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Series Preface

Mechanical engineering, an engineering discipline born of the needs of the
Industrial Revolution, is once again asked to do its substantial share in the call
for industrial renewal. The general call is urgent as we face the profound issues
of productivity and competitiveness that require engineering solutions, among
others. The Mechanical Engineering Series is a new series, featuring graduate
texts and research monographs, intended to address the need for information in
contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that will cover a broad range
of concentrations important to mechanical engineering graduate education and
research. We are fortunate to have a distinguished roster of consulting editors,
each an expert in one of the areas of concentration. The names of the consult-
ing editors are listed on page vi. The areas of concentration are applied
mechanics, biomechanics, computational mechanics, dynamic systems and
control, energetics, mechanics of materials, processing, thermal science, and
tribology.

We are pleased to present Nonlinear Analysis of Thin-Walled Structures by
James F. Doyle.

Austin, Texas Frederick F. Ling



Preface

This book is concerned with the challenging subject of the nonlinear static,
dynamic, and stability analyses of thin-walled structures. It carries on from
where Static and Dynamic Analysis of Structures, published by Kluwer 1991,
left off; that book concentrated on frames and linear analysis, while the present
book is focused on plated structures, nonlinear analysis, and a greater emphasis
on stability analysis.

It is worth restating the justification used for the first volume because it seems
even truer today, nearly a decade later. As pointed out, with the widespread
availability and use of computers, today’s engineers have on their desks an anal-
ysis capability undreamt of by previous generations. However, the ever increasing
quality and range of capabilities of commercially available software packages have
divided the engineering profession into two groups: a small group of specialist
program writers that know the details of the coding, algorithms, and solution
strategies; and a much larger group of practicing engineers who use the pro-
grams. It is possible for this latter group to use this enormous power without
really knowing anything of its source. Therein lies the potential danger — the
engineer is seduced by the power, the litany of capabilities, the seeming ease of
use, and forgets how to perform simple consistency and validation checks. We
use, and we should use, commercial packages when they are available. But to
make safe, efficient, and intelligent use of them, we need to have some idea of
their inner workings as well as the mechanics foundations on which they are
built. That is the purpose of this book.

To be an intelligent user of these powerful commercial programs requires some
appreciation of the full range of assumptions and procedures on which they are
based. Without doubt, an understanding of the mechanics principles is essential,
but it is not sufficient, because these principles are transformed in subtle ways
when converted into algorithms and code. This situation is exacerbated even
more when nonlinear dynamics and stability are involved.

With the foregoing in mind, this book sets as its goal the treatment of non-
linear behavior of thin-walled structures starting with the basic mechanics prin-
ciples and going all the way to their implementation on digital computers. It is
only by studying this in its complete extent do the unique difficulties of com-
putational mechanics manifest themselves. Rather than discuss particular com-
mercial packages, we use the program NonStaD: a complete (but lean) program
to perform each of the standard procedures used in commercial programs.



X Preface

Most topics from that first volume are not repeated but some (such as the
finite difference schemes) are revisited since they are affected by the nonlinear
case.

No source code is included in this volume, but to encourage readers to try the
algorithms, I have posted on my Web homepage the source code to many of the
algorithms and problems discussed in the text. The URL is:

http://aae.www.ecn.purdue.edu/~jfdoyle

Look under the section on Source Code. In a similar vein, I have tried to supple-
ment each chapter with a collection of pertinent problems plus specific references
that can form the basis for further studies.

Lafayette, Indiana James F. Doyle
February, 2001
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Notation

Roman letters:

a radius, plate width

A surface area, cross-sectional area

b, b; thickness, depth, plate length, body force
Co longitudinal wave speed, \/EA/pA

C, [ C] damping, damping matrix

D plate stiffness, Eh%/12(1 — v?)

é; unit vectors

€ij Eulerian strain tensor

E, E Young’s modulus, viscoelastic modulus

EI beam flexural stiffness

E;; Lagrangian strain tensor

F, F, F, member axial force, element nodal force

F equilibrium path

gi(x) element shape functions

h beam or rod height, plate thickness

h; area coordinates

i complex v/—1, counter

1 second moment of area, I = bh®/12 for rectangle
I, modified Bessel functions of the first kind
Je, J Jacobian, polar moment of area, J = wd* /32 for circle
JIn Bessel functions of the first kind

k, ki1, k2 wavenumbers

K,[ k ],[ K] stiffness, stiffness matrices

K, modified Bessel functions of the second kind
L length

M, M, moment

M,[m ], [ M ] mass, mass matrix

N; shape functions

P(t), P, {P} applied force history, vector of nodal loads

[ P] projector matrix

q distributed load

r, R radial coordinate, radius

[ R rotation matrix

t, ts time, traction

T time window, kinetic energy, temperature
[ T ] transformation matrix

u(t) response; velocity, strain, etc.

u, v, w displacements

U strain energy

\% member shear force, volume, potential, Lyapunov function
w space transform window

original rectilinear coordinates

T, Y, 2 deformed rectilinear coordinates

Y, Bessel functions of the second kind
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Greek letters:
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Special Symbols:
v?
(1
{}

Subscripts:
E,G,T
1:7 j’ k

Superscripts:
K

o
*

Abbreviations:
DoF
CST
DKT
FEM
MRT

Notation

coefficient of thermal expansion
matrix of direction cosines
small quantity, variation
Kronecker delta

determinant, increment

small quantity, strain
permutation symbol

viscosity, damping, principal coordinate
angular coordinate

plate curvature

Lamé constant, eigenvalue
Shear modulus, complex frequency
Poisson’s ratio

variational coordinate

total potential energy

mass density

stress, strain

Airy stress function, rotation
modal matrix

damping ratio

angular frequency

rotation tensor

. . 2 2
differential operator, ;)_zf + ;%7

square matrix
vector

elastic, geometric, tangent stiffness matrix
tensor components

Kirchhoff stresses

original configuration

complex conjugate

bar, local coordinates

dot, time derivative

hat, frequency dependent, vector

prime, derivative with respect to argument

degree of freedom

constant strain triangle element

discrete Kirchhoff triangle element

finite element method

membrane with rotation triangle element



Introduction

Physical science has two different directions of progress, which have
been called the ascending and the descending scale, the inductive and
the deductive method, the way of analysis and of synthesis. In every
physical science, we must ascend from facts to laws, by the way of
induction and analysis; and we must descend from laws to
consequences, by the deductive and synthetic way.

W.R. HAMILTON ([31]

Owing to the necessity to save weight and material in the design of modern
structures, thin-walled reinforced constructions have emerged as a dominant
style. These light-weight structures, however, are more susceptible than their
traditional counterparts to problems originating from large deflections, nonlinear
vibrations, and structural instabilities, and therefore require a greater depth and
breadth of analyses.

This book sets as its goal the treatment of nonlinear behavior of thin-walled
structures starting with the basic mechanics principles and going all the way to
their implementation on computers. It is only by studying this in its complete
extent do the unique difficulties of computational mechanics (as well as the
limitations of the theory) fully manifest themselves. An attempt is made for this
book to be more than just a collection of disparate topics on nonlinear structures;
rather, topics are introduced and developed in such a way that they are given
meaning as part of a coherent whole. The central theme and thread running
through the book is the notion that instability of the equilibrium is synonymous
with motion and large displacements, and therefore requires a fully nonlinear
dynamic analysis capability.

Types of Structures Considered

Structures that can be satisfactorily idealized as a collection of line elements
are called frame or skeletal structures; Figure 1.1 shows a few examples. Usually
their members are assumed to be connected either by frictionless pins or by rigid
joints.

A rod member can support only axial loads, whereas a beam member supports
bending as well as transverse loads. A truss consists of a collection of arbitrarily
oriented rod members that are interconnected at pinned joints. They are loaded
only at their joints and (because the joints cannot transmit bending moments)

J. F. Doyle, Nonlinear Analysis of Thin-Walled Structures
© Springer Science+Business Media New York 2001



2 Introduction

Figure I.1: Some types of skeletal structures.

must be triangulated to avoid collapse. A frame structure, on the other hand,
is one that consists of beam members that are connected rigidly or by pins
at the joints. The members can support bending (in any direction) as well as
axial loads, and at the rigid joints the relative positions of the members remain
unchanged after deformation. Rigidly jointed frames are often loaded along their
members as well as at their joints. Plane frames, like plane trusses, are loaded
only in their own plane. In contrast, grids (or grills) are always loaded normal to
the plane of the structure. Space frames can be loaded in any plane. The space
frame is the most complicated type of jointed framework — each member can
undergo axial deformation, torsional deformation, and flexural deformation (in
two planes). Its supports may be fixed, pinned, elastic, or there may be roller
supports.

Figure 1.2: Exploded view of a complex multicelled thin-walled structure modeled as
a collection of flat and curved plates plus frame reinforcers.

A plate is an extended body where one of the dimensions is substantially
smaller than the other two. Structures that can be satisfactorily idealized as a
collection of flat platelets are called folded plate structures. These platelets are
usually connected by frictionless pins or by rigid joints and undergo in-plane
deformations (called the membrane action) as well as out-of-plane bending and
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twisting. When the plates have continuous curvature, they are called shells.
Folded plate and shell structures are collectively called thin-walled structures
and, when they are combined with frame members, they are called reinforced
thin-walled structures; Figure 1.2 shows an example.

The total possible displacement components at each point in a structure is
known as the degrees of freedom (DoF); the degrees of freedom for different
structural types is shown in the following table, where u, v, w are translational
displacements and ¢, ¢y, ¢, are rotations about the indicated axes:

Structure Dimension u v w ¢, ¢y ¢,
Rod 1-D Vv

Beam 1-D v Vv
Shaft 1-D Vv

Truss 2-D v v
Frame/Membrane  2-D v vV Vv
Grill/Plate 2-D vV v oV
Truss 3-D NARVERV/
Frame/FoldedPlate 3-D vV v v Vv vV
General Structure 3-D vV v v Vv VvV

This table shows how the frame structure and folded plate structure share com-
mon types of degrees of freedom. This choice allows us to conveniently combine
them together to form complex reinforced structures.

Sources of Nonlinearity

Nonlinearities can arise in numerous ways; three of the most common in struc-
tural applications are material nonlinearity, large deflections, and contact load-
ings. The plastic forming of a component is an example of the first, an example
of the second is the bending vibration of an aircraft wing, which shows a change
of stiffness when the skin and stringers are alternatively in tension and com-
pression, while impact loading is an example of the third. In this book we are
primarily concerned with nonlinearities arising out of the geometry and loading,
and give only a cursory treatment of the other two. The following four examples
show more definitely how the nonlinearities can arise.

I: Nonlinear Material Behavior

Consider the load/unload cycle of a simple uniaxial specimen. If there is a one
to one relation between the stress and strain and on unloading all the strain is
instantaneously recovered, then the material is said to be elastic. An elastic solid
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is characterized by
€= f(o)

which, of course, may be nonlinear.

Figure 1.3: Stress-strain cycle for elastic-plastic material behavior.

For most structural materials, it is found that beyond a certain stress level
(called the yield stress) large deformations (flow) occur for small increments
in load; and furthermore, much of the deformation is not recovered when the
load is removed. On the load/unload cycle, if ¢ > oy (oy = yield stress), this
material cannot recover the deformation caused after yielding. This remaining
deformation is called the permanent or plastic strain. Structures are designed
so as not to have operational stresses that exceed the yield stress, hence we will
not devote too much time to this type of nonlinearity. However, discussion of
the yield criteria is important.

II: Nonlinearity from Large Deflections

We motivate some of the aspects by considering the simple truss structure shown
in Figure 1.4.

c::}l
;'Jl

Figure 1.4: Pinned truss with concentrated mass.

Ignoring the mass of the truss, dynamic equilibrium of the large concentrated
mass gives

P —2F, sina = M¥
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where both F, and «a are dependent on the deflection v. From geometry consid-
erations, we obtain

Lcosa = L,cos a,, Lsina = Lysina, +v
where L, and a, are the original length and orientation, respectively, and v is

the vertical deflection at the load point. Squaring both sides and adding, gives
the new length and orientation as

Losina, +v
VL2 + 2vL,sin o, + v2

L=+/L2+ 2vL,sina, +v?, sina =

The new length of the member is related to the old length by L = L, + i,
consequently, the axial displacement in the member is

7 =+/L2+ 2vL,sina, +v2 — L,

This gives rise to an axial force of

Note that we consider the parameters of the constitutive relation to be un-
changed during the large deflection.
Consider the case when the deflections are somewhat small, then

.  FEA v, v\2 EA| . v
F, = I [\/1+2L—Osmao+(L—o> —1]LO~L—O[smaO+E]U

and

) v

smao—i—f; . v \

= - ~ sin o, + L—cos Qo
\/1+2fsinao+(i—o—) °

o

sina =

We can write the equation of motion in the form of a single degree-of-freedom
oscillator as

My 4+ Kv = P(t)

but the spring “constant” is actually a function of the deflection

2FEA
K=~

o

[sinQa + 2sina v] —2EAsin2a [1+ 3 v]

° 2 °Lol L, ° 2L, sin oy,
This is an example of a nonlinear system where the nonlinearity comes from the
geometry and enters the equations as a nonlinear stiffness term; depending on

the direction of the displacement, the stiffness can either increase or decrease.
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As another case of geometric nonlinearity, consider the example of a driven

pendulum governed by
d*9 do -
MLﬁ + C:j? + Mgsinf = Psin(wt)

Here 6 is the angle off the vertical. The nonlinearity comes from allowing the an-
gle to be large. There is no analytical solution to this problem. Furthermore, this
simple looking equation is capable of exhibiting a variety of different dynamical
phenomena (including chaos) as demonstrated in Reference [6]. For somewhat
small angles, we can replace the sine function with its Taylor series expansion

to get
d29 d9 13 > .
MLW +C’E—t— + Mgl — 50°] = Psin(wt)
The nonlinearity has a negative stiffness contribution, where K = Mg[l — %02]
irrespective of angle direction.
P / nonsymmetric
~ symmetric

linear

soft " ~

hard

Figure 1.5: Symmetric and non-symmetric return force behavior.

These examples highlight the two main stiffness changes we will encounter;
we represent these as a symmetric return force and the non-symmetric return
force as shown in Figure 1.5. Their effects on the stiffness term are given by the
static relations

P=K(1+ou?)u or P=K(1+ Bu)u

The coefficients o and 3 are constants. When (3 is negative, the spring can soften
in compression and become unstable. This quintessential nonlinear phenomenon
is a dominant concern in the later chapters and so we discuss it more later in
this introduction.

I11: Contact Laws

When one object strikes another, there is a momentum transfer; this occurs
through the exertion of a force between the two objects. In order to establish
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the exact force history during the impact, it is necessary to know the contact law,
that is, the relation between the contact force and the indentation. While the
equations of motion for the two impacting objects could remain linear, invariably
the contact relation introduces a nonlinearity into the problem. We illustrate this
with the example of two impacting spheres.

The stresses induced when two elastic bodies with curved surfaces are pressed
in contact are described by the Hertzian theory of contact stresses [27]. This
theory predicts a nonlinear contact law. For two contacting spheres as shown in
Figure 1.6, for example, the relation is in the form

P = Ko*?=K(vs —v,)%?

4 [ R4R, sk, E, Ey
K = _— = = ——
3V R, + R, <k3+kt>’ ks 1-v2’ ke 1

Here the subscripts s and t refer to the striker and target, respectively, E is the
Young’s modulus, v is the Poisson’s ratio, and R is the radius.

— s p /
striker P — Ko?
target o

e

Figure 1.6: Hertzian contact.

There are contact forces between the two spheres that are equal and opposite.
The equations of motion of both the striker and target are, respectively,

msis = —P = —*K(”Us - vt)a/Q

th’bt = +P = +K(’US — 'Ut)g/Q

where x is a proportionality factor for the amount of target mass put into motion.
Introducing the relative indentation @ = v; — v;, the above equations can be
rewritten as

Md+KC¥3/2:O, i:i_’_ 1 or M:M
M  mg,  xmy ms + xmy

Again the nonlinearity appears as a nonlinear stiffness, but its origin arose out of
the changing geometry of contact. This is an example of a deformation-dependent
load.

It is worth pointing out that if the force P(t) were specified, then the equations
of motion of the individual spheres would be linear; however, since the force
between the two is specified as a nonlinear function of the deformation, then the
coupled problem is nonlinear.
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IV: Nonlinear Friction

Our final example of nonlinearity is also that of contact, but it is frictional con-
tact. Examples are break linings, a violin bow touching the strings, the behavior
of joints in robots, machining tools, and objects on a conveyor belt.

Figure L.7: Friction due to contact. (a) Beam and rotating drum. (b) Nonlinear fric-
tional force against velocity.

As a simple illustration, Figure 1.7(a) shows a cantilever beam in contact with
a rotating drum. If the drum is at rest, and we set the beam vibrating, then for
small amplitudes the frictional resistance can be considered to be proportional
to the velocity just as is usually done for viscous damping. This friction is such
as to retard the motion.

Let us now set the drum in motion. The friction causes a positive vertical
force the value of which depends on the relative velocity of the moving surfaces.
Furthermore, experiments show that the coefficient of static friction (when the
two surfaces do not move relative to each other) is larger than the coefficient of
kinetic friction (when the surfaces do move relative to each other). Therefore,
as the beam vibrates while the drum is rotating, there is a changing frictional
force that depends on the velocity. The table inset shows that relative velocities
(assuming Upqq is the same as the drum) at different stages of the oscillation,
and Figure I.7(b) shows the corresponding forces. For very small oscillations, we
can approximate the force as

P=P,+ av

with a being positive. The equation of motion can be written in the form of a
single degree-of-freedom oscillator as

Mi+Kv=P(t)=P,+av or Mt —av+ Kv=PF,

This resembles a simple linear oscillator with viscous damping; however, it has
a significant difference in that the “damping” is negative. That is, instead of
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energy being dissipated during the motion, energy is actually being pumped
into the system. As we will see later, the dynamics are greatly affected by this,
with the small vibrational motion becoming unstable.

The above linear approximation is useful for very small oscillations; as the
vibration velocity increases relative to the drum velocity, some nonlinear effects
occur. Clearly, for example, if the vibration velocity is larger than the drum
velocity, then the frictional force should become a retarding force (the linear
approximation indicates that it would just continue to get larger). On the other
hand, if the relative velocity becomes very large (with the vibration velocity
being negative), we would expect the friction force to asymptote to a retarding
force. An approximation that takes these limits into account is

P =~ P, + p[l — %o

This is an example of a velocity-dependent nonlinearity.

Instability of the Equilibrium

Our large deflection example of Figure 1.4 showed the possibility of stiffness
softening if the load is applied downward. Let us now follow some implications
of this.

Consider the quasi-static case, equilibrium in the deformed configuration gives

iP—F,sina=0

Substituting for F, and « leads to the force/deflection relation

or P—F(v)=0

P=2FA [sinao+£—] [1— = ! =
o . 2
\/1 +2L—O s1nao(—L—)

o

This determines P uniquely as a function of v; however, v is not uniquely deter-
mined as a function of P. Nonuniqueness is a fundamental aspect of nonlinear
problems.

Consider this as a displacement-driven problem: that is, determine the load P
as a function of the vertical displacement v. The results are shown in Figure 1.8.
Because it is a one degree-of-freedom system, we can identify the slope of P(v) as
a stiffness called the tangent stiffness. When v is positive, the structure stiffens,
but when v is negative, the stiffness decreases and indeed goes to zero. Note
that this occurs at a positive value of apex height. At this stage, the structure
is unstable in the sense that if under load control, the load is increased, then
the next equilibrium point is at B, which is a large displacement away. This
phenomenon of taking a large displacement to the next equilibrium position is
called snap-through. The nonuniqueness of this nonlinear problem is that the
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Figure L.8: Deflections and deformed shape at various stages of loading.

load levels at A and B are the same but they correspond to completely different
configurations.

On unloading, we can follow an equilibrium path to C' at which stage another
snap-through occurs over to point D. The region between A and C is an unstable
equilibrium path. The load path OABC DO is nonconservative and hence energy
is lost. This energy is converted into kinetic energy that propels the dynamic
event during the snapping. Thus, dynamics is also an intimate aspect of stability
phenomena.

The stability of the equilibrium is a very important aspect of the analysis of
structures and therefore we devote Chapters 6 and 7 to considering this issue in
greater detail.

Outline of the Book

Although nonlinear equations often look simple, there are no general solutions
to them. Indeed their simple form belie the complexity and richness of their
solutions. The only general applicable solution methods are numerical and that
is the primary focus of this book.

This book takes a synthesis approach to developing the material: the elemental
blocks are developed on first principles, these are then combined to model more
complicated problems, and from this new principles are learned. Chapter 1 con-
siders the basics of nonlinear deformable body mechanics. The chapter ends with
the realization that computer methods are the only viable schemes for general
purpose solutions. Chapter 2 looks at the in-plane (membrane) and out-of-plane
(flexural) behaviors of thin plated shells. The analysis is developed fully from the
governing differential equations all the way to the computational formulation.
Our elemental structural building block is a triangular finite element; although
there are more sophisticated elements available, this seems the most appropriate
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vehicle for discussing all the issues of integration and assemblage for complex
systems. Chapter 3 then looks at the large (nonlinear) deflection of structures
composed of shells and frames. Emphasis is placed on the large deflection and
large rotation but small strain situation because that is the predominant situ-
ation with thin-walled structures. The corotational scheme emerges as a most
appropriate (both conceptually and practically) procedure for describing the
nonlinear behavior of these structures.

The second part of the book begins with a summary of the small deflection
linear vibrations of structures in Chapter 4. Having recast the inertia properties
in discrete form, it then introduces the powerful method of modal analysis for
understanding the dynamics of complex systems. Chapter 5 presents the com-
putational formulations for the nonlinear dynamic analysis of 3-D structures.
Chapter 6 refines the concept of equilibrium in the process of discussing struc-
tural stability. This is done in the context of large deflections so that the relation
between buckling analysis and nonlinear stability can be understood. Chapter 7
introduces the stability of the motion and also looks at the very difficult topic
of stability of motion in the large.

complex
problems

AN

(a) (b) complex computer
problems methods

computer
methods

theory

Figure 1.9: Two views of the role of theory and computational methods. (a) Tradi-
tional view. (b) Interactive view.

Each chapter is divided roughly into three segments that basically correspond
to review of mechanics plus some analytical solutions; the computational im-
plementation and application to test problems; and applications to nonsimple
problems used for exploring additional aspects of the theory. It is worth contrast-
ing the approach with the traditional approach. The traditional development of
these topics would be laid out as in Figure 1.9(a), which says that theory (through
simple examples) is used to justify the computational methods, and that these
computational methods in turn are used to solve the complex problems. Fur-
thermore, it says that theory is separate from the computational methods in the
sense that these methods derive from the theory.

But this model does not work in the analysis of nonlinear problems (especially
dynamic problems) because there are no “simple cases.” A particular example
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is the richly complex phenomenon of chaos, which can appear even in a single
degree-of-freedom system; only through computer methods was this phenomenon
amenable to exploration. A more appropriate view, therefore, seems to be the
interactive one, as shown in Figure 1.9(b). That is, the computational imple-
mentations reflect onto the theory to more fully explain and develop the theory.
Simultaneously, the few analytical solutions developed are used to help put or-
der in the results for the complex problems. It is the interplay that is the true
relation between theory and computer methods. The computer implementations
become, in a sense, a laboratory for experimentation to discover new facts about
the complex system that are then used to enhance the theory.

With these ideas in mind, the example problems in the book basically fall into
three categories. The first illustrate aspects of the theory; an example is how the
sequence of vibration mode shapes of a plate changes with membrane loading.
The second investigate aspects of the numerical performance; examples are the
convergence tests. The third group are the exploratory problems for which there
are no simple solutions; examples are the limit cycles achieved by a beam with
follower forces and mode jumping in rectangular plates. It is emphasized that it is
only because the computational methods were developed could these phenomena
be approached in any satisfactory way.

Structure Formulation Material Method Phenomenon
Beam Virtual work Damping Corotational Bifurcation
Elastica Hamilton’s principle Elasticity | Eigenanalysis Buckling

Frame Lagrange’s equation  Energy Finite element Instability
Pendulum i Mass Explicit integration Limit cycle
Plate Boundary condition Stiffness Implicit integration Limit point

Rod Initial condition Stress Newton-Raphson Load interaction
Shell Traction Strain Perturbation Mode jump
Thin-walled Ritz Vibration

Truss Spectral analysis

Figure I1.10: Subset of key words from the Index.

Finally, a word about the index. Some books lend themselves to indexing
according to the first mention of a key word, while others are best done as
indexing every occurrence of the key word or phrase. The method chosen here
is in the form of threads linking the key ideas listed in Figure 1.10. For example,
following the thread for plates leads through Hamilton’s principle, boundary
conditions, spectral analysis, vibrations, stability, and so on. On the other hand,
following the thread for virtual work goes through beams, trusses, corotational
method, and so on. This approach seems more apt to catch the interwoven nature
of the subjects.
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Mechanics of Solids

This chapter introduces some basic concepts in the mechanics of deformable bod-
ies. We consider how lengths, areas, and volumes change during a deformation,
and this leads to the important concept of strain. We then introduce stress and
the equations of motion. To complete the mechanics formulation of problems,
we also describe the constitutive (or material) behavior. This is a complicated
and extensive subject; our interest, however, is elastic behavior because that is
the operational regime for most structural materials. Staying within the elastic
limit is an important consideration and so some consideration is given to failure
theories.

The chapter concludes with a reformulation of the governing equations in
terms of a variational principle; that is, equilibrium is seen as the achievement
of a stationary value of the total potential energy. Figure 1.1 shows an example
of a simple truss and how its total potential (IT) changes as a function of vertical
deflection for different values of applied load P; equilibrium corresponds to where
the slope is zero. This formulation lends itself well to the approximate computer
methods needed to solve nonlinear problems.

Figure 1.1: Total potential energy as a function of deflection for different values of
applied load. The equilibrium positions are where the potential has stationary values;
the dashed line indicates unstable equilibrium positions.

J. F. Doyle, Nonlinear Analysis of Thin-Walled Structures
© Springer Science+Business Media New York 2001



14 Chapter 1. Mechanics of Solids
1.1 Cartesian Tensors

Solid mechanics deals with groups of things such as u,v,w representing dis-
placements; x,y, z representing coordinates; and o044, 0yy, Ogy, - - -, representing
stresses. We would like a notation that handles such groups conveniently — we
will use the subscript or indicial notation to achieve this. Also, whenever conve-
nient, we will introduce the matrix notation equivalents because these are better
suited for computer implementation.

Tensor Fields

Let the symbol z; with the range ¢ = 1,---,n be used to denote any one of
the variables in the set {z1,22, -+, 2,}. The symbol 7 is called an indez. Simi-
lar notations with multiple indices such as ¢, i,j = 1,---,n, are also used to
represent individual components in the set of [n x n] elements {t11,t12, -, tnn}-
For most cases in this chapter, the range will go from 1 to 3.

A number of special symbols have been introduced as a convenience in using
the tensor notation. Two especially useful symbols are the Kronecker delta and
the Permutation symbol. The Kronecker delta is denoted by 4;; and is defined
as

o . 1
dsj :{ (1) i : ¢j or [645] = g

S = O

0
0l=[1]
1

Note that written in matrix form, it is the same as the identity matrix. The
permutation symbol is defined as

1 when ijk form an even permutation of 123; e.g., 312
€5k = { —1 when ijk form an odd permutation of 123; e.g., 321
0 otherwise; e.g., 122

Consider two Cartesian coordinate systems (z1,%2,z3) and (zf,z5,x5) as
shown in Figure 1.2. A base vector is a unit vector parallel to a coordinate
axis. Let é;, €2, €3 be the base vectors for the (z1,z2,z3) coordinate system and
€1, €5, €5 the base vectors for the (], 2}, %) system as also shown in the figure.

Because the coordinate axes are mutually orthogonal, we have for the vector

dot and cross products

A A NV A A A N A
€ - €; =0y, €; - €5 = by, é; x €5 = E €ijk€k 5 €; X € = E :fijkek
k k

A vector Z can be projected onto the two coordinate systems with the result

s 5. - .Y
T= E Tj€; = E Ti€; =1
J J
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Figure 1.2: Base vectors and rotated coordinate system.

This can be rewritten by first introducing the matrix of direction cosines
By=¢-¢, (1.1)

and substituting to get
T = Z/Bijxj ;o omi= ) BT
J J

This gives the relation for transformation of components in one coordinate sys-
tem into components in another. These two equations taken together yield the
conclusion

Zﬂijﬂkafsik, [(BIB]"=TT1]

Thus, [G;;] are orthogonal and the relation is known as the orthogonality rela-
tion.

A system of quantities is called by different names depending on how the
components of the system are defined in the coordinates 1, z2, 3 and how they
are transformed when the coordinates are changed to z,z5,25. A system is
called a scalar if it has only a single component ¢ in the variables z; and a single
component ¢’ in the coordinates z, and if ¢ and ¢’ are numerically equal at the
corresponding points. That is,

¢(ZI)1,$L'2,$L'3) e (]5/(.1"1,1‘/2,.’1}/3)

A system is called a wector field or a tensor field of order one if it has three
components v; in the coordinates z;, and three components v; in the coordinates
x} and the components are related by the transformation law

v = Bukvs
k

The tensor field of order two is a system that has nine components ¢;; in the co-
ordinates z;, and nine components tgj in the coordinates z}, and the components
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are related by the transformation law

= Z ﬂim/@jn tmn

m,n

This is easily generalized to a tensor of order n.

Because tensor fields are continuous functions of position, then they are amenable
to calculus operations such as differentiation and integration. An important issue
is determining the type of tensor resulting from differentiation and integration.
Consider a vector v; with the transformation

v;(2") = Bjkvi(%)
Differentiating both sides of the equation, we obtain

o'
8ZJ Zﬁ]k avk ZIBJIC B'Uk 8xm Zﬁ]kﬂzm

This says that partial derivatives of any tensor field behave like the components
of a Cartesian tensor. (It should be noted that this is not true in curvilinear
coordinate systems.) From this it is apparent that the term

OT;;
8.'L'k

Lm

is a third-order tensor. In general, differentiation with respect to z; increases
the tensor order of a term by 1. Consider a tensor field Tjgm,...(z) in a region V
bounded by a surface A. Then,

0
/V&r jkme- AV = /I;nilecm-ndA (1.2)

where n; are components of the unit vector 7 along the exterior normal of A.
This is known as the Integral Theorem.
We use the notation

n

{U}Z (%]

U3
to represent a vector. The notation {v}7 then represents the quantities
{U}T = {vlv V2, U3}

The transformation relations are expressed in matrix notation as

{va} =[T Hue}, [T ]=[{é}{e2}{&s}]

where the subscripts G and L refer to global and local, respectively. We call
[ T ] a triad of the unit vectors é;.
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Properties of Second-Order Tensors

Because second-order tensors are so prevalent in solid mechanics (they are used
to represent stress and strain, for example), it is of value now to summarize
some of their major properties. Because second-order tensors can be represented
conveniently by matrices, many of the following results can also be established
simply from matrix theory.

A tensor S;; is symmetric if S;; = Sj;, while a tensor A;; is antisymmetric if
Aij = —Aj;. A nonsymmetric tensor can always be represented as the sum of
a symmetric and an antisymmetric tensor. The contraction of a symmetric and
an antisymmetric tensor is zero, that is, Zi,j S;i5Aqi = 0.

Consider the relation

V= E Sijnj , V; = vector, n; = unit vector
J

and let S;; be a symmetric tensor. This says a vector V; is produced by con-
tracting the unit vector with the second-order tensor S;;; in general, V is not
parallel to 7. An interesting question is: Under what circumstances does the
transformation relation produce a V that is parallel to 7?7

vV =[S]n V=X
Figure 1.3: Meaning of eigenvectors.

To answer this, assume that there is an 7 such that it is proportional to V,
that is,
‘/1; = /\TLi = Z S’ijnj or Z [Sij - )\61']'] nj =0
J J
This is given in expanded matrix form as

Su—~XA Sz S13 ny
S12 Saa— A Sos ng » =0
5’13 5’23 533 - )\ ns

A nontrivial solution for n; exists only if the determinant of the coefficient matrix
vanishes. Expanding the determinantal equation, we obtain the characteristic
equation

NI+ LA-I3=0 (1.3)

where the invariants Iy, I, I3 are defined as

I = ) Si=Su+Sn+Ss

J
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Iy = Y 3[SuS;; — i8]
J
13 = det[Tij] (14)

The characteristic equation yields three roots or possible values for A

A A2 AG)

These are called eigenvalues. For each eigenvalue there is a corresponding solu-

tion for 7i. The three #i’s
ﬁ(l), ﬁ(2), A3

are called eigenvectors. We say that the matrix [ § ] has the eigenpairs (), #)®,
i =1,2,3. These are obtained by solving the eigenvalue problem

[ 5 1{n} —A{n}=0

This is an eigenvalue problem because it is homogeneous and has an unknown
parameter (). We will frequently encounter eigenvalue problems in the subse-
quent chapters.

The measures of stress and strain we introduce later will be symmetric second-
order tensors; then the A*) will be identified as principal stresses and strains,
respectively. Principal values are extremal values of the tensor.

Example 1.1: Given two directions of an orthogonal triad, determine the third
direction by using the orthogonality conditions.
Let the given vectors be

~ - ~ 1 1A 1A 1 a
€1 = ;€1 — 62+E€3, 62——561—562——\7—563

N =
(eI

We can obtain the third direction from knowledge that
& = €1 x & = J561 + J5é2 + 0es

At this stage, the direction cosines are easily established as

11
i I3

(Byl=| 2 -2 —u»
a1 0
V2 V2

Note that the rows of [ 3;; ] are the components of the vectors € referred to é;.

Example 1.2: Determine the new components T;; when transformed to a co-
ordinate system defined by its eigenvectors.
Let the original coordinate system be defined by the base vectors

é, ={1,0,0}, é» = {0,1,0}, é3 = {0,0,1}
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and the transformed system by

ei=nY,  é&=n®, &=n®

Then the direction cosines are given by
Y A SR () R s 5 — i _ . ®
Bij = € - € = A® e = an(ul)ep 1€ = an)‘spj = "jz
P P

From the eigenvalue problem, we also have that

ZSijn;k) — )\(k)ngk) or Zsijﬁkj _ )\(k),Bkz‘
J i

Multiply both sides by 8p: and recognizing the left-hand side as the transformation
of S;; and the right-hand side as the Kronecker delta gives

She = ABgy,

or, in expanded matrix form,

St 12 Sis A 0 0
Shy Sy |=] 0 X o0
Sym Sis 0 0 A\®

That is, with respect to the new coordinate system, S;; has a diagonal form.
We can show that A(’s are the maximums and minimums of the associated
quadratic surface.

1.2 Deformation and Rotation

A deformation is a comparison of two states. In the mechanics of deformable
bodies, we are particularly interested in the deformation of neighboring points;
that they are different is in the nature of deformable bodies.

Deformation Gradient

Set up a common global coordinate system as shown in Figure 1.4 and associate
z? with the undeformed configuration and z; with the deformed configuration.
That is,

Initial position: £° = E 78, Final position: Z = E ;€
i i

where both vectors are referred to the common set of unit vectors é;. The vari-
ables z¢ and z; are called the Lagrangian and Eulerian variables, respectively.



20 Chapter 1. Mechanics of Solids

Global Axes

Figure 1.4: Undeformed and deformed configurations.

A displacement is the shortest distance traveled when a particle moves from one
location to another, that is,

ﬁzf‘—?“’zg xiéi—g zié; or Uy = T; — LY
i i

and is illustrated in Figure 1.4.
A motion is expressed in the following form:

Ti = xi(x‘f,xg,xg, t)

In the Lagrangian system, all quantities are expressed in terms of the initial
position coordinates and time; in the Eulerian system, the independent variables
are x; and t, where x; are the position coordinates at the time of interest.
Realizing that the description of deformation is essentially geometric, we can
understand the Lagrangian description by putting a rectangular grid on the
original (undeformed) body and determining what it will look like during the
motion. In other words, the Lagrangian grid is always superposed on the same
material points and therefore deforms as shown in Figure 1.5. The Eulerian
description puts a grid on the currently deforming body.

Lagrangian - \

Eulerian

Figure 1.5: Grids illustrating Lagrangian and Eulerian descriptions.

Consider a deformation in the vicinity of the point P; that is, consider two
points separated by dz¢ in the undeformed configuration and by dz; in the
deformed configuration as shown in Figure 1.6. The positions of the two points
are related through the Taylor series expansion

P: T; = .’L‘Z(l'f)
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Global Axes

ég/ él

Figure 1.6: Deformation of neighboring points.

P z; = z; + dz; = z;(zf + dx?)

~ z;(20) + Z Oz dz® + LZ &dx‘?dx" +
T L Gge ™ T 2 L Gadiay R T
j 7,

If dz? is small, that is, the neighboring points are very close to each other, then

6.’L'i
— 0x°
j J

T —x =dr; ~ dz? (1.5)

J

This describes how the separation in the deformed configuration is related to
the separation in the undeformed configuration. It is expressed in matrix form
as
8901 83:1 8.’1,‘1
0x§ O0z§ 0x3 0
don 0wy 0wy ows | | %
7 = x
d > 0z 0z5 Oz} dm?,
z3 6:153 6.’1:3 81‘3 3

10] 0 o
0x¢ 0z 03

O
The quantities a—x; are called the deformation gradients and form the basis of
i

the description of any deformation. Deformation gradients relate the behavior
of neighboring points.

The above relation uniquely specifies dz;,dx2,dz3 in terms of dz{, dx§, dz$.
On the assumption that the deformation is continuous, then we should be able
to write the inverse; but this is true only if the determinant is non-zero, that is,

81‘1‘

det[az‘?
3

140

Define the Jacobian, referenced to the undeformed configuration, as

o 6:1,'2' . B 8.’13'1 81‘2 a’l}g
0= detlpgl = Af: 9% B¢ 0’ D
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Note that the Jacobian is a scalar quantity. We will impose the restriction on
any deformation that no region of finite volume is deformed into a region of zero
or infinite volume. That is, we restrict the values of the Jacobian as

0<J’ <

It is necessary to always check this to see if the deformation is physically possible.
The deformation gradient can be decomposed into its symmetric and anti-
symmetric parts as

ox; Ou; _ _
675)» :(51]'-{-%;:61‘]""61‘]' +wij
where
Ou;  Ouy Ou;  Oug;
= =1 J ® - — 1 ¥ %
6ij:5(8m3+amg>’ “ij:ﬁ(azg _amg)

The symmetric tensor &;; is often referred to as the small or infinitesimal strain
tensor. The tensor @;; is called the (Lagrangian) rotation tensor. The reasons for
these names will become clearer later in the chapter. Similarly, the deformation
gradient with respect to the deformed configuration can be written as

0z0  _  du; _ 1 (O Ous 10w Oui
axj n 61]+a$j h 61]+€U +w”’ = 2(61'2' +6-75j), = z(ami _amj)

The symmetric tensor €;; is also often referred to as the small or infinitesimal
strain tensor. The tensor w;; is called the (Eulerian) rotation tensor.

Deformation of Lines, Areas, and Volumes

The descriptions of a line segment before and after deformation are
di° =Y daPe;,  di=) dzé
i i
A straightforward substitution of the deformation gradient gives

61111;
> oz 7

dCL'i

Even if dz° is only horizontal, dZ has all non-zero components, in general.

The area of a parallelogram region can be calculated by considering the vector
cross product of lines that bound it. That is, if the region is defined by two vectors
d#® and dz°, we have

Area = d#® x dz® = vector
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dii'()b

2Ao dz® a4 di

Figure 1.7: Deformation of areas.
Note that we consider the area to be a vector; it has a direction as well as

a magnitude, and the direction is given by a normal to the surface. We can
show [21] that the components of area are related through

Oaxo o
dA; = }; J 3x’: dAg (1.7)

This elegant formula for the deformation of areas is somewhat similar to the
corresponding one for line segments; note, however, that it is the Eulerian form
of the deformation gradient that is used.

Consider the parallelepiped of sides d2°¢, d2°, d°¢, which deforms into d£?,
dz®, di°. The volume before deformation is dV° = (d2°¢ x d£°?) - d2°°. Expand
dV using the deformation gradient and recognizing the collection of gradients as
J°, rearrange to get

dv = J°dv®°

Mass is conserved during the deformation of a solid giving
pdV = p°dV° or p=p°/J°
That is, the density changes during the deformation.

Example 1.3: Consider the following plane inhomogeneous deformation
z1 = [R — z3]sin(z7/R), z2 = R — [R — 25 cos(z7/R), T3 = 3

where R is a parameter. What (if any) are the restrictions for this to be a valid
deformation? Draw the deformed shape of material initially lying between —h <
x5 < h, and calculate the orientation and magnitude of the deformed areas.

This deformation is shown in Figure 1.8. Note that initially horizontal lines
become arcs of concentric circles, while initially vertical lines become radial lines
emanating from a common point. This deformation resembles that of bending.

The deformation gradient is given by

s (R— x%) Cf)s(x;l’/R)/R - sin(;vo‘l’/R) 0
[61‘3’] = | (R—x5) 51(1)1(x1/R)/R cos(:f)l/R) (1)
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after
a: 2§ =nR/2
b: 2§ =7R

before

i 0
/ i L1, %1

Figure 1.8: Shape before and after deformation.

The Jacobian is the determinant of the deformation gradient matrix and on mul-
tiplication simplifies to
IO
Jo=1-=2
R

We note that as long as 3 < R that the volume remains positive.
The areas are related through the inverse of the above deformation gradient.
Since it is a 2-D problem, we get

dA; | _ cos(z$/R) sin(z{/R) dAS
dA; [~ | —J°sin(zf/R) J°cos(z{/R) dAS

Areas that were initially vertical and facing the 1-direction are preserved in size;
this can be checked by comparing dAs for 27 = #R/2 to dA; for z{ = wR. Areas
that were initially horizontal either contract (z§ > 0) or expand (z3 < 0). This is
the hallmark of a beam or plate in bending.

In the limit as /R << 1, then J° =~ 1 and areas are preserved. This is
the situation that will be prevalent when we consider the bending of thin-walled
structures.

Rotation at a Point

A general deformation can be conceived as a straining action plus a rotation. The
large rotations of rigid bodies is taken up in Chapter 3; what we are interested
in here is the description of the rotations of deformable bodies. This is not so
straightforward primarily because different lines through a given point in the
body can have different rotations. We will find it necessary to introduce the idea
of an “average” or mean rotation.

Consider the rotation of a general line element OP that deforms to O'P’ as
shown in Figure 1.9. For convenience, let the two lines occupy the same position
at the origin so that O = O'.

Focus on a line segment that is initially lying in the 1-2 plane; that is, look at
the lines OP* and OP’™* (the latter is the projection of the deformed line onto
the 1-2 plane) rotating about the z3-axis. The rotation is obtained as a change
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Global Axes

2
Figure 1.9: Rotation of a line element.
in orientation as follows:
(o]
orientation of OP*: tanf = dz
dz§
15}
dz g%d””(f + G108
orientation of OP*: tan® = —2 = -1 2
dry 0%y, 01,0
ozo ' 9xg ?
The rotation of the line projection is ¢3 = 6’ — 6 or
tan @’ —tané
t = tan(@ — )= ——
an ¢3 an( ) 1+ tan@ tan@
3.’1:2 ox 1 (9.’1:2 8.’1:1 8.”62 8:1:1 .
- — 20 — 26
Gz T e T Gg ) W T (ggg ~ Bgg)Sin
81‘1 6I2 3.’1,‘1 Barg 81‘1 61‘2 .
- = 20 + (=— + — 20
(Gze * o220+ Gz ~ ) %+ (g + 55950

where
cos @ = dz$/+/(dz?)? + (dx3)?, sin@ = dz§/4/(dz$)? + (dz$)?

was used. From this, it is clear that different line elements will have different
amounts of rotation (since 6 will be different). In fact, some will be positive,
some negative. To characterize the rotation at a point, it is necessary to remove
the angle dependence. This will be done by averaging.

A measure of average rotation is given as [53]

2r /| D+ Ccos20 + Bsin20

tan q33 = —

27 - .
1 / tan ¢g df — 1 A+ Bcos20 — C'sin 20
2 J,

where the coefficients

O0xy Oz Oxy Oz ox1  Oxq oy Oxo
A 0z  0x§’ 0xg = Oxg’ oz¢ 0xg’ oz + Iz
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are independent of §. Let the denominator be written as
f=D+Ccos20 + Bsin26, df = (0 — 2C'sin 26 + 2B cos 20)d0

Therefore, the integral can be rewritten as the sum of two parts:

1 Tl oA do
_ L radf A L +1
tan ¢3 zﬂ/,, F "2r), DFCcos20 4 Bsinzg 1T

The first integral is simply

1
I = — 27
1 47rln[f]° 0

The denominator of the second integral can be rearranged as (using the sine of
the sum of two angles)

D +Ccos20+ Bsin20 = D+ +/C?+ B?(sin 3 cos 20 + cos (3 sin 26)

= D+ +/C?+ BZsin(3 + 26)

with tan 8 = C/B. Hence, the integral becomes on using ¢ = 3 + 20

i 27 de B A /ﬂ+41r do
2r J, D+ VC? + B2sin(3 + 26)  4n 8 ++vC? + B2sino

Provided that D? > C? + B2, this gives

oL Doyt VO e
27 4rn —(C?¥ B?) D? —(C? + B?) 8

I =

The tan~!() term is zero or multiples of 27. Because for small deformations, it
is required that

Oy Or1 _ Oua Ouy

T oz 0xg  dr? Oz

be a measure of rotation, then let tan=!() be 2. Hence

1A
I, = 2
/D2 —(C? 1 B?)

Consequently, the average rotation becomes (after substituting for the coeffi-
cients)

2 ox° 8%2 8;1:1 8%2 zg = 0x8

tan gy = (222 _ 001 /\/ i sz SR Vs WLz R
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Similarly, for lines initially in the other planes, we have

- Oz ox Ox 8:6 ox oz

_ 1,94 3 1 3 1 1 3.2

tandz = (50~ e / ¢ 502 og) ~ 1 (5ag T B
- 3.’E3 89c2 8.’1,‘2 d.’Eg 8.1‘2 8.1'3

S Vs 1 2

tangy = 2(8303 8x3 8:1:2 dx3 4(8x§ Bxg)

In the limit of small deformations, these three angles are simply related to the
anti-symmetric component of the deformation gradient. That is

- ox; Ox;
_1,9%; A
Pk = 2(8:5;? azg) Wi

using cyclic permutation on 4, j, k.

Example 1.4: Consider a simple shear deformation parallel to the z$ — x5
plane and given mathematically by

o o o
T =x7 +kas, T2 = Ty, T3 = I35
Determine the average rotation of a point.
2

kxd
x3 [—>

1

Figure 1.10: Simple shear deformation.

Substituting for xz;(z7) into the formula for the average rotation, we get
2(0—k) _ -1k
VOO = (k+02 /1 {8

If the deformation is small, this gives approximately

tang; =0, tango =0, tan ¢z =

Q—53 ~ —%k
In looking at Figure 1.10, we see that the vertical and horizontal lines rotate
angles of
tan¢go = —k, tan o = 0

respectively. For small deformations, the average rotation is the average of the

rotations of these two mutually perpendicular lines.
The constraint D? > C? + B? for this rotation about the 3-axis becomes

8:1:1 3:172 8.’171 81122 2
(am';)(amg) > (amg Bw‘{)
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Specifically, for the simple shear problem, this is equivalent to
4>k or k<2

When D? < C?+ B2, that is, when the deformation is larger, then the integration
must be performed differently.

1.3 Strain

Strain is a measure of the “stretching” of the material points within a body; it
is a measure of the relative displacement without rigid body motion and is an
essential ingredient for the description of the constitutive behavior of materials.
There are many measures of strain in existence, so it is worthwhile to first review
some of the more common ones so as to put into perspective the measures we
will actually introduce.

Strain Measures

Assume that a line segment of original length L, is changed to length L. Some
of the common measures of strain are:

_ change in length AL

Enei ing: _
ritnecring original length L,
Tru T change in length AL AL
e: = = — = -
final (current) length L L,+ AL
L L
L L
Logarithmic: eV = / true strain = / a =log,,(=—)
L, L, L Lo

The relations among the measures are

T — € N =1 1
€ =170 € =lg,(l+e
An essential requirement of a strain measure is to allow the final length to be
calculated knowing the original length. This is true of each of the above since

Engineering;: L=L,+AL=1L,+ Loe = L,(1 +¢)

eTL, L,
: L=1L AL = =
True o+ L, + 1= 1= eT)

Logarithmic: L = Lyexp(e™)

The measures give different numerical values for the strain but all are equivalent
in that they allow AL (or L) to be calculated knowing L,. Because the measures
are equivalent, then it is a matter of convenience as to which measure is to be
chosen in an analysis.
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The difficulty with these strain measures is that they do not have conve-
nient transformation properties. This poses a problem in developing our three-
dimensional theory because the quantities involved should transform as tensors
of the appropriate order.

As a body deforms, various points will translate and rotate. The easiest way to
distinguish between deformation and the local rigid-body motion is to consider
the change in distance between two neighboring material particles. We will use
this to establish our strain measures.

Let two material points before deformation have coordinates (z7) and (z{ +
dz?); and after deformation have the coordinates (z;) and (x; +dz;). The initial
and final distances between these neighboring points are given by

ds? = de"dz (dz9)? + (dx§)? + (dzg)?

and

0z, 0x
= Z dz;dz; = g ’: % defdx;?
i i,k

respectively. Only in the event of stretching or straining is dS? different from

dS2. That is,

4S* — ds? = ds” — Y dafda? = Y (%Z’" %%’? . 5,-j)dx;?dx;

3,,m

is a measure of the relative displacements. It is insensitive to rotation as can be
easily demonstrated by considering a rigid-body motion. These equations can be
written as

—dS? = Y 2E;;daldx? (1.9)
'i)j

by introducing the strain measure
Oz Oxo,
— 04 1.1
;(axf 0z JJ) (1.10)

It is easy to observe that E;; is a symmetric tensor of the second order. It is
called the Lagrangian strain tensor.

In a similar manner, using Eulerian variables, we can introduce the Eulerian
strain tensor through

H!
o=

0z, 0x9,
dS2 — dsg = dmzdﬂ?z — ng = Z ((5” 8:1,'1 a_'L‘J ) dx; dIJ Z Qeijdxid:zj

i,J 12

In the subsequent developments, however, we will mostly use the Lagrangian
strain tensor.
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Physical Interpretation of Normal and Shear Strains

To relate the strain tensor to the strain quantities with which we are familiar,
consider the line element

dz$ =dS,, dzg =dz§ =0

at the initial state as shown in Figure 1.11. After deformation, the line element
is given by dz; with magnitude dS.

(0,dS°,0) ds

Y

ds
(dS°,0,0)

Figure 1.11: Deformation of two initially perpendicular line elements.

Let E; be the extension per unit original length of the element, that is,

_dS—ds,

Er ds,

or  dS=(1+E)dS,

For this line element we also have
dS? — dS? = 2E,,dS?
and combining with the above yields

En=E +1E] o E =\1+2E;-1

There are similar relations for line elements originally in the x§$ and z§ directions.
The components E}1, Fq, and E33 are called the normal components of strain.

Note that there is a certain asymmetry (as regards the stretching direction)
in the meaning of the normal components. For example, as the line is stretched,
E) increases possibly without limit resulting in F1; doing the same. If, however,
the line is shrunk so that E; is negative, then there is a definite limit given by
E; = —1 which corresponds to AL = —L,, meaning that the line has shrunk to
zero length. That is, we have limits on the strains of

1< F <0, —05< Ej1 <00

This asymmetry between the stretching and shrinking directions is important
when considering the constitutive behavior.

Consider now a line segment at an arbitrary angle 8 in the undeformed con-
figuration, then its length after deformation is obtained from

dS? — dS? = 2 [EndaSda’ + Eydzdde + EiadaddzS + Eopdzddzs)
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Realizing that dz{ = dS, cos8 and so on, and that the strain of this arbitrary
line is
ds? — dS§ = 2E99d$'§
leads to
Egg = E11 cos? 0 + 2E15 cos@sin @ + Eag cos® 0 (1.11)

where use is made of F19 = Fs;. This gives us the transformation rule for the
components of strain — they transform as second-order tensors.

A deformation can also exhibit distortion (change in relative angles) in the
configuration. Consider, in the initial state, two line elements parallel to z$ and
x$, respectively, as shown in Figure 1.11. The two line elements are denoted by
dz? and dx{, respectively, with

These two elements are perpendicular to each other initially. After deformation,
dz{ is deformed into dz;, and dz{ into dz;.

Denoting the angle between dx; and dZ; by ¢12 and taking the dot product
of these two vectors, we obtain

i5Sous s = ot = 5 05 S g, = 3 5t
i k m 1

i,k,m
which can readily be rewritten in terms of the Lagrangian strain tensor as
dS dS cos p1o = 2E12dS,dS,
By substituting for dS and dS in terms of the extensions, we get
dS = (1+ E;)dS,, dS=(1+ E,)dS,

thus leading to
2E;,

(1+ E))(1+ Ey)

cos g =

Denoting the change in angle by
™
a2 =5 - d12

and using the expressions for the elongations in terms of the strain components,

we finally obtain
2F1

VIt 2E VIt 2By

All the Lagrangian strain components E11, Fos, and E15 contribute to the change
of angle. However, it is only when FE;2 = 0 that the angle between the two

sinayg =
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line elements would be preserved. The component Fps therefore seems a good
measure of the “shearing” of perpendicular line segments.

Because the term sin cr12 must lie in the range 41, we then have the limits on
Elg of

~lr<ap<im or —\/1+2E1\/1+2Ey < 2E13 < \/1+2E11y/1+ 2Ex

The limits on F}o are a combination of those on <2 and on the stretches.
Consider now two perpendicular line segments oriented at an arbitrary angle
0 in the undeformed configuration, the change of angle after deformation is
obtained from
a’Ei a.’Ei

dSdSsinay, =Y dz, dz; = 5 Do LR AT5 = > [2Eim + bkmldz}, dz5,
i m Tk Olm

'L»ky k:,m

Expanding this gives
dS dSsinal, = (2E11+1)dz{dz{ 42 E21dx{dz3+ 2 E12dz5dZ + (2E92 +1)dz5dT$
Realizing that the undeformed segment lengths are given by
dz? = dS,{cos¥, sinf, 0}, dz? = dS,{—sin#, cosd, 0}
and that the shear strain of these arbitrary perpendicular lines is
dS dSsin o}y = 2E1,dS,dS,

leads to

E}, = —(E11 — Ea3) cos8sin @ + Eja(cos® 6 — sin? §) (1.12)
This gives us the transformation rule for the components of shear strain — they,

too, transform as components of a second-order tensors.

Example 1.5: Express the components of the Lagrangian strain tensor in
terms of the displacement components.

Sometimes it is convenient to deal with displacements and displacement gradi-
ents instead of the deformation gradient. These are obtained by using the relations

Otm _ Oum

—— =52 +0im
ox? ox? +

o
mm:mm"'um,

The Lagrangian strain tensor E;; can be written in terms of the displacement by
Oum Oum,
B = 3 352 +8im) (G2 +8m) — b5
Xm: 0! 0z

_ [aui Ou; Oum Bum]
T2 Ozg = 0z dz 0z
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Typical expressions for E;; in unabridged notations are

a’l“ 8’[1,1 2 8’1L2 2 au3 2
E.. = 8m£{+%[(8m£{) +(3x‘f) +(3x‘1’) ]
_ 8U2 l[ 8’1142 2 611,2 2 aug 2]
Ey, = 8m§+2 (6:1:‘2’) +(8a:g) +(3mg)
_ 1 8U1 8’u2) 1 [8U1 6%1 8uz 611,2 % 8u3]
Bz =3 (amg - oxzg)  ?l0xg Oxy  Ox§ Oz  Oxf O3 (113)

Note the presence of the nonlinear terms.

Example 1.6: Show that the Lagrangian strain tensor is zero for a rigid-body
motion.

In a rigid-body rotation all the points are given a displacement but the rel-
ative distance between points is unchanged. Consider the two-dimensional case
described by

21 = xcos¢p — Tosing, Ty = Ty sing + r3cos @, 3 = T4

where ¢ is the angle of rotation about the 3-axis. The corresponding displacements
are

u; = z3(cos¢p — 1) — z7sin¢, uz2 = z$sin¢ + z3(cos ¢ — 1), ug =0

from which the displacement gradients are determined to be

(cos¢p — 1) —sin¢ 0
Bu,- _ .
[ax;’} = [ sn(;qb (coscg— 1) 8

It is now straightforward to show that all Lagrangian strain components are zero.
For example, from Equation (1.13)

En=(C-1D)+i[(C-1)*+(-9*+(0)?]=C-1+3C-C+3+35=0

where we used C = cos¢ and S = sin¢. We obtain a similar result for the other
components. ’
The infinitesimal strain tensor has the components

-1) 0 0
11 au_»,‘ aui . (COS¢ . ~
[eii]=3 |:8a:§’ + 929 = 8 (COS(g 1) g ~

It is only when ¢ is very small is this strain tensor nearly zero.

Example 1.7: Determine the strain for the deforming body of Figure 1.8.
The displacement gradient is

[8ui] _ [ J°cos(z§/R)—1 —sin(z§/R) 0 ]

B J?sin(z?/R) cos(zi/R)—1 0
i 0 0 1
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with J° =1 — 2%/R. The strains are

_ oy 1 o] _ 2 o I_g 1ﬁ2
Eun = J°C—1+%((J°C-1)>+(J°S)* + (0)*] = - 7 t5(3)
Bz = C—143[(C=1)*+(=8)"+(0)] =0
Eia = 3=8+J°S]+ 3[(J°C — 1)(=8) + (J°S)(C ~ 1)+ (0)*] =0

where we used C = cos(z{/R) and S = sin(z{/R). Only line segments initially in
the z1-direction are strained. There is a line, 5 = 0, which is not strained; other
lines are strained in proportion to their distance from this line. In the limit of a
very thin body (z5/R << 1), the strain distribution is linear

B 3 o dv
1IN~ " —Tog—7—
R dz$

where v is the uy displacement of the £§ = 0 line. These are the strain character-
istics of a beam or plate in bending.

