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The subject of this book is the stability of structures subjected to external

loading that induces compressive stresses in the body of the structures. The
structural elements examined are beams, columns, beam-columns, frames,
rectangular plates, circular plates, cylindrical shells, and general shells.
Emphasis is on understanding the behavior of structures in terms of load-
displacement characteristics; on formulation of the governing equations;
and on calculation of the critical load.

Buckling is essentially flexural behavior. Therefore, it is imperative to
examine the condition of equilibrium in a flexurally deformed configura-
tion (adjacent equilibrium position). The governing stability equations are
derived by both the equilibrium method and the energy method based on
the calculus of variations invoking the Trefftz criterion.

Stability analysis is a topic that fundamentally belongs to nonlinear
analysis. The fact that the eigenvalue procedure in modern matrix and/or
finite element analysis is a fortuitous by-product of incremental nonlinear
analysis is a reaffirming testimony. The modern emphasis on fast-track
education designed to limit the number of required credit hours for core
courses in curriculums left many budding practicing structural analysts with
gaping gaps in their understanding of the theory of elastic stability. Many
advanced works on structural stability describe clearly the fundamental
aspects of general nonlinear structural analysis. We believe there is a need for
an introductory textbook such as this, which will present the fundamentals
of structural stability analysis within the context of elementary nonlinear
flexural analysis. It is believed that a firm grasp of these fundamentals and
principles is essential to performing the important interpretation required of
analysts when computer solutions are adopted.

The book has been planned for a two-semester course. The first chapter
introduces the buckling of columns. It begins with the linear elastic theory
and proceeds to include the effects of large deformations and inelastic
behavior. In Chapter 2 various approximate methods are illustrated along
with the fundamentals of energy methods. The chapter concludes by
introducing several special topics, some of them advanced, that are useful in
understanding the physical resistance mechanisms and consistent and
rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-
columns. Chapter 5 presents torsion in structures in some detail, which is
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one of the least-well-understood subjects in the entire spectrum of structural
mechanics. Strictly speaking, torsion itself does not belong to a work on
structural stability, but it needs to be covered to some extent if one is to have
a better understanding of buckling accompanied with torsional behavior.
Chapters 6 and 7 consider stability of framed structures in conjunction with
torsional behavior of structures. Chapters 8 to 10 consider buckling of plate
elements, cylindrical shells, and general shells. Although the book is devoted
primarily to analysis, rudimentary design aspects are also discussed.

The reader is assumed to have a good foundation in elementary
mechanics of deformable bodies, college-level calculus, and analytic
geometry, and some exposure to differential equations. The book is
designed to be a textbook for advanced seniors and/or first-year graduate
students in aerospace, civil, mechanical, engineering mechanics, and
possibly naval architects and shipbuilding fields and as a reference book for
practicing structural engineers.

Needless to say, we have relied heavily on previously published work.
Consequently, we have tried to be meticulous in citing the works and hope
that we have not erred on the side of omission.
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1.1. INTRODUCTION

A physical phenomenon of a reasonably straight, slender member (or body)
bending laterally (usually abruptly) from its longitudinal position due to
compression is referred to as buckling. The term buckling is used by engi-
neers as well as laypeople without thinking too deeply. A careful exami-
nation reveals that there are two kinds of buckling: (1) bifurcation-type
buckling; and (2) deflection-amplification-type buckling. In fact, most, if
not all, buckling phenomena in the real-life situation are the deflection-
amplification type. A bifurcation-type buckling is a purely conceptual one
that occurs in a perfectly straight (geometry) homogeneous (material)
member subjected to a compressive loading of which the resultant must pass

Stability of Structures © 2011 Elsevier Inc.
ISBN 978-0-12-385122-2, doi:10.1016/B978-0-12-385122-2.10001-6 All rights reserved. 1 ‘
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though the centroidal axis of the member (concentric loading). It is highly
unlikely that any ordinary column will meet these three conditions perfectly.
Hence, it is highly unlikely that anyone has ever witnessed a bifurcation-
type buckling phenomenon. Although, in a laboratory setting, one could
demonstrate setting a deflection-amplification-type buckling action that is
extremely close to the bifurcation-type buckling. Simulating those three
conditions perfectly even in a laboratory environment is not probable.

Structural members resisting tension, shear, torsion, or even short
stocky columns fail when the stress in the member reaches a certain
limiting strength of the material. Therefore, once the limiting strength of
material is known, it is a relatively simple matter to determine the load-
carrying capacity of the member. Buckling, both the bifurcation and the
deflection-amplification type, does not take place as a result of the resisting
stress reaching a limiting strength of the material. The stress at which
buckling occurs depends on a variety of factors ranging from the
dimensions of the member to the boundary conditions to the properties of
the material of the member. Determining the buckling stress is a fairly
complex undertaking.

If buckling does not take place because certain strength of the material is
exceeded, then, why, one may ask, does a compression member buckle?
Chajes (1974) gives credit to Salvadori and Heller (1963) for clearly eluci-
dating the phenomenon of buckling, a question not so easily and directly
explainable, by quoting the following from Structure in Architecture:

A slender column shortens when compressed by a weight applied to its top, and,
in so doing, lowers the weight's position. The tendency of all weights to lower their
position is a basic law of nature. It is another basic law of nature that, whenever
there is a choice between different paths, a physical phenomenon will follow the
easiest path. Confronted with the choice of bending out or shortening, the column
finds it easier to shorten for relatively small loads and to bend out for relatively
large loads. In other words, when the load reaches its buckling value the column
finds it easier to lower the load by bending than by shortening.

Although these remarks will seem excellent to most laypeople, they do
contain nontechnical terms such as choice, easier, and easiest, flavoring the
subjective nature. It will be proved later that buckling is a phenomenon that
can be explained with fundamental natural principles.

If bifurcation-type buckling does not take place because the afore-
mentioned three conditions are not likely to be simulated, then why, one
may ask, has so much research effort been devoted to study of this
phenomenon? The bifurcation-type buckling load, the critical load, gives
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the upper-bound solution for practical columns that hardly satisfies any one
of the three conditions. This will be shown later by examining the behavior
of an eccentrically loaded cantilever column.

1.2. NEUTRAL EQUILIBRIUM

The concept of the stability of various forms of equilibrium of a compressed
bar is frequently explained by considering the equilibrium of a ball (rigid-
body) in various positions, as shown in Fig. 1-1 (Timoshenko and Gere
1961; Hoff 1956).

Although the ball is in equilibrium in each position shown, a close
examination reveals that there are important differences among the three
cases. If the ball in part (a) is displaced slightly from its original position of
equilibrium, it will return to that position upon the removal of the dis-
turbing force. A body that behaves in this manner is said to be in a state of
stable equilibrium. In part (a), any slight displacement of the ball from its
position of equilibrium will raise the center of gravity. A certain amount of
work is required to produce such a displacement. The ball in part (b), if it is
disturbed slightly from its position of equilibrium, does not return but
continues to move down from the original equilibrium position. The
equilibrium of the ball in part (b) is called unstable equilibrium. In part (b),
any slight displacement from the position of equilibrium will lower the
center of gravity of the ball and consequently will decrease the potential
energy of the ball. Thus in the case of stable equilibrium, the energy of the
system is a minimum (local), and in the case of unstable equilibrium it is
amaximum (local). The ball in part (c), after being displaced slightly, neither
returns to its original equilibrium position nor continues to move away
upon removal of the disturbing force. This type of equilibrium is called
neutral equilibrium. If the equilibrium is neutral, there is no change in
energy during a displacement in the conservative force system. The
response of the column is very similar to that of the ball in Fig. 1-1. The
straight configuration of the column is stable at small loads, but it is unstable
at large loads. It is assumed that a state of neutral equilibrium exists at the

(@) (b) (c)

Figure 1-1 Stability of equilibrium
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transition from stable to unstable equilibrium in the column. Then the load
at which the straight configuration of the column ceases to be stable is the
load at which neutral equilibrium is possible. This load is usually referred to
as the critical load.

To determine the critical load, eigenvalue, of a column, one must find
the load under which the member can be in equilibrium, both in the
straight and in a slightly bent configuration. How slightly? The magnitude
of the slightly bent configuration is indeterminate. It is conceptual. This is
why the free body of a column must be drawn in a slightly bent configu-
ration. The method that bases this slightly bent configuration for evaluating
the critical loads is called the method of neutral equilibrium (neighboring
equilibrium, or adjacent equilibrium).

At critical loads, the primary equilibrium path (stable equilibrium,
vertical) reaches a bifurcation point and branches into neutral equilibrium
paths (horizontal). This type of behavior is called the buckling of bifurcation

type.

1.3. EULER LOAD

It is informative to begin the formulation of the column equation with
a much idealized model, the Euler' column. The axially loaded member
shown in Fig. 1-2 is assumed to be prismatic (constant cross-sectional area)
and to be made of homogeneous material. In addition, the following further
assumptions are made:

1. The member’s ends are pinned. The lower end is attached to an
immovable hinge, and the upper end is supported in such a way that it
can rotate freely and move vertically, but not horizontally.

2. The member is perfectly straight, and the load B considered positive
when it causes compression, is concentric.

3. The material obeys Hooke’s law.

4. The deformations of the member are small so that the term (/) is
negligible compared to unity in the expression for the curvature,

Y+ )2]3/ > Therefore, the curvature can be approximated by /. >

1 The Euler (1707-1783) column is due to the man who, in 1744, presented the first accurate column
analysis. A brief biography of this remarkable man is given by Timoshenko (1953). Although it is
customary today to refer to a simply supported column as an Euler column, Euler in fact analyzed
a flag-pole-type cantilever column in his famous treatise according to Chajes (1974).

2 yand ' denote the first and second derivatives of y with respect to x. Note: 'l < /| but
[)'| = thousandths of a radian in elastic columns.
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Figure 1-2 Pin-ended simple column
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From the free body, part (b) in Fig. 1-2, the following becomes immediately
obvious:

ED = —M(x) = =Py or EI/+Py =0 (1.3.2)

Equation (1.3.2) is a second-order linear differential equation with
constant coefficients. Its boundary conditions are

y=0 atx =0 and x =/ (1.3.3)

Equations (1.3.2) and (1.3.3) define a linear eigenvalue problem. The
solution of Eq. (1.3.2) will now be obtained. Let k> = P/EI, then
' + k?y = 0. Assume the solution to be of a form y = ae"™ for which
Y = ame™ and y' = am?e"™. Substituting these into Eq. (1.3.2) yields
(m? + K )ae™ = 0.

Since ae™ cannot be equal to zero for a nontrivial solution,
m” + k> = 0, m = %ki. Substituting gives

y=C ad™ + Crae ™™ = A cos kx + Bsin kx

A and B are integral constants, and they can be determined by boundary
conditions.
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y=0 ax=0=A=0

y=0 atx = {=Bsinkl =0

As B # 0 (if B = 0, then it is called a trivial solution; 0 = 0),
sinkl = 0=kl = nm
where n =1, 2,3, ...butn # 0. Hence, k* = P/EI = n27r2/€2, from
which it follows immediately
2,2
n“mEIl

Po=—p— (n=123.) (1.3.4)
The eigenvalues P, called critical loads, denote the values of load Pfor which
anonzero deflection of the perfect column is possible. The deflection shapes
at critical loads, representing the eigenmodes or eigenvectors, are given by

y = Bsin % (1.3.5)

Note that B is undetermined, including its sign; that is, the column may
buckle in any direction. Hence, the magnitude of the buckling mode shape
cannot be determined, which is said to be immaterial.
The smallest buckling load for a pinned prismatic column corresponding
ton=11s
wEl

=0 (1.3.6)

If a pinned prismatic column of length ¢ is going to buckle, it will buckle at
n =1 unless external bracings are provided in between the two ends.

A curve of the applied load versus the deflection at a point in a structure
such as that shown in part (a) of Fig. 1-3 is called the equilibrium path. Points
along the primary (initial) path (vertical) represent configurations of the
column in the compressed but straight shape; those along the secondary path
(horizontal) represent bent configurations. Equation (1.3.4) determines
a periodic bifurcation point, and Eq. (1.3.5) represents a secondary (adjacent or
neighboring) equilibrium path for each value of n. On the basis of Eq. (1.3.5),
the secondary path extends indefinitely in the horizontal direction. In reality,
however, the deflection cannot be so large and yet satisfies the assumption of
rotations to be negligibly small. As P in Eq. (1.3.4) is not a function of y, the
secondary path is horizontal. A finite displacement formulation to be discussed
later shows that the secondary equilibrium path for the column curves upward
and has a horizontal tangent at the critical load.
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Figure 1-3 Euler load and critical stresses

Note that at P, the solution is not unique. This appears to be at odds
with the well-known notion that the solutions to problems of classical linear
elasticity are unique. It will be recalled that the equilibrium condition is
determined based on the deformed geometry of the structure in part (b) of
Fig. 1-2. The theory that takes into account the effect of deflection on the
equilibrium conditions is called the second-order theory. The governing
equation, Eq. (1.3.2), is an ordinary linear differential equation. It describes
neither linear nor nonlinear responses of a structure. It describes an
eigenvalue problem. Any nonzero loading term on the right-hand side of
Eq. (1.3.2) will induce a second-order (nonlinear) response of the structure.

Dividing Eq. (1.3.4) by the cross-sectional area A gives the critical
stress

P, wEI wEA? ©E

CTAT A T A T () (137

where £/r is called the slenderness ratio and r = \/I/A is the radius of
gyration of the cross section. Note that the critical load and hence, the
critical buckling stress is independent of the yield stress of the material. They
are only the function of modulus of elasticity and the column geometry. In
Fig. 1-3(b), C. is the threshold value of the slenderness ratio from which
elastic buckling commences.

w2 El
EQ

. . NTX
eigenvector = y = BsmT

eigenvalue = P, =
eigen pair
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1.4. DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS

Bifurcation-type buckling is essentially flexural behavior. Therefore, the
free-body diagram must be based on the deformed configuration as the
examination of equilibrium is made in the neighboring equilibrium
position. Summing the forces in the horizontal direction in Fig. 1-4(a)
gives

> F,=0=(V+dV)— V4 qdx, from which it follows immediately

dv
— =1 = —q(x) (1.4.1)
dx

Summing the moment at the top of the free body gives

d
S My = 0 = (M +dM) — M + de—i—de—q(dx)Ex

(a) (b)
A P A P
%A\/Ij am /f\‘M +dM
X
vedvy K A
V+dv
dx dx
v UL T
q(x) M l > M
PTay dy P
> VY >
(c) (d)
b b
P P
M + dM M+ dM
q() V+dv
7 _ —
veav] T
dx dx
(VY LA W
M | q(x) M
P dy dy P
>y > )

Figure 1-4 Free-body diagrams of a beam-column
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Neglecting the second-order term leads to

M d
+p2 =

— = -V 1.4.2
dx dx ( )

Taking derivatives on both sides of Eq. (1.4.2) gives
M+ (P = -V (1.4.3)

Since the convex side of the curve (buckled shape) is opposite from the
positive y axis, M = EI)’. From Eq. (1.4.1), /= —q(x). Hence,
(ED")" + (Py')' = q(x). For a prismatic (EI = const) beam-column
subjected to a constant compressive force B the equation is simplified to

EL" + Py = ¢q(x) (1.4.4)

Equation (1.4.4) is the fundamental beam-column governing differential
equation.

Consider the free-body diagram shown in Fig. 1-4(d). Summing forces
in the y direction gives

dv
B =0=—(V+dv)+ Vit gde == = V= q(x) (1.4.5)

Summing moments about the top of the free body yields

> Mgy =0

= —(M +dM) + M — Vdx — Pdy — qdxdx/2=

dM d
p v _

=V 1.4.6
dx dx ( )

For the coordinate system shown in Fig. 1-4(d), the curve represents
a decreasing function (negative slope) with the convex side to the positive y
direction. Hence, —EIY = M(x). Thus,

—(=ED"Y - (-P/) = 1V (1.4.7)
which leads to
EL" +PyY =V or EDR"+DPY = q(x) (1.4.8)

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 1-4(c)
will lead to Eq. (1.4.4). Hence, the governing differential equation is inde-
pendent of the shape of the free-body diagram assumed.
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The homogeneous solution of Eq. (1.4.4) governs the bifurcation
buckling of a column (characteristic behavior). The concept of geometric
imperfection (initial crookedness), material heterogeneity, and an eccen-
tricity is equivalent to having nonvanishing ¢(x) terms.

Rearranging Eq. (1.4.4) gives

p

ED" + Py = 0=y" + 1" =0, wherek? = =

1X

Assuming the solution to be of a form y = ae™, then ) = ame™,
/! 2 mx _ M

V' = ame™, Y = am’e™, and y" = am’e*. Substituting these derivatives
back to the simplified homogeneous differential equation yields

am4en1x+ak2m26mx — )= aenlx(m4+k2m2) -0
Since  # 0 and " # 0 = m*(m> +k*) = 0= m = £0, ki Hence,

y, = Cleklx_{_qefktx —|—C3.’X?€O + 6460

L =1
Know the mathematical identities § ¢** = cos kx + i sin kx
ek = cos kx — isin kx

Hence, y;, = Asin kx + B cos kx + Cx + D where integral constants A,
B, C, and D can be determined uniquely by applying proper boundary
conditions of the structure.

Example 1 Consider a both-ends-fixed column shown in Fig. 1-5.

DN
Q0 o

V/

Figure 1-5 Both-ends-fixed column
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¥ = Ak cos kx — Bksin kx + C

V' = —Ak* sin kx — BkZkx

y=0 aax=0=B+D=0

Y =0 atx=0=Ak+C =0

y=0 atx={0= Asinkl+ Bcoskl+ Cl+D = 0
Yy =0 atx ={ = Akcoskl — Bksinkl +C = 0

For a nontrivial solution for A, B, C, and D (or the stability condition
equation), the determinant of coefficients must vanish. Hence,

0 1 0 1
k 0 1 0
Det = =0
sin k¢ cos k{ {1
kcoskl —ksinklé 1 0
Expanding the determinant (Maple®) gives
2(cos kl — 1) + klsin kl = 0
Know the following mathematical identities:
. [kl Kkl ke kf kl kL ke kf
sin ¢/ = sin| —+—) = sin — cos — 4+ cos —sin — = 2 sin — cos —
2 2 2 2 2 2 2 2
kl kY kf ke Rkl R .ok
coskl = cos| —+—| = cos—cos— —sin—sin— = 1 — 2sin” —
2 2 2 2 2 2 2
k¢
=coskl —1 = =2 sinzg

Rearranging the determinant given above yields:

k{ 13 13
2<— 2 sin® > + kf(Z sincos) =0
2 2 2

kO kE kl ke
=sin—|—cos——sin— | = 0
2\ 2 2 2
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Let u = k{/2, then the solution becomes sinu = 0 or tanu = u.
For sinu=0= u= nm or k{ = 2nmw = P, = 4n’>7>EI/{?>. Substituting
the eigenvalue k = 2n7/{ into the buckling mode shape yields
. 2nmx 2nTx
Yy =aqa smT—{— 1%) cosT—}- X+
y=0atx=0=0=0+a =« = —c Hence, y = ¢ sin(2nmx/l)+
o (cos (2nmx/€) — 1) + c3x

y=0atx =4=0 = ¢ sin2nm+ (cos2nm — 1)+l =3 = 0

, 2nm . 2nmx 2nm 2nmx
y = ——sin —— 1 cos

l 4 { ¢

, , 2nm
Yy =0 atx = 0=y :O—|—7q=>c1 =0

Hence,y = ¢(cos (2nmx/{) — 1) <= eigenvector or mode shape as shown

in Fig. 1-6.
mEl  wEl

o @ T @y

where £, = /2 is called the effective buckling length of the column. For
tan u = u, the smallest nonzero root can be readily computed using Maple®.

Ifn=1,

In the old days, it was a formidable task to solve such a simple transcendental
equation. Hence, a graphical solution method was frequently employed, as
shown in Fig. 1-7.

- ’

Figure 1-6 Mode shape, first mode
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1 rd
/ 4.5

0 1 2 3 4 5 6
X

Figure 1-7 Graphical solution

y

[y

< —— \\P
\\

0.3495¢

Figure 1-8 Mode shape, second mode
From Maple® output, the smallest nonzero root is

Kl
u = 4.4934094 = 5 = 4.493 = kl = 8.9868 = k*/> = 80.763

_ 80.763EI _ 8.183w°EI _ wEIl w2 El

“ Iz 2 (0.3495780)*  [0.699156(0.5¢)]*

The corresponding mode shape is shown in Fig. 1-8.
Example 2 Consider propped column as shown in Fig. 1-9.
y = Asin kx 4+ Bcos kx + Cx + D
Yy = Ak cos kx — Bksin kx + C
V" = —Ak? sin kx — Bk? cos kx
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0.699/¢

7
|

X
Figure 1-9 Propped column

y=0 atx=0=B+D =20

V' =0 atx=0=B=0=D=0

1
y=0 atx ={L=Asinkl+Cl =0=C = —Zsink&‘l

Y =0 atx =/f=akcoskl+C = 0=C = —Akcos kl

Equating for C gives —Ak cos kl = —A%sin kl = tan kl = kf
Let u = kf = tanu = u, then from the previous example, u = 4.9340945

kl = 4.934 = \/ﬁé
EI

_ 20.19EI  2.045757EI  wEl
¢ 2 r (0.699155¢)*

Substituting the eigenvalue of k = 4.934// into the eigenvector gives

) A . . [(4.934x 1.
y = Asin kx — <Zsm kﬂ)x = A[sm( 7 ) — <Zsm 4.934)96}

[—0.30246 — (—9.7755 x 107" x 0.699155)]
(0.3796) > 0

)’i|x:0.699£ =4
= A
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Summing the moment at the inflection point yields

20.19EI
D Moo = 0 = 5 A(0.3796) — R(0.6991550) =

EI
R =11 €—3A¢O
For W10 x 49, [,=934 in4, r,=2.54 1in, say ¢ =25 ft =300 in,
Area =144 in’
If it is assumed that this column has initial imperfection of £/250 at the
inflection point, then

Then, R = 11 x ((29 x 10° x 93.4)/300%) x 1.758 = 1.94 kips

k(1% 0.699155 x 300 . .
= = T = 82.6 =F, = 15.6ksi = P, = 224.6 kips
r .

R = 1.94/224.6 x 100 = 0.86% < 2% <= rule of thumb

1.5. EFFECTS OF BOUNDARY CONDITIONS ON THE
COLUMN STRENGTH

The critical column buckling load on the same column can be increased in
two ways.
1. Change the boundary conditions such that the new boundary condition
will make the effective length shorter.
(a) pinned-pinned = ¢, = /¢
(b) pinned-fixed = ¢, =0.7 ¢
(c) fixed-fixed = ¢,=0.5/
(d) flag pole (cantilever) = ¢, = 2.0 ¢, etc.
2. Provide intermediate bracing to make the column buckle in higher
modes = achieve shorter effective length.
Consider an elastically constrained column AB shown in Fig. 1-10.
The two members, AB and BC, are assumed to have identical member
length and flexural rigidity for simplicity. The moments, m and M, are due
to the rotation at point B and possibly due to the axial shortening of member
AB.
Since Q = (M + m)/l <<< py, Qs set equal to zero and the effect
of any axial shortening is neglected.
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1
1
<1/ /e
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P+Q
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~
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mil——— > y m/l —»T—> y
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Figure 1-11 Free body of column

Summing moment at the top of the free body gives

(from the left free body) (from the right free body)
M(x)—l—Py—%:O M(x)—P(—y)—%:O
ED' = —M(x) = — (Py - ”f;) ED = M(x) = —Py+ %

As expected, the assumed deformed shape does not affect the Governing
Differential Equation (GDE) of the behavior of member AB.

" mx
EIY' + Py = =~

Let k> = P/EI=)" + K’y = (mx/LP) K
The general solution to this DE is given

m
= Asink B k —
y sin kx + B cos x—i-épx
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y=0 atx=0=B=0

=0 ax=/~=A= "
= = ~ Psinkf
_omfx sin kx < buckl; de sh
Y =5\ s uckling mode shape
Since joint B is assumed to be rigid, continuity must be preserved. That is
dy| _ dy
dx col Bl dx bm

d m({1 kcoskx mf1 k

i x_fﬁ(ZTnke ) ﬁ(rm)
_om (1 1
_@<@_tank€>

14
for beam—y =60y = "

dx|x=0 E

Recall the slope deflection equation: m = (2EI/{)(20N + #% — .3p) =
On = ml/4EI

Equating the two slopes at joint B gives

ml m (1 1 L. . ..
— = —|=- < Note the direction of rotation at joint B!
4EI kEI\k{  tan kf

If the frame is made of the same material, then
A A T
4, KL\l tankl) "

kﬁi I,/ 1 1
4 L\kl tank{

) < stability condition equation

Rearranging the stability condition equation gives

kU1, 1 1 1 1 k0L 4L+ (k0L
= —— + = — = — = " =
41, k¢ tankf tankf kl 41, kl41,
4k,
tan k

T4+ (k0L



18 Chai Yoo

2
wE]
Ifl, = 0, then P, = 7 ‘
212 ElL
If I, = o, then P, = £—2f

For Iy = I, then tan kl = 4kl/(4 + (k£)?), the smallest root of this equa-
tion is k¢ = 3.8289.

_ 14.66EI. _ 1.485mEL
Py = 02 - 02

= as expected 1 < 1.485 < 2.

1.6. INTRODUCTION TO CALCULUS OF VARIATIONS

The calculus of variations is a generalization of the minimum and maximum
problem of ordinary calculus. It seeks to determine a function, y = f(x), that
minimizes/maximizes a definite integral

X2
I:/ F(x, 3,5, oo ) (1.6.1)

which is called a functional (function of functions) and whose integrand
contains y and its derivatives and the independent variable x.

Although the calculus of variations is similar to the maximum and
minimum problems of ordinary calculus, it does differ in one important
aspect. In ordinary calculus, one obtains the actual value of a variable for
which a given function has an extreme point. In the calculus of variations,
one does not obtain a function that provides extreme value for a given

Figure 1-12 Deformed shape of column (in neighboring equilibrium)
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integral (functional). Instead, one only obtains the governing differential
equation that the function must satisfy to make the given function have
a stationary value. Hence, the calculus of variations is not a computational
tool, but it is only a device for obtaining the governing difterential equation
of the physical stationary value problem.

The bifurcation buckling behavior of a both-end-pinned column
shown in Fig. 1-12 may be examined in two different perspectives.
Consider first that the static deformation prior to buckling has taken place
and the examination is being conducted in the neighboring equilibrium
position where the axial compressive load has reached the critical value
and the column bifurcates (is disturbed) without any further increase of
the load. The strain energy stored in the elastic body due to this flexural

1 1 [ (ED
U= g/v gledv = 5/(%0 0/"y)dv

_E AV 2 _EI E//Z
—E/é(y)/A(y)dAdZ—?/)(y)dx (1.6.2)

action 1s

In calculating the strain energy, the contributions from the shear strains are
generally neglected as they are very small compared to those from normal
strains.”

Neglecting the small axial shortening prior to buckling (A; < &/ where
€ < 0.0005"/", hence, A; < 0.05 % of £), the vertical distance, A, due to
the flexural action can be computed as

l l l
Ab:/ds—ﬁz/ \/dx2—|—dy2—€:/ 1+ 0/)dx — ¢
0 0 0
l 1 1 l
= / [1 +—(yl)2] dx — 0 = —/ (/)2 dx
0 2 2 Jo
Hence, the change (loss) in potential energy of the critical load is

l
vV = —lp/ (/) dx (1.6.3)
2 Jo

3 Of course, the shear strains can be included in the formulation. The resulting equation is called the
differential equation, considering the effect of shear deformations.
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and the total potential energy functional becomes

EI (Y 2 1 (' 2
1:H:U+V:7/ 0" dx—EP/ (/) dx (1.6.4)
0 0

Now the task is to find a function, y = f{x) which will make the total
functional, 7, have a stationary value.

oI = 6(U+ V)

= 0 < necessary condition for equilibrium or stationary value

> (0 < minimum value or stable equilbrium
6%IT { < 0 < maximum value or unstable equilbrium

=0 < neutral or neutral equilibrium

< sufficient condition

If one chooses an arbitrary function, y(x), which only satisfies the
boundary conditions (geometric) and lets y(x) be the real exact function, then

Y(x) = y(x) +en(x) (1.6.5)

where ¢ = small number and 7(x) = twice differentiable function satisfying
the geometric boundary conditions. A graphical representation of the above
statement is as follows:

() =y(x) +&n(x)

Figure 1-13 Varied path

If one expresses the total potential energy functional in terms of the
generalized (arbitrarily chosen) displacement, ¥(x), then

CTEI , P 5
nIn=uU+Vv = / [?(y" +en’)” — E(y’ + &) | dx (1.6.6)
0

Note that  is a function of ¢ for a given n(x) . If ¢ = 0, then y(x) = y(x),
which is the curve that provides a stationary value to 7. For this to happen
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— 0 (1.6.7)

dU+ V)
e=0

de

Difterentiating Eq. (1.6.6) under the integral sign leads to

AU+ 1)

l
e /0 [EIG" +en")n" — PO/ + e )y']dx

Making use of Eq. (1.6.7) yields
l
/ (ED"n" — Py'n')dx = 0 (1.6.8)
0
To simplify Eq. (1.6.8) further, use integration by parts. Consider the second

term in Eq. (1.6.8).
Letu =y, du =), dv = n/dx,v = q (fudv = W—fvdu)

¢ / ¢
/ ynlde = y'n| — / ny" dx
0 0 0

l
= —/ ny"dx (7 satisfies the geometric bc’s) (a)
0

Similarly,

4

¢ o /Z n/y///dx _ y//n/ _y///n
0 0 0

4 I
+ / ylﬂndx
0 0

(b)

/Zy”n”dx — y//n/
0

Equations (a) and (b) lead to

‘ . l
/ (ED" + Py"\ndx + (ELY'n))| =0 (1.6.9)
0 0

Except n(0) = n(f) = 0, n(x) is completely arbitrary and therefore nonzero;
hence, the only way to hold Eq. (1.6.9) to be true is that each part of
Eq. (1.6.9) must vanish simultaneously. That is

‘ , 14
/ (ED" + Py"\ndx = 0 and (ED'9)| =0
0 0

Since 1/(0), 7’(1), and n(x) are not zero and 7' (0) # 7'(f), it follows that
y(x) must satisfy
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E" + P =0« Euler-Lagrange differential equation (1.6.10)
EIy"\x:0 = 0 < natural boundary condition (1.6.11)

EIy”|x:£ = 0 < natural boundary condition (1.6.12)

It is recalled that one imposed the geometric boundary conditions, y(0) =
¥() = 0 at the beginning; however, it can be shown that these conditions are
notnecessarily required. Shames and Dym (1985) elegantly explain the case for
the problem that has the properties of being self-adjoint and positive definite.

The governing differential equation can be obtained either by (1)
considering the equilibrium of deformed elements of the system or (2) using
the principle of stationary potential energy and the calculus of variations.
For a simple system such as a simply supported column buckling, method
(1) 1s much easier to apply, but for a complex system such as cylindrical or
spherical shell or plate buckling, method (2) is preferred as the concept is
almost automatic although the mathematical manipulations involved are
fairly complex. In dealing with the total potential energy, the kinematic (or
geometric) boundary conditions involve displacement conditions (deflec-
tion or slope) of the boundary, while natural boundary conditions involve
internal force conditions (moment or shear) at the boundary.

Example 1 Derive the Euler-Lagrange differential equation and the
necessary kinematic (geometric) and natural boundary conditions for the
prismatic cantilever column with a linear spring (spring constant «) attached
to its free end shown in Fig. 1-14.

The strain energy stored in the deformed body is

/
U = E/ ") dx + () (1.6.13)
2 J, 2

«—p—X

®

a

NN

e

Figure 1-14 Cantilever column with linear spring tip



Buckling of Columns 23

The loss of potential energy of the external load due to the deformation to
the neighboring equilibrium position is

p (o,
V:——/ (/) dx (1.6.14)
2 Jo

Hence, the total potential energy functional becomes

EI [f p [t
on=u+Vv :—/ (y”)zdx—i—g(yg)z——/ (/) dx
2 /s 2 2 Jo

or

I = /OZ [%(y”)z - g(y')z} dx + g(yg)2 (1.6.15)

The total potential energy functional must be stationary if the first variation
oIl = 0. Since the differential operator and the variational operator are
interchangeable, one obtains

¢
ol = / (ED/6y" — Py'6y')dx + ayyby, = 0 (1.6.16)
0

Integrating by parts each term in the parenthesis of Eq. (1.6.16) yields

¢ Y] / ¢
/ EDR'oy"dx = [ELY'oy'] — [ED/"6y] + / EY oydx  (1.6.17)
0 0 0 0

1 /¢ 1
- / Pyoy'dx = —[PYdy] + / Py oydx (1.6.18)
0

0 0
[t becomes obvious by inspection of the sketch that (1) the deflection and
slope must be equal to zero due to the unyielding supportat A (x = 0) and the
variation will also be equal to zero, that is, y, = 0, ), = Oand
6y, = 0, 6y, = 0, and (2) the moment and its variation must also be equal
to zero due to the roller support at B (x = £), thatis, ), = Oand 6y = 0
where the subscripts 0 and £ represent the values at A (x = 0) and B (x = ¢),
respectively. The first and second term of Eq. (1.6.17) can be written,
respectively, as

¢
[Ely”éy’]o = Elyjoy, — EIyjéy, = 0
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and
1 g /" /" /1
— [Ey" oy . —Ely, 0y, + Elyg 0y, = —EDYy 0y,.

The first term of Eq. (1.6.18) can be written as

l
—[PYoy] = —Pidye+ Bodyo = —Pyidy
Equation (1.6.16) may now be rearranged

l
om = (ay, — EDY)' — Py))dy, +/ (EL'" + Py")oydx = 0 (1.6.19)
0

It is noted here in Eq. (1.6.19) that 0y, is not zero. In order for Eq. (1.6.19)
to be equal to zero for all values of 3y between x = 0 and x = ¢, it is required
that the function y must satisfy the Euler-Lagrange differential equation (the
integrand inside the parenthesis)

EY +py =0 (1.6.20)

and additional condition
oyp — EIyZ/ - Pylg =0 (1.6.21)

must be met.

Equation (1.6.21), along with the condition yZ = 0, are the natural
boundary conditions of the problem, and y (and/or dy,) = 0 ), (and/
or 0y,) = 0 are the geometric boundary conditions of the problem.
Hence, four boundary conditions are available as required for a fourth-order
differential equation. The sum of all of the expanded integral terms at the
end points consisting of a multiple of the geometric boundary conditions
and/or the natural boundary conditions is collectively called a conjunct or
a concomitant and is equal to zero for all positive definite and self-adjoint
problems.

1.7. DERIVATION OF BEAM-COLUMN GDE USING
FINITE STRAIN

Recall the following Green-Lagrange finite strain:

1
i = S(uij & wj & g ) (1.7.1)

_%_‘_1 %2_{_ %24_ duzzc ial strai (172)
Cx = o~ 2o ™ . axial strain 7.
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/g >
w(x)
—P> 3 45— — X
VAN s
y Prismatic member

Figure 1-15 Beam-column model

where (duy/dx)> =0 (considered to be a higher order term) and

(dus/ dx)2 = 0 (only uniaxial bending is considered here). For the given
coordinate system in the sketch, the axial strain due to bending is

dzuy
e = =3V (1.7.3)
dx
where dzuy /dx> = 1/p is the curvature of the elastic curve. The sum of
axial strains due to axial force and flexure constitutes the total normal strain.
Hence,
du, 1 (du, 2 d2uy
Exx = €+ e = —4+—-|—| ——— 1.7.4
= T dx 2 ( dox a2 ( )

The strain energy stored in the elastic body becomes

2
1 T E [, E duy dzuy 1 (duy, 2
U=- dv = — dv=— ——y—=+=| — d
2/0” 2/V%V Z/V[d Y2 T2\ i Y
du d>uy, ? 5 A A\t duy dPuy
X (2) =X 1.7.5
/ /[< > <dx2> Y Jr4<dx> dx dx? e ( )
d“uy, (du, duy (duy, 2
——— —|—| |dAd
dx2<dx> rE dx(dx) ~

Neglecting the higher order term and integrating over the cross-

sectional area 4 while noting all integrals of the form [ ydA to be zero as y is
measured from the centroidal axis, one gets

EA(du,\*> EI(d*uw\ EA du, (du,\>
U = — | — d 1.7.6
/p|: <dx) Ty (dx + 2 dx \ dx * ( )

The loss of potential energy of the applied transverse load is

V= —/wuydx (1.7.7)
¢
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Hence, the total potential energy functional of the system becomes

EA(du,\*> EI(d*u\ EA du, (du,\>
I=U+V = — (== —\—+=——(—=] - d
+ /g|:2<dx> +2<dx2 +2 dx \ dx el

(1.7.8)
or
EA(du\?> EI(d*uw,\ P [du\?
IH=U+V = ——= ——= | —=—] - d
+ /g|:2<dx> +2<dx2 2\ dx el
(1.7.9)

Note that P = ¢4 = EAe, = EA(duy/dx), which is called the stress
resultant. The negative sign corresponds to the fact that Pis in compression.
The quantity inside the square bracket, the integrand, is denoted by E
Applying the principle of the minimum potential energy (or applying the
Euler-Lagrange differential equation), one obtains

EA EI P
F="()+=0"> -0/ —w (1.7.10)
2 2 2
where u = u, y = u,, .
Recall the Euler-Lagrange DE (see Bleich 1952, pp. 91-103):

d 42
FH — aFul —f—@Fﬂn — ...=0 (1711)
d d?
Fy _EF)}/ +ﬁFyU — ...=0 (1712)
! d 1!
Fu - O; Fu’ = FEAu = _d_Fu/ = —EAu ’ F”" =0
X
EAW" = 0 (1.7.13)
d
F, = —w, Fy = —Py= —— = p)/,
Y w, Fy 'y Ix y
" d2 i
o _ v
Fy = Ely =3 Fy = EI

E" +py = w (1.7.14)
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It should be noted that the concept of finite axial strain implicitly implies the
buckled shape (lateral displacement) and any prebuckling state is ignored.

1.8. GALERKIN METHOD

The requirement that the total potential energy of a hinged column has
a stationary value is shown in the following equation:

¢ , l
/ (ED" + Py")oydx + (EL/)6Y'| = 0 (1.8.1)
0 0

where 0y is a virtual displacement.
Assume that it is possible to approximate the deflection of the column by
a series of independent functions, g;(x), multiplied by undetermined coef-
ficients, q;.
Vapprox = 181 (%) + a2g2 () + oo + a,g,(x) (1.8.2)

If each gi(x) satisfies the geometric and natural boundary conditions, then
the second term in Eq. (1.8.1) vanishes when it substitutes y . to y. Also,
the coefficients, a; , must be chosen such that y ., Will satisfy the first term.

Let the operator be

d* &
~ 4 p—
dxt *

= EI
Q dx2

(1.8.3)

and
n

¢ = Zﬂigf(x) (1.8.4)

i=1

From Egs. (1.8.3) and (1.8.4), the first term of Eq. (1.8.1.) becomes:

4
/ Q(¢)o¢ dx = 0 (1.8.5)
0
Since ¢ is a function of n parameters, a;,
d d d
op = —¢5a1 —I——¢6a2 + o+ ¢5aﬂ
6a1 6a2 aaﬂ

(1.8.6)

g1641 +g25612 + ... +gnaan = Zgi(sai
i=1

/ n
/0 Qo) Zg,'(x)éa,' dx = 0 (1.8.7)

i=1
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Since it has been assumed that g;(x) are independent of each other, the
only way to hold Eq. (1.8.7) is that each integral of Eq. (1.8.7) must vanish,
that is

4
| e@ninis =0 i=12
0
a; are arbitrary; hence 0a; # 0.
/
/ Q(@)gi(x)dx = 0 i = 1,2, .oy (1.8.8)
0

Equation (1.8.8) is somewhat similar to the weighted integral process in the
finite element method.

Example 1 Consider the axial buckling of a propped column.

The Galerkin method is to be applied. For Y., use the lateral displace-
ment function of a propped beam subjected to a uniformly distributed load.
Hence,

yapprox = ¢ - A(ngi - 3.96'36 =+ 2x4)
d*¢ ¢ )
Q(¢) = EI——+P—— = AUSEI + P(24x" — 18(x)]
X X

g(x) = (Px =30 + 24

l
/ A[48EI + P(24x% — 180x)] (P — 30x> 4 2x*)dx = 0

0
B —

X v

R
— —>

;|

NN

0.699¢

~o-
|4
<

A 4

7
Figure 1-16 Propped column



Buckling of Columns 29

Carrying out the integration gives
A((36El€5 /5) — (12pr¢’ /35)) = 0 = A#0 for a nontrivial solution

P, =21EI/ 2 <= 3.96% greater than the exact value, Py o = 20.2EI/ 72

1.9. CONTINUOUS BEAM-COLUMNS RESTING
ON ELASTIC SUPPORTS

A general method to evaluate the minimum required spring constants of
a beam-column resting on an elastic support is to apply the slope-deflection
equations with axial compression. In order to simplify the illustration, all
beam-columns are assumed to be rigid and equal spans.

1.9.1. One Span

Assume that a small displacement occurs at b, so that the bar becomes
inclined to the horizontal by a small angle, a. As the stability of a system is
examined in the neighboring equilibrium position, free body for equilib-
rium must be extracted from a deformed state. Owing to this displacement,
the load P moves to the left by the amount

. Lo
L(1 — cosa) = = (1.9.1)
and the decrease in the potential energy of the load B equal to the work
done by B is
PLo?
> (1.9.2)

At the same time the spring deforms by the amount «L , and the increase in
strain energy of the spring is

(1.9.3)

k P

Yz
Figure 1-17 One-span model
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where k denotes the spring constant. The system will be stable if

k(aL)®  PLa?
>
2 2

(1.9.4)

and will be unstable if

k(L) - PLo?
2 2

(1.9.5)

Therefore the critical value of the load P is found from the condition
that
k(aL)®>  PLo?

= (1.9.6)

from which

p[i’
Iezﬁ

=8 =1 (1.9.7)

The same conclusion can be reached by considering the equilibrium of
the forces acting on the bar. However, if the system has three or more
springs, simple statics may not be sufficient to determine the small
displacement associated with each spring. Hence, the energy method
appears to be better suited.

1.9.2. Two Span

For small deflection 0 , the angle of inclination of the bar ab is 0/L , and the
distance A moved by the force P is found to be

2
A= ZFL(é) ] _ 1 (1.9.8)
2 \L L

and the work done by P is

Pé?
AW = PA = — (1.9.9)
L
.
P a \, b o=al c_ P

Figure 1-18 Two-span model
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The strain energy stored in the spring is

ked?
AU = — (1.9.10)
2
The critical value of the load P is found from the equation
AU = AW (1.9.11)

which represents the condition when the equilibrium configuration
changes from stable to unstable. Hence,

P 2P

k = BPy _ 2P =08 =2 (1.9.12)

L L

1.9.3. Three Span

For small displacements, the rotation of bars ab and ¢d may be

expressed as

_ 0 _ % 1.9.13
(xl—Lan 042—L (1.9.13)

and the rotation of bar bc is

(1.9.14)

(@ ]
]

Figure 1-19 Three-span model
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The distance A moved by the force P is found to be

) (22 ]

1 1
= i(af + 05 + 0] — 20102 +63) = z(af — 010, +03)  (1.9.15)
and the work done by the force P is
P
AW = PA = Z(a? — 6165 + 63) (1.9.16)
The strain energy stored in the elastic supports during buckling is
k
AU = 5(6% +63) (1.9.17)
The critical condition is found by equating these two expressions
P k kL 67465 kL N
—(03 = 01004+ 03) = (O +03) =P = — 52— =
[0 = 0102 403) = 507 + ) 2 63 -616,+065 2D
(1.9.18)

where N and D represent the numerator and denominator of the fraction.
To find the critical value of B one must adjust the deflections 61 and 0>,
which are unknown, so as to make P a minimum value. This is accom-

plished by setting dP/00; = 0 and dP/dd, = 0.
dP kL D(ON/d61) — N(dD/dd,)

30, 2 D2 =0=
ON_NoD _ N _2pdD _ 1919
961 D36, 961 kL 36, o
Similarly,
6_N _ g B_D — (1.9.20)
36> kL 36, o
and
N IN 0D dD
— =201, — = 20y, — = 201 — 0y, — = 200, — 0 1.9.21
851 1 662 25 661 1 25 662 2 1 ( )

Substituting these values, one obtains

2P 2P p
251 - k_L(Zél - 52) = 51 (1 - k_L> + 62 k_L =0 (1-9-22)
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2P p 2P
200 ——(20, —01) = 01—+0(1——) =0 1.9.23
2 kL( 2 —01) 1leL+ 2( kL) ( )
For nontrivial solutions, the coefficient determinant must vanish.
Hence,
2P P
kL kL 2P\2 [ P2 kL
kL kL =0=(1—-—— — | — :Oﬁplz—,szkL
P | 2P kL kL 3
kL kL

(1.9.24)

The critical load P; corresponds to the buckling mode shape shown in
Fig. 1-19(b), and the critical load P, corresponds to the buckling mode
shape shown in Fig. 1-19(c). For a given system, the critical load is the small
one. Hence, P; is the correct solution. Hence,

_ pp, 3P,
= =

L L

k

=3 (1.9.25)

The same problem can be solved readily by using equations of equi-
librium. Noting that the reactive force of the spring is given by k0, the end
reactions are

2 1

R, = Zkb| + = kb 1.9.26
5 ko1 + 3 k02 ( )
1 2

Ry = 5 kb1 + ko2 (1.9.27)

Another equation for R, is found by taking the moment about point B for
bar ab, which gives

P61 = R,L (1.9.28)
and similarly, for ad

Pé, = RyL (1.9.29)
Combining these four equations yields

P 2 1 3P
— 01 = — kb — ko 01| 2 —— 60 =0 1.9.30
[01=73 1+3 b = 1( kL>+ 2 ( )

P 1 2 3P
— = - — 2—— | = 1.9.31
L52 3k51+3/€62:51+52( kL) 0 (1.9.31)
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Setting the determinant equal to zero yields”

3P

kL 3P\ 2 kL
kL =[(2-2) =1 =0=P, = —and P, = kL
kL 3

(1.9.32)

By definition, P; is the correct solution.

1.9.4. Four Span

For small displacements, the rotation of bars ab and de may be expressed as

0 0
a = f] and ar = f (1.9.33)
and the angles of rotation of bar bc and ¢d are
02— 0 03— 0
2%l nd 2 . 2 (1.9.34)

The distance A moved by the force P is found to be

1 51 2 52—51 2 53_62 2 53 2
a=-L|(& 02 =01 o3
(@) () () +
1
SO+ 03+ 67 = 20102+ 63 + 03— 2000, +0%)  (1939)
1
= (87 = 0102+ 83 — 6205 + 83)

and the work done by the force P is

P
AW = PA = z(6$ — 0102 + 05 — 8203 + 03) (1.9.36)
e ¢ | o J oL |
zz
k %
a alX b - d /X2 el
P— A== C ¢ -0 P
k
5] 1
7 5,

Figure 1-20 Four-span model
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The strain energy stored in the elastic supports during buckling is
k
AU:§&+%+%) (1.9.37)
The critical condition is found by equating these two expressions
p 2 2 2 k 2 2 2
Z(51 — 0102 + 05 — 0203 + 03) = 5(51 + 05 + 03) =

kL 07 + 03+ 63 kL N
P =— 7 > 5 = (1.9.38)
2 (31 0102 + 52 0203 + (33 2 D

where N and D represent the numerator and denominator of the fraction.
To find the critical value of P, one must adjust the deflections 61, 02 and 03,
which are unknown, so as to make P a minimum value. This is accom-

plished by setting dP/d0; = 0,dP/d6, and dP/dd3 = 0.

OP kL D(ON/dd1) — N(9D/36)

=0
30, 2 D? -
N NOD IN 2P9D (1.9.39)
96, D 36, 36, kL 36, o
Similarly,
ON _2PoD _ (1.9.40)
36, kL 36, o
IN 2PID 0 (1.9.41)
305 kL 365 o
and
ON N N oD
08 = 20y, —— = 203, — =20, —0
36, R T T T b
oD oD
Gy SUNE S St ¥ S | 1.9.42
(9(32 2 1 3 (9(33 3 2 ( )

Substituting these values, one obtains

2P 2P
2, ~ 2228, ~ ) = 51< kL) Forl p0s =0 (1943)
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2P P 2P P
252 - ﬁ(262 - 51 - 53) = 51@ + 62 (1 - E) 63E =0 (1-9-44)
2P P 2P
203 — —(203 — 0r) = 0 Oh—+ 031 —— ] = 1.9.
3 kL( 3—02) =0 01+ ZkL+ 3< kL) 0 (1.9.45)

For nontrivial solutions, the coefficient determinant must vanish. Hence,

2P P 0
kL kL
2P\ 3 2P\ / P\?2

P2 P (2PN OP\ (P
kL kL kL kL kL) \ kL

p op (1.9.46)
0 — 1=-=

kL kL

(B0

The smallest critical load P; = 0.29289kL corresponds to the buckling
mode shape shown in sketch.

_BP, P, 3.414p,

k = =
L 0.29289L L

= 8 = 3.414 (1.9.47)

The equilibrium method cannot be applied to problems with three or
more elastic supports as there are only two equations of equilibrium avail-
able, thatis, Y, moment = 0 and ) vertical force = 0. It is further noted
that B varies from 1 for one span to 4 for infinite equal spans. Since 8 equals
3.414 for four equal spans, the use of 8 = 4 for multistory frames would
seem justified.

Compression members in real structures are not perfectly straight
(sweep, camber), perfectly aligned, or concentrically loaded as is assumed in
design calculations; there is always an initial imperfection. Examining the
single-story column of Fig. 1-17 assuming there is an initial deflection &
reveals that the following equilibrium equation is required:

(k)L = P(6 + 60 (1.9.48)

for P= P,

Pa' 60
kreqd = —| 1 +— 1.9.49



Buckling of Columns 37

Since kigeal = Py/L, Eq. (1.9.48) becomes

5
kreqd = Kideal (1 + §> (1.9.50)

which is the stiffness requirement for compression members having initial
imperfection 0g. The stiffness requirement is

)
Q = kreqdd = kideal<1 +§O)5 = kideal (0 + 60) (1.9.51)

Winter (1960) has suggested 0 = 0p = L/500. Substitution of this into Egs.
(1.9.49) and (1.9.50) gives the following design equations:

For stiffness, kreqd = 2kideal (1.9.52)

For nominal strength

8 f“(().004L) (1.9.53)

Qn = kideal(Z(SO) = kideal(0'004L) =

Example 1 Turn-buckled threaded rods (F, = 50 ksi, F, =70 ksi) are
to be provided for the bracing system for a single-story frame shown in
Fig. 1-21. The typical loading on each girder consists of three concentrated
loads. The factored loads are: P; = 200 kips and P, = 100 kips. Determine
the diameter of the rod by the AISC (2005) Specification for Structural Steel
Building, 13th edition.

Py Py Py

I

25°

Figure 1-21 Single-story frame X-bracing
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ZP = 4% (20042 x 100) = 1,600 kips,8 = 1,4, = UA,
=1xA,

25
Q, = 1 x 1,600 x 0.004 = 6.4 kips, cos§ = ———= = 0.8575

(252 4+ 152)

Design for strength:
Q, for yielding, Q, = Q,/0.9 = 6.4/0.9 = 7.11 kips

Q, for fracture, Q, = Q,/0.75 = 6.4/0.75 = 8.53 kips

The required diameter of the rod against yielding is

741 = gx & % 50 x 0.8575,d = 0.46 in.

The required diameter of the rod against fracture is

e 0.9743
853 = —x |d—
4 11

2
> x 70 x 0.8575,

d = 0.154 in.(11 threads per inch is justified)

Design for stiftness:

28P, 2x1x1,600 EA
= :Tcosﬁ

kreqd = 2kideal =

L 25 x 12
29,000 x m x d*> x 0.85752 , ,
10.67 = ,d = 0.44 in. < 0.514 in., use
4 x25x12

d = 5/81in.(= 0.625 in.)

1.10. ELASTIC BUCKLING OF COLUMNS SUBJECTED TO
DISTRIBUTED AXIAL LOADS

When a column is subjected to distributed compressive forces along its
length, the governing differential equation of the deflected curve is no
longer a differential equation with constant coefficients.

The solution to this problem may be considered in three different ways:
(1) application of infinite series such as Bessel functions, (2) one of the
approximate methods, such as the energy method, and (3) the finite element
method (the solution converges to the exact one following the grid



Buckling of Columns 39

n

Vl

/

X
_—
J—L A
y
|
,

A 4 A 4 A 4
y
7

Figure 1-22 Cantilever column subjected to distributed axial load

refinement). The energy methods and the finite element analysis will be
llustrated in the next chapter.

Consider the problem of elastic buckling of a prismatic column sub-
jected to its own weight.*” Figure 1-22 shows a flagpole-type cantilever
column. The lower end of the column is built in, the upper end is free, and
the weight is uniformly distributed along the column length. Assuming the
buckled shape of the column as shown in Fig. 1-22, the differential equation
of the deflected curve can be shown as:

d2 V4
EId—x); - / g(n —y) d (1.10.1)

where the integral on the right-hand side of the equation represents the
bending moment at any cross section mn produced by the uniformly
distributed load of intensity g. Likewise, the shearing force at any cross
section mn can be expressed as

Ay

_ dy
dx3

EI
dx

—q(f —x) (1.10.2)

4 This problem was first discussed by L. Euler (1707-1783), but Euler did not succeed in obtaining
a satisfactory solution according to I. Todhunter, A History of Elasticity and of the Strength of
Materials, edited and completed by K. Pearson, Vol. I (Cambridge: 1886; Dover edition, 1960),
pp. 45-50.

5 According to S. Timoshenko and J. Gere, Theory of Elastic Stability (New York: McGraw-Hill,
1961), 2nd ed., pp. 100-103, the problem was solved by A.G. Greenhill (1847-1927) using Bessel
functions.
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Note that the moment given in Eq. (1.10.1) is a decreasing function against
the x-axis, and hence, the rate of change of the moment must be negative as
shown in Eq. (1.10.2). Equation (1.10.2) is an ordinary differential equation
with a variable coefficient. Many differential equations with variable
coefficients can be reduced to Bessel equations. In order to facilitate the
solution, a new independent variable z is introduced such that

_ 2Ly
=3 EI(E x) (1.10.3)

By taking successive derivatives, one obtains

dy dydz  dy;[3 gz
dx dzdx  dz\ 2 EI

dzy 3 ¢q 3 1 _idy zdzy
NLAR T B S S AP 1.10.5
dx? <2 EI) <32 = ( )

(1.10.6)

(1.10.4)

Substituting Egs. (1.10.4) and (1.10.5) into Eq. (1.10.2) and letting

d
A (1.10.7)
dz

One obtains

u 1 du 1 *u 1 du p?
— T tl-——Fu="5+-7+(1-7)u=0 (1.10.8)
9z z

d2 " 2 dz d=2 =z d=

Equation (1.10.8) is a Bessel equation, and its solution can be expressed in
terms of Bessel functions.

Invoking the method of Frobenius,’ it is assumed that a solution of the
form

u(z) = cherr” (1.10.9)

exists for Bessel’s equation, Eq. (1.10.8) of” order p (+£1/3 in this case).
Substituting Eq. (1.10.9) into Eq. (1.10.8), one obtains:

6 Frobenius (1848-1917) was a German mathematician.
7 See, for example, S.I. Grossman and W.R. Derrick, Advanced Engineering Mathematics (New York:
Harper & Row, 1988), pp. 272-274.
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oo

Z a(r4n)(r+n—1)2"T"2 4 Z cu(r + )22 4 Z:(—pz)cnz#”*2

n=o n=o n=o
oo}
+ E Cﬂ_zzr-i-n—Z -0
n=2

or

co(rz —pz)zr*2 +al(r+ 1)2 —pz]zh1

Oo r (1.10.10)
+ Z{Cn[(f’l + 1’)2 —pz] + Cnfz}ZH_”_z -0
n=2

The indicial equation is r* —p° =0 with roots rn =p=1/3 and
rn = —p= —1/3. Setting r = p in Eq. (1.10.10) yields

(1+2p)azr~' + Z[n(n +2p)ey + o] TP =0
n=2
indicating that ¢¢ = 0 and ¢, = ﬂ, for n > 2. (1.10.11)
n(n+ 2p)
Hence, all the coefficients with odd-numbered subscripts equal to zero.
Letting n=2j+ 2 one sees that the coefficients with even-numbered
subscripts satisty

—0j

- forj >0
CZU+1) 22(]+ 1)(?+]+ 1)’ ory =Y,
which yields
- —0 o — —0 _ [4))]
2T 2(p+1) T 2200)(p+2)  2°Ch(p+ D(p+2)

— —
T 20G)p+3) 2200+ +2)(p+3)

Hence, the series of Eq. (1.10.9) becomes

w o= -t 2?4 «
! "2+ 1) 220+ 1)(p+2

o 2n

= cozpz (—1)" =

— 220l (p4+1)(p+2)...(p + n)

2t —
)

(1.10.12)
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It is customary in Eq. (1.10.12) to let the integral constant,
o = [2T(p+ 1)]_1 in which T'(p + 1) is the gamma function. Then,
Eq. (1.10.12) becomes

o (Z 2)2;7
Be) = G S e

which is known as the Bessel function of the first kind of order p. Thus J,(2)
is the first solution of Eq. (1.10.8). One will again be able to apply the
method of Frobenius with r= —p to find the second solution. From
Eq. (1.10.10), one immediately obtains

(1 —2p)az """+ Y [n(n —2p)eu + 2] P2 =0 (1.10.13)
n=2

indicating ¢ = O as before and

-2
n(n — 2p)
With algebraic operations similar to those done earlier, one obtains the
second solution of Eq. (1.10.8)

_ - v (2/2)2”

h =

(1.10.14)

Hence, the complete solution of Eq. (1.10.8) is
u(z) = ui(2) +u(z) = AJp(2) + BJ_,(2) (1.10.16)

In Eq. (1.10.16), A and B are constants of integration, and they must be
determined from the boundary conditions of the column. Since the upper
end of the column is free, the condition yields

d2
N
<dx2> x={

Observing that z = 0 at x = £ and using Egs. (1.10.5) and (1.10.7), one can
express this condition as

3z " Zdz =0

Substituting Eq. (1.10.16) into this equation, one obtains A =0 and
hence

u(z) = BJ_,(2) (1.10.17)
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At the lower end of the column the condition is

dy
- =0
<dx> x=0

With the use of Egs. (1.10.3), (1.10.4), and (1.10.7), this condition is

expressed in the form
2 [qb?
w=0 whenz = /L.
3V EI

The value of z which makes # = 0 can be found from Eq. (1.10.17) by trial
and error, from a table of the Bessel function of order —(1/3) , or from
a computerized symbolic algebraic code such as Maple®. The lowest value

of z which makes # = 0, corresponding to the lowest buckling load, is found
from Maple® to be z = 1.866350859, and hence

2 g3
z = —A\/—=— = 1.866
3V EI

7.837EI

or

This is the critical value of the uniform load for the column shown in
Fig. 1-22.

Equation (1.10.2) above is differentiated once more to derive the gov-
erning equation of the buckling of the column under its own weight as

4> (d*y d dy
EI—|( -5 — |l —x)=| = 1.10.1
dx? <dx2) * Tix [(E x)dx] 0 (1.10.19)

Equation (1.10.19) is accompanied by appropriate boundary conditions. For
the column that is pinned, clamped, and free at its end, the boundary
conditions are, respectively

o, ¥ _y (1.10.20a)
y=0 —-—= .10.20a
dx2
d
y =0, d—y _ (1.10.20b)
X
d? &

Y _y, Xy (1.10.200)
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As the differential equation is an ordinary homogeneous equation with
a variable constant, the power series method, or a combination of Bessel and
Lommel functions, are used after a clever transformation. Elishakoft (2005)

gives® credit to Dinnik (1912) for the solution of the pin-ended column as
18.6E1
(qf)a, - T (1.10.21)

and to Engelhardt (1954) for the solution of the column that is clamped at
one end (bottom) and pinned at the other (top) as

 52.5E]

(q0),, 2 (1.10.22)
as well as for the column that is clamped at both ends as
74.6EI

Structural Stability (STSTB)’ computes critical load for the column that is
clamped at one end (top) and pinned at the other (bottom) as

(q), = % (1.10.24)
Solutions given by Egs. (1.10.18), (1.10.21), (1.10.22), (1.10.23), and
(1.10.24) can be duplicated closely (within the desired accuracy) by most
present-day computer programs, for example, STSTB. Wang et al. (2005)
present exact solutions for columns with other boundary conditions. A case
of considerable practical importance, in which the moment of inertia of the
column section varies along its length, has been investigated. However,
these problems can be effectively treated by the present-day computer
programs, and efforts associated with the complex mathematical manipu-
lations can now be diverted into other endeavors.

1.11. LARGE DEFLECTION THEORY (THE ELASTICA)

Although it is not likely to be encountered in the construction of buildings
and bridges, a very slender compression member may exhibit a nonlinear
elastic large deformation so that a simplifying assumption of the small

8 1. Elishakoff, Eigenvalues of Inhomogeneous Structures (Boca Raton, FL: CRC Press, 2005), p. 75.

9 CH. Yoo, “Bimoment Contribution to Stability of Thin-Walled Assemblages,” Computers and
Structures, 11, No. 5 (May 1980), pp. 465—471. Fortran source code is available at the senior author’s
Website.
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L, _* ; - dx
w dy
, ds -
) | D e
y ds

Figure 1-23 Large deflection model

displacement theory may not be valid, as illustrated by Timoshenko and
Gere (1961) and Chajes (1974). Consider the simply supported wiry
column shown in Fig. 1-23. Aside from the assumption of small deflections,
all the other idealizations made for the Euler column are assumed valid. The
member is assumed perfectly straight initially and loaded along its centroidal
axis, and the material is assumed to obey Hooke’s law.

From an isolated free body of the deformed configuration of the
column, it can be readily observed that the external moment, Py, at any
section is equal to the internal moment, —EI/p.

Thus

EI
Py = — (1.11.1)
p
where 1/p is the curvature. Since the curvature is defined by the rate of
change of the unit tangent vector of the curve with respect to the arc length
of the curve, the curvature and slope relationship is established.

1 df

- = — 1.11.2
0 s ( )
Substituting Eq. (1.11.1) into Eq. (1.11.2) yields
do
EI—+Py =0 (1.11.3)
ds
Introducing k* = P/EI, Eq. (1.11.3) transforms into
dae
— 4y =0 (1.11.4)
ds

Differentiating Eq. (1.11.4) with respect to s and replacing dy/ds by sin
yields
>0
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Multiplying each term of Eq. (1.11.5) by 2 df and integrating gives
4?0 _ do
/—Z—d +/2k2 sinf df = 0 (1.11.6)

Recalling the following mathematical identities

d6 6\ [ d*6
=2(—])(—=5) and sinfdf = —d(cosb),
ds\ ds ds ds?

it follows immediately that

AN B
/d<z> — 2k /d(cosﬁ) =0 (1.11.7)

Carrying out the integration gives

46\ 2
(d—> —2k*cos = C (1.11.8)
)

The integral constant C can be determined from the proper boundary
condition. That is

46 0 at 0

— = atx = 0,

ds
1 . .

(moment = 0=—- = 0orp = o,straight hne) and 8 = 6
p

Hence,
C = —2k*cos b
and Eq. (1.11.8) becomes

aonN*
T — 2k“(cos @ — cos ) = 0 (1.11.9)
s
Taking the square root of Eq. (1.11.9) and rearranging gives
dé
ds = (1.11.10)

V2ky/cos 8 — cos 6,

Notice the negative sign in Eq. (1.11.10), which implies that  decreases as s
increases. Carrying out the integral of Eq. (1.11.10) gives
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/”/2 1 /0 do l 1 do
dS = or— —
0 V2k g, Vcosth —costly 2 V2k Jo  V/cos@ — cos By

or

2/00 do
(== (1.11.11)
kJo +/2cosf —2cosf

Notice the negative sign is eliminated by reversing the limits of integration.
Making use of mathematical identities

0
cosf = 1—2$in2§ and cosfy = 1—25in250

in Eq. (1.11.11) yields:

1 [t do
{ = — (1.11.12)
k 0 . 200 . 20
2

sin® — — sin” —
2

In order to simplify Eq. (1.11.12) further, let

0
sin?() = a (1.11.13)

and introduce a new variable ¢ such that
.0 :
sing = asin @ (1.11.14)

Then § = 0=¢ = Oand § = fy=sing = 1=¢ = 7/2.
Differentiating Eq. (1.11.14) yields

1 6
Ecosidﬁ = acos¢dp (1.11.15)

which can be rearranged to show
_ 2acos¢pdp  2acos¢pdp
\/1 —sinzg \/1 — a?sin” ¢

Substituting Egs. (1.11.13), (1.11.14), (1.11.15), and (1.11.16) into Eq.
(1.11.12) yields

df (1.11.16)
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0 /0“ / 2cccos ¢ do
/ 20 \/az—azsmzd)\/l—azsinZ(b
- _/ acosdp
k.Jo acos¢ V1 —a2sin’ ¢
2 d¢ 2K
= - _— = — (1.11.17)
kJo /1 —a?sin?¢ k
where:
T d
K :/ 4 (1.11.18)
0 1—a2sin®¢

Equation (1.11.18) is known as the complete elliptic integral of the first kind.
Its value can be readily evaluated from a computerized symbolic algebraic
code such as Maple®. Equation (1.11.17) can be rewritten in the form

p 2K 2K 2 P
= —_— = as == —_—
k \/P/EI EI
or
P 4K?
— = (1.11.19)
P, w2
as
_ 4K?  4EIK _ mEI
P = m = 6—2 and ng = E—Z

If the lateral deflection of the member is very small (just after the initial
bulge), then 6 is small and consequently & sin” ¢ in the denominator of K
becomes negligible. The value of K approaches 7/2 and from Eq. (1.11.19)
P=P,=x" EI/{*.

The midheight deflection, y,, (or 0), can be determined from dy = ds sin 6.

Small A theory

8o
Figure 1-24 Postbuckling behavior
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Substituting Eq. (1.11.10) into the above equation yields
sin 0 d0

V2ky/cos 0 — cos B

Integrating the above equation gives

dy =

Vi 1 [ sin 6 df 1 b sin 6 dé
dy=—[ ———= or y,, ==
0 2k Jg, /cosf — cos by 2k J [ 00 . L0
Sin’ E—sm 5

Recall sin (8/2) = asin¢ and df = 2« cosp dp/+/1 — aZsin® ¢
Hence, 9 0 9 0
sinf = 251n2cos— = 251n— 1 —sin’? = = 2asingy/1 — aZsin’ ¢

O sin 0 df
yﬂ‘l =
sin? — — sin” —
2 2
B ™2 2asin g/ 1 — a2 sin? ¢ 2a cos ¢ dep
2k Jo \/a2 —a? sin2¢\/1 — aZsin’ ¢
200 [T/ 20 y 20
ym:(S:? ; sin ¢ d¢p = or %: 5
7T —_—
Pg

The distance between the two load points (x-coordinates) can be deter-
mined from

dx = dscos
Substituting Eq. (1.11.10) into the above equation yields
cos 0 do

dx =

V/2kr/cos 8 — cos b,

Integrating (x,, is the x-coordinate at the midheight) the above equation
gives

/X P 1 /0 cos 0 df 1 0 cos 6 df
X = = or
0 V2k 6, Vv cos @ — cos b N 9, V/2cos @ — 2cos b

/9" cos 6 df
xﬂl
2k ,0

Sll’l — —sin” —

2
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Recall sin (0/2) = asing and d6 = 2acos¢ dgp/\/1 — a?sin? ¢

and cosf = cos>(0/2) —sin?(0/2) = 1 —2sin? (0/2) = 1 —2a?sin® ¢

/0“ cos 0 df
Xm =
2k 0

Sll’l — —sin” —

2
(1— 2(12 sin? ¢)2a cos ¢ dop
\/a2 — a?sin® qb\/l — a2sin’ ¢
B /”/2 (1 — 202 sin” ¢)d¢
0

1—o2sin®¢

k

xg = 2x, =

2/”/2 2(1 — a®sin® ¢) — 1]d¢
0

k 1 —a?sin® ¢

w/2
:%/ V1 —o2sin®¢pdep
0

_%/ d—qs_fg(a)_g
kJo V1—a2sinle Kk

where E(w) is the complete elliptic integral of the second kind

X0 _ 4E(a) - 4E(a) .
¢ P P
Oy | — T —
EI Pg

The complete elliptic integral of the first kind can be evaluated by an infinite
series given by

K =

d¢
/0 \/l—ozzsin2
5[1 i <1>2a ¥ (1 3) ot + <£>2a6+ ] with o® < 1
2 2 24 246

Summing the first four terms of the above infinite series for « = 0.5 yields
K = 1.685174.
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Likewise, the complete elliptic integral of the second kind can be evaluated
by an infinite series given by

w/2

E:/ V1 —o2sin® ¢ d
0

T 1\2 1-3\ 2t 1-3-5\2af

—11 - o2 ) e SONVE L withe? < 1

2 2 2-4) 3 2:4-6) 5

Summing the first four terms of the above infinite series for « = 0.5 yields
E =1.46746. These two infinite series can be programmed as shown or can
be evaluated by commercially available symbolic algebraic codes such as
Maple®, Matlab®, and/or MathCAD®.

C THIS IS TO EXPAND THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
C AND THE COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND
C USING AN INFINITE SERIES

IMPLICIT DOUBLE PRECISION (A-H,O0-2Z)
DIMENSION VAL (50), VALK (50), VALE (50)

C ALPHA=ONE OF THE ARGUMENTS
C N=THE NUMBER OF TERMS DESIRED TO BE SUMMED, GENERALLY LESS THAN 10
99 READ (5,*,END=98) ALPHA,N
J=N-1
IF (J.EQ.0) GO TO 2
DO 3 K=1,J0

IF (K.GT.1) GO TO 6
VAL(1)=1./4.
VALK (1) =VAL(1)
VALE (1) =VAL (1)
GO TO 8
6 VAL (K)=VAL(K-1)*((2.*%K-1.)/(2.%K)) **2
VALK (K) =VAL (K)
VALE (K) =VAL (K)
8 VALE (K) =VALE (K) *ALPHA** (2. *K) / (2.*K-1.
VALK (K) =VALK (K) *ALPHA** (2. *K)
3 CONTINUE
GO TO 4
2 SUM=1.0
SUB=1.0
GO TO 7
4 SUM=0.0
SUB=0.0
DO 5 L=1,J
SUB=SUB-VALE (L)
5 SUM=SUM+VALK (L)
SUM=SUM+1.0
SUB=SUB+1.0
7 SUM=SUM*DATAN (1.0D0) *2.
SUB=SUB*DATAN (1.0D0) *2.
WRITE(6,600) SUM,SUB,ALPHA,N

600 FORMAT (' ','FIRST=',6El1l.5,' SECOND=',6Ell.5,' FOR ALPHA=',6Ell.5,
1 ' BY SUMMING ',I2, ' TERMS')
GO TO 99

98 STOP

END
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Table 1-1 Load vs. deflection data for large deflection theory

0o/ rad K E o P/Pg ym/é Xo/é

0/0 /2 /2 .0 1. .0 1.

20/.349 1.583 1.5588  .174 1.015 110 0.9700
40/.698 1.620 1.5238  .342 1.063 211 0.8818
60/1.047 1.686 1.4675 .500 1.152  .296 0.7408
90/1.5708  1.8539 1.3507 707 1.3929 3814 0.4572
120/2.0944  2.1564 1.2111 .866 1.8846 .4016 0.1233
150/2.618  2.7677 1.0764 9659 3.1045 349 —0.2222
170/2.967  4.4956 1.0040  .999 8.1910 .2222  —0.5533

179.996/7 1255264 1.0000 0.9999999999 63.86  .07966 —0.8407

Figure 1-25 Postbuckling shape of wiry column

Consider the postbuckling shape of the wiry column. This type of
postbuckling behavior may only be imagined for a very thin high-strength
wire. Notice that the two end support positions are reversed. The 6 to
make the two end points contact (xp) is found to be 130.6 degrees by trial
and error. Many ordinary materials may not be able to withstand the
high-stress level required to develop a shape similar to that shown in
Fig. 1-25 in an elastic manner, and the stresses in the critical column
sections are likely to be extended well into the plastic region. Therefore,
the practical value of the large deflection theory at large deflections is
questionable.

1.12. ECCENTRICALLY LOADED COLUMNS—SECANT
FORMULA

In the derivation of the Euler model, a both-end pinned column, it is
assumed that the member is perfectly straight and homogeneous, and that
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the loading is assumed to be concentric at every cross section so that the
structure and loading are symmetric. These idealizations are made to
simplify the problem. In real life, however, a perfect column that satisfies all
three conditions does not exist. It is, therefore, interesting to study the
behavior of an imperfect column and compare it with the behavior pre-
dicted by the Euler theory. The imperfection of a monolithic slender
column is predominantly affected by the geometry and eccentricity of
loading. As an imperfect column begins to bend as soon as the initial
amount of the incremental load is applied, the behavior of an imperfect
column can be investigated successfully by considering either an initial
imperfection or an eccentricity of loading.

Consider the eccentrically loaded slender column shown in Fig. 1-26.
From equilibrium of the isolated free body of the deformed configuration,
Eq. (1.12.1) becomes obvious

ED' +Ple+y) =0 (1.12.1)
or
V' + %y = —k’e with k> = P/EI (1.12.2)

It should be noted in Eq. (1.12.2) that the system (both-end pinned pris-
matic column of length ¢ with constant EI) eigenvalue remains unchanged
from the Euler critical load as it is evaluated from the homogeneous
differential equation.

The general solution of Eq. (1.12.2) is

Y=ty = Asin kx + Bcoskx — e (1.12.3)
P X
e
\ 4 | X
Y N A
| P
\
\ &
l
I
! I
! I My=Ple+y)
/ /
v T /_> y T_/

P P
Figure 1-26 Eccentrically loaded column
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The integral constants are evaluated from the boundary conditions. (The
notion of solving an nth order ordinary differential equation implies that
a direct or an indirect integral process is applied n times and hence there
should be n integral constants in the solution of an nth order equation.)
Thus the condition

y=0 atx =0

leads to

and the condition
y=0 atx =1/

gives
1 — cos k¢
sin k¢

Substituting A and B into Eq. (1.12.3) yields

A=ce

(1.12.4)

1 —cos kfl
sin k/

y = e<cos kx +————sin kx — 1

Letting x = £/2 in Eq. (1.12.4) for the midheight deflection, 0, gives

( k¢ 1 —coskl! Kkl )
=0 =-¢|cos—+————sin——1
2 2

Y sin k¢

x={/2

kl  kl

2sin— cos —
2 2

kel w [P , w2 El
0 = e|lsec——1) = e|sec|{=4/— | — 1| with Pg =
2 2\ Pg 22

The same deflection curve can be obtained using a fourth-order differential

okl
ké 1 — 1 + 2511’1 E ‘ ke
=ce COSE—F sm?—l (1.12.5)

equation,
y = Acos kx+ Bsin kx 4+ Cx+ D

with
y =0, EB’ = —Pe atx =0 and

y =0, EB/ = —Pe atx = /.
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e=0.1

L — =03

P/ P,
0.5

0. 2.0 4.0 6.0
Midheight deflection, &
Figure 1-27 Load vs. deflection, eccentrically loaded column

Figure 1-27 shows the variation of the midheight deflection for two values
of eccentricity, e.

The behavior of an eccentrically loaded column is essentially the same as
that of an initially bent column except there will be the nonzero initial
deflection at the no-load condition in the case of a column initially bent. A
slightly imperfect column begins to bend as soon as the load is applied. The
bending remains small until the load approaches the critical load, after
which the bending increases very rapidly. Hence, the Euler theory provides
a reasonable design criterion for real imperfect columns if the imperfections
are small.

The maximum stress in the extreme fiber is due to the combination of
the axial stress and the bending stress. Hence,

P+Mmc P+ N
g x = — _ = — _ 7 = —
ma A I A I A I
S PO e (1.12.6)
~ A 1 2V Er e

Pliy« e\/—P (1.12.7)
Omax — — ) o .
Al T2\ VEAa

Equation (1.12.7) is known as the secant formula. In an old edition of
Standard Specification of Highway Bridges, American Association of State
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Highway and Transportation Official (AASHTO) stipulated a constant
value of 0.25 to account for a minimum initial imperfection usually
encountered in practice, as shown in Eq. (1.12.8)

P 12 P
Gaasro = = |1+ (0.25+ 5 Jsec( —y/— (1.12.8)
A 12 2rV EA

1.13. INELASTIC BUCKLING OF STRAIGHT COLUMN

In the discussions presented heretofore, the assumption has been made that
the material obeys Hooke’s law. For this assumption to be valid, the stresses in
the column must be below the proportional limit of the material. The linear
elastic analysis is correct for slender columns. On the other hand, the axial
stress in a shot column will exceed the proportional limit. Consequently, the
elastic analysis is not valid for short columns, and the limiting load for short
columns must be determined by taking inelastic behavior into account.
Before proceeding to consider the development of the theory of inelastic
column behavior, it would be informative to review its historic perspective.
The Euler hyperbola was derived by Leonhard Euler in 1744. It was believed
at the time that the formula applied to all columns, short and slender. It was
soon discovered that the formula was grossly unconservative for short
columns; the Euler formula was considered to be completely erroneous and
was discarded for a lengthy period of time, approximately 150 years. An
anecdotal story reveals that people ridiculed Euler when he could not
adequately explain why a coin (a compression member with an extremely
small slenderness ratio) on an anvil smashed by a hammer yielded (flattened)
instead of carrying an infinitely large stress. It is of interest to note that the
concept of flexural rigidity, EI, was not clearly defined at the time, and the
modulus of elasticity of steel was determined by Thomas Young in 1807."

