pose xk+1 at the iteration k + 1 by

xk+1 = xk + Jx
(
qa f − qak

)
(7.52)
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where qak = H (xk) is the solution of the IKM corresponding to the platform
pose value xk ,

3. if
∥∥qa f − qak

∥∥ < ε, where ε is a number small enough to be fixed by the user,
the algorithm can stop. If not, the second step must run again.

If the algorithm does not converge within a relatively large number of iterations,
or to obtain another solution, we have to restart the calculation using a new random
value of x0; if no convergence occurs for many different trials, it can be stated that
there is no solution or that the robot is too close from a singularity (see Sect. 7.5).

More information on the convergence conditions of this algorithm can be found
in Merlet (2006b).

7.3 Velocity Analysis

In this section, the kinematic relations linking the active joint velocities to the plat-
form twist and passive joint velocities are defined and analyzed.

7.3.1 Computation of the Kinematic Constraint Relations

The kinematic relations linking the active joint velocities to the platform twist could
be obtained by differentiating (7.4) w.r.t. time. However, this solution may not be
computationally efficient. Therefore, we propose to use the following methodology
which can take advantage of the recursive algorithms defined in Sect. 5.2.4.

Let us consider the input-output relation of the chain i (Fig. 7.1) which expresses
the platform twist (which will be denoted below as 0tp, the superscript “0” denoting
that the vector is given in the reference frameF0) as a function of all joint velocities
q̇i for the considered chain. From (5.6) and (5.7), we have

0tp = 0Jpi q̇i = [
0$i1 . . . 0$i mi

]
q̇i . (7.53)

where 0$ik is a unit twist representing the displacement of the end-effector when
joint ik is moving only and mi is the number of joints in the considered chain.2

Let us rewrite (7.53) by reorganizing matrix 0Jpi so that we can group:

• in a sub-matrix 0$ia the unit twists corresponding to the active joints of velocities
q̇ai, and

• in a sub-matrix 0$id the unit twists corresponding to the passive joints of velocities
q̇di.

2Here,we express directly (7.53) at the center of the platform.However, all the expressions presented
in this section could have also been obtained by expressing (7.53) at the last joint of the chain i ,
such as presented in Sect. 7.3.3.

http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Thus (7.53) becomes

0tp = [
0$ia

0$id
] [

q̇ai

q̇di

]
= 0$ia q̇ai + 0$id q̇di. (7.54)

To eliminate the passive joint velocities q̇di from (7.54), 0tp can be multiplied by a
wrench ζ i which is reciprocal to all passive joint twists 0$id but NOT to the active
joint twists 0$ia. In other words, this means that (see Sect. 3.4)

ζ T
i

0$id = 0 and ζ T
i

0$ia �= 0 (7.55)

ζ i is an actuation wrench which, if applied to the platform, can be resisted using only
the actuators of the chain i . Examples of wrenches reciprocal to some usual systems
of twists are given in AppendixC.

As a result, the following scalar equation can be obtained:

ζ T
i

0tp = (ζ T
i

0$ia) q̇ai. (7.56)

If the chain i has nai active joints, nai independent vectors ζ i can be found. Finally,
considering all legs, Eq. (7.56) can be rewritten under the matrix form:

⎡
⎢⎢⎢⎣

ζ T
1

ζ T
2
...

ζ T
n

⎤
⎥⎥⎥⎦

0tp =

⎡
⎢⎢⎣

ζ T
1

0$1a 0 . . . 0
0 ζ T

2
0$2a . . . 0

. . . . . . . . . . . .

0 0 . . . ζ T
n

0$na

⎤
⎥⎥⎦ q̇a (7.57)

where ζ k is a (6× ck) matrix groups all ck independent unit wrenches due to the nak

actuators of the kth leg. As a result, the system (7.57) is a system of nw = ∑
k ck

equations.
Thus, from (7.57), we define two matrices A and B such that

A =

⎡
⎢⎢⎣

ζ T
1

ζ T
2

. . .

ζ T
n

⎤
⎥⎥⎦ (7.58)

and

B = −

⎡
⎢⎢⎣

ζ T
1

0$1a 0 . . . 0
0 ζ T

2
0$2a . . . 0

. . . . . . . . . . . .

0 0 . . . ζ T
n

0$na

⎤
⎥⎥⎦ . (7.59)

http://dx.doi.org/10.1007/978-3-319-19788-3_3
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The matrix A is of dimension (nw × 6) and the matrix B is of dimension (nw × na).
Then, we rewrite (7.57) as

A0tp + Bq̇a = 0. (7.60)

From (7.58), it is necessary to point out that the row i of A is a unit wrench which
is aligned along the direction of the wrench applied by the actuator i on the platform
through the leg when it is developing an input effort in a static mode of operation
and in absence of any other type of external effects.

7.3.2 Kinematic Models

7.3.2.1 Condensed Form of Kinematic Constraint Relations

Let us define a vector 0tr which groups a set of ndof independent coordinates in 0tp

such that:

0tp = Ψt
0tr ⇔ 0tr = Ψinv

t
0tp (7.61)

where Ψt is a (6 × ndof) matrix while Ψinv
t is a (ndof × 6) matrix. Note that Ψinv

t
is a constant matrix composed of 0 and 1 only while Ψt may not be constant (see
examples in Sect. 7.3.4).

Using (7.61), we can rewrite (7.60) as:

Ar
0tr + Bq̇a = 0 (7.62)

whereAr = A Ψt is a (nw×ndof)matrix.Ar is a part of thematrixA defined in (7.60)
that relates the ndof independent coordinates of the platform twist 0tr to the actuated
joints q̇a . Thus, it has exactly the same property as A, i.e. its row i contains ndof

independent coordinates of the unit wrenches which are aligned along the direction
of the wrench applied by the actuator i on the platform through the legs when it is
developing an input effort in a static mode of operation and in absence of any other
type of external effects.

Matrices Ar and B are crucial for computation of the dynamic model of the PKM.
In a general manner, it can be proven that, for a PKM:

• without redundancy, the total number nw of independent actuation wrenches is
equal to the total number na of actuators and also to the number ndof of independent
DOF for the platform (nw = na = ndof), and thus matrices Ar and B are square
of dimension (na × na),

• with actuation redundancy for which na > ndof, the total number nw of indepen-
dent actuation wrenches is equal to na . Thus matrix B is a (na ×na) square matrix
while matrix Ar is rectangular of dimension (na × ndof),
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• with kinematic redundancy for which na > ndof, the total number nw of indepen-
dent actuation wrenches is equal to ndof. Thus matrix Ar is a (ndof × ndof) square
matrix while matrix B is rectangular of dimension (ndof × na).

7.3.2.2 Kinematic Models of PKM Without Redundancy

Matrices Ar and B being square for a PKM without redundancy, the forward kine-
matic model (FKM) is given by:

0tr = −A−1
r Bq̇a = Jq̇a (7.63)

J = −A−1
r B is the kinematic Jacobian matrix of the PKM. This expression is valid

as long as matrix Ar is not singular. The singularity conditions of matrix Ar are
disclosed in Sect. 7.5.

The inverse kinematic model (IKM) is given by:

q̇a = −B−1Ar
0tr = Jinv

0tr (7.64)

where Jinv = −B−1Ar is the inverse kinematic Jacobian matrix. For PKM without
redundancy, Jinv = J−1 which is not the case for other types of PKM. The expres-
sion (7.64) is valid as long as matrix B is not singular. The singularity conditions of
matrix B are disclosed in Sect. 7.5.

Please note that J and Jinv are NOT the Jacobian and inverse Jacobian matrices of
the robot, but the kinematic Jacobian and inverse kinematic Jacobian matrices. This
is because they do not relate the actuated joint velocities q̇a to the derivative w.r.t.
time of the platform coordinates (denoted as ẋ) but to the platform twist 0tr . The
Jacobian and inverse Jacobian matrices are defined at Sect. 7.3.2.5.

7.3.2.3 Kinematic Models of PKM with Actuation Redundancy

In that case, matrix Ar being rectangular while matrix B is square, the IKM can be
definedwithout any problemusing (7.64)—as long asmatrixB is not singular—while
the FKM becomes:

0tr = J+
invq̇a (7.65)

where J+
inv = (

JT
invJinv

)−1
JT

inv is the pseudo-inverse of the inverse kinematic Jacobian
matrix Jinv defined at (7.64).
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7.3.2.4 Kinematic Models of PKM with Kinematic Redundancy

In that case, matrix B being rectangular while matrix Ar is square, the FKM can be
defined without any problem using (7.63)—as long as matrix Ar is not singular—
while the IKM becomes:

q̇a = J+0tr + (
1na − J+J

)
ξ (7.66)

where J+ = JT
(
JJT

)−1
is the pseudo-inverse of the kinematic Jacobian matrix J

defined at (7.63) and ξ is an arbitrary vector in the q̇a space (Khalil and Dombre
2002).

7.3.2.5 Relation Between the Platform Coordinate Derivatives
with Respect to Time and the Platform Twist

In Sects. 7.1 and 7.2, we denote as x the ndof independent platform coordinates. As
a result, the vector ẋ is different from the platform twist 0tp, and corresponds only
to the vector of the derivatives w.r.t. time of the independent platform coordinates.

From the differentiation w.r.t. time of (7.1), ẋ is related to ẋp, i.e. the vector of
the derivatives w.r.t. time of all platform coordinates by

ẋ = Ψx ẋp or also ẋp = Ψinv
x ẋ (7.67)

where Ψx and Ψinv
x are usually constant matrices but not necessarily.

ẋp is usually a vector composed of 6 coordinates (it can be greater than 6 if
homogeneous transformation matrices, quaternions, or other less usual parameters
are used to define the platform pose, such as the Study parameter (Pfurner and Husty
2010), but that case will not be treated here). Let us consider here that those 6
components are:

• ẋ, ẏ, ż the three components of the translational velocity of the platform frame
Fp w.r.t.F0 and expressed in F0, and

• φ̇, θ̇ , ψ̇ the derivatives w.r.t. time of the three ZY Z Euler angles characterizing
the rotation of Fp w.r.t.F0.

Thus, ẋT
p = [ẋ ẏ ż φ̇ θ̇ ψ̇].

In that case, the rotational velocity of the platform is given by:

0ωp =
⎡
⎣

ψ̇sθcφ − θ̇sφ
ψ̇sθ sφ + θ̇cφ

φ̇ + ψ̇cθ

⎤
⎦ (7.68)

which can be rewritten in the matrix form
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0ωp =
⎡
⎣
0 −sφ sθcφ

0 cφ sθ sφ
1 0 cθ

⎤
⎦

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ = D

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ . (7.69)

Thus, we can deduce that the platform twist 0tp is equal to:

0tp =
[

13 03
03 D

]
ẋp = Dẋp. (7.70)

Similar equations can be found whatever are the types of parameters.
Now, left-multiplying (7.70) by the matrix Ψinv

t defined in (7.61) and introduc-
ing (7.67) in it, we get

0tr = Ψinv
t D Ψinv

x ẋ = Dr ẋ (7.71)

where Dr = Ψinv
t D Ψinv

x is a (ndof × ndof) invertible matrix.

7.3.2.6 Obtaining the Kinematic Models by Differentiating
the Geometric Constraint Equations

If the relation (7.4) is available, the kinematic relationships can be obtained through
its differentiation w.r.t. time, which leads to:

Ad ẋ + Bd q̇a = 0 (7.72)

where,

Ad =
[
∂hp

∂x

]
(7.73)

and

Bd =
[
∂hp

∂qa

]
. (7.74)

Introducing (7.71) into (7.62), we can link the usual equations (7.72) to the kine-
matic relationships defined in Sect. 7.3.2.1 by

Ar Dr ẋ + Bq̇a = 0. (7.75)

By identification between (7.72) and (7.75), we thus obtain

Ad = Ar Dr (7.76)

Bd = B (7.77)
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which gives the relations between the usual equations (7.72) and the kinematic con-
straints defined in Sect. 7.3.2.1.

Please note that, from (7.72), we can define the expression of the Jacobian matrix
which is, for a mechanism without redundancy:

Jx = −A−1
d B (7.78)

so that the following relations hold:

ẋ = Jx q̇a (7.79)

and

q̇a = J−1
x ẋ. (7.80)

7.3.3 Computation of the Passive Joint Velocities

The computation of the passive joint velocities is necessary for the computation of
the dynamic model. Therefore, the way to compute them is defined in this section.

All joint velocities could be obtained by differentiating (7.3) w.r.t. time. However,
this solution may not be computationally efficient. Therefore, we propose to use the
following methodology which is based on equating the twist at the terminal frame of
each chain as a function of the platform twist 0tp from one side, and as a function of
the joint velocities of the chain from the other side. This method can take advantage
of the recursive algorithms defined in Sect. 5.2.4.

Let us consider the chain i of the PKM, which is composed of mi joints (Fig. 7.1).
From (3.2), we can compute the twist of the platform at point Ai mi (that will be
denoted as ti

p) as:

0ti
p = 0tp +

[0ωp × 0rP Ai mi

0

]
(7.81)

which can also be rewritten in the matrix form:

0ti
p =

[
13 −0r̂P Ai mi

0 13

]
0tp = Jti

0tp (7.82)

where Jti is a (6 × 6) matrix.
As the joint located at Ai mi also belongs to the chain i , its twist can be obtained

by using the relation (5.8) as:

0ti
p = 0Ji mi q̇i =

[
0$i1

i mi
. . . 0$i mi

i mi

]
q̇i (7.83)

http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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where q̇i represents the vector of all joint velocities of the chain i , 0Ji mi =
0Ri mi

i mi Ji mi is the chain i kinematic Jacobian matrix of dimension (6 × mi ) and
$ik

i mi
is a unit twist representing the displacement of the chain tip Ai mi when joint

ik is moving only. The expression of i mi Ji mi can be obtained by the recursive algo-
rithm (5.21).

Equation (7.83) can be rewritten by reorganizing the matrix 0Ji mi so that we can
group:

• in a sub-matrix 0Jai the unit twists 0$ik
i mi

corresponding to the active joints of
velocities q̇ai, and

• in a sub-matrix 0Jdi the unit twists 0$ik
i mi

corresponding to the passive joints of
velocities q̇di.

Thus (7.83) becomes

0ti
p = 0Ji mi q̇i = [

0Jai
0Jdi

] [
q̇ai

q̇di

]
= 0Jaiq̇ai + 0Jdiq̇di (7.84)

or also

0tc i
p = 0Jdiq̇di (7.85)

where 0tc i
p = 0ti

p − 0Jaiq̇ai.
As q̇di is a vector of dimension ndi < 6, only ndi components of 0tc i

p are inde-
pendent. Let us define a vector tc i

r of ndi independent components such that

tc i
r = Ψt i

0tc i
p (7.86)

with Ψt i a (ndi × 6) matrix. Note that usually, the matrix Ψt i can be found by
projecting the Eq. (7.85) in the last frame (or the last one before) of the chain (see
the examples in Sect. 7.3.4).

Introducing (7.61), (7.82) and (7.86) into (7.84) and (7.85) leads to:

Jc
ti
0tr − Jtaiq̇ai = Jtdiq̇di (7.87)

with

Jc
ti = Ψt i Jti Ψt (7.88)

a (ndi × ndof) matrix,

Jtai = Ψt i
0Jai (7.89)

a (ndi × nai) matrix (nai being the number of actuated joints in the chain i), and

Jtdi = Ψt i
0Jdi (7.90)

http://dx.doi.org/10.1007/978-3-319-19788-3_5
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a (ndi × ndi) matrix.
Thus, as the platform twist 0tr and active joint velocities q̇ai are considered known

by using the equations presented in Sects. 7.3.1 and 7.3.2, the joint velocities q̇di of
the chain i can be found by inverting the matrix Jtdi in (7.87). The conditions of
singularity of matrix Jtdi are disclosed in Sect. 7.5.2.

Now, considering all legs, we have

Jtdq̇d = Jt
0tr − Jta q̇a (7.91)

with

Jtd =

⎡
⎢⎢⎢⎣

Jtd1 0nd1×nd1 . . . 0nd1×ndn

0nd2×nd1 Jtd2 . . . 0nd2×ndn
...

...
. . .

...

0ndn×nd1 0ndn×nd2 . . . Jtdn

⎤
⎥⎥⎥⎦ (7.92)

a (nd × nd) matrix (nd being the total number of passive joints).
Moreover,

Jt =
⎡
⎢⎣

Jc
t1
...

Jc
tn

⎤
⎥⎦ (7.93)

a (nd × ndof) matrix,

Jta =

⎡
⎢⎢⎢⎣

Jta1 0nd1×na1 . . . 0nd1×nan

0nd2×na1 Jta2 . . . 0nd2×nan
...

...
. . .

...

0ndn×na1 0ndn×na2 . . . Jtan

⎤
⎥⎥⎥⎦ (7.94)

a (nd × na) matrix.
Finally, we get

q̇d = J−1
td (Jt

0tr − Jta q̇a). (7.95)

It is necessary to mention that the matrices Jt , Jta and Jtd are crucial for com-
putation of the dynamic model of the PKM.

7.3.4 Examples

In this section, we present the first-order kinematic models of some PKM described
in the previous section.
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7.3.4.1 First-Order Kinematics of the Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect. 7.1.2.1. For this
mechanism, one can show that the relation (7.53) can be expressed as:

0tp = [
0$11

0$12
0$13

]
q̇1, (7.96)

0tp = [
0$21

0$22
]

q̇2, (7.97)

with

0$11 = [−d12 sin q11 − d13s121 d12 cos q11 + d13c121 0 0 0 1
]T

, (7.98)
0$12 = [−d13s121 d13c121 0 0 0 1

]T
, (7.99)

0$13 = [
0 0 0 0 0 1

]T
, (7.100)

and

0$21 = [−d22 sin q21 − d23s122 d22 cos q21 + d23c122 0 0 0 1
]T

,

(7.101)

0$22 = [−d23s122 d23c122 0 0 0 1
]T

, (7.102)

where 0tp = [ẋ ẏ 0 0 0 φ̇]T , q̇1 = [q̇11 q̇12 q̇13]T , and q̇2 = [q̇21 q̇22]T , and
c12i = cos(qi1 + qi2) and s12i = sin(qi1 + qi2) (i = 1, 2).

From (7.54) and the fact that the first revolute joint of each leg are actuated only,
it turns out that:

• q̇a1 = q̇11, q̇a2 = q̇21,
• q̇d1 = [q̇12 q̇13]T , q̇d2 = q̇22,
• 0$a1 = 0$11,

0$a2 = 0$21,

• 0$d1 = [0$12
0$13], 0$d2 = 0$22.

The system of wrenches ζ i satisfying the Eq. (7.55) (andwhich are thus reciprocal
to the passive joint twists and NOT to the active joint twists) are:

• For the leg 1, ζ 1 = [
c121 s121 0 0 0 0

]T ,

• For the leg 2, ζ 2 = [
c122 s121 0 0 0 0

]T .

Let us note that ζ 1 is a pure force along
−−−−→
A12A13 reciprocal to 0$12 and 0$13 (and not

0$11). Taking into account that the motion is planar, this vector is uniquely defined.
Similarly, ζ 2 is a pure force along

−−−−→
A22A13 reciprocal to 0$22 (and not 0$21).

Thus, the matrices A and B of (7.60) can be written as

A =
[
ζ T
1

ζ T
2

]
=

[
c121 s121 0 0 0 0
c122 s121 0 0 0 0

]
(7.103)
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B = −
[
ζ T
1

0$1a 0
0 ζ T

2
0$2a

]
(7.104)

with, for i = 1, 2 (after simplifications),

ζ T
i

0$ia = di2 sin qi2. (7.105)

As already mentioned, the five-bar mechanism has only two DOF, which are
parameterized by the coordinates x = [x y]T . As a result, we choose the two first
components of the twist 0tp as the independent velocities. Thus, 0tr = [ẋ ẏ]T and
the matrix Ψinv

t defined in the relation (7.61) as the matrix relating 0tr to 0tp by
0tr = Ψinv

t
0tp is equal to

Ψinv
t =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
. (7.106)

The matrix Ψt defined in the relation (7.61) as the matrix relating 0tr to 0tp by
0tp = Ψt

0tr can be found from the following proof. By differentiating w.r.t. time
the constraint relationship on the platform coordinates (7.6) defined in Sect. 7.1.2.1,
we obtain:

φ̇

cos2 φ
= (ẏ − d22q̇21 cos q21)(x − d22 cos q21 − d21)

(x − d22 cos q21 − d21)2

− (ẋ + d22q̇21 sin q21)(y − d22 sin q21)

(x − d22 cos q21 − d21)2
(7.107)

or also, after grouping the terms

φ̇ = ax ẋ + ay ẏ + aqq̇21 (7.108)

with

ay = cos2 φ

x − d22 cos q21 − d21
,

ax = − (y − d22 sin q21) cos2 φ

(x − d22 cos q21 − d21)2
,

aq = −d22
(x − d21) cos q21 + y sin q21 − d22

(x − d22 cos q21 − d21)2
cos2 φ.

Finally, introducing (7.112) into (7.108), we have:

φ̇ = (ax + aq j21inv)ẋ + (ay + aq j22inv)ẏ (7.109)
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where j ij
inv is the term in the i th row and j th column of the matrix Jinv that will be

defined later.
At the end, the matrix Ψt is defined by

Ψt =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

(ax + aq j21inv) (ay + aq j22inv)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7.110)

As a result, the first-order IKM and FKM are given by:

0tr = −A−1
r Bq̇a = Jq̇a (7.111)

and

q̇a = −B−1Ar
0tr = Jinv

0tr (7.112)

where

Ar = A Ψt =
[
c121 s121
c122 s122

]
. (7.113)

Now that the first-order IKM and FKM of the five-bar mechanism are computed,
let us find the expression of the passive joint velocities.

By identification between the relations (7.96), (7.97) and (7.85), we have:

0Jd1 = 0$d1,
0Jd2 = 0$d2 (7.114)

0tc 1
p = 0tp − 0$a1q̇11,

0tc 2
p = 0tp − 0$a2q̇21. (7.115)

As the matrix 0Jd1 (0Jd2, resp.) is of rank 2 (rank 1, resp.), only two components
(one component, resp.) of 0tc 1

p (0tc 2
p , resp.) are independent.

Projecting thematrices 0Jdi in the frame of the linkBi2 (i = 1, 2), their expression
becomes

12Jd1 = 12R0
0Jd1 =

[
0 d13 0 0 0 1
0 0 0 0 0 1

]T

(7.116)

and

22Jd2 = 22R0
0Jd22 = [

0 d23 0 0 0 1
]T (7.117)
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where

i2R0 =
⎡
⎣

c12i s12i 0
−s12i c12i 0
0 0 1

⎤
⎦ . (7.118)

In (7.116), we can see directly that the second and last rows of the matrix 12Jd1
are independent. From (7.116), the second row of 22Jd2 is independent. Thus, by
identification between (7.116), (7.117) and (7.86), the matrices Ψt 1 and Ψt 2 are
defined by

Ψt 1 =
[
0 1 0 0 0 0
0 0 0 0 0 1

]
12R0 =

[−s121 c121 0 0 0 0
0 0 0 0 0 1

]
(7.119)

Ψt 2 = [
0 1 0 0 0 0

] 22R0 = [−s122 c122 0 0 0 0
]
. (7.120)

Then, by straightforwardly using the Eqs. (7.87)–(7.90), we obtain the kinematic
relationship:

Jt
0tr − Jta q̇a − Jtdq̇d = 0 (7.121)

with

Jt =
⎡
⎣

−s121 c121
(ax + aq j21inv) (ay + aq j22inv)−s122 c122

⎤
⎦ (7.122)

Jta =
⎡
⎣

d21 cos q21 + d31 0
1 0
0 d22 cos q22 + d32

⎤
⎦ (7.123)

Jtd =
⎡
⎣

d13 0 0
1 1 0
0 0 d23

⎤
⎦ (7.124)

with q̇T
a = [q̇11 q̇12] and q̇T

d = [q̇21 q̇31 q̇22], from which we deduce:

q̇d = J−1
td (Jt

0tr − Jta q̇a). (7.125)

7.3.4.2 First-order Kinematics of the 3–RPR Planar Parallel
Manipulator

In this section,we studyonly the input/output kinematic relations of the 3–RPR planar
parallel manipulator introduced in Sect. 7.1.2.2. The computation of the passive joint
velocities is not introduced and left as an exercise for the reader.
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Following the method of Sect. 7.3.1, and by using the results presented in the
AppendixC.3.1, we have a matrix A equal to:

AT = [
ζ 1 ζ 2 ζ 3

]
(7.126)

with ζ i a unit wrench reciprocal to the unit twists of joints i1 and i3 and not to the

unit twist of joint i2. It is a force along
−−−−→
Ai1Ai3 whose expression is given by:

ζ T
i = 1

qi2

[
0rT

Ai1 Ai3

(
0rP Ai3 × 0rAi1 Ai3

)T
]

= [
cos qi1 sin qi1 0 0 0 yAi3P cos qi1 − xAi3P sin qi1

]
(7.127)

where the points Aij are described at Fig. 7.5, qi2 = ∥∥rAi1 Ai3

∥∥ is the active joint
variable for leg i , whose expression is given at (7.20), xAi3P = x − di4 cos(φ + εi )

and yAi3P = y − di4 cos(φ + εi ), di4 and εi being defined in Sect. 7.1.2.2.
Moreover, as shown in the AppendixC.4.1, for any leg of the robot, $i2 = $ia is

a twist representing a pure translation along the P joint direction. As a result,

0$T
ia = 1

qi2

[
0rT

Ai1 Ai3
01×3

]

= [
cos qi1 sin qi1 0 0 0 0

]
. (7.128)

Thus, the matrix B is equal to:

B = −
⎡
⎣

ζ T
1

0$1a 0 0
0 ζ T

2
0$2a 0

0 0 ζ T
3

0$3a

⎤
⎦ (7.129)

with

ζ T
i

0$ia = 1. (7.130)

The 3–RPR planar parallel manipulator having 3 DOF in the plane (O, x0, y0),
0tp = Ψt

0tr with

Ψt =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7.131)

As a result,

AT
r = ΨT

t AT = [
ζ r
1 ζ r

2 ζ r
3

]
(7.132)
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with

ζ r T
i = ζ T

i Ψt = [
cos qi1 sin qi1 yAi3P cos qi1 − xAi3P sin qi1

]
. (7.133)

Finally, we have

Ar
0tr + Bq̇a = 0. (7.134)

7.3.4.3 First-Order Kinematics of the Orthoglide

In this section, we study only the input/output kinematic relations of the Orthoglide
introduced in Sect. 7.1.2.4. The computation of the passive joint velocities is tedious,
this is the reason why it is not detailed here but is given in:
http://www.irccyn.ec-nantes.fr/~briot/Books.html.

Following the method of the Sect. 7.3.1, and by using the results presented in the
AppendixC.4 and using the fact that, when the actuator i is blocked, the leg shown
in Fig. 7.8b is a UU passive system, we have a matrix A equal to:

AT = [
ζ 1 ζ 2 ζ 3

]
(7.135)

with

ζ T
i = 1

d4

[
0rT

Ai3 Ai4

(
0rP Ai4 × 0rAi3 Ai4

)T
]

(7.136)

where the points Aij are described at Fig. 7.8, and d4 = ∥∥rAi3 Ai4

∥∥ is a constant length

defined in Table7.3. ζ i is a force directed along
−−−−→
Ai3Ai4.

Moreover, for any leg of the robot, $i1 = $ia is a twist representing a pure
translation along the P joint direction. As a result,

0$T
1a = [

0 0 1 01×3
]

(7.137)

0$T
2a = [

1 0 0 01×3
]

(7.138)

0$T
3a = [

0 1 0 01×3
]
. (7.139)

Thus, the matrix B is equal to:

B = − 1

d4

⎡
⎣

ζ T
1

0$1a 0 0
0 ζ T

2
0$2a 0

0 0 ζ T
3

0$3a

⎤
⎦ (7.140)

with
ζ T
1

0$1a = z A13 A14 (7.141)

http://www.irccyn.ec-nantes.fr/~briot/Books.html
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ζ T
2

0$2a = xA23 A24 (7.142)

and

ζ T
3

0$3a = yA33 A34 (7.143)

in which xAi3 Ai4 , yAi3 Ai4 and z Ai3 Ai4 are the coordinates of the vector 0rAi3 Ai4

expressed in the base frame.
The Orthoglide having 3 translational DOF, 0tp = Ψt

0tr with

Ψt =
[

13
03×3

]
. (7.144)

As a result,

AT
r = [

ζ r
1 ζ r

2 ζ r
3

]
(7.145)

with

ζ r T
i = 0rT

Ai3 Ai4
. (7.146)

Finally, we have

Ar
0tr + Bq̇a = 0. (7.147)

7.3.4.4 First-Order Kinematics of the Gough-Stewart Platform

In this section, we study only the input/output kinematic relations of the Gough-
Stewart platform introduced in Sect. 7.1.2.5.

Following the method of Sect. 7.3.1, and by using the results presented in the
AppendixC.4.1, we have a matrix A equal to:

AT = [
ζ 1 . . . ζ 6

]
(7.148)

with

ζ T
i = 1

qi3

[
0rT

Ai1 Ai6

(
0rP Ai6 × 0rAi1 Ai6

)T
]

(7.149)

where the points Aij are described at Fig. 7.10 and qi3 = ∥∥rAi1 Ai6

∥∥ is the active joint

variable for leg i , whose expression is given at (7.37). ζ i is a pure force along
−−−−→
Ai1Ai6

which is reciprocal to all passive joint twists of the leg i (and not the active joint
twists).
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Moreover, as shown in the AppendixC.4.1, for any leg of the robot, $i3 = $ia is
a twist representing a pure translation along the P joint direction. As a result,

0$T
ia = 1

qi3

[
0rT

Ai1 Ai6
01×3

]
. (7.150)

Finally, the matrix B is equal to:

B = −

⎡
⎢⎢⎣

ζ T
1

0$1a 0 . . . 0
0 ζ T

2
0$2a . . . 0

. . . . . . . . . . . .

0 0 . . . ζ T
6

0$6a

⎤
⎥⎥⎦ (7.151)

with

ζ T
i

0$ia = 1. (7.152)

The Gough-Stewart platform having 6 DOF, A = Ar , 0tp = 0tr and we finally
have

A0tp + Bq̇a = 0. (7.153)

7.4 Acceleration Analysis

7.4.1 Kinematic Constraint Relations of the Second Order

The second-order kinematic relations could be obtainedbydifferentiating (7.62)w.r.t.
time. However, this solution may not be computationally efficient. Therefore, we
propose to use the following methodology which can take advantage of the recursive
algorithms defined in Sect. 5.3. From (5.30), we can express for the chain i the
acceleration of the platform as a function of all joint accelerations of the considered
leg as:

0 ṫp =
[
0v̇p
0ω̇p

]
= 0Jpi q̈i + 0bpi = [

0$i1 . . . 0$i mi

]
q̈i + 0bpi (7.154)

where 0Jpi is defined at (7.53) and 0bpi = 0Rp
pbpi with

pbpi defined at (5.31).
As previously, let us rewrite (7.154) by reorganizing matrix 0Jpi so that we can

group:

• in a sub-matrix 0$ia the unit twists 0$ik corresponding to the active joints of
velocities q̇ai, and

• in a sub-matrix 0$id the unit twists 0$ik corresponding to the passive joints of
velocities q̇di.

http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Thus (7.154) becomes

0 ṫp = 0$ia q̈ai + 0$id q̈di + 0bpi . (7.155)

Similarly as in Sect. 7.3.1, to eliminate the passive joint accelerations q̈di from
(7.155), 0 ṫp can be multiplied by the wrench ζ i which is reciprocal to all passive
joint twists 0$id but NOT to the active joint twists 0$ia. As a result, the following
scalar equation can be obtained:

ζ T
i

0 ṫp = (ζ T
i

0$ia) q̈ai + ζ T
i

0bpi . (7.156)

Finally, considering all legs, Eq. (7.156) can be rewritten under the matrix form:

⎡
⎢⎢⎢⎣

ζ T
1

ζ T
2
...

ζ T
n

⎤
⎥⎥⎥⎦

0 ṫp =

⎡
⎢⎢⎣

ζ T
1

0$1a 0 . . . 0
0 ζ T

2
0$2a . . . 0

. . . . . . . . . . . .

0 0 . . . ζ T
n

0$na

⎤
⎥⎥⎦ q̈a +

⎡
⎢⎢⎢⎣

ζ T
1

0bp1
ζ T
2

0bp2
...

ζ T
n

0bpn

⎤
⎥⎥⎥⎦ . (7.157)

Thus, by introducing (7.58) and (7.59) into (7.157), we obtain

A0 ṫp + Bq̈a = 0b
′
p (7.158)

with

0b
′
p =

⎡
⎢⎢⎢⎣

ζ T
1

0bp1
ζ T
2

0bp2
...

ζ T
n

0bpn

⎤
⎥⎥⎥⎦ . (7.159)

7.4.2 Forward and Inverse Second-Order Kinematic Models

7.4.2.1 Condensed Form of the Second-Order Kinematic Constraint
Relations

Let us define the vector 0 ṫr as the derivative w.r.t. time of the twist 0tr . Thus,
from (7.61), the following relations hold :

0 ṫp = Ψt
0 ṫr + Ψ̇t

0tr ⇔ 0 ṫr = Ψinv
t

0 ṫp. (7.160)

Using (7.160), we can rewrite (7.158) as:

Ar
0 ṫr + Bq̈a = 0bp (7.161)
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where Ar = A Ψt is defined in (7.62) and

0bp = 0b
′
p − AΨ̇t

0tr . (7.162)

7.4.2.2 Second-Order Kinematic Models of PKM Without Redundancy

MatricesAr andB being square for aPKM without actuation redundancy, the second-
order FKM is given by:

0 ṫr = −A−1
r (Bq̈a + 0bp) = Jq̈a + at (7.163)

with J = −A−1
r B is defined in (7.63) and at = −A−1

r
0bp. This expression is valid

as long as matrix Ar is not singular. The singularity conditions of matrix Ar are
disclosed in Sect. 7.5.

The second-order IKM is given by:

q̈a = −B−1(Ar
0 ṫr + 0bp) = Jinv

0 ṫr + aq (7.164)

with Jinv = −B−1Ar is defined in (7.64) and aq = −B−1 0bp. This expression is
valid as long as matrix B is not singular. The singularity conditions of matrix B are
disclosed in Sect. 7.5.

7.4.2.3 Second-Order Kinematic Models of PKM with Actuation
Redundancy

In that case, matrix Ar being rectangular while matrix B is square, the second-order
IKM can be defined without any problem using (7.164)—as long as matrix B is not
singular—while the second-order FKM becomes:

0 ṫr = −A+
r (Bq̈a + 0bp) = J+

invq̈a + ar
t (7.165)

where A+
r = (

AT
r Ar

)−1
AT

r is the pseudo-inverse of the inverse Jacobian matrix

Ar , J+
inv = (

JT
invJinv

)−1
JT

inv is the pseudo-inverse of the inverse kinematic Jacobian
matrix Jinv defined at (7.64) and ar

t = −A+
r

0bp.

7.4.2.4 Second-Order Kinematic Models of PKM with Kinematic
Redundancy

In that case, matrix B being rectangular while matrix Ar is square, the second-order
FKM can be defined without any problem using (7.163)—as long as matrix Ar is
not singular—while the second-order IKM becomes:

q̈a = −B+(Ar
0 ṫr + 0bp) + (

1na − B+B
)
ξd = J+0 ṫr + ar

q (7.166)
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where B+ = BT
(
BBT

)−1
is the pseudo-inverse of the Jacobian matrix B, ξd is an

arbitrary vector in the q̈a space (Khalil and Dombre 2002), J+ = JT
(
JJT

)−1
is

the pseudo-inverse of the kinematic Jacobian matrix J defined at (7.63) and ar
q =

−B+ 0bp + (
1na − B+B

)
ξd .

7.4.2.5 Relations Between the Derivative of the Platform Twist
and the Derivatives of the Platform Coordinates w.r.t. Time

Considering as in Sect. 7.3.2.5 that ẋT
p = [ẋ ẏ ż φ̇ θ̇ ψ̇], and thus that ẍT

p =
[ẍ ÿ z̈ φ̈ θ̈ ψ̈], the rotational acceleration of the platform is given by:

0ω̇p =
⎡
⎣

ψ̈sθcφ − θ̈sφ + ψ̇(θ̇cθcφ − φ̇sθ sφ) − φ̇θ̇cφ

ψ̈sθ sφ + θ̈cφ + ψ̇(θ̇cθ sφ + φ̇sθcφ) − φ̇θ̇sφ
φ̈ + ψ̈cθ − θ̇ ψ̇sθ

⎤
⎦ (7.167)

which can be rewritten in the matrix form

0ω̇p = D

⎡
⎣

φ̈

θ̈

ψ̈

⎤
⎦ +

⎡
⎣

ψ̇(θ̇cθcφ − φ̇sθ sφ) − φ̇θ̇cφ

ψ̇(θ̇cθ sφ + φ̇sθcφ) − φ̇θ̇sφ
−θ̇ ψ̇sθ

⎤
⎦ = D

⎡
⎣

φ̈

θ̈

ψ̈

⎤
⎦ + e (7.168)

where D is defined in (7.69).
Thus, we can deduce that the derivative of the platform twist ṫp is equal to:

0 ṫp = Dẍp +
[

0
e

]
= Dẍp + e (7.169)

where D is defined in (7.70).
Similar equations can be found whatever are the types of parameters.

7.4.2.6 Obtaining the Second-Order Kinematic Models
by Differentiating the First-Order Kinematic
Constraint Equations

Usually, the second-order kinematic relationships are obtained through the differen-
tiation of (7.72) w.r.t. time, which leads to:

Ad ẍ + Ȧd ẋ + Bd q̈a + Ḃd q̇a = 0 (7.170)

from which we can get (for a non-redundant PKM)

ẍ = Jx q̈a − A−1
d

(
Ȧd ẋ + Ḃd q̇a

)
(7.171)
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or also

q̈a = J−1
x ẍ − B−1

d

(
Ȧd ẋ + Ḃd q̇a

)
. (7.172)

7.4.3 Computation of the Passive Joint Accelerations

Computation of the passive joint accelerations is necessary for the computation of
the dynamic model. Therefore, the way to compute them is defined in this section.

Once again, all joint accelerations could be obtained by differentiating (7.3) w.r.t.
time twice. However, this solution may not be computationally efficient. Therefore,
we propose to use the following methodology which can take advantage of the
recursive algorithms defined in Sect. 5.3.

Let us consider the chain i of the PKM, which is composed of mi joints (Fig. 7.1).
From (3.20), we can compute the acceleration of the platform at point Ai mi (that
will be denoted as ṫi

p) as:

0 ṫi
p =

[
13 −0r̂P Ai mi

03 13

]
0 ṫp +

[0ωp × (0ωp × 0rP Ai mi
)

0

]
= Jti

0 ṫp + di . (7.173)

From (5.30), and as the joint located at Ai mi also belongs to the chain i , we also
have

0 ṫi
p = 0Ji mi q̈i + 0bi mi (7.174)

where q̈i represents the vector of all joint accelerations of the chain i , 0Ji mi =
0Ri mi

i mi Ji mi is the chain i Jacobian matrix also found in (7.83), and 0bi mi =
0Ri mi

i mi bi mi , where
i mi bi mi can be obtained by the recursive algorithm (5.31).

As in the Sect. 7.3.3, Eq. (7.174) can be rewritten by reorganizing matrix 0Ji mi so
that we can regroup:

• in a sub-matrix 0Jai the unit twists 0$ik
i mi

corresponding to the active joints of
velocities q̇ai, and

• in a sub-matrix 0Jdi the unit twists 0$ik
i mi

corresponding to the passive joints of
velocities q̇di.

Thus (7.174) becomes

0 ṫi
p = 0Ji mi

i q̈i + 0bi mi = [
0Jai

0Jdi
] [

q̈ai

q̈di

]
+ 0bi mi = 0Jaiq̈ai + 0Jdiq̈di + 0bi mi

(7.175)

http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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or also

0ai
p = 0Jdiq̈di (7.176)

where 0ai
p = 0 ṫi

p − 0Jaiq̈ai − 0bi mi .
As q̈di is a vector of dimension ndi < 6, only ndi components of 0ai

p are indepen-
dent. Let us define a vector ac i

p of ndi independent components such that

ac i
p = Ψti

0ai
p = Ψti(

0 ṫi
p − 0Jaiq̈ai − 0bi mi ) (7.177)

with Ψti a (ndi × 6) matrix defined in Sect. 7.3.3. Introducing (7.160), (7.173) into
(7.177) leads to

ac i
p = Jc

ti
0 ṫr − Jtaiq̈ai + dc

i (7.178)

where Jc
ti and Jtai are defined in (7.88) and (7.89), and

dc
i = Ψti

(
Jti Ψ̇t

0tr + di − 0bi mi

)
. (7.179)

Introducing (7.90) and (7.178) into (7.176), then

Jc
ti
0 ṫr − Jtaiq̈ai + dc

i = Jtdiq̈di. (7.180)

Thus, as the platform twist/acceleration and active joint velocities/accelerations
are considered known by using the equations presented in the previous Sections, the
vector ac i

p is known and the joint accelerations q̈di of the chain i can be found by
inverting the matrix Jtdi in (7.180). The conditions of singularity of matrix Jtdi are
disclosed in Sect. 7.5.2.

Now, considering all legs, we have

Jt
0 ṫr − Jtaq̈a + dc = Jtdq̈d (7.181)

with Jt , Jta and Jtd three matrices defined in (7.93), (7.94) and (7.92), and

dc =
⎡
⎢⎣

dc
1
...

dc
n

⎤
⎥⎦ (7.182)

or also

q̈d = J−1
td (Jt

0 ṫr − Jta q̈a + dc). (7.183)
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7.4.4 Examples

In this section, we present the second-order kinematic models of some PKM desc-
ribed in previous sections.

7.4.4.1 Second-Order Kinematics of the Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect. 7.1.2.1. For this
mechanism, one can show that the relation (7.154) can be expressed as:

0 ṫp = [
0$11

0$12
0$13

]
q̈1 + 0bp1 , (7.184)

0 ṫp = [
0$21

0$22
]

q̈2 + 0bp2 , (7.185)

where the unit twist 0$ij are defined at (7.96) and (7.97), 0 ṫp = [ẍ ÿ 0 0 0 φ̈]T ,
q̈1 = [q̈11 q̈12 q̈13]T , and q̈2 = [q̈21 q̈22]T , and

0bpi =

⎡
⎢⎢⎢⎢⎢⎢⎣

−di2q̇i1 cos qi1 − di3c12i (q̇i1 + q̇i2)

−di2q̇i1 sin qi1 − di3s12i (q̇i1 + q̇i2)

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

q̇i1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

−di3c12i

−di3s12i

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

q̇i2(q̇i1 + q̇i2).

(7.186)
Then, using the fact that the wrenches ζ i are already defined in Sect. 7.3.4.1, as

well as the matrix Ψinv
t , the relation (7.161) is given by

Ar
0 ṫr + Bq̈a = 0bp (7.187)

where the matrices Ar and B are defined in (7.104) and (7.113) and

0bp =
[
ζ T
1

0bp1
ζ T
2

0bp2

]
. (7.188)

From (7.187), the second-order FKM and IKM can be straightforwardly defined.
Then, starting from the fact that the relation (7.174) for the five-bar mechanism

is already defined in (7.184) and (7.185) by assimilating the fact that, for i = 1, 2,

• 0 ṫi
p = 0 ṫp,

• 0J1m1 = [
0$11

0$12
0$13

]
, 0J2m2 = [

0$21
0$22

]
,

• 0bi mi = 0bpi ,
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the passive joint acceleration given by the relation (7.183) can be straightforwardly
computed as

q̈d = J−1
td (Jt

0 ṫr − Jtaq̈a + dc) (7.189)

where the matrices Jt , Jta and Jtd are given in (7.122)–(7.124) and

dc =
[

dc
1

dc
2

]
(7.190)

with dc
i = Ψti

(
Jti Ψ̇t

0tr + di − 0bi mi

)
in which thematricesΨti defined in (7.119)

and (7.120).

7.4.4.2 Second-Order Kinematics of the Orthoglide

The second-order kinematics are tedious, this is the reason why they are not detailed
here but are given in:
http://www.irccyn.ec-nantes.fr/~briot/Books.html.

7.5 Singularity Analysis

In the present Section, we will deal with the problem of singular configurations of
PKM. The aim of the information given below is not to present a straightforward way
to analyze and find the singularity of a PKM, but to show the most current singular
configurations that we can meet, and above all, to disclose information about the
configurations that impact the robot dynamic model.

For a complete and comprehensive discussion about the singularity problem, the
reader is referred to Conconi and Carricato (2009) and Zlatanov et al. (1994a, b).

7.5.1 Input-Output Singularities

The first kind of singular configurations we will analyze are those that we call input-
output singularities. They can be defined through analysis of the input-output kine-
matic relationship described in (7.62), from which three main types of singularity
can be defined (Gosselin and Angeles 1990):

• when matrix B is rank-deficient: such kind of singularity is called a Type 1 sin-
gularity.3 In such singularities, the PKM loses the ability to move along one (or
more) direction of the workspace, i.e. a motion of the actuators does not lead to
the displacement of the robot platform (Fig. 7.18).

3They are also called serial singularities in some works because it is similar to the singularities of
serial robots. However, in the present book, a serial singularity has another meaning.

http://www.irccyn.ec-nantes.fr/~briot/Books.html
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Fig. 7.18 Example of a
parallel robot (here, a
five-bar mechanism) in a
Type 1 singularity

Fig. 7.19 Example of
parallel robot (here, a
five-bar mechanism) in a
Type 2 singularity

• when matrix Ar (as well as matrices A and Ad ) is rank-deficient: such kind of
singularity is called Type 2 singularity.4 In such singularities, the PKM gains one
(or more) uncontrollable motion, i.e. it becomes shaky. Kinematically speaking,
there can exist a non-null vector ts defined such that Ar ts = 0 (which means that
ts is in the null space of Ar ) while q̇a = 0, i.e. the actuators are fixed (Fig. 7.19).
Statically speaking, the robot cannot resist an external wrench applied on the plat-
form. This can be easily proven as follows.

Let us consider a virtual platform twist t∗r linked from (7.62) to the virtual joint
velocity q̇∗

a by

Ar t∗r + Bq̇∗
a = 0 (7.191)

which, in the case of PKM without kinematic redundancy can be rewritten as

q̇∗
a = −B−1Ar t∗r = Jinvt∗r . (7.192)

4They are also called parallel singularities in some works. However, we do not want to use this
term because it may concern also the constraint singularities and thus may be confusing.
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Let us now consider a wrench wp applied on the PKM platform. The vector wr

denotes the components ofwp corresponding to the independent coordinates of t∗r .
In the absence of any other effects, the wrench wp leads to the robot input efforts
τ . So, the power conservation states that:

q̇∗ T
a τ = t∗ T

r wr (7.193)

which can be rewritten as, from (7.64)

t∗ T
r JT

invτ = t∗ T
r wr . (7.194)

Thus,

JT
invτ = −AT

r B−T τ = wr . (7.195)

As Ar is rank deficient in Type 2 singularities, Jinv is also singular. Thus, this
means that there can exist a non-null input effort vector τ corresponding to a
null wrench wr . Thus, the linear system (7.195) has an infinity of solutions and the
robot is not in equilibrium. Another consequence is that in the neighborhood of the
singularity, the active joint efforts τ may increase considerably as their expression
is proportional to the inverse of the determinant of Ar AT

r , which is close to zero
in that area.
Note that a similar proof can be given for the kinematically redundant PKM.

• whenmatricesAr andB are simultaneously rank-deficient: such kind of singularity
is called Type 3 singularity and are a combination of both Type 1 and Type 2
singularities. For such configurations, the mechanism loses locally the ability to
move along one (or more) direction of the workspace and gains one (or more)
uncontrollable motion along another direction.

7.5.2 Serial Singularities

The second kind of singular configurations we will analyze are those that we call the
serial singularities, i.e. the singularities that are due to the degeneracy of the leg i
configuration only. Type 1 singularities are a particular case of serial singularities.

If the leg i meets such a configuration, the matrix 0Ji mi of (7.83) becomes rank-
deficient.