Example 1.8: Establish the relation between the incremental components of
the Lagrangian strain tensor and the incremental components of the infinitesimal
strain tensor.

The change in length of a line element can be written in terms of the Lagrangian

strain as
2 Z Eijdaldzd = §* — §2 = Z dzidz; — Z dzldz?
2, i i

The increments in strains are obtained from this as (noting that dz{ is not
changed)
2 AB;deidaf =2 Z dAz;da; —
4]
But we also have that the change of the new positions can be rewritten as

o 8Auz Bul
dAz; = dA (@ +us) = dAu; = Tar ok = > A( Do )4k = > Aeir +win)dz
k k k

Therefore

Z AEijd:I)gdm? = Z Aeijdwz-dmj —+ Z Awijdxidacj = Z Aeijd:cida:j

2% ©J 2%

where the anti-symmetry of w;; and symmetry of dz.dz; was used to set the
product to zero. Substituting for dz; in terms of dz{ now gives

Ox; Ox; _ dxg dzF
B:tm Ba:nA and Aemn = 2. O, AE;;

L%

AEmn =

This surprising result shows that although AE;; and Ae;; are small, they are not
equal. The main reason for this is because they are referred to different configu-
rations.

We will utilize this relation when we consider small variations of the strain field.
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Infinitesimal Strain and Rotation

The full nonlinear analysis of problems is quite difficult and so simplifications
are often sought. Three situations are shown in Figure 1.12.

Figure 1.12: Combinations of displacements and strains. (a) Large displacements,
rotations, and strains. (b) Large displacements and rotations, small strains. (c) Small
displacements, rotations, and strains.

The general case is that of large displacements, large rotations, and large
strains. In the chapters dealing with the linear theory, where both the displace-
ments and strains are small, Case (c) prevails. Our nonlinear analysis of thin-
walled structures will be primarily restricted to Case (b), where the deflections
and rotations can be large but the strains are small. This is a reasonable ap-
proximation because structural materials do not exhibit large strains without
yielding and structures are designed to operate without yielding.

If the displacement gradients are small, that is,

aui

<<1
8.%3?

then the product terms in the Lagrangian strain tensor Ej;; can be neglected.
The result is

1 <8uz~ 8uj)

E’I:' ~ €= 3
J T2 0z~ Ox?

where ¢;; is the infinitesimal strain tensor. This assumption also leads to the
conclusion that the components E;; are small as compared with unity. Thus,
the infinitesimal strain components have direct interpretations as extensions or
change of angles.

If, in addition to the above, the following condition exists

Us

L

where L is the smallest dimension of the body, then

<<1

o
Ty 2T,
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and the distinction between the Lagrangian and Eulerian variables vanishes. As
a result, the functional forms of the displacement components u; in these two
variables become identical. Henceforth, when we use the small-strain approxima-
tions, €;; will be used to denote both the infinitesimal Lagrangian and Eulerian
strain tensors, w;; will denote both the infinitesimal Lagrangian and Eulerian
rotation, and x; will denote both Lagrangian and Eulerian variables.

1.4 Cauchy Stress Principle

The kinetics of rigid bodies are described in terms of forces; the equivalent
concept for continuous media is stress (loosely defined as force over unit area).
Actions can be exerted on a continuum through either contact forces or forces
contained in the mass. The contact force is often referred to as a surface force
or traction as its action occurs on a surface. We are primarily concerned with
contact forces.

Global Axes

€2

éS/ él

Figure 1.13: Exposed forces on an arbitrary section cut.

Traction Vector

Consider a small surface element of area AA on our imagined exposed surface
A in the deformed configuration. There must be resultant forces and moments
acting on AA to make it equipollent to the effect of the rest of the material.
That is, when the pieces are put back together, these forces cancel each other.
Let these forces be thought of as contact forces and so give rise to contact stresses
(even though they are inside the body). Cauchy formalized this by introducing
his concept of traction vector.

Let 71 be the unit vector that is perpendicular to the surface element AA and
let AE be the resultant force exerted from the other part of the surface element
with the negative normal vector. We assume that as AA becomes vanishingly
small, the ratio AE"/A A approaches a definite limit dF'/dA. The vector obtained
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in the limiting process . A
lim ﬁ = d—F = {(?)
AA—0 AA dA
is called the traction vector. This vector represents the force per unit area acting
on the surface and its limit exists because the material is assumed continuous.
The superscript 7 is a reminder that the traction is dependent on the orientation
of the area.

{(é2)
€9 022
021
023
g12
f(é3) L i(e1)
g32
o J11
€1 o
31 o13
és 033

Figure 1.14: Stressed cube.

To give explicit representation of the traction vector, consider its components
on the three faces of a cube as shown in Figure 1.14. The traction on the 1-face
is

7

s i =54 = (e + 15y + 18V e
i
while on the 2-face

7

I

€ : £(7) — Ztgéz)éi = t(léZ)él + tééz)éz + t:(;éz)ég
[

Because this description is somewhat cumbersome, we simplify the notation by
introducing

Tij = tg-éi)

where i refers to the face and j to the component. More specifically,

011 Et(lél), 013 Z—'Et:(;él), 031 Et(lés),

The normal projections of £(*) on these special faces are the normal stress com-
ponents 011, 099,033, While projections perpendicular to 7 are shear stress com-
ponents g12, 013; 021, 023; 031, 032.

It is important to realize that while ¢t resembles the elementary idea of stress
(force over area) it is not stress; ¢ transforms as a vector and has only three com-
ponents. The tensor o;; is our definition of stress; it has nine components with
units of force over area, but at this stage we do not know how these components
transform.
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Relation between t; and n;

We know that the traction vector {*) acting on an area dAn depends on the
normal #i of the area. The particular relation can be obtained by considering
a traction on an arbitrary surface of the tetrahedron shown in Figure 1.15. On
the three faces perpendicular to the coordinate directions the components of the
three traction vectors are denoted by o;;. The vector acting on the inclined sur-
face ABC is  and the unit normal vector 7. The equilibrium of the tetrahedron
requires that the resultant force acting on it must vanish.

Global Axes C

Figure 1.15: Tetrahedron.

The equation for the balance of forces in the z;-direction for the tetrahedron
is given by
tldA — O'lldA1 e O'QldAQ — 0'31dA3 + blpdV =0

where b; is the x1-component of the body force b (which may also contain inertia
terms), ¢y is the z1-component of the traction vector, dA; is the area of the face
perpendicular to the x; axis, dA is the area of the inclined surface, and

dv = LhdA

is the volume of the tetrahedron. In this, b is the smallest distance from point
P to the inclined surface ABC. Noting that the normal to the area has the
components

l = n1é1 + naés + ngés

we conclude that the components of area are

area of face 1: dA; = nidA
area of face 2: dAy; = nodA
area of face 3: dAz = n3zdA

Now divide through by dA in the equilibrium relation, and letting h - 0, we
obtain
t1 = ony +o91ng + 031Nz = Z 1M
J
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Similar equations can be derived from the consideration of the balance of forces
in the x5- and x3-directions. These three equations can be written in the indicial

notation as
t; = Z ojin; (1.14)
J

This compact relation says that we need only know nine numbers [0;;] to be
able to determine the traction vector on any area passing through a point. These
elements are called the Cauchy stress components and form the Cauchy stress
tensor. It is a second-order tensor because t; and n; transform as first-order
tensors. Later, we will establish that it is symmetric.

Kirchhoff Stresses

We have chosen to use the Lagrangian variables for the description of a body
with finite deformation. For consistency, we need to introduce a measure of stress
referred to the undeformed configuration. Because true loading exists only in
the deformed state, the corresponding loading and stress in the body at the
initial (undeformed) state could be considered as fictitious. To appreciate the
motivation in introducing the new definitions of stress, it is worthwhile to keep
the following in mind:

e The traction vector is first defined in terms of a force divided by area.

e The stress tensor is then defined according to a transformation relation for
the traction and area normal.

To refer our description of tractions to the surface before deformation, we must
define a traction vector £° acting on an area dA° as indicated in Figure 1.16.
The introduction of such a vector is somewhat arbitrary, so we first reconsider
the Cauchy stress so as to motivate the developments.

t

Global Axes

deformed

undeformed

é3/ &

Figure 1.16: Traction vectors in the undeformed and deformed Conﬁgurations..

In the deformed state, on every plane surface passing through a point, there
is a traction vector ¢; defined in terms of the deformed surface area. That is,
letting the traction vector be ¢ and the total resultant force acting on dA be dF ,
then
dF;
dA

or t; =

m
Ll &
NI
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Let all the traction vectors and unit normals in the deformed body form two
respective vector spaces. Then the Cauchy stress tensor o;; was shown to be the
transformation between these two vector spaces, that is,

t; = E O il
J

The tensorial property of the Cauchy stress tensor can be established from the
quotient rule. Defined in this manner, the Cauchy stress tensor is an abstract
quantity; however, on special plane surfaces such as those with unit normals
parallel to é;, é3, and é3, respectively, the nine components of [ o;; | can be related
to the traction vector and thus have physical meaning.

Thus, the meaning of o;; are the components of stress derived from the force
vector dF; divided by the deformed area. This, in elementary terms, is called
true stress.

We will now do a parallel development for the undeformed configuration. Let
the resultant force dF™, referred to the undeformed configuration, be given by a
transformation of the force dF' acting on the deformed area. One possibility is to
take dF? = dF;, and this gives rise to the so-called Lagrange stress tensor, which
in simple terms would correspond to “force divided by original area.” Instead,

let
Z az; dF;

which follows the analogous rule for the deformation of line segments. The reason
for this choice will become apparent later when we consider the equations of
motion. It is important to realize that this is not a rotation transformation but
that the force components are being “deformed.” The Kirchhoff traction vector

is defined as 920 dF
IL‘f at'y
dAO Z Oz; dA°

This leads to the definition of the Kirchhoff stress tensor 05

£= 2 oing

The meaning of U;; are components of stress derived from the transformed
components of the force vector, divided by the original area. There is no ele-
mentary equivalent to this stress. This stress is usually referred to as the second
Piola-Kirchhoff stress tensor; we will abbreviate it simply as the Kirchhoff stress
tensor.

Example 1.9: Establish the relation between the Cauchy and Kirchhoff stress
tensors.
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From the definition of the Kirchhoff traction vector, we have

t2dA° = dFY = z? dF Z tJdA
J
Replacing the tractions with their respective stress tensors gives
> ofingda° = Z rS amn,,dA
J 7p

Because we also have the relation between the areas

Oaa:o o o
npdA=>J S dA

»
then 52° 8
oKn2dA° = ZJ" L i 6zknde°
J Jik,p
With J° = p°/p, the relation between Kirchhoff and Cauchy stress tensors be-
comes 520 9a? 5m. 8
p x; .’l: P Ti i K
=3 £ K 1.15
o = Z p Oxm an ’ % Z o 0ad, Dzl (1.15)

We will show that the Cauchy stress tensor is symmetric, hence these relations
show that the Kirchhoff stress tensor is also a symmetric tensor.

Example 1.10: A unit cubic solid is subjected to the applied load as shown
in the Figure 1.17. Determine the Cauchy and Kirchhoff stresses.

— dP = 100

T

Figure 1.17: Cube with uniaxial load.

The deformation is given by
T = )\1(1:?, T2 = /\21';; 3 = )\31;;

where the stretches are A1 = 2, A9 = A3 = 0.5. For this problem, the basic
information is given in terms of the forces and so the stresses will be established
by using the connection between them, the tractions, and the stresses.

The deformation gradients are given by

A 0 0 ° 1//\1 0 0
[‘9””’]_[0 Ao 0], [‘9””'“]:[ 0 1/ 0 ]

0 0 s 0z 0 0 1/
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The Jacobian is therefore
Jo = /\1/\2/\3 = 2(05 X 05) = 0.5

which shows that there is a volume change. The Cauchy stress tensor is obtained
from information about the traction vectors

_ dF;
ty = g 05y = 4 T o1 + o2in2 + 0313
J

On the z,-face 7 = é;, giving t; = 014, and the components of force and area are
therefore

dF, {dP, 0, 0} = {100, 0, 0}

A, = J°

ail dAS = M3 dAS =05 % 0.5=0.25, dAs =0, dAz=0
1

On the z-face and z3-face, we have t; = o4;, and ¢; = o3, respectively, and in
both cases

dF; =0, 0, 0}
Thus, for the respective faces, we have

oy=0M_dP 1 dP 100 _ . __ _,
YTdAL T dA MAsdAe T 25 0 BT oBT

’fL(2) = {O, 1,0} . 021 — 023 = 0929 = O

A" = {1,0,0} :

ﬁ(s) - {0,0, 1} . 031 = 032 = 033 = 0

In summary, the components of the stress tensor are

10 0 400 0 O
1dP[OOO}=[O 00]

(o] = o 2P
T RAsdA? | o g g 0 0 0

Because the deformed area is dA = 0.25, the Cauchy stress has the interpretation
of force divided by deformed area.

The components of the Kirchhoff stress will be obtained by using this and the
deformation gradients. Convert the Cauchy stress to Kirchhoff stress by

© | 2, 00n
o = 2o 5, o,

i,j

- o [011 Oz, % o1s Oz, Q_:v_; o3 Ozxp O

3.’E1 3&:1 8901 (9372 (9:1:1 8&:3

+ o021 Oz % 022 % % 023 *——axz Oz

a$2 8x1 sz awz 811,‘2 Bxg

dx3 O, Oz3 Ox2 Ox3 Ox3

Because only 011 # 0, we have simply
Oxy, Oxyg
8901 3&:1

K 0
qu = J g11
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and this gives, for instance,

Ko _ Loy 11y _1dP 102 _
o = (/\1/\2/\3)(/\2/\3 dA({)(/\l)(/\1 = N dds 5(400)(3)" = 50
o3 = 1(400)(0)>=0
o3 = 3(400)(0)*=0

In summary,

1 0 0 5 0 0
Ky_ 1 db _
ERFIHERY

Because the original area is dA° = 1, the Kirchhoff stress does not have a simple
interpretation such as force divided original area.

1.5 Governing Equations of Motion

Recall that Newton’s laws for the equation of motion of a rigid body can be

written as
SF o= mi

SN = mixi

where 7 is the acceleration and m is the mass. These equations will now be
used to establish the equations of motion of a deformable body. It will turn
out, however, that they are not the most suitable form, and we look at other
formulations. In particular, we look at the forms arising from the principle of
virtual work and leading to stationary principles such as Hamilton’s principle
and Lagrange’s equation.

Global Axes

Figure 1.18: Arbitrary small volume.

Equations of Motion in Terms of Stress

Consider an arbitrary volume V taken from the deformed body as shown in
Figure 1.18; it has tractions ¢ on the boundary surface A, and body force per
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unit mass b. Newton’s laws of motion become, respectively,

/fdA+/p13dV = /p&dv
A 1% \4

/ixidA+/azxépdV = /.i‘xi}pdV
A 1% |4

These are written in the indicial notation as

|4

Z%k[/ -T]tde+/$kapdV = /xj’iikpdV]
14

7.k

These are the equations of motion in terms of ¢;. We now obtain the equations
of motion in terms of the stress. In doing this, there is a choice between the
deformed state and the undeformed state.

Using t; = Zp opinp and by the integral theorem of Equation (1.2), we get

/t dA = /Zamn,,dA /Zaaf;m
p

The equations of motion become (after simplification and noting that, because
the volume V' is arbitrary, the integrands must vanish)

00p; )
Z a(:; = P

Y ko = 0 (1.16)
i,k

The second equation shows that o;; is a symmetric tensor, because the contrac-
tion of a symmetric tensor with an antisymmetric tensor is zero. Hence the two
equations of motion become, in expanded notation,

0 0 0
ou , 0021 0031

b — o
oz, | By | oms TP T P
0oz 0oy 0O0sz ;
b =
81,‘1 + 8.'1,‘2 + 81‘3 +p 2 plz
0 0 0
13 | Ooa | Do +obs = pis (1.17)

8901 8.1,‘2 61E3

It is worth repeating that due to the symmetry property of the stress tensor,
only six components are independent. That is, the number of independent stress
components in the above are reduced because o012 = 021,013 = 031 and g3 =
J39.
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To complete our duality of treatments of stress and deformation, we need to
consider the equations of motion with respect to the undeformed configuration.
Specifically, the Cauchy equations of motion are in terms of the spatial par-
tial derivatives and these must be changed to derivatives with respect to the
undeformed state.

We begin with the body force b, which is the body force per unit mass in the
deformed configuration. Define the body force per unit mass in the undeformed
state as b° such that

b?p°dV° = b; pdV

In view of mass conservation, p°dV° = pdV, we obtain
p pav,

This body force relation is also valid for inertial forces. Note that the result
would be different if the body force were defined per unit volume instead of per
unit mass.

We change the spatial derivatives to material derivatives as follows:

Oo ig o do; 4 (9.1'
Zj: ijj N — 81,']" Oz _Zaxo( ﬂax]) Z 7315 x"@xj
0 0x?
= Zon ()
3P J

Noting that p/p® = J and 8J/0z; = 0, we obtain

Zax"( x)*”%_p“l

It remains now to replace the term in parentheses with a quantity that has
meaning in the undeformed configuration. We would prefer to have a symmetric
stress tensor, to that end let us replace the term in parentheses with

Oz; p° IZ
r 8.77" % = Z ﬂam
to give the equations of motion
0 [0z
Z—o[a—xi ] AN =0, ol =0y (L18)
Jik

These equations of motion are slightly more complicated than those using the
Cauchy stress because they explicitly include the deformed state. Note also that
each one of the equations of motion contains all the stress components and
therefore are too cumbersome to write explicitly.
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Arrived at this way, the stress O' ; is just a convenience variable, which, because
of the role it plays, can be 1nt0rpreted as a stress. However, because of our
previous development, we can give it physical interpretation in terms of tractions
and forces acting on undeformed areas.

Virtual Work Formulation of Equilibrium

Let u;(z?) be the displacement field which satisfies the equilibrium equations
in V. On the surface A, the surface traction t; is prescribed on A; and the
displacement on A,. Consider a variation of displacement du; (we will sometimes
call this the virtual displacement), then

; = u; + 0y,

where u; satisfy the equilibrium equations and the given boundary conditions.
Thus, du; must vanish over A, but be arbitrary over A;. Let 6W, be the virtual
work done by the body force b; and traction t;; that is,

We =" / pbidu SV + ) / tidu; dA+ / t;0u; dA (1.19)
i YV i JA i Y Au

The last term is zero. We can also express this virtual work as

(SWe = Z/‘/pbzdude—FZ/AaﬂcSumJ dA
d
Z /V pbiéuidV+Z /V %(aﬁéui)dV
I3 6uz
z/ pbi + %3 (5udV+Z/Uﬂ ax, av

pIAQ

where the last term was reduced using the decomposition of the deformation
gradient into €;; + w;; and noting that the contraction of the antisymmetric
rotation with the symmetric stress is zero. Define the total virtual work as

SW = 6W, ~ Z / 0jibe;dV = Z /

These developments actually paralleled what was done in deriving the Cauchy
stress equations of motion, therefore, we can look at it in one of two ways. First,
because the term in parentheses is zero due to equilibrium, then we conclude
that the total virtual work is zero. That is,

SW =W - /V 0;i0ej;dV =0

aﬂéeﬂdV

)5 dV
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On the other hand, if we say that the total virtual work is zero for any arbitrary
virtual displacement du;, then we conclude that the term in parentheses is zero.
That is, we obtain the equilibrium equations in terms of the Cauchy stress. The
principle of virtual work states that a deformable body is in equilibrium if the
total virtual work is zero for every independent kinematically admissible virtual
displacement. We will interpret the symbol § as meaning a wariation and the
above equation as a variational principle.

We would also like to write the virtual work expression in terms of the un-
deformed configuration. Following developments similar to the example in Sec-
tion 1.3, we get the relation

Semn = Z Oxm az

The relation between Cauchy and Kirchhoff stress is

. ¥ OLm Oxy, oK
mee p ox] 0z 7ij

and recalling that the deformed and undeformed volumes are related by dV =
dV°p°/p, the internal virtual work term becomes

> OmnbemndV =Y 0pe 8By, dV°

m,n p.q

Hence the Cauchy stress / Eulerian (small) strain combination is energetically
equivalent to the Kirchhoff stress / Lagrangian strain combination.
We are now in a position to write the virtual work form of equilibrium as

SW =W, — > / TmnemndV =W, =Y / OROEydV® =0  (1.20)
A% AL

In contrast to the differential equations of motion, there are no added complica-
tions using the undeformed state as reference. It is useful to realize that, during
a deformation, the reference state t = 0 could be any one of the previous equi-
librium positions and not necessarily the original stress-free state. We will make
use of this in our incremental formulation for the computer.

Stationary Principles

The virtual work form is completely general, but there are further developments
that are more convenient to use in some circumstances. We now look at some of
these developments.
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I: Stationary Potential Energy

The internal virtual work is associated with the straining of the body and there-
fore we will use the representation

U = Z/ O'U(vaijd"f = Z/ Uz'}j('(sEijdvu
iwj VY i 2V

and call U the strain energy of the body.

A system is conservative if the work done in moving the system around a
closed path is zero. We say that the external force system is conservative if it
can be obtained from a potential function. For example, for a set of discrete
force, we have

ov
_81_Li or V= —;Piui

where u; is the displacement associated with the load P;. The negative sign in

the definition of V is arbitrary, but choosing it so gives us the interpretation of V

as the capacity (or potential) to do work. The external work term now becomes
ov

W, = ZPiJui =— %Jui = 6V

P =

We get almost identical representations for conservative body forces and con-
servative traction distributions. The principle of virtual work can be rewritten

as
U446V =0 or I=45U+V]=0 (1.21)

The term inside the brackets is called the total potential energy. This relation
is called the principle of stationary potential energy. We may now restate the
principle of virtual work as: For a conservative system to be in equilibrium, the
first-order variation in the total potential energy must vanish for every indepen-
dent admissible virtual displacement. Another way of stating this is that among
all the displacement states of a conservative system that satisfy compatibility
and the boundary constraints, those that also satisfy equilibrium make the po-
tential energy stationary. In comparison to the conservation of energy theorem,
this is much richer, because instead of one equation it leads to as many equations
are there are degrees of freedom (independent displacements).

Example 1.11: Determine the equilibrium conditions for the nonlinear system
shown in Figure 1.19.

Identify u, the resulting displacement at the point of application of the load,
as the independent admissible displacement. The response of the nonlinear spring
is shown in Figure 1.19(a): under tension it stiffens, under compression it shows
softening. The virtual work for this spring is

W = Féu = K[1 + au]udu
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Figure 1.19: Equilibrium of a nonlinear spring. (a) Force/deflection relation. (b) Po-
tential energy.

This is also the virtual strain energy 6U. Integrating then gives
U= 3iKu?[l+ oy
The potential of the applied force is
V =—-Pu
The total potential energy of the system is, therefore,

= 1Ku’[l + jau] — Pu
These terms are shown plotted in Figure 1.19(b) for different values of displace-
ment u. It is apparent that IT can achieve two stationary values — a valley and a
peak. The principle indicates that both occur at equilibrium positions.

A stationary potential energy requires that

o _
ou
We recognize this as the equilibrium balance between the external applied load P

and the internal force F' of the spring. If the spring were linear (a = 0), it would
reduce to the single equilibrium equation

0 = Kull+ou]—-P=0

Ku=P or u=P/K
In the nonlinear case, however, we have two possible positions

-1+./1+4aP/K P -1
u = ~ -

200 "K'«

(The approximation is for slight nonlinearity when « is small.) The first is close
to the linear equilibrium position, but what is the meaning of the second posi-
tion? Furthermore, this second position corresponds to a negative displacement,
which surely cannot happen because the load is positive. A hallmark of nonlin-
ear systems is the possibility of multiple equilibrium positions. Indeed, looking at
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Figure 1.19(a), we see that even at zero load (F' = 0) there is the equal possibility
of two deflections.

It is hard to imagine an “ordinary” material or spring behaving in this way.
However, engineering structures do behave this way, and we will cover many such
cases in the later chapters. Many of the structured materials (an example is cor-
rugated cardboard) also behave this way.

IT: Hamilton’s Principle

To apply the idea of virtual work to dynamic problems, we need to account for
the presence of inertia forces, and the fact that all quantities are functions of
time. We will take care of the former by use of D’Alembert’s principle and the
latter by time averaging.

D’Alembert’s principle converts a dynamic problem into an equivalent problem
of static equilibrium by treating the inertia as a body force. That is, the total
body force is comprised of pb; — (pb; — pii;) where —pii;dV is the inertia force
of an infinitesimal volume. The virtual work of the body force is

;/Vpbud ;/Vpuu

In writing this relation, we suppose that the performance of the virtual dis-
placement consumes no time; that is, the real motion of the system is stopped
while the virtual displacement is performed. Consequently, the time variable is
conceived to remain constant while the virtual displacement is executed.

We will concentrate on the inertia term in the above virtual work expression.

Noting that
Z (i dug) = Z i 0ug + Z w; OU;
i
the inertia term can be written as
. d, . Lo
zi:/pu,' ou;dV = ZZ: /p%(ui du;)dV — Z /pui du;dV
Introducing the concept of kinetic energy, defined as

= %Z/ pu;u;dV such that oT = Z/ pl; 0U; dV
) v B 1%

the principle of virtual work becomes

d
— b T Y —
W = 6W?® 4+ 6W° — §U + 6T — o Ez /V(uﬁuz)pdv =0

It remains now to treat the last integral term.
Hamilton refined the concept that a motion can be viewed as a path in config-
uration space; he showed that, for a system with given configurations at times
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Figure 1.20: Hamilton’s configuration space for a pinned/pinned beam. (a) Varied
path in space. (b) Varied path in time.

t; and tq, of all the possible configurations between these two times the actual
that occurs satisfies a stationary principle. This essentially geometric idea is il-
lustrated in Figure 1.20, where a varied path in both space and time are shown
for a beam. At a particular instant in time, ¢, the beam has the deformed shape
of the solid line shown in (a). We can imagine a varied deformation shape shown
as the dotted line in (a), but the end constraints at z = 0 and L are not varied.
Now consider a particular point on the beam and plot its position over time; this
gives the solid line of (b) and it represents the “Newtonian path” of the point.
The addition of the virtual displacement dv(zx,t) gives a path that may look like
the dotted line in (b); again there are no variations at the extreme times t; and
to.

Hamilton disposed of the last term in the virtual work relation by integrating
the equation over time between the limits of the 1 and 2 configurations. The last
term is a time derivative and so may be integrated explicitly to give

—Z/uiéui pdV

By stipulation, the configuration has no variations at the extreme times and
hence the term is zero. Consequently, the virtual work relation becomes

t2
ty

t2
/ [W* + §WP + 6T — 6Uldt = 0 (1.22)
t

1

This equation is generally known as the extended Hamilton’s principle. An im-
portant feature of this principle is that it is formulated without reference to any
particular system of coordinates. That is, it holds true for constrained as well as
generalized coordinates.

In the special case when the applied loads, both body forces and surface trac-
tions, can be derived from a scalar potential function V', the variations become
complete variations and we can write

5 [ — W+ vy =0 (1.23)
t1
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This equation is Hamilton’s principle. Hamilton’s principle is a variational prin-
ciple and it is as general as Newton’s second law. When we apply this principle,
we need to identify two classes of boundary conditions, called essential and natu-
ral boundary conditions, respectively. The essential boundary conditions are also
called geometric boundary conditions because they correspond to prescribed dis-
placements and rotations; the geometric conditions must be rigorously imposed.
The natural boundary conditions are associated with the applied loads and are
implicitly contained in the variational principle.

Example 1.12: Consider a particle of mass M subjected to a force P. Show
that Newton’s law governing the motion of the particle can be recovered from
Hamilton’s principle.
The kinetic energy, strain energy, and potential of the applied force are given
by, respectively,
T=1LiMi?*, U=0, V=-Pu
Hamilton’s principle for the particle is

ty ty to
5/ [T — (U +V)]dt = 5/ [ M4? — (0 — Pu)]dt = / [ma. 54 + Pouldt = 0
t1 t1

ty
Noting that
d(éu)
dt
then we can integrate the first term in the integral by parts to give

woudt = u dt = ud(Su)

t

Mubu

2 t2
+/ [—Mii + Pldudt =0
1

t t1

By stipulation, the variation du at the times t; and t» are zero, then the first
term is also zero. Since the time limits of integration are arbitrary, and since
the variations between these limits can be arbitrary, then we conclude that the
integrand must be zero. This gives

—-Mi+P=0 or P = Mi
This is Newton’s second law.
Example 1.13: Use Hamilton’s principle to derive the equations of motion of

a rod taking the lateral contraction into account. Assume the material behavior
is linear.

EA pA,v, L

R ] .

= Ug = ur

Figure 1.21: Rod with end loads.
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As the rod deforms longitudinally, it also contracts due to the Poisson ratio
effect. Thus, each particle of the rod also has a transverse component of velocity.
We will now add this to the kinetic energy term in order to have a more accurate
accounting of the energy. The transverse strain is related to the axial strain by

€+ = —ve, therefore, the transverse velocity is given by
ou

ut = Tet = —Uré = —VUr—

o

In this, we have assumed that the velocity is proportional to the distance r from
the centroid of the cross-section. The total kinetic energy of the rod is readily
found to be

_/2p[u(a: £)? + e(z, £)%]dV = 1 / / W +v2r? g)]dAd

Because 4 is a function only of z (and time), then we can perform the integration
with respect to the cross-section to give

L
T:—;—/ [pAG® + v pJ( )]da: Jz/rsz
0 A

where J is the polar moment of area. The total strain energy is given by

U:%/UEdVZ%/E€2dV:/ EA(au) dx
Ox
v 1% 0

The final term we need is the potential of the applied forces. Assume there are no
distributed loads — only end loads as shown in Figure 1.21 — then we have

V= ——(—'Fo’u.o + Frur) = Fouo — Frur
Substitute these energies into Hamilton’s principle to get

to L
5/ [%/ lpAi? + v2pJ (5 )]da:——/ EA(gu) dx—FoqurFLuL]d 0
t 0 0

Take the variation inside

to L
ou, 06 ou, Obu _
/tl [/O {pAu5u+u PI(o) () — BA(G ) (e )}da: F05u0+FL6uL] dt =0

We now use integration by parts in order to have all terms multiplied by a common
variation du. For example, the time integration of the first term can be rewritten

t2 t2
— / pAlSudt
t1 Jyy

By stipulation, there is no variation of the configuration at times ¢, and {2, hence
the term evaluated at these limits is zero. For the third term, we have for the
space integration

to ta
/ pAUSudt = / pAud(du) = pAudu
t1

ty

du. , dbu L du u
/O EA(5 ) (% )dx_/o BA(5)d(3u) = EA5- bu

L 82
— / EA_—dx du
o Jo oz
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The middle term requires both space and time integration and this is done as a
combination of the previous two terms. The result is

au 35u 2, 8t R R
/ / J(a E —)dzdt = /tl zzpt]a;loéucit#—/t1 A l/pJ—éFEudxdt

Add all these terms together to get

L

t2 L 2 2 . .
Ou 2 0% . u . - 0Oi
/t [/o [EA——am2+u PJw—pAu]éudx— [EA%+V /’Jgg“F]‘s“

]ﬁ:o
0
Because the time limits and space limits in the integrations are arbitrary, then
the first integrand is zero, giving the governing differential equation as
8*u 8% 8%u
FAZ— +1VpJ o= — pA== =0 1.24
aaz TV P g T PG (1.24)
If either Poisson’s ratio or the polar moment of area is negligibly small, then we
recover the elementary rod theory [22].
The remaining terms must also be zero and thereby specify the boundary con-
ditions; at either end of the rod, we specify

Ou 81'1
u or F= FA8— +v % (1.25)

The natural boundary condition is a rather surprising result. We may recognize
the first term of it as arising from the linear elastic assumption of

F du Ju
g = A = Fe Ea—w or F = EA*a—‘"

Does the presence of the second term mean that this relation is no longer valid?
A very important point in the variational approach to problems is that both the
differential equation and the associated boundary conditions are implied in the
potential. Because we started with an approximation for the potential function,
we derived a governing differential equation and a set of boundary conditions
most consistent with that approximation. We can imagine, therefore, proposing a
different potential and having a natural boundary condition that is actually the
same as the axial force relation. In fact, such a situation arises in the higher-order
rod theory referred to as Mindlin-Herrmann rod theory [23]. The modified rod
theory just developed is referred to as Love’s rod theory.

III: Lagrange’s Equation

Hamilton’s principle provides a complete formulation of a dynamical problem;
however, to obtain solutions to some problems, the Hamilton integral formula-
tion must be converted into one or more differential equations of motion in a
manner as just shown in the examples. For computer solution, these must be
further reduced to equations using discrete unknowns. That is, we introduce
some generalized coordinates (or degrees of freedom with the constrained de-
grees removed). At present, we will not be explicit about which coordinates we
are considering but accept that we can write a function as

u = u(ug, uz,...,uN)
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where u; are the generalized coordinates. We get these generalized coordinates
by the imposition of holonomic constraints — the constraints are geometric of

the form f;(u1,u2,...,un,t) = 0 and do not depend on the velocities.
The time derivative of such a function is
N oy .
u = o Uj
=1 Ou;

Consequently, we see that the kinetic energy is a function of the following form:
T = T(ul,ug,. . ,’U,N;I:l,l,’llz, ‘e ,1),1\{)

The variation in the kinetic energy is given by
N N
or or
0T = —d0u; ——0u
.Z 6’(1,]' J + Z (9’(37
j=1 j=1
We can use integration by parts on the second term to obtain

t2 (0T d T
6Tdt=/ E:{——— }Ju dt
t e Ou;  dt Oy J

where we used the fact that the variations at the extreme times are zero.
The total potential of the conservative forces is a function of the form

U+V =1 =1I(uy,us,...,ux)

and its variation is given by

oIl = Z auj

Additionally, we have that the virtual work of the non-conservative forces is

given by
N
=D _Qiu;
j=t

Hamilton’s extended principle now takes the form
2 X aT\ 9T aU+V)
/t; Z{~_ (3“J>+8u1 Ou; +QJ}5ujdt:O
Jj=1

Because the virtual displacements du; are independent and arbitrary, and be-
cause the time limits are arbitrary, then each integrand is zero. This leads to the
Lagrange’s equation of motion:

_d (oT\ or ~
ﬂ:;ﬁ(%) o 6t(U+V) Qi =0 (1.26)
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for i = 1,2,...,N. The expression, F; = 0, is our statement of (dynamic)
equilibrium. It is apparent from the Lagrange’s equation that, if the system
is not in motion, then we recover the principle of stationary potential energy
expressed in terms of generalized coordinates.

We emphasize that the transition from Hamilton’s principle to Lagrange’s
equation was possible only by identifying u; as generalized coordinates. That is,
Hamilton’s principle holds true for constrained as well as generalized coordinates
but Lagrange’s equation is valid only for the latter. A nice historical discussion
of Hamilton’s principle and Lagrange’s equation is given in Reference [84].

Example 1.14: A rigid pendulum is constrained by a linear spring as shown
in Figure 1.22. Determine the equations of motion.

Figure 1.22: Elastically restrained pendulum.

The spring has its natural length when the mass is at its lowest position, hence

the strain energy is
U = }Kv® = LK|Lsin6]?

Note that the massless spring moves so as to be always horizontal. The mass has
a velocity component L about the pendulum axis, hence the kinetic energy is

T = iM[@® + %) = L M([LO)?

Additionally, gravity acts as a conservative force opposite to the coordinate direc-
tion v and hence has the potential

V = Mgv = MgL[l — cos 0]
The total potential is given by
O=U+V = iK|[Lsin]® + MgL[l — cos ¥
Substituting these into Lagrange’s equation

Ro= 22y - (50 + 22V

U + V)

(where we have identified @ as the generalized coordinate) leads to

%{ML?O'} ~0+ KL?cosfsinf + MgLsinf — Q¢ =0
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‘We can write this as
. 1
ML+ KLcosfsinf + Mgsin§ = EQ@

Even though the spring is linear, the resulting equation is highly nonlinear because
the rotational angle can be large. This is typical of the nonlinear systems we will
be considering in the next chapters.

Example 1.15: Specialize Lagrange’s equation to the case when the motions
are small.

Consider small motions about an equilibrium position defined by u; = 0 for
all 7. Perform a Taylor series expansion on the strain energy function to get

B oU X 8*U
U(ui,u2,...) = U(O)+Za—m’0ui+ 522 Ou;0u;
i iJ

The first term in this expansion is irrelevant and the second term is zero since,
by assumption, the origin is an equilibrium position. We therefore have the rep-
resentation of the strain energy as

0%*U
U(ur,uz,...)~ %ZZKUU"W’ K = Ou;Ou;j o
J

i

uiuj—i—...
0

We can do a similar expansion for the kinetic energy; in this case, however, we
also assume that the system is linear in such a way that T is a function only of
the velocities 4;. We get

o . o’T
T(41,02,...)~ & Z Zﬂ’fz‘juiuj ) Mi; = D10y
J

i

0

The potential of the conservative forces also has an expansion similar to that for
U, but we retain only the linear terms in u; such that

_ oV
J

0

Finally, assume that the non-conservative forces are of the viscous type such that
the virtual work is
W = Q%u = —cudu

This suggests the introduction of a function analogous to the potential for the
conservative forces

_9D
u,

Q5 =

where D = D(41,42,...,uN)

For small motions, we get

o . o 6°D

D(u1’u2,...’uN) %% E E Cz'juz'uj7 Cij = 81,00 o
. 1 J
J

i
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The function D is called the Rayleigh dissipation function.
Substitute these forms for U, V, T, and D into Lagrange’s equation to get

Z{Kiju]'-l—cijﬂj-l—Mijﬁj}:Pi, i=12,...,N
J
This is put in the familiar matrix form as

(K Hul+[C Hal+[M{id}={p} (1.27)

By comparison with the one-degree-of-freedom case, we have the meaning of [ K |,
[ M ],and [ C ] as the (generalized) structural stiffness, mass, and damping ma-
trices, respectively. As yet, we have not said how the actual coefficients can be
obtained or the actual meaning of the generalized coordinates; this is the subject
of a later section, and the next few chapters.

Discussion

In the subsequent chapters when we need to derive governing equations, we will
use Hamilton’s principle for continuous systems and Lagrange’s equation for
discrete systems. Sometimes, as in element formulations, we will deal directly
with the principle of virtual work.

Keep in mind that these governing equations are actually just different forms
of (dynamic) equilibrium and are not sufficient in themselves to solve problems.
To complete the formulation of a problem, we must also make the material (or
constitutive) behavior explicit as was done in the spring and rod examples. This
is the topic of the next two sections. In stating the various forms of the governing
equations, we often referred to conservative systems or systems with a potential.
We will also make this explicit in regards to the material behavior.

1.6 Material Behavior

The concepts of stress, on the one hand, and strain, on the other hand, were
developed independently of each other and apart from the assumption of a con-
tinuum, the development placed no restrictions on the material. That is, the con-
cepts developed so far apply whether the material is elastic or plastic, isotropic
or anisotropic. Indeed, they apply even if the material is a fluid. This section
makes the material behavior explicit.

Types of Materials

Similarly shaped bodies with similarly applied loads may have different defor-
mation responses. This is due to the internal constitution of their matter. A
constitutive equation is an experimentally determined relation between the ap-
plied loads and the deformation response for a particular material. There is
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a wide range of materials available, but engineering structures are made from
relatively few. (Reference [28] gives an enjoyable account of a wide variety of
structures and the types of materials used for their construction.) Furthermore,
most structures are designed to sustain only elastic loads and are fabricated from
isotropic and homogeneous materials (steel and aluminum, for instance); the lit-
erature is abundant with data on their material constants. Analysis of structural
components fabricated with composite materials, on the other hand, requires the
use of anisotropic elasticity theory. Analysis of problems in metal-forming and
ductile fracture are based on the inelastic and plastic responses of materials, par-
ticularly those under large deformation. Polymeric materials require knowledge
of their time-dependent stress relaxation and creep properties.

To simplify the relations in this section, only small deformations will be con-
sidered. One further restraint is that the material is assumed homogeneous, that
is, irrespective of specimen size, the specimen will have the same material re-
sponse. This will not preclude study of inhomogeneous structures — it is only
the local material (or small-scale) behavior that is assumed homogeneous.

In broad terms, failure refers to any action that leads to an inability on the
part of a structure to function as intended. Common modes of failure include
permanent deformation (yielding), fracture, buckling, creep, and fatigue. The
successful use of a material in any application requires assurance that it will
function safely. Therefore, the design process must involve steps where the pre-
dicted in-service stresses, strains, and deformations are limited to appropriate
levels using failure criteria based on experimental data. At present, formulation
of failure theories for particular materials is an area of widespread research.

While the behavior of a real material is very complicated, nevertheless, most
structural materials can be divided into certain classes and four of the main
classes will be considered here. In characterizing materials, it is not the force and
the displacement that are used but the stress and the strain; this is reasonable
since both of these concepts are local in nature. Historically, then, it was common
to obtain “Stress/Strain diagrams,” but with more specialized materials being
used in structures, this approach must be extended to include time dependency.
Therefore, in plotting the responses to be shown next, it is assumed that a
load/unload cycle is imposed; other cycles could also be used.

I: Elastic Material

If there is a one to one relation between the stress and strain and, on unloading,
all the strain is instantaneously recovered, then the material is said to be elastic.
Most structural materials in common use are adequately described by this type
of material. We write the relation as

e = f(o)
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which, of course, may be nonlinear. In linear elasticity, the deformation is a
linear function of the stress
o =Fe

where E is called the Young’s modulus.

]
€
g time €

Figure 1.23: Elastic behavior.

II: Elastic/Plastic Material

For some materials, it is found that beyond a certain stress level large deforma-
tions occur for small increments in load, and furthermore, much of the defor-
mation is not recovered when the load is removed. On the load/unload cycle, if
0 > oy (oy = yield stress), this material cannot recover the deformation caused
after yielding. This remaining deformation is called the permanent or plastic
strain. The amount occuring depends on the geometry of the problem.

oy —

Figure 1.24: Stress/strain cycle for elastic-plastic material behaviors.

The total strain is considered as composed of elastic and plastic parts
€=¢"+¢€f

and constitutive relations are written for the separate parts. Since plastic flow
is an incremental process, then the constitutive relations must be written in
incremental form

1
FElastic : de = Eda
Plastic : de? = Ao

This is the Levy-Mises theory, and it says that the plastic strain increments
depend on the current stress state, and also that the principal directions of the
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increments coincide with those of the stress. The parameter A is determined
experimentally, but unlike E, say, it is not constant but depends on the level of
stress.

In the solution of an actual problem, the increments of deformation are ob-
tained for each increment of load, then the total deformation is obtained by
summing all the increments over the loading history.

The maximum stress, referred to as the yield stress, beyond which the loading
and unloading curves differ, is the elastic limit of the material. The unloading
curve is usually parallel to the elastic loading curve. The difference in yield
stresses between the virgin and plastically deformed material is caused by its
strain-hardening response.

III: Viscoelastic Material

The mechanical properties of all solids are affected to varying degrees by the
temperature and rate of deformation. Although such effects are not measurable
at low temperature, they become noticeable at high temperatures relative to
the glassy transition temperature for polymers or the melting temperature for
metals. Above the glassy transition temperature, many amorphous polymers
flow like a Newtonian fluid and are referred to as viscoelastic materials.

o,

Figure 1.25: Viscoelastic behavior.

That is, they exhibit a combination of solid and fluid effects. If the solid is
elastic, then the deformations are proportional to the stress, and if the fluid is
Newtonian, then the deformation rate is proportional to the stress. Two very
simple viscoelastic materials can be represented by a combination of a spring and
dashpot. The Maxwell model has the spring in series with the dashpot, while the
Kelvin model has the spring in parallel with the dashpot. These materials are
time dependent and the relation must be written in terms of the time derivatives;
the standard linear solid, for example, is described by

d€+E26_ 1 do 1[1+E2]0

dt  n  Edt 7 E,
In addition to the time dependence, there is also a dependence on more material
coeflicients.
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This material exhibits a residual strain after the load is removed, but over
time it recovers this strain to leave the material in its original state.

IV: Structural Materials

The structural properties of some hase materials can be improved by combining
them with other materials to form composite materials. A historical survey is
given in Reference [28]. For a sandwich material such as plywood, the cross-
grain weakness of the wood is improved by alternating directions of the lamina.
Concrete is an example of particulate materials with cement as the bonding
agent. Reinforced concrete uses steel bars to improve the tensile strength of the
base concrete. Sheets of glass are stiff but prone to brittle failure because of
small defects. Glass-fiber-reinforced composites combine the stiffness of glass in
the form of fibers with the bonding of a matrix material such as epoxy; in this
way, a defect in individual fibers does affect the overall behavior.

It is possible to analyze these materials through their constituent behavior,
but for structural analyses this is very rarely done because it is computationally
prohibitive. Furthermore, as in the case of concrete, the structural properties
depend significantly on the particulars of the bonding behavior and this is rather
difficult to predict. It is more usual to treat these materials as homogeneous
materials and establish average properties based on a representative volume.
This is not an area we will pursue here; suffice it to say, that the variety of
behaviors from these structured materials is much richer than from traditional
homogeneous materials and the analytical description must be adequate for the
purpose. For example, these materials are more likely to be anisotropic (have
different properties in different directions).

Failure Criteria

The basic assumption underlying all yield criteria is that failure is predicted
to occur at a particular point in a material only when the value of a certain
measure of stress reaches a critical value. The critical level of the selected mea-
sure is obtained experimentally, usually by a uniaxial test. The most important,
and widely applied, failure criteria have been combined stress yield theories for
isotropic metals and we discuss some of the more well-known below. Such cri-
teria predict yielding in multiaxial states of stress using uniaxial yield stress as
the only input parameter.

We can characterize the stress state of a body in terms of the principal stresses
because they are the extremum values. In the following, we assume the principal
stresses are ordered according to o3 < oy < 0.

I: Maximum Principal Stress Theory [Rankine]

The maximum principal stress theory predicts that failure will occur at a point
in a material when the maximum principal normal stress becomes equal to or ex-
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ceeds the uniaxial failure stress for that material. That is, this criterion predicts
failure to occur at a point when

o1 2 0y or o3 < —0oy

where o is the magnitude of the uniaxial failure stress in tension and an equal
but opposite failure stress is assumed in compression.

This theory provides a generally poor prediction of yield onset for most metals
and is not typically used for materials that behave in a ductile fashion. It has,
however, been applied successfully to predict fracture of some brittle materials
in multiaxial stress states.

II: Maximum Shear Stress Theory [Coulomb, Tresca, Guest]

The maximum shear stress theory states that yield is predicted to occur at
a point in a material when the absolute maximum shear stress at that point
becomes equal to or exceeds the magnitude of the maximum shear stress at yield
in a uniaxial tensile test of the same material. Based on the stress transformation
equations, this critical yielding value of the maximum shear stress during a
uniaxial test is 7y = %Uy. Thus, yield failure is predicted to occur in a multiaxial
state of stress if

1
Tmaz 2 30Y

In terms of the principal stresses, this can be recast into the form
01— 03 20y

This criterion is shown in Figure 1.26.

This criterion will not predict yielding to occur under any level of applied
hydrostatic loading (because the shear is zero). Experimental evidence for other
states of stress attest that the maximum shear stress criterion is a good theory
for predicting yield failure of ductile metals.

4 03

— Tresca
................ von MiseS

01

Figure 1.26: Tresca and von Mises yield criteria.
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III: Energy of Distortion Theory [Huber, von Mises, Henchy]

The total strain energy of an isotropic linear elastic material is often divided into
two parts: the dilatation energy, which is associated with change of volume under
a mean hydrostatic pressure, and the distortion energy, which is associated with
change in shape. It can be shown that the distortion energy takes the following
form in terms of the principal stresses:

14+v
Ue=%E
The energy of distortion theory states that yield is predicted to occur at a
point in a material when the distortion energy at that point becomes equal to
or exceeds the magnitude of the distortion energy at yield in a uniaxial tensile
test of the same material. The critical yielding value of the distortion energy in
a uniaxial test is

(01— 02)* + (02 — 03)* + (03 — 01)°]

14+v
Us=—% [20%]
Combining these results, the statement of the energy of distortion theory is that

yield will occur if

(o1 —0)2 4 (02 — 03)> + (03 — 01)? > 20%

The behavior of this is shown in Figure 1.26. The predictions are close to those
of the maximum shear stress criterion, but it has the slight advantage of using
a single function for any state of stress.

1.7 Elastic Constitutive Relations

Because of our interest in thin-walled structures, the elastic material is the one
of most relevance to us. Furthermore, the situations that arise are usually of the
type of large rotations but small strains and we utilize this to make approxima-
tions.

Hyperelastic Materials

Consider a small volume of material under the action of applied loads on its
surface. One assumption about elastic behavior is that: The work done by the
applied forces is transformed completely into potential energy. Furthermore, the
potential energy is stored entirely in the form of strain energy. That the work is
transformed into potential energy means that it is completely recoverable and
the material system is conservative.

We will use Lagrangian variables. The increment of work done on the small
volume is

W, = | [ okdE;|ave
ve L3
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The potential is comprised entirely of the strain energy U; the increment of
strain energy is
ou

dU = dU (E;;) = / {Z 5E—_jdE¢j]dVo
i\J R

From the hypothesis, we can equate dW, and dU to give
ou
K
KdE,; |dVe = E;;|dV°
[ [Sebara= [ (52 a5,

Because the volume is arbitrary, the integrands must be equal, hence we have

ou
K

o = 1.28
] 8Ez] ( )
A material described by this relation is called hyperelastic. Note that it is valid
for large deformations and for anisotropic materials; rather than develop this
general case, we will look at each of these separately.

Nonlinear Isotropic Materials

Many structural materials (steel and aluminum, for example) are essentially
isotropic in that the stiffness of a sheet is about the same in all directions. We
will use this to simplify the elastic relation.

Because the material is isotropic, the strain energy is a function of the strain
invariants only; that is, U = U(I4, I, I3), where the definition of the invariants
from Equation (1.4) is

=Y Ew, DL=3I}-1> ExEyx, I3=det[E;]
k k

The stress/strain relation becomes

ok _ OU L OU O | oU Ol
Y 79I, 0E;; 0l 8E;; Ol OE;

The various derivatives of the invariants with respect to strain are

on oI, ol
A~ Yo a5 = Ny — By, A = 205 — [L Ej; EixEk;
OE;; i OE;; L0 — By OE;; oy =1L J+; —

On substituting these into the above constitutive relation, and rearranging, we
get
0fy = Bobij + PLEy + Ba Z EipEp; (1.29)
p
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which is a nice compact relation. The coeflicients have the explicit representation

ou oU ou

o = vt arlit Al
2 or, Tan 't a2
oU AU
- YR
M ol, O3
U

B2 = 8_13

If U(I, 15, I3) is now considered to be expanded as a polynomial in the invari-
ants, it is seen how this form gives an elasticity description with many material
coefficients.

Linear Elastic Anisotropic Materials

Reinforced materials are likely to have directional properties and are therefore
anisotropic. They are also more likely to have small operational strains, and we
take advantage of this to effect another set of material approximations.

Because the strains are assumed small, we can take the Taylor series expansion
of the strain energy density function

02U
viEs) 0+ Z [aEm] 2 %:q [8Ew aqu] 0 Fialoa -

By using the Lagrangian strain tensor, the expansion is valid for large deflections
and rotations but for small strains. Noting that U(0) = 0 and

0Ep,y dipdjq
then get
ou ou 82U
K _ 7 ~ [ — ET A
7pa 0Epq [Oqu] 0 [8quaErs ] 0 o

SRS

8

Let the stress be zero when the strains are zero, then for small strains
K
Opg = Z CpqrsErs
7,8

Because of symmetry in a - and E;;, Cpqrs reduces to 36 coefficients. But because
of the explicit form of C'][,qrs in terms of derivatives, we have the further restriction
. o*U

O0E,;0Eyq |,

o%U

C rs — =ULr
rq 8qu8Ers 0 C spq
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This additional symmetry reduces the elastic tensor to 21 constants. This is
usually considered to be the most general linearly elastic material.
We can write this relation in the matrix form

{o}=[D{FE}, {o}={on,00, -}, {e}={en, e, -}

where [ D | is of size [6 x 6]. Because of the symmetry of both the stress and
strain, we have [ D |7 = [ D ]. Special materials are reduced forms of this re-
lation. For example, an orthotropic material has three planes of symmetry and
this reduces the number of material coefficients to nine and the elastic matrix is
given by

dirn di2 di3 0 0 0
diz dop das 0 0 0
diz daz ds3 0 0 0
0 0 0 3(di—do) 0 0
0 0 0 0 $(dyy — dy2) 0
0 0 0 0 0 3(d1y — di2)

For a transversely isotropic material this reduces to five coefficients because
dss = dag and dgs = (d11 — di12)/2. A thin fiber-reinforced composite sheet is
usually considered to be transversely isotropic [37].

For the isotropic case, every plane is a plane of symmetry and every axis is
an axis of symmetry. It turns out that there are only two independent elastic
constants, and the elastic matrix is given as above but with

di1 =dgp = ds3 = A+ 2u, dig =doz =diz = A

The constants A and p are called the Lamé constants. The stress/strain relations
for isotropic materials are usually expressed in the form

A
k k

This is called Hooke’s law and is the linearized version of Equation (1.29). The
expanded form of the Hooke’s law for strains in terms of stresses is

Bre = [0k —vlolf +0%)

Eyy = %[052 (0K +05K)]

E,. = %[02 (0k +05)] (1.31)
2B, - 2(1;u)gfy’ 28, 2(1E+V)fz’ 2E,. 2(1E+V)Ufz
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and for stresses in terms of strains

E
K = [E— (i E
T = o) (et V(B )]
E
K = —_— - p—
U!I?I - (l + l/)(l — 2’/) [(1 V)Eyy + V(EZZ + ETT)]
E
ok = e ED) [(1=V)E,, + v(Ezs + Eyy)] (1.32)
E E E
K _ 98, K _ . K _ .
Ty 30 1 v) v v T gy gy 2By e T gy e

where E is the Young’s modulus and v is the Poisson’s ratio related to the Lamé
coefficients by
- w(3X + 2u) A vE E

= — /\:———————————————- = = ——C
Ap v 2A+p)’ (1—-2v)(1+v)’ h=a 2(1+v)

The coefficient i = G is called the shear modulus.

Viewing the relation between the normal components of stress and strain as
forming a [3 x 3| matrix, then it can be inverted only if the determinant is
positive. The determinant is

det = (1-2v)(1+0v)2>0

Hence we conclude that
-1<v<05

A negative Poisson’s ratio would indicate a material that, under uniaxial ten-
sion, would expand in the transverse direction. This is possible for some of the
structured materials.

A temperature change can affect the constitutive behavior in two ways: first
it can change the values of the material coefficients; and second, it causes a
volumetric expansion. We are only concerned with the later effect — this is
called thermoelasticity. Because the temperature change only causes a volume
change, then only the normal strain components are affected and the Hooke’s
law of Equation (1.31) is modified to

1
E. = B [fo — V(U;(y + UZKZ)] + aAT
1
Eyy = 1) [aﬁ — V(O'ZKZ + Uff;)] + aAT
1
E.. = 5 [0X —v(oK + 0';;)] +aAT (1.33)

where o is the coefficient of thermal expansion and AT is the temperature
change.
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A special case that arises in the analysis of thin-walled structures is that of
plane stress. Here, the stress through the thickness of the plate is approximately
zero such that 0¥ ~ 0, & ~ 0, and agﬁ ~ 0. This leads to

— —v
E,.= 'E[Ufz +oll= I“_";[Ezz + Ey,]

Substituting this into the 3-D Hooke’s law then gives

1 E
Err = Slog, —voy), ok = m[EM + vEy)]
E :l[O'K—I/O'K] ok :L[E + VEy4)
vy E yy xxlo Yy (1 — 1/2) Yy

The shear relation is unaffected.

A final point to note is that, except for the isotropic material, the material
coefficients are given with respect to a particular coordinate system. Hence, we
must transform the coefficients into the new coordinate system when the axes
are changed.

Example 1.16: The following quantities were recorded during the large defor-
mation testing of a uniaxial specimen: P, the applied force; € = AL/L,, the unit
change of axial length; e, = AW/W,, the unit change of transverse width. Estab-
lish the relationships necessary to convert this information to stress and strain.

Following from the examples of Section 1.4, we have that the stretches are
AM=1+¢, A=1+e¢=1-ve, Mm=14+e=1—ve= A

where we have introduced v = —e¢, /e as the ratio of the axial straining to the
transverse straining. The Lagrangian and Eulerian strains in the axial direction
are

2 2 €
E1126+%6, 61126—%6 =(l—+;)~2~[1+%€]
The stresses are
UK_idP_ 0o o — 1 dP o, a:dP
TN dAT T (146’ T NAsdA? T (1—ve)?’ ° T dA?

The stress o, can be thought of as the “force over original area,” although here
it is introduced solely as a normalizing factor.

As shown in Figure 1.27, there are three possibilities for the behavior of o, =
P/A, against e = AL/L,: it can be concave up indicating hardening, be concave
down indicating softening, or be linear. The corresponding stress/strain curves are
also shown in Figure 1.27. Note that for the range of nonlinear behaviors shown,
all the Kirchhoff stress/Lagrangian strain relations show softening, whereas the
Cauchy stress/Eulerian strain show hardening. Therefore, whether a material is
physically linear or nonlinear, softening or hardening, is not a definite concept but
depends on the measures used for the stress and strain. Of course, the mechanical
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Figure 1.27: The forms of constitutive behavior for the experimental observed behav-
ior.

problem can be objectively nonlinear even though the constitutive relation is linear
because the description of the geometry can be nonlinear.

Example 1.17: Contrast the physical response of materials described by linear
constitutive relations.
Consider the uniaxial constitutive relations

material: a'lKl = FFEi, spatial: o011 = Fen

where, for simplicity, we let the modulus of both materials be the same. Substi-
tuting the respective expressions for stress and strain leads to

1—ve\2
. . _ 1 . . _ 1
material: 0, = Fe(l+¢€)(1 + 5¢), spatial: o0, = Ee( T e ) [1 + 55]

These are shown plotted in Figure 1.28.
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Figure 1.28: Physical responses for linear constitutive relations. (a) Material. (b)
Spatial.