However, Theodore von Karman developed the double-modulus theory
in 1910 in his doctoral dissertation at Gottingen University under Ludwig
Prandtl direction. It gained widespread acceptance and the validity of Euler’s
work reestablished if the constant modulus E is replaced by an eftective
modulus for short columns. Later in 1947, ER. Shanley'' demonstrated that
the tangent modulus and not the double modulus is the correct effective
modulus, which leads to lower buckling load than the double-modulus

10 S.p. Timoshenko, History of Strength of Materials (New York: Dover Edition, 1983), p. 92.
A Chajes, Principles of Structural Stability Theory (Englewood Cliffs, NJ: Prentice-Hall, 1974), p. 37.



theory and agrees better than the double-modulus theory with test results.
These inelastic buckling analyses using effective modulus are just academic
history today. The present-day finite element codes capable of conducting
incremental analyses of the geometric and material nonlinearities, as refined
in their final form in the 1980s, can correctly evaluate the inelastic column
strengths, including the effects of initial imperfections, inelastic material

Buckling of Columns

properties including strain hardening, and residual stresses.

1.13.1. Double-Modulus (Reduced Modulus) Theory

Assumptions

1) Small displacement theory holds.

2) Plane sections remain plane. This assumption is called Bernoulli, or

Euler, or Navier hypothesis.

3) The relationship between the stress and strain in any longitudinal fiber is
given by the stress-strain diagram of the material (compression and

tension, the same relationship).

4) The column section is at least singly symmetric, and the plane of bending
is the plane of symmetry.
5) The axial load remains constant as the member moves from the straight

to the deformed position.

P Loading E, governs
P=P,
—_— cr
Op Unloading E governs
S £
NA
h2 | hl
! 3 Adx
/:
e
R —

cg| | dx

do l

2 21
o] [r—
o1 = Eg : S I
Insid 21 (e}
2= Ef oncar Compressive 1
concave g - p v Outside
Ey: the slope of stress-strain stress convex
curve at0c=0,,

Figure 1-28 Reduced modulus model
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In small displacement theory, the curvature of the bent column is

_ ¢
dx

1 &

R dx

<

(1.13.1)

\S]

From a similar triangle relationship, the flexural strains are computed
g1 = z1) (1.13.2)
& = 25 (1.13.3)

and the corresponding stresses are

o1 = Ehp” (1.13.4)

0y = Ejy” (1.13.5)
where E, = tangent modulus, s; (tension) = Ez1)” ands, (compression) =

E,ZQ)/”.
The pure bending portion (no net axial force) requires

I hy
/ sldA—i—/ 5dA = 0 (1.13.6)
0 0

Equating the internal moment to the external moment yields

h1 hZ
/ S1ZldA+/ SzZZdA = Py (1.13.7)
0 0

Equation (1.13.6) is expanded to

h1 hZ
Ey’ / z1dA + Ep” / 2dA = 0 (1.13.8)
0 0

/11 ]’lz
Let Q; = / z1dA and Q = / 2dA=EQ; + EQ, = 0
0 0
(1.13.9)

Equation (1.13.7) is expanded to

/11 h2
y”(E/ zfdA+Et/ zgdA> = Py (1.13.10)
0 0
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_  EL +ElI
Let E:% 1.13.11)

which is called the reduced modulus that depends on the stress-strain
relationship of the material and the shape of the cross section. Ij is the
moment of inertia of the tension side cross section about the neutral axis
and I is the moment of inertia of the compression side cross section
such that

/11 llg
I :/ 2dA and b :/ 2dA (1.13.12)
0 0

Equation (1.13.10) takes the form
EL/ +Py =0 (1.13.13)

Equation (1.13.13) is the differential equation of a column stressed into the
inelastic range identical to Eq. (1.3.3) except that E has been replaced by E,
the reduced modulus. If it can be assumed that E is constant, then Eq.
(1.13.13) is a linear differential equation with constant coefficients, and its
solution is identical to that of Eq. (1.3.3), except that E is replaced by E.
Corresponding critical load and critical stress based on the reduced
modulus are

w2’ El
e = g (1.13.14)
and
©°E
Oro = / > (11315)
()
Introducing
E E[ 12 Et
Tr:—z———l— L <10 and ©t=-"2<10 (1.13.16)
E E I E
the differential equation based on the reduced modulus becomes
ElIty" +Py =0 (1.13.17)

and

L I
T, = 1724—71 and g, = 7 = (1.13.18)

0
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The procedure for determining o, ., may be summarized as follows:
1) For o — ¢ diagram, prepare ¢ — T diagram.

2) From the result of step 1, prepare 7, — @ curve.

3) From the result of step 2, prepare g, — (¢/r) curve.

1.13.2. Tangent-Modulus Theory

Assumptions

The assumptions are the same as those used in the double-modulus theory,
except assumption 5. The axial load increases during the transition from the
straight to slightly bent position, such that the increase in average stress in
compression is greater than the decrease in stress due to bending at the
extreme fiber on the convex side. The compressive stress increases at all
points; the tangent modulus governs the entire cross section.

If the load increment is assumed to be negligibly small such that

AP <<< P (1.13.19)

then
ED" +Py =0 (1.13.20)

and the corresponding critical stress is

P w2 Et E
= D witht = Ef (1.13.21)

0

Hence, o, vs £/r curve is not affected by the shape of the cross section.

Otag =

The procedure for determining the o, — (¢/r) curve may be summarized as
follows:

1) From ¢ — ¢ diagram, establish ¢ — 7 curve.

2) From the result of step 1, prepare a, — (¢/r).

P T M=-El"

Figure 1-29 Tangent-modulus model
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Example 1

An axially loaded, simply supported column is made of structural steel

with the following mechanical properties: E = 30 x 107 ksi, g, = 28.0ksi,

0, = 36ksi, and tangent moduli given in Table 1-2.

Determine the following:

1) The value of ¢/r, which divides the elastic buckling range and the
inelastic buckling range

2) The value of 7, and ¢/r for P/A = 28, 30, 32, 34, 35, 35.5 ksi using the
double-modulus theory and assuming that the cross section of the
column is a square of side h.

3) The critical average stress P/A for {/r= 20, 40, 60, 80, 100, 120,
140, 160, 180, and 200 using the tangent-modulus theory in the inelastic
range.

From the results of 1), 2), and 3), plot

4) The “ (P/A) — 1,” curve for the double-modulus theory.

5) The “ (P/A) — (¢/r)” curves, distinguishing the portion of the curve
derived by the tangent-modulus theory from that derived by the double-
modulus theory. Present short discussions.

6) The current AISC LRFD Specification specifies (Chapter E) that the
critical value of P/A for axially loaded column shall not exceed the
following:

(i) For A < 1.5 F, = (0.658")F,

(i) For A, > 1.5 F, = [0.877/,13} F,
Plot these curves and superimpose them on the graph in 5 using double
arguments (¢/r and A, on the horizontal axis.

Table 1-2 Tangent moduli measured

o; or o, (ksi) t=EJ/E
28.0 1.00
29.0 0.98
30.0 0.96
31.0 0.93
32.0 0.88
33.0 0.77
34.0 0.55
35.0 0.31
35.5 0.16

36.0 0.00
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NA

7z % v

JEANES

—Z+—> 47

Figure 1-30 Square cross section

Locations of NA at various stages

EQ +EQ =0

hi +hy = h

I
Q1 = / 1 dA
0

I
Q> :/ z2dA
0

Likewise Qo = —(hh3/2)

E ki k3
Q1+EQ2— )

I3+ 2thhy — th* — thi = 0

(1 — )2 + 2thhy — th* = 0

=1 —th—h)> =0

(1.13.9)
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Table 1-3 Cross-sectional properties vs. shifting neutral axis
T hah)  LUD - LUD Mx@ I3+ 6N o 0,0 oltl(7)/0)]
(1) (2) (3) (4) (5) (6) (7) (8)

1.00 .5000 .5000 5000  .5000 1.0000 28.0 28.00
0.98 4975 4925 5076 4975 0.9899 29.0 29.60
0.96 .4950 .4848 5155 14948 0.9797 30.0 31.25
0.93 4910 4733 5277 4908 0.9640 31.0 33.33
0.88 .4840 .4536 5495 4835 0.9371 32.0 36.36
0.77 4674 4084 .6044 4654 0.8738 33.0 42.86
0.55 .4258 .3088 7572 4165 0.7253 34.0 61.82
0.31 3576 .1830 1.0602 .3287 0.5116 35.0 112.90
0.16 .2857 .0933 1.4577 .2332 0.3265 35.5 221.88
0.00 .0000 .0000 4.0000 .0000 0.0000 36.0 o0

- —th+ /2h% + (1 — ©)(th?) _ h(—1 4+ /7)
1 (1-1) (1-1)

w2 E1, 72 x 30 x 10’1,

o0

<£>2
r
14 30 x 103 72z, T,
2) = [ = 54414, /-
r g, (O

wE { E
op = ———=>- =1, /— = 102.83

gzr ap
7

Table 1-4 Slenderness ratio vs. critical stress
Lr o, Lr Ac Fo aisc o4t o Remarks

102.83  28.0 200 221 6.49 7.402 7.402
100.53  29.0 180 1.98 8.01 9.138 9.138
98.33 30.0 160 1.76 10.14 11.566 11.566
95.96 31.0 140 154 1325 15.107 15.107

2) and 3)

elastic

(Continued)
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Table 1-4 Slenderness ratio vs. critical stress—cont'd

Lr o, 1773 Ac Fer aisc 047 o Remarks
93.12 32.0 120 1.32 18.03 20.562 20.562
88.54 33.0 100 1.10 21.64 29.609 29.000
79.47 34.0 80 0.88  25.99 46.264 33.200
65.79 35.0 60 0.66 29.97 82.247 34.200 o, from graph
52.18 35,5 40 0.44 33.18 185.055  35.300
0.00 36.0 20 0.22 35.27 740.220  35.990
0 0.00  36.00 o0 36.000
_ w2 Bt o 2 1 the elast;
O't—W:)?—Wﬁlnt e elastic range,
G) ()
= 1.0 (0, = 0, = 0g)
4) and 5)
Stress-Tau
36 ¢
34
]
g 32
»
30 4
28 T T T T v
0 0.2 0.4 0.6 0.8 1
Tau

Figure 1-31 Stress vs. tangential-modulus ratio

6) (i) For A, < 1.5=F, = (0.658" )F, (i) For A, > 1.5=F, = [0.877/&2} F,

where A, = (kl/rm)+\/(F,/E)

Compression members (or elements) may be classified into three

different regions depending on their slenderness ratios (or width-to-

thickness ratios): yield zone, inelastic transition zone, and elastic buckling
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Stress - Reduced Tau

36 4
34
[72]
® 324
»
30
28 T T T T v
0 0.2 0.4 0.6 0.8 1
Reduced Tau
Figure 1-32 Stress vs. reduced modulus ratio
Stress - Stress/Tau
36
34
@
o 324
»
30
28 L 2 T T T
0 100 200 300

Stress/Tau
Figure 1-33 Stress vs. modular ratio

zone (or compact, noncompact, and slender). As can be seen from Fig. 1-34,
the tangent-modulus theory reduces the critical compressive stress only
slightly compared to that by the reduced modulus theory in the inelastic
transition zone. Furthermore, both theories give the inelastic critical stresses
much higher (unconservative) for a solid square cross section considered
herein than those computed from the AISC LRFD formulas that are
considered to be representative (Salmon and Johnson 1996) of many test
data scattered over the world reported by Hall (1981). Experience (Yoo et al.
2001; Choi and Yoo 2005) has shown that the effect of the initial imper-
fections is significant in columns of intermediate slenderness, whereas the
presence of residual stresses reduces the elastic buckling strength. The lowest
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Critical Stresses

40 —&— Reduced
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—4— AISC-LRFD
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0 50 100 150 200
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Figure 1-34 Critical stress vs. slenderness ratio

slenderness columns, which fail by yielding in compression, are hardly
affected by the presence of either the initial imperfections or the residual
stresses. Any nonlinear residual stress distributions in girder shapes having
the residual tensile stress reaching up to the yield stress can readily be
examined by present-day finite element codes.

1.14. METRIC SYSTEM OF UNITS

Dimensions in this book are given in English units. Hard conversion factors
to the metric system are given in Table 1-5. The unit of force in the
International System of units (Systéme International) is the Newton (N).
In European countries and Japan, however, the commonly used unit is
kilogram-force (kgf). Both units are included in the table. Metrication is the
process of converting from the various other systems of units used
throughout the world to the metric or SI (Systéme International) system.
Although the process was begun in France in the 1790s and is currently
converted 95% throughout the world, it is confronting stubborn resistance
in a handful of countries. The main large-scale popular opposition to
metrication appears to be based on tradition, aesthetics, cost, and distaste for
a foreign system. Even in some countries where the international system is
officially adopted, some sectors of the industry. or in a special product line,
old tradition units are still being practiced.



Table 1-5 Conversion Factors
Sl to English
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English to SI

Length

1 mm = 0.03937 in
1m = 3.281 ft
1 km = 0.6214 mi

1in = 25.4 mm
1 ft = 0.3048 m
1 mi = 1.609 km

Area

1 mm? = 1.55 x 1072 in°
1 ecm? =1.55 x 107! in?
1 m? = 10.76 ft*

1 m* = 1.196 yd*

1 in® = 0.6452 x 10° mm’
1 in% = 6.452 cm
1 2 = 0.0929 m
1 yd® = 0.836 m

DA™

Volume

1mm® =6.102 x 107° in®
1 em® =6.102 x 1072 in’
1m’=353f

1 m’=1.308 yd®

1in® = 16.387 x 10°> mm’
1in® = 16.387 cm®

1 = 0.0283 m’
1yd®>=0.765m’

Moment of inertia

1in* = 41.62 x 10* mm*
1 in* = 41.62 cm*
1in* = 41.62 x 108 m*

1 mm* = 0.024 x 107*in*
1 em* = 0.024 in*
1m*=0.024 x 10% in*

Mass

1 kg = 2.205 Ib
1kg=1.102 x 10 ton
1 Mg = 1.102 ton

11b = 0.454 kg
1 ton (2000 Ib) = 907 kg
1 tonne (metric) = 1000 kg

Force

1 N = 0.2248 Ibf
1 kgf = 2.205 Ibf

11bf = 4.448 N
1 kip = 4.448 kN

Stress

1 kgf/cm® = 14.22 psi
1 kN/m® = 0.145 psi
1 MN/m” = 0.145 ksi

1 psi = 0.0703 kgf/cm®
1 psi = 6.895 kPa (kN/m?)
1 ksi = 6.895 MN/m?* (MPa)

GENERAL REFERENCES

67

Some of the more general references on the stability of structures are

collected in this section for convenience. References cited in the text are

listed at the ends of the respective chapters. References requiring further
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details are given in the footnotes. Relatively recent textbooks and reference
books include those by Bleich (1952), Timoshenko and Gere (1961),
Ziegler (1968), Britvec (1973), Chajes (1974), Brush and Almroth (1975),
Allen and Bulson (1980), Chen and Lui (1991), Bazant and Cedolin (1991),
Godoy (2000), Simitses and Hodges (2006), and Galambos and Surovek
(2008). Some of these books address only the elastic stability of framed
structures, while others extend the coverage into the stability of plates and
shells, including dynamic stability and stability of nonconservative force
systems.

The design of structural elements and components is beyond the scope
of this book. For stability design criteria for columns and plates, Guide to
Stability Design Criteria (Galambos, 1998) is an excellent reference. The
design of highway bridge structures is to be carried out based on AASHTO
(2007) specifications, and steel building frames are to follow AISC (2005)
specifications. In the case of ship structures, separate design rules are stip-
ulated for different vessel types such as IACS (2005) and IACS (2006). A
variety of organizations and authorities are claiming jurisdiction over the
certificates of airworthiness of civil aviation aircrafts.
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PROBLEMS

1.1 For structures shown in Fig. P1-1, determine the following:
(a) Using fourth-order DE, determine the lowest three critical loads.
(b) Determine the lowest two critical loads.
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Py EI: Constant
EI: Constant
’ P A B C P
O A (@)
1.5¢ {
I T -
7.
(a) (b)
Figure P1-1

1.2 Two rigid bars are connected with a linear rotational spring of stiffness
C=M/6 as shown in Fig. P1-2. Determine the critical load of the
structure in terms of the spring constant and the bar length.

Sl=¢6/2
Y p—5" @ —= +«—P
%A C=M/9 7}/2
| ¢ | ¢ |
« 0 "

Figure P1-2

1.3 For the structure shown in Fig. P1-2, plot the load versus transverse

deflection in a qualitative sense when:
(a) the transverse deflections are large,
(b) the load is applied eccentrically, and
(c) the model has an initial transverse deflection dj,.
1.4 Determine the critical load of the structure shown in Fig. P1-4.

xl
1 2 |
Il il
P| oy
261 AR
L) eI

Figure P1-4
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1.5 Derive the Euler-Lagrange differential equation and the necessary
geometric and natural boundary conditions for a prismatic column of
length £ and elastically supported by a rotational spring of constant § at
A and a linear spring of constant « at B as shown in Fig. P1-5.
Determine the critical load, P,.

Figure P1-5

1.6 Turn-buckled threaded rods (F, =50 ksi, F, =70 ksi) are to be
provided for the bracing system for a single-story frame shown in
Fig. P1-6. Determine the diameter of the rod by the AISC Specifi-
cations, 13th edition, for each loading,

Py Py Py

I

25°

Figure P1-6
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1.7

1.8

Chai Yoo

(a) when the typical factored loads on each girder are P; = 250 kips
and P, = 150 kips, and

(b) when the frame is subjected to a horizontal wind load of intensity
20 psf on the vertical projected area.

Equation (1.10.22) gives the critical uniformly distributed axial

compressive load as g, = 52.5EI/(¢?) for a bottom fixed and top

pinned column. Using any appropriate computer program available,

including STSTB, verify that the critical uniformly distributed

compressive load is ¢, = 30.0EI/(£?) for a top-fixed and bottom-

pinned column.

An axially loaded, simply supported column is made of structural

steel with the following mechanical properties: E = 30 x 10° ksi,

0, = 28.0ksi, 0, = 36ksi,and tangent moduli given in Table 1-2.

b=hl2

N.A.
Figure P1-8 Rectangular cross section

Determine the following:

(a)

The value of ¢/r, which divides the elastic buckling range and the
inelastic buckling range.

(b) The value of 7, and £/rfor P/A = 28, 30, 32, 34, 35, 35.5 ksi using the

double-modulus theory and assuming that the cross section of the
column is a rectangle of side b and h = 2b.

(c) The critical average stress P/ A for £/r = 20, 40, 60, 80, 100, 120, 140,

160, 180, and 200 using the tangent-modulus theory in the inelastic
range.
From the results of a), (b), and (c), plot:
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(d) The “ (P/A) — 1,” curve for the double-modulus theory.

(e) The “ (P/A) — (¢/r)” curves, distinguishing the portion of the curve
derived by the tangent-modulus theory from that derived by the
double-modulus theory. Present short discussions.

(f) The current AISC LRFD Specification specifies (Chapter E) that the
critical value of P/A for axially loaded column shall not exceed the
following:

(i) For A <15 F, = (0.658")F,

(i) For A, >1.5 F, = [0.877/,13] F,

Plot these curves and superimpose them on the graph in (e) using
double arguments (£/r and A,) on the horizontal axis.
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2.1. ENERGY METHODS

It has been shown that energy methods provide a convenient means of
formulating the governing differential equation and necessary natural
boundary conditions. The solutions that are obtained by solving the gov-
erning equations are exact within the framework of the theory (for
example, classical beam theory) computing unknown forces and displace-
ments in elastic structures. Besides providing convenient methods for
computing unknown displacements and forces in structures, the energy
principles are fundamental to the study of structural stability and structural
dynamics. However, one of the greatest advantages of the energy methods is
its usefulness in obtaining approximate solutions (Washizu 1974) in situa-
tions where exact solutions are difficult or impossible to obtain (Tauchert
1974). Hence, thorough familiarity with the energy principles will be an
invaluable asset in the study of structural mechanics. Additional references
for a more detailed treatment of energy methods may be found in Hoff
(1956), Langhaar (1962), Fung and Tong (2001), Sokolnikoft (1956), and
Shames and Dym (1985).

2.1.1. Preliminaries

Consider an infinitesimal rectangular parallelepiped at a point in a stressed
body and let the stress vectors (traction vectors) T, T, and T3 represent the
stress vectors' on each face perpendicular to the coordinate axes xq, x», and
x3, respectively, as shown in Fig. 2-1. The component of the stress vector

Figure 2-1 Stress vectors and their components

1 Boldfaced-fonted quantities represent vectors.
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T; denoted by & ij2 represents the projection of T; on the face whose normal
1S X]
Hence,

T = oy1e1 + 01262 + 013e3
T2 = 02161 + 02e2 + 02363 (2.1.1)
T3 = o31e1 + 03282 + 03363
Or in a compact form (index notation)
Ti = 0jj¢ (2.1.2)

Figure 2-2 shows the stress vector T acting on an arbitrary plane identified
by n (unit outward normal to the plane), along with stress vectors T acting
on the projected plane indicated by e; and the body force per unit volume f.
The force acting on the arbitrary sloping plane ABC is T,dA,, while the
force on each projected plane is —T;dA; as each has a unit normal in the
negative e; direction.

Each projected area can be computed by

dA; = dA, cos(n,e;) = dA,n-e (2.1.3)

Figure 2-2 Stress vectors on an infinitesimal tetrahedron

2 The first subscript i of ; denotes the direction of the normal of the face on which the stress acts, and j
indicates the direction of the stress itself. Denoting quantities with indices having a range of three is called
an index notation (or indicial notation). The index notation is a mathematical agreement just to shorten
the long write-ups adopted by Einstein in his general theory of relativity (Hjelmstad 2005, Wikipedia
2009). An index appearing once in a term is called a free index, and repeated subscripts are called dummy
indices. The number of free indices determines how many quantities are represented by a symbol. Unless
explicitly forbidden, a summation convention is executed on all dummy indexed quantities.
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so that
dA; dA;
dA, = = (2.1.4)
n-e; n;
where
nj = n-e; = cos(n,e;) (2.1.5)

is a direction cosine of n.
Since the tetrahedron is in equilibrium, the resultant of all forces acting
on it must vanish. Hence,

h
<Tﬂ - Tin,+3f> dA, = 0 (2.1.6)

Resolving T, into Cartesian components (T}, = Tie;) and taking the limit as
h—0, Eq. (2.1.6) reduces to
T, = Tee;, = Tn; (2.1.7)
Substituting Eq. (2.1.2) into Eq. (2.1.7) yields
Tie,' = Tﬂ’l,’ = le’lj = 0ojen; (218)
from which
T,' = 0ty (2.1.9)

Consider a volume of material I”bounded by a closed surface S. Let the
body force per unit volume distributed throughout the body IV be f, and
the stress vectors or tractions distributed over the surface S be T. If the
body is in equilibrium, then the sum of all forces acting on IV must vanish;
that 1s

/de+/TdS =0 (2.1.10)
Vv S

or in COl’l’lpOl’lCl’lt fOI'l’Il

/ﬁdVJr/Tids =0 (2.1.11)
Vv S

Equation (2.1.9) may be rewritten as

N S
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Assuming that the components 0;; and their first derivatives are continuous,
the surface integral in Eq. (2.1.12) can be transformed into a volume integral
using the divergence theorem, as

/aﬁn,' s = / Tjij av (2~1'13)
s v

From Egs. (2.1.11), (2.1.12), and (2.1.13), it follows immediately that

/(ﬁ+ajiJ) dV =0 (2.1.14)
|24

Equation (2.1.14) can only be satisfied if the integrand is equal to zero at
every point in the body. Hence,

f,'-l-oj,'J =0 (2.1.15)

Equation (2.1.15) presents three equations of equilibrium written in terms
of stresses and body forces.

2.1.2. Principle of Virtual Work

If a structure is in equilibrium and remains in equilibrium while it is subjected to
a virtual displacement, the external virtual work OWy done by the external (real)
forces acting on the structure is equal to the internal virtual work OW; done by the
internal stresses (due to real forces).

The external virtual work is

oWy = /T,-(Sul- dS+/ﬁ($u1dV (2.1.16)
S 14

Using Eq. (2.1.9) and the divergence theorem, the first term in Eq. (2.1.16)
can be transformed into

/T,(Sl/l, ds = /0’1']'1’!,‘514,' as = /(U,j‘&lxt,’J) dv
S s v
= / (0’,']'1]'(31/!,' + 0',']'(31/1,'1]') av (2117)
14
Substituting Eq. (2.1.17) into Eq. (2.1.16) yields
OWg = / [(U’N —|—f1’)(31/t,'+0'i,'(suilj] % (2.1.18)
V

Since the structure is in equilibrium, f; + ¢;;; = 0. Hence, Eq. (2.1.18)
reduces to



80 Chai Yoo

5WE _/‘0'0‘514,'1/ av (2119)
4

Recalling that 5e,j = ((Su,'J+5uj]i)/2 and 5u,fJ = 5uj,,' leads to:
O',jélxl,'li == aljéel, (2120)

This transforms Eq. (2.1.20) to

/ Uijéeij v = 5W[ = oU (2.1.21)
v

Equation (2.1.21) describes the internal work done by the actual stresses (due to
real forces) and virtual strains produced during the virtual displacement. The
internal work is frequently referred to as the strain energy stored in the elastic
body. From Egs. (2.1.16), (2.1.20), and (2.1.21), one immediately obtains

5WE = /T,'(SM,’ dS—i—/f,'éu,'dV = / (T,‘jé@,’j dv = (3W1 = oU
S Vv vV
(2.1.22)

Equation (2.1.22) is a mathematical statement of the principle of virtual
work. The reverse of this principle is also true. That is, if 0Wg = 01/ for
virtual displacement, then the body is in equilibrium (Tauchert 1974). The
principle of virtual work is valid regardless of the material stress-strain
relations as shown in the derivation.

2.1.3. Principle of Complementary Virtual Work

Figure 2-3 shows the stress-strain diagram of a nonlinearly elastic rod. The
strain energy U represents the energy stored in a deformed elastic body;
however, the physical interpretation of the complementary strain energy U*
is not clear.

The strain energy U in the rod is defined by

eqq €11
U = / (/ O’11d€11> dv = V/ 0’116]611 (2.1.23)
14 0 0

The strain energy density or the strain energy per unit volume is equal to
the area under the material’s stress-strain curve (Fig. 2-3). The comple-
mentary strain energy U* in the rod is defined by

g1 J11
U* = / (/ 611d0’11> dV = V/ 611d0'11 (2.1.24)
v 0 0
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N
-

doy, usv

R

Figure 2-3 Stress-strain curve of a nonlinearly elastic rod

Therefore, the complementary strain energy density corresponds to the area
above the stress-strain curve. For a linearly elastic material, the two areas are
equal, and U* = U. In order to maintain the generality, the structure under
consideration is assumed to have arbitrary material properties. Consider an
imaginary system of surface tractions 07; and body forces 0f; that produce
a state of stresses 00 inside the structure. If these quantities are in equi-
librium, they must satisfy the equilibrium equations such that

(003) , +0fi = 0

The work done by these virtual forces during the actual displacements u; is
referred to as the complementary virtual work 0 W and is expressed as

oW = /5Tiui dS+/ Sfiu; dV (2.1.25)
S Vv

Proceeding in a manner similar to that used in the derivation of Eq. (2.1.22)
with the roles of the actual and virtual quantities interchanged, one obtains
the following;:

/5T,M, dS+/ Ofiu; dV = / 60,‘/6,’,’ dv (2.1.26)
S v |
The right-hand side of Eq. (2.1.26) is denoted as
oU* = 5WI* = / 60’1']'61'1' av (2127)
14
From Egs. (2.1.25) and (2.1.27), Eq. (2.1.26) is rewritten symbolically as

Wy = U = oW} (2.1.28)
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Equation (2.1.28) is the principle of complementary virtual work. If
a structure is in equilibrium, the complementary virtual work done by
the external virtual force system under the actual displacement is equal to
the complementary virtual work done by the internal virtual stresses
under the actual strains.

2.1.4. Principle of Minimum Potential Energy

[t is assumed that there exists a strain energy density u that is a homogeneous
quadratic function of the strains u(e,'j)3, such that

—ll (2.1.29)
[/ aelj s

It is recalled that the virtual displacement field 0u; was a priori not related
to the stress field ;; when applying the principle of virtual work. They are
now related through a constitutive law expressed by Eq. (2.1.29).
Substituting Eq. (2.1.29) into the principle of virtual work, Eq.(2.1.22),
one obtains

ad
/T,véui dS—}—/ﬁ(SuidV :/ " Sej dV = / oWy dv
S v aey 174

= 5(”/ wdv = oMU (2.1.30)
Vv

Notice that the variation and integration operations are interchanged. The
(loss of) potential energy of the applied loads is now defined as a function of

displacement field u; and the applied loads.

—/f,vu,»dV—/T,ui ds (2.1.31)
Vv S

Taking the first variation of Eq. (2.1.31) gives

du; u;
sy = /faZ 5”"1V_/§ aZ ou; dS
) S 7

Noting that 5ui/5uj = (3,']- and (5,'j =1fori=jand (31-]' =0 fori # j, the
equation leads to

3 This concept is attributed to George Green (1793—1841). It can be shown to be a positive definite
quadratic function (Shames and Dym 1985; Sokolnikoff 1956).



Special Topics in Elastic Stability of Columns 83

oWy = —/ﬁaujdV—/Tiau, ds (2.1.32)
|4 S ‘
From Egs. (2.1.30) and (2.1.32), it follows immediately
sSDU+1) =0 (2.1.33)

The quantity (U4 17) denoted by 7 is the total potential energy of the body
and is given as

= / (/Ua,jdeij> dV—/ﬁuidV—/Tiui is  (2.1.34)
v 0 V S

Equation (2.1.33) 1s known as the principle of minimum potential energys; it
may be stated as follows (several variations are also used):

An elastic structure is in equilibrium if no change occurs in the total potential
energy (stationary value) of the system when its displacement is changed by
a small arbitrary amount.

Equation (2.1.33) is the necessary condition for the stationary value of the
total potential energy provided that (a) f; and Tj are statically compatible and
(b) the deformation field ej, to which the stress filed g is related through
a constitutive law (not necessarily linear elastic) for elastic behavior,
extremizes II with respect to all other kinematically compatible, admissible
deformation field (Shames and Dym 1985).

In the early days of the original development of the calculus of variations,
the developers including Bernoulli (1654—-1705), Euler (1707-1783), and
Lagrange (1736—1813) did not consider the stationary value of the total
potential energy as indeed a minimum until Legendre (1752—1833) postu-
lated the so-called Legendre test seeking a mathematical rigor for a minimum
(Forsyth 1960). A proof that IT actually assumes a minimum value in the case
of stable equilibrium is illustrated below.

From Egs. (2.1.33) and (2.1.34), it follows immediately that

01T = 6 (U + V) = 0. Hence

9
I = 0 = / —uéeijdV—/fi(SuidV—/Tféu,» s (2.1.35)
F
Vv Vv S

C,’j

Using the constitutive relations of Eq. (2.1.29) and the strain-displacement
relations for small displacement theory (Cauchy strain), the first integral of
Eq. (2.1.35) is expanded to
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Ju 1
seidv = | =oo(u; +u)dv
/Vaeif €ij /1/20” (“1-J+”J,-’)

1 1
= / |:§0';'1'6(’4in)+§0i1’6(”j,1'):| v (2'1'36)
4

Noting that 0;; = 0; and interchanging the dummy indices j and i, the right-
hand side of Eq. (2.1.36) is expanded to

du

1 1
V@éeij dV = /,/[Eaﬁa(”i"')jLEJ"fﬁ(”ﬂi)] dV = /I/Uﬁé(”ij) dv
= / aijé(ui)dr av = /(aijéui)jdl/_/ a;j jou; dV
V v ) v

= /a,-jéul-nj dS—/ (T,']'I]'(Slxl,'dV
s Vo

Substituting this into Eq. (2.1.35) yields

S |4 Vv S

/(O'iji’lj — T,)&u, dS — / (O'ijl]' —|—ﬁ)(5u, dV =0
S 14
This must be true for all 0u;. Then it follows that

g+ fi=0 (2.1.15)

or

and
oin = T; (2.1.9)

The Euler-Lagrange equations are the equations of equilibrium, and
the necessary boundary conditions are embedded into the Cauchy
formula Eq. (2.1.9). Hence it has been proved that 6" IT = 0 is a suffi-
cient condition for equilibrium (Shames and Dym 1985). If it can be
shown that the total potential energy of an admissible state having
a displacement field #; + 0u; and a corresponding strain field e + 56]'1' is
always greater than that of the equilibrium state, then it suffices that the
total potential energy II is a local minimum for the equilibrium
configuration.
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Heyvoey — Iy = /V[“(eﬁ%') — u(ey)] dV—/Vfiéde

- / Tiou; dS (2.1.37)
S
Expanding u(e;; 4 0¢;j) by a Taylor series gives
Ju 1 9%u
i+ 0eij) = u(e;) +——>0e; de;i0 2.1.38
u(e + ek,) u(ej) —I—aeij eij + 3 aela o ejjoe + - ( )

Substituting Eq. (2.1.38) into Eq. (2.1.37) gives

du
Heij + 661‘]' — H"i/ = / aelj 561} arv — /f(Su, dv — /S T:0u; dS

+/1 Fu Oejidey dV + -
2 de;dey GOk

=0+ Oeijbe dV + -

ZOeyaekl
= 0+06% +
1 d%u
@ = de;idey dV 2.1.39
/ZGeyaekl CijOcKl ( )

[t will be demonstrated that the integrand of Eq. (2.1.39) is u((Seij) for ¢; = 0.
Examination of Eq. (2.1.38) in association with ¢; = 0 reveals that the first
term is a constant throughout the body and is taken to be zero, so that the
strain energy vanishes in the unrestrained body. By definition
du/de;j in the second term is stress 0;;. The stress in the unrestrained state
must be equal to zero. Considering up to second-order terms, it gives

2
u(ée,j) = %( 0u > OejiOey

deijderr ) , =0

Hence, Eq. (2.1.39) can be written as

@ = / u(ée,-j) %
v

Since u is a positive definite function, the second variation of the total
potential energy is positive. Hence, the total potential energy is a minimum
for the equilibrium state ¢; = 0 when compared to all other neighboring
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admissible deformation fields. Fung and Tong (2001), Love (1944), Saada
(1974), Shames and Dym (1985), and Washizu (1974) use logic similar to
that shown above in the proof of the nature of the total potential energy
being a minimum. It appears that Sokolnikoff (1956) did not impose ¢; = 0
to show that IT actually assumes a minimum value.

2.1.5. Principle of Minimum Complementary Potential Energy

Parallel to the concept of the strain energy density introduced in Eq.
(2.1.29), it is assumed that there exists the complementary energy density
function u* defined for elastic bodies as function of stress such that

du*

— = ¢ 2.1.40
(90',']' ej ( )

Substituting Eq. (2.1.40) into Eq. (2.1.26) gives

a *
/5Tii/ll‘ dS+/ (Sﬁlzl,'dV = / (30'{,'1 % (2.1.41)
N v v 00j

As per Eq. (2.1.27), the right-hand side of Eq. (2.1.41) is 0U¥, the first
variation of the complementary energy for the structure. A complementary
potential energy function is defined by

V* - —/ le,dV—/l/l,T,dV
v S

for which the first variation is given by

5V* == —/ M{éﬁ dv — / u,'éTl- ds (2.1.42)
v N
From Egs. (2.1.41) and (2.1.42), it can be concluded that
oI = o(U+ V™) =0 (2.1.43)
Equation (2.1.43) is the principle of total complementary energy, and IT* is
given by
|4 |24 N

It may be shown that the total complementary energy is a minimum for the
proper stress field following a procedure similar to that used in the principle
of minimum total potential energy.
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2.1.6. Castigliano Theorem, Part |

The principle of minimum total potential energy can be used to derive the
Castigliano theorem, part I,* which is extremely useful in the analysis of
elastic structures. For a structure in equilibrium under a set of discrete
generalized forces Q; (i = 1,2,...,n), the total potential energy is given by

I = U(A) — Z QA (2.1.47)

i=1

For equilibrium the first variation of I1, found by varying A;, must be equal
to zero.

0

i=1 i=1

"\ [oU
— Z(aAi — QI-) 0A; = 0 (2.1.48)

i=1

Since the variations 0A; are arbitrary, the quantities in each parenthesis must
vanish; hence,
U
PN

Q i=1,2.n (2.1.49)

Equation (2.1.49) is the Castigliano’s theorem, part I. It states that if the
strain energy U stored in an elastic structure is expressed as a function of the
generalized displacements A;, then the first partial derivative of U with
respect to any one of the generalized displacements A; is equal to the cor-
responding generalized force Q;.

As the stiffness influence coefficient k;; is defined as the generalized force
required at { for a unit displacement at j while suppressing all other gener-
alized displacements, k;; can be expressed as

9Q;
ki = 2.1.50
Y0A ( )
Using Eq. (2.1.49), it can be rewritten as
PU
ki = 2.1.51
I NCIN ( )

4 Carlo Alberto Castigliano (1847—1884) presented his famous theorem in 1873 in his thesis for the
engineer’s degree at Turin Polytechnical Institute.
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2.1.7. Castigliano Theorem, Part Il

For an elastic (not necessarily linearly elastic) structure that is in equilibrium
under a system of applied generalized forces Q;, the principle of minimum
complementary energy states that

oI = 6(U* +1V*) = 0 (2.1.52)

Assuming that the complementary strain energy U* is expressed as a func-
tion of Q;, then Eq. (2.1.52) may be rewritten as

oI = 6(U "+ V") = Z(aU 5Qf—Ai5Qi>
=\0Q

" (U*
= Z(GQ,» —A,) 0Q; =0 (2.1.53)

i=1

Since 0Q; are arbitrary, Eq. (2.1.53) requires that
au*
0Q

Equation (2.1.54) is known as the Engesser’ theorem, derived by

A i=1,2,.n (2.1.54)

Friedrich Engesser in 1889 (Tauchert 1974) and is valid for any elastic structure.
If the structure is linearly elastic, the strain energy U and the complementary
strain energy U” are equal, and the Castigliano theorem, part II results.

518}
dQ;

=A i=1,2..n (2.1.55)

Equation (2.1.55) states that if the strain energy U in a linearly elastic
structure is expressed as a function of the generalized forces Q;, then the
partial derivative of U with respect to the generalized force Q;is equal to the
corresponding displacement A;. The flexibility coefficient of a linearly

elastic structure is given by
U

T 9QIQ

fi (2.1.56)
2.1.8. Summary of the Energy Theorems

Table 2-1 summarizes the energy theorem derived here. It is noted that a
duality exists between those principles and theorems involving generalized

5 Engesser (1848—1931) was a German engineer who introduced the concept of complementary
energy (Fung and Tong 2001).
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Table 2-1 Variational Principles (After Tauchert, Energy Principles in Structural
Mechanics, McGraw-Hill, 1974). Reproduced by permission.

Displacement Methods

Force Methods

Principle of Virtual Work

oWg = oU

W5 = 3 0,

oU = fletflyéey av

Principle of Minimum Potential

Energy
oIl = 6(U+V) =0

U = [,([y oydey) dv

A
U= [, (ye,-,-e,-j + Eeik> dv =U*
V=—3 0,

i=1
Castigliano Theorem, Part 1

U
Qi - 6_m
*U
kj = e
0A;0A;

Principle of Complementary Virtual Work
oWy = 6U*
n
owg = > MO0,
i=1
ouUur = fV eijéaij dv

Principle of Minimum Complementary
Energy
ol = (3(U* +7V*) =0

Ut = fy(Jy

. 1+p ©

e,jda,j ) dv

2Ecrkk>dV U

Ve = - Z OiA;
Castigliano Theorem, Part 11
oU_ou
90; 00
U
90;00;

Ai=

fi =

Notes: The Lamé constants A and v in the table are given by

nE

(w1 —-2p)

and

E

T 2(1+p)

Terms in “bold font” are valid for linearly elastic materials only.

displacements as the varied quantities (displacement methods) and those
involving variations in the generalized forces (force methods). Principles and
theorems related to the principle of virtual work are grouped as displacement
methods, and those related to the principle of the complementary virtual
work are grouped as force methods. These equations apply to nonlinear as
well as linearly elastic materials, except where noted otherwise in Table 2-1.

2.2. STABILITY CRITERIA

The stability criteria must be established in order to answer the question of
whether a structure is in stable equilibrium under a given set of loadings. If upon
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releasing the structure from its virtually displaced state the structure returns to its
previous configuration, then the structure is said to be in stable equilibrium. On
the other hand if the structure does not return to its undisturbed state following
the release of the virtual displacements, the condition is either neutral equi-
librium or unstable equilibrium. Stability can also be defined in terms of the
total potential energy II of the structure. Recall that IT is the sum of the strain
energy Ustored in the deformed elastic body and the loss of the potential of the
generalized external forces I7 If the total potential energy increases during
a virtual displacement, then the equilibrium configuration is defined to be
stable; if 1T decreases or remains unchanged, the configuration is unstable.

The stability criteria can also be expressed in mathematical form. For
simplicity it is assumed that the structure’s deformation is characterized by
a finite number of generalized displacements A;.

_ HE
(1+n)(1 —2u)

E
2(1 4 u)

If the structure is given a virtual displacement 0A;, then it is possible to write

the total potential energy in a Taylor series expansion about A;. Consider,
for example, a two-degree-of-freedom system.

o1 o1
H(A1 + 0A1, Ar + 5A2) = H(A17A2) 4+ —0A + —0A,

A A, 22.1)
1[0°11 5 011 011 -
—|—=(0A 2 ———— 0A10A 0A e

+2! aAf( 1)+ 9a,0m, OB 2+6A§( 2) +
The change in potential energy is then
1
AIl = 6H+§62H+ 2.2.2)

where the first variation is equal to zero by virtue of the principle of the
minimum total potential energy.

oIl oIl
ol = —0A —0A, = 0 223
a0 T ga,0 (22.3)
and the second variation is
011 011 011
01T = 6(811) = (6A1) o 00100 + —(0A5)7  (2.2.4)

IA? 6A16A2 dA3
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Note that the sign of AIl in Eq. (2.2.2) is determined by the first
nonvanishing term in the Taylor’s expansion. Since 0I = 0, the second
variation is the relevant term. If 0°IT is positive, then AIT is positive, IT is
alocal minimum, and the equilibrium condition is stable. The special case in
which the second variation is zero corresponds to a state known as neutral
equilibrium. When a structure that is in neutral equilibrium is released from
a virtual displacement, there is no net restoring force present, and the system
remains in its virtual displaced state. Hence, by the first definition of stability,
neutral equilibrium is a special case of unstable equilibrium. The criteria for
stability are summarized as follows:

AIl > 0 stable equilibrium
AIl = 0 neutral equilibrium (2.2.5)
AIl <0 unstable equilibrium

If the potential energy Il is quadratic in the displacements A;, which is
the case when the structure is linearly elastic and the deformations are small,
then all variations higher than the second are necessarily zero. In this case
the type of equilibrium is governed by the following conditions:

0%I1 > 0 stable equilibrium
0*I1 = 0 neutral equilibrium (2.2.6)

0*I1 < 0 unstable equilibrium

Equation (2.2.6) is called the sufficient condition. A rigid body stability
concept can be illustrated as follows:

y= ke?

Rigid body (ball) of weight W

and k> 0.
U+V:0+Wy:—kx2W d(L‘/1—+V):0 U+V = k?*W
X
2

AU w-oex—0 LU _, AUH) _w—0@x=0

dx dx? dx
& (U+V) & (U+V)
———=-2kW<0 ————=2kW>0

dx? di’
unstable equilibrium neutral equilibrium stable equilibrium

Figure 2-4 Concept of rigid body equilibrium
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2.3. RAYLEIGH-RITZ METHOD

The energy methods introduced in Section 2.1 are a convenient means of
computing unknown forces and displacements in elastic structures. They
can be the basis of deriving the governing differential equations and
required boundary conditions of the problem. They are also the starting
point of many modern matrix/finite element methods. The solutions that
are obtained using these methods are exact within the framework of the
theory (for example, classical beam theory). Energy methods are also used
to derive approximate solutions in situations where exact solutions are
difficult or nearly impossible to obtain. The most widely known and used
approximate procedure is the Rayleigh-Ritz method,® in which the
structure’s displacement field is approximated by functions that include
a finite number of independent coefficients (or natural coordinates; one for
the Rayleigh method and more than one for the Rayleigh-Ritz method).
The assumed solution functions must satisfy the kinematic boundary
conditions (otherwise, the convergence is not guaranteed, no matter how
many functions are assumed), but they need not satisfy the natural
boundary conditions (if they satisfy the natural boundary condition, a fairly
good solution accuracy can be expected). The unknown constants in the
assumed functions are determined by invoking the principle of minimum
potential energy. Suppose, for example, the assumed function has » inde-
pendent constants a; (i = 1, 2,...,n). Since the approximate state of
deformation of the structure is characterized (amplitude as well as shape) by
these n constants, the degrees of freedom of the structure have been
reduced from % to n. Invoking the principle of minimum potential energy,
it follows that
a1

oIl oIl
oIl = 256 5 + & 6a, = 0 2.3.1
Ga; 0N T g, 02T g, (2.3.1)

Since Oa; are arbitrary, Eq. (2.3.1) implies that

oIl

— =0 i=1,2.,n (2.3.2)
6ai

Equation (2.3.2) yields a system of n simultaneous equations that can be
solved for the coefficients a; for static problems, and in the case of eigenvalue

6 This method was proposed by Lord Rayleigh (1842-1919) in 1877 and was refined and generalized
by Walter Ritz (1878-1909) in 1908 (Tauchert 1974).
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problems, the determinant (characteristic determinant) for the unknown
constants is set equal to zero for the n eigenvalues.

Before illustrating detailed applications of the Rayleigh-Ritz method,
a few general comments are in order. Although the accuracy is generally
improved by increasing the number of independent functions, the
computation efforts increase proportionally to the square of the number of
independent functions. The type of functions to be selected for a partic-
ular problem is based on an intuitive idea of what the true deformation
looks like. Trigonometric or polynomial functions are frequently used
simply because of the ease of analysis involved. By virtue of using the
principle of minimum potential energy, all approximate solutions make
the structure stiffer than what it is. Consequently, the displacements
predicted by the Rayleigh-Ritz method are always smaller than exact
ones, and eigenvalues are greater than those predicted by exact solution
methods.

Finally, if the approximate displacements are used to evaluate internal
forces or stresses, the latter results should be viewed with caution because
the stress components depend on the derivatives of displacements. Although
displacements themselves may be reasonably accurate, their derivatives may
not be the case. In fact, the higher the derivatives, the accuracy involved is
further deteriorated. In a similar fashion, the accuracy of eigenvalues asso-
ciated with higher mode eigenvectors deviates much more rapidly than
those associated with lower mode eigenvectors.

Example 1 Consider a both-ends pinned column shown in Fig. 2-5.
The strain energy stored in the deformed body is

1 ['Mm2 1 [Y(—ED EI
U=-] ——dx = _/ ﬂd (y’/)
2 ), EI 2 ), EI 2

The potential energy of the applied load is
IV = —PA/ (the reason for the negative sign: as A increases, I/ decreases)

d 2
d? = dx® + dy* = [1+ <d > ]dx2=>ds = \/1+ () dx
X

It is noted that the static deformation has already taken place and the
examination is being conducted on the neighboring equilibrium configu-
ration. Hence, the shortening of the column, Af, is entirely due to the
flexural action.
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Figure 2-5 Simple column model

L L l 14
ds—/ dx :/ \/1+(y’)2dx—/ dx
0 0 0 0
¢ 1 ‘ 1t
:/ [1+(y’) +..]dx—/ dxi/ (/) dx
0 2 0 2 Jo

Al

Invoking the principle of minimum potential energy, it follows immediately
that

EI [f p [t
0l = U+ o0V = 5[—/ (y”)zdx——/ (yl)zdx:| -0
2 Jo 2 Jo

In order to use the energy method, one must know the equation of the
deformed shape of the structure. In general, the exact displacement function
is not known at this stage of the solution. Experience has shown, however,
that any assumed reasonable displacement shape function that satisfies at least
the geometric boundary conditions leads a very fast-converging upper-
bound solution.

It is assumed that the column shown in Fig. 2-5 is prismatic just
for simplicity. An example having a nonprismatic member will be

illustrated later. Assume the solution function to be of the form
n n

y = Z aip; = Zai sin(imx/€). This assumed y satisfies not only the
i=1 i=1

GBC but also the NBC. Hence, it will lead to the exact solution or a

fast-converging one.
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14 14
EI 2 p 2
==/ ("de—=[ (/) dx
2 0 2 0

2
EI [{]< 2r2  mx]? P [t " i iTx
== i [iz(_l)ﬂ—ZaimlT] dx—E/O —F]?a, cosT dx

=1

El(1*~,,\ P(m<,,

Recall the followin orthogonahty of finite integrals of
trlgonometrlc functions: [ (sinax) dx = (£/2), fo cos?ax) dx = (£/2),
fo sinix) (sinjx) dx = 0 (i # j), and f(f (cosix)(cosjx) dx = 0 (i # j)

oIl EIT*. P EIT*.
9 =0 = 10 14(2a,') —Eﬁzz(Za,') = < i — P7r2> ap =0

2n?El w?El _
Asa; # 0, Pj = 2 or (Pfr)izl = 1z < exact solution

2.4. THE RAYLEIGH QUOTIENT

Mikhlin (1964) proposes that the approximate solution of the eigenvalue
problem usually reduces to the integration of a differential equation of the
form

Lw— AMw = 0 2.4.1)

where w is the displacement that satisfies not only the differential
equation, Eq. (2.4.2), but also certain homogeneous boundary conditions
(this condition may preclude the cantilevered end condition), L and M
are certain differential operators, and A is an unknown numerical
parameter. For the stability of a column, the governing differential
equation is

d> d?w dPw
—|El— ) = —-P— (2.4.2)

dx2 dx? dx2
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For Eq. (2.4.2)

d> d>
L= -3 EI - (2.4.3)
dZ
M= — e (2.4.4)
A=r (2.4.5)

Equations (2.4.3) and (2.4.4) are self-adjoint (symmetric), positive definite
operators for the usual end supports of columns. If a linear differential
operator L has the following property, it is called a self-adjoint or symmetric
operator:

(Lu,v) = (u, Lv) (2.4.6)
The inner product of two functions ¢ and h over the domain Vis defined as

,h) = inner product of gand h = h dv 2.4.7
P g g
14

An operator is said to be positive definite if the following inequality is valid
for any function from its field of definition, u(q) # 0:

(Luyu) >0, (Lu,u)=0 foru(q) =0 (2.4.8)

The reason why one is concerned whether or not a boundary-value problem
has the properties of being self-adjoint (symmetric) and positive definite is
that boundary-value problems having these properties are said to be properly
posed, and there exists a unique solution to a properly posed boundary-value
problem. An improperly posed boundary-value problem due to haphazardly
or arbitrarily assigned boundary conditions is meaningless.

Multiplying both sides of Eq. (2.4.2) by w and integrating over the

domain yields
¢ 2 2 ¢t p
d d=w d=w
—| EI— )dx = —P —d 2.4.9
/0 wdx2< dx2> ~ /() V2™ ( )

Integrate the left-hand side of Eq. (2.4.9) by parts twice, as follows:

/é Ul PV —/éEl L Zd ol atw
0 Va2 w2 )™ 0 a2 ) T dx?
V4
0

14
0

dw d*w
dx dx?
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For simply supported, fixed, or cantilevered end conditions, the last two
quantities are zero. Integrating the right-hand side of Eq. (2.4.9) gives

E Pw Erdw\ 2 dw
—P w——dx = P — | dx — Pw—
o dx? o \dx dx

The last expression vanishes for fixed and simple supports (not for the

l
0

cantilevered end). Substituting the expanded integrals back into Eq. (2.4.2)
gives

) 2\ 2
p= Elfg (d w/d’;) (1 method) (2.4.10)
fo’(dw/dx) dx

It is noted that Eq. (2.4.10) works for cantilevered columns despite the fact
that one of the concomitants is not zero.

As mentioned earlier, the error involved in the approximate solution
propagates much faster in the higher order derivatives. In order to improve
the critical value computed from the Rayleigh quotient, d*w/dx? in the
numerator is replaced by M/EIL Then

(1/E) fy MPax
P, = PR (C2 method) (2.4.11)
/
fo (W)~ dx
Example 1 Consider a pin-ended prismatic column shown in Fig. 2-6.
Assume w = ax({ — x), which satisfies the GBC.

w = a(l —2x), w' = —2a

O—>Y

rt

Figure 2-6 Pin-ended simple prismatic column
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4EIZ [} dx  12EI
a? f(f(ﬁ — 2x)%dx &

a

<=21.6% greater than Euler load

For C2 method: M = P,w = Pyax({ — x)

 (V/EID) [i(Paw)?dx  (P2a®/EI) [y (bx — 2%) dx
T f(f(w’)zdx a a ff(f — 2x)%dx

10EI
o = ( ) < only 1.32% greater than the exact solution,

EZ

7 El  9.8696EI
2 02
If the true deflection curve is used, both the C1 method and the C2
method lead to the same exact solution. However, if an approximate

Pr =

expression for the deflection curve is used for u;, the error in w/ is
considerably greater than the error in w or w/. Hence, C2 method gives
a better solution than the C1 method does. In general, the energy method
leads to the values of the critical load that are greater than the exact solution
as a consequence of using the principle of minimum potential energy. Such
greater values are called the upper-bound solution.

Example 2 Consider a prismatic cantilever column with the fixed support
at x = 0.
Assume w = ax?, which satisfies the GBC.

/ /!
w = 2ax, w = 2a

4EIP[dx  3EI

= ———— = —5 <21.6% greater than exact load
442 fo' x2dx l

cr

For the C2 method: M(x) = P,a(f? — &°)

_(U/ED M)A (1/EDP2A [3 (2 — &%) dx
f(f(w’)zdx 44> fog x2dx

_ (8/15EnPLa> 2P2?

N 4/3a203 ~ 5EI

cr
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EI
P, =25 €—2<= 1.32% larger than exact load
As can be seen here, Eq. (2.4.2) works equally well for a cantilever
column, despite the fact that one of the concomitants, w(dw/dx), does not
vanish at the cantilevered end.

2.5. ENERGY METHOD APPLIED TO COLUMNS SUBJECTED
TO DISTRIBUTED AXIAL LOADS

2.5.1. Cantilever Column

As illustrated in Section 1.10, this problem results in a governing difter-
ential equation with variable coefficients. In order to facilitate a closed-
form solution, various ingenious schemes have been tried. Successful
attempts reported include the application of power series, Bessel function,
and Lommel function and their combination after a clever transformation.
As demonstrated by Timoshenko and Gere (1961), the Rayleigh-Ritz
method can effectively be applied to this problem with the desired accuracy
of the solution by considering a number of independent functions.
Revisit the problem of buckling of a prismatic bar shown in Fig. 2-7 as
considered in Section 1.10. The Rayleigh method can also be applied to the
calculation of the critical value of the distributed compressive loads. As a first
approximation of the deflection curve, the following equation may be tried:

X
y = 6<1 — cos ﬂ) (2.5.1.1)

A U
% [
m y n
/ £ v
X
y
>y

Figure 2-7 Cantilever column subjected to distributed axial load
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Equation (2.5.1.1) is the exact solution curve for the case where buckling
occurs under the concentrated load applied at the free end of the cantilever.
In the case of a uniformly distributed axial load, the true curve is much more
complicated as is shown in Section 1.10. Nevertheless, the curve of Eq.
(2.5.1.1) satisfies the geometrical as well as the natural boundary conditions
and, therefore, is expected to yield a fairly good approximated solution. The
bending moment at any cross section mi is

l
M = / q(n —y)dé (2.5.1.2)
X
The deflection 7 is also expressed as
n = 6(1 — cos 72T_§> (2.5.1.3)

Substituting Egs. (2.5.1.1) and (2.5.1.3) into Eq. (2.5.1.2) gives
l ¢
M = q/ (n—y)d§ = q[/ ndS—y(é—x)] (2.5.1.4)
X X

The integral on the right-hand side of Eq. (2.5.1.4) is expanded to

¢ ¢ /
/xndrgzé/x <1—cosg—§>d5:5[(€—x)—2—7fsing—§x]

- 5[<4_x> =t _smg_;)}

Hence
M = qé[(f—x) —2—€<1 —sinﬂ> - (1 —cosﬂ>(€—x)}
s 2¢ 2¢
mx 20 . oTx
= g0 [(f—x)cosﬂ—?o —smﬂﬂ (2.5.1.5)
U b KMde _ P03 (—192 + 54w + ) 25.1.6)
2EL), 12EI73

and the work done by the distributed load above the section mn is

%q(ﬁ ) (j—y>2dx

X
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The total loss of potential energy of the distributed load during
buckling is

1 ¢ dy 2 1 o ¢ T mTx\2
V——Eq/o (5—x)<a> dx——Eqé /O(E_x)(ﬂSIHZ_E) dx

52
~2(x? — 4)
32
(2.5.1.7)
By virtue of the principle of minimum potential energy, it follows that
oIl oU OV 04> (=192 4+ 54w + ) 6
A A ( >——q(7r2—4):0
ol) 96 99 6EIm3 16
(P —4) 6EIT -] 25.1.8)
1 16 (—192 4 547 + )03 & o

Although Eq. (2.5.1.8) is only 0.65% greater than the exact solution, it
would seem interesting to see how much the accuracy can be improved by
taking one more term in the assumed displacement function. Consider the
following function for the deflection of the cantilever shown in Fig. 2-7:

3mx

—(1— H>+b1— o (2.5.1.9)
y—a COSzE COS2£

Equation (2.5.1.9) also satisfied the geometric boundary conditions. As is
done earlier, 7 is taken as

n = a<1 — cosg—j) —i—b( — cos %) (2.5.1.10)

The integral on the right-hand side of Eq. (2.5.1.4) is expanded to

[~ [ (e ) (1)

20 7w& 20 . 3wt

——smﬂ x} —l—b[(ﬂ— )——ﬂsmg

o=
_ [ _sm%ﬂw[(ﬁ—x)
+37T<1+sin32%>}

|
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Hence
a{(f— x) —2—7f(1 - sinZ—?) - (1 - cosg—z)(f— x)}

2/ - 3mx 3mx
—{—b[(f —x) —{—371_<1 + 51n2£> - <l — cos 2f> (¢ — x)}

wx 2/ X
= {a[(f—x)cosz—g—?O—smz—g)]

b (€ = x)cos X 1 2L (1 4 g 3T (2.5.1.11)
X )COS 2£ 3 Sin 26
1 l
U= — M?dx
2EI J,
P03 [ (—1728 + 4867 + 97 ) a® + (64 + 547 + 977 b
108 EL| 4 (384 — 97)ab

(2.5.1.12)

The total loss of potential energy of the distributed load during buckling is

1 ¢ dy 2

V——Eq/o (K—x)(a) dx
_ 1 /4“_ ) T E+3_77~ smx, Zd
R A A U Y A VAN VAV B

= —9 |:(7T2 —4)a* + (97 —4)b” + 24ab] (2.5.1.13)

n=uvu+v

ar  du I alA
da  da da  108m3EI
1

—3—2q[(27r2 —8)a+24b] =0

[(=3456 + 9727 + 187°)a + (384 — 9m)b]
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on_ou_ v _ _qf [(128 + 1087 + 187)b + (384 — 97)d]
= — T T xoe N a
b — b b  1087El

1
~ 35 (187> — 8)b+24a| = 0

For a nontrivial solution (a and b cannot be equal to zero simulta-
neously), the determinant for the coefficient matrix for a and b must
be equal to zero. Solving the resulting polynomial for the critical value
yields
EI
Qo = 7'8886_3 (2.5.1.14)

In this case, the addition of an extra term in the assumed displacement
function does not improve the accuracy up to the fourth effective digit.
The numerical computation in the example has been carried out using
Maple®

The uniform load ¢¢ reduces the critical buckling load P applied at the
cantilever tip. It is written in the form

mEI
where the factor m is equal to m*/4 when ¢f is equal to zero and it
approaches zero when g approaches the value given by Eq. (2.5.1.14).
Using the notation

B 4q€3
" m2El

the values of the coefficient m in Eq. (2.5.1.15) for values of n can be found

in Timoshenko and Gere (1961). The following illustration is an example

case of using the energy method to compute values of # and m interactively.
The moment due to the concentrated load P is
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M = Mp+ M, = 64 Pcos — + q| (¢ — x) ﬂ—z—e@—'ﬂ)
= P q = COS2£ q xcoszf = Slnze
1 l
2
U=— [ Mdx
21 J,

B 0% [t P mcjL (« ) Tx 2/ { X 2d
= 35 ; cos% q xcoszé - sm% X

= 8%0(—12mlmqP + 540Cmq® — 192024 + P + 3m°P?
+ 3¢mqP) / (12EI)

0% (
12EIn3

o= [(2) o= PG [ (0 a = 20(G)

1 ¢ dy 2 1 o ¢ ™ TX\2
V, = _Eq/o (K_X)<E> dx = —Eqé /()(f—x)<ﬂsmﬁ) dx

93.01883P° + 55.3197182(qP + 8.65228(>¢%)

62
——q(ﬂ'2 - 4)
32
SPm\2l 8%
V="VetV, = ——(—) - (" 4
PV > ) 27 Y
P
= -5 <O.6168503 7+ 0.183425138q>
U L OV _ 025 2 4 0148678816 e P + 0.0232541088 £
36 a6 E ' TR Er?
P
06168503 ;; — 0.183425138¢ = 0
If P = 0, then
7.88786EI
Qo = 73 — (2.5.1.16)

The critical load given by Eq. (2.5.1.16) is only 0.65% greater than that
given by Timoshenko and Gere (1961).
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Ifn = 1(q = wEI/4°), then
P, = 1.7223 EI/K2 < 0.13% greater than the exact solution.

2.5.2. Simply Supported

Consider a both-end simply supported column subjected to a distributed
axial load ¢ and a concentrated axial load P at the top of the column shown
in Fig. 2-8.

Assume a one-term trial deflection curve.

y = dsin % 2.5.2.1)

The bending moment at any section mn in Fig. 2-8 is

l
M, = / q(v — n)d¢ (2.5.2.2)
It is noted that the deflection 7 is also expressed as
m
n=20 sin?g (2.5.2.3)

Substituting 17 into the moment equation and noting that y is not a function
of € yields

My = /;q(y—n)df = q[y(ﬁ—X)—/;ndE]

Cﬁ—%l |
m n
t )
/ y
4
x
, LY
7 ¢

Figure 2-8 Simple column with distributed load



106 Chai Yoo

The integral on the right-hand side is expanded to
l l
ol
/ ndé = 5/ sinﬂ'—gd.f = ——cosw—g
X X ¢ T ¢

Hence,

6—£<1 + cos %)

x ™

M, = 46 [(f — x)sin % - ;(1 + cos %)] (2.5.2.4)
The moment at the bottom support (hinged end) must be equal.
However, the moment equation shows a moment equal to —2¢/m upon
substitution of x = 0. In order to maintain equilibrium, a correction couple
force c (also known as the continuity shear) is required, as shown in Fig. 2-8.
Hence, the corrected moment at any point along the column length is

.omx / X 2
M, = qb [(5 — x)sin VA ;(1 + cos 7) + ;(ﬁ — x)]

X
Mp = Py = P551n7

M = Mp+ M,

1 ¢ 5 1 t X X
U=-— | MAdx=— [ {Posin— +¢6|(f— x)sin —
261 ), " T2E1), { st [( x)sin =

l mX 2 2
—7—r<1 + cos 7) —I—;(f— x)} } dx

a4
— [67r4P2 + (27" + 257 — 288) ¢ + 61r4£Pq] (2.5.2.5)

24m*EI
dy ro® [t/m X\ 2 6> P
Vp = — dx = ——— (— —)d:—
P /O(dx> o 2 Jy )™ 40
X\ 2
Vq:__/ / ( ) dfdx———/ —x) COST) dx
B 0% qm?
- 8

(2.5.2.6)
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6’pPw> 6%qm?

V=T1ptV, =

4¢ 8
U 9V 4152 4 2 2 2 4
=5 T35 = 12W4El[6ﬂ' P> + (2m* + 251 — 288)(°¢* + 67" (Pq]
P 2 2
_2_72_% -0 (2.5.2.7)

If ¢ = 0, then P, = (m*EI/{*) < As expected.
If P =0, then ¢, = (18.78EI/£?) <= this is only 0.98% greater than the
18.6EI

/3
For this example, there appears to be an opportunity to improve the solution
accuracy by adding a second term in the assumed deflection curve.

exact value

. TX - 27mx
y = asm7+bsm7 (2.5.2.8)

, X 2w 2mx
y = a—cos——+b— cos—

14 14 L 14

r (TN T (2T 2
y—agsmg gsmg

Only the uniformly distributed axial load is considered in this illustration.
The bending moment at any section mn in Fig. 2-8 is

l
My = / q(y — m)d&
The deflection 7 is also expressed as

2
n = asinﬂ—?;—b—bsiniE

l

Substituting 7 into the moment equation and noting that y is not a function
of £ yields:

My = /xgq(y—n)dE = q[y(ﬁ—X)—/jndS]

The integral on the right-hand side is expanded to
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¢ ‘
2
/ ndé = (asin%—{—bsin%)dg

Hence,
. TX . 27mx al T
M; = q[(f—x)<asm7+bsm7) —;(1 +C057>
(1 e 2 2.5.2.9)
2m cos ¢/ (2.5.2.

The moment at the bottom support (hinged end) must be equal. However,
the moment equation shows a moment equal to —2fa/7 upon substitution
of x = 0. In order to maintain equilibrium, a correction couple force c is
required as shown in Fig. 2-8. Hence, the corrected moment at any point
along the column length is

. TTX . 27T,X' ae X
Mq =9 (€—x) asin — -+ b sin — _;<1+COS—>

/ ¢ /
be 27X 2a
+§<1—COST>—|—?(£_X):|
2 /
=T _ 0 T g 2 mx
U_ZEI ; [(f x)(asm 7 + bsin £> ﬂ_(l—i—cos €>
bl 2mx 2a 2
—I-%(l—cosT)—k?(g_x)} dox
q2€3

— 4 2 2
= 288774]5[{(2% + 3007 — 3456)a

+ (247" +997%)b* — 400772ab]
q2€3

Lets = ——
28874 EI
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1 [t dy2

V = —— — | déd
o [ E) e
q 4

T TX o 2mx\’
= —5/0 (E—x)(azcosj+b7c037> dx

20 2 7>
Y e NI ST
q<9a —|—8a +2 >

U IV
oot g = (368545 — 2.4674)a + (3947 845 — 2.22222)b = 0
a a
1A ) %
oty = (3947845 - 2.222222)a + (66298185 — 9.8696)b = 0

3685.4s — 2.4674  3947.84s — 2.22222
3947.84s — 2.22222  6629.818s — 9.8696

Il
o

For a nontrivial solution (a and b cannot be equal to zero simultaneously),
the determinant of the coefficient must be zero.
Solving for s gives

ala EI

_TC L = 18572
o88mipr 1l I

s = 0.000661938 =
2.5.3. Pinned-Clamped Column

A propped column with the top rotationally clamped and the bottom
pinned is subjected to a uniformly distributed axial compression as shown
in Fig. 2-9. Because of the boundary condition, a continuity shear or
a correction couple force is expected for equilibrium.

Assume a one-term trial displacement function as

y = a(fPx — 30x> 4 2x) (2.5.3.1)
Boundary conditions are
y=0 @x=0andy =0 @x =¢
V=0 @x=/landy' =0 @x =0

The function satisfies the geometric and natural boundary conditions at

both ends.



110 Chai Yoo

AN
NN

vy v v L,y
% 7
5 c

Figure 2-9 Clamped-pinned column

The bending moment at any section mn in Fig. 2-9 is:

M = /jq(y—n)dé

It is noted that the deflection 7 is also expressed as:
n = a(P¢ — 308° + 2¢%)

Substituting 1) into the moment equation and noting that y is not a function
of £ yields:

M = /xeq(y—n)df = q[y(ﬁ—X)—/jndE]

The integral on the right-hand side is expanded to:

14 14
/ ndé = a/ (PF — 308> 4 2£%)d¢

Hence,

M = qa{(ﬁ —x) (P — 30x° +2x%) — [%(62 o e (A

- %(65 - xS)] }

(2.5.3.2)
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The moment at the bottom support (hinged end) must be equal to zero.
However, the moment equation shows a moment equal to —3¢> /20 upon
substitution of x = 0. In order to maintain equilibrium, a correction couple
force c (also known as the continuity shear) is required as shown in Fig. 2-9.
Hence, the corrected moment at any point along the column length is

3 3 4 3 Coa o
M = qa (0 —x)( Px =30 + 25+ — | — | = (7 — &%)

20 2
e e - xS)]}

The assumed deflection function has an inflection point at x = 0.75¢. In
order to ensure the moment to be equal to zero at the inflection point, the
moment equation needs an additional adjustment.

304
(0 — ) <£3x —30x° + 2x* + E) —0.0742118750*x
M = qa 3
oo 2 3, 4 N 205 5
_{E(z —2) ey 2 -0
(2.5.3.3)
1 l
2
U=— M= dx
2EI J,
3¢+ 2
(¢ — x) <£3x — 30x° 4 20t + —) —0.074218750*x
B Pd ¢ 20 ;
 2EI (3 3¢ 2 )
- [5(132 — 32 — Z(134 —ah 4 5(65 - xS)]
= 0.007519762734 ("1 4> | 2EI
1 bt dy 2
V, = — — ) d&d
o= [ (i)
2 14 8 2
a‘q 3 5 332 30°qa
= 2 (0=x)(P —9x®+8x) dx = ——
>, (0 —x)( X% 4 8x7) "dx >3
au av Yy 608
+ — = —(0.0075197627534) 25 = 0=

9a ' da  EI

q = 28.5—= (5% less than the exact solution)
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2.5.4. Clamped-Pinned Column

A propped column with the top rotationally clamped and the bottom
pinned is subjected to a uniformly distributed axial compression as shown in
Fig. 2-10.

Assume a one-term trial displacement function as

y = a(302x* — 50x° 4 2x*) (2.5.4.1)
Boundary conditions are
y=0 @x=0andy =0 @x =/
Y =0 @x=0andy" =0 @x = /¢

The function satisfies the geometric and natural boundary conditions at
both ends.

The bending moment at any section mn in Fig. 2-10 is

M = /jq(y—n)df

It is noted that the deflection 7 is also expressed as
n = (3076 — 5¢8° 4 2£%)

Substituting 7 into the moment equation and noting that y is not a function

of £ yields
M = /xéq@—n)af = q[y(f—X)—/;ndE]

B

-

Figure 2-10 Clamped-pinned column
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The integral on the right-hand side is expanded to
L l
/ ndé = a / (36767 — 5087 4 2£%) dt

- a[fz(ﬁ —) 2 - e _xS)]

Hence,

M = qa{([ — x) (3£2x2 —50x° + 2x4) - [€2 (63 - x3) - 1(54 - x4)

+ 2(65 — xS)] }

The assumed deflection function has an inflection point at x = 0.25/. In
order to ensure the moment to be equal to zero at the inflection point, the
moment equation needs an adjustment.

(0 — x) (30742 — 50 + 2x* + 0.0679687474*)

M = qa 5 (2.5.4.2)
_ [ez (0 -2) -2 -y 120 - XS)]
1 J4

U=— [ M4idx

2EI J,

2
2 [t (€ — x) (302 — 50x° + 2x* 4 0.0679687474*)
=~ 557 ) dx
2EL Jg - [52(%' — ) — %‘g(e“ — )+ 5(55 - xS)]

= 0.002425669952¢' *a* |2EI

1 [t dy2
V, = — — | déd
=g [ () e

P ¢ 8 2
9¢
_ %4 (0 — x) (6€2x —150x° + 8x3)2dx S
>/, 140

ou v Iy 1848
—— 4 — = —2(0.002425669952) — —— = 0=
da  Oa EI 140

EI
q =153 3 (0.95% greater than the exact solution)
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2.5.5. Both-Ends Clamped Column

A both-end clamped column is subjected to a uniformly distributed axial
compression as shown in Fig. 2-11. Assume the deflection curve to be the

form
2mx
y = a<1 — cos 7) (2.5.5.1)

The bending moment at any section mn in Fig. 2-11 is
l
M = / q(y — m)de
X
It is noted that the deflection 7 is also expressed as

a1 = cos 2
n=a cosé

Substituting 1) into the moment equation and noting that y is not a function

of { yields
M = /xqq(y—n)di = q[y(f—x)—/;ndé]

The integral on the right-hand side is expanded to

¢ l
[oe=ef (

n ¢ 27 x
= oin 222
27rS 14

Figure 2-11 Both-ends clamped column
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Hence,
27X ¢/ 27x
M = qa{(ﬂ —x) <1 — cos 7) — [(ﬁ —x)+ o Sin 7] } (2.5.5.2)

The assumed deflection curve is to have two inflection points at
x = 0.25¢and x = 0.75(.

M = qa{(e—x)(1 —c0527‘> - [(z—x)+2ism2ﬂ —|-72T<§—x>}

(2.5.5.3)

1 14 22 12 2
U=— [ M2 =12 {(E—x)(l—cos%)

2EI J, 2EI [,

¢ 2mx|  2(¢ 2
- [(f—x) —i—%smT] —i—;(i—x)} dx
= (767/277200) £ ¢*a® |2EI

v, = ——/ / <dy> i = - / (£ — x)(€% — 9032 + 8x7)2dx

308qa°
28

U v g < 767 ) 608

_ _ _ = 03
90 0a 277200) ~ 28 1

= 77.4 V3 (3.8% greater than the exact solution)

2.6. ELASTICALLY SUPPORTED BEAM-COLUMNS

As an example of the stability of a bar on elastic supports, consider a pris-
matic continuous beam simply supported at the ends on rigid supports and
having several intermediate elastic supports. A similar problem was
considered in Section 1.9 in which the bar was considered to be rigid so that
the strain energy stored was in the elastic supports only. Let ¢ = force
developed in the spring= ky. Then the work done by the spring is
(1/2)qy = (1/2)ky?. Rotational spring can also be considered at any
support. Total potential energy function of the system becomes

EI (£ ,. P [t
I = U+V:?/(y)dx—§/(y ) dx 4= Zklyt 2.6.1)
0 0

1—1
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o7
-7

\ |
Figure 2-12 Column resting on elastic supports

Letk; = ky = kand x; = £/3, xa = 2{/3 to simplify the computation
effort. It appears that at least three sine functions need to be considered for
the three-span configuration shown in Fig. 2-12. Assume

. X . 2mx . 3mx
y = ajp sin 7 + ap sin e + a3 sin e (2.6.2)

H_g/f_ m\2 ome (om\? ome (3m\? sm]’
=5 ; a 7 sin 7 a 7 sin o as 7 sin —~ x
_B/Z ™ cos ™ 1 (2™ cos 2 4 a5 (2™ ) cos ™4

5 ) al e COSs 6 an E COs £ as e COSs e X

+1k ) 7r+ 21 2+ ) 271'+ o Ar 2
> a sm3 ap sin 3 a1 sin 3 ap sin 3

Noting that

¢ 0 for i#j
. imx | jmx
sin == sin™— = dx = and
0 - for i=j
‘ 0 for i#j
imx  jmx
/ COSTCOSde =
0 forl =
Elx*

I =

2 2 2 pr? 2
ay + 16a; + 81a3> - 7 <a1 + 4a2 + 9a3>

o
(4+2)

3
“k
*3
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oIl 0 EI7T4(2 ) P7r2(2 )+3k(2 ) EIT* P7r2+3k
_— = a - a — a == - T, a
dai 403 Ty R I3 i !
b _ M EI7r4+3k _7r2EI+3k€_P L2k
T4 4] 2 2 F w2 Pg
Po _ 1+ 3kt (2.6.3)
PE B 7T2PE o
oIl El7* P’ 3 4EIT*  Pm® 3
— =0= 32ay) — —(8 “k(2ar) = [—— —— 4"k
P 25 (32a2) = (8a) + Jk(2ar) ( R )“2
p ! 4EI7T4+3k _47r2EI+3Ie€ _pof4p 3 K
T2\ 43 4 ) 2 42~ O F 472 Pg
Po gy M (2.6.4)
Pg N 47T2PE o
om _ o _ EI7T4(162 ) P7r2(18 ) = 9EIw* P
das 4 Tt A\ T )@
p ! 9EI7*\  9w’El P, _ 9 2.65)
o T 71_2 63 - EZ 9 PE - 0.

The same results can be obtained by setting the coefficient determinant
equal to zero.