From (5.7) and (7.83), the matrix 0Ji mi has the following form:

0Ji mi =
[
0$i1

i mi
0$i2

i mi
. . . 0$i mi

i mi

]
(7.196)

http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Fig. 7.20 Case 1 of serial
singularity: in that case, the
axes of actuators 1 and 3 are
aligned and if q̇1 = −q̇3 (q̇i
being the velocity of the
actuator i), actuator 1 and 3
motions do not lead to a
platform motion

where 0$ik
i mi

is a unit twist parameterizing the displacement of the leg’s tip (expressed
in the reference frame F0) when the joint located at Ai k is moving only. Thus,
singularity conditions appear when the basis Bi defined by the unit twists
{0$i1

i mi
0$i2

i mi
. . . 0$i mi

i mi
} is degenerated.

Let us rewrite this basis into two sub-bases written under a matrix form as: Bi =
{Bia Bid} : [

0Jai
0Jdi

]
, where Bia : 0Jai groups the columns of 0Ji mi corresponding

to the active joints and Bid : 0Jdi the columns corresponding to the passive joints.
Three cases can then be met:

• Case 1: the sub-system 0Jai is rank-deficient (this also corresponds to the degen-
eracy of the matrix Jtai in (7.87) and, as a result, to the degeneracy of the matrix
Jta in (7.91))—in that case, a displacement of the active joints of the leg does
not necessarily bring a displacement of the end-effector along one given direction
(Fig. 7.20). We will call them Leg Active Joint Twist System (LAJTS) singularities.

• Case 2: the sub-system 0Jdi is rank-deficient (this also corresponds to the degen-
eracy of the matrix Jtdi in (7.87) and, as a result, to the degeneracy of the matrix
Jtd in (7.91))—in that case, a displacement of the passive joints of the leg does
not necessarily bring a displacement of the end-effector along one given direction.
Moreover, in such configuration, the leg instantaneously gains an uncontrolled
motion (Fig. 7.21). Later in the book, we will call them Leg Passive Joint Twist
System (LPJTS) singularities.

• Case 3: the system
[
0Jai

0Jdi
]
is rank-deficient, while the systems 0Jai and 0Jdi are

not—in that case, a displacement of any types of the leg joint does not necessarily
bring a displacement of the end-effector along one given direction (Fig. 7.22). Such
singularities are usually similar to the Type 1 singularities (see Sect. 7.5.1).

It will be shown later that the degeneracy of the system 0Jdi lead to the degeneracy
of the PKM dynamic model.
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Fig. 7.21 Case 2 of serial
singularity: in that case, the
actuator being fixed, the leg
gains one internal mobility
and the motion of the passive
joints does not lead to a
platform motion

Fig. 7.22 Case 3 of serial
singularity: in that case, the
motion of all joints does not
lead to a platform motion in
the vertical direction

7.5.3 Other Types of Singularities

Other types of singularities appearing for lower-mobility PKM (for which ndof < 6),
such as the constraint singularities (Zlatanov et al. 2002), can also appear. They are
due to the degeneracy of the constraint wrenches applied on the platform by the legs
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and lead to the apparition of uncontrollable motions of the platform. They are quite
analogous to Type 2 singularities. However, their main specificity is that, in con-
straint singularities, the mobility of the platform is changed. For example, if a robot
with three translational DOF encounters a constraint singularity, the uncontrollable
motion will be a rotation of the platform.

They have been discovered for the first time on a 3–UPU mechanism with special
arrangement of the U joints.

Constraints singularities are not the last case of singularities that a PKM can meet
(see for example Amine et al. 2012a) but all such types of singularities are not crucial
for the dynamicmodel computation and are therefore out of the scope of our book. As
mentioned above, for a complete and comprehensive discussion about the singularity
problem, the reader is referred to Conconi and Carricato (2009) and Zlatanov et al.
(1994a, b).

7.5.4 Finding Robot Singular Configurations

For simple robots (see Sect. 7.5.6), the singular configurations can be found by ana-
lyzing the conditions of vanishing the determinant of the corresponding Jacobian
matrices (in the case where they are square). However, such kind of analysis can
be rapidly complicated and other methods should be preferred. Note that the singu-
larity conditions of matrix B in (7.62) are usually simple and do not require more
complicated analysis.

There exists two main methods in the literature that allows one to find robot sin-
gular configurations: the Grassmann geometry and the Grassmann-Cayley algebra.
The next Sections present brief summaries of both methods. However, first of all,
we define a methodology for finding the unit wrenches ζ k which are the rows of the
matrixA in (7.58) and that represent the wrenches applied by the legs on the platform
when the actuators are developing an input effort in a static mode of operation and
in absence of any other type of external effects (Bonev 2002).

7.5.4.1 Computation of the Static Wrenches Applied by the Legs
on the Platform

Let us consider the robot leg i whose kinematic Jacobian matrix is given at expres-

sion (7.196). As mentioned above, the columns of 0Ji mi =
[
0$i1

i mi
0$i2

i mi
. . . 0$i mi

i mi

]

are unit twists which compose a basis Bi and that can be divided into two sub-systems
Bi a (which regroups the twists corresponding to the active joints) and Bi d (which
groups the twists corresponding to the passive joints).

Let us denote as ζ c i the system of wrenches defined such as:

ζ T
c i

0$i k
i mi

= 0 (7.197)
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for k = 1, . . . , mi . Wrenches ζ c i are reciprocal to all unit twists of the leg i and are
defined as the constraint wrenches applied by the legs on the platform.

Let us now denote as ζ t i the system of wrenches defined such as:

ζ T
t i

0Jdi = 0 (7.198)

where 0Jdi is defined in Sect. 7.5.2 and groups the columns of 0Ji mi corresponding
to the passive joints. Vectors ζ t i are reciprocal to the unit twists of the leg i due
to the passive joints. By definition, ζ t i = {ζ c i ζ a i }, where ζ a i are defined as the
actuation wrenches, i.e. the wrenches applied by the leg i on the platform when its
actuators are developing an input effort in a static mode of operation and in absence
of any other type of external effects (Bonev 2002).

ζ a i , i = 1, . . . , n, are the vectors representing the rows of matrix A and is
reciprocal to all unit twists of the leg i , except those corresponding to the active
joints. Examples of computations of vectors ζ a i and ζ c i are given in AppendixC.

7.5.4.2 Basics of Grassmann Geometry

The use of the Grassmann geometry is based on the fact that the rows of matrix A
in (7.60) (or the columns of matrix 0Ji mi in (7.196)) are unit screws which can be
seen as a Plücker representation of lines.

Using the Plücker representation, a lineL can be represented by a direction vector
u and a moment (given w.r.t. any frame, e.g. here F0) rO0M × u, where M is any
point belonging to the line L . Thus:

L :
[

u
rO0M × u

]
(7.199)

which corresponds typically to the expression of a screw (see Sect. 3.1) and
AppendixC.

If k Plücker vectors are linearly independent (which may correspond to the linear
dependency of k rows of matrix A or also k columns of matrix 0Ji mi ), they will span
a variety with dimension k ≤ 6. The idea of Grassmann geometry is to show that
the linear dependency of Plücker vectors induced geometric relations between the
corresponding lines.

The varieties of dimension 1 and 2, which are quite common and easy to use for
PPM, are defined as follows:

• Variety of dimension 1: it is represented by a single Plücker vector.
• Variety of dimension 2: it is spanned by:

– (2a) either two lines that are skew, i.e. that do not intersect and are not parallel,
– (2b) or by more than two lines that are (i) all parallel or (ii) are lying in the
same plane and are intersecting in a single point. Such conditions are called flat
pencil of lines.

http://dx.doi.org/10.1007/978-3-319-19788-3_3
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• Variety of dimension 3: it is spanned by:

– (3a) a regulus, i.e. a set of lines able to intersect three other skew lines,
– (3b) the union of two flat pencils having a line in common but lying in distinct
planes and with distinct centers,

– (3c) all lines through a point,
– (3d) all lines in a plane.

• Variety of dimension 4: it is spanned by:

– (4a) an elliptic congruence: the variety is spanned by four skew lines such that
none of these lines intersect the regulus generated by the other three,

– (4b) a hyperbolic congruence: all the lines intersect two given skew lines,
– (4c) a parabolic congruence: all the lines belong to the union of three flat pencils

of lines, in different planes but with a common line.
– (4d) a degenerate congruence: all lines lie in a plane or meet a a common point
that lies within that plane.

• Variety of dimension 5: it is spanned by:

– (5a) a non-singular complex: generated by five skew lines,
– (5b) a singular complex: all the lines meeting one given line.

For more explanations, the reader is invited to read (Merlet 1989, 2006b).

7.5.4.3 Basics of Grassmann-Cayley Algebra

The Grassmann-Cayley algebra was developed by H. Grassmann as a calculus for
linear varieties operating on extensors with the join “∨” and meet “∧” operators.
The latter are associated with the span and intersection of vector spaces. Grassmann-
Cayley algebra makes it possible to work at the symbolic level, and therefore, to
produce coordinate-free algebraic expressions for the singularity conditions of SPM.
For further details on Grassmann-Cayley algebra, the reader is referred to Ben-Horin
and Shoham (2006, 2009), Kanaan et al. (2009) and White (2008).

In order to use theGrassmann-Cayley algebra, we need to build a system of screws
composed of at least 6 screws. However, for lower mobility PKM, i.e. PKM with
ndof < 6, the system of wrenches ζ a i (i = 1, . . . , n) composing the matrix A is not
of dimension 6. Thus, in order to be able to use that tool, we need to complete the
system of wrenches by adding the constraint wrenches ζ c i (i = 1, . . . , n) defined
at (7.197).

Let us denote as W = [ζ a ζ c] the matrix composed of ζ a = [ζ a 1 . . . ζ a n] and
ζ c = [ζ c 1 . . . ζ c b]. Let us consider first that W is a (6× 6) matrix. The superjoin of
the six wrenches composing W corresponds to the determinant of W up to a scalar
multiple, which is the superbracket in Grassmann-Cayley algebra (White 2008).
Thus, a singularity occurs when this superbracket vanishes. The superbracket is an
expression involving 12 points selected on the six lines (for which the six wrenches
represent the Plücker coordinates) and can be developed into a linear combination of
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24 bracket monomials (Ben-Horin and Shoham 2006), each one being the product
of three brackets of four projective points:

[ab, cd, ef, gh, ij, kl] =
24∑

i=1

yi (7.200)

where

y1 = −[abcd][efgi][hjkl] y2 = [abcd][efhi][gjkl] y3 = [abcd][efgj][hikl]
y4 = −[abcd][efhj][gikl] y5 = [abce][dfgh][ijkl] y6 = −[abde][cfgh][ijkl]
y7 = −[abcf][degh][ijkl] y8 = [abdf][cegh][ijkl] y9 = −[abce][dghi][fjkl]
y10 = [abde][cghi][fjkl] y11 = [abcf][dghi][ejkl] y12 = [abce][dghj][fikl]
y13 = −[abdf][cghi][ejkl] y14 = −[abde][cghj][fikl] y15 = −[abcf][dghj][eikl]
y16 = [abdf][cghj][eikl] y17 = [abcg][defi][hjkl] y18 = −[abdg][cefi][hjkl]
y19 = −[abch][defi][gjkl] y20 = −[abcg][defj][hikl] y21 = [abdh][cefi][gjkl]
y22 = [abdg][cefj][hikl] y23 = [abch][defj][gikl] y24 = −[abdh][cefj][gikl]

(7.201)
In (7.200), the notation ab denotes the line passing through the points of homoge-
neous coordinates a and b, while in (7.200), the notation [abcd] (called a bracket)
is for the determinant of the (4 × 4) matrix whose columns are composed of the
homogeneous coordinates a, b, c and d. As a result, [abcd] represents the volume
of a tetrahedron passing through the points of homogeneous coordinates a, b, c and
d and it vanishes if and only if those points are coplanar.

The used points for computing the bracket [abcd] can be in real space or on a plane
at infinity. In that case, the last component of the homogeneous coordinate vector is
equal to zero and the representation of that point is similar to the representation of a
vector in the homogeneous representation (see Sect. 2.1).

In the case where the matrix W is not a square matrix, the problem must be
divided into k sub-problems, by defining the k possible (6 × 6) matrices W′ that
regroup subsets of columns of matrix W and by making the intersection of the found
solutions.

The smart definition of the points whose coordinates are represented in the super-
bracket al.lows the simplification of its expression (Amine et al. 2012a; Ben-Horin
and Shoham 2006, 2009; Kanaan et al. 2009). Note that, to simplify the use of the
Grassmann-Cayley algebra, aMatlab interface has been proposed inBen-Horin et al.
(2008).

7.5.5 Finding Robot Serial Singular Configurations

As the columns of the matrix 0Ji mi are unit screws which can be seen as a Plücker
representation of lines, the methods proposed in Sect. 7.5.4 can be applied to find
serial singularities.

http://dx.doi.org/10.1007/978-3-319-19788-3_2
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7.5.6 Examples

7.5.6.1 Singular Configurations of the Five-Bar Mechanism

Let us consider again the five-bar mechanism presented in Sect. 7.1.2.1. From the
analysis of its input-output kinematic relations defined in Sect. 7.3.4.1, we can see
that:

• Type 1 singularities (when matrix B defined at (7.104) is rank-deficient) appear
when qi2 = 0 or π , i.e. when the leg is full stretched or folded. An example of
such type of singularity for the five-bar mechanism was provided in Fig. 7.18.

Table 7.8 List of references dealing with the singularity problem of some interesting SPM

Type of DOFa Robot name References

2T1R Zero-torsion PKM Briot and Bonev (2008)

3T Delta Di Gregorio (2004b)

Orthoglide-like familyb Pashkevich et al. (2006)

3-UPU Zlatanov et al. (2002)

Pantopteron Briot and Bonev (2009b)

3R Agile Eye Bonev et al. (2002b)

3–RSS wrist Di Gregorio (2004a)

3–UPU wrist Di Gregorio (2003)

other types of spherical SPM Bonev and Gosselin (2005b)

Gosselin and Sefrioui (1992)

3T1R Quattro/Par4 Nabat (2007)

H4, I4, I4L Company and Pierrot (1999)

PAMINSA Briot et al. (2008)

MacGill SMG Alizadeh (2009)

Quadrupteron Kong and Gosselin (2011a)

Pantopteron–4 Briot and Bonev (2010)

4–RUU Amine et al. (2011)

3T2R 5–RPUR Amine et al. (2012b)

Verne Machine Kanaan (2008)

3T3R Gough-Stewart platform family Ben-Horin and Shoham (2006, 2009)

Husty and Karger (2000), Merlet
(1989)

Innocenti and Parenti-Castelli (1992)

Hexa family (6–RUS/ 6–PUS) Same approach as for Gough-Stewart
platforms

Hexapteron Seward and Bonev (2014)
aIn that column, the symbol “iT jR” denotes that the considered mechanism has i translational

DOF and j rotational DOF
bOrthoglide-like family regroups all 3T robotswith linear actuatorsmountedonto the base (whatever
is their orientation) followed by passive legs of the Orthoglide type (Fig. 7.8)
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• Type 2 singularities (when matrix Ar defined at (7.113) is rank-deficient) appear
when q11 + q12 − q21 − q22 = 0 or π , i.e. when the points A12, A13 and A22 are
aligned. An example of such type of singularity for the five-bar mechanism was
provided in Fig. 7.19.
It can be also shown that, when q11 + q12 − q21 − q22 = 0 or π , there exists a
non zero vector ts = [− sin(q11 + q12) cos(q11 + q12)]T such that: Ats = 0. ts

is orthogonal to the direction defined by the line passing through the points A12,
A13 and A22 and represents the direction of the uncontrollable motion inside the
singularity (Fig. 7.19).

For the five-bar mechanism, there are no other types of singular configurations.

7.5.6.2 Further Readings

The singularities of all PPM have been deeply studied in Bonev (2002), Bonev et al.
(2003) and Briot et al. (2008).

Moreover, the Table7.8 presents a list of papers dealing with the singularity prob-
lem of some interesting SPM. It should be mentioned that this list is far from being
exhaustive but only presents SPM quite often met in the literature. For a longer list
of references, please visit the website of Merlet (2014).



Chapter 8
Dynamic Modeling of Parallel Robots

Abstract In this chapter, we present the computation of the dynamic models of
redundant and non-redundant parallel robots. In order to obtain the inverse and direct
dynamic models, first, all closed loops must be virtually opened to make the platform
virtually disassembled from the rest of the structure which becomes a tree structure
with all joints actuated. The dynamic model of the tree structure and of the free
platform is then computed using a systematic procedure based on the Newton-Euler
principle, thatmakes it possible to reduce the computational complexity of themodel.
Then, the loops are closed using the loop-closure equations and the principle of virtual
powers. As a matter of fact, after an introductory section, this chapter will present an
effective way to compute the dynamic models of the tree structure robots. Then, the
computation of the dynamic models of redundant and non-redundant parallel robots
is investigated. Other types of models are also detailed, such that the energy models
and the ground reaction models. The chapter ends with a section on the computation
of the base dynamic parameters of parallel robots. The dynamic models of some
examples of parallel robots are detailed and compared with experiments.

8.1 Introduction

The work on the dynamics of parallel manipulator started with the dynamic analy-
sis of Stewart platforms (Fichter 1986; Hoffman and Hoffman 1979). Those stud-
ies mostly dealt with either the oscillation or the inverse dynamics problem under
very simple frameworks. Later, other works presented more elaborated analysis to
solve the dynamic modeling of parallel manipulators using different mechanical for-
malisms. For example Lee and Shah (1988), Geng et al. (1992), Lebret et al. (1993),
Ait-Ahmed (1993), Bhattacharya et al. (1997, 1998), Liu et al. (2000), Abdellatif
and Heimann (2009), Gugliemetti and Longchamp (1994) and Miller (2004) used
Lagrange-Euler formalism. The principle of virtual work has been used by Codourey
and Burdet (1997) and Tsai (2000). On the other hand, Newton-Euler equations
have been used by Sugimoto (1989), Reboulet and Berthomieu (1991), Ji (1993),
Gosselin (1993), Dasgupta and Choudhury (1999), Dasgupta and Mruthyunjaya
(1998a, b). However, recently, Fu et al. (2007), Vakil et al. (2008), Carricato and
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Gosselin (2009) and Afroun et al. (2012) have pointed out common errors in many
methods related to parametrization and instantaneous kinematic behavior of the legs.
These errors may cause kinematic and dynamicmiscalculation. The aim of this chap-
ter is to present (i) a systematic procedure that provide the full dynamics of rigid
bodies, taking into account all the dynamics of the legs and the platform and (ii) to
highlight the effect of singularities.

This chapter is based on the works (Briot and Arakelian 2008; Briot and Gautier
2014; Khalil and Guégan 2004; Khalil and Ibrahim 2007). It gives a simple and
general closed form solution for the inverse and direct dynamic models of parallel
robots. Four types of models will be investigated:

• the Inverse Dynamic Model (IDM) that provides actuator torques and forces in
terms of active joint positions, velocities and accelerations. It is described by:

τ = idm(q̈a, q̇a, qa, we) (8.1)

where

– τ is the vector of the input efforts (torque in the case of a revolute actuator, force
in the case of a prismatic actuator), i.e. the efforts produced by the actuators for
moving the mechanism along the trajectory defined by (q̈a, q̇a, qa),

– we is the system of wrenches applied by the robot on the environment.

We call Eq. (8.1) the inverse dynamic model because it defines the system input
τ as a function of the output variables (q̈a, q̇a, qa). This form of model which is
expressed in terms of Lagrangian variables (joint variables and their derivatives) is
called “Lagrangian Model”. The Euler model makes use of the Eulerian variables
(linear and rotational Cartesian velocities and accelerations).

• the Direct Dynamic Model (DDM) that provides active joint accelerations as a
function of the input effort and the active joint positions and velocities. It is de-
scribed by:

q̈a = ddm(q̇a, qa, τ , we) (8.2)

• the Ground Reaction Model (GRM) that computes the wrench wg transmitted on
the ground by a moving robot as a function of its active joint positions, velocities
and accelerations. It is described by:

wg = grm(q̈a, q̇a, qa, we) (8.3)

• the Energy Model that computes the robot’s total energy as a function of its active
joint positions and velocities. It is described by:

H = E + U, E = E(q̇a, qa), U = U (qa) (8.4)

where H is the total energy, E is the kinetic energy and U the potential energy
(see Sect. 6.1).

http://dx.doi.org/10.1007/978-3-319-19788-3_6
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The IDM and DDM of robots play an important role in design and control. For
robot design, the IDM can be used to select actuators (Chedmail and Gautier 1990;
Germain et al. 2013; Potkonjak 1986), while the DDM is employed to carry out
simulations that test the performance of the robot and to study the relative merits of
possible control schemes. Regarding robot control, the IDM is used to compute the
actuator efforts, which are needed to achieve a desired motion (Khalil and Dombre
2002). It is also used to identify the dynamic parameters that are necessary for both
control and simulation applications (Gautier 1986; Gautier and Briot 2011a, b, 2012;
Hollerbach et al. 2008; Khalil et al. 2007b).

The GRM is less known but can be used to identify the robot dynamic parame-
ters (Ayusawa et al. 2008; Raucent et al. 1992) or for design purpose in shaking
force and shaking moment balancing (Briot and Arakelian 2009; Briot et al. 2012a;
Foucault and Gosselin 2004).

Finally, energy models can also be used to identify the robot’s dynamic para-
meters (Gautier 1997; Gautier and Briot 2013) or for design purpose or trajectory
planning to reduce the robot’s energy consumption (Ur-Rehman et al. 2009).

To obtain the desired equations for the IDM and DDM of PKM, we will use a
method proposed in (Ibrahim and Khalil 2010). The main idea for the IDM compu-
tation is to decompose the problem into two steps:

1. first, all closed loops are virtually opened to make the platform virtually dis-
assembled from the rest of the structure (Fig. 8.1b); each leg joint is virtually
considered actuated (even for unactuated actual joints) so that the robot becomes
a tree structure and a free body: the platform. The dynamic model of the tree
structure and of the free platform is then computed using a systematic procedure
based on the Newton-Euler principle, that makes it possible to obtain

τ t = idmt (q̈t , q̇t , qt , wt ) (8.5)

wp = idmp(ṫp, tp, xp, we) (8.6)

where idmt represents the IDM of the tree structure, idmp the IDM of the plat-
form, qt are the joint coordinates of the tree structure, and tp, xp are the platform
twist and pose, wt is the system of wrenches applied by the tree-structure robot
on the environment and we is the system of wrenches applied by the free platform
on the environment.

2. then, the loops are closed using the loop-closure equations presented in Sect. 7.3—
that relate tp and q̇t to q̇a—and the Lagrangemultipliers presented in Sect. 6.1.4.1

Computation of the DDM is a bit different, even if obtained in a similar manner,
and is based on calculation of the inertia matrix and vector of Coriolis, centrifugal
and gravity effects of its virtual structure. The way to compute it will be detailed
later.

1For closing the loops, the PVP could also be used.

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_6
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Fig. 8.1 A general parallel
robot (the gray circles denote
the actuated joints).
a Kinematic chain (A jk k is
the joint j of the leg k, and
mk is the total number of
joints for the leg k). b Virtual
tree structure and free
moving platform

(a)

(b)

As a result, the present chapter is organized as follows:

• Section8.2 introduces a systematic formulation based on the NE principle for the
computation of the dynamics of tree-structure robots; this formulation is optimized
so that the number of operators “+”, “−”, “×” and “/” used for computing the
models is minimized.

• Section8.3 presents the dynamic model of the free moving platform;
• Sections8.4 and 8.5 present the computation of the dynamic models of:

1. non-redundant PKM,
2. PKM with actuation redundancy.

Note that the computation of the dynamic models of PKM with kinematic redun-
dancy is obtained in the same way as for non-redundant PKM.
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• Section8.6 presents the computation of the robot energy and ground reaction
models.

• Section8.7 presents the computation of the robot base dynamic parameters which
constitute the minimal number of parameters needed to compute the dynamic
models.

8.2 Dynamics of Tree-Structure Robots

It is straightforward to get expressions of the IDM, inertia matrix and vector of
Coriolis/centrifugal/gravity/friction effects of any tree-structure robot “by hand”.
This will be of course tedious, but in such a case, the simplest method is probably to
use the Lagrange equations which state that:

τ t = d

dt

(
∂Lt

∂q̇t

)T

−
(

∂Lt

∂qt

)T

(8.7)

where Lt is the Lagrangian of the virtual tree-structured robot.
In the present section, we prefer to give an efficient Newton-Euler formulation

based on a recursive algorithm which allows for decreasing the computational com-
plexity of the model.

8.2.1 Newton-Euler Formulation for Computation of the
Inverse Dynamic Model

Let us consider the tree-structure of the generalPKM presented in Sect. 7.1.1 obtained
when disassembling the platform from the rest of the robot and by virtually actuating
all passive joints (Fig. 8.1b). This tree-structure is made of n legs (see Fig. 8.1a), each
leg being a kinematic chain (which is serial or tree-structure type most of the time,
but can also be composed of closed-loop sub-chains) composed of mi − 1 links
connected by mi joints located at points Ai j . The j th link of the leg i will be denoted
in what follows as the link Bi j . Moreover, the joint located at point Ai j will be
parameterized by the variable qi j .

Let us recall from Sect. 6.2 the NE equations giving the total forces Σfi j and
moments Σmi j on link Bi j at the origin Oi j of frameFi j :

Σfi j = mi j v̇i j + ω̇i j × msi j + ωi j × (ωi j × msi j )

Σmi j = IOi j ω̇i j + msi j × v̇i j + ωi j × (IOi j ωi j ) (8.8)

in which:

• v̇i j is the acceleration of the origin of the frameFi j ,
• ωi j is the rotational velocity of body Bi j ,

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_6
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• ω̇i j is the rotational acceleration of body Bi j ,
• msi j is the vector of the first moment of inertia which represents the mass of the
body Bi j multiplied by the position of its , w.r.t. frame Fi j (see Sect. 6.1.2),

• IOi j is the inertia matrix expressed at Oi j defined in Sect. 6.1.2.

The inverse dynamic model of a tree-structure can be obtained by using two re-
cursive algorithms sequentially (Khalil and Kleinfinger 1987; Luh et al. 1980).

Forward recursive computation: To compute Σfi j and Σmi j for i = 1, . . . , n
and j = 1, . . . , mi , using (8.8), we need v̇i j , ωi j and ω̇i j . Let us denote as link
Bil the antecedent of linkBi j . The velocities are given by the recursive Eqs. (5.18)
and (5.19) rewritten hereafter as:

i jωi j = i jωil + σ̄i j
i j ai j q̇i j (8.9)

i j vi j = i j vil + i j Ril(
ilωil × ilri j ) + σi j

i j ai j q̇i j (8.10)

where il = a(i j).
Moreover, the accelerations are given by the recursive Eqs. (5.27)–(5.29) rewritten

hereafter as:

i j ω̇i j = i j Ril
ilω̇il + σ̄i j (

i j ai j q̈i j + i jωil × i j ai j q̇i j ) (8.11)

i j v̇i j = i j Ril (il v̇il + ilUil
ilri j ) + σi j (

i j ai j q̈i j + 2i jωil × i j ai j q̇i j ) (8.12)

with
ilUil = il ˙̂ωil + ilω̂il

ilω̂il . (8.13)

The initial conditions for a robot with a fixed base are 0ω0 = 0, 0ω̇0 = 0, 0v0 = 0
and 0v̇0 = 0.

Finally, we compute the expressions of Σfi j and Σmi j given in (8.8) and we
project them into the frameFi j .

Backward recursive computation: Let us suppose that the notation ik denotes
all the links such that a(ik) = i j (Fig. 8.2). An algorithm for computation of the
dynamic model is based on writing for each link Bi j , for j = mi , . . . , 1, for all i ,
the NE equations at the origin Oi j , as follows (Fig. 8.2):

i jΣfi j = i j fi j −
∑

k

i j fik + mi j
i j g − i j fei j

i jΣmi j = i j mi j −
∑

k

(
i j Rik

ikmik + i j rik × i j fik

)
+ msi j × i j g − i j mei j

(8.14)

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Fig. 8.2 Forces and
moments on link Bi j

where

• i j rik = i j rOi j Oik ,
• msi j × i j g = rOi j Si j × mi j

i j g,
• fi j and mi j are the reaction force and moment, respectively, exerted by the body
Bil on the body Bi j at point Oi j ,

• fik and mik are the reaction force and moment, respectively, exerted by the body
Bi j on the body Bik at point Oik ,

• fei j and mei j represent the force and moment exerted by link Bi j on the envi-
ronment. Their values are assumed to be known, or at least to be calculated from
known quantities.

We can cancel the gravity terms from Eq. (8.14) and take into account their effects
by setting up the initial linear acceleration such that:

0v̇0 = −0g. (8.15)

Thus, using Eq. (8.14), we obtain:

i j fi j = i jΣfi j +
∑

k

i j fik + i j fei j

i j mi j = i jΣmi j +
∑

k

(
i j Rik

ikmik + i j rik × i j fik

)
+ i j mei j . (8.16)

This backward recursive algorithm is initialized by i mi fi (mi +1) = 0 and
i mi mi (mi +1) = 0, the body Bi mi being a terminal body of the tree-structure.
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Finally, the joint effort τ ti j (each joint is considered virtually active, see Sect. 8.1)
can be obtained by projecting i j fi j or i j mi j on the joint axis, depending whether the
joint is prismatic or revolute respectively.

Practical form of the NE algorithm: Since IOi j andmsi j are constantswhen referred
to their own link coordinates, the NE algorithm can be efficiently computed by
referring the velocities, accelerations, forces andmoments to the local link coordinate
system (Luh et al. 1980). The forward recursive equations becomes, for i = 1, . . . , n,
j = 1, . . . , mi :

i jωil = i j Ril
ilωil (8.17)

i jωi j = i jωil + σ̄i j
i j ai j q̇i j (8.18)

i j ω̇i j = i j Ril
ilω̇il + σ̄i j (

i j ai j q̈i j + i jωil × i j ai j q̇i j ) (8.19)
i j v̇i j = i j Ril (il v̇il + ilUil

ilri j ) + σi j (
i j ai j q̈i j + 2i jωil × i j ai j q̇i j ) (8.20)

i j Ui j = i j ˙̂ωi j + i j ω̂i j
i j ω̂i j (8.21)

i jΣfi j = mi j
i j v̇i j + i j Ui j

i j msi j (8.22)

i jΣmi j = i j IOi j
i j ω̇i j + i j msi j × i j v̇i j + i jωi j ×

(
i j IOi j

i jωi j

)
. (8.23)

For a stationary base, the initial conditions are 0ω0 = 0, 0ω̇0 = 0 and 0v̇0 = −0g.
The use of i j Ui j saves 21nt multiplications and 6nt additions (nt = ∑n

i=1 mi )
in the computation of the inverse dynamic model of a general robot (Khalil and
Kleinfinger 1986).

The backward recursive equations, for j = mi , . . . , 1, for any i are:

i j fi j = i jΣfi j +
∑

k

i j fik + i j fei j (8.24)

il fi j = ilRi j
i j fi j (8.25)

i j mi j = i jΣmi j +
∑

k

(
i j Rik

ikmik + i j rik × i j fik

)
+ i j mei j (8.26)

τ ti j = (σi j
i j fi j + σ̄i j

i j mi j )
T i j ai j . (8.27)

The previous algorithm can be numerically programmed for a general tree struc-
ture robot. Its computational complexity is O(nt ), which means that the number of
operations is linear in the number of degrees of freedom. However, as we will see in
Sect. 8.7, the use of the base inertial parameters in a customized symbolic algorithm
considerably reduces the number of operations of the dynamic model.
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Note that:

• The symbol i j v̇i j means i j R0
0v̇i j , and not the time derivative of i j vi j .

• As mentioned in Sect. 4.1, we use σi j = 2 to define a fixed frameFi j with respect
to Fil . In that case, q̇i j and q̈i j are set to 0 and σ̄i j is not defined. Moreover, τ ti j

defined at (8.27) has no physical meaning and should not be calculated, whereas
the velocity and acceleration equations can be used after eliminating the terms
multiplied by σi j and σ̄i j .

8.2.2 Considering the Inertia of Actuators

The kinetic energy of the rotor (and transmission system) of actuator i j is given by
the expression 1

2 I ai j q̇2
i j . The inertial parameter I ai j denotes the equivalent inertia

referred to the joint velocity. It is given by:

I ai j = N 2
i j I mi j (8.28)

where I mi j is the moment of inertia of the rotor and transmissions of actuator i j ,
Ni j is the gear transmission ratio of joint i j axis, equal to Ni j = q̇mi j /q̇i j where q̇mi j

denotes the rotor velocity of actuator i j while q̇i j denotes the joint i j velocity. In the
case of a prismatic joint, I ai j is an equivalent mass.

In order to consider the rotor inertia in the dynamic model of the robot, (8.27)
becomes

τ ti j = (σi j
i j fi j + σ̄i j

i j mi j )
T i j ai j + I ai j q̈i j (8.29)

Note that such modeling neglects the gyroscopic effects of the rotors, which take
place when the actuator is fixed on a moving link. However, this approximation is
justified for high gear transmission ratios. For more accurate modeling of the rotors
the reader is referred to (Chedmail et al. 1986; Llibre et al. 1983; Murphy and Ting-
Yung Wen 1993; Sciavicco et al. 1994) where the rotor is considered as a body
articulated on the link on which it is fixed.

8.2.3 Considering Friction

Friction plays a dominant role in limiting the quality of robot performance. Non-
compensated friction produces static error, delay, and limit cycle behavior (Canudas
de Wit and Aubin 1990). Many works have been devoted to studying friction torque
in joint and transmission systems. Various friction models have been proposed in
the literature (Armstrong 1988, 1991; Canudas de Wit et al. 1989; Dahl 1977). In
general, three kinds of frictions are noted: Coulomb friction, static friction, and
viscous friction.

http://dx.doi.org/10.1007/978-3-319-19788-3_4
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Fig. 8.3 Friction model (a) (b)

(c) (d)

The model based on Coulomb friction assumes a constant friction component
that is independent of the magnitude of the velocity. The static friction is the torque
necessary to initiate motion from rest. It is often greater than the Coulomb friction
(Fig. 8.3a). The viscous friction is generally represented as being proportional to the
velocity, but experimental studies (Armstrong 1988) have pointed out the Stribeck
phenomenon that arises from the use of fluid lubrication. It results in decreasing
friction with increasing velocity at low velocity, then the friction becomes propor-
tional to velocity (Fig. 8.3b). A general friction model describing these components
is given by:

τ f i j = f si j sign(q̇i j ) + f vi j q̇i j + ( f sti j − f si j )sign(q̇i j )e
−|q̇i j |Bi j . (8.30)

In this expression, τ f i j denotes the friction torque of joint i j , f si j and f vi j indicate
the Coulomb and viscous friction parameters respectively. The static torque is equal
to f sti j sign(q̇i j ).

The most often employed model is composed of Coulomb friction together with
viscous friction (Fig. 8.3c). Therefore, the friction torque at joint i j is written as:

τ f i j = f si j sign(q̇i j ) + f vi j q̇i j . (8.31)

This friction model can be approximated by a piecewise linear model as shown in
Fig. 8.3d.

In order to consider the friction effects in the dynamic model of the robot, (8.29)
becomes

τ ti j = (σi j
i j fi j + σ̄i j

i j mi j )
T i j ai j + I ai j q̈i j + τ f i j . (8.32)
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Remark on the Friction Models

In Robotics, we usually made the assumption that the terms f si j and f vi j in the
model (8.31) are constant. Of course, in reality, this is not the case as they should
vary as a function of the load in the joints (Hamon et al. 2010; Leonesio and Bianchi
2009).

However, this assumption is made usually for two main reasons:

• the obtained model is linear and thus simpler to use,
• for robots with accelerations lower than the acceleration of the gravity field, the
load in joints is mainly due to the gravity effects and its variation is quite small.

8.2.4 Computing the Vector of Coriolis, Centrifugal, Gravity
Effects, Friction and External Wrenches

As mentioned in Sect. 6.1.1, for any rigid robot, the IDM can be written in the form
(Khalil and Dombre 2002):

τ t =
⎡
⎢⎣

τ t11
...

τ tn mn

⎤
⎥⎦ = idmt (q̈t , q̇t , qt , we) = Mt (qt )q̈t + ct (qt , q̇t ) (8.33)

where qt groups all joint variables, Mt (qt ) is the inertia matrix of the robot tree-
structure and ct (qt , q̇t ) is the vector of Coriolis, centrifugal, gravity effects, friction
and external wrenches.

Computation of the inertiamatrixMt (qt ) and vector ct (qt , q̇t ) of the tree structure
is important for obtaining the DDM of the PKM. Therefore, in the present section
and the following one, procedures for computing them are given.

By analyzing the expression (8.33), we can deduce that τ t = ct (qt , q̇t ) if q̈t = 0.
As a result, the simplest and most effective way to obtain the vector ct (qt , q̇t ) is to
run Eqs. (8.17)–(8.27) by imposing q̈t = 0.

In the next section, the computation of the inertia matrix is investigated.

8.2.5 Computing the Inertia Matrix

The inertiamatrix can be calculated one column at a time, usingNE IDM Eqs. (8.17)–
(8.27) (Walker and Orin 1982). From relation (8.33), we deduce that the r th column
of Mt is equal to τ t if, for s = 1, . . . , nt .:

q̈t = ur , q̇t = 0, g = 0, fes = 0, mes = 0 (8.34)

where ur is an (nt ×1) unit vector with 1 in the r th row and zeros elsewhere. Iterating
the procedure for r = 1, . . . , nt leads to construction of the entire inertia matrix.

http://dx.doi.org/10.1007/978-3-319-19788-3_6
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To reduce the computational complexity of this algorithm, we can make use of its
base inertial parameters and its customized symbolic techniques. Moreover, we can
take advantage of the fact that the inertia matrix Mt is symmetric. A more efficient
procedure for computing the inertia matrix using the concept of composite links is
described below (Khalil and Dombre 2002; Walker and Orin 1982).

8.2.5.1 Inertial Parameters of a Composite Link

The composite link B+
i j is composed of link Bi j and of the links supported by

link Bi j (Fig. 8.4). The idea is to compute, using the well-known Huygens-Steiner
theorem, the first and second moment of inertia of this link B+

i j as a function of the
inertial parameters of all the links composing it and of the joint variables.

The inertial parameters of the composite link B+
i j can be calculated using the

following recursive algorithm:

1. Initialization: for j = 1, . . . , mi , for any i :

i j I+
Oi j

= i j IOi j ,
i j ms+

i j = i j msi j , m+
i j = mi j .

2. Initialization: for j = mi , . . . , 2, for any i : We recall that il is the number of the
link that is antecedent to link Bi j ;

ilI+
Oil

= ilI+
Oil

+ ilRi j
i j I+

Oi j

i j Ril −
[

il r̂i j
ilm̂s+

i j +
(

il r̂i j
ilm̂s+

i j

)T
]

+ il r̂i j
il r̂T

i j m
+
i j

(8.35)
ilms+

il = ilms+
il + ilRi j

i j ms+
i j + ilri j m+

i j (8.36)

m+
il = m+

il + m+
i j . (8.37)

Fig. 8.4 The composite link B+
i j
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8.2.5.2 Computation of the Inertia Matrix

We have seen above that the r th column of the inertia matrix Mt can be computed
by the Newton-Euler inverse dynamic algorithm by setting q̈t = ur , q̇t = 0, g = 0,
fes = 0 and mes = 0 for s = 1, . . . , nt , where ur is an (nr × 1) vector with a 1 in
the r th row and zeros elsewhere.

Under these conditions, the forward recursive equations of theNE inverse dynamic
(Sect. 8.2.1) are only applied to linkB+

i j :

ilωil = 0, ilω̇il = 0, il v̇il = 0, ilΣfil = 0, ilΣmil = 0, for l < j (8.38)
i jωi j = 0 (8.39)
i j ω̇i j = σ̄i j

i j ai j (8.40)
i j v̇i j = σi j

i j ai j (8.41)
i jΣfi j = m+

i j
i j v̇i j + i j ω̇i j × i j ms+

i j (8.42)
i jΣmi j = i j I+

Oi j

i j ω̇i j + i j msi j × i j v̇i j . (8.43)

We deduce that:

• if joint i j is prismatic (i j ω̇i j = 0 and i j v̇i j = [0 0 1]T ), then:

i jΣfi j =
[
0 0 m+

i j

]T
(8.44)

i jΣmi j =
[
my+

i j − mx+
i j 0

]T
(8.45)

• if joint i j is revolute (i j v̇i j = 0 and i j ω̇i j = [0 0 1]T ), then:

i jΣfi j =
[
−my+

i j mx+
i j 0

]T
(8.46)

i jΣmi j =
[
xz+

i j yz+
i j zz+

i j

]T
. (8.47)

The recursive backward computation starts by link Bi j and ends with link Bi1,
where a(i1) = 0. The algorithm is given by the following equations:

• if joint i j is prismatic, then:

i j fi j = i jΣfi j =
[
0 0 m+

i j

]T
(8.48)

i j mi j = i jΣmi j =
[
my+

i j − mx+
i j 0

]T
(8.49)

Mt (ni j , ni j ) = m+
i j + I ai j (8.50)



152 8 Dynamic Modeling of Parallel Robots

where Mt (ni j , ni j ) denotes the elements of the ni j th row and ni j th column of the
matrix Mt , ni j being the position of the variable qi j in the vector qt .

• if joint i j is revolute, then:

i j fi j = i jΣfi j =
[
−my+

i j mx+
i j 0

]T
(8.51)

i j mi j = i jΣmi j =
[
xz+

i j yz+
i j zz+

i j

]T
(8.52)

Mt (ni j , ni j ) = zz+
i j + I ai j . (8.53)

Then, the following equations are computed for u = i j, a(i j), a(a(i j)), . . . , i1,
where a(i1) = 0:

a(u)fa(u) = a(u)Ru
ufu (8.54)

a(u)ma(u) = a(u)Ru
umu + a(u)ru × a(u)fa(u) (8.55)

Mt (na(u), ni j ) = (σa(u)
a(u)fa(u) + σ̄a(u)

a(u)ma(u))
T a(u)aa(u), (8.56)

na(u) being the position of the variable qa(u) in the vector qt .
Note that:

• the element Mt (nil , ni j ) of the inertia matrix is set to zero if link Bil does not
belong to the path between the base and linkBi j ;

• this algorithm provides the elements of the lower part of the inertia matrix. The
other elements are deduced using the fact that the inertia matrix Mt is symmetric.

8.2.6 Automatic Computation of the IDM, Inertia Matrix and
Vector of Coriolis, Centrifugal/Gravity/Friction Effects

In order to finally obtain symbolic equations for themodelwith aminimumnumber of
operations, the following method is used. First, the rigid kinematics of each element
are modeled using the modified Denavit-Hartenberg notations (Sect. 4.2). Then, the
customized algorithms defined in Sects. 8.2.1, 8.2.4 and 8.2.5 are run.

For each computation, the elements of a vector or a matrix containing at least one
mathematical operation are replaced by an intermediate variable. This variable is
written in an output file which contains the model. The elements that do not contain
any operations are not modified. The obtained vectors and matrices are propagated
in the subsequent equations. Consequently, at the end, the models are obtained as
a set of intermediate variables. Those that have no effect on the desired output can
be eliminated by scanning the intermediate variables from the end to the begin-
ning. With this procedure, it is also possible to know the exact number of operators

http://dx.doi.org/10.1007/978-3-319-19788-3_4
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necessary for computation of the model. These algorithms have been successfully
implemented with Mathematica (Khalil and Creusot 1997) and are now freely avail-
able in Python (Khalil et al. 2014).

8.3 Dynamic Model of the Free Moving Platform

The dynamic equations of a free moving platform are given by the NE Eq. (6.35)
rewritten here as

wp =
[

fp

mp

]
=

[
m p 13 m̂sT

p
m̂sp Ip

] [
v̇p − g

ω̇p

]
+

[
ωp × (ωp × msp)

ωp × (Ipωp)

]
−

[
fext

p
mext

p

]

= Mp ṫp + cp (8.57)

where

• m p is the platform mass,
• msp is the vector of the fist moment of inertia of the platform,
• Ip is the matrix of inertia for the platform,
• tT

p = [vT
p ωT

p ] is the platform twist, while ṫT
p = [v̇T

p ω̇T
p ] represents the platform

acceleration,
• wT

p = [fT
p mT

p ] is the total wrench applied by the platform,
• wext T

p = [fext T
p mext T

p ] is the interaction wrench applied by the platform on the
environment,

• Mp is the platform inertia matrix,
• cp is the vector of Coriolis, centrifugal, gravity and external effects for the platform
(the gravity forces can be eliminated from cp by adding −g to ṫp).

8.4 Inverse and Direct Dynamic Models of Non-redundant
Parallel Robots

The dynamic equations of the virtual tree structure (Sect. 8.2) and of the free moving
platform (8.57) do not take into account the closed-loop characteristics of paral-
lel robots: among all joint and platform coordinates qt and x of the virtual robot
(Fig. 8.1b), resp., only a subset denoted as qa is independent in the real robot (the
actual actuated joints positions, that are indeed a subset of qt ). All these variables
are linked through the loop-closure equations of the real robot defined in Sect. 7.3
that will be used to define a set of Lagrange equations based on the use of Lagrange
multipliers (Sect. 6.1.4).

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_6
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8.4.1 Inverse Dynamic Model

8.4.1.1 Prerequisite Notions

Before computing the PKM IDM, it is necessary to note the two following things:

• By identification between (6.1), which gives the general form of the Lagrange
equations, and (8.33), which gives the general form of the IDM of the virtual tree
structure, we have:

τ t = Mt (qt )q̈t + ct (qt , q̇t ) = d

dt

(
∂Lt

∂q̇t

)T

−
(

∂Lt

∂qt

)T

(8.58)

where Lt is the Lagrangian of the virtual tree-structured robot. We decompose the

vector τ t into two sub-parts τ ta and τ td defined such as τ t = Eτ

[
τ ta

τ td

]
, with Eτ

a square matrix of dimension nt which is used to sort the vector τ t so that:

τ ta = Mta(qt )

[
q̈a

q̈d

]
+ cta(qt , q̇t ) = d

dt

(
∂Lt

∂q̇a

)T

−
(

∂Lt

∂qa

)T

= idma(q̈t , q̇t , qt , wt )

(8.59)

τ td = Mtd(qt )

[
q̈a

q̈d

]
+ ctd(qt , q̇t ) = d

dt

(
∂Lt

∂q̇d

)T

−
(

∂Lt

∂qd

)T

= idmd(q̈t , q̇t , qt , wt )

(8.60)
where

– τ ta is a (na × 1) which corresponds to the virtual input efforts of the virtual
structure in the joints corresponding to the actuated joints of the real parallel
robot,

– τ td is a (nd × 1) which corresponds to the virtual input efforts of the virtual
structure in the joints corresponding to the passive joints of the real parallel
robot,

– Mta is a (na × nt ) matrix and Mtd is a (nd × nt ) matrix,
– cta is a vector of dimension na and ctd is a vector of dimension nd .

Mta and Mtd are defined such that

Mt = Eτ

[
Mta

Mtd

]
ET

τ ⇔ ET
τ Mt Eτ =

[
Mta

Mtd

]
(8.61)

cta and ctd are defined such that

ct = Eτ

[
cta

ctd

]
⇔ ET

τ ct =
[

cta

ctd

]
. (8.62)

http://dx.doi.org/10.1007/978-3-319-19788-3_6


8.4 Inverse and Direct Dynamic Models of Non-redundant Parallel Robots 155

Please note that Eτ can also be used to sort the vector q̈t so that

ET
τ q̈t =

[
q̈a

q̈d

]
⇔ q̈t = Eτ

[
q̈a

q̈d

]
. (8.63)

• Byusing thePVP and theEq. (7.61) that links, for aPKM with a lowermobility (i.e.
a spatial robot with less than 6 DOF), the independent platform twist coordinates
0tr to all the twist components 0tp by 0tp = Ψt

0tr , we can prove that:

0t∗ T
p

0wp = 0t∗ T
r

0wr ⇔ 0t∗ T
r ΨT

t
0wp = 0t∗ T

r
0wr (8.64)

or also, by identifying the terms of the right-hand side of the equation,

0wr = idmp(ṫp, tp, xp, we) = ΨT
t

0wp (8.65)

where 0wr represents the independent components of the platform wrench 0wp.
Moreover, by using (7.71) which states that 0tr = Dr ẋ, where x is the vector of
the independent platform coordinates, we can prove that:

0t∗ T
r

0wr = ẋ∗ T τ p ⇔ ẋ∗ T D
T
r

0wr = ẋ∗ T τ p (8.66)

or also, by identifying the terms of the right-hand side of the equation,

τ p = D
T
r

0wr ⇔ 0wr = D
−T
r τ p (8.67)

where D
T
r is a square and invertible matrix and,

τ p = d

dt

(
∂L p

∂ ẋ

)T

−
(

∂L p

∂x

)T

(8.68)

in which L p is the Lagrangian of the free moving platform.