There are two obvious implications from Figure 1.28: linear constitutive re-
lations imply highly nonlinear physical behaviors, and the two descriptions are
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completely different. In addition, both descriptions exhibit instabilities. Consider
the spatial description, for example: as the load is increased, a point is reached
where further load increments cannot be sustained and large deformations ensue.
This is an example of a limit point instability and will be discussed in greater
detail (within a structural context) in Chapters 6 and 7. It is worth noting that
the instability occurs while the cross-sectional area is still sizable. The material
description exhibits an instability in compression.

The form of the spatial behavior is that of a cohesive strength model. This
has been used successfully [83] to model the fast propagation of cracks in brittle
materials.

In subsequent chapters, we will be dealing with large displacements and rota-
tions, but relatively small strains. In those cases, we will use a linear constitutive
relation and restrict ourselves to strain levels such that ¢ < 0.20; this avoids both
instabilities, and all relations can be reasonably approximated as linear. For struc-
tural materials such as aluminum, these strain levels would have been associated
with gross plastic yielding.

Example 1.18: Continuing the bending problem from Section 1.2, let the
constitutive behavior be

ol = 2G Eij + A0 Exx

Determine the Cauchy stress.
From the previously obtained deformation gradient, we can determine the La-
grangian strains to be
z5 1,25 .9
En, = ) + 5(5) , others: FE;; =0

The Kirchhoff stresses are therefore
ol = (2G + N Eqy, ot = AE1, others: af](» =0

We can think of these stresses as acting on the undeformed configuration. The
tractions on a surface £ = constant are parabolic and independent of the position
z7; in the limit of small z3, however, they have the familiar linear distribution of
a beam in bending. This situation therefore resembles a beam in pure bending.
The stress 45 would give rise to a normal traction on the lateral surface; what
this implies is that the given deformation could be achieved only with the aid of
additional tractions on the lateral surfaces.

Since o and o are the only non-zero stresses, we have for the Cauchy stresses

. _ P Ox; Oz i ox; ox; g
7= Po [azf oz on Oxg O3 722

This leads to three non-zero components of the Cauchy stress

1 , . 1
oy = P [_2(3 _ 22)2C%K 4 szag’g] = J°C%eK + 526K
po LR Je
1 . . 1
o = L[ (R-s9’S%0i + CPl] = 5%l + Lol
po LR Je
1 , , 1
o1 = p—po [ﬁ(R — #9)2SCoK CSaé(Q] = J°SCof; — 45CSo

71
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where C = cos(z{/R) and S = sin(z?/R). These stresses exhibit a rather complex
dependence on both z? and z3.

The presence of the non-zero shear stress is, perhaps, a bit surprising. Keep
in mind, however, as z{ is changed, that the components o;; are not necessarily
oriented with respect to the deformed lateral surface. It is instructive, therefore,
to consider the components of the Cauchy stress with respect to the deformed
lateral surface. Consider a line that is initially horizontal, then after deformation
it has the orientation

n1 = cos(z7/R) = C, ng = sin(z{/R) = S

We now transform the stress components to get

Onn — 01102+022S2+20'12CS: JOO'{{l
1
oy = 0’11SZ+0'2202—20'1205= —J—O-O'2K2

Oin —(011 — 022)CS + 012(C* — §%) =0

Thus, the Cauchy stress components with respect to line-preserving orientations
show a close connection to the Kirchhoff stress. Indeed, if we consider the case
when 3 << R (that is, it is like a very narrow beam) but we still allow the large
deflections, then we get

1
J°==(R-z5) ~1
(R - a3)
leading to
Onn = 011, Ottt = 022

In some of the later chapters, we will consider situations where the deflections are
large but the strains small, we will then find it useful to invoke this approximate
relation between the Kirchhoff and transformed Cauchy stresses.

Example 1.19: Show how an initial stress state affects the current relation
between an increment of stress and an increment of strain for an isotropic material.

Let the initial stress state of; be associated with the displacement field u.
Furthermore, let the current displacement u; be represented as

w=u; +&

where ¢; is the (small) increment of displacement from the current value of u;.
Using this in the strain/displacement relation allows the total strain to be decom-
posed as

- _ Gui au]' Buk Buk
2By = Oz = Oz 0x? 0x9
% & [ ]
. (au;’ + Ouj Ouf BuZ)
- Oz} = Oxf ox? 0x°
% & i K]
+<8€z- 9¢; 33 aak) 4 ( ug 9ty Ay, au;)
aw;? ox? ox? 0x° ox? Ox° ox? 0x°
i & i 7 & i j & i j
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The various collections of terms in parentheses are labeled as follows
Ei; = E3; + €ij + i

Note that €;; is an increment of strain from the current configuration but refer-
enced to the zero configuration. The interaction term r;; contains components of
both u{ and &;; this is the term we are especially interested in.

Let the constitutive relation be

0'11](- = 2}1.Eij + /\(523 Ekk, QﬂEij = 0'2-]]{ — ——/\ 6z-j U]i(k
k 2+ 3A -

Then, after substituting for the strains, the stresses are
Uz‘lg(' =07 + 2pei; + Ay €k + 20mij + Adij Z Mkk
k k

We are interested in taking derivatives of this stress with respect to €pq. Since

28
or

o ™ € + wij
J

then, for the purpose of differentiation, we can replace the gradient of £; with e;;.
We now get for the 0¥ stress, for example,

0
ot =0 + 2pe11 + Alen +€22+633]+2ﬂza a€k1+/\z uk

k,p

with similar expressions for the other components. Let us define the current tan-
gent moduli as

7] Oug o
Bryy = ofi  _ @r+ M)+ 2u+ A ok (2u+/\)[1 + B}
3611 8
= (2u+ ) o — 5y (011 +U§2+U§3)}
2u +3/\

The derivatives are taken such that the other strains are kept constant. The effect
of the initial stress is to change the tangent modulus — an increase in stress causes
an increase in modulus. This is the same phenomenon as observed when tuning
a violin string, say. Suppose the initial stress is uniaxial such that only o, # 0,
then two of the moduli are

Ern

I

(2u + /\)[1 n —{ 2Mﬁ}ai’l]

Eraa = (2p+2) [1 + —{ - m}afl]
‘We see that the material becomes anisotropic due to the stress of;.

This is our first encounter with a tangent modulus (or stiffness), and it will
play a central role in the study of nonlinear deformations. A way to visualize the
above results is to consider a block of material that is under a quasi-static load
state. Now superpose a stress wave disturbance of small amplitude. The current

73
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tangent modulus relates the small increments (due to the stress wave) of strain to
the small increments of stress. Although the material is isotropic, the stress wave
experiences the material as being anisotropic. As an aside, residual stresses can
be detected by monitoring the small changes in wave speed caused by the small
changes in tangent moduli [30].

This is also our first encounter with load interactions — the situation where
the application of one load causes a change in the load/deformation response for
another load. This nonlinear phenomenon, in fact, becomes one of the subthemes
for our analysis of stability problems in Chapters 6 and 7.

Strain Energy for Some Linear Elastic Structures

Consider a local coordinate system in which the rotation of the structural mem-
ber is negligible.

L

A
Y2

Figure 1.29: Cross-section of structural member in local coordinates.

When the strains are small, we need not distinguish between the undeformed
and deformed configurations. Under this circumstance, let the material obey
Hooke’s law and be summarized in the matrix forms

{e}=[(clo}, A{o}=[DUHe}, [cl=[D]"

The general expression for the strain energy is

U= % /V[amem + oyyeyy + Tuy Yoy + - 0ldV = %/‘,{O}T{ € }dV

Using Hooke’s law, this can be put in the alternate forms

:%/V{e}T[ {e}dV = /{a}T[ Cllolav (1.34)

The above relations will now be particularized to some structural systems of

interest by writing the distributions of stress and strain in terms of resultants.
For the rod member, there is only an axial stress present and it is uniformly

distributed on the cross-section. Let F' be the resultant force; then o = F/A = Ee

and

du

dx

2
axial: U=1 ' ——dzr %/ EA(—
0

, EA )y de
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For the beam member in bending, there is only an axial stress, but it is dis-
tributed linearly on the cross-section in such a way that there is no resultant
axial force. Let M be the resultant moment; then ¢ = —My/I = Ee and

L 2 L 2
. M d“v
bending;: U= %/0 ﬁdx = %/0 EI(d—mE)2dac

The shear forces in a beam can also do some work. Let the shear stress be
assumed to be uniformly distributed on the cross-section, and the resultant shear
force be V, then 7 = V/A = G and

L 12 L
v dv
M :l —_— :l —_— 2d
shear: U=3 ey dz 2/0 GA(da:) b

For a circular shaft in torsion, there is only a shear stress and it is linearly
distributed on the radius. Let T' be the resultant torque, then 7 = Tr/J = Gy
and

L g2 L
T do
t i . = 1 R = _1_/ T 2d
orsion U=3 . GJ dr = ;3 | (;J(dm) T

where ¢ is the twist per unit length and J is the polar moment of area.
For the four cases considered above, there are the resultant loads

F M V, T
the corresponding deformations

du d dv dg
de’ dz?2’ dx’ dz
and the associated stiffnesses

EA, EI, GA, GJ

and in each case, the energy expression is of the form

L load)? L
energy = % /0 (Stiffness) dz =1 /0 (stiffness)[deformation]? dz

Note that even the general expression, Equation (1.34), follows this form. There
are other types of structures, and an energy expression can be set up for these
also. They will all have a similar form.

Example 1.20: Use the principle of stationary potential energy to establish
the equilibrium condition for the simple truss shown in Figure 1.1.
From geometry, we can establish that the axial displacement of the member is

@ =+/L%+ 2vL,sina, + v® — L,
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The axial strain is € = 4/ L,, hence the strain energies for the spring and two truss
members are

2
U= 1Kv*+2LEAL& = 1Kv’ + EAL, [\/1 + 2zv-sinao + (i’_)z _ 1]
o

o

The applied load is acting in the coordinate direction, hence the potential of this
load is
V=—-Pv

The total potential for the problem is therefore

2
= 1Kv® + EAL, [\/1+2Lisinao+(Li)2 - 1] — Pv

This is shown plotted in Figure 1.1 for different values of load P. The equilibrium
path corresponds to where II has an extremum — these are shown connected
in the figure. We see for large positive or large negative P that there is only
one equilibrium position. However, for small negative P there are three sets of
equilibrium points: two correspond to minima, while the third corresponds to a
maximum. As we will see in Chapters 6 and 7, the maximum corresponds to an
unstable equilibrium position and these are indicated with the dashed line. The
critical load for the structure is when the stable and unstable paths converge.
The equilibrium path (load/deflection curve) is

-P=0

vaQII:Kv+2EA [sinao+1} 1-— !
v L, v, v
1 -+ 2L_O Sin &, + (L_o)2

which could be written P = F(v). It is worth emphasizing again that, although the
material behavior is linear, the structural behavior can still be highly nonlinear.
We will develop this example further in the later chapters.

1.8 Approximate Weak Form of Problems

The examples of the previous sections show that we have two alternative ways
of stating our problem. The first is by a set of differential equations plus a set
of associated boundary conditions; this is known as the strong form or classical
form of the problem. The alternate way is by extremizing a functional; this
is known as the weak form or variational form of the problem. They are both
equivalent (as shown by the examples) but lend themselves to approximation in
different ways. What we wish to pursue in the following is approximation arising
from the weak form; specifically, we will approximate the functional itself and
use the variational principle to obviate consideration of the natural boundary
conditions. This is called the Ritz (or Rayleigh-Ritz) method. The computational
implementation will be in the form of the finite element method.
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Ritz Method

In general, a continuously distributed deformable body consists of an infinity of
material points and therefore has infinitely many degrees of freedom. The Ritz
method is an approximate procedure by which continuous systems are reduced
to systems with finite degrees of freedom. The fundamental characteristic of the
method is that we operate on the functional corresponding to the problem. To
fix ideas, consider the static case, where we are looking for the solution of 6II = 0
with prescribed boundary conditions on u. Let

U(.’L‘, Y, Z) = Z (11'(252'(.’13, Y, Z)
i=1

where ¢; are independent trial functions, and the a, are multipliers to be de-
termined in the solution. The trial functions satisfy the essential (geometric)
boundary conditions but not necessarily the natural boundary conditions. The
variational problem states that

II(u) = (a1 ¢1 + az¢2 + - - -) = stationary

Thus, II(a1¢; + a2 + ---) can be regarded as a function of the variables

a1, as,---. To satisfy II = stationary, we require that
ol oIl

Fi=—=0 Fa = = 07
! Oa, 2 Oag

These equations are then used to determine the coefficients a;. Normally, we
only include a finite number of terms in the expansion.

An important consideration is the selection of the trial functions ¢;. Select-
ing efficient admissible functions may not be easy; fortunately, many problems
closely resemble other problems that have been solved before, and the litera-
ture is full of examples that can serve as a guide. It must also be kept in mind
that these functions need only satisfy the essential boundary conditions and not
(necessarily) the natural boundary conditions. For practical analyses, this is a
significant point and largely accounts for the effectiveness of the displacement-
based finite element analysis procedure.

For convenience in satisfying the boundary conditions on u, we usually set

u:Uo+Zan¢n
n

where u, conforms to the non-homogeneous (nonzero) boundary conditions. For
homogeneous displacement boundary conditions, we set u, = 0.

Example 1.21: Consider an inhomogeneous rod fixed at one end and sub-
jected to an axial concentrated force at the other end, as shown in Figure 1.30.



78

Chapter 1. Mechanics of Solids

Figure 1.30: Rod with variable modulus.

The variation of Young’s modulus is E(z) = E,[l 4+ x/L]*. Determine a Ritz
approximate solution.
The boundary conditions for this problem are:

du

essential: u]wzo =0, natural: EAd— R

The exact solution is easily calculated to give

N B PL z/L du
()—/ e(z)dz = / E'Am F(z) = EAd——P

The member force distribution F(z) is constant. Both the displacement distribu-
tion and force distribution are shown plotted in Figure 1.30. We will use these
results to evaluate the quality of the Ritz approximate solutions. Specifically, we
will investigate the use of different trial functions.

Because the deformation is one-dimensional, then the strain is

(o Ou_du
T 9z dx

and the total potential energy of the body is

H:U+V.—.%/ EA(Z“) dz — Pug
0 X

The integration over the cross-section has already been performed. We will cal-
culate the displacement and force distributions using the following assumed form
for the displacement:
u(x) = ap + a1z + asx®
This must satisfy the essential boundary condition, hence ag = 0. Note that the
remaining polynomial does not necessarily satisfy the natural boundary condition.
Substituting the assumed displacements into the total potential energy expression,
we obtain
L
m= %/ E,A[l +z/L)’[a1 + 2a2z)’dx — Plai L + a3 L?]

0
Invoking the stationarity of IT with respect to the coefficients a1, a2, we obtain
the following equilibrium equations for determining a; and az:

Il L
Fi = 0. / E, Al + z/L)*[a1 + 2asz]de — PL =0
L 0
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z/L || exact  l-term 2-term bi-lin | exact 1-term 2-term bi-lin
0.0 || 0.0 0.0 0.0 0.0 1.0 0.428 0.804  0.632
0.5 | 0.3333 .2143  .3247 3158 || 1.0 0.96 1.113 1421
0.5 0.3333 .2143 .3247 3158 | 1.0 0.96 1.113 0.729
1.0 0.5 4285 4948 4779 | 1.0 1.714 0.740 1.297

Table 1.1: Displacement and force results for the non-uniform rod.

o _
= 5 =

Fo

Performing the required integrations gives

30 | 85L% 124L°

EOA[ 70L  85L? ] { a:

az

}:

Solving this system gives for the two coefficients

78 P
ai

ToTE A BT

PL
PL?

—30_»
97 E,AL

This Ritz analysis, therefore, yields the approximate solution

) = Al
and the force distribution is
du - 78P
F(x)=FA— = —[1 —
() &~ o7 L

78P

13L

10

10

mxz]
26L

z][1 + z/L)?

L
/ E.All + x/L)*[a1 + 2asz]2z dz — PL* =0
0

These results are shown in Table 1.1 as the 2-term columns. The most striking
aspect of these results is the accuracy of the displacements and yet the axial force
is not constant and equal to P.

The other terms in the table correspond to using a1 only (1-term) and using

two domains (bi-linear) as discussed presently.

Completeness and Convergence

A number of observations can now be made about the use of stationary princi-
ples. First, if the functional contains derivatives up to order m, then there must
be continuity of displacement derivative up to m — 1, and the order of the high-
est derivative that is present in the governing differential equation is then 2m.
For example, in a beam-bending problem where the strain is d%v/dz?, m = 2
because the highest derivative in the functional is of order 2, and there must be
continuity of v and dv/dz. The reason for obtaining a derivative of order 2m = 4
in the governing differential equation is that integration by parts is employed

m = 2 times.
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A second observation is that through the stationarity condition, we obtain
the governing differential equations and the appropriate boundary conditions.
Hence, the effect of the natural boundary conditions are implicitly contained in
the expression for the potential II. (Note that the essential boundary conditions
must be stated separately.)

Some of the specific characteristics of the Ritz method are:

e Usually, the accuracy of the assessed displacement is increased with an
increase in the number of trial functions.

e While fairly accurate expressions for the displacements are obtained, the
corresponding forces may differ significantly from the exact values.

e Equilibrium is satisfied in an average sense through minimization of the
total potential energy. Therefore, forces (computed on the basis of the
displacements) do not, in general, satisfy the equilibrium equations of the
original problem.

e The approximate system is stiffer than the actual system and therefore
buckling loads and vibration resonances are overestimated.

A question arises as to what are the appropriate additional terms to be used
if more terms are to be included so as to achieve a converged accurate solution.
The sequence of terms should be complete. For example, for a 1-D problem the
simple polynomial sequence

1 z 22 28

is complete. The trigonometric sequence
1 sinx cosz sin2x cos2x sindx cosdz

is also complete. Note, however, that the cosines on their own could be used to
represent a symmetric distribution and therefore would be complete. As we go
to higher dimensions, the question of completeness gets a little more involved.
Clearly, for a complicated domain, finding a complete set of appropriate functions
is very difficult. Therefore, we now take a different approach altogether — instead
of representing the response as a collection of (complicated) functions over the
complete domain, we represent the domain as a collection of many subdomains
over which the Ritz functions are relatively simple. This is the essence of the
finite element method.

The Finite Element Discretization

One disadvantage of the conventional Ritz analysis is that the trial functions are
defined over the whole region. This causes a particular difficulty in the selection
of appropriate functions; in order to solve accurately for large stress gradients,
say, we may need many functions. However, these functions are also defined
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over the regions in which the stresses vary rather slowly and where not many
functions are required. Another difficulty arises when the total region is made
up of subregions with different kinds of strain distributions. As an example,
consider a building modeled by plates for the floors and beams for the vertical
frame. In this situation, the trial functions used for one region (e.g., the floor) are
not appropriate for the other region (e.g., the frame), and special displacement
continuity conditions and boundary relations must be introduced. We conclude
that the conventional Ritz analysis is, in general, not particularly computer-
oriented.

NINISIN/SASANS
NN NAYAAYS
NS AAAY e
SSSISSISNSSS
SIS SINSISTRNY
SSSSSESR
SISSSNRREER
NI
NN AV@%
SNNNSNNNDE

Figure 1.31: Continuous domain discretized as finite elements. Right figure has shrunk
elements for easier viewing.

We can view the finite element method as an application of the Ritz method
where, instead of the trial functions spanning the complete domain, the individ-
ual functions span only subdomains (the finite elements) of the complete region.
Figure 1.31 shows an example of a bar with a hole modeled as a collection of
many triangular regions. The use of relatively many functions in regions of high
strain gradients is made possible simply by using many elements as shown around
the hole in the figure. The combination of domains with different kinds of strain
distributions (e.g., a frame member connected to a plate) may be achieved by
using different kinds of elements to idealize the domains.

In order that a finite element solution be a Ritz analysis, it must satisfy
the essential boundary conditions. However, in the selection of the displacement
functions, no special attention need be given to the natural boundary conditions,
because these conditions are imposed with the load vector and are satisfied ap-
proximately in the Ritz solution. The accuracy with which these natural bound-
ary conditions are satisfied depends on the specific trial functions employed and
on the number of elements used to model the problem. This idea is demonstrated
in the convergence studies of the next few chapters.

Example 1.22: As another Ritz solution to the inhomogeneous problem of
Figure 1.30, assume that the displacements are given in a piecewise linear form as

2%1@ 0<z<L/2

£
8
i




82

I

Chapter 1. Mechanics of Solids

where uz and w3 are the displacements at points mid-way and the end of the
rod. This displacement distribution satisfies the essential boundary condition at
z =0, and also the continuity of displacement condition at # = L/2. There is no
continuity of the first derivative du/dx at = L/2, but that is permissible because
the highest derivative in the potential is du/dx. We will refer to such piecewise
simple displacement distributions as interpolation or shape functions.

Using these trial functions in the potential energy gives

Lrz 2u21? L 2u 2uz1?
=1 | BAltz/L) [—2] detl [ E,All+z/L)? [~—2 + —3] dz — Pus
0 L L/2 L L

In this case, the displacements u; and u3 are the generalized coordinates or degrees
of freedom. Invoking that II is stationary with respect to these, we obtain the
equilibrium equations

M _ E,A B
.7:2 = —8u2 = 6L [5621,2 — 37U3] =0

oM E,A B
F3 = 8—u3 = 6L [—3721,2 + 37u3] —P=0

These can be arranged in matrix form as
E,A| 5 —37 U 0
6L[—37 37]{1;}:{13} or [ K[{u}={P}

where | K | is called the structural stiffness matriz. Solving the system of simul-
taneous equations, we get for the degrees of freedom

o P22 P o33

2T E,AT03’ * T E,AT03
The displacement distributions are piecewise linear. The member forces vary with
x and are given by

F(z) = P%[Hx/LP 0<z<L/2
228 )
F@) = Pz(l+a/I] L/)2<z<L

These results are shown in Table 1.1 as the bi-linear columns. Note again that
the displacements are quite accurate, but the forces are significantly off. Indeed,
there is not even equilibrium at the joint. The main idea here, however, is that
accuracy is improved by increasing the number of subdomains.

Example 1.23: Illustrate the process of element assemblage.
We begin with the decomposition of the total potential according to subregions

IT = Ii (uz) + Iy (w2, us) — Pruz — Psus

where
L/2 2
2u E,A
m = 1 g 2 [ 2] _ B 2
1 2/0 E.All +z/L] T dx oL [uz]
L
2'U,2 QU3 2 EoA 2
H = 1 OA 2 [—— —:l = —|—
2 2L/2E [l-i-I/L] I -+ 17 dzx 12L[ ’u.2+’I_L3]
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and, to generalize, we have put applied forces at locations 2 and 3. The partial
derivatives for each region are

LI E.A

Fi2 = 5us — 6L 19[us)
Lo,  E,A

Foo = dus — 6L 37[+u2 — ug]
O, | E.A

Faz = ous 6L 37[~u2 + ug)

These are not zero since we are not considering the total potential. In fact, we
refer to these as element nodal forces because they are computed for each element
(subregion) and are associated with each node (point where the degree-of-freedom
is monitored). We will use the notation { F'} to refer to the vector of nodal forces.

Returning to the total potential as an assemblage of potentials for each region,
one interpretation of assemblage is simply the summing of all the element nodal
forces in conjunction with the applied loads. That is,

oIl

Fo=7-— = Fio+For—P=0
8UQ
oIl

Fs=5— = Fuz+Fz—FPs=0
Bug

Arrange these equations in the matrix form

E -1y -0 o mem

This form of the assemblage is valid even for nonlinear problems.
We can arrange the nodal force relations in the form of stiffness relations

) E'6,,LA19[ 1 uz}, { 22 }: E&Ag?[ I ] { s }

Both are of the form {F} =[ k [{u}, where [ k | is called the element stiffness
matriz. This representation is possible only because the problem is linear. Note
that the first relation could be expanded to [2 X 2] by including the degree-of-
freedom u; = 0. We get another interpretation of assemblage by augmenting the
stiffness relation to full system size and adding. Thus

Fo _ Fia 4 Faol [P
F3 Fis Fas Py
_ EDA 1 0 U2 EOA 1 -1 U2 P2 _ 0
-G lo o] (e [ (R0
Performing the addition of the stiffnesses gives
E,A | 56 =37 U P,
6L [~37 37]{u§}:{P§} or  [K[{u}={P}

where [ K | is called the structural stiffness matriz. Therefore, the assemblage
process can also be thought of as adding the element stiffnesses suitably augmented
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(with zeros) to full system size. It is important to realize, however, that this
interpretation is only valid for linear systems.
To summarize, we have for the assemblage process

{F}=) {F}™ ={p}

143

where { P} is the collection of external loads made up of applied loads and inertia
loads. This relation must be satisfied throughout the loading history. For linear
problems, this can be put in the more familiar form using stiffness matrices. On
an element level, the nodal forces are written in terms of the element stiffness
matrix as
FY™ = [ k1™ (u)

and the assemblage process simply becomes the addition of element stiffness ma-
trices. That is,

{F} =Y (F¥™ ="k "™ {u}=[ K [{u}={P}

where the element stiffness matrices are suitably augmented to the size of the
structural stiffness matrix [ K ].

Example 1.24: FEstablish the element stiffness relations for a frame member.

Consider the axial stretching and rotation of the member shown Figure 1.32.
We establish a local coordinate system at the first node with the Z axis directed
along the member. Descriptions of quantities in the local coordinates will have an
overhead bar.

® 7@

Figure 1.32: Cross-section of truss and frame members in local coordinates.

In the local description, the member has the deformation system

1T _ _ _ - - - - - _ - - -
{a} ={a, 01, W1, d12, b1y, P12; U2, D2, W2, P2x, P2y, P22}

We assume the member is long and slender and hence there is only 1-D axial stress
and a torsional shear stress. The strain is a combination of the axial stretching,
the bending action in two planes, and a twisting action about the axis. The axial
and shear strains are written as

oo 0u _0%t _0%w 09 _ —
5= 000 G-, oy

At the local level, we assume small strains and hence each of the actions are
uncoupled. That is, we can analyze them separately and at the end sum them
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together. Additionally, we need not distinguish between the undeformed and de-
formed configurations.

We begin with the axial behavior. Let the axial displacement have a linear
distribution

T T

w(z) = [1 - %] uy + [L] a2 = f1(Z)81 + f2(z)82
There are two shape functions because there are two degrees of freedom. Substitute

this into the expression for the strain to get

1
E(E1g7 2) = E(‘ﬂl +712)

Write this in matrix form as
&z,9,2) = {c(z,9,2)}" {a}

where { ¢ } is of size [2x 1]. The material behavior is assumed to be linearly elastic,
hence the axial stress is given by

&=FEe=FE{c} {u}

The principle of virtual work can be used to determine a set of element nodal
forces consistent with the internal stress as

{F}"{su} = /&5€dV = /E{ﬁ}T{ e e} {sa}dv
The integration is performed with respect to dV = dZ dydz = dT dA and leads to
7 - = EA EA
{F}T{(Sﬂ} = 61 + Fodu, = T[ﬂl — 1_/.2]51_/.1 + T[—’l_“ +ﬂ2]5’17.2

Because the virtual displacements are arbitrary, we can equate corresponding
coefficients of the variations to get expressions for the nodal forces. Consequently,

try -2 )

This is the element stiffness for a rod.
Let the transverse deflection have a cubic distribution

o(z) = [1 - 3(%)2 +2(

T T T z

L)"] v+ () [l - 2(%) + (%)Z] Lé1. + (L)2 [3— 2(L)] Vo

HD? [FL+ (D] L6a: = 9101 + 02(@)61: + 5()v2 + 95(2) 2
There are four shape functions because there are four degrees of freedom. Substi-
tute these into the expression for the strain to get

6 12z 4

@52 =~o{[~ 5z + I3 L

+§L3;]¢1z+[ i—%]m%““}

]1_)1+[* T2 I3

Write this in matrix form as &Z,9,%) = {c(&,7,%)}" {@} where now {c} is of
size [4 x 1]. The material behavior is assumed to be linearly elastic, and as for the
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rod, the principle of virtual work can be used to determine a set of element nodal
forces consistent with the internal stress as

{F}T{6u} = /65€dV=/E{ﬁ}T{E}{E}T{5ﬂ}dV'

The integrations on the cross-section will give rise to the terms

/g2dA=1,,, /gdA:O

The last term is zero because we assume that the local axes are principal axes.
Performing the integrations leads to

{FYT{sa} = VA0 + M1.061z + Vadta + Ma.601.
6 1227 _ 4 6T
= E’/ (Fm+ ot [-p+ o on+ )
6 12z 4 6z
(Pt Tlom+ [ L+t ) an
El,,

= 3 (1201 +6L¢1 — 1202 + 6L¢a]d01 + -

Because the virtual displacements are arbitrary, we can equate corresponding
coefficients of the variations to get expressions for the nodal forces. This results
in

1%} 12 6L —12 6L 71
My | _EL.| 6L 4L®> —6L 2L? b1z
Va B -12 —6L 12 —6L To
Mo, 6L 2L® —6L 4L? b2-

which is the element stiffness for a beam. The bending action in the Z — z plane
is the same as above except that I, is replaced with I,.

For the torsion action, for simplicity, assume the cross-section is circular and let
the relative axial twist be linearly distributed, then we have for the shear strain

ad 0 z.] - o A 1 _ _
3(%,9,2) = faﬁ - [1 - (%)] bio+ 5 [(%)] Bao = 7 (—b1z + G22)

where 7 = /92 + 22. The shear stress is then
_ _ 1, - e
T=Gy= GTZ(_¢11 + ¢2z)

Again, the principle of virtual work can be used to determine a set of element
nodal forces consistent with this internal stress as

{F}T{6a} = /7"6’7dV = /Gf(%)(—q_ﬁl + G22)(—0h1 + 6¢paz) dV

The integration on the cross-section will give rise to the term f 72dydz = I, and
we get

{F‘}T{ﬁﬁ} = T15$1a: + Tobos = Gim [(—4_511 + (]321)(—5(1—5” + 5(1—52;;)]

Chapter 1. Mechanics of Solids
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If the cross-section in noncircular, we just substitute an appropriate value for
GI.:. Because the virtual displacements are arbitrary, we get the nodal torques

as B _
Ty _GLa[1 -1] [ 6w
T~ L -1 1 b2z
This is the element stiffness for a rod in torsion.

A 2-D frame deforming in the z—y plane has a combination of axial and flexural
behaviors. The element stiffness in local coordinates is then

1 00 -1 0 0 0 0 0 0 O 0

0 00 0 0O 0 12 6L 0 -—12 6L

[,-CE]:J__@ 0 00 0 00| EL: |0 6L 4L 0 —6L 2L?
L -1 00 1 00 3 0 0 0 0 O 0

0 00 0 0O 0 -12 —6L 0 12 —6L

0 00 0 OO 0 6L 2L* 0 —6L 4L?

which relates {Fy, Vi, My; Fa, Vo, M2, }T to {@1, 91, ¢15; a2, D2, $2:}T. A 3-D
frame member has an axial load, two bending actions, and an axial twist; these
properties are described by EA, EI,,, El,, and Gl.., respectively.

Discussion

The preceding sections have laid out various aspects of the mechanics of de-
formable bodies. We now wish to draw some implications for further develop-
ments.

Figure 1.33: Equilibrium of a discretized region. (a) Element nodal forces. (b) Struc-
tural nodal forces.

In the discretization process, we impose continuity between the subregions.
The assemblage process is then the satisfaction of the equilibrium conditions
between these subregions. Thus, in reference to Figure 1.33, equilibrium in terms
of the nodal forces is pertinent on two levels:

e The element is in equilibrium with itself even though differential equilib-
rium is not (necessarily) satisfied at all points.
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e At any structural node, the sum of the element nodal point forces is in equi-
librium with the externally applied nodal loads (including body, surface,
initial, inertial, damping, and reaction loads).

The first of these is relevant in the formulation of the elements, while the second
is relevant for the assemblage. As already shown, we have for the assemblage
process

{F}=> _{F}™ ={P}

where {P} is the collection of external loads made up of applied loads and inertia
loads. This relation must be satisfied throughout the loading history.

From this preliminary discussion, we can identify a number of ingredients
necessary for a complete algorithmic presentation for solving nonlinear plate
and shell problems:

e Formulation for thin-plated structures.
e Means to discretize distributed bodies.

Geometry description for large displacements and rotations.

e Scheme for time/load stepping.

e Nonlinear equation solver.

We consider each of these ingredients in detail in the next few chapters.

Problems

1.1 A block rotates an angle  about the x3-axis.
e Write down its deformation and obtain the deformation gradient.
e Show that the volume change is zero.

1.2 Consider the following deformation
Ty =3x] + kz3, T2 = 2z + 423, T3 = I5

e What are the restrictions on % for this to be a valid deformation?

e Draw the deformed shape. Show by measurement the consistency of the
physical interpretation of the Lagrangian strains with their connection to
the deformation gradient.

e Show that the formulas describing the deformation of areas are in agree-
ment with the geometric construction.

e Determine the principal strains.

e Draw the before and after positions of the principal element.

1.3 The Lagrangian strain tensor at a point is
2 -1 V2

[Egl=| -1 3 -2
V2 —V2 4



Problems

1.4

1.5

1.6

1.7

1.8

1.9

. What is the strain of a line element initially oriented as # = 1é; —
362+ 7563
e What is the shear stram between two line elements initially oriented
as n° :%é —1é2+ 63 and n® -561+2eg+ \/563.
Consider the deformatlon of a square such that the corners move as
e Describe the deformation mathematically.
e Determine the Lagrangian strain tensor.
e What can be said about the deformation given by
Consider the following components of a stress tensor

1 2 0

[O'z'j] = 2 3 0

0 0 0
e Determine the components of the traction vector with respect to an
area rotated 0 about the z3-axis.
e Determine the components of stress transformed an angle 6 about the
same axis.
e How do the above compare or are they related ?
A stress distribution field is described by
o111 = 3m1+k1$% s g2 = 2x1+4x2, O12 = a+bx1+ca:%dx2+ea:§+fa:1x2

e Under what circumstances (if any) is the symmetric stress field in static
equilibrium ?

Consider the simple shear deformation
T = z7 + kz3, T2 =I5, T3 = I3
and the constitutive behavior
oiy = 2G Eij + Mi; B,

e Determine the Lagrangian stress and Cauchy stress.
e Investigate the forces and the areas they act on.

A rigid block has a Cauchy stress 11 only acting on it. The block is given
a rigid body rotation about the z3-axis such that 611 moves with it.

e What are the new Cauchy stresses?

e Determine the components of the Kirchhoff stress before and after the
rotation.

e Show that the Lagrangian strain tensor is also invariant to the same
rigid body rotation.

Consider a cantilever beam, fixed at the end z = 0, and subjected to a
concentrated lateral applied force at the other.

e Using the Ritz method, show that the displacement v(z) = ao + a1z +
a2z? + asz>, leads to the exact solution.

e Show that the addition of extra terms have zero contributions.

89



2
Thin Plates and Shells

The distribution of displacement and stress fields throughout a generally loaded
structure is very complicated and only computational methods can give effective
solutions. The key to the finite element method is discretizing the structure into
a collection of small regions that are easier to handle. Figure 2.1 shows some
examples of thin-walled structures modeled as a collection of many triangular
subregions. This chapter considers the formulation of these triangular elements.

A plate is an extended body where one of the dimensions is substantially
smaller than the other two. The plates in 3-D thin-walled structures can support
both in-plane and out-of-plane loading. Furthermore, because the plates are thin,
they lend themselves to approximation — while the structure may be three-
dimensional, the local behavior is two-dimensional under plane stress. We take
advantage of this to formulate an effective solution. Plates in flexure are the
two-dimensional equivalent of beams and classical plate theory is its equivalent
of the Bernoulli-Euler beam theory; whereas the in-plane or membrane behavior
of plates is analogous to that of rods. So as to concentrate on the essentials, in
this chapter we limit the deflections and strains to being small.

Figure 2.1: Thin-walled structures discretized as collections of triangular finite ele-
ments. (a) Plate with hole. (b) Segmented dome. (¢) Exploded view of a wing section.

J. F. Doyle, Nonlinear Analysis of Thin-Walled Structures
© Springer Science+Business Media New York 2001
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2.1 Flat Plate Theory

Fundamentally, plate theory is an approximate structural theory and therefore
it is best to approach it by way of a variational principle. We will begin by
developing a plate theory (called Mindlin plate theory) that takes the shear de-
formation into account — this is the plate equivalent of the Timoshenko beam.
The transition to achieve the classical or thin-plate theory is then more trans-
parent.

Equations of Motion

Consider a rectangular plate of thickness h as shown in Figure 2.2. The plate
lies in the z-y plane and is subjected to both in-plane and transverse loads. The
mid-plane of the plate is taken at z = 0.

- i

t q(z,y)
:: y Qx,y o y
#
'// Nyy ﬁ A/Izy
—_— z
Nz 20T e woZe
x Now ¥ Mew Qan(Van) May

Figure 2.2: Element of stressed plate.

Because the plate is thin, we begin by expanding the displacements in a Taylor
series (in terms of z) about the mid-plane values as

ﬂ(z,y,z) ~ Ux,y)—zd)z(x,y)
Y)

(
(z,9,2) = wv(z,y) — 29y(,y)
(z,y) (2.1)

<

w(x,y,2) =

g

where 1, and v, are rotations of the subscripted faces in the directions of
the curvatures. These say that the deformation is governed by five independent
functions: u(z,y), v(z,y) are the in-plane displacements; w(z,y) is the out-of-
plane displacement; and ¥, (,y), ¥,(x,y) are the rotations of the mid-plane. It
is understood that all variables are also functions of time, but we make the as-
sumption that the above kinematic representations do not change under dynamic
conditions.
The normal and shear strains corresponding to the above deformations are

ou  ou O,

Cox = or oz oz
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o v o
dy Oy Oy

o = o= (5 o) (o )

Yoz = %Jrg«?;(—wmtg—j)

Vyz = gS‘FZ—Z ( Yy + 311))

Because the plate is thin, the stress in the z direction cannot be very large. We
therefore assume that it is approximately zero; that is, we assume a state of
plane stress with o,, = 0. Substituting for the strains in the Hooke’s law for
plane stress then leads to

s = e vt = (5 ) (5 )
oo = o vt = 1 (o) () 080
Gz = 0 (2.2)

oo = Gy =6[(5 + o) — (e + 5]
ow

G2z = vaz=G[—¢m+g—Z], ayz:c;yyz:(;[ ¢y+6_]

Although the plate is treated as being in plane stress, we still retain the 7., and
0y, shear stresses.
The strain energy for the plate is

U= % / (GrzEaa + Oyy€yy + OuyVaoy + Ou2Vaz + TyzVyz] AV
\4

Substitute for the stresses and strains and integrate with respect to the thickness
to get the total strain energy as
= D Y 1 — 7y _(ZTY
U= / ) 21—V Or Oy (81‘ + Oy ) ]]dmdy
aw 2 ow, 2
+§/ Gh[(q/zm ~52) =) ?|de dy (2.3)

o [,0uv2  Ou.2 Ou Ov Ou  0Ov,2
+3 /[E MG+ (5" + 2, 5y) + Ol + 55) | dady

where D = Eh3/12(1 — v?) is called the plate bending stiffness and E* =
E/(1 — v?). The total kinetic energy is

T = 1 / P,y 2,8)2 + (2, gy 2, 1) + (2, y, 2, £)2)dV
Vv

_ %/A (Rl + 0% + %) + o[ + ¥, 1] dedy (2.4)
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If the applied surface tractions and loads on the plate are as shown in Figure 2.2,
then the potential of these loads is

V= /Q(x Y)wdzr dy — Negt — Npyv — Mypahy — Myythy —Vew+ -

where the edge loads can be on each face. The energies de-couple into in-plane
(u and v) and out-of-plane (w, ¥, and 1,) sets; hence, we now find it convenient
to treat them separately.

In-Plane Membrane Behavior

The energies for the in-plane behavior are

ou ov\ 2 Ou Ov ou Ov
U = /A[E h[(ax) +(5§) + 2w %d—ha (6—y+—5;)]dmdy
T = %/ph[uuiﬂ]dxdy, V = —Ngpu— Npyv + - - (2.5)
A

Application of Hamilton’s principle (as illustrated in Chapter 1) with variations
in du and dv leads to two differential equations

Eh 2 1 %u v L 0u
1—v2? [V u—§(1+y)(—5?— 8x6y> B ph8t2 (26)
Eh s 1 0%v  0%u 0% , 0% 02
1—-v2 [VU~§(1+V)(5;§_8z8y) N phatz” v _3m2+6y

These are the Navier’s equations. Damping is easily incorporated into the equa-
tions by modifying the inertia terms; that is,

2,,. 2,,. .
O“u; pha U; +nh8uz

Phom — o2 Bt

where 7 is the damping (or viscous) coefficient.
For the associated boundary conditions, we specify one condition from either
set:

O 2| IR UGS 4% )

We can give interpretation of the boundary conditions in terms of resultants on
the cross-section. For example, the resultants of the normal and shear stresses
are defined on the cross-section as

Nm(z,y) E/5zZ(xayvz)dZ1 Nzy(x,y)E/ﬁzy(x,y,z)dz
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and leads to

Eh
N:cz B E—
(1-v?)
Eh
Nyy = (1_1/2)
Eh
Noy = 2(1+v)

Chapter 2. Thin Plates and Shells

rou ov

—5:; l/é*gjl = O'wmh

[ov /@ _

Loy oa) = Cwh

rou  Ov

5 55] = ogyh (2.7)

That is, N, and so on, are the resultant forces per unit length due to the stresses

acting on the edge faces.

Example 2.1:

an x dependence.

Specialize the Navier’s equation to the case where there is only

There are no derivatives with respect to y. The first of the two Navier’s equa-

tions becomes

Eh 8%y
1—02 022

_ 8%u

BT

&u
ot?

2
oy _

ox2 ph

or

which is the one-dimensional wave equation for longitudinal disturbances propa-
gating in a rod [23]. The second of the Navier’s equations becomes

%

8%
- 304053

Eh | 0%
Ox?

1-—p2

)Jom

&
Ox2

&y
ot?

_ 8%v

or

This is also a one-dimensional wave equation but it is for shear disturbances
propagating in a rod [23]. This is not the flexural shear behavior.
For the associated boundary conditions, we specify one condition from either

set:

Eh 0Ou

{u or N”:—I—VQ%

b

Out-of-Plane Flexural Behavior

{'u or Ngy —G'hg—E

}

The energies associated with the out-of-plane behavior are

v =4 p| (G ) = b i e (G )] e
+§/ Gh[(%—?—’jfﬂ%—?—j) o dy

T o=} /A [ohlo?) + ol + 43,7 dedy

V = q(z, y)wdr dy — Megthe — Mgytpy — Ve w + - - (2.8)
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An application of Hamilton’s principle with the variations of dw, 6, and 4y,
leads to, respectively,

q+Gh§[g—w —zpz] +Ghi[g—z—¢y} = phi
%D[(l — )V, + (1 + V)5 0 (“?: + 8;/;1’)] +Gh{gx wz} = plylq
D[ )Py + (14 0) 2 [ (G + )]+ Gh[ge -] = ol

(2.9)

where [, = h3/12. These are the equations of motion for the Mindlin plate; this
theory accounts for the shear deformation as well as the rotational inertia. The
associated boundary conditions (on each edge face of the plate) are specified in
terms of any three conditions selected from the following groups:

{w or Vg, = Gh[%E - 7/&] }

0% By
{% or M”“D[a v ay]}

Oy O
{7,/@ or sz:%(l—y)D[g; +%]}

These are specified for an z-face, the other faces are similar.

We can give interpretation to the boundary conditions in terms of resultants
of the stresses on the cross section. For example, taking resultants for the shear
stress defined as

Qm(z,mz/amm,y,z)dz:/c;[wﬁg—:} &z

leads to
Que = Gh[ =+ 2] = Ve, Quu=Gh[ -4y + 5] =V (210

We can also take a moment due to the stresses acting on the edge faces. For
example,

_ _ ER® awz 81/1y
Mer= = [ouezdz = i[5 + 5]

and all resultants can be written as

o o
My, = [35/;_}_ 881/;:}
oM, = D{%+8£Z}(1—u) (2.11)
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These resultants are related only to the rotations.

In order to account for the truncation error of the expansions @ and @, we could
add correction coefficients to the energies as is usually done with the Timoshenko
beam theory [23]. We will not pursue this here because our interest is to develop
a theory for thin plates.

Flexural Behavior of Thin Plates

The plate theory derived here (called classical plate theory) is the 2-D equivalent
of the Bernoulli-Euler beam theory. Rather than go directly to the governing
equations, we will retrace the developments of the Mindlin plate, but with the
assumptions of the classical theory.

We modify the Mindlin equations to the thin-plate theory in two steps. First,
we assume that the transverse shear deformation is negligible; this is equivalent
to saying that the shear stiffness in the transverse direction is infinite. This leads
to 5

w
3y Py =0
It is important to realize that while these combinations are zero, their product
with Gh is nonzero (because it is related to the transverse shear resultant). The
displacements for the flexural motion are approximated as

ow
55—1/&—0,

_ ow _ ow _
u(x,y,z) ~ _2%(1', y)a 'U(.Z',y, Z) ~ _2_8':;(1'73/)7 w(xa:% Z) N’U)(J,',y)

The normal and shear strains corresponding to these deformations are

_ ou 0w _ v 0w
€ia = =i Eyy = 3y = —z~8—z~/—5
o o, 0w

Yoy = oy Or Oxly

_ ou Ow _ 0 Ow

Yoz = 5‘}‘%:0, 'szza‘i-a—yzo

We reiterate that, although the transverse shear strains are zero, the transverse
shear forces are nonzero. Also note that there is an in-plane shear that depends
on the distance from the midplane — there is no comparable quantity in beam
theories. Substituting these strains into the Hooke’s law for plane stress gives

—Ez [Bzw 8211)]

oz = 1—2loz2 7Y Oy?
s . ~Ez [8210 N V(?zw]
W 112 0y? ox?
- *w
oy = —2Gz [8x8y} (2.12)
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The strain energy for a plate in plane stress is
U= % / [6zz€zz + (_7yy€yy + 5zy:7zy] av
v

Substitute for the stresses and strains and integrate with respect to the thickness
to get the total strain energy as
0w 0%w 0%w
U = 1 [D[(vPw)?+20- 2_ |dzd
[ D720 + 20 - )G - G ) e dy

T = %/Aph [w?] dz dy (2.13)

where we have made our second assumption that the rotational inertia is negli-
gible. The potential of the applied loads is

V= /q(w,y)w dr dy — Mm—aﬂ

81: ___szw_{_...

where the edge loads are on each face. Using Hamilton’s principle with the
variation of only dw then leads to the governing equation
0w
DV?V?w + ph—— = 2.14
trhgs =4 (2.14)
Again, the effect of damping is easily incorporated into the equations by modi-
fying the inertia terms; that is,
0%w 0w ow
h— — ph— h——
PR ez P T 15
where 7 is the damping (or viscous) coefficient.
Performing the integration by parts required to get the boundary conditions
is rather involved for an arbitrary boundary — a detailed description is given in
Reference [63]. The associated boundary conditions are found to be

{w of Viy=-D [63“’+(2—y) Pw ]}

ox3 Oxdy?
ow dw Sw
= v =D |5 +ve—s 2.1
{8x or M, D[8z2+’/8y2]} (2.15)

The shear to be specified is called the Kirchhoff shear. This shear is not the
resultant ()., but is actually given by

OM,,

Kirchhoff shear: Vize = Quz —
Ay

This can be understood physically by realizing that the shear moment My, can
be interpreted as a couple comprised of vertical forces a small distance apart.
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Then, because the moment is distributed, so too are the vertical forces, which
consequently at any given location will have an imbalance in the vertical forces.
Alternatively, the classical plate theory has restrictive degrees of freedom, where
the shear strains v, and vy, are zero. That is, the shear resultants Q. and Q.
do not have a relationship to the corresponding deformation. While this can be
rationalized in the constitutive relation by saying that the shear modulus in the
transverse direction is very large, it means that the resultant force is associated
with higher-order derivatives of the deformation.
The resultants can be written as

v  w
Moz = Dlkgz +Vhyy| = D[gx—z + ”3—y2]
Pw  Pw
My = Dty +vses] = D57 + 5]
0w
Mgy = My =D(1—v)kgyy =D(1—v) 820y (2.16)

These resultants are related only to the out-of-plane deflection. The stresses are
obtained from equations such as

M,z
I,

Ogx = —

with I, = h3/12.

In later sections, we will look at boundaries that are straight; let the boundary
be located at x = constant, then to summarize, the type of boundary conditions
to be satisfied are to be chosen from

Displacement : w = w(z,y,t)
Slope : Py = %EU
Moment : Mgy =+D [% + V%J
Shear: Vo = — {% +(2- y)%}

2
Loading : q = DV?*V%w + pha—w + nhaw

- 2.1
ot? ot 217)

The corresponding expressions for the y face are obtained by permuting x and
y. Note that Poisson’s ratio v enters the moment and shear relations and acts
to couple the gradients in x to those in y.

Example 2.2: Specialize the thin-plate flexural equations when there is no y
dependence.
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There are no derivatives with respect to y, and the summary of plate equations
becomes

Displacement : w = w(z,t)
Slope : Py = g—i}
82
Moment : My = +D8—
3
Shear : Vez = “Dg_g
0w 8w ow
ing : —-— 1
Loading q= D84+ h6t2+ hc’)t (2.18)

These are the equations for a beam if we make the associations
D < FEI, ph < pA

A plate deforming as assumed here is called cylindrical bending.

2.2 Membrane Problems

Perhaps the most popular solution method for plane elastostatic problems is
via the Airy stress function. We summarize the approach for Cartesian and
cylindrical coordinates.

Compatibility of Strains

The Navier’s equations can be rewritten in terms of resultants as

or oy phiggs + gy + b
ONuy | 0Ny _ 0% 0w
oz oy - Plaa T hg by

where b, and b, are the body forces. Thus, at each point in the body there are
three unknown functions: Ny, Ny, and Ny,. In the static case, these obviously
must satisfy equilibrium. However, there are only two equilibrium equations,
hence, further restrictions must be imposed. These restrictions come from the
requirement that the strains associated with the stresses must be compatible.
Suppose a stress field is proposed and it is equilibrated. The use of Hooke's law
converts it to a strain field. Suppose now it is desired to obtain the displacements.
This can be done by integrating the strain/displacement relations

ou ov ou Ov

b’:i':exzv a_yzeyyv a_y’*'%:Zezy
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These can be viewed as a system of three independent partial differential equa-
tions for two displacements u, v with €;; prescribed. For arbitrary values of ¢;;,
there may not exist a unique solution for the displacement field. For a unique
solution in u;, some restrictions must be placed on the strains €;;. By differen-
tiating the above, we obtain, for instance,

eay 0%z | 0%y,
oxdy — Oy? ox?

This equation is known as the compatibility equation, first obtained by St. Venant
in 1860.

To obtain compatibility in terms of stress, use Hooke’s law to replace the
strains in the compatibility equations with stresses and simplify this by utilizing
the equilibrium equations to get

b
%vz(ama) }: g2y ="

where the indices range 1, 2. The stress field must satisfy this equation and the
equilibrium equations in order to be admissible. The boundary conditions to be
satisfied are

on A; : E 04N = t; = given
J
on Ay : u; = given

Note that the second set of boundary conditions are obtained by integrating the
strain/displacement relations in conjunction with the stress/strain relations.

Airy Stress Function Formulation

Suppose the body forces can be derived from a potential V(z,y) as

b — Ni4 _ v
p T T ax b p y ay
For example, gravity loading in the y-direction is described by V = pgy, then
pby = 0, pb, = —pg. Furthermore, let the stresses be obtained from a stress
function ¢(x,y) as
%9 0%¢ 8% ;
O'zz:‘gzﬁ—Fv, Oyy = F—FV Gwy:~—m (219)

It can be verified directly by substitution that stresses obtained in this manner
will automatically satisfy equilibrium. The function ¢ is called the Airy stress
function.
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But the stresses must also satisfy compatibility, that is,

Vv

V(00e + 0yy) = [(%ﬂ” 8by]- &

(1+k) [0z " dy] ([1A+n)
On substituting for the stresses in terms of the stress function, this becomes

_ 4 4 4
26 - Vgoy ppere vevzo O g 0 g

22, _ A\ ) .
VIV =~ o2t T ama2 T o

The general solution to the above equation can be put in the form

¢:¢c+¢p

where the functions ¢, ¢, are the complementary and particular solutions, re-
spectively. They satisfy
ViV, = 0
2(k—1)
viv? et VA
9 (1+ k)

Thus, ¢, is a bi-harmonic function, while ¢,, depends on the body force field and
is not necessarily bi-harmonic.

A quick way to obtain harmonic functions in Cartesian coordinates is to ex-
tract separately the real and imaginary parts of an analytic function. For exam-
ple, if

¢ =or +ipr = (x +1iy)", i=+v—1

then
n ¢r ér
1 T y
2 % —y? 2y
3 x3 — 3xy? 3x2y — 3
4zt —6x2y® + ¢ 43y — 4xy®
5 x°—10x3y? + 5xy? 5ty — 1022y3 4 ¢°

Each of these is a harmonic function.
If ¢(z,y) is harmonic, then the product functions z¢ and y¢ are bi-harmonic
because

2 2 2 2
(a 9 ¢ 8¢+$3¢ 8¢

o¢
922 + 552_)[ 29 = 28— e Oz0z Oyoy 8 oz

2
+aV% =25

Therefore

V2V23[z¢] = 23[V2¢] =0
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Similarly for the y product. This gives a quick scheme for obtaining bi-harmonic
functions. For example,

¢ yo
z2 : Y Ty : y?
2 —xy? 222y iy —y3 2xy?
' —3z%y% . 328y — =y zy —3zy®  : 3x?%y? — ot

is a collection of bi-harmonic functions obtained from the table of harmonic
functions above.

This can be generalized to the statement: Let ¢,, ¢1, and ¢2 be any harmonic
functions, then a representation of a bi-harmonic function can be formed by the
linear combination

d(x,y) = do(x,y) + xd1(x,y) + yo2(z,y)

A bi-harmonic stress function is always the exact solution to some problem —
the art of solving practical problems is finding the right combination of these
functions to satisfy the given boundary conditions.

Example 2.3: Show that the stress function
¢(z,y) = Azy + By’ + Cy°

can be used to solve the problem of a deep cantilever beam with a parabolic shear
traction distribution on the end.

Figure 2.3: Cantilever beam with end shear traction.

First, it is clear that ¢ is bi-harmonic because the highest power in the poly-
nomial is three. The stresses are

%¢
82
Oyy = 8—1;(5 = O
%

oy = — = —A-3By’
Ty Oxdy y
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Consider the tractions on the horizontal planes y = +h such that n; = 0, ny = 1.
That is,

tr =0=04,y = —A—3Bh>, t,=0=o0, =0
Note that the normal traction condition is automatically satisfied. In fact, we only
get one equation from the four traction conditions and this leads to A = —3Bh?.

Now look at the face at = L. The tractions are
ty =0 =04, =6BLy + 6Cy, ty = To[h®> — y®] = 04y = —A — 3By®
These two conditions lead to three equations
6BL+6C =0, 71h’=-A, 71,=-3B

which give
2A = —1,h?, B=1/3, C=-BL

Thus the stress solution is

Oez = 27[z— L]y
oyy = 0
Ozy = To [h2 - yQ]

At this stage, we have a stress field that satisfies the tractions on three sides
of the body. In order to guarantee that this is indeed the solution, we must also
satisfy the boundary conditions along the face at £ = 0. But what are the traction
conditions? These were not specified as part of the problem.

Example 2.4: Obtain the displacement fields corresponding to the previous
example.

To obtain the displacements, we must integrate the strain/displacement rela-
tions. Thus, from the normal strains

Eu(z,y) = 2n,[e’y/2 — eyl + fily),  o(z,y) = fo(z)

where f1 and f2 are functions of integrations. The displacements must also satisfy
the shear strain/displacement relation, hence substitute and regroup in terms of
only = and y. The separate groups must be equal to a constant (), say), therefore
integration gives the separate functions fi(y) and fa(z). We finally get for the
displacements

Eu(z,y) = 27[a*/2—zL+h°—4*/3ly—My+a
Ev(z,y) = 7olL—x/3)a’+ Az +ca

where A, c1, ¢z are unknowns. These contribute a rigid body motion.
Look at the displacements at x = 0, we have

Eu(07 y) =27, [h‘2 - y2/3]y - /\y +c1, E'U(O,y) =C2

The horizontal displacement is non-zero; not what we wanted for the fixed end
condition. The above solution is not the exact solution for the fixed cantilever
beam problem; the simple stress function polynomial is not capable of representing
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the singular stress behavior at the fixed end where y = +h. The solution, however,
is the exact solution if the tractions at x = 0 were specified as

ty = +2ToLy7 ty = ——_To[h2 - y2]

Note that if these tractions were specified otherwise, then global equilibrium is
probably violated.

The above solution gives a good approximation to the cantilever beam problem
because it satisfies the exact traction conditions top and bottom, and as can be
verified, satisfies an approximate version of the tractions in the form of resultants
on the ends. In fact, this is a very useful approach to obtaining practical solutions:
satisfy some of the traction conditions exactly, and the others approximately in the
form of resultants. If the region of interest is remote from these latter boundaries,
then the solution will be quite insensitive to the specific distributions of the applied
tractions. This known as St. Venant’s Principle.

Plane Problems in Cylindrical Coordinates

One of the main difficulties in solving boundary value problems is in satisfying
the boundary conditions. This is further exacerbated if the functional form of
the tractions are not “similar” to the functional form of the boundary geometry.
We illustrate how sometimes a change of coordinate system can lead to effective
solutions.