El7* Px?
7 —7+3k 0 0
4BI7* Pr* 3
)
0 0 9EIT® P
Al 14

Equating (2.6.3) and (2.6.4) yields

PR IR B S Y RN AV
w2 Pg N 47‘(’2 Pg w2 4 Pg N Pr a ’
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Likewise, equating (2.6.4) and (2.6.5) gives
3kl kel 47>
+——=9=—=5—— =658

472 PE PE 3
Assuming ¢ = 3L and P., = 9Pg for three equal spans,
k = 65.8P;/(3L) = 65.8P,/9/(3L) = 2.437P,/L = BP,/L
This equivalent § value of 2.437 is slightly less than that (8 = 3) obtained for
three equal spans rigid body system, which is logical as the elastic strain
energy stored in the deformed body shares a portion of the energy provided
by the spring system. Note that practical bracing design is carried out based
on the rigid body mechanics examined in Chapter 1 to be conservative. The
P,/ Pg versus k{/Pg plot is shown in Fig. 2-13.

Next example is a propped (by a linear spring) column shown in
Fig. 2-14. Considering only elastic deformation and neglecting the rigid
body motion, the strain energy equation based on the assumed displacement
function is to be derived.

S . for
P if k> 65.8P;/( P
E spring behaves like rigid support
(o2}
| | | | ! | | ! L, ke
0 20 30 40 50 60 70 8o PE

Figure 2-13 Critical load vs. spring constant

k
L
—v 5
7///T///%
P

Figure 2-14 Column with constraint
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Assume the deflection shape to be of the form

s s
y = 6sin2—z+lsinfx

, om 7rx+A7r X
Y S VA T

ElI [T T\ 4 i m\4 g
= — 6’ — ) sin? ™ +22( =) sin? ™
2 Jo 2L 2L L L

2 x| mx ke§>
sin — sin — | dx + —
2L L 2

p [t T \2 iy m\2 iy
- —/ 60’ —) cos® ™ +22( =) cos® ™
2 2L 2L L L

+ 264 (%) <7zr cos ;T_z ~+ cos %} dx

() L (2) Y 44 (2)
2 2L 2 L 2 2 2 2L 2

119

oIl m\4L m\2L pw®  Elx*
— =0=EI|6|—) Z|+ké-P|6|—) = = S
96 2L 2L) 2 8L 3213
2
E
IfPC,—W , then
L2
p,(m 72 0.9253P,, P,
o= Do(m ) 092530 _ PPy gy
L\8 32 L L

-0 ) -G

Eln?
P = —— fork = 0 < not valid
412
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As expected, the value of § of 0.9253 is slightly less than 1.0 obtained in
Chapter 1. It is customary in practice to neglect the contribution of strain
energy from the elastic deformation of the column.

2.7. DIFFERENTIAL EQUATION METHOD

The critical load on columns of stepped (variable) cross section as used in
telescopic power cylinders can be computed applying differential equations
considering continuity at the junctures. In order to limit the computational
complexity, only two-stepped columns shown in the sketch are considered.
Multiple-stepped columns are best analyzed by a means of computerized
structural analysis methods.

Consider the stepped cantilever column shown in Fig. 2-15(a). The
bending moment of the column at any section along the member x-axis can
be written for each segment as

ELy! = P(6—y,) and EbLy; = P(6 —y,)

P P
Let k% = oA and le% = o then the equations becomes
1 >

V] + ky, = ko (2.7.1)
/! 2 _ 12
W+ ks, = k50 (2.7.2)

The total solutions of Egs. (2.7.1) and (2.7.2) are

¥y = 0+ Ccos kjx+ Dsin kyx

Yy = 0+ A cos kax + Bsin kyx

(@)

Figure 2-15 Stepped columns
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In order to determine the integral constants A and B for segment 2,
consider the following boundary conditions:

V=0 atx =0=>A = —90
¥, =0 atx =0=B=0=1y, = 6(1 — cos kax)
At the top of the column for yy, it requires that
0+ Ccoskif+Dsinkif = 6= Ccoski{+ Dsinkif = 0=
C = —Dtan k4
The continuity at the juncture requires that
¢+ C cos kily + Dsin kily = 6(1 — cos kaly) = § — 6 cos kol

in k¢
o 1£ cos kil — sin Ie1€2>D

—tan k1€ cos k1foD + Dsin kil = — (

cos kq

= —0 cos kats

0 cos kolr cos kil
sin k14 cos k1€ — sin kif5 cos k¥

0 cos kalrcos k14
sin k1 (¢4 + £2) cos kily — sin kyla cos ki (¢ + £2)

_0cos kot> cos kil
- sin klfl

0 cos kalp cos kil 6 cos kala sin ki f

C = —tan kil =
tan k1 sin klfl sin klfl

The continuity condition that the two segments of the deflected curve have
the same slope at the juncture (Qx = ¢;) gives

(5]62 sin k2€2 = —Clq sin k1€1 + Dkl COS ]qu

0 kxt> sin ki £
_ cos / 505 sin ky by sin kil
sin k14

0 cos kol cos klg’q cos k1>

sin k1£1
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R earranging gives
ky sin kaly sin kil = ky cos kala( sin kify cos kil
+ cos k14y sin ko) sin ki,
+ ky cos kals(cos kiy cos kil
— sin ky 41 sin ki £p) cos k1>
= ky(cos kily cos kalz)

k
which leads to tan k14 tan kolr = le_1 < stability condition equation.
2

The same stability condition equation can be obtained by setting the
coefficient determinant equal to zero. There are a total of four integral
constants to be determined. As the governing differential equation is in
second order, only one boundary condition at each support is to be used.
Hence, the other two conditions are to be extracted from the continuity
condition as used above.

¥, =0 atx = 0=B = 0=y, = 6+ A cos kpx (a)
y; =06 (ory] =0) atx = £=Ccoskil+ Dsinkil =0 (b)
Y1 =Yy atx = ly=>Acos kaly — C cos kil — Dsinkily = 0 (¢

yll = y/2 at x = £ = Aky sin koly — Chky sin k1> + Dk cos kify = 0
(d)

Setting the determinant for the coefficients, A, C, and D equal to zero
yields the identical stability condition equation. This process can be expe-
dited using a computer program capable of symbolic computations, such as
Maple®.

Knowing I /I, and ¢; /{5, the solution of the transcendental equation
can be found. By substituting a/2 for ¢, and ¢/2 for ¢, the result obtained
can be directly applied to the column shown in sketch (b). Coefficient m for
P, = mEL/{? is given in Table 2-2.

Upon executing the transcendental equation identified as the
stability condition equation above, the table is somewhat confusing. The
table should be used for the case shown in sketch (b). For the case of
stepped columns shown in sketch (a), values for m should be taken from
Table 2-3.
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Table 2-2 Buckling coefficients for stepped columns, Fig. 2-15(b)

h/h a/t
0.2 0.4 0.6 0.8

0.01 0.15 0.27 0.60 2.26
0.1 1.47 2.40 4.50 8.59
0.2 2.80 4.22 6.69 9.33
0.4 5.09 6.68 8.51 9.67
0.6 6.98 8.19 9.24 9.78
0.8 8.55 9.18 9.63 9.84

Table 2-3 Buckling coefficients, Fig. 2-15(a)

I/h 0/t
0.2 0.4 0.6 0.8

0.01 0.038 0.068 0.150 0.563
0.1 0.367 0.600 1.124 2.147
0.2 0.699 1.056 1.674 2.332
0.4 1.272 1.669 2.127 2.419
0.6 1.745 2.046 2311 2.446
0.8 2.138 2.294 2.408 2.459

Consider a stepped cantilever column similar to that shown in Fig. 2-15
(a). The length of each segment is 20 inches. The cross-sectional area of the
bottom segment is 4 in?> and the upper segment is 1 in> The modulus of
elasticity of the material is assumed to be 29,000 ksi. The stability condition
equation now becomes

tan(80k;y) tan(20ky) = 4

Maple® gives ky = 0.0184315, which leads to P, = 13.136 kips. A
computer program based on the differential equation such as STSTB (Yoo
1980) also gives the same critical load. However, a modern-day finite element
program such as ABAQUS (2006) gives the critical load of 9.928 kips. The
lower value (32%) is considered to be much more realistic. Since a large
portion of the cross-sectional area (at least 75%) of the segment 2 around the
juncture cannot participate in carrying the load due to discontinuity, the
realistic critical load is expected to be less than that computed assuming all
parts of segment 2 are effective as used in the case of modeling the differential
equation method. This is a classical example of the class of the analytical
techniques employed. A solution is as good as the assumptions employed.
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There is another important lesson to learn. In the early days of telescopic
power cylinder development, manufacturers reduced the elastic critical load
substantially by a “knock down factor” of up to five. Yet, they witnessed
a large number of field failures in that the piston was digging into the
cylinder wall. Years later, they discovered that this was caused by the slack of
the phenolic ring due to wear, thereby providing an initial imperfection.

2.8. METHODS OF SUCCESSIVE APPROXIMATION
2.8.1. Solution of Buckling Problems by Finite Differences

Because of the rapid development of finite element method in structural
mechanics, the application of finite differences became only of historical
interest. However, it was probably one of the main numerical techniques for
solving complex structural mechanics problems in bygone years, and it is still
frequently applied in other discipline areas such as hydraulics. The finite
difference technique is merely replacing the derivatives in a differential
equation and is solving the resulting linear simultaneous equation numer-
ically. Hence, one must have the differential equation(s) and accompanying
boundary conditions to apply finite differences (cf. in the finite element
method, one does not need to have the differential equations and accom-
panying boundary conditions). The finite difference technique applied to
a one-dimensional problem is illustrated. A one-dimensional field can be
approximated by a Taylor series expansion as

(x —a) (x — a)? (x —a)’
f(x) = f(a) +f'(a) T —I—f”(a)T —I—f"’(a)T 4
+1( )(x _,a) (2.8.1)
n.
Accuracy of FD Method
Atx = a+ 4
/ 12 /1 A?) " A4 iv > v
Yy = Yo+ A o tape TP Tl T (2.8.2)
Atx = a+ 24
422 8A® ,, 16aA* 3200

Vi = Yo b 200 Sy S ) e e (289)
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Taylor Series Expansion
¥ (a f

L—LI

KT*

2 3
v = f@ @S D @D

>

Figure 2-16 Finite differences

Atx = a—2A
AZ /13 4 AS ,
W= o= W S = S i =Tl
Atx = a—2A
42° 81> 16A* 320
Vi :yo_2xy;+_/l__y///_’__yw v 4+ ...

2170 3170 4170 5
Adding Eqgs. (2.8.2) and (2.8.4) gives

212 " 2A4 lU 2/16 vi
y,,+y,=2yo+7y(,+ +— +

1 1, . 1
' = a0 =2, ) - TR v S
l 1 -
E t — AZ [ —A4 vi
rror terms V, 360 Y,

Adding Egs. (2.8.3) and (2.8.5) gives
8az , 322* 642°

v vi

yrr+yll:2yo+7yo Tyo + 6! — Y, *+-
Substituting )"’ expression into the above and rearranging yields
; 1
v, = F(yﬂ — 4y, + 6y, — 4y, + yy) + Error terms

Similarly, subtracting Eq. (2.8.5) from Eq. (2.8.3) gives

n

1
Yo = WO’W = 2y, + 2y, — yy) + Error terms

125

(2.8.4)

(2.8.5)
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Likewise, from (2.8.2)—(2.8.4) gives
, 1
vV, = ﬁ@’r —y;) + Error terms

Note

1. Examination of error terms reveals that the smaller the A (mesh spacing),
the smaller the error involved. = requires a large number of subdivisions.

2. A large number of subdivisions also results in a large number of simul-
taneous linear equations. = great truncation error and computational
CPU time.

3. There appears to be an optimal number of subdivisions, say 20 per span.

4. The accuracy of FD depends on the number of subdivisions per span,
not the absolute numerical value of mesh spacing, A. A span of 2” in
length with three nodal points gives A = 1” while a 100’ span with 11
nodal points yields A = 12,” which gives a better solution.

Example 1 Consider a both-end pinned prismatic column. The column is
subdivided into four equal segments, and a node point is assigned on each
quarter point and the ends. Mesh equations will be generated at three
interior (load) points based on the governing differential equation and
proper boundary conditions.

P 1
Vi ky =0, with k= =50, = 20, + )

The finite difference mesh equation (or load point) at x = A is:

Yo—=2y;4+0

2 + 1y = 0= (P —2)y; +y, = 0 (a)

The same at x = 24 is:

Y3 — 2y, +

2 +Ey, = 0= (P =2y 4y +y; =0 ()

Figure 2-17 Five-node finite difference model
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At x = 34
WJF Kyy, = 0= (P —2)y,+y, = 0 (c)
In a matrix form
21 0 Y1 0
T2 1 Y20 =40
0 1 22k2 V3 0

Setting the coefficient determinant equal to zero yields
(2K —2) 2(22% —2) = 0
Let (k> —2) = R=R>—2R = 0=R = Oor £+2
2—+2 58579

2oy
9.3725EI 2FT
pclr = —p <5% less than _7762 >
(B> —2) = 0=k :%:%2
AZ o (L/4)
P = 7 <18.9% less than’;T>
24+V2 34142
(Azk2_2):\/§:>k2: 2 = 7 5 =
(£/4)
Pcsr = — (38.5% less than %)

Note

1. The finite difference method gives lower-bound solutions.
2. More subdivisions = better convergence.

3. Higher modes deviate more from the exact solution.

The two-dimensional Taylor series expansion of a function, f(x,y), near
a point P(xy,y,) is given by

Sflx,y) = f(xpayp) +fx(xpv)/p)(x - xp) +J§/(xpayp)(y _)’p)

1
+ 5 f;»‘x(xpayp)(x - xp)z +fj/y(xp7yp)(,y _yp)z

+ foy(xpayp)(x —xp) (¥ _yp)
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1 _fx‘xx(xwyp)(x - Xp)3 +.fy)/y(xp7yp)(y _yp)3 + 3.f9€xy(x;77yp)(x - xp)z(y _yp)_

M+ ol (o= )0,

1 [ e (e ) (6 = 20)* A+ By (5, 2,) 0 = 9,)F + Ay (3, 9,) (6 = ) ° (0 = 3,) |

B 4y (0) (= 5) 00— ) + Gy (5p03) (= 3, (0 3,

The three-dimensional Taylor series expansion of a function, f(x,y, ),
near a point P(x,,¥,, 2p) is given by

f(x7y7 Z) = f(xpaypvzp) +f;6(xpayp7zp)(x - xp) +.]§/(xp>yp7 Zp) 0/ _yp)
+fz(xpvypvzp) (== =)

-fxx(xp’ypvzp)(x - xp)z +]§)y(xpvyp7zp)(y _yp)z +_f2’5(xp’yp7zp)(z - Zp)z
+ 51 + 2fxy(xp:yp72p)(x - xp)(y _yp) + nyz(xp7yp7zp)()} _yp)(Z - Zp)

+ 2fx2(xp7ypv Zp)(x - xp)(z - Zp)

-J{\‘XX(xl”yw Zp)(x - x,ﬂ)3 +]§’W(xpvypv Zp)(y _yp)3 +fz'22(xp’ypvzp)(z - Zp)3

1 + 3fvxy(xp7yp: Zp)(x - xp)z(y _yp) + 3f;'yy(xp7yp: Zp)(x - xp)(y _yp)2

I 3 (353 2) 0 = 922 = 2) F 3ee (5,0 50— 3,) (2 — 2

2

+ 3fxx2(xpaypa 2p) (% — xp)z(z —z)+ 3]3622(35;77)’177 2p) (v = %) (2 — 2p)

[ P03 20) (3 = 30 + oy (5,90 20) 00 = 3,)* + foaz (o2 2) (2 = 2)°
- Wy (51 2) (8 = 35100 = 2,) + s (5 20) (5 = ) (2 = 2,)

LU Yo (o2 2) (= 3) 0 = 3,)° + A (i3 20) 0 = 3, (2 — 7))

4 e ) (= ) (2 = 2)° - Afpess (5,30 2) 0 = 3,) (= = 2)°

2 2 2 2
+ 6fmyy(xpvypv 2p)(x —x,)" (v _yp) + QE/YZZ(xpvypvzp)(y _yp) (= 2)

+ 6fxxzz’(xp7ypa Zp)(x - XP)Z(Z - ZP)Z

) 9° 3
_fa fxy = f 5 f;;cxx = —J; (&
dx dxdy Jx

where f, =

tc.
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The transformation of a partial derivative into a finite difference equa-
tion can be accomplished in a manner similar to that used for the ordinary
derivatives shown earlier.

2.8.2. Newmark's Procedure

Newmark (1943) published a procedure of computing deflection,
moments, and buckling loads. Although this procedure is old, it is still an
effective method, particularly for nonprismatic members subjected to
complex loading, including the elastic buckling loads for multiple stage
telescopic power cylinders. As his procedure is reasonably fast converging, it
does not usually require iterations more than three times. Experience has
shown that the simplified equations for the linearly varying loads are equally
effective in all problems solved.

For an infinitesimal element shown in Fig. 2-18(a), an equilibrium
consideration immediately yields the following relationships:

dv

R 2.8.6
T~ q (2.8.6)
d

KiLL— (2.8.7)
dx

The moment-area theorems to be reviewed in Chapter 3 give the following
relationships:

d

g = "% (2.8.8)
El

y = Odx (2.8.9)

o LI oy ﬁ T}T

v dx v+ dv
1 I 1
@ R, R, T R, ®) R,
b
[N iy NS
Rub Rhu T R;,[ Rm
R (©

b

Figure 2-18 Equivalent concentrated reactions
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Equations (2.8.6)—(2.8.9) can be converted as

Av = /qu (2.8.10)

Am = /de (2.8.11)

ag — [ (2.8.12)
EI

Ay = /edx (2.8.13)

The equivalent panel point loads for a linearly varying load shown in Fig. 2-
18(b) can be computed using Egs. (2.8.14)—(2.8.16).

2
Ry, = (2a+1) (2.8.14)
A
Ry, = (a+2b) (2.8.15)
A
Ry = “(a+4b+0) (2.8.16)

Likewise, equivalent panel point loads for any distributed loads shown in
Fig. 2-18(c) following higher order curves can be computed by Egs.
(2.8.17)-(2.8.19).

p

Ry = —(Ta+6b =) (2.8.17)
A

Ry, = 5(3a+10b—¢) (2.8.18)
p

R, = —(a+10b+¢) (2.8.19)

The procedure gives exact values for shears and moments at panel points for
structures subjected to either concentrated load(s), linearly, or quadratically
varying load(s).
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Example 1
P SN P
—’/_A_ > gohann
VZ 7
S
y 4
1 ! \ \
Figure 2-19 Four-node Newmark example

Common
Factor

Assumed y, 0.00 0.70 1.00 0.70 0.00 1

m = Py, 0.00 0.70 1.00 0.70 0.00 P

Y = —m/El  0.00 —0.70 —1.00 —0.70 0.00 P/EI

N —0.80 —1.14 —0.80 PA/1.2EI

Average slope 13.7 5.7 —5.7 —13.7 PAJ12El

Ay = 02 13.7 5.7 —5.7 —13.7 PA?/12EI

s 0.00 13.70 19.40 13.70 0.00  P2%/12EI

1/ 0.00 5.11 5.15 5.11 0.00  0.12E1/P)?

Average 51.23 0.012E1/P2*

Y1/v

m = Py, 0.00 13.70 19.40 13.70 0.00 P

Y = —m/El  0.00 -13.70 —19.40 -13.70 0.00 P/EI

R (@) —15.64 —22.14 —15.64 PA/1.2E

Average slope 267.1 110.7 —110.7 —267.1 PA/12El

Ay = 02 267.1 110.7 -110.7 —267.1 P22 /12E

s 0.00 26.71 37.78 26.71 0.00  P2%/1.2El

/v 51.29 51.38 51.29 0.012E1/ P2

Average 51.32 0.012E1/ P2

»/vs

'ag = (A/12)(0 =7 —1) = —(84/12), a0 = (1/12)(=7 — 10— 7)

= —(11.44/12), a3 = ay < parabolic equation
To find the average slope at the end panel, 6 = (1/2)(8 +
11.4+8) = 13.7

. A 156.42
ay = —(0—13.7—19.4) = — ,
12 12
4 (—13.7 — 19.4 — 13.7) 2214/
2 12 12 3 1

To find the average slope at the end panel, § = (1/2)(156.4 +221.1 +
156.4) = 267.1

At the end of the first cycle, (y,/y,) = 51.23 (0.012EI/P2?),
P, = ([51.23 x 0.012EI]/A*) = (9.836EI/(?)

At the end of the second cycle, (y,/y;) = 51.32 (0.012EI/PA?),
P, = ([51.32 x 0.012EI]/A%) = 9.853EI//>
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The critical value converges to the exact value of Pp = (9.87EI /(7).

L=41
I=1
o e
k=§ by A by

Figure 2-20 Stepped column

Example 2 Common
Factor
Assumed y, 0 64 100 64 0 1
m = Py, 0 64 100 64 0o P
Y = —m/El 0 —64 —100 —16 0 PJE
—25
R () —356 —330 -89 P3/6EI
Trial slope 400 44 —286 —375 PA/6EI
Trial Ay 400 44 —286 -375 P22 /6EI
bz 0 400 444 158 —217  P2*/6El
Lin Cor, Ay, 0 54 108 165 217 PX%/6El
¥ 0 454 552 325 0 PX/6El
1/ 14 18 20 6E1/1004° P
Average 17 6E1/1004°P
End of st y, 0 2934 3500 1955 P22 /6El
Yo /Vs 16 16 17 6E1/1004° P
Average 16 6E1/1004°P
End 2nd y, 0 1822 2120 1201 P2 /6El
1 5 7
V3/4 16 16 16 6E1/1002%P
Average 16 6E1/1001°P
A A
R, = 6(a +4b+0) = 6[0 + 4(—64) + (—100)]
A , .
= 8(_356) < linear equation
A A A
Ry = =(b+20) = Z(—64 —2 x 100) = =(—264)
6 6 6
A A A
Ry = —(ZC—i— d) = —(—25 X 2 — 16) = —(—66)
6 6 6
A A A
R; = —(1:—|—4d—|— e) = —(—25 —4x16 4+ O) = —(—89)
6 6 6
V3 6EI 16 X 6EI 15.36EI
. =16 ———= Dy = 2 = 2
V4 g 100A%P 100(£/4) ¢

The convergence trend may be monotonic or oscillatory.
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2.9. MATRIX METHOD
2.9.1. Derivation of Element Geometric Stiffness Matrix

Consider a prismatic column shown in Fig. 1-12. The axial strain of a point
at a distance y from the neutral axis is

o, = du_ o L (2.9.1)
Y dx ydx2 2\ dx o

where u and v are displacement components in the x and y directions,
respectively, and

du/dx = axial strain;

—y(d*v)/(dx*) = strain produced by curvature; and

1/2[(dv)/(dx)]* = nonlinear part of the axial strain.
With dIV = dAdx, the element strain energy is

1 1
U = —/ eadV :—/ /EeidAdx (2.9.2)
2)y 2Je Ja

where E = modulus of elasticity.
Substituting Eq. (2.9.1) into Eq. (2.9.2) and recalling that

d
/dA_A,/ydA_o,/yZdA_I, and /E—”dA_p
A A A A dx

where P is the axial force, positive in tension, leads the strain energy to be
written:

1 [t du\ > 1 [t 420\ 2 1 [t v\ >
U= - EA|— ) dx+—= EI|— | dx+—=| P|— ) dx
2 0 dx 2 0 dx2 2 0 dx
(2.9.3)

The first integral in Eq. (2.9.3) yields the stiffness matrix for a bar element
associated with the kinematic degrees of freedom u; and up. The second
integral yields the stiffness matrix for a beam element. The third integral
sums the work done by the external load P when differential elements dx are
stretched by an amount [(dv/ dx)2 X dx/2] (there exists another interpre-
tation of the third integral: a change in the potential energy of the applied
load during buckling). The third integral leads to the derivation of the
element geometric stiffness matrix Kg.

The lateral displacement field v of the beam and its derivative dv/dx are

v = |[NJ{A} (2.9.4)
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dv d N|
— = —~{A} = [GJ{A} (2.9.5)
dx dx
where
Al =1vi 61 v 62] (2.9.6)
1 32 2% 2% X0 32X x2+x3
IN| = 2 s T e e T e ey
or 62 3 6 62 2x 30
Gl =| 2 ¢ e 22 B A2 (2.9.8)

The third integral is expanded as

l
LINESIISIEE N [P / {c}thdx] INEECTY)

Hence,

/E 6x  6x° Zd 6P
K =P —_—t— | dx = —
G11 ; VR 5

© _P/‘* 6x+6x2 X 4x+3x2d_P
=\ et ¢ e )" T 10

Other elements are evaluated likewise.

36 30 —36 3

p | 3 4 30
T 300 36 30 36 -3¢
30 02 =30 402

Ke (2.9.10)

It should be noted that P in Eq. (2.9.10) is positive when it is tension.

2.9.2. Application

Consider a propped (fixed-pinned) column shown in Fig. 2-21. The pris-
matic column length is L. Using the numbering scheme, one obtains the
following stiffness relationship: As the global coordinate system and the local
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.
NN~
—
N
s
[y}
»l

=
—
—
~
~

_— f g ¥
V% 9

Figure 2-21 Column model, degrees-of-freedom

coordinate system are identical, there is no need for coordinate
transformation.

Let ¢ = AP/I

Superimposing element stiffness matrices of bar element and beam element,
one obtains an element stiffness matrix for a two-dimensional frame

element.
17 ¢ i
210 12
(1)  EI 310 60 40>
Ky’ = — (2.9.11)

500 —12 —6f 0 12
6| 0 60 202 0 —60 442

( EI6] 0 6l 4P
K% = = (2.9.12)
EoBgle 0 0 ¢

91 0 60 202 0 —60 442
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170
210 6/5
2
L) p3|0 ¢/10 202/15
G Ty
410 0 0 0
510 —6/5 —£/10 0
6 L0 ¢/10 —£2/30 0
470
510 6/5
2
o p 60 /10 262/15
K¢ ==
710 0 0 0
810 —6/5 —£/10 0
9 L0 ¢/10 —£2/30 0

6/5

—£/10  2£%/15 |

6/5

—£/10  2£%/15 |

(2.9.13)

(2.9.14)

The elastic stiffness matrices K and the stability matrices K¢ can now be

assembled, reduced, and rearranged, separating the degrees of freedom

associated with the axial deformations and the flexural deformations,

respectively. Assembling the element stiffness matrices to construct the

structural stiffness matrix is of course to combine the element contribution

to the global stiffness. Reducing the assembled stiffness matrix is necessary

to eliminate the rigid body motion, thereby making the structural stiffness

matrix nonsingular.

Ireo —¢
41— 29
EI
Kg=25310 0
500 0
6LO0O 0

442
—6/

202

0 07
0 0
—60 20?

240
0 807

(2.9.15)
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1o o 0
410 0 0
P 2

Ko =—73]0 0 2£/15
500 0 —£/10
610 0 —£*/30

0
0
—/10
12/5
0

137

0
0

—0?/30
0

402 /15 |

(2.9.16)

Noting that K¢, is equal to K for P = 1, one can set up the stability
determinant |Kg + AKE| = 0. This leads to

b —¢ 0 0
—¢ 2¢ 0 0
2 M2 1 A3
0 0 4r-="" 60 +
15 EI 10 EI
1 A3 12 M2
0 0 —60+—"— 24"
10 EI 5 EI
YA
0 0 224+ —"" 0
30 EI
Let u = AM?/EI
Then, Eq. (2.9.7) simplifies to
b —¢ 0 0
—¢  2¢ 0 0
uw u
0 0 2(2——) e+
15 T
% uw
0 0 -6+t 12(2——)
e 5
u
0 0 24+ 0
30

1 2t
202 4 —
Y30

4 A4
82 — — —
15 EI

(2.9.17)

4 =
+3O

=)

Expanding this determinant, one obtains a cubic equation in U

3u® — 22042 + 3, 840u — 14,400 = 0

The lowest root of this equation is u = 5.1772=5.1772 = MZ/EI
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Hence,
_ 5.1772EI _ 5.1772EI _ 20.7088E1 _ 2.09872El
c e (snL? 212
20.19E1
= 1.026Pp ey = 1.026( ————
LZ

Considering the fact that only two elements were used to model the
column, this (2.6% difference) is a fairly good performance.

2.10. FREE VIBRATION OF COLUMNS UNDER
COMPRESSIVE LOADS

In Chapter 1, deflection-amplification-type buckling and bifurcation-type
buckling were discussed. In order to reach the solution of the critical load of the
column problem, three different approaches were applied. In the deflection-
amplification-type problem, the concern is: What is the value of the
compressive load for which the static deflections of a slightly crooked column
become excessive? In the bifurcation-type buckling problem, two general
approaches were taken: eigenvalue method and energy method. In the
eigenvalue method, the concern is: Whatis the value of the compressive load for
which a perfect column bifurcates into a nontrivial equilibrium configuration?
In the energy method, the concern is: What is the value of the compressive load
for which the potential energy of the column ceases to be positive definite? As
illustrated in Fig. 1-1, the body will return to its undeformed position upon
release of the disturbing action if the potential energy is positive and the system is
in stable equilibrium. On the other hand, if the potential energy of the system is
not positive, the disturbed body will remain at the displaced position or be
displaced further upon the release of the disturbing action.

All of these approaches are based on static concepts. The fourth
approach is based on the dynamic concept. In this approach the concern is:
What is the value of the compressive load for which the free vibration of the
perfect column ceases to occur?

[t will be demonstrated that the natural frequency of the column is altered
depending on the presence of the axial compressive load on the column.

The governing difterential equation of a prismatic column is given by
aiv 82 02
axf+ Pa—xz - —ma—t“zv (2.10.1)

where m is the mass per unit length of the column and the right-hand side of

EI

Eq. (2.10.1) is the inertia force per unit length of the column. Note that the
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inertia force always develops in the opposite direction of the positive
acceleration.

Invoking the method of separation of variables, the deflection as
a function of the position coordinate x and time f is given by

y(x, 1) = Y()T(7) (2.10.2)
Substituting Eq. (2.10.2) into Eq. (2.10.1) gives
EIlY"T4+PY'T = —mYT" (2.10.3)
Dividing both sides of Eq. (2.10.3) by YT yields
yv ooy T"
E17+ P7 = (2.10.4)

The left-hand side of Eq. (2.10.4) is independent of ¢, and the right-hand side

of Eq. (2.10.4) is independent of x and is equal to the expression on the left.

Being independent of both x and ¢, and yet identically equal to each other,

each side of Eq. (2.10.4) must be a constant. Let this constant be a so that
Yii/ Y T

El-— 4+ P— = —p— = 2.10.
P e = (2.10.5)

Equation (2.10.5) will be separated into two homogeneous ordinary
differential equations as

Y" 4+ Y —ay =0 (2.10.6)
T+ *T = 0 (2.10.7)
where
2 P
P o= (2.10.8)
El
W = Y (2.10.9)
m

By way of Eq. (2.10.9), it is seen that o is a nonzero, positive constant.
Following the procedure of the characteristic equation, the general solutions
for the two ordinary linear differential equations with constant coefficients,
Egs. (2.10.6) and Eq. (2.10.7), are obtained. The general solution for Eq.
(2.10.6) is

Y(x) = A1 cos a1x + Ay sin a1x + Az cosh aprx + Ay sinh apx
(2.10.10)
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where
s o K HVE t+4a —K 4+ VE - 4a
ay, 0, = 5 , 5 (2.10.11)
The general solution for Eq. (2.10.7) is
T(t) = Bycoswt+ Bysinw ¢ (2.10.12)

For a simply supported column, the boundary conditions to determine the
integral constants are

Y(0) =0 Y"(0) =0
(2.10.13)
Y() =0 Y'l) =0
The first and second conditions yield
A1+ A3 =0
(2.10.14)

—C(%Al + a%A3 =0
By virtue of Eq. (2.10.11), Eq. (2.10.14) can only be satisfied when
Ay = A3 =0 (2.10.15)
unless o = ap = 0, which corresponds to the case of P = 0, which is
a trivial case. The third and fourth conditions give
Ap sin ayf + Ay sinh ol = 0
(2.10.16)
—a%Ag sin a1 + oz%A4 sinh anl = 0

For a nontrivial solution for A, and Ay, the coefficient determinant must

vanish.
sin 14 sinh oo/
=0 (2.10.17)
—a% sin a1 4 a% sinh axf
Expanding the determinant gives
(af 4 03) sin ;£ sinh ol = 0 (2.10.18)

Except for the case « = 0 (ap = 0), which is a trivial case, Eq. (2.10.18) is
satisfied only when

sin i = 0 (2.10.19)

or
al = nw (2.10.20)
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Substituting Eq. (2.10.11) into Eq. (2.10.20) for o, the constant o is

computed
nm\ 4 k20>

Substituting Eq. (2.10.21) into Eq. (2.10.9) gives the natural frequencies of

the column
|EI (mr>2 ) k2¢? (2.10.22)
W, = \/—|(— - .10.
! m\ { n22

Rearranging Eq. (2.10.22) gives

me?> = %(%El— P)(n =1,2,..) (2.10.23)
Substituting Eq. (2.10.19) into the second Eq. (2.10.16) yields

Ay =0 (2.10.24)

and the vibration mode of the column is determined from Eq. (2.10.10) as

Yo(x) = A sin%C (2.10.25)

Two initial conditions determine the other integral constants, By and B; in
Eq. (2.10.12). Assume the vibration is initiated by an initial displacement
such that

dy(x,0
9(x,0) = w(x) and 2 (g; ) _ o (2.10.26)
Then
Y (x)(Bi cos wt + By sin wt)|_, = w(x)
(2.10.27)
Y(x)( — By sin wf + By cos wt)|_,= 0
from which one obtains the following;:
B1Y(x) = w(x) and B, =0 (2.10.28)

Hence, the general solution of Eq. (2.10.2) for the simply supported
column 1s given by an infinite sum of natural vibration modes

v =S¢ sm"TTxcos Wt (2.10.29)
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where C, = A»>B,. The coefficient C,, can be determined from the first
condition of Eq. (2.10.28)

3 Cysin %C = w(x) (2.10.30)

n=1

Since Eq. (2.10.30) is a Fourier series expansion for the given initial
deflection, the coefficient can be readily determined by use of the
orthogonality condition

2 l

C, = —/ w(x) sin 2% gy (n=1,2,..) (2.10.31)
N 14

As the initial deflection w(x)is assumed to be known, Eq. (2.10.31) can be

evaluated. Note that f(f sinnx dx = {/2. The general solution of the free

vibration of a simply supported column is

o ¢
y(x,t) = %Z [/ w(€) sin ﬂTﬁng] sin % cos Wyt (2.10.32)
0

n=1

It is of interest to note in Eq. (2.10.23) that the frequency of the vibration of
the compressed column is reduced due to the presence of the compressive
load. Once the load P reaches Pg, the frequency becomes equal to zero and
the column vibrates with an infinitely long period.

2.11. BUCKLING BY A NONCONSERVATIVE LOAD

Consider a free-standing prismatic cantilever column that is loaded by
a follower force, P a force that turns its direction so as to always remain
tangential to the deflection curve at the column top as shown in Fig. 2-22.
Such a load is called a tangential load or nonconservative load. As was done
in all three static approaches, assume a nontrivial (neighboring) equilibrium
position and establish a static equilibrium equation. The moment at any
point along the slightly (small deflection) deflected column is

EL" = P(y, —y) — Pyy(f — x) (2.11.1)
Differentiating twice gives
EL" + Py =0 (2.11.2)

and the general solution of Eq. (2.11.2) is
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Figure 2-22 Column subjected to a tangential load

y = Acos kx+ Bsin kx + Cx+ D (2.11.3)
where
P
o= — 2.11.4)
EI

The boundary conditions to determine the integral constants are
y(0) = y(0) =0
Y€ = "0 = 0

The resulting coefficient determinant must vanish for nontrivial equilib-

(2.11.5)

rium configuration
1 0 0 1
0 k 1 0
coskl sinkl 0 O
sinkl  —coskl 0 O

=0 (2.11.6)

However, the expansion of determinant yields sin? k¢ + cos® kf = 1. It
follows then that the only solutions for the integral constants are
A=B=C=D=0ory(x) =0. This means that there is no
nontrivial (neighboring) equilibrium configuration for P > 0; that is, it
cannot buckle in a static manner. However, this does not mean that the
column cannot buckle at all; this is a striking conclusion that was incorrectly
drawn in one of the early studies of this problem. In other words, static
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approaches are insufficient to solve this problem. Ziegler (1968) credits Beck
(1952) as the first to solve this problem correctly, thereby prompting the
free-standing column shown in Fig. 2-22 to be called “Beck’s column.”
Bolotin (1963) and Chen and Atsuta (1976) present highlights of the present
problem in some detail.

Consider investigating the stability of the column by a dynamic
approach. Solution of a column vibration has been given by Eq. (2.10.2),
which is rewritten as

y(x, 1) = Y(x)T(t) = Y(x)(Ba cos wt + By sin wt) (2.11.7)

Y(x) = Aj cos ayx + Ap sin a1x + Az cosh apx + Ay sinh apx (2.11.8)

where
s 5 R VE 4 K+ VR + da
ay, 0 = , (2.11.9)
2 2

and 2

mw
o = (2.11.10)

EI

From the boundary conditions at the fixed end given in Eq. (2.11.5), one

obtains
A +As =0
(2.11.11)
a1 Ay +ax Ay = 0

Substituting Eq. (2.11.11) into Eq. (2.11.8) yields
Y(x) = Aj(cos ajx — cosh axx) + A (sin X — X Gnh a2x>

a
(2.11.15)

The other two boundary conditions at the free end, Eq. (2.11.5), applied to
Eq. (2.11.15) give two additional relationships.

Ay (a% cos a1x + a% cosh azx) + A> (a% sin asx + a1 sinh 0[296) =0
Ay (a? sin A1x — ag cosh ozzx) — A (a% cos arx + oqa% cosh agx) =0
(2.11.16)
For a nontrivial solution, the determinant of Eq. (2.11.16) for coefficients,
Ay and A5, must vanish.
af + a3 +2 a?a3 cos arl cosh axl + ajan (a% - a%) sin a1 sinh axf = 0
(2.11.17)
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Substituting Eq. (2.11.9) for oy and o, into Eq. (2.11.17) gives

(k4 + 2a) + 2w cos 1€ cosh arl + \/&kz sinq £ sinh axf = 0
(2.11.18a)

k* 4+ 2a(1 + cos ayf cosh apl) + Vak? sinai € sinh ol = 0 (2.11.18b)

For any given column EI, m and ¢ are known along with o and aywhich
are functions of P and w, according to Eq. (2.11.9). Thus Eq. (2.11.18b)
gives the relationship between axial compressive force, P = k*EI, and
the frequency, @ = \/aEI/m. The plot of Eq. (2.11.18b) is given in
Fig. 2-23.

Equation (2.11.18b) consists of the infinity of branches, every one of
them originating in the fourth quadrant and reaching a maximum in the
first one. Figure 2-23 shows the first and second branches; the second has
a higher maximum than the first, and the others have higher maxima than
the second. The points of intersection of the various branches with the axis,
w?ml*/EI, supply the circular frequencies of the flexural vibration of the
unloaded cantilever column (P = 0), and the first four frequencies are
found to be 12.36, 485.52, 3806.55, and 14617.27 as shown in Fig. 2-23. A
given load P corresponds to a vertical line in Fig. 2-23. Its points of
intersection with the curves yield the circular frequencies of the loaded
column. For small values of B, the corresponding oscillations are harmonic.
However, if Pis sufficiently increased, the vertical line ceases to intersect the
first branches, and the roots of Eq. (2.11.18b) corresponding to P become
complex. It is seen from Eq. (2.11.7) that this implies unbounded ampli-
tudes, that is, self~excited oscillations. The column thus becomes unstable

100000 -
5 10000 1 o ———
2 L T T
] Tl
5 1000 e ‘#::i
z = n=1
g 100 h.‘
g - —e— n=2
g o+
= 10 —— n=3
—a— n=4
1 T T T T T 1
0 20 40 60 80 100 120 140

Load Parameter
Figure 2-23 Critical loads
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when the load parameter, P¢?/EI, reaches the maximum of the first branch
in Fig. 2-23, which is found to be 20.05095 by Maple®.
Therefore the buckling load is

20.05EI  2.0317%EI

(2.11.19)

Despite the early researchers’ misguided conclusions, the column really
buckles by a follower load, and the smallest critical load is approximately
eight times the Euler load for the case of cantilever column.
As shown in Fig. 2-23, the second critical load is found to be
_ 127.811EI _ 12.95%°El

P, = 7 = 2 (2.11.20)
As stated by Bolotin (1963) and Ziegler (1968), the vertical line corre-
sponding to a level of the tangential load intersects two distinct points on

each branch until the load reaches the maximum where the two points
meet. This is confirmed for the second branch in Fig. 2-23.

No definite conclusion can be drawn regarding the practical value of the
critical tangential load since no method has been devised for applying
a tangential force to a cantilever column undergoing flexural oscillations,
although an idea of attaching a rocket engine of thrust P at the end of the
pulsating column has been proposed, which is highly impractical.

2.12. SELF-ADJOINT BOUNDARY VALUE PROBLEMS

As it was shown in the previous section, when the frequency of the system
becomes complex, then the system is not stable. In an eigenvalue problem,
a system 1is stable if all eigenvalues are real and positive. In this section,
conditions for real eigenvalues will be examined.

A boundary value problem is defined as a problem consisting of
a differential equation and a collection of boundary values that must be
satisfied by the solution of the differential equation or its derivatives at no
less than two different points. By this definition, a boundary value
problem must have the governing differential equation of at least second
order.

The governing differential equation of an eigenvalue problem may be in
the form

L] = Ay (2.12.1)
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where L[] is a linear differential operator. In the case of a prismatic column
vibration problem, for example, the differential equation for the deflection
has the form

L] = E" + Py’ and A = mw? (2.12.2)
Only when A takes specific value, A,, Eq. (2.12.1) has solutions, y,(x). A, are
eigenvalues, and y,(x) are the corresponding eigenfunctions of the system.
Assume the eigenvalue 4; is complex, then the corresponding eigenfunction

¥; 1s also complex such that
Lly] = Ay (2.12.3)
The pair of complex conjugates must also satisfy the equation
Lly] = Ay (2.12.4)
where the bar denotes the complex conjugate, so that
Ai = a; + ib;, 7,‘ = q; — ib;
(2.12.5)
yi=utiv, Yy =u—iy

where i = v/—1. Executing inner (scalar) products of two functions
y; and y; from Eqgs. (2.12.3) and (2.12.4) and integrating over the domain of

¢ 12
/ yiLb}i] dx = /\,’ / y,'yl-dx
0 0

l VA
/ Ll = 7 / Vs
0 0

Subtracting the second equation from the first gives

/ / J4
[ il [ vaie = -7 [ s eazg)
0 0 0

the column yield

(2.12.6)

If the eigenvalues are real, it follows
(Ai—A) =0 (2.12.8)

Hence,

/ /
/ FiLy]dx — / VL[ d (2.12.9)
0 0

Equation (2.12.9) is known to be the condition for the linear operator L to
be symmetric, and if it is bounded, it is also called self-adjoint. In a system



148 Chai Yoo

dealing with only bounded (continuous) operators, these two terms become
synonymous. Operator L is defined to be positive definite in Section 2.4 if
(Ly,y) > 0 for any admissible function y (except y = 0). If the system is
a discrete one and the eigenvalue equation is written in matrix form.

(L} = A{v} (2.12.10)
Equation (2.12.9) can be rewritten as
0= B L - e = (07 I00) -0 W)

= OY'I"E) - DY LG = DY (107 -(1) 5}
(2.12.11)
"= [1] (2.12.12)

which implies that L is a symmetric matrix.
In the case of the column vibration problem given by Eq. (2.12.2), an
inner product of two functions, y and L[], integrated over the domain is

¢ l
/ FL[y]dx = / y[ED" + Py'] dx (2.12.13)
0 0

Integrating by parts the right-hand side of Eq. (2.12.13) (four times the first
term and twice the second term) gives

V4 V4
/ JLI] dx = / y(ED" + Py")dx
0 0

— —W(ER" + ), + 3(EL" + )y — ¥ (ED),

l
-+ (ED")y + / yL[p]dx (2.12.14)
0

Invoking the self~adjoint condition of Eq. (2.12.9), the sum of integrated
terms in Eq. (2.12.14), which is referred to as conjunct or concomitant,
vanishes.

— (BB + PV, +F(ED" + PY), — ¥ (ELY), + Y/ (EL")y = 0
(2.12.15)
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In fact, each term of Eq. (2.12.15) vanishes for any combination of column
end support conditions: free, pinned, and fixed. This is called the self-
adjoint boundary conditions for a column.

Consider now the case of a column loaded tangentially. The boundary
conditions given in Eq. (2.11.5) do not satisfy the self~adjoint boundary
condition for a column given by Eq. (2.12.15). Thus a cantilever column
loaded by a tangential force does not provide a self~adjoint boundary
condition, and hence, all the eigenvalues are not necessarily real. This does
not render the problem to be a self-adjoint boundary value problem. Hence,
the problem is not a properly posed one, and a unique solution is not
guaranteed by any one of the classical solution methods.

Another way of discerning whether or not a system of boundary
conditions is conservative is to evaluate the potential energy of the boundary
forces at elastically constrained supports. If the potential energy thus
computed is path-independent, then it is said to be a system of conservative
boundary conditions.
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PROBLEMS

2.1

2.2

2.3

2.4

Determine an approximate value for the critical load of a propped
column. The column is hinged at the top loaded end and fixed at its
base. Use the energy method. Assume the deflected shape of the
column by the deflection curve of a uniformly loaded propped beam
whose boundary conditions are the same as those of the column.
Find the critical load for a rigid bar system loaded as shown in Fig. P2-2.
Assume the two rigid bars of length £/2 are connected by a hinge and
displacements remain small.

7 k k

N

|

012

A

\

Figure P2-2 Spring-supported rigid bar

Use the principle of minimum potential energy to derive the governing
differential equation of equilibrium and the natural boundary condi-
tions for a prismatic column resting on an elastic foundation with
a foundation modulus kz. Then, compute the critical load for the
pinned column shown in Fig. P2-3.

Figure P2-3 Pinned column resting on elastic foundation

Determine the critical loads of columns (a) and (b) shown in Fig. P2-4
by the Rayleigh method, using both C1 and C2 methods.

Hint: For (a), assume @ is the elastic curve caused by a 1 1b load applied
laterally at a point £/3 from the origin of the coordinate system. The
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corresponding deflection curve can be found in any structural analysis
textbook such as AISC, Manual of Steel Construction.

For (b), assume y = 6(1 — cos(mx/2¢)). Compute for L/I; = 5 and
¢y /€, = 4. Check the result by that obtained from DE method.

( /52 m>dx /f m2dx>
U = +
v 2EL ' J, 2EL

2

Y, ¥ ] S A
\‘ I I’
| ll’
\‘ X )
\ 1
@ ‘. @ | .
; |
1
= x |
,' ! v
) 9., 1
, =
g 3 R 20
¥,y . ! [ A
% V////
a
Figure P2-4

2.5 (a) Find the critical load of the stepped column shown in Fig. P2-5(a)
using four and eight segments (Newmark method) and compare the
results using the DE method. (P, = 6.5 (EL,/¢?))

(b) Find the critical load of the tapered column using four and eight

segments (Newmark method) and compare the result with the solution

by the C2 method. (P, = 2.5 (7°EL/(?))

~

ﬁ:%;f;<l
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il
\ \ \ ! \ \
(@ (b)

Figure P2-5
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2.6 Compute the buckling load of a stepped column shown by the matrix
method illustrated in the class. Use the numbering scheme shown in

Fig. P2-6.

Figure P2-6

2.7 (a) Using the energy method, determine an approximate value for the
critical load of the column shown in Fig. P2-7.
(b) Using the matrix method, determine the critical load of the column
shown in Fig. P2-7 following the degrees-of-freedom numbering used

in the previous problem.

x P
0
—%
P
L
2
T
£
2
= y
I
Figure P2-7

2.8 Ifthe critical load of the stepped column shown in Fig. P2-8 is 50EI /#?
and the coefficient, @, of the linear spring constant, k = «a EI//, is 51,
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determine the coefficient, B, of the rotational spring constant,

6 = B EI/{. Use the energy method. (Hint: The Ritz method appears
to be the best.)

0= PEII
El (
[ i) ) 2FE1 \‘—P
o p ol
3 7
k=a EIl

Figure P2-8

2.9 A linear system of eigenvalue problem is given by My — ANy = 0
with self~adjoint boundary conditions. If M and N are linear differential
operators and A is the eigeTRUN nvalue to be found, prove that all
eigenvalues are positive.
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3.1. TRANSVERSELY LOADED BEAM SUBJECTED
TO AXIAL COMPRESSION

3.1.1. The Concept of Amplification

This chapter seeks to familiarize the student with buckling of some simple
structural members and frames, and it presents a few methods that can be
successfully used to arrive at the critical condition. A more comprehensive
treatment of the buckling analysis of structures may be found in the books
by Bleich (1952), Britvec (1973), and Bazant and Credolin (1991). Since
one of the methods employed for analysis of the structural stability is based
on the theory of beam-columns, a brief review will be in order (see also
Timoshenko and Gere 1961).

A slender member meeting the Euler-Bernoulli-Navier hypotheses
under transverse loads and inplane compressive load (see Fig. 3-1) is called
a beam-column. An exact analysis of a beam-column can only be accom-
plished by solving the governing differential equation or its derivatives (for
example, slope-deflection equations).

Consider a very simple case of a beam-column shown in Fig. 3-1. The
beam-column is subjected simultaneously to a transverse load Q at its mid-
span and a concentric compressive force P Since the response of

Stability of Structures © 2011 Elsevier Inc.
ISBN 978-0-12-385122-2, d0i:10.1016/B978-0-12-385122-2.10003-X All rights reserved. 155
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0} M (x)

4
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Figure 3-1 Simple beam-column

a beam-column under these loads is no longer linear, the method of super-
position does not apply even if the final results are within the elastic limit.
Summing moments at a point x from the origin gives

M (x) —Py—%x =0 for0<x<//2 with M(x) = —ED”

(3.1.1)

P

or Y aky=-25_ L ne =L

2 EI 2p EI
The general solution to this differential equation is y =y, +yp The
homogeneous solution has been given earlier. The particular solution can be
obtained by the method of undetermined coefficients. Assume the partic-

ular solution to be of the form
yp = C+ Dx with yP’ = D, yp// =0

Substituting these derivatives into the difterential equation yields

Qx 2
0+ k(C+Dx) = —k
+ k°(C + Dx) >p
Hence,
Q Q
an op P T Topt
The total solution is
Qx

=A k Bsin kx — —
y cos Rx + B sin kx >p

The two constants of integration can be determined from the following
boundary conditions:

y=0 atx=0=>A4A=0

Yy =0 atx=1{/2
(Note : the boundary condition,y = 0 atx = ¢, cannot be used

here as 0 < x < ¢/2)
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k¢
y/zBkcoskx—%,O:BkcosE—zng:Lke
2 Pk cos —
2
in k 14 2EI
y:%_% for 0<x <7 withPC,,:pE:WEZ
2Plecos?

By observation, the maximum lateral deflection occurs at the midspan.

Q kl ke . k¢ ¢ |P
= —(tan———| withu = — = —/—
ng 2 Pk 2 2 2 2VEI

y max

QL3P kl Kkl QP [3(tan u — u) QP
Ymax = o al\any— | = = X(“)
et 16ePkA\"2 T 2) T asEr[ W 48EI
(3.1.2)
_ e _
ymax o % = 5max = @ when P = 0
M27§£:p74EIu2 wd P _ wEl
4 EI 2 Fop
P 4EL? 4P () = 3(tan u — u)
Py 2 wEl w2’ W= u

3.1.2. Stress Amplification in Columns

The behavior of a compression member under increasing load can be seen
most clearly by calculating the bending stresses and lateral deflections that
occur as the axial load is gradually applied. Consider a perfectly straight,
slender member supporting a nominal axial load P The ends of the member
are assumed free to rotate in this case. If the member were perfectly straight and
homogeneous and the load were perfectly centered, the stress in the column at
any section would be simply 0, = P/ A, where A is the cross-sectional area of
the column. No actual member ever would be perfectly straight and homo-
geneous, nor would the load be perfectly centered. Even when great efforts are
made to achieve such perfection in laboratory tests, it is not completely
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Figure 3-2 Load and moment diagrams of imperfect column.

attained. Therefore, the actual case is best represented by assuming a slight
initial imperfection of loading or an initial crookedness represented by
a deflection Yj at midheight of the member as shown in Fig. 3-2.
When a load Pis acting on the column, the stresses in the extreme fibers
at the midheight section are
p Mc
+ =

g — —

ST (3.1.3)

where ¢ is the distance measured from the centroidal axis. At any section of
the column, the bending moment is the load times the eccentricity, and the
bending moment diagram has the same shape as the curve of the deflected
member (see Fig. 3-2). This bending moment produces a further deflection
at the midheight.

1 Py,l?
=3 -

= 3.1.4
10 EI ( )

The constant 1/10 is taken as a mean value for a deflected curve of more or
less uniform curvature as shown. From the moment-area theorem part two,
the midheight deflection can be computed from two extreme cases of
moment diagrams, namely, triangular moment diagram and rectangular
moment diagram, as shown in Fig. 3-2.

Pyo € 1 2 £ 1 Pyl?

= X=X=X=X= = for triangl 3.1.5

TR 273N T 1 g ortanee G.1.5)
P ¢ 0 1 Py, 3

v = Yo X — X —— — Y0 for rectangle (3.1.6)
EI 2 4 8 EI
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For other cases of initial curvature or eccentricity, the constant may vary
between limits of 1/8 and 1/12 (If it were known to be a sine function, then
the factor would be 1/ =1/9.8696 and the correct Euler load would
result.) Because of the added deflection yy, there will be an increased
bending moment Py; , and additional deflection y,.

1 Py, />
Yo = 72

= 3.1.7
10 EI ( )

Continuing this process, the total deflection becomes

y=yotyi+ty2+ ...

P> N P(?
10EF° T 1051

PEZ p€2 2 (318)
=Jo+ <—>J’0 + <—> Yo+ .-

:y0+ y1+

10ET 10ET

(e, (rr 2+ e 3+

- 10£1) " \10E1 10E1)
The series in the bracket is the multiplier by which the initial deflection yy is
increased under load P to give the final deflection y at that load. For values

of Pless than 10EI/¢ (Euler buckling load), the terms in the series are less
than unity and the series is convergent, having the limit

%@ (3.1.9)
' 10E
The final deflection is thus
1
Yy =Y Y (3.1.10)
 10EI

This requires a slight modification that will be discussed later if the curve of
initial deflection differs greatly from the uniform curvature assumed.

For any value of Psuch that (P¢>/10EI) > 1, the series is divergent. This
indicates that any small initial deflection will be indefinitely magnified at the
load P = Pp = (10EI/{?) or greater.
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Let denote Pr = w?EI/#? =10EI/{?. Then the total stress of a column at
mid height is

P Py 1
- 3.1.11
A~ 1 r ( )
Pg
_r _ Pp  wEA?  wE
Letaﬂ—z and aﬂ—j— A2 N2
¥
Further, recall that
1 B 1
1 — P 1— Ja
Pg Oor
and
2
Pyoe _ P _ o (€
I Ar? ¢ 2 “\r) ¢
The total stress is then
1
c
v = aaiaa<—> AU . (3.1.12)
r C 1 — ~a

a[i‘

Thus, the magnitude of the bending stress, the second term in Eq. (3.1.12),
depends on P represented in 0,; the shape of the cross section (¢/7); and the
initial curvature (y¢/¢).

As the critical stress, 0, = T°E/(£/1)?, is a function of the stiffness of the
material of the column and the slenderness ratio, it is convenient to make
the expression for stress dimensionless by dividing Eq. (3.1.12) by a,,

Thus

cq1_ %

a[f

o O, O.(c
_:_i_<_

r

2
1
) Yo (3.1.13)

The value of shape factor (¢/r) ranges from 1.0 for a section in which all
(most) of the area is assumed concentrated in the flanges to /3 for rect-
angular section and 2.0 for a solid circular section. Rolled shapes generally
used for columns have (¢/#)? in the vicinity of 1.4 about the strong axis and
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3.8 about the weak axis. S shapes (wide flange shapes with sloped flanges)
run the values of 5.0 and over about the weak axis.

R easonable values of (yy/¢) are more difficult to estimate since the initial
crookedness may be the result of either lack of straightness of the member
itself or imperfection of the alignment of loading through the connections.
Pending better establishment of the values, the combined constant [(c/ r)?
(vo/¢)] has been assumed to range from 0.01 to 1.0.

Since it 1s usually more convenient to express the initial crookedness yg
in terms of the length of the member, [(c/r)z(yo/c)] may be written as
(/1) (o /)] = o/€)(£/1)(c/r), where yo/f=lack of straightness,
£/r = slenderness ratio, and ¢/r = shape factor. The acceptable tolerances for
straightness of rolled shapes are listed in some specifications (AISC 2005).

3.2, BEAM-COLUMNS WITH CONCENTRATED
LATERAL LOADS

SIS
[SIEN

Figure 3-3 Beam-column with concentrated lateral load

The previous section showed that the deflection at the midspan of a simple
beam-column subjected to a lateral load shown in Fig. 3-3 is

3(tanu — u
o = Ymax = 00 ( 3 )
u
where
& kt P
0p = Q—,u =—, and k =/—
48EI 2 EI

Recall the power series expansion of tan u given by

. - +u3+2u5+17u7
e N YT

Hence,

202 17
5= 5()<1+—+ +)
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Noting
, K0 pra? P
W =—=—— = 246 —
4 4EI 72 Pr
P 2
0=20 [1—1—0984—4—0998(1)) —i-]
2
=1+ (5) o
= 0y P < from power series sum for — < 1
1 - = E
Pg
where

P is called amplification factor or magnification factor.

1_7
P

The maximum bending moment is

QL Q¢ pPQA 1 QY Pz 1
Mnnx = P6 = =—1 TArT D
) ra 4+48511_£ 4 +121511_3
Pg Pg

Q! P 1
= =114+082———
ol Pg .,

P
E 1 -
Pg
or p
1—-0.18 —
_ Pg
MmaX - T 1—P (321)
Pg
where
P
1— 0.18P—
E
) 5 (3.2.2)

Pg

is amplification factor for bending moment due to a concentrated load.
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The variation of 0 with Q as given by the amplification factor is plotted on
the left side of Figure 3-4 for P=0, P= 0.4 P, and P= 0.7 P, The curves
show that the relation between Qand 0 is linear even when P # 0, provided P
is a constant. However, if Pis allowed to vary, as is the case on the right side of
Figure 3-4, the load-deflection relation is not linear. This is true regardless of
whether Q remains constant (dashed curve) or increases as P increases (solid
curve). The deflection of a beam-column is thus a linear function of Q but
a nonlinear function of P

Bending P
stiffness P

” <«— Q : Constant

5 8 5

Figure 3-4 Lateral displacements of beam-column

3.3. BEAM-COLUMNS WITH DISTRIBUTED LATERAL LOADS

In the case of a simple beam-column subjected to a uniform lateral load, the
midspan deflection is amplified in a similar manner as in the case of a
concentrated load. That is

1
o = & - (3.3.1)
1 — —
Pg
1+ 0.03 P_
Mmax = M() P E (332)
1 -
Pr
where
S5wl*
% = 354El
forP = 0
wh?
My = —
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Conservatively, the AISC ASD (1989) part suggests these moment-ampli-
fication factors to be used as

P
1— 0.2p—
E
gt (3.3.3)
1 -
Pr
and
) P
—— | with0.03— = 0 (3.3.4)
1—— Pe
Pg

3.4. EFFECT OF AXIAL FORCE ON BENDING STIFFNESS

3.4.1. Review of Moment-Area Theorems

Kinney (1957) gives credit to Professor Charles E. Greene of the University
of Michigan who invented the moment-area method in 1873, although the
concept of the conjugate beam method, which is a more commonly known
terminology of the elastic weights that is the basis of the moment-area
method, was presented by Otto Mohr! in 1868.

Theorem 1: The change in slope between any two points on the elastic curve
equals the area of the M/EI (sometimes called the elastic weight) diagram
between these two points.

Note the right-hand rule adopted in Fig. 3-5. Hence, the counterclockwise
rotation is taken to be positive. The counterclockwise angle measured from
the tangent drawn to the elastic curve at the point A to the tangent at B is
denoted as 0,45 and is given by

B
M
0 = —d 341
AB /A 7> ( )
A B
M M
0py = — dx = — — dx = —0 3.4.2
BA /B Tl | E x AB ( )

Theorem 2: The vertical translation ¢4, of the tangent drawn to the elastic
curve at A from Bis equal to the sum of the M/ EI diagram between A and B

1 Mohr (1835-1918) was a great German structural engineer.
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=
T

centroid

7y
R
4
=
Ral
r

.
o

Figure 3-5 Notations

multiplied by the horizontal distance from the centroid of the M/EI
diagram to B.
Hence, t,4,p is given by

tap = %p | - dx (3.4.3)

where Xp is the horizontal distance from the centroid of the M/EI diagram
between A and Bto the point B. Likewise, the vertical translation of the tangent
drawn to the elastic curve at B from A is defined by t4,5 and is given by

B

M
I xA/ = dx (3.4.4)
B/A . EI

Example 1 Determine the stifftness coefficients shown in Fig. 3-6 using the
moment-area theorems.
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My @: EI: Constant Mp % Oap=0Op
A

MB
+
MA
0
M 7
(Y 7
/] My DN\ | A
Z
] My
MA
4

Figure 3-6 Definition of stiffness coefficients

It can be seen from the propped beam shown in Fig. 3-6 that the tangent
to the elastic curve at A remains horizontal and hence, t4,5 =0

1 (Mgl ¢ Myl 20
4 =g\ 2 3 2 3, ="

2 3 2 3
|MB| :2|MA| or
M —1M
A — 2 B
1 (Mgl Myl 1 (Mgl Mg?
Op = Oap = —|— - ) = (= -=L=
EI\ 2 2 EI\ 2 2 2
Mgl
= —— Oor
4EI
4EI

As is evident from fixed beam at both ends subjected to a vertical translation

at B shown in Fig. 3-6, both of the tangents remain horizontal and hence
0ap=0
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04 = 0 ! (M—BK——MAZ)

T EI\ 2 2
|MB‘ = |MA’ or MA = _MB
1 (Mgl ¢ Mgl 20 Mgl?
tA/B:—A:—————— = —
EI\ 2 3 2 3 6EI
6EI

3.4.2. Slope-Deflection Equation without Axial Force
Maney (1915) is credited as the first to publish the modern slope-deflection
equations where deformations are treated as unknowns instead of stresses
and reactions. A typical derivation process will be traced here as it will be
used again in the development of the slope-deflection equations that include
the effect of axial compression on the bending stiffness.

From the deformations of a beam shown in Fig. 3-7, the moment at
a distance x from the origin is expressed as:

X
M, = ab — (Mab + Mba) Z

M,

KI’IOW)/N = —E

Taking successive derivatives of the above equation gives
Ely" =0
The general solution of the differential equation is

y = A+ Bx+ Cx> + Dx° (3.4.2.1)

N X h
6, I X M, s,

M 9{1

ab
6,
) )
M, + M,
_Mab™ Pba EI: Constant b M

Yi bt Mbu
|
1 [
y

a
Figure 3-7 Deformations of beam

l
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y' = B+ 2Cx + 3Dx?

y' = 2C+ 6Dx

The four kinematic boundary conditions available are

y=20, at x=0 and y =0, at x =/

/

Y =0, at x=0 and y =6, at x =/

(3.4.2.2)

(3.4.2.3)

Substituting these boundary conditions into Egs. (3.4.2.1) and (3.4.2.2) gives

6, = 6, + 0,0 + Cl*> + DP?

0,0 = 0,0 +2C* +3DP
(3.4.2.5) x 2 — (3.4.2.6) gives

20, = 20,0 +2CF* + 2D + 26,
0,0 = 0,0+ 2C0* + 3D0

26, — 0,0 = 26, + 0,0 — DO

from which

1

D = €—3[—2(5;, - 5a) + (0a + Hb)g]

(3.4.2.5) x 3 - (3.4.2.6) gives
30, = 30,0+ 3CL + 3D + 36,

0y = 0,0 +2C0* + 3DP

36, — 0,0 = 36, + 20,0 + Cl>
from which

C = 301~ 8,) — (20, +6,)

Substituting Egs. (3.4.2.7) and (3.4.2.8) into Eq. (3.4.2.3) yields

(3.4.2.4)
(3.4.2.5)

(3.4.2.6)

(3.4.2.7)

(3.4.2.8)
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V' = ;[ (05 — 04) — (204 + 04)(] +€%[—2(5,, — 00) + (6 + 0,)€]x

Mab
EI

V'(0) = ;[ 3(0y — 04) — (20, + 0,)0) = — (3.4.2.9)

V') = ;[ (0p — 04) — (20, + 0,)0)¢ + %[—2(5;, — 0q) + (0. + 0,)0)¢

= Dy o080+ (G000 = S (34210)
From Eq. (3.4.2.9), one obtains
My, = Zfl [20 + 0, %(ab - M] (3.4.2.11)
From Eq. (3.4.2.10), one obtains
M, = 251 [20,, 10, E(a,, - (Sa)] (3.4.2.12)

If any fixed end moments exist prior to releasing the joint constraints such as
My, fixed and My, fixed> then final member end moments become

2EI 3

Map = =~ [2&, + 0, =58 — 6a):| + Mab fixed (3.4.2.13)
EI 3

My, = £|:20[, + 0,7 — Z(éh - 6a):| + My, fixed (34214)

Example 1 Consider a frame shown in Fig. 3-8. If each member is
inextensible, then the frame is a 6-degree indeterminate structure. (Nofe:
This elementary slope-deflection equation cannot handle member exten-
sibility.) Assume just for simplicity that all four members are identical.
Dimensions of the frame, cross-sectional properties, and material constant
are =100in., I=1in.*, A =10%in.%, E= 29,000 ksi, respectively. Member
ab 1s subjected to a uniform load, w = 0.1 kip/in.
There is only one unknown, 6, (kinematic degree-of-freedom).
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e

100" w=0.1 K/in

100"

T

7
100"

Figure 3-8 A six-degree indeterminate frame

The fixed end moments prior to releasing the constraint are

wl? wl?
Mgy fixed = +E and My, fixed — T 57

By virtue of Eq. (3.4.2.13), the moment of the member ab at the b end
becomes My, = (4EI /¢) 0, — (wl*/12)

4EI
My = — 0
b / b
4EI
Mg = == 04
4EI
My = THI;
The sum of moments at b must be equal to zero for equilibrium. Hence,
16EI wl? wl’
14 12 192EI
Substituting 6 into Egs. (3.4.2.11), (3.4.2.12), (3.4.2.13), and (3.4.2.14) yields
3wl? ,
My, = ——— = —625 k—in.
48
wi?

M, = — = 20.83 k— in.
48
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wl? ,
My = — = 20.83 k—in.

48

wl? )
My, = — = 20.83 k—in.

48

3wl? ,
My, = —— = 93.75 k—in.

32

The slope-deflection equations are very effective when applied to problems
with a small number of kinematic degrees of freedom.

3.4.3. Effects of Axial Loads on Bending Stiffness

The classical slope-deflections equations that are introduced in any standard
text on indeterminate structures (Parcel and Moorman 1955; Kinney 1957)
give the moments, My, and M,,, induced at the ends of member AB as
a function of end rotations fl, and 6, and by a displacement A of one end to
the other. In conventional linear structural analysis (first-order analysis), it is
customary to ignore the effect of axial forces on the bending stiffness of
flexural members. It can be shown that the effect of amplification is
negligibly small as long as the axial load remains small in comparison with
the critical load of the member. When the ratio of the axial load to the
critical load becomes sizable, however, the bending stiffness is reduced
markedly due to the axial compression, and it is no longer acceptable to
neglect this reduction. As the first-order analysis results may become
dangerously unconservative, modern design specifications call for
a mandatory second-order analysis (AISC 2005).

It is expedient to introduce A = 0,— 0, with 0, = 0 to avoid the rigid
body translation. The moment of the beam-column shown in Figure 3-9 at
a distance x from the origin is

| ! |

y V= (My + My, + PA) {

Figure 3-9 Deformations of beam-column
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X
Mx: ab‘i’Py_(Mb“‘Mha‘i‘PA)z
no_ M
EI
X
EL" + Py = —My + (Mg + My, + PA)

Taking successive derivatives on both sides yields

ER" + Py =0

P
Let k> = —
EI

The simplified differential equation is
WY =0
for which the general solution is
y = Asin kx + Bcos kx+ Cx+ D
The proper geometric boundary conditions are
y(0) =0, y@) =4, H(0) =06, and y(() =0
The proper natural boundary conditions are

Mab o Mba

//O:__ d //g_
y(0) 5 an y'(0) B

Applying the geometric boundary conditions to eliminate the integral
constants, A, B, C, D, and solving for M, and M, gives

0=B+D
Let 8 = k{
A= AsinB+Bcosf+ ClL+D
0, = Ak + C

0, = Akcos 8 — Bksin B3+ C
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The matrix equation for the integral constants becomes

0 1 0 1 A 0
sin 3 cos@ £ 1 B A
k 0 10 C N 0,
kcosB —ksinf 1 0 D 0,

Applying Cramer’s rule yields

0 1 0 1
A cosf 0 1
0, 0 10
A - 0, —ksinf 1 O _ &
0 1 0 1 Dy
sin 8 cosf £ 1
k 0 1 0
kcosf —ksinB 1 0

1 0
D, =80, cosB £ 1|+]|A cos 1
—ksinB 1 0 0, —ksinf 0

1 0 1 1

= 0,(cosB+BsinB—1)+ 6, — ksin A — 6, cos §
= f0,(cosB+BsinB—1)+60,(1 —cosf) —ksin A

sin £ 1 sin 8 cos ¢
D; = — k 1 0|— k 0 1
kcosB 1 O kcosB —ksinfB 1

= —k+kcos B — k(cos® B+ sin® §) + k 8 sin B + k cos @

= —2k+2kcosB+k BsinfB = k(2cos B+ Bsinf —2)
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0 0 0 1
sng A £ 1
k 6, 1 0
B kcos@ 6, 1 0 :&
Dy Dy
sin A /(
Dy, =—| k 0, 1
kcosB 6, 1

= —0O,sinf—0,8—kcosB A+60,6cosB+k A+ 8,sinf
= 0,(8 cos 8 —sin B) + 0y(sin B — B) + A(k — k cos B)
y' = Ak cos kx — Bksin kx + C

y" = — Ak sin kx — Bk? cos kx

My = —Ely//(O) = EIBIQZ
EIK® ] _ _
= ke B+ BB —2), [(B cos B —sin B)0, + (sin B — )6,
+ (k — k cos B)A]
EIB

- e Bt Bsmp—2) [(5 cos 8 —sin 8)6, + (sin 8 — B)6,

(6~ 6 cos 6)5]

14
(3.4.11)
Let
o B(Bcosp —sinp)
5= S_2cosﬂ+ﬁsin6—2 (.4.12)
S (sin § — 5) (3.4.13)

- 2cosf+LsinfB—2

R ecall identities

sin 8 = 2 sin(8/2)cos(6/2)
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cos B = cos>(B8/2) —sin*(8/2) = 1 —25sin*(8/2)
Dividing the numerator and denominator of Sy by sin (8 gives

B(BcotB—1) B(BcotB—1)

S =8= =
2cot6—,i+5 denl + 3
sin
where
B 2 2cosB—2  2[1—2sin?(8/2) — 1]
denl = 2COtﬂ_sinﬂ ~ sinfB 2sin(B8/2)cos(8/2)
= —2tan(8/2)
o B(Bcotp—1)
1=258= —2tan (8/2) 4+ 6
o« 1—fcotp
s
let §y = ¢ = _ PLnb—B)

" 2cosB+Bsinf—2
Taking the same procedure used above gives

B(1 — B cosec B) B(1 — B cosec B)

S = C = _
2 zcotﬁ—ﬁ_hg —2tan (6/2) + B
. BcosecB—1
2=C0= 262, (3.4.15)
s
LetS3 = SC = B(B— B cosB)/l

2cosB+Bsinf—2

Again dividing the numerator and denominator of S; by sin (§ gives
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B(B cosec B — B cot B)/¢ _ B(B cosec B — B cot B)/¢

S3 = SC = ZCOt‘B—i iy —2tan(B/2) + 6
sin
_ (8 cot B — B cosec B) /¢ _ [—(1 — B cotB) — (B cosec B —1)]/¢
2an(f/2) 2an(f/2)
s g
(3.4.16)
5 _sc_ SitS _ S+C

l L

Recall My, = M(0) = —EDL"(0).
But My, = —M(¥) = EI)(¢) (note the negative sign!)

y" = — Ak sin kx — Bk> cos kx

My, = +ED"(¢)

T —EIk* }
| k(2 cos B+ Bsin § — 2)
(sin B[0,(cos B+ Bsin B — 1) + ,(1 — cos B) — A ksin (]
+ cos B[0.(8 cos B — sin B) + O,(sin 8 — B)
+ A(k — k cos B)]

< —Elk >

2cosB+BsinfB—2

cosﬂsmﬁ—l—ﬁsm B —sin 8 + 6 cos® — cos (3 sin )
{ + 0(sin 8 — cos B sin B + cos Bsin § — B cos B)

+ A(k cos B — k cos® B — ksin® 8)

EIB ) —sin ) + 0, (sin B — B cos B) + A(k cos 8 — k)]
(2 cos B+ Bsin f—2)

(E) [0.,6(sin B — B) + 6,6(8 cos B —sin B) + AB(B — B cos ) /4]
/¢ (2cos B+ Bsin B —2)
(3.4.17)



Beam-Columns 177

Examination of Egs. (3.4.11) and (3.4.17) reveals that they can be
rewritten as follows:

EI A

Mab — E[Slaa + 520h - (Sl + S2)£:| (3418)
EI A

My, = T[Szﬂa + 810, — (S + Sg)?] (3.4.19)

If M, = O (when the support A is either pinned or roller), then

EI

A
My, = 7[51@ + 20, — <S1 +Sz>?] =0

1
0, = —[ — Sy + (S1 + 52)—]
St

Substituting f, into My, yields

M = E (51 =2V o, — (5148 ) (1-2)8
ba—g 1Slb 1 2 Slg

_ 1
Let § = — (S —S3), then
1

— EI'l_ A
Mba == ? Sob—SZ

“l

1 2 2
-5 (s-9)

_ {—2 tan(8/2) + ﬁ] [ B2(B cot B — 1) B B2(1 — cosec B)*
B(BcotB—1) | [(—2tan(8/2) +8)* (—2tan(8/2) + B)*

- b cotp — 2 — cosec 2
_(5cotb’—1)[—2tan(6/2)+5][(5 tf—1) -(1 8)7]

8 B
~ (Beotf— 1)[-2an(8/2) + 5][_5 F2uan(B/2)] = 753

(3.4.20)
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When P =0, then §=0. Limiting values (for P = 0): S; =4, S, = 2.
Values for various § can be readily evaluated using Maple®.

Example 1 Stiffness coefficients of a beam-column shown in Figure 3-10.

0.
l
V{lb J‘ l I/ba
M, a b P
ab / —00 €= — _
ﬁ = oy A=-1
Z

Figure 3-10 Stiffness coefficients of beam-column

For the first case

0, = 1radian, 0, = 0,0, = 6, = 0

then
EI EI
My = —8; and My, = —$
/ /
My, + M,
Vap = _¥ and Ve = =V

S1 =M ¢
1 = ab El

The numerical value of S; shown in Figure 3-11 is a measure of bending
moment depending on the magnitude of the axial force

| P | pe? [P

The critical load of a propped column is

2.0472El
o — T

Hence,

kl = v2.04w = 4.49
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4
2 —\
0

=7 4.4934

—4 \
[ R R ). | %

0 1 2 3 4 5
Figure 3-11 S; vs k¢ in a propped beam-column

Ifkl > 4.49, S becomes negative. 0, is resisted by the adjacent member(s). Or
the propped beam-column will undergo buckling failure unless the adjacent
member(s) provide stability against failure.

For the second case

A=—1,0,=0 =0

EI 2EI
E_Z S3 and Vab = _f—?’

Again, it would be difficult to say who should be given the credit for first
developing the slope-deflection equations, including the effect of axial
compression. Bazant and Credolin (1991) introduce James (1935), who pre-
sented the stiffness matrix relating the end moments and the member rotations
in a work dealing with the moment-distribution method. The stiffness coet-
ficients Sy, Sy, and S; take slightly different forms depending on the extent of
manipulations. Because these coeflicients serve as the basis for stability analysis
of frames, they are also called stability functions. Horne and Merchant (1965)
give credit to Berry (1916) for being the first who suggested various types of
stability functions and James (1935) for being the first who calculated Syand S».
Before the advancement of modern digital computers, evaluating these
functions would have been a formidable task. Winter et al. (1948), Niles and
Newell (1948), Goldberg (1954), Livesley and Chandler (1956), and Timo-
shenko and Gere (1961) published tables and charts of these stability functions.