8.4.1.2 Computation of the Inverse Dynamic Model

By considering the two constraints relations (7.62) and (7.91) which state that:

Ar
0tr + Bq̇a = 0 (8.69)

Jt
0tr − Jta q̇a = Jtd q̇d , (8.70)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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we can now use the Lagrange equations with multipliers (see Sect. 6.1.4) (or directly
the PVP) to obtain the IDM of the PKM as:

τ = τ ta + JT 0wr + JT
d τ td = [

1na JT
d

]
ET

τ τ t + JT 0wr (8.71)

where τ is the (na × 1) vector of the real robot input efforts, the matrix J is defined
in Eq. (7.63) as

J = −A−1
r B (8.72)

and, by using (7.95), we get

Jd = J−1
td (Jt J − Jta). (8.73)

In these expressions,

• τ t is the vector of the virtual tree structure input efforts provided in Sect. 8.2.
• 0wr is the wrench of the free platform expressed in the base frame F0 and given
at (8.65).

• Eτ is a matrix ordering the vector τ t into two sub-parts τ ta and τ td and is defined
at (8.61).

• J is the PKM kinematic Jacobian matrix defined in (7.63), J = [∂0tr/∂q̇a].
• Jt , Jta and Jtd are defined in (7.93), (7.94) and (7.92), respectively.

Equation (8.71) shows that the torque of the actuated joints of the closed loop is
the sum of τ ta and the projection of τ td and 0wr on the joint axes via the rules of
the transpose of the Jacobian matrix.

Proof

Let us first rewrite (8.69) as
Ad ẋ + Bq̇a = 0 (8.74)

where, from (7.76),
Ad = Ar Dr or also Ar = AdD

−1
r . (8.75)

Moreover, let us also express (8.70) as a function of ẋ:

Jt Dr ẋ − Jta q̇a = Jtd q̇d . (8.76)

Using (8.74) and (8.76) in combination with the Lagrange equations with multi-
pliers, we have

τ = τ ta − BT λ1 − JT
taλ2 with τ ta = idma(q̈t , q̇t , qt , we) = d

dt

(
∂Lt

∂q̇a

)T
−

(
∂Lt

∂qa

)T

(8.77)

τ p = AT
d λ1 − D

T
r JT

t λ2 with τ p = d

dt

(
∂L p

∂ ẋ

)T
−

(
∂L p

∂x

)T
(8.78)

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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τ td = JT
tdλ2 with τ td = idmd (q̈t , q̇t , qt , we) = d

dt

(
∂Lt

∂q̇d

)T
−

(
∂Lt

∂qd

)T
(8.79)

where λ1 is a first vector of Lagrange multipliers of dimension na and λ2 is a second
vector of Lagrange multipliers of dimension nd . Their physical meaning is disclosed
below.

Left multiplying Eq. (8.78) by D
−T
r , we get:

D
−T
r AT

d λ1 − D
−T
r D

T
r JT

t λ2 = D
−T
r τ p. (8.80)

Now introducing (8.67) and (8.75) into (8.80), Eq. (8.78) can be rewritten as

AT
r λ1 − JT

t λ2 = 0wr . (8.81)

Thus, we have the new set of equations

τ = τ ta − BT λ1 − JT
taλ2 (8.82)

0wr = AT
r λ1 − JT

t λ2 (8.83)

τ td = JT
tdλ2 (8.84)

which is simpler to explain in terms of physics than the previous set (8.77) and (8.78).
Please note that:

• In the case of a PKM without redundancy, matrix AT
r is square and can thus be

inverted as long as there are no Type 2 singularities (see Sect. 7.5.1),
• JT

td is always square and can thus be inverted as long as it is not singular (see
Sect. 7.5.2).

Indeed, the physical meaning of the Eqs. (8.82)–(8.84) is the following:

• For Eq. (8.84): first, we must recall from Sect. 7.3.3 that the matrix Jtd is the
kinematic Jacobian matrix which links the displacement of the leg extremities to
the displacement of the passive joints. Thus, from Sect. 6.4, we can see that the
vector λ2 is composed of all wrenches applied by the virtual tree-structure by its
terminal links on the platform in points Ai mi when the joints corresponding to the
passive joints of the real robot are moving (Fig. 8.5),

• For Eq. (8.83): this equation represents the platform equilibrium equation. The
wrenches λ2 are projected towards the platform controlled point through the use
of the matrix JT

t . Moreover, as explained in Sect. 7.3.1, the column i of the matrix
AT

r is a unit wrench which is proportional to the wrenches applied by the leg i
on the platform when its actuator is developing an input effort in a static mode
of operation and in absence of any other type of external effects. Thus, λ1 are the
norm of those wrenches. So, Eq. (8.83) represents the platform equilibrium so that
the virtual structure can have the same motion as the real parallel robot.

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 8.5 Platform
equilibrium

From (8.84), the values of λ2 can be found:

λ2 = J−T
td τ td = J−T

td idmd(q̈t , q̇t , qt , wt ). (8.85)

Then, introducing (8.85) into (8.83), we have

AT
r λ1 = 0wr + JT

t λ2 = 0wr + JT
t J−T

td τ td

⇔ λ1 = A−T
r

(
0wr + JT

t J−T
td τ td

)
. (8.86)

Finally, the IDM of the PKM is given from (8.82) and (8.86) by:

τ = τ ta − BT λ1 − JT
taλ2

⇔ τ = τ ta − BT A−T
r

(
0wr + JT

t J−T
td τ td

)
− JT

taJ−T
td τ td

⇔ τ = τ ta + JT 0wr + (JT JT
t − JT

ta)J−T
td τ td

⇔ τ = τ ta + JT 0wr + JT
d τ td . (8.87)

Note that the matrix Jd defined in (8.73) is the matrix that allows us to express
the passive joint velocities q̇d as a function of the active joint velocities q̇a only. This
can be proven as follows.

Let us recall that, from (7.91), we have

Jt
0tr − Jta q̇a = Jtd q̇d . (8.88)

From (7.63), we also have
0tr = Jq̇a . (8.89)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Introducing (8.89) into (8.88), we obtain

Jtd q̇d = Jt Jq̇a − Jta q̇a = (Jt J − Jta)q̇a (8.90)

which leads to
q̇d = J−1

td (Jt J − Jta)q̇a = Jd q̇a . (8.91)

8.4.2 Direct Dynamic Model

The DDM of the PKM which expresses the input joint accelerations q̈a as a function
of the input efforts τ is given by

q̈a = M−1(qa) (τ − c(qa, q̇a)) (8.92)

where

M(qa) = [
1na JT

d

]
ET

τ Mt Eτ

[
1na

Jd

]
+ JT ΨT

t
0Mp Ψt J (8.93)

is the inertia matrix of the PKM, and

c(qa, q̇a) = [
1na JT

d

]
ET

τ

(
ct + Mt Eτ

[
0na×1

ad

])
+ JT ΨT

t (0Mp a′
t + 0cp)

(8.94)

is the vector of Coriolis, centrifugal, gravity and external effects of the PKM, in
which

ad = J−1
td (dc + Jt at ) (8.95)

and
a′

t = Ψt at + Ψ̇t
0tr . (8.96)

Moreover, in these expressions,

• 0Mp is the inertia matrix of the free platform and 0cp is its vector of Coriolis,
centrifugal, gravity and external effects expressed in the base frameF0. They are
defined from (8.57) by

0Mp = 0R p
pMp

0R
T
p (8.97)
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(pMp being a constant matrix) and

0cp = 0R p
pcp (8.98)

in which 0R p is the (6 × 6) rotation matrix between the framesFp and F0.
• Mt is the inertia matrix of the virtual tree structure and ct is its vector of Coriolis,
centrifugal, gravity and external effects. Their expression is provided in Sect. 8.2.

• Eτ is an ordering matrix defined at (8.61).
• Jd is defined in (8.73) and is the matrix that allows expression of the passive joint
velocities q̇d as a function of the active joint velocities q̇a only.

• Ψt is a (6 × ndof ) matrix defining the independent coordinates of the platform
twist (see Eq. (7.61)).

• J is the PKM kinematic Jacobian matrix defined at (7.63).
• at , Jt , Jtd and dc are defined in (7.163), (7.93), (7.92) and (7.182), respectively.

Proof

To obtain the DDM of the PKM, we first need to develop the IDM equations in order
to obtain an expression in the form:

τ = M(qa)q̈a + c(qa, q̇a). (8.99)

So, starting from (8.71), let us decompose the expression into two sub-terms τ 1
and τ 2, such as

τ = τ 1 + τ 2 (8.100)

with
τ 1 = [

1na JT
d

]
ET

τ τ t (8.101)

and
τ 2 = JT 0wr . (8.102)

Let us first concentrate on the term τ 1. Introducing (8.58) into (8.101) leads to

τ 1 = [
1na JT

d

]
ET

τ (Mt q̈t + ct ). (8.103)

Then, from (8.63), we deduce that

τ 1 = [
1na JT

d

]
ET

τ

(
Mt Eτ

[
q̈a

q̈d

]
+ ct

)
. (8.104)

Equation (7.183) states that

q̈d = J−1
td (Jt

0 ṫr − Jta q̈a + dc) (8.105)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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which can be expanded by introducing (7.163) into it as

q̈d = J−1
td (Jt (Jq̈a + at ) − Jta q̈a + dc) = J−1

td (Jt J − Jta)q̈a + J−1
td (dc + Jt at ).

(8.106)
Then, from (8.73), we deduce that

q̈d = Jd q̈a + ad (8.107)

with ad = J−1
td (dc + Jt at ).

Introducing (8.107) into (8.104), we get

τ 1 = [
1na JT

d

]
ET

τ

(
Mt Eτ

([
1na

Jd

]
q̈a +

[
0na×1

ad

])
+ ct

)

= [
1na JT

d

]
ET

τ Mt Eτ

[
1na

Jd

]
q̈a + [

1na JT
d

]
ET

τ

(
Mt Eτ

[
0na×1

ad

]
+ ct

)
.

(8.108)

Let us now consider the term τ 2. Introducing (8.65) first and then (8.57)
into (8.102) leads to

τ 2 = JT ΨT
t

0wp = JT ΨT
t (0Mp

0 ṫp + 0cp). (8.109)

Then, from (7.160) and (7.163), we have

0 ṫp = Ψt
0 ṫr + Ψ̇t

0tr = Ψt Jq̈a + a′
t where a′

t = Ψt at + Ψ̇t
0tr (8.110)

which can be introduced into (8.109) in order to obtain

τ 2 = JT ΨT
t (0Mp(Ψt Jq̈a + a′

t ) + 0cp) (8.111)

or also
τ 2 = JT ΨT

t
0MpΨt Jq̈a + JT ΨT

t (0Mpa′
t + 0cp). (8.112)

By summing (8.108) and (8.112), we obtain

τ = Mq̈a + c (8.113)

with

M = [
1na JT

d

]
ET

τ Mt Eτ

[
1na

Jd

]
+ JT ΨT

t
0Mp Ψt J (8.114)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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and

c = [
1na JT

d

]
ET

τ

(
ct + Mt Eτ

[
0na×1

ad

])
+ JT ΨT

t (0Mp a′
t + 0cp). (8.115)

Finally, the DDM in (8.92) can be obtained by solving the Eq. (8.113).

8.4.3 Examples

8.4.3.1 Example 1: The Five-Bar Mechanism

Let us deal here with the example of the five-bar mechanism (Fig. 7.3). Its MDH pa-
rameters, geometric and kinematic models have been presented in Sects. 7.1.2.1,
7.2.2.1, 7.3.4.1, 7.4.4.1 and will be reused in the present example.

To follow the approach presented in the present Chapter, let us first virtually open
the closed loop to obtain a virtual tree-structure robot which is presented in Fig. 8.6.
The obtained virtual robot is composed of:

• one 3R serial planar robot composed of the linksB11,B12 andB13 with all joints
active,

• one 2R serial planar robot composed of the links B21 and B22 with all joints
active.

Both of the chains are fixed on the ground denoted as the body B0. Moreover, the
end-effector is modeled by a punctual mass.
Computation of the IDM: Following the approach proposed in Sect. 8.2.1, we can
prove, using the developed symbolic form, that the IDM of the 3R serial planar branch
of the first leg is given by:

(a) (b)

Fig. 8.6 The planar five-bar mechanism (the gray pairs denote the actuated joints) and the corre-
sponding virtual tree-structure. a Kinematic chain of the real robot. bVirtual tree structure (virtually
opened)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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τt11 = zz11Rq̈11 + zz12(q̈11 + q̈12)

+ d12mx12 ((2q̈11 + q̈12) cos q12 − q̇12(2q̇11 + q̇12) sin q12)

+ d12my12 ((2q̈11 + q̈12) sin q12 + q̇12(2q̇11 + q̇12) cos q12)

+ f s11sign(q̇11) + f v11q̇11 (8.116)

τt12 = zz12(q̈11 + q̈12) + d12mx12
(

q̈11 cos q12 + q̇2
11 sin q12

)

+ d12my12
(

q̈11 sin q12 − q̇2
11 cos q12

)
+ f s12sign(q̇12) + f v12q̇12 (8.117)

τt13 = f s13sign(q̇13) + f v13q̇13 (8.118)

where
zz11R = zz11 + I a11 + d2

12m12 (8.119)

and d12 is given in Table7.1.
For the 2R serial planar branch of the second leg, we can prove that the IDM is

given by:

τt21 = zz21Rq̈21 + zz22(q̈21 + q̈22)

+ d22mx22 ((2q̈21 + q̈22) cos q22 − q̇22(2q̇21 + q̇22) sin q22)

+ d22my22 ((2q̈21 + q̈22) sin q22 + q̇22(2q̇21 + q̇22) cos q22)

+ f s21sign(q̇21) + f v21q̇21 (8.120)

τt22 = zz22(q̈21 + q̈22) + d22mx22
(

q̈21 cos q22 + q̇2
21 sin q22

)

+ d22my22
(

q̈21 sin q22 − q̇2
21 cos q22

)
+ f s22sign(q̇22) + f v22q̇22 (8.121)

where
zz21R = zz21 + I a21 + d2

22m22 (8.122)

and d22 is given in Table7.1.
Note that:

• for the 3R serial planar robot, the last bodyB13 is a virtual bodywhich is considered
massless as that body has been added to close the loop,

• for both chains, the term I ai j is canceled for the passive joints as such terms
concern only the real active joints.

Supposing that a desired trajectory (x, ẋ, ẍ) for the terminal point is given, the
corresponding variables qi1, qi2, and qi3 and their derivatives are computed using
the geometric and kinematic models presented in Sects. 7.1.2.1, 7.2.2.1, 7.3.4.1 and
7.4.4.1.

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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For this robot, the end-effector is a punctualmass fixed on bodyB22. The dynamic
model of the end-effector (denoted as the body B4) is given by:

0wT
p = m4

[
ẍ ÿ 0 0 0 0

]
(8.123)

or in the reduced form, by keeping only the non-null components

0wr = ΨT
t
0wT

p = m4

[
ẍ
ÿ

]
(8.124)

where Ψt is defined at (7.110) and ẍ and ÿ are given by the desired trajectory.
Following the procedure described in Sect. 8.4.1, the IDM of the five-bar mecha-

nism is given from Eq. (8.71) by:

τ =
[
τ1
τ2

]
= τ ta + JT 0wr + JT

d τ td (8.125)

where

• 0wr is given in (8.124),
• τ ta = [τt11 τt21 ]T is given in the Eqs. (8.116) and (8.117),
• τ td = [τt12 τt13 τt22 ]T is given in the Eqs. (8.116) and (8.117),
• J = −A−1

r B can be obtained from the Eqs. (7.104)–(7.113),
• Jd = J−1

td (Jt J − Jta) can be obtained from the Eqs. (7.122)–(7.124).

Computation of the DDM: Following the approach proposed in Sects. 8.2.4
and 8.2.5, or by a direct analysis of the Eqs. (8.116) and (8.117), we can prove
that the IDM of virtual tree-structure can be written in the following matrix form:

τ t = Mt (qt )q̈t + ct (qt , q̇t ) (8.126)

where qT
t = [q11 q12 q21 q22 q23],

Mt (qt ) =

⎡
⎢⎢⎢⎢⎣

M11 M12 0 0 0
M21 zz12 0 0 0
0 0 0 0 0
0 0 0 M44 M45
0 0 0 M54 zz22

⎤
⎥⎥⎥⎥⎦

(8.127)

with

M11 = zz11R + zz12 + 2d12mx12 cos q12 + 2d12my12 sin q12 (8.128)

M12 = M21 = zz12 + d12mx12 cos q12 + d12my12 sin q12 (8.129)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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M44 = zz21R + zz22 + 2d22mx12 cos q22 + 2d22my22 sin q22 (8.130)

M45 = M54 = zz22 + d22mx22 cos q22 + d22my22 sin q22 (8.131)

and ct (qt , q̇t ) = [c1 c2 c3 c4 c5]T with

c1 = − d12mx12q̇12(2q̇11 + q̇12) sin q12
+ d12my12q̇12(2q̇11 + q̇12) cos q12
+ f s11sign(q̇11) + f v11q̇11 (8.132)

c2 = d12mx12q̇2
11 sin q12 − d12my12q̇2

11 cos q12 + f s12sign(q̇12)+ f v12q̇12 (8.133)

c3 = f s13sign(q̇13) + f v13q̇13 (8.134)

c4 = − d22mx22q̇22(2q̇21 + q̇22) sin q22

+ d22my22q̇22(2q̇21 + q̇22) cos q22

+ f s21sign(q̇21) + f v21q̇21 (8.135)

c5 = d22mx22q̇2
21 sin q22 − d22my22q̇2

21 cos q22 + f s22sign(q̇22) + f v22q̇22.
(8.136)

Then, by noticing that τ ta = [τt11 τt21 ]T and τ td = [τt12 τt22 τt23 ]T and that
qT

a = [q11 q21] and qT
d = [q12 q13 q22], the sorting matrix Eτ can be defined such

that

Eτ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(8.137)

The dynamic model of the end-effector which is a punctual mass can be put in
the matrix form:

0wp = 0Mp

⎡
⎣

ẍ
ÿ

04×1

⎤
⎦ + 0cp (8.138)

where
0Mp = m4

[
12 02×4

04×2 04×4

]
(8.139)

and 0cp = 06×1.
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Following the procedure described in Sect. 8.4.1, the inertia matrix and Coriolis,
centrifugal, gravity effects, friction and external wrenches of the five-bar mechanism
is given from Eqs. (8.93) and (8.94) by:

M = [
12 JT

d

]
ET

τ Mt Eτ

[
12
Jd

]
+ JT 0Mr J (8.140)

with 0Mr = ΨT
t

0Mp Ψt = m412 and

c = [
12 JT

d

]
ET

τ

(
ct + Mt Eτ

[
02×1
ad

])
+ JT ΨT

t (0cr + 0cp) (8.141)

with 0cr = 0Mp a′
t = 0.

In these equations,

• 0wr is given in (8.124),
• ΨT

t is given in (7.110)
• J = −A−1

r B can be obtained from the Eqs. (7.104)–(7.113),
• Jd = J−1

td (Jt J − Jta) can be obtained from the Eqs. (7.122)–(7.124),
• a′

t can be deduced from the Eq. (8.96),
• ad from the Eq. (8.95).

Finally:

q̈a =
[

q̈11
q̈21

]
= M−1 (τ − c) (8.142)

Experimental validation of the model: Let us now validate experimentally the
IDM of the five-bar mechanism presented in Fig. 8.7.

Fig. 8.7 The prototype of
planar five-bar mechanism
used for the experimentation,
and designed at IFMA
(Clermont-Ferrand, France)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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For this mechanism, the constant geometric parameters given in Table7.1 and
Eq. (7.7) are:

• d11 = −0.14 m, d12 = 0.213 m, d13 = 0.1878 m,
• d21 = 0.14 m, d22 = 0.213 m, d23 = 0.1878 m.

Its dynamic parameters have been calculated using identification procedures de-
tailed in (Briot and Gautier 2014; Gautier et al. 2013). Their values are:

• zz11R = 2.11 · 10−2 kg m2, f v11 = 6.76 N m/s, f s11 = 2.94 N m,
• zz12 = 2.23 · 10−5 kg m2, mx12 = 0.012 kg m, my12 = 0 kg m, f v12 = 0 N m/s,

f s12 = 0 N m,
• f v13 = 0 N m/s, f s13 = 0 N m,
• zz21R = 2.24 · 10−2 kg m2, f v21 = 6.75 N m/s, f s21 = 2.95 N m,
• zz22 = 2.44 · 10−5 kg m2, mx22 = 0.012 kg m, my22 = 0 kg m, f v22 = 0 N m/s,

f s22 = 0 N m,
• m4 = 0.272 kg.

So now, let the robot move on the trajectory shown in Figs. 8.8 and 8.9.
To validate the model, we compare the robot input torques with those predicted

by the model. The comparison is shown in Fig. 8.10. It can be shown that the error
between the prediction and the measure is very small.

8.4.3.2 Example 2: The Orthoglide

Let us treat here the example of the Orthoglide (Figs. 7.7 and 7.8). Its MDH para-
meters, geometric and kinematic models and kinematic Jacobian matrices useful for
the dynamic model computation have been presented in Sects. 7.1.2.4 and 7.2.2.4.

Fig. 8.8 Cartesian
displacement (scaled) the
five-bar mechanism

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 8.9 Active joint
positions, velocities,
accelerations of the five-bar
mechanism. a Active joint
positions. b Active joint
velocities. c Active joiny
acccelerations

(a)

(b)

(c)

Due to the symbolic complexity of the Orthoglide IDM and DDM, they are not
detailed here, but are given in (using customized symbolic techniques):

http://www.irccyn.ec-nantes.fr/~briot/Books.html

http://www.irccyn.ec-nantes.fr/~briot/Books.html
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Fig. 8.10 Measured and
computed torques of the
five-bar mechanism (the
torques are expressed in joint
side units, not on the motor
side)
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Table 8.1 Dynamic parameters of the Orthoglide with non-null values and explicitly appearing in
the dynamic model (SI units)

Param. Val. Param. Val. Param. Val.

m11 1.32 m21 1.25 m31 6.26 · 10−1

I a11 7.13 I a21 7.13 I a31 7.82

f v11 79.70 f v21 100.00 f v31 79.40

f s11 3.21 f s21 3.23 f s31 2.21

f s12 0.00 f s22 0.00 f s32 1.28

xx13 8.69 · 10−6 xx23 8.69 · 10−6 xx33 8.69 · 10−6

yy13 7.91 · 10−3 yy23 7.91 · 10−3 yy33 7.91 · 10−3

zz13 7.91 · 10−3 zz23 7.91 · 10−3 zz33 7.91 · 10−3

mx13 3.81 · 10−2 mx23 3.81 · 10−2 mx33 3.81 · 10−2

m13 2.46 · 10−1 m23 2.46 · 10−1 m33 2.46 · 10−1

f s14 1.22 · 10−3 f s24 0.00 f s34 0.00

m6 5.13 · 10−1
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Fig. 8.11 Cartesian
trajectory of the Orthoglide
(duration: 20 s)

For the Orthoglide, the constant geometric parameters given in Tables7.3 and 7.4
and in Eq. (7.23) are:

• a = 0.34 m,
• d4 = 0.31 m,
• d6 = 0.03 m.

Fig. 8.12 Actuator
velocities and accelerations
of the Orthoglide. a Actuator
velocities on the time
interval (0 − 5)s. b Actuator
velocities on the time
interval (0 − 5 s)s

(a)

(b)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 8.13 Measured and
computed forces of the
Orthoglide (the forces are
expressed in joint side units,
not on the motor side) on the
time interval (0, 5 s)

Its standard dynamic parameters have been estimated using identification proce-
dures detailed in (Briot and Gautier 2014; Gautier et al. 2013). The parameters with
non-null values and explicitly appearing in the model are given in Table 8.1. In that
Table, the body B6 is the moving platform.

So now, we make the robot move on the trajectory shown in Figs. 8.11 and 8.12.
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Then we compare the robot input torques with those predicted by the model.
The comparison is shown in Fig. 8.13. It can be shown that the error between the
prediction and the measure is very small: thus the model is accurate.

8.5 Inverse and Direct Dynamic Models of Parallel Robots
with Actuation Redundancy

The dynamic model of PKM with actuation redundancy has a particularity. To better
understand it, let us consider the simple example shown in Fig. 8.14. This mechanism
with 1 DOF is moved using two actuators mounted in parallel that can apply, on the
moving body ofmassm, two independent forces denoted as f1 and f2. Formoving the
mechanism, there exists an infinity of possible forces to apply, e.g. [ f1 f2] = [mẍ 0],
or also [ f1 f2] = [0 mẍ] and even [ f1 f2] = 0.5 [mẍ mẍ] or many other force
combinations [ f1 f2] = mẍ [(1 − α) α] (α ∈ R) such that f1 + f2 = mẍ . The
function η = | f1 − f2| = |(1 − 2α) mẍ | is called the overconstraint and represents
the additional forces in the system that do not impact the motion but add internal
constraints in it.

The infinity of possible solutions for IDM of PKM with actuation redundancy
is the particularity of such type of mechanisms. Let us now understand the way to
compute it.

8.5.1 Inverse Dynamic Model

Contrary to the PKM without actuation redundancy, in the two constraints rela-
tions (7.62) and (7.91) which state that:

Ar
0tr + Bq̇a = 0 (8.143)

Jt
0tr − Jta q̇a = Jtd q̇d . (8.144)

Fig. 8.14 A simple parallel
mechanism with actuation
redundancy

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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The matrix B is square of dimension (na ×na), and the matrix Ar is of dimension
(na × ndof ), while the matrices Jt , Jta and Jtd being still of respective dimensions
(nd × ndof ), (nd × na) and (nd × nd). We should remark here that the dimensions
of the rectangular matrix Ar relates to the second case of Lagrange equations with
multipliers defined in Sect. 6.1.4.

Thus, the IDM of the PKM with actuation redundancy can be written as:

JT
invτ = 0wr + JT

invτ ta + JT
r τ td = 0wr + [

JT
inv JT

r

]
ET

τ τ t (8.145)

where τ is the (na × 1) vector of the real robot input efforts, the matrix

Jinv = −B−1Ar (8.146)

is defined in Eq. (7.64) and

Jr = J−1
td (Jt − JtaJinv). (8.147)

In these expressions,

• τ t is the vector of the virtual tree structure input efforts whose expression is
provided in Sect. 8.2.

• 0wr is the wrench of the free platform expressed in the base frame F0 and given
at (8.65).

• Eτ is a matrix ordering the vector τ t into two sub-part τ ta and τ td and is defined
at (8.61).

• Jinv is the PKM inverse kinematic Jacobian matrix defined at (7.64).
• Jt , Jta and Jtd are defined in (7.93), (7.94) and (7.92), respectively.

Matrix JT
inv having more columns than rows, there is an infinity of solutions for

τ that can satisfy (8.145). All those solutions are given by:

τ = τ ta + JT +
inv

(
0wr + JT

r τ td
) +

(
1na − JT +

inv JT
inv

)
η (8.148)

where JT +
inv is the pseudo-inverse of JT

inv and η is an arbitrary vector in the τ space
which is called the overconstraint. If η = 0, we get the solution for τ with the
minimal norm. This solution is usually kept as it leads to a minimal power energy
consumption for a given set of active joint velocity q̇a . However this is not always
the case as a proper use of the overconstraint η can help, for instance, increasing
the acceleration or payload capacities (Nahon and Angeles 1989) or reducing the
backlash in the joints of the robot (Müller 2005).

Note also that, even if (8.145) is not valid when B is singular, the singularity of
B does not impact (8.148) in which there is no inversion of that matrix.

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Proof

For PKM with actuation redundancy, the Eqs. (8.82)–(8.84) are still valid. Let us
rewrite them for reason of clarity of the demonstration. We thus still have

τ = τ ta − BT λ1 − JT
taλ2 (8.149)

0wr = AT
r λ1 − JT

t λ2 (8.150)

τ td = JT
tdλ2. (8.151)

In these equations, the matrices B and Jtd are still square and invertible, as long as
the robot does not encounter any singularity. Thus, they can be inverted to compute
the value of the Lagrange multipliers λ1 and λ2. As a result, from (8.151), we obtain

λ2 = J−T
td τ td . (8.152)

Then, introducing (8.152) into (8.149), we find

τ = τ ta − BT λ1 − JT
taJ−T

td τ td (8.153)

from which we can get the value of λ1 as

λ1 = −B−T (τ − τ ta + JT
taJ−T

td τ td). (8.154)

Finally, introducing (8.152) and (8.154) into (8.150), we obtain

0wr = −AT
r B−T (τ − τ ta + JT

taJ−T
td τ td) − JT

t J−T
td τ td

= JT
inv(τ − τ ta + JT

taJ−T
td τ td) − JT

t J−T
td τ td . (8.155)

Then, expanding and rearranging, we get

0wr = JT
invτ − JT

invτ ta + (JT
invJT

ta − JT
t J−T

td )τ td

= JT
invτ − JT

invτ ta − JT
r τ td (8.156)

where Jr = J−1
td (Jt − JtaJinv).

Thus, we have
JT

invτ = 0wr + JT
invτ ta + JT

r τ td . (8.157)

Note that the matrix Jr defined in (8.147) is the matrix that allows expressing the
passive joint velocities q̇d as a function of the platform twist 0tr only. This can be
proven as follows.

Let us recall that, from (7.91), we have

Jt
0tr − Jta q̇a = Jtd q̇d . (8.158)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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From (7.64), we also have
q̇a = Jinv

0tr . (8.159)

Introducing (8.159) into (8.88), we obtain

Jtd q̇d = Jt
0tr − JtaJinv

0tr = (Jt − JtaJinv)
0tr (8.160)

which leads to
q̇d = J−1

td (Jt − JtaJinv)
0tr = Jr

0tr . (8.161)

8.5.2 Direct Dynamic Model

Contrary to the DDM of the PKM without redundancy for which the input joint
accelerations q̈a is expressed as a function of the input efforts τ , for the PKM with
actuation redundancy, the DDM expresses the platform acceleration 0 ṫr as a function
of the input efforts τ . It is given by

0 ṫr = M−1
red(x)

(
JT

invτ − cred(x, 0tr )
)

(8.162)

where

Mred(x) = [
JT

inv JT
r

]
ET

τ Mt Eτ

[
Jinv

Jr

]
+ ΨT

t
0Mp Ψt (8.163)

is the inertia matrix of the PKM with actuation redundancy, and

cred(x, 0tr ) = [
JT

inv JT
r

]
ET

τ

(
ct + Mt Eτ

[
aq

ar

])
+ ΨT

t

(
0cp + 0MpΨ̇t

0tr
)

(8.164)

is the vector of Coriolis, centrifugal, gravity and external effects of the PKM with
actuation redundancy, in which

ar = J−1
td (dc − Jtaaq) (8.165)

In these expressions,

• 0Mp is the inertia matrix of the free platform and 0cp is its vector of Coriolis,
centrifugal, gravity and external effects. They are defined in (8.97) and (8.98).

• Mt is the inertia matrix of the virtual tree structure and ct is its vector of Coriolis,
centrifugal, gravity and external effects. They are defined in (8.58).

• Eτ is an ordering matrix defined at (8.61).
• Jr is defined in (8.147) and is the matrix that allows expressing the passive joint
velocities q̇d as a function of the platform twist 0tr only.

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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• Ψt is a (6 × ndof ) matrix defining the independent coordinates of the platform
twist (see Eq. (7.61)).

• Jinv is the PKM inverse kinematic Jacobian matrix defined at (7.64).
• aq , Jt , Jtd and dc are defined in (7.164), (7.93), (7.92) and (7.182), respectively.

The present form of the DDM is quite unusual as it does not give the value of
the acceleration of the active joint as a function of their position, velocity and input
efforts, but it gives the value of the platform acceleration as a function of the platform
velocity, pose and input efforts. All other variables can be obtained by solving the
inverse geometric and kinematic problems presented in Chap.7.

Proof

To obtain the DDM of the PKM with actuation redundancy, we first need to develop
the IDM equations in order to obtain an expression under the form:

JT
invτ = Mred(x)0 ṫr + cred(x, 0tr ). (8.166)

So, starting from (8.71), let us decompose the expression into two sub-terms τ 1
and τ 2, such as

τ = τ 1 + τ 2 (8.167)

with
τ 1 = [

JT
inv JT

r

]
ET

τ τ t (8.168)

and
τ 2 = 0wr . (8.169)

Let us first concentrate on the term τ 1. Introducing (8.58) into (8.101) leads to

τ 1 = [
JT

inv JT
r

]
ET

τ (Mt q̈t + ct ). (8.170)

Then, from (8.63), we deduce that

τ 1 = [
JT

inv JT
r

]
ET

τ (Mt Eτ

[
q̈a

q̈d

]
+ ct ). (8.171)

Equation (7.183) states that

q̈d = J−1
td (Jt

0 ṫr − Jta q̈a + dc) (8.172)

which can be expanded by introducing (7.164) into it as

q̈d = J−1
td (Jt

0 ṫr − Jta(Jinv
0 ṫr + aq) + dc)

= J−1
td (Jt − JtaJinv)

0 ṫr + J−1
td (dc − Jtaaq). (8.173)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Then, from (8.73), we deduce that

q̈d = Jr
0 ṫr + ar (8.174)

with ar = J−1
td (dc − Jtaaq).

Introducing (7.164) and (8.174) into (8.171), we get

τ 1 = [
JT

inv JT
r

]
ET

τ

(
Mt Eτ

([
Jinv

Jr

]
0 ṫr +

[
aq

ar

])
+ ct

)

= [
JT

inv JT
r

]
ET

τ Mt Eτ

[
Jinv

Jr

]
0 ṫr + [

JT
inv JT

r

]
ET

τ

(
Mt Eτ

[
aq

ar

]
+ ct

)
. (8.175)

Let us nowconsider the termτ 2. Introducing (8.65)first and then (8.57) into (8.169)
leads to

τ 2 = 0ΨT
t

0wp = ΨT
t (0Mp

0 ṫp + 0cp). (8.176)

Then, from (7.61) and (7.163), we have

0 ṫp = Ψt
0 ṫr + Ψ̇t

0tr (8.177)

which can be introduced into (8.176) in order to obtain

τ 2 = ΨT
t (0MpΨt

0 ṫr + 0MpΨ̇t
0tr + 0cp) (8.178)

or also
τ 2 = ΨT

t
0MpΨt

0 ṫr + ΨT
t

(
0MpΨ̇t

0tr + 0cp

)
. (8.179)

By summing (8.175) and (8.179), we obtain

JT
invτ = Mred

0 ṫr + cred (8.180)

with

Mred = [
JT

inv JT
r

]
ET

τ Mt Eτ

[
Jinv

Jr

]
+ ΨT

t
0MpΨt (8.181)

and

cred = [
JT

inv JT
r

]
ET

τ

(
Mt Eτ

[
aq

ar

]
+ ct

)
+

(
0MpΨ̇t

0tr + 0cp

)
. (8.182)

Finally, the DDM in (8.162) can be obtained by solving Eq. (8.180).

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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8.5.3 Example: The DualV

8.5.3.1 Description of the DualV

The DualV (Fig. 8.15) is a prototype of a planar parallel robot with actuation redun-
dancy developed at the LIRMM(van derWijk et al. 2011). This robot has 3 controlled
dof (two translations in the plane (x Oy) and one rotation around the z axis) but 4
identical legs, with one actuator by leg. Thus, its degree of redundancy is equal to 1.
Each leg is composed of one proximal and one distal link. The proximal link Ai Bi

is attached to the base by one actuated revolute joint and to the distal link Bi Ci by
one passive revolute joint. The distal link is also attached to the moving platform by
one passive revolute joint.

The geometric parameters of the virtual open-loop tree structure are described
in Table8.2 using the MDH notation (in this table, γ11 = 15.52◦, γ21 = 164.48◦,
γ31 = −164.48◦ and γ41 = −15.52◦). The platform and payload are considered as
supplementary bodies, the payload being fixed on the platform. They are respectively
numbered as bodies B4 and B5.

(a) (b)

Fig. 8.15 The DualV. a The prototype (Courtesy of Sébastien Krut). b Kinematic description:
in that picture, the DualV configuration is such that the base frame (xo Oyo) coincides with the
platform frame (x p Pyp)

Table 8.2 MDH parameters for the frames corresponding to i th robot leg (i = 1, . . . , 4)

i j ai j μi j σi j γi j αi j di j θi j ri j

i1 0 1 0 γi1 0 di1 = lO Ai = 0.41 m qi1 − γi1 0

i2 i1 0 0 0 0 di2 = lAi Bi = 0.28 m qi2 0

i3 i2 0 0 0 0 di3 = lBi Ci = 0.28 m qi3 0

p i3 0 2 0 0 rp/2 = 0.11 m θpi 0

“p” denotes the platform frame.
θp1 = θp2 = π/2, θp3 = θp4 = −π/2
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TheDualV is actuatedby fourETELRTMB0140-100direct drive actuators,which
can deliver maximal torques of 127 Nm. The robot is able to achieve accelerations
of 25 G in its workspace. The current amplifier can provide directly the measure of
the input torque produced by the actuator.

8.5.3.2 Forward Kinematic Model of the Real Parallel Robot

For the DualV, the loop-closure Eqs. (7.3) can be written in the base frame F0 as
(for i = 1 . . . 4):

0 = x − rp sin(φ + kπ) − xAi − di2 cos qi1 − di3 cos(qi1 + qi2)

0 = y + rp cos(φ + kπ) − yAi − di2 sin qi1 − di3 sin(qi1 + qi2)

0 = φ + k̄π − qi1 − qi2 − qi3

(8.183)

where

• x , y and φ are the platform coordinates (x and y are the position of the platform
center, φ the platform orientation defined as the angle between the axes x0 and
xp),

• rp is the half platform length (rp = lC1C3/2), k = 0 (k̄ = 1) if i = 1, 2, k = 1
(k̄ = 0) if i = 3, 4, and

• xAi and yAi are the position coordinates along x0 and y0 axes for the point Ai .

From the two first lines of (8.183), the reduced loop-closure Eq. (7.4) that directly
relate the displacements of the actuated joints to the moving platform coordinates
can be obtained after deleting from these expressions the terms in cos qi2 or sin qi2
(for i = 1 . . . 4):

d2
i3 = (

xCi − xBi

)2 + (
yCi − yBi

)2 (8.184)

where xCi = x − rp sin(φ + kπ) and yCi = y + rp cos(φ + kπ) are the position
coordinates along x0 and y0 axes for the point Ci , and xBi = xAi + di2 cos qi1 and
yBi = yAi +di2 sin qi1 are the position coordinates along x0 and y0 axes for the point
Bi .

Noticing that

x = xC1 + xC3

2
, y = yC1 + yC3

2

φ = tan−1
(

− xC1 − xC3

yC1 − yC3

)
(8.185)

the FGM can be solved by finding the expressions of xC j and yC j ( j = 1, 3) as a
function of qi1 (i = 1 . . . 4). These expressions are quite simple to find as the loops
formed by the legs 1 and 2, or the legs 3 and 4, are five-bar linkages. Thus, the
expressions of xC j and yC j as a function of qi1 are (for j = 1 or j = 3):

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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xC j = f j yC j + k j , yC j =
−p j ±

√
p2j − 4g jr j

2g j
(8.186)

where

f j = − yB j+1 − yB j

xB j+1 − xB j

, g j = f 2j + 1

k j =
x2B j

+ y2B j
− x2B j+1

− y2B j+1

2(xB j+1 − xB j )

p j = 2 f j (k j − xB j ) − 2yB j

r j = x2B j
+ y2B j

− d2
i3 + k2j − 2k j xB j . (8.187)

In (8.186), the sign “±” denotes the two robot assemblymodes, that are considered
a priori fixed in the identification process as no parallel singularities are crossed.

Then, it comes easily from (8.183) that:

qi2 = atan2
(
yCi − yBi , xCi − xBi

) − qi1, qi3 = φ + k̄π − qi1 − qi2. (8.188)

Then, differentiating (8.183) and (8.184) with respect to time, and simplifying,
the matrices Ar and B of (7.62) can be found:

A|i = di3
[
c12i s12i − sin(φ + kπ)s12i − cos(φ + kπ)c12i

]
(8.189)

where A|i is the i th row of Ar , c12i = cos(qi1 + qi2) and s12i = sin(qi1 + qi2),

bii = di2di3 sin qi2 (8.190)

where bii is the i th term of the diagonal matrix B.
Differentiating (8.183) w.r.t. time, we get

⎡
⎣
1 0 −rp cos(φ + kπ)

0 1 −rp sin(φ + kπ)

0 0 1

⎤
⎦

⎡
⎣

ẋ
ẏ
φ̇

⎤
⎦ −

⎡
⎣

−di2 sin qi1
di2 cos qi1

1

⎤
⎦ q̇i1 =

⎡
⎣

−di3s12i 0
di3c12i 0

1 1

⎤
⎦

[
q̇i2
q̇i3

]
.

(8.191)
Now projecting (8.191) into the frame Fi2 of the linkBi2, we obtain

⎡
⎣

c12i s12i j t13i

−s12i c12i j t23i

0 0 1

⎤
⎦

⎡
⎣

ẋ
ẏ
φ̇

⎤
⎦ −

⎡
⎣

di2 sin qi2
di2 cos qi2

1

⎤
⎦ q̇i1 =

⎡
⎣

0 0
di3 0
1 1

⎤
⎦

[
q̇i2
q̇i3

]
(8.192)

where j t13i = −c12i r p cos(φ+kπ)−s12i r p sin(φ+kπ) and j t23i = s12i r p cos(φ+
kπ) − c12i r p sin(φ + kπ).

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Noticing that the first row of (8.192) does not depend on the passive joint velocities
q̇i2 and q̇i3, the relation (7.87) can be identified as

Jc
ti
0tr − Jtai q̇ai = Jtdi q̇di (8.193)

where 0tr = [
ẋ ẏ φ̇

]T
, q̇ai = q̇i1, q̇T

di = [
q̇i2 q̇i3

]
,

Jc
ti =

[−s12i c12i j t23i

0 0 1

]
(8.194)

Jtai = −
[

di2 cos qi2
1

]
(8.195)

and

Jtdi =
[

di3 0
1 1

]
. (8.196)

Now, considering all legs, we have

Jt
0tr − Jta q̇a = Jtd q̇d (8.197)

with

Jt =

⎡
⎢⎢⎣

Jc
t1

Jc
t2

Jc
t3

Jc
t4

⎤
⎥⎥⎦ (8.198)

an (8 × 3) matrix,

Jta =

⎡
⎢⎢⎣

Jta1 02×1 02×1 02×1
02×1 Jta2 02×1 02×1
02×1 02×1 Jta3 02×1
02×1 02×1 02×1 Jta4

⎤
⎥⎥⎦ (8.199)

an (8 × 4) matrix, and

Jtd =

⎡
⎢⎢⎣

Jtd1 02×2 02×2 02×2
02×2 Jtd2 02×2 02×2
02×2 02×2 Jtd3 02×2
02×2 02×2 02×2 Jtd4

⎤
⎥⎥⎦ (8.200)

an (8 × 8) matrix.
Then, all joint velocities can be computed from (7.62) and (8.88) as a function

0tr or q̇a .
Finally, the accelerations can be computed from (7.161) and (7.180) using the

previous expressions and their derivatives w.r.t. time.

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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8.5.3.3 Computation of the IDM

The inverse dynamic model of the open-loop virtual structure can be obtained by
noticing that each leg is indeed a planar 3R robot in which the last body is massless.
Its inverse dynamic model is then equal to (Gautier et al. 1994):

τti1 = zzi1Rq̈i1 + zzi2(q̈i1 + q̈i2)

+ di2mxi2 ((2q̈i1 + q̈i2) cos qi2 − q̇i2(2q̇i1 + q̇i2) sin qi2)

+ di2myi2 ((2q̈i1 + q̈i2) sin qi2 + q̇i2(2q̇i1 + q̇i2) cos qi2)

+ f si1sign(q̇i1) + f vi1q̇i1 (8.201)

τti2 = zzi2(q̈i1 + q̈i2) + di2mxi2

(
q̈i1 cos qi2 + q̇2

i1 sin qi2

)

+ di2myi2

(
q̈i1 sin qi2 − q̇2

i1 cos qi2

)

+ f si2sign(q̇i2) + f vi2q̇i2

τti3 = f si3sign(q̇i3) + f vi3q̇i3

where zzi1R = (
zzi1 + I ai1 + d2

i2mi2
)
τti1 is the torque of the virtual actuator located

at point Ai , τti2 is the torque of the virtual actuator located at point Bi , and τti3 is the
torque of the virtual actuator located at point Ci .

The dynamic model of the free body corresponding to the platform with the
payload in the virtual system is equal to 0wr = [w1 w2 w3]T with:

w1 = (m4 + m5)ẍ − (mx4 + mx5)(φ̈ sin φ + φ̇2 cosφ)

+ (my4 + my5)(−φ̈ cosφ + φ̇2 sin φ) (8.202)

w2 = (m4 + m5)ÿ + (mx4 + mx5)(φ̈ cosφ − φ̇2 sin φ)

− (my4 + my5)(φ̈ sin φ + φ̇2 cosφ) (8.203)

w3 = (zz4 + zz5)φ̈ + (mx4 + mx5)(ÿ cosφ − ẍ sin φ)

− (my4 + my5)(ÿ sin φ + ẍ cosφ). (8.204)

Following the procedure described in Sect. 8.5.1, the IDM of the DualV is given
from Eq. (8.145) by:

JT
inv τ = 0wr + JT

invτ ta + JT
r τ td (8.205)

with τ T
ta = [τt11 τt21 τt31 τt41 ], τ T

td = [τt12 τt13 τt22 τt23 τt32 τt33 τt42 τt43 ] and Jinv =
−B−1Ar .

Here, we give the expression of the IDM only. We leave the computation of the
DDM as training for the interested reader.
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Fig. 8.16 Trajectory for
validating the model of the
DualV

8.5.3.4 Experimental Validation of the Model:

The dynamic parameters of the DualV have been estimated using identification pro-
cedures detailed in (Briot and Gautier 2014; Gautier et al. 2013). Their values are:

• zzi1R = 4.92 · 10−2 kg m2, f vi1 = 0 N m/s, f si1 = 0 N m,
• zzi2 = 2.23 · 10−5 kg m2, mxi2 = 0.012 kg m, myi2 = 0 kg m, f vi2 = 0 N m/s,

f si2 = 0 N m,
• f vi3 = 0 N m/s, f si3 = 0 N m,
• m4 = 1.92 kg, zz4 = 2.06 · 10−2 kg m2, mx4 = 0 kg m, my4 = 0 kg m,
• m5 = 5.42 kg, zz5 = 1.61 · 10−2 kg m2, mx5 = −1.27 · 10−1 kg m, my5 = 0 kg
m.

So now, we make the robot move on the trajectory shown in Fig. 8.16.
Then we compare the robot input torques with those predicted by the model.

The comparison is shown in Fig. 8.17. It can be shown that the error between the
prediction and the measure is very small: thus the model is accurate.