With a change of coordinate system, some quantities follow the usual trans-
formation law. For example, in the cylindrical coordinates (r,#, z), the strain
components may be designated €., €gg, €52, €rz, €ra, €20 and they are related to
the rectangular components €z, €yy, €22, €zy, €yz, €22 by the usual tensor trans-
formation law. That is, the stress and strain components can be referred to a
local rectangular frame of reference oriented in the direction of the curvilinear
coordinates. However, if displacement vectors are resolved into components in
the directions of the curvilinear coordinates, the strain/displacement relationship
involves derivatives of the displacement components and, therefore, is influenced
by the curvature of the coordinate system. The strain/displacement relations
may appear quite different from the corresponding formulas in rectangular co-
ordinates.

We start with the relations between the cylindrical coordinates (r,, z) and
the rectangular coordinates (z,y, z) given by

x =rcosb, y=rsind, z=z

and

r? =z% 442, 0=tan_l(g), z=2z
T

By using the chain rule, it follows that any derivatives with respect to z and y
in the Cartesian equations may be transformed into derivatives with respect to
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Global Axes

Figure 2.4: Cylindrical coordinates.

r and 0 as
9 _oro 000 0 sinbo
oz ozor  0zo0 Vs r 00
0 8T8+808_ 0_@_ COSHQ
oy oyor Toyoe Mg T T g

We will use these repeatedly to transform our governing equations.

In the cylindrical coordinate system, the components of the displacement vec-
tor are denoted by u,., ug. Components of the same vector resolved in the direc-
tions of the rectangular coordinates are ug,u,. These components of displace-
ment are related by

Uy = Upcos — ugsind

Uy = Upsinf + ugcosd
Set up a local Cartesian system (é,, g, €,) at point (r, 8, z) in which é,, &g, and é,
are the unit base vectors in the r, 6, and z direction, respectively. Substituting

the strain/displacement relation in Cartesian coordinates into the above, we
obtain

_ Ou,

err = or
U, 10ug
€ = —4-——
90 T r 00

1 Our OU() Ug

ra0 Tar T

The three components of the stress tensor at a point (r,6,z) are denoted by
(orr,000,0r9). The derivation of the equilibrium equations in the cylindrical
coordinate system is a straightforward exercise following closely to that of the
strain/displacement. We get

2¢€r0

00 1 Oorg Orr — 090
or r 06 T

Jog 1 6099 2 ..
g' b, = i,
5 T 7 a9 T 700t P pug

+pb. = pi,
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where b, and by are the components of the body force vector b in the r and 6
directions, respectively.
The stresses are related to the Airy stress function by

109 1 0%¢
= S TEae TV
0%¢
ggg = W + V
oy — 9 (L0
T Toar\roe
The radial and hoop components of the body force are given by
b OV _ v
Por =" PO =" 50

The Airy stress function still satisfies the bi-harmonic equation

-1 2 10 1 92
Vip = Vivip = 28 vy 29 429 29
¢ ¢ /~c+1v ’ v 8r2+r8r r2 562
The only difference (in comparison to the Cartesian form) is that the Laplace
operator is written in cylindrical coordinates.
The general solution for the homogeneous bi-harmonic equation was obtained
by J.H. Michell (1899) by direct substitution of ¢ = f(r)e®®. The solutions are

summarized as

#(r,0) = A,+ B0+ Alog, v+ Br?log, r 4+ Cr* + Dr26

1 sin @
3
+ (Air +Byr +Cl;+D1rlognr+E1r9){ osd
1 r2 sin né
A ™ B n+2 D, —
+ T;( n” n” C"r" "r"){ cosné

The braces indicates that either term can be used. Stresses and displacements
obtained from these can be found in the charts of Table 1 and Table 2, respec-
tively, of Reference [21]. The constant term Ag does not yield any nontrivial
stresses and is therefore usually omitted. The term A; gives zero stresses but is
retained because it is associated with rigid body motions.

Example 2.5: A thin annulus, rigidly constrained on its outside, is subjected
to a uniform temperature change. Determine the stress distributions.
The geometry and loading are axisymmetric, hence the permissible stress func-
tions are
o(r,0) = Alog,, r+ Br? log, r + Cr?
While not obvious, but can be easily demonstrated [21], the B term gives rise to
a 0-dependent displacement; hence we discard this term to give the stresses as

A A
Urrz"i"‘QCy 0'99:_—'2"‘_20
T T
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fixed

% .

Orr

Figure 2.5: Annulus with uniform temperature changes.

This is known as Lamé’s solution and can be used to solve a variety of thick
cylinder problems. The inner radius r = a is traction free

A A
0'7‘7‘:"5’]1‘20:0 = 20:__5
a a
giving the stress distributions
A a? A a?
crw—(—ﬁ[r—2—~1}, 090¥—§[T—2+1}

It remains now to determine the coefficient A.

The temperature change causes an expansion of the annulus; however, at the
outer boundary the total strain is constrained to be zero. Converting Hooke’s law
of Equation (1.33) to cylindrical coordinates results in

1
€99 = E[O’ge —vor]+aAT =0
Substituting for the stresses gives
A a?
Pl EaAT/[(1+ l/)b—2 + (1 -v)]

The stress distributions are shown in Figure 2.5. The hoop stress is the larger
stress with the maximum occurring at the inner radius.
If the inner radius is zero, the stress distribution is uniform with the value

EaAT
1—v

Orr = 009 = —

We will revisit this solution in Chapter 6 when we consider how a temperature
change may cause the buckling of a plate.

Example 2.6: Determine the state of stress in a large plate with a small hole,
uniformly loaded in the y-direction remote from the hole.

The basic strategy is to add two stress systems together. The first gives the
correct applied tractions at infinity, while the second enforces the zero tractions
around the edge of the hole without affecting the stresses at infinity.
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Figure 2.6: Hole in an infinite sheet and the stress distributions.
Initially, neglect the hole and obtain a stress function for the remote stress.

That is, knowing

_ % ¢ _

T T gz — 7 0zy:~8w8y_

%o
Ogx = 3y2 = 07

leads us to choose the stress function as
1 o0 2
¢o = 50’ X

In the vicinity of the hole, we will need to use cylindrical coordinates when satis-
fying the boundary conditions, hence rewrite ¢, as

1 o002 2pg_1,00,2¢1 , 1 __ 1 _ o0 2 1 oo 2
$o =307 r7cos” 0 = 5307r"(5 4+ 3 co820) = 701" + 701" cos 20

Our plan is to add to this a stress function that will satisfy the boundary conditions
at 7 = a. Whatever form it takes, the stresses must be consistent with this at
r — 0o and therefore they must go to zero at r — oo.

Although ¢, obtained above satisfies the stress condition at r — oo, it does not
satisfy the boundary condition at r = a of

0 = t =0rn:+0rong = —0rr

= tg =09

The stress function ¢, yields the following stresses at r = a

Opr = %a“’—%awcosQO

oo = %cr°° sin 20

Additional bi-harmonic functions must be added to ¢, in order to clear these
tractions without disturbing the stress condition at 7 — oo which are already
satisfied by ¢,

Using the above-mentioned boundary conditions as a guide, the added bi-
harmonic functions must produce stresses that are either independent of 6 or
dependent on cos2f (for o) and sin20 (for o,6). Meanwhile, the additional
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stresses must vanish as r — 00. From the bi-harmonic function table, the suitable
candidate stress functions are

log,, 7, % cos20, cos26

The general stress function that satisfies the remote conditions is therefore

o™ 4 o 4 1
¢=Alognr+Tr +[Tr +Cg7—5+D2]00520

giving the stresses

o = T [ S o
oo = % + UT + [02 602] cos 20
o6 = 0 — [%ﬂﬁ%u@] sin 20

There are three constants A, Cz2, D2 to be determined by the boundary conditions
at r = a. Note that as r becomes very large, the additional terms do indeed vanish.

The boundary conditions at the edge of the hole are that the tractions are zero,
that is,

B B A o™ o 602 4D27 .
tr = —0Opr = 0—;4‘7—[‘2_ + j| sin 26
trg=—0r9 = 0=— I:_%+6C2 +'2&] cos 20

Because this must be true for any 6, then

A o%
2,9 9
a2+ 2
o™ 6C> 4Dq
g D02 2 _ )
2 + at a?
o® ,6Cs 2 _
2 at a®

A=——71a", Cg:Ta, Dy = ——a

The stresses are, finally,

1 « a? 4a 3a
Orr = 50 {1_7"—2 (l—r—2+—)cos26‘}
2 4
Ogg = %aw{1+z—2+(l+§ﬁ—)00520}
1 2a 3a .
oo = 5“{1+——7}sm20

This is known as the Kirsch solution. Figure 2.6 shows the distribution of the
hoop stress along the z-axis. Note the high stress gradient close to the edge of the



110 Chapter 2. Thin Plates and Shells

hole. This is an example of a stress concentration where a change in geometry can
cause a local increase in stress.
The hoop stress around the edge of the hole is

99 = 0 {1 + 2cos 20}

showing that at 8 = 0, the maximum stress is three times the remote stress. Also
note that at 8 = w/2, g9 = —0™

2.3 Flexural Problems

It is quite difficult to integrate the governing equations for the deflections of
plates and have them satisfy arbitrary boundary conditions. We therefore in-
troduce a Fourier analysis method that is based on superposition of particular
solutions; these solutions, however, are restricted to having simply supported
boundary conditions on at least two opposite edges. Nonetheless, we can effect
some useful solutions. As we will see, the technique will also be useful when we
consider the dynamics and stability of plates.

Y  ss=simply supported

SS

Figure 2.7: Coordinate system for rectangular and circular plates.

Deflection of Rectangular Plates

Consider the bending of rectangular plates. The governing differential equation
is

DV*V2w(z,y) + Kw(z,y) = q(=,y)
where K is the stiffness of an elastic foundation. Let the solutions be represented

in the form
mm

’LU(.’L‘,y) = Zwm(x)eiﬁmy, fm = T

where b is the width of the plate. Also let the distributed load be represented in
a similar form

g(z,y) = ) Gm(z)em?
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We determine the coefficients ,, by substituting these representations for w
and ¢ into the governing differential equation and requiring that it be satisfied
for each m. The differential equation for @ becomes
d2
(5= — €

dx?

d? 2\ ~ 4~ gm 4 (‘K)
e = Wy, — B W, = S, =
The definition for 8 makes the solution structure similar to that for the vibration
of plates. The general solution to this equation is comprised of the homogeneous
solution and the particular solution. We can see by inspection that the particular
solution is given by
. dm dm iy
Wpm = = or wy(z,y) = — €
The homogeneous differential equation has constant coefficients, hence etk s
a kernel solution. The characteristic equation for k is

EK* 2k + et -t =0

The roots of this equation (which we will refer to as spectrum relations because
of their intimate connection to the spectral analysis method developed in Chap-
ter 4) appear as £ pairs

1/2

kis(w) =% [,82 — 52] =ta,

and 12
koa(w) =i [B2+ €] = iam
Thus, the general homogeneous solution is represented by
wp(z,y) = Z [Ae—iamm + Be @nZ 4 Cetiom® 4 De+dmz] e¥my (2.20)
m
Sometimes, we will find it more convenient to use the solution in the form

wp(z,y) = Z [c1 cos(@m ) + c2 sin(au,T) + c3 cosh(@mz) + ¢4 sinh(Gmz)] f(€my)

m

where f(£,y) = cos(&my) or sin(€,y). Looking at the boundary conditions at
y = 0 and y = b, we see that

always. That is, this is true for each m term and implies that this particular
solution can solve only those problems with simply supported lateral sides.

For m = 0 we have beam-like behavior. For m > 0, we also have beam-
like behavior with a more complicated variation in y, and a more complicated
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spectrum relation. This association to beam theory will help in specifying the
boundary conditions.

Note that, if the spring constant is zero, then the roots are repeated and we
have the solution in the form [78]

wp(x,y) = Z [AeT**m® + Bge™*n® + Cet*®m® + Dretom?] emy  (2.21)

m

Because of our interest in plate buckling and vibration problems, it is preferable
to retain a small K even when it should be zero. The utility of this is shown in
the next examples.

Example 2.7: Determine the deflections of a rectangular plate of size [a x b],
simply supported on all sides with a uniform pressure applied.
We will choose only the sin(§,y) terms and use the solution form

w(z,y) = Z {q cos(ama) + c2 sin(amx) + c3 cosh(@mz) + cq sinh(@m )

m

q
+D£¢‘n+K]

Only the boundary conditions at £ = 0 and £ = a need be considered, since
the lateral boundary conditions are automatically satisfied. We will impose the
condition of zero deflection at z = 0 and = a. Note that the zero moment
condition reduces to

sin(émy)

Pw
5z =

at both edges.
Imposing the boundary conditions gives

at z=0 =0 = ca+c3+Q
8%
8—;;) = = —a2c1 + &203
at r=a W=0 = [caC+ c2S]+ [c3Cr+caSh]+Q
8w
5{% =0 = ~a2[010 + C2S] + 542[63Ch + C4Sh]

where C = cos(aa), Ci, = cosh(aa), and so on, and Q = Gmm/(DER, + K). Solving
for the coeflicients, we get
a’Q a’Q 1-C o2Q B a?Q [I—Ch

o=———, c2=-— — es=-—0—1, a= ~
a? + a2’ a2+a2[ S b a? +a?’ a?+a2t Sy ]

The deflected shape is

w(,y) = Z ng [1 " (@ i&2) [d2 cos(mx) + @’ 1 ;C] sin(Qmz)

m=1,3,..

1—

+a? cosh(@mz) + [ Ch ] sinh(o‘cm:c)” sin(émy)
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Because both a and @& can be complex, the functions cos(az), cosh(&, ), and so
on, can exhibit a large dynamic range. To avoid numerical difficulties, the solution
is rearranged as

_osinam (L — ) + sinamx

_ d‘m
w(z,y) = Z 7DE$H+K|:1 - a (@ + a8

m=1,3,..

o2 sinh @& (L — ¢) + sinh &me

(02 ¥ a2)Sh Sin(fmy)

It remains now to impose a particular form of loading. Let the uniform pressure
be described by q(z,y) = qo = constant, then the Fourier coefficients are obtained
from

b b
- . . . 2¢,
gm = / Gm (z) sin(émy) dy = qo/ sin(§my) dy = — g m=1,3,5,...
0 0

€m ’

All the coefficients for even powers of m are zero.

Example 2.8: Show how the solution for a simply supported plate is affected
by the choice of stiffness K and the number of terms in the summation.

4.0 \o e -0 e o0 —mon . - Bme O ¢ R

s Myy My,
£
Q
= 3.0
©
= (a) (b)
c
2
B
@ 20 Mgy My
@
[a \/e S S S N TS o
1.0
w w
b Number of terms, M Stiffness K T
L il vl Lol Lol
0 2 4 6 8 10 12 14 16 18 20 A 1.0 10.0 100.0 1000.0

Figure 2.8: Deflection and moment convergence test. (a) Effect of number of terms
in the summation. (b) Effect of elastic foundation.

The results we will present are normalized with respect to

w0, — 16g,b* ’ qob®
Drt 472
These normalizations are taken from Reference [78].
The computed displacements and (stress) moments at the center of a plate with
b = 2a are shown in Figure 2.8. Only about three terms (M = 5) are needed to
give a converged solution.
The effect of the stiffness K is to diminish the deflections. However, in the limit
of small stiffness we recover the free-plate solution, thus justifying our use of the
solution with non-zero K.

M, =
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Deflection of Plates in Cylindrical Coordinates

To increase the range of available analytical solutions, we now look at plates
with circular boundaries. The coordinate system is in terms of (r, §) as shown in
the Figure 2.7. In some respects, these are simpler that the rectangular plates
because they have only a single boundary along r = constant, whereas the
rectangular plates have boundaries along two coordinate directions.

The governing differential equation is

02 n 10 n 1 02
or?2  rdr  r200?
As with the rectangular plate, we can consider the variation with respect to one

of the coordinates to be represented as a Fourier series. For example, consider
the forms

DV2V2u(r,0) = q(r,0), V? =

w(r,6) = Z Ry (r)ef™? q(r,8) = qu(r)emo

The differential equation for w becomes

2 1d m2?][d®R,, 1dR,, m? im im
5[ ra - | [ e ]t = Santrren

dr? " rdr 2 dr? r dr

Setting this to be true for all components m leads to a differential equation for
R, (r) as

dr?2  rdr 72 dr? T dr r2

[dQ 1d mQ] [d2Rm 1dR,, m? ]
- Rm = qm

THere are three special cases for the homogeneous solutions

m=20: Ro(r) = Ag + Bor? + Cylogr + Dor? log
m=1: Rl(r):A1T+Blr3+Cf1+D1rlogr
m>1: Rm(’/‘) = Apr™ + erm+2 + C;z,m + DmT_m+2

These solutions can be used to solve a variety of plate problems including those
with an inner circular hole as we will show shortly. Note that when m = 0, we
get the axisymmetric solutions.

The equations for the moments and shears are

FPw vow v tw
Mrr = D[a? ror _W]
w 10w 8w
Moo = D[W+FW+”W]

MrO

18%w 10w
(1=»D [??9?8_0_?%]
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0 [02w 10w 1 0w

@ = e lert i Trae
10
Vi = Qr—;%[Mro] (2.22)

The last equation is for the Kirchhoff shear, which we need when we impose the
traction free boundary conditions.

Example 2.9: Determine the deflections and moments in a uniformly loaded
circular plate clamped on the edge.
For the special case of axisymmetric loading and geometry, the governing equa-
tion reduces to
& 1d,d 14 1d[{ dld d .
[l el o= o)

Getralgztrgev =4

The equations for the moments are

Pw  vow
M = D[‘a?z‘ FE]
, 10w & w
Moo D[ra?*”w]
Mo = 0
8 10%w
Vi=0Qr = _DE[FJ]

Consider the special case when the distributed load is a constant g(r) = g,. The
displacements are obtained by integration as

Dw(r) = &qor4 + %cl[r2 logr — %] + icy"2 +ezlogr +ca

The constants of integration c¢; to ¢4 are obtained by imposing the boundary
conditions.

This solution gives a singularity at » = 0, hence we must set ¢; = 0 and ¢3 = 0;
these terms would be retained if the inner boundary is not at 7 = 0. The remaining
two coefficients are obtained from the boundary conditions at r = a, which are
that

ow
o=

atr=a: w=0, 0

This leads to the solution

)= g1 - G

This is shown plotted in Figure 2.9 for (goa*)/(64D) = 175.8. The comparisons
are with a finite element solution, which we discuss later.
The moment distributions are

goa®
16

Mo (r) = %° [(1—6—V)—(£)2(3+1/)], Mao(r) =

- [(1 +u) - (52 + 31/)]

The maximum stress is the M, stress and it occurs on the boundary.
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Figure 2.9: Deflection and moment distributions.

Example 2.10: Determine the state of stress in a large plate with a small

hole, uniformly loaded with bending moments remote from the hole as shown in
Figure 2.10.

Figure 2.10: Hole in an infinite sheet with remote bending moment.

This problem is the bending equivalent of the Kirsch problem solved earlier and
therefore our approach will have many similarities. Let the very large plate have
the uniform bending moments

Mpw=M,, My =0

After substituting these into the moment/displacement relations and integrating,
we get the displacement field

w= ﬁ(iwj—y,z)[f -y’ = F(lMi—V—z)[l — v+ (14 v)cos20]
This displacement gives rise to the moments and shears of
My = $Mo(1+ cos26)
]\/[90 = %]\/Io(l — COS 20)
My = — % M, sin 20

Qr = 0, Vrr:%lwocos20
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Consider now a hole of radius a in the sheet; the above displacement field gives rise
to non-zero stresses along the edge of the hole and we must replace these initial
stresses by the action of additional external couples. That is, on the initial state
of stress we superpose an additional state of stress that will cancel the couples

1
Mrle = ~2—]\/Io(1 + cos 20) , Virla = l1\/[o cos 260
a
around the edge of the hole. Furthermore, it must vanish at infinity.
This is achieved by choosing a deflection of

2
w= Alogr+(B+C":—2)cos20

which also satisfies the governing field equation. On differentiation, it gives the
resultants

N

My, = D[-(1- u)ATi2 - (4uBrl2 ~6(1— V)C%)cos 26
2
Mgy = D[(1- u)ATl2 - (4}3%2 +6(1 — u)c‘;—4) cos 20|
My = D(1—v)2B- +60%)sin20
’I'2 ,,«.4
Vi = —D[A(3-v)B— +12(1— u)c"—2] cos 20
r3 rd

At the edge of the hole » = a, we must have that the resulting M,, and V, be
zero, that is,
1]% D 1 A ! 4vB ! 6(1 C ! 200 = 0
5 Mo+ [-(1-v) ;‘( vB5 1-v) 55)‘305 ] =
1 1 1
—M, — D[4(3 - v)B— +12(1 - V)Ca—s] cos20 = 0

This gives rise to three equations

M,a®> —D(1—v)24 = 0
M,a®> — D8vB + D12(1 —v)C = 0
M,a® — DA(3—v)B - D121 —v)C = 0
Solving this for the three coeflicients leads to
Ao M,a’ B M,a® _ —M,ad’
T 2D(1—v)’ - 2D(3+v)’ 4D +v)
Combining this solution with the original uniform field leads to the moments
r 2 2 4
_ 1 _a” % 9___3(1—1/)0,_}
]\/[’!‘T‘ - 2Mo -1 T2+{1 3+l/’r'2 3+ v cos 20
[ 2 4 a* 3(1-v)a*
Mes = iM,|1 9««{1 @ _ —} 2
60 2 i +r2 +3+1/7'2 3+v cos 20
[ 2(1-v)a® 3(1-v)a*Y .
My = 1M, { - . —}
0 2]V _ 1+ 310 72 31, sin 20

T ”(T]_YI“OJSE; ((6 = 2v)A + —6(1 — v)C] cos 26
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The hoop moment around the edge of the hole is

Moo = |1 — g(-Blj_»—VV) cos 260

This has a maximum at § = 90deg and is

(5+3v)
My, = 2120
B+v)

For typical values of Poisson’s ratio this gives a concentration effect of about 1.8,
which is about two-thirds of the concentration effect of the equivalent membrane
problem.

The behavior of the hoop shear around the edge of the hole is worth noting.
The maximum value is 4

Qe = ml\/[o

which shows a dependence on the size of the hole. Thus, as a is made very small,
this shear is made very large. All the developments in this chapter are predicated
on the transverse shear stress being small; we therefore conclude that applications
of the above equations to problems involving very small radii (notches and cracks,
for example) must be somewhat suspect.

M,

2.4 Curved Plates and Shells

There is considerable interest in curved plates because of such structural appli-
cations as shells, arches, containment vessels, and fuselages to name a few. We
now look at some aspects of curved plates — to simplify matters, we consider
only circular uniform cylinder segments. More-detailed analysis than what will
follow can be found in References [46, 47].

There are a variety of ways to derive the shell equations; we find it most expe-
dient to specify the deformation in the cylindrical coordinates of Figure 2.11(a),
obtain the strains, convert to the coordinates of Figure 2.11(b), obtain the en-
ergies, and then use Hamilton’s principle to derive the equations of motion and
the boundary conditions.

8, U
Y,V

(a) (b)

Figure 2.11: Coordinates for curved shell segment. (a) Cylindrical coordinates. (b)
Curved shell coordinates.
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Deformation of Cylindrical Shells

In the cylindrical coordinate system, (r, 8, z), the components of the displacement
vector in the plane are denoted by i, and 4g. The strains are related to these
displacements by

L VG 100

rr T 0= T o8
1 da, Oug Ug

0 Tar T n

For thick cross-sections, the strain €gg is nonlinearly distributed. We will now re-
place these with an approximate set based on the assumption that the dimension
in the r direction is small and this will give a linear distribution.

We begin by expanding the displacements in a Taylor series about the mid-
plane (r = R) using the variable £ = r — R. That is, we approximate the
deformation of the shell in cylindrical coordinates as

2€.9

ﬂr(T, 0, Z) =~ ur(oa Z)

10u, wu
ug(r,0,2) =~ ug(e,z)_g(ﬁw_ﬁﬂ)
U (r,0,2) ~ uz(G,Z)—éaézT (2.23)

with £ = (r — R) and where the third equation allows for bending about the z
axis. These give the nonzero strains as

o = 1%_i(6%_%)

“ = RTRB0 R:\902 00

_ Ou, 0%u,

€z = - —¢ 552 (2.24)

10u, Oug €/ 0%, Oug
R0 " 9s 'R‘(Zazao oz )

At this stage, it is advantageous to convert the above to a more usual form of
notation. It is typical in shell analysis to have a hoop coordinate s, an axial
coordinate y, and a transverse coordinate z pointed toward the origin of the
circle. That is, we have

2€9z

RO — s, z— -y, T— —2
giving for the corresponding displacements
ug — u, Uy —> —V, Up — —W
Our approximate deformation relations are now

_ ow u
“(Say»z) ~ u(say)_z(&‘—l_ﬁ)
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v(s,y) — zg—Z (2.25)

w(s,y,2) =~ w(s,y)

Q

(s, y, 2)

The nonzero strains are then

w Ou Z(82w 18u>

“ = "RT8s “\5s "Ros
ov 0w
€yy = a—y—Z'a? (226)
2, = Dy (p 0w LOv)
‘v T 95 dy 0s0y ROy

Other shell theories have slightly different expressions for these strains; the
present theory is closest to that of Reissner [51, 58]. An excellent survey of
the different theories are given in References {46, 47]. The theory developed here
is the shell equivalent of the classical plate theory and the Bernoulli-Euler beam
theory.

Equations of Motion

While it is possible to derive the equations of motion based on a free body
diagram, it is much more advantageous to use Hamilton’s principle, because we
then get the set of boundary conditions consistent with these equations.

The strain energy for a small segment of shell in plane stress is

U= [ (B 46y + wesen) + Gy] aV

where E* = E/(1 — v?). Substitute for the strains and integrate with respect to
the thickness to get the total strain energy as

sJy

where
0= (58 - 4(G R+ G ) ]
U, (?9271;+?3271§ %%%)2 (2.27)

0w (82111 1 Ou Pw 1 8u)2

_ N (=, 27 191 ~ 7 47
20-V)5 57 T 7as) T30 V)(2358y+R8y

As with flat plates, D = Eh3/12(1 — v2). In the above, U; represents the strain
energy due to the membrane strains while Uz represents the contribution from
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the bending strains. Retaining only the first two energy contributions gives the
so-called Donnell Shell equations; retaining all terms will give the Reissner Shell
equations. The latter are slightly different from the Timoshenko-Love equations.
The total kinetic energy is

T = 1 / plii(z,y, 2,8 + 5z, 3, 2,8) + (2, 9, 5,8)2)AV
5

= 1 / / ph [4® + 0 + ?] dsdy (2.28)
sJy

where we have neglected the rotational inertia. Let the potential of the applied
loads be

VZ—QuU—vi—wa—QMJ, iﬁE%%

Application of Hamilton’s principle, taking the variations with respect to du, dv,
and dw, leads to three governing equations

B [% +la- u)gi;; Flag V)g% _ .]1%%%:
+% [g% +ia- u)gi;; +R£3§g-; +R88371;’: = ph%
E* [%(1 + u)% + Z—ZZ +ia- y)%z—;’ - %g—;": = ph%
i ol e 2 an
These equations are grouped in terms of membrane E*[---] and flexural Df: - |

contributions. This rather complicated collection of equations is a combination
of the flat membrane, flat plate, and curved beam equations.

The associated boundary conditions on the side s = constant are specified in
terms of one each of the following pairs:

_[ou w Ov] D[0*w 10u 0w
uor Q“:E[BZ_E+“5§]+E["5§5 ﬁ'a—s*”a—ya]
v or QU:%(I—V)E[%—F%]
w or Q‘”:m% [—g—z—g+(1—u)%]—D[§%+(2—y)%}
%—Z’ or szD[%%Jrug%’Jr%g—z] (2.30)

It remains now to interpret the resultants and relate them to these boundary
conditions.
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Referring to Figure 2.11(b), we can form the resultants per unit length as

NSSE/USSdZ7 Nsyz/osydz

Substituting for the stresses and strains in terms of our approximations leads to

ov @]

ou w ov .
], Bt ay) (23D

N = E'|5-2+

2% R 1/53—] Nsy:%(1~y)E*[

We can also form the resultant moments per unit length

Mg, = u/asszdz, M, = -/osyzdz

Again, substituting for the stresses and strains in terms of our approximations
leads to

S*w w1 du dru Ow

My = D|5g+vgr+ has)s Mw=300-0g[5+250]

Comparing these expressions to those for the boundary conditions, we see that
the natural boundary conditions are equivalent to specifying

1
Qu = Nss + RMss

Qv = Nsy
OM,, . OM,,
Qw - ds -2 ay —‘/sz
Qm = M, (2.32)

The first of these resembles the resultant load expression used for curved beams (23],
while the third resembles the Kirchhoff shear stress relation.

Example 2.11: Use the Lamé solution for pressurized cylinders to assess some
membrane aspects of the shell theory.

This is one of the very few shell problems for which there is an exact solution.
Consider a hollow cylinder subjected to uniform internal pressure p; and assume
there are no variations along the length. This is an axisymmetric problem and
therefore there is no bending. However, there is considerable membrane action,
and this is what we can investigate.

Because the problem is plane and axisymmetric, we take the stress function as

¢:Alognr+0r2

which gives the stresses

Oprr =

A A
7"_2+2C’ 0'99:—;"—24-20, O'T():O
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The boundary conditions are zero tractions on the outside, only a normal traction
on the inside. The zero shear traction boundary conditions are automatically
satisfied by the solution, leaving us with the normal traction conditions

A
r=a: tr:—g”,:pi:—%—2c, r==b: tr:UrTZOZb_2+2C

This gives two equations for two unknowns. After solving for the coeflicients, we
can write the stresses as

2 2

o — L[a_aa_]
o (1—-a2/b?) 1b?> r?
2 2
_ Pi a o
w0 = o Lt )
This is the Lamé solution.
1000 -
’ w
® L
g .0100 (b) o
& .
" 2
€T =
~) 0O o010}
membrane
R/h
0001 b Leveln it e b b L T

0 5 101520253035404550

Figure 2.12: Testing the thin-wall approximation. (a) Geometry for pressurized cylin-
der. (b) Difference between the exact and thin-walled approximation.

Let the shell be thin so that a= R— h/2, b= R+ h/2, r = R+ ¢, where R is
the average radius of the cylinder and h is the thickness. Substitute these in the
geometry terms and simplify assuming h/R << 1 to get

az_(R_h/Q)szl_gﬁ ﬁz(i_.h_/?).z_ 1____+2£

b~ (R+h/2)? R’ 2 (R+¢€)? R R

Substituting into the Lamé solution gives the approximation for the stresses

i R iR i R
PE0+O0(h/R)~0, a0~ B[1 4 O(h/R)] ~ B

The hoop stress is the dominant stress and is almost uniform on the cross-section.
The radial stress is approximately zero (in comparison to the hoop stress) even
though it is closely associated with the applied pressure.

The difference between the exact hoop stress and the thin-wall approximation,
A =1~ 0¢/0, is shown in Figure 2.12 as a function of R/h. When R/h = 5,
the difference is about 1%, but when R/h > 20, the difference has dropped well
below 0.1%. We therefore take that the transition to thin-wall behavior is around
R/h =~ 10.
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Example 2.12: Use Golovin’s solution for curved beams to assess some bend-
ing aspects of the shell theory.

Consider a curved beam subjected to end moments M, as shown in the Fig-
ure 2.13(a). From the moment balance condition, it is evident that the moment
on any radial cross-section along the beam is constant. In addition, the surface
tractions are independent of 8. Hence, this is an axisymmetric problem in stress
(although not necessarily in displacements).

{ O\,

&~

Figure 2.13: Curved beam with resultant moments. (a) Cylindrical coordinates.
Stress distributions in curved beam.

The Airy stress function for the problem is
é(r,0) = ¢(r) = Alog,, v + Brlog, r + Cr?

This gives the stresses

_ 199 A
Orr = 7"81" 2 +B(1+210gn7‘)+20
0¢? A
geo = ?372—=—r—2+B(3+210gn1")+20

with o9 = 0 everywhere. There are three coefficients to be solved for. The bound-
ary conditions on the lateral faces are

Urrlr:azo = a%-{—B(l—i—?logna)-i—QC
A
Orrlr==0 = b + B(1+ 2log,, b) + 2C

One more equation is needed. We cannot impose tractions as the boundary condi-
tions on the ends simply because we do not know them. So we impose conditions
on the resultants instead. That is,

b b
ng/ ogedr =0, M=/ ogg rdr = M,

On substituting for the stresses, this leads to only one nontrivial equation

o? 0 7]
o= /aT‘fd“a—f,,‘b‘—f =borr(h) —aorr(a) =0
d? d¢|° )
Mo = / Grardr =7 afa‘/ Ldr = o (b) — a*ore(a) — 6(b) + Hla)

= —Alogn(g) — B[b’log,, b — a*log, a] — C[b* — a?]
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Solving these equations for the coeflicients in terms of M, gives

o = 4Mob* a_210 (9> + lo (f) +£l (E)
rr - N ,’_2 gn a gn b b2 ogn r
4AM,b? a? b r a? a a?
TN [_r—“"g"(z) +log, () + e (7) +1- 5
b 2
N = (®—d%)?—a’a? (logn E)

This is Golovin’s solution for curved beams. The stress distribution is shown in
Figure 2.13(b). Note the very large increase in hoop stress at the inner radius.

A significant aspect of this solution is that the hoop stress ogg is not linearly
distributed on the cross-section. However, if we use the thin-wall assumption as
done in the previous example, we wind up with the approximations

12M¢

B3
The hoop stress, again, is the dominant stress and is almost linearly distributed
on the cross-section.

The difference between the exact hoop stress and the thin-wall approximation,
A =1-0;/0., is also shown in Figure 2.12 as a function of R/h. When R/h = 5,
the difference is about 6%, but we have to have R/h > 40, for the difference to drop
below 1.0%. This rate of change is significantly different than for the membrane
stress. It is worth keeping in mind, however, that while the stress is overestimated
on one side of the plate, it is underestimated on the other side, so that the lin-
ear approximation represents a very good average. Indeed, a comparison of the
(absolute) averages does not register in Figure 2.12.

We therefore take that the transition to thin-wall behavior is around R/h = 20.

orr =0, g6 N

Example 2.13: Specialize the curved plate equations to those for a curved
beam.

With reference to the coordinates of Figure 2.11(b), a beam has no dependence
on the y coordinate and has no displacement v. This results in the two equations

_ré%u 1 ow D 16%u Pw 8%u
E[%?“EEE] “[‘a}?* w] = o

1 0u w 8w D&% &*w
E[ﬁa—ﬁ] *D[asJ + 555 =

To have these equations resemble those for a beam bending in the  — y plane, we
make the association w — v. Furthermore, multiply across by the beam depth b
and replace

_ _ Ehb _ ER*b  _
Then the equations become
32u 1 u v v 8%*u
BASS + o [BIS S - BARS + BIRGS| = pA%;
a*v 1 du u v
— —_— - hand —_— 2-
BIZ S + o[ BAv— BARGY + EIRGS] A (2.33)
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If the beam depth b is small, then Poisson’s ratio effect can be neglected in the
definitions of EA and E].

The resultant axial force F', shear force V, and bending moment M, are related
to the deformation by

0] n ]
Js RJ

Fe EA[?E— ”},

v »w 1 8%u ]
s R ’

V= “E’[ass * Rosr

A[_EI(') [

These are used in specifying the boundary conditions.

Discussion

A thick-walled curved plate has two features of significance. First, the hoop
strain is not linearly distributed but is parabolic with the larger value being on
the inside radius. Second, there is coupling between the membrane and bending
effects. As we approach a thin-wall formulation, the previous developments show
that we obtain a linear distribution of strain but that there are still strong cou-
pling effects. Anticipating our future developments for nonlinear large deflection
problems, we would prefer not to have to deal with strongly coupled equations
such as Equation (2.30) or Equation (2.33).

Pr, us

Figure 2.14: Slightly curved beam problems. (a) Horizontal load. (b) Vertical load.

Consider the slightly curved beam problems shown in Figure 2.14. For a given
span L,, it is clear that as the radius is decreased (so that there is a deeper arch)
the effective stiffness of P, against up and P, against vs decreases. The issue
we are interested in is, to what extent this curved beam can be replaced with a
straight segment and still give a reasonable approximation to the stiffness.

The strain energy of the segment is

U=1 /EA[%*E]d 1 /EI[(;22 ;%]ds

Let us assume displacement shapes
u(s) = fa(s)uz,  v(s) = ga(s)vz + ga(s)¢2

where f;(s) and g;(s) are, respectively, the rod and beam shape functions taken
from Section 1.8. This discretization of strain energy will lead to a [3 x 3] stiffness



2.4 Curved Plates and Shells 127

relation. The first entry is associated with u, and leads to

f _82U_EA+1 EI L?
T oui L L3 12R2

The angle subtended by the segment is # = L/R, the straight beam has an
orientation half of this, and from the stiffness of a generally oriented member [22]
(also see Chapter 3), we have

sy = — cos? + 12— sin? N —— +12——2
suu Lo COS (0/2) 12 Lg sin (9/2) LO 12 Lg AR?

There is also the geometric approximation that L = L,[1+L2/(8R?)]. Thus, if L,
is smaller than R/10, then the difference in length is on the order of 0.1%, which
is negligible. To put this into perspective, if a complete circular ring is replaced
with 64 piecewise straight segments (or approximately 5°segments), then the
criterion is met. This does not seem an unreasonable density of elements.
Taking the ratio of the two stiffnesses and assuming L, ~ L, we get
ksuu ~ h2

PON
kewu 6R?

where h is the beam thickness. If h is smaller than R/20 (which is a typical
assumption for the thin-wall theory to hold), then the effect on the stiffness is
of the order of 0.1%, which is negligible.

Doing a similar development for the vertical force, we get

92U EI EA I? oEI  EA L3
2" L, 4R?

kcv'u =5 =12— T opo svv =
a2 Pt T F

The two stiffness expressions are very similar, the difference occurring only in the

axial stiffness contribution. However, the axial stiffness is usually significantly

larger than the flexural stiffness and therefore the seemingly small difference

could actually be quite large. The ratio of the stiffnesses in this case becomes
ksyy o L1L?L? 1R? L*

keww ~ 6h2RZ~  6hZR:
This time h appears in the denominator. For the thin-wall approximation with
h < R/20, an element length of L < R/10 then gives a stiffness difference of
about 0.007. This is quite small.

Based on these considerations, the plan in the remainder of the book is to
develop only a straight frame and flat plate element formulation and treat all
curved structures as assemblages of these. As it turns out, other considerations
arising out of the nonlinear dynamics description also require a small element
and therefore our treatment of general structures is not unduly inefficient.
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2.5 Discretization Using Triangular Regions

We need to discretize the plates and shells as part of our finite element formu-
lation of problems. There are a variety of discretization schemes available, but
we will consider only at triangular regions. As will be shown, this is more than
adequate for our needs.

Area and Natural Coordinates

Since we are dealing with triangular elements, it is convenient to work in area
coordinates. Consider a triangle divided into three areas where the common apex
is at (z,y) as shown in Figure 2.15(a). Define

hl = Al/A, h2 = A2/A, h3 = A3/A, hi = hi(.’L‘,y)

with the obvious constraint that Ay + hgy + hg = 1. The areas of these triangles
define uniquely the position of the common apex.

Figure 2.15: Area and natural coordinates.

The position of a point (z,y) in the triangle can be written as

1 1 1 1 hy
=| 2 zy z3 ho (2.34)
] Y1 Y2 Y3 h3

where the subscripts 1,2, 3 refer to the counterclockwise nodes of the triangle.
We can invert this to get the expressions for the area coordinates

h1 1 T2Y3 — T3Y2 Y23 32 1 1 a1 b a 1

ha p = — | T3y1 —Z1Y3s Y31 T13 T p=—1|az by e T
24 24

h3 T1Yy2 — T2y Y12 To1 y az b3 c3 Yy

with 24 = z21y31 — Z31Y21, Tij = T; — x;, and so on. From this, it is apparent
that functions of (z,y) can equally well be written as functions of (hy, hz, h3).
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That is, any function of interest can be written as

3
u(z,y) = Z hi(@, y)u;

where u; are the nodal values. Note that special cases of this are for the coordi-
nates themselves

3 3
T = Zhi(m,y)mi, Y= Zhi(%?})yz‘

which is obvious from Equation (2.34).
When performing differentiation, we use the chain rule as

Ou Ou Oh;

dr — Oh; Oz

A very useful formula when performing the integrations of the functions is the
relation
o i171k!
RihihEdA = 24—
/A 1 (2+i+j+k)
where ! means factorial. If h3, for example, does not appear in the integration,
then we simply ignore the k exponent. Another useful integration formula is

when the function is written in centroidal coordinates. We have [18]

i+j5:1 2 3 4 5
. 1 1 i 2
Ci+j -0 12 30 30 105

/ 'y dA = Ciy Aty + byl + 25y,
A

In order for the coordinate description hi, ho, h3 to describe the two coordi-
nates x,y, it must be supplemented by the constraint by + he + hz = 1. We can
invoke this constraint explicitly by introducing natural coordinates given as

hi=1-&-n, ha=§&,  hs=n (2.35)

These are shown in Figure 2.15(b). We have for a typical function

3
w(@,y) = Z hi(€,m)us

The element strains are obtained in terms of derivatives of element displace-
ments. Using the natural coordinate system, we get, for example,

0 _00 oo
dxr 060z Onox
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But to evaluate the derivatives of &, n with respect to x, y we need to have the
explicit relation between the two sets of variables. This is obtained as

5% %) 22
Ph-lE m|{F) o @t
{ wl L5 5‘3] { Z o O

where [ J ]is called the Jacobian operator relating the natural coordinates to the

local coordinates. This is essentially the same Jacobian introduced in Chapter 1.
The relation for the derivatives requires

() =50

which requires that [J~1] exists. In most cases, the existence is clear; however,
in cases where the element is much distorted or folds back on itself the Jacobian
transformation can become singular.

Example 2.14: Evaluate the integral f 4 hi1ho dA.
We use the general formula and since 0! = 1, we get

1o 11110! 1 L
/Ahlhsz /Ah1h2h3dA (2+1+1+0) 2A4><3><2>< 1 12

Example 2.15: Determine the Jacobian operator for the linear triangle.
Noting that
hl:l_g_na h2:§a h3:7]

and from Equation 2.34, we get some of the derivatives as

g—z =1 [—1] + z2[1] + 23[0] = 221, g—z = y1[—1] + y2[0] + y3[1] = ys1
The complete operator and its inverse is
40z, |z ym ~1;_ 1 |y —yn
L7 1= (95]_[1331 ya1 |’ v ]_2A —T31 T21

Note that det] J | = z21y31 — Z31y21 = 2A4, thus the Jacobian becoming singular
is equivalent to the area becoming zero and then negative. Therefore, in situations
where there are large displacements, it is of value to check the sign of the area.
This is all the more necessary in cases involving iterative solution strategies where
some of the iterates (not yet being converged) can lead to physically unrealistic
intermediate configurations.

Example 2.16: Evaluate the derivative of a function u(x,y) whose values are
given at the three nodal points: (0,0), (4, 1), (1, 3).
We have from Equation (2.34) that

z =4ha+hs =4 + 1, y=1lhy +3hs =€+ 3n
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The Jacobian operator and its inverse are then

AR PR B

Let the function be given by the linear interpolation
U(m,y) = {hla hQ’ h3]{u1a uz2, u3}T

but we will treat h, = h;(£,7). The derivatives are
Oou

By -l e
113 -1 -1 1 0
A SRR GI

where {u} = {u1, us, us}T and the subscript comma indicates partial differenti-
ation. The derivatives are constant.

Higher-Order Interpolations

The previous ideas can be generalized by considering higher-order interpolation
functions. A possible sequence of higher-order functions is arranged in the form
of Pascal’s triangle as

x Yy
x? Ty y?
e o2y oy s

where adding each complete level forms a complete representation. To utilize
these, we must use more nodes, and a possible sequence is shown in Figure 2.16.
Note that the cubic requires 10 nodes so as to have a complete Pascal triangle.

®

® (a)

Figure 2.16: Some higher-order elements. (a) Linear. (b) Quadratic. (c) Cubic.

For the linear interpolation functions, we need three nodes for the complete
representation. The representation is then

3
u(z,y) = ZNiui
i
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where the shape functions are given by

N =M
Ny = hy
N3 = hs

Chapter 2. Thin Plates and Shells

(2.36)

For the quadratic interpolation functions, we need six nodes for the complete

representation. The representation is then

6

where the shape functions correspond to a six-noded triangle (three apex nodes

and three mid-side nodes) and are given by
Ny = (2h; —1)hqy,
Ny = (2hg —1)he,
N3 = (2hz3—1)hs,

N4 = 4h1h2
Ny = 4hah3
Ng = 4hzhy

For the cubic interpolation functions, we need ten nodes for

representation. The representation is then

10
u(z,y) = ZNiui
5

where the shape functions are given by
N1 = 5(8h1 —1)(8h1 —2)hy, Ny=

1

2
Nz = §(3ha —1)(3h2 — 2)ha, N
Ny = 5(3hs — 1)(3hs ~ 2)hs, No =

I

and N10 = 27h1h2h3.

(3hy — 1)hiha,
(3he — 1)hohy
(3h2 — 1)hahs,

(2.37)

the complete

(3hg — 1)hshs
(3hs — 1)hshs
(3h1 — 1)h1hs

IO NI© i

It is also possible to write each of these interpolation functions in terms of

natural coordinates.

Example 2.17: Compare the quadratic and linear interpolations.

Figure 2.17 shows contours of a function interpolated using the linear and
quadratic interpolations. The function varies as sin(z) cos(y) but does not have
an interior maximum or minimum. Note that if the function were linear, then
both interpolations would give the same result. The original triangular region is
modeled with six nodes in each case, which means using four linear interpolation

regions.

It is clear that, for a given level of discretization (i.e., with the same num-
ber of degrees of freedom), the higher-order interpolations will out-perform the
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(b)

Figure 2.17: Comparison of the different interpolations. (a) Exact. (b) Quadratic.
(¢) Linear.

lower-order ones. The figure shows how the curved contours are approximated by
piecewise linear segments.

Two additional factors, however, must be considered when choosing interpola-
tion functions for elements. The first is that the computational cost increases for
the higher-order functions, and it may well be that the simpler functions can afford
to use more elements. The second is that, as we develop elements for complicated
mechanics problems such as nonlinear deflections or elastic/plastic material be-
havior, it becomes increasingly more difficult to develop a higher-order consistent
theory. We will generally opt, therefore, to choose the simpler functions and pay
the price of having to use more elements.

2.6 Membrane Triangle Elements

Perhaps the simplest continuum element to formulate is that of the constant
strain triangle (CST) element. We therefore begin with a discussion of this ele-
ment. We also discuss a three-noded triangular element, which correctly imple-
ments the drilling DoF (¢,) and therefore makes it suitable for 3-D applications.

Constant Strain Triangle Element

Consider a triangle with three nodes. The basic assumption in the formulation
is that the displacements have the same description as the coordinates. That is,

3 3
.'L'(.'L', y) = Z hi(:l“v y).’l]z ] U(%?J) = Zhl(xay)u‘t

3 3
y(z,y) = Z hi(z, )y,  v(z,y) = Z hi(z, y)vs

where h;(z, y) are the linear triangle interpolation functions. These interpolation
functions will be applied at all times during the deformation.
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The displacement gradients are given by
ou Oh; 1 Ov Oh; 1
= Ui = o Ui Y vy = o bivi
S S TR S
ou Oh; 1 ov oh; 1
ZRPIE it 7 DILLLINS TR A TP

where the coefficients b; and ¢; are understood to be evaluated with respect to
the original configuration.
The strains are

ou ov ou Ov
fzx:%a fyyza_ya 2€my:7xy5y‘+%

which are expressed in matrix form as

Ul
e ) q [0 0 B2 0 By 0 Z; -
(=54 0 ¢1 0 ¢ 0 «c3 v or {e}=[Brl{u}
2€zy cg by ca by c3 b3 Ui

U3

The stresses are related to the strains by the plane stress Hooke’s law

Ore E 1 v 0 €xx
Iyy (= 1_,2| Y 1 0 Cyy or {o}=[D{e}
Ozy 0 0 (1-v)/2 €5y

The virtual work for a plate in plane stress is
oW = / [Ozc0€zz + Tyybeyy + Tzy0Yzy] AV or oW = / {0}T6{e}dV
v v

Substituting for the stresses and strains in terms of the degrees of freedom gives
oW = [ {u}(Bo)"| D || Buls{u}dv
v

Noting that none of the quantities inside the integral depends on the position
coordinates, we then have

§W = {u}T[BL]"[ D |[BL]6{u}V
The virtual work of the nodal loads is

W = {F}T6{u}
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From the equivalence of the two, we conclude that the nodal forces are related
to the degrees of freedom through

{FY=10kH{u}, [kI=[B)"[DI[BL]V (2.38)

The [6 x 6] square matrix [ k | is called the stiffness matrix for the Constant
Strain Triangle (CST) element.

For plane problems, the coordinate system used to formulate the element (that
is, the local coordinate system) is also the global coordinate system, hence we
do not need to do any rotation of the element stiffness before assemblage. The
structural stiffness matrix is simply

(K=Y [k n

m

where the element stiffnesses are suitably augmented to conform with the global
system. The coding associated with this procedure in given in Reference [22].

Example 2.18: Using the CST element, determine the nodal forces for the
two-element assemblage shown in Figure 2.18.

L =[=50mm
h=2.5mm

Figure 2.18: A two-element system with fixed end.

The two stiffness matrices are given by

.267 .000 —.267 133 000 —.133

.000 .100 .200 —.100 —.200 .000

lhiza] = Fh —.267  .200 667 —.333 —.400 133
133 —.100 —.333  1.167 .200 —1.067

.000 —.200 —.400 200  .400 .000

| —.133 000 .133 -1.067 .000  1.067 |

.400 000  .000 —.200 —.400 .200 ]

.000 1.067 —.133 .000 .133 —1.067

loras] = Fh .000 —.133 267 .000 —.267 133
143 —.200 .000 .000 .100 .200 —.100
—.400 133 —.267 200 667 —.333

200 —1.067 133 —.100 -.333  1.167 |
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Both matrices are clearly symmetric. The assembled stiffness matrix is for the
degrees of freedom with the reductions

{u} = {ui, v1; u2, v2; us, vs; ug, v4}

= {0, 0; uz, v2; 0, 0; us, va}
We first augment each element matrix to size [8 x 8] as

lk124] = {u1, v1; u2, v2; 0, 0; ug, va}

[k1a3] == {w, u1; 0, 0; u3, u3; w4, v4}
and simply add. This give

[ .667 .000 —.267 133 —.400 .200 000 ~—.333 T
.000 1.167 200 —.100 133 —1.067 -.333 .000
—.267 .200 667 —.333 .000 .000 —.400 133
133 —.100 —.333 1.167 .000 .000 200 —1.067
—.400 133 .000 .000 667 —.333 —.267 .200
.200 —1.067 .000 .000 -.333 1.167 133 —.100
000 —-.333 -—.400 200 —.267 133 667 .000
L —.333 .000 133 —1.067 200  —-.100 .000 1.167 |

[ K]=Eh

The reduced structural stiffness matrix is obtained by “scratching” the rows and
columns corresponding to the zero degrees of freedom. The consequent system of
equations is

667 —.333 —.400  .133 up P

. _ -333 1167 .200 —1.067 v [_) 0
[K"H{u}=FBhl 400 200 667  .000 u () P
133 —1.067 .000 1.167 v 0

Solving this system gives
{u }T = {.00200, .00025, .00187, .OOOOO}EL;l

Note that although the problem is symmetric, the displacements are not because
the element mesh arrangement is nonsymmetric.
The nodal forces are given by

{F}=[ k& [{u}

Augmenting the displacement vectors with the zero degrees of freedom and then
multiplying out gives

{(F}2s = {~1.00, .00, 1.00, .00, .00, .00}P
{(F}lis = {.00, —.50, 1.00, .00, —1.00, .50} P

These are shown in Figure 2.19. Note that each element is in equilibrium. The
element nodes are connected to the large nodes to which the applied loads are
attached. It is clear that the element nodal forces add up to the applied load. At
the fixed end the element nodal forces add up to give the boundary reactions.
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—1.00,.50)P 1.00, .00) P
° ( ) ( ) (—1.00,.00)P
(1.00, —.50) P o P
(.00, .00)P
(.00,.00)P
(.00, .50)P
o (.00, —.50) P
(1.00,.00) P
(—1.00,.00) P
®— P

(—1.00,.00)P (1.00, .00) P

Figure 2.19: Nodal forces.

Membrane Element with Rotational DoF

Because we are interested in analyzing thin-walled 3-D structures comprising a
mixture of frame and plate substructures, it simplifies the implementation when
both structural types are modeled in a compatible way. The in-plane behavior
of the plate is analogous to that of a plane 2-D frame. Thus, at each node we
want the DoF to be

{u} = {u7 v, ¢Z}

The constant strain triangle (CST) element has only the two displacements in its
formulation. We now discuss a three-noded triangular element, which is shown
to have superior in-plane performance over the CST. More importantly from
our perspective, however, is the fact that it correctly implements the drilling
DoF (¢.) and therefore makes it suitable for 3-D applications. The “rotation”
implemented is actually that taken from continuum mechanics

ov  Ou
1z _Z=

¢ = 2(8:v 6y)

This element was developed in References [13, 14], a similar element was devel-

oped in Reference [2], and a nice comparison of the performance of these is given

in Reference [55].

I: Lumping Matrix

Consider a small triangular element removed from the deformed plate. There are
tractions along each of the edges. Furthermore, let the deformation of an edge
(as indicated in Figure 2.20) be represented in local coordinates as

S

[1=(D)]wn+ [25)] L
fi(8)ur + fa(s)usz

u(s)
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o) = [1-3(7 +2) o+ (D1 -23) + (7)) Lo
232 Pve+ (32 -1+ ()] Le2
= gi(s)v1 + g2(s)d1 + ga(s)va + ga(s) g2 (2.39)

The functions f,(s) and g,(s) are, respectively, the rod and beam shape func-
tions from Section 1.8. In comparison to the CST element, we are allowing the
normal displacements of the edge to be higher order.

v(s)  u(s)

Figure 2.20: Assumed displacements on an edge.

We would like to obtain the strain energy due to this system. It is apparent
that in the limit of small element size, we would want the stress state to approach
that of a constant strain triangle. Let us assume that the stress is uniform, then
the tractions on an edge at an orientation of 8 is related to the stresses as

tn | _ cos® 6 sin” @ 2cosfsiné Zm
t: [~ | —sinfcosf sinfcosf cos?6 —sin?6 Uyy
zy

which shows that the tractions are constant. The virtual work of the tractions
is given by

oW = /[t_n&_)(s) + te0u(s)]ds

t /[91(8)5171 + 92(s) L1 + g3(s)002 + ga(s) Loge]ds

i

1%, / [F1(5)51 + fo(s)001)ds

where the integration is over the three edges. These evaluate for a typical side

to
Wi = %tnng[(S’Ul + %aqu&l + dvg + %aLéqﬁg] + %tt[dul + 5’11,2]

where a was introduced as an adjustable parameter on the rotation. We get
similar expressions for the other sides. The total virtual work is the sum for the
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three edges, and this must be equal to the virtual work of the nodal loads acting
on the degrees of freedom.
The virtual work of the nodal loads is

Introducing a lumped matrix defined as

[L)=[IL) L) 25])
where

1 Yki 0 Tik
[Lj]:§ 1 20 2 1 2xik 2 1 Yki
Ea(yji - ykj) ‘e‘a(xij - lec) §a($ijyji - TjkUkj)
using cyclic permutation on i, 7, k. The first three contributions can be written
as

{Fy=[k l{u}, [kel={L])[DIL]

The upper-left [6 x 6] portion of this array is identical to that of the constant
strain triangle. The rest is the bending-like contribution. This stiffness-like ma-
trix, however, cannot be used on its own because it is rank deficient.

II: Higher-Order Displacement Modes

The displacements will be conceived as made up of three components: rigid
body modes, constant strain modes, and higher-order modes corresponding to
bending. The first two would lead to the constant strain triangle of the last
section. The total displacements are

u B 10 —p q1 €0 7n d4
S P RS S
q3 de

3 2 2
ap€® a2ln amm
+ -
— [ b1i€%  baun  bain? ]qrﬂ

where { g} are generalized degrees of freedom and g7, gs, g9 are associated with
the higher modes. The coordinates are defined as

E=Me—z), 0=MNy-9), A=VA
and the higher modes have the coefficients

— 157 2 — 13 —

ay; = —9 iCi , ag; = —20- as;, = 5
— 2 103 —

bli _S’L CZ - 507, b21 —



140 Chapter 2. Thin Plates and Shells

where the angles are given by

Si = (Ym — ¥i)/Lmi, Tm = 3(x; + zk)
Ci=(Tm —%:)/Lmiy,  Ym =2 +¥),  Lmi=/(@m —2:)% = Um — )2

These higher modes can be thought of as bending about axes emanating from
each apex. Note that these displacements are not consistent with the assumed
displacements along the edge of the element.

The nodal degrees of freedom are related to the generalized DoF' as

uj 1 0 —n gt & 0 Qa
v; = 0 1 ¢ @ p+] 0 n & qs
?; 00 A q3 0 0 O g

3 [ aw€d + a2i€n; + azing
+ Z blif? +b2:&;m; +b3im; | Gr
i=1 —)\Cifj - )\SZT]J

{u} =[G {9}
This can be inverted (numerically) to give
{2} =16""{u} =[H {u}

The following developments will be in terms of the generalized DoF but the
above can be used at any stage to express them in terms of the global DoF.