My = My, = S3 = =V

3.4.4. Slope-Deflection Equations with Axial Tension

As was done earlier, it is expedient to let A = 0, — 0, with 0, = 0 in order to
avoid the rigid body translation. The moment of the bean-column shown in
Figure 3-12 at a distance x from the origin is
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y

V=M, + M, + PN/ I A=96,- 9,

Figure 3-12 Deformations of beam with axial tension

X

M, = ab_Py_(Mab_"Mha_PA)z
n o My
EI

" X
Ely" — Py = —M, + (Mab + M, — P)Z

P
Let k* = o Then,

V' =y = f(x)

where f(x) is a linear function of x.
Upon taking successive derivatives of the differential equation, the
differential equation becomes

Y12 = 0
The general solution of this differential equation is
y = Asinh kx + B cosh kx + Cx 4+ D
The proper geometric boundary conditions are
y(0) =6, =0, yl) =0 =48, Y(0) =10, Y =0

The appropriate natural boundary conditions are
M, M,
y//(o) _ ab y//(e) _ ba

EI’ El
Eliminating the integral constants, A, B, C, D and solving for
M, and My, gives
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0=B+D

4 = Asinh kf 4+ Bcosh kf + CL+ D
y' = Ak cosh kx + Bk sinh kx + C
0, = Ak+ C

0, = Ak cosh kl + Bk sinh kf 4+ C

Let 3 = kf
0 1 0 1 A 0
sinh 8 coshf (¢ 1 B A
k o 1 ol)lc( o,
kcoshB ksinh@ 1 0 D 0,
Applying Cramer’s rule yields
0 1 0 1
A coshfB /¢ 1
0, 0 10
4 — 0, ksinh@ 1 0 _ &
0 1 0 1 Dy
sinh 8 cosh@ ¢ 1
k 0 1 0
kcosh@ ksinh@ 1 0
1 0 1 0 1 1
D, =0, coshf ¢ 1|+|A cosf 1
ksnh8 1 0| |6 ksinhg 0
0 1 1 1 1 1 0 1
- 0,,<Iesinhﬁ ¢ 1| leong 1 >+0b o ~lsinh g

= B4(cosh B — Bsinh B — 1) + 6;,(1 — cosh ) + Aksinh 8
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sinmhf /¢ 1 sinh coshf /¢
D; = — k 1 0|— k 0 1
kcosh 1 0 kcoshB ksinh@ 1

coshf /¢
ksinh 8 1

k 1
kcoshfB 1

sinh 8 cosh 8
kcosh 8 ksinh

= —k+ kcosh 8+ kcosh 8 — kB sinh 8 — le(cosh2 B — sinh® B)

= —2k + 2k cosh 8 — k@B sinh 3

D,
A=—"
Dy
0 0 0 1
sinh A /¢ 1
k 0, 1 0
B kcoshB 6, 1 0] D,
- Dy _Dd
simh@ A /
D, = — k 0, 1
kcoshf 6, 1

= —(0,sinh B + B0), + kA cosh § — 6,8 cosh § — ), sinh § — kA)
= 60,(8 cosh 8 — sinh §) + 6,(sinh 8 — B) + A(k — k cosh )
y' = Ak cosh kx + Bk sinh kx + C

V" = Ak? sinh kx + Bk? cosh kx
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My, = —ED/(0)
Elkz[(ﬁ cosh @ — sinh )8, + (sinh 8 — B)8), + (k — k cosh 3)A]
B k(—2 + 2 cosh 8 — B sinh )

B E B[(B cosh B — sinh §)6, + (sinh 8 — 8)6;, + (6 — B cosh 6)%}

14 (2 — 2 cosh B + B sinh §)

(3.4.21)

» B(B cosh 8 —sinh )
"~ 2—2cosh B+ Bsinh 8

LetS, = S

R ecall identities

sinh 8 = 2(sinh 8/2)(cosh 3/2)
cosh 8 = cosh? 8/2 4 sinh? 8/2 = 1 + 2sinh? §/2

Dividing the numerator and denominator of S/1 =5 by sinh § gives

5/1 _ ¢ B(BcothB—1)  B(BcothB—1)

B B I1+8
b 2cothB+ 6

_ 2(1—coshB)  2[1—(1+42sinh?B/2)]
Let = sinh @ ~ 2sinh B/2 cosh §/2 = ~2tnh §/2

Substituting I into S/1 = gives

'« B(Bcothp—1)
Si=5= B — 2 tanh /2

S/ —S,— 6C0thﬁ_1 3400
r 71 2 tanh §/2 (3.4.22)

g

B(sinh 8 — 6)

LetS, = C =
e 2 — 2 cosh 8+ @ sinh 8

Dividing the numerator and denominator of S/2 =C by sinh £ gives
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B(1 — B csch B) _ B(1 — B csch B) B B(1 — B csch B)

== 2 —2cothﬁ+ﬁ_ 116 ~ B—2tnh /2
sinh 8
) r 1 —Lcschf
|2 7=
Y
Lees, _ 5o _ BB Beoh B/t

2 — 2 cosh B+ @B sinh 8
Dividing the numerator and denominator of 5/3 = sC by sinh § gives

) ) B(B csch B — B cothB)/¢  B(B csch B — B coth B)/¢
Sy = €' = 250 - s
Sinhﬁ—Zcothﬁ—l—ﬁ
B(B csch 8 — B coth B) /¢
- B —2tanh (/2

r b (8 csch B — B coth 8) /¢
5 =95C = 1_Ztanhﬁ/Z
Y
[=(8 coth = 1) = (1 = B csch B)]/¢

- b )2 (3.4.24)

5

, : S|+ S+cC
Sy =8C = 2=
’ ¢ ¢

Recall
My, = M(0) = —EDL/"(0)
But

My, = —M(¢) = EIY/ (¢)(note the negative sign!)

3" = Ak? sinh kx 4+ Bk* cosh kx
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My, = EL/(¢)

Elk
(=2 4+ 2 cosh 8 — B sinh )

sinh B[0,(cosh 8 — B sinh 8 — 1) + 0,(1 — cosh 8) + Ak sinh f]

X 6,(B cosh § — sinh B) + 6;(sinh 8 — )
+ cosh 8
+ A(k — k cosh )

EIB [0,(8 — sinh 8) + 0(sinh 8 — B cosh B) + A(k cosh § — k)]

l (=2 + 2 cosh 8 — B sinh )

EIB [0,(sinh B — B) + 0,(B cosh B — sinh §) + %(6 — B cosh B)]

l (2 — 2 cosh B + B sinh )

(3.4.25)

Examination of Eqs. (3.4.21) and (3.4.25) reveals that they can be rewritten
as follows:

EI / / / / A

My = 7[8160 + 8,0, — (S; + SZ)Z] (3.4.26)
EI / / / / A

My, = 7 [Szﬁa + 8,0, — (S, + Sz)e] (3.4.27)

3.5. ULTIMATE STRENGTH OF BEAM-COLUMNS

Up to this point in the study of beam-columns, the subject of failure was not
considered; hence, it was possible to limit the discussion to elastic behavior.
It is the modern trend that the design specifications are developed using the
probability-based load and resistance factor design concepts: The load-
carrying capacity of each structural member all the way up to its ultimate
strength needs to be evaluated. Since the ultimate strength of a structural
member frequently involves yielding, it becomes necessary to work with
the complexities of inelastic behavior in the analysis. It was pointed out
in Chapter 1 that problems involving inelastic behavior do not possess
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Linearly elastic

perfectly plastic
€

Figure 3-13 Idealized beam-column of Jezek

closed-form solutions. They must either be solved numerically, or
approximate answers must be sought by making simplifying assumptions. In
this section, the latter approach is entailed.

Consider the simply supported, symmetrically loaded beam-column
shown in Fig. 3-13. Jezek (1934, 1935, 1936) demonstrated that a closed-
form solution for the load-deflection behavior beyond the proportional
limit can be obtained when the following assumptions are made:

1. The cross section of the member is rectangular as shown in Fig. 3-13.

2. The material obeys linearly elastic and perfectly plastic stress-strain
relationships.

3. The bending deflection of the member takes the form of a half-sine
wave.

Inelastic bending is difficult to analyze because the stress-strain relation varies in
a complex manner both along the member and across the section once the
proportional limit has been exceeded. In addition to these major idealizations,
which simplify the analysis greatly, the following assumptions are also made:

4. Deformations are finite but still small enough so that the curvature can
be approximated by the second derivative of the deflected curve.

5. The member is initially straight.

6. Bending takes place about the major principal axis.

The residual stress that cannot be avoided in rolled and/or fabricated metal
sections is ignored in the analysis.

Based on the coordinate system shown in Fig. 3-13, the external
bending moment at a distance x from the origin is

Moy = M+ Py (3.5.1)

Since Eq. (3.5.1) is an external equilibrium equation, it is valid regardless of
whether or not the elastic limit of the material is exceeded.

The relationship between the load and deflection up to the proportional
limit is
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M+ Py = —EI = —EI <— 5”—2) sin
2 L
or
M+ Py = e ™ (3.5.2)
2 L
This relationship at the midspan becomes
M+ Po = #;2 (3.5.3)

Assuming that M is proportional to P one introduces the notation

e = M /P; then the above moment equation becomes

OEIT?
Ple+9) = = 0Pg (3.5.4)
Dividing both sides of Eq. (3.5.4) by h yields
p(£42) =%
W) on "
or
6 e 1 455
h hIE_ (3:53)
g0
where

0r = Pg/bhis the Euler stress and 0y = P/bh is the average axial stress.

Equation (3.5.5) gives the load versus deflection relationship in the
elastic range. In order to determine the load at which Eq. (3.5.5) becomes
invalid, one must evaluate the maximum stress in the member.

P M+ Péo 6(e+9)
max — 77 = 3.5.6
Oma bh+ oz oo+ 09 i ( )
6
or
6 0
Tmax = 00 [1+ (e: )] (3.5.7)

If the stress given by Eq. (3.5.7) equals the yield stress, the elastic load versus
deflection relationship given by Eq. (3.5.5) becomes invalid.
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Figure 3-14 Stress distributions for beam-column

As yielding propagates inward, the inner elastic core as indicated in
Fig. 3-14 for the inelastic case, the moment curvature relationship
expressed in Eq. (3.5.2) becomes invalid and a new moment-curvature
expression needs to be developed. Depending on the eccentricity, two
different stress distributions are possible. If the ratio e = M/P is relatively
small, yielding occurs only on the concave side of the member prior to
reaching its ultimate strength range. On the other hand, if the eccen-
tricity is relatively large, both the convex and concave sides of the
member will have started to yield before the maximum load is reached, as
shown in Fig. 3-14. To simplify the analysis, the discussion is limited
herein to small values of e only. Bleich (1952) discusses the case of large
values of e.

Summing the horizontal forces in case (1) of Fig. 3-14 yields

ogyc  o1d

P=b -
(or+5 %)
Dividing both sides by bh yields

ayc  o1d

1
= - —_——— 3.5.8
ao X <‘7yf + 5 > ) ( )
Summing the moment about the centroidal axis gives

h clh c dih d
Min = {”yf (5‘9 +%<§‘f ‘5) +%<z‘5>] (3:5.9)

Noting that f + ¢ + d = h, ¢ value can be determined from Egs. (3.5.8) and
(3.5.9). After some lengthy algebraic manipulations, one obtains
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(3.5.10)

From the similar triangle relationship shown in Fig. 3-15, the following
relationship can be readily established:

p ¢
y
where p is the radius of curvature.
Thus
1 & . d
=2 = 3.5.12
p c dx? ( )
or
n _ 9y
=2 3.5.13
Yy == ( )

Substituting ¢ given by Eq. (3.5.10) into Eq. (3.5.13) gives the moment-
curvature relationship in the inelastic range
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= (3.5.14)

Equation (3.5.14) is the inelastic moment-curvature relation that must
be used in place of Eq. (3.5.2) once the stresses have exceeded the
proportional limit.

By virtue of Egs. (3.5.1), (3.5.2), and (3.5.4), the curvature and moment
at midspan are given by

w2 s
y// o2 = 5€_2 fromy = 0 sinTX and M;, = P(e+9)
Substituting these relationships into Eq. (3.5.14) for )’ above gives

ay 3
2 20’()h ——1
™ ao

2 h(ay 2 o
2 2 3
5F<ﬁ—1>—e—5] :2h€00<ﬁ—1> or
2\ oy 9ET2 \ oy

0|1 gy 1 e 0 2 - 2620'() ay 1 3 (35 15)
h(2\ oo h k| 9EWh2\ 0y o
Since op = wWEI/(Af?) = w*EW?/(120?), Eq. (3.5.15) can be
rewritten in the form

0|1/ay I 1 oo (o) 3
L1 ) === = —=——ZL—-1 3.5.16
h|:2 (0’0 ) h h:| 54 o\ 0o ( )

Equation (3.5.16) gives the load versus deflection relationship in the
inelastic range.

Example 1 Consider a simply supported rectangular steel beam-column
with the following dimensions and properties:

¢ =1201in.,r = 1.0in.,e = 1.151in., 0, = 34 ksi, E = 30 x 107 ksi

Determine the ultimate load-carrying capacity of the member.
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Table 3-1 Load-deflection data for beam-column

Elastic Range, Eq. (3.5.5) Inelastic Range, Eq. (3.5.16)
ao (ksi) 6/h 0 max ao (ksi) 6/h
2 0.036 6.4 8.0 0.21
4 0.080 14.0 8.5 0.24
6 0.137 23.0 9.0 0.30
8 0.212 34.0 9.1 0.35
10 0.314 invalid 9.0 0.40
12 0.463 - -
14 0.710 - -
16 1.150 - -
[ o> /
r = —1=h—2\/31n and
\/7 12bh
7 x 30 x 103
O = = = 20.6 ksi

{ 2 1202
r

The load-deflection data for the elastic range evaluated using Eq. (3.5.5)
are given in Table 3-1. Corresponding to each set of g and 6/h listed in the
table; the maximum stress is also evaluated using Eq. (3.5.7). It is evident
that the maximum stress in the member reaches 34 ksi, the yield stress, at
approximately g = 8 ksi. Hence, Eq. (3.5.16) must be used for deflections
for axial stresses in excess of 8 ksi. The load-deflection data for the inelastic
range computed using Eq. (3.5.16) are also listed in Table 3-1. The entire
load-deflection curve is plotted in Fig. 3-16. It is of interest to observe the
load-deflection behavior of this beam-column. For the load to produce

O,
! 0, = 20.6ksi
20

Elastic curve

15 | mitialyield ~ _----"""""

(0, =8ksi) .-~
10 L7 Actual curve
AN
5 Max. load
(6, =9.1ksi)
0 | | | | | S
0 2 4 6 8 10 h

Figure 3-16 Load-deflection curve for beam-column
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the average axial stress of 8 ksi, the material obeys Hooke’s law and
the deflections are relatively small. However, once the stress exceeds 8 ksi,
yielding starts spreading rapidly, and there occurs a noticeable decrease in
the stiffness of the member. At the average axial stress of 9.1 ksi, the member
is no longer able to resist any increase in load. The average axial stress, 0, of
9.1 kst represents the ultimate strength of the member.

It has been demonstrated here that the load-deflection characteristic of
a simple rectangular section under a simplified assumption of linearly
elastic and perfectly plastic stress-strain relation is fairly complex. Although
Chwalla (1934, 1935) improved the stress-strain curve of Jezek (1934) by
adopting a curved stress-strain diagram (but ignoring residual stresses), the
limitation of the deflection shape of a sinusoidal form could be a liability.
Therefore, today accurate determinations of the ultimate strength of beam-
columns are best obtained by finite element nonlinear incremental analyses
without ignoring important parameters such as initial imperfections,
residual stresses, and strain-hardening effects that are known to affect the
ultimate strength considerably. In view of the fact that determining the
maximum load of a beam-column is extremely complex and time
consuming, the load at which yielding begins has often been used in place
of the ultimate load as the limit of structural usefulness. The load corre-
sponding to initial yielding is an attractive design criterion because it is
relatively simple to obtain and is conservative. However, it is sometimes
too conservative. There are a few semi-empirical design interactive
equations. For rolled shapes, a similar procedure can be programmed to
execute.

3.6. DESIGN OF BEAM-COLUMNS

As demonstrated in Section 3.5, an exact analysis of steel members subjected
to a combined action of axial compression and bending is very complex,
particularly in the inelastic range. Moreover, discussing a detailed procedure
involved in the design of beam-columns is beyond the scope of this book.
The intention here is to demonstrate how an interaction curve is generated
using the data available as a result of calculations carried out in the previous
section.

In creating a normalized nondimensional interaction curve, it is quite
obvious that P/P, = 1 when M/M,, = 0 and that M/M,, = 1 when P/ P, = 0.
Thus the desired curve must pass through these points (1,0), (0,1). The
simplest curve that satisfies this condition is a straight line
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P + M 1 (3.6.1)
Pl'i u B o
P = axial load acting on the member at failure when both axial

compression and bending are present.

P, = ultimate load of the member when only axial compression is

present.

M = maximum primary bending moment acting on the member at

failure when both bending and axial compression exist; this excludes the

amplified moment.

M,, = ultimate bending moment when only bending exists.
Although Eq. (3.6.1) may represent an interaction reasonably well where
instability cannot occur (i.e., K¢/r = 0), all theoretically and experimentally
obtained failure loads fall below the curve. Hence, it is an unconservative
upper-bound interaction curve. Obviously, the moment included in
Eq. (3.6.1) is only the primary moment. As shown in Section 3.2, the presence
of an axial compressive force amplifies the primary bending moment by an
amplification factor. If this factor is reflected in Eq. (3.6.1), one obtains

P M
=1 (3.6.2)

P, P
M, (1=
E

Example 1 Revisit the rectangular beam-column examined in Section 3.5.
For the member the average axial stress at the ultimate strength was found to be
0o = 9.1 ksi, and the corresponding Euler stress is 0 = 20.6 ksi. Thus

— = — =044
PE OF
bh bh?
M= oo )E’MH _ 9 ,f = 0.33= 0,5 = 34 ksi
p 4 h
M bh 4 4(9.1
M _ fﬂlg__lg _ oo e 40 s~ 033
M, bh Tpax h 34
JmaxT

The coordinates of the interaction point are shown in Fig. 3-17. Chajes
(1974) has demonstrated that Eq. (3.6.2) agrees fairly well with calculations
similar to those leading to the interaction point shown by Jezek (1935,
1936) for rectangular columns of various values of e/h.
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Figure 3-17 Ultimate strength interaction equation for beam-column

In studying Eq. (3.6.2), the student is reminded that the strength P,
when M, = 0 is based on the slenderness ratio with respect to the major
axis (K{/r,), which implies that the member was assumed to fail by
instability in the plane of bending. This can present a serious limitation in
general applications as the plane of bending and the plane of instability
frequently do not coincide in most beam-columns. Although Eq. (3.6.2)
could have served adequately in the 1930s, an attempt to use only one
interaction equation as the guide for the design of beam-columns in
modern-day applications is grossly inadequate. Research published by
Ketter (1961) has affected specification-writing bodies for many years,
particularly the AISC as demonstrated by Salmon and Johnson (1996).
Chen and Atsuta (1976, 1977) published a comprehensive treatise of
beam-columns in two volumes. In the current AISC (2005) specification,
the design of beam-columns is addressed in Chapter H, where members
subjected to axial force and flexure about one or both axes with or without
torsion are classified into:

H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial
Force.

H2. Unsymmetric and Other Members Subject to Flexure and Axial
Force

H3. Members Under Torsion and Combined Torsion, Flexure, Shear and/
or Axial Force. In the current AISC specification, and it appears to be
the case for the upcoming edition, a second-order analysis is mandated
for all beam-columns.

AISC (1989) interaction formulas include C,,,, C,,, factors to account
for loading, sway condition, amplification, and single or reverse curvature.
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PROBLEMS

3.1 Obtain expressions for the maximum deflection and the maximum
moment of a prismatic beam-column subjected to a uniformly
distributed load as shown in Figure P3-1.

w (force/length)
y v
b ‘_1\}‘”1/}__ %,_ »
| L |
Figure P3-1

3.2 Determine the expression for the maximum deflection and maximum
moment of a both ends clamped that is subjected to a concentrated load
at midspan as shown in Figure P3-2.

l
A\
T

Figure P3-2

3.3 Determine the maximum moment for a beam-column shown in
Figure P3-3 that is bent in (a) single curvature and (b) reverse curvature
when P/Pp = 0.2 with Pp = 7> EI/¢>.

(a)

MO
[ A E— oo P

| / |
) 1

(b)
Figure P3-3

Discuss the problem.
3.4 A simply supported beam-column is subjected to an axial load, B and
a linearly varying load, W, as shown in Figure P3-4.
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/m%
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hr w7
| |
! |
y

l

Figure P3-4

(a) Determine the equations for the deflection and moment at any point
along the length by solving the governing differential equation.

(b) Develop an elastic interaction curve (P/P,vs M /M, or Wy{*/
M,) for £/r = 120,0, = 33ksi,E = 30 x 10> ksi using the
results obtained in (a).

(c) Using an approximation that the deflection computed on the
basis for no axial force is amplified by the factor, [1/(1 — P/P],
determine an approximate interaction curve for the data given in (b).

3.5 Show by repeated applications of L'Hopital’s rule that
@ lim (51) = 4 (b) lim (5) = 2 (@) lim (5) = 3

3.6 Solve Problem 1-1(b) using slope-deflection equations derived in this
chapter.

3.7 A W16X67 steel beam-column (Grade 50) shown in Figure P3-7
is subjected to a linearly varying primary service dead load moment of

P
M
% P

7

P

A\
NN

15

|

Y 9 2
// [ ) )
P P

Figure P3-7
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15 ft-kips and live load moment of Problem 1-1(b) at one end with
none on the other end and a concentric service dead load of 87.5 kips
and live load of 262.5 kips. An effective bracing system is available at 15
ft for both the flexure and the axial force. Assume both ends are pinned
and there is no sidesway. Assess the acceptability of the design (a) by
Eq. 3.6.2 and (b) by AISC specification.

Would the final results, internal forces, and deflections be different or
the same if the axial force is applied first followed by the transverse load
or vice versa in a beam-column? State the reason for your answer.
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4.1. INTRODUCTION

In the study of isolated column stability in Chapter 1, the member ends are
idealized to be pinned, fixed, or free. However, members in a real framed
structure are usually part of a larger framework, and their ends are elastically
restrained by the adjacent members to which they are framed. In this chapter,
the investigation is extended to consider the behavior of framed members.

In a framework, the members are usually rigidly connected at joints.
Therefore, no single compression member can buckle independently from
the adjacent members. Hence, it is often necessary to investigate the stability
of the entire structure just to obtain the critical load of one or two members
that are part of a larger framework.

Using an example problem, it will be demonstrated that the eftect of
a second-order analysis becomes significant over that of the first-order
analysis when the compressive axial load is, say, greater than 10% of the
critical load of the member.

4.2. CONTINUOUS BEAMS

Slope-deflection equations with axial forces have been derived in the
previous chapter. These equations will be used to solve elastic stability
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problems of continuous beams and rigid frames in this chapter. Recall the
slope-deflection equations.

EI 5, — 0
Ma = {slea + Sa0s + (1 + 52) = b} (4.2.1)

(4.2.2)

EI 0, — Op
M, = 7[5200 + $10y + (S + $2) = ’}

In the case when the end “b” is hinged, My, = 0 and M, is modified as
a result of eliminating 6} as

’ EI 6& - 619
My, = S3( ba+= (4.2.3)
where
5 — 1—Bcotf
' 2tang/2 |
s
_ BcosecB—1
7 2tan B/2 .
s
2
oo
1—8cotf
P .
B =k = i < referred to as buckling parameter.

It can be shown by applying the L'Hopital’s rule that the limit values for Sy,
Sy, and S3 are 4, 2, and 3, respectively, when 8 = 0 (or P = 0).

Example 1 Determine P, for the structure shown in Figure 4-1.
For AB:
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Figure 4-1 Two-span continuous beam-column

) (=) |

Mba Mbr:

*Recall sign convention
in the derivation

Figure 4-2 Moment equilibrium at joint B

For BC:

Since 0, # 0, the stability condition equation is

s (s 2) <o
>0 ) Yo ),

Hence,
83 El, 1—B,cotB, EL
1— 8 cotfy £ 2tan[)’2/2_1 b
i3

As B¢ and (3, are functions of B, the smallest value of P which satisfies the
above equation is P,,.
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7

Figure 4-3 Elastically constrained two-span beam-column
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Example 2 Determine P, of the structure shown in Figure 4-3.

EI EI EI 0
My=1S1— )0+ (S —+SH— ] —
2 4 /> fz

My= (55 o4 (5 Ey 5 ) 2
b — 2£2b 1€ 2£2€2

As there are two unknowns, 6, and 0, two equations are needed. The first
equation is provided by moment equilibrium. The moment equilibrium
condition at joint B gives

M, + M, =0 (4.2.4)

One additional equation can be derived considering equilibrium of the
vertical forces at joint B. Consider the free-body diagram of each span and
joint equilibrium at B shown in Fig. 4-4.

> M, =0=Vily — M, — Pid,

M, + Pi6
Vi = a1 4.2.5)
4
ZMC =0 = —Vielo + My + My, — (P + P2)0y
My + My, — (P1 + P2)0
A (P14 P2)o, (4.2.6)
%
Z Foertical = 0 3thint B
ba — ROy — Vipe =0 (4.2.7)
A B ..
A — <Mha My, 7_@> &b P+P,
77 }Pl Pl+P2€

}

V“h Vba % Vbc Vz:b

Figure 4-4 Free-body diagram
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Equations (4.2.4) and (4.2.7), along with Egs. (4.2.5) and (4.2.6), yield the
following general form of equations:

a110p + a120, =0
ax10p + ax0, =0

Set the coefficient determinant equal to zero for a nontrivial solution (or
stability condition equation). The resulting equation is a transcendental
equation in B (k¢). The roots in 3 lead to the critical loads.

4.3. BUCKLING MODES OF FRAMES

Consider first the frame in which sidesway is prevented by bracing either
internally or externally. It is obvious that the upper end of each column is
elastically restrained by the beam to which the column is rigidly framed, and
that the critical load of the column depends not only on the column stiftness,
but also on the stiffness of the beam. It would be very informative to assume
the beam stiffness to be either infinitely stiff or infinitely flexible as these two
conditions constitute the upper and lower bounds of the connection rigid-
ities. When the beam is assumed to be infinitely stiff, the beam must then
remain straight while the frame deforms as shown in part (a), (1) Sidesway
prevented, Fig. 4-5. Under this condition, the columns behave as if they were
fixed at both ends, and the critical load of the column is equal to four times
the Euler load of the same column pinned at its both ends. As the other
extreme case of the opposite side, the beam can be assumed to be infinitely
flexible. The frame then deforms as shown in part (b), (1) Sidesway pre-
vented, Fig. 4-5, and the columns behave as if they were pinned at the top,
and the critical load is the same as that of the propped column: approximately
twice that of the Euler load of the same column pinned at both ends.

For an actual frame, the stiffness of the beam must be somewhere
between the two extreme cases examined above. The critical load on the
column in such a frame can be bounded as follows:

4P > P, > 2P (4.3.1)

where P, is the critical load of the column and Pg is the Euler load of the
same column pinned at both ends.

[tis just as informative to apply the same logic to frames in which sidesway
is permitted. If the beam is assumed to be infinitely stift, the frame buckles in
the manner shown in part (a), (2) Sidesway permitted, Fig. 4-5. The upper
ends of the columns are permitted to translate, but they cannot rotate by
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(1) Sidesway prevented

o

(@)1, > o (b) 1, -0

£
2
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PL'r /f B'r: 4{/36
(a) I, > oo (b) I, >0

Figure 4-5 Modes of buckling

definition. Hence, the critical load on each column in the frame is equal to
the Euler load of the same column pinned at both ends. On the other
extreme, if the beam is assumed infinitely flexible, the upper ends of the
columns are both permitted to rotate and translate as shown in part (b), (2)
Sidesway permitted, Fig. 4-5. In this extreme case, each column acts as if it
were a cantilever column, and the critical load on each column is equal to
one-fourth the Euler load of the same column pinned at both ends. The
critical load on each column of the frame in which sidesway is permitted can
be bounded as follows:

1
Pg > P, > Z Pr (4.3.2)
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Hence,

Py > Pyl (4.3.3)

|braced frame unbraced frame

A portal frame will always buckle in the sidesway permitted mode unless it
is braced. Unlike the braced frame where sidesway is inherently prohibited,
both the sidesway permitted and prevented modes are theoretically possible in
the unbraced frame under the loading condition shown in Fig. 4-5. The
unbraced frame, however, will buckle first at the smallest critical load, which is
the one corresponding to the sidesway permitted mode. This conclusion is
valid for multistory frames as well as for single-story frames as shown by Bleich
(1952). The reason appears to be obvious as the effective length of the
compression member in an unbraced frame is always increased due to the
frame action, while thatin the braced frame is always reduced unless the beams
in the frame are infinitely flexible. The same conclusion can be extended to
the case of buckling of an equilateral triangle, which will be detailed later.

4.4. CRITICAL LOADS OF FRAMES
4.4.1. Review of the Differential Equation Method

In the previous section, the qualitative aspects of the buckling characteristics
of a single-story single-bay portal frame are illustrated. It is now desired to
determine the critical load of such a frame by means of neighboring
equilibrium (neutral equilibrium). Depending on whether or not the frame
is braced, buckling will take place in the symmetric or the antisymmetric
mode. An antisymmetric buckling is considered first here.

It is assumed that a set of usual assumptions normally employed in the
classical analysis of linear elastic structures under the small displacement
theory is valid. The sidesway buckling mode shape assumed and the forces
acting on each member are identified in Fig. 4-6(a) and (b), respectively.
The moment of the left vertical member at a point x from the origin based
on the coordinate shown in Fig. 4-6(c) is (moment produced by the
continuity shear developed in BC is neglected)

M(X) = My — Py = My = Elly” (4.4.1)
or
M,
/" 2 ab

kiy = 4.42
YRy =g (4.4.2)

P

where k% = —

El
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Figure 4-6 Buckling of unbraced frame

The general solution of Eq. (4.4.2) is given by

. My
y = Asin kix + B cos kjx + D

(4.4.3)

Two independent boundary conditions are needed to determine the integral
constants, A and B. They are
y=0 atx=0

from which

and
which leads to

Hence,

M,
Pb (1 — cos kyx) (4.4.4)

y:

Denoting the horizontal displacement at the top of the column (x = £1) by
0, then

5 — ab

(1 —cos ki4q) (4.4.5)

~| =
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Summing the moment of member AB at A gives
pPo — My — My, =0 (446)

It is tacitly assumed that the same lateral displacement occurs at points B and
C, as the horizontal force, if any, in member BC is small enough to be
ignored. Hence, there is no horizontal force at B which leads to zero shear
in member AB. Substituting Eq. (4.4.6) into Eq. (4.4.5) gives

My, cos kil + My, =0 (4.4.7)

Since it is assumed that there is no axial compression presented in member
BC, the slope-deflection equations without axial force apply.
Hence,

2EL

My = e (20, +6,) (4.4.8)

Since 0 ia equal to 0, and they are positive based on the coordinate system
employed in Fig. 4-6(c), Eq. (4.4.8) reduces to

My =——0, (4.4.9)

The compatibility condition at joint B requires that 8, in Eq. (4.4.9) be
equal to the slope of Eq. (4.4.4) at x = /4.

Hence,
Mb(‘€2 Mab .
= I3¥4 4.4.10
6EL, kiEL N (4.4.10)
or
OB in ks — My, = 0 (4.4.11)
1 —_— b = ST
k111€2 ab S1IN R1€q be

Equations (4.4.7) and (4.4.11) are the required equations to solve the
frame. Ordinarily, a frame with n unknowns would require n equations.
However, in this case, as the two vertical members are identical, which leads
to only two unknowns, namely, 0 and 6, instead of three unknowns (0, 0,
0,), two equations suffice. Setting the coefficient determinant equal to zero
gives

tan k1£1 . 1151
kily 6Lt

(4.4.12)
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The critical load of the frame is the smallest root of this transcendental
equation.
For

L=L=1 bL=0=/¢
Equation (4.4.12) reduces to
tan kI 1

kL6

From Maple® or BISECT or any other transcendental equation solver,

kl = 2.71646
7.38EI
and Pﬂ == T

which is 9.87EI/¢2 > 7.38EI/¢? > 9.87EI/(4£?) as expected from Eq.
(4.4.2).
The next case to be examined is a portal frame in which sidesway is
prevented either by internal bracing or external supports shown in Fig. 4-7.
Consider the symmetric buckling shown in Fig. 4-7(a). Based on the
assumed deformation mode shown in Fig. 4-7(a), a continuity shear is
developed in member AB. That is

My, — M,
V= Mab =~ Mia) (4.4.13)
b
Hence, the moment at a distance x from the origin (joint A) is
My, — M,
— ELy" — Py + My, — —2 = ; Me=0 (4.4.14)
1

y

clockwise rotation

7, positive

(a) (b) ©
Figure 4-7 Braced frame
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or

My, X My, [ x
" f iy = 1-= - 4.4.15
YRy EL 4 +511 4 ( )

where k = P/EI,. The general solution of Eq. (4.4.15) is

= Asin kix+ B kix + ab 1__x + ba (X (4.4.16)
= in 4.
y sin kix cos kix 2 7

Two boundary conditions are needed to determine the integral constant,
A and B. They are

y=0 atx=0
which leads
M
B— _ ab
P
and

from which

A_Mab_Mba
N k141 P
Hence,
Map 1. X My, [ x T
= — sinkjx—coskix+1—— ) +—2(Z— —sink
y P <k1€1 sin k1x — cos k1x + €1>+ P (£1 7 sin 1x>

(4.4.17)

As the top end of member AB is assumed not to be able to move laterally,
that is, y = 0 at x = {1, Eq. (4.4.17) becomes

Ma;,(sin k€1 — k14 cos qul) + Mba(klfl — sin k1€1) =0 (4.4.18)

Applying the slope-deflection equation assuming no axial forces resulting
from the continuity shear generated from the vertical members are trans-
mitted to the horizontal member due to either internal bracing or external
supports, it reads

2EL

Mic === (26, + 0.) (4.4.19)
2
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Since 0. = —0,, Eq. (4.4.19) reduces to

My =249, (4.4.20)

Compeatibility of slope at joint B requires that 6, of the horizontal member
be equal to —)' at x = #; of the vertical member for the consistent sign
convention adopted in Fig. 4-7(c). It is noted here that the condition of

My, = My, has been used in the above derivation starting from Eq. (4.4.13).
Thus

Myl M, (1 Ly M1 1
2}2122 = _?<E cos kil + kysin kify — E) - _b<_ A klfl)

which is rearranged to

. I1£1]€%£2
M,(cos kily + kily sinki €y — 1) + My 1 — cos ki y + 51 =0
2

(4.4.21)

For a nontrivial solution, set the determinant for the coefficient matrix
equal to zero. The resulting transcendental equation is
U1k

2 — 2 cos k1lq — kifq sin ki1 +
2L

(sin k1£1 - ]€1£1COS k1£1) =0
(4.4.22)

By setting [y = I, = I and ¢4 = ¢, = { in Eq. (4.4.22), the smallest root is
k¢ = 5.018 and
_ 25.18E1
Py ==

This load is considerably larger than that of the same frame (7.34EI/{?)
where sidesway is permitted. The critical load also satisfies Eq. (4.4.1), as
expected.

4.4.2. Application of Slope-Deflection Equations

to Frame Stability
Although the differential equation method examined in the previous section
is theoretically applicable to any frame, it becomes prohibitively complex in
actuality, particularly in a frame of many kinematic degrees of freedom. In
order to show the versatility of the slope-deflection equations, the same
example examined above will be revisited.
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It is assumed again that the axial compression in member BC would be
negligibly small.
Since 8, = 0, the moment at the top joint of member AB is

My, = (S1k),0, (4.4.23)

where k; = [(EI)//),

The moment in the horizontal member is
My, = (Sik),0) + (S2k),0, (4.4.24)

As 0. = —0, for the buckling mode shown in Fig. 4-7(a), Eq. (4.4.24)
reduces to

My = [(S1k), — (S2k),]0s (4.4.25)

Since there is no axial force in member BC, (S1)> = 4 and (Sy), = 2.
For joint equilibrium My, and M, are the same in magnitude and opposite
in sign. Thus

> My =0=M, + M, =0 (4.4.26)

For b =1 = I and ¢, = ¢; = {,Eq. (4.4.26) reduces to

EI EI
Si 0 = [(4 - 2)7} 0, (4.4.27)

from which
S1=2 (4.4.28)

Equation (4.4.28) will lead to the critical load of P, = (25.18EI) /.

For the buckling mode shown in Fig. 4-7(b), 0, = 6. By keeping 0}, and 0,
as unknown independent variables, the analysis can be generalized. The
unknown moments at joint C are

My = (Sik), 6, (4.4.29)

and

My = (Sik), 0 + (S2k), 6 (4.4.30)
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The equilibrium condition at B requires
> My = 0=[(S1k); + (S1k),)0) + (S2k),0. = 0
from which
(S1+4)0,+20.=0 (4.4.31)
Likewise, moment equilibrium at C demands
> M= 0=[(S1E); + (S18),)0c + (S2k),0, = 0 (4.4.32)
from which
20+ (S1+4)0,=0 (4.4.33)

Setting the determinant of the coefficient matrix of the unknowns ¢, and 0,
for the stability condition gives

S1+4 2 5
=0=(S1+4)"—-4=0=8 =-2,-6

2 S1+4

By Maple®, BISECT or any other transcendental equation solver, one can
obtain k¢ = 5.01818 and 5.52718 for S; = —2 and —6.

The smallest root for k¢ = 5.01818 gives the critical load of 25.18EI/¢*
for the buckling mode shown in Fig. 4-7(a), and k¢ = 5.52718 yields the
critical load of 30.55EI/¢7 for the buckling mode shown in Fig. 4-7(b). It is
of interest to note that the critical load is larger for the antisymmetric
buckling mode than that for the symmetric buckling mode within the same
braced frame. This difference can be explained by examining the buckling
mode shapes shown in Fig. 4-7. In the antisymmetric buckling mode, the
beam deformed in such a manner as to create an inflection point at the
middle of the member (reducing the effective length by half), thereby
increasing its stiffness. The increased stiffness of the beam, in turn, provides
a little bit more constraint at the top of the column, which would shorten
the effective length of the column.

The next example is buckling of a rigidly connected equilateral triangle
shown in Fig. 4-8.

Take the counterclockwise moment and rotation as positive quantities
as adopted in the derivation of the slope-deflection equations in Chapter
3. As the joints are assumed rigid, the original subtended angle of
60 degrees will be maintained throughout the history of deformations.
Hence,
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EI : Constant

Figure 4-8 Equilateral triangle

0ab = Hac = Ha
Opa = 0, = 06, (4.4.34)
05(9 = 0ca = HL’

The moment at each end of each member is then given by

k(S10,+ S20;), M, = k(S10,+ S»0,)
My, = k(S10y + S20,), My = k(S 0, + S,0.) (4.4.35)

My = k(S10, + $20,), My = k(S}0, + Sh6))

where k = EI /{, and S{ and S3 reflect the tensile force in member BC.
The compatibility of the rigid joint requires the following moment-
equilibrium condition at each joint:

Mgy + My = 0
My, + My, = 0 (4.4.36)
Mg+ My =0

Substituting Eq. (4.4.35) into Eq. (4.4.36) yields
(810, + S20;) + (S16,+ S20.) =0
(810 + S$20,) + (S10, + $20,)' =0 (4.4.37)
(810, + $20,) + (S10, + S20,) =0
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Rearranging Eq. (4.4.37) gives
2810, 4+ S0, + S0, =0

Safa 4 (S1 + S0y + S360. = 0 (4.4.38)
Sx0, 4+ S30,+ (S1 + S1)8. =0

Rewriting Eq. (4.4.38) in matrix form yields

28 So S 0. 0
S S +S S’ 6, »p =<0 (4.4.39)
S Sgl S1 + S1/ 0, 0

Setting the determinant of the augmented matrix equal to zero for the
stability condition (a nontrivial solution) gives

det=0=(S1+S{—S)[SI(S1+S{+ ) -S| =0  (4.4.40)
Two buckling modes are indicated by Eq. (4.4.40).
S48 —8'=0 or Si(S1+S8+8)-85=0

From Maple® or BISECT, S; (S; + S’ +S)) — S3=0 gives kl =
4.0122 =P, = 16.1EI />

From Maple® or BISECT, S;+S8/-S'=0 gives kl =
5.3217=P, = 28.32EI/{*

For kf = 4.0122, S; = 1.1490, S, = 3.0150, S;’ = 4.9763, S’ = 1.7861.
Substituting these values into the matrix equation, Eq. (4.4.39) gives

2298 3.015 3.015 0, 0
3.015 6.1253 1.7861 0, p =40 (4.4.41)
3.015 1.7861 6.1253 0, 0

Recall that the determinant was equal to zero. Hence, the augmented
matrix in Eq. (4.4.41) is a singular matrix and therefore, cannot be inverted.

One can only obtain the normalized eigenvector or mode shape. An
eigenvector can just show the deformation shape of the structure in
a neighboring equilibrium position. Hence, the exact magnitude of the
mode shape in eigenvalue problems is immaterial.
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Let 8, = 1 and expand the first and second rows of the matrix equation,
Eq. (4.4.41), to yield,

2.298 +3.015 6, +3.015 0. = 0

from which

1
0, = —— (—2.298 — 3.015 40, 4.4.42
b=3015 ( ) ( )
and
3.015+6.1253 60, + 1.7861 6, = 0 (4.4.43)

Substituting Eq. (4.4.42) into Eq. (4.4.43) yields

6.1253
3.015 4 (2298 — 3,015 6,) + 1.7861 0, = 0

from which
0, = —0.381 (4.4.44)

Substituting Eq. (4.4.44) into Eq. (4.4.43) gives
0, = —0.381 (4.4.45)

The buckling mode shape 1s given in Fig. 4-9.
For kf =5.3217, Sy = —3.9419, S, = 6.2624, ;' =5.6170, S’ = 1.6751

Substituting these values into the matrix equation, Eq. (4.4.39) gives

—7.8838 6.2624 6.2624 0, 0
6.2624  1.6751 1.6751 0, p =10 (4.4.40)
6.2624  1.6751 1.6751 0, 0

A 6,=1.000

6, =038l

Figure 4-9 Equilateral triangle antisymmetric buckling mode
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0,=1.0 0,=10

Figure 4-10 Equilateral triangle symmetric buckling mode

Again the augmented matrix in Eq. (4.4.46) is a singular matrix. One can
only obtain the relative deformation shape of the structure in the neigh-
boring equilibrium (buckled) position. By virtue of Fig. 4-9, a symmetrical
mode shape is expected in this case. Let 8, = 0 and expand the second and
third rows of the matrix equation, Eq. (4.4.46), to yield,

0, =—0,=1.0 (4.4.47)

The buckling mode shape is given graphically in Fig. 4-10.

Although there is no joint translation at the loaded vertex of the triangle,
the critical load corresponding to the antisymmetric buckling mode is less
than that corresponding to the symmetric buckling mode. Examining the
symmetric buckling mode shape shown in Fig. 4-10 reveals that an
inflection point exists in the compression member, thereby making the
effective column length considerably smaller than that in the antisymmetric
buckling mode. This makes the compression members in the symmetric
buckling mode carry a greater load.

4.5. STABILITY OF FRAMES BY MATRIX ANALYSIS

The stability analysis by the matrix method is a by-product of research on
the incremental nonlinear analysis of structures (Przemieniecki 1968). The
matrix method used in Section 2.9 to analyze the stability of an isolated
compression member can be directly applied to determine the critical load
of an entire frame. Recall that the member geometric stiffness matrix is
a function of axial force in each member and the eigenvalue is merely
a proportionality factor of the applied load. Although it is intuitively simple
to recognize the axial force in the individual column in a simple structure, it
may not be the case for a complex structure. Therefore, it is required to
conduct a static analysis of the structure under a given set of loading for
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which the critical value is sought to determine the axial force in each
member.

As an illustration, consider the stability of the simple portal frame shown
in Fig. 4-11(a). The portal frame is unbraced. Each member has a length of £
and bending rigidity EI, and the frame is clamped at its base and is loaded as
shown.

Positive member (local) and structure (global) kinematic degrees of
freedom and corresponding force are defined in Figs. 4-11(b) and 4-11(c).
According to Egs. (2.9.11) and (2.9.13), the member stiffness matrices for

the column are
(k1] = [k3]
12 60 —12 6f 6/5 /10 —6/5 £/30
EI| 60 402 —ot 202 | p|L/10 202/15 —£/10 —£2/30
TG 12—t 12 —ot| L —6/5 —£/10 6/5 —£/10
ol 202 —6f 40> /10 —¢%/30 —£/10 2¢%/15
4.5.1)

and the member stiffness matrix for the beam is

12 6 —-12 6/
" EI|l 60 47 —of 207
ky] = —
PTB 22 —er 12 —er

60 202 —60 442

(4.5.2)

Note that there is no member geometric stiffness matrix in Eq. (4.5.2), as
the axial force is assumed equal to zero in the beam.

69 58

P l P l M, e, M, 6, 4494 912912
El N AN : 1
Aj G394 459 G719, 411911
foE EL| ) 3)
4,9 4999

’ 4 I 7 ’ U v
40, 910910
(a) (b) ()
Figure 4-11 Global and local coordinates of portal frame
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In order to obtain the structure (global) stiffness matrix, the member
stiffness matrices are first transformed to structure coordinates and then
combined and reduced (to eliminate the rigid body motion) for an auto-
matic programming scheme. However, for a manual operation as is being
carried out here, the reduction process can be eliminated by arranging the
transformation matrices to reflect the unsuppressed global degrees of
freedom. Since each member has four degrees of freedom and there are
three global degrees of freedom, the size of each member transformation
matrix must be 4 X 3. The member degrees of freedom and the structure
degrees of freedom are related as

[0] = [B.][A] (4.5.3)

where the subscript # indicates the member number shown in Fig. 4-11(b)
and [A] and [0] are given by

01

Al =< 6 (4.5.4)
Az

and

01
02

[6] = N (4.5.5)
04

The member stiffness matrix is related to the structure stiffness matrix by
a triple matrix product as

(K] = [B)" [ka][B.] (4.5.6)

The transformation matrices for members 1, 2, and 3 of the frame are

31 02 A3
0 0 076
0 0 0o
[B] = (4.5.7)
0 0 1103

1 0 0] 04
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01 0> A3
[0 0 0] 05
1 0 0] d

[By] = (4.5.8)
00 0|&

0 1 0]as

[0 0 07 09

0 0 0] 0d0
[Bs] = (4.5.9)
0 0 10

1 0 0] o2

Executing the matrix triple products indicated in Eq. (4.5.6) using these
transformation matrices, the member stiffness matrices in Egs. (4.5.1) and
(4.5.2) transform

42 0 —6/ 202/15 0 —£/10
EI P
Kil=%] 00  0]-5 0 0 0 (4.5.10)
-6 0 12 —£/10 0 6/5
402 202 0
EI
[Kg]:£—3 202 402 0 (4.5.11)
0O 0 0
0 0 0 0 0 0
EI P
[K3]—£—3 0 402 —e6l ay 0 20%/15 —£/10 (4.5.12)

0 —60 2/ 0 —£/10  6/5
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The structure stiffness matrix by assembling the transformed member
stiffness matrices is

802 202 —of 202/15 0 —£/10
EI P
K] = s 202 82 o6l | — 7 0 202/15 —£/10
—6f —6f 24 —£/10  —£/10 12/5
(4.5.13)
Let
pe?
= (4.5.14)
30EI
Then, the structure stiffness matrix reduces to
(8 — 42)£? 202 (=6 +3A)¢
EI
K] = 3 202 (8 =402 (—6+3) (4.5.15)

(64300 (—6+30)0  24—722

At the critical load, the determinant of the stifftness matrix must vanish. The
resulting equation in terms of A is

901% — 38322 4 4281 — 84 =0 (4.5.16)

The smallest root of this equation by Maple® is A; = 0.24815, from
which

7.44EI
P, = £—2

This result is only 0.87% higher than the exact value of 7.38EI/{>
obtained in Section 4.3. A monotonic convergence to the exact

(4.5.17)

value is guaranteed in a computer analysis by taking a refined grid of the
structure.

4.6. SECOND-ORDER ANALYSIS OF A FRAME
BY SLOPE-DEFLECTION EQUATIONS

The current AISC (2005) specification stipulates that “any second-order
elastic analysis method that considers both P — A and P — ¢ effects may be
used.” Since both the joint rotation (P — ¢ effect) and joint translation
(P — A eftect) are reflected by the slope-deflection equations with axial force
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Figure 4-12 Portal frame with horizontal load

by a means of stability functions, Sy and S, an elastic analysis using the slope-
deflection equations is considered to be acceptable second-order analysis.

As an illustration, consider the portal frame shown in Fig. 4-12. The
frame is subjected to a concentrated load of 275 kips each at the top of the
column and a uniformly distributed load of 1 kip/ft. These are factored
loads. The length of the column (W 8 x 31) is 13 feet, and the beam
(W 10 x 33) is 20 feet long. Use E = 30,000 ksi, g, = 60 ksi.

To be consistent with the assumptions normally adopted in the longhand
analysis of the slope-deflection equations, the axial force (less than 1% of the
axial force in the column) in the beam is ignored and the shortening of
the column is also neglected. As a result of the simplifying assumptions, the
chord rotation of each member becomes

Pab = Ped = P = A/Ef:pbc =0 (461)

where A is the horizontal translation of the beam. Horizontal equilibrium
for the entire frame gives

Z H=0=H,+ H; = wl, (4.6.2)

where H, and H, are the horizontal reactions at joints A and D, respectively.
Vertical equilibrium for the entire frame yields

> V=0=R,+Rs=2P (4.6.3)

where R, and R are the vertical reactions at joints A and D, respectively.
The moment equilibrium condition for the entire frame about the point
A gives
2

/
w2‘ + P(pl.) + P(Ly + ple) — Rgly 4 My, + My = 0 (4.6.4)
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From Eq. (4.6.4), one finds that

1
Ry =—

52
; [wzf + PA + P(€, + A) + My + Md[] (4.6.5)
b

From Egs. (4.6.3) and (4.6.5), one finds

1 [wl?
R,=2P—R; =2P — A [wzc + PA+ Pl + A) + My + Mdf] (4.6.6)
b
Moment equilibrium conditions at the two joints, B and C, are
Mba + be =0 (467)
Mcb + Mcd =0 (468)

Equilibrium (D> M;, = 0) of the isolated left column gives

wh>
R+ Hyl + My + My, = =0 (4.6.9)

Likewise, equilibrium of the isolated right column gives
RyA+Hil, +My +My=0 (4.6.10)
Summing Eqs. (4.6.9) and (4.6.10) yields

wECZ
(Ra + Rd)A + (Ha + Hb)& + My, + My, + My + My = >

Substituting Egs. (4.6.2) and (4.6.3) into the above equation gives

EZ
2PA + w2f + My + My + Meg + My = 0 4.6.11)

From slope-deflection equations with and without the effect of axial forces,
one finds

o P 275

= —=8333x10°% k=913x10"
EI ~ 30000 x 110

kl,  9.13 x 1073 x 156 3(tan u — u)
2 2 u? tan u

= 1.035515

x 1.035515 = 175 k-in.

wl? {3(tan u— u)] 1% 156

12 42 tan u 12 x 12
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It is noted that the fixed-end moments in a member with a compressive
force must be evaluated reflecting the effect of the amplification as suggested
by Horne and Merchant (1965).

EI
My = <7> [(S10, + S20, — (S1 + S2)p] — 175 (4.6.12)
EI
M, = <%>b(40b +26,) (4.6.14)
EI
My = <7>b(40[ +26,) (4.6.15)
EI
M, = <7> [Slﬁc + Szed — (81 + 82)[)] (4616)
EI
My, = <7> [510(1 + S0, — (51 + Sz)p] (4.6.17)

For W8 x31=A4 = 9.12in2=>Py = A x g, =9.12 x 60 = 547 kips

B = kl. = 0.00913 x 156 = 1.424

From Maple®
S1 =3.7221 and S, = 2.0721

Substituting these numerical values into moment equations yields

30000 x 110
= ——————(2.07216, — 5.7942p) — 175
156
= 438336;, — 122570p — 175 (4.6.12a)
30000 x 110
M[m == T (372216[) - 57942p) + 175

= 787370, — 122570p + 175 (4.6.132)
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30000 x 171
e = (40 +26.) = 855000, + 427500, (4.6.14a)
30000 x 171
My = =0 (46, + 20;) = 427500, + 855000, (4.6.150)
30000 x 110
4 = (372216, — 5.7942p) = 787376, — 122570
(4.6.162)
30000 x 110
o= (207216, — 5.7942p) = 438336, — 122570

(4.6.17a)

Substituting Eqs. (4.6.12a) through (4.6.17a) into Egs. (4.6.7), (4.6.8), and
(4.6.11) yields

1642370), + 427500, — 122570p = —175 (4.6.18)
427500, + 16423760, — 122570p =0 (4.6.19)
— 1225700, — 1225700, + 404480p = 1014 (4.6.20)

Solving Egs. (4.5.18), (4.5.19), and (4.5.20) simultaneously by Maple®
gives

0, = 0.0009359 rad., 6. = 0.002376 rad., p = 0.00351rad

A = 0.00351 x 156 = 0.5476 in

Substituting these values into the moment equation gives

M, = 43833 x 0.0009359 — 122570 x 0.00351 — 175 = —564.2 k-in
My, = 78737 x .0009359 — 122570 x .00351 4+ 175 = —181.53 k-in
M. = 85500 x .0009359 + 42750 x .002376 = 181.59 k-in

M, = 42750 x .0009359 + 85500 x .002376 = 243.16 k-in
My = 78737 x .002376 — 122570 x .00351 = —243.14 k-in

M. = 43833 x .002376 — 122570 x .00351 = —326.07 k-in
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Biturcation buckling load. As the bifurcation buckling load is inde-
pendent from any primary bending, the modified coefficient determinant
can be set equal to zero to determine the P,. Substituting these numerical
values into moment equations yields

30000 x 110
My = —————[S20, — (S1 + S$2)p]
156
— 21153850, — 21153.8(S; + S)p 4.6.21)
30000 x 110
=[50, — (S S
ba 156 [S10, — (S1 + S2)p]
= 21153.8516) — 21153.8(S; + $»)p (4.6.22)
30000 x 171
My, = === (40, + 20,) = 855000, + 427500, (4.6.23)
30000 x 171
My, = T (405 —+ 201,) = 427500, + 855004, (4.6.24)
30000 x 110
=— 156, — (S S
od 156 [ 1 ( 1+ 2)/0}
= 21153.8510, — 21153.8(S; + S2)p (4.6.25)
30000 x 110
My =— 1[50, — (S S
de 56 [S> (S1 + S2)p]
— 21153.85,0, — 21153.8(S; + S2)p (4.6.26)

Substituting Egs. (4.6.24) through (4.6.26) into Egs. (4.6.7), (4.6.8), and
(4.6.11) yields

(21153.88; + 855008, + 427506, — 21153.8(S; + Sy)p = 0
427500, + (21153.88; + 85500)0, — 21153.8(S; + S»)p = 0

—21153.8(S1 + $2)0, — 21153.8(S1 + S»)6.

— [312P — 84615.2(S; + $»)]p = 0
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The stability condition requires that the determinant of the augmented
matrix vanish
(21153.88; + 85500) 42750 —21153.8(S; + )
42750 (21153.8S; + 85500) —21153.8(8; + )

—21153.8(8; + S5)  —21153.8(S1 + S2)  —[312P — 84615.2(S; + S1)]
=0

Solving the expanded polynomial by Maple® gives
P, =1,003.15 kips

The maximum combined stress assuming the given loads are factored
loads is

P M _ 275 5642 x4

A I o912 110

o= = 30.15 + 20.52

=50.67 ksi < 60ksi = 0, OK

From Egs. (4.5.5) and (4.5.6), the vertical reactions are

1 wﬁ?
Ry = 5| 554 PA+ Pty + A) + My + M
b

= [1014 + 275 X .5476 + 275(240 + .5476) — 564.2 — 326.07] /240
— 276.77 kips

R, =2P — R; =550 — 276.77 = 273.23 kips

Consider the free body of member AB. The shear at joint A is computed
as

1
Vo= (5642 + 181,59 — 273.23 X 05476 + 13 X 6.5 x 12)
= 10.32 kips, V}, = 2.68 kips

0.5476 11

M(x),, = —564.2 + 273.23 x x+1032x - — X

M(x = 66.2") , =0, M(x=135.35") = 199.11 k-in

max

V= Vi = (243.14 4 326.07 — 276.77 X 0.5476) /156 = 2.68 kips
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Figure 4-13 Moment and shear diagrams

Table 4-1 Comparison of analysis

Slope-Deflection Equations Matrix Method
M, —564.200000 475.00000
M, 181.530000 117.00000
M, —243.150000 —173.00000
My 326.000000 249.00000
P, 273.230000 274.00000
Py 276.770000 276.00000
A 0.547600 0.40100
0, 0.000936 0.00048
0. 0.002376 0.00179
P, 1003.150000 1003.00000
H, 10.320000 10.30000
H, 2.680000 2.70000

Note: Units are k-in. and radian.

Table 4-1 shows the results of comparative analyses of the frame. The matrix
method is considered to be the first-order analysis method.
Consider the amplification eftect.

B 1 B 1
_1—P/PM_1_ 275
1003.15

AF = 1.378

It would be interesting to note how closely the results of the first-order
analysis can be amplified to simulate the second-order analysis results. The
current AISC (2005) specification introduces an indirect second-order
analysis incorporating B and B, factors to the results of the first-order
analysis results.
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4.7. EFFECT OF PRIMARY BENDING AND PLASTICITY
ON THE BEHAVIOR OF FRAMES

If a frame is loaded as shown in Fig. 4-14(a), no bending is developed in any
of'its members prior to buckling, and the frame remains undeformed until
the critical load is reached as shown in curve (1), Fig. 4-14(c), provided the
frame is free of initial imperfection. If, however, a frame is loaded as shown
in Fig. 4-14(b), primary bending is developed in each member from the
onset of the loading and the frame deforms as indicated in curve (2),
Fig. 4-14(c). Frames with primary bending have been investigated
experimentally as well as theoretically (Masur et al. 1961; Lu 1963). The
somewhat consistent conclusion drawn from past studies is that primary
bending does not significantly reduce the critical load of a frame as long as
stresses remain elastic. An exception to this observation occurs when the
beam is very long. In that case, the presence of primary bending reduces
the symmetric buckling load of the frame possibly due to the excessive
deflection of the beam, thereby further decreasing the elastic constraint at
the top of the columns. As frames with such a long beam that can adversely
affect the symmetric buckling load are rarely encountered in practice, it
appears to be safe to conclude that the effect of primary bending can be
ignored in computing the critical load of a frame. Primary bending is,
therefore, only negligible in determination of the critical (ultimate) load
and not in design; that is, it should be treated as beam-column in design. If
P/ Pg for the individual member exceeds 0.15, amplification effect must be
considered.

It appears to be customary in steel design that most columns are designed
with slenderness ratios between 40 and 80. Hence, inelastic buckling covers
most column design, and the elastic buckling load does not control the

(1) Elastic-no primary bending
P=Py __----""77

R 22) Elastic-primary bending
P ’

(3) Inelastic-primary bending

o
(a) No primary (b) Primary (©)
bending bending

Figure 4-14 Behavior of frames
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design. Frames having columns in this range will fail at a load that is smaller
than the elastic critical load as shown in curve (2), Fig. 4-14(c). Frequently,
an elastic second-order analysis as shown in curve (2), Fig. 4-14, is very
deceptive unless the stress level is checked at every step.

If instability were the only factor leading to collapse, failure would
occur at the critical load. If collapse were solely due to the plasticity effect,
the frame would fail when it becomes a mechanism due to formation of
plastic hinge(s). In the actual case, both instability and plasticity are
present, and collapse occurs due to an interaction of these two at a load
that is lower than either the critical load or the mechanism load. To
predict this kind of failure load, Horne and Merchant (1965) proposed
the following empirical interaction equation, known as the Rankine
equation:

b Iy

—4+—==1.0 471
D (4.7.1)

Equation (4.7.1) can be rearranged into a convenient form as

P,P,
pp=—2 (4.7.2)
P, +P,

where

Py = failure load
P, = elastic buckling load
P, = plastic mechanism load

Although Horne and Merchant demonstrated the reasonableness of the
proposed Rankine equation by a scattering chart of experimental data, the
data do not appear to be representative of a wide spectrum of plausible cases.
It appears that if P, is greater than 3 times P, Eq. (4.7.1) overestimates the
failure load. It was noted that if P, is less than 3 times P, the scatter of points
away from Eq. (4.7.2) becomes considerable. The derivation of Eq. (4.7.1)
is conservative. Hence, Eq. (4.7.2) might be used to give rapid, but safe,
estimates of Pr. Since an access to a general-purpose finite element code
such as ABAQUS (2006) is readily available to most academics and prac-
titioners and a much better estimate can be obtained with the computer, the
attractiveness of Merchant’s use of the Rankine equation is greatly dimin-
ished. Examples of refined analyses include Alvarez and Birnstiel (1969) and
Ojalvo and Lu (1961). Further treatises of this important topic are presented
by Galambos (1968).
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4.8. STABILITY DESIGN OF FRAMES

A framed compression member is likely to be subjected to both bending and
axial loading and must be designed as a beam-column using an interaction
equation. Hence, the critical load of the member is required to be correctly
determined. One way of determining the critical load is to carry out a three-
dimensional stability analysis of the entire frame. However, an analysis of the
entire frame is frequently too involved for routine design. Moreover, even
where the best of analysis models are available, the designer still must
account for uncertainties introduced by the variability in the magnitude and
distribution of loads and in the strength and stiffness of members,
connections, foundations, and so on. One very crude method of obtaining
the critical load of a framed column is to estimate the degree of restraint at
the ends of the member as shown in Fig. 4-15. When idealized boundary
conditions are approximated, AISC (2005) recommends somewhat
conservative K values for design. For braced frames, it is always conservative
to take the K factor as unity. For unbraced frames, except perhaps for the
flagpole-type column, case (e), Fig. 4-15, an arbitrary selection of K is not
satisfactory for design. In the old days, a simple design methodology that
would give a reasonable result for columns in a multistory building frame
subjected to lateral load(s) was to assume an inflection point at the mid-
height of each column. Treating the entire building frame as a flagpole-type
cantilever column generally yields a poor result.

Today (2009), all major design specifications include the use of second-
order analysis, although a unified approach to frame stability design has yet

(@ (b) (©) (d) (© ®

!

Buckled shape

P

Theoretical K value 0.50 | 0.70 | 1.00 1.00 [ 2.00 | 2.00

Recommended value 0.65 0.80 1.00 1.20 2.10 2.00

Figure 4-15 Idealized boundary conditions
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to emerge. The Canadian standards for steel structures, CAN3-S16.1 (CSA
1994), have eliminated the use of the effective-length concept (K-factors),
and frame stability is solely to be checked through second-order analysis
procedures incorporating notional lateral forces. The current (2005) AISC
specification recognizes both the notional load analysis and the effective-
length concept, along with a direct or indirect second-order analysis. The
purpose of the notional loads is to account for the destabilizing effects of
initial imperfections, nonideal conditions (incidental pattern gravity load
effects, temperature gradients, foundation settlement, uneven column
shortening, or any other eftects that could induce sway that is not explicitly
considered in the analysis), inelasticity in structural members, or combi-
nations thereof. The magnitude of the notional lateral load, 0.002 times the
story vertical loads, can be thought of as the continuity shear representing
PA /¢ in which A is an initial out-of-plumbness in each story of 1/500 times
the story height. Although the notional load procedure is considered to be
an improved method of analysis, it still requires a stability analysis of the
entire frame. In this regard, the effective-length concept still has a role to
play in the design of framed columns.

The most common procedure for determining effective lengths is to use
the Jackson and Moreland alignment charts originally developed by Julian
and Lawrence (1959) and presented in detail by Kavanagh (1960). An
improved approximate method of analyses of columns in frames was
introduced by Kavanagh (1960). In the derivation, a number of simplifying
assumptions were introduced. One of the major weaknesses was that the
frame was assumed to behave in a purely elastic fashion. In light of the
common practice of designing columns with a slenderness ratio between 40
and 80, this must be a serious shortcoming.

AISC (2005) Specification Commentary endorses the suggested
adjustment of the G-factor by Yura (1971) and ASCE Task Committee on
Effective Length (1997) when the column is inelastic. The derivation was
based on the slope-deflection equation with axial forces.

The following assumptions are used in the development of the elastic
stability equation:

Behavior is purely elastic.

All members are prismatic.

All columns reach their buckling loads simultaneously.
The structure consists of symmetrical rectangular frames.

[ LI S N S

At a joint, the restraining moment provided by the girder is distributed
to the column in proportion to their stiffnesses.
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6. The girders are elastically restrained at their ends by the columns, and at
the onset of buckling, the rotations of the girder at its ends are equal in
magnitude and opposite in direction with sidesway inhibited. If sidesway
is uninhibited, rotations at opposite ends of the restraining girders are
equal in magnitude and direction.

7. The girders carry no axial forces.

Assumption 6 leads to —0c = —fp = —fa and 0 = g = —0p. From
the slope-deflection equations with or without axial forces, one obtains

and

_ 2EIy; 9
ac — ebl A
2Elbrt
= 0
ad gbr A
2ElLy,
be = s
Oy
o 2Elbrh 0
bf = ) B
br

El((SgﬂA + S 03)

My, = I
C
__IEL(S10A‘+-5293)
My, = I
C
G
\
\
\
I |
C,—’___"*~ l,A Ibrt D
Ty, /I TTeeeT
1
1 c
\
E Loy, \B.--==~<_|F
TTeeeo-T \\I Ibrb
ch ll
1
'H
Ly | Cr |

Figure 4-16 Sidesway inhibited

(4.8.1)

(4.8.2)
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Although the stability relationship may be developed using either stiffness
coefficients or flexibility coefficients, flexibility coefticients will be utilized
here because they are easier to work with, as will be shown later. The
stiffness coefficients are given by Egs. (3.4.12) and (3.4.13).

B(B cos 8 — sin ()

S = 3.4.12
! 2cos B+ Fsinf—2 ( )
(sin 8 — B)
Sy = 3.4.13
2 2cosB+Bsinf—2 ( )
The flexibility relationships are
0,=— (M, M
7 iMa + M)
0, = ! (iMy + o M,)
b — El 14V 24Vlq
Inverting the stiffness relationship of Eq. (4.8.2) gives
sin 3 — B cos 8
h=—g—— (4.8.3)
B sin 3
sin 8 — 8
h=—" (4.8.4)

3% sin B
The beam-column AB is elastically restrained. If the elastic restraints are u
and v, then

M,
0,=—— and 60,=— (4.8.5)

The negative sign is required as the restraint moments are opposite to the
positive direction of M, and M,
Substituting Eqgs. (4.8.3), (4.8.4), and (4.8.5) into the flexibility relationship

yields

. Myl (sin 8 —BcosB EI Myl (sin B — B
0= EL( 6% sin B +7&>+EIC<525m5>
(4.8.6)
Ml (sin3—§ Myl (sin 3 — B cos 8 EI
"I <625inﬁ> s < & sin *75)
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The stability condition equation (or for nontrivial solution) requires that
the coefficient determinant must be equal to zero.

1 (EL\? EL\ /1 1\sinB —Bcosf
) ) ) s

sin 8 — B cos B\ 2 sin8— 0 2_
() - (Fag) =0

which can be further simplified to

2 (EL\?2 1 1\ /EL 2
iv<£> + <M+U) <£> <1 — taf 5) +ﬂtan§ =1 (4.8.8)

The elastic restraint factors u and v must be determined. Consider the

(4.8.7)

girders in Fig. 4-16. By virtue of assumptions 6 and 7, M, and M, are
determined as follows:

4E] 2E] 2E]
M, = 0,,( ””> — 0, <—b’f> =0, <—b’f> (4.8.9)

Ly Ly Ly

4EI, 2EI, 2Ely,
My = 0,( —2) —g,( =2 =g, ( =2 (4.8.10)
‘gbr gbr Erl
or the sum of the reactive moments M,p,,,, developed due to beam stiffness is
2Elabeam
Mapeam = (481 1)
Eabeam

The moments at A on the column are

EL EL
My, = 0, <—> Si — 40, (—) S (4.8.12)

/. L.
EL EL
My =0,=2)8 —0,[=2)s, (4.8.13)
Ect g[t
The sum of the moments at a on the column AB is
EIaml
Macol == Z% (Sl — 82)0a (4814)

where (S7 - Sp) is assumed the same for all columns framing at joint A.
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Solving for §, from Eq. (4.8.14) and substituting into Eq. (4.8.12) yields

EL\(S1— S M
My = () S =) = (4.8.15)
L, (Sl — 82) Z acol

acol

The term (S;- Sp) cancels since it is assumed identical for all columns
framing at joint A. As it is assumed that no external joint moment is acting at
joint a, My, = —Mpeam- Substituting the negative of Eq. (4.8.11) for M
in Eq. (4.8.15) gives

Elabeam
2EIL Eabmm
= 4.8.16
ab £, Elgol ( )
ga[ol
Juxtaposing Egs. (4.8.5) and Eq. (4.8.16) yields
Elﬂbeam
_ 2EI Kabeam B
u= 0 < El (for joint A) (4.8.17)
ga(ol
and likewise
Elppeam
2EIL
p = 228 7 bbean (for joint B) (4.8.18)
fc Z Elpeo;
Ebwl
Defining, as in the AISC (2005) Commentary C2,
Z Elabeam Elbbeam
14 14
Galor Gyp) = # and  Gg(or Gpogom) = % (4.8.19)
gaa)l Ebcol

Hence, the elastic restraint factors become

_2EL( 1 L, 2EL(1 (45.20)
u = g[ GA an V= g[ GB .0.

It is noted that the stability parameter § = k in the stability functions is the
critical load factor of a column in the frame having a length of . Comparing

with the isolated pinned column,
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B’°EI  wEI
= TR (4.8.21)

it may be realized that the effective length factor K may be expressed as

k=" _T 4822
—B or 6—} ( )

Substituting Egs. (4.8.20) into Eq. (4.8.8) and replacing § with 7/K
gives

2G4G Ga+ G K 2K
™Gy B+< A+ B>|:1_ w/ >]+—tan<%>:1

4K2 2
(4.8.23)

where K = 7/4/(P¢?)/(EL) is defined as the effective column length

factor corresponding to P, = m2EL/(K(, ).

Equation (4.7.23) is used to plot the nomograph shown in Fig. 4-17.
AISC (2005) Commentary C2 recommends that for columns not rigidly
connected to footing or foundation, G may be taken as 10, and for columns
rigidly connected to properly designed footing, G may be taken as 1. When
the far end of one of the girders framing into the column joint is fixed or
pinned, adjustments on G may be necessary.

For girder far ends fixed, 8, = 0, and Eq. (4.8.11) becomes

4Elab€am

Mapeam =
e Eabcam

(4.8.24)

For girder far ends hinged, 6, = —0,/ 2, and Eq. (4.8.11) becomes
3ELpeam

Mapeam = (4825)

£ abeam
Hence, it may be reflected in the evaluation of

Igirder

14 girder

Consider next the case of an unbraced column AB shown in Fig. 4-18.
The assumptions for the unbraced frame are the same as for the braced
frame, except for assumption No. 6. For the unbraced frame, the girder (or
beam) is assumed to be in reverse curvature, with the rotation at both ends
equal in magnitude and direction. The definitions of elastic restraints # and v
are the same as for the braced frame.
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GA K GB
oo oo
50.0 \A—: —— 1.0 :_A/ 50.0
100 — 1 — 10.0
451'8 _— — 5.0
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20 — i 2.0
—08
1.0 — 1.0
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08 — - L 0.8
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04 — —+ — 04
03 — L 03
——06

02 — — 02
01 — T o1
00 — L o5 L 00

Figure 4-17 Alignment chart—sidesway inhibited

(a) (b)
Figure 4-18 Portion of unbraced frame with elastic restraints
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The stability relationship is developed here using the flexibility coeffi-
cients as they contain a single-term denominator that facilitates the algebraic
operation.

It should be noted that the angle § in Eq. (4.8.6) was measured from the
axis connecting the ends of the member. In order to establish the consistent
rigid-joint deformation characteristics, the total angle as shown in Fig. 4-18
(b) is used in the flexibility relationship. Thus, using (—M,/u — A/¢,) for 6,
and (=M, /v — A/L,) for 6, gives

M, (sin 8 — B cosB EI Myl (sin B — 8 A
0= i S 2
El < 8% sin 8 " u&) TEL ( 8%sin B ) 4
(4.8.26)
M, (sin B — My, (sin3—BcosB8 EIL\ A
0= —\,=
El <62 sin ,8> * EI, ( ,82 sin ﬁ + V€[>+£f

Since three unknowns (M,, My, and A) are involved in Eq. (4.7.26), a third
equation is required to satisfy the rotational equilibrium of the structure.
This is obtained from Fig. 4-18(b) as

M, + M, + PA — Hl, = 0 (4.8.27)

where the net horizontal force H must be zero in the absence of any
external horizontal force. Recognizing P = ﬂzEI/ECZ, Eq. (4.8.27) can be
rewritten as

0 = Mule (EL) | Ml (EL) | A(BEL (4.8.28)
~EL \ 2 EL \ 2 A e

Combining Egs. (4.8.27) and (4.8.28) gives

0— MY, <sin B —BcosfB n %) n Myt (sin G — 5)
" EL 32 sin B ule)  EL \ §%sin B

A
L

_l’_

o M,/ <sin 8- 6) n M, <sin B—Bcosf + EIf) + % (4.8.29)

EL \ §%sin g EL vl

8 sin B vl
O_Maef EL +Mbéc EIL +A B°EL
©EL \ 2 EL \ 2 AN

The stability condition equation (or for nontrivial solution) requires that

c

the determinant of the augmented matrix must vanish. The determinant is
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ul.B cos BEIL + vl B cos BEL — B2 sin 6(151[)2 + uvl? sinf B

0 (4.8.30
uvl? sin 8 ( )

Combining first and second terms and third and fourth terms, respectively,
and multiplying by tan @ gives the stability equation as

2 2
[% (i—l> - 1] tan 8 — (% + %) (EE—I>6 =0 (4.8.31)

It should be recalled that the girders framing into joint A are assumed to
deform, making a reverse curvature as shown in Fig. 4-18(a). Hence, the
moment of one girder at joint A is

4E] 2EI, 6E]
M, =0,(=2) +0,(22) =0, 2 (4.8.32)
2 A A

or the sum of restraining moments developed at joint A due to beam
stiffness is

6Elabcam

gabeam

Mapeam = 0, (4.8.33)

For the column in the unbraced frame, the assumptions behind Eq. (4.8.15)

are still valid; and in the absence of any external moment, M, = —Mpean-

Substituting Eq. (4.8.33) into Eq. (4.8.15) yields

EIabeam
6EL &7,

Mo = LAl 4.8.34
acol éc El ( )

gacol

Juxtaposing Eqs. (4.8.5) and Eq. (4.8.34) yields
6EI (1 6EI (1
u= — and v = — (4.8.35)
EC Gy g[ Gp

Substituting Eq. (4.8.35) into Eq. (4.8.31), and realizing § = /K gives

GaGp(m/K)* =36 w/K
6(Gs+ Gg)  tan (7/K)

(4.8.36)

Equation (4.8.36) is used to plot the nomograph shown in Fig. 4-19.
Adjustments for inelasticity according to AISC Commentary C2 may be
necessary. Although column design using the K-factors can be tedious and
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G, K G,
oo

o — 20 —oo
100 — 10 — 100
50 — o 50
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7 — T — 7
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5 — 4 — s
4 1, — 4
3— 4 — 3
2— —+ — 2

. — 15 B
1 4 — 1
0— L0 oo

Figure 4-19 Alignment chart—sidesway permitted

confusing for complex building structures containing many leaning
columns, particularly where column inelasticity is considered, the Jackson
and Moreland nomographs are shown to give results very close to the
theoretical values.
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PROBLEMS
4.1 Determine P, of the structure shown in Figure P4-1 for the given
parameters:
62 = 1561
l =044
lr = 0.6/
(=156 in
L=1I=1=109.7 in*
E = 30,000 ksi
I h | l |
I 3 - |
Pl_’_é: ;-»B ,_——--C%ﬁPﬁPz
P ~~_._vy_---
k
7

Figure P4-1
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Casel, k=0, P, =0, P=P;+ P,
Case 2,k =0, Py =P, P=P; + P>

Case3,le:1k/in, Py =P, P=P+ P

Compare the solutions by the Energy method and the slope-deflection
equations and provide comments.

4.2 Using any method, including computer programs, determine the
lowest three critical loads of the frame shown in Figure P4-2.

P P
B C
EI=10° k-in®
for all
100
A D
. 7.
10

Figure P4-2 Braced rigid frame

4.3 Using any method, determine P, of the frame in Fig. P4-3 in terms of
EL E is constant for all members.

P,
AA 25° lB 25° c
/ ' |
21 21
I{20
1125
E
D 7

2

Figure P4-3 Braced rigid frame

4.4 Determine the lowest critical loads of the frames in Figures 4-6 and 4-7
using the eftective length factor K taken from the Jackson and More-
land alignment nomographs and compare them with those theoretical
values.
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4-5 Using the matrix method, determine the critical load of the frame in
Figure P4-5. Let each member consist of a single element.