8.6 Other Models

8.6.1 Computation of the Ground Reactions of PKM

The GRM which computes the ground reactions as a function of the robot’s con-
figuration, velocity and acceleration is less known but can be used to identify its
dynamic parameters (Ayusawa et al. 2008; Raucent et al. 1992) or for design pur-
pose in shaking force and shaking moment balancing (Briot and Arakelian 2009;
Briot et al. 2012a; Foucault and Gosselin 2004). An efficient way to obtain it is
described thereafter.
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8.6.1.1 Ground Reaction Model

This model computes the values of the force 0f0 and moment 0m0 exerted by the
moving robot on the fixed ground. The force 0f0 and moment 0m0 are equal to:

[
0f0
0m0

]
=

[
0fp

0mp + 0rO P × 0fp

]
+

n∑
i=1

i1T
T
0

[
i1fi1

i1mi1

]
(8.206)

where

• i1fi1 and i1mi1 are the reaction force and moments of the base on the first link of
leg i . They are defined at (8.16),

• 0mp and 0fp are the components of the wrench 0wp given in (8.57), and
• 0Ti1 is the screw transformation matrix defined at (3.13).

Fig. 8.17 Measured (red
lines) and estimated (blue
lines) input torques rebuilt
using the identified
parameters of the DualV

http://dx.doi.org/10.1007/978-3-319-19788-3_3
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Fig. 8.17 (continued)

Thus, its expression can be recursively computed by using the algorithm given in
Sect. 8.2.1.

8.6.1.2 Example: The Five-Bar Mechanism

For the five-bar mechanism of the Sect. 8.4.3.1, the value of the moment i1mi1 is

i1mi1 = [
0 0 mzi

]
(8.207)

with

mzi = (zzi1 + d2
i2mi2)q̈i1 + zzi2(q̈i1 + q̈i2)

+ di2mxi2 ((2q̈i1 + q̈i2) cos qi2 − q̇i2(2q̇i1 + q̇i2) sin qi2) (8.208)

+ di2myi2 ((2q̈i1 + q̈i2) sin qi2 + q̇i2(2q̇i1 + q̇i2) cos qi2)
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while the value of the force i1fi1 is

i1fi1 = q̈i1

⎡
⎣

−myi1
mxi1
0

⎤
⎦ − q̇2

i1

⎡
⎣

mxi1
myi1
0

⎤
⎦

+ (q̈i1 + q̈i2)

⎡
⎣

−myi2 cos qi2 − sin qi2(mxi2 + mi2di2)

(mxi2 + mi2di2) cos qi2 − myi2 sin qi2
0

⎤
⎦ (8.209)

− (q̇i1 + q̇i2)
2

⎡
⎣

(mxi2 + mi2di2) cos qi2 − myi2 sin qi2
(mxi2 + mi2di2) sin qi2 + myi2 cos qi2

0

⎤
⎦ .

Moreover, we have

0fp = m p

⎡
⎣

ẍ
ÿ
0

⎤
⎦ (8.210)

and
0mp = 0. (8.211)

Then, for the leg i , 0Ti1 is equal to

i1T
T
0 =

[
0Ri1 03

−0Ri
i1r̂i1

0Ri1

]
(8.212)

with

0Ri1 =
⎡
⎣
cos qi1 − sin qi1 0
sin qi1 cos qi1 0

0 0 1

⎤
⎦ (8.213)

and

ri1 = k

⎡
⎣

di1
0
0

⎤
⎦ (8.214)

where k = −1 if i = 1, k = +1 if i = 2.
Then, the ground reaction model of the five-bar mechanism can be obtained from

[
0f0
0m0

]
=

[
0fp

0mp + 0rO P × 0fp

]
+

n∑
i=1

i1T
T
0

[
i1fi1

i1mi1

]
(8.215)
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8.6.2 Energy Models of PKM

Energy models can be used to identify robot’s dynamic parameters (Gautier 1997;
Gautier and Briot 2013) or for design purpose or trajectory planning to reduce robot’s
energy consumption (Ur-Rehman et al. 2009). An efficient way to obtain them is
described thereafter.

8.6.2.1 Calculation of the Energy

From (6.8), the kinetic energy of the body Bi j is given by

Ei j = 1

2

[
i j vT

i j
i jωT

i j

] [
mi j 13 i j m̂sT

i j
i j m̂si j

i j IOi j

] [
i j vi j
i jωi j

]

= 1

2
i j tT

i j
i j Mi j

i j ti j (8.216)

= 1

2
(mi j

i j vT
i j

i j vi j + i jωT
i j

i j IOi j
i jωi j + 2i j msT

i j (
i j vi j × i jωi j )).

Moreover, the kinetic energy due to the inertia of the actuator k is

Ek = 1

2
I akq̇2

k (8.217)

where q̇k is the velocity of the actuator k.
As a result, the total kinetic energy of the parallel robot including the end-effector

is

E = E p +
n∑

i=1

mi∑
j=1

Ei j +
na∑

k=1

Ek

= 1

2
(m p

pvT
p

pvp + pωT
p

pIp
pωp + 2pmsT

p (pvp × pωp) +
na∑

k=1

I akq̇2
k

(8.218)

+
n∑

i=1

mi∑
j=1

(mi j
i j vT

i j
i j vi j + i jωT

i j
i j IOi j

i jωi j + 2i j msT
i j (

i j vi j × i jωi j ))).

From (6.20), the potential energy of the body Bi j is given by

Ui j = − [
0gT 0

] 0Ti j (q)

[
i j msi j

mi j

]
. (8.219)

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_6
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As a result, the total potential energy of the parallel robot including the end-
effector is

U = Up +
n∑

i=1

mi∑
j=1

Ui j

= − [
0gT 0

] 0Tp(q)

[
pmsp

m p

]
−

n∑
i=1

mi∑
j=1

([
0gT 0

] 0Ti j (q)

[
i j msi j

mi j

])
. (8.220)

Expressions (8.218) and (8.220) are valid for PKM with or without redundancy
and can be recursively computed by using the algorithm for the velocity calculation
given in Sect. 8.2.1.

8.6.2.2 Example: The Five-Bar Mechanism

For the Five-bar mechanism of the Sect. 8.4.3.1, the link velocities can be obtained as

i1vi1 = 0, i1ωi1 =
⎡
⎣

0
0

q̇i1

⎤
⎦ (8.221)

i1vi2 = di2q̇i1

⎡
⎣

− sin qi2
cos qi2

0

⎤
⎦ , i2ωi2 =

⎡
⎣

0
0

q̇i1 + q̇i2

⎤
⎦ (8.222)

while the end-effector velocity is

0vp =
⎡
⎣

ẋ
ẏ
0

⎤
⎦ , 0ωp =

⎡
⎣

0
0

q̇21 + q̇22

⎤
⎦ . (8.223)

As a result, the kinetic energy of the linksBi1 and Bi2 is

Ei1 = 1

2
zzi1q̇2

i1 (8.224)

Ei2 = 1

2
(mi2d2

i2q̇2
i1 + zzi2(q̇i1 + q̇i2)

2 +2di2q̇i1(q̇i1 + q̇i2)(mxi2 cos qi2 +myi2 sin qi2))

(8.225)
and the kinetic energy of the end-effector is

E p = 1

2
m p(ẋ2 + ẏ2). (8.226)
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The kinetic energy of the actuators is

Eact = 1

2
(I a11q̇2

11 + I a21q̇2
21). (8.227)

Thus the total kinetic energy is E = E p + Eact + ∑2
i=1(Ei1 + Ei2).

If the gravity field 0g is directed along z0, so the potential energy is constant
(which is the case for the example proposed in Sect. 8.4.3.1).

If the gravity field 0g is not directed along z0 (for instance, 0gT = [0 g 0]), so
the potential energy of the links Bi1 and Bi2 is

Ui1 = −(mxi1 sin qi1 + myi1 cos qi1)g (8.228)

Ui2 = −(mxi2 sin(qi1 + qi2) + myi2 cos(qi1 + qi2) + di2mi2 sin qi1)g (8.229)

and the potential energy of the end-effector is

Up = −m p yg. (8.230)

Thus the total potential energy is U = Up + ∑2
i=1(Ui1 + Ui2).

8.7 Computation of the Base Dynamic Parameters

In this section, we study the concept of base dynamic parameters or identifiable
parameters. We develop a straightforward numerical method to determine them.
These parameters constitute the minimum set of inertial parameters that are needed
to compute the dynamic model of a robot (Mayeda et al. 1990). The use of the base
dynamic parameters in a customized Newton-Euler algorithm reduces its computa-
tional cost (Khalil and Kleinfinger 1987; Khalil et al. 1986). The determination of the
base parameters is also essential for identification of the dynamic parameters (Briot
and Gautier 2014; Gautier 1991; Gautier and Khalil 1990; Khalil and Dombre 2002),
since they constitute the only identifiable parameters. The base dynamic parameters
can be deduced from standard parameters by eliminating those that have no effect
on the dynamic model and by grouping some others.

The determination of the base parameters of tree structure robots and some par-
ticular closed-loop architectures can be obtained using symbolic algorithms (Khalil
and Bennis 1995). For PKM, the numerical method developed in (Briot and Gautier
2014; Gautier 1991; Khalil and Guégan 2004) can be used for this purpose. This
method is presented below.
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8.7.1 Expressing the Dynamic Model Linearly as a Function
of the Standard Dynamic Parameters

In this section, we will demonstrate that the energy of the robot, and also the IDM,
is linear with respect to the dynamic parameters.

8.7.2 Linearity of the Energy w.r.t. the Inertial Parameters

Let us consider the energy of the bodyBi j . From (8.216), we can easily prove that:

Ei j = 1

2
(mi j

i j vT
i j

i j vi j + i jωT
i j

i j IOi j
i jωi j + 2i j msT

i j (
i j vi j × i jωi j ))

= ei jχ i j (8.231)

where χ i j is the vector of the link inertial parameters that have been defined in
Sect. 6.1.2,

χ i j = [
xxi j xyi j xzi j yyi j yzi j zzi j mxi j myi j mzi j mi j

]T (8.232)

and ei j is a vector of function also called the Jacobian matrix of the kinetic energy
w.r.t. the inertial parameters of the link Bi j ,

ei j = ∂ Ei j

∂χ i j

= [
exxi j exyi j exzi j eyyi j eyzi j ezzi j emxi j emyi j emzi j emi j

]
(8.233)

with

exxi j = 1

2
ω1i jω1i j (8.234)

exyi j = ω1i jω2i j (8.235)

exzi j = ω1i jω3i j (8.236)

eyyi j = 1

2
ω2i jω2i j (8.237)

eyzi j = ω2i jω3i j (8.238)

ezzi j = 1

2
ω3i jω3i j (8.239)

emxi j = ω3i j v2i j − ω2i j v3i j (8.240)

emyi j = ω1i j v3i j − ω3i j v1i j (8.241)

emzi j = ω2i j v1i j − ω1i j v2i j (8.242)

emi j = 1

2
i j vT

i j
i j vi j (8.243)

http://dx.doi.org/10.1007/978-3-319-19788-3_6
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in which i jωT
i j = [ω1i j ω2i j ω3i j ] and i j vT

i j = [v1i j v2i j v3i j ].
As a result, the platform kinetic energy E p can also be written as a function of its

inertial parameters χ p such that

E p = epχ p. (8.244)

Finally, from (8.218), the total kinetic energy can be written as

E = E p +
n∑

i=1

mi∑
j=1

Ei j

= epχ p +
n∑

i=1

mi∑
j=1

ei jχ i j

= [
ep e11 e12 . . . en,mn

] [
χ p
χ t

]

= [
ep et

] [
χ p
χ t

]
(8.245)

where

• et is the kinetic energy function of the tree-structure,
• χT

t = [χT
11 χT

12 . . . χT
n,mn

] is the vector of standard dynamic parameters of the
tree structure.

Similarly, the potential energy of the bodyBi j can be linearlywritten as a function
of the vector of the link inertial parameters χ i j . From (8.219), we can prove that:

Ui j = − [
0gT 0

] 0Ti j (q)

[
i j msi j

mi j

]

= ui jχ i j (8.246)

where

ui j = ∂Ui j

∂χ i j

= [
uxxi j uxyi j uxzi j uyyi j uyzi j uzzi j umxi j umyi j umzi j umi j

]
(8.247)

with

uxxi j = uxyi j = uxzi j = uyyi j = uyzi j = uzzi j = 0 (8.248)

umxi j = − [
0gT 0

] 0s̃i j (8.249)

umyi j = − [
0gT 0

] 0ñi j (8.250)
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umzi j = − [
0gT 0

] 0ãi j (8.251)

umi j = − [
0gT 0

] 0r̃i j (8.252)

in which

• 0s̃i j is the first column of matrix 0Ti j ,
• 0ñi j is the second column of matrix 0Ti j ,
• 0ãi j is the third column of matrix 0Ti j ,
• 0r̃i j is the fourth column of matrix 0Ti j .

As a result, the platform potential energy Up can also be written as a function of
its inertial parameters χ p such that

Up = upχ p. (8.253)

Finally, from (8.220), the total kinetic energy can be written as

U = Up +
n∑

i=1

mi∑
j=1

Ui j

= upχ p +
n∑

i=1

mi∑
j=1

ui jχ i j

= [
up u11 u12 . . . un,mn

] [
χ p
χ t

]

= [
up ut

] [
χ p
χ t

]
(8.254)

where ut = [
u11 u12 . . . un,mn

]
is the potential energy function of the tree-structure.

As a result, the Lagrangian of the system can be linearly written as a function of
the robot inertial parameters χ st such that

L = E − U

= [
ep et

] [
χ p
χ t

]
− [

up ut
] [

χ p
χ t

]

= [
ep − up et − ut

] [
χ p
χ t

]

= [
lp lt

] [
χ p
χ t

]
(8.255)

where lp = ep − up is the Lagrangian function of the platform and lt = et − ut is
the Lagrangian function of the tree-structure.
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8.7.3 Linearity of the IDM w.r.t. the Dynamic Parameters

From (8.59), (8.60) and (8.255), we can see that the input efforts of the virtual tree-
structure can be linearly written as a function of the robot inertial parameters:

τ ta = d

dt

(
∂Lt

∂q̇a

)T

−
(

∂Lt

∂qa

)T

= d

dt

(
∂ltχ t

∂q̇a

)T

−
(

∂ltχ t

∂qa

)T

= d

dt

(
∂lt
∂q̇a

)T

χ t −
(

∂lt
∂qa

)T

χ t

=
(
d

dt

(
∂lt
∂q̇a

)T

−
(

∂lt
∂qa

)T
)

χ t

= Daχ t (8.256)

where
Da = [

D11
a D12

a . . . Dn,mn
a

]
. (8.257)

Thus,

τ ta = [
D11

a D12
a . . . Dn,mn

a
]
χ t

=
n∑

i=1

mi∑
j=1

Di j
a χ i j . (8.258)

Similarly,

τ td = Ddχ st

= [
D11

d D12
d . . . Dn,mn

d

]
χ t

=
n∑

i=1

mi∑
j=1

Di j
d χ i j (8.259)

where
Dd = [

D11
d D12

d . . . Dn,mn
d

]
. (8.260)

In these expressions,

• Di j
a is the Jacobian matrix of the effort τ ta w.r.t. the inertial parameters χ i j of the

body Bi j ,

• Di j
d is the Jacobian matrix of the effort τ td w.r.t. the inertial parameters χ i j of the

body Bi j .
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Previous expressions do not take into account the inertia of the robot actuators
and the friction effects into the joints (see Sects. 8.2.2 and 8.2.3). Let us recall that,
for the joint i j , when the inertia of the robot actuators and the friction effects are
taken into account, the input effort becomes:

τ n
ti j

= τti j + I ai j q̈i j + f si j sign(q̇i j ) + f vi j q̇i j (8.261)

where τti j is the component of τ ta or τ td defined at (8.258) and (8.259) corresponding
to the joint i j .

As a result, τ ta and τ td can be rewritten as

τ ta =
n∑

i=1

mi∑
j=1

Di j
a χ i j + diag(q̈a)iaa + diag(q̇a)fva + diag(sign(q̇a))fsa

=
n∑

i=1

mi∑
j=1

Di j st
a χ st

i j

= Dtot
a χ tot

t (8.262)

with

• Di j st
a =

[
Di j

a q̈i j q̇i j sign(q̇i j )

]

• Dtot
a = [

D11 st
a D12 st

a . . . Dn,mn st
a

]
.

Moreover,

τ td =
n∑

i=1

mi∑
j=1

Di j
d χ i j + diag(q̈d)iad + diag(q̇d)fva + diag(sign(q̇d))fsa

=
n∑

i=1

mi∑
j=1

Di j st
d χ st

i j

= Dtot
d χ tot

t (8.263)

with

• Di j st
d =

[
Di j

d q̈i j q̇i j sign(q̇i j )

]

• Dtot
d = [

D11 st
d D12 st

d . . . Dn,mn st
d

]
.

In all the previous expressions

• for a vector s = [s1 s2 . . . sn]T , diag(s) =

⎡
⎢⎢⎢⎣

s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...

0 0 . . . sn

⎤
⎥⎥⎥⎦,
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• iaa (iad ) is a (na × 1) vector ((nd × 1), resp.) grouping the inertia of the actuators
of the virtual structure in the joints corresponding to the active (passive, resp.)
joints of the real robot,

• fva (fvd ) is a (na × 1) vector ((nd × 1), resp.) grouping the viscous friction terms
of the virtual structure in the joints corresponding to the active (passive, resp.)
joints of the real robot,

• fsa (fsd ) is a (na ×1) vector ((nd ×1), resp.) grouping the Coulomb friction terms
of the virtual structure in the joints corresponding to the active (passive, resp.)
joints of the real robot,

• χ tot T
t = [χ st T

11 χ st T
12 . . . χ st T

n,mn
],

• χ st T
i j = [xxi j xyi j xzi j yyi j yzi j zzi j mxi j myi j mzi j mi j I ai j f vi j f si j ] is

called the vector of standard dynamic parameters of the link Bi j ,

• Di j st
a the Jacobian matrix of the effort τ ta w.r.t. the standard dynamic parameters

χ st
i j of the body Bi j ,

• Di j st
d the Jacobian matrix of the effort τ td w.r.t. the standard dynamic parameters

χ st
i j of the body Bi j .

In a fully similar way to what is written above, the vector 0wr of (8.71) can be
written linearly as a function of the end-effector inertial parameters χ p such that

0wr = Dpχ p. (8.264)

Finally, from (8.71), (8.262) and (8.263), the dynamic model of the real robot can
be linearly written w.r.t. the standard dynamic parameters χ tot such as:

τ = τ ta + JT 0wr + JT
d τ td

= Dtot
a χ tot

t + JT Dpχ p + JT
d Dtot

d χ tot
t

= JT Dpχ p +
(

Dtot
a + JT

d Dtot
d

)
χ tot

t

= [
JT Dp

(
Dtot

a + JT
d Dtot

d

)] [
χ p
χ tot

t

]

= Dtot (qa, q̇a, q̈a)χ tot (8.265)

where Dtot (qa, q̇a, q̈a) = [
JT Dp

(
Dtot

a + JT
d Dtot

d

)]
and χT

tot = [
χT

p χ tot T
t

]
.

This demonstration has been done for the IDM of the PKM without actuation
redundancy, but similar relations canbeobtained forPKM with actuation redundancy.

8.7.4 Numerical Method Based on a QR Decomposition

The symbolic approach of computing the base parameters is based on determining the
independent elements of the IDM represented by the row matrix Dtot (Eq. (8.265)).



196 8 Dynamic Modeling of Parallel Robots

Numerically this problem is equivalent to study of the space spanned by the columns
of amatrixWtot formed fromDtot using r randomvalues of qa , q̇a and q̈a . This study
can be carried out using the singular value decomposition (SVD) or the QR decom-
position of Wtot (Gautier 1991). In this section, we develop the numerical method
that is based on the QR decomposition of a matrix Wtot , which is derived from the
IDM.

To determine the base parameters, we construct a matrix Wtot by calculating the
rows of Dtot for r random values of joint positions, velocities and acceleration q(i)

a ,
q̇(i)

a and q̈(i)
a (the upperscript (i) denotes the i th random value of the concerned vector

qa , q̇a or q̈a) for r >> dim χ tot = nst and i = 1, . . . , r . The matrix Wtot with
dimension ((r × na) × nst ) :

Wtot =
⎡
⎢⎣

W(1)
tot
...

W(na)
tot

⎤
⎥⎦ (8.266)

where

W( j)
tot =

⎡
⎢⎢⎢⎢⎣

d( j)
tot (q

(1)
a , q̇(1)

a , q̈(1)
a )

d( j)
tot (q

(2)
a , q̇(2)

a , q̈(2)
a )

...

d( j)
tot (q

(r)
a , q̇(r)

a , q̈(r)
a )

⎤
⎥⎥⎥⎥⎦

(8.267)

in which d( j)
tot is the j th line of the matrix Dtot .

An inertial parameter has no effect on the dynamic model if the elements of its
corresponding column in Wtot are all equal to zero. By eliminating such parameters
and the corresponding columns, the matrix Wtot is reduced to a matrix Wr

tot with
c columns and r rows. However, some columns in Wr

tot are linearly dependent
and their corresponding parameters can be grouped in order to obtain a set of nb

base parameters (nb ≤ nst ), i.e. the base parameters are those corresponding to nb

independent columns of Wr
tot (and thus of Wtot ).

Application of the foregoing statements can be achieved by the use of the QR de-
composition of Wr

tot , which is given by:

QT Wr
tot =

[
R

0(r−c)×c

]
(8.268)

where Q is an (r × r) orthogonal matrix, R is a (c × c) upper-triangular matrix, and
0(r−c)×c is the ((r − c) × c) matrix of zeros.

Theoretically, the non-identifiable parameters are those whose corresponding el-
ements on the diagonal of the matrix R are zero (Forsythe et al. 1977; Golub and van
Loan 1983). Let α be the numerical zero which is different from 0 because of round-
off errors (α can be chosen such that α = ε max

∣∣R j j
∣∣, where ε is a small coefficient
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depending on the level of perturbations in Wr
tot (due to noise measurement—in the

case of a model identification procedure—and/or error modeling) and max
∣∣R j j

∣∣ is
the largest diagonal absolute value of R (Gautier 1991).

If the absolute value |Rkk | of the kth component located on the diagonal of R is
inferior to α, the kth column Wr

totk of Wr
tot can be deleted because it depends on the

other.
On the contrary, if |Rkk | > α, then the corresponding column in Wr

totk is indepen-
dent and constitutes a base of the space span by Wr

totk (and thus Wtotk ). Let the nb

independent columns be collected in the matrix W1, and the corresponding parame-
ters be collected in the vector χ1. The other columns and parameters are represented
by W2 and χ2 respectively, such that:

Wr
totχ = [

W1 W2
] [

χ1
χ2

]
. (8.269)

ThematrixW2 which groups the non independent columns ofWr
tot can be written

in terms of W1 as:
W2 = W1β. (8.270)

Consequently:

Wr
totχ = [

W1 W2
] [

χb
0(nst −nb)×1

]
(8.271)

where χb is the vector of the base parameter given by

χb = χ1 + βχ2. (8.272)

Thus, the matrix β allows to obtain the grouping equations of the parameters χ2
with χ1. The matrix β, can be computed using (8.270) by:

β = W+
1 W2 (8.273)

Because the QR algorithm starts from the last columns to the first of Wtot , the
(nst −nb) standard parameters to delete are dependent on the ordering of the columns
of that matrix. For serial robots, the matrix Wtot is build such that the columns with
smaller indices are those corresponding to the links closest from the base. Thus,
using the previous algorithm, the parameters with the smallest influence (those of
the wrist) are eliminated from the base parameters.

For parallel robots, to take into account the symmetry in the leg dynamic para-
meters, it is preferable to order the columns of Wtot such that

Wtot =
[
Wp

tot Wχ1,1:n
tot Wχ2,1:n

tot · · · W
χnstleg

,1:n
tot

]
(8.274)



198 8 Dynamic Modeling of Parallel Robots

where nstleg is the number of standard parameters for one leg, matrix Wp
tot is the

observation matrix corresponding to the platform inertial parameters and matrices
Wχk ,1:n

tot concatenates the columns of matrix Wtot corresponding to the parameters
χk that are a priori identical for the n robot legs. Then, (nst − nb) columns of Wtot

can be deleted using the previous approach based on the QR factorization to obtain
a new observation matrix W1 associated with a set of symmetrical base parameters
denoted as χb.

8.7.5 Examples

8.7.5.1 The Five-Bar Mechanism

For the five-bar mechanism presented in Sect. 8.4.3.1, and using the proposed proce-
dure for computation of the base parameters, we get the following grouping relations
for the parameters in χb:

zzi1R = zzi1 + I ai1 − 0.24158mxi2 + 0.045369mi2

zzi2R = zzi2 − 0.1878mxi2 (8.275)

for the legs i = 1, 2, and also

m3R = m3 + 5.3248mx12 + 5.3248mx22 (8.276)

for the end-effector parameters.

8.7.5.2 The Orthoglide

For the Orthoglide presented in Sect. 8.4.3.2, and using the proposed procedure for
computation of the base parameters, we get the following grouping relations for the
parameters in χb:

m6R = m6+3.2258mx13+m14+3.2258mx23+m24+3.2258mx33+m34 (8.277)

for the end-effector,

m11R = m11 + I a11 + m12 − 3.2258mx13 + m14

m21R = m21 + I a21 + m22 − 3.2258mx23 + m24

m31R = m31 + m32 − 3.2258mx33 + m34 (8.278)

for the actuated joints, and
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zzi2R = zzi2 + yyi3 − 0.31mxi3 + yyi4

myi2R = myi2 + mzi3 + mzi4

f vi2R = f vi2 + f vi5

f si2R = f si2 + f si5

xxi3R = xxi3 − yyi3 + 0.31mxi3

xzi3R = xzi3 − 0.31mzi4

zzi3R = zzi3 − 0.31mxi3

f vi3R = f vi3 + f vi4

f si3R = f si3 + f si4 (8.279)

for the other bodies of the legs.
As can be observed, the same grouping relations appear for each robot leg. There

is a small difference concerning the grouped parameter mi1R : as actuated joint 31 is
vertical, contrary to joints 11 and 21 that are horizontal, this joint must support the
gravity effects applied on the foot of leg 3 (link 31). This is not the case for joints
11 and 21. Thus, this is the reason why parameters m31R and I a31 are not grouped
together.



Chapter 9
Analysis of the Degeneracy Conditions
for the Dynamic Model of Parallel Robots

Abstract The conditions of degeneracy of the dynamic model of parallel robots
have been little investigated. In this chapter, we present an exhaustive study of the
conditions of degeneracy of the dynamics models of PKM. We will show that two
types of singularity impact their dynamics: Type 2 singularities and LPJTS singulari-
ties.We define criteria, based on analyses of dynamic models, that allows a definition
of optimal trajectories that can avoid the degeneracy of the dynamic model and make
it possible to cross the singularities. Simulations and experiments show the efficiency
of such types of trajectories.

9.1 Introduction

Parallel robots have been used increasingly for a fewdecades. This is due to theirmain
advantages over serial counterparts that are: (i) higher intrinsic rigidity, (ii) larger
payload-to-weight ratio, and (iii) higher velocity and acceleration capacities (Merlet
2006b). However, their main drawback is probably the presence of singularities
in the workspace which divide their workspace into different aspects (each aspect
corresponding to one or more assembly modes (Merlet 2006b)) and near which their
performance are drastically reduced.

As already mentioned, various types of singularity exist. In general, singularities
lead to two different types of phenomena (that can be combined at the same robot
configuration):

1. The loss of the ability for the robot to move along one given direction (instan-
taneously or not): this is the case of the so-called Type 1 singularities (Gosselin
and Angeles 1990) which correspond to workspace boundaries,

2. The gain of some uncontrollable robot motions (instantaneously or not): the so-
called Type 2 singularities (Gosselin and Angeles 1990) and constraint singular-
ities (Zlatanov et al. 2002) belong to this category. Another type of singularity,
which is less known than the two previously mentioned ones, also belongs to this
category: the LPJTS singularities presented in Sect. 7.5.2 which are due to the
degeneracy of the leg passive joint twist system. Near these configurations, the
robot stiffness is considerably decreased and the robot capabilities in terms of
effort transmission deteriorates.
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It should be mentioned that, historically, the first designed parallel robots were
made of quite simple legs (in terms of joint arrangement) and encountered only Type
1 andType 2 singularities.However, due to the problemof the non homogeneity of the
performance inside the robotworkspace, designers have tried to proposemechanisms
with more complex leg architectures but with better performance distribution all
along the workspace, such as the decoupled robots (Carricato and Parenti Castelli
2002; Gogu 2004; Kong and Gosselin 2002) which are fully isotropic with regard
to their input/output kinematic performance. However, the increased complexity of
the leg arrangement has led to the appearance of other kinds of singularities, such as
the LPJTS singularities. The best known examples of decoupled robots whose legs
encounterLPJTS singularities are theTripteron-like or Isoglide-like robots from three
to six degrees of freedom (Carricato and Parenti-Castelli 2002; Gogu 2004; Gosselin
2009; Kong and Gosselin 2002, 2011b; Rizk et al. 2007; Seward and Bonev 2014).

In order to increase the workspace size, several approaches have been envisaged
in the literature, such as:

• The design of parallel robots without singularities. This can be done by using the
optimal design approach (Briot et al. 2010; Liu et al. 2006) or by creating fully-
isotropic mechanisms (Carricato and Parenti-Castelli 2002; Gogu 2004; Kong and
Gosselin 2002) (which have no Type 2 singularities but usually have LPJTS sin-
gularities). This solution is the most usual one, but it often leads to the design of
robots with a small ratio workspace size/robot footprint or to the design of robot
architectures with very low practicability.

• The use of redundancy (Kotlarski et al. 2010; Kurtz and Hayward 1992; Müller
2005; Yi et al. 1994) or the use of mechanisms with variable actuation modes
(Arakelian et al. 2008; Rakotomanga et al. 2008). These mechanisms can change
the actuation mode without adding additional actuators, but this change can only
be carried out when the mechanism is stopped, thus increasing the time necessary
to perform the task.

• Planning workingmode changing trajectories. The main way to proceed is to cross
a Type 1 singularity by reaching the workspace boundary and changing the leg
configuration (Bourbonais et al. 2014). By changing the leg configuration, the
singularity loci appearing in the workspace for the initial configuration disappear
and are replaced by other singularity loci linked to the new leg configuration. Thus,
the robot is able to access new workspace zones (Campos et al. 2010). It should
be mentioned that:

– Type 1 singularities are a special type of serial singularities (Conconi and Carri-
cato 2009) due to the degeneracy of the leg twist systems including active joint
twists.

– For the moment, changing the leg configuration by crossing a Leg Passive Joint
Twist System (LPJTS) singularity has not been investigated, even if this process
could allow accessing new workspace zones.
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• Planning assembly mode changing trajectories. A first way to do this is to bypass
a cusp point (Zein et al. 2008). However, this solution is hardly practical for two
main reasons: (i) it forces the mechanism to follow a particular trajectory, which
can be very different from the desired one; (ii) only a few mechanisms have cusp
points. A second solution is to go directly through a Type 2 singularity (Briot and
Arakelian 2008; Hesselbach et al. 2004; Ider 2005).

The last two solutions (i.e. changing the leg configuration or changing the assem-
bly mode) are promising, since they can considerably increase the workspace size
of any parallel mechanism by using only trajectory planning approaches. However,
as shown in (Briot and Arakelian 2008) for changing assembly modes by passing
through the Type 2 singularities, a physical criterion based on the analysis of the
degeneracy conditions of the PKM IDM must be respected. We will show below that
another criterion must be satisfied if we need to cross the LPJTS singularities.

In the next section, the degeneracy conditions of the IDM of PKM are disclosed
and optimal trajectory planning approaches through singularities are proposed.

9.2 Analysis of the Degeneracy Conditions
of the IDM of PKM

In the following section, we will only focus on the analysis of the degeneracy condi-
tions of the IDM ofPKM without redundancy asPKM with redundancy are especially
designed for avoiding the presence of singularities inside their workspace.

To assure clarity, let us rewrite here the equations of the dynamic model including
the Lagrange multipliers developed in Sect. 8.4 and defined in Eqs. (8.82)–(8.84):

τ = τta − BT λ1 − JT
taλ2 (9.1)

0wr = AT
r λ1 − JT

t λ2 (9.2)

τtd = JT
tdλ2. (9.3)

Analysing the Eqs. (9.1)–(9.3), we get:

• if the matrix Ar is rank deficient, which appears in Type 2 singularities (see
Sect. 7.5.1), or

• if the matrix Jtd is rank deficient, which appears in LPJTS singularities (see
Sect. 7.5.2),

the Lagrange multipliers cannot be computed and the dynamic model degenerates.
The conditions of rank-deficiency of matrices Ar and Jtd have been presented

in Sect. 7.5. The impact of their degeneracy on the robot input efforts is disclosed
thereafter.

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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9.2.1 Degeneracy Conditions of the IDM Due to the Matrix Ar

As alreadymentioned in Sect. 7.5, thematrixAr becomes rank-deficient if and only if
the robot is in aType 2 singularity. InType 2 singularities, at least one platformmotion
becomes uncontrollable. Moreover, Type 2 singularities separates the workspace
aspects (Merlet 2006b) and prevent the robot from reaching all possible workspace
configurations.

From Eq. (9.2), it can be deduced that, when matrix Ar becomes rank-deficient in
Type 2 singularities, a non-null vector λ1 corresponding to a null value of 0wr +JT

t λ2
can exist. This alsomeans that there is an infinity of solutions for λ1 and that the robot
platform is not in equilibrium. Another consequence is that in the neighborhood of
the Type 2 singularities, the active joint effort τ may increase considerably as their
expression is proportional to the inverse of the determinant of Ar , which is close to
zero in that area. Such singularity may thus lead to a breakdown of the mechanism
(if the joints cannot support the load) or to the impossibility of tracking the desired
trajectory due to the technological limitations in terms of maximal input efforts for
the actuators.

9.2.2 Degeneracy Conditions of the IDM Due to the Matrix Jtd

For reason of simplicity, but without loss of generality, let us consider that the robot
legs are made of serial chains. In that case, as explained previously (see Sect. 7.3.3),
the matrix Jtd is block-diagonal. As a result, Jtd is rank-deficient if and only if at
least one block Jtdi on the diagonal is rank deficient.

If the i th blockJtdi is rank-deficient (let us recall that Jtdi is the kinematic Jacobian
matrix that relates the twist of the last link of the leg i to the passive joint velocities
q̇i of the same leg), then the sub-chain composed of the passive joints of the leg i is
in a singular configuration. Such kind of singularity has been described in Sect. 7.5.2
and is called in this book a LPJTS singularity (Leg Passive Joint Twist System
singularity). InLPJTS singularities, at least one leggets an internal anduncontrollable
motion while the platform remains rigid. Moreover, LPJTS singularities separate the
passive joint space aspects and thus prevent the leg from reaching all the possible
joint configurations (Conconi and Carricato 2009).

As mentioned in the introduction, LPJTS singularities are encountered in numer-
ous robot architectures among which the best known examples are probably the
Tripteron-like or Isoglide-like robots (Carricato and Parenti-Castelli 2002; Gogu
2004; Gosselin 2009; Kong and Gosselin 2002, 2011b; Rizk et al. 2007; Seward and
Bonev 2014).

From Eq. (8.85), it can be deduced that, when matrix Jtdi (and consequently the
matrix Jtd ) becomes rank-deficient in LPJTS singularities, there can be a non-null
vector λ2 corresponding to a null value of τtd . This alsomeans that there is an infinity
of solutions for λ2 and that the leg i is not in equilibrium. Another consequence is

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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that in the neighborhood of the LPJTS singularities, the value of λ2, and as a result
the active joint efforts τ, may increase considerably as its expression is proportional
to the inverse of the determinant of Jtd , which is close to zero in that area. As for Type
2 singularities, a LPJTS singularity may thus lead to a breakdown of the mechanism
(if the joints cannot support the load) or to the impossibility of tracking the desired
trajectory due to the technological limitations in terms of maximal input efforts for
the actuators.

9.3 Avoiding Infinite Input Efforts While Crossing Type 2
or LPJTS Singularities Thanks to an Optimal Trajectory
Planning

In this section, conditions for avoiding infinite input efforts while approaching and
crossing the Type 2 or LPJTS singularities are disclosed.

9.3.1 Optimal Trajectory Planning Through Type 2
Singularities

In this section, we consider that only the matrix Ar is not invertible. So, let us
rewrite (9.2) such as

AT
r λ1 = wd (9.4)

where wd is equal to

wd = 0wr + JT
t λ2 = 0wr + JT

t J−T
td τtd . (9.5)

As previously explained, Eq. (9.4) represents the platform equilibrium so that the
loops of the parallel robot can be closed. As a result, the term wd represents the sum
of:

• The inertial/gravitational effects and external efforts applied on the platform,
• The reactions applied by the legs on the robot platform.

Let us also express (9.1) again such as

τ = wb − BT λ1, (9.6)

where wb is equal to

wb = τta − JT
taλ2 = τta − JT

taJ−T
td τtd . (9.7)
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As a result, the dynamic model is parameterized by the system of equations:

{
τ = wb − BT λ1

AT
r λ1 = wd .

(9.8)

If Ar is rank deficient, so a non-null vector ts exists, defined such as

Ar ts = 0 ⇔ tT
s AT

r = 0. (9.9)

From (7.58), ts
1

• is a twist reciprocal to all the wrenches defining the rows of the matrix Ar (see
Eqs. (7.58) and (7.62)), and

• describes the uncontrollable motion of the platform inside the Type 2 singular-
ity (Briot and Arakelian 2008; Merlet 2006b).

Multiplying the left side of (9.4) by tT
s , one obtains

tT
s AT

r λ1 = 0. (9.10)

As a result, for the IDM to be consistent, the right-hand part of (9.4) must strictly
follow the condition

tT
s wd = 0 (9.11)

which involves that:
For avoiding infinite input efforts while crossing a Type 2 singularity, the sum
of the wrenches applied on the platform by the legs, inertia/gravitational effects
and external environment wd must be reciprocal to the uncontrollable motion of
the platform inside the singularity ts (in other words, the power of these wrenches
along the platform uncontrollable motion must be null).

This physical criterion was first provided in (Briot and Arakelian 2008) and can
be satisfied through a proper robot trajectory planning.

However, to better understand the phenomenon, let us consider the five-bar mech-
anism depicted in Fig. 9.1. As already mentioned, the five-bar mechanism is a pla-
nar parallel mechanism composed of two actuators located at the revolute joints
located at points A11 and A21 and three passive revolute joints at points A12, A22
and A13 ≡ A23 ≡ P .

Considering that the mechanism is not moving and that the gravity effects are
canceled. A force f is applied on the end-effector. An analysis of the effort trans-
mission shows that the reactions in the passive joints located at points A12 and P

(A22 and P , resp.) are collinear to the vector
−−−→
A12P (

−−−→
A22P , resp.) for any mechanism

configurations and that f = r1 + r2 (with ri the force in the joint of the leg i).

1In this chapter, we consider rank-deficiency of matrices Ar and Jtd of order 1, as this is the
most usual case. However, the methodology could be extended to matrices with higher order of
rank-deficiency.

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Fig. 9.1 Kinematic chain of
the five-bar mechanism

Fig. 9.2 The five-bar
mechanism in a Type 2
singularity: the
uncontrollable motion is
described by the vector ts

In Type 2 singularity,
−−−→
A12P is collinear to

−−−→
A22P and, as a result, r1 is collinear to

r2. It can be proven that, in such a case, the robot gets an uncontrollable motion along
the vector ts which is perpendicular to

−−−→
A12P and

−−−→
A22P (Fig. 9.2). To compensate a

force f which is not collinear to r1 and r2, (i.e. for which the criterion (9.11) is not
satisfied as tT

s f will be different from zero in this case), the reactions r1 and r2 must
have infinite norms. If the force f is collinear to r1 and r2 (i.e. the criterion (9.11) is
respected as tT

s f = 0 in this case), the reactions r1 and r2 will have finite norms.
This simplified problem gives an insight into the general theory presented in this

section.

9.3.2 Optimal Trajectory Planning Through
LPJTS Singularities

In this section, we consider that only the matrix Jtd is not invertible. To be clear, let
us rewrite here Eq. (9.3):
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JT
tdλ2 = τtd where τtd = d

dt

(
∂L

∂q̇d

)T

−
(

∂L

∂qd

)T

. (9.12)

Thus, τtd represents the virtual input efforts in the joints of the virtual system that
correspond to the passive joints of the real robot. Moreover, as previously mentioned,
λ2 stacks the wrenches λ1

2 to λn
2 (Fig. 8.5) applied by the virtual tree structure on the

platform at points Ak mk , so that this virtual structure can have the same motion as
the real parallel robot. Then, (9.12) represents the equations of the dynamics of the
passive legs in contact with the external environment (here the platform on which is
applied the wrenches λ2).

If Jtd is rank deficient, then a non-null vector q̇s
d exists, defined as

Jtd q̇s
d = 0 ⇔ q̇s T

d JT
td = 0. (9.13)

Thus, q̇s
d represents the passive joint velocities describing the uncontrolledmotion

of the legs inside the LPJTS singularity.
Multiplying the left-hand side of (9.12) by q̇s T

d , one obtains

q̇s T
d JT

tdλ2 = 0. (9.14)

As a result, for the IDM to be consistent, the right-hand part of (9.12) must strictly
follow the condition

q̇s T
d τtd = 0 (9.15)

which involves that:
For avoiding infinite input efforts while crossing a LPJTS singularity, the input
efforts of the virtual system in the joints that correspond to the passive joints of
the real robot must be reciprocal to the uncontrollable motion of the passive legs
inside the singularity (in other words, the power of these efforts along the leg
uncontrollable motion must be null).

As for crossing the Type 2 singularities, we will show thereafter that the crite-
rion (9.15) can be respected through a proper robot trajectory planning.

To better understand the phenomenon, let us consider the Tripteron proposed by
Gosselin et al. (2002) depicted in Fig. 9.3. The robot is composed of three identical
legs made of an active prismatic (P) joint mounted onto the base and followed by a
serial 3R passive chain. In each leg, all P and R joint axes are collinear (i.e. the 3R
chain is planar and its displacement is orthogonal to the one of the P joint). The legs
are mounted so that each leg is orthogonal to the two others.

This special arrangement of the leg leads to a fully-isotropic robot with 3 trans-
lational degrees of freedom, i.e.

q̇a = 0vp (9.16)

where q̇a are the input velocities and 0vp is the platform translational velocity. As a
result, the Jacobian matrix is the identity matrix of dimension 3. From Sect. 6.4, if a

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_6


9.3 Avoiding Infinite Input Efforts While Crossing Type 2 … 209

Fig. 9.3 The
Tripteron (Kong and
Gosselin 2002). a CAD view
(courtesy of C.M. Gosselin).
b Kinematic architecture of
the leg i

(a)

(b)

force fp is applied on any point of the platform (and in absence of any other effects),
the robot input efforts τ are equal to

τ = fp. (9.17)

It is considered in this example that the mechanism is not moving and that the
gravity effects are canceled. A force f (which could represent any kind of effort
applied on the leg, e.g. gravity, inertia, interaction with the environment, etc.) is
applied on leg 1 at point A13 (Fig. 9.3b). A simple analysis of the effort transmission
shows that the reactions in the passive joints located at points A12 and A13 (A13 and
A14, resp.) is collinear to the vector

−−−−→
A12A13 (

−−−−→
A13A14, resp.) for any robot configu-

rations and that f = r11 + r12 (with r1 j the force in the joint of the element j of the
leg 1). Moreover, as the force −r12 is applied on the platform through the passive
joint located at A14, from (9.17), we have

τ = −r12. (9.18)
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Fig. 9.4 Leg i of the
Tripteron in a
LPJTS singularity

In a LPJTS singularity (Fig. 9.4),
−−−−→
A12A13 is collinear to

−−−−→
A13A14 and, as a result,

r11 is collinear to r12. It can be proven (see Sect. 9.5) that, in such a case, the robot
gets an uncontrollable motion given by q̇s

d that produces a displacement vs
A13

of point

A13 (Fig. 9.4). vs
A13

is contained in the plane xi Oi yi and is perpendicular to
−−−−→
A12A13

and
−−−−→
A13A14.

Let us denote as JA13 the Jacobian matrix linking the velocity vA13 of point A13
to the passive joint velocities q̇d such that:

vA13 = JA13 q̇d . (9.19)

As a result, from the principle of virtual powers, τtd is the vector of the efforts in
the virtual structure defined such that

τtd = JT
A13

f ⇒ f = J−T
A13

τtd . (9.20)

The virtual power due to f and the displacement of the point A13 is thus equal to

vT
A13

f = q̇T
d JT

A13
J−T

A13
τtd = q̇T

d τtd (9.21)

To compensate a force f which is not collinear to r11 and r12, and thus not recip-
rocal to vA13 , (i.e. for which the criterion (9.15) is not respected as q̇s T

d τtd = vs T
A13

f
will be different from zero in this case), the reactions r11 and r12 must have infinite
norms, thus leading to infinite input efforts from (9.18). If the force f is collinear
to r11 and r12, and thus reciprocal to vA13 , (i.e. the criterion (9.15) is respected as
q̇s T

d τtd = vs T
A13

f = 0 in this case), the reactions r11 and r12 will have finite norms,
and the input efforts τ will also remain finite.

This simplified problem gives an insight into the general theory presented in this
section.

Examples of trajectories for crossing Type 2 or LPJTS singularities are shown in
the next section.
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9.4 Example 1: The Five-Bar Mechanism Crossing a Type 2
Singularity

9.4.1 Trajectory Planning Through the Type 2 Singularities

From the analysis of matrices Ar and Jtd , the five-bar mechanism encounters only
Type 2 singularities, but no LPJTS singularity. So, let us analyze the degeneracy
conditions of the expression (9.4), and first, let us compute the term wd of (9.5).

For that, let us rewrite the vector τtd in the form:

τtd = Mtd(qt)

[
q̈a

q̈d

]
+ ctd(qt , q̇t ) (9.22)

where Mtd can be defined by using the Eq. (8.127) as

Mtd =
⎡
⎣

M11 0 zz21 0 0
0 0 0 0 0
0 M54 0 0 zz22

⎤
⎦ (9.23)

and ctd = [
c2 c4 c5

]T where the terms c2, c4 and c5 are defined in Eqs. (8.133),
(8.135) and (8.136) and can be rewritten as:

ctd =
⎡
⎣

d12mx12 sin q12 − d12my12 cos q12 0
0 0
0 d22mx22 sin q22 − d22my22 cos q22

⎤
⎦

[
q̇2
11

q̇2
21

]

+
⎡
⎣

f v12 0 0
0 f v13 0
0 0 f v22

⎤
⎦

⎡
⎣

q̇12
q̇13
q̇22

⎤
⎦ +

⎡
⎣

f s12sign(q̇12)
f s13sign(q̇13)
f s22sign(q̇22)

⎤
⎦

= Cr
td

[
q̇2
11

q̇2
21

]
+ Fvd q̇d + fsd .

(9.24)

Now, let us express the values of q̈a and q̈d as a function of 0 ṫr . From (7.187), we
obtain

q̈a = Jinv
0 ṫr + aq . (9.25)

Then, introducing (9.25) into (7.189), we get

q̈d = Jr
0 ṫr + ar (9.26)

with
Jr = J−1

td (Jt − JtaJinv) (9.27)

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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and
ar = J−1

td (dc − Jtaaq). (9.28)

Introducing (9.25)–(9.28) into (9.23), simplifying and skipping all mathematical
derivations, we get

τtd = Mx
d
0 ṫr + cx

d (9.29)

where

Mx
d = Md

[
Jinv

Jr

]
(9.30)

and

cx
d = Md

[
aq

ar

]
+ ctd (9.31)

with

ctd = Cr
td

[
(j(1)inv

0tr )
2

(j(2)inv
0tr )

2

]
+ FvdJinv

0tr + fsd (9.32)

in which j( j)
inv corresponds to the j th row of the matrix Jinv.