The strains are
q4 3 2a1:&5 + agin;
g p+A boi&; + 2b3in; | gets
g6 i=1 | —4b3;§ — 4ayn

€xz
€yy =A
Yy

{e} = [Brel{gre} + [Brl{an} = B {q}

The virtual work of the internal stresses is

oW = /VUij(SEz‘j dv = %/‘,{5Q}T[ BI'[D] B{4}aV

OO =
o = O
N OO

or

Substituting and multiplying out gives
W = [ [0 (BT D Brel{are} + {80n} 1B D 1B
+{04:} T [Bre|"[ D |[Br1{an} + {8ax}7[Bn]"[ D ][ Bn ]{qh}} dv

The two middle terms evaluate to zero leaving

W = {6qTC}T[kTC]{qT'C} + {6qh}T[ kn ]{Qh}
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The first term is precisely that of the constant strain triangle and the second
term is the higher-order contribution. Let us introduce as our potential for the

element a combination of the lumped representation and the higher-order term.
That is

U=g{u}"[ LTI DI L Nu}+38{u}TH [kl H{u}

where ( is introduced as another adjustable parameter. Minimizing this with
respect to the DoF gives the total stiffness as

[k1=1LVDIL)+BH Tkn]l H]
The higher-order contribution is given by
(kn(i,5)) = Jee[Beil"[ D 1[Beil + Jen([Bei) [ D 1(Byil (Bni] " [ D ][ Bes])
+ J’m[Bm']T[ D ][Bm‘]

where
Jee = /,452 dA = —FA(61& + Ea€s + £361)
Jen = /Aﬁn dA = —LA(&m + &anz + &ams)
Iy = /14?72 dA = —3A(mm2 + nem3 + n3m)

The stresses are obtained from the strains, which are obtained from differen-
tiation of the displacements. Coding for this element can be found in Refer-
ences [13, 14]. We will refer to this membrane element with rotations as the
MRT element.

As for the CST element, the coordinate system used to formulate the element
is also the global coordinate system, hence the structural stiffness matrix is
simply the summation of the element stiffnesses suitably augmented to conform
with the global system.

Example 2.19: Show that the MRT element passes the patch test.

Consider a rectangular block loaded as shown in Figure 2.21. The expected
displacements are based on simple uniaxial stress with AL = e = oL/EA and
the transverse behavior related to the Poisson’s ratio contraction to give

ug = 0.0004, vg4=-0.0002, ¢4=0.0; o0z =2P/A

This is an interesting problem as regards specifying the appropriate boundary
conditions in an FEM context. The intuitive boundary conditions are to specify

u1 =0,v1 =0, ¢1 =0; u2 = 0, v2 = free, ¢2 = free



142 Chapter 2. Thin Plates and Shells

Figure 2.21: Two sets of boundary conditions for the patch test.

and the load condition as
P3 =1000, V3 = 0, M3 = 0; Py =1000, Va =0, My =0

The results for these loads are
ug = 0.00056, wv4 = —0.00026, ¢4 = 0.003

The contours are shown in Figure 2.22(a). It is clear that the concentrated loads
are causing a good deal of localized rotations. Furthermore, the element is too
flexible.

Figure 2.22: Contours of o, stress for the patch test problem. (a) Incorrect boundary
conditions. (b) Correct boundary conditions.

The appropriate boundary conditions to specify are
ur =0, v1 =0, ¢ = 0; up =0, v2 = free, ¢2 =0
Note that ¢2 = 0 and so this would correspond to a line of symmetry. The load
conditions are

P3=10007%:07 T3=%0’L2; P4:1000,‘/4:0, T4:._%0.L2

The edge of this element is like a beam and the uniform stress is like a distributed
load on the beam. Hence, the edge also has moments. It is necessary to include the
a in the effective moment because it was used in obtaining the relation between
the nodal loads and the internal reactions. In general, the nodal loads are related
to the tractions by

P = / g1(z)o(z)dzh = 1U(,Lh7 T, = a/ ga(z)o(z) dzh = gUoL2h
L 2 L 12

P, = / g2(z)o(xz)dzh = 1U(,Lh7 T, = —a/ ga(z)o(z)dzh = —200L2h
. 2 . 12



2.6 Membrane Triangle Elements 143

The lack of contours in Figure 2.22 clearly indicates the uniform state of defor-
mation.

The patch test is necessary for the convergence properties of an element. In this
problem, if the middle node is moved, the exact same results are obtained.

Example 2.20: The cantilever beam shown in Figure 2.23 has a parabolically
distributed load on the end. Do a convergence test to demonstrate the performance
of the MRT element.

2h =51 mm (2.0in.)
b =204 mm (8.0in.)
h =2.54mm (0.1in.)

aluminum

Figure 2.23: Mesh geometry [4 x 16].

This is a problem that has a significant amount of bending (and hence rota-
tion) and therefore is a good test case [18] for examining the performance of the
rotational contribution of the MRT element. This is a problem solved earlier in
this chapter and we will use that solution for comparison.

One of the most important characteristics of an element is its convergence
properties, that is, it should converge to the exact result in the limit of small
element size. When looking at convergence, it is necessary to change the mesh in
a systematic way. The mesh shown is made of [4 x 16] modules where each module
is made of four elements. The other meshes are similar except that the number of
modules per side was changed.

The results for the tip deflection at B and stresses at A are shown in Figure 2.24
where there are compared to the exact solution. The normalizations are with
respect to the exact solution for vg and oa. The performance of the simpler
constant strain triangle is also shown in the plot.

— /f;\\ e
‘\

Figure 2.24: Convergence of displacements and stresses.
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Both elements exhibit convergence to the exact solution. What is apparent,
however, is that the MRT element gives good results even for relatively few mod-
ules through the depth. The CST element, on the other hand, is overly stiff.

The difference in performance of the stress is even more dramatic. These re-
ported stresses are nodal averages. It is interesting to observe the other stresses
on the houndary; these should be zero but it is only in the limit of very small
element do they go to zero.

Example 2.21: Investigate the stress concentration around a hole in a plate.

Whenever there are cut-outs or changes in the geometry, stress concentrations
occur that necessitate a finer mesh to accurately model the stress gradients. An
ideal mesh is one that is uniform and very fine everywhere. This, of course, is not
practical, so it is usual to increase the mesh density only in locations near the
stress concentrations.

a="7.6mm (0.3in.)
w = 51mm (2.0in.)
h = 2.54mm (0.1in.)

aluminum

Figure 2.25: Stress distribution around a hole.

An example of a non-uniform mesh is shown in Figure 2.25. There is a gradient
of element sizes that varies approximately as /7 where r is the distance from
the center of the hole. A general purpose mesh generator would allow a choice of
gradients.

The stresses computed using this mesh are also shown in Figure 2.25. The very
high gradient of stress justifies the need for the very fine mesh. Note that the
reported stresses are nodal averages.

Also shown in the figure is the Kirsch solution for an infinite plate. The finite
width plate shows a higher stress concentration factor.

2.7 Triangular Plate Bending Elements

In this section we illustrate some of the pitfalls that can occur with an improperly
formulated element. While the element we develop has very poor performance
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characteristics and should never be used, its derivation is instructive. We then
derive a properly formulated element.

A Poor Performing Plate Bending Element

We want an element that has a node at each corner of the triangle and has the
degrees of freedom

{U}T = {UJl, ¢m17 ¢y1; w2, ¢z2a ¢y2; w3, ¢m37 ¢y3}
as shown in Figure 2.26. The rotations are related to the deflections by

_ Ow ow

"% YT e
In local coordinates, the three-noded triangle has a total of nine degrees of
freedom. The basic problem with triangular elements for flexure of plates is that
if we represent the deflection in terms of polynomials, we have

b

w(z,y) = @1 + @z + g3y + g1z + g5y + g6y? + @12> + g5y + qozy® + qr0y®

where ¢; are the generalized degrees of freedom. This has 10 terms but we
only have nine degrees of freedom. Simply deleting one of the terms will cause
anisotropy or convergence problems. We illustrate this.

Q)

Y

o

T

Figure 2.26: Element with nodal degrees of freedom.
One simple possibility is to take the polynomial in the form

w(z,y) = q1 + g2 + g3y + qaz® + gszY + g6y + g7 x> + gs(z%y + TY?) + qoy®

where the cross terms 22y and xy? share a common coefficient. At Node i, we
can establish the relationships

Wy

Ow; 1 =y z? zye P 3 (2y +zay?) Yl
oy =10 0 1 0 Ti 2y; 0 (13? + 22;1) 3yi2 {a}
a’wj 0 -1 0 —2.’1)1‘ —Yi 0 —3.’1,'22 (—2.’1!1:1/,‘ — y2) 0

Oz
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After evaluating this at the three nodes we can assemble the [9 x 9] system

{u} =[G K1}
Inverting this numerically, we get
{a} =1 G ] H{u}

To get the [ B | matrix that relates the strains to the nodal DoF, we first relate
the strains to the generalized DoF according to
0%w
~a2
6%‘10
(=1 5z (=lcla)
Y
0w
Oz 0y

where

0 -2 0O 0 -6z —2y 0
0 0 0 -2 0 —2x —6y
0 0 -2 0 0 —4(x+vy) 0

Thus
{e}=[cllc] {u}=[B{u}

N

The stiffness is obtained in a manner similar to that of the CST element and is
given by

{k]=/V[B]T[D][B]dV

It remains now to perform the integrations.
Decompose the | B | matrix as

[B]=[B:]+[Bz]z+[Byly

The stiffness integral becomes
[ k] = [BTDB,] / dV + BYDB, + BT DB,] / zdV + [BI DB, + B] DB,] / ydV
+BI'DB,] / a?dV + [B] DB,] / y*dV + [BI DB, + B} DB, / zydV
If we shift the coordinates to a centroidal system, then the integrals evaluate to
i 1

where A is the area. There are a good many terms in the stiffness expression
and therefore we will not write them out explicitly. This element is assembled
analogously to that of the CST element.

We leave a discussion of the performance of this element until later.
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Discrete Kirchhoff Triangular Element

The basic idea of the discrete Kirchhoff triangular element (DKT) is to treat
the plate element in flexure as composed of a series of plane stress triangular
laminas stacked on top of each other. From the previous section, we know that
we can describe each lamina adequately using the CST or higher element, hence
it remains then only to impose the constraints that the laminas form a structure
in flexure.

I: Shape Functions

In deriving the DKT element, the complete polynomial is used in the form

w(z,y) = hi[hy + 3hg + 3ha)wy — hi[za1ho — T13h3)d1
—hilysihs — yi2ha]der + ... + ahihohs

where « is a generalized coeflicient, and the additional six terms for w(z,y)
are obtained by cyclic permutation. We obtain o by imposing the Kirchhoff
conditions discretely.

n

0
0 1

Figure 2.27: Element coordinates.

Let the rotations have the complete representations
6 6
$r =Y Nitwi, dy=) Nidy
i i

where the shape functions correspond to a six-noded triangle (three apex nodes
and three mid-side nodes) and are given by

Ny = 2h1—1)h1 =1 —-§-n)(1-26-2n), Ny=(2hy —1)hy = (26 - 1)¢
N3 = (2h3 — 1)h3 = (277 — 1)77), Ny = 4hohs = 4£’I7
Ns 4hzhy = (1 =€ —n)dn, Ng=4hiho=(1-§—n)4¢ (2.40)

(Note that we are using the convention of Reference [8] which puts node 4
opposite node 1 as shown in Figure 2.27.) Consider a laminate of thickness dz
located a distance z from the midsurface of the plate. The displacements of this
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laminate are represented by
W(z,y) = —2¢, = +z [h1(2h1 ~ 1)y + ha(2ha — 1)y
+h(2hs — 1)dys + dhahadys + dhshiys + 4hihadye]
3(@,y) = —26 = +z|h1(2h1 ~ Dot + ha(2ha — 1)
+h(2ha ~ 1)¢ss + dhahsdes + dhahi dus + hi haa]

In this, there are a total of 12 degrees of freedom. Thus, initially there are more
degrees of freedom than will appear in the final form of the element. The extra
degrees of freedom are associated with the mid nodes and will be eliminated.

A nine-degree-of-freedom element is obtained by requiring the transverse shear
strains to be zero at the corners

Ow,- 611)2' .
= —Qyi, = z7 = 1a 2a
e Dy 3y +¢ i 3
and along the sides of the element
8w,-

= Psi .:4a5a
55 ¢ i 6

where s is an edge tangent coordinate. We also impose that the slope normal to
the element at the middle of the side is one half the sum of the values at the

corner nodes 5 s
— 1% w2
¢"4_2[8n + 811]
with others obtained by cyclic permutation. The following geometrical relations
are needed on each side:

ow
=18 CHE 8 -8 Sl{E)
6, s ¢\ )" ow (T s —C|\4

on
where C' = cos(Z,7;;) and S = sin(Z,n;;) and interelement compatibility in
terms of displacement and slope are still satisfied after these equations are ap-
plied. Note that since w varies cubically along the sides, dw/3s varies quadrat-
ically and so does ¢,. Since dw/ds matches ¢, at three points along the side,
the Kirchhoff hypothesis (no shear strain) is satisfied along the entire boundary.
Also, if this formulation is applied to a 1-D beam, the stiffness of the Bernoulli-
Euler beam is recovered; this means that the DKT element is suitable for use
with Bernoulli-Euler beam elements in complex structures.

It is this sequence of constraints that leads to the coupling of the rotations

with the deflection. After the mid-side nodes are reduced, the resulting shape
functions are given by

$a = {Ho(€,m} {u}, ¢y = {Hy(&m)} {u}
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where the nine components are

( _%(GSNS — agNg) ) ( —%(d51V5 — dSNﬁ) )
bs Ny + bﬁNG) —Nj -+ esNg + €6N6)
N]_ —c5N5 — CGNG) —b5N5 - bGNG)
—3(ag N — ayNy) ~35(dgNg — daNy)
{Hw} = be Ne + b4N4) ;s {Hy} = —Ns + egNg + esNy)
Ny — cgNg — c4Ny) —~beNe — byNy)
—3(asNy — asNs) ~3(d4Ny — dsNs)
by Ny + b5N5) —N3 + egNy + 65N5)
. N3 - C4N4 — C5N5) L —b4N4 - b5N5) )
and
o = “wz‘j/L?j ) by = %l’ijyz‘j/L?ja Ck = (2;1‘1% - %y?j)/L?j
dp = _yij/L?j ) €k = (%yizj - %ngg)/Lzzy

The strains are obtained by differentiating the functions {H,} and {H,}.

II: Stiffness Relation

We are now in a position to obtain the stiffness relation. The curvatures are
given by, for example,

_ 9¢: -
Kyx = oz or {K'}”‘[B]{u}

where

1 +ys1{Hze}" + y12{Hem}*
[B(E,n)] =~ | —zs:1{H ,£}T - $12{Hym}T
2A T T T T
~z31{Hz e} — T12{Hepn} +yn{Hye}" +y12{Hyq}

The vectors appearing in this strain-displacement matrix are obtained from the
derivatives as

( pe(1 — 28) + (ps — pe)n ) ( te(1 — 26) + (ts — te)n )
g6(1 — 2§) — (g5 +g6)n 1+re(l —26) — (r5 +716)7
wy +r6(l — 2€) —~ (r5 + 16)1 —qe(1 — 26) +n(gs + g6)
—pe(l — 2£) + (P4 +pe)n —te(1 — 26) + (ta +t6)n

{Hze} = g6(1 —28) — (g6 —qa)n p, {Hyel=4q —l+re(1-28)+(ra—re)n

wa +716(1 —26) + (ra — 16)0 —g6(1 ~ 2£) — n(qa — gs)
—(ps +pa)n —(ts +t5)n
(g4 —as)n (ra —rs)n

. —(rs —ra)n . —(q4 —g5)n )
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—ps(1 - 2n) — (ps — ps)¢ ) ( ~ts(1 —2n) — (t6 — t5)¢ )
g5(1—2n) — (g5 + g6)¢ L+75(1 —2n) — (r5 +76)§
w1 +75(1—2n) — (r5 +716) —g5(1 ~ 2n) + (g5 + g6)€
(pa + p6)€ (ta +t6)
{Hz,n} = (ga —q6) p, {Hyn} =1 (ra—re)é o
~(re - Ta)€ (g4 — g6)¢
ps(L~2n) — (pa +ps5)é t5(1 — 2n) — (ta +t5)€
g5(1 —2n) + (g4 — g5)¢ ~1+475(1—2n) + (ra —75)¢
wy +75(1—2n) + (ra —7r5)§ L —95(1—2n) —&(qa —g5) )

In these, we have that
P = —6245/LY; = 6ax, i = 3y5; /L, wy =—4+6(§+n)

ak = 3zi;y:5/LE; = 4by, te = —6yi; /L%, wg = —2+ 6§

where k = 4,5,6 for ¢j = 23, 31, 12, respectively, and L;; = (mfj + yizj)l/‘?.
The stiffness matrix is then given by

~2A/ / BT D B dedy

This can be integrated exactly using three numerical integration points. How-
ever, an explicit formulation is given in Reference [9] and coding is given in
References [18, 36].

This element, now called the Discrete Kirchhoff Triangular (DKT) element
was first introduced by Stricklin, Haisler, Tisdale, and Gunderson in 1968 [71].
It has been widely researched and documented as being one of the more efficient
flexural elements. Batoz, Bathe, and Ho [8] performed extensive testing on three
different elements including the hybrid stress model (HSM), DKT element, and a
selective reduced integration (SRI) element. Comparisons between the different
element types were made based on the results from different mesh orientations
and different boundary and loading conditions. The authors concluded that the
DKT and HSM elements are the most effective elements available for bending
analysis of thin plates. Of these two elements, the DKT element was deemed
superior to the HSM element based on the comparison between the experimental
and theoretical results [8].

Once the nodal displacements have been determined, the bending moments
at any point in the element are then obtained from

{M}(x,y) = [ D ][ B ](.T,y){U}

where

z =1z1+&x21 + Nz, Y =y1 +&ya1 + Y31
Note that the moment is not unique along the boundary shared by two elements.
Consequently, nodal averaging will lead to improved results. Finally, assemblage
of the structural stiffness matrix is simply the summation of the element stiff-
nesses suitably augmented to conform with the global system.
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Example 2.22: Investigate the sensitivity of the simple and DKT elements to
size aspect ratio.

40 ~
=
L @
=
30 8
| ©
Q
[ @
201 O
i
10
. Length /Lo
0 oo b o b o b by |
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Figure 2.28: Twisting of an element.

The problem we will look at is that of a cantilevered plate with equal but
opposite forces at its tips. This causes the plate to twist out of the plane.

Beginning with a length to width ratio of 1 : 1, we increase the length but
keep the same number of elements. The two tips should have equal but opposite
deflections.

As seen from Figure 2.28 the simple element has very poor aspect ratio perfor-
mance. The DKT element on the other hand shows very good performance.

Example 2.23: Show that the DKT element passes the patch test and assess
its aspect ratio performance.

The patch test is a simple numerical scheme for testing the convergence prop-
erties of an element formulation. A number of elements are assembled into a small
patch with at least one node within the patch and is shared by two or more ele-
ments. The mesh of Figure 2.28 is a suitable arrangement. The boundary nodes
are loaded consistently to a state of constant stress. If the computed stresses,
throughout the element, agree exactly with the exact solution irrespective of the
placement of the middle node, then the patch test is passed.

When a patch test is passed, there is some assurance that when the element is
used to model complex structures that mesh refinement will produce a sequence
of approximate solutions that converges to the exact solution.

For a plate element in bending, the test subjects the patch to constant bending
moments. For the patch of Figure 2.28, a suitable set of boundary conditions and
loads are:

w=0, ¢, = free, » = free
T, = T, atNodesl, 2, T, =-T, at Nodes4,5
T, = T, atNodesl, 4, T, =—T, at Nodes?2, 5

The computed moments everywhere are

My = 3T, Myy = iT,, Mgy =0
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Figure 2.28 shows the performance of the DKT element on the twist test. Clearly
it does not degrade very much as the aspect ratio is changed.

Example 2.24: Assess the convergence properties of the DKT element.

SS
SS
a =203mm (8.0in.)
A b = 101 mm (4.0in.)
h = 2.54mm (0.1in.)
aluminum

S8

SS

Figure 2.29: Generic [4 x 8] mesh used in convergence study.

The problem we will consider is that of a simply supported plate (with mesh as
shown in Figure 2.29) and the transverse load applied uniformly. When looking
at convergence, it is necessary to change the mesh in a systematic way. The mesh
shown is made of [4 X 8] modules, where each module is made of four elements. The
other meshes are variations of this by uniformly changing the number of modules.

.8 Cwa 50
F W A N A [
] fa—"" 4o [T
. _—o’—”/e——' L
L N Myi‘l
- 3.0 - M,
4 s Simple 1: [2x4]=32 s Moo
- ——Exact 2: [4x8]=128 20 |- M,
r o DKT 3: [Bx16]=512 [T
2 4: [16x32]=2048 -
- 10
L Mesh density r Mesh density
_0_1...|..[|,‘;|.o'_l..llxl.llLIJ
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Figure 2.30: Convergence study for displacements and moments.

The results are shown in Figure 2.30 where it is compared to the exact solution
and the performance of the simpler plate element. The normalizations for the
displacements and moments are

_ 16g,b* _qob?
Wo ™= "o Mo = 472

The DKT element exhibits excellent convergence, whereas the simple element
converges to a value that is off by about 15%. In fact, the coarsest mesh gives the
best results; such an element should never be used. It is pleasing to see that the
DKT element gives good results even for relatively few modules.

Chapter 2. Thin Plates and Shells



2.7 Triangular Plate Bending Elements 153

The performance of the DKT element for the moments is also very good. These
reported moments are nodal averages. Because a lumped load was used in this
example, we conclude that a lumped representation is adequate when a suitable
refined mesh is used.

Example 2.25: Analyze the plate with a hole shown Figure 2.31, under the
action of edge moments.

a=25.4mm (1.0in.)
H = 508 mm (20in.)
W = 254mm (10in.)
h=2.54mm (0.1in.)

aluminum

Figure 2.31: Moment distribution around a hole.

Just as for the membrane loading case, whenever there are cut-outs or changes
in the geometry, stress concentrations occur. As pointed out before, for general
loadings an ideal mesh is one that is uniform and very fine everywhere. This, of
course, is not practical, so it is usual to increase the mesh density only in locations
near the stress concentrations.

An example of a non-uniform mesh is shown in Figure 2.31 which is the same
as in Figure 2.25 and therefore the same comments apply.

The stresses computed using this mesh are also shown in Figure 2.31. The very
high gradient of stress justifies the need for the very fine mesh. Of particular
significance is that the M,, moment does not achieve a significant value. Note
that the reported stresses are nodal averages.

Also shown in the figure is the infinite plate solution. As in the membrane case,
the finite width plate shows a higher stress concentration factor.

Applied Distributed Loads

The applied loads fall into two categories. The first are point forces and moments;
these do not need any special treatment. The others arise from distributed loads
such as pressures, and these are the ones of interest here.

To get the equivalent nodal loads, we will equate the virtual work of the nodal
loads to that of the distributed load. Consider a single element with transverse
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distributed load ¢(z, y), the virtual work is

(P} {ow} = / qéwdA = / g{N}T {sw}dA
A A
where A is the area of the element. This leads to
{P}= /{N}Tq dA (2.41)

In implementing this, shape functions different than what are used for calculating
the stiffness matrix can be used. We will illustrate this with examples.

Using area coordinates for the triangle, we start by assuming a displacement
shape in the form

UJ(IL‘, y) = Clhl -+ 02h2 + 03h3
4+ ca(h1h% + h) + cs(hgh? + h) + ce(hsh? + h)
+  cr(h3ha + k) + cg(h3hs + h) + co(h3h1 + h)  (2.42)
where 2h = hjhghs. In this way the additional term is distributed among the

other nine. If we now determine the nine coefficients in terms of the nine nodal
degrees of freedom then we get the associated shape functions as

Ny = hy+ (h3hy — hih3) + (hihg — hih3)
Ny, = —ylg(h?hz + h) -+ y31(hfh3 -+ h)
N3 = —z1(hihs + h) + z13(h2h3 + h) (2.43)

The other six are obtained by permutation. Substituting these into Equation (2.41)
then gives the nodal loads. These loads are a combination of forces and moments.

An alternative loading scheme is to simply lump the loads at the nodes. That
is, let

Pi:%/Aqu, Mm':O, Myz:()

As shown in the example for the rectangular plate, this is usually adequate when
reasonable mesh refinements are used.

The difference in the performance is only noticeable for coarse meshes, we will
generally opt to use the simpler lumped approach. There is also another reason
for preferring the lumped approach: as shown in the next chapter, during nonlin-
ear deformations, the applied moments are nonconservative loads and therefore
require special treatment.

Example 2.26: Analyze the circular plate shown Figure 2.32, under the action
of a uniform pressure.

Figure 2.9 shows a comparison with the analytical solution obtained earlier.
There is excellent agreement in the displacement distribution. The moment dis-
tribution is also very good except at the boundary. This is not surprising since we
are replacing a circular boundary with a piece-wise linear boundary.
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a = 254mm (10.0in.)
h = 2.54mm (0.1in.)

aluminum

Figure 2.32: Mesh for circular plate.

It is worth pointing out that the nature of the mesh configuration forced ele-
ments with a variety of aspect ratios. The good distribution results indicate that
the element is reasonably robust as regards aspect ratio.

2.8 Shell and Frame Structures

The purpose of this section is to show how the stiffness of a general structure is
constructed from the element stiffnesses in local coordinates. Once this assem-
blage procedure is established, then quite complicated structures can be formed
simply by adding more of the basic elements.

Element Stiffness Matrix in Local Axes

In our formulation, the displacement of each node of a space frame or shell is
described by three translational and three rotational components of displace-
ment, giving six degrees of freedom at each unrestrained node. Corresponding
to these degrees of freedom are six nodal loads. The notations we will use for
the displacement and force vectors at each node are, respectively,

U F,
v F,
_ w o F,
{u}i - ¢m ’ {F}Z - M:z:
by M,

¢. J, M, |,

where i ranges 1,2 for frames and 1,2,3 for shells. For each element in local
coordinates, the forces are related to the displacements by

{Fy={a}=[k [{a}

where the overhead “bar” designates local quantities and [ k | is of size [12 x 12]
for frames and [18 x 18] for shells. The space frame is a combination of axial,
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two bending, and torsion effects; the upper left quadrant is

- -

EA 0 0 0 0 0
0 12EI,/L? 0 0 0 6EI,/L
1l o0 0 12EI,/L* 0 —6EI,/L 0
Ll 0 0 0 GI, 0 0
0 0 —6EI,/L 0 4EI, 0
| 0 6EL/L 0 0 0 4EI,

For regularity of notation, the torsional stiffness is written as GI, = GJ. That
the separate stiffnesses can be added like this follows from the assumed linearity
of the formulation. Likewise, the shell element is a combination of the [9 x 9]
MRT and [9 x 9] DKT elements.

Assemblage in Global Axes

The transformation of the components of a vector {v} from the local to the
global axes is given by

{#}=[R [{v}

We will discuss the specific form of [ R | later. The same matrix will transform
the vectors of nodal forces and displacements. To see this, note that the element
nodal displacement vector is composed of four separate vectors, namely,

{u}= {{ul, v1, w1} {@z1, Dy1, P21} {u2, vo, wa}; {a2, dy2, G2} }

Each of these is separately transformed by the [3 x 3] rotation matrix [ R ].
Hence the complete transformation is

{(Fy=[TF}, A{a}=[THu}

where

is an [18 x 18] matrix for the shell. Substituting for the barred vectors into the
element stiffness relation leads to the global stiffness as

(kl=(T]"[k]T]

We take advantage of the special nature of [ T' ] to reduce this further to

(k] =[R]T(kullR],  [ki2]=[R]"[k2][R],
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This is a transform of the [3 x 3] partial stiffnesses.

The formal assembly process is that each element stiffness is rotated to the
global coordinate system and then augmented to the system size. The structural
stiffness matrix is then

(K=Y [Tl klnl T Im

where the summation is over each element. The rows and columns associated
with the zero degrees-of-freedom are then “scratched” leaving the reduced struc-
tural stiffness matrix. This is the system of equations that is then solved. A point
to note is that since the frame and shell elements share similar degrees of free-
dom, then there are no additional complications arising when structures are
assembled from combinations of frame and plated elements.

In practice, there is no need to augment the member stiffness since we assem-
ble the reduced global stiffness directly. The coding for doing this is given in
Reference [22].

Determining the Rotation Matrix

The rotation matrix required to transform one cartesian coordinate system to
another sharing a common origin is

ly mgy ng
[R]=]|ly my ny
l, m, n,

where Iz, mz, and n; are the direction cosines — the cosines of the angles
that the T, §j, Z axes make with the global x,y, z axes, respectively, as shown in
Figure 2.33. We have slightly different formulations for frames as for plates.

Y, :‘_‘.-.......__..loca.l axes

local axes My s

........................... >

x

]

Figure 2.33: Direction cosines for 3-D elements. (a) Frame. (b) Shell.

Let the member axis of the frame coincide with Z, then the direction cosines
of the first row can be determined as

lo=(z; —z:)/Liy,  me=(y; —%)/Lij,  1na=(z—2)/Lij (2.44)
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where (;, ¥, 2;) and (z;,9;, z;) are the coordinates of the first and second nodes,
respectively, and L;; is the length of the member. The problem here is to find
the remaining elements of [ R .

Assume that the element arrived at its current position by successive rotations
of the element Z axis assumed to be initially oriented along the z axis. The first
rotation is through an angle a about the z axis. The second is a rotation through
an angle 8 about the § axis. (This sequence leaves the element j-axis always
oriented so as to lie in the global x — y plane.) The resulting rotation matrix is
therefore

cos@ 0 sing cosa sina 0
[ R]=[Rg][Ra] = 0 1 0 —sina cosa 0
—sing 0 cosf 0 0 1

Multiplying these matrices together, leads to

cos Bcos cosfBsina  sinf
[R]= —sin o COS v 0
—sinfBcosa —sinfsina cos 3

Equating the first row to the direction cosines of the member gives
l, =cosfBcosa, mg = cos Bsina, ng = sin 3

Therefore, the functions cos ¢, sin ¢, cos 3, and sin 3 may be expressed in terms
of the direction cosines of the member by

l m
cosaz%, sina:f, cosB=D, sinf3 = ny, D= ./I2+m2
Substitution of these expressions into the above then gives

. My Ng
[R]=| —-my/D l,/D 0
—lgng/D —mgng/D D

This rotation matrix is expressed in terms of the direction cosines of the ele-
ment axis (which are readily computed from the coordinates of the joints, Equa-
tion (2.44)).

When the element axes are specified in the manner just described, there is
no ambiguity about their orientations except in the special case of an element
Z-axis oriented along the global z-axis. There is no unique rotation to get to that
orientation, e.g., a = 0%, 8 = 90° or & = 90°, 3 = 90°. To overcome this difficulty,
the additional specification will be made that the element j-axis is always taken
to be along the global y-axis for these cases. That is, « = 0°,8 = 90°. The
complete set of direction cosines is therefore

0 0 ng
[R.] = 0 1 0
-n; 0 0
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All that is necessary is to substitute for the direction cosine n, its appropriate
value, which is either 1 or -1.

We handle the plate element in a similar manner except that the orientation of
the element is characterized by the local z-axis, which is normal to the element
as shown in Figure 2.33(b). This vector is easily established from the vector
cross-products of two vectors representing the 1-2 and 1-3 sides of the element
-— this is covered in more detail in Section 3.2.

Again, assume that the element arrived at its current position by successive
rotations but this time of the element Z-axis assumed to be initially oriented
along the z-axis. The first rotation is about the z-axis, and the second is a
rotation about the g-axis. (This sequence leaves the element g-axis always in
the global y — 2z plane.) Working as before, the resulting rotation matrix is then
given as

lyng/D  mgny/D ~D
[R]=| —my/D lo/D 0
le My Ny
Note that the 1-2 edge of the element in local coordinates does not coincide with
the Z-axis; this is of no consequence because the formulations for both the MRT
and DKT elements were for arbitrarily oriented elements in the local coordinate
system.

Example 2.27: A truss structure has joints at the following coordinates:

node T Y z
1: 0 0 0
2: 100 0 0
3: 100 —200 0

4: 100 —200 100

Determine the rotation matrices for elements with connectivities 1 —4 and 3 — 4.
The length of element 1-4 is

L = /(100 — 0)2 + (=200 — 0) + (—100 — 0)2 = 100v/6
The direction cosines are
l; = (100-0)/(100v6) =1/V6
ms = (—200—0)/(100v6) = —2/V6
ne = (—100—0)/(100v6) = —1/v6
This gives D = 1/5/6 and the rotation matrix is

4082 —.8165 —.4082
[R]=| 8944 4472  .0000
1826 —.3652 3727

The length of element 3-4 is

L = /(100 — 100)2 + (—200 + 200)2 + (—100 — 0)2 = 100
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The direction cosines are

I, = (100—100)/100 = 0, mg = (—200+200)/100 =0, n, = (—100—0)/100 = —1

This is the special case with n, = —1, hence the rotation matrix is
0 0 -1
[R]=[0 1 O
1 0 O

Boundary Conditions and Constraints

Having developed the analysis for the general case of a space frame and shell,
we now mention some special considerations that are of value when dealing with
practical problems.

There are six degrees of freedom at each node. Many problems, however, do
not need this many; for example, the plane frame only requires three, while the
plane truss uses two. Obviously to analyze a 2-D structure as a 3-D frame is a
waste of computer resources.

The key to understanding the reduction of the general case is the idea of
imposing constraints. In the case of fixed boundary conditions, we specify the
degree of freedom as zero, and consequently “scratch” the associated rows and
columns in the stiffness relation. In essence we do the same here; we specify
constraints on the degrees of freedom as if they were boundary conditions. For
example, consider the reductions for a grid structure. The grid is essentially
a plane frame but with the loads applied laterally to its plane — the frame
equivalent of a plate. Consequently, elements must also support axial twisting
as well as bending. To recover this behavior from the space frame, we assume
the grid lies in the z — y plane and impose the constraints

at each node. The non-zero degrees of freedom are the out-of-plane displacement
w, and the two in-plane rotations ¢, ¢,.

We have formulated the stiffness approach in terms of a global coordinate
system. Therefore, the allowable constraints must also be in terms of the global
coordinates. Consider the case of a frame with oblique supports, that is, the
frame is attached to rollers on an inclined surface. The boundary condition is
that the displacement normal to the surface is zero. This is a constraint condition
written as

Unormal = 0 = —usinf + v cos

where 6 is the slope of the incline. Thus neither of the global degrees of freedom
is zero. It is possible, of course, to reformulate the stiffness relation to allow for
the incorporation of such constraint conditions. A simpler approach, however, is
to use a boundary element. That is, we replace the actual support by a relatively
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stiff member having its longitudinal axis in the direction normal to the inclined
surface. If this member is pinned at both ends, then all the motion will be
perpendicular to it, thus simulating the effect of an inclined roller.

Variations on this idea can be used to simulate other types of boundary condi-
tions. Keep in mind, however, that this is an essentially linear, small deflections
idea that will not carry over to most nonlinear problems.

In a practical problem, some of the displacements may be obvious by inspec-
tion. For example, there is no w displacement in a plane frame. In other cases,
we can infer this information from the symmetry (or antisymmetry) of the ge-
ometry and loading conditions. We then implement these constraints by use of
equivalent boundary conditions and thereby reduce the size of the problem.

The use of symmetry and antisymmetry does not involve any approximation
and therefore when the opportunity arises, advantage should be taken of it.
It is worth keeping in mind that this can be done as long as the structure is
symmetric; the load need not be symmetric, because any unsymmetrical loading
can be decomposed into the sum of a symmetric and antisymmetric load. A
word of caution for vibration and stability problems: the actual loads in these
cases are not just the applied loads and sometimes assuming symmetry (of the
loading) can lead to erroneous results.

Thin-Walled Reinforced Structures

Aerospace structures, for example, must not only be capable of withstanding
the applied loads; but in addition, they must be light-weight. Consequently,
such fundamental structural elements as beams are redesigned to maximize the
bending resistance and minimize the weight. This is done by distributing the
material away from the neutral axis. Unfortunately, the beam is then weak to
shear and torsional loads and very susceptible to buckling-type failures. The
resistance to these loads is greatly improved by the incorporation of shear webs
and by the use of stringers and frames to form panels.

Following is a simple analysis of such webbed structures. The analysis is not
intended as a substitute for an FEM analysis; rather, its purpose is to give a
global understanding of the deformations and stresses, and thereby enhance the
interpretation of the FEM results.

I: Two-stringer Beam

Consider a cantilevered beam of rectangular cross-section [h x W], where W is
the height, and let it be aligned along the z-axis as shown in Figure 2.34(a). The
bending and shear stress distributions due to an end load V' are

Ozz = ——7 I:fAy2dA=11—2hW3

’ Q= fabove y yrdA* = [%WQ - y2]h
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Figure 2.34: Forming a thin-wall beam. (a) Rectangular cross-section. (b) Single web
beam. (c) Difference between full and simple theory.

The bending stress is linearly distributed while the shear stress distribution is
parabolic with the maximum occurring at y = 0. We will now re-distribute the
cross-sectional area so as to make the beam more efficient.

Consider the special beam shown in Figure 2.34(b) where most of the mate-
rial is shifted (symmetrically) away from the neutral axis. The concentration of
material is generally referred to as a stringer, whereas the material in between
is called a shear web. The purpose of this arrangement is to maximize the bend-
ing resistance; the function of the shear web is to separate the stringers and to
supply the resistance to the shear force.

In the simple analysis to follow, the area of the stringers is assumed concen-
trated at a point. Let the re-distribution of area be parameterized as

Ay = aA = ahW As:%(l—a)A

where 0 < a < 1 is our parameter and we keep the total area A and beam height
W constant. The moments of area are

I = 24,2+ LahW? = L(3 - 2a)AW?
Q = Awys+sah(yl —v) = [3(1 — )+ jall - 49*/W?)| AW

and the stress distributions become

AMy V l1-a %a 9 9
el S L, = + 14y /W
(1_%61)149927 % Wah[(l—%a) (1~%a)( v/ )]

Ozz = —

The bending stress remains linear, but the shear stress now has two parts: a
constant part and a parabolic part. As the web thickness is made very thin
(ah — 0), the parabolic part becomes relatively small and therefore we can
neglect it. Introducing the concept of shear flow defined as ¢ = gy, ah, then in
the limit of very small o, we get

v, = My v
zZz — AW27 q—W
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The shear flow is constant and given simply as the applied load divided by the
length of the web. The difference between the simple theory and the more full
theory is shown in Figure 2.34(c). The simple theory seems quite reasonable for
a < 0.05.

In this simple theory, all the bending is carried by the stringers, while all
the shear is carried by web. In the limit of a very thin web (when the theory
is expected to be most appropriate), this implies that the shear stress goes to
infinity (but the shear flow would remain constant). This would not occur in
practice, since, at some stage as a — 0, the flexural shear resistance of the
stringers would come into play and end up supporting all the load. We therefore
conclude that the simple theory is not expected to be numerically accurate but
provides a conceptual framework within which to understand actions happening
in a thin-wall reinforced structure.

IT: Three-Stringer Structure

The two-stringer beam can only withstand loads applied along the web and is
very weak to laterally applied loads. To circumvent this, stringers are usually
distributed in space and connected by a system of webs. We illustrate this with
the three-stringer beam of Figure 2.35(a).

D =86 mm (1.6in.)
h =2.54mm(0.1in.)
L =1.02m(40.in.)
W = 0.51m (20.in.)
aluminum

Figure 2.35: Triangular thin-walled structure. (a) General case. (b) Test case.

Most of the bending is resisted by the stringers and most of the shear by
the webs. Assume that the webs are essentially constant shear webs, then by
equilibrium

ZF”” =0 = Zquicosﬁizo
i

ZFy =0 = ZquisinOi—V:O

There are three shear flows but only two equilibrium equations, hence another
equation is required to solve for them. In general, the angle of twist due to shear
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loading of a closed section is given by

A 1 qds

Az 2GA h
where the integral is taken around all the webs and A is the enclosed area. If the
beam is restricted to being loaded through the shear center so that the angle of
twist is zero, then the third equation is

0= Z Qi’I:/l

This gives three equations and three unknowns; consequently, all the shear flows

can be solved for.
Because the body is loaded through the shear center, the resultant moment
about any point is zero. That is,

ZMzO = ZqﬂAiVVe-——O or e-—-ZqﬂfL/V

where A; is the area enclosed by W; and the pivot point. The shear center is
now obtained as

e = Zqﬂfii/V

which is, of course, independent of the level of the load for linear problems. It is
also independent of the stringer areas.

We obtain the bending stresses by assuming that all the bending inertia (sec-
ond moment of area) is in the stringers. The centroid is

1 1
xc:‘A‘;-TiAiy yczzzi:yiAia A:;Ai
The bending moment of inertias are
Lz = Z[yi'ycPAi ) Iy = Z[IivxcPAi ) Loy = Z[wi“%] [yi—ye] Ai
i i i
Let there be moments about the z- and y-axes, then the stress distribution is
DMy — Ly M, Iy My — Iy M,

Cpz = T~ T+
* Imey B Igy [ C] Imey - I%y

[y - yc]

Even if there is only a moment about the z-axis, the neutral axis (o,, = 0)
forms a line in space that does not coincide with the z-axis.

Example 2.28: Specialize the thin-web beam equations to a beam with a
right-triangular cross-section. Also, let each skin thickness and stringer area be
the same.
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The angles and web lengths for this case are
01 =0° 6:=90°, 6;=-135°; Wi=W, Wa=W, Ws=V2W
The system of equations becomes

1

—

0:q1W1+O-—q3VV.3\/§, O=0+qu2—q3W3ﬁ V, 0=qaWi+@Ws+q@Ws
Solving these gives
. v 1 _ v 1
T TWierve) T Werve)
.V (a+v2) Vv
® = W Gyve) W
_ v_ve _ Vv 1
T TWs2+vB) W(E2+v2)

Note that, in each case, the shear flow is given by a relation of the form ¢ = V/W™,
but that the effective length is modified in each case. As expected, Web 2 (the
vertical web) carries the greatest shear.

The shear center is obtained as

e=q224:/V =W/V2=0.70TW
This location is shown in Figure 2.36(a). The centroid is at

AW+ AW, AW
A

In this case, the shear center and centroid are close, but, in general, they are quite
distinct. The moments of inertia about the centroid are

Te

1
w

Lo = [-AWPA+ [-IWPA+ WA= 2WPA, I, = 2WPA, IL,=3W°A

There is only a moment about the z-axis given by M, = VL, then the bending
stress distribution becomes

0o = [~ (@~ 22) + 2y~ 30)] oo

The orientation of the neutral axis is shown in Figure 2.36(b).

Example 2.29: Investigate the simple thin-web beam analysis using FEM.

The reinforced structure is composed of a combination of flat plate and frame el-
ements. All frame members have the same diameter of 20mm (0.8 in.). The length
is 1 m (40.in.) and both width and depth are 500 mm (20. in.), 20 mm (0.8 in.). The
skin thickness is 2.54 mm (0.1in.). All materials are aluminum.

A relatively stiff end-plate was attached to the free end so that the load could
be applied without causing severe local effects. The load was applied to a variable
length stiff frame attached to the end-plate.

The vertically applied load was placed at different positions and the resulting
end rotations are shown in Figure 2.36(a). The shear center (the load position
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Figure 2.36: FEM results for a triangular thin-webbed beam. (a) End rotation for
different positions of load. (b) Bending stress distribution.

Figure 2.37: Contours of stresses when the load is applied through the shear center.
(a) Bending stress distribution. (b) Shear stress distribution.

where the rotation is zero) coincides quite closely to that of the simple theory. As
expected for a linear analysis, the rotation is linear with the distance from the
shear center.

The axial stresses were sampled at a location L/8 from the fixed end and plotted
on the cross-section in Figure 2.36(b). The bottom is in tension and the top in
compression as expected from a vertically applied load. The orientation of the
neutral axis follows that from the simple theory.

The contours of axial and shear stress are shown in Figure 2.37. The panels
are approximately constant shear panels. The numbers correspond to the central
value and it is seen that the ratio agrees reasonably well with the simple theory.

Problems
2.1 Consider the stress function
o(z,y) = L Py*[1 — y*/(6b”)]

e Show that while the stress function gives stresses that are in equilib-
rium, the corresponding strains are not compatible.

2.2 Consider the Airy stress function

#(z,y) = Alog, (/2% + y?)



Problems

2.3

24

2.5

2.6

2.7

2.8

e Sketch the stress distributions along a few coordinate lines.
e What are the tractions along the surface 22 + 3% = a® ?

Consider the Airy stress function
d(z,y) = Az® + By + Cy?

e What class of problems is solved by this function?

Consider the following polynomial stress function
é(z,y) = Azy + Ba® + C2®y + Dxy® + Ex®y® + Fay®

e Under what circumstance(s) is it bi-harmonic?

e Use it to solve the problem of pure bending of a prismatic bar.

e Show that it can be used to solve the rectangular dam problem. Note
that because this polynomial is not symmetric in £ and y, the orientation
of the axes must be chosen appropriately.

Motivated by the desire to use Fourier series to represent the applied trac-
tions, it is proposed to use the following stress function

¢(2,y) = cos(nmz/L)f(y)

where n =0, 1, ... and L is a constant.

e Determine the allowable form for f(y) for this to be an acceptable Airy
stress function.

e If the applied tractions are represented as P(x) & ) an cos(nmx/L),
determine the stress function in terms of a,.

e Show that the stress o,; at a point on the surface of a half-plane is a
compression equal to the applied pressure at that point.

Consider the stress functions
é(r,0) = [Ar® + Br~' + Cr + Drlog,, r|{sin 6, cos 8}

e Show that it can solve the problem of a curved cantilever beam with
an end shear force.

e Compare the solution with the results of an FEM analysis.

e Show that it can solve the problem of a curved cantilever beam with
an end normal force.

e Compare the solution with the results of an FEM analysis.

Consider the stress function
é(r,0) = Ar’[0 — sin 0 cos 0]

e Show that it can solve the problem of a uniform load over half of the
half-plane.

Flamant’s problem is that of a point load on a half-plane.

e Show that it can be solved with the following stress function

&(r,0) = Arfsin 6

e Compare the solution with the results of an FEM analysis.
e Investigate the need for mesh refinement.

167
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2.9 A ring is split and the two ends moved radially apart an amount A.
e Show that the following stress function solves the problem.

o(r,0) = %r log,, rsin @

e Compare the solution with the results of an FEM analysis.

2.10 A rigid disk has a resultant moment applied to it.
e What is the simplest distribution of traction on its edge that will keep
it in equilibrium?

2.11 A rigid disk is solidly embedded in an infinite sheet.
o Determine the stress distribution in the sheet due to an applied moment
acting on the disk.

2.12 A circular plate of radius b is rigidly supported on a radius a.
e Determine the deflections when a uniform pressure is applied.
e Compare the solution with the results of an FEM analysis.

2.13 A circular plate of outer radius b and inner radius a is simply supported
on all edges.
e Determine the deflections when a uniform transverse pressure is ap-
plied.
e Compare the solution with the results of an FEM analysis.

2.14 The Gaussian curvature term in the strain energy for plates is

s[ [oa-n E2yE) - (T dviy

e Show, by integration by parts, that this term is zero for a large class
of boundary value problems for rectangular plates.




3
Nonlinear Static Analysis

In the general case of thin-walled structures, we can have both large displace-
ments and large strains. This renders the governing equations highly nonlinear
and therefore they can only be solved using computational methods. Further-
more, because of the complicated load history dependence, this suggests a time
or load incremental solution. We combine these two requirements into an in-
cremental /iterative solution algorithm. The total Lagrangian and corotational
schemes are introduced as specific examples of solution schemes. These are com-
bined with a Newton-Raphson iteration scheme for the actual solution of the
nonlinear equations.

We are most interested in the case of large deflections and rotations but rel-
atively small strains. An example of such a deformation is shown in Figure 3.1
for an elastica. The corotational scheme (where the reference axes rotate with
the deforming body) seems quite appropriate for this type of problem and this
is the main scheme we develop. References [19, 20, 55| were relied upon for much
of the formulation.

Figure 3.1: Deformed shapes for a cantilever beam with a transverse follower load.
(a) Theory for equal increments of rotation. (b) FEM for equal load increments.

J. F. Doyle, Nonlinear Analysis of Thin-Walled Structures
© Springer Science+Business Media New York 2001
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3.1 Truss and Elastica Problems

A truss is composed of slender members that support only axial load; conse-
quently, these members must be triangulated for equilibrium under normal loads.
An elastica, on the other hand, is a slender member that supports both axial
and bending loads; however, it does not experience any axial stretching. We use
the truss as an introductory example to illustrate the effect of axial loads on the
stiffness properties of a structure, and use the elastica as an example of large ro-
tations with small strains. Both will also serve as test cases for our finite element
formulations.

Trusses

The previous chapter introduced the elastic stiffness for plates in terms of ge-
ometry and material properties. When we deal with nonlinear problems, we
must introduce the very important concept of the tangent stiffness. Unlike the
elastic stiffness, this changes as the load changes giving rise to some surprising
consequences. We use the truss to introduce some of the basic ideas.

I: Small Deflection Example

Consider the simple truss whose geometry is shown in Figure 3.2. The members
are of original length L, and the unloaded condition has the apex at a height of
h. The two ends are on pinned rollers.

Figure 3.2: Simple pinned truss with a grounded spring.

Let the height h be small relative to the member length, and let the deflections
be somewhat small; then we have the geometric approximations

L,=Lcosa~ L,—u, L, = Lsina = h+ vz, U << Vg

The deformed length of the member is

h
L=+/(Lo—u1)2+ (h+v2)2~ L, —us + T2 + %Lo(—zz)2
[ o
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The axial force is computed from the strain as

F,=FEA,e=FEA,

L-L,
=FEA,| - —+——+ ()7
L, |71, 71,1, 2L,
Note that we consider the parameters of the constitutive relation to be un-
changed during the deformation.
Look at equilibrium in the deformed configuration; specifically, consider the
resultant horizontal force at Node 1 and vertical force at Node 2 giving

0 = Py,+F,cosa~ Py, +F,
h+ vy

0 = Py, —F,sina— Ky~ Py — 3F, — K,va, 8= T
o

We rewrite these in vector form as

toy =t e i) o ===t

We refer to the last form of the equation as the loading equation; { P} is the vector
of applied loads, { F'} is the vector of element nodal forces, and {F} is the vector
of out-of-balance forces. For equilibrium, we must have that {F} = {0}, but,
as we will see, this is not necessarily (numerically) true during an incremental
approximation of the solution.

Example 3.30: Determine the deflections when the loads are Piz = P, Py =
0.

For this special case, we get F, = —P and the two deflections are
P h (o P 1, h P 2]
= |5 — Y et (=) ()| Lo
“ [EA+(LO) kL -? 20 %, =P
h P
w = |orr - b

The load deflection relations are nonlinear even though the deflections are assumed
to be somewhat small. Furthermore, when the applied load is close to K;L,, we
get very large deflections. (This is inconsistent with our above stipulation that the
deflections are “somewhat small,” let us ignore that issue for now and accept the
results as indicated.) That is, at P = P.. = K,L,, we get very large deflections
meaning that the structure has become unstable. We say P has reached a critical
value.

The full solutions are shown plotted in Figure 3.3 for different values of h.
The effect of a decreasing h is to cause the transition to be more abrupt. Also
shown are the behaviors for P > K, L,. These solutions could not be reached using
monotonic loading, but they do in fact represent equilibrium states that can cause
difficulties for a numerical scheme that seeks the equilibrium path approximately.
That is, it is possible to accidentally converge on these spurious equilibrium states.



172 Chapter 3. Nonlinear Static Analysis

Figure 3.3: Load/deflection behavior for the simple truss. (a) Horizontal displacement
u1. (b) Vertical displacement v,.

IT: Large Deflection Example

The previous example predicted an infinite displacement at the critical load.
Obviously this cannot occur in real structures, so we now look at an example
where we take the large changes of geometry into account. We will consider the
simple two-member truss shown in Figure 3.4; all joints are pinned.

Figure 3.4: Pinned truss and various deformed shapes.

Let the loaded node have the two displacements v and v; then from geometrical
considerations, we get that the new lengths are

L=y(Ws+u?+(ho+v)?,  h=y(@?+(ho+v)?
where W, = L, cos«,,. The axial strain in each member is, respectively,

L-L, _h—h,
LO ’ hO

€1 =
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These strains are uniformly distributed, hence the total potential of the problem
is

EA

2LO[\/(WOJru) + (ho + )2 ]2 [m h] —Pau—P,v

Note that we consider the parameters of the constitutive relation to be un-
changed during the large deformation.
There are two degrees of freedom, equilibrium is obtained by setting

II =

oIl EA Lo EA he B
Fe= 5 T L [1”5](“’0*““ hy [1‘7]“‘)"’“0

o EA[. L, EA[.  h, B
.7:1,——-5;}——— Lo [1‘7](hg+v)+ho [1—7](’104‘1})—}3’!!—0

This is a set of coupled nonlinear equations (because L and h depend on u and
v). Some numerical scheme must be invoked in order to solve them.

Example 3.31: Plot all the equilibrium paths (load/deflection curves) for the
simple truss structure shown in Figure 3.4 when P; = 0 and Py = P.

. 5- u -
% I Lo
P (\ 1
P, I
200 II 3 III L

O °

u;o H:% U i/’ 101 II§ (‘;) I
\ "\
\i . | .(;‘""/ v/Lo

v/L ° u L
|../.‘.’|.‘.°.|.. i /o s
-1.5 -1.0 -5 .0 -1.0 -.5 .0 .5 -15

I .

.0
Figure 3.5: Equilibrium paths when P, = 0.

Later in this chapter, we will develop an incremental/iterative solution scheme
for nonlinear problems such as these. Here, however, we are interested in all possi-
ble equilibrium paths and therefore will choose a different tact. Consider this as a
displacement driven problem: that is, determine the loads P, and P, as a function
of all of the possible displacements u and v, then select only those solutions for
which P, ~ 0.

The results are shown in Figure 3.5. There are three equilibrium paths identified
and correspond to when the apex tips to the right (I), goes through the center
(I1), and tips to the left (III), respectively, as shown in Figure 3.4. For path I,
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when v is positive, the structure stiffens, but when v is negative, a limit point (A)
is reached beyond which the load cannot increase. At this stage, the structure is
unstable. Under load control, if the load is increased, the next equilibrium point is
at B which is a large displacement away. This phenomenon is called snap-through.

Under displacement control, the path including C can be traced, but the portion
A-C is unstable.

Paths II and III can only be arrived at through a nonproportional loading
scheme; for example, P, can be increased negatively, then P, increased negatively
until the member lies horizontally. At this stage P, can be decreased to zero. As
pointed out in the previous example problem, although these solutions should not
be reached using a path following method, they do in fact represent equilibrium
states that can cause difficulties for a numerical scheme that seeks the equilibrium
path approximately.

Basic Equations for the Elastica
Some of the results to follow can also be found in Reference [42]. With reference

to Figure 3.6, let s be the distance along the elastica, hence we have

dz dy .
%—cosqﬁ, E—smgi)

where ¢ is the slope. A point originally at position z° = s, y° = 0, moves to
a location z, y a distance s along the elastica since the elastica is inextensible.
Hence, the two displacements are given by

u=z—z°=x—3s5, v=y—-y =y—-0
We can put this in differential form as

du dz dv dy

ds ds cos ¢ ’ ds ds sing
Hence if we can determine ¢(s), integration of these two equations will lead to
the deflections.

Figure 3.6: An elastica with tip loads.
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Let the tip have an applied moment T and two components of force P, and
P,. Moment equilibrium of the segment shown in Figure 3.6 leads to

M(s) =T —Pylvp—y|+Py[L—z+ur] =T —Pylvp—v(s)|+ Py[L —s+ur —u(s)]

Additionally, we make the elementary beam theory assumption that the slope
and moment are related through

d¢
ElI—=M
ds ()
Differentiating this and using the equilibrium equation gives
d? d d
Eld—s(és = ~—Pm{—~g] + Py[-1-— _u] = Pysin¢g — Pycos¢

ds ds

This is our governing equation and we will now consider some special cases.

I: Applied Tip Moment

We begin by considering when P = 0, the governing equation becomes

d?¢
El— =
ds? 0
Integrating twice and imposing the conditions
ats=0 ¢=0, at s = L: M:EI%—‘;—S:T
leads to
El¢(s) =Ts
Substitute this into the expressions for the displacements to get
EI Ts EI Ts
e e =1 — - 1
u(s) T Sm(EI) s, v(s) T [1 COS(EI)] (3.1)
The tip value for all the variables are
EI | TL EI TL TL
UL—?SIH(E)—L, UL——_T—DHCOS(E)]’ ¢L——ﬁ

The deformed shape is that of a circle of radius EI/T and center located along
the y axis.

Example 3.32: Determine the deformed shape of a cantilever beam with a tip
moment.

We will present results for a beam that is of dimensions [254 x 25.4 x 2.54 mm®]
([10. x 1.0 x 0.1in.3]) made of aluminum. The results are shown in Figure 3.7.
Note that at the final position the tip has rotated 360 deg. Also note that ¢ varies
linearly with the load.

The comparison with the linear theory shows very good agreement up to a load
of about 50. This is typical in these types of problems.
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Figure 3.7: Response of an elastica to tip moment loading. (a) Tip positions. (b)
Deformed shape.

IT: Applied Tip Force

Let the applied force be P acting at an angle 8 to the vertical; this does not
change its direction during the loading. The two components are then

P, =Psing, P, = Pcosp
The governing equation is
d*¢ N
EIE——2— = Psin8sin¢ — Pcos 3cos ¢ = —P cos(¢p + )
Rewrite this as

d?¢ o? PrL?
@ = @A), e=\gr

H

and noting that
d do ., do d%¢
ds[(ds) I= 2% ds?
we can write the above as

d  do., 2 qb a2d

0 = —2 75 cos(g + B) 5 = ~275 - [sin(6 + B)]
This leads to a first integration
2
(%)2 = —2%5 sin(¢ + B) + 1

The constant of integration is obtained by imposing that there is no moment at
s = L, hence d¢/ds = 0 leading to

Zle = V22 sin(@ + B) — sin(¢ + B)
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We can re-arrange this as
g

o L _ éL do -
\/if /0 ds = /o Vsin(¢r + B) —sin(¢ + B) N0L)

The right-hand-side integral must be evaluated numerically for different values
of final rotation. The left-hand-side integral is simply the length L, hence sub-
stituting for a, we get

_EI
- 2L2
This is an implicit relation between the applied load and the tip rotation.
Once we know the rotation, we can determine the tip deflections. For example,
dv  dvdgp

sin¢g = ds dpds %ﬂ%\/sin(qSL + ) —sin(¢ + 8)

V2a=Jy(¢y) or P Ji (L)

Integrating then gives

5 oL sin ¢ d¢
L™ Jo \Jsin(gr 1 B) —sin(é+ B)

Again, Js is evaluated numerically. Similarly for the other deflection, we have

= Jo(éL)

cosgp—1= Z—Z)% = %ﬁ%\/sin(¢L + 3) — sin{¢ + G)
Integrating then gives
oL —
\/iguL _ (cos¢ — 1) do = Ja(ér)

L o +/sin(ér + B) —sin(¢ + B)

During numerical evaluation of the integrals, it is useful to test the quality
of the results by observing how well equilibrium is satisfied. Returning to the
equilibrium equation, we have that

EI% = —Psinflvy —v(s)] + PcosB|L — s + ur, — u(s)]

= BIV2S \/sin(ér + B) —sin(@ + B)

The slope and displacements are zero at s = 0, hence

% [—vp sin B + [L + up] cos 8] — V2y/sin(¢r + B) — sin(B) = 0
Typically, this evaluates to 1.0E-6 during the computations.