EIl EI

A\
=~

2EI

A o

Figure P4-5
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5.1. INTRODUCTION

Torsion in structures is perhaps one of the least-well-understood subjects in
structural mechanics. Purely torsional loading rarely occurs in structures
except in the power-transmitting shafts of automobiles or generators.
Frequently, torsion develops in structures along with bending from unin-
tended eccentricities of transverse loading due to the limitation of work-
manship or from unavoidable eccentricities as can be found in spandrel
beams.

Generally, thin-walled sections do not behave according to the law of the
plane sections employed by Euler-Bernoulli-Navier. A thin-walled section
is referred to as a rolled shape in which the thickness of an element is less
than one-tenth of the width. Many stocky rolled shapes do not meet this
definition; however, the general theory of thin-walled section developed by
Vlasov (1940, 1961) in the 1930s appears to be applicable without signifi-
cant consequences.

3

A thin-walled section becomes “warped” when it is subjected to end
couples (torsional moment). Hence, the cross section does not remain plane
after deformation. Exceptions to this rule are tubular sections and thin-
walled open sections in which all elements meet at a point, such as the
cruciform, angle, and tee section.

Another distinct feature of the response of structural members to torsion
is that the externally applied twisting moment is resisted internally by some
combination of uniform (or pure, or St. Venant) torsion and nonuniform
(or warping) torsion depending on the boundary conditions, that is,
whether a member is free to warp or whether warping is restrained.

Thin-walled open sections are very weak against torsion and are
susceptible to lateral-torsional buckling (or flexural-torsional buckling),
which is affected by the torsional strength of the member, even though no
intentional torsional loading is applied.

If warping does not occur or if warping is not restrained, the applied
twisting moment is entirely carried by uniform torsion. When a member is
free to warp, no internal normal stresses develop despite the warping
deformation. This is tantamount to the fact that a heated rod will not
develop any internal stresses if it is free to expand at one or both ends,
despite the temperature-induced elongation of the rod.

If warping is restrained, the member develops additional shearing
stresses, as well as normal stresses. Frequently, warping stresses are fairly high
in magnitude, and they are not to be ignored.
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5.2. UNIFORM TORSION AND ST. VENANT THEORY

The internal resisting torque due to shear stresses shown in Fig. 5-1 is
computed by Eq. (5.2.1). The external twisting moment follows the right-
hand screw rule, which is directing counterclockwise when observed from
the positive end of the z-axis.

M.=T= /(—rzx Y+ Ty x)dA (5.2.1)
A

From the free body of the infinitesimal element in Fig. 5-1, equilibrium
equations can be established as:

a Xz
S F= —tecdydz + (rxz +;—“dx> dy-dz — Ty -dx-dz
X

(2992 0 Y b de = 0
Tys 3y ly |dx-dz =

From which, it follows

0Ty 072
=0 5.2.2
dx dy ( )
Similarly,
a ZX a pd
;x ;yy =0 (Tay = Ty etc.) (5.2.3)
LT
T
V ay az—\’){
T)r+a—}"d
TXZ

dx ar,,
a7, T, +—=dz
T, +t—=dz Y9z
0z '

Figure 5-1

5.2.1. Geometry

Point A in Fig. 5-2 moves to point B under torsion such that OA and OB
are the same. However, under the assumption of small displacement theory
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y
A u
B ’
B.p
A v
\
ie
o
RS

Figure 5-2

B and B’ are considered the same where AB’ is perpendicular to OA. The
displacement components of point A along the x- and y-axes are represented
by u and v, respectively.

From the similar triangle relation between AAOD and AABC

OA_OA_AB _AB_ A

ob- ~ "BC- v:ax:tanﬁx=x~0
Hence,
v = x0 (5.2.4)
Similarly,
u=—yl (5.2.5)

Consider the torsional deformation of an infinitesimal element AFED
shown in Fig. 5-3. Due to the shear stresses 7., and 7,., the element
deforms into AF'E'D/, assuming that point A is restrained against trans-
lations. Then E” and F’ represent the relative warping.

)
—N

%
Ju
dz

Xz

F

warping

Figure 5-3
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, , Ow du
Yoz = Yax = L FAF 4+ £ DAD = — + — (5.2.6)
ox 0z
Similarly,
—y, =2 (5.2.7)
sz - Yzy - aZ ay e
Differentiating Eq. (5.2.5) with respect to z gives
du 90
9= Vo=
If the angular change is linear with respect to the member length, then
du 0
PR
Substituting this into Eq. (5.2.6) yields
VL L (5.2.8)
Equation (5.2.8) is the angular displacement per unit length.
For an elastic material, one has
SRV S L (5.2.9)
'sz_'sz—G— yg Ox 2.
Likewise,
Ty x0  dw
=Y, =—==—+—— 5.2.10
Differentiating Eq. (5.2.9) with respect to y gives
A . w (5.2.11)
G G L Oxdy o
Differentiating Eq. (5.2.10) with respect to x yields
0. 0, Fw (5.2.12)
IxG £ dxdy o
From Egs. (5.2.11) and (5.2.12), it follows immediately
0Ty 0Ty 2Go
Tz Tz _ (5.2.13)

dy  ox 0
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Taking partial derivatives of Eqs. (5.2.13) and (5.2.3) and adding yields

01, 821y~, R o

Xz — =~ = U ...... d e - Y2 — U...... b
Ixdy 02 (@) and G Ty 2
(92 Xz 82 z 62 Xz 82 4

L L () and 24822 (d)
x> Odxdy dxdy 0?2

M+ G+ =0
(5.2.14)
azryz 82‘5},2
(d) - (d) axz ayz - 0

5.2.2. Stress Function

The analysis of uniform torsion is greatly simplified by the fortuitous fact
that certain relationships exist between the torsion problem and the
deformations of a soap film stretched across an opening equal in size and
shape to the cross section for which torsional behavior is sought. The
membrane analogy introduced by Prandtl (1903) is applicable not only to
solid sections but also to open and closed thin-walled cross sections. Also,
the membrane analogy can be extended to inelastic and fully plastic ranges if
the concept of the soap-film is replaced by constant-slope surfaces. This was
indicated by Prandtl according to Nadai (1923) who coined the term sand-
heap analogy. Nadai (1950) also carried out many interesting experiments
illustrating the sand-heap analogy to plastic torsion.

Let
d¢
Trr — Tay — —
Xz X a
Y (5.2.15)
d¢
B =Ty =

It is noted that ¢ = f(x,y) in Eq. (5.2.15) is a stress function introduced by
Prandtl (1903).

Substituting Eq. (5.2.15) into Eq. (5.2.13) gives
F¢ ¢ 260

FERN R (5.2.16)
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It can be readily shown that the stress function ¢ is constant along the
boundary of the cross section of the twisted bar (Timoshenko and Goodier
1951) by considering the stress-free state. Further, as the constant can be
chosen arbitrarily without affecting the stress, it is expedient to take it equal
to zero. Hence, it follows that

ol 0-fofitum

Substituting Eq. (5.2.15) into Eq. (5.2.1), one obtains

M,.=T= /( T + Toypx)dA

//< dx )d’“’ ~ [ [ vty = [[ 52 wasy

Integrating by parts the above equation and observing ¢ is equal to zero
along the cross-sectional boundary, one obtains

—//ya—¢dxdy:—/dx/ya—d)dy:—/dx<¢y—/¢dy>
dy dy
—/¢ydx+// pdxdy :/ pdxdy

// 99 ey = — /dy/x—dx——/d)’<¢x—/¢dx>
—— [onty+ [[ oty = [ [ gty

M.=T= 2// pdxdy (5.2.17)

Hence,

Equation (5.2.17) indicates that one-half of the torque is due to the stress
component T, and the other half to 7., and the torque is equal to twice the
volume under the stress function ¢.

5.3. MEMBRANE ANALOGY

In the solution of the torsional problems, the membrane analogy introduced
by Prandtl (1903) proved to be very useful. Consider a homogeneous
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q
X
Mt
s
v
Sdx z
d
a Sdy
c
Sdy
b

Sdx

z
Figure 5-4

membrane in Fig. 5-4 supported at the edges with the same outline as that of
the cross section of the twisted member, subjected to a uniform membrane
stretching at the edges and a uniform pressure. Let g be the lateral pressure
per unit area and S be the uniform tension per unit width of the membrane
shown in Fig. 5-4. The vertical component of the tensile force acting on the
side ab is —Sdy(dz/0x). Likewise, the one on the side cd is Sdy[dz/dx +
(0%2/3x%)dx]. In a similar manner the vertical components of the tensile
forces acting on the sides ad and bc can be determined (Rees 2000) as
—Sdx(3z/dy) and Sdx[0z/dy + (8°z/y?)dy], respectively.

The equation of equilibrium of the element is

q-dx-dy — Sdy(3z/dx) + Sdy[0z/dx + (9°2/9x?)dx]
— Sdx(3z/dy) + Sdx[dz/dy + (8°z/d*)dy] = 0

From which

e Pz (5.3.1)

a2 92 S o
Comparing Eqs. (5.2.16) and (5.3.1) reveals that there is a remarkable
similarity between the shape of the membrane and the stress distribution

in torsion. Analogies between membrane and torsion are summarized in
Table 5-1.
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Table 5-1 Analogies

Membrane Torsion
Deflection z Stress function ¢
#z 8= q ¢ 8¢ 2G6O
=1 N A Yo A
PRI NS FRCINr NG 7
SI z 9= St

opes —, — resses Tyy, Tyz

P 5%y y

volume V = [[ zdxdy twisting moment T = 2 [[ ¢dxdy

Note: § = rotation/unit length

5.4. TWISTING OF THIN RECTANGULAR BARS

As the shear stresses due to the uniform torsion of thin-walled open sections

vary linearly through the thinner dimension, the shape of the membrane

shown in Fig. 5-5 must be a parabola symmetric with respect to the z-axis.
Let the equation of the parabola be 2 = Ay?. Since z = zp at y = /2

- 420
=7
Hence,
42‘()
z= t—2y2 (@)
and the shear stress is
dz 8
=2
P oy
42’()
Tmax = T (b)

v

. /

y

Figure 5-5
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Neglecting the corner eftect, the equilibrium of the forces in Fig. 5-5 in the

vertical direction gives
gt —2Ssina =0

Since sin a =a=tan « for a small angle

0z 4z
o= — = —
dy|=5% t
Hence,
4 8
gt =250 L= =120
t S t

The volume of the membrane is

4 l T/2
V:zotﬁ—//zdxdy:zotﬁ—é dx/ Vdy
= Jo e

Then the torsional moment is

4
MZ:2 VZEtZ()e

3M.

- 4¢0

<0

Substituting into Eq. (d) gives

qg 8z 83M. O6M, ,
022 2% s
S £ 2 410 34

From which

1
M, = 3 £0GH = GKrb

where

1
Ky =~/
=3

(d)

()

(5.4.1)

(5.4.22)

Equation (5.4.2) is defined as the St. Venant torsional constant. In the
current AISC (2005) Steel Construction Manual, J is used instead. It should
be noted that the values listed for rolled shapes under J include the corner
and/or fillet effect. The difference between the AISC values and those
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computed by simplified formula neglecting the corner effect is of no
practical importance.

For an open cross section consisting of a series of rectangular elements,
the St. Venant torsional constant is evaluated by

1 n
Kr==9Y bt 5.4.2b
=32 b (5.4.2b)

where n is the number of elements, b is the length, and ¢ is the thickness of
each element, respectively. The thickness ¢ is always smaller than the length
b of each element.

The maximum shearing stress is given by equation (b) above as

4z

Tmax —

t

Substituting the expression for zy gives

43 M, 3M. M.t (5.4.3)
Tmax = -~ 5 —, — — = A
t4 20 Kt

3 3 4
mix = 5> M, == — GO = Gb't 5.4.4
fmax =g M T 003 644

5.5. TORSION IN THE INELASTIC RANGE

A solid circular shaft is considered here to illustrate the application of the
membrane analogy for torsion in the elastic and inelastic range.

5.5.1. Elastic Torque

Based on the cylindrical coordinate system shown in Fig. 5-6, the equation
for the membrane is given by

;,2

Rz (a)

=2z

Hence, the equation of the dome under the membrane is

72 1’2
2 =20 = 205 = 20 (1 - E) (b)

dV = rd@dzdr
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Figure 5-6

(%)

21 R rz | 1—-— 21 R 3

V:/ / / R? dzdrrdﬂzzo/ dﬁ/ (r—%)dr
o Jo Jo 0 0 R

2R [2T 20R? wR%z,
_20 / a6 = 2R 5 ™R =0
0

4 4 2
M., =T, =2V = wR?z (©)
dz 220
ZL’:R = Tmax — 7 = tan«& (d)

Equilibrium

2
3" F. = 0=qnR? = F(27R)sin & = 2RF % = 4wz F

4 4
1220 Lopgh =22
F-R\"F R2

GO'R?
2

(e)

0 =

Substituting Eq. (e) into Eq. (c), one gets

M — 2R GO'R*  wR'GH
e

> = 5 (f)
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———————

7y

Figure 5-7

Recalling the polar moment of inertia (J) or the St. Venant torsional
constant (K) of a solid circle is wR*/2, the elastic twisting moment of
a circular shaft is given by

M., = GJ#' = GKrt/ (5.5.1)

5.5.2. Elastic Limit

If the stress—strain relationship is linearly elastic and perfectly plastic as shown
in Fig. 5-7, the maximum elastic torque is limited by the first yield shear
stress at the circumference of the cross section

220 R R2GH
Tmax = Ty = R and zp = yT =— (g
where 0’ is the rotation per unit length.
From Eq. (g), it follows that
T
0’ = —y h
Y= CR (h)
Substituting Eq. (h) into Eq. (f) gives
mR*'GY  wR'G 1, 7R’
= = =1 (5.5.2)
2 2 GR 2

5.5.3. Plastic Torque

The membrane analogy is applicable to the case of fully plastic torque. The
membrane is replaced by a surface of constant slope, a cone, which
resembles the sand-heap on a circle. The volume of the cone with the base
radius of R and height of z; as shown in Fig. 5-8 is IV = (z1/3)wR>.
The fully plastic torque is twice the volume of the cone. Hence,

2 5 2 5 2 3
sz =2V = 5 TR 21 = 5 TR TyR = 5 TR Ty (553)
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cylinder

Z] 3 I Zl
4 noe=—=r1,
2 o tan @ R T},

yield elastic yield

Figure 5-8

Hence, the shape factor for torsion for a solid circular section is

M., 2wR’t, 2 4
=—2= =-=133 (5.5.4)

S.F. = 3
M., 3 TR T, 3

5.5.4. Elasto-Plastic Torque

The elasto-plastic torque here refers to the case when the progression of the
yielding is terminated leaving an elastic core of radius p as shown in Fig. 5-8.
The volume of the shape can be computed by Eq. (i) considering the three
shapes shown in Fig. 5-9.
TR? mp? wp?

V:TZ1—TP(Z1—22)+%23 (1)
From the geometry of the shape shown in Fig. 5-8, z1, 22, and z3 are
determined as follows:

21 :R‘L'y
2 = (R —p)1, .
0)
p p> G’
= —T, =
BT T

Figure 5-9



Torsion in Structures 259

Substituting Eq. (j) into Eq. (i) gives

TR > > p TR3 P\3 3/p\3
i b i ()43
R R R i ®) Tir

TR3 - ( p)3 7R3 (o )
= —7T —_—— = —7T _— —
37 4R 37 4R\ GY
The elasto-plastic torque is

2mR? 1 Ty 3
My =2V = 3 |1 — R\ca (5.5.5)

Dividing Eq. (5.5.5) by Eq. (5.5.2) yields

My wR> 3
Ty
2

Substituting Eq. (h) into the above gives

7\ 2
My 4| 11 (GRO
M, 3 4R\ Go¢

2mR3 {1 1 <ry )3]
—71
My 3 7 4R3I\ GO 4[1_ 1 <Ty )3]

3 4R3\ GO

4 1
=—|1———| forf, <0 <a

TG

(5.5.6)

and
M. ¢

= =— for0< ¢ <6y

M., 0]

The plot of these equations is given in Fig. 5-10.

M,
M zy Shape factor of a solid circular section
S

Figure 5-10
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5.5.5. Uniform Torsion of Other Solid Sections

Torsion in other solid cross sections such as triangle, square, rectangle, and
prestressed bridge girders (bulb tees and AASHTO girders) is primarily res-
isted by St. Venant torsion. Using the Prandtl stress function, the St. Venant
torsional constant (K7) can be computed for cross sections with relatively
simple boundaries such as equilateral triangle, rectangle, or even an ellipse as
demonstrated in textbooks on the theory of elasticity (for example, Saada 1974;
Sokolnokoft 1956; Timoshenko and Goodier 1951), it would be impractical
at best to apply the same procedure to bulb tees and AASHTO girders.
The shape of the soap bubble (membrane) is controlled by the second-

order partial differential equation, as shown in Table 5-1

0’z 0%z q

Fp) + a2 s (5.5.7)
where z = ordinate of membrane, x,y = planar coordinates, ¢ = lateral
pressure under membrane, and S = membrane tension. The St. Venant
torsional constant (K7p) is related to the volume, 1] of the membrane by

4S8V
Kr=—— (5.5.8)
q

Equation (5.5.7) has been transformed into central differences by a Taylor
series expansion and program (Yoo 2000). Fortran source code can
be downloaded from the senior author’s Web pages. Access codes are available
from the back flap of the book. lllustrations of input and output schemes are
inserted into the source code by a liberal use of comment statements.

5.6. TORSION IN CLOSED THIN-WALLED CROSS SECTIONS

The membrane analogy developed by Prandtl (1903), which has been
successfully applied to solid cross sections, can also be used for hollow cross
sections in the same form with a condition that the inner boundary has to
correspond to a contour line of the membrane. The membrane across the-
hollow space may be considered as being replaced by a horizontal plane lid as
illustrated by Kollbrunner and Basler (1969). This satisfies the requirement of
the zero slope of the membrane over the stress-free hollow space.

The membrane analogy applies to the whole region that is contained by
the plane of the cross section, the membrane, and the lid, even though the
true membrane is only stretched across the effective area of the cross section.
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. I z,=q=1 | lhd At
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Figure 5-11

The gradient (slope) of the torsional stress functions, ¢(x,y), is no longer

a continuous vector function.

For a thin-walled cross section, the analogy may be considerably simplified
due to the following two reasons:

1. It is admissible to work on an average slope of the membrane at the
centerline of the wall, which implies a constant shear stress distribution
across the wall. Then, the height of the lid from the plane of the cross
section can be expressed by z) = 1t = constant = ¢ (shear flow).

2. The average direction of the contour lines, which are identical to the
shear stress trajectories, is assumed to be equal to the direction of the
centerline of the wall, which implies that the shear force per unit length,
g, is tangential to the centerline of the wall. The constant shear flow, ¢,
obeys the conservation law of the hydrodynamic analogy, that is, the sum
of the entering shear flows at a node (joint) must be exactly the same as
the sum of the discharging shear flows.

Reviewing Fig. 5-11, one immediately notices that

T = ZTO = 1t = q = shear flow = z (5.6.1)

Again, from Fig. 5-11, it becomes obvious that

dMS' = (tt)ds(r)

MZSt = rtf rds

Hence,
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From Fig. 5-11, one can see that
1
dAy = —d
0 = 5ds(r)

Hence, the area under the membrane measured along the center line of the
wall 1s

Neglecting the corner effect, the volume under the membrane is

Apzg = Ao (‘L’t)

Hence,
M3 =2V = 2(t1) Ag (5.6.2)
and the shear stress for the closed cross section is
ME
T, = 2A; ; (5.6.3)

From the small displacement theory (microgeometry holds), the following
geometric relationship is obvious from Fig. 5-12:
Sy R0

sin¢ =— = —
¢ S t

The equilibrium of forces in the vertical direction and recalling the analogy
derived in the membrane analogy requires that

d
Sh=0=p- fsTu=b-2 40 sap
t S A t

ey A e

5.6.4
N (5.6.4)

Recall the shear flow is given by tt = 2 from Fig. 5-12.

q=2

A 4 3 A

> Sh
/ *{ R P (o
N s, S
Figure 5-12

M|~
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The shear flow is also defined in Eq. (5.6.2) as

MSt
Tt = —=
2Ao
Hence, the height of the membrane is
MSt
R0 = 24,

It should be noted that the shear flows become indeterminate for a multi-
cellular section. As a consequence, the torsional properties of a multicellular
section become indeterminate, too.

For a single-cell section

M3 [d d
2GH = ‘27{—5 = M = 4A(2)G0’/j{—5 (5.6.5)
245) ¢ = t
Generally,
. de
M;t = GKr¢ and ¢ = —
dz
Therefore the St. Venant torsional constant for closed cross sections is

4A2
KTC - 7
$

The torsional shear stress in a closed cross section is computed from
M
‘ 2A0 t

(5.6.6)

T

and the general differential relationship for the St. Venant torsion is

M3 = GKr¢

Therefore, the shear stress of the closed cross section under the St. Venant
(uniform) torsion is also computed by

_ GKrp.tf

T, = 5.6.7
S 24t ( )

Notice that the thickness of the wall in a closed cross section is constant at
alocation along the length of the member (prismatic, not a variable). It varies
only along the perimeter of the cross section. The corresponding shear stress,
torsional moment, and the St. Venant torsional constant to the open and
closed cross section shown in Fig. 5-13 are tabulated in Tables 5-2 and 5-3.
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elastic plastic elastic plastic

|
) i

Figure 5-13 Membrane analogy applied to open and closed cross sections

Table 5-2 Torsional values of open and closed cross sections

Open Closed
Torsional constant 1 3 4(rr, )2
Ko = =(2m)r,t —_\Tm 3
s PO i R
t

M5t M Mz MM
Shear stress T)=—"—= = T, = =

Krg 271, t 2Apt 2777’5”

) 7y Kro
Elastic torque M :S)ﬁo = % MfytL = 1,272t
Plastic torque MZSI;, =T,m Tl M:S;:f Miﬁx
Shape factor (M S’/M S 1.5 1.0
Table 5-3 Ratios of torsional values
In the case of equality between
S S
Shear stresses 7o/, 1 3t t
t T
2
. St/ rSt ! 1/t
Torsional moment M /M’ — 1 o
- 3r/11 3 r)fl

2
Specific rotation 6;,/6’ fn 3 <’m> 1
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5.7. NONUNIFORM TORSION OF W SHAPES

In Section 5.1, it is stated that an externally applied twisting moment is resisted
internally by some combination of uniform (or pure, or St. Venant) torsion
and nonuniform (or warping) torsion depending on the boundary conditions,
that is, whether a member is free to warp or whether warping is restrained

M. = M + M" (5.7.1)
5.7.1. St. Venant Torsion

M = GKrb = CJ (5.7.2)

do
dz
where ] is the symbol for the pure torsional constant used in current AISC
(2005).

5.7.2. Warping Torsion

As a consequence of the assumptions used by Vlasov (1961) regarding
nonuniform torsion, the following two distinctions are noticed for a doubly
symmetric W shape or even a singly symmetric I-shaped section:

1. Web remains undeformed = torsion is resisted by flanges only.

2. Shear deformation in flanges is neglected.

Figures 5-14 depicts lateral deformation of flanges known as flange
bending.

sV .
MZ

N

u top flange
Figure 5-14

The flange bending moment for one flange, My, is given by
My d*u

El e
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or

d*u
M—+H&Eﬁ @)
where Ir=1,/2
The flange bending stress in the flanges which is called the warping normal
stress is given by
gy = %

I
The flange shear, 17, is

dMy dPu
Vi=——" = —Elf( — b
f dz f<dz3> )

The vertical bending stress and the warping normal stress are combined as
shown in Figure 5-15 where the vertical bending stress along the web is
not shown.

: 74 ﬂj
i N =
| —l__ 4b
Figure 5-15

It is not unusual that the normal stress due to flange bending exceeds more
than 50% of the total normal stress.

Let the rotation of the entire cross section be ¢ as shown in Fig. 5-16.
Invoking the micro geometry, one gets

ng=tgmu—"lg
Sin == h/2_ u = 5
Pu hdP
B 2de N
Substituting (c) into (b) gives
EL (#¢\ h ELh d*¢
== 8=k @
2 \dz° /)2 4 dz

From Fig. 5-17, it follows immediately that the warping moment can be
written as
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h=d-t d
| S— —
u
Figure 5-16
EI
MY=V;xh=— Ty he" h (5.7.3)

Defining the warping constant as
I, = %y > (5.7.4)

then

MY = —EL,¢"
Hence, the total moment is

M, =M + M"
= GKr¢' — EL,¢" (5.7.5)
= C¢' — C1¢"

where C = GK1 = GJ; C; = El, = EC,; C and C; were introduced by
Timoshenko for the St. Venant torsional rigidity and warping rigidity,
respectively. J and C,, appear for the first time in the AISC Manual (7th ed.,
1970). When a structure is subjected to an eccentrically applied load
(combined bending and torsion), it can be resolved as shown in Fig. 5-18
and analyzed separately. It should be noted that Eq. (5.7.5) is good only for
concentrated torques shown in Fig. 5-18.

5.7.3. General Equations

Consider a general case where torque varies along the z axis as shown in
Figure 5-19, in which m. is the rate of change of torque.
The equilibrium gives

ZMZ:O:—Mz—i—mzdz—i—MZ—i—sz:O



268 Chai Yoo

K ¢ D — + ->MZ=P-e

dz
Figure 5-19
dM,
oz
Difterentiating Eq. (5.7.5) with respect to z, one obtains
dM,
dz

my =

= —m, = GKr¢" — EL,¢"

me = EL,¢" — GKr¢" = C1¢" — C¢" (5.7.6)
or
w GKr 4 Mz
¢" — E—de) = Ew
which is similar to Eq. (1.4.8)
¢" — (GKr/EL,)¢" = (m./EL,) (Similar form y" + Py"/EI) =
w(z)/EI
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5.7.4. Solution of Differential Equations
Concentrated Torque
The governing differential equation is given by Eq. (5.7.5)

¢/// - GKTd)/ _ _Mz
El, El,
Let
EI,
Homogeneous solution:
¢/// o AZ ¢/ -0

_ mz [ mz no__ 2 mz no__ 3 mz
Assume ¢, = "%, then ¢, = me"=, @) = m=e"=, )" = m’e

Substituting these equations gives
mm® —22) =0, m=0, m==+2A
Hence,
¢h _ 61602 + Cze—kz + C3€Az
Particular solution:

Assume ¢, = Az, then qb; = A, (,Z');” =0

Substituting these gives

A= M
ElL, A°EIL,
Hence
b, =
= <
P XEL
Total solution ¢ = ¢, + ¢,
M.
0z —Az Az =
=g+ e 4 e+ <
¢=a 2 T 2ElL,

Recall identities:

¢ = cosh Az + sinh Az

¢ = cosh Az — sinh Az

269
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Then

¢ = ¢ + a(cosh Az — sinh Az) + c3(cosh Az + sinh Az) +

or

M.
¢ = A+ Bcosh Az + Csinh Az + 5—— =
2EL,

Distributed Torque
Equation (5.7.6) can be rearranged as follows:

v 22! — mx
¢ ¢ EL

Homogeneous solution:

Assume the homogeneous solution to be of the form ¢ = ce"*

!/ = " " C z j z
¢ = me ’¢ — szemz,(ﬁ — szem ,d)w — cm4em
Then, one obtains
m*(m> — %) =0

The solutions are my =0, mp =0, m3 = A, my = —A
Hence

z

¢h = % 4+ 622602 + C}gﬁz + C4€71N

Particular solution:

Assume the particular solution to be of the form, d)p =5tz + 72°.

Then
¢, = 6 + 2072, ¢ =207, ¢ = =0

Substituting these equations gives

0= 2602 = Zmgy = — e
/ EL, 22°El,
Hence
le 2
=6 +6z———H5—=7
b=t 2)2EI,

Total solution ¢ = ¢, + ¢,

M
NEL,

(.7.7)

2
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- . my
¢o=ca+oz+ C3€A< + cqe Az 5+ gz — ZXZEIWZZ
or
¢ = A+ Bz + Ccosh Az + D sinh Az — ZAT;IWZZ
or
¢ = A+ Bz+ Ccosh Az+ D sinh Az — 2Z;T22 (5.7.8)

5.7.5. Boundary Conditions

The integral constants in Egs. (5.7.7) and (5.7.8) are to be determined by
boundary conditions given in Table 5-4.

At fixed supports:

¢ = ¢' = 0, which implies warping is restrained and hence warping stresses
may develop.

At pinned supports:

¢ = ¢" = 0, which implies warping is not restrained.

At free ends:

¢" = ¢" = 0, which implies warping is not restrained.

At interior supports of continuous beam:

b0 = ¢y, $1 = ¢y, &p = ¢, but ¢ # )"

Table 5-4 Torsional Boundary Conditions

Function ¢ Physical Condition Torsional Condition

=0 No twist Pinned or fixed

¢ =0 ‘Warping restraint Fixed end, warping exists

¢" =0 Free warping Pinned or free end, no warping
¢ =0 - Flange shear = 0

5.7.6. Stresses Due to Torsion

A classical analysis of stresses due to torsion is illustrated by Heins and
Seaburg (1963) and Seaburg and Carter (1997).
e St. Venant’s Stress
St. Venant’s Stress is shown in Fig. 5-20. The maximum shear stress due
to St. Venant torsion is
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tMSt ,
Tmax = K—; = tG¢
where
M3 = GKr¢/

Then, the maximum stresses in the flange and web are

Tmax(“’ez’) = th¢,, Tmax (ﬂg) = tfcqsl (579>

i

Figure 5-20

*  Warping Stresses

The maximum flange bending stress (warping normal stress)developed due
to warping torsion is given by

ow = —(m /1) (6/2)

where
EL (d*u EL . .,
pu— —_— P— _ h
mp=t 2 <d22> + 4 ¢
Hence,
Eh E(d —t)b
JW = 4 b¢// = ( 4 ) ¢// (5710)

From the elementary mechanics of materials, the maximum shear stress

developed in the flanges due to the warping shear force (1) shown in Figure
5-21 is given by

3
Twmax — = —
2 Ay
where
ElL b
Vi= ==t A = by b= h=d—



Torsion in Structures 273

by
< 4
i '
Vi
Figure 5-21
Hence
Eb(d — 1r)
Twmax = — f 16 (,b”/ (5.7.11)
Example 1

Consider a cantilever subjected to a concentrated torque at the free end as
shown in Figure 5-22.

The general solution is

M7
= A+ Bcosh A C sinh A -
10} + B cosh Az + C sin z—i—GK

2 (5.7.12)
T

z

M
! = ABsinh Az + AC cosh A
¢ sinh Az + cosh Az + CK

T

¢" = 2°B cosh Az + A>C sinh Az

The boundary conditions are:

p=0 atz=0,¢' =0 atz=0,¢" =0 atz=/

Then
¢p=0atz=0=0=A+B= A=-B

X

Figure 5-22



274 Chai Yoo

M-
GKr

¢ =0atz=0=0=AC+

¢" =0 at 2= =0 = A’Bcosh Al + A*>C sinh M

Hence
M. M. M.
A= —tanh M~ B=tanh M-, C = —
AGKr AGKr AGK

The solution is

z

¢ = GKT){[AZ — sinh Az + tanh A¢(coshAz — 1)]
or
GKrA
¢ MT = Az — sinh Az + tanh A¢(cosh Az — 1)

z

Differentiating gives

GK
¢ v T — 1 cosh Az + tanh A¢ sinh Az
GK
d)”M—; = —sinh Az + tanh A€ cosh Az
GKp
¢’”M ;2 = —cosh Az + tanh A¢ sinh Az
GK EIL,
Let A = Landa= | —=
EIl, GKr

where a has a length dimension. Then A = {/a
Let N be the fraction varying from 0.1 to 1.0. Then,

N:% N{ =z, and Az = N(M)

GKrd
M.

[N(A€) — sinh N(Af) + tanh A¢(cosh N(Af) — 1)]
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Assume A¢ = 2.0 (if the section properties and span length are given, the
exact value can be computed). Then,
Az =N(2.0), N=0.1~1.0

GKrA
MT = N(2.0) — sinh N(2.0) + tanh(2.0)[cosh N(2.0) — 1]

Table 5-5 Torsional functions

N ¢ ¢/ ¢H ¢/H
0.0 0.0 0.0 .96 —1.0

2 .06 31 .63 —.69

4 24 .52 40 —.48

.6 47 .64 23 —.36

.8 74 .70 .10 —.30
1.0 1.01 73 .00 —.27

GK A
1.0'\. MT ¢
N %(ﬂ z
N N M, [
N, -
T o Oy

~|IN

Figure 5-23

Example 2

A concentrated load of 5 kips is applied at the free end of a cantilever beam
(W 12 x 50) of 20 feet long as shown in Figure 5-24. E=29 x 10°ksi, G =
112 x 10° ksi, P=5 kips, e = 1/2 in, KT = 1.82 in*. Find the maximum
stresses.

Torsional moment is,

1
MZ:—PXe:—SXEZ—Z.S k-in
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D M,=P-e

AN
Il
+
~

Figure 5-24
The warping constant is
L 6 s ,
I, = = 1,881.0 in” (This formula is good for W shapes only)

Then
GK 11.2)(1.82
2=="T_ (11.2)(1.82) 0.374 x 102 in"2, 1 = 0.0193 in" !
Ely, (29)(1881)
1 1.
a=-=——=052
A .0193
/
M = (.0193)(240) = 4.64, - = 4.64
a
Stresses

1. Torsional Shear Stresses
The St. Venant torsional shear stress is given by

1 = Gtep'

The greatest ¢'(GKr/M;)value for a cantilever beam subjected to
a concentrated torque at its free end can be read oft from Seaburg and Carter
(1997) or computed from the equation derived in Example 1 to be 0.981,
say 1.0, for £/a=4.64. ((GKy /M) ¢/ =1 — cosh Az + tanh Al(sinh 1z)).

/ MZ MZ Mz
¢ =1x y Tyt = Gt X =t
GKr GKr Kr
M.t —25xt
Ty=——=—">—=—137t, t = (tror t,)

Ky 1.82
fr= 641 7% = —1.37 x 0.641 = —0.88 ksi

fy = 0.371 7% = —1.37 x .371 = —0.51 ksi
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The St. Venant shear stress is equal to zero at the fixed end, and the
St. Venant shear stress distribution is illustrated in Fig. 5-20. Hence, there is
no net shear flow due to St. Venant torsion.

The warping shear stress is given by 7, = —(ES,/t)¢" where S,
is referred to as the warping statical moment and can be calculated for
simple structural shapes from formulas given by Seaburg and Carter (1997)
or elsewhere. Yoo and Acra (1986) present a general method of calculating
cross-sectional properties of general thin-walled sections.

S, b*h
W = 47.11n° for W12 X 50
t 16
Ebz(d — 1) ¢,,, Eb%h ¢///
Tws = =~ =T
16 16

The greatest ¢"'[GKr/(A>M.)] (= —cosh Az + tanh M sinh 12) value for
a cantilever beam subjected to a concentrated torque at its free end can be
read off from Seaburg and Carter (1997) or computed from the equation

derived in Example 1 to be —1.0 at the fixed end for £/a = 4.64.

"o szz
¢ =—-1.0 x
GKr
Eb’h Eb’h M.2°
o= — g = By 2
16 16 GKr
47.1
Tus = o (—2.5) = —.0625 ksi at = = 0.0 and Tps = 0.0 at = = 1.0
1881 ] ¢

2. Warping Normal Stress

The warping normal stress is to be computed from
_ BM W,
=

aw

where BM is the bimoment given by —EI,¢"and W, is the normalized
warping function given by bh/4 for doubly-symmetric I-shape sections. A
general method of evaluating these section properties is given by Yoo and
Acra (1986). Hence,

bl

gy = _Em1¢// = - 4

¢//
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in which
bh .2
W, = i = 23.32 in“ for W12 x 50

The greatest ¢"(GKy/M.A) (= —sinhAz + tanh Af cosh Az) value for
a cantilever beam subjected to a concentrated torque at its free end can be
read off from Seaburg and Carter (1997) or computed from the equation
derived in Example 1 to be 1.0 at the fixed end for £/a = 4.64.

g M2
"~ GKy

¢

bh) M. M.
aw:—E% A= —EW, x A

GKr GKT

—29><23.3><0.0193( 25) — +0.64 ks at % — 0.0 and
g, = —2. = . —=0.
u 112 % 1.82 day an

z
o, =0.0 at 7= 1.0

3. Bending Shear Stress
The bending shear stress given by 17Q/ Lt is constant along the length of the
cantilever beam subjected to a concentrated load at it tip. The bending
statical moment, Q, is evaluated at the flange and the web for the maximum
value of the shear stress.

14.67 5x%x22.8
& _ 1467 228 in, T = = 282 ksi
641 » 394.5
v 36.24 5% 98
Qu _ 3624 _ o in?, Typ = ——— = 1.27 ksi
tw 371 394.5

4. Bending Normal Stress

Mc M 5 x240
g, —— — — —
YT TS T 647

= +18.55 ksi
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5. Summary of Stresses

Table 5-6 Stresses at support

279

T o
Tsl Tb Tws o-w O-b
z/0
flg 0.0 0.282 -0.0625 1.60 18.55
0.0 z 0.3445 or 0.2195 16.95 or 20.15
Web 0.0 1.27 0.0
> 1.27
Table 5-7 Stresses at free end
T o
T, T T, o, o
Z/( st b b
flg -0.88 0.282 0.0 0.0 0.0
10 > 1.162 or 0.598
Web -0.51 1.27 0.0 0.0 0.0
> 1.78 or 0.76
+16.95
+20.15
-16.95
-20.15

Figure 5-25 Normal stresses in flanges at support
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5.8. NONUNIFORM TORSION OF THIN-WALLED OPEN
CROSS SECTIONS

In the previous section, nonuniform torsion on doubly symmetrical sections
was briefly considered. An approximate analysis of nonuniform torsion of
a member with a general thin-walled open cross section may be developed
within the confinement of assumptions employed. The literature based on
the assumption that the shape of the thin-walled open cross section remains
unchanged and is quite extensive. A more detailed treatment of nonuniform
torsion may be found in Brush and Almroth (1975), Galambos (1968),
Kollbrunner and Basler (1969), Nakai and Yoo (1988), and Timoshenko
and Gere (1961). The present development of warping deformation and
stress of open cross section follows, in some respects, the analysis in
Timoshenko and Gere (1961), Kollbrunner and Basler (1969), Galambos
(1968), and Brush and Almroth (1975).

5.8.1. Assumptions

1) Members are subjected to torsion only.

2) Members are prismatic and retain their original shapes.

3) Hooke’s law holds.

4) Cross-sectional coordinates, x and y, are the principal coordinates and
the z-axis is the longitudinal axis through the centroid of the cross
section.

5) There is an axis parallel to the z-axis about which twisting takes place and
the centroid and shear center of the cross section are denoted by C and S,
respectively.

6) Deformations are small.

7) Shear at the middle line is equal to zero.

5.8.2. Symbols

Q(x.y) S(X:o)

b ) a
E y I C po

L
W\

9

o l:’ x
s [—
vy

Figure 5-26 Perpendicular distances, p and p, to a tangent at Q
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Symbols in Fig. 5-26 are defined as follows:

C: centroid of cross section (x = 0,y = 0)

S: shear center (x = xp,y = y;)

¢: angle of twist

M: twisting moment

Q: a point on the middle line of cross section (x, y, s)

s perimeter coordinate measured along the middle line from point O
to Q

b: total perimeter length of the middle line, O to E

a: distance between Q and S

Po: perpendicular distance between S and the tangent line at Q

p: perpendicular distance between C and the tangent line at Q

5.8.3. Warping Torsion

Figure 5-27 shows the relationship between the angle of twist and a longi-
tudinal displacement of a point in a member. Warping represents

Y
B’ iy d¢
Pl o \ Po s
b
®) ~.

Figure 5-27 Segment of member showing warping deformation (after Brush and
Almroth, Buckling of Bars, Plates, and Shells, New York: McGraw-Hill, 1975). Reproduced
by permission.



282 Chai Yoo

a longitudinal displacement of points in a member due to twisting. An
equation relating the longitudinal displacement component w to angle of
twist ¢ may be derived. The middle surface of an element of length dz is
shown in the undeformed configuration in Fig. 5-27(a). The element is
shown in orthographic projections in Fig. 5-27(b), where a side view
is placed on the right and a section view from the positive end of the z-axis
is shown on the left. Line AB in the side view is a longitudinal line on the
middle surface prior to deformation, and BD is tangent to the middle
surface at B and is perpendicular to line AB. When the member 1s twisted,
one end of the longitudinal element rotates about the shear center by a small
angle d¢, as shown. Then point B moves to B, and the angle BAB' in the
side view is pod¢/dz, where pj, is the perpendicular distance from the shear
center to the tangent BD, as defined in Fig. 5-26. The variable p is positive
if a vector along the tangent in the direction of increasing s acts counter-
clockwise about the shear center. After the deformation, the tangent
B'D/'remains perpendicular to AB’ as shown in the side view of Fig. 5-27(b).
Thus, in the side view, the angle between the tangents before and after
deformation is pyd¢/dz = p,¢’. But that angle is the rate of change of the
displacement w in the s direction. Thus, the equation relating the
displacement w to the angle of twist ¢ is

ow

N = —pop (5.8.1)

The negative sign is due to the fact that dw is in the negative direction of z
for positive pg and ¢’ as shown in Fig. 5-27(b).
Let v be the displacement in the arc (perimeter) direction, then the shear

strain 1is
ow dv
Tz = ER + F)e (5.8.2)
It is clear from Fig. 5-27(b) that
£ DBD = 0w/ds = —py¢’ (5.8.3)
and
/ BAB = dv/dz = py¢’ (5.8.4)

Substituting these relations into Eq. (5.8.2) leads the shear strain to be zero.
Hence, there will be no warping shear stress 7, developed, which appears to
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be contradictory, as will be evidenced later in Fig. 5-28. This is true under
unrestrained warping as in the member that is twisted by a concentrated
torque at each free end. In this case, line AB remains straight and the
original right angle of the element ZABD remains unchanged after
deformation (¢' = constant, ¢” = 0). When warping is restrained,
however, line AB' cannot remain straight and line AB in Fig. 5-27(b) may
be interpreted as an average. A shear strain measurement based on an average
deformation is not representative of true strain.
Integration of Eq. (5.8.1) gives

W= wy — ¢’/ pods (5.8.5)
0

where wy (2) is the constant of integration and equal to w at s = 0. If one
defines

0

as the sectorial coordinate or the unit warping function (length® unit) with
respect to the shear center, Eq. (5.8.5) may be rewritten as

w=wy — ¢ wy (5.8.7)

If the warping longitudinal displacement given by Eq. (5.8.7) is introduced
into one-dimensional Hooke’s law, one arrives at the warping normal stress

o dw o / "
0. =E—=E(w,— ¢ wy) (5.8.8)
dz
Since only a twisting moment M, is applied, the resultant axial force and the
bending moments due to warping normal stresses must be zero at any cross

section. That is

b
N=0= / 0 tds (5.8.92)
0
b
M,=0= / Yo tds (5.8.9Db)
0
b
M, =0= / X0 ,tds (5.8.9¢)
0

Equation (5.8.92a) serves to eliminate the constant of integration wy (2).
Substituting Eq. (5.8.8) into Eq. (5.8.9a) leads to
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b b
wg/ tds — ¢" | wotds =0 (5.8.10a)
0 0
or
¢// b
wg):/ wotds (5.8.10b)
A Jo
where
b
A:/ tds (5.8.11)
0

Substituting Eq. (5.8.10b) into Eq. (5.8.8) yields

1 b
o.=E¢" (—/ wotds — w0> (5.8.12)
A Jy

Defining a new cross-sectional property w,', the normalized unit warping
(length? unit), as

1 b
w, = —/ wotds — wy (5.8.13)
AJy

one can rewrite Eq. (5.8.12) as

0. = Ew,¢" (5.8.14)

The variation of the normal stresses ¢, along the z-axis produces shearing
stresses, which constitute resisting warping torque MY

To calculate the shearing stresses, consider an element mnop (Fig. 5-28)
cut out from the wall of the member in Fig. 5-27.
From summing forces in the z-direction, one obtains

O(Tet do.
Mdsdz—l—t (90& dsdz =0

Js z

L The first term in Eq. (5.8.12), (/(f w')tds)/A, is replaced by (]([; w(,ds)/h in Timoshenko and
Gere (1961) and Brush and Almroth (1975). If the integration process is replaced by a summation of
discrete elements as Z woitiLi/ Z t;L; such that ; is constant in each element, # may be replaced by
t"‘“‘(Z tiLi/b) as it’ is indepéndent of wy and L;. Then Z woitiL;/ Z L = tyyg Z woiLi/

1 1 1 1
tngL,- = Zme[/ZL,‘. In fact, the two expressions are identical. This has been confirmed
numerically by SECP (Yoo and Acra 1986).
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d7
7,,+ —Zds
ds
m n
O-Z
Gz + dz d.\‘ —_— o,
dz
dz
o N 14

Figure 5-28 Stresses in an element

or

0(Ts2t) do- FEL)
= —t—=—tEw, —
Js ' dz e d=3

Integrating Eq. (5.8.15) with respect to s and noting that ¢ is independent of

(5.8.15)

sand 1, = 0 at s = 0, one obtains

d3¢ s
d2,’3 0

Tt = —E Wy t ds (5.8.16)

As the warping shearing stress T, is related to the warping torque by the
equation

b d3¢ b s
MY = / TP tds = -E—— [/ Wy t ds] 0o ds (5.8.17)
- 0 dz> Jy 0

Integrating Eq. (5.8.17) by parts ([ udv=uv— [vdu) and letting
u= fé wytds and dv = pyds to lead du = w,tds and v = f(j pods = wp, one

obtains
b b b
MY = —E(j)”'(wo‘o / Wtds — / wowntds) (5.8.18)
0 0

Noting that the first term in Eq. (5.8.13), referred to as an average warping
function, is a constant, one gets for the first term of Eq. (5.8.18)

b 1 b b b
/ w,tds = (— / a)otds> / tds— / wotds =0
0 A Jo 0 0

After substituting wo = (1/A)f0b wotds — w,, the second term yields

b 1 b b b
/ WoW,tds = <— / wotd5> / W, tds — / witds
0 Ao 0 0
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Since fé’ wytds = 0 by virtue of Eq. (5.8.92), Eq. (5.8.18) becomes
b
MY = —E¢" | wtds (5.8.19)
0

Introducing the warping constant (length® unit) or warping moment of
inertia, I,

b
I, = / w2 tds (5.8.20)
0
one gets
MY = —EIL,¢" (5.8.21)

The total resisting twisting moment is the sum of the warping contribution
and the St. Venant contribution; that is, as per Eq. (5.7.1),

M, = M> + M"
For concentrated torques
M. = GKy¢' — EL,¢" (5.7.5)
For a distributed torque
m. = EL,¢" — GKr¢" (5.7.6)

The warping shear flow is given by Eq. (5.8.16). Defining the warping
statical moment (length* unit) as

N
Sy = / Wtds (5.8.22)
0

the warping shear flow equation is
Tt = —ES,¢" (5.8.23)

The bimoment (force-length” unit) is defined by

BM = EI,,¢" (5.8.24)
or

n _ BM

=— 5.8.25
L ( )
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Substitution of Eq. (5.8.25) into Eq. (5.8.14) yields

_ BMw,

5.8.26
o (5.8.26)

0z

5.9. CROSS-SECTION PROPERTIES

5.9.1. Shear Center Location — General Method

Definition

If a general system of forces acting on a member is resolved into torsional
and bending components with respect to the shear center, these cause,
respectively, pure rotation and pure bending of the member (Kollbrunner
and Basler 1969). That is, if a member is fixed at one end and subjected to
a transverse load applied through the shear center at the other end, it
undergoes bending without twisting. Conversely, a torque applied to this
member induces no transverse deflection of the shear center. Hence, in such
a case the shear-center axis remains straight during twisting, and the cross
sections of the member rotate about the shear center during the deforma-
tion (Brush and Almroth 1975). The position of the shear center depends on
the properties of the cross section only. It is therefore constant with respect
to the cross section for prismatic members and the shear-center axis remains
parallel to the centroidal axis. The resultant of the shear flows must be equal
to the shearing forces acting on the cross section.

Development

In the theoretical development of the shear center location, the following

assumptions are employed:

1) No torsion (only pure bending is considered).

2) Bending about one centroidal axis (not necessarily principal) is
considered because the case of biaxial bending can be handled by
repeating the same procedure.

3) Hooke’s law holds.

4) Shearing stress is constant across plate thickness (i.e., thin-walled x-section).

5) Member is prismatic.

6) Cross section retains shape.

7) Small deflection.

8) Open cross section.

9) The thickness of the cross section is a function of the perimeter coor-
dinate s, but not the longitudinal member axis.
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Figure 5-29

ds/\ rtdz+d(tt)dz =Tt dz+ (”dsd
/_,/[‘,

o, tds + 99, dztds
0z
Figure 5-30

In the derivation, a general reference is made to Timoshenko (1945),
Vlasov (1961), Galambos (1968), Kollbrunner and Basler (1969), and
Heins (1975). An element isolated from the body in Fig. 5-29 is redrawn in
Fig. 5-30, along with the stresses acting on it. Equilibrium of the forces in

a(rt)ds dz| — | o- tds + a—t dsdz ) =
Js dz

the z-direction gives

oztds—l—l'tdz—[

From which one obtains
do. O(tt)
t -
0z + Js

From the equations of pure flexure (in the absence of axial force and M, = 0),

one gets
Lyx — 1
0. = M, <’“2yyy> (5.9.2)
2Ll

do.  OM, (Lyx — Ly
iz 0z ( —1I I) (5.9.3)

—0 (5.9.1)
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oM,
9>

Ve (5.9.4)

It should be noted that the concept of the shear center 1s meaningless in the

constant-moment zone where I, = 0.

Substituting Eq. (5.9.4) into Eq. (5.9.3) and Eq. (5.9.3) into Eq. (5.9.1),

one gets
d(tt Lyx — Ly
$ xy Xy

Integrating Eq. (5.9.5) with respect to s gives
S (Lyx — 1
Tt = —/ <2yx—yy) Vet ds
o \I2, — LI,
Vx < /3 /s )
=————|L [ ytds—1I xt ds (5.9.6)
(Iagy - ley) g 0 Y 0

Summing the moment of the forces in Fig. 5-31 with respect to the centroid
C, one gets

b
ZMC = —V.xo +/ p(tt)ds =0
0

From which one obtains
b
%o = (1) i pleo)ds

Substituting Eq. (5.9.6) for the shear flow gives

1 b s b s
x0=—5———| 1 / p ds/ ytds — L / p ds/ xt ds) (5.9.7)
(I3, — LIy) < " Jo 0 o 0

Xo
s 0 — b : total length
7t N’ 0 — s : segment
0 p : perpendicular to 7t
[ g . ! M,=0
b

Figure 5-31
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From the equations of flexure (axial force = 0 and M, = 0), one gets
(B B (1o
I, — L, 0z I, — L,
Substituting these equations into Eq. (5.9.1) yields
2
((e0)/05) = = Var ((1gy = 1)/ (13, = 11, )

Integrating with respect to the perimeter coordinate gives

S (Lyy — Lx Vy ! !
rt:—/ S |Vt ds = Ix/ xtds—lxy/ ytds

o \I2,— LI, 2,— LL\ "™ J 0
(5.9.8)

Summing the moment of the forces with respect to the centroid gives

b
Y Mc= Vyyo—/ p(rt) ds =0
0

From which one obtains
b
Yo = — (1/Vy) o p(zt)ds

Substituting Eq. (5.9.8) for the shear flow gives

d tds— I, d. td (5.9.9
Yo = (12_“</Ops/ys /ps/oxs> )

Evaluation of Integrals

Let the unit warping function (length® unit) with respect to the centroid
C be defined as

)
Tt Nﬁu— Vy
0

b
Figure 5-32
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W= / pds (5.9.10)
0
Then dw = pds and

b s b s
/ pds/ ytds = / dw/ ytds
0 0 0 0

Integration by parts ([ udv = uv— [vdu) and letting u = fg ytds and
dv =dw to lead du = y t ds and v = w, one obtains

b
/pds/ ytds = / dw/ ytds = /ytds] /wytds
0 0

in which, by definition of centroid

o -
b s
/ pds/ ytds = —/ wytds = —1,, (5.9.11)
0 0
b s b
/ pds/ xtds = —/ wxtds = —1I, (5.9.12)
0 0 0

Substituting Egs. (5.9.11) and (5.9.12) into Egs. (5.9.7) and (5.9.9) gives

Hence,

Similarly,

Ixylwx - Iylwy

= 5.9.13
X0 2L, ( )
I‘Il X Ix Iw
yp =2 (5.9.14)
I, — Ly
If x, y are principal axes, then (I, = 0)
1,
xp = I—y (5.9.15)
L
Yo = —— (5.9.16)
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Although Egs. (5.9.13) through (5.9.16) can be applied to simple thin-
walled sections, when the section becomes complex with nonprismatic
elements such as in the case of S shapes, as well as compound sections and
multiply-connected cellular sections including stiffening interior cells,
execution of these equations by an analytical means is simply not a viable
option. When a cross section consists of # cells as in the case of a ship hull
cross section, there will be n redundant shear flows. Hence, it is desirable to
devise a numerical scheme that is readily programmable.

5.9.2. Numerical Computations of Section Properties

Usually thin-walled open sections are made up of a series of flat-plate
elements. In the case of such sections, the numerical work can be simplified
into a tabular form.

Determination of

j .,/ tangent

Figure 5-33

Based on Eq. (5.9.10), it becomes clear that the unit warping function
with respect to the centroid C at the node j can be written as w; = w; +
pij Lij. Hence, at any node k

j=k
W = Zpﬁ Ly (5.9.17)
i=1

The definition adopted in the computation of wy applies here likewise; that
is, p is positive if centroid is to left when facing tangent line and w varies
linearly between two adjacent nodes i and ;.
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Determination of |,

From the geometry shown in Fig. 5-34, the following relations can be
readily established:

Ly=2"% (5.9.18a)

) COS Oé,]

s=2T% (5.9.18b)
COS 0(1]

S (5.9.18¢)

Ly xj—xi

Similarly e

ds = (5.9.18d)

COSO[,:,'

w 1is varying linearly between the two adjacent nodes and the ratio is
(&)j — (l)i)/Lij = (a) — (1),')/5

From which
W= w,;+ (&), — wi) (S/Lij)

Replacing s/Lij by Eq. (5.9.18c¢) yields

(CL)]’ - (1),‘) (X - xi)

(xj — i)

w=w;+ (5.9.19)

Substituting Egs. (5.9.19) and (5.9.18d) into Eq. (5.9.12), one obtains

b b X;
tij ! Wj — W) (X — X
IWX:/thds:Z ] / [M(J )(x x>]xdx
0 o cosai (xj—x,')

Figure 5-34
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Expansion of Integral

[ [ ez tes

(xj—xi)
(g 2) ¢ (L 5 g 9

= Sl =+ (St = )

2

Recalling (xj — x;) = Ljj cos aj
b
1
x; + x;i)Lj; cos o
=D 3o

\2x]2(xj —x;) = xi(xF — x?)] }

W — W
( ] 1) (xj N xi)

_|_

N =

i W Li] x; + X,) ‘l‘l (wf - wi)(zsz — XiXj — xiz)Lij
5 6

(% — i)
b 2 2
wilxi +x;) 1 207 — 2% — X7+ XX
= (Ly) [M +—(w; — wi)( : ] J)}
0 2 6 (xl - xi)

wi(x; + x; 1
t,'jL,'j [%) + g(&)j — (1),')(296] + xi):|

I
=[M=

W =

b b
1
T =5 > (@i + o) tyLy + =D (i + o) 1L
0 0
(5.9.20)

Similarly, I, and I, may be derived

b

1 1
Iwy = 5 Z((U,'yi + @iyj)t{thj' + 8 Z(w,-yj + aq;yi) t,jL,'j (5.9.21)
0 0
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b b
1 1
by =3 ZO (i + ;) ty Ly + ZO (e +29) tl - (5.9.22)
Likewise, I, and I, in numerical expressions are
b
1 2 2

L=3 EO L5 (V7 + vy +57) (5.9.23)

1 b
I = 3 E tiLi(x7 + xix; + sz) (5.9.24)

0

Hence, quantities needed for Eqs.(5.9.13) through (5.9.16) are numerically
evaluated in Egs. (5.9.20) through (5.9.24).

Example
Determine the shear center of the section shown in Fig. 5-35. The thickness
t is uniform (t = 0.5 in.).

y

2 |'_ 57 |
— I___|. _____
|
!
20" —-Ji «— 1.79”
B 1 e ;
-5.07"|! p
I—x | ‘8.57
S = v
4
3.61”__3\! 10”
Figure 5-35

Numerical values are to be taken from Table 5-8.

1 1
I,x = g Z(a)ixi + wpg,-) tL + 6 Z(O},’Xj + wjxi) tL

1 1
= 3(3564) +g(_10) =1186.3 in°

1 1
Loy = 3 2 0w+ o) L+ 23 (o + o) L

1 1
= 5(—11390) + 8(—4230) = 4501.7 in®



Table 5-8 Shear center location

w= (1) (2 63 @4 () 6 (7 (@® (9 (0 (1)  (12)

Node x y L,] Pij pUL’/ Z pL wix; WiXj  WiXj  WjX; (1 + Z)tL (3 + 4)1”. wiyi  WjYyj wiyj  Wjyi (7 + 8)tL (9 + 10)“.
1 3.21 11.43 0

1-2 5 11.43 573 0 —102.5 0 184.0 —256.0 460.0 0 655.0 0 655.0 1640.0 1640.0

2 —1.79 1143 57.3

2-3 20 1.79 358 —102.5 —167.0 —102.5 —167.0 —2695.0 —2695.0 655.0 —796.0 —490.0 1065.0 —1410.0 5750.0

3 —-1.79 —8.57 93.1

3-4 10 8.57 85.7 —167.0 1470.0  765.0 —320.0 6515.0 2225.0 —796.0 —1530.0 —798.0 —1530.0 —11620.0 —11620.0

4 8.21 —8.57 178.8

3564.0 —10.0 —11390.0 —4230.0

]

96¢

00A 1By
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- %(0.5)3(10 +5) +0.5(5)(11.43) + 11_2(0-5)(20)3 +10(1.43)°

= 1047.6 in*

IX?C

1 1
Iy = E(O'S)(103 +5%) +5(3.21)* +2.5(0.71)* + E(20)(0.5)3
+10(1.79) = 132.5 in*

Ly = 2.5(11.43)(0.75) + 5(—8.57)(3.25) + 10(—1.75)(1.43)
= —142.6 in*

Lylox — Ly (—142.6)(1186.3) — (132.5)(—4501.7)

X0 =

2, — L1, (—142.6)% — (1047.6)(132.5)
=-3.611n
Llyx — Lyplyy  (1047.6)(1186.3) — (—142.6)(—4501.7)
y g =
TR - L (—142.6)> — (1047.6)(132.5)
= —5.07 in

This is just a simple example. If a cross section consists of multiple-
cellular sections combined with protruding elements, formulas to evaluate
cross sectional properties for such sections are not available. Each closed cell
must be made an open section by introducing a fictitious cut (Heins 1975)
somewhere in the cell perimeter. Then, the section properties on this
pseudo-open section are evaluated. The compatibility condition at the cut
will provide a condition equation to determine the redundant shear flow or
to determine other properties such as the normalized warping function to
be consistent at the cut.

Although a few attempts to evaluate the cross-sectional properties by
digital computers can be found in the literature, SECP (Yoo and Acra 1986) is
believed to be the most comprehensive program currently (2010) available to
compute cross-sectional properties, particularly multicellular sections with
internal stiffening cells such as those found in an orthotropic bridge deck.
This program can be downloaded from the senior author’s Web pages. Access
codes are available from the back flap of the book. The user documentation is
included in the Fortran source code by liberal use of Comment statements.
Once anyone experiences the power of SECP, a longhand computation of
cross-sectional properties will not likely be attempted anymore.
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PROBLEMS

5.1 In order to minimize the potential stress concentration at the reentrant
corners at the bottom of a rectangular keyway, the sharp corners are
smoothed out by a circular hole. Show that the Prandtl stress function
¢ = m(r* — b*)(2a cos 8/r — 1) (Sokolnikoff 1956) leads to the solu-
tion of the circular shaft with a circular keyway, shown in Fig. P5-1.
Determine the constant m and the expressions of the stresses, 7., and
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y r=2acos @

C
b—»‘ '4—

Figure P5-1

Ty on the boundaries Cy and Cp. Ifa =1 in. and b = 1/8 in., show
that the ratio of the maximum shear stresses that are developed in
C, and Cj is approximately 2 to 1.

Three rods with solid cross sections, square, equilateral triangle, and
circle, have equal cross-sectional areas and are subjected to equal
twisting moments (Saada 1974). Compute the maximum shearing
stresses developed and St. Venant torsional constants. Evaluate the
shape factors and assess the effectiveness of each shape.

Develop M. — 6’ relationship for pure torsion over the elastic and
plastic range for an angle section shown in Fig. P5-3 made of a material
obeying an ideal elastic-plastic stress strain law. Neglect end effect
(t<<L). Plot M — @ curve, nondimensionally (M./M.,) vs 6'/0,.
Compute the shape factor.

b

s

Figure P5-3

For the triangular section of side length “a” and ¢ = a/20 shown in Fig.
P5-4, evaluate K7y and Krp.. Cut at point “1. If 7,,,,x = 1,, compute
the ratio T,/ Tj.
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Figure P5-4

5.5 A three-cell thin-walled box section is made of steel plates of constant
thickness as shown in Fig. P5-5. Determine the maximum shearing
stresses in various elements if the box is subjected to a torque of 1000
kip-in. Determine the shearing stress in the central cell if a cut was
made in each side cell wall. Use G = 11.2 x 10° ksi.

|u-| —| |

—_
o)}

20"

| | | I
| 10" | 20" | 10" |
Figure P5-5

5.6 A three-span continuous beam is subjected to a uniformly distributed
load at its center span as shown in Fig. P5-6. Determine the locations

1 k/ft, m, =5 k-ft/ft 1+

HEEEEN

—> 7
Avn By o 7D
25 . 50° |25 |
v M [ N
Y w=0.1K/fi?

Section 1-1
Figure P5-6
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and magnitudes of the maximum normal and maximum shearing stress.

Use E = 3000 ksi and G = 1000 ksi. The thickness of each element

of the cross section is 5 inches.

5.7 (a) Using the numerical procedure, determine the location of the

shear center of the shape shown in Figure P5-7 in terms of vari-
ables b, ¢, d, and t.

(b) Whatis xp ifb=3",c=1",d=5",t=10.25"?

(c) Verity the computation when ¢ = 0. (Use any known value.)

3 | ’ c
=
i 2
i t. constant dr
!
} x
!
| dr2
! 5

Figure P5-8
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6.1. INTRODUCTION

In Chapter 1, the fundamental case of buckling of centrally loaded columns
is presented under the assumption that columns will buckle in the plane of
a principal axis without the accompanying rotation of the cross sections.
This assumption, first made by Euler (1744), appears reasonable for the
doubly symmetric cross section but becomes problematic if cross sections
have only one axis of symmetry or none at all. The possibility of torsional
column failure had never been recognized until open thin-walled sections
were used in aircraft design in the 1930s. Experience has revealed that
columns having an open section with only one or no axis of symmetry show
a tendency to bend and twist simultaneously under axial compression. The
ominous nature of this type of failure lies in the fact that the actual critical
load of such columns may be less than that predicted by the generalized
Euler formula due to their small torsional rigidities. Bleich (1952) gives
a fairly thorough overview of the early development of the theory on the
torsional buckling.

Bleich and Bleich (1936) were among the early developers of the theory
on torsional buckling along with Wagner and Pretschner (1936), Ostenfeld
(1931), Kappus (1938), Lundquist and Fligg (1937), Goodier (1941), Hoft

Stability of Structures © 2011 Elsevier Inc.
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(1944), and Timoshenko (1945). All of these authors make the fundamental
assumption that the plane cross sections of the column warp but that their
geometry does not change during buckling. Thus, the theories consider
primary failure (global buckling) of columns as opposed to local failure
characterized by distortion of the cross sections. The dividing line between
primary and local failure is not always sharp. Separate analysis of primary and
local buckling based on governing differential equations, without aban-
doning the assumption that cross sections of the column will not deform,
may yield only approximate solutions since there could be coupling of
primary and local buckling. Modern finite element codes with refined
modeling capabilities incorporating at least flat shell elements may be able to
assess this combined buckling action.

The notion of “unit warping” or the concept of sectorial coordinate
appears to have gained currency in the literature including Goodier (1941),
Galambos (1968), Kollbrunner and Basler (1969), Timoshenko (1945), and
Vlasov (1961). Bleich and Bleich (1936) developed their differential equa-
tions governing the torsional buckling behavior of columns with thin-
walled open sections based on the principle of minimum potential energy
without invoking the notion of “unit warping” or the concept of the
sectorial coordinate. Although they claim that their equations are practically
the same as those developed under the concept of the sectorial coordinate,
they differ in a significant aspect. The warping constant I, (or I' in their
notation) for the cross section consisting of thin rectangular elements does
not vanish according to their theory, in which the axial strain and the
curvature are considered to be coupled. This consideration appears to be
odd since in the linearized bifurcation-type buckling analysis, an adjacent
equilibrium configuration is examined after all static deformations have
taken place. As a consequence of their theory of nonvanishing warping
constant, a beam having a cross section consisting of a series of narrow
rectangular elements that meet at the shear center will become warped. This
is a direct contradiction to Timoshenko and Gere (1961)' and Vlasov
(1961).% According to the definition of unit warping, the warping constant
I, must be equal to zero for such sections where the perpendicular distance
from the shear center to each element wall becomes zero. Therefore, the
differential equations to be developed for torsional and flexural-tosional

1 See page 217.
See page 27: a thin-walled beam consisting of a single bundle of very thin rectangular plates does not
become warped.
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buckling here in this chapter and for lateral-torsional buckling in the next
chapter will be based on the concept of unit warping.

6.2. STRAIN ENERGY OF TORSION

Recall that the concept of the stress tensor arises from equilibrium
considerations and that the concept of the strain tensor arises from kine-
matic (deformation) considerations. These tensors are related to each other
by laws that are called constitutive laws. The constitutive laws relating
stresses and strains directly and uniquely can be expressed mathematically as

Tij = ’El'j'(é‘ll,é‘lg,....,é‘gg,) (6.2.1)

where 1;; = stresses and ¢;; = strains.
Consider a quantity, U, strain energy density function which is also
known to be a point function that is independent from the integral path

taken:
8’./
U() = / ‘L','jdé‘,'j
0

A strain energy density function is measured in energy per volume and is

a scalar quantity. For linearly elastic materials, it becomes
1
Uy = Efij &ij (6.2.2)

Then, the strain energy stored in a body is

1
U = / Uodv = 5/ ‘L',‘j&,jdv (623)
|14 V

The strain energy stored in a twisted member is broken down into two
parts, one due to St. Venant torsion and the other due to warping torsion. In
order to maintain a generality, torsional stresses and corresponding strain
expressions are explicitly developed and substituted in Eq. (6.2.3). As
columns of a closed cross section are not likely to develop torsional or
flexural-torsional buckling, such columns are not considered here.

6.2.1. St. Venant Torsion

Recall that the St. Venant torsional moment is given by Eq. (5.4.1) as

MY = GKr¢
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The corresponding shear stress in an open cross section shown in Fig. 5-20 is
given by

2M5'h
T =19 = =2~ = 2Gh¢’ (6.2.4a)
T
and the corresponding shear strain is
/Y,ZS TZS /
L= = =h 6.2.4b
s = =5o=h ( )

Then, the strain energy due to St. Venant torsion is

1 1
Uigf = / U,dv = —/ I'l'jé‘,'jdv = —/ (Tzsgzs + Tszesz)dV
v 2 )y 2 )y

Substituting (6.2.4a) and (6.2.4b) gives

¢ b pt)2 L rb £
US' = 2G(¢')* / / / Wdhdsdv = 2G(¢')* / / W dsdz
0o Jo J-t o Jo -3
1 ¢ \2
=3 GKr(¢') d= (6.2.4¢)
0

where b is the width of a thin-walled element and / is measured from the
centerline of a thin-walled element thickness so that hy,,x = /2.

6.2.2. Warping Torsion

For a member subjected to warping torsion, the dominant strain energy
stored in the member due to its resistance to warping is assumed to be the
strain energy due to warping normal stresses. Even though warping shear
stresses produce strain energy, it is usually considered to be negligibly small
and is neglected as in the case of not including the shear deformation effect
in ordinary flexural analysis. Warping normal stresses and corresponding
strains are evaluated by

w  BMw, EL¢"w,

= Ew,¢" 5.8.26
" I I W, ( )

U.W
wo__ z Ui
& = —= = w,¢

Hence,
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1 1 ! L
U == / Ve dv = —E(¢") / / () dAdz =~ / EL(¢")*dz
2 )y 2 0 J4 2Jo

1

l
= / EL,(¢")?d= (6.2.5)
2 Jo

where fA (o),l)zd/l = [, as per Eq. (5.8.20).

6.3. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
OF COLUMNS

It is assumed that the cross section retains its original shape during buckling.
For prismatic members having thin-walled open sections, there are two parallel
longitudinal reference axes: One is the centroidal axis, and the other is the shear
center axis. The column load P must be placed at the centroid to induce
a uniform compressive stress over the entire cross section. Transverse loads for
pure bending must be placed along the shear center axis in order to not induce
unintended torsional response. Since the cross sectional rotation is measured by
the rotation about the shear center axis, the only way not to generate unin-
tended torsional moment by the transverse load is to place the transverse load
directly on the shear center axis so as to eliminate the moment arm.

[t is assumed that the member ends are simply supported for simplicity so
that displacements in the x- and y-directions and the moments about these
axes vanish at the ends of the member. Hence,

u=u"=v=v"=0 atz =0 and /¢ (6.3.1)
The member ends are assumed to be simply supported for torsion so that the

rotation with respect to the shear center axis and warping restraint are equal
to zero at the ends of the member. Thus

p=¢" =0 (6.3.2)
P

d Clxp.yo)

N|
>

X0 z
'—’l C: centroid

S: shear center

—~ i

Figure 6-1 Flexural-torsional buckling deformation
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In order to consider a meaningful warping restraint, the member ends must
be welded (not bolted) thoroughly with thick end plates or embedded into
heavy bulkhead with no gap at the ends. These types of torsional boundary
conditions are not expected to be encountered in ordinary construction
practice.

Strain energy stored in the member in the adjacent equilibrium
configuration consists of four parts, ignoring the small contribution of the
bending shear strain energy and the warping shear strain energy: the
energies due to bending in the x- and y-directions; the energy due to
St. Venant shear stress; and the energy due to warping torsion. Thus

1/ 1t e
U= _/ EL(4")? dz+—/ EL(/")? dz+—/ GKr(¢')* dz
2 0 2 0 2 0
1 /
+Z/Em@0%k (6.3.3)
0

The loss of potential energy of external loads is equal to the negative of
the product of the loads and the distances they travel as the column takes an
adjacent equilibrium position. Figure 6-2 shows a longitudinal fiber whose
ends get close to one another by an amount A;. The distance A, is equal to
the difference between the arc length S and the chord length £ of the fiber.
Thus

V:—/AWM (6.3.4)
A

Fiber deformations due to buckling
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As shown in Fig. 6-2 when the x and y displacements of the lower end of
a differential element dz of the column are designated as # and 7, then the
corresponding displacements at the upper end are u + du and v + dv. From
the Pythagorean theorem, the length of the deformed element is

s = \/(dn)2+ (dp)? + (dz)* = \/(%)2 + <g>2+1 dz (6.3.5)

In Section 1.6 it was shown that the binomial expansion can be applied to

Eq. (6.3.5) if the magnitude of the derivatives is small compared to unity.
Hence,

il 2+ i 2+1d* L(dn Z—i-l @ 2+1d (6.3.6)
dz dz =7 2\4= 2\dz = o
Integrating Eq. (6.3.6) gives

S_"ldazldvzld 37
—/0[5@ +z<d—z)+]z (©-37)
A, =S E—EK@Z @Zd 6.3.8
== @) (@) )= e

from which

Figure 6-3 Lateral translation of longitudinal fiber due to rotation about shear center
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where % and 7 are the translation of the shear center u and v plus additional
translation due to rotation of the cross section about the shear center. The
additional translations du and dv, in the x- and y-directions, are denoted, as
shown in Fig. 6-3 by —a and b. From the geometry of the figure, it is evident
that PP’ = 1, a = r¢p sin o, and b = r¢ cos a.

Since x = r cos o and y = rsin @, one may also write —a = —y¢ and
b = x¢. Hence, the total displacements of the fiber are

U= u—yp
V=v+x¢p

(6.3.9)

Substituting Eq. (6.3.9) into Eq. (6.3.8) yields

L)) e n(®)
QRN
A A ) e n
1 T T

In order to simplify Eq. (6.3.11), the following geometric relations can be
used:

[dA =A, [ydA = yyA, [xdA = xoA
A A A
(6.3.12)

J(®+)?)dA = L+ L, = A
A

where rj is polar radius of gyration of the cross section with respect to the
shear center. It should be noted that the shear center is the origin of the
coordinate system shown in Fig. 6-3. Hence,

)
(@)
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The total potential energy functional 7 is given by the sum of Eq. (6.3.3)
and Eq. (6.3.13) as

I = U(Eq.(6.3.3)) + VV(Eq.(6.3.13)) = /F(z, u Vgl "V @) dz
14

(6.3.14)

According to the rules of the calculus of variations, II will be stationary
(minimum) if the following three Euler-Lagrange differential equations are
satistied:

OF d OF d* OF

G deod a2 aw

OF d OF d* OF

o e T =0 (6.3.15)
OF _d OF @ OF
9 dz ¢ d=2 99"
Execution of Eq. (6.3.15) gives
ELu" + Pu" — Py,¢” = 0 (6.3.16a)
ELv" 4+ P/ + Pxod” = 0 (6.3.16b)
EL,¢" + (7P — GK1)¢" — yo P 4+ xoPy" = 0 (6.3.16¢)

These three differential equations are the simultaneous difterential equations
of torsional and flexural-torsional buckling for centrally applied loads only.
Each of the three equations in Eq. (6.3.16) is a fourth-order differential
equation. Hence, the system must have 12 (4 X 3) boundary conditions to
determine uniquely the integral constants.

Equations (6.3.16) are linear and homogeneous, and have constant
coefticients. Their general solution in the most general case can be obtained
by means of the characteristic polynomial approach. Assume the solution to
be of the form,>

. . Tz .
u = ASIHT’ v = BSIHT’ ¢ = CSIHT
where A, B, and C are arbitrary constants. Substituting derivatives of these
functions into the differential equations (6.3.16) and reducing by the
common factor sin(mz/f), one obtains

3 Vlasov (1961) shows this is indeed the solution of the eigenfunctions for a simply supported column;
see p. 271.
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(ELk* — P)A+ y,PC = 0
(ELk* — P)B — xoPC = 0 (6.3.17)
yoPA — xoPB + (EL,k* + GK1 — i2P)C = 0

where k* = 72/
For a nontrivial solution for A, B, and C, the determinant of the system
of homogeneous equations must vanish. Thus

P, —P 0 YoP
0 P—P —xP | =0 (6.3.18)
wP  —xoP  15(Py—P)
where
_ wEL  ®EL 1 ?
Px — 62 s Ly — 62 ,p¢ - % EIWE_Z_‘_ GKT (6319)
Expanding Eq. (6.3.18) gives
P52 P2
(Py — P)(Py — P)(Py — P) — (P, — P) r20 = (Pe=P)—5* 0 —
0 0
(6.3.20)

The solution of the above cubic equation gives the critical load of the

column.

Case 1: If the cross section is doubly symmetrical, then xg = yp = 0, and
Eq. (6.3.20) reduces to

(Py = P)(Py = P)(Py — P) = 0

The three roots and corresponding mode shapes are:

m?EL .
P, = P, = o A # 0,B = C = 0= pure flexural buckling
w2 EI, .
P, = P, = o B # 0,A = C = 0= pure flexural buckling
1 (7*El,
Pﬂ == P¢ :r—z £—2+GKT .
0

C # 0,A = B = 0= pure torsional buckling
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Coupled flexural-torsional buckling does not occur in a column with a cross
section where the shear center coincides with the center of gravity. Doubly
symmetric sections and the Z purlin section have the shear center and the
center of gravity at the same location.

Example Consider a pinned column (W14 X 43) of length ¢ = 280
inches. Use E =29 x10° ksiand G = 11.2 x 10> ksi
For W14 x 43, [, =428 in*, [, =452in*, Ky =1.05in*, I, = 1,950 in °

mEL,  m x 29 x 10° x 45.2

mEL,  m x 29 x 10° x 428 ,
P, = n = 807 = 1,563 kips

= [(Ic+ 1,)/A]"% = [(428 +45.2)/12.6]'/* = 6.13in

2 X 29000 x 1950
2802

1
Py = —(11200 x 1.05 +

0 ) = 505 kips

Usually in a column fabricated of a W section, torsional buckling is not
checked as it is likely to buckle with respect to the weak axis.