Then, introducing (9.29) into (9.5), we obtain

wd = 0wr + JT
t J−T

td τtd

= m4
0 ṫr + JT

t J−T
td (Mx

d
0 ṫr + cx

d )
(9.33)

which, for one given robot configuration, is a function of 0 ṫr and 0tr only.
From the degeneracy analysis of matrix Ar of (7.113) (see Sect. 7.5.6.1), the

gained motion inside the Type 2 singularity can be expressed as:

ts =
[− sin(qi1 + qi2)

cos(qi1 + qi2)

]
. (9.34)

Thus, the criterion (9.11) to respect in order to cross the Type 2 singularity takes
the general form

tT
s wd = [− sin(qi1 + qi2) cos(qi1 + qi2)

]
(m4

0 ṫr + JT
t J−T

td (Mx
d
0 ṫr + cx

d )) = 0
(9.35)

which, for one given singularity configuration, is a function of 0 ṫr and 0tr only.
Therefore, it is possible to plan, for one given singularity configuration, a Cartesian
trajectory which respects (9.35).

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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9.4.2 Simulations and Experimental Results

In order to validate the theoretical results presented above, we will test the proposed
criterion for crossing the Type 2 singularities on the five-bar mechanism prototype
designed at the Institut Pascal from Clermont-Ferrand (France) and presented in
Sect. 8.4.3.1.

Taking into account the real identifiedparameters of the robot given inSect. 8.4.3.1,
the following model fully describes the robot dynamics of the studied mechanism:

τ = wb − BT λ1, (9.36)

AT
r λ1 = wd (9.37)

with

wd = m3

[
ẍ
ÿ

]
,

wb =
[

zz11R q̈11
zz21R q̈21

]
+

[
fv11q̇11
fv21q̇21

]
+

[
fs11sign(q̇11)
fs21sign(q̇21)

]
.

(9.38)

From (9.35) and (9.37), the criterion for crossing the Type 2 singularities becomes

tT
s wd = [− sin(qi1 + qi2) cos(qi1 + qi2)

]
m4

0 ṫr

= m4(− sin(qi1 + qi2)ẍ + sin(qi1 + qi2)ÿ) = 0
(9.39)

or also
ÿ = ẍ tan(qi1 + qi2). (9.40)

Then, let us define two different types of trajectory with a duration t f = 1.5s

between the points P0 (xP0 = [
x p0 yp0

]T = [0; 0.338]Tm) and Pf (xPf =[
x p f yp f

]T = [0.1; 0.1]Tm) which are separated by a Type 2 singularity (Fig. 9.5):

• A trajectory defined using a fifth-degree polynomial which can fix the position,
velocity and acceleration of the robot at the trajectory extremities only; for this
polynomial, those conditions are:

x(t = 0) = x p0 , ẋ(t = 0) = 0, ẍ(t = 0) = 0 (9.41)

y(t = 0) = yp0 , ẏ(t = 0) = 0, ÿ(t = 0) = 0 (9.42)

x(t = t f ) = x p f , ẋ(t = t f ) = 0, ẍ(t = t f ) = 0 (9.43)

y(t = t f ) = yp f , ẏ(t = t f ) = 0, ÿ(t = t f ) = 0 (9.44)

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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Fig. 9.5 Starting point P0 and ending point Pf of the Type 2 singularity crossing trajectory

which lead to the following polynomials for x and y:

x(t) = 0.296296t3 − 0.296296t4 + 0.079012t5 (9.45)

y(t) = 0.338175 − 0.705704t3 + 0.705704t4 − 0.188188t5. (9.46)

Note that for the reader who doesn’t know how to plan a trajectory between two
points, the AppendixD explains the procedure.

• A trajectory using an eighth-degree polynomial law which can fix the position,
velocity and acceleration of the robot at the trajectory extremity plus the position
and acceleration of the robot in the singular configuration; for this polynomial,
those conditions are fixed at

x(t = 0) = 0, ẋ(t = 0) = 0, ẍ(t = 0) = 0 (9.47)

y(t = 0) = 0.3381, ẏ(t = 0) = 0, ÿ(t = 0) = 0 (9.48)

x(t = t f ) = 0.1, ẋ(t = t f ) = 0, ẍ(t = t f ) = 0 (9.49)

y(t = t f ) = 0.1, ẏ(t = t f ) = 0, ÿ(t = t f ) = 0 (9.50)

x(t = ts) = 0.0543, ẍ(t = ts) = 6.8e−4 (9.51)

y(t = ts) = 0.2, ÿ(t = ts) = −0.01 (9.52)

with ts = 0.75s the time at which the robotmust cross the singularity and ẍ(t = ts)
and ÿ(t = ts) values that respects the criterion (9.40). These conditions lead to the
following polynomials for x and y:

x(t) = 0.03062t3 + 0.36498t4 − 0.08964t5

− 0.63889t6 + 0.55539t7 − 0.13198t8
(9.53)
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(a) (b)

Fig. 9.6 Input torques simulated for the five-bar mechanism crossing the Type 2 singularity locus
at ts = 0.75s without respecting the dynamic criterion. a Actuator 1. b Actuator 2 (9.40)

y(t) = 0.33818 + 0.40308t3 − 1.95392t4 + 0.1490t5

+ 3.13259t6 − 2.56936t7 + 0.60008t8.
(9.54)

First, let us simulate the behavior of the robot when perfectly tracking the two
different trajectories. The input torques for both trajectories are shown in Figs. 9.6
and 9.7. It can be observed that, for the trajectory that respects the criterion (9.40)
(Fig. 9.7), the input torques remain finite while in the other case (Fig. 9.6), they tend
to infinity when crossing the singularity at ts = 0.75s.

Now, let us launch each trajectory on the five-bar mechanism prototype. The
results in terms of

• robot displacements are shown in Figs. 9.8 and 9.9
• input torques are shown in Figs. 9.10 and 9.11.

(a) (b)

Fig. 9.7 Input torques simulated for the five-bar mechanism crossing the Type 2 singularity locus
at ts = 0.75s with respecting the dynamic criterion. a Actuator 1. b Actuator 2 (9.40)
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Fig. 9.8 The five-bar mechanism tracking the trajectory which does not respect the dynamic crite-
rion (9.40)

It can be observed that for the trajectory that satisfies the criterion (9.40), the robot
can cross the singularity with finite torques while in the other case, it stays blocked
in it. Note that:

• when the robot fails to cross the singularity, the data are not recorded after 0.7 s
because we activated the emergency stop,

• experimental results in terms of input torques are different from the simulated ones
because the robot is not able to perfectly track the desired trajectory.

9.5 Example 2: The Tripterion Crossing a LPJTS Singularity

9.5.1 Geometric Description of the Tripteron

Asalreadymentioned, theTripteron is a spatial parallelmechanismwith three degrees
of freedom composed of three actuators located at the prismatic joints attached to
the ground and three passive revolute joints per leg at points Ai2, A13 and A14. The
MDH parameters of the virtual open-loop tree structure are described in Tables9.1
and 9.2 and Figs. 9.3b and 9.12. The end-effector is considered as a supplementary
body numbered as body 5.

The gravity field is directed along z0.
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Fig. 9.9 The five-bar mechanism tracking the trajectory respecting the dynamic criterion (9.40)

For this mechanism:

• the end-effector coordinates are xT = [x y z],
• the active joint coordinates are qT

a = [q11 q21 q31],
• the passive joint coordinates are qT

d = [qT
d1 qT

d2 qT
d3] with qT

di = [qi2 qi3 qi4]
(i = 1, 2, 3).
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(a) (b)

Fig. 9.10 Input torques measured for the five-bar mechanism crossing the Type 2 singularity locus
at ts = 0.75s without respecting the dynamic criterion (9.40). a Actuator 1. b Actuator 2

(a) (b)

Fig. 9.11 Input torques measured for the five-bar mechanism crossing the Type 2 singularity locus
at ts = 0.75s with respecting the dynamic criterion (9.40). a Actuator 1. b Actuator 2

Table 9.1 MDH parameters for the frames corresponding to robot active joints

i j ai j μi j σi j αi j γi j bi j di j θi j ri j

11 0 1 1 0 0 b11 di1 = 0 0 q11
12 0 1 1 π/2 π/2 b12 = a di2 = 0 0 q21 − a

13 0 1 1 −π/2 0 b13 = a di3 = 0 −π/2 q31 + a

9.5.2 Kinematics of the Tripteron

For the Tripteron, the loop-closure Eq. (7.4) can be expanded in the leg i frame
(Fig. 9.3b) as

0 = i xAi4 − i xAi1 − di2 cos qi2 − di3 cos(qi2 + qi3)

0 = i yAi4 − i yAi1 − di2 sin qi2 − di3 sin(qi2 + qi3)

0 = i z Ai4 − ri1

(9.55)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Table 9.2 MDH parameters for the frames corresponding to the passive joints of the i th robot leg
(i = 1, . . . , 3)

i j ai j μi j σi j γi j di j θi j ri j

i2 i1 0 0 0 di2 = 0 qi2 0

i3 i2 0 0 0 di3 =
lAi2 Ai3

qi3 0

i4 i3 0 0 0 di4 =
lAi3 Ai4

qi4 0

Fig. 9.12 Kinematic
description of the actuated
prismatic joint arrangement
for the Tripteron.eps

and
0 = qi2 + qi3 + qi4 (9.56)

where i xAi4 ,
i yAi4 and

i z Ai4 are the point Ai4 coordinates expressed in the frame of
the leg i ,

1xA14 = x, 1yA14 = y, 1z A14 = z (9.57)
2xA24 = y, 2yA24 = z, 2z A24 = x (9.58)
3xA34 = z, 3yA34 = x, 3z A34 = y. (9.59)

i xAi1 ,
i yAi1 and

i z Ai1 are the point Ai1 coordinates (also regrouped in the vector xAi1 )

expressed in the frame of the leg i , xAi4P = −−−→
Ai4P (P is the platform center) and ri1

is defined in the Table9.1.
From the last line of (9.55), we directly get:

x = q12 − a
y = q13 + a
z = q11.

(9.60)
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From (9.55), by deleting the terms in cos(qi2+qi3) or sin(qi2+qi3), it is possible
to obtain (for i = 1 . . . 3):

d2
i4 = (

xAi2 Ai4 − di3 cos qi2
)2 + (

yAi2 Ai4 − di3 sin qi2
)2 (9.61)

where xAi1 Ai4 = i xAi4 − i xAi1 and yAi1 Ai4 = i yAi4 − i yAi1 .
Then, expanding (9.61),

0 = Ai1 cos qi2 + Ai2 sin qi2 + Ai3 (9.62)

where
Ai1 = −2di3xAi1 Ai4

Ai2 = −2di3yAi1 Ai4

Ai3 = x2Ai1 Ai4
+ y2Ai1 Ai4

+ d2
i3 − d2

i4

(9.63)

Finally, by using the tangent half-angle formula, we can obtain

qi2 = 2 tan−1

⎛
⎝−Ai2 ±

√
A2

i2 − A2
i3 + A2

i1

Ai3 − Ai1

⎞
⎠ . (9.64)

In (9.64), the sign “±” denotes the two robot leg working modes.
Then, we get easily from (9.55) and (9.56) that:

qi3 = tan−1
( i yAi4 − i yAi3

i xAi4 − i xAi3

)
, (9.65)

with i xAi3 = i xAi1 + di2 cos qi2, i yAi3 = i yAi1 + di2 sin qi2, and

qi4 = −qi2 − qi3. (9.66)

Now, differentiating (9.60) with respect to time, and simplifying, the matrices Ar

and B of (7.62) can be found:

Ar = 13, B =
⎡
⎣
0 1 0
0 0 1
1 0 0

⎤
⎦ (9.67)

where 13 is the identity matrix of dimension 3 leading thus to

Ar

⎡
⎣

ẋ
ẏ
ż

⎤
⎦ + B

⎡
⎣

q̇11
q̇12
q̇13

⎤
⎦ =

⎡
⎣

ẋ
ẏ
ż

⎤
⎦ −

⎡
⎣

q̇11
q̇12˙̇q13

⎤
⎦ = 0 (9.68)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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from which we get:
0tr = Jq̇a . (9.69)

with 0tr = [ẋ ẏ ż]T , q̇a = [q̇11 q̇21 q̇31]T and J = 13.
Differentiating (9.69) w.r.t. time, we also get:

0 ṫr = Jq̈a (9.70)

Now, differentiating (9.55) and (9.56) with respect to time, it can be found that:

0 = i ẋ Ai4 + di2 sin qi2q̇i2 + di3 sin(qi2 + qi3)(q̇i2 + q̇i3)

0 = i ẏAi4 − di2 cos qi2q̇i2 − di3 cos(qi2 + qi3)(q̇i2 + q̇i3)

0 = i ż Ai4 − q̇i1

(9.71)

0 = q̇i2 + q̇i3 + q̇i4 (9.72)

for i = 1, 2, 3 and where i ẋ Ai4 ,
i ẏAi4 and

i ż Ai4 are the point Ai4 velocities along the
axes of the frame of the leg i ,

1 ẋ A14 = ẋ, 1 ẏA14 = ẏ, 1 ż A14 = ż (9.73)
2 ẋ A24 = ẏ, 2 ẏA24 = ż, 2 ż A24 = ẋ (9.74)
3 ẋ A34 = ż, 3 ẏA34 = ẋ, 3 ż A34 = ẏ. (9.75)

Combining (9.71), (9.72) and (9.75) and noticing that the last line of (9.71) can
be disregarded as the velocities of the passive joints are not included in this equation,
we get

Jti

⎡
⎣

ẋ
ẏ
ż

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ q̇i1 +

⎡
⎣

di2 sin qi2 + di3 sin(qi2 + qi3) di3 sin(qi2 + qi3) 0
−di2 cos qi2 − di3 cos(qi2 + qi3) −di3 cos(qi2 + qi3) 0

1 1 1

⎤
⎦

⎡
⎣

q̇i2

q̇i3

q̇i4

⎤
⎦

(9.76)
which can be rewritten as

Jti
0tr − Jtai q̇i1 − Jtdi q̇di = 0 (9.77)

with

Jt1 =
⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ , Jt2 =

⎡
⎣
0 1 0
0 0 1
0 0 0

⎤
⎦ , Jt3 =

⎡
⎣
0 0 1
1 0 0
0 0 0

⎤
⎦ (9.78)

Jtai = [
0 0 0

]T (9.79)
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Jtdi =
⎡
⎣

di2 sin qi2 + di3 sin(qi2 + qi3) di3 sin(qi2 + qi3) 0
−di2 cos qi2 − di3 cos(qi2 + qi3) −di3 cos(qi2 + qi3) 0

1 1 1

⎤
⎦ (9.80)

and 0tT
r = [ẋ ẏ ż], and q̇T

di = [q̇i2 q̇i3 q̇i4].
Now, considering the legs 1 to 3, we obtain

Jt
0tr − Jta q̇a − Jtd q̇d = 0 (9.81)

with

Jt =
⎡
⎣

Jt1
Jt2
Jt3

⎤
⎦ (9.82)

Jta = 09×3 (9.83)

with 09×3 a (9 × 3) zero matrix and

Jtd =
⎡
⎣

Jtd1 03×3 03×3
03×3 Jtd2 03×3
03×3 03×3 Jtd3

⎤
⎦ (9.84)

with 03×3 a (3 × 3) zero matrix and q̇T
d = [q̇T

d1 q̇T
d2 q̇T

d3].
Now, introducing (9.69) into (9.81), we obtain:

q̇d = Jr
0tr (9.85)

with
Jr = J−1

td (Jt − Jta) = J−1
td Jt . (9.86)

Finally, after differentiating (9.81) w.r.t. time and by introducing (9.70) in it, we
obtain

q̈d = Jr
0 ṫr + Jd

r
0tr (9.87)

with
Jd

r = −J−1
td J̇tdJr . (9.88)

From (9.67) and (9.84), it is possible to observe that

• matrix Jtd is singular if one block matrix Jtdi is singular; Jtdi is singular if and
only if qi3 = 0 or π (i.e. xi2 is collinear to xi3—Fig. 9.4),

• matrix Ar is constant and never singular; as a result, the robot does not encounter
Type 2 singularities.
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9.5.3 Full IDM of the Tripteron

As mentioned above, the Tripteron encounters only LPJTS singularities. Thus, let us
now compute the criterion (9.15).

The inverse dynamic model of the open loop virtual structure of the Tripteron can
be obtained by noticing that each leg is composed

• of a first active prismatic joint,
• followed by a planar 3R robot in which the last body is massless.

The inverse dynamic model of the leg i is:

τti1 = (mi1 + mi2 + mi3 + I ai1)q̈i1 + f si1sign(q̇i1) + f vi1q̇i1 + τgi1 (9.89)

τti2 =
(

zzi2 + d2
i3mi3

)
q̈i2 + zzi3(q̈i2 + q̈i3)

+ di3mxi3 ((2q̈i2 + q̈i3) cos qi3 − q̇i3(2q̇i2 + q̇i3) sin qi3)

+ di3myi3 ((2q̈i2 + q̈i3) sin qi3 + q̇i3(2q̇i2 + q̇i3) cos qi3)

+ f si2sign(q̇i2) + f vi2q̇i2 + τgi2

(9.90)

τti3 = zzi3(q̈i2 + q̈i3) + di3mxi3

(
q̈i2 cos qi3 + q̇2

i2 sin qi3

)

+ di3myi3

(
q̈i2 sin qi3 − q̇2

i2 cos qi3

)

+ f si3sign(q̇i3) + f vi3q̇i3 + τgi3

(9.91)

τti4 = f si4sign(q̇i4) + f vi4q̇i4 (9.92)

where

τg11 = g (m11 + m21 + m31), τg12 = τg13 = 0 (9.93)

τg21 = 0, τgi2 = g (mxi2 + mi3di3) cos qi2 − g myi2 sin qi2 + τgi3 for i = 2, 3
(9.94)

τg31 = 0, τgi3 = g mxi3 cos(qi2 + qi3) − g myi3 sin(qi2 + qi3) for i = 2, 3
(9.95)

and

• parameters qi j and length di3 are defined in Tables9.1, 9.2 and Figs. 9.3b and 9.12
( j = 1 . . . 4),

• τti1 is the torque of the virtual actuator located in the prismatic pair, τti2 is the torque
of the virtual actuator located at point Ai2, τti3 is the torque of the virtual actuator
located at point Ai3 and τti4 is the torque of the virtual actuator located at point Ai4.
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The vector τta of (8.59) stacks all vectors τta = [
τt11 τt12 τt13

]T while the vector

τtd of (8.60) stacks all vectors τtd = [
τtd1 τtd2 τtd3

]T with τtdi = [
τti2 τti3 τti4

]T .

The inverse dynamic model of the free body corresponding to the end-effector
(body 5) in the virtual system is

w1 = m5 ẍ

w2 = m5 ÿ

w3 = m5(z̈ + g)

(9.96)

with w j being the j th components of the vector 0wr of (8.65); m5 is the end-effector
mass.

Combining these expressions into the equations of Sect. 8.4, the inverse dynamic
model of the Tripteron can be straightforwardly computed.

9.5.4 Trajectory Planning Through the LPJTS Singularities

Let us rewrite the vector τtd in the form:

τtd = Mtd(qt)q̈t + ctd(qt , q̇t ) (9.97)

where

Md =
⎡
⎣

03×3 Md1 03×3 03×3
03×3 03×3 Md2 03×3
03×3 03×3 03×3 Md3

⎤
⎦ (9.98)

and

cd =
⎡
⎣

cd1
cd2
cd3

⎤
⎦ (9.99)

in which

Mdi =
⎡
⎣

m11
di m12

di 0
m12

di zzi3 0
0 0 0

⎤
⎦ (9.100)

with

• m11
di = zzi2 + d2

i3mi3 + zzi3 + 2di3(mxi3 cos qi3 + myi3 sin qi3),
• m12

di = zzi3 + di3(mxi3 cos qi3 + myi3 sin qi3),

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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and

cdi =
⎡
⎣

0 c12di 2c12di
di3mxi3 − di3myi3 cos qi3 sin qi3 0 0

0 0 0

⎤
⎦

⎡
⎣

q̇2
i2

q̇2
i3

q̇i3q̇i2

⎤
⎦

+
⎡
⎣

f vi2 0 0
0 f vi3 0
0 0 f vi4

⎤
⎦

⎡
⎣

q̇i2
q̇i3
q̇i4

⎤
⎦ +

⎡
⎣

f si2sign(q̇i2)

f si3sign(q̇i3)

f si4sign(q̇i4)

⎤
⎦

= Cr
di

⎡
⎣

q̇2
i2

q̇2
i3

q̇i3q̇i2

⎤
⎦ + Fvdi q̇di + fsdi

(9.101)

with c12di = −di3(mxi3 sin qi3 + myi3 cos qi3).
Introducing (7.64), (7.91), (7.164) and (7.183) into (9.97), simplifying and skip-

ping all mathematical derivations, we get

τtd = Mx
d(x, qt )

0 ṫr + cx
d(x, qt ,

0tr ) (9.102)

where

Mx
d = Md

[
J−1

Jr

]
(9.103)

and

cx
d = Md

[
03×3

Jd
r

]
0tr +

⎡
⎣

cx
d1

cx
d2

cx
d3

⎤
⎦ (9.104)

with

cx
di = Cr

di

⎡
⎣

(j1ri
0tr )

2

(j2ri
0tr )

2

(j1ri
0tr )(j2di

0tr )

⎤
⎦ + Fvdi Jqdi

0tr + fsdi (9.105)

in which

• Jr and Jd
r are three matrices defined at (9.86) and (9.88),

• j j
r i the line of thematrixJr corresponding to the variable q̇di j , i.e. the j th component
of the vector q̇di .

Thus, for one given robot configuration, τtd is a function of 0 ṫr and 0tr only.
From the degeneracy analysis of matrix Jtdi of (9.80), the gained motion inside

the LPJTS singularity of the leg i can be expressed as:

q̇s
di =

⎡
⎣

di3
−(di2 + di3)

di2

⎤
⎦ . (9.106)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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Thus,

• If the leg 1 encounters a LPJTS singularity, q̇s T
d = [q̇s T

d1 03 03],
• If the leg 2 encounters a LPJTS singularity, q̇s T

d = [03 q̇s T
d2 03],

• If the leg 3 encounters a LPJTS singularity, q̇s T
d = [03 03 q̇s T

d3 ],
where 03 is a zero vector of dimension 3.

Thus, the criterion (9.15) to satisfy in order to cross the LPJTS singularity of the
leg i takes the general form

q̇s T
d τtd = 0 = q̇s T

d (Mx
d
0 ṫr + cx

d ) (9.107)

which, for one given singularity configuration, is a function of 0 ṫr and 0tr only.
Therefore, it is possible to define, for one given singularity configuration, a Cartesian
trajectory which respects (9.107).

9.5.5 Simulations and Experimental Results

For the simulations, we have decided to simulate the behavior of a Tripteron during
the crossing of a LPJTS singularity for the leg 1 with the following hypothesis which
does not affect the genericity of the example: we consider that only the elements of
the leg 1 have mass and inertia properties (all other terms are canceled).

This hypothesis which may seem strong does not affect the problem because,
when crossing the leg 1 LPJTS singularity, from the equations of the sections above,
it can be seen that only the mass and inertia parameters of the legs can make the
dynamic model degenerate. Moreover, this hypothesis brings the following main
advantage: we do not have any Tripteron prototype in our laboratory, but we will be
able to experimentally simulate the Tripteron behavior during the LPJTS singularity
crossingbyusing thefive-barmechanismprototypepresented inSect. 8.4.3.1. Indeed,
this experimental simulation can be done by taking into account that:

• the passive planar 3R serial chain A12A13A14 of the leg 1 of the Tripteron is
equivalent to the passive chain A12P A22 of the five-bar mechanism (see Figs. 9.1
and 9.3b);

• if we brake the active joint of the five-bar mechanism prototype located at A11,
the joint A12 of the five-bar prototype mechanism is equivalent to the passive joint
A12 of the Tripteron (Fig. 9.13)

• then, the crossing of the singularity of the chain A12A13A14 of the leg 1 of the
Tripteron which is equivalent to the passive chain A12P A22 of the five-bar mecha-
nism can be driven by the active link A21A22 of the five-bar mechanism prototype
that will simulate the end-effector displacement of the Tripteron when motors 2
and 3 are moving (see Figs. 9.2 and 9.4).

http://dx.doi.org/10.1007/978-3-319-19788-3_8
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Fig. 9.13 Equivalence between the leg i of the Tripteron and the five-bar mechanism architecture

Due to this analogy, the mass and inertia parameters of the leg 1 of the Tripteron
must be equal to:

• m13 = 0.40 ± 0.02 kg, m11 = m12 = 0kg,
• I ai1 = zzi2 = zzi3 = 0kgm2,
• mxi2 = mxi3 = myi2 = my13 = 0kgm,
• f si2 = f s13 = f si4 = 0Nm,
• f vi2 = f v13 = f vi4 = 0Nm/rad,

while the length parameters are d13 = 0.1888 m and d14 = 0.1878m in order to fit
to the five-bar mechanism prototype parameters.

From (9.107) and (9.102) and by using the parameters given above, the criterion
for crossing the LPJTS singularities of the leg 1 becomes

q̇s T
d τtd = m31d3

i3q̈2
21 = 0 ⇒ q̈2

12 = 0 = j1d1
0 ṫr + Jd1

d
0tr (9.108)

where Jd1
d is the first line of the matrix Jd

d .
Let us nowdefine for the point A13 of the leg 1 twodifferent types of trajectorywith

a duration t f = 1s between the points A130 (xA130 = [xA130 yA130 ]T = [0 0.338]Tm)
and A13 f (xA13 f = [xA13 f yA13 f ]T = [0 0.0878]Tm) which are separated by a
LPJTS singularity (Fig. 9.14):

• A trajectory defined using fifth-degree polynomial which can fix the position,
velocity and acceleration of the robot at the trajectory extremity only; for this
polynomial, those conditions are:
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(a)

(b)

Fig. 9.14 Starting point A120 and ending point A12 f of theLPJTS singularity crossing trajectory for
the Tripteron. a Trajectory for the Tripteron leg. b Equivalent trajectory of the five-bar mechanism

yA13(t = 0) = yA130 , ẏA13(t = 0) = 0, ÿA13(t = 0) = 0 (9.109)

yA13(t = t f ) = yA13 f , ẏA13(t = t f ) = 0, ÿA13(t = t f ) = 0 (9.110)

xA13(t) = xA12 +
√

d2
13 + (yA13(t) − yA12)

2 (9.111)
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which lead to the following polynomials for y (see AppendixD):

yA13(t) = 0.33818 − 2.50350t3 + 3.75525t4 − 1.50210t5. (9.112)

• A trajectory using an eighth-degree polynomial law which can fix the position,
velocity and acceleration of the robot at the trajectory extremity plus the position
and acceleration of the robot in the singular configuration; for this polynomial,
those conditions are:

yA13(t = 0) = 0.3381, ẏA13(t = 0) = 0, ÿA13(t = 0) = 0 (9.113)

yA13(t = t f ) = 0.0878, ẏA13(t = t f ) = 0, ÿA13(t = t f ) = 0 (9.114)

yA13(t = ts) = 0.2021, ẏA13(t = ts) = 0.147, ÿA13(t = ts) = −0.693
(9.115)

xA13(t) = xA12 +
√

d2
13 + (yA13(t) − yA12)

2 (9.116)

which lead to the following polynomials for y (see AppendixD):

yA13(t) = 0.33818 + 3.05172t3 − 23.59052t4 + 43.55897t5

− 26.66084t6 − 0.25459t7 + 3.64490t8.
(9.117)

First, let us simulate the behavior of the robot when following the two different
trajectories. The input torques for both trajectories are shown in Figs. 9.15 and 9.16
(τ1 is not shown as it is null at any time). It can be observed that, for the trajectory
that respects the criterion (9.108), the input torques remain finite while in the other
case, they tend to infinity.

Now, let us launch each trajectory on the prototype. The results in terms of five-
bar mechanism displacement are shown in Figs. 9.17 and 9.18. The torque in the

(a) (b)

Fig. 9.15 Input torques simulated for theTripteron crossing theLPJTS singularity locus at ts = 0.5s
without respecting the dynamic criterion (9.108). a Actuator 2. b Actuator 3
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(a) (b)

Fig. 9.16 Input torques simulated for theTripteron crossing theLPJTS singularity locus at ts = 0.5s
with respecting the dynamic criterion (9.108). a Actuator 2. b Actuator 3

Fig. 9.17 The five-bar mechanism tracking the trajectory which does not respect the dynamic
criterion (9.108)

actuator 2 of the five-bar mechanism prototype are given as information, to show
their evolution and check their degeneracy (Fig. 9.19). It can be observed that for the
trajectory that respects the criterion (9.108), the robot leg can cross the singularity
configuration which is equivalent to the LPJTS singularity of the Tripteron with
finite torques while in the other case, it stays blocked in it at 0.7 s (in order to prevent
harming themechanism, a security stopped themechanism). Thus, with the trajectory
defined at (9.112) without respecting the criterion (9.108), the Tripteron would not
be able to cross the LPJTS singularity while the singularity would have been crossed
by using the trajectory defined at (9.117) without respecting the criterion (9.108).
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Fig. 9.18 The five-bar mechanism tracking the trajectory respecting the dynamic criterion (9.108)
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(a) (b)

Fig. 9.19 Input torques of the actuator 2 of the five-bar mechanism when tracking two types of
trajectories. a Without respecting the dynamic criterion (9.108). b With respecting the dynamic
criterion (9.108)

9.6 Discussion

In this book, we have shown that it is possible to cross the Type 2 and LPJTS singular-
ities of the robots without degeneracy of the robot input efforts. We have deliberately
chosen to treat each problem separately. However, it is of course possible to cross at
the same time a Type 2 and a LPJTS singularity, whereas we cannot show it experi-
mentally. In such a case, the trajectory must ensure that the criteria (9.11) and (9.15)
are satisfied in the same time.

It should also be mentioned that, in the present book, we have considered that
the robot was able to perfectly track the desired trajectories, which is not the case in
reality. In order to deal with such a problem, adequate and robust controllers must
be developed, such as the one proposed in (Pagis et al. 2014, 2015) for crossing
Type 2 singularities. However, developing adequate controllers for crossing Type 2
or LPJTS singularities is out of the scope of the present book, even if this problem is
interesting and canmake singularity crossing more attractive in an industrial context.

Finally, in the present chapter, we have considered case studies for which it was
easy to define analytically the vectors of the gained motions inside the singularities
(ts and q̇s

d ) for any robot configurations. However, for more complex robots these
analytical expressions may not be possible to obtain. The same problem could arise
for the definition of the singularity loci that the robot will cross. In such a case, a
numerical approach must be used which could, for instance for crossing a Type 2
singularity, follow the steps:

1. numerically find a robot singular configuration through which it must pass.
2. then, numerically compute the value of the vector ts . For that, we can use the

“eig” function in Matlab, as ts is an eigenvector of the matrix Ar corresponding
to a null eigenvalue α. Of course, due to numerical problems, the corresponding
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eigenvalue α may not be null, but its absolute value will be lower than a small
number ε, i.e. |α| < ε.

3. compute the value ofwd as a function of xs , ẋs and ẍs , where xs represents (ẋs , ẍs ,
resp.) the platformpose (velocity, acceleration, resp.) at the singular configuration.
xs can be numerically defined at the first step, while ẋs and ẍs must be for the
moment taken as variables. At the end of this step, the expressions of each term of
wd can be obtained under the form of polynomials in ẋs and ẍs whose coefficients
can be numerically computed.

4. finally, define the criterion (9.11) which must have the form of a polynomial in
ẋs and ẍs whose coefficients can be numerically computed.

Obviously, to avoid numerical issues due to round-off problems, the maximal com-
putational accuracy in Matlab must be used.

The reader interested in these results can find videos of some robots crossing
singularities in the following webpages:

• http://www.irccyn.ec-nantes.fr/~briot/Books.html
• http://www.irccyn.ec-nantes.fr/~briot/SingControl.html
• http://www.irccyn.ec-nantes.fr/~briot/SingExit.html

Moreover, note that the case of flexible PKM crossing Type 2 singularities has
been investigated in (Briot and Arakelian 2010, 2011).

http://www.irccyn.ec-nantes.fr/~briot/Books.html
http://www.irccyn.ec-nantes.fr/~briot/SingControl.html
http://www.irccyn.ec-nantes.fr/~briot/SingExit.html


Part III
Dynamics of Flexible Parallel Robots



Chapter 10
Elastodynamic Modeling of Parallel Robots

Abstract The present chapter deals with computation of the dynamic model of flex-
ible parallel robots. In order to obtain the elastodynamic model, as in the rigid case,
all closed loops must be virtually opened to make the platform virtually disassem-
bled from the rest of the structure which becomes a tree structure with all joints
actuated. The elastodynamic model of the tree structure and of the free platform
is then computed using a systematic procedure based on the generalized Newton-
Euler principle, that makes it possible to reduce the computational complexity of the
model. Then, the loops are closed using the principle of virtual powers. As a matter
of fact, after an introductory section, this chapter will introduce an effective way to
compute the elastodynamic models of a single clamped-free flexible link and of a
tree structure robot. Then, the computation of the elastodynamic model of parallel
robots is investigated. The simulation results obtained with the dynamic model of a
flexible parallel robot are compared with experiments.

10.1 Introduction

Many studies have been devoted to computation of the full dynamic model of rigid
parallel robots, however there are still many open questions concerning the compu-
tation of their elastodynamic model. One of them concerns reduction of the com-
putational time that is generally huge and prevents the use of such models in many
applications, such as real-time control, design optimization process, etc. To decrease
the computational cost, it is either (i) possible to decrease the number of variables
(using model reduction methods (Briot et al. 2011; Craig 1981; Craig and Bampton
1968) and truncated series of shape functions (Blevins 2001)) or (ii) to efficiently
compute the symbolic model in order to minimize the number of operators (sim-
ilarly to what has been done for rigid robots (Khalil and Dombre 2002), robots
with lumped springs (Khalil and Gautier 2000) or for serial robots with distributed
flexibilities (Boyer and Khalil 1998)). Both methods can obviously be combined.

For the computation of the elastodynamic models of robots, two main approaches
are generally proposed (see (Dwivedy and Eberhard 2006b) for a large literature
review): (i) lumped modeling (Khalil and Gautier 2000; Kruszewski et al. 1975;
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Wittbrodt et al. 2006) and (ii) modeling using distributed flexibilities (Bauchau 2011;
Boyer and Coiffet 1996; Boyer and Khalil 1998; de Jalon and Bayo 1994; Rognant et
al. 2010; Shabana 2005; Stachera and Schumacher 2008). Lumped modeling is gen-
erally simpler to use by non-experts in finite element methods but, to obtain a model
with sufficient accuracy, a higher number of elements is required, thus increasing
the computational time. The most relevant works in lumped modeling methods are
probably (Khalil and Gautier 2000) (for serial robots) and (Wittbrodt et al. 2006)
(for any type of robots). In Khalil and Gautier (2000), the flexibilities are modeled
by one DOF springs and a systematic procedure for the symbolic computation of the
model is proposed. This procedure allows minimization of the number of operators
in the model. In Wittbrodt et al. (2006), springs of higher dimension are used, but it
is shown that, to obtain good accuracy, the number of elements must be high, thus
leading to longer computational time.

Contrary to lumped modeling, using distributed flexibilities allows improvement
of the model accuracy. However, such methods require highly-skilled users. In
Bauchau (2011), de Jalon and Bayo (1994), Rognant et al. (2010), Shabana (2005),
some general methodologies based on the Lagrange principle that can be applied
to any system are proposed. In the case of closed-loop mechanisms, some Jacobian
matrices are computed that allow taking into account the kinematic dependencies.
The work (Stachera and Schumacher 2008) combines the Lagrange principle and
the principle of virtual work for computing the elastodynamic model of parallel
robots. However, the main drawback of such general methodologies is that they are
not specifically designed for parallel robots and that they do not guarantee mini-
mization of the number of operators for the symbolic computation of the model.
A first approach for systematic computation of the required Jacobian matrices has
been proposed in Bouzgarrou et al. (2005). However, this approach was not designed
so that a minimal number of operators for the model symbolic computation can be
obtained. The objective of this chapter is to present a systematic procedure to com-
pute the elastodynamic model (using distributed flexibilities) of parallel robot with
a minimal numbers of operators. This model is useful for several different reasons:

• In design optimization processes, optimization algorithms that test thousands of
robot parameters are used. If the computational time required for the calculation
of one iteration of the elastodynamic model of the robot is not minimized, several
days, and even months, can pass before the results are obtained.

• Symbolic expressions, with a minimized number of variables and operators, are
requested for computing the identification model, in order to decrease the risk of
error propagation due to noisy measured data.

In order to minimize the number of operations, a generalized NE model (which is
known to reduce the number of operators (Boyer and Khalil 1998; Boyer et al. 2007;
Khalil and Dombre 2002; Shabana 1990)) is used and combined with the PVP. The
Jacobian matrices defined in the PVP are computed using recursive algorithms that
decrease the number of operators.
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In this part, we will consider a parallel robot composed of one rigid fixed base
(denoted as the element 0), one rigid moving platform and n legs, each leg being
a serial kinematic chain composed of mi − 1 bodies linked by mi joints (revolute,
prismatic or even fixed joints—i = 1, . . . , n) (Fig. 8.1a). The actuated variables are
denoted by qa (of size na) and the leg passive variables by qd (of size nd ). The
platform coordinates are denoted as xp.

To obtain the desired equations for the IDM and DDM, we will use a method
similar to the one used in Chap. 8 for the rigid case. The problem will be once again
divided into two steps (Briot and Khalil 2014a):

1. first, all closed loops are virtually opened to make the platform virtually disas-
sembled from the rest of the structure (Fig. 8.1b) so that the robot becomes a tree
structure and a free body: the platform; The leg joints are virtually considered
actuated (even for unactuated actual joints). The dynamic model of the tree struc-
ture (being composed of flexible bodies) and of the free platform is then computed
using a systematic procedure based on the Newton-Euler principle, which makes
it possible to obtain

[
τt

0ne

]
= dmt (q̈t , q̇t , qt , q̈e, q̇e, qe, wt ) (10.1)

wp = idmp(ṫp, tp, xp, we) (10.2)

where dmt represents the dynamic model of the flexible tree structure, idmp the
IDMof the platform, qt are the joint coordinates of the tree structure, qe is the
vector of the elastic coordinates of dimension ne, and tp, xp are the platform twist
and pose, wt is the system of wrenches applied by the tree-structure robot on the
environment and we is the system of wrenches applied by the platform on the
environment.

2. Then, the loops are closed using the PVP.

As a result, the present chapter is organized as follows:

• Section10.2 presents the generalized NE equations for the considered body. The
generalized NE equations are optimized so that the number of operators “+”, “−”,
“×” and “/” used for computing the models is minimized.

• Sections10.3–10.5 present the computation of the dynamic models of

1. the mechanism composed of the virtual tree-structure and the free body corre-
sponding to the platform,

2. the flexible PKM.

• Section10.6 treats the practical implementation of the algorithm.
• Section10.7 shows a case study.

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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10.2 Generalized Newton-Euler Equations of a Flexible Link

This section aims at presenting the generalized NE model of a flexible clamped-free
body (Boyer and Coiffet 1996; Boyer et al. 2007; Shabana 1990; Sharf and Damaren
1992).

Remark

The goal of this chapter and of the following is not to provide a complete lecture on
mechanics of deformable bodies, but to show for people having some basic knowl-
edge in this field how to obtain the dynamics of a flexible PKM starting from basic
considerations in mechanics of deformable bodies (such as the fact that the defor-
mation of a body can be parameterized as a truncated series of Rayleigh-Ritz shape
functions, or such as the expression of the potential energy due to elastic deforma-
tions, etc.).

If the reader requires additional information on mechanics of deformable bodies,
he/she is invited to read the reference books of Shabana (2005) and of Bauchau
(2011).

10.2.1 Geometry and First-Order Kinematics
of a Clamped-Free Flexible Body

In this part, we consider the model of the flexible body depicted in Fig. 10.1. This
body, denoted as body B j , is supposed to have small elastic deformations around
its reference (rigid) configuration O0 j A0 j . The body is clamped at O j such that
O0 j ≡ O j . The position of any point M j belonging to B j can be computed as the
superposition of

Fig. 10.1 Schematics of one
flexible link B j
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• a rigid state rO j M0 j characterizing the position of the point M j with respect to the
local frame F j in absence of deformation (in that case, M j ≡ M0 j ) and,

• an elastic deformation ue j (M0 j ) which can be parameterized as truncated series
of Rayleigh-Ritz shape functions (Blevins 2001) such that:

ue j (M0 j ) = Φd j (M0 j )qe j (10.3)

with

– Φd j =
[
Φd1 j , . . . ,Φd N j j

]
, Φdk j (M0 j ) being the kth shape functions for the

displacement of the flexible body expressed at point M0 j ,

– qT
e j

=
[
qe1 j , . . . , qeN j j

]
, qek j being the kth generalized elastic coordinate of

the body B j and N j the number of considered shape functions.

As a result, the vector rO j M j characterizing the position of any point M j belonging
to the body B j is given by:

rO j M j = rO j M0 j + ue j (M0 j ) = rO j M0 j + Φd j (M0 j )qe j . (10.4)

Moreover, the orientation of the bodyB j at any point M j belonging to this body
can also be computed as the superposition of

• a rigid state defined by the orientation matrix 0Rr
j = 0R j characterizing the rigid

orientation of the point M j with respect to the global frame F0 in absence of
deformation (in that case, M j ≡ M0 j ) and,

• an elastic deformation state parameterized by the three angles φe
j (M0 j ), θe

j (M0 j )

and ψe
j (M0 j ) characterizing the respective rotations around x j , y j and z j

1 which
can be defined as truncated series of Rayleigh-Ritz shape functions (Blevins 2001)
such that: ⎡

⎣
φe

j (M0 j )

θe
j (M0 j )

ψe
j (M0 j )

⎤
⎦ = ϑe j (M0 j ) = Φr j (M0 j )qe j (10.5)

with Φr j =
[
Φr1 j , . . . ,Φr N j j

]
, Φrk j (M0 j ) being the kth shape functions for the

rotation of the flexible body expressed at point M0 j .

As a result, the rotationmatrix 0R j (M j ) characterizing the orientation of the body
B j at any point M j is given by:

0R j (M j ) = 0Rr
j rot(x, φe

j (M0 j )) rot(y, θe
j (M0 j )) rot(z, ψe

j (M0 j )). (10.6)

Based on these considerations, the twist of any free flexible bodyB j at any point
M j can always be expressed as (Boyer et al. 2007):

1The order of the rotations is not important as we consider small deformations.
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[
vM j

ωM j

]
= t j +

[
ω j × rO j M j

0

]
+

[
ve j (M j )

ωe j (M j )

]
(10.7)

where

• t j =
[
vT

j ,ωT
j

]T
is the twist of the local frameF j fixed on the bodyB j expressed

at point O j ,v j andω j being the translational and rotational velocities, respectively,
• ve j (M j ) and ωe j (M j ) are the translational and rotational velocities due to the
body elasticity.

ve j (M j ) and ωe j (M j ) can be obtained such that:

[
ve j (M j )

ωe j (M j )

]
=

[
Φd j (M0 j )

Φr j (M0 j )

]
q̇e j = Φ j (M0 j )q̇e j (10.8)

with q̇T
e j

=
[
q̇e1 j , . . . , q̇eN j j

]
, q̇ek j being the kth elastic generalized velocity of the

body and N j the number of considered shape functions.
Thus, (10.7) can be rewritten as:

[
vM j

ωM j

]
= t j +

[
ω j × (rO j M0 j + Φd j (M0 j )qe j )

0

]
+

[
Φd j (M0 j )

Φr j (M0 j )

]
q̇e j . (10.9)

Equations (10.4)–(10.7) define the kinematic model of the flexible bodyB j . This
model is thus parameterized by the following set of variables:

• t j that are the Euler variables characterizing the rigid velocity of the body B j at
the origin of the local frame,

• qe j that are the Lagrange variables characterizing the elastic displacement of the
body B j .

Thus, the kinematics model of a flexible free body is parameterized by N j sup-
plementary variables qe j and N j shape functions compared to the free rigid body
case.

It should be noted that this description can be applied to both robot segments
and joints, as long as all the shape functions can be defined. Many expressions of
shape functions can be found in Blevins (2001). Moreover, the shape functions for
3D Bernoulli beams are given in Appendix F.

10.2.2 Computation of the Elastodynamic Model
of the Flexible Free Body Using the PVP

In Boyer et al. (2007), the PVP is used for computing the elastodynamic model of a
free flexible body. This principle, which has been given in Sect. 6.3 in the case of a
rigid link, can be rewritten for a flexible body as:

http://dx.doi.org/10.1007/978-3-319-19788-3_6
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P∗
acc = P∗

int + P∗
ext (10.10)

where P∗
acc is the virtual power due to the acceleration quantities, P∗

int is the virtual
power due to the internal elastic efforts and P∗

ext is the virtual power of the external
efforts. Let us recall that the superscript ‘∗’ stands for a virtual quantity.

10.2.2.1 Computation of the Virtual Power Due to the Acceleration
Quantities

By definition, the virtual power due to the acceleration quantities is equal to (Boyer
et al. 2007),

P∗
acc =

∫
B j

v̇T
M j

v∗
M j

dm (10.11)

where B j is the body under consideration, dm is a small quantity of mass and

v̇M j = v̇ j + Φd j (M0 j )q̈e j + 2ω j × Φd j (M0 j )q̇e j

+ ω j × (
ω j × rO j M j

) + ω̇ j × rO j M j (10.12)

is the translational acceleration of the point M j with respect to the base frame, with
ω̇ j the rotational acceleration of the considered body at point O j with respect to the
base frame. The expression of v̇M j can be obtained through the differentiation w.r.t.
time of the expression of vM j given in (10.7).

The expression of v̇M j can be straightforwardly obtained by differentiating w.r.t.
time the upper part of the Eq. (10.9) which states that:

vM j = v j + ω j × (rO j M0 j + Φd j (M0 j )qe j ) + Φd j (M0 j )q̇e j (10.13)

which implies that

v̇M j = v̇ j + Φd j (M0 j )q̈e j + ω j × Φd j (M0 j )q̇e j

+ ω̇ j × (rO j M0 j + Φd j (M0 j )qe j )

+ ω j × (ω j × rO j M0 j + ω j × Φd j (M0 j )qe j + Φd j (M0 j )q̇e j ). (10.14)

Equation (10.12) can be thus obtained by factorizing the expression (10.14).
Introducing (10.12) into (10.11), it turns out that:

P∗
acc =

(∫
B j

v̇M j dm

)T

v∗
j +

(∫
B j

rO j M j × v̇M j dm

)T

ω∗
j +
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(∫
B j

ΦT
d j

(M0 j )v̇M j dm

)T

q̇∗
e j

(10.15)

By introducing the expression (10.12) in (10.15) and after simplifications, detailed
in Appendix E, we get

P∗
acc = fT

acc1v∗
j + fT

acc2ω
∗
j + fT

acc3 q̇∗
e j

(10.16)

in which

facc1 =
∫
B j

dm v̇ j +
∫
B j

Φd j (M0 j )dm q̈e j

+ ω̇ j ×
(∫

B j

rO j M j dm

)

+ 2ω j ×
(∫

B j

Φd j (M0 j )dm q̇e j

)

+ ω j ×
(

ω j ×
(∫

B j

rO j M j dm

))
(10.17)

facc2 =
(∫

B j

rO j M j dm

)
× v̇ j +

∫
B j

r̂O j M j Φd j (M0 j )dm q̈e j

+
∫
B j

r̂T
O j M j

r̂O j M j dm ω̇ j

+ ω j ×
((∫

B j

r̂T
O j M j

r̂O j M j dm

)
ω j

)

+ 2

N j∑
k=1

(∫
B j

r̂T
j (M0 j )Φ̂dk j (M0 j )dm

)
ω j q̇ek j

+ 2

N j∑
i,k=1

(∫
B j

Φ̂T
di j

(M0 j )Φ̂dk j (M0 j )dm

)
ω j qei j q̇ek j (10.18)

in which Φ̂dk j is the cross-product matrix associated with the vector Φdk j , and

facc3 |i =
(∫

B j

Φd j (M0 j )dm

)T

|i v̇ j
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+
(∫

B j

r̂O j M j Φd j (M0 j )dm

)T

|i ω̇ j

+
(∫

B j

ΦT
d j

(M0 j )Φd j (M0 j )dm

)
|i q̈e j

+ 2

N j∑
k=1

(∫
B j

Φdk j (M0 j ) × Φdi j (M0 j )dm

)T

ω j q̇ek j

− ωT
j

(∫
B j

r̂T
j (M0 j )Φ̂di j (M0 j )dm

)T

ω j

−
N j∑

k=1

ωT
j

(∫
B j

Φ̂T
di j

(M0 j )Φ̂dk j (M0 j )dm

)
ω j qek j (10.19)

where the symbol ‘|i ’ denotes the line i of the considered vector or matrix.