Example 3.33: Analyze the response of the beam when the loads are either
predominantly vertical or predominantly horizontal.
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Figure 3.8: Response of an elastica when loads are predominantly vertical. (a) Tip
deflections. (b) Deformed shapes.
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Figure 8.9: Tip deflections when the loads are predominantly horizontal.
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The results are shown in Figure 3.8. When the applied force is predominantly
vertical, we see essentially a stiffening of the beam. The beam is slightly more
flexible as the load is rotated counterclockwise.

Very interesting behavior is observed when the load is almost horizontal but
acting toward the beam (3 = —90deg). The results are shown in Figure 3.9. We see
a definite limiting effect — there is a load value beyond which the initial horizontal
configuration cannot be maintained and a new equilibrium configuration involving
a large out-of-plane displacement (v) is found. This is an example of a static
instability, where the structure changes rapidly (with respect to load) from one
configuration to another. We will consider these situations in greater detail in
Chapters 6 and 7 dealing with stability, but for now it is worth observing that
while every point plotted is a valid equilibrium configuration, the rate of change
with respect to the applied load (which is a measure of stiffness) is different for
each load misalignment (3) and it is this difference that makes the situations more
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critical. The limiting case, for example, shows that a very small increase in load
will cause a relatively large out-of-plane displacement. Obviously, such very rapid
changes would, in actuality, be accompanied by significant dynamic effects. We
will leave that discussion to later chapters.

III: Follower Loads

In the previous problem, the orientation of the load was considered to remain
unchanged during the deformation. There are many cases where this is not true;
pressure loading on a deforming surface is a familiar example. As a first study of
this, let the applied force P be acting at a fixed angle 3 relative to the end of the
beam. The solution procedure has much in common with the fixed orientation
case, so we will omit some of the steps.

The two components of force are

P, = Psin(3 — ¢1), P, =Pcos(8— ¢L)

The governing equation is

Ez% = Psin(f — ¢1)sin¢ — Peos(f ~ ¢1) cos ¢ = —Pcos(¢ + 5 — 1)

Rewrite this as

2 2 2
%S—fz—a—cos(qﬁ—kﬂ L), a= PL7

As was done before, we can get a first integration as

d
(d—f) —2—~ sin(¢ + 8 — ¢1) + 1
The constant of integration is obtained by imposing that there is no moment at

s = L, hence d¢/ds = 0, leading to

= \/5% Vsin(ér, — ¢ — B) +sin(B)

We can re-arrange this as

a L . oL do -
- /0 " /0 Vsin(¢r — ¢ — B) +sin(B) Jaor)

The right-hand-side integral must be evaluated numerically for different values
of final rotation. The left-hand-side integral is simply the length L, hence sub-
stituting for a we get

EI

V2a = Jy(o1) or P= 32 J;

1(6r)
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As before, this is an implicit relation between the applied load and the tip

rotation.
Knowing the rotation allows determining the tip deflections. Proceeding as

before, leads to

o e sin ¢ d¢
22—y = = J
I )y Jenr—s—premd
bL —
V2Zu, = ot Z Db _ jy(gy)

L 0 \/Sin(¢L —¢p—0)+ sin(ﬁ)
Mathematically, these results for the deflections and rotation resemble those

found for the fixed orientation case; indeed they are related through the associ-
ation —3 +> B + ¢. But the responses are quite different.

10.1

10':’ ™,/ Linear

Tip position {in]

E S Load [Ib]
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0. 40. 80. 120. 160. 200. O. 200. 400. 600. 800. 1000.

Figure 3.10: Comparison of tip deflections for follower loads. (a) Loads are predomi-
nantly transverse. (b) Loads are predominantly axial.

The equilibrium equation leads to

7 [onsin(8 — 61) + [L + uz)cos(8 — 61)] ~ V2V/5in(@L — B) + sin(B) = 0

This has some interesting special cases. For example, when the load is transverse
(8 = 0) and the tip rotation is an integer multiple of m, we conclude that
ur = —L.

Example 3.34: Analyze the response of the beam when the follower loads are
either predominantly transverse or predominantly axial.

The results are shown in Figure 3.10. When the applied force is predominantly
vertical, we see an initial stiffening of the beam but shortly thereafter the rotations
dominate. What is surprising is that a slight clockwise rotation of the force leads
to larger rotations.

Unlike the previous case, we do not observe any instability effects when the
load is almost axial and acting toward the beam (8 = —90deg). All that we see
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is a definite increase in the limiting load way beyond that observed previously —
note that any transverse component will eventually be large enough to cause a
noticeable transverse deflection. We conclude that this situation does not have a
static instability. This is a surprising conclusion given that the loading for 8 ~
90deg resembles that of the fixed orientation case. We will reconsider this in
greater detail in Chapter 7 when we view the problem dynamically.

3.2 Finite Rotations

The three-dimensional thin-walled structures of interest undergo relatively large
deflections and rotations in the style of the elastica we just analyzed. As will be
shown, large rotations are not vector quantities. What this means is that in an
incremental scheme, the total rotation is not simply the sum of all the rotation
increments. We need to develop a proper method to update the orientation of the
elements. A comprehensive discussion of finite rotations is given in Reference [5].

Geometric Description of 3-D Structures

Later, when we formulate our incremental approach to nonlinear deformation
problems, we will need to be able to keep track of the deflections of nodes and
their rotation. This section summarizes some of the considerations.

Deformed = B Deformed

. A

Initial

(a) Global (b) Element

Figure 3.11: Triads used to describe the orientation of structural members. (a) Global
nodal triads. (b) Element nodal and element triads.

We will describe the orientation of a structure by use of an orthogonal triad
that can be associated with the three edges of a cube. Each triad comprises three
vectors with three components each, giving a total of nine numbers. Only six
numbers are independent (since any vector is simply the cross-product of the
other two) but we find it convenient to carry all nine components.
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At the global level, the geometry of the deformation is described in terms of the
nodal displacements and rotations. The rotations are described more specifically
in terms of triads associated with the nodes. As shown in Figure 3.11(a), each
node has a triad that is originally oriented with respect to the global coordinate
system. As the deformation proceeds, these nodal triads are updated according
to

[ & ] =[R(Ag)][ & ]
(We will define | R ] presently.) Note that it is the orientation of the triad, and
not the accumulated angle, that is stored.

At the element level, as shown in Figure 3.11(b), there is a triad for each node
and an additional one that describes the general orientation of the element.
These are used to keep track of the local deformation of the element.

We will define a local reference for each element, and the element nodal tri-
ads and element triad will initially have this orientation. Obviously, the element
nodal triads are attached rigidly to the global nodal triad, but, as shown in Fig-
ure 3.11(a), different elements may share the same node, hence the algorithmic
bookkeeping is simplified by disassociating the global and element nodal triads.
In the case of frame members, the element nodal triads coincide with the prin-
cipal values of the second moment of area. These triads are updated the same
as the global triad. The element triad is recomputed based on the current nodal
locations.

Rotations about Fixed Axes

When considering rotations, we can either view them as occurring about fixed
axes in space or about a set of axes rigidly attached to the body. In either case,
finite rotations are noncommutative. That is, different results occur depending
on the sequence of the rotations.

As a simple illustration, consider the rotation about fixed axes of the cube
shown in Figure 3.12. The first is a rotation about the z-axis followed by a
rotation about the z-axis leaving the marked side facing 2. The second is a
rotation about the z-axis followed by a rotation about the z-axis leaving the
marked side facing y. It is clear that the final position is different for the two
cases. If the two rotations were applied simultaneously, the cube would end up
in yet a third orientation.

The consequence of this is that if we define a vector rotation such that

b = i+ dyi+ ¢k

then a compound rotation consisting of two rotations is not given by the vector
addition
¢ # 1+ @2

For this reason, such a vector is called a pseudo-vector.
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/q&z L/ + ¢z =
Z yd /
/ Tﬁz + /¢z L/ = /

Figure 3.12: Noncommutivity of finite rotations.

Rotation Matrix

Consider the rotation of the vector © about an axis represented by the unit
vector € as shown in Figure 3.13. The tip of the original vector, P, moves to @J;
both of which are at a radius r = |é x 9| from the axle.

Figure 3.13: Rotation of a vector.

The new vector is given by
o' =b+ PQ

We will break the vector PAQ into segments PD and DQ, where le is per-
pendicular to the plane formed by ¥ and é, while PD lies in the plane and is
perpendicular to é. The unit vectors of these segments are

5 é XD € XD . oy éx (éx D)
= — = [ =€ =
be |é x r PD ba T

The lengths of the segments are
|PD|=r—rcosg, |DQ| = rsing
The new vector is now given by

¥ = 04 IDQ|éDQ + |PD|épD
= O+sing(é x 0) + (1 —cos@)(é x (é x D)) (3.2)
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Introduce the pseudo-vector,

$e = dai+ dyi+ ok, b= /8% + o2+ 2

so that the vector cross-products can be written as
€ X 0 = (0vy — ¢,Vy + Py, )t + (G205 + Ovy — Pov,)] + (—Pyvs + Gy + 01)2)1%

We will often have a need to represent such vector cross-products in matrix form.
To that end, we adopt the notation

. 0 —a, ay by .
axb= a, 0 —a, by p=[S@){b}=-[SOB)]{a} (3.3)
_ay az O bZ
Consequently, our rotation has the matrix representation
0 —¢, by Ug X
pexi=> | ¢, 0 —¢ vy o =[S(@){v}
"¢y oz 0 Vz

The total transformation is given by

v 1 00 . 0 —¢. ¢
v V=101 0|+ 4 0 —o
v 00 1 L

_ - Z — @2 ¢z¢y ¢m¢z Vg

+1——@[ bty —B2—E a0, ” { v }
¢a: ¢z ¢y¢z _QS?; - ¢§

We will write this as

W=+

ey

— cos qﬁ

sin ¢

15(6)] + L= 5(4)) ]{v} —R@{v) (34

This elegant relation is known as Rodrigque’s formula.
Consider the compound rotation given by

{vh =[R(e){v}o, {v}a=[R(¢2){vh
then the result is
{v}e = [R(2)][R(#1)[{v }o = [R(A){v }o

Note, however, that ¢ # ¢; + ¢o. In fact, it is not even true if ¢ is a small
increment Ad.
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Later, we will use this form as part of an incremental scheme where each
rotation increment is not especially large. Under this circumstance, we could
make the approximations

sin¢N¢—..._1 1-cosgp 1—( —%¢2+...)
o) ¢ ’ ¢? #?
The rotation matrix is then

R@O) = [[ 1 1+[S@)]+3S@F] ~ [[ 1 1+150)]

The computational savings, however, are minimal and the exact form might as
well be used. Again later, we will have a need to obtain the derivative, or vari-
ation, of a vector under a small rotation. We can use the above approximations
to obtain

1
)

55 = o — 6 = [S(6P){v} = ~[S@O) {6} = —b x 56 (3.5)

The increment points in a direction perpendicular to the plane formed by the
axis of rotation and the vector.

Example 3.35: Consider the two rotation histories about fixed axes
b= —im(t+t2 1), ¢y =-m(Bt—t" -1t

Show their effect on a vector initially lying along the z-axis.

Figure 3.14: Rotations of a vector. (a) fz(t) # fy(t). (b) fz(t) = fu (1)

After one second, the rotation ¢y on its own places the vector in the negative z-
direction, while the rotation ¢, on its own leaves the vector undisturbed (since the
vector is initially along the z-axis). The resulting motion of the two components
is shown in Figure 3.14(a).

Also shown in the figure is the resulting motion if both components have the
same time history. That is, both components are derived from a single rotation
vector whose orientation does not change; this situation is commutative.
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Angle Between Two Triads

Consider an orthogonal triad [ P | arbitrarily oriented in space. It is comprised
of three vectors given by

[P]=[{P}i{P}2{P}s]

We can think of these vectors as having being obtained by a rigid body rotation
of a set of local vectors

{ﬁ},{:{L 0, 0}’ {ﬁ}g:{m 1’0}7 {ﬁ}g:{ov 0, 1}

In other words, we can view the triad itself as a rotation transformation of the
components of a vector in local coordinates to components in global coordinates

{v}=[P}v}, {o}=[P]{v}

This will be very useful when we deal with local components.

Now consider the important problem of determining the angle between two
arbitrarily oriented triads. That is, consider the rotation of a triad p; into the
triad ¢; and we wish to know the relative angles.

Begin by defining the matrices formed from the triads

[Pl=[{Ph{P}2{P}s], (Ql=[{9}:1{9}2{9}3]

Note that both of these are orthogonal. The rotation matrix transforms one
vector into another, hence we can write

Hah{a}e{q}s] =[ RI{Phi{P}2{P}s] o [Q]=[RI][P]

Knowing the two triads, we therefore obtain the rotation matrix as

[R]=[QIPI" o Ry=D) QuPu
k.

This rotation matrix has implicitly the information we require.
The trace (sum of diagonal terms) of the rotation matrix gives
cos ¢

Tr = R11+R22+R33_3+T[ 2% =1+ 2cos ¢

giving the cosine, sine, and the angle as, respectively,

cosp = (Tr —1)/2, sing =+/(1 —cos2p), ¢ =Fcos™[(Tr—1)/2] (3.6)

This gives valid magnitudes up to ¢ = +.
The antisymmetric part of the rotation matrix is related to the matrix [S(¢)].
That is,
sin ¢

o

S@) =31 R1-[R ]
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This leads to the rotation components

bq é R3z — Ry3
by ¢ =5 Ry3 — R3; (3.7)
6. | 2509 | Ry - Ry

Note that the sine of the angle is also obtained as

. 1
sin ¢ = 5\/(R32 — Ro3)? 4+ (Ri3 — R31)? + (Ra1 — R12)? (3.8)

which can act as a check on the earlier calculation.

The components of the rotation as obtained above are referred to global coor-
dinates; an interesting result is obtained if we refer the components to the local
coordinates of [ P |, say. The rotation matrix [ R | transforms one vector into
another both of which are referred to global coordinates

{vh=[R}{vh=[QP{vh
If we now refer both vectors locally to [ P ], we get
[PU5Ye=[QPT[PHoh o {o}a=[PTQ{7h
The rotation matrix is then
[RI=[P]T[Q] or Ry={rP}{a};=04

That is, the matrix entries are the vector dot products of the triad vectors. The
angle between the two triads, referred to the triad [ P ], are

o P P3- G2 — P2 q3 1| P3-d2—P2-0s
Py = 9sing P1-Gs —P3-q1 ~ 5 P1-43 —P3-q1
b2 P2 g1 — D142 P2 q1—P1-q2 |

The approximation is useful for when the relative rotations are small even though
the absolute values may be large. The last of these relations can easily be con-
firmed for a rotation only about the z-axis. That is, let

p1 = 1%, P2 =17, g1 = cos (Ezi’{” Sinfb—zja G2 = —sin (Ezi + COSd_)Zj

which gives the local rotation about the z-axis as

. = g [sing. — (~sind)] = 3.

as expected. We will need to know the local relative rotations when we look at
deforming elements in the corotational scheme.



188 Chapter 3. Nonlinear Static Analysis
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Figure 3.15: Angle between two triads rotating about fixed axes y and z, respectively.

Example 3.36: Consider rotations of two triads varying in time as

$1é1 = in(t +* — *){0, 3, 0}7, $2é2 = Im(2t — ¢ — £2){0, 0, k}7T

Determine the angle between these triads.

Note that the triads are rotating about perpendicular axes and neither of them
changes their axle of rotation.

Figure 3.15 shows an idea of the variation of angle. The rotations about the ¥
and z axes are close (but not equal to) the imposed rotations; what is interesting is
the significant component about the z-axis even though neither have components
about that axis. It is easy to think of aligning the two triads by rotating first
about the y-axis and then rotating about the z-axis and thus there would be
no rotation about the z-axis. Remember, however, that what is actually done
is a single rotation about an axle in space, the orientation of the axle has an =
component.

Example 3.37: Rotate a known triad p; such that its p; vector coincides
with the specified vector §; of a second triad. That is, determine the remaining
components of §; by doing this in such a way that the rotation forms a minimum
angle.

With reference to Figure 3.13, the two vectors are perpendicular to the axle of
rotation. By the nature of the special vectors, we have

PLXq@ _ piXd
|P1 X G1] sin ¢

|1 X d1| = sin ¢, P1-G1 =cose, €=

We use the rotation matrix to transform the other components of the triads. For
example,

P2 — G2 = P2 +sin §(é X P2) + (1 — cos ) (€ x (€ X p2))
Noting the vector relation

(@axb)yxeé=(a-&)b—(b-&)a
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we replace the vector cross products according to

o1 . . N TP
éX pp = Sin(}S((Pl X 1) X p2) = sind>(p2 q)pr
and 1
éx (Expg)= W(m -q1)[d1 — p1 cos @]
Hence substituting for these and simplifying a little leads to
L (1—cos®d) . .. .
G2 = P2 e (P2 - 41)[p1 + @]
Similarly for the third vector, we get
R R R (1—cosed) . . \r. .
— — —_— T .
D3 g3 = p3 sin 62 (3 - 41)[pr + d1]

When these formulas are used in a circumstance where the angles are not very
large, we can use the approximations (1 — cos ¢)/ sin $? ~ 1/2 leading to

G2 = pa2—3(P2-q)[p1+ Gl

g = Ps—3(Bs- @)+ dl

The approximation is very good up angles of about 30 deg.

Element Triads

The final part of the description of the rotation is to establish the element
triads. The triad for flat triangular shell elements is relatively straightforward to
establish, but defining the orientation of a frame member is a nonunique process
and will pose a challenge.

local axes

e

@ A}

/ global axes (a) / global axes (b)

Figure 3.16: Element triads. (a) Flat triangular shell element. (b) Straight frame
element.

With reference to Figure 3.16(a), we define the 1-axis as the orientation of the
1-2 side
Zo1 + A2y

é1=[(m2 — 1)i + (2 — 1) + (22 — 21)k]/La1 = o
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The 3-axis is perpendicular to the plane of the element. To determine this, form
the two vectors associated with the 1-2 and 1-3 sides,

01 = (T2~ 21)i+ (Y2 —y1) )+ (22— 21)k, Uy = (x3—21)i+(y3~y1)j+(23—21)k
The vector area is given as

A= Loy x Do) = Agi + Ayj+ Ak

where
Az = (71— x2)(23 — 22) + (22 — 21) (%3 — 22)
Ay = (y1—y2)(ws — x2) + (22 — 71)(Y3 — Y2)
A, = (21— 22)(y3s —y2) + (Y2 — y1)(23 — 22)

We then have X
63 = (AsJA)i+ (A, /A)j + (A-/ Ak

The 2-axis is simply given as the vector cross-product of the 3 and 1 vectors

&y =é3 x € = (e3yelz - e3zely)i + (632613: - eBzelz)j + (e3zely - e3yelz)k

This completes the specification of the shell triad.

With reference to Figure 3.16(b), we can define the 1-axis of the frame element
as coinciding with the member axis

é1 = [(ma—z1)i+ (y2 —y1)j + (22 — 21)kl/L = %um*

The 2- and 3-axes, however, need only be perpendicular to this and otherwise
can be arbitrary. Consider the member to be bending and twisting, we could
imagine therefore that the orientation of the nodal triads (while still coinciding
with the principal directions) no longer coincide with each other. A reasonable
assumption is to say that the member orientation lies somewhere as an average
orientation of the ends. We will initially use this assumption.

First compute the rotation matrix and the angles between the ends

{eh{ela{e}slo=[RI{eh{e}a{e}sh or [e]=[Rlle]

Knowing the two triads, we therefore obtain the rotation matrix as

[RI=[ez][er]” or  Ri=3 eaerj
k

from which, according to Equations (3.6) and (3.7), we obtain the angle of ro-
tation.

We now say that the average orientation is half of these component angles.
Such a triad, however, will not have its 1-axis coinciding with the member axis,
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but as shown in the last subsection, we can do a smallest angle rotation so that
the 1-axis does indeed coincide.

Let a be the average triad, and let the relative rotation between element nodes
be small, then the element orientation is given as

a — é1=¢€

&2 — éQZdQ—%(dg-él)[dl‘Fél]

ag —> é3=ds— 5(a3-€1)[a1 + €1
While these triads are accurate, they lead to rather complicated expressions.
Therefore, we opt instead to choose an alternative approximate set.

There are multiple choices for the triad a;; we will choose the triad at the first
node, 7). Then, since 7} and é; are nearly collinear, we have the approximation

és = ny—(A}-é1)é1
€3 = MnNg— (’ﬁ% . él)él
These vectors are not of unit size, since, for example,
by -6y =Ny - Ny — 20y - €1) (RS- €1) + (Ry - 1)%(é1 - &) = 1 — (Az- &1)°

However, they are not very different from unity for small elements. To show this,
consider the 2-D case where

{e1} = {cos b, sinb, 0}, {n2} = {-sin¢, cos ¢, 0}

then B B

6y 63 =1—sin%(¢ —0) =1 —sin®(g)) =1 - ¢~ 1
The approximation is based on the element being small, because then the relative
twisting, ¢, is also small. This is an approximation we will make multiple times
in the following developments. The element triad has the following properties:

b-é1=0, é3-61=0, éx-83=—(Ag é1)(Rz-é1)~0
and are thus approximately orthogonal.
To describe the local deformation of the element (shell or frame), we need the
relative twists between the node and element orientations. These local angles of
twist are given in local coordinates (referred to the element) as

20jc = é3-7h— 6 it}
25 = é1-0h—és-it]
205, = &7 —eé -7 (3.9)

for the 7 node — note that there is a relative twist at each node. This used
the approximation that ¢/ sin ¢ = 1, which is reasonable for the small strains of
interest.
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Example 3.38: Determine the element triad for a flat triangular shell element
with the following coordinates:

node = y =z
1: 1 1 1
2: 2 1 2
3: 2 20

Referring to Figure 3.16(a), the vectors of the two sides are

b2 = (2-1i+(1-1)j+ (2~ 1k=1i+0j+ 1k
s = (2-1)i+(2-1j+(0-Dk=1i+1j~ 1k

The cross-product of these gives
A=-1i+2+1k, A=V6
Two vectors of the triad are given as

b2 1 1 L _ A -1 2 1

b= —2 = —i+0j+—=k, é3=-"=_—"i+-"j+ =k
el Ve T R T Ve Ve Ve
The remaining vector is given as the cross-product
Ga—esxéi= it i 2k
Y Y AV
The triad is now
1 V3 V2 -1
[e]=—=]| 0 V2 2
VB3 —vE o1

These results can be easily verified by drawing the vectors and the element.

3.3 Solving Nonlinear Equations

All nonlinear problems are solved in an incremental /iterative manner with some
sort of linearization done at each time or load step. In this section, using a simple
truss as an example, we develop the basics of the method.

This also gives us an opportunity to introduce some notations that we will
utilize in the later sections.

Incremental Solution Scheme

We formulate the solution in an incremental fashion. That is, we view the defor-
mation as occurring in a sequence of steps associated with time increments At,
and at each step it is the increment of displacements that are considered to be
the unknowns.
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To help fix ideas, look again at the truss in Figure 3.2. We have already shown
that the equilibrium equation is

{8}:{22}*{#5%0}—{1(302} or  {F}={P}~{F}=1{0}

(3.10)
and the axial force is the nonlinear function of the deformation
h V2 (%]
F =FEA| - == + — 2= 4 L(2)?
° [ L+LL+2(LO)}

Consider the equilibrium equation at time step t,, 41

{Flnt1 = {Poy1 —{FW)}nt1={0}

We do not know the displacements {u },+1, hence we cannot compute the axial
force F, nor the nodal forces {F},+1. As is usual in such nonlinear problems,
we linearize about a known state. That is, assume we know everything at time
step t,, then write the Taylor series approximation for the element nodal forces

{F()}ns1 = {F(u)}n+] F] {Aub+--- = {F(u)}n +[Kr]n{Au}+--- (3.11)

The square matrix [Kr]| is called the tangent stiffness matriz. The explicit form
it takes for our truss problem is

OF, OF, oF, OF,
_ oF . Ouy Ovo _ Ouy B 8’02
(Erln =15, n= | oF,, 0F,, | = | 0F,
Ouyr  Ove g, Oouy L n

Performing the differentiations

GFO . 1 8F‘o o h V2
uy EA [ B E:] ’ Oy EA[L% ]
then leads to the stiffness
OF EA -8 E, [0 0
=51 = 2 | L o Bke | + 220 V] =161+ K

Note that both matrices are symmetric. The first matrix is the elastic stiffness
— the elastic stiffness of a truss member oriented slightly off the horizontal by
the angle 8 = (h + v2)/L,. The second matrix is called the initial stress matric
because it depends on the axial load F),. It is also called the geometric stiffness
matriz because it arises due to the rotation of the member — it is this latter
designation that we will adopt.
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P/P., ui/uee (h+v2)/ter P Flie Foy

.0500 .051000 10.5000 100.00 .050003 .989497E-02
.1500 153401  11.6315 300.00 .256073 .446776E-01
.2500 257022 13.1329 500.00 .450836 .589465E-01
.3500 .362372  15.0838% 700.00 .761169 .7H9158E-01
.4500 470656  17.7037 900.00 1.37274 .100333
.5500 584416 21.3961 1100.0 2.72668 .137041
.6500 709589  26.9600 1300.0 6.19165 .192208
7500 862467 36.1926 1500.0 17.0481 .257334
.8500 1.09898 53.8742 1700.0 62.5275 .938249E-01
.9500 1.66455 94.1817 1900.0 324.939 -4.00430
1.050 3.23104 163.411 2100.0 958.535 -24.0588

Table 3.1: Incremental results using simple stepping.

We are now in a position to solve for the increments of displacement; re-arrange
the approximate equilibrium equation into a loading equation as

{Pluyr —{F}n— [Kr[{Au} =0 = [Kr[{Au} = {P}nt1 —{F}n

Again, consider the special case when Pi; = P, Py, = 0; then the system of
equations to be solved is

BAT1 g |, FJo o0 Au | _ [P 3 _—Fo}

L, |8 B+~] L, |0 1]] | Av 0,1 \=BF+Kmw [,
with v = KsL,/EA. A simple solution scheme, therefore, involves computing
the increments at each step and updating the displacements as

Ul(nt1) = Ui(n) + AUr, Va(nt1) = Va(n) + Ave
The axial force and orientation 3 also need to be updated as

— U h vy 1,V2 .9 h+ v
F, =FA| — — 4+ —-—= 4+ (= = —"
o|n+1 Lo + Lo Lo + 2(Lo) et ) ,Bn-i—l Lo |n+1
Table 3.1 and Figure 3.3 show the results using this simple stepping scheme,
where P, = K,L, and u. = P../EA.
Table 3.1 also shows the out-of-balance force

{Frat1 = {P}nt1 — {F}nt1

computed at the end of each step. Clearly, nodal equilibrium is not being satisfied
and it deteriorates as the load increases. In order for this simple scheme to give
reasonable results, it is necessary that the increments be small. This can be
computationally prohibitive for large systems, because, at each step, the tangent
stiffness must be formed and decomposed. A more-refined incremental version
that uses an iterative scheme to enforce nodal equilibrium will now be developed.
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U1 vy UL —Ulex V2 —V2ex Fiz Foy
-3.02304 76.0009 -3.121%84 72.2009 B207E+7  -.244E+7
29.0500 75.9986 28.9512 72.1986 21923 -72.3657

-25:8441 3.95793 -25.9429 157933 .2594E4+7 -107896.
105242 3.95793  .64416E-2  .157926 .6835E-2  -.158213
.09867 3.80001 -.12436E-3 .8344E-5 12.4694 -.498780
.09880 3.80000 .15646E-6  .4053E-5 .000000 -.3948E-5
.09880 3.80000 .000000 .000000 -.4882E-3 .1878E-4
exact .09880 3.80000

~N O U WN

Table 3.2: Newton-Raphson iterations for a load step 0.95 P.,.

Newton-Raphson Iterations

The increments in displacement are obtained by solving

{Er}n{Au} = {P}np1 — {F}n

from which an estimate of the displacements is obtained as

{ulnp = {u}n +{Au}

As was just pointed out, if these estimates for the new displacements are substi-
tuted into Equation (3.10), then this equation will not be satisfied, because the
displacements were obtained using only an approximation of the nodal forces
given by Equation (3.11). What we can do, however, is repeat the above process
at the same applied load level until we get convergence. That is, we repeat

solve: {Kr}h i {Au) = {Plnp — {F}ih
update: {ulii = {uliih + {Au}
update: {KT}iH_l ) {F}:z+l

until {Au}’ becomes less than some tolerance value. In this, i is the iteration
counter. The iteration process is started (at each increment) using the starter
values

{u}g+1 ={u}n, {KT}2+1 ={Kr}n, {F}g—i—l ={F}n

This basic algorithm is known as the full Newton-Raphson method.

Combined incremental and iterative results are given in Figure 3.3. We see
that it gives the exact solution. Iteration results for a load level equal 0.95 P,
are given in Table 3.2, where the initial guesses correspond to the linear elastic
solution. We see that convergence is quite rapid and the out-of-balance forces go
to zero.

It is worth pointing out the converged value above P,.. in Figure 3.3; this
corresponds to a vertical deflection where the truss has “flipped” over to the
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negative side. Such a situation would not occur physically, but does occur here
due to a combination of linearizing the problem (i.e., the small angle approxi-
mation) and the nature of the iteration process (i.e., no restriction is placed on
the size of the iterative increments).

Nonlinear Algorithm

In the following, we concentrate on the basic algorithm for the full Newton-
Raphson method because it best illustrates the essential ingredients. This algo-
rithm, for monotonically increasing loads, can be stated as:

Step 1: Specify parameters of the algorithm such as tolerances, and maxi-
mum iterations.

Step 2: Read the initial geometry and material properties.
Step 3: Specify load increments, number of steps.
Step 4: Begin loop over time (load) increments:

Step T.1: Increment the load vector { P}i4a¢-
Step T.2: Initialize for equilibrium iterations

{u}trar={u}e, (Kr)ta: = [Kr):, {F}+a: = {F}

Step T.3: Begin loop over iterations:

Step I.1: ITERATE:
Step 1.2: Assemble nodal force vector { F'}°.
Step 1.3: Form the effective load vector

{APesstirar = {Phivar — {F}isae
Step I.4: Test norm of effective load vector

if |{AP.ss}|/|{P}| > 1000 unstable, goto END

Step LI.5: Assemble the elastic stiffness matrix [Kg].

Step I.6: Assemble the geometric stiffness matrix [ K¢ |-
Step I.7: Form the tangent stiffness matrix as

[Kr] = [Kge]|+v[K¢]
Step I.8: Decompose the tangent stiffness to
(Kr]={U "I Dl U]

Step 1.9: Solve for the new displacement increments
from

(U] D J[U HAu} = {APess}ivae
Step 1.10: Update the displacements

{u}irar = {uhiza, +B{Au}
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Step 1.11: Test for convergence.
if: |{Au}!|/|{u}| < tol converged, goto UPDATE
if: |{Au}’|/]{u}’| > tol not converged, goto ITERATE
Step T.4: End loop over iterations.
Step T.5: UPDATE:
Ut4At = ui+At , TYzZi+At = my2:+At

Step T.6: Store results for this time step.
Step T.7: If maximum load not exceeded continue looping over
loads.
Step 5: End loop over time (load) increments.
Step 6: END

It is possible to enhance this algorithm by including automatic step changes,
automatic testing for appropriate time step size, and monitoring the spectral
properties of the tangent stiffness. The parameters 3 and - can also be adjusted
automatically.

bad | ) 2= e gl —

P — i —
full modified

Deflection Deflection

Figure 3.17: Full and modified Newton-Raphson methods.

The full Newton-Raphson method has the disadvantage that, during each
iteration, the tangent stiffness matrix must be formed and decomposed. The
cost of this can be quite prohibitive for large systems. Thus, effectively, the
computational cost is like that of the incremental solution with many steps.
It must be realized, however, that because of the quadratic convergence, six
Newton-Raphson iterations, say, are more effective than six load increments.

The modified Newton-Raphson method is basically as above except that the
tangent stiffness is not updated during the iterations but only after each load
increment. This generally requires more iterations and sometimes is less stable
but it is less computationally costly.

Both schemes are illustrated in Figure 3.17 where the starting point is from
the zero load state. It is clear why the modified method will take more itera-
tions. The plot for the modified method has the surprising implication that we
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do not need to know the actual tangent stiffness in order to compute correct
results — this seems at odds with the previous chapter where care was taken
in order to derive good quality stiffness matrices. What must be realized in the
incremental/iterative scheme is that we are imposing equilibrium (iteratively)
in terms of the applied loads and resultant nodal forces; we need good quality
element stiffness matrices in order to get the good quality element nodal forces,
but the assembled tangent stiffness matrix is used only to suggest a direction for
the iterative increments. To get the correct converged results we need to have
good element stiffness relations, but not necessarily a good assembled tangent
stiffness matrix. Clearly, however, a good quality tangent stiffness will give more
rapid convergence as well as increase the radius of convergence. We look at this
again in some of the examples.

3.4 Total Lagrangian Incremental Formulation

In this section, we develop a total Lagrangian incremental formulation. There
are many other formulations, indeed for our 3-D thin-walled structures, we will
use a corotational scheme, but the present scheme is instructive in showing the
construction of the tangent stiffness matrix. It also gives us a comparison by
which to judge the corotational scheme.

yttat

Global Axes

Figure 3.18: Decomposition of displacement.

Increments of Stress and Strain
With reference to Figure 3.18, consider the displacements u} to be known at
time t. We decompose the deformation at the next time increment as
t+At ot
;o =y 4 Aug

where Au; is the increment of displacement from the current value of uf. The
increments Au; are the basic unknowns in the present formulation where it is as-
sumed that everything at time ¢ is known. Using this in the strain/displacement
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relation allows the strain (at the next time) to be decomposed as

BU' (9'U,' 8uk 8uk t+At
oEtEat ( i J )
“ 8333‘? + ox? + - Ox? 8:5?

[ oul DA ou 8AuJ Oul  OAuy\ [Oul  OAuy )
= (m;* Fr )+(8x )+zk:<axz oz, )(875+ oz,
- dul  Ouf Oul, Oul

B (8933" + Ox? * ; dz° 83:‘;) *

(8Aui JAu; Oul, 0Aux IAuy aui) Z (5Auk OAuy

o o o 0 o o o o
0z 0§ p Ox7 Ox? - 0z Ox2 0xg  OxS

The various collections of terms in parentheses are labeled as follows:
Ef;_At = E‘Zt_7 + AEU + Tij

Note that AE;; is an increment of strain from the current configuration but
referenced to the zero configuration. It is linear in Awu; but also contains com-
ponents of the current displacement uf. The wholly nonlinear term 7;; contains
only the unknown displacement increment.

Let the constitutive relation at time ¢ be written as

Z ik B

where Cjjki is the (possibly) nonlinear anisotropic material tensor. The corre-
sponding relation at time ¢t + At can be expanded as

Kt+At . t+At pt+At
z] - § :kal E

Z Cifid By + Z CHI (ABw + nw)

~ Kt K
~ 0, + Aoy

We can thus view the next value of stress as the current stress value plus an
increment.

Equation of Motion
We begin with the equations of motion, Equation (1.20), written at the next
time
Z / t+At5Et+Atdvo 6Wt+At
€
In going from t — t + At, we have that

SELfA = B! + S[AEy + mik] = 6|AEu; + k]

)
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since the strain at the current time, E!,, is not varied. Hence, the equations of

motion can be expanded as

g

> [ lo8t+ CHAH(AE + ) S[AE; + nijldVe = WIS
9,7,k,1

This can be further rearranged as

Z /Cf;;clAt(AEkl + k) 6(AE;; + ni;)dVe + Z/Ugt(SmjdVo
i,7,k,1 i,J

S AREDY / 0 OAE,dV°

These are the equations of motion in terms of the increment of displacement
Aw; where the right-hand side is essentially an increment of load.

The linearized version of these equations assumes that 7;; < AF;; and leads
to

> / C,JklAEkléAEUdV"+}: / Ktgn dVe = SWirat— Z / oKtSAE,; dV°
B,4,k,1

Note that we still retain 7;; in the second term because (being quadratic in Awu;)
it leads essentially to Awu;dAu;, which is linear in the unknown.

Stiffness Relations

The final step is to write the equations in the form of stiffness relations.

The basic idea is that, since the actual distribution of displacements is quite
complicated, we will approximate it as a collection of piecewise simple regions
as was done in the previous chapter. That is, let the displacement increments in
a small region of volume V° be represented by

Au(x$, x5, 25) = th(x‘l’,xg,xg)AUik =[ h {AU;} or {Au} = [H|{AU}
k

where hi(x$, 23, 2§) are known shape functions and AU;y, are the unknown nodal
values. All relevant quantities can now be written in terms of both of these. For
example, the derivatives are given by

OAu; < Ohy

!’
2a7 = 2 gy AV = WHAU)

Hence the strain increments can be written symbolically as

{AE} =[ B {AU}
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where [ B ] contain various spatial derivatives of hy.

Substituting this representation for the displacement and strain increment
into the linearized form of the equations of motion gives the following matrix
relations. The linear or elastic contribution is
> / Cijrs AEOAE ;dVe =  [KLE{AUY = | / [B)T[C)|BldV°]{AU}

Vo o

1,J,7,8

The nonlinear or geometric contribution is
Z /V ) ofon;dve = [Kg{AUY =] /V U[BG]T{JK}[BG]dV"]{AU}
i,
and the carry-over load term is
Z/O a{j-dAEijdV" = {F}= {/VO[B]T{JK}dVO}
2%
The virtual work of the applied loads leads to
Z/fiéuid/—lo = {P} :{/AO[H]T{f}dAO}

Assemblage is done as in the linear case, and these give the stiffness relation for
the increment of displacement as

(K + KG{AUY = {P}Y2 — {F}

where { P} are the externally applied loads. This equation is now solved in the
usual fashion to obtain the nodal values of displacement increment. From this,
all values of displacement, strain, and stress can be updated and then proceed to
the next increment. However, this relation needs to be iterated until the internal
stresses are in balance with the applied loads.

The explicit forms of the stiffness matrices depend on the particular forms
chosen for the shape functions hg(z¢,z$,z3), which are also related to how the
region is discretized into the smaller simpler regions.

Example 3.39: Specialize the total Lagrangian scheme for the two-dimensional
linear displacement triangle.

The basic assumption in the formulation is that the displacements have the
same description as the coordinates. That is,

3 3

o(@®,y°) = O ha(a®,9)m, ¥ y%) = Y ha(a®, 8w
i=1 i=1
3 3

w(@,y%) = Y k(e y s, v(@®y?) =D (@)
i=1 =1

3 3
Au(z®,y°) = Z hi(z°,y°)Au; , Av(z®,y°) = Z hi(z®,y°)Av;
i=1

=1
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where

hi 1 Toys — L3Y2 Y23 T32 1 1 ar b 1

hy > =— | T3y1 —T1¥3 Y31 T13 T p=z=1a b2 c z
2A 24

h3 T1Y2 — T2Y1 Y2 T21 Yy az bz c3 Yy

with 24 = x21y31 —Z31y21, Tej = 25— x5, and so on, exactly as used in Chapter 2.
The displacement gradients can therefore be computed as

8 ! 4

du hi 1 ov hi .
8y° T 24 ZC“ e ayo T 24 ZC’”’
1 K]

Oy° -
We express these in the matrix form

U1
Uz by 0 b 0 b3 0 V1
Uy B L cc 0 ¢c2 0 ¢ O U2 B
ve (241 0 b 0 by O bs vz or {us}=[Bol{u}
Uy 0 0 a 0 c 0 cs u3
U3

where the comma indicates partial differentiation with respect to the subscripted
variable.

With knowledge of the nodal displacements, we can get the displacement gra-
dients and from these we can get the strains by

_ Ou 1 ou o 1,0v 2
Bee = dx° + 2(8m°) 2(8m°)
81} 81)
2B, - ov " du Ou ov Ov

ay" dz° | Oz° dy° ' Oz° Ay°
For definiteness, let the Kirchhoff stresses be related to the Lagrangian strains
by

a'a{(z E 1 v 0 wa
ggg = 1—’/2 [ v 1 0 ] { Eyy } or {UK}:[ D ]{E}
ok 0 0 (1-v)/2 2E+y

Note that, although this relation is linear, it takes the large rotations into account.
The Cauchy stresses are obtained from the Kirchhoff stresses by

Cur = Pg—:(uaauo) ok + 2 aau)aa; ol + ()’ K]

Oyy = &;_(59:0)20£§v+2(1+6(9 )811 Ov )Qa;(y]

o = Do 2oy (2 0 59"0 (14 5o
:|_8u v K
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Once we know the nodal displacements, we can determine all other quantities of
interest.
The increment of strains can be written as

OAu; aA’U,j 8u§c OAuy OAuy 8’11,2)

AL, = ( +

o o o {e] o o
sz 0 - or 89:]- - Oxt 8:1:j

i
This expands out to

dAu  Out dAu vt OAv

A rT = ST
E Ox° ox° Ox° dzxe Ox°
dAv  Aul 8Au ' HAW
AFE =
vy oy° + oy° Oy° + Aye Ay°
OAu  BAv  Out OAu  Out dAu ' HAv vt BAw
2AE;, = +

5y° | oze T 9z oy T By 0a° | Gy° Dze | dze Oge
The strain increments contain initial displacement contributions such as

ou’ o'

Oxo’ Ox°

in the AE,, term. We can replace all functions using the interpolation functions
and then express these in matrix form as

Aug
AE Avy
T A

{ A, }:[[BLo]HBm]] a2 o (AR} =] B {aw
2AE .y Aus
A”Us

where the two matrices are

1 b 0 b 0 b3 O
[Bro] = 34 0 c1 0 c2 0 c3 ]
Lc b ca b2 c3 b
U,z b1 U,z b1 U,z b2 Vg b2 U,z b3 Vg b3
(B = 1 U,y C1 V,y C1 U,y C2 Vyy C2 U,y C3 V,y C3
2A | uygcit vzt UgCet Vgt Uz 3t U C3t
U,y b1 U,y b1 Uy by Vybo Uy bs  Uybs

In these expressions, the comma indicates partial differentiation with respect to
the subscripted variable. These are associated with the deformation gradient,
which is known at time . The element stiffness matrix is now obtained as

(ke ]= O[BL]T[ D |(BL]dv®=[BL]"[ D [BL]V®

The integration is trivially performed because all contributions to [ B ] are con-
stant in space.
The nonlinear contribution to the stiffness comes from the virtual work term

Z Ufj&nij = afzémz + ogénzy + ogﬁényx + afyzSnyy
)
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Noting, for instance, that

O0Au, 0Au OAuy 8Auk
>

T2 hae we
k J

we can put the virtual work expression in the matrix form

SAugz YT [oE ok 0 0 Au,,
0Au,y o, of, O 0 Au,y
0Av, 0 0 o oK Av,
8Av,, 0 0 of ok Av,y

oxg Ba:

or

BAuk 68Auk

o o
Oz7 = 0Oz

{68ux} 10" [{Au,e}

where again the comma indicates partial differentiation with respect to the sub-

scripted variable. The gradient increments can be expressed as

Ay, by 0 b2 0 b3 O
Au,y | 1 cc 0 c2 0 ec3 O
Avy, (T 241 0 b1 0 b2 0 bg
Av,y 0 Ci 0 Cc2 0 C3

Aul
A’U1
AU2
A’Uz
AU3
Avs

The nonlinear element stiffness matrix is now obtained as

[kn]= [ [BN]"[o"][Bn]dV® =[Bn]"[c"

Vo

or

{Au} = [Bn [{Au}

I[Bn]V®

Again, the integration is trivially performed because all contributions to [ By |

and [0 ] are constant in space.
The internal force vector is determined as

> oKOAEy; = 0100 + 05y8 AEzy + 0[50 AEy: + 0fy6AEy,

)
which can be put in the matrix form

s{au}™{B} (o™}

This now leads to

{r}= VO[ B|"{e"}ave=[ B " {c"}V°

which completes the system of equations.

Example 3.40: Treat the simple shear deformation of a block as a load control
problem and show the relation between the Cauchy and Kirchhoff stresses.
A simple shear deformation parallel to the ¢ — x5 plane is shown in Figure 3.19

and given mathematically by

o o o
T =z7+ kx3, Ty = x5,

o

r3 = T3
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2,y
ty
kxd | ©
5 |—>

1,z

Figure 3.19: A block in simple shear.

The displacement components are readily obtained as
uy = kz3, uy =0, uz =0
indicating that horizontal lines move horizontally only. The deformation gradients
are
1 k£ 0 1 -k 0
8 o
[gmﬁ]z 01 0| and [ax’_’]z 0 1 0
1 0 0 1 i 0 0 1

Note that there is no volume change because J = J, = 1. The Lagrangian strain
tensor is

0 k 0

0F; =5 0200 o | L 42 g

* 6m;’3m;? * 0 0 0
p

Let the material have the following linear constitutive behavior:

O'Z-I](' = 2uE;; + Ay Z FEik
k

where 1 and A are the Lamé constants. The Kirchhoff stress tensor, therefore, is

k2 uk 0 vk 1 0

0 0 0 0 0 0

where v = A/2p. The tensile 0%, component arises from the fact that lines orig-
inally in the 2-direction are being stretched. The Cauchy stresses are obtained
from

_ Pk Ozp Ozq
Opg = Z 0° T dx? d?
i,j
K [Bmp 8zq] K [amp Ozq Oz, Bwq] K [83:,, qu]
= on +

g12 022
o o o o o o o o
8%1 83}‘1 BII 6902 8.’1,‘2 Bxl 8.’172 8w2

Substituting for the deformation gradients leads to the complete stress tensor as

C+Yk+Q+ME® 1+(1+v)k*> 0
Opg = pk 1+ (14 y)k? A+mk 0
0 0 0

The Cauchy stress tensor, as expected, is symmetric.
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The magnitude of the shear deformation is governed by the parameter k. It is
worth noting that when it is small, both stress tensors approach the same values.
Another point worth noting is that the simple constitutive relation crf]{ = pky
(A = 0) in the Lagrangian variables would not lead to an analogous simple relation

between o;; and the Eulerian strain e;;.

Imagine a free hody cut parallel to the x-axis; this will expose two tractions
related to the Cauchy stress by

te = Ozy,

by = Oyy

The t; traction, when multiplied by the area, gives a resultant horizontal force
that we will consider to be the applied load. The resulting deformation is then
related to the traction (and.hence load) as

Ooy = k[l + (1 +~)k?) = t, = P/hL

where hL is the area over which the resulting force P acts. The deformation
parameter k is a nonlinear function of the load, but we can easily solve for it
using a Newton-Raphson iterative scheme as

P/h’L _ fo
pll+ (1 +7)3(k)%]

ki+1 — k_z 4

fo = pk* 1+ (1 +7)(k*)?]

where ¢ is the iteration counter. This converges very rapidly.
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Figure 3.20: Stresses for a block under shear load control. (a) Kirchhoff stress. (b)
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Once we know k we can then determine the Kirchhoff stresses. The results are
shown plotted in Figure 3.20. It is interesting to note that the Cauchy o, is the
largest of the stresses.

Example 3.41: Obtain a numerical solution of the shear problem.
The analytical solution just developed was for a very large sheet under homoge-
neous deformation. This is impractical to achieve here so we will model the block

as shown in Figure 3.21.

The top row of elements have a stiffness 1000 times that of the other elements, it
is also constrained to move only horizontally. In the infinite sheet case the lateral
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L =203mm (8.0in.)
b=101mm(4.0in.)
h=12.7mm (0.5in.)
aluminum

Figure 3.21: Undeformed and deformed shape of a block under shear.

sides have shear components but clearly in the present case the normal tractions
are zero.

Figure 3.22 shows the contours of Cauchy stress at the maximum load drawn
on the deformed block. What they all have in common is that they show a nearly
uniform region of stress in the middle portion. We therefore expect to have a
reasonable comparison with the infinite sheet solution in this region. Figure 3.20
shows a comparison of the stress histories with that for the infinite sheet — all
the trends are in agreement.

Figure 3.22: Contours of Cauchy stresses on the deformed block.

We do not expect the Cauchy o, stress to go to zero at the boundaries because
these boundaries are inclined in the deformed configuration

Discussion

Formulating the total Lagrangian scheme for two- and three-dimensional contin-
uum problems is quite straightforward when the only degrees of freedom are the
nodal displacements. The scheme gets complicated when applied to 3-D struc-
tures involving approximate structural theories (such as shells and frames) that
use rotations as additional degrees of freedom. The application is considered in
References [7, 20]. In the next section, we begin to formulate a different ap-
proach that seems particularly suited to the thin-walled structures of interest,
which undergo relatively large deflections and rotations but rather small strains.
As pointed out in Reference [24], the two formulations result in the same matrices
but the corotational scheme seems easier to establish.
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3.5 The Corotational Scheme

A particularly effective method for handling the analysis of structures is the
corotational scheme. In this, a local coordinate system is envisioned as moving
with each element, and, relative to this coordinate system, the element behaves
linearly. Consequently, all of the nonlinearities of the problem are shifted into
the description of the moving coordinates.

As a first step to analyzing 3-D structures, we begin by looking at 2-D trusses
and frames and leave the more general case to the next section. This gives us
an opportunity to illustrate the essential concepts of the corotational method
without introducing the notational complications needed in the general cases.
Early use of the corotational scheme is given in References [10, 11].

Illustration for 2-D Trusses

Consider the axial stretching and global rotation of the member shown in Fig-
ure 3.23. The figure indicates both stretching and twisting, but for now, we
consider only the stretching.

8l

global axes @

Figure 3.23: Arbitrarily oriented truss member.

The global degrees of freedom are
{u} = {ugvi; ugva}”
We establish a local coordinate system at the first node with the Z-axis directed

along the member. Descriptions of quantities in the local coordinates will have
an overhead bar. In this local description, the truss has the deformation system

{@} = {1 =0, =0; Gig = G, T = 0}

That only a few of the local degrees of freedom are strain producing makes this
approach appealing.

The main steps to be followed are: establishing stiffness relations in local
coordinates, establishing the relation between the local variables and the global
variables, and finally, establishing the stiffness relations in global variables.
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I: Local Stiffness Relation

Although we derived the local stiffnesses for frames and trusses in Chapter 1,
we will now re-derive it but in a slightly different manner.
In local coordinates, the axial strain is

1
€= Z;(ﬂg — 1)

We express this in matrix form as
1 1 1
€= —{—1,0; 1, 0}{a, 71; o, 52}T = —{c} {a} = —{a}T{e}
LO LD LO
The material behavior is assumed to be linear elastic, hence the axial stress is
given by
_ __E_ _.p._
d=FEe=—{u} {c}
Lo

The principle of virtual work can be used to determine a set of element nodal
forces consistent with the internal stress as

{F}yT{éu} = /55€dVo = /Ei{ﬂ}T{é}i{é}T{éa}d%

The integration is performed trivially because all quantities are independent of
original position. Since the virtual displacements are arbitrary, we get the nodal
forces as

(FY = 2@y (e}e)” o (P} = Et{cHel (a)

The local tangent stiffness is obtained from the variation of the nodal forces

6P} = GolGar = (R 1w o [F]=1501= 222 cHe)

Multiplying the vectors gives

CRI=[E R ) = el = el = (] = 22 [ D]

This is the [2 x 2] submatrix of the [4 x 4] linear truss stiffness derived in Chap-
ter 1. We thus write the local stiffness relation as

{F}=[k }{a}

where the local force system is

Bl

{F}={F, 0; F5,0}T = {-1,0;1,0}764, = {-1,0; 1, 0}TF, = {}TF,

We now need to relate the local stiffness and force to the corresponding global
versions.
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II: Relation between Local and Global Variables

Locally, the only strain producing mode is the axial displacement. This displace-
ment is related to the global variables by

4=L~L,= \/(_i’g] +’I.rl,21) . (i‘gl + ’ﬁgl) — /<.’i'21) - (5;721)
where the subscript notation means #2; = Z2 — Z1, and so on. By taking the
variation of this, we establish that
_ 1, . N R . R . R .
i = E(J;QI + 11,21) . (5u21 =ey - 5UQ1 = —€1 (5U1 +é1- 61//2

where é; is a unit vector directed along the member. This is expressed in matrix
notation as

6a = {{—e1}"; {e1}T Hous, dv1; dug, 6v2}T =[ B ]{6u}

Let the member be initially at an angle 6 to the global z-axis and let it experience
a rotation of a. Then,

[ B ]T = [_C, _S; C, S]
with the notations S = sin(f + a) and C = cos(f + a).
We also need to know the change of orientation of the member. This rotation
is computed as

sinal%:%x Fatda 1 [Z21v21 — Y21u21 ]k
L, I L (F21v21 — ya1tz
and . R R 1
cosa = %2;1— T2 Zum = LOL[L°2 + z91u21 + Y21v21)

Introducing the initial orientation, we can rewrite these as
. 1 . 1 .
sina = Z[— sin B ug + cosOvg], coso = E[LO + cos@ug; + sin Qg ]
The first variation of these gives
1 . . 1 .
cosada = I [— sin 6 dugq +cos @ dvay ], —sinada = I [cos 0 duaq +8in 6 dva; ]

Note that we do not take the variation of L, because it would lead to a higher-
order effect (i.e., du). Multiply the first by cosa and the second by sin o and
then subtract to get

1 1
oo = —E[— Sill(9 + CY) dug + COS(0 + a) 51)21] = zéz -0t

where é- is the unit vector perpendicular to é;. This relation could have been
obtained directly by taking the component of d7io; resolved perpendicular to the
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member and then dividing by the length to get the tangent of the angle. Because
dugr = 6(ug — u1) and dvg; = §(ve — v1), we can write the virtual rotation as

Sa = %{5, _C; —8, C}Mbuy, buy; Sup, Suy)T = %{Z}T{&L}

The only nonzero local force is the axial force F,. The virtual work in global
variables must equal the virtual work in local variables, hence

{F}"{ou} = {F}"{su} = Féu = F,[ B ]{du}
From this we conclude that
{F}=[B]|"F,
IIT: Global Stiffness Relations

At the global level, the variation of the nodal forces leads to

(6F} =[50 ){6u} = [kr }{du}

where [ kr | is the element tangent stiffness matrix in global coordinates. Sub-
stitute for {F} in terms of the local quantities to get

OF _ _ _
{6F}=[B ]T[%]{5ﬁ}+5[ BI"{F}y=[B1"[ k][ B {ou} + F,[6B]"
Note that because the behavior is linear on the local level, the local tangent
stiffness and elastic stiffness are the same. The first set of terms

lke]=[B1 k] B]
gives the elastic stiffness. On multiplying out, we get

c* ¢cs -¢c* -CS
EA, | CS §2 -CS -$?

kel=T7—1 _¢c2 —cs ¢ cs (3.12)
-CS -8%2 (S8 52
In local coordinates these reduce to
1 0 -1 0
= EA, 0 0 0 o
el=T=1_10 1 o (3.13)
0O 0 0 O

These are the standard element stiffnesses for the truss [22]. We therefore rec-
ognize a portion of the global tangent stiffness matrix as the components of the
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local stiffness matrix transformed to the current orientation of the member, that
is,
— T( L.
[kel=[T " [kell T ]

Returning now to the remaining term of the tangent stiffness,
F,[6B] = F,6[-C, —S; C, S] = F,[S, —C; —S, Clda = %F‘O{z}{z}T{du}
This gives the geometric contribution of the tangent stiffness as
(ko] = Fol2}Hz)"

On multiplying out, we get

sz -cs ©s -C?
o | —CS C? s?  -SC
-5 CS sz -CS
cs -Cc?* -CcS c(C*?

|

[ka | =

In local coordinates, these are

o 0 0 o0

_ EElo 1 0o -1
kel=T 10 0 0o o
0 -1 0 1

We recognize this as the geometric stiffness for a truss in local coordinates [22].
We therefore recognize the remainder of the global tangent stiffness matrix as the
components of the local geometric stiffness matrix transformed to the current
orientation of the member, that is,

[kc] = [T "Tke][ T ]

The assembled global tangent stiffness is given by
(K1) =3 [(kelm + (ke | = 1 T 15 [(kelm + [Ra bn] [ T I

To summarize, at the local level, the nodal forces are obtained directly from the
stresses or the elastic stiffness, their global components are simply their trans-
formation to global coordinates. The global stiffness matrix contains the elastic
stiffness plus a geometric contribution due to the rotation of the corotational
axes.

Example 3.42: Determine the deflected shape of the simple two-member truss
shown in Figure 3.24. Also show the effect of the geometric stiffness on the con-
vergence rate of the Newton-Raphson method.
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Figure 3.24: Convergence of the displacement error norm against number of itera-
tions.