Case 2: If there is only one axis of symmetry as shown in Fig. 6-4, say
the x axis, then shear center lies on the x axis and y, = 0. Then Eq. (6.3.20)

reduces to
P2x2
(P, — P)|(Py — P)(Pg — P) — ygo =0
This equation is satisfied either if
P, = P,
or if
P’x2
(P = P)(Py — P) =32 = 0
0

The first expression corresponds to pure flexural buckling with respect to
the y axis. The second is a quadratic equation in P and its solutions
correspond to buckling by a combination of flexure and twisting, that is,
flexural-torsional buckling. The smaller root of the second equation is

1
Pp o = ﬁ[% + P, — \/(P¢ + P,)? — 4KDP,Py
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where

£
N\

Figure 6-4 Singly symmetric sections

S C N 46',
—

Example For the simply supported column of a singly symmetric hat
section shown in Fig. 6-5, develop the elastic buckling strength envelope for
the data given. Section and material properties are:

A = 6bt, I, = 7.3330°t, I, = 1.167b°1, I, = 0.5915f,
Ky = 2be, 17 = 2.086b*, t = 0.11in, b/t = 10
gy, = 32ksi, E = 10,300 ksi, G = 3,850 ksi

where terms having > are neglected in the computation of I and I,.

P() = (TyA
P, E\ [(b\?
— = 12.062( — | { -
P() ay J4
P)’

()6
1.9196 — ) | -
PO ay J4

-
t=0.1" constant y b
A
C

| &
L A
R —

S

O
N
S

1

I

—_

Figure 6-5 Hat section
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Results are tabulated in Table 6-1 and plotted in Fig. 6-6. As can be seen
from Fig. 6-6, the flexural-torsional buckling strength controls the lowest
critical load for short columns until the Euler buckling load takes over at
a longer column length. It is particularly ominous for cross sections where
warping constants vanish, for which the pure torsional buckling load is
independent from the column length.

Case 3: If there is no axis of symmetry, then xy# 0, y, # 0 and Eq. (6.3.20)
cannot be simplified.

In such cases, bending about either principal axis is coupled with both
twisting and bending about the other principal axis. All the three roots to
Eq. (6.3.20) correspond to torsional-flexural buckling and are lower than all
the separable critical loads. Hence, if P, < P, < Pg, then

P, <P, < Py < Py

Table 6-1 Comparison of flexural-torsional buckling analysis

=1 =10
Exact STSTB % Error Exact STSTB % Error
Py (kips) 23.67 23.65 0.084 3.890 3.916 0.690
P, (kips) 517.80 518.00 0.039 5.178 5.180 0.035
P, (kips) 82.60 82.64 0.048 0.826 0.826 0.051
Pr _ E (kips) 23.30 23.32 0.085 2.815 2.828 0.450

Note: Only four elements were used in STSTB (Yoo 1980). For t = 0.1 in.

50 100
Figure 6-6 Buckling strength envelope, hat section
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Example For the simply supported column of an unequal leg angle,
L8 x 6 x 1/2, shown in Fig. 6-7, develop the elastic buckling strength
envelope. Use E = 29 x 10° ksi and G = 11.2 x 10> ksi.

Neglecting the fillet or corner eftect, SECP gives the following section

properties:
I, = 54.52in*, I, = 11.36 in*, K1 = 0.563in*, I, = 0,
o = 4.02in,x) = 2.15in,y, = —1.33 in.

In this case the cubic equation, Eq. (6.3.23), must be solved for each set
of critical loads, Py, P,, Pg. This can be best accomplished by utilizing
Maple® with Exel. As expected, the lowest elastic buckling load is
controlled by the flexural-torsional buckling as shown in Fig. 6-8.

2020 Y

133"
c Y

T

<«

2.15"
Figure 6-7 Unequal leg angle

100 [~

1 1
50 100 150 200 250

| | |

£ (in)
Figure 6-8 Buckling strength envelope, unequal leg angle
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Torsional buckling and flexural-torsional buckling are particularly
onerous in cold-formed steel design because of the thin gages utilized, which
in turn yield lower torsional rigidities. A series of research projects sponsored
by the American Iron and Steel Institute have produced rich research results
in the area. Chajes and Winter (1965) is a good example of this effort.

6.4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING
UNDER THRUST AND END MOMENTS

In the previous section, the total potential energy functional of a column for
torsional and flexural-torsional buckling expressed with respect to the shear
center was derived. When it is desired to express the same in the centroidal
coordinate system, it can be done readily, provided that the sign of xy and
yo needs to be reversed as they are defined in two separate coordinate
systems (this time they are measured from the centroid). Hence,

U = 1/651 u 2d +1/£El v 2d —l—l/éGK LANY
2, T\dz2 =75 o \d=? =72 0 "\ dz =
1 y4 d2¢ 2
— | EL(Z2) 4
+2/0 <d22> =

P [\ (N, (dp)? du\ [ d¢
== K@) * @ o (E) i @ (E)
dv\ de

It can be seen from Eq. (6.4.1) that the sign of xy and y is reversed from that
in Eq. (6.3.13). It should be noted that rj is the polar radius of gyration of
the cross section with respect to the shear center.

Although the difterential equations for torsional and flexural-torsional
buckling have been successfully derived in the previous section with the
coordinate center located at the shear center as was done by Goodier (1941)
and Hoft (1944), the same equations, except the sign of xg and yy, can be
derived with the coordinate center located at the centroid. Also, it may be
informative to examine the detailed mechanics in the neighboring equi-
librium position instead of relying blindly on the calculus of variations
procedure for the derivation of the differential equations.
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6.4.1. Pure Torsional Buckling

In order to show how a compressive load may cause purely torsional
buckling, consider a column of a cruciform with four identical thin-walled
flanges of width b and thickness ¢ as shown in Fig. 6-9. As demonstrated by
Case 1 in the previous section, the torsional buckling load will be the lowest
for the cruciform column unless the column length is longer than 40 times
the flange width where the thickness is 5% of the width.

It is imperative to draw a slightly deformed configuration of the column
corresponding to the type of buckling to be examined (in this case, torsional
buckling). The controidal axis z (which coincides with the shear center axis
in this case) does not bend but twists slightly such that mn becomes part of
a curve with a displacement component of v in the y-direction. As has been
illustrated in Fig. 5-4, the membrane force times the second derivative
produces a fictitious lateral load of intensity —Pd?v/dz>. Consider an
element mn shown in Fig. 6-9 in the form of a strip of length dz located at
a distance r from the z-axis and having a cross sectional area tdr. The
displacement of this element in the y-direction becomes

v =rd (6.4.2)

The compressive forces acting on the ends of the element mn are —atdr,
where ¢ = P/A. The statically equivalent fictitious lateral load is
then —(otdr)(d*v/dz?) or — (otrdr)(d*¢/dz*). The twisting moment

otdr

]

X

Figure 6-9 Pure torsional buckling (after Timoshenko and Gere, Theory of Elastic
Stability, 2nd ed., McGraw-Hill, 1961). Reproduced by permission.
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about the z-axis due to this fictitious lateral load acting on the element mn is
then (—a)(d*¢/dz?)(dz)(t)(r*dr). Summing up the twisting moments for
the entire cross section yields

d=z? d=z?

< <

d? 42 d?
_ .0 dz/ Py = —g 2 dz/ rPdA = —a—f dzI,  (6.4.3)
A A dZ

where Ij is the polar moment of inertia of the cross section with respect to
the shear center S, coinciding in this case with the centroid. Recalling the
notation for the distributed torque, one obtains

me = —a —= I (6.4.4)

Substituting Eq. (6.4.4) into Eq. (5.8.23) yields
ElL,¢" — (GKr — aly)¢” = 0 (6.4.5)
For column cross sections in which all elements meet at a point such as that

shown in Fig. 6-9, angles and tees, the warping constant vanishes. Hence, in
the case of torsional buckling, Eq. (6.4.5) is satisfied if

GKr —aly = 0

which yields

GKr  (43)°G G2
I (43 P

For cases in which the warping constant does not vanish, the critical

o (6.4.6)

compressive stress can also be obtained form Eq. (6.4.5). Introduce k¥* =
(¢ly — GK7)/(EIL,) into Eq. (6.4.5) to transform it into ¢ + k*¢” = 0,
a similar form to a beam-column equation. The general solution of this
equation is given by ¢ = asin kz + b cos kz + ¢z + d. Applying boundary
conditions of a simply supported column gives ¢ = asin k{ = 0, from

which k¢ = nmr. Substituting for k yields
ek + P (6.4.7)
Oy = — —p Elw ST
L\ TR

which is identical to Eq. (6.3.19) obtained by the calculus of variations
procedure in the previous Section as it should be.

6.4.2. Flexural-Torsional Buckling

Consider an unsymmetrical section shown in Fig. 6-10. The x and y are
principal axes, and xy and )y are the coordinate of the shear center
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) ‘

Figure 6-10

S measured from the centroid C. During buckling the centroid translates
to C' and then rotates to C’. Therefore, the final position of the centroid
is u+yopand v — xo¢. If only central load P is applied on a simply
supported column, the bending moments with respect to the principal
axes are

M, = —P(v — xo¢) and M, = —P(u+ yy0)

The sign convention for M, and M, is such that they are considered positive
when they create positive curvature

ELW" = +M, = —P(v — x0¢) (6.4.8)

ELi" = +M, = —P(u+y,¢) (6.4.9)

Consider a small longitudinal strip of cross section tds defined by
coordinate x and y as was done in the case of pure torsional buckling. The
components of its displacements in the - x and y directions during buckling
are u + (yy — ¥)¢ and v — (xp — x)¢, respectively. Recalling the procedure
llustrated in Fig. 5-4, the products of the compressive force acting on the
slightly bend element, otds and the second derivative of the displacements
give a fictitious lateral load in the x- and y-directions of intensity

2

— (ot T+ (v~ )]

d2
— (otds)——[v — (x0 — x)¢]
dz
These fictitious lateral loads produce twisting moment about the shear
center per unit length of the column of intensity
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2
ime = ~(o1ds) 5l + (0 = 1)l 00— 7)

d2
—l—(atds)g[v — (x0 — x)P](x0 — x)

Integrating over the entire cross-sectional area and realizing that

0’/ tds = P, /xtds :/ytds =0, /yztds = I,
A A A A

/xztds =1, b= Lx+1y+A(x%+y%)
A

one obtains
m, = /dmZ = P(xot" —you") — rqu')” (6.4.10)
A

where 17 = Iy/A.
Substituting Eq. (6.4.10) into Eq. (5.8.23) yields

EL,¢" — (GKy — i2)¢" — xoPV" + y P’ = 0 (6.4.11)

Equations (6.4.8), (6.4.9), and (6.4.11) are the three simultaneous differ-
ential equations for torsional, flexural-torsional buckling of columns with
arbitrary thin-walled cross sections. They are identical to Eq. (6.3.16)
derived in the previous section as expected, except the signs of x and y are
reversed as they are measured from the opposite reference point.

6.4.3. Torsional and Flexural-Torsional Buckling under
Thrust and End Moments

Consider the case when the column is subjected to bending moments M,
and M, applied at the ends in addition to the concentric load P. The bending
moments M, and M, are taken positive when they produce positive
curvatures in the plane of bending. It is assumed that the effect of P on the
bending stresses can be neglected and the initial deflection of the column
due to the moments is considered to be small. Under this assumption, the
normal stress at any point on the cross section of the column is independent
of z and is given by

o= ————2_ (6.4.12)
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As is customarily done in the elastic buckling analysis, any prebuckling
deformations are not considered in the adjacent equilibrium condition.
Additional deflections u and v of the shear center and rotation ¢ with respect
to the shear center axis are produced during buckling, and examination is
being conducted on this new slightly deformed configuration. Thus, the
components of deflection of any longitudinal fiber of the column are
u+ (o — )¢ and v — (xo — x)¢. Hence, the fictitious lateral loads and
distributed twisting moment resulting from the initial compressive force in
the fibers acting on their slightly bent and rotated cross sections are obtained
in a manner used earlier.

2

G = —/A(atds)ddz[qu(yo L
2

= — /A (Utds)%[f/ — (x0 — x)¢]

y4

m. = —/Awtds)"’ e+ 00 = )80 — )

d=2
d2
-I—/ (Utds)d [v— (x0 — x)P](x0 — x)
A Z
Substituting Eq. (6.4.12) into the above equations and integrating yields
d2u ¢
Ix = — d ) (Pyo Mx)@
d*v ¢
¢ = P+ (Pxo — My)@
du dv ¢
m. = —(Pyy — My)— ye + (Pxo — My)@ — (M8, + Mg, + rgp)d—zz

where the following new cross-sectional properties are introduced:

1
8, = I—(/AySdAJr/szydA> — 2y, (6.4.13
X
1 3 2
B, = — x’dA+ | xy*dA | — 2x0
L\ Ja A
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The three equations for bending and torsion of the column are
ELu" + Pu" + (Py, — My)¢" = 0 (6.4.14)
ELv" + PV — (Pxg — My)¢" = 0 (6.4.15)

ElL,¢" — (GKy — M8, — MyBy, — 15P)¢" + (Pyg — M)
— (Pxg — My)v" =0 (6.4.16)

These are three simultaneous differential equations with constant coeffi-
cients. Hence, the critical values of the external forces can be computed for
any combinations of end conditions.

If the load P is applied eccentrically with the coordinate of the point of
application of P by e, and ¢, measured from the centroid, the end moments
become M, = Pe, and M, = Pe,. Equations (6.4.14) through (6.4.16) take
the form

ELu" + P’ + P(y, — ¢,)¢” = 0 (6.4.17)
ELv" + P — P(xo — e,)¢” = 0 (6.4.18)

EL,¢" — (GKr — PeyB, — Pex8, — i3 P)¢" + Py, — )il
— P(xg — eV =0 (6.4.19)

If the thrust P acts along the shear center axis (xo = e, and yy = ¢,), Egs.
(6.4.17) through (6.4.19) become very simple as they become independent
of each other. The first two equations yield the Euler loads, and the third
equation gives the critical load corresponding to pure torsional buckling of
the column.

If the thrust becomes zero, one obtains the case of pure bending of
a beam by couples M, and M, at the ends. Equations (6.4.17) through
(6.4.19) take the form

ELu" — M¢" = 0 (6.4.20)
ELv" + My¢" = 0 (6.4.21)

EL,¢" — (GK1 — MB, — MyB,)¢" — Mul" + M = 0 (6.4.22)



324 Chai Yoo

Assume the x-axis is the strong axis. If M,, = 0, then the critical lateral-
torsional buckling moment can be computed from

ELu" — M¢" = 0 (6.4.23)
ElL,¢" — (GK1 — MB,)¢" — M = 0 (6.4.24)

If the ends of the beam are simply supported, the displacement functions
for u and ¢ can be taken in the form

A =z (l') Bsi =z
u = Asin— = Bsin—
l l

Substituting derivatives of the displacement functions, one obtains the
following characteristic polynomial for the critical moment:
2
m-EI,
Iz

w2 5
GKr + El s — My ) = MZ = 0 (6.4.25)

Incorporating the following notations

ﬂzEIy 1 2
Py = 7 Py = —(2) GKrt + Elwg
Eq. (6.4.25) becomes
M? + PyBM, — 13P,Py = 0 (6.4.26)

The roots of Eq. (6.4.26) are

P, P\ >
M, = — yf* + \/ <y76x> + 12Dy Py (6.4.27)

If the beam has two axes of symmetry, 8, vanishes and the critical moment

becomes

5 El7r 1 ?
My = £/R2PyPy = £y [2—5— GKT+EI
e 2
T w2
= +— GK El, 6.4.28
7 ( T+ €2> ( )
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where &+ sign in Eq. (6.4.28) implies that a pair of end moments equal in
magnitude but opposite in direction can cause lateral-torsional buckling of
a doubly symmetrical beam.

In this discussion, considerations have been given for the bending of
a beam by couples applied at the ends so that the normal stresses caused by
these moments remain constant, thereby maintaining the governing
differential equations with constant coefficients. If a beam is subjected to
lateral loads, the bending stresses vary with z and the resulting differential
equations will have variable coefficients, for which there are no general
closed-form solutions available and a variety of numerical integration
schemes are used. The computation of critical loads of lateral-torsional
buckling is discussed in the next chapter.
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PROBLEMS

6.1 Develop the buckling strength envelope for a simply supported column
of light gage channel section shown in Fig. P6-1. Material properties
and dimensions of the cross section are as follows:

E=29%x10ksi, G = 11.2x 10°ksi, a = b = 5in, ¢ = 1in, t = 0.1in.
a t: constant
I

b

Figure P6-1

6.2 Develop the buckling strength envelope for a simply supported column
of an unequal leg angle shown in Fig. P6-2. Material properties
and dimensions of the cross section are as follows: E = 29 x 10> ksi,
G=112x10ksi, Ly = 6 in, L, = 4 in, t = 1/2 in.

y

23.9°

—

/

1.27" k !
S
e
1.38"
Figure P6-2

6.3 For the coupled system of differential equations given by Egs. (6.4.23)
and (6.4.24), prove why the solution eigenfunctions are sine functions
for a simply supported beam of a doubly symmetric section. In other
words, state the reason why the eigenfunctions do not include
hyperbolic functions or polynomials.
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7.1. INTRODUCTION

A transversely (or combined transversely and axially) loaded member that is
bent with respect to its major axis may buckle laterally if its compression
flange is not sufficiently supported laterally. The reason buckling occurs in
a beam at all is that the compression flange or the extreme edge of the
compression side of a narrow rectangular beam, which behaves like
a column resting on an elastic foundation, becomes unstable. If the flexural
rigidity of the beam with respect to the plane of the bending is many times
greater than the rigidity of the lateral bending, the beam may buckle and
collapse long before the bending stresses reach the yield point. As long as the
applied loads remain below the limit value, the beam remains stable; that is,
the beam that is slightly twisted and/or bent laterally returns to its original
configuration upon the removal of the disturbing force. With increasing
load intensity, the restoring forces become smaller and smaller, until
a loading is reached at which, in addition to the plane bending equilibrium
configuration, an adjacent, deflected, and twisted, equilibrium position
becomes equally possible. The original bending configuration is no longer
stable, and the lowest load at which such an alternative equilibrium
configuration becomes possible is the critical load of the beam. At the
critical load, the compression flange tends to bend laterally, exceeding the

Stability of Structures © 2011 Elsevier Inc.
ISBN 978-0-12-385122-2, doi:10.1016/B978-0-12-385122-2.10007-7 All rights reserved. 327
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restoring force provided by the remaining portion of the cross section to
cause the section to twist. Lateral buckling is a misnomer, for no lateral
deflection is possible without concurrent twisting of the section.

Bleich (1952) gives credit to Prandtl (1899) and Michell (1899) for
producing the first theoretical studies on the lateral buckling of beams
with long narrow rectangular sections. Similar credit is also extended to
Timoshenko (1910) for deriving the fundamental differential equation of
torsion of symmetrical I-beams and investigating the lateral buckling of
transversely loaded deep I-beams with the derived equation. Since then,
many investigators, including Vlasov (1940), Winter (1943), Hill (1954),
Clark and Hill (1960), and Galambos (1963), have contributed on both
elastic and inelastic lateral-torsional buckling of various shapes. Some of the
early developments of the resisting capacities of steel structural members
leading to the Load and Resistance Factor Design (LRFD) are summarized
by Vincent (1969).

7.2. DIFFERENTIAL EQUATIONS FOR LATERAL-TORSIONAL
BUCKLING

If transverse loads do not pass through the shear center, they will induce
torsion. In order to avoid this additional torsional moment (thereby
weakening the flexural capacity) in the flexural members, it is customary to
use flexural members of at least singly symmetric sections so that the
transverse loads will pass through the plane of the web as shown in Fig. 7-1.
The section is symmetric about the y-axis, and u and v are the components
of the displacement of the shear center parallel to the axes & and 7. The
rotation of the shear center ¢ is taken positive about the z-axis according to
the right-hand screw rule, and the z-axis is perpendicular to the &7 plane.
The following assumptions are employed:

The beam is prismatic.

The member cross section retains its original shape during buckling.
The externally applied loads are conservative.

The analysis 1s limited within the elastic limit.

[ LI S S

The transverse load passes through the axis of symmetry in the plane of
bending.

In the derivation of the governing difterential equations of the lateral-
torsional buckling of beams, it is necessary to define two coordinate systems:
one for the undeformed configuration, x, y, z, and the other for the
deformed configuration, &, 1, ¢ as shown in Fig. 7-1. Hence, the fixed
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o _ _centroidal axis |

Figure 7-1 Coordinate systems and loading w,

coordinate axes, x, y, z, constitute a right-hand rectangular coordinate
system, while the coordinate axes &, 1, ¢ make a pointwise rectangular
coordinate system as the ¢ axis is tangent to the centroidal axis of the
deformed configuration. As the loading will constitute the conservative
force system, it will become necessary to relate the applied load in the fixed
coordinate system to those in the deformed configuration. This can be
readily accomplished by considering the direction cosines of the angles
between the axes shown in Fig. 7-1. These cosines are summarized in Table
7-1. The curvatures of the deflected axis of the beam in the xz and yz planes
can be taken as d?u/dz> and d*v/dz>, respectively for small deflections. M,
and M, are assumed positive when they create positive curvatures;
ELn" = M, and EL,§" = M,.

Since column buckling due to the axial load and the lateral-torsional
buckling of beams under the transverse loading are uncoupled in the linear
elastic first-order analysis, only the transverse loading will be considered in
the derivation of the governing differential equations. Excluding the strain
energy of vertical bending prior to buckling, the strain energy in the
neighboring equilibrium configuration is

l
U= / {Ely(u”)z + EL,(¢")* + GKr(¢')?| d=z (7.2.1)
0

The load w, is lowered by a net distance of y, + [a,|(1 — cos ¢). Since ¢
is small, 1 — cos ¢ = ¢>/2. The vector distance a, is measured from the

Table 7-1 Cosines of angles between axes in Fig. 7-1

X y z
§ 1 ¢ —du/dz
n —¢ 1 —dv/dz

c du/dz dv/dz 1
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y
X <—£
_ Cors
ay /,/"/— \\?S'
&Y Vg1

Figure 7-2 Lateral-torsional deformations under w,

shear center to the transverse load application point. Hence, the loss of the
potential energy of the transverse load w), is

/ - 4
Viy = — / wyysdz—l-%y / Wy dz (7.2.2)
0 0

It is noted that the sign of y, is positive and @, is negative as shown in
Fig. 7-2. It should be noted that the position of the transverse load @, aftects the
lateral-torsional buckling strength significantly. When the load is applied at the
upper flange, it tends to increase the positive rotation of the cross section as
shown in Fig. 7-2, thereby lowering the critical load. This could result in
asignificantly lower critical value than that when the load is applied at or below
the shear center. Although the difference in the critical values is gradually
decreasing following the increase of the span length, the position of the
transverse load should be properly reflected whenever it is not negligibly small.

The first term of Eq. (7.2.2) can be expanded by integration by parts
using the relationships that can be derived from Fig. 7-3.

ZFy =0= _wa+Ql4y+dey+wde

dQuy

= (7.2.3)

wy

FI 33353
X 1 l\be bx
C [

i 0,,+do

M,

wy

ol
' A‘; dz
y

Figure 7-3 Free body of a differential element with w,,
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d
S My =0=+M, - wydzg — (Quy + dQuy)dz — My — dMi,

dMy,

i> = _wa

(7.2.4)

Hence,

14 14 l
de ‘[Q/g dy
— dz = 4 dz = W - w 73d
/0 wyy.az /0 d= Y4z ,Vys]o /0 Q Y d= <
d Py,
=+ M= — | My 7.2.5
M /O e (7.23)

Reflecting any combination of the geometric and natural boundary
conditions at the ends of the beam, the two terms in the above equation
indicated by slashes must vanish. Therefore,

l dZy ay L )
N
Vip = — /0 beg dz + 5/0 wyp~dz (7.2.6)
The term d?y_/dz> represents the curvature in the yz plane; all deformations
being small, the curvatures in other planes may be related as a vectorial sum
indicated in Fig. 7-4 (it can also be seen from Fig. 7-1,y, = v cos ¢ + u sin @)

d? .
y 25 =" cosp+u"singp =" + ¢’ (7.2.7)
z
A
\
\
\
"\ .
¢\’
5 \
d”Ys \
2 —> \
dz \
\
H - - =1
»” -~ - |
e l
-
- ¢ L -d
d’x,
dz*

Figure 7-4 Relationship between u” and v"
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Therefore, the loss of potential energy is

1 - l
a
wa _ _/ be(l/”—i-d)i/l”)dz—i_zy/ wy¢2d2’
0

0
1 l 3 l
= —/ M;,xv”dz—/ be(,bu”dz—i-ay/ wy¢2dz (7.2.8)
0 0 0

The above equation is the change of potential energy from unloaded to the
buckled state. Just prior to buckling, ¢ = u” = 0 and the static potential energy is

/ My, d= (7.2.9)

Hence, the loss of potential energy due to buckling (in the neighboring
equilibrium) is

: " ay ¢ 2
—/ My pu dz—i—z/ wy ¢~ dz (7.2.10)
0 0

The total potential energy functional becomes
InH=u+Vv

/
_ % / [Ely(u”)z—i- EL(¢")"+ GKT(¢/)2] dz
0

4 — 14
N / M;,quu”—l—%y / wyddz (7.2.11)
0 0

In the case when the transverse load w, is considered for a similar
derivation, Fig. 7-5 is used, and a parallel process can be applied. By virtue
of assumption 5, the beam cross section must be doubly symmetric in order
to accommodate both w, and w, simultaneously, and as a consequence,
biaxial bending is uncoupled.

ﬂTHTTUTHﬁ?mwﬂ T
C,
— W is
centroidal axis _ —

_d_ ] __‘controidal axis  — | I ,
U C

ATz , B T\

- X

Figure 7-5 Coordinate systems and loading wy
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The load wy is lowered by a distance x; + |a,|(1 — cos ¢) as shown in
Fig. 7-6. Since ¢ is small, 1 — cos ¢ = ¢?/2. The vector distance @, is
measured from the shear center to the transverse load point.

Hence,

4 — 4
Vix = —/ wxxsdz—l—az—x/ wx(]ﬁzdz (7.2.12)
0 0

It is noted that the sign of x; is positive and 4, is negative as is shown in
Fig. 7-6.

The first term of Eq. (7.2.12) can be expanded by integration by parts using
the relationships that can be derived from Fig. 7-7.

ZFx = _wa+wa+dex+wxdz =0

d wa
dz

= —w, (7.2.13)

d
> My = —My, + wxdzg + (Qux + dQux)dz + My + dMyy = 0

dMy,
— = —Qy (7.2.14)
WX
< y
— cNos
X ,\
ANE
¢

/X QH"X + dQ wx
C 1 I,
l 4

My, +dM,,

Figure 7-7 Free body of a differential element with w;,
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Hence,

l
d M)X d
—/ wxXSdZ —/ Q M / wa xS
0 0
d S )
= + — - My, ——dz 7.2.15
M /0 by dz? ( )

Reflecting any combination of the geometric and natural boundary

conditions at the ends of the beam, the two terms in the above equation
indicated by slashes must vanish. Therefore,

/ M,,y — dz—i—— wx(;')zdz (7.2.16)

The term d’x,/dz> represents the curvature in the xz plane; all deforma-
tions being small, the curvatures in other planes may be related as a vectorial
sum as indicated in Fig. 7-4.

d?x

2 =" cosp—1" sinp=u" — ¢ (7.2.17)
2

Therefore, the loss of potential energy is
¢ g ¢
Vix = _/ Mby(”// - ¢V//)d2 +_x/ wx¢2dz

y4
_ Mbyu "dz + / My dz + — / wed?dz  (7.2.18)
0 0

The above equation is the change of potential energy from unloaded
to the buckled state. Just prior to buckling, ¢ = v” = 0, and the static

potential energy is
4
"
— / Myyu
0

Hence, the loss of potential energy due to buckling (in the neighboring
equilibrium) is

14 - 1
Vi = / Mby¢u’/dz+% / wep?dz (7.2.19)
0 0

For biaxial bending, the total energy functional given by Eq. (7.2.11) can
be extended as
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1 14
=4 (o) e o (o) (o)
0

l /
— / Mpi dz +
0 0

4
_ / F<u//,1/”,¢, ¢/’¢//> d>
0

0

1 J4
Mbyd)V/dZ + 5/ <axwx + C’ywy> ¢2] dz

(7.2.20)

It should be noted that biaxial bending can only be considered for
doubly symmetric sections by virtue of assumption 5. II will be stationary

(minimum) if the following Euler-Lagrange equations are satisfied:

OF d OF d*> OF

o deow a2 aw

OF d OF d*> OF

W =00 a2 o

OF _d OF & oF _
0p dz 0@ d=2 0¢"

Noting that

OF OF OF ,
520, @:0, W:Elyu —be¢

Eq. (7.2.21a) becomes
4
ELu" ——( My¢ ) = 0
Similarly, Eq. (7.2.21b) becomes

, 42
EIxVW + E(Mbyd’) =0

Substituting the followings into Eq. (7.2.21c)
oF
% = —M," + Mbyl/// + <axwx + aywy> ¢
OF

o = GKr¢'

(7.2.21a)

(7.2.21b)

(7.2.21¢)

(7.2.22)

(7.2.23)
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OF "
W — EIW¢

one obtains
Elwgbiv - GKTQS” - be”” + Mbyvﬂ + <Ex1/l/x + aywy> ¢ =0 (7224)

Equations (7.2.22), (7.2.23), and (7.2.24) are general differential equations
describing the lateral-torsional buckling behavior of prismatic straight
beams. The total potential energy functional given by Eq. (7.2.20) can be
readily transformed into matrix eigenvalue problems. When the beam is
subjected to varying loads, in order to make the analysis simple it can be
subdivided into a series of elements subjected to an equivalent uniform load
determined by a stepwise uniform load. Experience has shown that no
more than three subdivisions are satisfactory for most practical engineering
problems. These equations check well with those given by Timoshenko
and Gere (1961)" and Bleich (1952).% It is noted that the sign adopted
herein for positive values of 4, and M, is reversed from that in Bleich
(1952). If the beam is subjected to a transverse load, the resulting bending
moment will become a function of the longitudinal axis, thereby rendering
these differential equations to contain variable coefficients. Hence, no
analytical solution for the critical load, in general, appears possible, and
a variety of numerical integration schemes have been proposed. An
approximate energy method based on an assumed displacement function is
always possible.

7.3. GENERALIZATION OF GOVERNING DIFFERENTIAL
EQUATIONS

If a wide flange beam is subjected to constant bending moment M, only,
the three general governing differential equations (7.2.22 to 7.2.24) are

reduced to
N
EL.u" — — (M, =0
it = 572 (Mixd) (7.3.1)
EL,¢" — GKr¢" — Myl = 0
1 page 245,

2 page 158.
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Vlasov (1961)° pointed out a potential limitation of the governing differ-
ential equations on the lateral-torsional buckling of wide flange beams in
some of the references, including Bleich (1952) and Timoshenko and Gere
(1961). The equations discussed by Vlasov have the form:

Elyu” — My =0

¢ (7.3.2)
EL,¢" — GKr¢' + My’ — My, "u + / M,."udz = 0
0

Integrating the first equation of Egs. (7.3.1) twice, the second equation once,
and applying in the second equation integration by parts ([ Myu'dz =
My’ — fu’be’dz = My — M u —l—bex”udz), one obtains

Elyu” + My = Az+ B

¢ (7.3.3)
EL,¢" — GKy¢' + Myd' — My u + / M, udz = C
0

where A, B, and C are arbitrary integral constants. These integral constants,
as evident from the statical meaning of the transformation of Egs. (7.3.1)
into Egs. (7.3.3), are respectively equal to the variations of the transverse
shear force Q, acting in the initial section z = 0 in the direction of the axis
x, of the bending moment M, with respect to the axis y, and of the torsional
moment M, with respect to the axis z. If the variations of the statical factors,
Qx, M,, and M, vanish in the initial section z = 0, which is the case in
a cantilever at the free end, then the integration constants, A, B, and C are
equal to zero and Egs. (7.3.3) reduce to Egs. (7.3.2).

If the beam has at the ends a rigid or elastic fixing to restrain translation
and rotation, the integration constants, A, B, and C will not vanish and the
general Eqs. (7.3.1) must be used.

7.4. LATERAL-TORSIONAL BUCKLING FOR VARIOUS
LOADING AND BOUNDARY CONDITIONS

If the external load consists of a couple of end moments so that the moment
remains constant along the beam length, then Egs. (7.3.1) become

ELu" — M¢" = 0

v " "o (7.4.1)
ElL,¢ GKr¢ Mu" = 0

3 Pages 326-328.
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Equations (7.4.1) are a pair of differential equations with constant coefti-
cients. Assume u = Asin wz/¢ and ¢ = Bsin wz/{. It should be noted
that the assumed displacement functions are indeed the correct eigen-
functions.” Therefore, one expects to have the exact solution.
Differentiating the assumed functions, one obtains

, A1r T 4 m™\2. ®z 4 m\3 7z
u = —COS——, U = — - sSin—, u = — - COS —
L 0’ 14 0’ 14 0’

v _ 4 m\4 wz
u = £ smg

T Tz m™\2 . 7z m\3 7z
¢ = B—cos—, ¢’ = —B<Z> sin—, ¢ = —B<z) COST,

l
. 4
P = B(%) sin%

Substituting these derivatives into Equations (7.4.1) yields

T\ 2
(?) EIL, M
m\ 2
-M 7 ) Elu+ GKr

Solving this characteristic equation for the critical moment gives

M, = %\/Ely(Elwwz/ﬁz + GK7) (7.4.2)

In the case of a uniformly distributed load w,, the bending moment in
a simple beam as shown in Fig. 7-8 becomes M,(z) = wyz({ — z)/2.
For this load, Egs. (7.3.1) become

Elyui" + %[Z(f —2)¢9]" =0

EL¢" — GKr¢'" + %z(ﬂ 2 =0 (7.4.3)

4 See Vlasov (1961), page 272. As shown earlier in the solution of Problem 6.3, the correct eigen-
function is indeed a sine function.
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Figure 7-8 Simple beam subjected to a uniform load w,

Equations (7.4.3) are coupled differential equations with variable coeffi-
cients. Timoshenko (1910) integrated Eqs. (7.4.3) by the method of infinite
series. The critical load (uf),, is given by

JELGRr
LR i (7.4.4)

(Wyf)cr = €2
The coefficient v depends on the parameter
GKr/?
= T (7.4.5)
EI,

Table 7-2 gives a series of values of 7y; for a wide range of combination
of the load positions and m for beams with doubly symmetric sections.

If the beam is loaded by a concentrated load at its midspan as shown in
Fig. 7-9, the bending moment becomes M,(z) = Pz / 2 For this load, Egs.
(7.3.1) become

P
EIyu”’—l—E(zd)”) =0

b (7.4.6)
ElL,¢" — GKr¢" —|—52u” =0

Table 7-2 Values of vy, for simply supported I-beam under uniformly distributed
load

m
Load at 0.4 4 8 16 32 64 128 256 512
TF 921 359 30.1 271 259 2577 260 264 269
SC 1442 529 425 36.1 325 305 294 289 28.6
BF 226.0 782 60.0 482 408 363 334 316 305

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.
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7
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»

y
Figure 7-9 Simple beam subjected to a concentrated load P

Equations (7.4.6) are coupled differential equations with variable coeffi-
cients. Timoshenko (1910) integrated Egs. (7.4.6) by the method of infinite
series. The critical load P, is given by

ELGKr
p, = L2VEVERT (7.4.7)

62

The stability coefficient v, depends on the parameter m defined by Eq.
(7.4.5). Table 7-3 gives a series of values for a wide range of combination of
v2 and m for beams with doubly symmetric section.

If both ends fixed beams are subjected to a uniformly distributed load,
the critical loads may be expressed by Eq. (7.4.8).

JELCK
(wyl), = BV ZrRT (7.4.8)

62

The stability coefficient vy3 depends on the parameter m defined by
Eq. (7.4.5). Table 7-4 gives a series of values for a wide range of combi-
nations of y3 and m for beams with doubly symmetric sections.

If both ends fixed beams are loaded by a concentrated load, the critical
load may be expressed by Eq. (7.4.9).

VELGK
P, = % (7.4.9)

Table 7-3 Values of v, for simply supported I-beam under concentrated load at the
midspan

m
Load

at 0.4 4 8 16 32 64 128 256 512
TF 50.7 19.9 16.8 15.3 14.7 14.8 15.0 15.4 15.7
SC 86.8 31.9 25.6 21.8 19.5 18.3 17.7 17.3 171

BF 1488 509 38.7 308 258 2277 207 194 18.6

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.
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Table 7-4 Values of v3 for both ends fixed I-beam under uniformly distributed load

m
Load at 0.4 4 8 16 32 64 128 256 512

TF 610.6 206.8 156.7 125.0 107.0 989 97.1 98.7 101.6
SC 1316.8 434.1 320.4 2444 1954 165.1 146.8 135.8 128.8
BF 2802.0 900.3 647.2 482.0 352.6 2727 220.0 1854 1624

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.

The stability coefficient 4 depends on the parameter m defined by Eq.
(7.4.5). Table 7-5 gives a series of values for a wide range of combinations of
v4 and m for beams with doubly symmetric sections.

For beams with simple-fixed end conditions subjected to a uniformly
distributed load, the critical load may be expressed by Eq. (7.4.10).

(wyh), = BVrET ViinKT (7.4.10)
The stability coefficient 5 depends on the parameter m defined by
Eq. (7.4.5). Table 7-6 gives a series of values for a wide range of combi-
nations of 5 and m for beams with doubly symmetric sections.

If beams with simple-fixed end conditions are loaded by a concentrated
load, the critical load may be expressed by Eq. (7.4.11).

Ye+/EL GKT
—a (7.4.11)
The stability coefficient v depends on the parameter m defined by

P, =

Eq. (7.4.5). Table 7-7 gives a series of values for a wide range of combi-
nations of y¢ and m for beams with doubly symmetric sections.

The stability coefticients 1 through ¢ given in Tables 7-2 through 7-7
have been generated by STSTB (Yoo, 1980). For other combinations of
loading conditions and boundary conditions not listed in these tables,

Table 7-5 Values of v4 for both ends fixed |-beam under concentrated load at the
midspan

m
Load at 0.4 4 8 16 32 64 128 256 512
TF 2384 809 615 525 423 393 39.0 399 429
SC 530.9 1752 1293 98.7 789 66.8 59.5 552 525
BF 1210.2 3714 2789 1941 1445 111.3 895 754 66.2

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.
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Table 7-6 Values of v5 for simple-fixed I-beam under a uniformly distributed load

m
Load at 0.4 4 8 16 32 64 128 256 512
TF 259.0 92.4 73.0 61.6 56.0 542 543 553 565
SC 468.3 160.4 1223 97.8 82.8 74.0 69.0 66.1 643
BF 838.8 2759 203.0 153.8 121.4 100.6 873 78.7 73.0

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.

Table 7-7 Values of v for simple-fixed I-beam under concentrated load at the midspan

m
Load at 0.4 4 8 16 32 64 128 256 512
TF 129.1 46.1 36.5 309 282 274 277 285 294
SC 257.4 88.0 67.0 535 4511 402 373 356 345
BF 499.6 160.6 118.1 89.2 70.0 574 492 438 40.2

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.

reasonably accurate (depending on the number of elements modeled) elastic
lateral-torsional buckling loads can be determined by STSTB that can be
downloaded from the senior author’s Web pages. Access codes are available
at the back flap of the book.

Similar tables are given for v; and 5 in Timoshenko and Gere (1961).”
The values of yq and v in Tables 7-2 and 7-3 are very close to those given by
Timoshenko and Gere (1961). It is of interest to note that the transverse load
point has a significant impact on the critical lateral-torsional buckling load in
beams with very short spans or unbraced lengths, but it tapers off for long and
slender beams. Perhaps Australia is the only nation that has a design code that
reflects the effect of the transverse load application point in computing the
critical load. AISC (2005)° directs the designers’ attention to the Commentary
to Chapter 5 of the SSRC Guide’ (Galambos 1998) when the loads are not
applied at the shear center of the member. Its adverse effect is particularly
onerous when the loads are applied at the top flange of the long unbraced
cantilever. In practical design, however, determining the transverse load
application point is problematic as beams are subjected to some combination of
dead and live loads. For beams with very short spans or unbraced lengths, the

See pages 264 and 268.
See page 16.1-274.
See page 207.

~N O U
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implication of this significant difference due to the transverse load points may
become a mute issue because the elastic lateral-torsional buckling moment is
likely to be greater than the full-plastic moment.

7.5. APPLICATION OF BESSEL FUNCTION TO LATERAL-
TORSIONAL BUCKLING PROBLEMS

For a uniaxial bending problem, Eq. (7.2.24) takes the form
EL,¢" — GKr¢" — Mpad” + ayuyd = 0 (7.5.1)

There is no closed-form solution available for the coupled equations of
Egs. (7.2.22) and (7.5.1) if the moment is not constant, and appropriate
numerical solution techniques must be used. For a narrow rectangular
section, or any section of which warping constant, I, is equal to zero, it is
only necessary to omit the term in the equation containing the warping
constant.

Consider as the first example lateral buckling of a cantilever beam
subjected to a concentrated load P applied at its free end at the centroid as
shown in Fig. 7-10.

Integrating Eq. (7.2.22) twice with respect to z, results in the following
form:

ELu" — My = Az + B (7.5.2)

The integral constants A and B vanish for the reasons discussed in Section
7.3. The moment of the vertical load P with respect to axes through the
centroid parallel to the x, y, and z axes are

My =Pl —2) M, =0 M. = Plul)—u(z)] (7.5.3)

Taking the components of moments in Egs. (7.5.3) about the &, 7, ¢ axes
by using Table 7-1 for the cosines of the angles between the axes yields

M; = Pl—z2) My = ¢P({—=2) M, = —P({— z)g + Plu(€) — u(z)]

(7.5.4)

S
N

y
Figure 7-10 Cantilever beam subjected to a concentrated load at its free end
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Substituting these values into Eqs. (7.5.2) and (5.8.22) gives

du

; (7.5.5)
—GKr¢ — Pl — z)d—” + Plu(l) — u(2)] = 0
z
Differentiating the second equation of Eq. (7.5.5) and eliminating d?u/dz>
gives
0w, P 2
GKr¢" +—U—2)"¢p =0 (7.5.6)
EI,
Introduce new variables
s=40—=z (7.5.7)
and
2 _ P2
= —— (7.5.8)
EIL,GKy
to give
d2
+¢ +22p = 0 (7.5.9)
ds?

Equation (7.5.9) has a variable coefficient. This homogeneous differential
equation has nontrivial solutions only for discrete values of the parameter
P The smallest such value is P,. Equation (7.5.9) is a typical Bessel
differential equation classified by Bowman (1938)® as class (iv). The
following substitution will reduce Eq. (7.5.9) to a Bessel equation as per
Bowman (1938) and Grossman and Derrick (1988). Let u = ¢/s and
r = ks?>/2. Then

du du/ds ¢’ ¢

dr — dr/ds  ksys  2ks2\/s

d (du
Pu ds\ dr ¢ 2¢/ 5 ¢

drx  dr/ds k252\/§_k253\/§+1 k2s*\/s

Hence

du du  s\/s 1 ¢
20U A SVS o L@
P R AR TN

8 See page 118.
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and substituting Eq. (7.5.9) for ¢, one obtains

4> d 1
rz—”+r—”:s\/( P2+~ L — 2

s ¢ 1
16 /5 FRVARTS

e

or
Hd%u du 5 1
r—s4+r—+|r——|u = (7.5.10)
¥

which is the Bessel equation of order 1/4. Since Eq. (7.5.10) has the general

solution
u(r) = AJy4(r) + By 4(r),
Equation (7.5.10) has the solution

k k
p(s) = \/E[A1J1/4 <5s2> + Az 14 <§s2>} (7.5.11)

The constants of integration A; and A in the general solution (7.5.11) are
determined from the proper end boundary conditions. From Bowman (1938)
and Grossman and Derrick (1988), one may extract useful relationships

Ak N\ [k EO\Y4 (e ,\'A

167) mn(G?) = 1(G) renGe) e

d b 1/4 k L 1/4 L 1/4
il(67) G2)] = [-32) anlze) e s

For the cantilever beam shown in Fig. 7-10, the boundary conditions are
¢ = 0 (no twisting) at s = ¢ (built-in end) and
¢
ds
From Egs. (7.5.11) and (7.5.12),

d k\ /4 k o\ k k o\ [k
=20 1G7) 1 (37) () (3]

For s = O,],3/4(0)¢O and]3/4(0) = 0 according to Maple®. Hence A
must be equal to zero to satisfy the second boundary condition given in
Eq. (7.5.13). Then, from Eq. (7.5.11),

= 0 (no torque) ats = 0 (free end) (7.5.13)
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k
The first boundary condition of Eq. (7.5.13) applied to Eq. (7.5.14) gives
k
0= A 7.5.15
J-1/4 <2 > ( )

The smallest value to satisfy Eq. (7.5.15) according to Maple® is k £%/2 =
2.0063. Then k = 4.0126/>. From which

4.0126

P(?’ == T\/BIyGKT (7516)

This result, Eq. (7.5.16), was obtained by Prandtl (1899).

Consider, as another example of applying the Bessel equation, a simply
supported beam of narrow rectangular section subjected to a concentrated
load applied at the centroid at the midspan as shown in Fig. 7-9. For
convenience, the origin of the coordinate system is moved to the midspan.
The moments with respect to axes through the centroid of the cross section
parallel to the x, y, and z axes are

P/l p

Mg:—EG—z>My:O M. = —[u(0) = u(z)]  (7.5.17)

Taking the components of moments in Eqs. (7.5.17) about the &, 7, ¢ axes
by using Table 7-1 for the cosines of the angles between the axes yields

Pl Pl

P/? d
A@:—§—%i—mmyw@] (7.5.18)
Substituting these values in to Egs. (7.5.2) and (5.8.22) gives

Pu P
EIy@—f—E —-—— Z (]5:0

2
(7.5.19)
kg + (L )% Pro) —u(z) = 0
- —|z—z2)——=u0) —u(z)] =
™ T5\5 d= 2
Eliminating d?u/dz* in Egs. (7.5.19) gives
P> [/ 2

GKr¢" +—(=— =0 7.5.20
¢ +4Ely<2 z) ¢ (7.5.20
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Introducing the variable t = ¢/2 — z and the notation

p2
2 __
e — (7.5.21)
4EL, GKt
to give

¢
— + PP =0 7.5.22
2 Tkre ( )

Equation (7.5.22) is identical to Eq. (7.5.9). The general solution of
Eq. (7.5.22) 1s

¢ = Vi[A1J1s(k) + Aoy (k)] (7.5.23)
For a simply supported beam, the proper boundary conditions are
d¢ l
=0 att =0 — =0 att == 7.5.24
¢ a " a > ( )

In order to satisfy the first condition of Eq. (7.5.24) (]_1/4(0) # 0,
J1/4(0) = 0), A2 = 0. Then,

d—¢—2§1/4/1 Etz i Etz =0 tt—g
i “\2 "\2 Joapa\pt) =0 atr =35

Hence, J_3/4((k/8) 2) = 0.
The parameter for the first zero of the Bessel function of order —3/4 is
found from Maple® to be 1.0585, which leads to
16.94,/EI,GKr

P, = 2

It can be readily recognized that the computer-based modern matrix

(7.5.25)

structural analysis (such as STSTB) and/or finite element analysis would be
superior to the longhand classical solution techniques with regard to speed
of analysis as well as the versatility on the loadings and boundary conditions
that can be accommodated. Some of the really old classical methods of
analysis are to be viewed as historical interest.

7.6. LATERAL-TORSIONAL BUCKLING BY ENERGY METHOD

The determination of the critical lateral-torsional buckling loads by long-
hand classical methods is very complex and tedious, particularly for
nonuniform bending, as this will result in a system of differential equations
with variable coefficients. In this section, the Rayleigh-Ritz method will be
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used to determine approximately the critical lateral-torsional buckling loads
of beams following the general procedures presented by Winter (1941) and
Chajes (1974). In any energy method, it is required to establish expressions
for the strain energy stored in the elastic body and the loss of potential
energy of the externally applied loads. It is relatively simple to come up with
the expression for the strain energy by

U= (1/2)/V<7Tedu

where g’ = transpose of the stress vector, & = strain vector, and v = volume of’
the body. Although the loss of the potential energy of the applied loads is
simple in concept as being the negative product of the generalized force and
the corresponding deformation during buckling, the expression for the
corresponding deformation usually requires considerable geometric analyses.

7.6.1. Uniform Bending

Consider a prismatic, simply supported doubly symmetric (for simplicity)”
[-beam subjected to a uniform bending moment M, as shown in Fig. 7-11.
The bending moment M, shown is negative as it produces negative curvature.
The notion of the buckling analysis of the beam is to examine equilibrium in
the slightly buckled (lateral-torsional deformations of the beam) configura-
tion. Therefore, the strain energy associated with vertical bending or pre-
buckling static equilibrium should be excluded from Eq. (6.3.3) in the
buckling analysis because it belongs to a totally different equilibrium
configuration. The strain energy stored in the beam during buckling consists
of two parts: the energy associated with bending about the y-axis and the
energy due to twisting about the z-axis. Thus the strain energy is

1 ¢ 1 ¢ 1 l
U = _/ Ely(u”)2dz—|—§/ GKT(qb/)zdz—l—E/ EL,(¢")*dz (7.6.1)

2Jo 0 0
To form the total potential energy, the potential energy IVof the externally
applied loads must be added to the strain energy, Eq. (7.6.1). For a beam
subjected to pure bending, the loss of potential energy 17 is equal to the

negative product of the applied moments and the corresponding angles due
to buckling. Hence,

V = —2M.0 (7.6.2)

9 Winter (1941) considered a singly symmetric cross section.



Lateral-Torsional Buckling 349

(@)

Figure 7-11 Lateral-torsional deformations of simple beam

where @ is the angle of rotation about the x-axis at each end of the beam as
shown in Fig. 7-12.
By the definition of the simple support, neither twisting of the beam nor
lateral deformations of the flanges is allowed at the support. Hence, the top
flange deflects more than the bottom flange, as illustrated in Fig. 7-11(b).
Thus, the angle 0 is

A —A
f =~ =t (7.6.3)
h
where h is the depth of the cross section. Recalling Eq. (1.6.3),
1 rt
A = - / (1) dz (7.6.4)
+Jo
and
1[0
Ay = —/ (uy)"dz (7.6.5)
4Jo

Figure 7-12 End rotations due to lateral-torsional buckling (after Winter, “Lateral
Stability of Unsymmetrical I-Beams and Trusses in Bending,” Proceedings, ASCE, Vol. 67,
1941). Reproduced by permission.
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where u; and uy, are the lateral displacements of the top and bottom of the
web, respectively, and these displacements are seen from Fig. 7-11(b) to be

h
" = u+§¢ (7.6.6)
and
—uly 7.6
u, = u 5 .6.
Thus
1 [t h\2
A = —/ W +=¢' ) d= (7.6.8)
"4, 2
and

A 1/z ! th' 2d (7.6.9)
5—40 u > z .6.

Substituting Egs. (7.6.8) and (7.6.9) into Eq. (7.6.3) gives

¢
0 = 1/ (/) (¢)d=z (7.6.10)
2 Jo
Thus, Eq. (7.6.2) becomes
¢
Vo= —Mx/ (') (¢")d= (7.6.11)
0

Finally, the total potential energy is
n=u+Vv

v 1! e
= / EIy(u”)Zdz—i—E / GKT(d)’)zderE / EL(¢") dz

0 0 0

l
—Mx/ (') (¢)d= (7.6.12)
0

[t is now necessary to assume proper buckled shapes u and ¢. Sine
functions are selected for both u and ¢ for the lowest buckling mode as

4

u=2A4 sm7 (7.6.13)
oz

¢ = Bsin— (7.6.14)

14
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As Eqgs. (7.6.13) and (7.6.14) satisty both geometric and natural boundary
conditions, it is expected that the approximate solution will be very close to
the exact solution. When these expressions are substituted into Eq. (7.6.12),
the total potential energy becomes a function of two variables A and B.
Invoking the principle of minimum total potential energy, one can deter-
mine the critical moment by solving the two equations that result if the first
variation of 7r is made to vanish with respect to both A and B. An alternative
approach is to express A in terms of B. Although the alternative approach
involves fewer computations than the first, the first procedure must be
used if a relation between u and ¢ is not available. Since M, and M, are
defined to be positive when they produce positive curvature, M, =
EL+" and M, = Elyu”. From Table 7-1, M, = M,¢. Thus
EI

¢ = ﬁiu// (7.6.15)

> M,

A= —B—2—
m= El,

(7.6.16)

The assumed function for u can now be written as

B> M, . 7=z
U = —— ——sin— (7.6.17)
w2 EL,  {

Using Egs. (7.6.14) and (7.6.17), the total potential energy becomes

II=u+Vv
1BM2 (b Lw 1 R N
= - Y/ sinz—zdz—f——GKTBz—/ cos? 224

2 EL J, 14 2 2 J, 14
1 ot mz MPB? ' L wz

+—EI,B>— | sin>—dz — —= / cos® —dz (7.6.18)
27T, / EL, J, /

Since

J4 /
/ sin’ = dz = / cos’ = dz = {
0 ¢ 0 ¢ 2

Equation (7.6.18) reduces to

1(GKyB*n* EL,Bn* MZ?B(
= + - (7.6.19)

oI=U+V=-
* 4 4 63 El,
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The critical moment is reached when neutral equilibrium (or neighboring
equilibrium) is possible, and the requirement for neutral equilibrium is that
the derivative of II with respect to B vanish. Hence,

alr dU+V) B <GKT772 EL,m M2l

- ] A ElL

— = =0  (7.6.20
dB dB 2 ) ( )

If neutral equilibrium is to correspond to a buckled configuration, B cannot
be zero. In order to satisfy Eq. (7.6.20), the quantity inside the parentheses
must be equal to zero. Thus,

GKp7? N EIL,m* B M2l _
14 A El,

0 (7.6.21)

From which

Mx o = i%\/EIy(GKT + 772Elw/£2) (7622)

Equation (7.6.22) gives the critical moment for a simply supported I-beam
subjected to pure bending, and it is identical to Eq. (7.4.2). The &£ sign in
Eq. (7.6.22) indicates that an identical critical moment will result if the
sign of pure bending is reversed from that shown in Fig. 7-12. It should
also be noticed that the critical moment given by Eq. (7.6.22) is exact
since the assumed displacement functions of Egs. (7.6.13) and (7.6.14)
happen to be exact eigenfunctions. This can be proved (for example, see
Problem 6.3).

7.6.2. One Concentrated Load at Midspan

Consider a simply supported prismatic I-beam subjected to a concentrated
load at midspan. The cross section is assumed to be doubly symmetric, and
the load is applied at the centroid (the shear center) for simplicity. The case
of a concentrated load applied at a point other than the shear center in
a singly symmetric cross section can be handled likewise.

The strain energy stored in the beam during buckling has the same form
given by Eq. (7.6.1). The potential energy of the externally applied load is,
of course, the negative product of the applied load P and the vertical
displacement v of P that takes place during buckling. To determine vy, it is
useful to draw the lateral deflection of the shear center (the load point) of the
beam as shown in Fig. 7-13 during buckling, as the vertical displacement
component of the beam during buckling is equal to the product of the
lateral displacement and the twisting angle.
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Figure 7-13 Lateral displacement of shear center of I-beam

Consider an element dz of the beam at a distance z from the left support
as shown in Fig. 7-13. Due to lateral bending, there is a small vertical
translation du at the support between the tangents drawn to the elastic curve
at the two end points of the element. The value of the translation is,
according to the moment-area theorem, given by

My
du = —zdz (7.6.23)
El,
For small deformations, the increment in the vertical displacements dv
corresponding to du is

dv = ¢d —Mqud (7.6.24)
v = ¢du = El, zdz 6.
Thus the vertical displacement v at the shear center at midspan is
02 02 a1
vy = / dv = / L pzdz (7.6.25)
0 0 Ely

According to Table 7-1, the lateral bending moment at the buckled
configuration is

p
M, = M.¢p = 52(75 (7.6.26)
Thus
)2 p.2y42
Yo :/ = (7.6.27)
o 2EIL
and the potential energy of the applied load P is
02 p2.2 42
V = —Py = —/ =9 (7.6.28)
o 2El

i3]

If the load P is applied at a distance “a” above the shear center,
an additional lowering of the load must be considered. If ¢ is the
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twisting angle of the member at midspan, the additional lowering of the
load is

2
a(l —cos¢) = “70 (7.6.29)
and an additional loss of the potential energy is
P, 2
AV = —%% (7.6.30)

Combining Egs. (7.6.1) and (7.6.28), the total potential energy of the
system becomes

nH=u+v
1 ¢ 2 1 ¢ 2 1 ¢
= / EL(u")?dz + - / GKr(¢')?dz + = / EL(¢") dz
2 0 2 0 2 0
p2 2/2

2.2
- d 7.6.31
2EL J, 92z ( )

As before, it is desirable to reduce the number of variables by expressing u in
terms of ¢. From Eq. (7.6.15)

Ely o _  2EL"

¢ =

E Pz
Hence
P
o= 2P (7.6.32)
2EI,
Substituting Eq. (7.6.32) into Eq. (7.6.31) gives
nH=u+v
1t 1t p2 [l
I GK /Zd - EIW //2d - 22d
e R e R
(7.6.33)

Assume ¢ to be of the form

¢ =B sin% (7.6.34)
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Substituting ¢ and its derivatives into Eq. (7.6.33) yields

sy PP /4/2 s . o2 +GKTBZ7T2/€ 272
= — < Sin —az v e— COS —az
AEL, J, ¢ 20, ]
EL,Bwt ¢ o«
+7/ sin272dz (7.6.35)
0

Substituting the definite integrals

02 3
/ 25t e = : (7% +6)
0

1 4872
l 14

s s 14
/ sin? = dz = / cos? gz = - (7.6.36)

0 l 0 l 2

into Eq. (7.6.35) gives
Ui P2B2¢3 (4 6) + GKpBw? N ElL,B*w* 7.637)
= ——(m .6.
192EI, 7> 44 403

At the critical load, the first variation of U + 17 with respect to B must
vanish. Thus,

d U+ ) B P23 (1 6) + GKpm? N EIL,m* 0
- = —| —— (1 =
dB 2 48E1y772 14 03
which leads to
e 3 EI,

Equation (7.5.38) gives the critical load for a simply supported I-beam
subjected to a concentrated load at midspan. The =+ sign in Eq. (7.5.38)
indicates that an identical critical load will result if the direction of the load is
reversed from that shown in Fig. 7-9.

7.6.3. Uniformly Distributed Load

The procedure described above for the case of a concentrated load at
midspan can also be used when the I-beam (Fig. 7-8) carries a uniformly
distributed load. The strain energy given by Eq. (7.6.1) remains unchanged.
However, the expression for the loss of potential energy of the externally
applied load must be determined.
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Assume ¢ to be of the form

mZ
— Bsin—
¢ smé

The vertical displacement of the shear center at midspan of the I-beam as
shown in Fig. 7-14 is, according to the moment-area theorem, given by

[ siee!

vo = = sPag

12 EL,

where M, = M,¢ as per Table 7-1. The relationships between the lateral
deflections and the vertical deflections are given by

vy = upQp, v = ur@p, and vo = uxh

where ug and uq are the lateral displacements of the beam at midspan and at
a distance z from the support, respectively, and u; is equal to ug subtracted by
uy as shown in Fig. 7-14.

| 012 |

v |

Figure 7-14 Lateral displacements in &g plan (after Schrader, Discussion on “Lateral
Stability of Unsymmetrical I-Beams and Trusses in Bending,” by Winter, Proceedings,
ASCE, 1943). Reproduced by permission.

Substituting the expression for the moment M, and the rotation ¢, the
vertical displacement of the beam at midspan takes the following form:

-1 [ w, ) o me\? B (Y2 ,me
= — —_— — B _— = — C” —_—
i Bl Jyn 2 (bg—¢ )g( sin— dg ZEIy/O (lg” — &%) sin 7 dg
Expanding the definite integral by Maple® gives

wy, B34

= 2" (57* +127% + 144 7.6.39
7687T4E1y( * + ) ( )

Vo

Similarly,

= M, wyB2 /z ’ K (N
vy = —(¢ — 2)pdc = ¢ —4c)(¢c— 2)(sin—)"dc
= [ i = 5 [ @)
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wsz
7687 EI,
r e
Sat0t — 48m20 2 — 16007 2 + 120472 — 962722 605272

"y g e
+ 48027222 + 1440* cos> 72 — 96l cos7zsin7Z

From Fig. 7-14, it is seen that

vy = vp — 12

T T
+ 9603722 cos> 72 —t6mtt + 3247t + 192707 2 cosfsin—

357

=

]

(7.6.40)

(7.6.41)

Hence, the loss of the potential energy of the uniformly distributed load,

wy, 1s

2 12 45
wyBﬁ

4
T (445
saomEn," T )

/2
V = —ZWy/ (VO — Vz)dz = —
0

Expanding the first term of the strain energy in Eq. (7.6.1) gives

2 2 Jo \EL T 2EL
212
w’B e
=2 [ (tz — #)sin? LGP
8EL, J, l
2 R2 05
w- B¢
= 2T (4 45)
480 EI,
Hence,
2295
wy, B GKrB’m®  El,B*7*
Y 4 T w
= Y (7t 445
womm, ™ PR s
and
U wy B> 45 GKrB*w* ElL,B*m*
= e TR 72

(7.6.42)

EI, [! EL, [t M 1 [t
EL / W2de = E [ My, (—Mg)ds
0

(7.6.43)

(7.6.44)
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At the critical load, the first variation of U + IV with respect to B must
vanish. Thus,

d B w2l? GKym®  EL,m
—(U+V) == ——=2— (" +45 vl =
Bt 2{ BT R A A }
which leads to
273 30 EI, w2

Schrader (1943) obtained an expression for the critical uniformly distrib-
uted load of a simply supported prismatic beam of a singly symmetric cross
section based on the energy method. In the formula, he allowed that the load
could be applied at any point along the web axis. He extended the approach to
include two concentrated loads applied symmetrically on the span.

L = 307 in*, I, = 44.1in*, Ky = 0.906 in*, I, = 1440 in®,

¢ = 180in, E = 29000 ksi,and G = 11200 ksi

For m = 8§,

¢ = \/8EL,/GKr = /8 x 29000 x 1440/(11200 x 0.906)
= 181.45 in.

From Tables 7-2 and 7-3, 1 and 7, are read to be 42.5 and 25.6,
respectively. Hence,

v1VELGKr 425

f) = =
(y6), 2 181.452

x 113917.75 = 147.05 kips

2 |30 LI, ,
(Wyg)m' = 6_2 mEly GKT + £2 = 147.2 klpS (7645)

and

» _ 12VELGKr - 256
¢ 2 ©181.452
— 88.58 kips

V29000 x 44.1 x 11200 x 0.906
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4772 3 Elw’frz R
7.6.4. Two Concentrated Loads Applied Symmetrically

Consider the case of two concentrated loads applied symmetrically as shown
in Fig. 7-15. From Table 1, M;, = M,¢. Assume ¢ = Bsin’
The bending moment is given by

M, = Pzfor0 <z<aand M, = Pafora<z<//2

Expanding the terms of the strain energy in Eq. (7.6.1), one obtains

1 ¢ 02 U2 LB 2
_EI, / <u”>2dz — EI, / <u'/)2dz = EI, / ( x‘b) dz
2 " Jo 0 0 El,
Bp2/ [ (/2
= / 22 sinZEdz + & / siandz
EL \ 0 ; ]

BZ P2 a T 5/2 T
= / 22 sin2—zdz +d / sinz—zdz
EI, 0 / B Y4

P’B?E] e
= 47’ — 6mal? cosz—a
1273 ¢

+ 30 cos%sin% + 3mal® + 3773d2£:|

(7.6.462)

1 ¢ B2 2
“GKy / <¢’>2dz — —£<f> GKy (7.6.46b)
2 , 4\ 7

Figure 7-15 Two concentrated loads (after Schrader, Discussion on “Lateral Stability of
Unsymmetrical I-Beams and Trusses in Bending,” by Winter, Proceedings, ASCE, 1943).
Reproduced by permission.
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1 ¢ 5 B2 (74
—EI, " =——) EI, 6.
> /0 (¢ ) dz 1 <€> (7.6.46¢)

The loss of potential energy of the applied load P is negative of the product
of P and v. From Fig. 7-15, it is seen that vy = vy — vy as the vertical
displacement v is obtained by the lateral displacement » multiplied by ¢ as
per Table 7-1.

0 M,
vy = — ¢z dz
¢/2 EL,

where M, = M,¢. Hence,

1 a 4 2 0 2 . Tz 2
vy = —— Paz| Bsin— | dz+ Pz"| Bsin— | dz
Ely 5/2 £ a Z
PB?

= ———— (37 + 127al® — 473> — 12malPcos® T

4813 EI, ¢

e e
+ 1202 cos%sin %) (7.6.47)

a Mx 2
= / —(z—a) <B sin E) dz
4/2 Ely E

PB ™
= — (Wzafz — 472l + 4alPcos? ma + 47r2a3> (7.6.48)

1672 14
PB? ™ wa .
v = —m <— 434 — 6mal®cos’ 761 + 3€3c057asin7a
+ 3mal® + 37r3a2£> (7.6.49)

Hence, the loss of potential energy of the two applied loads is (note vy is
already negative)

P’B?
613 EI,

e
<— 420> — 6mal®cos 7{1

2P1/1 = —

+ 3€3cos%sin% + 3mal® + 37r3a2£>
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P’BEL
U+V = 73)} [— 47°8° — 6mal®cos’ % + 35%03% sin%
B¢ 2 B¢ 4
+ 3mal® + 37r342£] + 4<Z> GKr +— (D EI,

P>B? s ma .
— 67r3EIy (— 42 a> — 6mal®cos’ Ta + 30 cos Ta sin7a

+ 3mal® + 37r342€>

_ BY(w ZGK +B2€ T 4EI
~ 4 \v g \e) &
ma

P2B> ™ m
— m <— 438 — 6mal®cos’ 7a + 3/ cos Ta sin7

+ 3mal® + 37r3a2£>

(7.6.50)

The stability condition equation is

WUEV) BTN ey BTN gy
0B 2 \/ TTo\e) =

P’B - i
_M <_ 47T3a3 B 67Ta£2cosz Ta + 363 COS% SinTG + 37&62 + 37T3a2€>
=0

or

LV akr +4(T) Bt = — 2 (4w — omatPeo ™
=5 ~(=) EL, ———(—-4na’ —6m —
2\7 TT2\7) T emEl, TR Ty

+ 3€3cos%sin% + 3mal® + 37T3a2€> =0
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T\ 2 2274 ma
EI, [GKT + EI, <?> ] = F(—47r3‘a3 - 67Ta€2c0527

+ 3€3cos%sin% + 3mal® + 37r3a2€)

4> AP0 al® 2ma 0 2ma
Pcr = \/E1y<GKT + WZEI“,/@)/\/E(— ﬁ + ? - ?COST + FSIHT)
(7.6.51)

Although the approximate values of the critical load obtained by the
energy method based on the principle of the minimum total potential
energy are supposed to be larger than the exact values, the answers herein
are very close to the exact values owing to the fact that the assumed
displacement functions happen to be very close to the exact solution
functions. As in all other approximate methods of analysis based on the
energy principle, the accuracy of the solution depends greatly on the proper
choice of the assumed displacement function. Although use of a function
consisting of many terms would improve the accuracy of the solution,
frequently the arithmetic operations involved could be prohibitively
complex. In such a case, one ought to be able to take advantage of
a computer-aided method of analysis.

7.7. DESIGN SIMPLIFICATION FOR LATERAL-TORSIONAL
BUCKLING

The preceding sections determined the critical loading for beams with
several different boundary conditions and loading configurations. A simply
supported wide flange beam subjected to uniform bending has been shown
to be in neutral equilibrium (unstable) when the applied moment reaches
the value
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T EI,m?
My = 5| El | GKr + =5 (7.7.1)

The critical concentrated load applied at midspan of the same beam has been

found by the energy method to be

p, = 3 o (crp 4 B (7.7.2)
S A = o
Likewise, the critical uniformly distributed load on the same beam has been
found to be
(), = 2 =20 Gy + E (7.7.3)
Wyt)y = £2 7T4+45 y T € .

Converting Eqs. (7.7.2) and (7.7.3) to the form of Eq. (7.7.1) yields

ol ™ EI, w2
M, = = 1.362 EI 7 (7.7.4)

(wyl) L T EI, >
M, = = 113, [ Bl GKy + = (7.7.5)

and

Examination of these equations reveals that it may be possible to express the
critical moment in the form

EL,m
M, = az\/EIy<GKT—|— 12 ) (7.7.6)

where the coetficient o is equal to 1.0 for uniform bending, 1.13 for
a uniformly distributed load, and 1.36 for a concentrated load at applied at
midspan. According to Schrader (1943) and Clark and Hill (1960), « is 1.04
for concentrated loads applied at the third points. The difference in o may be
explainable from the fact that the critical bending moment diagrams of

a simply supported beam are a rectangle, a triangle, and a parabola,
respectively, for uniform bending, a concentrated load at midspan, and a
uniformly distributed load. The area of the critical bending moment
diagram for uniform bending is M/, which is the largest. Understandably,
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the larger the area of the bending moment diagram, the smaller becomes the
coefficient . It is of interest to note that concentrated loads applied at the
third points and a uniformly distributed load resultin the same area of 2M,, £/ 3.
However, the critical moment at the middle is spread wider under two third
point loads than under a uniformly distributed load. This may explain the
smaller value of « (1.04) for the former than that (1.13) of the latter.

Having illustrated that the equation for the critical moment of a simply
supported wide flange beam subjected to uniform bending can be made
applicable for other loadings by means of adjusting the factor «, the next
step 1s to show that this equation can be made valid for different boundary
conditions as well. The idea here is whether an effective-length concept
analogous to that used in columns can be extended to beam buckling.
Indeed it can be. Numerous researchers including Salvadori (1953, 1955),
Lee (1960), and Vlasov (1961) have shown that the effective-length factor
concept is also applicable to lateral-torsional buckling of beams. Based on
the results given by Vlasov (1961),'" Galambos (1968) lists values of the
effective-length factor for several combinations of end conditions. Salvadori
(1953) found that Eq. (7.7.6) can be made to account for the effect of
moment gradient between the lateral brace points. Various lower-bound
formulas have been proposed for «, but the most commonly accepted are
the following:

G = 175+ 1.05( M) 4 o5 (M 2<23 (7.7.7)
b — L. . M2 . M2 < 2. .

Equation (7.7.7) had been used in AISC Specifications since 1961-1993.
Although Eq. (7.7.7) works well when the moment varies linearly between
two adjacent brace points, it was often inadvertently used for nonlinear
moment diagrams. Kirby and Nethercot (1979) present an equation that
applies to various shapes of moment diagrams within the unbraced segment.
Their original equation has been modified slightly to give the following:

12.5Mipax
<3.0 (7.7.8)

C, =
b 2 5My + 3M4 + 4Mp + 3Me =

Equation (7.7.8) replaces Eq. (7.7.7) in the 1993 AISC Specifications. Mg is
the absolute value of the moment at the centerline, M4 and M are the
absolute values of the quarter point and three quarter-point moments,

10 gee pages 292-297.
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respectively, and M,,,,, is the maximum moment regardless of its location
within the brace points.

The nominal flexural strength of a beam is limited by the lateral-
torsional buckling strength controlled by the unbraced length L, of the
compression flange. The critical moment equation (Eq. 7.7.6) was derived
under the assumption that the material obeys Hooke’s law. This means that
it cannot be directly applicable to inelastic lateral-torsional buckling.

The credit goes to Lay and Galambos (1965, 1967) for determining the
unbraced length L, required for compact sections to reach the plastic

E
L, = 275, | — (7.7.9)
gy

where E = elastic modulus, r, = radius of gyration with respect to the weak

bending moment M,

axis, and ¢, = mill specified minimum yield stress.

Later on, their simplified design equation was calibrated using experi-
mental data (Bansal, 1971) in order to give compact-section beams adequate
rotational capacity after reaching the plastic moment.

E
L, = 1.76r, | — (7.7.10)
gy

Equation (7.7.10) is identical to Eq. (F2-5) in AISC (2005) Specifications.
In plastic analysis, larger rotation capacities are required to ensure that
successive plastic hinges are formed without inducing excessive lateral-
torsional deformations. Bansal (1971) suggested the following equation
from tests of three-span continuous beams to ensure rotation capacity
greater than or equal to 3:

Ly = |012+0.076( MY | (£ (7.7.11)
pd_ . . M2 O_y i’y .

where M; is the smaller moment at the ends of a laterally unbraced segment
(taken positive when moments cause reverse curvature). Equation (7.7.11) is
identical to Eq. (F1-17) in AISC (2001) Specifications.

The limiting value of the unbraced length for girders of compact
sections to buckle in the elastic range is given by L,. In the presence of
residual stress, the maximum elastic critical moment is defined by

M, = Si(oy, —0,) = 0.78:0y = 04S; (7.7.12)
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where S, = elastic section modulus about the x-axis, g, = residual stress
0.3 a,, for both rolled and welded shapes. From Egs. (7.7.6) and (7.7.12),

M, Cym wE\ 2

bhOx

Equation (7.7.13) is identical to Eq. (F1-13) in the AISC (1986) LRFD
Specifications. Equation (7.7.13) is rewritten as

_ Gm’E \/IyGKTLg LI, 7714

Oa = 2] PAr@ A4
<E> ™ rtsESx rtSSx
Tt

/LEI
2 VI (7.7.15)

s —
S

where

Letting hy be the distance between the flange centroids and substituting
2G/m?E = 0.0779 and Eq. (7.7.14), Eq. (7.7.13) becomes

_ G7’E <Lb>2 L,GKr
2

O, = +1

Tt

Ly\2 ; LI
<—> s E#Sf.
Tts Sx

Cym2E Kre (Ly\?
= 7 =14 0.0779 (7.7.16)

& 2 Sxho \ 1
I'ts

where I, = thg /4 for doubly symmetric I-beams with rectangular
flanges and ¢ = hg+/1,,/1,/2 and hence, ¢ = 1.0 for a doubly symmetric
[-beam. Equation (7.7.16) is identical to Eq. (F2-4) in the AISC (2005)
Specifications. Limiting the maximum critical stress in Eq. (7.7.16) to
0.70, to account for residual stress g, and solving Eq. (7.7.16) for L, gives

E KTC 0.70'y th() 2
L, = 1.95r,—— 144/1+6.767 (7.7.17)
O.70'y Sx/’l(r) E KTC

Equation (7.7.17) is identical to Eq. (F2-6) in AISC (2005) Specifications.
The calculation of the inelastic critical moment is fairly complex.
Galambos (1963, 1998) has contributed greatly to this subject. In 2005
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AISC Specifications, when L, < L, < L,, the nominal flexural strength M,
of compact sections is linearly interpolated between the plastic moment M,
and the elastic critical moment M, = 0.7S,0, as

L,— L
M, = Cy|M, — (M, — 0.70,Sx) <Ll’ Lf’)] <M, (7.7.18)
" P

It should be remembered that local buckling of compression flanges and
web is precluded in the derivation of the unbraced lengths. The mathe-
matical procedure for the solution of local buckling is identical to that of the
lateral-torsional buckling phenomenon, except that the governing differ-
ential equations are now partial differential equations, and so the details of
the solution process are different and complicated, as will be shown in the
next chapter. In order to systematically reflect the effects of local buckling
on the nominal flexural strength, AISC (2005) Specifications categorize
sections into several types depending on the compactness of the flanges and
web (compact, noncompact, or slender).

Also, it needs to be noted that the limiting values for the unbraced length
given by Eqs. (7.7.10), (7.7.11), and (7.7.17) are valid only for bare-steel
members. Composite systems are often utilized to maximize the efficiency of
structural members. In composite girders, the top flange and concrete slab are
connected with shear studs. Lateral-torsional buckling is not likely to take
place when subjected to positive flexure, as the top compression flange is
continuously braced by the concrete slab. However, the loss of stability should
be checked when designing composite girders in negative moment zone. The
steel section of a composite girder will necessarily undergo the deformation
depicted in Fig. 7-16 during buckling due to the restraint provided by the
concrete slab. This type of buckling is referred to as lateral-distortional
buckling. The classical assumption that the member cross section retains its
original shape during buckling is no longer valid in this case. Lateral-
distortional buckling is basically a combined mode of lateral-torsional
buckling (global buckling) and local buckling, and the derivation of a closed-
form solution is, therefore, not straightforward. Limited research, including
Hancock et al. (1980), Bradford and Gao (1992), and Hong et al. (2002), has
shown that the unbraced length requirements for noncomposite girders give
too conservative results for composite girders. A general design rule has yet to
be developed due to lack of comprehensive study. With the advancement of
digital computers, along with highly sophisticated computer programs such
as ABAQUS, NASTRAN, and ADINA just to name a few, performing the
lateral-distortional buckling analysis should present no problem.
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Figure 7-16 Lateral-distortional buckling
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PROBLEMS

7.1 Equation (7.4.2) can be nondimensionalized to investigate the influ-
ence of the various parameters affecting the lateral-torsional buckling
strength.
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7.2

7.3

Chai Yoo

M, m2ELGKr 2EL,
= 2 4 (P7.1.1)
My ¢ SxO'y GKTZ
where M,, = S,0). After introducing the following identities:
o L(d—1)? 21
& = Ey I, = %, I = A2, I, = A2, S, = =
(P7.1.2)
and the abbreviation
Dy = KT (P7.1.3)

one gets the following nondimensionalized buckling moment:

M,  w(d/r.)’ (,/DTG/E> | EO - tr/d)? ©7.1.4
M, 2 t/1y 4GDr(¢/n,)’ h
For most wide flange shapes,
dfre =238, (1 —1t)/d = 0.95, and
G/E = 1/2(1+pu) = 0.385 foru = 0.3
Substituting these values into Eq. (P7.1.4) yields
M,  5.56(+/D 5.78
ez A —<—T) T+ — (P7.1.5)
M, & \ Lt/ Dr(¢/1)

Plot the buckling curve (1000M,, &,/M,, vs. £/1,) for W27 x 94 using
Egs. (P7.1.4). Limit £/r, < 500.