10.2.2.2 Computation of the Virtual Power of External Efforts

The virtual power of external efforts can be divided into two parts

P∗
ext = P∗

grav + P∗
reac (10.20)

where

P∗
grav =

∫
B j

(
v∗

M j

)T
g dm (10.21)

is the virtual power of the gravity field g, and

P∗
reac = fT

O j
v∗

j + mT
O j

ω∗
j − fT

A j
v∗

A j
− mT

A j
ω∗

A j
(10.22)

is the virtual power due to the reactions at point O j and A j (Fig. 10.1), where fO j

and mO j are the force and moment applied at point O j while fA j and mA j are the
force and moment applied at point A j .

Thus, introducing (10.7) in the previous expressions, we get

P∗
grav =

(∫
B j

g dm

)T

v∗
j +

(∫
B j

rO j M j × g dm

)T

ω∗
j+
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(∫
B j

gT Φd j (M0 j )dm

)
q̇∗

e j
(10.23)

which can be expanded as

P∗
grav =

(∫
B j

dm

)
gT v∗

j+
((∫

B j

rO j M j dm

)
× g

)T

ω∗
j+

(
gT

∫
B j

Φd j (M0 j )dm

)
q̇∗

e j
(10.24)

and

P∗
reac = (

fO j − fA j

)T v∗
j+(

mO j − mA j − rO j A j × fA j

)T
ω∗

j−(
fT

A j
Φd j (A0 j ) + mT

A j
Φr j (A0 j )

)
q̇∗

e j
. (10.25)

10.2.2.3 Computation of the Virtual Power Due to Internal Elastic
Efforts

For computing this quantity, it is first necessary to compute the elastic potential
energy of the body B j .

The elastic potential energy of any body is given by (Shabana 2005):

Ue j = 1

2

∫
Vj

σT
j Itε jdV (10.26)

where

• Vj is the volume of the body B j ,
• σ j and ε j are the six-dimensional stress and strain vectors due to the small elastic
displacement ue j (M0 j ) = Φd j (M0 j )qe j in body B j ,

• It is a (6 × 6) diagonal matrix. The first three diagonal terms are equal to one,
whereas the last three diagonal terms are equal to two, because of the two multi-
pliers associated with the shear strains (Shabana 2005), i.e.
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It =
[

13 03×3
03×3 2 13

]
. (10.27)

The strain vector is defined as ε j = [
ε j11 ε j22 ε j33 ε j12 ε j13 ε j23

]T , where:

⎡
⎣

ε j11 ε j12 ε j13
ε j12 ε j22 ε j23
ε j13 ε j23 ε j33

⎤
⎦ = 1

2

(
∇ ue j (M0 j ) + (∇ ue j (M0 j )

)T
)

(10.28)

with

∇ ue j (M0 j ) =
[
∂ue j

∂x
(M0 j )

∂ue j

∂y
(M0 j )

∂ue j

∂z
(M0 j )

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Φ(1)
d j

∂x
(M0 j )qe j

∂Φ(1)
d j

∂y
(M0 j )qe j

∂Φ(1)
d j

∂z
(M0 j )qe j

∂Φ(2)
d j

∂x
(M0 j )qe j

∂Φ(2)
d j

∂y
(M0 j )qe j

∂Φ(2)
d j

∂z
(M0 j )qe j

∂Φ(3)
d j

∂x
(M0 j )qe j

∂Φ(3)
d j

∂y
(M0 j )qe j

∂Φ(3)
d j

∂z
(M0 j )qe j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.29)

where Φ(k)
d j

corresponds to the kth row of matrix Φd j , k = 1, 2, 3. As a result,

ε j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Φ(1)
d j

∂x
(M0 j )

∂Φ(2)
d j

∂y
(M0 j )

∂Φ(3)
d j

∂z
(M0 j )

1

2

⎛
⎝∂Φ(1)

d j

∂y
(M0 j ) +

∂Φ(2)
d j

∂x
(M0 j )

⎞
⎠

1

2

⎛
⎝∂Φ(1)

d j

∂z
(M0 j ) +

∂Φ(3)
d j

∂x
(M0 j )

⎞
⎠

1

2

⎛
⎝∂Φ(2)

d j

∂z
(M0 j ) +

∂Φ(3)
d j

∂y
(M0 j )

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

qe j = Φε j qe j . (10.30)

The stress vector is expressed as:

σ j = [
σ j11 σ j22 σ j33 σ j12 σ j13 σ j23

]T = H jε j (10.31)
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where matrix H j is given by Hooke’s law (Shabana 2005), and is equal to, for an
isotropic elastic material with elastic modulus E j and Poisson coefficient ν j ,

H j = E j

(1 + ν j )(1 − 2ν j )

[
H(11)

j 03×3

03×3
1−2ν j

2 13

]
(10.32)

in which

H(11)
j =

⎡
⎣
1 − ν j ν j ν j

ν j 1 − ν j ν j

ν j ν j 1 − ν j

⎤
⎦ . (10.33)

Thus, introducing (10.30) and (10.31) into (10.26) leads to:

Ue j = 1

2
qT

e j
Kee j qe j (10.34)

where Kee j is the stiffness matrix of body B j and takes the form:

Kee j =
∫

Vj

ΦT
ε j

HT
j ItΦε j dV . (10.35)

The resulting expression of the virtual power due to internal elastic efforts is thus
given by (Boyer et al. 2007):

P∗
int = −

(
∂Ue j

∂qe j

)T

q̇∗
e j

= −qT
e j

Kee j q̇
∗
e j

. (10.36)

The stiffness matrices for 3D Bernoulli beams are given in Appendix F.

10.2.2.4 Computation of Equilibrium Equations

Thus, introducing (10.16), (10.24), (10.25) and (10.36) into (10.10), developing and
simplifying the expressions, and taking into account the fact that the virtual velocities
v∗

j ,ω
∗
j and q̇∗

ei j
are independent, three sets of equilibrium equations can be obtained:

Σf j = m j
(
v̇ j − g

) + MSde j q̈e j + 2ω j × MSde j q̇e j

− ms j × ω̇ j + ω j × (
ω j × ms j

)
(10.37)

Σm j = ms j × (
v̇ j − g

) + MSre j q̈e j
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+ 2

N j∑
i,k=1

Ieeikjω j qei j q̇ek j + IO j ω̇ j

+ ω j × (
IO j ω j

) + 2

N j∑
k=1

Irekjω j q̇ek j (10.38)

and

Σs j |i = MST
de j

|i
(
v̇ j − g

) + MST
re j

|i ω̇ j + Mee j |i q̈e j

+ 2

N j∑
k=1

λ
T
ki j

ω j q̇ek j − ωT
j IT

reij
ω j

−
N j∑

k=1

ωT
j Ieeikjω j qek j + Kee j |i qe j (10.39)

where the symbol ‘|i ’ denotes the row i of the considered vector or matrix. Equa-
tions (10.37)–(10.39) represent respectively the linear rigid equilibrium, the angular
rigid equilibrium and the elastic equilibrium.

In the expressions (10.37)–(10.39), m j is the mass of the bodyB j and the terms
ms j , MSde j , MSre j , IO j , Ireij , Ieeikj , Mee j , Σf j , Σm j and Σs j are defined in the
following expressions:

ms j =
∫
B j

rO j M j dm

=
∫
B j

rO j M0 j dm +
∫
B j

Φd j (M0 j )dm qe j

= msr j + MSde j qe j (10.40)

is the global vector of the first moments of inertia in which

msr j =
∫
B j

rO j M0 j dm (10.41)

is the (3 × 1) constant vector of the first moments of inertia of the rigid link,

MSde j =
⎡
⎣

msdex j

msdey j

msdez j

⎤
⎦ =

∫
B j

Φd j (M0 j )dm (10.42)

is a (3 × N j ) constant matrix when expressed in the frameFij,
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MSre j =
∫
B j

r̂O j M j Φd j (M0 j )dm

=
∫
B j

r̂O j M0 j Φd j dm +
∫
B j

̂

(
Φd j (M0 j )qe j

)
Φd j (M0 j )dm

=
[
β1 j

+ ∑N j
k=1 λk1 j qek j . . . βN j , j + ∑N j

k=1 λk N j, j qek j

]
(10.43)

where

βk j
=

∫
B j

rO j M0 j × Φdk j (M0 j )dm (10.44)

and

λki j =
∫
B j

Φdk j (M0 j ) × Φdi j (M0 j )dm (10.45)

are two (3 × 1) constant vectors when expressed in the frame Fij in which, let us
recall,

• Φdi j corresponds to the i th column of the matrix Φd j ,
• Φdk j corresponds to the kth column of the matrix Φd j ,

IO j =
∫
B j

r̂T
O j M j

r̂O j M j dm

=
∫
B j

r̂T
O j M0 j

r̂O j M0 j dm +
∫
B j

N j∑
k=1

r̂T
O j M0 j

Φ̂dk j (M0 j )qek j dm

+
∫
B j

N j∑
k=1

Φ̂T
dk j

(M0 j )r̂O j M0 j qek j dm

+
∫
B j

N j∑
i,k=1

Φ̂T
di j

(M0 j )Φ̂dk j (M0 j )qei j qek j dm

= Irr j +
N j∑

k=1

(
Irekj + IT

rekj

)
qek j +

N j∑
i,k=1

Ieeikjqei j qek j (10.46)

is the global matrix of the second moments of inertia, in which:

Irr j =
∫
B j

r̂T
O j M0 j

r̂O j M0 j dm (10.47)

is the (3 × 3) constant inertia matrix of the rigid body when expressed in the frame
Fij,
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Irekj =
∫
B j

r̂T
O j M0 j

Φ̂dk j (M0 j )dm (10.48)

and

Ieeikj =
∫
B j

Φ̂T
di j

(M0 j )Φ̂dk j (M0 j )dm (10.49)

are (3 × 3) constant matrices when expressed in the frame Fij,

Mee j =
∫
B j

ΦT
d j

(M0 j )Φd j (M0 j )dm (10.50)

is a (N j × N j ) constant matrix when expressed in the frameFij, and

Σf j = fO j − fA j (10.51)

and
Σm j = mO j − mA j − rO j A j × fA j (10.52)

represent the total external forces and moments at point O j , and

Σs j = fT
A j

Φd j (A0 j ) + mT
A j

Φr j (A0 j ), (10.53)

represents the generalized elastic forces and moments at A0 j .

10.2.2.5 Remark on Computation of the Terms βk j
, λki j , Irekj , Ieeikj and

Mee j

The elements of the matrices and vectors βk j
, λki j , Irekj , Ieeikj and Mee j are not

independent and can be computed via the use of a limited set of parameters.
Let us consider the (3 × 3) matrix defined by

Jeeikj =
⎡
⎣

jexxikj jexyikj jexzikj

jeyxikj jeyyikj jeyzikj

jezxikj jezyikj jezzikj

⎤
⎦ =

∫
B j

Φdi j (M0 j )ΦT
dk j

(M0 j )dm. (10.54)

By definition, we have Jeeikj = JT
eekij

.
As a result, it turns out that the element on the i th row and kth column of the

matrix Mee j (denoted as the element Mee j (i, k)) is equal to:

Mee j (i, k) = jexxikj + jeyyikj + jezzikj. (10.55)
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Moreover, we have also

λki j =
⎡
⎣

jezyikj − jeyzikj

jexzikj − jezxikj

jeyxikj − jexyikj

⎤
⎦ (10.56)

and

Ieeikj =
⎡
⎣

jeyyikj + jezzikj − jeyxikj − jezxikj

− jexyikj jexxikj + jezzikj − jezyikj

− jexzikj − jeyzikj jexxikj + jeyyikj

⎤
⎦ . (10.57)

Now, let us consider the (3 × 3) matrix defined by

Jrekj =
⎡
⎣

jr xxkj jr xykj jr xzkj

jr yxkj jr yykj jr yzkj

jr zxkj jr zykj jr zzkj

⎤
⎦ =

∫
B j

rT
O j M0 j

ΦT
dk j

(M0 j )dm. (10.58)

As a result, it turns out that the matrix Irekj is equal to:

Irekj =
⎡
⎣

jr yykj + jr zzkj − jr yxkj − jr zxkj

− jr xykj jr xxkj + jr zzkj − jr zykj

− jr xzkj − jr yzkj jr xxkj + jr yykj

⎤
⎦ . (10.59)

Moreover, we have

βk j
=

⎡
⎣

jr yzkj − jr zykj

jr zxkj − jr xzkj

jr xykj − jr yxkj

⎤
⎦ . (10.60)

10.2.3 Matrix Form of the Generalized Newton-Euler Model
for a Flexible Clamped-Free Body

The generalized NE model of a flexible free body presented in the previous section
can be put in the following matrix form:

⎡
⎣

Σf j

Σm j

Σs j

⎤
⎦ =

⎡
⎢⎣

m j 13 m̂sT
j MSde j

m̂s j IO j MSre j

MST
de j

MST
re j

Mee j

⎤
⎥⎦

⎡
⎣

v̇ j
ω̇ j

q̈e j

⎤
⎦ +

⎡
⎣

fin j

cin j

sin j

⎤
⎦ +

⎡
⎣

0
0

Kee j qe j

⎤
⎦ +

⎡
⎣

fg j

cg j

sg j

⎤
⎦

= M j

[
ṫ j

q̈e j

]
+ c j (10.61)
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where

• m̂s j is the (3 × 3) cross-product matrix corresponding to the vector ms j defined
at (10.40),

• ṫ j =
[
v̇T

j , ω̇T
j

]T
is the acceleration of frame F j expressed at point O j with v̇ j

and ω̇ j the translational and rotational accelerations of the local frame fixed on
the body B j at point O j , respectively,

• fin j and cin j are vectors of the inertial force and torques, respectively,

fin j = ω j ×
(

m̂sT
j ω j + 2MSde j q̇e j

)
(10.62)

cin j = ω j × (
IO j ω j

) + 2

N j∑
k=1

Irek j ω j q̇ek j

+ 2

N j∑
i,k=1

Ieeik j ω j qei j q̇ek j (10.63)

• sin j is the vector of the generalized elastic forces,

sin j |i = 2

N j∑
k=1

λki j ω j q̇ek j − ωT
j IT

reij
ω j

−
N j∑

k=1

ωT
j Ieeikjω j qek j (10.64)

• fg j and cg j are vectors of the gravity force and torques plus the other external
forces, respectively,

fg j = −m j g (10.65)

cg j = −m̂s j g (10.66)

• sg j is the vector of the generalized elastic forces due to gravity,

sg j = −MST
de j

g (10.67)

• M j =
⎡
⎢⎣

m j 13 m̂sT
j MSde j

m̂s j IO j MSre j

MST
de j

MST
re j

Mee j

⎤
⎥⎦ is the generalized inertia matrix of the bodyB j ,
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• c j =
⎡
⎣

fin j

cin j

sin j

⎤
⎦ +

⎡
⎣

0
0

Kee j qe j

⎤
⎦ +

⎡
⎣

fg j

cg j

sg j

⎤
⎦ is the global vector of the centrifugal,

Coriolis, gravity and elastic forces of the body B j .

The Eq. (10.61) generalizes for a flexible body the NE model of the rigid case. In
fact, by eliminating the elastic terms in (10.61), we get the NE model for the rigid
body defined in (6.35).

Note that we can see that the gravity effects can be automatically taken into
account in (10.61) by adding −g to the acceleration v̇ j . As a result, the Eq. (10.61)
becomes:

⎡
⎣

Σf j

Σm j

Σs j

⎤
⎦ =

⎡
⎢⎣

m j 13 m̂sT
j MSde j

m̂s j IO j MSre j

MST
de j

MST
re j

Mee j

⎤
⎥⎦

⎡
⎣

v̇ j − g
ω̇ j

q̈e j

⎤
⎦+

⎡
⎣

fin j

cin j

sin j

⎤
⎦+

⎡
⎣

0
0

Kee j qe j

⎤
⎦ . (10.68)

This formulation is better in terms of computational cost.
This generalized NE model is known to reduce the number of operators necessary

for computation of the elastodynamics behavior of a flexible link (Boyer and Khalil
1998).

10.3 Dynamic Model of Virtual Flexible Systems

In this section, we compute the elastodynamic model of the virtual tree-structure and
of the free moving platform by applying the PVP.

Let us consider a parallel robot composed of one rigid fixed base (denoted as the
element 0), one rigid moving platform and n legs, each leg being a serial kinematic
chain composed ofmi −1 bodies linked bymi joints (revolute, prismatic or even fixed
joints—i = 1, . . . , n) (Fig. 8.1a). The actuated variables are denoted by qa and the
leg passive variables byqd . The platformcoordinates are denoted asxp . The sizena of
qa must be equal or superior to the number of DOF of the parallel robot. The number
of shape functions by element is denoted as Nij ( j = 1, . . . , mi − 1). As a result,

there are ne = ∑n
i=1

∑mi −1
j=1 Nij elastic variables grouped in the vector qe. All the

active, passive and elastic variables are grouped into the vector qT
t = [

qT
a , qT

d , qT
e

]
.

10.3.1 Application of the PVP

Considering the j th body of leg i (denoted in the following as the body Bij), the
PVP states that:

[
v∗T

ij ω∗T
ij q̇∗T

eij

]⎡
⎣

Σfij

Σmij

Σsij

⎤
⎦ = q̇∗T

t

[
τ

(ij)
t

0ne

]
(10.69)

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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where τ
(ij)
t is the vector of the virtual input torques of the tree structure (Fig. 8.1b)

due to the movement of the link Bij and 0ne a null vector of dimension ne.

The twist t∗T
ij =

[
v∗T

ij ω∗T
ij

]
and generalized elastic velocities q̇∗

eij
are linked to

the generalized velocities q̇∗
t by the relation:

[
tij

q̇eij

]
= Jijq̇t (10.70)

where Jij is the Jacobian matrix of the body Bi j whose expression will be given in
the following section.

Equation (10.69) can thus be rewritten as:

q̇∗T
t JT

ij

⎡
⎣

Σfij

Σmij

Σsij

⎤
⎦ = q̇∗T

t

[
τ

(ij)
t

0ne

]
(10.71)

which leads to, for any virtual velocity q̇∗
t :

[
τ

(ij)
t

0ne

]
= JT

ij

⎡
⎣

Σfij

Σmij

Σsij

⎤
⎦ . (10.72)

Thus, now considering all the links of the robot, it turns out that

[
τt = ∑

i, j τ
(ij)
t

0ne

]
=

∑
i, j

JT
ij

⎡
⎣

Σfij

Σmij

Σsij

⎤
⎦

=
∑
i, j

JT
ij

(
Mij

[
ṫij

q̈eij

]
+ cij

)
(10.73)

where τt is the vector of the tree-structure input efforts.
In the next section, recursive algorithms for the computation of the vectors tij, ṫij

and of the Jacobian matrices Jij are developed.

10.3.2 Recursive Computation of Velocities and Jacobian
Matrices

Let us consider Fig. 10.2 describing the displacement of the body Bil. From (10.7),
we get that [

vAil

ωAil

]
= til +

[
ωil × rOil Ail

0

]
+

[
veil(Ail)

ωeil(Ail)

]
. (10.74)

http://dx.doi.org/10.1007/978-3-319-19788-3_8
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Fig. 10.2 Assembly of two
flexible links Bil and Bij

If a body Bij is linked at Ail by an actuated joint moving at a velocity q̇ij

(Fig. 10.2—if the joint is a fixed joint, q̇ij = 0), we get that:

tij =
[

vAil

ωAil

]
+ q̇ij

[
σijaij

σ̄ijaij

]
(10.75)

where aij is the unit vector direction along the joint axis (see Sect. 5.2.4).
As a result, for the element Bij of the global robot, it can be demonstrated that

(in the following expressions, the preceding superscript indicates the frame in which
the vector expression is given and it is considered that the bodyBil is antecedent to
the body Bij, i.e. il = a(ij)) (Boyer and Khalil 1998):

ijtij = ijTil
iltil + ijRilΦil(Oij)q̇eil + q̇ij

ijāij (10.76)

where

ijāij =
[
σij

ijaij

σ̄ij
ijaij

]
.

Equation (10.76) can also be written as:

ijtij = Jtij q̇t (10.77)

with

Jtij = ijTilJtil + Φqeij + Aij (10.78)

where

Φqeij = [
0 · · · ijRilΦil(Oij) · · · 0

]

Aij = [
0 · · · ijāij · · · 0

]
. (10.79)

http://dx.doi.org/10.1007/978-3-319-19788-3_5
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In the matrixΦqeij , the term
ijRilΦil(Oij) is located at the columns corresponding

to the variables q̇eil and, for the matrix Aij, the term ijāij is located at the column
corresponding to the variable q̇ij.

In the previous expressions, matrix Φil is the matrix containing all shape func-
tions for the element Bil and ijTil and ijRil are defined at Eqs. (3.13) and (3.25) in
Chap.3. However, the reader must not forget to take into account the rigid and elastic
displacements of each body in the computation of these matrices.

Finally, the global Jacobian matrix Jij of (10.70) can be computed as:

Jij =
[

Jtij
Oqeij

]
(10.80)

where Oqeij is defined such that

q̇eij = Oqeij q̇t .

10.3.3 Recursive Computation of the Accelerations

Differentiating (10.74), it can be shown that (Boyer and Khalil 1998):

ijṫij = ijTil
ilṫil + q̈ij

ijāij + ijhij + ijRilΦil(Oij)q̈eil (10.81)

where:

ijhij =
[ ijhlinij

ijhangij

]

ijhlinij = ijRil
ilωil × ijRil

(
2Φdil(Oij)q̇eil + ilωil × ilrOil Oij

)

+ q̇ijσij
ijRil

il ((2ωil + Φril(Oij)q̇eil) × ijaij
)

ijhangij
= ijRil

(
q̇ij(

ilωil + Φril(Oij)q̇eil) × σ̄ij
ijaij

)

+ ijRil

(
ilωil × ijRilΦril(Oij)q̇eil

)
. (10.82)

Equation (10.81) can be then put into the form

ijṫij = Jtij q̈t + ijgij (10.83)

with

ijgij = ijhij + ijTil
ilgil (10.84)

http://dx.doi.org/10.1007/978-3-319-19788-3_3
http://dx.doi.org/10.1007/978-3-319-19788-3_3
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initialized with i0gi0 = 0 if the base is fixed.2 Thus,

[
ijṫij

q̈eij

]
=

[
Jtij

Oqeij

]
q̈t +

[
ijgij

0

]
= Jijq̈t + ijgs

ij. (10.85)

Proof
From (10.75), we have the velocity expressed in a fixed frame:

vij = vil + ωil × rOil Oij + q̇ijσijaij + veil(Oij) (10.86)

ωij = ωil + q̇ijσ̄ijaij + ωeil (Oij). (10.87)

Differentiating (10.86) and (10.87) w.r.t. time, it turns out that

v̇ij = v̇il + ω̇il × rOil Oij + ωil × d

dt

(
rOil Oij

)

+ q̈ijσijaij + q̇ijσij
daij

dt
+ d veil(Oij)

dt
(10.88)

ω̇ij = ω̇il + q̈ijσ̄ijaij + q̇ijσ̄ij
daij

dt
+ d ωeil(Oij)

dt
. (10.89)

Expanding (10.88) and from the fact that:

[
veil(Oij)

ωeil(Oij)

]
=

[
Φdil(Oij)

Φril(Oij)

]
q̇eil (10.90)

we get:

v̇ij = v̇il + ω̇il × rOil Oij

+ ωil × (
ωil × rOil Oij + q̇ijσijaij

)

+ ωil × Φdil(Oij)q̇eil

+ q̈ijσijaij + q̇ijσij
(
(ωil + ωeil) × aij

)

+ ωil × (
Φdil(Oij)q̇eil

)

+ Φdil(Oij)q̈eil (10.91)

or after simplifications and expressing it in the frame Fij,

2Note that, as mentioned in Sect. 10.2.3, in order to decrease the computational cost, it is better
to initialize the algorithm with i0gT

i0 = [−gT 0]. In such a case, the model (10.68) must be used
instead of (10.61).
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ijv̇ij = ijRil(
ilv̇il + ilω̇il × ilrOil Oij

+ ilωil ×
(

ilωil × ilrOil Oij + q̇ijσij
ilaij

)

+ ilωil × Φdil(Oij)q̇eil

+ q̈ijσij
ilaij + q̇ijσij

(
(ilωil + ilωeil) × ilaij

)

+ ilωil × (
Φdil(Oi j )q̇eil

)

+ Φdil(Oij)q̈eil) (10.92)

or also

ijv̇ij = ijv̇il − ijr̂Oil Oi j
ijω̇il

+ q̈ijσij
ijaij + ijRilΦdil(Oij)q̈eil

+ ijωil × ijωil × ijrOil Oij

+ q̇ijσij
(
(2ijωil + ijωeil) × ijai j

)

+ 2ijωil × (ijRilΦdil(Oij)q̇eil

)
. (10.93)

Now, expanding (10.89) and using (10.90), we get

ijω̇ij = ijω̇il + q̈ijσ̄ij
ijaij

+ q̇ijσ̄ij
(
(ijωil + ijωeil) × ijaij

)

+ ijωil × (ijRilΦril(Oij)q̇eil

)

+ ijRilΦril(Oij)q̈eil . (10.94)

Finally, introducing the facts that

ijωil = ijRil
ilωil (10.95)

ijωeil = i j Ril Φril(Oij)q̇eil (10.96)

ijRil =
[

ijRil 03
03 ijRil

]
(10.97)

and

ijTil =
[

ijRil −ijRil
ilr̂ij

03 ijRil

]
(10.98)

in which rij = rOil Oij , Eq. (10.81) can be obtained.
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10.3.4 Elastodynamic Model of the Virtual System

Introducing (10.85) into (10.73) leads to:

[
τt

0ne

]
=

∑
i, j

JT
ij MijJijq̈t + cs

ij (10.99)

where

cs
ij = JT

ij

(
cij + Mij

ijgs
ij

)
(10.100)

in which Mij and cij are projected into Fij.
The NE equations for a rigid moving platform are given by (from Eq. (8.57)):

0wp = 0Mp
0 ṫp + 0cp (10.101)

where 0wp is the platform reaction wrench, 0Mp is the platform mass matrix
expressed in the base frame and is defined at (8.97), 0 ṫp is the platform acceler-
ation and 0cp the centrifugal, Coriolis, gravity effects and external efforts applied on
the platform defined at (8.98).

Finally, the global elastodynamic model of the virtual structure can be put into
the form:

⎡
⎣

[
τt

0ne

]

0wp

⎤
⎦ =

[∑
i, j JT

ij MijJij 0
0 0Mp

] [
q̈t
0 ṫp

]
+

[
cs

ij
0cp

]

= Mt

[
q̈t
0 ṫp

]
+ ct (10.102)

where

• Mt =
[∑

i, j JT
ij MijJij 0
0 0Mp

]
,

• ct =
[

cs
ij

0cp

]
.

Adding the contributions of the motor inertia and friction effects (from Sect. 8.2):

⎡
⎣

[
τt

0ne

]

0wp

⎤
⎦ = Mt

[
q̈t
0 ṫp

]
+ ct +

[
It 0
0 0

] [
q̈t
0 ṫp

]
+

[
Fvq̇t

0

]
+

[
fssign (q̇t )

0

]

= Mtot q̈tot + ctot (10.103)

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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where

• It is a diagonal matrix whose j th element corresponds to the value of the inertia
of the rotor of joint j (the j th element of It is equal to zero if the joint is passive
or if it corresponds to an elastic coordinate),

• Fv, (fs , resp.) a diagonalmatrix (a vector, resp.) of viscous (Coulomb, resp.) friction
parameters,

• Mtot = Mt +
[

It 0
0 0

]
is the global inertia matrix of the virtual system,

• ctot = ct +
[

Fvq̇t

0

]
+

[
fssign (q̇t )

0

]
is the vector of Coriolis, centrifugal/ gravity/

friction/elastic effects of the virtual system.

10.4 Dynamic Model of a Flexible Parallel Robot

The model of the virtual tree structure and of the free moving platform does not
consider the closed-loop kinematic chains. As a matter of fact, the ntot components
of the generalized velocity vector q̇T

tot = [q̇T
t

0tT
p ] are dependent. The independent

components are gathered in vector q̇ (dim q̇ = nq < ntot) and their determination is
described thereafter.

10.4.1 Determination of the Joint and Platform Velocities
as a Function of the Generalized Velocities q̇
of the Parallel Robot

For determining one possible subset of generalized coordinates for the parallel robot,
let us express the relations between the vector of generalized velocities of the tree
structure q̇t and the twist of the last element mi for each leg i . Using (10.70) to
compute the twist i,mi ti,mi of the extremity of each leg, it turns out that:

i,mi ti,mi = Ji
ti,mi

q̇ti (10.104)

where Ji
ti,mi

is expressed in the frame Fi,mi (the preceding superscript is omitted
for reason of clarity) and can be obtained from Jti,mi

by extracting the columns

corresponding to the vector q̇T
ti =

[
q̇T

ai
, q̇T

di
, q̇T

ei

]
, i.e. the vector concatenating all

active, passive and elastic variables of the leg i .
As the leg extremity is also linked to the platform, which is supposed to be rigid

(for flexible platform, see Long et al. 2014), its twist can be related to the platform
twist 0tp via the rigid displacement relation:
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i,mi ti,mi = Ji
p
0tp , where Ji

p = i,mi R0

[
13 −0r̂Ai,mi P

0 13

]
(10.105)

inwhich Ji
p is a (6×6)matrix expressed in the frameFi,mi (the preceding superscript

is omitted for reason of clarity), 0r̂Ai,mi P is the cross productmatrix of vector 0rAi,mi P

that characterizes the position of the attachment point Ai,mi with respect to the
platform center position P (Fig. 8.1a) and i,mi R0 is the (6 × 6) rotation matrix
between the global frame and the local frame attached to body Bi,mi .

Thus, expressing the twist i,mi ti,mi for each leg in relation with the platform twist
0tp and generalized coordinates q̇ti , the following set of equations is obtained:

⎡
⎢⎣

J1t1,m1
· · · 0

...
. . .

...

0 · · · Jn
tn,mn

⎤
⎥⎦

⎡
⎢⎣

q̇t1
...

q̇tn

⎤
⎥⎦ −

⎡
⎢⎣

J1p
...

Jn
p

⎤
⎥⎦ 0tp = 0 (10.106)

or also

Jt q̇t − Jp
0tp = [

Jt − Jp
] [

q̇t
0tp

]
= Jtotq̇tot = 0 (10.107)

where Jtot is a (c × ntot) matrix (c = r n), ntot > c (r = 6 for a spatial robot, r = 3
for a planar robot). This means that q̇tot contains a subset of c dependent variables
q̇dep. This subset is not unique. An idea could be to put all passive joints and platform

variables in this subset, i.e., q̇T
dep =

[
q̇T

d
0tT

p

]
. However, for over-constrained parallel

robots, dim
(
q̇dep

)
< c. As a result, this vector should be completed using some other

elastic variables that could be chosen arbitrarily. Meanwhile, it must be mentioned
that most parallel robots have identical legs and that such a methodology will lead
to an asymmetrical description of the leg variables, which is not ideal. In order to
avoid this problem, we better put in q̇dep the last r components q̇ f

ti of each vector q̇ti

that is now divided into two parts: q̇T
ti =

[
q̇0T

ti q̇ f T
ti

]
. Thus, variables q̇ f

ti are related

to the others using (10.107):

−

⎡
⎢⎢⎣

J f 1
t1,m1

· · · 0
...

. . .
...

0 · · · J f n
tn,mn

⎤
⎥⎥⎦

⎡
⎢⎣

q̇ f
t1
...

q̇ f
tn

⎤
⎥⎦ =

⎡
⎢⎣

J01t1,m1
· · · 0 −J1p

...
. . .

...
...

0 · · · J0n
tn,mn

−Jn
p

⎤
⎥⎦

⎡
⎢⎢⎢⎣

q̇0
t1
...

q̇0
tn

0tp

⎤
⎥⎥⎥⎦ (10.108)

which can be written in the form

− J f
t

⎡
⎢⎣

q̇ f
t1
...

q̇ f
tn

⎤
⎥⎦ = [

J0t − Jp
]
⎡
⎢⎢⎢⎣

q̇0
t1
...

q̇0
tn

0tp

⎤
⎥⎥⎥⎦ (10.109)

http://dx.doi.org/10.1007/978-3-319-19788-3_8
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or also

⎡
⎢⎣

q̇ f
t1
...

q̇ f
tn

⎤
⎥⎦ = q̇dep = −

(
J f

t

)−1 [
J0t − Jp

]
⎡
⎢⎢⎢⎣

q̇0
t1
...

q̇0
tn

0tp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

Jd1,1 · · · Jd1,n Jd1,n+1
...

. . .
...

...

Jdn,1 · · · Jdn,n Jdn,n+1

⎤
⎥⎦ q̇ = Jd q̇

(10.110)
where

• J0i
ti,mi

(J f i
ti,mi

, resp.) are the columns of matrix Ji
ti,mi

corresponding to variables q̇0
ti

(q̇ f
ti , resp.);

• Jdij is the matrix that relates the variable q̇ f
ti to q̇0

t j
, j = 1, . . . , n;

• Jdi,n+1 is the matrix that relates the variable q̇ f
ti to

0tp.

It is noteworthy that the inversion ofmatrix J f
t involves only inversion of the n (r ×r)

matrices Jfj
t1,m1

, which is more efficient in terms of computational time. Moreover,

when 3D beam elements are used for leg i , if the coordinates q f
ti are the elastic

coordinates of uth element of this leg (denoted as body Biu), it can be proven from
Sect. 5.2 and Appendix F that the kth column ofmatrix Jfi

tiu corresponds to a unit twist
that describes the displacement of the leg extremity due to the kth coordinate of vector
q f

ti . Taking into account the fact that, for a 3D beam, the first three components of q f
ti

correspond to translations along xiu , yiu and ziu and that the last three components
of q f

ti correspond to rotations around xiu, yiu and ziu, the matrix Jfi
tiu is equal to:

Jfi
tiu = i,mi Riu

[
13 −iur̂Oiu Oi,mi

0 13

]
(10.111)

or also

J f i
tiu =

[ i,mi Riu − i,mi Riu
iur̂Oi,mi Oiu

0 i,mi Riu

]
(10.112)

where i,mi Riu (i,mi Riu, resp.) is the (3 × 3) ((6 × 6), resp.) rotation matrix between
the local frame Fi,mi and the local frame Fiu and iur̂Oiu Oi,mi

is the cross-product

matrix of the vector iurOiu Oi,mi
that characterizes the position of the leg extremity

with respect to the frameFiu. Thus its inverse is equal to

(
J f i

tiu

)−1 =
[i,mi RT

iu
iur̂Oiu Oi,mi

i,mi RT
iu

0 i,mi RT
iu

]
(10.113)

which does not requiremuch calculation. If 2D beam elements are used, some similar
relations can be obtained.

http://dx.doi.org/10.1007/978-3-319-19788-3_5
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Finally, the Jacobianmatrix relating all variables q̇tot to the configuration variables
q̇T = [

q̇0T
t1 · · · q̇0T

tn
0tp

]
can be obtained as:

q̇tot =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇0
t1

q̇ f
t1
...

q̇0
tn

q̇ f
tn

0tp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1c1 · · · 0 0
Jd1,1 · · · Jd1,n Jd1,n+1

... · · · ...
...

0 · · · 1cn 0
Jdn,1 · · · Jdn,n Jdn,n+1

0 · · · 0 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

q̇0
t1
...

q̇0
tn

0tp

⎤
⎥⎥⎥⎦ = Jq̇ (10.114)

where 1ci is the (ci × ci ) identity matrix, ci being the size of vector q̇0
ti .

10.4.2 Determination of Joint and Platform Accelerations
as a Function of the Generalized Accelerations q̈
of the Parallel Robot

Expressing the acceleration i,mi ṫi,mi of the extremity of each leg using (10.85) and
combining this expression (7.173), it turns out that:

i,mi ṫi,mi = Ji
ti,mi

q̈ti + i,mi gi,mi = Jpi
0 ṫp + di . (10.115)

Thus, considering all the robot legs,

⎡
⎢⎣

J1t1,m1
· · · 0

...
. . .

...

0 · · · Jn
tn,mn

⎤
⎥⎦

⎡
⎢⎣

q̈t1
...

q̈tn

⎤
⎥⎦ −

⎡
⎢⎣

J1p
...

Jn
p

⎤
⎥⎦ 0 ṫp +

⎡
⎢⎣

1,m1g1,m1 − d1
...

n,mn gn,mn − dn

⎤
⎥⎦ = 0 (10.116)

or also

Jt q̈t − Jp
0 ṫp + b′ = [

Jt −Jp
] [

q̈t
0 ṫp

]
+ b′ = 0 (10.117)

where b′ =
⎡
⎢⎣

1,m1g1,m1 − d1
...

n,mn gn,mn − dn

⎤
⎥⎦.

As a result, by analogy with (10.110), it can be demonstrated that

q̈d = Jd q̈ +
(

J f
tiu

)−1
b′ = Jd q̈ + bd (10.118)

where bd =
(

J f
tiu

)−1
b′.

http://dx.doi.org/10.1007/978-3-319-19788-3_7


10.4 Dynamic Model of a Flexible Parallel Robot 265

Finally, similarly to expression (10.114),

q̈tot =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈0
t1

q̈ f
t1
...

q̈0
tn

q̈ f
tn

0 ṫp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Jq̈ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
bd1
...

0
bdn

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Jq̈ + b (10.119)

where bdi is the part of the vector bd (bT
d = [

0 bT
d1 . . . 0 bT

dn 0
]
) corresponding to

the accelerations q̈ f
ti .

10.4.3 Elastodynamic Model of the Actual Parallel Robot

Considering the actual robot, the PVP states that:

q̇T ∗
tot (Mtot q̈tot + ctot ) = q̇T ∗

r

[
τ

0nc

]
(10.120)

where

• q̇r = Eq q̇, in which Eq is a matrix that makes it possible to sort vector q̇ in such
a manner that q̇T

r = [q̇T
a q̇T

c ] in which the first na rows of q̇r correspond to the
vector q̇a of the actual active variables, and the last nc = nq − na rows of q̇r

correspond to the vector q̇c of the actual non constrained variables,
• τ is the vector of the actual actuator input efforts and 0nc is a zero vector of
dimension nc.

Introducing (10.114) into (10.120), we get,

q̇T ∗
r EqJT (Mtotq̈tot + ctot) = q̇T ∗

r

[
τ

0nc

]
. (10.121)

Equation (10.121) must be true for any value of q̇T ∗
r , thus

[
τ

0nc

]
= EqJT (Mtot q̈tot + ctot) . (10.122)

Finally, introducing (10.119) into (10.122) leads to:

[
τ

0nc

]
= EqJT MtotJET

q q̈r + EqJT (Mtotb + ctot)

= Mq̈r + c (10.123)



266 10 Elastodynamic Modeling of Parallel Robots

where M = EqJT MtotJET
q and c = EqJT (Mtotb + ctot).

Equation (10.123) is the full elastodynamic model of the parallel robot, and it can
also be rewritten as [

τ

0nc

]
=

[
Maa Mac

MT
ac Mcc

] [
q̈a

q̈c

]
+

[
ca

cc

]
(10.124)

with

• M =
[

Maa Mac

MT
ac Mcc

]
its generalized inertia matrix, in which Maa is a (na × na)

matrix, Mac is a (na × nc) matrix, and Mcc is a (nc × nc) matrix.

• c =
[

ca

cc

]
the global vector of the centrifugal, Coriolis, gravity and elastic effects,

in which ca is a (na × 1) vector and cc is a (nc × 1) vector.

Inverse Problem
Givingqa , q̇a and q̈a , but alsoqc, q̇c at the previous step of the iteration, first calculate
q̈c from the second row of (10.124) by inverting Mcc. Then, by injecting it in the
first row of (10.124), calculate τ.
Direct Problem
Giving τ , q̇a and q̈a , but also qc, q̇c, calculate q̈r from (10.123) by inverting M.

10.5 Including the Actuator Elasticity

The presence of actuated joint flexibility is a common feature of many current indus-
trial robots. The joint elasticity may arise from several sources, such as elasticity
in the gears, transmission belts, harmonic drives, etc. It follows that a time-varying
displacement is introduced between the position of the driving actuator and the joint
position. The joint elasticity is modeled as a linear torsional spring for revolute
joints and a linear spring for prismatic joints (Khalil and Dombre 2002; Spong 1987)
(Fig. 10.3). Consequently, the vector of joint deformations is given by (qa − qM ),
where qM denotes the vector of the actuator positions, while qa represents the vector
of the actuated link positions.

Fig. 10.3 Modeling of joint
flexibility
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The dynamic equations (10.124) becomes:

⎡
⎣

τ

0na

0nc

⎤
⎦ =

⎡
⎣

Ia 0(na×na) 0(na×nc)

0(na×na) Maa Mac
0(nc×na) MT

ac Mcc

⎤
⎦

⎡
⎣

q̈M
q̈a
q̈c

⎤
⎦ +

⎡
⎣

FvM q̇M + fs M − Ka(qa − qM )

ca + Ka(qa − qM )

cc

⎤
⎦

(10.125)

where Ia = diag([I a1 . . . I ana ]) is the (na × na) diagonal matrix containing the
inertia of the rotors, FvM is the (na × n) matrix containing the viscous friction
parameters of the actuators and transmissions referred to the joint side and fsM is a
(na × 1) vector containing Coulomb friction parameters.

Note that in the case where all robot elements are considered rigid, while the
elasticity is located only in the actuated joints, the model becomes:

[
τ

0na

]
=

[
Ia 0(na×na)

0(na×na) Maa

] [
q̈M

q̈a

]
+

[
FvM q̇M + fs M − Ka(qa − qM )

ca + Ka(qa − qM )

]

(10.126)
where:

• thematrixMaa becomes the inertiamatrix of the rigidPKM and is defined at (8.93)
in the case of a PKM without redundancy,

• the vector ca becomes the vector of Coriolis, centrifugal/gravity/friction effects of
the rigid PKM and is defined at (8.94) in the case of a PKM without redundancy.

10.6 Practical Implementation of the Algorithm

Finally, in order to obtain symbolic equations for the model with a minimum number
of operations, the followingmethod is used. First, the rigid kinematics of each element
are modeled using the modified Denavit-Hartenberg notations (Sect. 4.2). If body
Bij is flexible, Nij supplementary elastic variables qeij are introduced in combination
with Nij shape functions. Then, the previously developed equations are used in the
following sequence:

• Step 0: Initialization of the algorithm
Variables considered known: qtot, q̇tot. They constitute the state variables of the
robot
Computation of:

– Φdil (Oij), Φril(Oij), Φil(Oij) from (10.8); ilrOil Oij from (10.4);
– Mij, Keeij , fgij , cgij , sgij from (10.61);
– 0Mp, 0cp from (10.101);
– ijRil, ijTil from (10.97) and (10.98); ijāij from (10.75);
– Aij, Φqeij from (10.79);

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_4
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• Step 1: Forward recurrence (computation of the twist and acceleration of each
body, and computation of the Jacobian matrices required for applying the PVP on
the virtual tree structure)
Computation of:

– ijtij from (10.76);
– finij , cinij , sinij , cij from (10.61);
– Jtij from (10.78); Jij from (10.80);
– i j hi j from (10.82); i j gi j from (10.84); gs

i j from (10.85);

• Step 2: Computation of the global inertia matrix and global vector of the centrifu-
gal, Coriolis, gravity and elastic forces of the virtual tree structure
Computation of:

– Mt , ct from (10.102);
– Mtot, ctot from (10.103);

• Step 3: Computation of the global inertia matrix and global vector of the centrifu-
gal, Coriolis, gravity and elastic forces of the parallel robot
Computation of:

– Jt , Jp from (10.107);

– J f
t from (10.108);

(
J f

t

)−1
from (10.113);

– Jd from (10.110); J from (10.114);
– J̇i

p from (10.115);
– b′ from (10.117); bd from (10.118); b from (10.119);
– M, c from (10.123);

• Step 4: Solving the model

– Inverse dynamic model: computation of τ and q̈e as a function of q, q̇ and q̈a .
– Forward dynamic model: computation of q̈ as a function of q, q̇ and τ.

To reduce the number of operations of thismodel, customized symbolic techniques
based on the use of intermediate variables can be used (Khalil and Creusot 1997).
For each computation, the elements of a vector or a matrix containing at least one
mathematical operation are replaced by an intermediate variable. This variable is
written in an output file which contains the model. The elements that do not contain
any operations are not modified. The obtained vectors andmatrices are propagated in
the subsequent equations. Consequently, at the end, the dynamic model is obtained
as a set of intermediate variables. Those that have no effect on the desired output
(τ and the nc last values of q̈r corresponding to the elastic variables in the case
of the inverse model, q̈r for the direct model) can be eliminated by scanning the
intermediate variables from the end to the beginning. With this procedure, it is also
possible to know the exact number of operators necessary for the computation of the
model. This algorithm has been successfully implemented with Mathematica and is
used in the next section for computing the elastodynamic model of a flexible planar
parallel robot.
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10.7 Case Study: The DualEMPS

The previous equations are used to compute the elastodynamic model of the
DualEMPS, a prototype of flexible planar PRRRP robot designed and manufactured
at IRCCyN (Fig. 10.4). This robot is actuated by two rotary actuators controlled by a
dSPACE card in which simple PD control laws are introduced (the cut-off pulsation
is set to 100 rad/s). The actuator movements are transmitted to the prismatic pairs
via the use of ball screws (the stroke of the prismatic pairs is of 25cm). The two
prismatic pairs are parallel and are linked to the two legs via passive revolute joints.

Fig. 10.4 The DualEMPS
flexible parallel robot.
a Picture of the prototype.
b Schematics of the
kinematic chain

(a)

(b)
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Fig. 10.5 Top view of the CAD drawings of the two robot legs

Each leg can be divided into a succession of rigid and elastic links (Fig. 10.5) attached
all together. The elastic links are very thin when compared to the rigid links. Their
cross-sections are rectangular with a width of 4mm and height of 50mm and they
are made of Duralumin (AU4G). The two legs are connected via a passive revolute
joint (Fig. 10.4).

The modified Denavit-Hartenberg parameters corresponding to the architectural
description of the Fig. 10.5 are given in Table10.1, where the parameters dij and qij

are detailed in Fig. 10.4. The gravity is directed along z0. The a priori rigid dynamic
parameters of the links have been extracted fromCAD and are described inTable10.2.
In this table, mij is the mass of the link Bij, mxij its first moment of inertia around
the axes of the plane (yij Oijzij), zzij the second moment of inertia around zij, f vij

Table 10.1 Modified Denavit-Hartenberg parameters of the DualEMPS robot

i j a(i j) μi j σi j αi j di j θi j ri j

11 0 1 1 0 0 0 q11
12 11 0 0 π/2 0 q12 0

13 12 0 2 0 d13 = 0.0675 m 0 0

14 13 0 2 0 d14 = 0.4505 m 0 0

15 14 0 2 0 d15 = 0.082 m 0 0

16 15 0 2 0 d16 = 0.065 m 0 0

17 16 0 2 0 d17 = 0.14 m 0 0

18 17 0 2 0 d18 = 0.035 m 0 0

21 0 1 1 0 d21 = 0.4 m 0 q21
22 21 0 0 π/2 0 q22 0

23 22 0 0 0 d23 = 0.0675 m 0 0

24 23 0 0 0 d24 = 0.4505 m 0 0

25 24 0 0 0 d25 = 0.082 m q25 0
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Table 10.2 Rigid dynamic parameters for the links of the DualEMPS robot (SI units)

i j mi j mxi j zzi j f si j f vi j

11 95.196 0.000 0.000 25 250

12 0.843 0.004 7.06e − 4 0.02 0.08

13 0.252 0.057 0.017 0.00 0.00

14 0.396 0.030 0.003 0.00 0.00

15 0.000 0.000 0.000 0.00 0.00

16 0.078 0.005 5.12e − 4 0.00 0.00

17 0.177 0.006 2.56e − 4 0.00 0.00

18 0.00 0.00 0.00 0.00 0.00

21 95.196 0.000 0.000 25 250

22 0.843 0.004 7.06e − 4 0.02 0.08

23 0.252 0.057 0.017 0.00 0.00

24 0.190 0.011 9.44e − 4 0.00 0.00

25 0.000 0.000 0.000 0.01 0.005

the viscous friction parameter and f sij the Coulomb inertia parameter. Note that the
values of the friction terms have been identified so that the obtained results best fit
with experimental data. The elastic links are modeled as planar beam finite elements
(one element by elastic link, i.e. there are 3 elastic coordinates per flexible link giving
9 elastic coordinates in total). Their corresponding elastic dynamic parameters can be
computed using the formulas given in Sect. 10.2 applied to the beam shape functions
given in Appendix F and are given in Tables10.3, 10.4, 10.5 and 10.6.