We first begin with the convergence properties. In evaluating the Newton-
Raphson method, it must be realized that the tangent stiffness plays the role
of the “slope of the function;” thus when equilibrium is achieved we have

[Kr]iia{Au} = {P}yar — {F}iia, =0

and we get {Au}? = 0 regardless of the tangent stiffness. That is, it is not necessary
to have the exact stiffness in order to get convergence to the correct answer —
this is the basis of many of the modified Newton-Raphson methods. Figure 3.24
shows the convergence rate when the tangent stiffness is formed as

[KT] = [KEe]| +v[Ks]

for v = 1,0, —1. In each case, the algorithm converged to the correct value,
but clearly the rate of convergence is affected. Implicit in this is that for more
complicated problems, the modified methods are more likely to fail to converge
than the full methods. There is, however, another important point to be learned
from these results that will affect the developments of the next few sections. These
results say that the more accurate the tangent stiffness, the better the convergence
rate, but that it is not essential that the actual exact tangent stiffness be used.
Consequently, if it is convenient to approximate the tangent stiffness, then the
basic nonlinear formulation is not affected, only the convergence rate (and radius
of convergence) of the algorithm is affected.

The results for many load increments are shown in Figure 1.8. Note that the
only reason many increments were used in this case is so that a better picture of
the deformation history can be viewed.

The response against load can be divided into three stages. The first, at rela-
tively low loads, shows agreement with the linear theory. The next stage shows the
effect of changing geometry: the upward load causes a stiffening of the structure,
while the downward load causes a softening of the structure. These are direct
consequences of the F, contribution to the geometric (and hence tangent) stiff-
ness. The decrease in stiffness eventually leads to a very large displacement jump
where the structure finds a new equilibrium position. In fact, as seen from the
deformed shapes, the structure has “snapped-through” to the other side. This is
an example of a limit point instability — a situation where the current structural
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configuration cannot sustain a further load increment without a significant change
of shape — and we will consider it in more depth in Chapters 6 and 7 dealing
with stability.

The comparison with the exact behavior confirms the correctness of the coro-
tational formulation.

Illustration for 2-D Frames

We now analyze a 2-D frame to illustrate the effect moments have on the tangent
stiffness. Much of what we will do follows from the truss example, but this time
will also try to generalize the notations.

€1
Yy ‘_/1 ‘72
Y ) % 2
0+
- i L M,

Figure 3.25: Arbitrarily oriented frame member.

Consider the axial stretching and rotation of the member shown Figure 3.25.
The global degrees of freedom are

{’LL} = {U’l? U1, ¢17 U2, V2, ¢2}T

We establish a local coordinate system at the first node with the Z-axis directed
along the member. Locally, the strain producing modes are the axial displace-
ment and the relative twists. Hence, in this local description, the frame has the
deformation system

{ﬁ}={ﬁ1:0,51=0,<§1:¢31;a2=_75220,$2=$2}T

We take the local stiffness relation from Chapter 1 and concentrate on estab-
lishing the relation between the local variables and the global variables, and the
stiffness relations in global variables.

I: Local Stiffness Relation

From Chapter 1, we have the stiffness relations

. EA_ My 2EI[2 1] (¢
By = 7-ia, {Ml}—T[l z]{gs;}

The moments and rotations are about the z-axis.
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II: Relation between Local and Global Variables

We have already established most of the information we need to relate the local
and global variables, in particular,

0w = [cos(0+a)bug +sin(@+a)dva], ba= %[— sin(f0+a)dug +cos(0+a)dva ]
Introduce local and global displacement vectors defined, respectively, as
{0a} = {63, 661, 3237,  {Su} = {6ur, Sy, G1; Sua, Sva, S}
then the above can be rewritten as
s = [-C,-=S5,0;C, S, 0]{du} = {rYT{6u}
o = %[s, ~C, 0; =S, C, 0]{du} = %{Z}T{(Su} (3.14)

with the notations S = sin(f + @) and C = cos(§ + «). Noting that the local
twists are related to the global angles as

53¢ =01 —ba, Oy = 0¢y — b
then we can write the relation between the local and global variables as

-CL -SL 0 CL SL 0
-5 ¢ L S —-C 0
-5 c o0 § —-C L

{6a} ={ B ]{éu} with [B]=

B~ =

This fundamental relation will now be used to determine the relation between
the global and local load terms.

The virtual work in global variables must equal the virtual work in local
variables, hence

{F}T{ou} = {F}"{6a} = {F}T{B}{u}

From this, we conclude that

{F} = {B}"{F}

In anticipation of generalization, note that, owing to equilibrium at the local
level, we have

_ _ _ 1 - _ . 1 _ -
F = —F,, Fy = —F,, Vlzz(M1+M2), V2=~E(M1 + My)

Augment the local force vector to {F} = {Fy, Vi, My; Fy, Va, M2}7T, so that
the first component of global force, for example, becomes

P, — %[_cm — My — SMy) = [CFy — ST]
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In this way, we can write the complete relation as

Cc -S50
Ww=(THa) (F=(1E), (7= p]. (m1- 5.C o

Thus {F} is simply the components of {F} transformed to the global coordi-
nates.

III: Global Stiffness Relations

The variation of the global nodal forces leads to

(6F) = (50){6u} = [ br ]{5u)

where [ kr ] is the element tangent stiffness matrix in global coordinates. Sub-
stitute for { F'} in terms of local quantities to get

@ry = (71" em) + ol T ITAF)
— (T IUE ) T {bu} + Fl5BLy + (6B}, + Vo[ 6B],

where the subscript notation on | B ] indicates the column of [ B ]T. The first
set of terms

(kel=[T ][ k)T

gives the elastic stiffness. On multiplying out, we get

Cc? cs 0 —-C? —-CcS o

cs 82 0 -CS -S82 0

(ks] = EA 0 0 0 0 0 0
Bl = L -2 —-CcS 0 (2 cS 0
¢S -82 0 CS 8?2 0

0 0 0 o0 0 0

1282 —120S —6LS —1252 12CS —6LS
—-12C¢8 12C? 6LC 12C€S -12C2 6LC

EI —6LS 6LC 4L2 6LS —6LC 2L2

TIE | —1282 1208  6LS 1282  —12CS 6LS
1208 —12C02 —6LC —12C8 12C0%> —6LC

—6LS 6LC 2L2 6LS —6LC 412

In local coordinates these reduce to

1 0000 O 0 0 0 0 0 0

0 0 00 0 O 0 12 6L 0 -12 6L

[g]__E_Ai 0 00000} FEIio 6L 4* 0 0 2L
EI=" 1] -1 00100 I3]0 o0 0 0 0 0

0 000 OO 0 —-12 —-6L 0 12 —6L

0 00 0 0 O 0 6L 2L 0 —6L 4IL?
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These are the standard element stiffnesses for the truss and beam [22], respec-
tively. We therefore recognize part of the global stiffness matrix as the compo-
nents of the local stiffness matrices transformed to the current orientation of the
member, that is,

[kel=[T ][ k][ T]

Returning now to the remaining terms of the tangent stiffness, the first term
gives

Fy[6B]1 = F,[S, —C, 0; =S, C, 0750 = %F‘o{z}{z}T{éu}

which we already obtained for the truss. The second term gives

M,[0B], = M16 [ S,C, L; S, —-C, 0]"
= Ml—[ C, -S,0;C, S, 0]T5a~|—M1 5[S, —C, 0; =S, C, 0]"6L
= ﬁMl({T}{Z}T+{Z}{T}T){5U}

where 6L = 64 was used. In like manner, we get [6B |3 = [§B]2. The collection
of terms leads to the geometric stiffness

[k ]——F{ He + (M1+M2)[{ Hz )} +{zH{r}"]
However, for equilibrium of the element we have
L2(M1+M2) = = —

because V(Z) is constant along the beam. On multiplying the vectors and re-
placing the moments, we get

§2 —_cS 0 CS -C? o
-csS 2 0 82 -_8sC o0
(ko] = Fo 0 0 0 0 0 0
L| -8 ¢s o s2 -cs o
cs —-C?2 0 —-cS ¢ o
| o 0 0 o 0 o0
[ —2cs (©%2-82 o 208 §2-c? o
Cc? - 52 208 0 S2-¢Cc? 205 O
Vo 0 0 0 0 0 0
T 208 S2-C?2 0 -208 C%*-82 0
§2_-¢c? 208 0 C?-5? 2CS 0
i 0 0 0 0 0 0
In local coordinates, these are
0O 0 0 o0 0 O 0 1 0 0 -1 0
0 1 0 0 -1 0 1 0O 0 -1 0 O
(fo]=Te |0 0 00 0 0 ¥| 0 0 0 0 00
¢ L|lo o 00 0 0 Ll o -1 0 0 1 0
0O -1 0 0 1 O -1 0 0 1 0o 0
0o 0 0 0 0 o 0 0 0 O 0 0
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We recognize the first term as the geometric stiffness for a truss [22] in local
coordinates. The second term has nodal shears (and hence moments) and there-
fore we associate it with the bending action. For slender beams, V, is generally
not very large and, therefore, we can often neglect this contribution to the stiff-
ness. What this points to is that the dominant contribution to the geometric
component of the tangent stiffness comes from the axial load.

The assembled global tangent stiffness is given by

K1) =Y [[keln + (ko lm| = YL T 17 [(Fe b + kel [ T I

m m

just as for the truss.

Example 3.43: Determine the deflected shape of a cantilever beam subjected,
separately, to a tip moment and a tip transverse force.

The results for the applied moment are shown in Figure 3.26, and for the
transverse load in Figure 3.27. The deformed shapes correspond to each load
value and the comparisons are with the elastica solutions developed earlier in the
chapter.

L = 254mm (10.in.)

b=25.4mm(1.0in.)

/. h =2.54mm (0.1in.)
/ Linear —— Theory

o FEM aluminum

Tip position

A
T

Position
o B [T B | [N U I PN B |

4. Sy T

0. 100. 200. 300. 400. 500. 0. 2. 4, 6. 8. 10.
Figure 3.26: Comparison of tip deflections and deformed shape at various stages of
tip moment loading.

Load |

These problems are particularly challenging, because, initially, each load incre-
ment causes a large vertical only displacement (since the stiffnesses correspond to
the linear case). Consequently, a very large axial force is generated that must be
reduced through iteration. This problem can be alleviated in many ways: smaller
load increments, under relaxation with 8 < 1.0, and using smaller elements. The
last of these seems the most appropriate and the results in the figure are for the
beam modeled with 20 elements. The trade-off is that the system size is larger
but fewer iterations are used.



3.6 Corotational Scheme for 3-D Structures 219
10.

I —— Theory
/ Linear o FEM
G
< TP
S 6. |
K7}
Q
Q.
o
= 4 /
2.+
E Load Position
o Ll (PP U B BRI B |
0. 20. 40. 60. 80. 100. 0. 2. 4. 6. 8. 10.

Figure 3.27: Comparison of tip deflections and deformed shape for vertically applied
load.

3.6 Corotational Scheme for 3-D Structures

The 3-D structures of interest are thin-walled shells reinforced with slender mem-
ber frames. We will model shells as a collection of many flat elements. These
elements experience in-plane membrane behavior as well as bending action as
covered in Chapter 2. In relation to the previous section, we need to pose the
corotational scheme in a 3-D geometric description — the local behavior will be
as described in Chapter 2. We will take advantage of the fact that the strains
are small on the local level to simplify the formulation.

The approach follows the spin matrix formulation, which allows us to describe
the effect of the rotating coordinates without making explicit reference to the
element formulation.

Spin and Projector Matrix Formulation

We introduce a general formulation of nonlinear problems that captures the
spirit of the corotational scheme in truly separating the local behaviors from the
global behaviors. To help in the generalization, assume that each element has N
nodes with three components of force at each node — we leave consideration of
moments until later.

The main objectives are establishing the relation between the local variables
and the global variables, from which we can establish the stiffness relations in
global variables.

I: Relation between Local and Global Variables

There are 2N position variables we are interested in: the global position of each
node before deformation (Z,;), and after deformation (£;), where the subscript
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j enumerates the nodes. The local positions are given by
Foj = [EX {doj — Ear}, &5 = [ET{&; — o1}

where [ E, | and | E ] are the triads describing the orientation of the element
hefore and after deformation. The local displacements are defined as

U; = Z; — ILoj
Note that, unlike our formulations of the previous section, the local coordinates
of the first node do not necessarily coincide; this will allow us to incorporate all
degrees of freedom in our formulation and thus the formal presentation of the
equations will appear simple.

The local virtual displacements are related to the global variables by

§{i}; = 6{[E"H&; — 21} — Zos} = [ET {805} + O[ET{&; — &1}
Note that, for some vector v,
S(ET){v} = [ET][S(9)]{s8}

where {3} is the small rotation spin and the notation [S(0)] means the skew-
symmetric matrix obtained with the components of the corresponding vector;
that is, put the components of the vector ¢ (i.e., vz, vy, v;) into the rotation
array defined in Equation (3.3). Using this, we get

{ou}; = [ET]{ou}; + [ET][S(2; — 2o1) {08}

This shows how the local displacements {d@};, global spin {68}, and global
displacements {du}; are interrelated. However, the spin is not independent of
the displacements because we require that the local spin be zero (since it is
rotating with the element). We now establish this constraint.

Imagine a container or wrapper surrounding the element; take the displace-
ments of this container in local coordinates to be given by the interpolations

) =D (A, 8 =Y kT, B =D hy(F)ay
J J J

where # means all three components of position. We will make the interpolations
explicit in the examples to follow. The continuum rotations are

oy 0z
4 9z o1
# 0 0Oy
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Introduce a rotation pseudo-vector defined by
— “_)m
{#y=1c1i o p =306 1{a}

Wy J
where [ C ] is some constant matrix, and the [3 x 3] matrix [ G |; comes from
evaluating the derivatives of the interpolation functions at each of the nodes.
Strictly speaking, the orientation of the local axes should refer to the orientation
of the zero spin axis at the centroid of the element; however, we will take it to
correspond to the orientation of the 1-2 side of the element. This approximation
is consistent with our interest of small strains but large deflections and rotations.
For example, in local coordinates, we expect the deformation gradients not to
exceed the largest strains, that is, we expect

ow
| —[7| [ [E[<€max:UY/Ezo.01

Thus the correction to the orlentation, at most, is on the order of 0.01 radians.
Get the spin matrix by considering the variation

26{@} =) [ G |;{u}; =0

Substitute the expression for {§a}; :nto this
706 LIETHSu}; + 30 G |y + (B8, — #){08} =0
from whicli we can solve for the :pin as
{98} = | - e LIE s —fcom]“l[;[ @ (BT ){oak;) = (v |"{ou}

where {du} is the vector of all nodal components and [ V |7 is given by

v =[- 3@ LTS @5 —ao)]] |1 6 WIET] (G LIET), -]

The matrix [ V |7 is of size [3 x 3N] and is called the spin matriz.
We can now relate the local virtual displacements to only the global variables
by

{ou}; = [ET1{04;} + [ET][S(Z; — 2o1)(| V ]7{d4})
[ 7] [ET][S1]
{oa}=[T {ou}, [T]= [E7] +| [ETS] V]
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This fundamental relation will now be used to determine the relation between
the global and local load terms.

In the 2-D developments of the corotational scheme, we saw the recurrence of
the transformation associated with the transformation of coordinates. We will
now make that aspect of the transformation explicit. First note we can establish
by expansion that

[S@9) = ESO®IET], {0"}=[E {7}

The denominator in the expression for [ V' | becomes

[D]==) [ GLIETIS@E ~2a) == D [ G LISE) EIT=[DIE]"

J J

We will show through examples that [ D ][ E ]¥ = [ E ]7. The spin matrix
simplifies to

[V]TZ[E][[G]l[ET],[G]Q[ET],...}

The transformation matrix then simplifies to

[ T3] (S() BT
(T]= (L] |+ [86G) [[ah,[a12,--~] BT

We will write this expression as

[T]=[P]E"]

and refer to [ P ] as a projector matriz. It depends only on the local coordinates.
Discussions of the projector matrix can be found in References [52, 54, 55].

The virtual work in global variables must equal the virtual work in local
variables, hence

{F}YT{ou} = {(F}T{sa} = {F}T[ T ]{ou}
From this we conclude that
(Fy=[T|"{F}=[E]|[ P]"{F}

The explicit form is

F [E] F
{é’z}: LE] | —(VI[[SONELIS20E]L || { F2 p (3.15)
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Note that in the second term we have

SIS E HEY =Y [ — do){E™Y; = Y (&j—%01)xF} = 3 moments

J J J

with the last form coming from Equation (3.3). In this, Fj* are the transformed
components of the local force vector. As equilibrium is achieved, this term will
tend to zero. Later, when we introduce approximate forms of our equations, the
transformation relation will be approximated by a priori assuming equilibrium
and dropping the term associated with [ V' ]. We will not do that now because we
intend to obtain the stiffness relations by essentially differentiating this relation.

What this discussion highlights, however, is the possibility (at least when
equilibrium is achieved) that local quantities (including the stiffness matrix)
have a simple coordinate rotation relation to their global counterparts. We will
keep that in mind when we develop the stiffness relations.

Example 3.44: Establish an explicit form for the constituent arrays of the
spin and projector matrices of a truss element.

/4{1/45/ _
@ ]
p R

: /%

Figure 3.28: Global and local positions of a truss element.

Take the displacements in local coordinates of the element container as given
by the simple interpolations

WE) =Y hi(@)a;, 0@ =Y hi(@v, 0@ =Y hi(@);
where we have P z
@) =[1-F],  h(2) =[F]

Note that these describe the behavior of the container and not the element. The
rotations are

dw O
20y = @—@zl[wl—m]
Y 0z 0z L
20, = Qf—)«@:l[—ﬁﬁﬁz]
? 80z 0y L
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The first equation is null, but we keep it in the formulation so that the structure
of the equations remain 3-D. Introduce a rotation pseudo-vector defined by

¢z wz} L]0 0 0 a} Lo o 0] .
Gy p =23 @y p==|[0 0 1 +—(0 0 -1 = G li{a};
{J&z} {wz L[o -1 0}{ X L[o 1 0 { }4 2

J
The [ G |; arrays are
00 O
0 0 -1
01 0

([0 0 0
[Ghi= [0 0 1], [G 2=
0 0 0
[S()]=[0s], [S(@)]:[o 0 —a’rz]

=S8

S]]
2

| =

LO—lO

and the [ S; | arrays are

and T2 = L. The denominator matrix becomes
1 00 O 0 0 O 0 0 O
[D]:—ZOO—l 0 0 -L|=|0 10
01 0 0 L 0

The matrix [ V |7 is of size [3 x 6].

Example 3.45: Establish an explicit form for the constituent arrays of the
spin and projector matrices for a membrane element.

Figure 3.29: Global and local positions of an element.

We take the displacements in local coordinates of the element container to be
given by

W@,9) =Y hi(@9), @G5 =Y h(@D8,  BE0) =Y hi(@ 00

where the interpolations are those of the three noded triangle given in Chapter 2.
Note that we are allowing local displacements in all three direction. The rotations
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are
20, = g—?-%zglgzcjwf
J
7
j J

where the coefficients b; and ¢; are associated with the interpolation functions for
the linear triangle and are evaluated with respect to the local deformed configura-
tion. The spin @, represents the average rotation of the element in the z-y plane
as shown in Chapter 1. However, since the container is a thin lamina (and not a
3-D continuum) the spins @, and @ are only half of the rotations out of the z-y
plane. Introduce a rotation pseudo-vector given by

{ (éac 2‘4_1w 1 23: 0 C
Gy S =14 2, » = 0 —b
03?:} { @zy} 24 3 {‘C% by 0 ]g{

The nonzero local positions are Zs, T3, 73, and the area is 24 = Z2ys. Using the
definitions of b and ¢ from Chapter 2, the [ G |; arrays are

o O
SIS ]

N

} =Y lal{ak

1 0 0 (&s—Z2)
[G]i==— |: 0 0 —y3
L2 | (za ~Z2)3 U3y 0
1 [ 0 0 —i:f| 1 l: 0 0 —."7:2j|
[G o= =— 0 0 U3 | [Gls=—| 0 0 O
0 a0t gy 0 5 |21 0 0

and the [ S; | arrays are
0 0O 0 0 O 0 0 7

[S(z1)] = [0 0 0] , [S(Z2)] = [O 0 *:22:| , 19(@s)]) = [ 0 0 —.’17:3jl
0 0 0 Z3

The denominator matrix becomes

. ) [ 0 0 43} [0 0 0
(D] = —=—=—10 0 3 ||0 0 -2
23 |73l —gsl 0 0 Z2 0 ]
1[0 0—@}[0 0 7 100]
~~——10 0 0 0 0 —z|=|010
29 [zl 0 0 )l & 0} lo 01

The matrix [ V |7 is of size [3 x 9.
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II: Global Stiffness Relations
At the global level, the variation of the nodal forces leads to

6FY = (20 fou} = [ kr (5}

where [ k7 ] is the element tangent stiffness matrix in global coordinates. Sub-
stituting for { F'} in terms of local variables, we get

{6F} = [T]T{0F}+o[ T |"{F}

_ N N T
L7 7] R 1{6a} + {6[ E 1{F1), 8 B 1{Fa), }

v 1[[5(5@)1[ B SE E 1. ---]{F‘}
Qv ][[slm B[S B, -~-]{F}

We did not take the variation of [ V | because it multiplies a term that will go
to zero at equilibrium and thus is associated with a negligible contribution. We
see that the tangent stiffness relation is comprised of two parts: one is related to
the elastic stiffness properties of the element, the other is related to the rotation
of the element. Noting that

S E 5} =[SOMI E {1} =[S@EON"} = ~[S@")]{08} = ~[S@)N[ V |7 {du}

gives

(6F} = [TIT(RIIT Hou)
— [ISELISED), -] 1V Tl + [V I[ISED] [SE), -+ | {du}
+ [V I[YI8@s e UISEN][ v 1T {bu}

J

Each term is post-multiplied by {du}, and therefore we can associate each term
with a stiffness matrix. The latter contribution is the geometric stiffness matrix.
The first set of terms

kel =(T VT kIT]=[EIPIIKIPIE]

gives the elastic stiffness. We therefore recognize the global stiffness matrix as the
components of the local stiffness matrices transformed to the current orientation
of the element. However, contrary to the simpler cases of the previous section,
it is not just the local stiffness but the local stiffness times the projector matrix.
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The remaining set of terms gives the geometric contribution to the stiffness
matrix. That is,

kol = ~[SEDLISEDL ] 1V IT+ 1V I[ISED), SE), -]

The first two terms are the transpose of each other and therefore form a symmet-
ric combination. The third term, in general, is nonsymmetric, but approaches
symmetry as equilibrium is achieved. We demonstrate this in an example to
follow.

To introduce the projector matrix description of the tangent stiffness, recall

that for {6*} = [ E |{v} we have the relations
[S@) = ENSGNET], [VIT=[E]][ ¢ LIET], (G LIET), -]

and [ D | = [ET]. Substituting this into, for example, the second geometric
stiffness term gives

kol = [(GLIET) (G LIET) -] [ETI[ B NS BT, -]
3 GcF1. (BT
- [(E] | |[G]F [[S(Fl)], [S(Fy)), ] (E]

The core terms are referred only to the local coordinates. Similar substitutions
for the other terms give a similar conclusion. The contribution to the geometric
stiffness reduces to

(ka1 = [ E ] [[ker] + [Rea] + lhas]| [B7]
Each matrix is of size [3N x 3N] and the sub [3 x 3] matrices are given by
1)][GJ] [kG21]] =[G ]"[S(Fy)]
"y Is@ ©][Gj
k
The first two terms are the transpose of each other and therefore combine to
form a symmetric matrix. The third term is symmetric.

The second and third contributions may be combined to form a product with
the projector matrix. Thus

kais) = —[S(

(kasis] =

‘ﬂ "ljp

[ka] =~ E]|[So(F)][Go] +[Go]"[Ss(Fo)][ P ]| [ET]
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where

1So(F)) = [s<ﬁ1>1,[s<ﬁ2)1,---], [Gg]z[[G] G-

Example 3.46: Show that at equilibrium, the third contribution to the geo-
metric stiffness becomes symmetric.
We first recall the useful formulas

[S(axb)]=ba" —ab",  [S(a)[S()] =ba" —(a-B)[ I ]
From this, we conclude that
(ba™ +ab") ~ (a-9)[ 1 |
(ba” — ab™) = 3[S(a x b)]

sym [S(a)][S(B)]
anti-sym [S(&)] [S(i’)]

It

The antisymmetric part of the stiffness inside the [ V | brackets is then
Z[s x (F}))]

Remembering that [S()] is a linear operator; we see that the antisymmetric part
is zero because the summation is a sum of moments.

Example 3.47: Determine the geometric stiffness matrix for a 3-D truss.

We take advantage of the fact that the strains are small to simplify some of the
above relations. Assume that all local relative displacements #; — 41 are small.
That is, assume Z; — &1 ~ Zo; ~ To1 are small.

Introducing the notations

Fl‘l:—ﬁov F$2Z+Fa7 Fyl :_Vm Fy2:+‘_/07 le :"V_Vo, Fz2:+Wo

which are based on the equilibrium conditions, we can obtain the [S (l?’z)] matrices

as
N 0_ Wa _Va ~ 9 “‘Wo ‘_/o
S(F)=|-Wo 0 F, |, [S(F2))=|W. 0 -F
V, —F, 0 -V, F, 0

We already established the [ G ]; matrices. Performing the required multiplica-

tions leads to
0o -V, -W, B [0 0 0
-V, 2F, 0 , [kcs]nzz 0 —-F, 0

[EGI + EG2]11 = T 4
-W, 0 2F, 0 0 -F,

The total geometric stiffness is then

B £[000] yo0 —10 [0 0 -1
[kc]n—L 010+f -1 0 0+L" 0 0 0
0 0 1 0 0 0 -1 0 0
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The remainder of the [6 x 6] array is given by

(kG )12 = [k |21 = —[kc |22 = —[ k¢ |11

It is worth noting that we recover the result for the 2-D frame (with bending)
and not the 2-D truss (without bending). We will consider the effect of moments
presently.

In frame problems with slender members, the transverse shear forces V, and
W, are not very large, and their contribution to the geometric stiffness is often
neglected.

Example 3.48: Illustrate some of the differences between a linear and a non-
linear analysis.

Figure 3.30: Contrast between a linear and a nonlinear analysis for a 3-D frame
structure.

Figure 3.30 shows a tower loaded by a horizontal force. This is a truss structure,
hence the members are triangulated so as to avoid a mechanism. The cross-section
is triangular.

A linear analysis is such that the displacements at each load level are propor-
tional. A consequence of this is the exaggerated vertical motion. The nonlinear
analysis, by contrast, shows a lowering of the tower. Even more erroneously, the
tip members elongate. These results are especially evident when there are rota-
tions. Consider the triangular cross-section experiencing a small rotation as shown
in the inset: the small deflection analysis gives that two corners move horizontal
but opposite, while the third corner moves vertically down. If this motion is not
updated but extended, say, for the length of the triangle, then it is easy to see
how the moved corners form a very large triangle. This example clearly shows the
need to update the orientation of a structure during a deformation.

Also, quite significantly, a nonlinear analysis can predict failure. In this case,
members on the right side are in compression, which means they experience a loss
of stiffness with increasing load. Eventually, this leads to a buckling collapse of
the structure. In Chapter 6, we discuss such nonlinear effects in greater detail.
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Example 3.49: Determine an approximation to the geometric stiffness for
membrane shells.

To simplify the relations, first note that the summations involving the interpo-
lation coeflicients b;, c; are unaffected by rigid body displacements, since

Z bj = 0, Z C; = 0
j j
That is, we can add, respectively, £,1 — Z1 to each node without affecting the
result. The elastic stiffness [kri;] has zero contributions associated with the w;
degree of freedom, hence the contribution to the tangent stiffness will be that of
the geometric stiffness. Because [kc3i;] has zeros on the diagonal and neglecting
F,, then the only significant contribution is

R 1 - _
kgss = H[sz + Fycly

From Chapter 2, we have that the nodal forces are related to the stresses by

h
F, = E[blazz +Clazy], Fy = E[Clayy+blozy]
Then letting N,» = 0.k, and so on, we get

- 1 - _ _
kagasij = = Nzzbibj + Nyycicj Nyy(biCj + Cibj)

1 L1

4A 44 4A

All other components are zero. We discuss more about the geometric stiffness in
Chapter 6.

Example 3.50: Determine the deflected shape of a deep cantilever beam sub-
jected to a uniform tip transverse traction.

Figure 3.31: Large deflection of a deep cantilevered beam. (a) Linear displacement
discretization. (b) Linear displacement discretization with rotational degrees of free-
dom.

The results for the uniformly applied traction on the end are shown in Fig-
ure 3.31. This problem has only the in-plane membrane action and therefore the
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difference is between the performance of the CST element and the MRT element.
This problem is dominated by the in-plane rotation action and the comparison
shows the advantage of the MRT element — many more CST elements would be
required through the depth in order to get comparable results.

These results also show that the corotational scheme gives the benefit of uti-
lizing the rotational degrees of freedom of the MRT element in contrast to to the
total Lagrangian scheme.

Bending Behaviors

For our thin-walled structures, the geometry of the deformation is described in
terms of the nodal displacements and rotations, and the nodal loads comprise
both forces and moments. We now consider the effects of moments within the
corotational formulation. Specifically, we consider the flat faceted element shown
in Figure 3.32.

e
k3

é
n

local axes

@ &

/‘ global axes

Figure 3.32: Triads associated with the triangular element.

At the local level, the strain producing bending degrees of freedom are
{a}j = {ﬂ’ v, W, (73301 qu’ &z}f
The corresponding nodal forces and moments are obtained from
{F}=[k [{a}

where [ k | is the [9 x 9] membrane element stiffness established in Chapter 2
and augmented to size [18 x 18], added to the [9 x 9] bending element stiffness
also established in Chapter 3 and augmented to size [18 x 18]. In the following
discussion, the degrees-of-freedom for each element will be arranged as

{a} = {{a}y, {$}; {@}s, {6}2; {u}s, {d}5}T
The local angles of twist in local coordinates are obtained as

T Y Y
20jc = €30y —éa-fi3
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_ , , Pz 0 —fig f €1
2¢jy = él . ’fl‘% — é3 . TAL‘{ or 2 ¢_5y = ’fl3 0 —-’le ég
9= ), —fiz —f 0 | |és

2¢;, = é9-1) —é1 -7

While the local twist @Z does not contribute to the bending, we retain it in the
formulation because it is the drilling degree of freedom that will contribute to
the membrane action.

The key to relating the local variables to the global variables is to take the
variation of the relation for the local angles of twist — we have already estab-
lished the corresponding relations for the displacements. Noting relations such
as

5ég = —[S(&)|{08} = ~[S@)[ V |"{su},  {6hs} = ~[S(Ra)] {68}

we get

bz 0 —n3 o
25{@}:[% X ]
@2 ) ; —ng —n1 0 j

which we write as
2{00}; = [N*][S*(&){ B} — [ E*][S*(n)]{d¢}

For small elements, where the orientation of the nodes are approximately the
same as that of the element, we have the approximations

[S(é1)]
[S(e)] ¢ {B}+
[S(é3)]

[N*][S*(®)] ~2(ET],  [E*][S*(d)] =~ 2[ET]
from which we get that

{68Y; = —IETNoBY+ [ETNdg}, = —[ET][ Vv 1" {6u} + [ET1{6¢};
= (lGUWEIIGLIE,  |{6u} + [ET){50},

which says that the local twist is the difference between the global twists and
the rotation of the element; this is as expected. The total degrees of freedom are
related through

{a} =[P J[E"){u}

but now the projector matrix is of size [18 x 18] and constructed as

Pyl =11s]~ S LGy [512-:{‘{”'”}, (GL={G]0s])
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The virtual work in global variables must equal the virtual work in local
variables. At the global level, we have the 3N displacements {du}; and the

3N rotations {§¢};, and the corresponding forces and moments {F};, {M};.
Equating the global and local virtual works we conclude as before

{FYy=[T"{F}=[E] P]{F}

Working in a manner similar to before, we get a result that is formally the
same. That is,

[k 1=[E][[ Pl & ][ P] - Ss(P)Gus] ~ [Gus| 1o (Fu)][ P 1|[E”]
where

(Sis(F)] = [[SFO] SGI), -], [Sws(F)] = [ISGFD), (S, -]
and

Gl =[lc 1T, (G5, ]

Now the matrices are of size [18 x 18|.

Nonlinear Algorithm for 3-D Structures

We are now ready to put the pieces together to form an algorithm. The assembled
global tangent stiffness is given by

[K )= (kg )m + (k6 In] = Y (T J5 [(R& lm + [ Im] [ T Jm

m m

As indicated before, we will formulate the solution in an incremental fashion. In
the following, we concentrate on the basic algorithm for the full Newton-Raphson
method because it best illustrates the essential ingredients. The algorithm can
be stated as:

Step 1: Specify parameters of the algorithm such as tolerances.

Step 2: Read the initial geometry and material properties.

Step 3: Read the load vector {P}:+a:. It may be necessary to interpolate
this from non-equispaced values.

Step 4: Initialize triads.

Step 5: Begin loop over time (load) increments:

Step T.1: Increment the load vector {P}t+m.

Step T.2: Initialize for equilibrium iterations

{u}trar ={u}, [K7]t4a = [KTlt, {FYyar={F}
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Step T.3: Begin loop over iterations:

Step 1.1: ITERATE:
Step 1.2: Assemble nodal load vector { F'}?
Step 1.3: Form the effective load vector

i—1

{Pesstivar = {Ph+at — {F}H-At

Step I.4: Test norm of effective load vector

if |{AP.;s}'|/|{P}| > 1000 unstable, goto END

Step I.5: Assemble the tangent stiffness matrix as the
transformed components of the local element stiffnesses

(K] =Y [T ol ke nll T Tt Y (T Il k6 Jnll T Iin

Step 1.6: Decompose the tangent stiffness to

(Kr'=[U )" D[ U]

Step I.7: Solve for the new displacement increments
from

[U 1T D || U {Au} = {Pesshiva

Step I.8: Update the displacements

{uhtear = {uhiia+{Bu}

Step 1.9: Increment geometry and triads
Step I.10: Test for convergence.

if: |{du}|/{u}* < tol converged, goto UPDATE
if: |{du}|/|{u}* > tol not converged, goto ITERATE

Step T.4: End loop over iterations.
Step T.5: UPDATE:

i
Ut+At = Upp At

i
TYZe4At = TYZipAt

Step T.6: Compute orientation of global nodes.
Step T.7: Store results for this time step.

Step T.8: If maximum load not exceeded continue looping over
loads.

Step 6: End loop over time (load) increments.
Step 7: END



3.7 Deformation-Dependent Loads 235

a = 254 mm (10. in.)
b=254mm (1.0in.)
h =2.54mm (0.1in.)

aluminum

Figure 3.33: Deformed shapes of a plate with an end moment.

It is possible to enhance this algorithm by including automatic step changes,
automatic testing for appropriate time step size, and monitoring the spectral
properties of the tangent stiffness.

Example 3.51: Solve the elastica problem of a beam with an end moment as
a plate problem.

The results are shown in Figure 3.33 where the shape corresponds to each load
step. This problem has no membrane stresses and hence the geometric stiffness is
zero. However, during the iterative stage, while there is only an approximation to
the deformation, very large membrane stresses can be produced. This can severely
restrict the radius of convergence for the iterative scheme.

For such problems, Reference [34] recommends using the previously converged
values of membrane stress to estimate the current tangent stiffness. This is like a
modified Newton-Raphson method and generally requires more load increments.

Example 3.52: Determine the deflection of a cylindrical shell, with free ends,
and a concentrated transverse point load.

This is a problem which transitions from predominantly bending effects to
predominantly in-plane membrane effects. It has been considered by many authors
two of which are References [55, 57].

The results are shown in Figure 3.34 for a load up to about the stage where the
membrane action begins to dominate. The dimensions and estimated displacement
of the load point (indicated as circles in the figure) are taken from References [55].
The agreement is good.

3.7 Deformation-Dependent Loads

In the computational examples up to now, the applied load vector { P} was taken
as fixed in direction. There are many situations, however, where the load depends
on the response. Some examples are wind, aerodynamic, and contact loadings.
An introduction was given when we considered the elastica with follower loads.
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Figure 3.34: Circular cylinder with a central transverse load.

We now look at the computational difficulties that this type of loading can
cause. Distributed load problems, such as pressure distributions, are typically
modeled as a series of nodal loads, hence it is sufficient for us to only consider
concentrated nodal loads.

Point Loads at a Nodes

Consider the simple situation of a cantilever beam loaded with a follower force
as shown in Figure 3.35. At time ¢, the load vector is

{P} = {—sin¢, cos ¢, 0} P
At the next time step, t + At, both P and its orientation, ¢, will have changed.
The new force is then
{P'} = {—sin(¢ + Ag), cos(¢ + Ag), 0}T (P + AP)
Expanding and regrouping gives

{P'} = {—sing, cosg, Q}TP+ {-sin ¢, cos 9, O}TAP
+ {—cos¢, —sing, 0}TPAY +---

Neglecting the higher-order terms, we see that the new load is comprised of

three terms; the first is the load at the previous time, the second is the load

increment but aligned with the previous orientation, and the third term includes

the orientation increment. It is this last term that can create some difficulties.
To see why it creates difficulties, first write the new load in the form

—sin ¢ —sing 0 0 —cos¢ Au

{P'}=P cos¢ p + AP cos¢p p+P| 0 0O —sing Au
0 0 00 0 Ad
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P+ AP

Figure 3.35: Incremental representation of a follower force.

The first two are familiar load vectors, but the third term acts as a contribution
to the stiffness matrix because it depends on the deformation increment. Nor-
mally, this could be taken to the right-hand side of the equilibrium equation to
result in an effective stiffness. However, the contribution results in a nonsym-
metric stiffness matrix, which then changes the complete nature of the finite
element programming, making them computationally expensive to solve.

One common approximate scheme is simply to use a symmetricized version of
the effective stiffness. Another approximate scheme is to ignore the second and
third terms but update the force orientation as part of the Newton-Raphson
equilibrium iterations. That is, the applied force vector at time t + At is

{P'} = {~sin¢’, cos ¢*, 0} (P + AP)

This has the advantage of simplicity, but it is at the expense of having to use a
smaller load step size as well as more iterations. Furthermore, the iterations can
“lock” in the sense that they seem to oscillate between two different states but
with approximately the same convergence norm.

We can do a more general development by referring to Equation (3.4). That
is, write the rotated load vector as

P’ =P +sing(é x P)+ (1 —cos¢)(é x (é x P))

where the rotation pseudo-vector is

98 =gai+ dyi+ gk, ¢ =1/0% + ¢} + 92
We are interested in small virtual variations, hence
6P =épé x P
The vector cross-products can be expanded as
5P = —[(06¢y—P,5¢y+P,5¢. )i-+(P,6¢s+0866,— Prdp.)j+(—PybdatPrd,—086.,)k]
This leads to the matrix representation for the virtual force change

0 -P, P 6z
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Suppose P is applied along one of the global coordinate directions; then, over
time, it will have the components

{P} = {ex, €y, ez}TP

where the unit vector is obtained from the structural level nodal triad.
When the deformation-dependent load is brought to the left-hand side of the
equilibrium equation, it has a stiffness contribution of

0 —e, g
[kg] =P €, 0 —e;
—ey €y 0

This occupies the [i,3 + j], i,5 = 1,3 submatrix of the [18 x 18] element stiff-
ness matrix with all other entries being zero. Clearly, the contribution is non-
symmetric and the loading is nonconservative. To avoid the computational cost
associated with nonsymmetric matrices it is common practice to use a sym-
metricized version of the stiffness [18], but additional discussions are given in
References (4, 20]. That is,

(k&) = §[Tka ]+ (ke ]"]
Again, this is at the expense of increased iterations.

Example 3.53: Determine the displacement histories and deformed shapes of
a cantilever beam with a transverse follower force.

10. e
i L = 254mm (10.in.)
8.
b=25.4mm (1.0in.)
St h = 2.54mm (0.1 in.)
§ aluminum
a
4 |
2.+
0. L

L i oo il RSN ..anql
0. 50. 100. 150. 200.

Figure 3.36: Tip positions for a cantilever beam with transverse follower load.

This is one of the cases considered in Section 3.1. We use 10 elements. The
results are shown in Figure 3.36. There is excellent agreement up to the point
where the tip becomes horizontal. At that stage, the theory shows that the rotation
continues to increase but the FEM solution shows a decreasing orientation. Also,
the FEM solution had difficulty converging for these values of load.



Problems 239

The deformed shapes are shown in Figure 3.1. The FEM results are for equal
load increments, while the analytical is for equal tip angle increments. The final
load for both cases is about the same. Although only 10 elements were used, the
curves look smooth because the beam shape functions were used to get interme-
diate values.

Nodal Moments

An applied moment about a fixed axis acting on a point on a structure which
is free to rotate about an arbitrary axis is nonconservative. This is seen by
considering the following situation. Let the body be rotated 7 about the z-axis.
The same final position is obtained by the successive rotations of 7 first about
the z-axis and then about the y-axis. Now suppose there is a moment vector in
the z direction; the first scenario does work because there is rotation about z,
the second scenario does no work since there is no rotation about z. Clearly, the
loading is path dependent and hence nonconservative.

These cases are considered in Reference [5]; in the present case, we prefer to
replace all moments with concentrated forces (forming couples) and therefore
amenable to the developments just presented.

Problems

3.1 Reconsider the truss problem shown in Figure 3.4.
e Investigate the effect of an initial P, force on the equilibrium paths.
e Use an FEM analysis to confirm the results.

3.2 Reconsider the beam/plate problem shown in Figure 3.33.
e Investigate the effect of an initial P, force on the equilibrium paths.
e Use an FEM analysis to confirm the results.

3.3 For the truss shown:
e Establish the nonlinear equations necessary to determine the deflec-
tions at A.
e Use a numerical method to solve the equations.
e Confirm the results using a nonlinear FEM analysis.

h = 50in. 0.75in.ID
1.00in. OD
e

R aluminum

3.4 For the frame structure shown:
e Establish the nonlinear equations to determine the deflections at A,
e Use a numerical method to solve the equations.
e Confirm the results using a nonlinear FEM analysis.
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10 mm

10mm  steel
L=1m

3.5 For the torque loaded symmetric frame structure shown:
e Establish the nonlinear equations to determine the deflections at A and
the reactions at B.
e Use a numerical method to solve the equations.
e Confirm the results using a nonlinear FEM analysis.

@

1in. Diam
L=1%
aluminum

3.6 For the frame structure on rollers shown:
e Establish the nonlinear equations to determine the deflections at A.
o Use a numerical method to solve the equations.
e Confirm the results using a nonlinear FEM analysis.

steel 10mm

L=1m 10mm

3.7 Reconsider the cantilever beam problem shown in Figure 3.31.
e Use an FEM analysis to investigate the effect of follower loads.



4
Vibrations of Structures

In this chapter, we look at the effect inertia has on the response of structures.
For thin-walled structures and frames, the out-of-plane (or transverse) flexural
vibration is more dominant than the in-plane, and we concentrate on analyzing
this. Throughout, we alternate between the free and forced responses, although
restricting ourselves to the linear behaviors.

The main goal of the chapter is consideration of the discretized form of the
inertia necessary for our computational analysis. As a follow-on, we look at the
modal analysis of structures; this will be valuable when we discuss the general
properties of dynamical systems. Modal analysis allows us to order the dynamic
effects; Figure 4.1 illustrates two of the vibrational mode shapes of a circular
cylinder (the exploded view is intended to give a clearer picture of the three-
dimensional mode shape). In interpreting the figure, the numbers indicate the
particular mode. We conclude the chapter with a discussion of the relationship
between a modal (vibrational) analysis and a transient (wave) analysis; this will
help to put into perspective where the two types of analyses are applicable.

Figure 4.1: The (n,m) vibration mode shapes for a cylinder.

J. F. Doyle, Nonlinear Analysis of Thin-Walled Structures
© Springer Science+Business Media New York 2001
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4.1 Free and Forced Vibrations

A wvibration is a special form of dynamic behavior where the structure executes an
oscillatory motion about an equilibrium position. A vibration executed without
the presence of external forces is called a free vibration. A pendulum is a simple
example. Vibration that takes place under the excitation of periodic external
forces is called a forced frequency vibration. An example of forced vibration is
that due to unbalance in rotating machinery. This section is a brief review of the
elements of vibration analysis as well as some aspects of spectral analysis. More
detailed background can be found in References [23, 49, 76] and some interesting
historical issues can be found in Reference [56].

Harmonic Motion and Vibration

A vibration motion such as
u(t) = Asinwt

is called simple harmonic motion with an amplitude A and an angular frequency
w. A plot of this function is shown in Figure 4.2. The time for the response to
repeat itself is called the period and is given by T' = 27 /w. The rate of repetition
is called the frequency f = 1/T. The relation between displacement, velocity,
and acceleration for the point undergoing harmonic motion is obtained simply
by differentiation, that is,

displacement: u = Asin(wt)
velocity: @ = wAcos(wt) = wAsin(wt—7/2)
acceleration: i = —w?Asin(wt) = w?Asin(wt—7)

We use the notation of a super dot to mean derivative with respect to time. The
behavior of all three responses is harmonic and is shown (scaled) in Figure 4.2.
It is obvious that they all have the same shape. What is different is their phase
— how much they need to be moved (in time) relative to each other so as to
overlap exactly. In the above case, for example, the velocity is 90 degrees (/2
radians) out of phase with the displacement. Phase plays are very important
role in the analysis of vibrating systems. It is apparent from this that a general
expression for harmonic motion is u(t) = Asin(wt + J), where 4 is a phase shift.

The description of the dynamic response of elastic systems will be motivated
by considering the simple case of a single spring/mass system. Consider the free
body diagram of the mass attached to the spring of stiffness K as shown in
Figure 4.3. We identify four forces acting on the displaced mass. The applied
force P is the agent causing the displacement, the elastic force Ku attempts to
return the mass to its original position, the inertia force —M¢i acts so as to keep
the mass where it is, and finally the damping force F¢ attempts to retard the
motion. The equation of motion for the mass is therefore

Ku+ Mii + F¢ = P(t) (4.1)
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)

Figure 4.2: Simple harmonic motion.

where P(t) is the externally applied load history.

All real structures experience some sort of dissipation of energy (or damping)
when set in motion. This is due to such factors as friction with the surrounding
air, and internal friction of the material itself. The scientific nature of friction is
still not too well understood, therefore its treatment in vibration is approached
from the point of view of convenience. We will consider the question in more
detail later, but as a first attempt at modeling damping, we will look at viscous
damping as represented mechanically by the dashpot. The dashpot exerts a
retarding force which is proportional to the instantaneous velocity. Thus, we
write F'¢ = C 1, where C is the damping constant. The equation of motion that
we will mostly discuss is therefore

Ku+ Ciu+ Mi = P(t) (4.2)
where we seek to find u(t) when P(t) is specified.

y K M Fd -
P Ku -1—.—’- P
x = U Mii ~—

Figure 4.3: Simple spring/mass system.

Example 4.1: Determine the motion of a spring/mass system after it is dis-
placed from its initial position and released. Assume no damping.
The differential equation of motion (after release) reduces to

Ku+Mi=0

This is a second order differential equation with constant coefficients. We expect
solutions of the form

u(t) = Acosat + Bsinat
where A and B are the constants of integration, and « is an as yet undetermined
constant. Substitute the assumed solution into the differential equation to get

[K — Ma*|Acosat + [K — Ma®|Bsinat = 0
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Because the differential equation must be satisfied for any value of time, then we

must have that
K—-Ma*=0

| K
= — = Fw,
a=+=+ i w

and gives the general solution as

This specifies « to be

u(t) = Acoswot + Bsinw,t

The arbitrary constants A and B are determined from the initial conditions. The
problem as stated says that initially the mass is displaced and then released from
rest. The initial conditions at ¢ = 0 are therefore that

u(0) = uo, u(0) =0
This gives A = u, and B = 0, and the solution

u(t) = uo coswot , u(t) = —wolo COSWot
This is shown plotted in Figure 4.4 for the case K = 2, M = 1, u, = 1/v/2. The
system is exhibiting an harmonic motion of frequency w = wo, = /K/M. This

value is called the natural frequency. A single-degree-of-freedom system, when
set in free vibration motion, vibrates at only one frequency, and that frequency
depends only on the material properties of the system. The phase-plane plot of
displacement against velocity is an ellipse continuously repeated.

au(t)

—disp
o vl

Figure 4.4: Free vibration response.

Example 4.2: Let the mass of the previous example be already in motion at
time ¢ = 0. Describe the subsequent motion if there is no damping.

The complete dynamic state of a single-degree-of-freedom system is described
in terms of its displacement and velocity. At the instant in time, t = 0 say, we let
the initial conditions be u(0) = u, and 4(0) = v,, then, irrespective of how the
motion was originally initiated, a free vibration is described as the sum of a sine
and cosine term in the form

u(t) = Acoswot + Bsinwot

Using the initial conditions gives that A = u, and B = v,/w, allowing the time
history to be written as

u(t) = u, coswot + :—o sinw,yt = C cos(wot — 8)
(2]
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where the amplitude and phase are given, respectively, by

C = Jul +v%/w2, 8 = tan™ " (uowo Vo)

Such motion is also periodic and of frequency w,.

Example 4.3: Determine the response of the mass of Figure 4.3 to a sinu-
soidally varying load P(t) = Psinwt. Neglect damping.
Under this circumstance, the equation of motion becomes

Ku+ Mii = P(t) = Psinwt

This differential equation is inhomogeneous because of the nonzero on the right-
hand side. Thus the solution will comprise two parts; the general solution obtained
after setting P = 0, and the particular (or complementary) solution obtained so
as to give P(t).

We already know that the homogeneous solution is given by

up(t) = Acoswot + Bsinw,t
Look for particular solutions of similar form, that is, try
up(t) = Ccosat + Dsinat

where « is an as yet unspecified frequency and C, D are arbitrary constants. On
substituting into the differential equation, get

[K — Moa®|C cosat + [K — Mo?|Dsinat = Psinwt

This must be true at any value of time; hence separately equating the terms
associated with the sines and cosines gives

P

TK-—wM® 7Y

=0, D

The total displacement response can therefore be written as

P
u(t) = Acoswot + Bsi t+ —————sinwt
®) coswol + Bsinwot + g
Again, the coefficients are obtained from the initial conditions. Using the initial
conditions of the last example gives the complete solution as

u(t) = uo COSwol + :TZ sin wet — %— sinwot + K=ot sinwt
The first three terms carry the natural frequency w,, while the last term carries
the forcing frequency w. In any real system, where some slight damping always
exists, the only motion that will persist is the motion described by the last term.
Hence we call the last term the steady-state response, while the rest are called the
transients.
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An interesting feature of this solution is observed when the forcing frequency
is varied; it is seen that the amplitude of the response changes. Indeed, when
2 _ K 2

w :M:wo

the response is infinite, even for very small values of excitation force. This situation
is called resonance. Figure 4.5 shows how the steady-state amplitude ratio
a 1 N 1
P/K  1-wM/K 1-w?/w}

varies as a function of frequency (the figure also shows the effect of damping ¢
which is zero in the present case). As will be shown later, in practical situations
there is always some damping and therefore an infinite response is never achieved
as implied in the figure.

5.

.
(b)
1. /
[ w/wo w/wo
OI_IIII"ALIIIAII P | | T T T PR S S |
.0 .5 1.0 1.5 2.0 .0 .5 1.0 1.5 2.0

Figure 4.5: Forced frequency response of spring/mass system. (a) Viscous damping.
(b) Hysteretic damping.

Complex Notation and Spectral Analysis

The use of complex algebra facilitates the mathematical analysis of vibration
especially when we deal with phase shifts. We therefore find it propitious to
introduce it at this stage.

A complex quantity is written as

z=a+1ib, i=+-1

This can be thought of as a vector with components a and b; a is the real part,
b is the imaginary part. The magnitude and orientation is given by

= V@ +8 =4, 6=tan(a/b)

Consequently, an alternative form for the complex number is

z = A(cos§ + isind)
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We can put this in a convenient form by noting the following relation for ex-
ponential functions. The Taylor series expansion of the exponential function e**
is

T

®
X

1+ (iz) + 5(ix)? + §(iz)® + 5 (ix)* + 5 (iz)® + 5 (ix)° + . ..
= [1- 327+ Fat — Agat ) Hilr— f2® 4 gt ]

cosx +isinx

We can now write the complex number as
z = Ae¥
Some other relations of use are
cos§ = Re[ e | = [e¥ 4 7% /2, sind = Im[ e | = [ — 7] /2i

where Re and Im stand for real part and imaginary part, respectively.
The addition, multiplication, and so on, of complex numbers follows the usual
rules of vector algebra. For example, suppose we have two complex numbers

z1 =a+ib= A, 20 = ¢+ id = Age'®?
Then addition is achieved by adding the components

21420 = (a+¢) +i(b+d) = A1e 4 Age’®
Multiplication is given by

2122 = (ac — bd) + i(ad + bc) = Ay Ape’®1+%2)

The exponential form makes multiplication very simple.
To show how these ideas can help to simplify the description of harmonic
motions, consider the equation of motion

Kv+ Cio+ Mo = P, cos(wt + 6)
where all terms are real. Now introduce the complementary equation of motion
Kw+ Cw+ M@ = P,sin(wt + )

Multiply the second equation by ¢ and add it to the first. The result shows that
the complex variable u = v + fw must satisfy the following differential equation:

Ku + Cu + Mii = P,etwttd) = peiwt

In the last form for the load, we have incorporated the phase with the applied
load so that P, in general, is a complex quantity. If we solve this equation for wu,
then we can recover both v or w from

v=Re[ u ], w=1Im[ u ]
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respectively. We emphasize that working with the complex variable u is equiv-
alent to working with the real variable v; no information is gained or lost, it is
just a matter of convenience.

The solution for harmonic motion is written simply as

u(t) = de**

In the following, the super hat notation will designate the complex amplitude of
each frequency component; these components are called the amplitude spectrum.
It is understood that when the actual displacement is required, then the above
is combined with its complex conjugate to give a real response.

Example 4.4: Determine the forced frequency response for the spring/mass
system of Figure 4.3 taking damping into account.
The equation of motion for forced single frequency sinusoidal excitation may
be written as '
Ku+ Cu+ Mii = Pe™*
where P is the excitation force and w is the excitation frequency. Using a trial

solution of the form
~  dwt

u(t) =de
gives the velocity and acceleration as
at) = iwae™ =iwu
i(t) = (iw)’ae™! = —w?iae™ = —w’u

This shows that differentiation is accomplished by multiplying by iw. Therefore
by substituting for u(t) and canceling the common time factors, we get

K+iwC—w’Mla=P

This is solved to give

P B w2P/K _ P/K
K —w?M+iwC] (w2 —w?+1i2Cww,] [l — (w/wo)? + 12(w/w2]

'&:

where w, = y/K/M is the undamped natural frequency, { = C/2Mwyp is the

dimensionless damping ratio, and 15/ K is the static extension of the spring caused
by the force. These are shown plotted in Figure 4.5(a).

The idea of representing the time variation of a function by a summation
of harmonic functions is extended here to representing arbitrary functions of
time and position resulting from the solution of our distributed systems. The
approach is to remove the time variation by using the spectral representation of
the solution. This leaves a new differential equation for the coefficients that, in
many cases, can be integrated directly.

Consider the time variation of the solution at a particular point in space; it
has the spectral representation

u(wl,yl,t) = fl(t) = chne’iw"t
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At another point, the solution behaves as a second time function f3(t) and is
represented by the Fourier coefficients Cs,,. That is, the coefficients are different
at each spatial point. Thus, the solution at an arbitrary position has the following
spectral representation

w(@,y,t) = Y dn (2, y, wn et

where 4, (z,y) are the spatially dependent Fourier coefficients. Note that these
coefficients are functions of frequency w,, and thus there is no reduction in the
total number of independent variables.

For shorthand, the summation and subscripts will often be understood and
the function will be given the representation

u(l‘,y,t) = 1’/\fn(-'L'-: y’wn) or ﬁ(x,y,w)

Sometimes, we will write the representation simply as .

The governing differential equations, in general, are in terms of both space
and time derivatives. Because these equations are linear, it is then possible to
apply the spectral representation to each term appearing. Thus, the spectral
representation for the time derivative is

Oou O 4 L
5 = B Zﬁne“"”t = Zzwnune’“’"t

In shorthand this becomes

ou L L
5 = wply, Or Wil
In fact, time derivatives of general order have the representation
0™u . . . .
= (iwp)™ by, or (iw)™ 4

atm

Herein lies the advantage of the spectral approach to solving differential equa-

tions — time derivatives are replaced by algebraic expressions in the Fourier

coefficients. That is, there is a reduction in the number of derivatives occurring.
Similarly, the spatial derivatives are represented by

—g}f - 62 Z ,&neiwnt — %eiwnt
T T
and in shorthand notation
@ : % Or @
oz oz oz

In this case there does not appear to be any reduction; as will be seen later, with
the removal of time as an independent variable, these derivatives often become
ordinary derivatives, and thus more amenable to integration.
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Example 4.5: Determine the general spectral solution for a vibrating rod.
The equation of motion for a simple rod obtained in Chapter 1 is

82u 8 U ou

Assume a spectral representation of the solution in the form

= Zﬁn(z,wn)ei“’"t

and substitute into the governing equation to get

d%4
Z [EA o =+ (pAw? — mAwn)un] et =0
Because the bases functions e*“»* are independent, we conclude that this equation
must be true for each wn to give

d2

A
de

+ (pAw? — inAw, )in = 0

This is an ordinary differential equation with constant coefficients (note that w,
just plays the role of a parameter) and therefore has solutions of the form

i(z) = Ae k=

where k (called the wavenumber) is as yet undetermined. This is determined by
substituting into the above equation, which leads to

[~EAK® + (pAw? — inAwn)]A =0
This can only be true when
k* = (pAwl — inAw,)/EA

which gives two possible solutions

= +/(pAwk —inAw,)/EA, k2 = —/(pAw? — inAw,)/EA

The general solution is then
W(z) = Ae" 1= 4 Bemth2® and  u(zx,t) Z[Ae“’kw + Be 27|t

The coeflicients A and B are complex and are determined from the boundary
conditions. Specific examples will be considered later. A thorough application of
this approach to wave propagation in structures is given in Reference [23].