Using the Rayleigh-Ritz method, determine the critical uniformly
distributed load for a prismatic simply supported beam. The load is
applied at the centroid. Assume u = A sin wz/¢, ¢ = Bsin wz/l. Use

1 l
= 5/ [Efy(u”f + EL(¢")* + GK1(¢')* — 2Ml" ¢ | d= with
0
M, = —g(ﬁz mp

What is the coefficient « in association with Eq. (7.7.6)?
Using the system of differential equations, Eqs. (7.2.22)—(7.2.24),
derive the total potential energy expression of Problem 7.2.
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Determine the critical moment of a simply supported prismatic wide
flange beam under one end moment only by
(a) Eq. (7.4.2),
(b) the Rayleigh-Ritz method, assuming

u = Asinwz/l, ¢ = Bsinnz/l

For the Rayleigh-Ritz method, use

I = L [I[EL(W")? + EL(¢")* + GKr(¢') — 2My (/) ' ¢d=
Prove the following relationship regarding the loss of potential energy
of the externally applied uniform bending moment in a prismatic
simply supported beam:

l 1
Myd"pdz = — | My ¢'d=
0 0

From the geometry of Fig. 7-1, it is obvious that

Yy = vcos @+ usin ¢

Show that )/ = v" cos ¢ + u” sin ¢

Ends are simply supported (¢ = ¢ = u = " = v = = 0) and

u = ¢ = 0 at the load points. The loads are assumed to apply at the

centroid. The W27 X 94 beam is made of A36 steel and is 40 feet long.

(a) Determine the ultimate load, P, by the 2005 AISC Specifications.

(b) Determine the critical load, P, by any refined method and assess
the effect of the continuity condition at the load point on the
buckling strength of uniform bending in the middle.

ENGIRN
o | ~
N

Figure P7-7
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8.1. INTRODUCTION

Equilibrium and stability equations of one-dimensional elements such as
beams, columns, and framed members have been treated in the preceding
chapters. The analysis of these members is relatively simple as bending, the
essential characteristic of buckling, can be assumed to take place in one plane
only. The buckling of a plate, however, involves bending in two planes and is
therefore much more complicated. From a mathematical point of view, the
main difference between framed members and plates is that quantities such as

Stability of Structures © 2011 Elsevier Inc.
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deflections and bending moments, which are functions of a single inde-
pendent variable in framed members, become functions of two independent
variables in plates. Consequently, the behavior of plates is governed by
partial differential equations, which increases the complexity of analysis.

There is another significant difference in the buckling characteristics of
framed members and plates. For a framed member, buckling terminates the
member’s ability to resist any further load, and the critical load is thus the
failure load or the ultimate load. The same is not necessarily true for plates.
A plate element may carry additional loading beyond the critical load. This
reserve strength is called the postbuckling strength. The relative magnitude
of the postbuckling strength to the buckling load depends on various
parameters such as dimensional properties, boundary conditions, types of
loading, and the ratio of buckling stress to yield stress. Plate buckling is
usually referred to as local buckling. Structural shapes composed of plate
elements may not necessarily terminate their load-carrying capacity at the
instance of local buckling of individual plate elements. Such an additional
strength of structural members is attributable not only to the postbuckling
strength of the plate elements but also to possible stress redistribution in the
member after failure of individual plate elements.

The earliest solution of a simply supported flat-plate stability problem
apparently was given by Bryan (1891), almost 150 years after Euler presented
the first accurate stability analysis of a column. At the beginning of the
twentieth century, plate buckling was again investigated by Timoshenko,
who studied not only the simply supported case, but many other combina-
tions of boundary conditions as well. Many of the solutions he obtained are
given in Timoshenko and Gere (1961). Treatments of flat-plate stability
analysis that are much more extensive than those given here may be found in
Bleich (1952) and Timoshenko and Gere (1961). Other references such as
Allen and Bulson (1980), Brush and Almroth (1975), Chajes (1974), and
Szilard (1974) are reflected for their modern treatments of the subject.

8.2. DIFFERENTIAL EQUATION OF PLATE BUCKLING
8.2.1. Plate Bending Theory

The classical theory of flat plates presented here follows the part of materials
leading to the von Karman equations entailed by Langhaar (1962) excluding
the energy that results from heating. Consider an isolated free body of a plate
element in the deformed configuration (necessary for stability problems
examining equilibrium in the deformed configuration, neighboring
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equilibrium). The plate material is assumed to be isotropic and homoge-
neous and to obey Hooke’s law. The plate is assumed to be prismatic, and
forces expressed per-unit width of the plate are assumed constant along the
length direction. The plate is referred to rectangular Cartesian coordinates
x, ¥, z, where x and y lie in the middle plane of the plate and z is measured
from the middle plane. The objective of thin-plate theory is to reduce
a three-dimensional (complex) problem to an approximate (practical) one
based on the following simplifying assumptions:

1. Normals to the undeformed middle plane are assumed to remain normal
to the deflected middle plane and inextensional during deformations, so
that transverse normal and shearing strains may be ignored in deriving
the plate kinematic relations.

2. Transverse normal stresses are assumed to be small compared with the
other normal stresses, so that they may be ignored.

Novozhilov (1953) referred to these approximations as the Kirchhoff
assumptions. The first approximation is tantamount to the typical plane
strain assumption, and the second is part of plane stress assumption.

Internal forces (generalized) acting on the edges of a plate element dxdy
are related to the internal stresses by the equations

h/2 h/2 h/2
N, :/ ogxdz N, :/ oydz Ny :/ Typdz

—h/2 —h/2 —h/2
h2 hy2 h/2
Nyx :/ dZ Qx :/ Tyadz Qy :/ fyzdZ
h/2 —h/2 —h/2
h/2 h/2
M, :/ oxzdz M, :/ oyzdz M,y :/ TapRdz
—h/2 —h/2
M, :/ Tyxzdz
(8.2.1)
where

Ny, N,, Ny, N, = in-plane normal and shearing forces, Q,, Q, =
transverse shearmg forces, My, M, = bending moments, M,,, My, =
twisting moments.

The barred quantities, g, Ty, etc., stand for stress components at any point
through the thickness, as distinguished from oy, Ty, etc., which denote
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corresponding quantities on the middle plane (z = 0). The positive in-plane
normal and shearing forces, transverse (also referred to as bending) shearing
forces, bending moments, and twisting moments are given in Figs. 8-1, 8-2,
and 8-3, respectively.

Since Ty, = Tyy, Egs. (8.2.1) reveal that N, = N, and M,,, = M,,.. The
directions of the positive moments given in Fig. 8-3 result in positive stresses
at the positive end of the z-axis. As a result of the Kirchhofts first
approximation, the displacement components at any point in the plate,
u, v, w, can be expressed in terms of the corresponding middle-plane
quantities, #, v, w, by the relations

dy dy

N
ow 9 (0w Y dy
—+—| — |dy
dy dyl dy

Figure 8-1 In-plane forces on plate element

"
O x
lp
90
X d.
Oct ox o
20, z
¥ 0,2 g
y Q,+ay y

Figure 8-2 Bending shear
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.M,
M
Mxy f———>X
| : /
Xy D B
M, My + . dx i M‘,+8M"dx
o VAT
. -/'
: .
™ lom
.. .. ../L.._va+ dy
- v
oM,
M, +—=—dy
AR
y N
<
Figure 8-3 Moment components
_ ow _ ow
H=Uu—2— V=0v—2— W=1w (8.2.2)
Jx dy

where positive rotations are shown in Fig. 8-1.

Ignoring negligibly small higher order terms, the components of the
strain-displacement relations for a three-dimensional body as given by
Novozhilov (1953) are

Lo 0n 10w\ _@+1"_ﬁ’2 s & dwdw
T 2\ax) YT e 2\e) ™ T e e T gy
(8.2.3)

The strain components in Eqs. (8.2.3) are the Green-Lagrange strain
(Sokolnikoft 1956; Bathe 1996), which is suited for the incremental analysis
based on the total Lagrangian formulation. Substituting Eq. (8.2.2) into
Eq. (8.2.3) yields

0w 0w

Ex:&‘x—ZW:é‘x-f-ZKx Ey:é‘y—Za—yZ:é‘y‘FZKy
_ 0w
Ty = Yy — 22% = Txy +22ny (8.2.4)

where &, €,, ¥, are normal and shear strain components at any point
through the plate thickness and ¢y, ¢, 7, are corresponding quantities at
points on the middle plane, and where
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Y 9x o 2\ 0x Y 92
o 1/0w\> w
— (= - —_ 8.2.5
N 0y+2<0y> YT Ty 2
Lo o wow
Yo = 3, oy T 9x ay ¥ T T Gy

Eqgs. (8.2.5) are the kinematic relations for the plate. Equations (8.2.4) and
(8.2.5) will lead to the von Karman plate equations (Novozhilov 1953).

It would be informative to examine the geometric background for the
large strain expressions in Eqs. (8.2.5). Consider a linear element AB of
the middle surface of the plate as shown in Fig. 8-4. After deformations, the
element assumes the new position A'B’. The length of the element is
changed due to the in-plane deformation in the x direction # and due to the
transverse displacement w in the z direction. As a result of the u displace-
ment, the elongation of the element is

du
—d
Ox ~

The length A’B’ due to the transverse displacement alone is computed from
the Pythagorean theorem as (after a binomial expansion)

2+1/2
A'B = [dx2 + (a—wdx> ]
Ox

SIS

The elongation due to the transverse displacement is

1/dw\?>

Figure 8-4 Axial strain—large deflection theory
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and the total elongation is the sum of the two

Jdu 1/0w\>

The axial strain is equal to the total elongation divided by the original
length of the element dx. Hence,

_ Gu 1(0w)°
gx_(?x 2\ 0x

T gy 2\ay

The shear strain (angular change) may consist of the in-plane contribution
and the bending (vertical) contribution as illustrated in Figs. 8-5 and 8-6.

Likewise,

- dy
dy
Figure 8-5 In-plane angle change (after Chajes, Principles of Structural Stability Theory.

Englewood Cliffs, NJ: Prentice-Hall, 1974). Reproduced by permission from the
author.

Figure 8-6 Out-of-plane angle change (after Chajes, Principles of Structural Stability
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1974). Reproduced by permission from the
author.
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The in-plane contribution is

du dv

—+ =,
ay ok
The bending contribution is

From the elementary geometry (law of cosine),

(A/B’)ZZ (O’A/)2+(O/B/)2—2(O,A,)(O/B,)cos(g _ ’Yw)

where

0 2
(OA)? = ds® + (dx _w)

Jx

2

( O/B/)2 = dy* + (dy ((99_w> from the Pythagorean theorem

'y

Ow w2

A/B/2:d2 A2 dv — — dx —
(4'B) A (dy g de

Neglecting higher order terms, one has
(O0'A)(O'B) = dxdy
Recognizing that cos((7/2) — v,,) = v,, for small angles, then
(A'B) = dx* + (dx— ) +dy* + | dy— | —2v,dxdy
Jx dy
9 %
=Pt (dy i Y
dy dx

which leads to

_awaw
Yo = 9% 3y
Hence,
du Jdv Ow dw

YT e ax oy
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Modifying the generalized Hooke’s law in a three-dimensional isotropic
medium with the Kirchhoft’s assumptions leads to the following stress-strain
relations:

E _ _ E _ _ E _

T Bt as) Oy = (e ) Ty = T
(8.2.6)

Substituting Egs. (8.2.6) and (8.2.4) into Eq. (8.2.1) and integrating the

result gives

Ny = Clex+mugy) N, = Cley+ue) Ny = C(1—pu)y,,/2

v — pfEwL BN o (P,
* = 92 F g2 v = a2 " H e

g, =

M, = —D(1 — )62“’
v ) axay
(8.2.7)
with
Eh EW
C=— and D=— (8.2.8)
1— 2 12(1 - p?)

The coefhicients C and D are axial and bending rigidities of the plate per
unit width shown in Fig. 8-7, respectively.

D —

1
Figure 8-7 Plate cross section

8.2.2. Equilibrium Equations

In order to account for the interaction between forces and deformations,
the equations representing equilibrium must be derived in a slightly
deformed configuration (neighboring equilibrium), as shown in Fig. 8-1.
The forces and deformations are assumed to vary across the plate element.
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To simplify the diagrams, bending shearing forces and moment
intensities are shown in Figs. 8-2 and 8-3 in their positive directions,
respectively. The angles of rotations 0w/dx and dw/dy are small, and sines
and cosines of the angles are replaced by the angles and unity, respectively.
Quadratic or higher order terms are assumed to be negligibly small and are
ignored.

Summing the forces in Fig. 8-1 in the x direction gives

0N, IN,
— Nydy + | Ny +——dx |dy — Nyxdx + | Ny +——dy |dx = 0
Jx dy
(8.2.9)
Canceling out the quantity dx dy in Eq. (8.2.9) results in
ON, = IN,,
+ =0 (8.2.10)
dx dy
Likewise, summing the forces in the y direction yields
ON,, 0N,
-2 =0 (8.2.11)
Jx dy

Summation of the forces in the z direction is somewhat more involved.
From Figs. 8-1 and 8-2, one obtains

ow ON. 6w 0w
—Nxdya—i—( x+ s >dy<a 82d>
ow dN, ow w
d
— Qudy + (QX Qx dx> dy — Qydx + (Qy + aQy y>d
Ow N,y ow  w

Jw JIN, ow 0w
— Nypdx — + | Ny + —2Zdy | dx ——d dx dy = 0
yxax+<y+0y y) <8x+86 y>+p"y

(8.2.12)

Neglecting higher order terms and regrouping terms in Eq. (8.2.12) gives
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IN,  ONy w any+6N 8w+N 62w+N 0w

Ox dy ) ox Ox dy ) dy dx2 ¥ 9xdy
0w 0w GQx 9Qy

Ty TN ez T Tey TP T

(8.2.13)

As a consequence of Egs. (8.2.10) and (8.2.11), the quantities inside the
parentheses in Eq. (8.2.13) are zero. Since Ny, = Ny, (this can be readily
proved from Eq. (8.2.1) by noting that T, = 1),), it follows

aQ“Jra&JrNaz TN, T (8.2.14)
Ix 9y 92 T )2 % oxay P T -

The condition that the sum of moments about the x-axis must vanish
yields.

+Q = (8.2.15)

Similarly, moments about the y-axis lead to

M,  OM,,
+
Ox dy

— Q=0 (8.2.16)

Differentiating Egs. (8.2.15) and (8.2.16) and substituting the results into
Eq. (8.2.14) yields
0> M, 0> M. M,y 62My 0w 0w 0w

N, N, 2N, =0
02 T anay g e TN TN g, T

(8.2.17)

If one considers (at least temporarily) Ny, N,, and Ny, are known, then Eq.
(8.2.17) contains four unknowns My, My, M,,, and w. In order to deter-
mine these quantities uniquely, one needs three additional relationships.
These three additional equations may be obtained from the kinematic and

constitutive conditions, Egs. (8.2.7).
Substituting Egs. (8.2.7) into Eq. (8.2.17) gives Eq. (8.2.18c¢)

IN, 0Ny
+
0x dy

=0 (8.2.18a)
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INy, 0N,
Y=Y = (8.2.18b)
Jx dy
P AP ATINNC AL BTN AL
It a2 T at) T e Y 2 Y oxay | L
(8.2.18¢)

Equations (8.2.18) are a form of von Karman plate equations, and they are
the nonlinear equilibrium equations for all flat and slightly deformed
configurations of the plate within the scope of the intermediate class of
deformations.

8.2.3. Stationary Potential Energy

It would be interesting to rederive the above nonlinear equilibrium equa-
tions on the basis of the principle of minimum potential energy. A loaded
plate is in equilibrium if its total potential energy Il is stationary
(minimum), and IT is stationary if the integrand in the potential energy
functional satisfies the FEuler-Lagrange equations of the calculus of
variations.

The total potential energy of a plate subjected to transverse loads p(x,)
and in-plane loading is the sum of the strain energy U and the potential
energy of the applied load IV

I=U+V (8.2.19)

The strain energy U for a three-dimensional isotropic medium is

1
U:—/aTédv
21/

Omission of ¥y, ¥y- (the resulting error would be negligible if the plate

given by

lateral dimensions are at least greater than 10 times the plate thickness ) and
0 in accordance with Kirchhoft’s approximation of thin-plate theory along
with Egs. (8.2.6) leads to

E 2 . =2 — 1 - M_»>
0 = s ] (38 e + 15 Yo
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Introducing Egs. (8.2.4) into the above equation and integrating with
respect to z leads to
U=U,+U (8.2.20)

where

C 1—u
U, = 5// (si + 8)2, + 2uexey + — 'yiy> dxdy (8.2.21)

and

U — D// *w 2+ 0w 2+2 w 0%w
b3 92 w2 ) TH 2 92

2 2
+2(1 — p) <ic—a“’y> ] dxdy (8.2.22)

The quantities in Egs. (8.2.21) and (8.2.22) are referred to as the
membrane strain energy and the bending strain energy of the plate,

respectively.
The potential energy of the applied loads for a conservative force system
is the negative of the work done by the loads. Hence, for the transverse

load p,
V= —//pwdxdy

Consider as an example an in-plane compressive edge load P, as shown in
Fig. 8-8. For such a load the potential energy may be written

V= =Px[u(a) = u(0)]

Figure 8-8 Simply supported plate subjected to uniaxial force
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or

a9
= ——/ / ”dxdy
0

Hence, for the transverse and edge loads together, the potential energy of

the applied loads is
P, 0
Vo= / / (— o pw) dxdy (8.2.23)

Symbolically, the total potential energy functional is

I = / / Fdxdy (8.2.24)

C 1—
F=— <e§ + & + 2ueve, + —F 7§y>

where

2 2
D[ (9w 2+ Puw 2+2 Puw 62w+2(1 ) P\’
2|\ 92 92 ) TH a2 92 FI\ axay
(B Ou
b Ox P

For equilibrium the potential energy IT must be stationary (minimum); that
is, its first variation 0I1 must vanish. Accordingly, the integrand F must
satisfy the Euler-Lagrange equations of the calculus of variations. The
Euler-Lagrange equations are as follows (Bleich 1952):

(8.2.25)

0F d 0F 4 OF

du  Ox Juy Ay du,
dF 9 OF 9 OF

dv Ox dv,  dy dv,

OF 8 OF 98 doF 0> OF 9 9F 9> OF

_ - 7 = - —9
G Ox Oy Oy dwy | 02 Gun | Oxdy Ouny | 092 Gy @

From Eq. (8.2.25)



Buckling of Plate Elements 387

OF 0 98 Cloe youe)+ 2 E_Cu_y

R — = —(2¢&, & -V L. = FUu~= X

5 . 2 e P A

oF _ OF _C (1— ) or Cley + pe)

o - - = —_ _— = & Ex

aV ayx 2 lu‘ ’ny avy y l"l’

OF JdF C

5= D v = E[(Zex + 2,uey)wx +(1— H)nywy}

JoF C{(z L ) + ) } JdF b 32w+ 9w
_ = — & Ex - xyx Y Ox2 92
dw, 2077 Hex)tly K gt Oy FIl ay?
Oy, g Oxdy  Owsx oy? =

(b)

Substituting these derivatives Eqs. (b) into the Euler-Lagrange differential
equations Egs. (a) and simplifying gives

[0(ex +pey)  1—pdvy
C =0
T e 2 oy ]
[0(ey + pey) 11— p0vy
C —0
i ady + 2 Ox
D'a2 62w+ w +(9_2 82w+ w +o(1— ) & Fw
02\ a2 " a2) T2\ g2 T H a2 K 9%y axay

—Ci (ex + 6)6_w+_1—,u dw
o | X THYIGIT T Yo gy,

_ Ci[(é‘y—i-,ué‘x)a—w—f—l_—'u’y a_w:| =p
dy dy 2 "Yx
(©
Substituting the plate constitutive relations from Egs. (8.2.7) into the above
Egs. (c) yields
0N, n Ny INy n N,y

ax | dy o o !

DV*w — N62—w—l—2]\7 a2—“’+J\raz—“’ = d)
* 9.2 Voxdy Va2 ) —F



388 Chai Yoo

It is noted that the first two relations are reflected in the simplification
process to obtain the third equation above. The term containing the edge
load Py disappears in the equilibrium equation. It reenters in the analysis as
the boundary condition is N, = —P,/b at x = 0, a. These equations of
equilibrium Egs. (d) are identical to Egs. (8.2.18) as expected.

These nonlinear equations of equilibrium contain four unknowns N,
Ny, Ny, and w. Three equations in three variables , v, w can be obtained by
mtroducmg the kinematic and constitutive relations of the plate (Egs. (8.2.5)
and Egs. (8.2.7), respectively). The results are

8 (o) ()7 f(00) 100
x| \9x ax) *\ay) T2\ay

1—,u6 au+av+6w0w

2 ay dy Ox dx dy

8 (00) ,1(00)7, f(00) 1 a0
dy | \dy 2\ dy | \ox 2\ Ox
1—,U,(9 6u+81/ a_wa_w B
2 Ox dy  Odx Ox dy)

pee=c{(50) +5G) {(5) +3(5) |V
“of ) +a(5) o[G0 3G s

_(1_ )C %+@+a_wa_w azw
FiE\ay T ox " ax 9y ) oxay

=0

0

= (8.2.26)

Equations (8.2.26) may be considerably simplified if one introduces a stress
function f defined by the following relations (Timoshenko and Woinowsky-
Krieger 1959):

%f
On2

&f &f
ay> dxdy
where f = f(x,y). These equations satisfy Eqgs. (8.2.10) and (8.2.11) auto-
matically. Substituting these equations into Eq. (8.2.18c) gives

Ny = h Ny = hz2% Ny = —h

(8.2.27)
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0*f 0° *f 92 0*f 9°
DV4w—h<—f—w—2 S ow  9F “’> =p  (8.2.28)

32 0x2  ~ 9xdy dxdy = 0x2 92
From kinematic compatibility from Eqs. (8.2.5), it is seen that

Pep 0%, Pry  [Fw\® 0%w Pw
+—2 - = - (8.2.29)
a2 0x2  Oxdy dxdy x> 92

Equation (8.2.29) is a deformation compatibility equation. It follows from
Egs. (8.2.7) that

1% &f 1/0%  &%f
&x = Zlaz " Ma35) & =FlazMas
E\ d0y? dx2 E\ 0x2 0y>

2(1+pu) 6%f
= —-—t — 8.2.30
Substituting Egs. (8.2.30) into Eq. (8.2.29) yields
Puw\> 0w Pw
Vf-E|[-—) =5 =5| =0 8.2.31
/ Kaxay> 9x° 5y2} (8:230

Equations (8.2.28) and (8.2.31) form two equations for the two variables w
and f. They were first derived by von Karman (1910), Love (1944), and
Timoshenko (1983), and they are accordingly referred to as von Kiarman
large-deflection plate equations. They are called the equilibrium and
compatibility equations, respectively. These equations, though very useful,
are not the only set of equations that can be used to describe the large-
deflection behavior of plates. When digital computers were not available
and it was necessary to keep the equations as compact as possible, the von
Karman equations were used almost exclusively, as the solution of these
equations basically relied on the iterative procedures. This is, however, no
longer the case. Plate equations, other than the von Karman equations, are
now in general use, as the availability of the computer makes it possible to
work effectively with any set of equations (Chajes 1974).

To obtain the equilibrium equations of linear small-displacement plate
theory, it is only necessary to omit higher order terms (quadratic and cubic
terms) in the displacement components. The linear equations corre-
sponding to Egs. (8.2.18) are found to be

ON: 0Ny _ = 0Ny | ONy

— =Y — DV*w = 2.32
Ix | dy o ax vl (8.2.32)
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where the in-plane forces are defined the way they were in Egs. (8.2.7);
however, the strain components now take only the elastic parts as

B Jdu Jdv ou Jdv

_ w0 _ 8.2.33
YT T e e (8.2.33)

€x
It is noted that the third equation of Egs. (8.2.32) is not coupled. Much of
the relative simplicity of classical linear or linearized thin-plate theory is
a consequence of this uncoupling.

8.3. LINEAR EQUATIONS

Equations (8.2.26) govern all linear and nonlinear equilibrium conditions of
the plate within the confinement of the intermediate class of deformations.
The equations include linear, quadratic, and cubic terms of variables u, v,
and w, and therefore are nonlinear. Consider a particular example shown in
Fig. 8-8. An approximate solution of the nonlinear equations can be
obtained (Chajes 1974) based on an assumed displacement function. It is
now a fairly simple task to obtain a very good iterative numerical solution by
a well-established finite element code. A load-displacement curve based on
such solutions for a plate subject to the edge load Pj is shown in Fig. 8-9.
The symmetry of Fig. 8-9 indicates that the plate may buckle in either
direction. The linear equilibrium equations, Egs. (8.2.32), govern the
primary (static) equilibrium path OA. The nonlinear equations, Egs.
(8.2.26), govern both the primary path and the secondary path AB.

The equilibrium paths determined by solution of the equilibrium
equations, Egs. (8.2.26), show the bifurcation point and the corresponding
critical load. Hence, a separate solution for the critical load is not necessary.
However, the solution of Egs. (8.2.26) demands a fairly complicated

cr

o
Figure 8-9 Load-deflection curve
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numerical procedure. The purpose of stability analysis to be presented
herein is to permit determination of the critical load by solution of linear
differential equations.

The linear differential equations for the determination of the critical
load of a rectangular plate subjected to in-plane loading are derived by
applying the adjacent-equilibrium criterion. The same equations are
rederived based on the minimum potential energy criterion as was done in
the previous section.

8.3.1. Adjacent-Equilibrium Criterion

Adjacent equilibrium configurations are examined using the procedure
outlined by Brush and Almroth (1975). Consider the equilibrium config-
uration at the bifurcation point. Then, the equilibrium configuration is
perturbed by the small incremental displacement. The incremental
displacement in wuq, v1, wq is arbitrary and tentative. Variables in the two
adjacent configurations before and after the increment are represented by u,
vo, wo and u, v, w. Let

u—uy +
v—vo + v (8.3.1)

w—wy + uy

where the arrow is read “be replaced by Substitution of Egs. (8.3.1)
into Eqs. (8.2.26) results in equations containing terms that are linear,
quadratic, and cubic in wug, vy, wy and uy, vy, wy displacement compo-
nents. In the new equation thus obtained, the terms containing ug, vo, wy
alone are equal to zero as ug, vy, wy constitute an equilibrium configu-
ration, and terms that are quadratic and cubic in uy, vy, w; may be
ignored because of the smallness of the incremental displacement.
Therefore, the resulting equations are homogeneous and linear in uy, vy,
w1 with variable coefficients. The coefticients in ug, vy, wy are governed
by the original nonlinear equations. It will simplify the procedure greatly
by simply limiting the range of applicability of the linearized equations by
requiring that ug, vp, wy be limited to configurations that are governed by
the linear equations, Eqs. (8.2.32). This limitation has the additional
advantage of wy and its derivatives being equal to zero for in-plane
loading (there is no lateral displacement in the primary path as shown in
Fig. 8-9).
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Equations (8.2.18) will be used instead as it will shorten the derivation.
The increment in u, v, w causes a concomitant change in the internal force
such as

Nx - NxO + ANx
Ny = Nyo + AN, (8.3.2)
ny — INxy0 + Any

where terms with subscript O correspond to the ug, vy, wy displacement, and
AN,, ANy, AN,, are increments corresponding to uy, vy, wy. Let also Ny,
N1, Ny represent parts of ANy, AN, AN,,, respectively, that are linear
in uq, v1, wy. For example, from Egs. (8.2.5) and (8.2.7),

NS R CA N LI YC TN
= Mox T2\ax) THlay T 2\ay

As wy and its derivatives are equal to zero for in-plane loading, one may

write
al/lo 61/!1 1 0w1 2 61/0 (91/1 1 0w1 2
N, + AN, = — 4+ —+ = — — +—+-—
0 AR C{ax+ax+2<ax) T T TG

From which

N = C 8u1 + 61/1

Substituting these into Egs. (8.2.18) gives

aNx1 + anyl

o 5 = 0 (8.3.32)

Ny N I\
dy Jx

=0 (8.3.3b)
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. 0%, 0%w, 0w
DV'w; — | Ny —= 52 +2ny0 dxdy +Ny0 ayZ =0 (8.3.3¢)
where
N = 204,90 Ny, = o2y O
Ay JQuy vy du
N,o = N,y = C|— — 8.3.4
o= (G ene) N = oGerue) 8.3.4)

i au() (91/() . 8u1 (91/1
Nyo = CT(E—{—E) Ny1 = CT(W—Fa)

Equations (8.3.3) are the stability equations for the plate subjected to in-
plane edge loading. As in the case of linear equilibrium equations, Eq.
(8.3.3¢) is uncoupled from the other two equations. Equation (8.3.3¢) is
a homogeneous linear equation in wy with variable coefticients in Ny, Ny,
N,y0, depending on the edge conditions of the plate, which are determined
by the other two linear equations (8.3.3a) and (8.3.3b). It is an eigenvalue
problem. As such, it has solutions for discrete values of the applied load. At
each solution point or bifurcation point, two adjacent equilibrium
configurations exist—an undeformed one on the primary equilibrium path
and a slightly deformed one on a secondary equilibrium path.

8.3.2. Minimum Potential Energy Criterion

The plate stability equations (8.3.3) will be rederived by applying the
minimum potential energy criterion. The equilibrium changes from stable
to neutral when the total potential energy functional II ceases to be a
relative minimum. The criterion for the loss of stability is that the integrand
in the expression for the second variation of IT satisfies the Euler-Lagrange
equations, which is known as the Trefftz criterion according to Langhaar
(1962).!

Symbolically, the total potential energy increment may be written in the
form

1 1
AH:6H+5¥H+§$H+”. (8.3.5)

Each nonzero term in Eq. (8.3.5) is much larger than the sum of the suc-
ceeding terms. Since 0I1 vanishes by virtue of the principle of minimum

1 See page 211.
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potential energy, the sign of 4II is governed by the second variation. For
sufficiently small values of the applied load, the second variation is positive
definite (condition for II to be relative minimum). The critical load is
defined as the smallest load for which the second variation no longer is
positive definite (it is positive semidefinite). According to the Trefttz
criterion, the equations for the critical load are given by the Euler-Lagrange
equations for the integrand in the second variation. Since the expression for
the second variation is a homogeneous quadratic functional, its variational
derivatives (Euler-Lagrange equations) are necessarily linear homogeneous
differential equations. In order to obtain the second variation, Eqs. (8.3.1)
are used again
U= 1y +

vy + v (8.3.1)
w—wy + uy

where (ug, vo, wp) is a configuration on the primary path, including the
bifurcation point, and (uq, vy, wy) is a virtual displacement. The total
potential energy in a Taylor series expansion is

oIl a1 a1

H(uo+M1,V0+V1,wO+W1) = H(M(),VQ,W0)+—M1+ +—w1
(3 dv 0 awO
’rr, o, 0%, , O, 0*11
=== ()" + +— +2
213z ) avo(”l) a2 2 G
+2 o1 +2—— 11 +
auoawO i 81}0614/0 e o

The change in potential energy AIl = II(ug + uy,vo + vi,wy + wi)—
II(ug, vy, wp) can be written as

1
AH:6H+5¥H+.“

where the first variation is equal to zero by virtue of the principle of
minimum potential energy and the second variation is defined as

11 *I1 11 0’11
211 — 2 9y S N2 s
a%(m)‘*aﬁ(“)‘+amﬁwo 2 Bdn, !
62 2
+2 uiwy + 2 viwy
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The total potential energy functional and the integrand are given by
Eq. (8.2.24) and Eq. (8.2.25), respectively. Eq. (8.2.25) will become
extremely large when it is expanded according to Egs. (8.3.1) after
each strain term is replaced by Eqgs. (8.2.5) that are expanded by Eqgs.
(8.3.1). Therefore, it would be rather manageable to proceed with the
derivation of the second variation term by term. In the derivation of
the second variation, it is important to reflect Eqs. (8.3.1) in the strain
expression and collect second-order terms in uq, vy, wq, for wy (and its
derivatives) = 0. Membrane strain terms are

o (NP (a1 fon
ex_ax 2\ dx )’ & 7 Ox Ox \ Ox 4\ 0x
Y9y 2\ay) T Y \dy ay\ dy

_6u0v+16u Jow 2+161/ ow 2_'_1 ow\ > /0w >
S8 T Gxay T20x\ay) T2ay\ax) T a\ax) \oy

B 6u+0v+6w ow
Yo = 9y Tox T ax 9y

Yo = \oy) T\ox ax) \ay
Oou dv Ju dw dw dv dw dw
2 — 2

@&Jr dy dx 3 %% ox dy

Introducing Egs. (8.3.1) and carrying out the variations with wy (and its

1/9w\*

derivatives) = 0 yields

ER R

PII(2) = 2 w2 42

X



396 Chai Yoo

Likewise,

//K )2 ay@t;) +4(?9Lyv> ]dxdy

21T %I 0’11
52 H( 2) = T2, FY)
& Ay 2 Viy” dvo,y 0w Viatiy A,y 2 B

(91/1 2 61/0 (9“/1
//[ <6y> o\ oo
H(”)_// 0u dv 1 0u (dw 2+10v w +10_w2
e avay 2ax\ay) T2ap\ax) Tilex
ow\ >
() Jo

aZH 5 N aZH 5 N aZH aQH
Ul x v w
au()7x2 1, aVO,yZ 1y aw(),xz ) awO7y2 1y
L, OO L, o
dup xv0,y ALy

9’11 8211

+2——Fu w1y +2
au()7xatu()d, 173» 17y

6217 (Sx(‘;‘y) =

—M17 w17
TR LY

A A Vl:ywlﬁf
al/ojy(awOVX

9%IT 9211
+2— V17yw17y +2

W1 Wi,
81/07),014/0’), XLy

(")WQ7X(9WO7);
[ Quy dvy dwo (0w \2 dug [ du
= 2 _ —
// I 8y+0y<ax>+ax(6 Hd’“ly
// %2+@2+3_W23_W2+25”3"
YW Jy Ix ax) \ay Jy 9x

28u8w6w+281/3w6w od
Jy 0x dy | ox Ox oy] 0
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9>I1 O>I1 O>I1 O>I1
5217(’)’93) = —M1y2 + 2V1,x2 + W2+ sy

Qugy? dvo Qw2 awo,ﬁ“”’y
+2(927Hu1 2 —1—2(:)2717%1 w1

dug 0o e dug 0 e
+2827Hu1 wy +2627H1/1 wq

dug 0wy S vy 0w x Y
+2827HV1 A —|—2627Hw1 (W1

v 0wy A o 0wy A
// [ <6u1> <6V1>2+43M1 dvy

Jx dy Ox
Qug dun dun Jdvy Owy 0wy

— — m— + 4= —— ——|dxd
3y ox oy ' ax ox ay] xay
The second variations of the bending strain energy terms are

(IR
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\S}

g <82_w 82w> 011 , 0T

5 w17 X wl’
9x> 9y> > 27y

dwg ,xxz dwg Y

O*I1

22— xxW1,yy
Qo e I yy ’

A1 161
ool ()] - 2 ] ) o

Hence, the second variation of the membrane strain energy is

1

_62Um — E‘//>
2 2

[14173;2 + Vl,y2 + Zﬂul,le,y] +

u
(1 + v1.0)*
+ [(”O,x + ,uuo,y)w%’x + (V()J, + MM()’X)W%,);] dxdy

+ (1 = 1) (uoy + vo.) w1 sty
Substltutlng Egs. (8.3.4) into Eq. (8.3.6) yields

52 Un = // |:”1x +V1y +2,u“1x1/1y+ ;M(ul,y+Vl,x)2:|dXdy

+ 2(N OW1 x + N, 0W1y + 2ny0w1 W1 y) dxdy

(8.3.7)

Likewise, the second variation of the bending strain energy is

D 62w1 02w1 2 aZW1 (9214/1
—(52U = — ] +2 —
=2 (G ) +(5) 5

2
+2(1— p) (gx—'g;) }dxdy (8.3.8)
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Equation (8.2.23) shows no quadratic term or higher order terms in the
displacements; therefore it is concluded that 6’1 = 0. Hence,

0’1 = 6°U,, + 6°U, (8.3.9)

01 = / / Fdxdy (8.3.10)

—Iu(”l,y + V1,x)2:|

+ (Nxow1,x2 + Nyowl,y2 + 2ny0w1,xw1,y)

—|—D aZW1 2+ 62w1 2+2 62w1 62w1+2(1_ ) 62w1 >
92 3y? K92 92 FI\ axay

(8.3.11)

and

where

F = C|:M17x2 + V17y2 + 2uu vy +

The Euler-Lagrange equations according to the Trefftz criterion are

0F d OF d OdF

(8.3.12)
dF 90 dF 9 OF &> OF

Gy 0x Gwr. 0y dwry | 0x2 dunm

9 OF 9> IF

e -0
+ dy? w1y + 0x0y Owi

Substituting the followings into the second equation

9
ouy
d OF (a4 )
O a’/ll,x = (M x T UV x

d OF (1—p)
_ =2
ay 6u17y 2

(“1,)/ + v 7x),y
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yields

(15 + uv1y) T (Tlu)(“l,y + V17x)’y =0

Substituting the followings into the second equation

dF

=0
o
d OF (1—p)
il — o .
dx dvy 2 (M1.,y T, )”‘
d dF 2( n )
dy dvy - A\ T L),

yields

1—u)

(w14 + NV17y)7y+ )

2 (1/117y+1/17x)7x: 0

Substituting the followings into the third equation

=
6w1
d OF
a awl = 2Nx0wl,xx + 2nyOW1,xy
d OdF
@ GW1y = 2Nx0W1,yy +2ny0w1,xy
62 aF - D 264W1 + > (941/121
02 It ot Moxzay2
9> OF _ b 264w1+2 9wy
N2 e vt M ax2g2
& OF 4D(1 — ) 3w,
9x0y gy K 929,72
yields
4 0%uy 07wy 0%wy
DVW1— Nxoaz—f‘Ny()az—i‘szyoaa =0

Equations (8.3.13a) and (8.3.13b) can be rewritten as

(8.3.13a)

(8.3.13b)

(8.3.13¢)
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(NX1),x+(nyl)7 =0 (Nu)

v +(ny1),x: 0

P

As expected, these equations are identical to Egs. (8.3.3).

8.4. APPLICATION OF PLATE STABILITY EQUATION

Equation (8.3.3¢) governs the buckling problem of a plate subjected to in-
plane loads. For a properly posed buckling problem of a plate that is pris-
matic, homogeneous, and isotropic, Nyg, Ny, and N,y can be functions of
the coordinate variables x and y. The demonstrative examples presented
here are limited to cases in which these coefficients are constants. For
simplicity of notation, the subscript “1” is omitted in the examples.

8.4.1. Plate Simply Supported on Four Edges

Consider a plate simply supported on four edges and subjected to
compressive load P, uniformly distributed at the edges x = 0, a as shown in
Fig. 8-8. From an equilibrium analysis, the in-plane forces are

Ny = —7: —px and N, = N,, =0
For all casual analyses of the critical load of a simply supported plate, a typical
boundary condition of pin-roller arrangements in two orthogonal directions
may be satisfactory, as such boundary conditions are on the conservative side.
If a pinned boundary is defined as a support condition that only allows
rotation along the edge with constraints for translations in the x, y, z
directions intact, then N9 and N,y are no longer equal to zero. In order to
maintain the simplifying assumption of N9 and Ny, to be equal to zero, all
in-plane constrains are removed except at a corner point where constraints
are provided to eliminate the rigid body motion in a finite element analysis in
which constraints can be assigned at each nodal point.
Substituting the simplified analysis results into Eq. (8.3.3¢) gives

DV*w 4 paw = 0 (8.4.1)
Since the plate is simply supported on four edges,
Ww=wy =0atx =0,a w=w, =0 aty=20,05> (8.4.2)
Assume the solution to be of a form

T
wa(x,y) = Yﬂ(y)sin% withn = 1,2,3 . . . (8.4.3)
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This is a standard procedure of separating variables to transform a partial
differential equation into ordinary differential equation, which will reduce
the computational efforts significantly. Y,(y) is a function of the indepen-
dent variable y only.

Taking appropriate derivatives and substituting into the governing
equation above gives

iv nm\ 2 I nm\ 4 Px (NTT 2 onmx
Y, — 2(—) Y," + (—) — —(—) Y, psin— = 0 (8.4.4)
a a D\ a a

Since sin (n7x/a) # 0 for all values of x, the expression inside the brace must

vanish. 2\2
Let u? = &<— , then
nm
. m\ 2 ™\ 4
v =2(5) v+ () (1= )Y, = 0 (8.4.5)

Assume the homogeneous solution of Eq. (8.4.5) to be of a form
Y, = c". Taking successive derivatives, substituting back to Eq. (8.4.5),
and solving the resulting characteristic equation gives

Y, = ¢ cosh k1y + o sinh k1y + c3 cos kay + ¢4 sin kpy

ki = <%T>\/u+ 1 and ky = (g)vu— 1

Assume that the rectangular plate shown in Fig. 8-10 is simply supported
at x = £a/2 and elastically restrained at y = £b/2. Then, the buckling
deflection corresponding to the smallest p, is a symmetric function of y
based on the coordinate system given. Hence, Y, must be an even function
and oo = ¢4 = 0. The deflection surface becomes

w(x,y) = (c1 cosh k1y + ¢3 cos kay)cos e (8.4.6)
a

y
Figure 8-10 Elastically restrained rectangular plate
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M, M,
X )
ow ow
dy " dy
w

Figure 8-11 Elastically restrained boundary condition

The elastically restrained boundary conditions shown in Fig. 8-11 are

d 9
My = —k—aty = b/2 and M, = +k—”y”aty = —p)2

oy 0

where k is rotational spring constant per unit width
and since w = wy, = Oaty = +b/2

_ - — DY cos X
My|y::|:b/2 = —D(w,y + pw,) = —Dw,, = —DY, cos ;
Fromw = Oaty = +b/2
b b
1 cosh k1§ + ¢3 cos k2§ =0 (8.4.7)
0
From M, = —ka—;’} aty = +b/2
2 b 2 b . b b
—D| 1k cosh k= — c3k; cos ko= | = —k| c1kq sinh k1= — c3ks sin kr—
2 2 2 2
(8.4.8)

0
From M, = —Hea—w aty = —b/2
v

b b . b . b
—D<cl k% cosh le1§ — C3le§ cos Ie2§> = —Ie<q k1 sinh k15 — c3ky sin k2§>
(8.4.9)

It is noted that Eq. (8.4.9) is identical to Eq. (8.4.8). Let p = 2D/bk . Then
Eq. (8.4.8) becomes

D b b b b
Z(q Ie% cosh kq 57 Q,k% cos ky 5) = (q k1 sinh k4 57 czky sin ko 5)

b b b b b b
a <k1 sinh k1§ — Ie% 5 p cosh k1§> - <k2 sin ky 5~ kgé p cos k2§> =0

(8.4.10)
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Setting the coefficient determinant of Egs. (8.4.7) and (8.4.10) for the
constants ¢; and ¢3 yields

b b
cosh ky = cos ky —
2 2 — 0
b b b b b b
kisinh ky E—kfgpcosh k1 2 —ky sin Iezi—}-kgépcos kzi
Expanding the above determinant gives
ktanh —= 4 kotan —= — bp (ki +k5) = 0 (8.4.11)

Let « = a/b be the aspect ratio of the rectangular plate. Then

b nir b ni
— = —Vu—+1 — = —Vu—1
k12 2 u and k> > 2 u

vVu—+ 1tanh<g\/u +1 ﬁ) + Vu— 1tan(g vu—1 ﬁ) — ﬂ'/m(£> =0
« « a
(8.4.12)

Equation (8.4.12) is the general buckling condition equation.
If the plate is simply supported along the boundary at y = +b/2, then
k =0 and p = . Therefore, Eq. (8.4.2) becomes

T n
u—ltan(— u—1—> = ®©
2 «

since v/u 4 1 tanh(5v/u 4 12) is a finite value.

Hence

from which

Then
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‘- o3
o n

which is called the buckling coefficient.
Then

Let

, w°E
Oy = kﬁ (8413)
12(1 = w?)(3)

It is known that Bryan (1891) derived Eq. (8.4.12) for the first time.
For the smallest p.,

Apxer 2D7? a+n T n\
de 02 \n o)\n o)

which leads to n”> = .
Ifn =1, then « = 1 and ¥ = 4. The plot of buckling coefficient for n = 1 is
given in Fig. 8-12. In a similar manner, the curves for n = 2, 3, 4... can be

obtained. The solid curves represent lowest critical values, and the dotted
lines higher critical values, for given plate aspect ratios. The buckling
coefficient ¥’ for plates with other boundary conditions are given by Gerard
and Becker (1957).

1 V2 2446 3 4

Figure 8-12 Plate buckling coefficient

8.4.2. Longitudinally Stiffened Plates

Longitudinally stiffened compression plates are believed to have been used
from the quite early days of steel structures. They render an effective
utilization of materials and thus offer a lightweight structure as in the case of
box girder bridges, bridge decks, ship hulls, offshore drilling platforms,
storage tanks, and so on. Although fragmented research efforts were made
on the subject, including those of Barbre (1939), Seide and Stein (1949),
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Figure 8-13 Longitudinally stiffened plate strip

Bleich (1952), Timoshenko and Gere (1961), and Sharp (1966), no orga-
nized research eftorts were initiated until the early 1970s, when an urgent
research program was launched in the UK as a result of a series of tragic
collapses that occurred during the erection of bridges over the Danube,
Milford Haven Bridge in Wales, West Gate Bridge in Australia, and
Koblenze Bridge in Germany.

Following is a brief review of what Bleich (1952)% presents. Although
Timoshenko and Gere (1961)” use the energy method of computing the
critical stress and the plate buckling coefficient ¥'as compared to Bleich’s
approach of solving the differential equation, they use the same parameters:
the aspect ratio of the plate, the bending rigidity ratio, and the area ratio of
the stiffened plate itself. Consider a rectangular plate simply supported on all
four edges with a longitudinal stiffener at the center of the plate as shown in
Fig. 8-13. From Eqs. (8.4.5) and (8.4.6), the deflection surfaces can be
written as

wi = sin nx (cicosh k1y + ca sinh k1y + 3 cos kay + ¢4 sin kyy) for y >0
a

e
wy = sinu (E1cosh k1y + ¢ sinh k1y 4 c3cos koy + ¢4 sin Iegy) fory <0
a

Boundary conditions (8 bc’s) to determine ¢; — ¢4 are

w = wy aty =0 (a)
6w1 8w2

- = =0 b
3y 3y aty (b)

2 See page 360.
3 See page 394.



Buckling of Plate Elements 407

(92

Wu;l =0 aty = b/2 (c)
wp =0 aty = b/2 (d)

aZ

Wuf =0 aty = —b/2 (e)
wry =0 aty = —b/2 ®

One needs two additional conditions. Consider the juncture where the
stiffener and the plate meet as shown in Fig. 8-14. Consider then the iso-
lated stiffener alone.
The behavior of the stiffener can be described by a beam equation with
oA =Niyandwy =wy, =waty =0
4 2
o AL AL g (bm: EI" + Py = g) @
Oxt dx?

From the theory of plates

Q—-—Q =g
6 62w1 aZW1 02w2 02w2
= D | )t 22— )2
a2 TR MG e oG o
The distributed torque on the stiffener is
MT = My — M, = GK 9 _ g 0 (h)
- 2 yl — T Ox w 9x3

where counterclockwise torque is positive and GKrand EI,, are properties
of the stiffener.

M. M. . D 82w2+ 62W2 —|—D 82W1+ 02w1 . MT
2= a2 T H e w2 M2 )| T

q
l i b,

e id Maaniid ¥
?l?# ¢T

Flgure 8-14 Stlffener-plate juncture
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Figure 8-15 Definition of mode shapes

If GKr and EI,, are assumed negligibly small, though it is not convincing,
then

My = My orM' =0aty =0 ()

Bleich showed the derivation of the critical stress for the symmetric
buckling only because the critical stress for antisymmetric buckling was
equal to the critical stress for a simply supported plate of width b/2. Refer to
Fig. 8-15 for the definition of the terminology.

Three parameters were introduced: the aspect ratio of the plate, the bending
rigidity ratio, and the area ratio of the stiffener and the plate, respectively.
They are

a—f

b
_12(1—w?)I  EI
YT T D

o=

bh

where Db =bending rigidity of a plate of width b and A = area of the stiffener.
It is evident from symmetry shown in Fig. 8-14 that

<azw1 GZW2> d ((93w1 631/1/2>
—-— = an ==
0x2 0x2 y=0 ay? a3 y=0

Therefore

O wy

= Q- =-20%Y
1=Q—-Q 33 Iy

0)
Hence, from Eq. (g)

D 63w1 ‘ _ (g1 (3414/1 N aZW1
92 ly=0 dx* T gx2 )0

The above equation transforms to the following in terms of v and 0:

64W1 obto, aZW1 6314/1
vb =0
Ox* D 0x2 9y3 |70

(k)
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The available boundary conditions for the four unknowns ¢; — ¢4 are (c)
and (d), (dwy /dy) \y:() = 0 (due to symmetry), and (k). Applying these four
boundary conditions yields four homogeneous equations for the integral
constants, ¢; — ¢4. Setting the coefficient determinant of these simultaneous
equations equal to zero gives the stability condition for the symmetric mode
of buckling.

Boundary condition (c) gives

kyb b kob kyb
k% cosh%q +le% sinh%cz—/eg cos%q—kg sin%q =0 ()

Boundary condition (d) gives

1 . k1b kzb . kgb N
cosh 751 + sinh 7@ + cos 7@ + sin 764 =0 (m)

Ju
From —/|

dy

-0 = 0 (symmetric condition), one obtains

kico + kocy = 0 (n)

Boundary condition (k) gives

4,4 22
vy ntw o0to, n°m
b_3 7(61 + 63) — Db o2 (Cl + 63) + 2(/6?[2 — kg&;) =0
or
44 2 2 4_4 2.2
" Oto, n°T " Oto, n°m
yorr o0enmT oq+2k0+ yum oen 3
B ot Db o2 1 ¥ ot Db o (0
—2k3ey = 0
The coefficient determinant is
kob kob
k2 cos h - k2 sin h - —k3 cos = —k3 sin =
2 2 2 2
klb . klb ]egb i kzb
cos h— sin h — cos — sin —
2 2 2 2
0 k1 0 k2
Y ntat B % n2m? i v ntat B % n2m> o
B ot Db «? 1 b ot Db o2 2
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Let

Then, the determinant becomes

k1b k1b kob kob
k% cos h % k% sin h % —kg cos % —k% sin %
klb . ]61 b Iezb . ]ezb
cos h— sin h — cos — sin —
2 2 2 2
0 k] 0 k2
big 2k3 big —2k3

Expanding the determinant gives
det = 2kyks (K + k3) ch cos + biglk (k7 + k3) ch sin — ks (k3 + k3)sh cos]

where

ch:cosh@ , sh = sinh @ ,cos:cos@ ,sin:sin@
2 2 2 2

Letting the determinant equal to zero for the stability condition yields
2k ko (k% + k%)ch cos + big[kich sin — kash cos] = 0

Dividing both sides by —kqkach cos gives

1 kib 1 kab\ [y n*mt oto, P>
<E”nh7‘k—2m7> <————C—a —2(k +13) = 0

(8.4.14)

Equation (8.4.14) gives the relationship between the stiffener rigidity versus
the compressive stress, d,, at the instance of symmetric buckling. Bleich then
lists the case of two stiffeners subdividing the plate into three equal panels
without showing the derivation process for the critical stress. Bleich simply
shows a plot of the limiting value of the rigidity ratio v obtained for the case
by Barbre (1939).

It will be informative to review briefly the early development of the
design rules applicable to longitudinally stiffened compression panels. A
literature search (Choi 2002) reveals that the early design guides were BSI
(1982), DIN 4114 (1978), ECCS (1976), and AASHO (1965). According
to Wolchuk and Mayrbaurl (1980), the British design specification (BSI,
1982) is influenced to a large degree by the general design philosophy of the
“Interim design and workmanship rules” (“the Merrison Rules”) (Inquiry
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1974). The Merrison Rules method is essentially the culmination of the
urgent research program in response to the series of collapses. The method
considers the individual stiffener strut separately, which consists of a stiffener
with a corresponding width of the flange plate. The strength of the entire
stiffened plate is then obtained by multiplying the ultimate stress of the strut
by the total area of the plate. This is referred to as the “column behavior”
theory, which prevails in European countries.

Highly theoretical and extremely complex analytical research on
compression panels stiffened by one or two stiffeners has been carried out by
Barbre (1939), Bleich (1952), and Timoshenko and Gere (1961). It appears
that their research results on the antisymmetric buckling mode, which
might be classified as the “plate behavior” theory, are not currently in use in
any national design specifications. Mattock et al. (1967) prepared the
“Commentary on criteria for design of steel-concrete composite box girder
highway bridges” in August 1967. These criteria were intended to
supplement the provisions of Division I of the Standard Specifications for
Highway Bridges of the AASHO (1965). An overly conservative approach
appears to have been adopted during the course of simplifying and
extrapolating the limited research results (some of which appear question-
able) to incorporate the case where the number of longitudinal stiffeners
was greater than two. Although the equations in the AASHO (1965) give
a reasonable value for the minimum required moment of inertia of the
stiffener when the number of stiffeners is less than or equal to two, the
equations require unreasonably large value for the moment of inertia when
the number of stiffeners becomes large. It was found that an old bridge
(curved box girder approach spans to the Fort Duquesne Bridge in
Pittsburg) designed and built before the enactment of the criteria did not
rate well, despite having served safely for many years. After this incident, the
latest AASHTO (2007) specifications limit the maximum number of stiff-
eners to two as a stopgap measure.

In a series of numerical researches at Auburn University, Yoo and his
colleagues (Yoo 2001; Yoo et al. 2001), extracted a regression formula for
the minimum required moment of inertia for the longitudinal stiftener to
assure an antisymmetric buckling mode. The coefticient of correlation R
was found to be greater than 0.95.

I = 0.3na*/nwh’ (8.4.15)

where a = aspect ratio of subpanel; n = number of stiffeners; & = thickness
of plate; w = width of stiffened subpanel; n = ratio of the postbuckling
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stress to the elastic buckling stress. The elastic buckling stress is to be
computed by Eq. (8.4.13) with a value of the buckling coefficient k' equal
to four. The ratio of the postbuckling stress to the elastic buckling stress 7
should be set equal to one when the postbuckling strength is not recog-
nized for reasons other than the strength or the analysis is carried out in the
inelastic zone. Choi and Yoo (2005) showed that Eq. (8.4.15) works well
for horizontally curved box girder compression flanges too, and its validity
has been verified by an experimental study (Choi et al. 2009).

It is reassuring to note that Eq. (8.4.15) includes the length of the
member (indirectly by the aspect ratio «). The longitudinal stiffener s, after
all, a compression member whether it is examined in the “column
behavior” theory or in the “plate behavior” theory. As such, the length of
the compression member must be a prominent variable in determining the
strength. In order to control the length of the longitudinal stiffener (the
aspect ratio «, shall not exceed, say 7), transverse stiffeners are to be used.
Choi, Kang, and Yoo (2007) furnish a design guide for transverse stiffeners.
Mittelstedt (2008) demonstrates the superiority of the “column behavior”
theory by an explicit elastic analysis of longitudinally stiffened plates for
buckling loads and the minimum stiffener requirements.

Compression members in general can be classified into three groups:
compact, noncompact, and slender. Yielding, inelastic buckling, and elastic
buckling, respectively, control the ultimate strength of the members in each
group. Geometric imperfections appear to affect the inelastic buckling
strength of the members belonging to the noncompact group. Residual
stresses are particularly onerous to the postbuckling strength of the slender
members and affect the inelastic buckling strength to a much smaller degree.
The ultimate strengths of the stocky members in the compact group are not
affected by the presence of either initial imperfections or residual stresses.
The current AASHTO (2007) provisions for the limiting value of the
width-to-thickness ratio classifying the subpanels into these three groups
appear reasonable. However, it seems reasonable to classify the zones into
just two—the elastic buckling zone and the inelastic buckling zone—as is
being done in AISC (2005).

Based on the observations made during the series of investigations by
Yoo and his coworkers, a new simple formula is proposed for the ultimate
stress in the inelastic buckling zone.

N o, [W\2
o = o _cg(h> ke (Z) (8.4.16)
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where 0r = maximum compressive residual stress and C, = threshold value
of the width-to-thickness ratio dividing the elastic buckling and inelastic
buckling of the subpanel, which is given by

C = mE (8.4.17)
‘ 3(1 = u?)(oy — 0y) o

where u = Poisson’s ratio.

If the intensity of the residual stress g, is arbitrarily taken to be 0.5 gy,
Eq. (8.4.16) reduces to

R {1 —21?(%)2] (8.4.18)

[t seems apparent that AISC adopted a residual stress measurement at Lehigh
University in the early 1960s conducted on A7 (), = 33 ksi) steel specimens,
in which a maximum residual stress value of 16.5 ksi was reported. Taking
the intensity of the residual stress g, equal to 0.5 g, ensures that the inelastic
buckling stress curve given by Eq. (8.4.180 and the elastic buckling stress
curve, Eq. (8.4.13), have a common tangent, as shown in Fig. 8-16. AISC
(1989) retained the residual stress value of ¢),/2 up to its ninth edition of the
Steel Construction Manual. Although AISC (2005) does not use the term
residual stress, it would seem that the idea remains unchanged as the
maximum elastic buckling stress (F,) is limited to 0.44 ¢),. Limited test
results indicate that the intensity of the residual stress in high-strength steels
is considerably less than 0.5 o), (Choi et al., 2009).

c,/o,
—— Eq.(84.13)
1.0 - Eq.(8.4.16)
’ AASHTO
Test
0.8 — FEM
0.6 -
0.4 -
N
~N
\\
0.2+ Inelastic Elastic
Buckling Buckling
00F—7—T— 71 T 717 T T T 1> wh
0 20 40 60 80 100

Figure 8-16 Comparison of transition curve (adopted from Choi et al. 2009)
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Numerical values presented in Fig. 8-16 were generated assuming the
intensity of the residual stress equal to 0.40) as is currently used in the
AASHTO (2007).

The nonlinear iterative finite element analysis reflected the residual stress
as well as an initial geometric imperfection A of w/100, a maximum value
allowed by the AWS (2008). The mill-specified yield stress of the test
specimens is 50 ksi, yielding the threshold value of the width-to-thickness
ratio C, equal to 59.1 as per Eq. (8.4.17). If an initial imperfection A of w/
1000 simulating a flat plate and zero residual stress are incorporated in the
finite element analysis model, AASHTO curves are better represented.
However, those are unconservative assumptions that do not reflect realistic
construction conditions. It would seem appropriate to replace the outdated
AASHTO (2007) provisions for the minimum required stiffness of the
longitudinal stiffener with Eq. (8.4.15) and the strength predictor equations
with Eq. (8.4.16). It should be remembered that Eq. (8.4.15) is valid for
inelastic buckling and is applicable to horizontally curved box girders, as

well as ship hulls.

8.4.3. Shear Loading

For a plate subjected to uniformly distributed shear loading as shown in
Fig. 8-17, Eq. (8.3.3¢) reduces to (Ny,0 = Nyx0)

62
DV*w — 2Ny x—w =0 (8.4.19)

Equation (8.4.19), similar to the case of uniform compression loading in
Eq. (8.4.1), is a partial differential equation with a constant coefficient.
Despite its simple appearance, an exact solution of Eq. (8.4.19) is extremely
difficult to obtain. Timoshenko and Gere (1961) and Bleich (1952)

— — — — — —

—_— —> —> —> —> —>

v
y Moo

Figure 8-17 In-plane shear loading
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assumed the deflected surface of the buckled plate in the form of the
double series

w= 3" g sin " sin Y (8.4.20)

and then applied to the principle of minimum potential energy. Although
four terms were used (m = 1-2, n = 1-2), the critical stress was 15% higher
than the correct one for the square plate and the differences were even
greater than 15% for long narrow rectangular plates. Southwell and Skan
(1924) assumed the deflection function in the form

w(x,y) = f(x)gly) = e (8.4.21)

After transforming the partial differential equation into an ordinary
differential equation, a procedure of the characteristic polynomial can be
applied. Exact solutions of Eq. (8.4.19) are available only for the case of an
infinitely long strip (Brush and Almroth 1975). Such a solution is available
in Southwell and Skan (1924). Their results may be expressed in the form

D
Nyo = ksb—z (8.4.22)
In this notation their results for infinitely long simply supported and
clamped strips are k; = 5.34 and k,; = 8.98, respectively.

For plates of finite dimensions, available numerical solutions by
numerous researchers are summarized in Gerard and Becker (1957). Bleich
introduces k; values for simply supported and clamped square plates 9.34 and
14.71, respectively. Empirical formulas for k,, along with source informa-
tion given in Galambos (1998), are as follows:

Plate Simply Supported on Four Edges

5.34

ke = 400+ =2 fora <1 (8.4.232)
o
4.00

ke =534+ — fora>1 (8.4.23b)
o

Plate Clamped on Four Edges

8.98
kg = 5.60 +— fora <1 (8.4.24a)
o
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5.60
ke = 898+ fora>1 (8.4.24b)
o

Plate Clamped on Two Opposite Edges and Simply Supported
on the Other Two Edges
Long edges clamped:

8.98
kg = ——+5.61 = 1.99 fora <1 (8.4.252)
o
5.61  1.99
o o
Short edges clamped:
5.34 231
ky = —+——3.44+839% fora <1 (8.4.26a)
o o
231 3.44 839
ke = 5.34 + — + fora > 1 (8.4.26b)

o o

One can very well appreciate scientists and engineers® struggles in the
bygone era in solving such a straightforward equation as Eq. (8.4.19) simply
because they lacked the analytical tools that are currently available. Perhaps
the single most important application of the elastic buckling strength of thin
rectangular panels subjected to shear loading is to the stiffened and/or
unstiffened webs of plate- and box-girders. If that is the case, then it would
be desirable to reflect the realistic boundary condition of the web panels,
particularly at the juncture between the flange and web. It would seem
reasonable to assume the boundary condition of the web panel to be simply
supported at the intermediate transverse stiffener location, as they are
designed to give the nodal line during buckling. However, the boundary
condition at the flange and web juncture must be in between a clamped and
a simply supported condition. Lee et al. (1996) proposed that the following
two equations be used in the determining the shear buckling coefficients for

the plate girder web panels:

4 2 t 1t
ky = kg +g(k§.f — k) [1 - 3< - fﬂ for 5 < L <2 (84272

tw w

4 f
ko = kot (ky — k) for =2 (8.4.27b)

w
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where t; = flange thickness; #, = web thickness; ki = shear buckling
coefficient given by Eqs. (8.4.23); ks = shear buckling coefticient of plate
clamped at the flange and web juncture and simply supported at the
intermediate transverse stiffener location given by

b= 200 129 5 1830 ol (8.4.282)
= ——4+———23. 39 —  for— 4.28a
" (a/D)* a/D D D
561 1.99
k, = 8.98 + - S for—>1 (8.4.28b)
(a/D)”  (a/D) D

where D = web depth; a = transverse stiffener spacing.

Equations (8.4.27) are regression formulas based on three-dimensional
finite element analyses of numerous hypothetical plate-girder models
encompassing a wide range of practical parameters. The correlation
coefficient R of Eqs. (8.2.27) is greater than 0.95, and the validity and
accuracy of Egs. (8.4.27) have been demonstrated in numerous subsequent
studies (Lee and Yoo 1998; Lee and Yoo 1999; Lee et al. 2002; Lee et al.
2003).

Shear buckling is a misnomer. The diagonal compressive stress causes
the web to buckle. Elastic plate buckling is essentially local buckling.
Therefore, there always exists postbuckling reserve strength. Frequently,
excessive deformations are required to develop postbuckling strength. Web
postbuckling, however, does not require excessive deformations. That is
why engineers have reflected the postbuckling reserve strength in the
design of thin web panels over the past 50 years. Postbuckling behavior of
a web panel is indeed a very complex phenomenon. The nonlinear shear
stress and normal stress interaction that takes place from the onset of elastic
shear buckling to the ultimate strength state is so complex that any attempt
to address this phenomenon using classical closed-form solutions appears
to be a futile exercise. Even after codification of the Basler (1961) model
and the Rockey or Cardiff model (Porter et al., 1975), there has been an
ongoing controversy among researchers as they attempt to adequately
explain the physical postbuckling behavior of web panels. The fact that
more than a dozen theories and their derivatives have been suggested for
explaining the phenomenon testifies to the complexity of tension field
action.

Finally, Yoo and Lee (2006) put the postbuckling controversy to rest by
discovering that the diagonal compression continuously increases in close
proximity to the edges after elastic buckling, thereby producing in the web
panel a self-equilibrating force system that does not depend on the flanges
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and stiffeners. As a result of this discovery, wholesale revisions must be made
to the specification provisions, as well as steel design textbooks. The sole
function of the intermediate transverse stiftener is to demarcate the web
panel by establishing a nodal line in the buckling mode shape. It is not
subjected to a resultant compressive force that was assumed to act on the
postin a Pratt truss in the Basler model. Hence, there is no area requirement
for the stiffener. Since the end panel is also in a self-equilibrating force
system, it is certainly capable of developing tension field. The restriction of
ignoring any tension field in the end panels, therefore, needs to be revised.
Again, the flange anchoring mechanism in the Cardiff model is not needed.
An arbitrary limitation of the web panel aspect ratio of three is not required
(Lee et al. 2008; Lee et al. 2009a; Lee et al. 2009b).

8.5. ENERGY METHODS
8.5.1. Strain Energy of a Plate Element

For thin-walled plates where the thickness  is not greater than, say, one-
tenth of the plate side dimensions, the constitutive relationship becomes
a plane stress problem: that is, . = ¥,. = ¥, = 0.

Although general expressions for the strain energy of a flat-plate element
have been derived in Section 8.2, it would be interesting to examine
the contribution of each stress component to total potential energy.
Consider the plate element shown in Fig. 8-18 subjected first to 7, only.
Then, the force P = 0,dA = 0,dzdy moves a distance equal to
A, = &udx = G,dx/E. Hence,

11,
duy, = >0 dxdydz (8.5.1)
Then, the element is subjected to . The strain energy due to gy, is

dxdydz (8.5.2)

Figure 8-18 Stresses on plate elements
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However, this time the force in the x direction rides a distance =
—u (0,/E) dx. Hence,

1
dUs = —pu 5 0,0 dxdydz (8.5.3)

Assuming that normal stresses produce no shear stresses and vice versa, it is
possible to obtain strain energy of a plate element due to shear independently
of the normal forces. Due to a shear stress, there exists a force, T,,dxdz and
a corresponding deformation 7,y dy as shown in Fig. 8-19. Hence,

1 1
AUy = 5 Tdvdz(Tody) = TER dudyds  (85.4)

The total strain energy is then

1
dU = ZE[U + 0 — 2uG.,Gy + 2(1 + p)7> J)dxdydz (8.5.5)

For the entire plate of length a, width b, and thickness /, the strain energy
becomes

h/2
U = /11/2 / / B a —1—0 —2u0.0y, +2(1 + ) xy} dxdydz
(8.5.6)

As a consequence of neglecting -, Yxz, Yyz, Eq. (8.5.6) is limited to thin
plates only. It is also limited to linearly elastic materials and/or linearized
problems but it is not limited to problems of either small displacements or
membrane forces only. Substituting Eqs. (8.2.4) into Eq. (8.5.6) and
carrying out the integration with respect to z, one obtains:

U, = // <e —i—s + 2uexey —|— 7@) dxdy (8.5.7)

Figure 8-19 Shear strain
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w2 [ LI () e
"T2 ) )y [\ax2 2 Hax2 9y2
w 2
2(1 — — dxd 5.8
+2( “)<axay> ] xdy (8.5.8)

8.5.2. Critical Loads of Rectangular Plates by the Energy
Method
Herein, the energy method is applied to a square plate fixed on all four edges
subjected to uniform compression shown in Fig. 8-20. In a plate buckling
problem, the classical boundary condition at a support is applicable to the
rotation only with the translation permitted as long as it does not create the
rigid body motion.
The geometric boundary conditions are

ow

= —=0atx = 0,a w:—w:()aty:O,a
Jx

dy

w

The following displacement function will meet these boundary

2mx 2wy
w=A[1—cos— || 1—cos—=
a a

Taking partial derivatives and substituting them into Eq. (8.5.8) leads to

conditions:

D 16mw* A2
U==
2 at

r 27 21 21 =
cos> _x<1 — 2 cos il + cos’ —y>
a a a

21 27 27
+ cos® —y<1 — 2 cos idlad + cos’ _x>
a a a a a
X / / dxdy
0 Jo 2 o1

™ 2m 2w
+2u (cos il cos’ _x) (cos—y — cos’ —y>
a a a a

2 2
+2(1 — u)sin? 2T n2 2
a a
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Figure 8-20 Square plate fixed on all four sides

Making use of the following definite integrals

« s a [¢ ™ o
/ sin’ & dx = —, / cos’ de = —
0 2 Jo 2

o o

« m “« s
/ singdx = 0, / cos de =0
0 « 0 «

where «, (8 are any integer, the strain energy becomes

16Dt A2
U=—>5—
a

The loss of potential energy of externally applied load due to shortening of
the plate strip shown in Fig. 8-21 is

AV = —(Nedy) E /0 a <2—t:>2dx}

Integrating d1” gives

V= /0“ av
AAOE

3N, A2
2
Then the total potential energy is
16D A% 3N w2 A?

IIH=U+V =
+ a2 2
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| d
Nxdy — -— N, Xdy

M
Figure 8-21 Axially loaded plate strip

Taking the first derivative with respect to A and setting it equal to zero gives

dll  32Dr*A 5
— ="———-3NmA4 =0
dA a?

Since A is not zero,
32Dm?  10.67Dw?

342 a2

xcr —

which is upper-bound solution.
Using an infinite series for w, Levy (1942) obtained an exact solution
Ny = 10.07Dm?/a?, which is approximately 6% less than the above.

8.5.3. Shear Buckling of a Plate Element by the
Galerkin Method

Consider the simply supported square plate (a square plate is chosen here
just to simplify the computation eftort) shown in Fig. 8-22. The plate is
loaded by uniform shearing forces N, on four edges. To determine the
critical load, the Galerkin method will be used. Although the procedure
(without accompanying background information) was introduced in
Section 1.8, it would be useful to examine the fundamentals of the method.
Sokolnikoff (1956)* shows that the Galerkin and Rayleigh-Ritz methods
are equivalent when applied to variational problems with quadratic func-
tionals. In 1915 Galerkin proposed an approximate solution method that is
of much wider scope than the Ritz method.

Sokolnikoft (1956) presents the following background information on
the Galerkin method:
Consider a differential equation of the form

L(u) =0 (8.5.9)

4 See page 413.
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Figure 8-22 Square plate subjected to in-plane shear

where L is the differential operator and u is the displacement field. Suppose
an approximate solution is sought to the problem in the form

n

=>4, (8.5.10)

j=1

where the ¢; are kinematically admissible functions and the 4; are constants.
As the finite sum, Eq. (8.5.10) will not satisfy Eq. (8.5.9), it follows that

L(u,) = &, and ¢,#0 (8.5.11)
If Max ¢, is small, then u,, can be considered a satisfactory approximation to

u and the task at hand is to select a; to minimize &,,.
A reasonable minimization technique is as follows: If one represents u by

u = Zdifﬂi

i=1

the series

with suitable properties and considers the nth partial sum

n

Uy = E a;P;

i=1
then the orthogonality condition

/L(un)(p,-dv =0 asn—w (8.5.12)

v

is equivalent to the statement that L(u) = 0.
This led Galerkin to impose on the error function a set of orthogonality
conditions

/L(un)(p,-dv =0 (i=1,2 ..,n) (8.5.13)

14
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which yields the set of n equations for determination of the constants a;
n
/L > ao; |eidv =0 (i=1,2, .., ) (8.5.14)
v j=1

The boundary conditions of the problem are

0w 0 0 0w 0 0
w=—-——==0ax=0a w=—-5=0ay =0,a
axz ) ayz y Y
Consider a two-term trigonometric displacement function such that
T | 2x . 2wy
w = Ajsin — sin — + Ap sin — sin —
a a a a

The assumed displacement function meets geometric boundary conditions
and natural boundary conditions.
The Galerkin equation takes the following form:

/ / (x,y)dxdy = 0 withi = 1,2
0

O*tw Ot w *tw 2N,y w

where

Liw) = 20, 0w 0w
W) = 352522 " T D oy
. wx Ty
@1(x,y) = sin— sin —
a a
2x . 2wy
@5(x,y) = sin — sin ——
a a

Since there are two terms in the assumed displacement function, two
Galerkin equations must be written.

/0 A L(w)@q (x,y)dxdy

r4A 7t K X | o WY 64A,m | 2mx | wx | 2@y | wy])
7 sin” — sin” — 4 7 sin —— sin — sin —— sin —
a a a a a a a a
core Ajm? ™ e Yy . Ty
— 1 X X
= / / 5— cOs — sin — cos — sin — dxdy
0 0 2N,, a a a a a
5
4Aom? 2mx | TX 2wy | wy
> COS —— sin — cos —— sin —
- a

a a a a -



Buckling of Plate Elements

/ / L(w)@,(x,y)dxdy
0 0

4A 1Tt wx | 2mx 7ry 27ry 64A,m* 5 2TTX . 5 2Ty
+ 7 sin” —— sin” ——

) Sll’l —_— Sll’l e 511’1 b
a a a a a a a a
a a
_ Ay w2 X 27X my 2wy
- > COS — §1n — COS — §1n —
0 0 2N, a a a a a
_l’_ Pt
4A,m? 2wx | 27x 2wy . 2wy
—2 COS — Sln — COS — sm —
a a a a a

Recalling

a a
L, MTX a mmx a
sin’ dx = —, cos’ dx = —
0 a 2 0 a 2

T omwTXx | nTX a MTX nirx )
sin sin—— = 0 and cos cos— = 0if m#*n
0 0

a a a a
a 2Tx . TX 2a % 2mx T 4a
cos —sin —dx = —— sin — cos —dx = —
b
0 a a 3 /o a a 3T

the Galerkin equations reduce to

4417 (a 2 2Ny 447 ( 2a\? 0
at 2 D & 3n)

644> (a 2 2Ny Aym? (4a\? 0
at 2 D & \3r)

or
4
T 32N,y
—A A =0
2! 9p ?
32Ny , +167r4A 0
op ! 2 7T

Setting the determinant for Ay and A; equal to zero gives

2

Nuw = 111 5D
xyer — )

425

dxdy
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which is approximately 18.8% greater than the exact value Ny, =
9.34(m2/a®)D obtained by Stein and Neff (1947). A numerical solution
to an accuracy of this level can be obtained from most commercially
available general-purpose three-dimensional finite element codes with
a discretization of the plate less than 20 nodes per each edge (Lee et al.,
1996).

Inelastic plate buckling analysis may be performed using an iterative
procedure on commercially available general-purpose three-dimensional
finite element packages such as ABAQUS, NASTRAN, or ADINA.
Inelastic buckling at the transition zone is fairly sensitively affected by the
initial imperfection assumed.

8.5.4. Postbuckling of Plate Elements

Equations (8.2.28) and (8.2.31) are nonlinear coupled partial differential
equations. As is the case for all nonlinear equations, there is no closed-form
general solution available to these equations. Consider as an example
a square plate simply supported on all four edges and subjected to
a uniform compressive force N as shown in Fig. 8-23. In order to examine
the stress pattern in the postbuckling range, the following assumptions are
made:

1. All edges remain straight and maintain the original 90 degrees.
2. The shearing forces, Ny, (N,,) vanish on all four edges.
3. The edges, y = 0, a are free to move in the y direction.