For this mechanism,

• the active joint coordinates are qT
a = [q11 q21] (Fig. 10.4b).

Table 10.3 Terms of the vectors MSdei j for the flexible links of the DualEMPS robot (SI units)

i j msdexi j msdexi j msdexi j

13 0.1261 0.1261 −0.0095

16 0.392 0.392 −9.1467e − 4

23 0.1261 0.1261 −0.0095

Table 10.4 Non zero terms of the matrices Jrekij for the flexible links of the DualEMPS robot (SI
units)

i j jr xx1i j jr xy1i j jr yx1i j jr xy3i j

13 0.0379 0.0398 −7.4667e − 7 −0.0026

16 0.0037 0.0038 −7.4667e − 7 −7.6832e − 5

23 0.0379 0.0398 −7.4667e − 7 −0.0026
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Table 10.6 Non zero terms of the matrices Keei j for the flexible links of the DualEMPS robot (SI
units)

i j k11i j k22i j k23i j k32i j k33i j

13 3.2852e7 2.5900e3 −583.3942 −583.3942 175.2127

16 1.0571e8 8.6297e4 −6.0403e3 −6.0403e3 563.8095

23 3.2852e7 2.5900e3 −583.3942 −583.3942 175.2127

kuvij represents the element on the uth row and vth column of the matrix Keei j

k23i j = k32i j because the stiffness matrices are symmetric

Fig. 10.6 Measured and estimated data for the experimental tests

• The passive joint coordinates are qT
d = [q12 q22 q25] (Fig. 10.4b).

• The platform coordinates are xT = [x y] (Fig. 10.4b).
• Theelastic coordinates areqT

e = [qT
e13 qT

e16 qT
e23], inwhichqT

ei j
= [qei j1 qei j2 qei j2 ]

is a vector of dimension 3 parameterizing the deformation of the body Bi j

(Fig. 10.5); the two first components of qei j represent the translations along the
xi j and yi j axes of the frameFi j while the last component represents the rotation
around zi j .

• The vector qr which represents the generalized coordinates of the parallel robot
and which is defined in (10.121) is equal to qT

r = [qT
a qT

c ], with qT
c =

[q12 q22 q25 x y qe131 qe161 qe162 qe163 ].
• The vector qdep which represents the dependent coordinates of the parallel robot
and which is defined in (10.110) is equal to qT

dep = [qe132 qe133 qe231 qe232 qe233 ].
The model is thus calculated with Mathematica applying the proposed methods

and then included in a S-function solved usingMatlab/Simulink. The model includes
1041 intermediate variables and 1287 ‘+’ or ‘−’ and 1555 ‘∗’ or ‘/’ operators. The
model is given on the webpage:
http://www.irccyn.ec-nantes.fr/~briot/Books.html

For reasons of comparison, an Adams model interfaced with Simulink via the use
of the module Adams/Controls is also created. In this model, the elastic links are

http://www.irccyn.ec-nantes.fr/~briot/Books.html
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(a) (b)

Fig. 10.7 The first reference trajectory. a Path in the joint space. b Velocity profile along each
square edge

modeled using discrete flexible elements (after several tests on the Adams model
accuracy, we decided to use 8 discrete flexible element by elastic link).

The experimental tests are described hereafter. Some reference trajectories are
introduced in the robot controller. During the robot displacements, three types of
data are recorded (Fig. 10.6):

• the reference input torques τref given by the controller to the actuators;
• the actuator displacements qa given by the robot encoders;
• the acceleration 17 ÿP of the point P (in the local y direction) measured via the use
of a uniaxial accelerometer with a sensitivity of 995mV/g.

Then, tomake sure that themodels give a correct estimation of the robot input torques
and elastic displacements, the real measured actuator displacements are given as the
model inputs, aswell as the computed actuator velocities and accelerations, estimated

Fig. 10.8 The reference
trajectories in the workspace
(scaled)
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Fig. 10.9 Point P
acceleration for the first
reference trajectory.
a Comparison of the
measure and our model.
b Comparison of the
measure and Adams

(a)

(b)

from differentiation and low-pass filtering of the encoders data (Fig. 10.6). Results
in terms of end-effector accelerations 17 ÿPest and computed input torques τest are
finally compared with the real robot.

The first reference trajectory is a square in the joint space (Fig. 10.7a). The result-
ing displacement of the end-effector is a path following the workspace boundaries
(Fig. 10.8). On each square edge, the velocity profile represented in Fig. 10.7b is
applied: the actuator moves during 1.8 s and then stops so that the free vibration of
the robot can be observed. The measured acceleration 17 ÿP of point P , low-pass fil-
tered at 100Hz in order to suppress high-frequency noise, is plotted at Fig. 10.9 and
comparedwith the acceleration computedwith ourmodel andwith Adams. There are
very good correlations between the measurements and the simulations (with better
results for our model), even if the damping is higher in the simulations which can be
due both to solver problems and to too large model approximation for the dissipative
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Fig. 10.10 Input torque of
the first actuator for the first
reference trajectory.
a Comparison of the
measure and our model.
b Comparison of the
measure and Adams

(a)

(b)

terms. For the simulations, Adams gives the result after several hours of computation
while our model sends the results in 6′05min (for a Pentium 4 2.70GHz, 8 Go of
RAM).

The motor torques prediction (in prismatic joint side) is also compared with the
measured actuator torques in Figs. 10.10 and 10.11. The torque prediction is better
for our model even if there are some problems of noise when the actuator velocity
is very low (mainly due to problem of Coulomb friction modeling with the ‘sign’
function).

A second reference trajectory is introduced in the robot controller. This is a circle
of radius 0.1m centered in [0.28, 0.90]m along which is applied a constant velocity
profile of 0.20m/s (Fig. 10.8). The predictions of the acceleration 17 ÿP of point P and
of the input torques using our model are shown in Figs. 10.12, 10.13 and 10.14. There
is still a very good correlation between the measurements and the simulations. Note
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Fig. 10.11 Input torque of
the second actuator for the
first reference trajectory.
a Comparison of the
measure and our model.
b Comparison of the
measure and Adams

(a)

(b)

Fig. 10.12 Comparison of
the measured and computed
acceleration of point P for
the second reference
trajectory
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Fig. 10.13 Comparison of
the measured and computed
actuator 1 input torque for
the second reference
trajectory

Fig. 10.14 Comparison of
the measured and computed
actuator 2 input torque for
the second reference
trajectory

that for this second simulation, data provided by Adams are not presented as we have
just shown that Adams gives similar results and requires much longer computational
time.



Chapter 11
Computation of Natural Frequencies

Abstract The frequencies at which aPKM tends to vibratewhen hit, struck or some-
how disturbed are known as the natural frequencies. The determination of the natural
frequencies of PKM is needed for both design and control purposes. In this chapter,
we present the computation of natural frequencies of parallel robots. We adapt the
algorithm presented in Chap.10 to make it efficient for calculation of the stiffness
and inertia matrices of a parallel robot, matrices which are necessary for comput-
ing natural frequencies. The simulation results obtained through the use of natural
frequency models of two flexible parallel robots are compared with experiments.

11.1 Introduction

In many applications of robot design (Bouzgarrou et al. 2005; Briot et al. 2009;
Voglewede and Ebert-Uphoff 2005) and control (Pelaez et al. 2005; Singer and
Seering 1988; Singh and Singhose 2002), the computation of the full elastodynamic
model of a robot is not necessary, while the knowledge of its natural frequencies is
required.

The natural frequencies are evaluated for a given robot configuration around its
undeformed state (Wittbrodt et al. 2006) and they can be obtained through the use
of the expression:

fi = 1

2π

√
eig

(
M−1K

)
(11.1)

where

• fi is the i th natural frequency of the robot,
• eig(Q) is the Matlab function which returns the eigenvalues of the matrix Q,
• M is the robot inertiamatrix evaluated at the undeformed configuration, i.e.qe = 0,
• K the robot stiffnessmatrix evaluated at the undeformed configuration, i.e. qe = 0.

The aim of the present chapter is to provide an efficient method for calculation of
the matrices K and M evaluated for qe = 0 (Briot and Khalil 2014b).

© Springer International Publishing Switzerland 2015
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11.2 Stiffness and Inertia Matrices of the Virtual System

Once again, let us consider a parallel robot composed of a rigid fixed base (denoted as
the element 0), a rigid moving platform and n legs, each leg being a serial kinematic
chain composed of mi − 1 bodies linked by mi joints (revolute, prismatic or even
fixed joints – i = 1, ..., n) (Fig. 8.1a). The actuated variables are denoted by qa (of
size na) and the leg passive variables by qd (of size nd ). The platform coordinates
are denoted as xp.

The size na of the vector qa must be greater than or equal to the number of degrees
of freedom of the parallel robot.

The number of shape functions for the body Bi j is denoted by Ni j ( j = 1, ...,
mi − 1). As a result, the dimension ne of the vector of elastic variables qe is equal
to

∑n
i=1

∑mi −1
j=1 Ni j .

As mentioned in the introduction of the present chapter, the natural frequencies
are evaluated for a given robot configuration parameterized by qa , qd and qe = 0
around its undeformed state (Wittbrodt et al. 2006). As a result, under the assumption
of an elastic deformation, the variations in the joint and platform variables (which
represent the coordinates of the free displacement of robot bodies around the nominal
configuration qa , qd and qe = 0.) are denoted by δqa , δqd and δxp, respectively.

The vector of generalized coordinates of the tree-structure is thus defined qT
t =[

δqT
a , δqT

d , qT
e

]
, where δqT

a = [δqa1 . . . δqana
], δqT

d = [δqd1 . . . δqdnd
]. δqa , δqd

and qe are the vectors of the actuated, passive and elastic generalized coordinates for
the tree structure and represent the coordinates of the free displacement of the robot
bodies around the nominal configuration parameterized by qa , qd and qe = 0.

Finally, it should be mentioned that the vector of generalized velocities of the
tree-structure is now given by q̇T

t = [
q̇T

a , q̇T
d , q̇T

e

]
, where q̇a = d(δqa)/dt , q̇d =

d(δqd)/dt . Moreover, we denote as 0tp = d(δxp)/dt .
To compute the inertia and stiffness matrices of the virtual tree structure, we need

to compute its kinetic and potential elastic energies. The elastic potential energy of
the tree structure system can be expressed as:

Uet =
∑
i, j

Uei j (11.2)

with Uei j the elastic potential energy of the body Bi j defined at (10.34), and its
kinetic energy is given by

Et =
∑
i, j

Ei j (11.3)

where Ei j is the kinetic energy of the body Bi j .

http://dx.doi.org/10.1007/978-3-319-19788-3_8
http://dx.doi.org/10.1007/978-3-319-19788-3_10
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11.2.1 Kinetic Energy and Elastic Potential Energy
of the Body Bi j

The kinetic energy of the body Bi j is defined from (6.6) by

Ei j = 1

2

∫
Bi j

vT
Mi j

vMi j dm (11.4)

where vMi j is the velocity of a point M j belonging toBi j given from (10.7) by:

vMi j = vi j + ωi j × rOi j Mi j + Φdi j (M0i j )q̇ei j (11.5)

Equation (11.5) can be put into a matrix form such that:

vMi j =
[
13 r̂T

Oi j Mi j
Φdi j (M0i j )

] ⎡
⎣

vi j
ωi j

q̇ei j

⎤
⎦ . (11.6)

Introducing (11.6) in (11.4), we obtain

Ei j = 1

2

∫
Bi j

⎡
⎣

vi j
ωi j

q̇ei j

⎤
⎦

T ⎡
⎣

13
r̂Oi j Mi j

ΦT
di j

(M0i j )

⎤
⎦[

13 r̂T
Oi j Mi j

Φdi j (M0i j )
]⎡
⎣

vi j
ωi j

q̇ei j

⎤
⎦ dm (11.7)

or also,

Ei j = 1

2

[
tT
i j q̇T

ei j

]
Mi j

[
ti j

q̇ei j

]
(11.8)

where

Mi j =
∫
Bi j

⎡
⎢⎣

13 r̂T
Oi j Mi j

Φdi j (M0i j )

r̂Oi j Mi j r̂T
Oi j Mi j

r̂Oi j Mi j r̂Oi j Mi j Φdi j (M0i j )

ΦT
di j

(M0i j ) ΦT
di j

(M0i j )r̂T
Oi j Mi j

ΦT
di j

(M0i j )Φdi j (M0i j )

⎤
⎥⎦ dm. (11.9)

By identification with the expressions defined in Sect. 10.2.2.4, we have

Mi j =
⎡
⎢⎣

mi j 13 m̂sT
i j MSdei j

m̂si j Ii j MSrei j

MST
dei j

MST
rei j

Meei j

⎤
⎥⎦ (11.10)

http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
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where

• msi j is defined at (10.40),
• MSdei j is defined at (10.42),
• MSrei j is defined at (10.43),
• Ii j is defined at (10.46),
• Meei j is defined at (10.50).

Asmentioned inSect. 11.1, the natural frequencies are evaluated for a robot around
an undeformed state for which qei j = 0. In such a case, the matrix Mi j becomes

Mi j (qei j = 0) = Mi j0 =
⎡
⎢⎣

mi j 13 m̂sT
ri j

MSdei j

m̂sri j Irri j MSr
rei j

MST
dei j

MSr T
rei j

Meei j

⎤
⎥⎦ (11.11)

where

MSr
rei j

= [
β1i j

. . . βNi j,i j

]
(11.12)

and

• msri j is defined at (10.41),
• Irri j is defined at (10.47),
• βki j

is defined at (10.44).

Matrix Mi j0 is the inertia matrix of the body Bi j in the undeformed state.
The elastic potential energy of the body Bi j given in Sect. 10.2.2.3 is equal to

Uei j = 1

2
qT

ei j
Keei j qei j (11.13)

where Keei j is the stiffness matrix of body Bi j defined in (10.35).
The expressions of the matrices Mi j0 and Keei j in the case of a flexible 3D

Bernoulli beam are given in Appendix F.

11.2.2 Kinetic Energy and Elastic Potential Energy
of the Virtual Tree Structure

Introducing (11.8) and (11.13) into (11.2) and (11.3), we obtain

Uet = 1

2

∑
i, j

qT
ei j

Keei j qei j (11.14)

http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
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and

Et = 1

2

∑
i, j

[
i j tT

i j q̇T
ei j

]
Mi j0

[
i j ti j

q̇ei j

]
(11.15)

in which Mi j0 is projected into Fi j .
We need to rewrite these expressions as functions of the tree structure generalized

coordinates qt and velocities q̇t . For that, let us recall from Sect. 10.3.1 that we have

[
i j ti j

q̇ei j

]
= Ji j q̇t (11.16)

where the computation of the matrix Ji j is detailed in Sect. 10.3.2.
From the same section, we may also find that:

qei j = Oqei j qt . (11.17)

Introducing (11.16) and (11.17) into (11.14) and (11.15), we obtain

Uet =1

2

∑
i, j

qT
t OT

qei j
Keei j Oqei j qt

=1

2
qT

t

⎛
⎝∑

i, j

OT
qei j

Keei j Oqei j

⎞
⎠ qt (11.18)

and

Et =1

2

∑
i, j

q̇T
t JT

i j Mi j0Ji j q̇t

=1

2
q̇T

t

⎛
⎝∑

i, j

JT
i j Mi j0Ji j

⎞
⎠ q̇t . (11.19)

11.2.3 Kinetic Energy of the Free Moving Platform

The kinetic energy of the free rigid platform is given from (6.8) by

E p = 1

2
0tT

p
0Mp

0tp (11.20)

where 0Mp is the inertia matrix of the platform expressed in the base frameF0 and
is defined at (8.97).

http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_6
http://dx.doi.org/10.1007/978-3-319-19788-3_8
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As a result, the total kinetic and potential energies can be written as

Et + E p =1

2
q̇T

t

⎛
⎝∑

i, j

JT
i j Mi j0Ji j

⎞
⎠ q̇t + 1

2
0tT

p
0Mp

0tp

=1

2

[
q̇T

t
0tT

p

] [∑
i, j JT

i j Mi j Ji j 0
0 0Mp

] [
q̇t
0tp

]

=1

2
q̇T

tot Mt q̇tot (11.21)

with

• q̇T
tot = [

q̇T
t

0tT
p

]
,

• Mt =
[∑

i, j JT
i j Mi j Ji j 0
0 0Mp

]

and,

Uet =1

2

[
qT

t δxT
p

] [∑
i, j OT

qei j
Keei j Oqei j 0

0 0

] [
qt

δxp

]

=1

2
qT

tot Ktot qtot (11.22)

where

• δxp is a small variation of the platform position,
• qT

tot = [
qT

t δxT
p

]
,

• Ktot =
[∑

i, j OT
qei j

Keei j Oqei j 0
0 0

]
is the stiffness matrix of the virtual system.

11.2.4 Introducing the Actuator Inertia Effects

Adding the contributions of themotor inertia (from Sect. 8.2), the total kinetic energy
becomes:

Etot =1

2

[
q̇T

t
0tT

p

] (
Mt +

[
It 0
0 0

]) [
q̇t
0tp

]

=1

2
q̇T

tot Mtot q̇tot (11.23)

http://dx.doi.org/10.1007/978-3-319-19788-3_8
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where

• It is a diagonal matrix whose j th element corresponds to the value of the inertia
of joint j (the j th element of It is equal to zero if the joint is passive or if it
corresponds to an elastic coordinate),

• Mtot = Mt +
[

It 0
0 0

]
is the global inertia matrix of the virtual system.

11.3 Stiffness and Inertia Matrices of the PKM

As mentioned in Sect. 10.4, the model of the virtual tree structure and of the free
moving platform does not consider the closed-loop kinematic chains and only a
subset q in the variables qtot are independent.

An efficient way to find this subset has been provided in Sect. 10.4, from which
we have defined the relation:

q̇tot = Jq̇ (11.24)

where the matrix J is defined in (10.114).
As a matter of fact, as the natural frequencies are evaluated around a nominal state

for the robot, we also have
qtot = Jq (11.25)

in which the variables qtot (and q) represent indeed small displacements around the

nominal configuration. Let us recall that qtot =
[
δqT

a , δqT
d , qT

e , δxT
p

]
.

Introducing (11.24) and (11.25) into (11.18) and (11.23), we finally obtain

Uet = 1

2
qT JT Ktot Jq = 1

2
qT Kq = 1

2
qT

r Kr qr (11.26)

and

Etot = 1

2
q̇T JT Mtot Jq̇ = 1

2
q̇T Mq̇ = 1

2
q̇T

r Mr q̇r . (11.27)

where

• qr = Eqq, in which Eq is a matrix that makes it possible to sort vector q in such
a manner that qT

r = [δqT
a qT

c ] in which the first na elements of qr correspond
to the vector δqa of the actual active displacements, and the last nc = nq − na

elements of qr correspond to the vector qc of the actual non constrained variables
(including the vectors δqd , δxp and the parts of qe),

• Kr = ET
q JT Ktot JEq is the stiffness matrix of the PKM,

• Mr = ET
q JT Mtot JEq is the inertia matrix of the PKM.

http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
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Finally, we have

Uet = 1

2

[
δqT

a qT
c

] [
Kaa Kac

KT
ac Kcc

] [
δqa

qc

]
(11.28)

and

Etot = [
q̇T

a q̇T
c

] [
Maa Mac

MT
ac Mcc

] [
q̇a

q̇c

]
(11.29)

Since the natural frequencies are evaluated around an undeformed state (Wittbrodt
et al. 2006), this means that the actuators are considered completely fixed, i.e. that
δqa = 0 and q̇a = 0. As a result, the equations (11.28) and (11.29) become

Uet = 1

2
qT

c Kccqc (11.30)

and

Etot = 1

2
q̇T

c Mccq̇c. (11.31)

The Lagrangian of the system is thus:

L = Etot − Uet = 1

2
q̇T

c Mccq̇c − 1

2
qT

c Kccqc. (11.32)

The two (nc × nc) matrices Kcc and Mcc

• are evaluated in the robot nondeflected configuration, namely, for qe = 0,
• depend on the robot configuration qa and qd but not on the variables qc and q̇c.

As a result, the Lagrange equations lead to

d

dt

(
∂L

∂q̇c

)
− ∂L

∂qc
= Mccq̈c + Kccqc = 0. (11.33)

A solution qs
c of this equation satisfies:

(
ω2

s Mcc − Kcc

)
qs

c = 0 (11.34)

where ωs = 2π fs , fs is the natural frequency associated with the sth natural mode
of vibrations and qs

c is its associated eigenvector.
Therefore, the natural frequencies of the parallel robot are evaluated by solving

the following eigenvalue problem:

det
(
ω2

s Mcc − Kcc

)
= 0. (11.35)
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11.4 Including the Actuator Elasticity

In case of actuator elasticity (see Sect. 10.5), Eqs. (11.29) and (11.29) become

Uet = 1

2

[
δqT

M δqT
a qT

c

]
⎡
⎣

0 0 0
0 Kaa + Ka Kac

0 KT
ac Kcc

⎤
⎦

⎡
⎣

δqM

δqa

qc

⎤
⎦ (11.36)

and

Etot = [
q̇T

M q̇T
a q̇T

c

]
⎡
⎣

Ia 0 0
0 Maa Mac

0 MT
ac Mcc

⎤
⎦

⎡
⎣

q̇M

q̇a

q̇c

⎤
⎦ (11.37)

where

• δqM represents the displacements of the motors,
• q̇M = d(δqM )/dt ,
• Ia = diag([I a1 . . . I ana ]) is the (na × na) diagonal matrix containing the inertia
of the rotors, and

• Ka = diag([ka1 . . . kana ]) is the (na ×na) diagonal matrix containing the stiffness
of the gearboxes.

Since the natural frequencies are evaluated for a given robot configuration around
its undeformed state (Wittbrodt et al. 2006), the actuators are considered completely
fixed, i.e. that δqM = 0 and q̇M = 0 while now δqa �= 0 and q̇a �= 0.

As a result, to compute the natural frequencies of the system, instead of con-
sidering only the matrices Kcc and Mcc in (11.35), we have to consider the new
matrices

Kr =
[

Kaa + Ka Kac

KT
ac Kcc

]
(11.38)

and

Mr =
[

Maa Mac

MT
ac Mcc

]
(11.39)

associated to the generalized coordinates qT
r = [δqT

a qT
c ].

As a result, the Lagrange equations become

d

dt

(
∂L

∂q̇r

)
− ∂L

∂qr
= Mr q̈r + Kr qr = 0. (11.40)

http://dx.doi.org/10.1007/978-3-319-19788-3_10
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A solution qs
r of this equation satisfies:

(
ω2

s Mr − Kr

)
qs

r = 0 (11.41)

where ωs = 2π fs , fs is the natural frequency associated with the sth natural mode
of vibrations and qs

r is its associated eigenvector.
Therefore, the natural frequencies of the parallel robot are evaluated by solving

the following eigenvalue problem:

det
(
ω2

s Mr − Kr

)
= 0. (11.42)

11.5 Practical Implementation of the Algorithm

In order to finally obtain symbolic equations for themodel with an optimized number
of operations, the followingmethod is used. First, the rigid kinematics of each element
are modeled using the modified Denavit-Hartenberg notations (Sect. 4.2). If the body
Bi j taken into consideration is flexible, Ni j supplementary elastic variables qei j are
introduced in combination with Ni j shape functions. Then, the previously developed
equations are used in the following sequence:

• Step 0: Initialization of the algorithm
Variables considered known: qtot , q̇tot

Computation of:

– Φdil (Oi j ), Φril (Oi j ), Φil(Oi j ) from (10.8); ilrOil Oi j from (10.4);
– Mi j , Keei j from (10.61) and (11.11);
– 0Mp from (10.101);
– i j Ril , i j Til from (10.97) and (10.98); i j āi j from (10.75);
– Ai j , Φqei j from (10.79);

• Step 1: Forward recurrence (computation of the twist of each body, and compu-
tation of the Jacobian matrices required for applying the PVP on the virtual tree
structure)
Computation of:

– Jti j from (10.78); Ji j from (10.80);

• Step 2: Computation of the global inertia and stiffness matrices of the virtual tree
structure
Computation of:

– Mt from (11.21);
– Mtot , Ktot from (11.22) and (11.23);

http://dx.doi.org/10.1007/978-3-319-19788-3_4
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10


11.5 Practical Implementation of the Algorithm 289

• Step 3: Computation of the global inertia and stiffness matrices of the parallel
robot
Computation of:

– Jt , Jp from (10.107);

– J f
t from (10.108);

(
J f

t

)−1
from (10.113);

– Jd from (10.110); J from (10.114);
– Mr , Kr from (11.26) and (11.27);

• Step 4: Solving the model

The Mathematica algorithm for automatically computing the global inertia and
stiffness matrices of the parallel robot is freely available on the webpage:
http://www.irccyn.ec-nantes.fr/~briot/Books.html

11.6 Case Studies

11.6.1 Natural Frequencies of DualEMPS

Some experimental tests are carried out for measuring the natural frequencies of
DualEMPS (see Sect. 10.7) using the setup presented in Fig. 11.1. The application
of experimental modal testing to the DualEMPS is done through impact hammer
excitation, a 3-D accelerometer response and data post-processing, conducted using
the DataBox software developed at IRCCyN and commercialized by MITIS com-
pany. The impact point is near point P (Fig. 10.4) and the directions of excitation
are contained in the horizontal plane in order to get the resonance frequencies that
involves planar displacements of the robot. Piezoelectric triaxial accelerometers with
a sensitivity of 1000mV/g are used to measure the three acceleration responses. The
acquisitions are performed for several robot configurations. However, the natural
frequencies of the DualEMPS are near constant anywhere in the workspace, and
all tested configurations lead to almost the same results. Therefore, only the results
for the nominal configuration q11 = q21 = 0 will be presented. Each measurement
resolution is equal to 1Hz as the acquisition time and the sampling time are equal to
1 s and 40μs, respectively.

The resonance frequencies are obtainedwith a fast Fourier transform of the signals
given by the triaxial accelerometer. As a result, the measured resonance frequencies
between 0 and 200Hz are given in Table11.1. It is noteworthy that the resonance
frequencies of the DualEMPS amount to its natural frequencies as the damping
is considered negligible. The obtained results show that the five first frequencies
predicted with our model are very close to the measured ones. However, as the model
is made of three beam elements only, the frequency prediction after the fifth mode
is not correct anymore. This prediction could be improved by introducing a higher
number of elements, but this will increase the computational time. Nevertheless,

http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://www.irccyn.ec-nantes.fr/~briot/Books.html
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
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Fig. 11.1 Experimental setup for measuring natural frequencies

Table 11.1 Comparison of natural frequencies of theDualEMPS robot computedwith the proposed
model, computed with Adams and experimentally measured for q11 = q21 = 0

(Hz) f1 f2 f3 f4 f5 f6

Adams 14.41 24.92 49.78 97.91 110.86 219.60

Model 14.22 25.09 48.22 92.37 109.08 423.39

Measured (±1Hz) 14.00 25.00 48.00 93.00 108.00 163.00

having a good prediction for all frequencies in the interval [14, 110]Hz is already a
very good result. Note that the prediction of theAdamsmodelmentioned in Sect. 10.7
gives almost the same result as our model for the five first frequencies and is not
correct for the sixth frequency (even if it is closer to reality than our model).

11.6.2 Natural Frequencies of the NaVARo

11.6.2.1 Description of the NaVARo

The NaVARo (acronym for Nantes Variable Actuation Robot) is developed at IRC-
CyN and is shown in Fig. 11.2a. The NaVARo is a 3-DOF planar parallel manipu-
lator composed of three identical legs and one moving platform made up of three
segments E1P , E2P and E3P rigidly linked at point P . The i th leg contains four
links Ai Bi , Bi Ci ,Ci Ei , Ai Di (named link i2, link i3, link i4 and link i1, respectively)
connected with five revolute joints in such a way that Ai Bi Ci Di is a parallelogram

http://dx.doi.org/10.1007/978-3-319-19788-3_10
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(a)

(b)

Fig. 11.2 The NaVARo. a Prototype of the NaVARo located at IRCCyN, Nantes, France.
b Schematics of the NaVARo

linkage, i = 1, 2, 3. The base frame F0
(
O, x0, y0, z0

)
(not shown in Fig. 11.2b)

is defined with point O being located at the geometric center of the equilateral tri-
angle A1A2A3. Frame Fp

(
P, xp, yp, zp

)
is attached to the moving platform. In

the home configuration shown in Fig. 11.2, F0 and Fp coincide.
(
x p, yp

)
are the

Cartesian coordinates of point P expressed in frame F0 and θp is the orientation
angle of the moving platform, namely, the angle between x0 and xp.
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Table 11.2 MDH parameters of the i th leg

i j a( j i) σi j γi j bi j αi j di j θi j ri j

i1 0 0 γi 0 0 d1 = 0.4041m qi1 − γi 0

i2 0 0 γi 0 0 d1 = 0.4041m qi2 − γi 0

i3 i2 0 0 0 0 d3 = 0.2100m q3i 0

i4 i3 0 0 0 0 d4 = 0.2100m q4i 0

i5 i4 0 0 0 0 d5 = 0.4200m q5i 0

qi1 denotes the angle between axis x0 and link i1. qi2 denotes the angle between
link i1 and link i2. Three double clutches are mounted to the base and located at
points Ai , i = 1, 2, 3, in order to actuate either angle qi1 or angle qi2. As a conse-
quence, theNaVARohas eight actuationmodes as described in (Arakelian et al. 2008;
Rakotomanga et al. 2008). Therefore, the moving platform can be moved through-
out the manipulator workspace without reaching any parallel singularity thanks to a
judicious actuation scheme.

The kinematics of the i th leg is described by the modified Denavit-Hartenberg
parameters given in Table11.2, in which γi = π/2 if i = 1, γi = −5π/6 if i = 2
and γi = −π/6 if i = 3. Besides, the circumradius of the moving-platform is equal
to 0.2027m, i.e., l5i = 0.2027 m.

Each link of the rectangular c ross-section is made up of duraluminum alloy
(E = 74000MPa, G = 28900MPa, ρ = 2800kg/m3). Table11.3 gives the cross-
section area and the moments of inertia of the robot links.

In the experimental setup, the rotation of links i1 and i2 about point Ai , i = 1, 2, 3,
is locked thanks to the double clutch mechanisms. The elasto-dynamic modeling of
the NaVARo is complex due to the closed-loop chain in each leg and is obtained by
following those three steps:

1. Computation of the mass and stiffness matrices of the virtual system assuming
that the moving platform is cut at point P and the parallel linkages are opened at
points Di , i = 1, 2, 3;

2. Computation of the mass and stiffness matrices of the legs including the closed-
loop chains;

3. Computation of the mass and stiffness matrices of the NaVARo.

A single 3D beam element is used to model links i1, i2, i3 and i5 (i = 1, 2, 3 –
see Appendix F) while two 3D beam elements of equal lengths l (l = lCi Di = lDi Ei )
are used to model links i4. Links i4 are divided into two beam elements in order to
close the loops as mentioned in step 2.

Table 11.3 Characteristics of the beam cross-sections

link Ai j (m2) Iyi j (m
4) Izi j (m

4) Ipi j (m
4) I0i j (m

4)

i1, i2, i3, i4 2.4 · 10−4 1.152 · 10−8 2.000 · 10−9 1.352 · 10−8 5.902 · 10−9

i5 4 · 10−4 3.333 · 10−8 5.333 · 10−8 8.666 · 10−8 1.123 · 10−8
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Thus, the NaVARo is modeled as a spatial mechanism and its elasto-dynamic
model contains 144 generalized coordinates: (i) 108 elastic coordinates; (i i) 12 pas-
sive joint coordinates, i.e., four passive joint angles per leg; (i i i) 18 intermediary
coordinates for the assembly of the legs; (iv) 6 coordinates for the moving-platform
pose. From Sect. 11.3, it turns out that there are only 90 independent coordinates
among those 144 coordinates.

11.6.2.2 Numerical Analysis

The model has been calculated using the proposed procedure and compiled into C
code to obtain the robot’s natural frequencies. The computation involves the use of
36183 ‘+’ or ‘−’ and 37341 ‘×’ or ‘/’ operators, while 21383 variables are defined.
For reasons of comparison, the obtained frequencies are validated by means of an
equivalent model developed using Cast3M software. Cast3M aims to determine the
elastodynamic model of structures modeled with beams. Both models give the same
values for thefirst 90 natural frequencies of theNaVARo.Table11.4 gives thefirst five
natural frequencies of the NaVARo for the eight robot postures shown in Fig. 11.3.

For the simulations, Cast3M gives the result after around 6s of computation while
ourmodel send the results in around 0.01 s (for a Pentium 4 2.70GHz, 8Go of RAM).

The natural frequencies of the NaVARo are the same for poses 3, 5 and 7 (4, 6
and 8, resp.) as they correspond to a rotation of the robot base frame of ±120deg
with respect to pose 3 (pose 4, resp.).

11.6.2.3 Experiments

Some experimental tests are carried out using the setup presented in Fig. 11.4. The
application of experimental modal testing to the NaVARo was done through impact

Table 11.4 Comparison of the natural frequencies obtained with Cast3M and the Matlab model

(Hz) Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8

f1(Cast3M) 44.10 45.71 36.98 40.17 36.98 40.17 36.98 40.17

f1(Matlab model) 44.10 45.71 36.98 40.17 36.98 40.17 36.98 40.17

f2(Cast3M) 44.10 45.71 49.31 50.32 49.31 50.32 49.31 50.32

f2(Matlab model) 44.10 45.71 49.31 50.32 49.31 50.32 49.31 50.32

f3(Cast3M) 53.98 54.58 53.37 52.99 53.37 52.99 53.37 52.99

f3(Matlab model) 53.98 54.58 53.37 52.99 53.37 52.99 53.37 52.99

f4(Cast3M) 60.63 65.35 67.28 67.36 67.28 67.36 67.28 67.36

f4(Matlab model) 60.63 65.35 67.28 67.36 67.28 67.36 67.28 67.36

f5(Cast3M) 95.62 97.92 91.80 91.52 91.80 91.52 91.80 91.52

f5(Matlab model) 95.62 97.92 91.80 91.52 91.80 91.52 91.80 91.52
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(a)

(d) (e) (f)

(g) (h)

(b) (c)

Fig. 11.3 The eight poses used for the experiments. a Pose 1 x = 0m, y = 0m, θ = 0 rad. b Pose
2 x = 0m, y = 0m, θ = −π /3 rad. c Pose 3 x = 0.117m, y = 0.068m, θ = −π /3 rad. d Pose
4 x = 0.182m, y = 0.105m, θ = π /3 rad. e Pose 5 x=.0.117m, y= 0.068m, θ = −π /3 rad. f Pose
6 x = 0.182m, y = 0.105m, θ = −π /3. g Pose 7 x = 0m, y = .0.135m, θ = −π /3. h Pose 8 x = 0m,
y = 0.21m, θ = −π /3

hammer excitation, a 3-D accelerometer response and data post-processing, con-
ducted using the DataBox software developed at IRCCyN and sold by MITIS com-
pany. The points and directions of excitation were chosen on points Bi and Ei of
each leg along all axes in order to get the maximal number of resonance frequencies.
Piezoelectric triaxial accelerometers with a sensitivity of 1000mV/g were used to
pick up the three acceleration responses. The acquisitions were performed for the
eight robot postures shown in Fig. 11.3. Eachmeasurement resolution is equal to 1Hz
as the acquisition time and the sampling times are equal to 1 s and 40μs, respectively.

The resonance frequencies are obtainedwith a fast Fourier transform of the signals
given by the triaxial accelerometer. As a result, the measured resonance frequencies
between 0 and 80Hz for poses 1 to 4 are given in Table11.5. As the results for poses 3,
5 and 7 (poses 4, 6 and 8, resp.) are similar due to the manipulator symmetry, only
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Fig. 11.4 Experimental setup: DataBox

the results for poses 3 and 4 are given in Table11.5 and the redundant poses were
used to highlight some resonance frequencies with low energy level.

It is noteworthy that the resonance frequencies of the NaVARo amount to its
natural frequencies as the damping is supposed to be negligible.

It is apparent that the results given Table11.5 do not match with those shown in
Table11.4. As a matter of fact, the elasticity of the clutches has not been modeled
and the joint masses have been omitted with Cast3M software as the latter cannot
model lumpedmasses. Thus, a refinedMatlab model was written in order to consider
joint masses (about 300g per joint) and elasticities in clutches (about 2000Nm/rad).
The natural frequencies of the NaVARo computed with this refined model and the
measured frequencies are gathered in Table11.5 by comparing the computed mode
shapes with the hammer impact direction and the direction of the vibration signals,
the latter being measured by the triaxial accelerometer.

We can notice that there is a good correlation between the measured frequencies
and the computed natural frequencies. Nevertheless, few predicted frequencies do
not match with the measurements and vice-versa. Indeed, the theoretical and exper-
imental results may differ due to the following reasons:

• The geometric parameters of the NaVARo have not been calibrated yet and there
are some errors in the estimated moving platform pose;

• The passive joint elasticity has not been considered;
• The robot links are supposed to be coplanar in the theoretical model, whereas they
are not in the prototype for collision avoidance;

• The robot links are not perfect beams as both ends are widened to insert ball
bearings;

• The theoretical elastodynamic model does not consider any damping effect.
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Table 11.5 NaVARo natural frequencies (measured and computed using refined model) between
0 and 80Hz

(Hz) Pose 1 Pose 2 Pose 3 Pose 4

f1 meas. 22 19 17 18

f1 calc. 19.25 19.46 17.91 18.44

f2 meas. 24 21 19 20

f2 calc. 20.43 20.49 19.71 19.26

f3 meas. 32 – 23 22

f3 calc. 40.25 41.88 20.91 21.28

f4 meas. – 44 27 33

f4 calc. 43.16 45.55 – 36.88

f5 meas. 42 45 32 43

f5 calc. 44.10 47.05 36.88 40.60

f6 meas. 50 53 43 44

f6 calc. – – 41.86 46.13

f7 meas. 52 54 46 50

f7 calc. – 56.37 45.61 55.29

f8 meas. 62 56 48 56

f8 calc. 67.94 – 50.52 57.81

f9 meas. 66 60 57 58

f9 calc. 68.81 63.10 55.45 62.27

f10 meas. 77 – 60 66

f10 calc. 79.79 – 61.04 –

f11 meas. – – 61 –

f11 calc. – – – –

f12 meas. – – 65 –

f12 calc. – – 65.00 –

However, from those experiments, we can claim that the theoretical model is
satisfactory and the proposed modeling procedure is efficient for reproducing the
real behavior of any parallel robot.

11.7 Conclusion

In this Part, we have introduced the dynamicmodeling of flexible parallel robots. The
goal of this Part was not to provide a complete lecture on mechanics of deformable
bodies, but to show for people having somebasic knowledge in this field how to obtain
the dynamics of a flexible PKM starting from basic considerations in mechanics
of deformable bodies. The reader requiring additional information on mechanics of
deformable bodies is invited to read the reference books of Shabana (2005) and of
Bauchau (2011).
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We have proposed customized elastodynamic models for PKM able to minimize
the number of operators, and thus to decrease the computational cost. Two types of
models have been proposed:

• In Chap.10, the full elastodynamic model of the PKM has been provided. In order
to obtain it, it was necessary to investigate the dynamics of free flexible bodies
and of flexible tree structure.

• In Chap.11, the algorithm provided in Chap. 10 has been simplified in order to
obtain the expressions of stiffness and inertiamatrices ofPKM,which are necessary
for computation of the natural frequencies.

To go further in a decrease of the computational cost, it is also possible to combine
our approach with the use of model reduction methods and with the definition of
efficient truncated series of shape functions. The interested reader is referred to
Blevins (2001), Briot et al. (2011), Craig (1981), Craig and Bampton (1968).

Note also that the elastodynamicmodel of parallel robots is not free of singularities
which can be passed through a proper trajectory planning, such as defined in Chap.9.
The reader should read (Briot and Arakelian 2010, 2011) for more information.

http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_10
http://dx.doi.org/10.1007/978-3-319-19788-3_9


Appendix A
Calculation of the Number of Degrees
of Freedom of Robots with Closed Chains

A.1 Introduction

Let us recall first that the mobility, or number of DOF, of a robot is defined as the
number of independent joint variables required to specify the location of all the links
of the robot in space. It is equal to the minimal number of actuated joints to control
the system.

The number of degrees of freedom Ndof of a robot is equal to the number of joints
in the case of tree structure system L . In the case of a closed-loop mechanism, the
calculation of the mobility Ndof can be expressed by the following relation:

Ndof = L − c (A.1)

where L is the number of joints of the structure and c is the number of independent
relationships (constraints) between the joint variables, i.e. the number of dependent
joints.

Since 1854 with the work of P.A. Chebychev, several researchers have proposed
different formulas that can be used to find themobility of complex systems. Recently,
Gogu (2008) has evaluated 35 methods that have been proposed to calculate the
mobility of complex systems. He concluded that the majority of methods cannot
properly calculate mobility for all mechanisms, and only those that require the con-
struction of the kinematic constraint equations can give a good result.

In case of a single loop, c represents the number of independent kinematic con-
straint equations of the loop. Consequently c ≤ 6 for a spatial loop and c ≤ 3 for
a planar loop. Consequently, Ndof gives the dimension of the space in which the
situation of all the links belong. It is possible to calculate it by calculating the max-
imum rank of the Jacobian matrix of the serial structure constructed by cutting one
link in the loop. This result can be interpreted by the fact that the open structure has
L degrees of freedom, and since the c degrees of freedom of the terminal link will
be lost when closing the loop, thus the number of remaining degrees of freedom is
equal to L − c.

© Springer International Publishing Switzerland 2015
S. Briot and W. Khalil, Dynamics of Parallel Robots,
Mechanisms and Machine Science 35, DOI 10.1007/978-3-319-19788-3
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In case of a system composed of B independent closed loops, the mobility of the
system may be calculated by:

Ndof = L −
B∑

j=1

c j . (A.2)

This simple formula gives good results for most robot structures but it can yield bad
results for certain complex systems and does not give information about the type of
motion of the system. However, for some robots, the exact solution is obtained by
analyzing the kinematic constraints and taking into account the coupling between
the loops (Hervé 1978; Le Borzec and Lotterie 1975). In the following, we present
two methods: the Morokine’s method and the Gogu’s method.

A.2 Moroskine’s Method

The mobility can be calculated correctly using the rank of the matrix Jc defined in
the following equation:

c = max
q

(rank(Jc(q))) (A.3)

where Jc is the Jacobian of the constraint equations between the joint variables such
that:

Jc(q)q̇ = 0. (A.4)

Jc(q) can be calculated by derivation of the geometric constraint equations of the
loops or by constructing the constraint equations of the velocities through the loop. In
fact, from this equation, we deduce that q̇ belongs to the null space of Jc. Therefore,
at a given configuration, the number of degrees of freedom is equal to the dimension
of the null space of Jc. Consequently:

Ndof = min
q

(dim(N (Jc(q)))) (A.5)

where N (Jc(q)) is the null space of the matrix Jc.
In general, the rank of Jc(q) must be calculated for q satisfying the closure con-

straints of the loops. For a single closed loop, the rank can be calculated using random
values of its joints.

This method yields the correct result, but it is significantly more difficult to exe-
cute. In order to find the rank of the Jacobianmatrix defining amechanismwith closed
loops, the kinematic constraint equations must be solved. The kinematic constraint
equations display the relationship between the joint variables in the mechanism in
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order to ensure loop closure. In general it is difficult to solve these equations symbol-
ically though it is possible to solve them numerically in order to obtain some random
configurations satisfying the closure conditions.

A.3 Gogu’s Method

In order to overcome the drawbacks of the previousmethod,Gogu proposed amethod
that does not require the construction of the kinematic constraint equations, but will
yield the correct mobility for all mechanisms including complex parallel mecha-
nisms. We present here how to use Gogu’s method to calculate the mobility for:

• single loop kinematic chains,
• parallel mechanisms with simple legs, and
• parallel mechanisms with complex legs.

The proposed solution makes use of the mobility of the terminal link of simple open
loop which is equal to the rank of the Jacobian matrix between the terminal link or
the mobile platform in the case of a PKM and the base. In fact the mobility Mn/0
of the terminal link with respect to the base of an open loop chain is equal to the
dimension of the task (Cartesian) space dim(E(x)).

Mn/0 = M = rank(Jn) = dim(E(x)). (A.6)

A.3.1 Mobility of Single Loop Kinematic Chains

A link must be opened to obtain an equivalent simple open loop. If the number of
joints is equal to L , and the chain is opened around joint L such that the links 1, . . . , L
constitute a serial structure, then the rank of the Jacobian matrix JL gives the number
of joint variables that lose their independence after loop closure. Thus the mobility
of the closed loop is given by:

Ndof = L − rank(JL) (A.7)

where rank(JL) = ML/0 is the mobility of link L w.r.t. link 0 in the open chain.
A second method to calculate the mobility is to open the structure around a joint

k < L , in order to obtain two serial branches with n1 and n2 joints respectively.
Supposing rank(Jni ) = dim(E(xi )) is the dimension of the task (Cartesian) space

of branch i , with i = 1, 2, and dim(E(x1) ∩ E(x2)) gives the dimension of the
common task space that the two branches share. Thus, the number c of joints losing
their independence will be obtained as follows:
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c = rank(JL) = dim(E(x1)) + dim(E(x2)) − dim(E(x1) ∩ E(x2)) (A.8)

= rank(Jn1) + rank(Jn2) − dim(E(x1) ∩ E(x2)).

The mobility can be calculated using Ndof = L − c.
If there is no kinematic redundancies such that rank(Jn1) = N1 and rank(Jn2) =

N2, the mobility of the mechanism is given by:

Ndof = L − rank(JL) = dim(E(x1) ∩ E(x2)). (A.9)

In case of redundancy, the mobility will be:

Ndof = dim(E(x1) ∩ E(x2)) + number of redundant joints in both branches.
(A.10)

A.3.2 Mobility of Parallel Mechanisms with Serial Legs

Let us consider a parallel mechanism with a base platform and a mobile platform
that are connected together with m simple open kinematic chains. The number of
joints of each chain is denoted by ni for i = 1, . . . , m. The mobility of the platform
M with respect to the base is given by the dimension of the common task spaces
of the simple legs associated with the parallel mechanism, as seen in the following
equations as long as there are no redundancy:

NP/0 = dim(E(x1) ∩ E(x2) · · · ∩ E(xm)). (A.11)

The number of joints that lose their independence after loop closure is equal to
the difference between the sum of mobilities of the terminal links of simple chains
and the mobility of the platform:

c =
m∑

j=1

dim(E(x j )) − dim(E(x1) ∩ E(x2) · · · ∩ E(xm)). (A.12)

Thus the mobility of the structure is given by

Ndof =
m∑

j=1

n j −
m∑

j=1

dim(E(x j )) + dim(E(x1) ∩ E(x2) . . . ∩ E(xm)) (A.13)

where
∑m

j=1 n j = L , the number of total joints.
Note that in case of non-redundant legs, n j = dim(E(x j )), thus leading to mobil-

ity as the dimension of the common space between all the legs.
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A.3.3 Mobility of Parallel Mechanisms with Complex Legs

A parallel mechanism with complex legs is a complex mechanism with L joints in
which the mobile platform is connected to the base by m ≥ 2 legs, of which at least
one leg contains at least one closed loop. Theoretically in this case the platform is not
uniquely defined, but in practice it is easy to select an appropriate one. The mobility
of the mechanism in this case is calculated by:

Ndof = L −
m∑

j=1

dim(E(x j )) + dim(E(x1) ∩ E(x2) . . . ∩ E(xm)) − Ccl (A.14)

where Ccl = ∑nc
k=1 ck is sum of the additional joint variables that lose their indepen-

dence in the closed loops belonging to the complex legs. Ccl can be calculated using
the previous cases in Sects.A.3.1 and A.3.2 depending on whether the leg contains
loops connected serially or in parallel respectively.