Example 4.6: Determine the free vibration response for a fixed-free rod. Ne-
glect damping.
Since we neglect damping, we can write the solution in the real-only form

4(z) = c1 cos(Bz) + co sin(fz) , B =wy\/pA/EA
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The boundary condition at z = 0 is
4(0) =0 = 0=q
The boundary condition at z = L is
B(L) = EA% —0 — 0= EAcsBcos(L)
The only nontrivial solution is when

BL = 1im, Sm, - or wn:(n—}—%)%\/ﬁ/l/pA

N =

for n =0, 1, - --. The corresponding mode shape is
i(z) = cosin[(n + §)wz/L]

The coefficient ¢ is unknown.

It is worth noting that the differential equation dictated the form of the spec-
trum relation; but the boundary condition then determined those frequencies that
are acceptable.

Damping

All real structures experience some sort of energy dissipation (or damping) when
set in motion. This is due to such factors as friction with the surrounding air
and internal friction of the material itself. This section considers some of the
consequences of this on the motion.

There are two simple mathematical models for damping in a vibrating struc-
ture; the damping may be viscous or hysteretic. In the first, energy dissipation
per cycle is proportional to the forcing frequency, while in hysteretic damping,
it is independent of frequency. Mathematically, the two types are very similar;
we shall therefore give a brief comparison of their effects, but concentrate on the
viscous damping.

I: Critical Damping

Before we proceed with discussing the effects of damping, we would first like
to get a measure of what is meant by small amounts of damping. To this end,
consider the free vibration of the system with viscous damping. The equation of
motion is

Ku+Cu+Mi=0

Look for particular solutions of this in the form u(t) = Ae**¢. (A note on nota-
tion: when we expect the frequency of vibration to be real only, we will assume
the harmonic response Ae®?, but if the frequency can be complex (as is usually
the case with damped systems) we assume the response Ae'#t.) Substitute into
the differential equation and get the characteristic equation

AK +iCu— Mp? =0
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The value of y that satisfies this is obtained by solving the quadratic equation

and is '

T oM T 2M

The time response of the solution is affected by the sign of the radical term as

C? > 4MK; overdamped
C? = 4MK; critical damping
C? < 4MK; underdamped

Let the critical damping be defined by

C.=vVAMK = 2Muw,, Wo

K/M
then the characteristic values of u are given by

= woli¢ & /1= (7]

where ¢ = C/C, is the ratio of the damping to critical damping. The free
vibration solutions are

’U,(t) — e—(w,,t[Ae—iwdt + Be-H'wdt]

where wg = wo+/1 — (2 is called the damped natural frequency and A and B are
constants to be determined from the initial conditions. The critical point occurs
when ¢ = 1, thus we say that the structure is lightly damped when { <« 1.
This is the situation of most interest to us in structural analysis; measurement
instruments (accelerometers, for example) are usually overdamped [48].

Example 4.7: Determine the motion of the mass of Figure 4.6 after it is dis-
placed from its initial position and released. Assume the system is lightly damped.
We use as initial conditions at ¢ = 0 that

u(0) = u,, u(0) =0

to determine the coeflicients A and B. This gives the solution

u(t) = Juuoe (1 4 B yemuut 4 (1 - Bl etival
Wd wd
which is shown plotted in Figure 4.6 for the case K = 2, M =1, C = 0.1, and
uo = 1/v/2. Note that the response eventually decreases to zero, but oscillates as
it does so. The frequency of oscillation is wg = wov/1 — ¢? = wo(1 ~ %CQ). Hence,
for small amounts of damping this is essentially the undamped natural frequency.
The rate of decay is dictated by the term e™“°¢t = ¢~ Ct/2M The phase-plane
plot of displacement against velocity is an elliptical spiral shrinking to zero.
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Figure 4.6: Damped response.

II: Viscous and Hysteretic Damping

We shall compare the forced frequency response of the system for both viscous
and hysteretic (structural) damping; in both cases we assume that the system
is only lightly damped.

The equation of motion for forced single frequency sinusoidal excitation of the
system with viscous damping may be written as

Ku + Cu + Mii = Pe™t

where P is the excitation force and w is the excitation frequency. Using a trial
solution of the form

u(t) = de™*

we can show by differentiation and substitution that

A~

P B w2P/K
K—-w?M+iwC wi—w?+1i2(wew

=

where w, = \/K/M is the undamped natural frequency, ( = C/2Muw, is the
dimensionless damping ratio, and P/K is the extension in the spring caused by
the force alone. Thus, the displacement history is

1 P
1 — (w/wo)? + i2€w/w, | K

wt

u(t) = de et = H(w)Pe

It can be seen that the displacement is proportional to the applied force, and
the proportionality factor H(w) is called the frequency response function (FRF)
— it is complex and depends on frequency. The damping causes the response to
lag behind the applied force. The phase difference is given by the angle

2w /w,
[1 - (w/wo)?]

The solution can therefore, alternatively, be written in the form

§ =tan~!

u(t) = ! P iwt=8) _ | g(w)] Pei@t-9
(t) \/[1 ~ (W]wo)2]2 + (2Cw/w,)? Ke |H(w)| Pe
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which emphasizes the separate effects of amplitude and phase. The amplitude
response is shown in Figure 4.5(a) for different values of damping.

Many materials, when subjected to cyclic strain, generate internal friction that
dissipates energy per cycle which is relatively independent of the strain rate. In
the present context, this means the damping force is taken as

Ft=h%,  Fi=iha
w

It is important to realize that the hysteretic damping idealization is restricted
to the forced frequency case because, otherwise, the frequency in its definition
is undefined. If we take the forcing frequency as w,, the natural frequency, then
this damping reduces to the viscous case.

The equation of motion for a single-degree-of-freedom system with structural
damping is written in the time domain as

h .
Ku+ ;u—}—Mu = P(t) = Psinwt

and in the spectral form as

R P 1
14iy)~wM|a=P b= —
[K(1+1iv) —w?M]a or 1 K[l—(w/wo)2+z'7]
where v = h/K is called the structural damping factor. The frequency response
function is obtained from

P .
E ez(wt—é)

1
VI = (W/wo)?]? +9?

where the displacement lags behind the force by the angle

u(t) = et = H(w)Pe™! = l

§=tan~! [1——(%/17)2]

For hysteretic damping, the maximum response occurs exactly at w/w, = 1,
independent of the damping. At very low frequencies, the response depends on
the amount of damping, unlike the viscous case, as shown in Figure 4.5(b). When
the system is vibrating at the natural frequency with w/w, = 1, both the viscous
and hysteretic models give the same results if we have v = 2¢.

III: Effects of Damping

The frequency response function, H(w), can be interpreted as a magnification
factor between the input force and the output response. Figure 4.5 shows the
absolute value of this as a function of the frequency ratio w/w, for various values
of the damping ratio (. We can see that increasing the damping diminishes
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the peak amplitudes. Furthermore, there is a shift of these peaks to the left of
w/w, = 1. In fact, the peaks occur at frequencies given by

w=wev (1 —2¢?)
and the peak value of |H(w)]| is given by

1k /K
T/ X

This last relation is for light damping (¢ < 0.1) and shows the sensitivity of the
peak to damping. The points where the amplitude of |H(w)| reduces to 1/v/2 of
its peak value are called the half power points. The difference in the frequencies
at the half power points for light damping can be shown to be

|H (w)]

Aw = wo —wy = 20w,

For this reason, the term 2(¢ is sometimes called the Loss Factor.

viscous s
hysteretic _imag

real

Figure 4.7: Forced frequency response of spring/mass system. (a) Real and imaginary
components of the FRF. (b) Nyquist plot.

Because the frequency response function is a complex quantity, it can therefore
be decomposed into its real and imaginary parts by multiplying the numerator
and the denominator by its complex conjugate. Thus

_ 1 — (w/wo)? 12w /w, 1
HW) = 0 (0fan)P + wfwn? 1= (@)l + (wwr)?] K
= Hg+iHy

As shown in Figure 4.7, the real component of the FRF has a zero at w/w, = 1,
independent of damping and exhibits maxima at frequencies given by

w1 = wev/1—2¢, wo = Weyv/ 1+ 2(
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These frequencies are often used to estimate the damping of the system from

1= (wi/wy)?

2= T (1 /an)?

The plot of the imaginary part of the FRF has a peak close to w/w, — 1, which
is sharper than that of the magnitude of [H (w)].

A similar analysis can be done for the hysteretic damping. It must be kept
in mind, however, that real structures exhibit neither viscous nor structural
damping in its pure form. More likely, they exhibit a nonlinear combination of
both, with the proportion of each probably depending on the frequency range.
Additionally, much of the damping in structures comes from the joints and the
interaction with attachments. As a consequence, the damping is not a material
“constant” like the Young’s modulus or density that can be determined by com-
ponent testing. Because we deal with lightly damped structures, it is sufficient
that we consider just the viscous model.

Example 4.8: The spring/mass system of Figure 4.6 is initially at rest. Find
the damped response to the following step loading:

Pty = 0 t<0
P(t) = P t>0

PAT

Figure 4.8: Response to impulsive loads.

An impulsive force is a force that acts over a short period of time. The time
integral of the force is referred to as the impulse of the force. When the system is
linear, we can obtain the response to an arbitrary force history P(t) by considering
it to be the sum of a sequence of impulses. Specifically, consider an arbitrary force
history P(t) as shown in Figure 4.8 with one of the impulses indicated. Each
impulse is PAr. The action of this impulse on the mass is to cause a change of
momentum given by

PAT
IAw = PA A =
MAG T or U %

If the mass is initially at rest, then the change in velocity is the initial velocity
for the motion. That is, we have

_ PAT

u(0) =uo =0, w(0) = vo 7
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The response to this impulse is

PAT —¢uo(t-7)

ut) = Ho

sinfwq(t — 7))

The term (¢ — 7) takes into account the fact that the pulse occurs at time 7 and
not time zero. The actual force history is a series of these impulses at different
times 7; hence, the cumulative effect is obtained by letting AT become very small
and replacing the summation by an integral over the full time to give

_ 1 ‘ —Cwol(t=7)
u(t) = W/o P(r)e sinfwq(t — 7)] dr

This is called Duhamel’s integral and represents a particular solution of the differ-
ential equation of motion subjected to an arbitrary forcing function. For simple
forcing functions (for example, stepped loading) the integration may be performed
exactly, but generally it must be done numerically.

The initial conditions for our problem are such that u, = 0 and v, = 0; if,
however, the initial conditions are not zero, then the homogeneous solution must
be added to complete the solution. The solution is obtained by substituting for
the force into Duhamel’s integral to get

u(t) = L te_<“"’t sinfwa(t — )] dr = P [1 — e ¢! (coswat + ©ol sinwdt)]
waM J, K 4 wd

This response is shown in Figure 4.8 for a value of damping of ( = 0.04. Note

that the response oscillates about the static deflection position. The maximum
deflection approaches two times the static value when the damping is very small.

4.2 Free Vibration of Plates and Beams

We use the thin-plate theory derived in Chapter 2. With reference to Figure 4.9,
the first task is to extend the spectral analysis method so as to handle spatial
variations in two dimensions. We will do this by introducing a Fourier series
representation in the y and @ directions.

ty Yy

b 2 .

Figure 4.9: Rectangular and circular plates.
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Free Vibration Analysis

It is easy for us to add some viscous damping to the governing equations, it is
just a matter of modifying the inertia term to give
w 0w 5 02 o2

0 .
DV2V2U’ | Kw + nh*"*' + /)]Lgté— -4q, V" = 5};‘5 -+ 5“:1;'2* (43)

where 7 is the viscous damping per unit volume, K is the stiffness of an elastic
foundation, and D = Eh3/(1 — v2). For free vibration with ¢ = 0, we have that
a typical variable can be written as

iwt

w(z,y,t) = d(z,y)e”

where w is the angular frequency, i = v/—1, and it is understood that @ could
be complex. The spectral form for the governing equation is then

[DV?V? + K — phw? + inhw]i = 0 (4.4)

The solution of this equation can be written as linear sums of solutions of the
following two differential equations:

. hw? —inhw — K
V2 + 820, =0, Vi, — ffp =0, (2= \/ p 1;’ (4.5)

These form the basic equations for further analysis and emphasize that there
are two fundamentally different modes.
A summary of the spectral form of Equations (2.17) is given by

Displacement : W = w(z,y,w) = W (z,y) + Wz, y)
Slope : Uy = %
Moment : Mm =+D [Z—wa;— + 1/32—;5]
Shear : Vio = =D [% +(2- I/)ai—zfﬁ]
Loading:  § = DV2V?b — (phw? — inhw — K)w (4.6)

A similar set for cylindrical coordinates can easily be constructed from Equa-
tions (2.22). Time domain responses are obtained by performing an inverse
Fourier transform on w(z,y,w).

Example 4.9: Specialize the governing equations for the case of cylindrical
bending.
For cylindrical bending about the y-axis, the displacement has the special form
w(z,y,t) = w(z,t). The differential equation for @ then becomes
&’ | .
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This has constant coefficients, hence e ik is a kernel solution. The spectrum
’
relations are then

ki ==+ —|-—,82, ko =+ ~ﬂ2

For the undamped case and no elastic foundation, the relation between the wavenum-
ber and frequency is given by

h 1/4 ) h, 1/4
ki = v [-’ZD—] . ke =tivw [%}

This is the behavior of a beam [22] if the following associations are made:

EIl . D . po_ B
PA ph (1-v?)

Thus the plate in cylindrical bending behaves as a beam in plane strain.

Example 4.10: Determine the effect of an elastic foundation on the vibration
of a simply supported beam.

El, L, pA, K

Figure 4.10: Pinned/pinned beam on an elastic foundation.

The governing equation is

4 2

8—1{~i-Kv+pAQ=O

EI oxt ot2

and the spectral form of the differential equation for & becomes

d'o 4. i (pAW? - K)
L

Because this has constant coefficients, we seek solutions of the form 9 = Ae**®,
which leads to the characteristic equation

E*-pt=0
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from which we obtain the four spectrum relations

k13(w) = 1/ +3/48% = +a, k2,a(w) = £/ —3+/48* = tia

Thus, the general solution is represented by
0(x) = AeT + Be ™ + Cet' + Det (4.7)

In analyzing problems without damping (where a and & are likely to be real only),
we will find it more convenient to use the solution form

(x) = c1 cos(ax) + c2sin(azx) + c3 cosh(a@z) + c4 sinh(azx)
Both forms, of course, will lead to the same answer.
The boundary conditions are that at £ = 0, we have
v=0 = 9=0=c+c3
d*o 2 _2
M=0 = —=0=-aci+a‘c3=0
dz?
This leads to ¢; = 0 and ¢3 = 0. At £ = L, we have
v=0 = 91=0=c1S+c3Sn
d*o
dz?
where S = sin(aL) and Sp, = sinh(aL). These two equations lead to the system

sinaL sinh aL 2 | _,
—a’sinall. —a?sinhal ca [~
The characteristic equation is obtained by setting the determinant equal to zero
and gives

Mzz =0 = =0=—-a’c1S+a%3SL=0

(o® + &*)sin(aL)sinh(aL) =0

This has the solutions

[ (pAw® — K)
alL =nrw or \/% 4TL:7W

Expanding and re-arranging gives

wn = | EL (n_"')4+£ or ﬂ_1/n4+KL4 wy = BIx*
"\ pAV'L EI wr m™EI’ YT\ pA L2

The corresponding mode shapes are given by

Un(z) = cosin(az) = c2 sin(nLLm)

These mode shapes do not depend on the elastic foundation.

The variation of resonance frequency with spring stiffness is shown in Fig-
ure 4.10. We see that the spring increases the frequency; this is typical structural
behavior — added stiffness increases the vibrational frequencies. Furthermore,
they all asymptote (from above) to the n = 0 line as the foundation stiffness is
increased.
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Rectangular Plate Solution

In this section, we extend the spectral analysis method so as to handle spatial
variations of the deflected shape in two dimensions. This results in an extra
summation over the space wavenumbers quite comparable to what was done in
Chapter 2.

Since the deflected shapes, possibly, can have arbitrary shapes in space, con-
sider a representation of the form

1 ~ . . 1 - —i
T,y) = 5 Zwlme Wy Wy = Z Wome *mY (4.8)
m m

with the space wavenumber given by &, = 2am/b. The differential equations
governing the transformed displacements are

d?w N dw hw? — inhw — K
dq;?l +(ﬂ2_€12n)w1 =0, 2 (ﬂ2+§2 Jiz =0, '82 = \/p g

where we allow 3 to be complex. The coefficients of the differential equations
are constant, hence the solutions are exponentials of the form e~*<. The char-
acteristic equations associated with these solutions are

—k2“—£2+,82:0, —kg—§2—,82:0
giving the spectrum relations as

ki(w,€) = £/B2 — €2, = am,  ko(w, ) = 2iy/B2 + €2, = tidm  (4.9)

These spectrum relations are shown in Figure 4.11. It is noted that for a partic-
ular £ the first mode shows a cut-off frequency with the lower-frequency compo-
nents being purely complex.

The full solution for the plate becomes

(.’L‘ y, — ZZ[Ae—zklm +Be-zk2z+ce+zk1z +D6+zk2z] —i€my zwn (4 10)

n

That is, the actual solution is obtained by summing kernel solutions of the
above form for many values of w,, and &,,. To gain an intuition for this solution,
consider it as a plane wave in = (the bracketed term) modified in y. Then, for
a particular £, the summation over w is similar to that for a beam as shown in
References [22, 23]. The corresponding spectrum relations, however, are modified
by & as shown in Figure 4.11.

Sometimes it will be more convenient to represent the general solution by

W(z,y) = Z [c1 cos(amz) + c2sin(am) + c3 cosh(@mz) + cq sinh(@nx)] f(Emy)

m

where f(&,,y) is either cos(&,y) or sin(&y,y). For the case m = 0, we have beam-
like behavior. For m > 0, we have beam-like behavior with a more complicated
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’ k2 (w7 '5)

Figure 4.11: The spectrum relation for different values of the &, wavenumber.

variation in y, and a more complicated spectrum relation. This association to
beam theory will help in specifying the boundary conditions. Looking at the
boundary conditions at y = 0 and y = b, we see that

P
9 ayz -
always. That is, this is true for each m term and implies that this particular
solution can solve only those problems with simply supported lateral sides.

Example 4.11: Determine the resonance frequencies and mode shapes for a
simply supported rectangular plate.

Consider a simply supported rectangular plate of size [a x b]. Choose only
the sin(&,,y) terms. We need only concentrate on the boundary conditions at
z = 0 and z = a, since, as indicated above, the lateral boundary conditions are
automatically satisfied.

At x = 0, we have

w=0 = Wn=0=/(c1+c3)sin({ny)
0%y, 81,
oz? tv oy?

= [~amer + @nea]sin(émy) + v(er + es)[~En sin(Emy)] = 0

Mz =0 = =0

These two must be true for any value of y, hence together they give that ¢; = 0
and c3 = 0. At z = a, we have
w=0 = Wy =0=(c2S+ caSh)sin({ny)
W, Va%z;m
Ox? dy?

= [~aZ.c2S + &2caShlsin(Emy) + v(caS + caSh)[—E€5 sin(Emy)] = 0

My,y;=0 = =0

where S = sin(ama) and Sy, = sinh(&ma). These two equations lead to the system

sinama sinh &,a ] { c2 } —0

«a?n sinama —dfn sinh ama c4
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The characteristic equation is obtained by setting the determinant to zero and
gives
(@2, + a2,) sin(ama) sinh(@ma) = 0

This has the solutions

ama=nr = (\/ﬁ2~§?n)a:mr = ( ww%—(n—;fﬁ)a:nw

Expanding and re-arranging gives

N

This gives an ordered set of frequencies as m and n are varied.

Figure 4.12: First two mode shapes for a rectangular plate.

The corresponding mode shapes are given by

Winn (2, Y) = c2 sin(amz) sin(ény) = ¢ sin(P%m—) sin(%)

These mode shapes form a regular 2-D pattern as shown in Figure 4.12. Thus, in
comparison to a beam, we see not just different mode shapes at different frequen-
cies but here we also see the pattern changing in both dimensions.

Circular Plate Solution

In cylindrical coordinates, the differential operator for the spatial variation is
2 10 18

or2  ror 12002

Again, we can consider the variation with respect to one of the coordinates to
be represented in a Fourier series. For example, consider the form

W1(r,0) = Y Rim(r)e™

The differential equation for @, becomes

@Rim | 1dRim  —m® imo
;[ Tt (g +,3)R1m]e =0

V2=
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Setting this to be true for all components m leads to a differential equation for
Ry (r) as

PRim  1dRypm | —m?
a tra H e A Rm =0

Make the substitution z = Br and rearrange the differential equation as
d*Ry,, 1dRy, 1

2 2 _
d22 +; da +z—2(z —m)le—-O

This is a Bessel equation and the solutions are
le(r) = CIJm(Z) + C2Ym(2) R z=0r

The notation used for the Bessel functions is that of Reference [1].
A similar analysis of the second equation leads to the differential equation
d’Ry,, 1dRy, 1

2 2 _
dz? +; dz _z_2(z +m ) Rom =0

This is a modified Bessel equation and the solutions are
Rom(r) = csKp(2) + calm(2), z=fr

Combining the two solutions, we get a representation for the general solution as

(r,0) = 3 [e1Im(Br) + e2¥im(Br) + c3Kom(Br) + calm(51)] { )
m (4.11)

This solution can be used to solve a variety of plate problems including those
with an inner circular hole. Note that when m = 0, we get the axisymmetric
solutions, but just because the plate is geometrically axisymmetric does not
mean that they are the only solutions. This will be seen in the next example.

Example 4.12: Determine the resonance frequencies and mode shapes for a
clamped circular plate.

We require that the deflection and its various derivatives be finite at r = 0.
Because of the singular nature of the functions Y,, and K,, at r = 0, this requires
that c2 = 0 and ¢4 = 0. Also, it is sufficient to just use the cos(m#@) terms. This
gives the solution as

w(r,6) = Z [e1dm(Br) + c3Im(0r)] cos(m8)

m

We will obtain the remaining coefficients from the boundary conditions at r = a.
The deflection and radial slope are zero at the outer edge, giving,

Wm(a,0) =0 = [c1Jm(Ba)+ csln(Ba)]cos(md) =0

w =0 = [C1J,'n(ﬂa) + csly, (,Ba)] cos(mf) =0

= Clﬂ{%nat]m —JImt1}+ 03[3{%111; + Imt1}| cos(mf) =0
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In this, the superscript prime indicates differentiation with respect to 2 = Ba. We
can put these equations in the form of a matrix; multiplying out the determinant
and re-arranging gives the characteristic equation as

Jm (Ba)Im+1(Ba) + Im(Ba) Jm+1(Ba) = O

This must be solved numerically. The results can be nondimensionalized using

a2 | ph _ [ D(Ba)am _ [ D Aum
/\nm - (ﬁa)nm = Wnm D or Wnm = ph P> = ph 2

The values of A, are given in Table 4.1. Additional values for An.m can be found
in Reference [45].

n,m | 0 1 2 3 4 5
11021 21.26 3488 51.04 69.66 90.73
2| 39.77 60.82 8458 111.0 140.1 171.8
318010 1200 153.8 190.3 2295 2714
4| 1581 199.0 2427 289.1 3384 3904

Table 4.1: Values of Aum = (8a)2m-

The mode shapes are given by

JIm (ﬂnma)

Wrm(r,0) = ¢1 | Jm(Bamr) — T (Bom) In(Brmt) | cos(mb) (4.12)

with Bnm = v Aum/a. These are shown in Figure 4.13 labeled as [nm]. Addi-
tional solutions for circular plates and for other plate geometries can be found in
Reference {45].

Figure 4.13: The (n,m) mode shapes for circular plate clamped on its outer edge.
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Circular Cylinder Solution

As can be inferred from the flat-plate solutions, we are not in a position to
solve general shell or curved plate problems. We therefore restrict ourselves to a
complete cylindrical shell with the following support conditions at both ends:

u=0, w=0, Ny=0, M,=0

These could be achieved physically by having a very rigid ring at both ends.
Note that the axial motion is unconstrained.

The boundary conditions are satisfied by assuming solutions of the form
u = u, sin(ks) sin(€y)e™’, v = v, cos(ks) cos(£y)e™’, w = w, sin(ks) sin(y)e™?
where k = n/R and £ = mn/L. Substitution into the governing equations (2.30)
gives the homogeneous system of equations

D _ k
ar— [k + (1 -v)€— v [E + (k* + %) D]
R f R Uo
o' Qi —VE— Vo :0
_ k _£ ]? 1 W,
—[E+ (k% + EQ)D]E I/EE o3 + EEE
where
o1 = —Ek*+11-v)+phw?®, y=3i(14v)EkE
a = —EE+ 11— )k +phw?, as= DK +£%)2 — pho?

The a1, a2, and v terms alone define the flat membrane problem, while a3 alone
defines the flat-plate flexural problem. All the other terms are couplings due to
the curvature. The curved beam result is obtained by setting & = 0.

The characteristic equation, obtained from the determinant of this system, is
cubic in w?. It is therefore simplest to solve for the resonance frequencies using
some numerical scheme.

Example 4.13: Determine how the resonant frequencies are dependent on the
aspect ratio of the cylinder.

One of the challenges in assimilating results for complicated systems such as
a shell is to see the results as part of a pattern. The simple flat plates (both
rectangular and circular) gave a nicely ordered system in terms of n and m. This
is not the case for the cylinder. Figure 4.14 shows how the frequencies vary against
length of cylinder.

A vertical line on this plot will give the ordered sequence obtained in an eigen-
analysis. For example, the sequence of modes for two aspect ratios are:

L/R=25:  41,31,51,61, 21, 52, 62, 71, 42, 81, 32, 91, 22
L/R=40: 31,41, 21, 51, 42, 52, 61, 32, 62, 71, 22, 81, 91
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Figure 4.14: Variation of resonance frequency with length of cylinder. Solid lines are
m = 1, dashed lines are m = 2.

Clearly, the simplest mode shape does not necessarily have the lowest frequency.
Furthermore, in looking at the L/R = 2.5 line, in some cases, such as the (8,1)
and (3,2) modes, the frequencies are the same, while in other cases, such as the
(6,2), (7,1), and (4,2) modes, the frequencies form a cluster. Thus, in any prac-
tical analysis, slight variations in dimensions or material properties can have a
significant effect on the observed sequence of mode shapes.

4.3 Matrix Representation of Inertia Forces

Inertia loads are a special case of body forces and therefore the matrix represen-
tation will follow directly as was done, for example, in Section 3.4. For rotational
motion such as that of turbine blades or helicopter rotors, a corotational (or con-
vected) frame of reference is often used. We also look at these cases to see how
the reference frame affects the representation of inertia; the formulation for this
is taken primarily from Reference [4].

Mass and Damping Matrix

By D’Alembert’s principle, we can consider the external loads as comprising the
applied loads and the inertia

pfi = pfi — piiy — Mg

Thus, we can do a similar treatment as used for the body forces in Chapter 3.
That is, using u; = { b} {u}; or {4} = {H}{u} as the discretized representa-
tion of the displacements, the virtual work of the applied loads leads to

Z/fiduidAo = {P}=[[ [H|"{f}dA°

A()
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Applying this specifically to the inertia terms leads to
¥ [ icrnisuave = ~(m)ay =~ oHm vl i)

= e Wiy =l almTiEaveia)

where | m ] is called the element mass matrix and [ c¢ ] is called the element
damping matrix. Note that the integrations are over the original geometry and
that the resulting matrix forms for [ m ] and [ ¢ ] are identical. That is,
n
[c]= p—A[ m |
This is an example of the damping matrix being proportional to the mass matrix
on an element level.

When the shape functions [ H ] are the same as used in the stiffness formu-
lation, the mass and damping matrices are called consistent. Note that these
masses do not necessarily have any simple interpretation of masses at nodes.

The assemblage process for the mass and damping matrices is done in exactly
the same manner as for the linear elastic stiffness. As a result, the mass and
damping matrices will exhibit all the symmetry and bandedness properties of
the stiffness matrix. The result is that we get the equations of motion of the
structure as a whole to be

[(MH{i}+[C Ha}={P}-{F}

where [ M ] is the structural mass matrix, [ C | is the assembled damping matrix,
{F} = [ K |{u} for linear elastic problems, and {P} are the externally applied
loads not including the inertia contributions.

When the structural joints have concentrated masses, we need only amend the
structural mass matrix as follows

[(M]=> [mD)+[M.]

k3

where [ M, | is the collection of joint concentrated masses. This is a diagonal
matrix. In the next chapter we consider the more complex nonlinear case when
the joints have rotational inertia and undergo finite rotations.

For proportional damping at the structural level, we assume

(Cl=aM]+B[K]

where a and (3 are constants chosen to best represent the physical situation.
Note that this relation is not likely to hold for structures composed of different
materials. However, for lightly damped structures it can be a useful approxima-
tion.
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Example 4.14: Determine the consistent mass matrix for a frame element.
The displacements for the rod element can be written in terms of the nodal
values as

u(x) = (1 — %)w + (%)Uz = fi(@)ur + fo(x)uz

Write the accelerations in matrix form as

{i}=[h fz]{‘fl} or  {ia}=[H){i}

U2

with [ H ] being a [1 x 2] matrix. Then the mass matrix is

(mi= [t raiae = [ ARl — (mi- 2227 )]

o] o

The element masses are also given by

L
™ =/ pAfi(z) f;(x) dz

It is clear that it is the symmetry of the terms f;(z)f;(z) that ensures the sym-
metry of the mass matrix.

The procedure for determining the element mass matrix for beams proceeds as
for the rod. Recall from Chapter 1 that the deflection can be represented in terms
of the nodal values as

o) = [1-s(D+2° e+ (D [t-25) + (2] Lan

= g1(x)v1 + ga(x)d1 + ga(x)v2 + ga(x) P2

We write this in the matrix form
— 1 Ly ..
{o}=][a 9 g 9]} : oo {i}=[HN i}

with [ H ] now being a [1 x 4] matrix. Then the mass matrix is

156  22L 54  —13L

_ T o _ pAL | 221  41® 13L -3L?
[m]“/op[H][H]dV = [mI="50 1 s¢ 130 156 _2oL
—13L, —3L% -—22L 4?2

We can also write the masses as

mi; = / pAgi(x)g; () dx
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which again shows that it is the symmetry of the terms g;(x)g,(x) that ensures
the symmetry of the mass matrices.

The mass matrix of the frame is a composition of that of the rod and beam
suitably augmented, for example, to [6 x 6] for a plane frame.

Example 4.15: Dectermine the mass matrix for a triangular plate element.

As was done in the earlier chapters dealing with plates and as just done with
the frame element, we find it convenient to separate the behaviors into membrane
and bending. For the membrane behavior we use the shape functions associated
with the constant strain triangle. The accelerations are represented as

3

3
i(z,y) = Y ha(@,y)is,  O(z,y) = D hi(z,y)d;

In matrix form

U1
#
@\ _[h O he 0 hs 0 i o )
{1’)}_[0 hi 0 hs 0 hs} i or  {a}=[H{a}
i3
U3
Then the mass matrix is
201010
02010 1
B T . _pAR |1 0 2 0 1 0
(ml= [ olnHIv = (m=2 008D
101020
01010 2

For the MRT element, we also have the three drilling degrees of freedom {¢1, ¢2, ¢3}.
In the next subsection, we will treat this as diagonal and estimate it based on the
lumped rotational inertia for a beam.

For the bending behavior, let the displacements be represented by

{w(z,y)} = N {u}, {u} = {w1, ¢a1, dy1; w2, P2, y2; W3, P23, Pya}
where the shape functions N(z,y) are given from Equation (2.43). Again, we get
(m1= [ ohl N 7N Jaa

The expressions are too lengthy to write here. We will generally find it more
beneficial, anyway, to use the lumped mass matrix.

Example 4.16: Assemble the system of equations for the dynamic response
of the fixed/fixed rod shown in Figure 4.15. Use two, then three, elements to
represent the structure.
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Figure 4.15: Fixed/fixed rod with two and three element models.

The element stiffness matrices are

12 EA 1 -1 23 EA 1 —1
K )]:L—/Q[—l 1}’ K )12275[—1 1]

giving the full assembled structural stiffness matrix as
1 -1 0

[ K ] = # -1 2 =1

0o -1 1

Note that this is the same as if it were a static problem. The element mass matrices
(using the consistent mass matrix) are

[m(12)] _ pAL/2 [ 2 1 } (M) = pAL/2 [ 2 1 ]
6 1 21’ 6 1 2

giving the full assembled structural mass matrix as

2 1 0

AL

[M]:—p12 1 4 1]
0 1 2

The equations of motion in full form for the dynamic response of the structure

are
1 -1 0 w 2 10 iy P
1 2 -1 us +”%€ 14 1 o :{Pz}
0 -1 1 us 0 1 2 i Ps

This is reduced in the usual manner by removing the fixed degrees of freedom.
The boundary conditions are

2EA

L

Ul =’LL3=0, ﬁ1=ﬁ3=0
Consequently, the reduced structural matrices are

(k) =220, =28k

The dynamic problem now simply becomes

2FA pAL .
T2U2 + ‘—1‘2—411.2 = Pz(t)
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Consider the same problem but this time use three elements. Number the nodes
as shown in Figure 4.15(b). Only consider the reduced matrices; the unknown
displacements and known forces are, respectively,

{UU}:{Z:}7 {Pk}:{f)j}

The reduced element stiffnesses are

*(12)7 __ 3EA *(23)7 _ 3EA 1 —1 *(34) _ 3FA
T BRI e I I LS B
giving the reduced structural stiffness matrix as

« 3EA| 2 -1
(K™= L [—1 2]
The reduced element mass matrices are
*(12)1] _ pAL *(23)7 _ pAL 2 1 *(34) — pAL
e P R B N I S B

giving the reduced structural mass matrix as

. AL [4 1
[M]:p'ls_[l 4]

The dynamic system of equations becomes

3EA 2 -1 u2 +pAL 4 1 ’i].z _ P2
L -1 2 u3 18 |1 4 iz [~ | P

These equations can now be solved to obtain the dynamic response. We will do
this in the next section.

Lumped Representations

It is useful to realize that because the mass matrix does not involve derivatives
of the shape function, then we can be more lax about the choice of shape func-
tion than for the stiffness matrix. In fact, in many applications we will find it
preferable to use a lumped mass (and damping) approximation where the only
nonzero terms are on the diagonal. We show some examples here.

The simplest mass model is to consider only the translational inertias, which
are obtained simply by dividing the total mass by the number of nodes and
placing this value of mass at each node. Thus, the diagonal terms for the 3-D
frame and plate are

AL
(m| = %[1,1,1,0,0,0; 1,1,1,0,0,0]
A
[m] = -p—h[1,1,1,0,0,0; 1,1,1,0,0,0; 1,1, 1, 0,0, 0]

3
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respectively. These neglect the rotational inertias of the flexural actions. Gener-
ally, these contributions are negligible and the above are quite accurate especially
when the elements are small. There is, however, a very important circumstance
when a zero diagonal mass is unacceptable and reasonable nonzero values are
needed. In the next chapter, we develop an explicit numerical integration scheme
where the time step depends on the highest resonant frequencies of the structure;
these frequencies in turn are dictated by the rotational inertias.

First consider the frame. It is tempting to estimate the rotational inertia of
a beam by taking the total rotational inertia, pAL?/12, and placing half of it
at each node. This would grossly overestimate the inertia because the lumped
masses already contribute a significant rotary inertia. We instead will use the
diagonal terms of the consistent matrix to form an estimate of the diagonal
matrix. Note that the translation diagonal terms add up to only pAL 312/420.
Hence, by scaling each diagonal term by 420/312 we get

fm ) =P2E 000, 8,88 1,00, 8,8,8), 8= al?/40

where « is typically taken as unity. This scheme has the merit of correctly giving
the translational inertias.
We treat the plate in an analogous manner as

_ pAh

|— m J 7[17 1’ 11 ﬁ1 ﬂv 20ﬂ’ 1’ 1’ 11 ﬂ’ ﬂa 20ﬂ1 11 1’ 11 /87 /87 2OIBJ

with 3 = aL?/40. We estimate the effective length L ~ \/A/r as basically the
radius of a disk of the same area as the triangle. Again, « is typically taken as
unity.

Example 4.17: Assemble the system of equations for the dynamic response
of the fixed/fixed rod shown in Figure 4.15. Use two, then three, lumped mass
elements.

The procedure follows that of the previous example, hence we state just the
mass results. The element mass matrices are

m012)] = pA2L/2 [ Lo ] ) = pA2L/2 [ Lo ]

giving the full assembled structural mass matrix as
1 0 0
AL
[M]=2=10 2 0]
0 01
The equations of motion in full form for the dynamic response of the structure

are
ﬁ1 Pl
Uo = Py
13 P

1 -1 0 w 1
—2%4[—1 2 —1]{u2}+—piL[0
0 -1 1 us 0

o N O
= o o
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This is reduced as before to

?211.2 -+ #2712 = Pg(t)

Consider the same problem but this time use three elements. Number the nodes
as shown in Figure 4.15(b) and only consider the reduced matriccs. The reduced
element mass matrices are

«(12); _ PAL «23); _ PAL |1 0 «(3a); _ PAL

giving the reduced structural mass matrix as

o _pAL[2 0
[M]ZPT[O 2]

The dynamic system of equations becomes

seal s ] {ueem [z o) ()= (1)

These equations can now be solved to obtain the dynamic response. This will
be done in the next section where comparisons are made to the results for the
consistent mass formulation.

Inertia in a Rotating Reference System

We are interested in describing the motion of a point in terms of variables rele-
vant to a moving observer. The laws of mechanics must be written in terms of
an inertial frame; what we need to do here is establish the relationship between
the two sets of variables.

Consider two reference frames: the fixed absolute inertial frame (47, 4y, 42)
is situated at A and has unit vectors (%, 7, k), the moving observer frame (z, y, 2)
is situated at O with unit vectors (4éz, 4éy, 4€,) relative to A and is rotating
with angular velocity sw relative to A. The components of a vector referred to
unit vectors at A can be written in terms of components referred to unit vectors

at O according to

Aﬁ:[T]Ovv Oﬁ:[T]ﬂﬁ, [T]EA[éI7éy’éz]

where the triad [ T | has the components of the unit vectors at O referred to
the unit vectors at A. The components of the unit vectors are related through

Aém = ,Bzzi + ,Bmyj + ﬂxz]% = Z ,Bziéz’
[

where 3;; are the direction cosines. The rate of change of this vector (and the
triad) is
Aéi:AG)XAéi - [T]ZA(IJXA[T]
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Figure 4.16: Rotating frame of reference.

as we saw in the Section 3.2 on finite rotations.

A point P initially at £% goes in motion with the displacement 4(t)%. The
position of this point P relative to A and referred to unit vectors at A can be
written in terms of position vectors relative to O and referred to unit vectors at
O according to

A+l = Az + A +alg + A5 = ald +AQ +[ T Jolg + 46
where we are using the notation
P I a = point, b = relative to, ¢ = referred to

The velocity of the point is given by

WS+ T lolE+alg+ (T lol @16

alt ]y = a

= Al 619 +ad xa[ T ol +85+[T ol @15

We want to refer the components to the observer frame, hence multiply across
by the transpose of the triad and re-arrange to get

olili=olulb+o[ @]l +adx02+4

O

The first term is called the relative velocity, while the next two are the transport
velocity of O relative to 40.
In a similar way, we can determine the acceleration of a point as

olu]i = ol@]b+ol a]f+adxoE+a6+ad xad x0 [ +1]6
+ ZAL;J X0 [ ’& ]g
The first term is called the relative acceleration, while the next three are the
transport acceleration of O relative to 40, and the final term is the Coriolis
acceleration.
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As before, using u; = {h}T{u}; or {4} = {H}{u} as the discretized repre-
sentation of the displacements, the virtual work of the inertia force becomes

Z / patidudV° =
> M)y =[] elw Ta v i)
= [Glti} =] [# ]2l @ [H]dve]{i}
> Kl = [ [ (a5 H ) ave]{u)
= (Kalu) = [ [ [H05 @ )0w ) B av](u)
= (Pey = { [ 1B o tal & Mo +alw ) w o) Vo)

where we have introduced the rotation matrix

0 —W,; Wy
[wl=|w 0 -wl|, oxi = [w]{v}
—Wy Wy 0

to allow the vector crossproducts to be written in matrix form.
The system of equations can now be written as

(K + Kz + Ksl{u} + [C + Co{a} + [ M [{i} = {P} - {Pr}

where it is clear that using a rotating reference frame has introduced both
stiffness-like and damping-like terms. What is especially worth noting is that
the matrices [ K] and [ Cy ] are skew symmetric. This would add considerably
to the computational cost of the solution. In the subsequent sections and chap-
ters, we will always use an inertial reference frame because of the simpler nature
of the matrices.

Example 4.18: Consider the dynamics of a rod loaded as shown in Figure 4.17.
Determine the equations of motion in a fixed coordinate system when = 0.

Q Y
k'} / L 9o
X

TANEN
\/

Figure 4.17: Rotating rod.
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Based on the shape functions for a rod, we have

wa) = (1- Pu+(Prua,  (h}={0- 1) (P
The derivatives are therefore

d 1 1
8*%7 {ahw}_{_z7 Z}

This leads to the stiffness relation

_ 1 1.7 11 _EA|1 1
[k]_/ o (P ptv=7 [—1 1}
The mass matrix is determined as

(m1= [0 5. EWota- D Dpar =52 [3 1]

If there is a distributed load ¢(x) = g, = constant, this evaluates to

)= 1= 5 G aa= = {1

The equations of motion then become
EAl1 -1 ur | pAL |2 1 i1 | gAL |1
L |[-1 1 Ug 6 |1 2| a2 2 1

Example 4.19: Now consider when the rod is rotating at an angular speed
of 2 about the z-axis. Establish the equations of motion in a coordinate system
rotating with the rod.

The mass and stiffness matrices remain the same, but we will get some addi-
tional matrices dependent on €.

At the instant when the rod is in the position shown where the absolute and
observer frames coincide

’l;lo=07 Uo = UL, (i)g:O, wo:Qk’ g:gm

Evaluating each term, we get

[C2]=0
[K2]=0
(1)~ [ (oTiokx kxabav = [ (o)l a)ave = EEAL Y )

~ ~ ~ A 2L2
{PR}:/ p{g}T[0+0+QkxQkxm]dV”:/ sz{g}deL’:—p% {;}

These lead to the equations of motion

EA|[1 —1| pQ°AL 2 1 ui | pAL 12 1| [ | _ pAQPL? [1
L |-1 1 6 |1 2 up [16 |1 2| d2f 6 2
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Note that the applied force is larger at the second node than what occurred in
the first example.

Consider the special case when the first node is restrained, then u; = 0. For
free vibrations with uy = f9e**, we have that

EA  pQPAL2  pAL2

2
7 6 g Hlia=0

which gives the frequency

_ |EA/L— pQ*AL/3
r= pALJ3

An interesting situation to note is that it is possible to have a static instability
effect when the angular speed reaches

1 /3EA

Q= 0

i

To put the magnitude of this speed into perspective, the axial vibration of the

rod is given by
EA pAL2 5 _ 1 [3EA
T e w0 o W=7y

Thus the system must be rotating with an angular speed comparable to the res-
onance frequency in order to see the effect.

Matrix Form of Linear Dynamic Problems

The computer solution of the structural equations of motion is discussed in more
detail in the next chapter, but it is of value now to consider some of the major
problem types originating from our present matrix formulation.

The matrix form of the equations of motion for a linear system are

[K Hu}+[C Hat+[M i} = {P}

When the equations are written in an inertial frame, all the matrices are sym-
metric. This equation is to be interpreted as a system of differential equations
in time for the unknown nodal displacements {« }, subject to the known forcing
histories { P}, and a set of boundary and initial conditions. Generally, these re-
quire some numerical scheme for integration over time. Therefore, for transient
dynamic problems, the matrix method approach becomes computationally in-
tensive in two respects. First, a substantial increase in the number of elements
must be used in order to model the mass distribution accurately. The other is
that the complete system of equations must be solved at each time increment.
These issues are dealt with in Chapter 5.
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For the special case when the excitation force is harmonic, that is,

P, 1?1
o P P .
{P} — {P} ezwt or . — i ezwt
P, P,

(note that many of the P, could be zero) then the response is also harmonic and
given by

uy ﬁl
. U o .
{u} ={a}e" or VY= 7 bt
un ﬁn

This type of analysis is referred to as forced frequency analysis. Substituting
these forms into the differential equations gives

[ K J{a}e™ +iw[ ¢ fa}e™ —w?[ M {a}e™ = {Pe*

or, after canceling through the common time factor,

[(K]+iv[cl-w?(M][{a}={P} o [K|{a}={P}

The solution can be obtained analogous to the static problem; the difference
is that the stiffness matrix is modified by the inertia term w?[ M ] and the

complex damping term iw| C ]. The matrix [ K | is the discrete approximation
of the dynamic structural stiffness; it is frequency dependent as well as being
complex. This system of equations is now recognized as the spectral form of the
equations of motion of the structure. One approach, then, to transient problems
is to evaluate the above at each frequency and use the FFT [16] for time domain
reconstructions. This is feasible, but a more full fledged spectral approach based
on the exact dynamic stiffness is developed in Reference [23].

A case of very special interest is that of free vibrations. When the damping
is zero, this case gives the mode shapes that are very important in a modal
analysis. For free vibrations of the system, the applied loads {P} are zero giving
the equations of motion as

[K]-w’[M]]{a}=0

This is a system of homogeneous equations for the nodal displacements {4 }. For
a nontrivial solution, the determinant of the matrix of coefficients must be zero.
We thus conclude that this is an eigenvalue problem, w? are the eigenvalues and
the corresponding {4} the eigenvectors of the problem. Note that the larger the
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number of elements (for a given structure), the larger the system of equations;
consequently, the more eigenvalues we can obtain.

Once the matrices are assembled, NonStaD uses the subspace iteration scheme
[7, 22] to solve the eigenvalue problem. In this analysis, a reduced eigensystem is
established by iteration on a set of Ritz vectors. The advantage in using subspace
iteration (over vector iteration, say) is that the convergence of the subspace and
not of individual iteration vectors is achieved. Consequently, it is less likely to
miss any eigenvectors during the search.

Example 4.20: Consider the free vibration of the fixed/fixed rod shown in
Figure 4.15. Neglecting damping, use two elements to find an approximate solu-
tion.

i(x) 274 mode

Figure 4.18: Mode shapes for a fixed/fixed rod modeled with two and three elements.

We already established the equations of motion in the previous section, we will
now solve the free vibration problem. The equations of motion in full form for the
free vibration of the structure are

1 -1 0 2 10 i1
ﬁf}é -1 2 —1}-&“’;4—; 1 4 1 { ”2}:0
0 -1 1 01 2 i3

This is reduced by removing the fixed degrees of freedom. That is, the boundary
conditions are used to determine the unknown degrees of freedom as

S 2 8

ur=uz3 =0, U=1d3=0 = {uu}z{uz}, {ﬁu}:{’ilg}
Consequently, the reduced eigenvalue problem now simply becomes

2EA 2 pAL ] N
2 — —_ =
[ i w 12 ug =0

allowing the resonant frequency to be obtained as

wo Y2 [FA_ 346 [EA et = T [EA
=L pA = L pA’ exact—L pA

There is a difference of about 10% in comparison with the exact solution. However,
there is only one value computed — the two element formulation is incapable of
giving any higher resonances.
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The corresponding lumped mass result is

wo VB [BA 283 [BA
T L\ pAT L\ pA

This value is an underestimate by about the same amount that the consistent
mass is an overestimate. Thus it appears, from an accuracy point of view, there
is no significant difference between the two approaches.

The mode shape for this solution is simply {0, 1,0}. This corresponds to the
first symmetric mode of the exact solution as shown in Figure 4.18.

Now consider the same problem but this time use three elements. Using the
earlier results, the eigensystem of equations for the reduced system becomes

3EA| 2 -1 ~wszL 4 1 e —o
L |-1 2 18 |1 4 dg [

These equations can now be solved to obtain the eigenvalues. That is, the fre-
quency equation is obtained by multiplying the determinant out, and rearranging
to get

54F A 54F A

2
Gizpa ~“ N iza
The solutions of this are

First mode : w = 54/5 ﬁN?’_%?_ EA
irst m : " T T o
Second mode: w = V54 EA 735 EA

. L pA L pA

The accuracy of the first mode is improved, but also, an estimate of the second
frequency is obtained. (Note that for this problem, the numerical factor for the
theoretical solution varies as nw.) The lumped mass results are also improved

giving
i V9 [EA 30 [EA
First mode : w = T p_A ~ 2= p_A
Second mode: w= - 27 % 520 _Ei
. L pA L pA

Again, these lumped frequencies are on the lower side of theory by about the same
amount that the consistent results are higher.
The corresponding mode shapes are (irrespective of the mass matrix)

w?) =0

{a} ={0,1,1,0}, {a}s={0,1,—1,0}

It is apparent that these are estimates for the first symmetric and first anti-
symmetric mode shapes, respectively, as shown in Figure 4.18.

Example 4.21: Use a convergence study to compare the performance of the
lumped and consistent mass matrices for a plate in flexural vibration.
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B / a = 203 mm
| A b=101mm
1 AN /// h=2.5mm
Vv aluminam

Figure 4.19: Generic [4 X 8] mesh.

The generic mesh is shown in Figure 4.19. The other meshes are obtained by
dividing this. We will use the simply supported plate as the test case.

The resonance frequencies are given in Figure 4.20. In each case, the mesh
represented the complete plate and subspace iteration was used to determine the
eigenvalues.

3.0~
- 8 R o 2 e Exact
w 2.5 e a - » © Consistent
T L A Lumped
=, [
(>; 20_— & = -
S Fo° o 1: [1x2]=4
?-; 1.5 o a 2: [2x4}=16
(s F & s 3:[4x8]=64
1.0F o 8 ° .
F 4: [8x16]=256
5L = - i ®  5:[16x32)=1024
r A
- fe) A .
oL .. 4 11 1 Mesh density
1 2 3 4 5

Figure 4.20: Convergence study for the resonance frequencies of a simply supported
plate.

There is very little difference in the performance of the mass matrices except
for the very coarse meshes. Hence, we can conclude that because of the attractive
diagonal property of the lumped mass that, generally, this will be the mass matrix
of choice.

Example 4.22: Test the performance of the flat platelet modeling of a circular
cylinder.

The dimensions and mesh are shown in Figure 4.21. There are a total of 64
modules in the hoop direction and 24 in the length direction. This gives modules
that are nearly square. The boundary conditions at each end are

{uavawy(z)xad)yad)z} = {07 07 ]-a ]-7 170}

There is a rigid body mode in the z-direction. These boundary conditions corre-
spond to the problem solved in Figure 4.14.

The inset table in Figure 4.21 shows the sequence of modes obtained and are
compared with those obtained from Figure 4.14. The values are quite close thus
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n,m | Exact FEM diff
31 497 494 0.6 %
41 626 616 1.6 %
21 762 762 0.0 %
51 941 923 20 %
42 1048 1041 0.7 %
52 1143 1125 1.6 %
32 1347 1350 -0.2 %
61 1357 1328 22 %

Figure 4.21: Dimensions of cylinder with a typical mesh.

validating the faceted element modeling. Since the complete cylinder was modeled,
many of the computed modes are actually for double roots; the table only reports
results for distinct mode shapes.

Two of the mode shapes are shown in Figure 4.1. The exploded view is intended
to give a clearer picture of the three-dimensional mode. In interpreting the figure,
recall that the boundary conditions imposed are that the ends do not change in
diameter.

4.4 Modal Analysis

It is apparent that the analysis of complicated structures will involve systems
that have very many degrees of freedom and therefore are described by a large
number of equations. This is all the more true since the use of the approximate
stiffness requires subdividing a given member into many small elements. This
section develops some of the concepts that form the basis for the treatment
and understanding of the dynamical behavior of large systems. Central to this
development is the concept of the modal matriz because through it the system
can be transformed into a set of uncoupled equations. We only consider the case
when the system matrices are symmetric; nonsymmetric matrices can give rise
to complex eigenvalues and we leave some of their discussion until Chapter 7.

Orthogonality of Free Vibration Mode Shapes

When an undamped system is excited, it will continue to vibrate long after the
initial disturbance is over. Furthermore, it vibrates with a characteristic shape
(called the mode shape) governed by the following system of equations:

[ K Hut+[M]{d}=0

Since the motion is harmonic, then {u(t)} = {d}e™?, and the characteristic
shape satisfies the algebraic system of equations

[K]-AM]{a}=0 (4.13)
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where A = w?. These equations are homogeneous, hence the solutions, in general,
are zero. The only time a nontrivial solution is obtained is when the determinant
of the coefficients is zero. Thus Equation (4.13) is recognized as the familiar
eigenvalue problem; A are the eigenvalues and {@} are the eigenvectors. There
are as many eigenvalues as the order of the system of equations. That is, the
solution yields N eigenvalues A; and N corresponding eigenvectors {4 };.

It is apparent that if {4} is a solution, then a{%} is also a solution, where o
is a nonzero scalar constant. That is, the modal vector represents a shape rather
than the absolute deflection of the structure; the ratio of the elements of the
modal vector are fixed not their absolute value. If, however, one of the values is
fixed, then the eigenvector becomes unique in an absolute sense also. The process
of scaling the elements of the mode shape is called normalization; the resulting
scaled modes are called orthonormal modes. There are several methods available
for doing this, the following is a partial list:

1. The largest element is set to unity.
2. The length of the mode vector is set to unity.
3. A particular, physically significant, element is set to unity.

4. The modal mass is set to unity such that {¢}Z [ M [{d}m = Mym = 1

The first three of these are useful when the mode shapes are to be plotted. The
last of the scaling schemes is implemented in NonStaD and will be explained
presently. As a reminder that the mode shapes are some sort of normalized
version of the displacements {%}, the notation

{¢} = normalized {4}

will be used.
Consider two arbitrary, non-null vectors { v }; and { v }2. For the square matrix
[ A ] to be positive definite, we must have that the triple product

{v}{] A ]{v}1 = constant
be greater than zero. If the matrix [ A | is symmetric, we also have that
{(vHIANv={v}i[A]{vh

We will use these two important results to establish some properties of the mode
shapes.

Each mode shape will satisfy the equation of motion, that is, when substituted
into Equation (4.13) they give

(K H{o}i=X[M{d}:
Pre-multiply this by the transpose of another mode shape {¢};

{¢}§1[ KH{é}i= )\z{qﬁ}f[ Mo}
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Now write the equation for the j** mode and pre-multiply this by the transpose
of the i** mode; that is,

{6} [ K {o}i = M{oH I M {4},

Subtract these, and since the mass and stiffness matrices are symmetric, then
obtain

0=\ - M){o} [M{s};
We chose the mode shapes to be at two different natural frequencies, therefore
Ai # A; resulting in
{o} (Mo}, =0

This is a statement of the orthogonality property of the mode shapes with respect
to the mass matrix. By analogy to vector algebra, it means that the eigenvectors
are perpendicular (orthogonal) to each other, and their vector dot product is
therefore zero. It is emphasized, however, that in the present case we have a
weighting factor [ M ]. In a similar manner, it can be seen that

{¢}[K{¢};=0

also. There are cases of repeated roots; that is, the system has different modes
at the same frequency. The above development only shows that these modes are
orthogonal to all other modes but not necessarily to each other. Actually, the
eigenvectors are not unique and a linear combination of them may also satisfy
the equations of motion. In these circumstances we will prescribe that the mode
shapes associated with repeated roots be orthogonal to each other.

Modal Mass and Stiffness Matrices

If we set ¢ = j = m in the previous analysis, then the two mode shapes we
are dealing with are the same, and therefore the triple product is equal to some
nonzero constant. That is,

{QS}%[K]{qS}m = Kmm:)\mMmm:W?anm

where Mmm and R'mm are called the modal mass and modal stiffness of the mt"
mode, respectively.

These relations show that the mass and stiffness matrix can be converted to
a single constant, one for each mode, by multiplying by the mode shapes. Thus,
construct the square matrix { @ ] whose columns are the normalized mode shape

vectors as
b1 b1 01
o2 ®2 o2
[ P ] = : : cee :

én ), U on ), dn )y
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The matrix [ @ | is referred to as the modal matriz. It is a fully populated matrix
of order [N x NJ] and typically is not symmetric.

The orthogonal properties of the mode shapes and the definition of the modal
mass and stiffness can now be expressed in matrix form as

(e "m]e]=IM], [@]'[K][e]=[K]
where [ M | and [ K | are diagonal matrices of order [N x N].

Example 4.23: The simple system shown in Figure 4.22 is modeled with two
degrees of freedom. Determine the eigenvalues and eigenvectors associated with
this system if the governing equations of motion are

4 et e -{R)

u

u

— U — U2 e e e ] -

Figure 4.22: Two-degree-of-freedom system.

The spectral form of these equations for free vibration leads to the system

4-A -2 a | )0 A= o?
-2 6 — 2)\ as [ O’ -
The determinant must be zero for a nontrivial solution; thus on multiplying out
and rearranging, we get
(A=A)(6—-2\)—4=0 or AN —TA+10=0

Since this is quadratic, then the roots are

7:*:\“;9_40:%:}:%:2,5

A2 = B

Thus the ordered eigenvalues are A\; = 2 and A2 = 5. The two natural frequencies

are
wlz\//\lz\/i and U.)QZ\//\zz\/g

The mode shape for the first mode is obtained by substituting A; into the

original system to give
4—2 -2 U1 _Jo
—2 6—4 U2 L 0
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and these become, when written out separately,
2y — 202 = 0
—20;+ 20, = 0
From both equations we have that #%; = 72, thus the first mode shape is

{thh =u{oh :fh{}}

where the magnitude of 4; is arbitrary. Similarly, for the second mode we get after

substituting for A2
4-5 —2 Uy _Jo
—2 6—10 U ) 10

giving as separate equations

—Gy—242 = 0
~201 — 44, = 0
Both of these equations give 4y = A%ﬂl. Thus the second mode shape is

{a}z=m{¢}2=a1{_ﬂ}

2

Again, this has been normalized to the first displacement.

These mode shapes are shown plotted in Figure 4.22. Strictly speaking, we
should only plot the values of @; and iz, but since the orthogonality properties
are not affected by augmenting the eigenvectors with zeros, then a clearer picture
is obtained by incorporating the zero displacement at the attachment points.

Example 4.24: Show that the eigenvectors of the previous example are or-
thogonal.
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