A.4 Examples

In this section we calculate the mobility of some robot architectures treated in the
different chapters of this book.

A.4.1 The Planar Five-Bar Mechanism

This structure is shown in Fig. 7.3. It consists of five revolute joints with parallel
axes. The system ensures motion in the plane perpendicular to the joint axes. The
mobility can be calculated using different interpretation:

1. The number of independent constraint equations around the loop is equal to 3,
specifying the equality of x , y and the orientation φ. Thus, the mobility is equal
to 2.

2. We open the loop at the terminal joint L , to obtain a serial architecture with five
revolute joints. It is intuitive to deduce that the rank of this serial system is equal to
the mobility of its terminal link, i.e. 3. Thus, connecting the terminal link with the
base leads to a loss of these three degrees of freedom. Consequently, the mobility
of the system is equal to 2.

3. We open the structure to obtain two serial chains connected with the base, such
that one chain contains 3 joints and the other contains 2 joints. The dimension
of the terminal link spaces of these chains are respectively 3 and 2. The motion
of the first chain can be classified as: Tx (translation along x0), Ty (translation
along y0) and Rz (rotation about z0), whereas the motion of the terminal link of

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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the second chain, whose mobility is equal to 2, can be any two degrees of freedom
among: Tx, Ty and Rz.

Consequently the common motion when connecting the two terminal links together
will be of dimension 2, and can be represented by any two variables among (Tx,
Ty, Rz). Thus the number of degrees of freedom of the terminal link (point) and the
number of degrees of freedom of the system are respectively:

ndof = 2

Ndof = L −
2∑

j=1

dim(E(x j )) + dim(E(x1) ∩ E(x2)) = 2.

Consequently, two axes should be actuated. We selected the actuators near the
base. In case of actuating more than two joints, the system will be redundantly
actuated.

A.4.2 The Planar 3–RPR Parallel Robot

This PKM is shown in Fig. 7.5. It has three legs, each being composed of three joints
(R, P, and R joints) ensuring planar motions.

The mobility of each leg is composed of Tx, Ty and Rz.
Thus

E(xi ) = Tx, Ty, Rz for i = 1, 2, 3

and thus the common space consists of: Tx, Ty and Rz.
Consequently, the mobility is equal to 3. The three prismatic joints are selected

to be the actuated joints.

A.4.3 The Orthoglide

The Orthoglide (Fig. 7.7) is composed of three legs, each of them having a prismatic
joint and a spatial parallelogram. The prismatic joints are perpendicular. Themobility
of the Orthoglide will be analyzed using the equivalent kinematic chain of each leg,
which is considered to be composed of PUU architecture, with U a universal joint
represented by two intersecting revolute axes. Thus the motion of terminal link of
each leg is composed of a prismatic joint, then two rotational and two translation

http://dx.doi.org/10.1007/978-3-319-19788-3_7
http://dx.doi.org/10.1007/978-3-319-19788-3_7
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degrees of freedom perpendicular on the prismatic axis of the first joint. Themobility
of the three legs can be written respectively as:

E(x1) = Tz, Rx, Ry, Tx, Ty

E(x2) = Tx, Ry, Rz, Ty, Tz

E(x3) = Ty, Rx, Ry, Tx, Tz.

Thus

ndof = dim(E(x1) ∩ E(x2) ∩ E(x3)) = 3

E(xp) = Tx, Ty, Tz

Ndof = L −
3∑

j=1

dim(E(x j )) + dim(E(x1) ∩ E(x2) ∩ E(x3)) = 3.

We selected the three prismatic joints as actuators.

A.4.4 The Tripteron

This PKM is shown in Fig. 9.3. It is composed of three legs, each of them having a
serial architecture with 4 joints. The first joint is prismatic and the other joints are
revolute. All the P and R joints of the same leg have parallel axes.

We can easily deduce that:

E(x1) = Tx, Ty, Tz, Rx

E(x2) = Tx, Ty, Tz, Ry

E(x3) = Tx, Ty, Tz, Rz.

Thus

ndof = dim(E(x1) ∩ E(x2) ∩ E(x3)) = 3

E(xp) = Tx, Ty, Tz

Ndof = L −
3∑

j=1

dim(E(x j )) + dim(E(x1) ∩ E(x2) ∩ E(x3)) = 3.

http://dx.doi.org/10.1007/978-3-319-19788-3_9


306 Appendix A: Calculation of the Number of Degrees …

We selected the three prismatic joints as actuators.

Remarks

Note that the simple relation of (A.2) can give the correct result for the first two
examples (planar five-bar mechanism, and 3–RPR), but it does not give the correct
result for the Orthoglide nor for the Tripteron.



Appendix B
Lagrange Equations with Multipliers

Let us consider a mechanical system whose Lagrangian L can computed by the
knowledge of the generalized coordinates q (and q̇). Let us assume that q groups
two sets of variables qa and qd (qT = [qT

a qT
d ] and q̇T = [q̇T

a q̇T
d ]) which are not

independent and are related through the expressions:

h(qa, qd) = 0 (B.1)

and:

A(qa, qd)q̇d + B(qa, qd)q̇a = 0 (B.2)

where A and B are two matrices depending on qa and qd :

A(qa, qd) =
[
∂h(qa, qd)

∂qd

]
(B.3)

and

B(qa, qd) =
[
∂h(qa, qd)

∂qa

]
. (B.4)

Moreover, we consider that the variables qa are some variables corresponding (in
the frame of this book) to motor coordinates, motors which are exerting some input
efforts τ on the system. This is not the case for the coordinates qd .

The usual Lagrange equations (6.1) cannot be derived because all coordinates in
q are not independent. In order to modify the Lagrange equations (6.1) to take into
account the constraints (B.1) and (B.2), wemust include some generalized constraint
forces γa and γd such that:

© Springer International Publishing Switzerland 2015
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τ + γa = τa, where τa = d

dt

(
∂L

∂q̇a

)T

−
(

∂L

∂qa

)T

(B.5)

γd = τd , where τd = d

dt

(
∂L

∂q̇d

)T

−
(

∂L

∂qd

)T

.

Of course, these generalized constraint forces γa and γd are internal to the system
and produce no work, i.e. the PVP states that we have, for any arbitrary velocities
q̇∗

a and q̇∗
d ,

q̇∗ T
d γd + q̇∗ T

a γa = 0. (B.6)

Now, taking the transposed expression of (B.2), we obtain

q̇T
d AT + q̇T

a BT = 0. (B.7)

This expression is also true if we right-multiply it by any arbitrary vector λ:

q̇T
d AT

λ + q̇T
a BT

λ = 0. (B.8)

By identification between (B.6) and (B.8), we can see that we have:

γa = BT
λ (B.9)

and

γd = AT
λ (B.10)

from which we obtain the new set of Lagrange equations, in which λ is called the
vector of Lagrange multipliers:

τ + BT
λ = τa, where τa = d

dt

(
∂L

∂q̇a

)T

−
(

∂L

∂qa

)T

(B.11)

AT
λ = τd , where τd = d

dt

(
∂L

∂q̇d

)T

−
(

∂L

∂qd

)T

.



Appendix C
Computation of Wrenches Reciprocal
to a System of Twists

In this Appendix, we compute the actuation and constraint wrenches associated to
some common PKM legs.

C.1 Definitions

The twist t of a body is parameterized by two vectors, the translational velocity v
and the rotational velocity ω, such that we can define a vector of dimension 6:

t =
[

v
ω

]
. (C.1)

The twist t is also called the velocity screw. ω is the resultant of the screw and v is
its moment.

A wrench w is parameterized by two vectors, the force f and the moment m, such
that we can define a vector of dimension 6:

w =
[

f
m

]
. (C.2)

The wrench w is a screw in which f is the resultant and m is the moment of the screw.
Let us define the screws:

• $ which describes a unit twist; as a result, if

– $ characterizes a pure translation, it can be written as

$ =
[

u1
0

]
(C.3)

in which u1 represents the direction of the translation and ‖u1‖ = 1.
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– $ characterizes a pure rotation, it can be written as

$ =
[

u1 × r
u1

]
(C.4)

in which u1 represents the axis of the rotation (‖u1‖ = 1) and r is the vector
defining the distance between the axis of rotation and the point at which $ is
expressed.

• ζ which describes a unit wrench.

– ζ characterizes a pure moment, it can be written as

ζ =
[

0
u2

]
(C.5)

in which u2 represents the direction around which the moment is applied and
‖u2‖ = 1.

– ζ characterizes a pure force, it can be written as

ζ =
[

u2
u2 × r

]
(C.6)

in which u2 represents the direction along which the force is applied (‖u2‖ = 1)
and r is the vector defining the distance between the point on which the force
is applied and the point at which ζ is expressed.

C.2 Condition of Reciprocity

A twist $ is reciprocal to a wrench ζ if their product is null, i.e. $T ζ = ζT $ = 0.
This means that the power developed by the wrench ζ along the motion defined by
$ is null.

From the definition of the unit twist and wrench $ and ζ, we can define the
following rules (Zhao et al. 2009):

• for a revolute joint with axis along the direction u, the reciprocal wrenches are:

– forces coplanar to u, i.e. forces directed along an axis either parallel to u or
intersecting u at a point,

– moments whose axes are orthogonal to u.

• for a prismatic joint with axis aligned along u, the reciprocal wrenches are:

– forces whose directions are orthogonal to u,
– any moment.
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These rules can be used to find the (6− n) reciprocal wrenches for a system of n
twists.

Similarly, we can define the twists reciprocal to a given wrench or system of
wrenches. The interested reader could find more details in (Zhao et al. 2009).

C.3 Computation of Wrenches Reciprocal to a System
of Twists Constrained in a Plane

This casewhere a systemof twists is constrained in a plane appear for thePPM (planar
parallel manipulators). These mechanisms are made of joints whose displacements
are all constrained in the same plane. The most common legs of PPM are presented
in Fig.C.1. They are all made of three joints, one of them being actuated (the joints
in gray).

Let us consider that the plane of motion is the (O0, x0, y0) plane. As a result, any
twist $i associated to the motion of a joint i has the following form:

$i = [
vxi vyi 0 0 0 ωzi

]T
. (C.7)

This means that, for any twist system of dimension n (representing a planar leg
composed of n active or passive joints –n ∈ [1,+∞[) defined by $ = [

$1 . . . $n
]
,

three constraint wrenches ζc1, ζc2 and ζc3 (i.e. the wrenches reciprocal to all twists
representing the passive and active joint motions) can be easily defined as

ζc1 = [
0 0 1 0 0 0

]T (C.8)

which represents a force along z0,

ζc2 = [
0 0 0 1 0 0

]T (C.9)

which represents a moment around x0, and

ζc3 = [
0 0 0 0 1 0

]T (C.10)

which represents a moment around y0.
These three constraint wrenches prevent the translation along z0 and the rotations

around x0 and y0 of the body located at the leg extremity. All legs presented in the
Fig.C.1 impose these three constraint wrenches to the platform.

Now, let us consider that one joint of the legs depicted in Fig.C.1 is actuated
(the joints in gray). This is the case for the most usual PPM. Starting from this
consideration, only two cases can appear:

1. the passive system is made of two R joints (Fig.C.2a),
2. the passive system is made of one P joint and one R joint (Fig.C.2b).
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Fig. C.1 Usual legs for
PPM. a RRR leg. b RRR leg.
c RPR leg. d RPR leg. e PPR
leg. f PPR leg. g PRR. h PRR
leg. i PRP leg. j RRR leg

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. C.2 General passive
systems for the usual legs of
PPM. a RR passive system
(ζa is aligned with (O1O2)).
b PR passive system
(ζa ⊥ u)

(a) (b)
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C.3.1 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of Two Passive R Joints

For a system composed of two R joints (one located at point O1 and the second
one at point O2, point Oi having the coordinates (xi , yi ) in the plane (O0, x0, y0)–
Fig.C.2a, it is possible to define two twists $R1 and $R2 parameterized by (when
expressed at point O2):

0$R1 = [−(y2 − y1) x2 − x1 0 0 0 1
]T (C.11)

0$R2 = [
0 0 0 0 0 1

]T
. (C.12)

The constraint wrenches ζci (i = 1, 2, 3) are reciprocal to $R1 and $R2 but one
additional wrench, denoted as the actuation wrench ζa is reciprocal to these twists.
It can be easily seen from (Zhao et al. 2009) that

0ζa = [
x2 − x1 y2 − y1 0 0 0 0

]T (C.13)

i.e. it is a force passing through the centers of the two R joints (see Fig.C.2a). It
should be noted that ζa must not be reciprocal to the twist of the third (actuated) joint

C.3.2 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of One P Joint and one R Joint

For a system composed of P joint of direction u1 = [u1x u1y 0]T and one R joint
located at point O2 (Fig.C.2b), it is possible to define two twists $P1 and $R2
parameterized by (when expressed at point O2):

0$P1 = [
u1x u1y 0 0 0 0

]T (C.14)

0$R2 = [
0 0 0 0 0 1

]T
. (C.15)

The constraint wrenches ζci (i = 1, 2, 3) are reciprocal to $P1 and $R2 but one
additional wrench, denoted as the actuation wrench ζa is reciprocal to these twists
(ζa must not be reciprocal to the twist of the third (actuated) joint). It can be easily
seen from (Zhao et al. 2009) that

0ζa = [−u1y u1x 0 0 0 0
]T (C.16)

i.e. it is a force lying in the plane (O0, x0, y0) passing through O2 and orthogonal
to the prismatic joint direction (see Fig.C.2b).
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C.4 Computation of Wrenches Reciprocal to Other Types
of Twist Systems

For SPM, other types of twist systems appear. Due to the large number of possible
leg architectures for the existing SPM, it is impossible to deal with all possible twist
systems in this Appendix. However, we will compute the wrenches reciprocal to the
twist systems corresponding to:

• UPS legs (legs of the Gough-Stewart platform—see Sect. 7.2.2.5)
• UPU legs (legs of the Tsai mechanism (Tsai and Joshi 2000)),
• RUS legs (legs of Hexa-like robots, and most of Delta-like robots (Clavel 1989;
Company et al. 2002; Pashkevich et al. 2006)).

C.4.1 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of a UPS Leg

Let us consider a UPS leg composed of an actuated P joint of direction i u =
[ux 0 uz]T in the leg frame Fi (Fig.C.3), one passive U joint which can be rep-
resented as an assembly of two R joints whose axes a1 and a2 are orthogonal to
the direction of the P joint, i.e. a1 = [1 0 0]T and a2 = [0 1 0]T in the leg frame
Fi , and one passive S joint allowing three independent rotations around three axes
a1 = [1 0 0]T a2 = [0 1 0]T and a3 = [0 0 1]T without loss of generality in the
leg frameFi (Fig.C.3).

Fig. C.3 A UPS leg (in this configuration, u ≡ zi , however, this is not the general case)

http://dx.doi.org/10.1007/978-3-319-19788-3_7
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As a result, the twist system representing the motion of the leg in the frame Fi

and expressed at the center A of the S joint is given by:

i$1 = [
0 −z A 0 1 0 0

]T (C.17)

i$2 = [
z A 0 −xA 0 1 0

]T (C.18)

i$3 = [
ux 0 uz 0 0 0

]T (C.19)

i$4 = [
0 0 0 1 0 0

]T (C.20)

i$5 = [
0 0 0 0 1 0

]T (C.21)

i$6 = [
0 0 0 0 0 1

]T (C.22)

where xA and z A are the coordinates of the point A along the axes xi and zi of the
frameFi .

The total twist system $ = [
$1 . . . $6

]
is of rank 6. Therefore, there are no

constraint wrenches.
Now, let us compute the actuation wrench when the P joint is considered actuated.

We must thus consider the twist system $d = [
$1 $2 $4 $5 $6

]
. It automatically

gives that the actuation wrench ζa is equal to, from (Zhao et al. 2009):

iζa = [
ux 0 uz 0 0 0

]T (C.23)

i.e. it is a force directed along the direction connecting the centres of the U and
S joints. We note that this force is not reciprocal to the actuated prismatic joint axis.

C.4.2 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of a UPU Leg

Let us consider aUPU leg composed of an actuatedP joint of directionu = [ux 0 uT
z

in the leg frameFi , and two passiveU joints. Each passiveU joint can be represented
as an assembly of two R joints whose axes a1 and a2 are orthogonal to the direction
of the P joint, i.e. a1 = [1 0 0]T and a2 = [0 1 0]T in the leg frame Fi (Fig.C.4).

As a result, the twist system representing the motion of the leg in the frame Fi

and expressed at the center A of the second U joint is given by:

i$1 = [
0 −z A yA 1 0 0

]T (C.24)
i$2 = [

z A 0 −xA 0 1 0
]T (C.25)
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Fig. C.4 A UPU leg (in this
configuration, u ≡ zi ,
however, this is not the
general case)

i$3 = [
ux 0 uz 0 0 0

]T (C.26)
i$4 = [

0 0 0 1 0 0
]T (C.27)

i$5 = [
0 0 0 0 1 0

]T
. (C.28)

The total twist system$ = [
$1 . . . $5

]
is of rank 5. As a result, there is a constraint

wrench given from (Zhao et al. 2009) by

iζc = [
0 0 0 0 0 1

]T (C.29)

i.e. it is a moment around the zi axis (Fig.C.4).
Now, let us compute the actuation wrench when the P joint is considered actuated.

We must thus consider the twist system $d = [
$1 $2 $4 $5

]
. It automatically gives

that the actuation wrench ζa is equal to, from [Zhao et al.., 2009]:

iζa = [
ux 0 uz 0 0 0

]T (C.30)

i.e. it is a force directed along the direction of the prismatic joint (Fig.C.4).

C.4.3 Computation of Wrenches Reciprocal to a Twist System
Representing the Motion of a RUS Leg

Let us consider a RUS leg composed of an actuated R joint of direction 0a1 =
[1 0 0]T in the base frame F0, one passive U joint which can be represented as an
assembly of two R joints whose axes are a1 and a2, with a1 = [1 0 0]T and a2 =
[0 ay az]T in the leg frame Fi , and one passive S joint allowing three independent
rotations around three axes a1 = [1 0 0]T a3 = [0 1 0]T and a4 = [0 0 1]T without
loss of generality in the leg frameFi (Fig.C.5).
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Fig. C.5 A RUS leg

As a result, the twist system representing the motion of the leg in the frame F0
and expressed at the center B of the S joint (with coordinates in the base frame xB ,
yB and zB) is given by:

i$1 = [
0 −zB yB 1 0 0

]T (C.31)

i$2 = [
0 −z AB yAB 1 0 0

]T (C.32)

i$3 = [
ayz AB − az yAB az xAB −ay xAB 0 ay az

]T (C.33)

i$4 = [
0 0 0 1 0 0

]T (C.34)

i$5 = [
0 0 0 0 1 0

]T (C.35)

i$6 = [
0 0 0 0 0 1

]T (C.36)

where xAB , yAB and z AB are the coordinates of the vector
−→
AB along the axes of the

frameF0. Note that
−→
AB⊥a2, i.e. that yABay + z ABaz = 0.

The total twist system $ = [
$1 . . . $6

]
is of rank 6. Therefore, there are no

constraint wrenches.
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Now, let us compute the actuation wrench when the first R joint is considered
actuated. We must thus consider the twist system $d = [

$2 . . . $6
]
. It automatically

gives that the actuation wrench ζa is equal to, from (Zhao et al. 2009):

iζa = [
xAB yAB z AB 0 0 0

]T
/

√
x2AB + y2AB + z2AB (C.37)

i.e. it is a force directed along the direction given by the vector
−→
AB (Fig.C.5). We

can verify that ζa is not orthogonal to the unit twist of the actuated joint.



Appendix D
Point-to-Point Trajectory Generation

Let us consider a robot displacement between an initial configuration A0 parame-
terized by the Cartesian variables x0 and a final configuration A f parameterized by
the Cartesian variables x f . The trajectory between these two configurations can be
defined by the functions

x(t) = s(t)
(
x f − x0

) + x0 (D.1)

ẋ(t) = ṡ(t)
(
x f − x0

)
(D.2)

ẍ(t) = s̈(t)
(
x f − x0

)
(D.3)

where:

• t ∈ [0, t f ], where t = 0 s is the time at which the robot starts to move from the
initial configuration A0 and t f is the time at which the robot arrives at the final
configuration A f

• x(t) denotes the robot Cartesian variables at the time t ,
• ẋ(t) denotes the first derivative w.r.t. time of the robot Cartesian variables at the
time t ,

• ẍ(t) denotes the second derivative w.r.t. time of the robot Cartesian variables at
the time t ,

• s(t) is an interpolation function.

We can deduce from (D.1) that the path in the Cartesian space will be defined by
a straight line. The boundary conditions for s(t) are deduced as:

s(t = 0 s) = 0 (D.4)

s(t = t f ) = 1. (D.5)
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Moreover, if at the initial and final configurations, the velocities and accelerations
are null, we have

ṡ(t = 0 s) = 0 (D.6)

ṡ(t = t f ) = 0 (D.7)

s̈(t = 0 s) = 0 (D.8)

s̈(t = t f ) = 0. (D.9)

From these boundary conditions, and assuming that the interpolation function s(t)
is a polynomial of the form:

s(t) =
n∑

k=0

ak tk (D.10)

we can find the coefficients ak .
For high speed robots or when a robot is handling heavy or delicate loads, it is

worth ensuring the continuity of the position, velocity, and accelerations as well, in
order to avoid exciting resonances in the mechanics. The trajectory is said to be of
class C2. Thus, from (D.2) and (D.3), we must define the functions ṡ(t) and s̈(t),
given by

ṡ(t) =
n∑

k=1

k ak tk−1 (D.11)

and

s̈(t) =
n∑

k=2

k (k − 1) ak tk−2. (D.12)

Since six constraints (D.4)–(D.9) have to be satisfied, the interpolation requires a
polynomial of at least fifth degree (Binford et al. 1977).

Solving the six constraints yields the following interpolation function:

s(t) = 10

(
t

t f

)3

− 6

(
t

t f

)4

+ 15

(
t

t f

)5

. (D.13)

Obviously, if we increase the number of boundary conditions to take into account,
the order of the polynomial will increase. For example, if nc constraints have to be
satisfied, the interpolation requires a polynomial of at least nc − 1 degree.



Appendix E
Calculation of the Terms facc1, facc2 and facc3
in Chapter 10

E.1 Calculation of the Term facc1

From (10.12) and (10.15), we get that facc1 is given by

facc1 =
∫
B j

v̇M j dm

=
∫
B j

(
v̇ j + Φd j (M0 j ) q̈e j + 2ω j × Φd j (M0 j )q̇e j

)
dm

+
∫
B j

(
ω j × (

ω j × rO j M j

) + ω̇ j × rO j M j

)
dm (E.1)

which can be expanded to be rewritten as

facc1 =
∫
B j

v̇ jdm +
∫
B j

Φd j (M0 j )dmq̈e j

+ ω̇ j ×
(∫

B j

rO j M j dm

)

+ 2ω j ×
(∫

B j

Φd j (M0 j )dm q̇e j

)

+ ω j ×
(

ω j ×
(∫

B j

rO j M j dm

))
. (E.2)

E.2 Calculation of the Term facc2

From (10.12) and (10.15), we get that facc2 is given by
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facc2 =
∫
B j

rO j M j × v̇M j dm

=
∫
B j

rO j M j × (
v̇ j + Φd j (M0 j )q̈e j + 2ω j × Φd j (M0 j )q̇e j

)
dm

+
∫
B j

rO j M j × (
ω j × (

ω j × rO j M j

) + ω̇ j × rO j M j

)
dm (E.3)

which can be expanded to be rewritten under a sum of five terms:

facc2 =
5∑

k=1

ak (E.4)

where:

a1 =
∫
B j

rO j M j × v̇ jdm (E.5)

=
(∫

B j

rO j M j dm

)
× v̇ j

a2 =
∫
B j

rO j M j × (
Φd j (M0 j )q̈e j

)
dm

=
∫
B j

r̂O j M j Φd j (M0 j )q̈e j dm (E.6)

=
(∫

B j

r̂O j M j Φd j (M0 j )dm

)
q̈e j

a3 =
∫
B j

rO j M j × (
ω̇ j × rO j M j

)
dm

= −
∫
B j

rO j M j × (
rO j M j × ω̇ j

)
dm

= −
∫
B j

r̂O j M j

(
r̂O j M j ω̇ j

)
dm (E.7)

=
∫
B j

r̂T
O j M j

r̂O j M j ω̇ jdm

=
∫
B j

r̂T
O j M j

r̂O j M j dm ω̇ j

a4 =
∫
B j

rO j M j × (
ω j × (

ω j × rO j M j

))
dm (E.8)

a5 = 2
∫
B j

rO j M j × (
ω j × Φd j (M0 j )q̇e j

)
dm. (E.9)
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To simplify the term a4, let us recall the well-known identity for the double cross-
product of three arbitrary vectors u, v and w:

u × (v × w) + w × (u × v) + v × (w × u) = 0. (E.10)

If u = rO j M j , v = ω j , w = ω j × rO j M j , so w × (u × v) = 0 which leads to

u × (v × w) = −v × (w × u) (E.11)

or also, replacing the vectors u, v and w by their corresponding values

rO j M j × (
ω j × (

ω j × rO j M j

)) = −ω j × ((ω j × rO j M j ) × rO j M j ). (E.12)

Thus, a4 becomes

a4 = −
∫
B j

ω j × ((
ω j × rO j M j

) × rO j M j

)
dm

= −
∫
B j

ω j × (
rO j M j × (

rO j M j × ω j
))
dm

= −
∫
B j

ω j × (
r̂O j M j r̂O j M j ω j

)
dm (E.13)

= ω j ×
((∫

B j

r̂T
O j M j

r̂O j M j dm

)
ω j

)
.

Now, introducing (10.4) into (E.9), the expression of a5 becomes

a5 = 2(a51 + a52) (E.14)

where

a51 =
∫
B j

rO j M0 j × (
ω j × Φd j (M0 j )q̇e j

)
dm (E.15)

= −
∫
B j

rO j M0 j × ((
Φd j (M0 j )q̇e j

) × ω j
)
dm

a52 =
∫
B j

(
Φd j (M0 j )qe j

) × (
ω j × Φd j (M0 j )q̇e j

)
dm (E.16)

= −
∫
B j

(
Φd j (M0 j )qe j

) × ((
Φd j (M0 j )q̇e j

) × ω j
)
dm.
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In order to simplify these two expressions, let us consider the fact that:

Φd j (M0 j )qe j =
N j∑

k=1

Φdk j (M0 j )qek j (E.17)

Φd j (M0 j )q̇e j =
N j∑

k=1

Φdk j (M0 j )q̇ek j . (E.18)

Introducing (E.18) into (E.15) leads to:

a51 = −
∫
B j

rO j M0 j ×
⎛
⎝

⎛
⎝

N j∑
k=1

Φdk j (M0 j )q̇ek j

⎞
⎠ × ω j

⎞
⎠ dm

= −
N j∑

k=1

(∫
B j

rO j M0 j × ((
Φdk j (M0 j )q̇ek j

) × ω j
)
dm

)
(E.19)

= −
N j∑

k=1

(∫
B j

rO j M0 j × (
Φdk j (M0 j ) × ω j

)
dm q̇ek j

)

=
N j∑

k=1

(∫
B j

r̂T
O j M0 j

Φ̂dk j (M0 j )dm

)
ω j q̇ek j .

Then, introducing (E.17) and (E.18) into (E.16) leads to:

a52 = −
∫
B j

⎛
⎝

N j∑
i=1

Φdi j (M0 j )qei j

⎞
⎠ ×

⎛
⎝

⎛
⎝

N j∑
k=1

Φdk j (M0 j )q̇ek j

⎞
⎠ × ω j

⎞
⎠ dm

= −
N j∑

i=1

N j∑
k=1

(∫
B j

(
Φdi j (M0 j )qei j

) × ((
Φdk j (M0 j )q̇ek j

) × ω j
)
dm

)

= −
N j∑

i=1

N j∑
k=1

(∫
B j

Φdi j (M0 j ) × (
Φdk j (M0 j ) × ω j

)
dm qei j q̇ek j

)
(E.20)

= −
N j∑

i=1

N j∑
k=1

(∫
B j

Φ̂di j (M0 j )Φ̂dk j (M0 j )ω jdm qei j q̇ek j

)

=
N j∑

i=1

N j∑
k=1

(∫
B j

Φ̂T
di j

(M0 j )Φ̂dk j (M0 j )dm

)
ω j qei j q̇ek j .

Finally, introducing expressions (E.5), (E.6), (E.7), (E.13), (E.14), (E.19), and
(E.20) into (E.4), the expression (10.18) can be obtained.

http://dx.doi.org/10.1007/978-3-319-19788-3_10
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E.3 Calculation of the Term facc3

From (10.12) and (10.15), we get that facc3 is given by

facc3 =
∫
B j

ΦT
d j

(M0 j )v̇M j dm

=
∫
B j

ΦT
d j

(M0 j )
(
v̇ j + Φd j (M0 j )q̈e j + 2ω j × Φd j (M0 j )q̇e j

)
dm

+
∫
B j

ΦT
d j

(M0 j )
(
ω j × (

ω j × rO j M j

) + ω̇ j × rO j M j

)
dm (E.21)

which can be expanded to be rewritten under a sum of five terms:

facc3 =
5∑

k=1

bk (E.22)

where:

b1 =
∫
B j

Φd j (M0 j )
T v̇ jdm (E.23)

=
(∫

B j

Φd j (M0 j )dm

)T

v̇ j

b2 =
∫
B j

ΦT
d j

(M0 j )
(
Φd j (M0 j )q̈e j

)
dm (E.24)

=
(∫

B j

ΦT
d j

(M0 j )Φd j (M0 j )dm

)
q̈e j

b3 =
∫
B j

ΦT
d j

(M0 j )
(
ω̇ j × rO j M j

)
dm

= −
∫
B j

ΦT
d j

(M0 j )
(
rO j M j × ω̇ j

)
dm

= −
∫
B j

ΦT
d j

(M0 j )r̂O j M j ω̇ jdm (E.25)

=
(∫

B j

ΦT
d j

(M0 j )r̂T
O j M j

dm

)
ω̇ j

=
(∫

B j

r̂O j M j Φd j (M0 j )dm

)T

ω̇ j

http://dx.doi.org/10.1007/978-3-319-19788-3_10
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b4 =
∫
B j

ΦT
d j

(M0 j )
(
ω j × (

ω j × rO j M j

))
dm (E.26)

b5 = 2
∫
B j

ΦT
d j

(M0 j )
(
ω j × Φd j (M0 j )q̇e j

)
dm. (E.27)

Considering the i th component b4|i of the vector b4, we can rewrite (E.26) as

b4|i =
∫
B j

ΦT
di j

(M0 j )
(
ω j × (

ω j × rO j M j

))
dm (E.28)

in which Φdi j (M0 j ) is the i th column of the matrix Φd j (M0 j ).
Now, introducing (10.4) into (E.28), the expression of b4|i becomes

b4|i = b4i1 + b4i2 (E.29)

where

b4i1 =
∫
B j

ΦT
di j

(M0 j )
(
ω j × (

ω j × rO j M0 j

))
dm (E.30)

=
∫
B j

ΦT
di j

(M0 j )
((

rO j M0 j × ω j
) × ω j

)
dm

b4i2 =
∫
B j

ΦT
di j

(M0 j )
(
ω j × (

ω j × (
Φd j qe j

)))
dm. (E.31)

To simplify the term b4i1, let us recall thewell-known identity for the triple product
of three arbitrary vectors u, v and w:

uT (v × w) = wT (u × v). (E.32)

Now, replacing u by Φdi j (M0 j ), v by ω j × rO j M0 j , and w by ω j , we get

b4i1 =
∫
B j

ωT
j

(
Φdi j (M0 j ) × (

rO j M0 j × ω j
))
dm

= ωT
j

(∫
B j

Φ̂di j (M0 j )r̂O j M0 j dm

)
ω j (E.33)

= − ωT
j

(∫
B j

Φ̂T
di j

(M0 j )r̂O j M0 j dm

)
ω j

= − ωT
j

(∫
B j

r̂T
O j M0 j

Φ̂di j (M0 j )dm

)T

ω j .
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Now, in order to simplify the term b4i2, let us consider the fact that:

Φd j (M0 j )qe j =
N j∑

k=1

Φdk j (M0 j )qek j . (E.34)

Thus, b4i2 can be rewritten as

b4i2 =
∫
B j

ΦT
di j

(M0 j )

⎛
⎝ω j ×

⎛
⎝ω j ×

⎛
⎝

N j∑
k=1

Φdk j (M0 j )qek j

⎞
⎠

⎞
⎠

⎞
⎠ dm

=
N j∑

k=1

∫
B j

ΦT
di j

(M0 j )
(
ω j × (

ω j × Φdk j (M0 j )qek j

))
dm (E.35)

=
N j∑

k=1

∫
B j

ΦT
di j

(M0 j )
(
ω j × (

ω j × Φdk j (M0 j )
))
dm qek j .

Once again, using the identity (E.32) by replacing u by ω j , v by ω j × Φdk j (M0 j ),
and w by Φdi j (M0 j ), we can obtain

b4i2 =
N j∑

k=1

∫
B j

ωT
j

((
ω j × Φdk j (M0 j )

) × Φdi j (M0 j )
)
dm qek j

=
N j∑

k=1

ωT
j

(∫
B j

Φdi j (M0 j ) × (
Φdk j (M0 j ) × ω j

)
dm

)
qek j

=
N j∑

k=1

ωT
j

(∫
B j

Φ̂di j (M0 j )Φ̂dk j (M0 j )ω jdm

)
qek j (E.36)

= −
N j∑

k=1

ωT
j

(∫
B j

Φ̂T
di j

(M0 j )Φ̂dk j (M0 j )dm

)
ω j qek j .

Now, considering the i th component b5|i of the vector b5, we can rewrite (E.27) as

b5|i = 2
∫
B j

ΦT
di j

(M0 j )
(
ω j × Φd j (M0 j )q̇e j

)
dm. (E.37)

In order to simplify the term b5|i , let us consider the fact that:

Φd j (M0 j )q̇e j =
N j∑

k=1

Φdk j (M0 j )q̇ek j . (E.38)



328 Appendix E: Calculation of the Terms facc1 , facc2 and facc3 …

Thus, b5|i can be rewritten as

b5|i = 2
∫
B j

ΦT
di j

(M0 j )

⎛
⎝ω j ×

⎛
⎝

N j∑
k=1

Φdk j (M0 j )q̇ek j

⎞
⎠

⎞
⎠ dm

= 2

N j∑
k=1

(∫
B j

ΦT
di j

(M0 j )
(
ω j × Φdk j (M0 j )

)
dm q̇ek j

)
(E.39)

= − 2

N j∑
k=1

(∫
B j

ΦT
di j

(M0 j )
(
Φdk j (M0 j ) × ω j

)
dm q̇ek j

)
.

Using the identity (E.32) by replacingu byΦdi j (M0 j ),v byω j , andw byΦdk j (M0 j ),
we can obtain

b5|i = − 2

N j∑
k=1

(∫
B j

ΦT
di j

(M0 j )
(
Φdk j (M0 j ) × ω j

)
dm q̇ek j

)

= − 2

N j∑
k=1

(∫
B j

ωT
j

(
ΦT

di j
(M0 j ) × Φdk j (M0 j )

)
dm q̇ek j

)

= 2

N j∑
k=1

(∫
B j

ωT
j

(
Φdk j (M0 j ) × ΦT

di j
(M0 j )

)
dm q̇ek j

)
(E.40)

= 2

N j∑
k=1

(∫
B j

Φdk j (M0 j ) × ΦT
di j

(M0 j )dm

)T

ω j q̇ek j .

Finally, taking the i th rows of expressions (E.23), (E.24) and (E.25) and summing
them with the expressions (E.33), (E.36) and (E.40), the expression (10.19) can be
obtained.

http://dx.doi.org/10.1007/978-3-319-19788-3_10


Appendix F
Dynamics Equations for a Clamped-Free
Flexible Beam

F.1 Shape Functions for a Free Flexible Beam

Computation of the mass and stiffness matrices of 3D beams is useful for elastody-
namic modeling of parallel manipulators.

The Bernoulli model describes beam deformation under the assumption that the
shear effect is negligible, that the cross-sections remain perpendicular to the neutral
axis and that the rotational inertia of sections is assumed to be zero Blevins (2001).
With such a model, the 3D beam deformation ue j (M0 j ) (see Sect. 10.2.1) can be
characterized with the six shape functions Φdx j , Φdy j , Φdz j , Φr x j , Φr y j and Φr z j ,
i.e. N j = 6, defined as:

Φdx j = [
ξ 0 0 0 0 0

]
(F.1a)

Φdy j = [
0 3ξ2 − 2ξ3 0 0 0 l j

(
ξ3 − ξ2

)]
(F.1b)

Φdz j = [
0 0 3ξ2 − 2ξ3 0 −l j

(
ξ3 − ξ2

)
0
]

(F.1c)

Φr x j = [
0 0 0 ξ 0 0

]
(F.1d)

Φr y j = [
0 0 −6

(
ξ − ξ2

)
/ l j 0 3ξ2 − 2ξ 0

]
(F.1e)

Φr z j = [
0 6

(
ξ − ξ2

)
/ l j 0 0 0 3ξ2 − 2ξ

]
(F.1f)

where ξ = x/ l j and l j is the beam length.
x , y and z denote the Cartesian coordinates of point M0 j expressed in the local

frameF j and Φd j (M0 j ) defined at (10.3) is a (3 × 6) matrix that takes the form:

Φd j (M0 j ) =
⎡
⎣
Φdx j − yΦr z j + zΦr y j

Φdy j − zΦr x j

Φdz j + yΦr x j

⎤
⎦ (F.2)
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while Φr j (M0 j ) defined at (10.5) is a (3 × 6) matrix equal to:

Φr j (M0 j ) =
⎡
⎣
Φr x j

Φr y j

Φr z j

⎤
⎦ . (F.3)

F.2 Stiffness Matrix for a Free Flexible Beam

In the beam model, it is assumed that (Shabana 2005)

σ j22 = σ j33 = σ j23 = 0 (F.4)

ε j22 = ε j33 = ε j23 = 0 (F.5)

σ j11 = E jε j11 (F.6)

σ j12 = G jε j12 (F.7)

σ j13 = G jε j13 (F.8)

where E j is the Young modulus of body j and G j = E j/(2(1 + ν j )) is its shear
modulus, ν j being the Poisson’s coefficient.

Introducing (F.1a) to (F.8) into (10.35), the stiffness matrix of bodyB j takes the
form:

Kee j = 1

l3j

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E j A j l2j 0 0 0 0 0
0 12E j Iz j 0 0 0 −6E j Iz j l j

0 0 12E j Iy j 0 6E j Iy j l j 0
0 0 0 I0 j G j l2j 0 0
0 0 6E j Iy j l j 0 4E j Iy j l

2
j 0

0 −6E j Iz j l j 0 0 0 4E j Iz j l
2
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(F.9)

where A j is the beam cross-section area, Iy j and Iz j are the second moments of area
around axes y and z of the local frame, I0 j is the torsion constant.

F.3 Evaluation of the Inertia Matrix of a Free Flexible 3D
Bernoulli Beam for qe j = 0

For qe j = 0, the inertia matrix of the flexible 3D Bernoulli beam becomes, from
Sect. 10.2.24:

M j =
⎡
⎢⎣

m j 13 m̂sT
r j

MSde j

m̂sr j Irr j MSr
re j

MST
de j

MSr T
re j

Mee j

⎤
⎥⎦ (F.10)
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where

MSr
re j

= [
β1 j

. . . βN j, j

]
. (F.11)

After simplifications, we get that

MSde j =

⎡
⎢⎢⎢⎢⎣

m j

2
0 0 0 0 0

0
m j

2
0 0 0

m jl j

12
0 0

m j

2
0

m jl j

12
0

⎤
⎥⎥⎥⎥⎦

(F.12)

MSr
re j

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
ρ j l j Ip j

2
0 0

0 0 −ρ j Iy j − 7m jl j

20
0 −m jl2j

20
0

0 ρ j Iz j + 7m jl j

20
0 0 0 −m jl2j

20

⎤
⎥⎥⎥⎥⎥⎥⎦

(F.13)

and

Mee j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m j
3 0 0 0 0 0

0
13m j
35 + 6ρ j Iz j

5l j
0 0 0 − 11m j l j +21ρ j Iz j

210

0 0
13m j
35 + 6ρ j Iy j

5l j
0

11m j l j +21ρ j Iy j
210 0

0 0 0
ρ j l j I p j

3 0 0

0 0
11m j l j +21ρ j Iy j

210 0
m j l2j +14ρ j Iy j l j

105 0

0 − 11m j l j +21ρ j Iz j
210 0 0 0

m j l2j +14ρ j Iz j l j

105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.14)
where Ip j = Iy j + Iz j is the polar moment of inertia.
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angular acceleration, 36
linear acceleration, 36
of a body, 36
of flexible PKM, 264
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of joints of open kinematic chains, 58
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of the platform of a PKM, 122

Active joint, 46
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Aspect, 57
Atan2 function, 82
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Base dynamic parameters, 189
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C
Cable-driven parallel robot, 15
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Clamped-free flexible body, 240
Closed loop, 44
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Cross-product matrix, 35
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Customized symbolic algorithm, 48, 152,
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Decoupled robot, 9, 103, 202
Degeneracy of the dynamic model, 201
Degree of freedom (DOF), 6
Denavit-Hartenberg, 40
DualEMPS, 269

elastodynamicmodel, 273
natural frequencies, 289

DualV, 14
geometric and kinematic models, 179
inverse dynamic model, 182

Dynamic model
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ground reaction model (GRM), 140, 184
inverse dynamic model (IDM), 140, 144,
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of parallel robots with actuation redun-
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of parallel robots with kinematic redun-
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E
Eig function, 232
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acceleration, 121
frame, 76
twist, 105

Energy
elastic potential energy, 246, 280
energy model, 140, 187
kinetic energy, 62
potential energy, 64

Euler
angles, 27, 109, 124
parameters, 26

F
First moments of inertia

for a flexible body, 249
for a rigid body, 63

Five-bar mechanism, 9
base dynamic parameters, 198
direct dynamic model, 164
energy model, 188
first-order kinematic model, 114
forward geometric model, 94
ground reaction model, 185
inverse dynamic model, 162
inverse geometric model, 80
second-order kinematic model, 127
singularity, 137
trajectory generation through singularity,
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Flexible body, 240
Flexible joint, 266, 287
Flexible robot, 237, 279
Force, 34
Four-bar linkage, 97
Friction, 147

G
Gear transmission ratio, 147
Generalized accelerations, 264
Generalized coordinates, 40, 61

active generalized coordinates, 61, 65
elastic generalized coordinates, 241
passive generalized coordinates, 65

Generalized forces, 61
Generalized inertia matrix

of a flexible body, 253
of a flexible robot, 266
of a rigid body, 63
of a rigid robot, 62

Generalized Newton-Euler principle, 240,
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Generalized velocities, 61, 261

elastic generalized velocities, 242
Geometric description, 40
Geometric model

forward geometric model (FGM), 92
inverse geometric model (IGM), 76

Geometric parameter, 40
Gough-Stewart platform, 13

forward geometric model, 100
inverse geometric model, 89
kinematic model, 120
singularity, 138

Grassmann geometric, 134
Grassmann-Cayley algebra, 135
Gravity, 62, 64, 149, 152, 153, 159, 175, 254,

261, 266
Grouped parameters, 196

H
Half-angle formula, 82
Homogeneous coordinate, 19
Homogeneous transformation matrix, 20
Hooke’s law, 248
Hybrid parallel robot, 14

I
Inertia matrix

of a flexible body, 250
of a rigid body, 63

Inertia of actuators, 147, 260, 284
Inertial parameters, 67, 190

J
Jacobian

inverse Jacobian matrix, 108, 111
inverse kinematic Jacobian matrix, 108
Jacobian matrix, 108, 111
Jacobian matrix of a flexible parallel
robot, 264

Jacobian matrix of a flexible tree-
structure robot, 255

kinematic Jacobian matrix, 53, 108
Joint

active, 8
passive, 8
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revolute, 8
spherical, 8
universal, 8
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Kinematic constraint equation, 44, 65, 105,

121, 155, 172
Kinematic model

forward kinematic model (FKM), 52,
108

inverse kinematic model (IKM), 55, 108

L
Lagrange

equation, 61, 143
formulation, 61
multiplier, 65, 156, 173

Lagrangian, 62, 143
Leg passive joint twist system (LPJTS), 131
Loop closure equation, 44, 76
Lower mobility robot, 6

M
Mathematica, 153, 268, 289
Matlab, 136, 232, 273, 279, 295
Mobility, 6
Modified Denavit-Hartenberg parameters,

40
Moment, 34
Moving platform, 3

N
Newton-Euler

algorithm, 144
equations, 67, 70

Newton-Raphson, 104
Null space, 56, 129
Number of degrees of freedom

of the platform, 9
of the robot, 9

O
Olinde-Rodrigues parameters, 26
OpenSYMORO, 58, 59
Orthoglide, 11

base dynamic parameters, 198
direct dynamic model, 167
first-order kinematic model, 119
forward geometric model, 98
inverse dynamic model, 167
inverse geometric model, 86
second-order kinematic model, 128
singularity, 138

Over-constrained robot, 262

Overconstraint, 66, 172, 173

P
Parallel kinematic machine (PKM), 3
Parallel robot, 3
Passive joint, 46
Payload, 3, 178
Plücker coordinates, 134
Planar 3–RPR parallel manipulator

forward geometric model, 95
forward kinematic model, 117
inverse geometric model, 83

Planar parallel manipulators (PPM), 9
forward geometric model, 98
inverse geometric model, 86
singularity, 138

Platform, 3
Platform coordinates, 76
Poisson coefficient, 248
Principle of virtual powers (PVP), 68, 156,

254
Pseudo-inverse, 56, 66, 108, 109, 123, 124,

173
Python, 153

Q
QR decomposition, 195
Quaternions, 26, 109

R
Recursive computation

of the accelerations, 257
of the dynamic models, 144
of the kinematic Jacobian matrices, 58,
255

of velocities, 57, 255
Redundancy

actuation redundancy, 14
kinematic redundancy, 13

Robot inertia matrix, 62
Roll-Pitch-Yaw angles, 29
Rotation matrix, 20
Rotor inertia, 147

S
Screw, 33

transformation matrix, 35
Serial chain, 3
Sextic curve, 98
Shape functions, 241
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Shear modulus, 330
Sign function, 26
Simple open chain, 41
Singular value decomposition (SVD), 196
Singularities

LPJTS singularities, 131, 204
constraint singularities, 132
input-output singularities, 128
of open chains, 56
of Type 1, 128
of Type 2, 129, 204
of Type 3, 130
serial singularities, 130

Singularity analysis, 133
Spatial parallel manipulators (SPM), 10

forward geometric model, 101
singularity, 138

Static moments, 63
Stiffness matrix

of a flexible body, 248
of a flexible parallel robot, 285
of a flexible tree structure robot, 284

Strain vector, 246
Stress vector, 246

T
Tilt-and-Torsion angles, 31
Trajectory generation, 214, 319

Transformation matrix
between twists, 35
between wrenches, 36
homogeneous transformation matrix, 20

Translational parallel manipulators (TPM),
11

Tree-structure chain, 3
Tripteron, 11

geometric and kinematic models, 218
inverse dynamic model, 223
singularity, 204

Twist, 33

V
Velocity

angular velocity, 33
linear velocity, 33
of a body, 33
of flexible tree structure robot, 255
of joints of open kinematic chains, 52
of the active joints of a PKM, 108
of the passive joints of a PKM, 111
of the platform of PKM, 108, 109

W
Wrench, 34

actuation wrench, 106, 134
constraint wrench, 133
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