Let 0 4, be the average value of the applied compressive stress. Then

1 a
Oxavg = —— N“cdy (a)
ah 0
a
p—
—_— - X
a N — «— N
Y

Figure 8-23 Simply supported square plate subjected to uniaxial force
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where 0, 4, 1s positive when N is in compression. Nj is assumed to vary
internally as a result of large displacement in the postbuckling range. The
plate boundary conditions are

Pw 0 t 0 d _62w 0 at 0
Ww=——5 = atx = 0,a and w = = aty = 0,a
0x2 ’ 92
Assume
T ™
w = gsin—xsin—y (b)
a a
Substituting Eq. (b) into Eq. (8.2.31) gives
a*f atf a‘f _ LEmty Lmx  ,my o mx ., Wy
e 929, 0_y4 =g 7(cos — cos” —= — sin” —-sin 7)
, Em 2mx 2wy
=9 5 cos — -+ cos —— (c)
2a a a

Let the solution of Eq. (c) be f; = fj, + f,. The implication of the homoge-
neous solution is that the right-hand side of Eq. (c) is equal to zero. That is,
the transverse deflection of the plate is either zero or negligibly small in the
state just prior to buckling. At this state, N, is constant at any point of

the plate.
62
N, = —J; = constant
9y
Hence, the homegeneous solution is
i = Ay
Noting that
N, &f
Oxavg = — h = @

the homegeneous solution can be rewritten as

2
Ox avg)

. @

o =
Examining the form of the right-hand side of Eq. (c), one may assume
the particular solution as

27 21
ﬁ, = Bcos—x—f— Ccos—y
a a
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Substituting this into Eq. (c) and equating coefficient of the terms yields

tont  2mx  LEm'  2mx
COS — = —F COS —
a* a g 2a* a
E 2
B="2 —¢C
32

Hence, the total solution is

Eg? 27 2 g 2
= )

To determine the coefficient g, use the Galerkin method

/ / (x,y)dxdy = 0 ()
0

R R Y C
o Ox* 0x20y2  dy* D\0y? dx2  9x% 9y dxdy dxdy

where

. WX WY
@(x,y) = sin— sin —
a a

Using (b) for w and (e) for f, one can write L(g) as

1 [4¢Dm*  Ehg®n* 27x 27y
L(g) = 5[ ] COST—I-COST
2
. s
— Oy anghg ] sin ™ sin 24
a? a a

Hence, the Galerkin equation takes the following form:
J / HeJol)en
4gD7r S X | 5 TY Ehg’m*
= — Oy m,ghg sin“ — sin” — | — T
D a 8a

2TX |, TX | 5, WY 2wy X
X [ cos = sin®> = sin® == 4 cos —= sin® — sm2 dxdy = 0
a a a a a a
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Recalling

a 27
/ sin’ midlad dx = 4
0 a 2

the Galerkin equation reduces to
4gDr 7\ a®> Ehgm a ¢ 2mx |, mx
a—4—0'xa,,gl/lga—2 ——745 A COSTSII’I 7d9€
¢ 2w s
+/ cos—ysinz—ydy> =0
0 a a
Making use of the following relations

cos——sin~ — = —
a a 2

a 27 a 27
/ cos’ o dx = E,/ cos il dx = 0
0 a 2 0 a

The Galerkin Equation can be further simplified as

2wx |, X 1 ( 2mx 5 27Tx>

4 2 3, 4
Hence
4Dm*>  Em’g® Em?¢?
Jxaug:W V:Ucr"i_v (®
or
&= 2—;<a g — aa) (h)

Figure 8-24 graphically shows the relationship between the average applied
stress 0y qy and the maximum lateral deflection g subsequent to onset of
buckling.

In order to understand why the plate is able to develop postbuckling
strength, one has to investigate the middle-surface stresses subsequent to
buckling.

Recall that the longitudinal stress o, is
N,

I = ho _ayZ
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Oavg

-

Parabolic 7

>g
Figure 8-24 Postbuckling stress

Substituting Eq. (e) into the above gives

E7r2g2 2wy .
o, = o cos — + Ox ang (1)
Substituting Eq. (h) into (i)
2wy
Oy = Oy avg + (axmjg - 0(1’) Ccos 7 (k)
In a similar manner, the stress in the transverse direction is
Ny, 0’f  Er’¢ 2mx 27x
g, = — = ——= = cos— = (@ — 0y |cos —
Y h 0x2 842 a vl v a

Figure 8-25 shows the variation of g, and 0.

As can be seen in Fig. 8-25, the tensile stress g,, developed in the middle
of the plate is believed to be the source of the postbuckling strength. Also,
the degree of the uneven stress distribution of g, in the postbuckling stage
could be reflected in the determination of the eftective width of thin plates
In compression.

o

b2

Tbe/z
e

o,

Figure 8-25 Effective width concept
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The results shown above are based on an approximate analysis and
hence may contain inaccuracies. For example, a refined analysis would
show that in-plane shear stresses develop in addition to transverse tensile
stresses after initial buckling. Such a refined analysis can readily be
performed on any three-dimensional general-purpose finite element
codes. However, the refined analysis results would not likely add any
significant new information that the simplified analysis was unable to
detect.

It should be noted that the postbuckling strength discussed above is due
to the geometric nonlinearity. As can be seen in Fig. 8-24, any significant
postbuckling (reserve) strength can only be recognized after a considerable
deformation. Therefore, in most design specifications dealing with hot-
rolled structural plates subjected to in-plane compression, the postbuckling
strength is not recognized, whereas it is recognized in the design of cold-
formed structures.

8.6. DESIGN PROVISIONS FOR LOCAL BUCKLING OF
COMPRESSION ELEMENTS

In proportioning the width-to-thickness ratio of flat-plate elements of
hot-rolled structural shapes, it is common practice to design the member
so that overall failure occurs prior to local buckling failure. When a shape
is produced with the same dimensions for different yield stresses, a section
that satisfies the local buckling provision for a lower yield stress may not
do so for a higher yield stress. In the AISC Specifications, the local buck-
ling stress is kept above the yield stress for most rolled shapes, thereby
making it possible to specify a single provision for beam and column
sections.

Iflocal buckling is not to occur at a stress smaller than the yield stress, o,
must be greater than ¢,,. Since the plate buckling stress is given by Eq.

(8.4.13), it requires
Km?E  (h 2>
— - g
12(1 — u2)\ b g

For u = 0.3, one obtains
b K'E
- <095/ — (8.6.1)
h ay
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For an unstiffened element of free-simple edge conditions, the
plate buckling coefficient ¥’ is 0.425. Substituting this value into Eq. (8.6.1)

gives
b E
- <0.615, |— (8.6.2)
h ay

The plate buckling coefficient k' could be as low as 0.35 due to web—flange
interactions. Using the lower value of ¥ = 0.35 yields

b E
= <056, — (8.6.3)
h ay

The width-to-thickness ratio is further reduced in the current AISC (2005)
and AASHTO (2007) to reflect the initial imperfections and residual stresses

for compact sections.
b E
- <038, = (8.6.4)
h ay

For the corresponding width-to-thickness ratio of the stiffened
element of a box-girder flange, the plate buckling coefficient k' of 4.0 for
simple supports along both unloaded edges 1s substituted into Eq. (8.6.1)

to yield
b E
- < 1.904/— (8.6.5)
h ay

AISC (2005) reduces this further for compact sections to

b |E
- <112 [— (8.6.6)
h oy

8.7. INELASTIC BUCKLING OF PLATE ELEMENTS

When the applied load is increased beyond the elastic buckling load, the plate
structure’s response exhibits some form of nonlinear behavior, either
geometric or material or a combination of these two. In the past, attempts
were made to solve the material nonlinear problems by adjusting the modulus
of elasticity either by the tangent-modulus theory or the reduced-modulus
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theory, or the combination. As these procedures are essentially empirical,
their accuracy or success depends largely on the success of accurately
extracting necessary data from experiments to determine the proper values
for the adjusted modulus of elasticity.

Today, engineers are blessed with the availability of high-power digital
computers at their fingertips and the advancement of sophisticated software.
It is now just a matter of preparing a good set of input data that will evaluate
the effect of complex residual stress distributions and geometric imperfec-
tions due to either milling or welding practice. The iterative procedure
automatically evaluates the ultimate strength of structures. The embedded
postprocessor in most advanced software provides engineers with practically
inexhaustible information in graphical and/or tabular forms.

Despite enormous computation power, a cOmputer program cannot
design a structure. No computer program has been developed to design
a structure automatically. And it is not expected to see one in the near future.
Hence, engineers’ input will be required in many future years to come. This
is one reason why engineers need advanced knowledge of structural behavior.

8.8. FAILURE OF PLATE ELEMENTS

The neighboring equilibrium path in Fig. 8-24 for an initially flat plate
subjected to in-plane compression is shown again in Fig. 8-26, along with
a corresponding curve of a slightly imperfect plate. Two important obser-
vations from Fig. 8-26 are worthy to note: (1) Buckling of real (imperfect)
plates is generally so gradual that it is difficult to indicate at precisely what
load the buckling takes place. Therefore, it takes an element of judgment call
to declare the critical load. (2) Unlike a column, the plate continues to carry
additional loads after buckling.

P

x

—— Flat plates
- - -~ Imperfect plates

> W

Figure 8-26 Equilibrium paths for plates subjected to in-plane compression
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Hence, P, for the plate is not the ultimate strength. In order to take
advantage of the additional load-carrying capacity, the postbuckling strength
of plates must be correctly assessed.

In fact, Brush and Almroth (1975) credits Wagner (1929) for establishing
a criterion for the postbuckling strength of a shear web. As alluded to in
Section 8.4.3, this was the beginning of the long series of attempts to
understand the true mechanics behind the tension field action. Nearly 80
years would elapse until Yoo and Lee (2006) could finally explain the true
mechanics of the tension field action.

Unlike the shear web, a plate subjected to uniformly distributed in-plane
compressive load P, it is much simpler to do. The applied load P, as shown
in Fig. 8-23 can be expressed as

b
P, = h/ o dy
0

where h and b are plate thickness and width, respectively. When P, < P,
the stress across the plate is uniform. Then P, = hbo,. If P, = P,, then

P, = hbay (8.8.1)

For P,>P,, the stress at y = 0, b is greater than that at the center of the plate
because of the stiffening effect of the supports as shown in Fig. 8-25. For
design purposes, it is customary to express the results of the analysis in terms
of an effective width over which the stress is assumed to be uniform. Then

P, = hb,0pax (8.8.2)
where 0, 1s the maximum stress at the supports y = 0, b. An approxi-
mate expression for the effective plate width b, is

be — b T

(8.8.3)

Jmax

Equation (8.8.3) is referred to as the von Karman eftective-width formula.
The eftective-width concept has been applied to the design of cold-formed
steel and aluminum structural members (Galambos 1998).
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PROBLEMS

8.1 For a thin flat plate that is subjected to a uniform compressive force P,
in the longitudinal direction, the governing differential equation may
be written as per Eq. (8.3.3c) as DV*w + (P/b)w ., = 0. If the
loaded edges x = 0, a are simply supported, solutions of the form w =
Y (y)sin(mmx/a) satisfy the differential equation. The transformed
ordinary differential equation formed is

Vi _ o (mﬂ)2y,, n <m7r>4 Py (mﬂ') 2 Y =0
a a Db\ a B
As this is an ordinary homogeneous differential equation, a solution of
the form Y = ¢ will satisfy the equation. The characteristic equation is

™\ 2 mm\+ Py rmm\2
A=) ) w0
a * a Db\ a
and the roots of this polynomial are

1/2
A—i[— — = }

Let the four roots A be o, —a, i3, and —i. Then

o= [emyemp] e ey

Show that the characteristic equation for the critical load is

1/2 1/2

200 + (a2 — 62) sinh ab sin Bb — 2aB(cosh ab cos Bb) = 0

if the plate is clamped at the unloaded edges y = 0, b.
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8.2

8.3

8.4

8.5

Chai Yoo

For a plate subjected to a compressive force Py, Eq. (8.4.13) gives for
the average stress o, = K'm2E/12(1 — u?)(b/h)*.

For an infinitely long plate that is simply supported on one unloaded
edge and free on the other, ¥ = 0.425 for u = 0.3. Then for

E = 29 x 10° ksi,
h 2
Oy = 11,ooo<z>

Using this information, determine the critical stress for local buck-
ling of one leg of the angle L6 x 6 x 5/16 if the other leg is assumed
to furnish only simple support to the leg. Review your answer with
the current AISC local buckling provision, Q. Assume the
torsional-flexural instability does not control. Neglect the fillet
effect.

For a thin rectangular flat plate that is subjected to a uniform
compressive force P, in the longitudinal direction, the governing
differential equation may be written as per Eq. (8.3.3¢c) as DV*w +
(Py/b)w . = 0.Ifall four edges are simply supported, a solution of the
form w = Cj sin(mmx/a)sin(nmy/b) myn = 1, 2, 3, .. .1is seen to
be the exact solution. Prove it.

A square plate of dimension “a” is simply supported on all four
boundaries. The plate is subjected to a uniformly distributed
compressive load on four sides as shown in Fig. P8-4. Using the
differential equation method discussed, determine the critical load.

a

[ —

N
YV YV YV Y
Tz S.S. DI
al v = [5S SS|« v
Tl s T
IEEEEEE
l N

y

Figure P8-4 Square plate subjected to load on four sides

Consider a square plate of dimension “a” subjected to N,.. The boundary
condition perpendicular to N, is changed to pinned (immovable). Due
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to the effect of Poisson’s ratio, ¢ = 0.3, forces are induced in the y
direction equal to N, = uN,. Determine the critical load, N ;.

T3k}

8.6 A square plate of dimension “a” is simply supported on all four

8.7

8.8

8.9

boundaries. The plate is subjected to a linearly varying compressive
load, Nj, as shown in Fig. P8-6. Using the energy method discussed,
determine the critical load.

No No
SS.

u S.S. S.S.

S.S.

l

y
Figure P8-6 Linearly varying load

R
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Fxd.

S.S. SS|<« N

IS}
=
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7777777777 %

l

y

Figure P8-7 Square plate with simple-fixed boundaries

[I3=L)

A square plate of dimension “a” is simply supported on edges parallel to
the uniformly distributed load, N, and fixed on edges perpendicular to
the load. Using the energy method discussed, determine the critical
load.

A square plate of dimension “a” is simply supported on all four
boundaries. The plate is subjected to a linearly varying compressive
load, Ny, as shown in Fig. P8-8. Using the energy method discussed,
determine the critical load.

Using the energy method, determine the critical load for the one-
degree-of-freedom model of a flat plate shown in Fig. P8-9 (Model
analysis I). The model consists of four rigid bars pin-connected to each
other and to the supports. At the center of the model, two linear
rotational springs of stiffness C = M/ connect opposite bars to each
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Figure P8-8 Square plate subjected to stresses due to bending and axial force

Q

Eccentric
loading

A //@/{

Figure P8-9 Plate model (after Chajes, Principles of Structural Stability Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1974). Reproduced by permission from the
author.

other. Also, each of the two transverse bars contains a linear extensional
springs of stiffness K. For small lateral deflections, the energy in the
extensional springs can be neglected.

Using the same model, obtain and plot relationships for the load P
versus the lateral deflection d when Model analysis IT):

The lateral deflection is large.

The lateral deflection is large, and the loads are applied eccentrically to
the plane of the undeformed model.

Which fundamental buckling characteristics of an actual plate are
demonstrated by these models? (Nofe: For large deflections the energy
in the extensional springs must be considered.)
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9.1. INTRODUCTION

Shell buckling has become one of the important areas of interest in struc-
tural mechanics in recent times. The difference between a plate element and
a shell element is that the plate element has curvatures in the unloaded state,
whereas the shell element is assumed to be initially flat. Although the
presence of initial curvature is of little consequence for bending, it does
affect the membrane action of the element significantly.

Membrane action is caused by in-plane forces. These forces may be the
primary forces caused by applied edge loads or edge deformations, or they
may be secondary forces resulting from flexural deformations. In a stability
analysis, primary in-plane forces must be considered whether or not initial
curvature exists. However, the same is not necessarily the case regarding
secondary in-plane forces. If the element is initially flat, secondary in-plane
forces do not affect membrane action significantly unless the bending
deformations are large. It is for this reason that membrane action due to
secondary forces is ignored in the small-deflection plate theory, but not in

Stability of Structures © 2011 Elsevier Inc.
ISBN 978-0-12-385122-2, doi:10.1016/B978-0-12-385122-2.10009-0 All rights reserved. 441
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the large-deflection plate theory. If the element has initial curvature, on the
other hand, membrane action caused by secondary in-plane forces will be
significant regardless of the magnitude of the bending deformations.
Membrane action resulting from secondary forces therefore must be
accounted for in both small- and large-deflection shell theories (Chajes
1974).

In addition to this complication is the fact that in many shell problems
the initially buckled form is in a condition of unstable equilibrium and
a new position of equilibrium can exist at a much lower buckling load.
Thus, the theoretical initial buckling load calculated by the classical theories
of stability is rarely attained in experiments. Discussion of shell behavior in
the postbuckling range, which is governed to a great extent by the nature of
the initial imperfection, is therefore a necessary element of any buckling
analysis (Allen and Bulson 1980).

Examination of these problems has resulted in thousands of papers and
reports over the years as well as a number of books. It would be impractical
to condense the whole of this work into a chapter or two, and the aim here
will be to introduce the student to the fundamentals and at the same time
indicate selected simple formulas of interest to the practicing engineers. To
do this, no attempt has been made at a general analysis, but each practical
problem is examined separately.

Development of many governing equations has followed the procedure
given by Brush and Almroth (1975) and Chajes (1974).

9.2. LARGE-DEFLECTION EQUATIONS (DONNELL TYPE)

As the reliability and efficiency of the incremental finite element analysis have
been well established, much of the work in shell analysis is being carried out
on digital computers these days. In such environments, the simplicity of the
governing equations is of little importance other than initial programming
efforts. As a result, interest the Donnell equations has diminished somewhat.
However, the relative simplicity of the equations makes them well suited for
this introductory examination of shell buckling.

Consider a differential shell element of thickness & with a radius of
curvature R as shown in Fig. 9-1(a). The coordinate system is a pointwise
orthogonal rectangular coordinate system with the origin in the middle
surface of the shell so that the x-axis is parallel to the axis of the cylinder, the
y-axis is tangent to the circular arc, and the z-axis is normal to the middle
surface directed toward the center of curvature.
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VAT R
@ (b) ©
Figure 9-1 Cylindrical shell displacements and forces

As in plate theory, it is convenient in shell theory to express internal
forces (generalized) per unit distance along the edge of the shell element as
shown in Fig. 9-1(b, c). They are related to the internal stresses by

h/2 > /2

N, = / [ (1 —I——) dz N, = / 0),dz
—h)2 R —h/2
02 i h/2

Ny = / fxy<1 +—> dz Ny = / Tz
—h/2 R —h/2
h/2 > h/2

Q, = / fxz(l+—>dz Q = / Todz (9.2.1b)
—h)2 R —h/2
12 - hy2

M, = / 20, (l —|——) dz M, = / 20ydz
—h/2 R —h/2

h/2 > /2
M, = / 2Ty (1 —|—§> dz My, = / 2Tyydz
—h/2 —h/2

where Ny, N,, N, N, are in-plane normal and shearing forces; Qy, Q, are

(9.2.1a)

9.2.1¢)

transverse shearing forces; M,, M, are bending moments; and M., M,
are twisting moments. As in Chapter 8, the quantities with bar 7, T, are
stresses at any point through the wall thickness, as distinguished from o, 1,,,,
which refer to corresponding stresses on the middle surface (z = 0) only.
The nonlinear equilibrium equations may be obtained by summing the
generalized internal forces for a cylindrical shell element in a slightly
deformed configuration as shown in Fig. 9-2. The positive directions of
moments and in-plane forces are the same as defined in Chapter 8, and their
directions are taken to produce positive stresses at the positive ends of the
element. The double arrow for moments follows the right-hand screw rule.
The internal forces (generalized) and rotations vary across the element, and
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M Ty v

Figure 9-2 Internal forces in cylindrical shell

the notation N, " is used for N, + Ny « dx. For the intermediate class of
deformations considered herein, the angles of rotation w, and w, are
assumed to be small so that sines and cosines of the angles can be replaced by
the angles themselves and by unity, respectively (micro geometry holds).
Furthermore, quadratic terms are assumed to be small.

It is necessary to consider the initial curvature to derive the equation of
equilibrium in the z direction. Due to the initial curvature of the shell
element, the N, forces as shown in Fig. 9-3 have a component in the z
direction.

|

V4

Figure 9-3 Z components of in-plane forces due to initial curvature
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None of the other in-plane forces has components in the z direction due
to the initial curvature. All in-plane forces, however, have z components
due to the curvature produced by bending. These components are identical
to the ones that were considered in a plate element (Eq. (8.2.14).

Summation of forces in the x and y directions, respectively yields the
following equations:

Nx,x + Nyx,y =0 (922)

Nga+Nyy = 0 9.2.3)

Adding the component of force shown in Fig. 9-3 to Eq. (8.2.14) yields

Q. 0Q,  Pw +N<a2 2
y

+1 Lon, Jw
ax gy | Vox2 32 2 3xdy

+p=0 (9.2.4)

It 1s noted that another simplifying assumption has been introduced in Eq.
(9.2.2¢) 1n that z/R is neglected relative to unity in Eqs. (9.2.1). Then, it
follows immediately that N, = N, and M,,, = M as T,y = Tj,.

Since the equations of moment equilibrium about the x- and y-axes
are not altered in going from the plate to the shell element, Egs. (8.2.15)
and (8.2.16) are also valid for the shell element. Replacing the first two
shear terms in Eq. (9.2.2¢) by moments given by Egs. (8.2.15) and (8.2.16)
yields

1
My e +2 My oy + My + N + 2 N + N, <E + wvyy> +p=0
(9.2.5)

The constitutive equations for thin-walled isotropic elastic cylinders are
the same as those for flat-plate elements in Egs. (8.2.7), which are

Ny = Clex +pey) N, = Cley + uey)

Fw 62
Ve — D 0w N 0w My = —D(1— g) 0w
y = a2 Fae v = K)oy

where the coefticients C and D are the same as defined in Egs. (8.2.8),
which are

Eh d D= Bl 9.2.7)
11— 2 an —12(1_“2) 2.
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The kinematic relations at the middle surface on which the Donnell
equations are based are identical to those given in Egs. (8.2.5) with one
exception for &, (Donnell 1933), which are

_ O 1(0w\? _ O
b = dx 2\ 0x o = 0x2
dv  w  1/w\? w
= — — — 4 | — = - 9.2.8
& d R + 2 <6y> o 92 ( )
B ou dv Ow Jw 0w

ny—5+£+$@ ny:—m

Substituting the above constitutive and kinematic relations into Eq.
(9.2.3) yields a coupled set of three nonlinear differential equations in the
three variables u, v, and w.

Nyx + ny,y =0 (9.2.92)

)

Ny + Ny = 0 (9.2.9b)

D(w o +2 Wy + “’,yyyy) — [Nt +2 N5y + Ny(l/R + Wyy)] =P
(9.2.9¢)

Equations (9.2.9) are nonlinear equilibrium equations for thin cylindrical
shells. They have been widely used in the large-deflection analyses of
cylindrical shells (von Karman and Tsien 1941).

9.3. ENERGY METHOD

It would be informative to rederive the nonlinear equilibrium equations in
Egs. (9.2.9) based on the principle of minimum potential energy. The total
potential energy II is the sum of the strain energy U of the cylindrical shell
and the loss of the potential energy of the applied load V.

I=U+V 9.3.1)

The strain energy of a deformed shell can be expressed in two parts: (1)
the strain energy due to bending and (2) the strain energy due to the
membrane action. Using the general expression of the strain energy of
aplate (Eq. (8.5.6)) and using a separate expression for the bending stress and
the membrane stress, one obtains
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D
Uy, = 5// [k 4 K 4 2ukyky 4+ 2(1 — )k’ |dA 9.3.2)
C 1—u
Un = 5// [exz + 8y2 + 2/~L€x€y + ( > ),nyZ] dA (9.3.3)
where ¢y, €, ..., Ky, are given Egs. (9.2.6). Hence, the total strain energy is
U=U+U, (9.3.4)

For a cylindrical shell subjected to lateral pressure p, the potential energy

V= —// pwdxdy (9.3.5)
A

The Euler-Lagrange differential equations for an integrand of
Eq. (9.3.1) are

of the applied pressure is

OF _9 OF 98 OF _ 9.3.6)
du  Ox Ou, Oy Ou, ol

0F 9 0F 9 JF 0 (9.3.6b)
dv Ox dv, dy dv, N o

OF & OF 9 OF o> OF 9> OF 9> OF
g 997 =0 (9.3.6¢)

It can be shown that the execution of the Euler-Lagrange differential
equations, Egs. (9.3.6), will lead to the nonlinear equilibrium equations,
Egs. (9.2.9) (see Problem 9.2).

Equations (9.2.9) are nonlinear equilibrium equations for thin cylin-
drical shells. They are the counterpart for shells of Egs. (8.2.18). There are
four unknowns N, N, N,,,, and . Three equations in three unknowns u,
v, w may be obtained by introducing the constitutive and kinematic relations
of Egs. (9.2.4) and (9.2.6). As was done in Chapter 8, a simpler set of two
equations in two variables can be obtained by use of a stress function
identical to Egs. (8.2.27).

Ny :f,yyv Ny :f,xxv ny = __f,xy (937)

Rearranging Eqs. (9.2.4), one obtains the following relations:

1
& = E—h(Nx — uN,) (9.3.8a)
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1
2

Differentiating the in-plane strains of Eqs. (9.2.6), &, twice with respect to
Y, €& twice with respect to x, and v,, with respect to x and y, respectively,
one obtains the compatibility relation

Pe ey vy <62w>2 Pw w1 Pw

32 | 9x2  dxdy  \0xdy)  0x2 92 R 9x2 ©.39)
Substituting Egs. (9.3.7) into Eqs. (9.3.8) yields

& = ﬁ(g?z — ,uZ—jﬁ) (9.3.10a)

g = 1;};(3; — ,u?j}é) (9.3.10b)

Y = —%% (9.3.10¢)

Making use of Egs. (9.3.7), (9.3.8), and (9.3.10), Egs. (9.2.9¢) and (9.3.9)
become

DV w — [ fyywan — 2faptay + frn(1/R 4 wyy)] = p (9.3.11a)

VY = Eh[(w,y)? — iy — 1/Rw ] (9.3.11b)

Equations (9.3.11) were first presented by Donnell (1934) when he
combined the strain-displacement relations in the von Kiarman large-
deflection plate theory with his own linear shell theory. The equations are
therefore called the von Karman-Donnell large-displacement equations.

The linear equilibrium equations corresponding to Egs. (9.2.9) are
obtained by dropping all quadratic and higher order terms in u, v, w from the
nonlinear equations. The resulting equations are

Nix+ Ny = 0 9.3.12a)
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N+ Ny = 0 (9.3.12b)
DV*'w—N,/R = p (9.3.12¢)
where
N = Cl(ey + pey), &y = Uy
N, = Cley + pey), e = vy —w/R (9.3.13)

ny = C'ny(l _“)/27 Ty = Uy + vy

[tisnoted that Eq. (9.3.12¢) isstill coupled to Eq. (9.3.12b) whereas in the case
of the plate, the third of Egs. (8.2.32) is uncoupled from the other equations.

The linear equilibrium equations given by Egs. (9.3.12) are a coupled set
of three equations in four unknowns N, N, N, and w. A set of three
equations in three unknowns u, v, and w can be obtained by substituting
appropriate constitutive and kinematic relations into Eqs. (9.3.12). The
resulting equations are

pwy 1T —p T+u
Uxx — R + 2 M,yy + ) V,Xy =0 (93143)
1—u 14+u w,
TV,xx + T”,xy + vy — Iy =0 (9.3.14b)
C
DV*w — E(u,y — =+ wine) = p (9.3.14¢)

These equations may be partially uncoupled (Donnell 1933) to give (see
Problem 9.3)

vhy = Doy | Mo (9.3.152)
R R
2 XX
V41/ _ ( +:u')w7 y+w7yyy (9.3.15b)
R R
8 1— 4
DV W+ ——=—Cw yuxx = V' (9.3.15¢)

R

[t is of interest to note that the linear membrane equations are obtained
by setting the bending rigidity of the shell element equal to zero (D = 0) in
Egs. (9.3.12). The resulting equations are
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Nix+ Ny = 0 (9.3.16a)
N+ Nyy = 0 (9.3.16b)
~N,/R = p (9.3.160)

These equations are statically determinate; that is, there are three variables
in three equations. Equation (9.3.16¢) gives the well-known hoop
compression (—N,) due to the external pressure p.

9.4. LINEAR STABILITY EQUATIONS (DONNELL TYPE)

Equations (9.2.9) govern all linear and nonlinear equilibrium conditions of the
cylindrical shell within the confinement of the intermediate class of defor-
mations. The equations include linear, quadratic, and cubic terms of variables
u, v, and w, and therefore are nonlinear. It is now a fairly simple task to obtain
a very good iterative numerical solution by a well-established finite element
code. A load-displacement curve based on such solutions for a cylinder subject
to the edge load is shown in Fig. 9-4. The linear equilibrium equations, Egs.
(9.3.12), govern the primary (static) path. The nonlinear equations, Egs.
(9.2.9), govern both the primary path and the secondary path.

The equilibrium paths determined by solution of the equilibrium
equations, Egs. (9.2.9), show the bifurcation point and the corresponding
critical load. Hence, a separate solution for the critical load is not necessary.
However, the solution of Egs. (9.2.9) demands a fairly complicated
numerical procedure. The purpose of stability analysis to be presented
herein is to permit determination of the critical load by solution of linear
differential equations.

The linear differential equations for determination of the critical load
of a cylinder subjected to external loading are derived by application of the
adjacent-equilibrium criterion. The same equations are rederived based on
the minimum potential energy criterion as was done in the previous
section.

9.4.1. Adjacent-Equilibrium Criterion

Adjacent (or neighboring) equilibrium configurations are examined using
the procedure outlined by Brush and Almroth (1975) as was done in
Chapter 8. Consider the equilibrium configuration at the bifurcation point.
Then, the equilibrium configuration is perturbed by the small incremental
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Ox

Zx  —— Perfect cylinder
O-L'I"

...... Imperfect cylinder

Ecr

Figure 9-4 Equilibrium paths of axially compressed cylinder

displacement. The incremental displacement in uy, vy, wq is arbitrary and
tentative. Variables in the two adjacent configurations before and after the
increment are represented by u, v, wy and u, v, w. Let

u—ug +
vy + 1 (9.4.1)
w—wy + wq

where the arrow is read “be replaced by.” Substitution of Egs. (9.4.1) into
Egs. (9.2.9) results in equations containing terms that are linear, quadratic,
and cubic in ug, vy, wp and uy, v1, wy displacement components. In the new
equation obtained, the terms containing ug, vy, wy alone are equal to zero
as up, Vg, Wy constitute an equilibrium configuration, and terms that are
quadratic and cubic in uy, v, wy may be ignored because of the smallness
of the incremental displacement. Therefore, the resulting equations are
homogeneous and linear in wuy, vy, wy; with variable coefficients. The
coefficients in ug, vy, wy are governed by the original nonlinear equations.
It will simplify the procedure greatly by simply limiting the range of
applicability of the linearized equations by requiring that ug, vy, wy be
limited to configurations that are governed by the linear equations,
Egs. (9.3.12).

The increment in u, v, w causes a concomitant change in the internal
force such as

Ny— Ny + AN;x
Ny — Ny + AN, 9.4.2)
ny — INxy0 + Any
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where terms with subscript O correspond to the ug, vy, wy displacement, and
ANy, AN, AN, are increments corresponding to uq, vy, wy. Let also Ny,
N1, Ny represent parts of AN, AN,,, A N, respectively, that are linear
in uq, v1, wy. For example, from Egs. (9.2.6) and (9.2.8),

N_C6u+l 8w2+ dv w+1 I\ 2
* T M ax 2\ox) THay TR 2\

Ny + ANx

Then

dug  Ouy 1 0wy>  Owp Owy 10w,
ox T ox T2 T ox ox 2 0x
vy wy Oy wy  10wy> Owp dwy 1wy’
HL(W_E dy R 249 oy dy 5@)

From which

duy 1 dwy? dvg W()_i_l%z
dy R 20y

Ny = C|20 2%
0 [6x+2 Ox

6u1 awO aW1 1 6w1 2
AN, = ¢ G g | 10w
N C{ax+ax 8x+2<ax)

Lol wn Gwo wy 1 /Gwi)?
# dy R dy dy 2\ dy

0wy Owy Owy <3V1 wy  Ouwy 6w1>}
!

Ny = C Owop oW
1 [ dy R+6y dy

x| x ax

Expressions for Ny and Ny, are determined following the similar proce-
dure shown above.

Substituting these into Egs. (9.2.9) gives

ONa , N1 _ 0430
I By 4.3a
INy AN,

Ll (9.4.3b)

dy Jx
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Ny &y 9"wy 0
A ( 0752 + N e + 2Nyo Ixdy
o PP P 9.4.30)
Xyl axay 'y0 ayz 'yl ayz = .4.0C
where
N = Clexo + peyo) Net = Clext + ueyn)
Ny = Cleyo + nexo) Na = Cleyt + pext) (9.4.4)
1—nu 1 —u
Nyo = CTnyo Ng1 = C 5 Yol
and
1 2
Ex0 = Upx + 5“10796 Ex1 = Uiy + Wo,xW1,x
B wo 1 _ ol
&0 = Voy — E + 51/!/()7); &1 = My — E + Wo,yWi,y
Yxy0 = Vox + 1oy + wo i1y Yyl = Vix + Uy wo sy + Wo e x
(9.4.5)

Equations (9.4.3) correspond to Egs. (8.3.3).

In the stability analysis, the displacement (1, v, wp) is referred to as the
prebuckling deformation, and (uy, v1, wy) is called the buckling mode.
Equations (9.4.3) to (9.4.5) include wy, , and wy, , representing prebuckling
rotations. The presence of these prebuckling rotations in the stability
equations introduces a substantial complication. Fortunately, though, the
influence of prebuckling rotations is negligibly small; hence, they are
omitted in the remainder of this chapter.

The resulting equations are

ale + anyl

o 5 " 0 (9.4.6a)

Ny 0Ny
| ox

=0 (9.4.6b)
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Ny 02w, 02wy 02wy
4 Y —
DV™'un ——R — (Nx() a2 —|—2ny06 e + Nyo ayz =0

(9.4.6¢)

Similarly, neglecting the prebuckling rotation terms in the kinematic rela-
tions Egs. (9.4.5) yields

Ex0 = UQx Ex1 = Ul x

wo wq
Sy() = 1/()7); - - €y1 = Vix — E (9.4.7)

Yxy0 = Vox + Uy Y1 = Vl,x"’ Uiy

Equations (9.4.6) are the stability equations for the cylinder. As in the case
of linear equilibrium equations, Eq. (9.4.6¢) is uncoupled from the other
two equations. Equation (9.4.6¢) is 2 homogeneous linear equation in wy
with variable coefticients in Ny, N9, Ny, depending on the edge
conditions of the cylinder, which are determined by the other two linear
equations (9.4.6a) and (9.4.6b).

9.4.2. Trefftz Criterion

The stability equations of the cylindrical shell Egs. (9.4.6) will be rederived
using the Trefftz criterion. The criterion for the loss of stability is that the
integrand in the expression for the second variation of the total potential
energy functional satisfies the Euler-Lagrange equations, which is known as
the Trefftz criterion.

An expression for the total potential energy of a circular cylindrical shell
is given by Egs. (9.3.1) to (9.3.5). In order to obtain the corresponding
expression for the second variation of the total potential energy, the
deformations are replaced by the sum of the deformations in the primary
path and the incremental virtual deformations in the adjacent equilibrium
path as

u—ugy +
v—v + 1
w—wy + uy

Then, one collects all terms in the resulting expression that are quadratic in
the virtual deformations uq, v1, wy. Since the potential energy of the applied
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load Eq. (9.3.5) is a linear functional, 6>/ = 0. Hence, the second variation
is found to be (see Problem 9.4)

_62]] = // <€x1 + €y1 + 2UEx1 &1 —|— ywl >dxdy

+ 5// (Nx()wl,xz + Nyowr ,” + 2Nyow xwiy ) dxdy

D 2 2 _
+ > Wi+ Wiy + 22U ] yy + 2(1 )w1 gy |dxdy
(9.4.8)

Applying the Euler-Lagrange differential equations Eqs. (9.3.6) to Eq.
(9.4.8) yields the linear stability equations Eqs. (9.4.6) (see Problem 9.5).

9.5. APPLICATIONS OF LINEAR BUCKLING EQUATIONS

Applications of Donnell-type linear stability equations are given in this
section. For notational simplicity the subscripts 1 are omitted from the
incremental quantities, and quantities with subscripts O are treated as
constants.

9.5.1. Uniform External Pressure

Consider a circular cylindrical shell that is simply supported at its ends and is
subjected to external lateral pressure p,, in pounds per square inch. The
prebuckling static deformation is axisymmetric, as shown in Fig. 9-5.

The simply supported end condition, as in most classical analyses of
multidimensional entities, implies that there will be no moment developed
at the boundary. However, the boundary condition does allow longitudinal
and radial translations within the limitation of preventing any rigid body
motion. As a consequence Nyg = 0, and N,,, = 0 if no torsional load is
applied.

Assuming the coefficient N, is governed by the membrane action
Eq. (9.3.1), then

NyO = —peR (9.5.1)

Incorporating this into Eq. (9.3. 15c) gives

1 —
DVSw 4+ —— = waxm + p RV, = 0 (9.5.2)
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Wy | (e
— l——
— l——

Figure 9-5 Cylinder subjected to external pressure
The boundary conditions corresponding to simply supported ends are
w=wy =0 atx =0,/ (9.5.3)

and w is to be a periodic function of y. Both the governing differential
equation and the boundary conditions are satisfied if the lateral displacement
is of the form

w = asin sin —— (9.5.4)
T

where m is the number of half-waves in the longitudinal direction and # is
the number of half-waves in the circumferential direction. Introducing
a variable ( such that

¢
8 = :—R (9.5.5)

then, Eq. (9.5.4) becomes

MY sin ? 9.5.6)

w = asin

Substituting Eq. (9.5.6) into Eq. (9.5.2) gives

D(%)S(mz T Gt S (%)4 —pR (%)662(1%2 +62)? =0

R2
(9.5.7)
Dividing Eq. (9.5.7) by (7/£)° and solving for p.R, one obtains
D(m2 + 62)2 T2 (1 — ,uz) Cm* [(0\?
R = —————(— — 9.5.8
= S 0) () oo

Rzﬁz (mz + 62)2
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Substituting C = Eh/(l — ,uz) and D = Eh3/[12(1 — ,LLZ)] and rearr-
anging gives

202 + 82)° it 2
% = M<%>2 + <£> (9.5.9)
12(1 — u2) B R26%(m? + %)

For particular values of ¢/R and R/h, the m and n corresponding to the
smallest eigenvalue may be calculated by trial and error.

As an example, calculate p,, for a cylinder with R = 20 in., £ = 20
in, h = 02 in., E =10 x 10° psi, and p = 0.3. It is found from
executing Eq. (9.5.9) by Maple® that for m = 1 and n = 7, 8, and 9,
respectively, p, = 122.13, 105.97, and 107.92 psi and that p, is higher for
all other values of m and n. Therefore, p,, is taken to be 105.97 psi. The
values for the sine-wave length parameters m and n indicate that the shell
has one-half sine wave in the axial direction and eight full sine waves in
the circumferential direction in the eigen mode shape. It would seem
intuitively clear that m must be equal to one, otherwise p, would
become larger than that for m = 1. Then, Eq. (9.5.9) may be rewritten
as

En| 12(1+6%) (77
pe = |———

>2 + ! <£>2 (9.5.10)
12(1 — pu2) 82 ¢ R2B%(1 +62)2 T

If £ /R approaches infinity, Eq. (9.5.10) reduces to the following as (3 also
approaches infinity:

P =10 — (9.5.11)

Equation (9.5.11) agrees with the Donnell analysis of the circular ring
(Brush and Almroth 1975)." For n = 2, this value is 33% higher (taking the
classical value as the base) than the classical eigenvalue for the ring given in
Timoshenko and Gere (1961).> The error occurs because of the approxi-
mations. Langhaar (1962) believes that Donnell’s equation gives more
accurate results when multiple wave patterns occur in the buckled form.
When ¢ = 2000 in. in the above example with n = 2, Eq. (9.5.10) gives

1 See page 139.
2 See page 291.
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pe=3.666 psi, while Eq. (9.5.11) yields p, = 3.663 psi. Although Eq. (9.5.10)
gives much lower p, for n = 1, Timoshenko and Gere (1961)> show that the
smallest possible value of #n must be equal to 2 considering an initial ellipticity
and the inextensibility of the member in the circumferential direction.

For external lateral pressure p, the hoop compressive stress g, is related by
0, = pR/h, although the validity of this relationship is questionable at the
ends of the cylinder where simply supported boundary conditions and
corresponding displacement function Eq. (9.5.6) are assumed. Hence, 0, =
peR/h. As the cylinder radius approaches infinity, the critical stress o,
approaches the value given in Fig. 8-12 for long flat plates; that is, o, =
470> D/? h. In the above example, when R = 500 in. and £ = 1 in. with n =
1570, Eq. (9.5.10) gives p, = 578.4389 psi, while the simple hoop
compression relation yields p, = 578.4383 psi.

A good overview of the historical development on the subject is given in
Allen and Bulson (1980), which includes the contribution of von Mises
(1914), Southwell (1914), Donnell (1933), Batdorf (1947), Kraus (1967),
and Brush and Almroth (1975).

9.5.2. Axially Loaded Cylinders

Consider a circular cylinder of length £ and radius R that is simply supported
at its ends and subjected to a uniformly distributed axial compressive load P

Under the action of the load, the cylinder shortens and except at the
ends, increases its diameter. The prebuckling static deformation is
axisymmetric, and the critical load P, is the lowest load at which equilib-
rium in the axisymmetric form ceases to be stable. Although the lateral
displacement wy is likely to be a function of x, it is assumed, for simplicity,
uniform as shown in Fig. 9-6 and the prebuckling deformation may be
determined by the linear membrane equations. Under these simplifying
assumptions, the critical load can be determined by solving Donnell
equation Eq. (9.3.15¢) in the manner outlined by Batdorf (1947).

From a membrane analysis of the unbuckled cylinder

P
NxO = _ﬁ and nyO = NyO =0
Substituting these values into Donnell equation Eq. (9.3.15¢) gives

1 —
DV3w + wamx+—V4wm =0 (9.5.12)

3 See page 295.
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Wy | [«

1

Figure 9-6 Cylinder subjected to axial compression

Equation (9.5.12) is a linear partial differential equation with constant
coefticients. The boundary conditions and solution form are the same as for
the previous example. Substituting Eq. (9.5.6) into Eq. (9.5.12) gives

8 Eh 4 6
DG) (m2+62)4+ﬁm4<%> _th@) o (i +67)7 =0 (95.13)

Dividing Eq. (9.5.13) by D(#/¢)® and introducing two new variables
gives

12m* 72

(n” +8)" + = ke (w? +67)” = 0 9.5.14)
where
z=La_ 9.5.15)
~rne K a
b, = T 9.5.16)

The nondimensionalized variable Z is known as the Batdorf parameter
useful for distinguishing short and long cylinders and k, is a buckling stress
parameter similar to the one that appears in the plate buckling equation
Eq. (8.4.13).

Solving Eq. (9.5.14) for k, yields

2 2)2 )
+ 127
ky = "+ 5 - (9.5.17)

2
m 7T4(Wl2 + )82)2
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Differentiating Eq. (9.5.17) with respect to (1442 + 62)2/1412 and setting the
result equal to zero indicates that k, has a minimum value when

(m? + 62)° (1222) 12

=5 (9.5.18)
Substituting Eq. (9.5.18) into Eq. (9.5.17) gives
44/3
ky = —{z (9.5.19)
s
from which
1 Eh
Oy = —F——e=— (9.5.20)
31— ) R

Equation (9.5.20) is considered to be the classical solution for axially
compressed cylinders. It is noted that Eq. (9.5.20) is independent from the
length of the cylinder, indicating that the critical stress is for the case of local
buckling. It is also of interest to note that Eq. (9.5.20) is the solution for
axisymmetric as well as asymmetric modes (see Problem 9.6). For u = 0.3,
Eq. (9.5.20) becomes

Eh
To = 0.605- (9.5.21)

Equation (9.5.18) indicates that the cylindrical shell subjected to axial
compression has a large number of instability modes corresponding to
a single bifurcation point. Since m and n are positive integers, it is impossible
to satisfy Eq. (9.5.18) for short cylinders. Such a difficulty arises for values of
the Batdorf parameter Z less than 2.85 (see Problem 9.7). In such cases,
Eq. (9.5.13) and the trial-and-error procedure may be used to determine
the critical load.

If Z < 2.85, the critical stress coefficient k, is determined by setting
m =1 and 8 = 0 (as ¢ approaches to zero) in Eq. (9.5.17). This leads to

1272
71‘4

ke = 1+ (9.5.22)

As the cylinder radius approaches infinity (or the cylinder length
approaches zero), the coefficient k, approaches 1. Then,

D

NxO = Ucrh = E—Z (9523)

cr
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This is the equation for the critical load intensity, in pounds per inch, of
a wide column, that is, a flat plate that is simply supported on the loaded
ends and free on the unloaded edges.

A very long cylinder can buckle as a column with undeformed cross
section (m = n = 1). The present Donnell formulation does not yield the
correct result for this case as compared to that given by Timoshenko and
Gere (1961).* More accurate values than those given by Eq. (9.5.21) are
given by, for example, Timoshenko and Gere (1961).> Figure 9-6 shows
possible built-in eccentricities due to the expansion of the cylinder wall
during loading. Inclusion of such eccentricities will likely lower the critical

load.

9.5.3. Torsional Load

Consider a circular cylinder of length ¢ and radius R that is simply supported
at its ends and subjected to a twisting moment. Assume, for simplicity, that
a linear membrane analysis is adequate for the prebuckling deformation.
Then, N,y is constant, and the Donnell equation Eq. (9.3.15¢) may be
rewittten in the form

1—u?
RZ

DViw + Ctb oo — %nyov‘*wy =0 (9.5.24)

Equation (9.5.24) has odd-ordered derivatives with respect to each of
the coordinate variables in one term ((2/R)NyyV*1w ), and even-ordered
derivatives in the other two terms. Therefore, a deflection function of the
form of Eq. (9.5.6) will not work. Under torsional loading, the buckling
deformation of a cylinder consists of a number of circumferential waves that
spiral around the tube from one end to the other. Such waves can be rep-
resented by a deflection function of the form

w = asin <mTzrx — ?) (9.5.25)

where (3 is defined by Eq. (9.5.5). Equation (9.5.25) satisfies the differential
equation and the requirement of periodicity in the circumferential direction.
But it does not satisfy any of the commonly used boundary conditions at the
cylinder ends. Therefore, this simple deflection function may be used for
only long cylinders whose end conditions have little effect in the critical load.

4 See page 466.
2 See page 464, Eq. (i).
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For such cylinders, substituting Eq. (9.5.25) into Eq. (9.5.24) yields

m™\8, 5 ond  Eh 4f/m\4 2 )6 5 N2
D<z> (m* +8°) ozt ) g Neol 7 mB(m*+6%)" =0
(9.5.26)
Dividing Eq. (9.5.26) by D(7/£)® and solving for Nyyo gives

DR (12 22 3 2
Nigo = WT;'(;)G)Z + Eh—'“ZG) (9.5.27)
RB(m? + 6%)

A distinct eigenvalue corresponding to each pair of m and n can be deter-
mined by trial-and-error. For long tubes, the smallest values of N,y
correspond to n = 2 (Donnell 1933).

For a sufficiently long cylinder, Brush and Almroth (1975)° give the

o= 22E (ﬁ)m 9.528)
(o g (1 B M2)3/4 R D

critical shear stress

which is again 15% higher than a value given by Timoshenko and Gere
(1961)” with a coefficient of 0.236 instead of 0.271.

9.5.4. Combined Axial Compression and External Pressure

Consider a cylindrical shell of length £ and radius R subjected to an axial
compressive force P and uniform external lateral pressure p,. If a linear
membrane analysis is assumed satisfactory for the axisymmetric prebuckling
deformation, Eq. (9.3.15¢) becomes

2
DV + - e+ V(2 Rpavy ) = 0 (9.5.29)
R2 xxxx SR PeWyy | = .

Equation (9.5.29) may be simplified by letting

j2
—— = Fp,R 9.5.30
T p ( )

where F is a dimensionless constant.

0 See page 171.
7 See page 504.
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Substituting Eq. (9.5.30) into Eq. (9.5.29) yields

1—u?

DVw + —7 G + RpV*(Fuw oy +1wy,) = 0 (9.5.31)

Substituting Eq. (9.5.6) into Eq. (9.5.31) gives

o(e) o+ R

Hence

R Dl 6)° <E>2 R (5 Lo <£>2 0532
(Fm? + %) ¢ R2(Fn? + %) (m? + %) i

A distinct eigenvalue corresponding to each pair of m and n can be deter-
mined by trial and error. A case of particular interest is when F = 1/2. For
that value the cylinder is subjected to the same pressure p, on both its lateral
and end surfaces. Such load is termed hydrostatic pressure loading.

9.5.5. Effect of Boundary Conditions

The uncoupled Donnell equations Egs. (9.3.15) are not suitable for

a general analysis, as shown below. The assumed solution function, Eq.

(9.5.6) for the boundary conditions w = w,, = 0 at x = 0, £ is of the form
mmwx | (my

sin ——

l l

w = ¢ sin

Substituting this into Egs. (9.3.152) and (9.3.15b) reveals that the corre-
sponding expressions for # and v, respectively, must be of the forms

mmx | [y

U = ay cos sin ——
¢ ¢ (9.5.33)

. mmx Py

v = by sin cos—g

These assumed displacement functions are suitable only for boundary
conditions u, = v = 0 at x = 0, £. The common boundary condition
w=wy. = 0atx =0,/ for example, is excluded.
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For a general analysis of cylinder end conditions, the coupled form of the
Donnell equation Egs. (9.3.14) may be used. Equations (9.3.14) are of
second order in u and v and fourth order in w. Therefore, each set of
boundary conditions consists of four boundary conditions at each end
of the cylinder. The conditions need not be the same at the two ends of the
cylinder and there may be many combinations of eight boundary conditions
for a cylinder.

As an example, consider a cylindrical tank subjected to external
hydrostatic pressure p,. From a linear static analysis, one obtains

1
Nx() == —EpeR ny() =0 Ny() == —pCR (9534)

Substituting Egs. (9.5.34) into Egs. (9.3.14) yields

1—u 14+ u P
Uxx + 2 Uyy + 2 Vay — R =0 (9.5.35a)
1—nu 14+pu w,
> Voax T 5 Uxy T Vyy — Ey =0 (9.5.35b)

4 C w 1
DV'w = vy = o it ) +peR (St gy | = 0 (9.5.350)

The following displacement functions will satisfy the differential equations:

u = uy(x) cos@

¢
v = u(x) sm? (9.5.36)
w = wy(x) cos?

Substituting Egs. (9.5.36) into Egs. (9.5.35) gives

”n//—l; < )62 142ru ,< )5_?, —0 (9537

R T L—p ™2 1 (m _
> Uy <£)6+ 5 Vn +Vn<£> 6 +R / 5“/14_0

(9.5.37b)
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v (T 2 2,/ ™ 4 4,
D|:Wn 2<€> l8 w <£> 6 ﬂ:|

C(m wy, / 1, m™\2 ,
— =\ 7PV — — R|-w,” — | — w| = 0
R<£6V R—I—,uun>+p [ZW (€>6w
(9.5.370)

where primes denote differentiation with respect to x. A general solution
may be obtained by setting the determinant for the unknown arbitrary
coefficients Egs. (9.5.33) equal to zero. Such an analysis has been carried out
by Sobel (1964). Even for the case of the constant coefficient shown here,
the amount of labor involved in the algebra is formidable. It does not look
surprising that modern engineers rely more and more on computer solu-
tions for moderately complex problems.

9.6. FAILURE OF CYLINDRICAL SHELLS

The classical solution to the buckling problem of axially loaded cylinders was
obtained by Lorenz (1908). It was later independently arrived at by Timo-
shenko (1910), von Mises (1914), and Southwell (1914) in a slightly modified
form. The equilibrium paths of an initially perfect cylinder and a slightly
imperfect cylinder subjected to axial compression are shown in Fig. 9-4. Three
distinct characteristics may be observed from the figure: (1) The buckling load
represents the ultimate strength of the cylinder. (2) The buckling load of the
imperfect shell could be substantially lower than that given by the classical
theory. Buckling loads as small as 30% of the load given by the classical solution
were not unusual. (3) For shell specimens that are nominally alike, the buckling
loads may vary widely due to unintentional differences in the initial shape of
the shell. In fact, the test results exhibited an unusually large degree of scatter.

The first progress toward solving this troublesome problem was achieved
by Donnell (1934) when he proposed that a nonlinear finite-deflection
theory was required. Donnell added the same terms that von Karman had
used in formulating the nonlinear plate equation to his small deflection
equations. His analysis, however, did not lead to satisfactory results due to
oversimplification.

Using essentially the same large-deflection equations as Donnell used
and employing a better function that adequately represented the buckling
pattern of the shell, von Karman and Tsien (1941) were able to obtain the
first meaningful solution to the problem. Although their work was far from
complete, it proved to be a significant milestone of the large-deflection
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theory of axially loaded cylindrical shells. In the years that followed, several
researchers improved the solution by adding more relevant terms; more and
more accurate postbuckling curves were realized.

The next significant progress in the study of axially loaded cylin-
drical shells was made by Donnell and Wan (1950) when they intro-
duced initial imperfections into the analysis. As a result of this work, it
is now generally believed that initial imperfections are the main reason
for the discrepancy between the classical buckling solution and
experimentally observed values. Lately this conclusion has been verified
by carefully planned and executed experimental investigation (Tennyson
1964; Stein 1968).

As there are significant discrepancies between the test data and the
classical theoretical buckling loads, particularly for cylindrical shells sub-
jected to axial compressive loads, the design of cylindrical shells is based on
the theoretical critical load modified by empirical reduction, or knockdown,
factors for each kind of loading. The magnitude of the reduction factor in
each case depends on both the average difference between theoretical and
experimental values for the critical load and the severity of scatter of the test
data. Comprehensive collections of test data and design recommendations
for cylindrical shells and curved plates are available in Gerard and Becker
(1957) and Baker et al. (1972). It is of interest to note that the minimum
width-to-thickness ratio of a tubular section specified in AISC (2005) to be
classified for a noncompact section (2R/h < 0.11E/a)) is such that the local
buckling of a tubular section is effectively eliminated in structural steel
buildings.

9.7. POSTBUCKLING OF CYLINDRICAL SHELLS

Equations (9.3.11) were derived for large-deflection nonlinear analysis of
cylindrical shells. In order to make these equations valid for a shell with
initial imperfections, a few modifications must be made. First, assume that
the lateral deflection consists of an initial distortion w; in addition to the
deflection w induced by the applied loads.

D (vaxxx + 200 xxyy + Wyyyy) - [f,yyw,xx = 2foyway +fxx (1/ R+ “’,yy)] =Pr
(9.3.11a)

Joxxx + 2y F Sy = Eh[(“’my)z — Wty — 1/Rwy ] (9.3.11D)
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Equation (9.3.11a) is an equation of equilibrium in the radial direction.
The first three terms in Eq. (9.3.11a) are related to transverse shear forces.
The initial distortion does not affect them. The remaining terms are
components of middle surface forces obtained by multiplying the forces by
the surface curvature. Since the total curvature applies here, w must be
replaced with w + w;. The equation of equilibrium for the initially
imperfect shell thus takes the form

D(V4W) - [ Y (W.,xx + Wi,xx) — 2 (W,xy + Wi,xy) 9.7.1)

+fae (/R +wyy + wigy)] = p

In order to obtain the compatibility equation for an initially distorted
shell, the strain-displacement relations must be modified in order to
reflect the effects of an initial imperfection. Excluding quadratic terms
of the initial imperfection, it can be shown that the modified strain-
displacement relations after replacing w with w + w; take the form [see
Eqgs. (9.4.5)]

1
Ex = Uy+ §w7x2 + W Wi« (9.7.2a)
w 1 5
& =Vy— g + Wy + wyw;y (9.7.2b)
Vay = Uy + v wawy + wiwy + wwiy (9.7.2¢)

Difterentiating Egs. (9.7.2) yields

2
Exgy T & = Vagay = Wy~ T+ 2WiagyW iy — Wl yy
) 9.7.3)

T WixxWyy = WiyyW xx — vaxx

Substituting stress function Eq. (9.3.7) into Eq. (9.7.3) gives

1
4 2
Vf = Eh <ny + 2Wiay Wy — W W yy — Wi W yy — WxxWiyy — E“’,xx

(9.7.4)
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Equations (9.7.1) and (9.7.4) are the governing large-deflection equations
for an initially imperfect cylindrical shell.

Consider a rectangular cylindrical panel whose postbuckling behavior
is very similar to that of an entire cylinder. Thus, the consideration is
limited to such a panel avoiding lengthy computational efforts. The
analysis presented herein follows the general outline of that given by
Volmir (1967). A cylindrical panel is a section of an entire cylindrical shell
bounded by two generators and two circular arcs. The radius of the shell
is R, its thickness h. The length of each edge of the panel is a. The panel
is subjected to a uniform axial compression stress py as shown in Fig. 9-7.
The x-axis is in the direction of the cylinder, and y is in the circum-
ferential direction.

The assumed boundary conditions of the panel are that (1) the edges are
simply supported, (2) the shear force N, vanishes along each edge, (3) the
edges at y = 0, a are free to move in the y direction, and (4) the panel retains
its original rectangular shape. These conditions are satisfied if the
displacement function is taken as

X | mY

w = ¢sin — sin — (9.7.5)
a a

It is assumed that the initial distortion can also be given by

. X . Ty
w; = ¢ sin — sin — (9.7.6)
a a
The first step is to evaluate the stress function fin terms of the assumed
deformation functions. Substituting Egs. (9.7.5) and (9.7.6) into Eq. (9.7.4)
yields

Figure 9-7 Cylindrical panel subjected to axial compression
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4
2 2
Vi = Eh[<c2 + 266,> 7r4 (cos kil + cos ﬂ)
2a a

a

¢ X | WY
+ Rz sin —sin —— (9.7.7)

a a a

A particular solution to this equation, obtained by using the method of
undetermined coefficients, is

Eh(c® + 2¢ 2 2 Ehcd®
]?; — %(COS ? + cos ﬂ) + 4Rca sin ? sin ? (9.7.8)

The homogeneous solution is obtained considering the prebuckling stress
px in the x direction and N, = N,,, = 0. Noting that N, = —p,h and
recalling Ny = f,, of Egs. (9.3.7), one obtains the homogeneous solution

hps

Jo=—5 (9.7.9)

Hence, the total solution of Eq. (9.7.7) is

Eh( + 2c 2 27 Eh e Ty hps
f—g cos—x—i—cos—y o sin — sin —% — py2
32 a 4R 72 a a 2

(9.7.10)

A relation between ¢, ¢, and p, will be determined from Eq. (9.7.1) by means
of the Galerkin method. For the problem at hand, the Galerkin equation

takes the form
/ / x , Y dxdy =0 (9.7.11)

where L(c) is the left-hand side of Eq. (9.7.1)

L :DV4 - .xx+ i,00x _2x X + (Y
(o) w [fyy(w, W>) f,y(“ﬂy Wﬁy) 9.7.12)

+ fax (/R + wyy + wiyy) |

and g(x,)y) = sin (mx/a) sin(my/a). Substituting Egs. (9.7.5), (9.7.6), and
(9.7.10) for w;, w;, and f, respectively, Eq. (9.7.12) becomes
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T\ 4 ¢ iy 772 2m
L(C) = 4Dc¢| — ) sin ™ sin SN Eh(cz + 2661‘) cos 2y
a a a 8a2 a

1 2
+ 1 Ehc sin ™ sin _ hpx] {(T(> (c + ci)sin ™ sin 7'0/}
a a

a a a
a

1 1 2
+ 1 Ehc sin ™ sin ﬂ} [ ——+4+ <7—r> (c + c,-)sin ™ sin Q}
a

a R a a a

1 2 m w2 2
+ >R <E> Ehec cos® 7xcos3 %(c + c,») — [@Eh(cz + 2[@) cos?

Substituting L (c) and ¢ (x,y) into Eq. (9.7.11) and carrying out integration
Maple® gives

Der? hr? Eha*c Eh/(5
e k) +W‘E<@ ¢ +“f>
. (9.7.13)
+ 32:2 (63 + 3c2ci + 2(6,’2) =0

from which

4D”2+ Ed +E772 2 4 30422 4E (5 N ¢

x = 4 it | — S5\ 7 i

P a2h  4m2R2 842 “ ! mR 6C ‘ c+g
(9.7.14)

Introduce the following nondimensional parameters into Eq. (9.7.14) to

characterize the influence of each parameter to the postbuckling behavior of
the panel:

_ pd®
Px = g2
b O
hR
5 =2
h
G
6 =9
h

The parameters are measures of the loading (py), of the curvature of the
panel (k), and of the deflections (0 and 0,), respectively. Substituting the
parameters into Eq. (9.7.14) yields
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w [ & 4k (5 b
Pr = |————— 4+ —5 +—( 6% + 300 25.2) — =20+
P +4772+8( 00i+ 20, 7r2<6 * ) 5+ 6
3(1— w?)
(9.7.15)
for u = 0.3,
kz 2 2
5 = |3.615 + —— 1.2337(5 366, 25.)
P [ Toas T 300+ 20]
— 0.4053k(0.83336 + 6, 9.7.16
( - )}6+6i O-7-10

The load-deflection relationship of Eq. (9.7.16) is plotted in Figs. 9-8
and 9-9. Figure 9-8 (see Problem 8.9) is for a panel with k = 0 (R = )
depicting a flat plate, and Fig. 9-9 (see Problem 9.8) is for a cylindrical
panel with k = 24. The curves in each figure show the variation of the
load parameter P, with the total lateral deflection parameter 0 + 6; . The
distinct characteristics of the curves in Fig. 9-8 are that bending of an
initially deformed plate begins as soon as the load is applied, deflections
increase slowly at first and then more rapidly in the neighborhood of the
critical load, and, as the deflections increase in magnitude, the curves of
the initially deformed plates approach that of the perfect plate. Thus, the
elastic critical load does not represent the maximum carrying capacity of
the panel. Koiter (1945) termed this phenomenon imperfection-
insensitive.

Figure 9-8 Postbuckling curves for flat plates
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Figure 9-9 Postbuckling curves for cylindrical shells

With regard to the curved panel with initial imperfection, the
following observations can be made. When the applied axial load is small,
bending increases slowly with an increase in the load. Then, at a certain
load depending on the size of the initial imperfections, bending suddenly
grows rapidly and the load begins to drop. As the deflection continues to
increase, the curve of the imperfect panel approaches that of the perfect
panel. The important conclusion that can be drawn form this observation
is that the maximum load that an initially imperfect panel can support is
significantly less than the critical load given by the classical theory,
a dangerous phenomenon no one should ignore. This is an imperfection-
sensitive case.

Brush and Almroth (1975) praise Koiter’s (1945) initial-postbuckling
theory as one of the most important contributions in recent years to the
general understanding of the buckling behavior of structures. Interestingly,
a cylinder subjected to external pressure or torsion does not exhibit such an
imperfection-sensitive characteristic.
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PROBLEMS

9.1 Show that Egs. (9.2.9) may be derived from those in Egs. (9.2.2),
(9.2.3), and (9.2.5) by introducing appropriate constitutive and kine-
matic relations.

9.2 Show that the application of the Euler-Lagrange differential equations
Eqgs. (9.3.6) to the integrand of Eq. (9.3.1) leads to the equilibrium
equations given in Egs. (9.2.9).

9.3 Show that Egs. (9.3.14a) and (9.3.14b) can be partially uncoupled to
obtain Egs. (9.3.15a) and (9.3.15b). Show that the u and v may be
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eliminated from Eq. (9.3.14c) by applying the operator V* and use of
Eqgs. (9.3.15a) and (9.3.15b). In this way, derive Eq. (9.3.15c¢).

9.4 Derive Eq. (9.4.8) following the procedure outlined in Section 8.3.

9.5 Apply the Euler-Lagrange differential equations Egs. (9.3.6) to Eq.
(9.4.8) and derive Egs. (9.4.6).

9.6 Equation (9.5.20) has been derived for the asymmetric buckling mode
for cylindrical shells subjected to axial compression. Show that it is also
the correct eigenvalue for the axisymmetric buckling mode.

9.7 Show why Eq. (9.5.18) cannot be satisfied for cylinders whose Batdorf
parameter Z is less than 2.85.

9.8 Using the energy method, examine the behavior of the one-degree-of-
freedom model of a curved plate shown in Fig. P9-8. The model
consists of four rigid bars pin-connected to each other and to the
supports. At the center of the model two linear rotational springs of
stiffness C = M/ 6 connect opposite bars to each other. Also, each of the
two transverse bars contains a linear extensional spring of stiffness K.
Determine the load-deflection relation for finite deflections when the
load P is applied
(a) concentric with the axis of the longitudinal bars,

(b) eccentric to the axis of the longitudinal bars.

Discuss the problem.

Figure P9-8 Cylindrical shell model (after Chajes, Principles of Structural Stability Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1974). Reproduced by permission from the author.
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10.1. INTRODUCTION

A large number of publications on the equilibrium equations of general thin
elastic shells have appeared since the first useful shell theory was presented
by Love in 1888 (Love 1944). Naghdi (1963) points out that many of the
theories presented, including Love’s theory, contain some inconsistencies.
Practical results can be obtained only with the aid of approximations, yet the
subject has proved to be very sensitive in this respect, particularly in
problems of buckling (Langhaar 1962). The continuing effort in the field is
motivated by a desire to define a theory that is characterized by simplicity,
consistency, and clarity.

All shell theories available today are based on the assumption that the
strains in the shell are small enough to be discarded in comparison with
unity. It is also assumed that the shell is thin enough that quantities such as
the thickness/radius ratio may be discarded in comparison with unity

In addition to the assumption of small strains and small thickness/radius
ratios, Love used the approximations previously applied by Kirchhoft in

Stability of Structures © 2011 Elsevier Inc.
ISBN 978-0-12-385122-2, doi:10.1016/B978-0-12-385122-2.10010-7 All rights reserved. 475
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thin-plate analysis. That is, Love assumed that (1) normals to the reference
surface remain normal during deformation, and (2) the transverse normal
stress is negligibly small. The assumption that normals remain normal to the
deformed surface implies that the resistance to the deformation under
transverse shear is infinite.

For the derivation of nonlinear shell theory, different levels of assump-
tions have been employed. The nonlinear equilibrium and linear stability
equations presented in this chapter based on the energy criterion are based
on analyses by Brush and Amroth (1975). Their approach followed analyses
presented in Koiter (1967) and Sanders (1963). The same nonlinear equi-
librium equations based on the concept of equilibrium of forces and couples
are derived following the procedure outlined by Novozhilov (1964), Klaus
(1967), and Gould (1988). Yet more physical approaches relying mainly on
the free-body diagrams and trigonometry (Timoshenko and Gere, 1961;
Fliigge, 1973) are available for the derivation of governing equations. The
present equations are limited to shell coordinates that coincide with the lines
of principal curvature, and equations for only the intermediate class of
deformations are considered.

10.2. NONLINEAR EQUILIBRIUM EQUATIONS

In shell theory, a special type of curvilinear coordinate system is usually
employed. The middle surface of the shell is defined by X = X(x,)),Y=Y
(x,9), and Z = Z(x,y), where X, Y, Z are rectangular coordinates and x, y are
surface coordinates, as shown in Fig. 10-1. The normal distance from the
middle surface in the thickness direction is denoted by *+z. Positive z is
measured in the sense of the positive normal # of the middle surface. To any

y — | ’

z

y

\

X

Figure 10-1 Coordinate systems
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set of x,y,z, there corresponds a point in the shell. Hence x,y,z are
curvilinear space coordinates, and they will be called shell coordinates. If the
shell coordinates are orthogonal, the coordinate lines on the middle surface
must be lines of principal curvature. Conversely, if the coordinate lines on
the middle surface are lines of principal curvature, the shell coordinates are
orthogonal. The proof of this geometric property is given in Langhaar
(1962), Novozhilov (1964), and Gould (1988). The exterior surfaces of the
shell are represented by z = £h/2, where h is thickness of the shell. If & is
constant, the exterior surfaces are coordinate surfaces. The principal radii of
curvature are denoted by R, and Ry, respectively. Distances ds, and ds,
along the coordinate lines are given by the relations

dsy, = Adx ds, = Bdy (10.2.1)

where A, B are given by

@@
- [ 6 ()]

The proof of Eq. (10.2.2) can be accomplished by a simple vector

(10.2.2)

analysis (see Problem 10.1). The area of any part of the surface is evidently
determined for the orthogonal surface coordinates by

area = // AB dxdy (10.2.3)

Additional geometric relations are presented herein without proofs as
they can be found in texts on differential geometry.

For orthogonal surface coordinates, the magnitude of vectors r c and r ,
are A and B, respectively. Therefore, the unit vector normal to the surface is
(see Problem 10.2)

r,Xr,

n = (10.2.4)
AB

If the lines of principal curvature are coordinate lines (thatis, r - r;, = 0),
a theorem of Rodrigues is expressed (see Problem 10.3)'

on _10r on _ 1 0r (10.2.5)
dx R, dx dy R, dy o

1 See Novozhilov (1964), page 10.
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It should be noted that when the positive normal vector is directing toward
the concave side (inward) of the shell, the sign of principal radii in Eq.
(10.2.5) is reversed.

The product K = 1/(R\R,) is known as the Gauss curvature of the
surface. If the surface coordinates are orthogonal, K satisfies the following
differential equation of Gauss:

_kap = O (Ba +i A 10.2.6
C Ox\ A dy\ B (10.2.6)

The functions A, B, Ry, R, satisty two difterential equations of Codazzi.
If the coordinate lines coincide with the lines of principal curvature, the
Codazzi differential equations take the form (see Problem 10.4)

d(A\ 194 d(B\ 1 0B 1027
a\R,) R, dy 0Ix\R,) R, dx -
Figure 10-2 represents a portion of a cross section of a shell. The position

vector of a point on the middle surface is r, and the position vector of the

corresponding point at distance z from the middle surface is Q. From
Fig. 10-2

Q =r+nz (a)

Taking partial derivatives with respect to the middle surface coordinators x
and y yields

Q. =1ty+n,z ny =r,+n,z (b)

Since the coordinate lines are lines of principal curvature, the Rodrigues

formulas Eq. (10.2.5) (with the reversed sign of the principal radii) apply.
Hence,

Figure 10-2 Position vectors on shell cross section
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By Eq. (10.2.2)
For, = A% and Tyt = B
Recall
ryn=r,n=r,r, =0
Consequently, —since ds®> = dQ-dQ = (Q . dx +Q,dy + Q7Zdz)2,
Eq. (c) gives
d? = o?dx® + §2dy* + y2d=? (10.2.8)

— A 1—i> ﬁ:B(l—i> — 1 10.2.9
o ( R. R, Y ( )

The factors o, 8, 7 are called the Lamé coefficients.” Note that &« = A
and 6 = B, if z = 0, that is, on the middle surface. Eq. (c) shows that Q’x
and Q, are parallel to the vectors r v and r ).

where

10.2.1. Strain Energy of General Shells

Koiter (1960) theory is based on a strain energy expression derived in terms

of the following three simplifying assumptions:

1. The shell is thin, that is, i/R <<< 1, where R is the smallest principal
radius of curvature of the undeformed middle surface of the shell.

2. The strains are small compared with unity, and the strain energy density
function is given by the quadratic function of the strain components for
an isotropic elastic material.

3. The state of stress is approximately plane; the effects of transverse
shearing and normal stresses to the middle surface may be neglected in
the strain energy density function.

The third of Koiter’s assumptions is equivalent to the Kirchhoft approxi-
mation used in Chapter 8. Under these assumptions, Koiter (1960) presents
the following equations for the strain energy of a thin elastic shell:

U= U, +U, (10.2.10a)

2 See Langhaar (1962), page 181.
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C 1—
U, = E// (5326 + eﬁ + 2 uexey, + T,u yxyz>AB dxdy  (10.2.10Db)

_D 2, 2 _ 2
U, = 5 Kyt Ky + 2 pkoky + 2(1 — ks~ | AB dxdy  (10.2.10¢)

where éy, €, and v,, are middle-surface normal and shear strain compo-
nents, and Ky, Ky, and K, are middle-surface curvature changes and rate of
twist.

The total potential energy II of a loaded shell is the sum of the strain
energy U and the loss of the potential energy IV of the external loads:

I=U+V (10.2.11)

Let px, py, and p. denote the x, y, and z components, respectively, of
the uniformly distributed load over the surface of the shell element,
and let u, v, w be the corresponding components of the displacements
of a point on the shell middle surface. Then, the loss of potential
energy 1s

Vo= — // (pxu + py —i—pzw)AB dxdy (10.2.12)

The equilibrium and stability equations presented here are based on
nonlinear middle-surface kinematic relations of the simple form

1
& = exx_f'iﬁgzc Kx = Xax

1

2 10.2.13
g = eyy+5ﬂy Ky = Xyy ( )

Txy = Exy +ﬁxﬁy Kxy = Xay

where ¢;, (;, and Xjj are linear functions of the middle-surface displace-
ment components #, v, w. Sanders kinematic relations (Sanders 1963) at
the middle surface may be rewritten

“ T AT B R,

Yy y Bt w (10.2.14a)
ey = = - — 2.
W~ BT AB R, !
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W u
ﬁx - _7 RX
o W v (10.2.14b)
» = "B R,
ﬁx,x A,yﬂy
6 Bxﬂx
Xy = %"‘E (10.2.14¢)
_ B Bay  AsBet By

A+B AB

Experience with numerical solutions has shown that the terms con-
taining # and v in Egs. (10.2.14b) are of negligibly small influence for shell
segments that are almost flat and for shells whose displacements are rapidly

2Xxy -

varying functions of shell coordinates, that is, consisting of many relatively
small buckles of which bases are significantly smaller than the radius. Such
a shell is called “quasi-shallow” even when the shell as a whole is not
shallow. If terms containing u and v are discarded, Egs. (10.2.14b) can be
simplified as Eq. (10.2.15). The ramification of ignoring these terms is
detailed in Sanders (1963), Koiter (1960), Novozhilov (1964), and Brush
and Almroth (1975).

Wx

69{' = _7
y (10.2.15)

- _ Y

By, = B

Substituting Egs. (10.2.15) into Egs. (10.2.14¢) and simplifying gives

w7xx A7xw7x _ A‘yw7y
A2 A3 AB?
woy | Bywy  Bawi
Xyy B B A’B
Wy o Ayws | Baty
AB A%B AB?

Equations (10.2.16) are given by Novozhilov (1964) and Brush and Almroth
(1975). The simplified expressions in Eqs. (10.2.14a), (10.2.15), and
(10.2.16) are the kinematic relations underlying the Donnell-Mushtari-

Xox =

(10.2.16)

Xy =

Vlasov (DMV) equations for a quasi-shallow shell.
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The strain components are defined as for rectangular coordinates by Eqgs.
(8.2.3). The derivation of the expressions for strains in other coordinates is
a routine problem of tensor calculus. Most derivations of strains for general
shell elements are done by such tensor analyses. General expressions for
three-dimensional strains in orthogonal curvilinear coordinates are also
derived without the use of tensors by Novozhilov (1953). Equations
(10.2.14) may also be obtained by taking only the strains in a plane stress
problem and neglecting higher order terms from the general strains derived
by Novozhilov.

Nonlinear equilibrium equations may be derived from Egs. (10.2.10),
along with Eqgs. (10.2.13), (10.2.14a), (10.2.15), and (10.2.16), by applying
the Euler-Lagrange difterential equations. The combination of Egs.
(10.2.15) and (10.2.14¢) will also work as Eq. (10.2.16) is derived from
Eq. (10.2.14¢) by way of Eq. (10.2.15). However, the combination of Egs.
(10.2.14b) and (10.2.14c) fails to lead to a relatively simple system of
nonlinear equilibrium equations. The resulting equilibrium equations are
found to be (see Problem 10.5)

(BNY),X—F(Any)J/_Bvay +A7}’NX = _AB}%

o] () o] - (o)
A Mo \B B aY) (10.2.17)

)

+ 2| My + A’yM + B“M +AB N’“+Ny
XY, Xy A Xy N B Xy y Rx Ry

~[(BNB.+ BNyB,) +(AN,, +ANgB.) | = —ABp.

where
Ny = C(ey + uey) M, = D (ks + uky)

Ny = Cley +per) My = D (ky + pky) (10.2.18)

L—u
Ny = C——17y My, = D (1 — w)Kyy

Equations (10.2.17) can be specialized for a circular cylindrical shell Egs.
(9.2.9) by setting A =1, B= R, = R, and 1/R, = 0. Equations
(10.2.17) can also be converted to the nonlinear equilibrium equations for
a rectangular flat plate (von Karman plate equations) Eqs. (8.2.18) by setting
A =B =1and 1/R, = 1/R, = 0. Similarly, Eqgs. (10.2.17) can also be
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©
Figure 10-3 Positive internal forces

converted to the nonlinear equilibrium equation for a column Eq. (1.7.14)
(see Problem 10.3).

10.2.2. Equilibrium of Shells

Consider a differential element of a general shell, cut out by surfaces x =
constant and y = constant as shown in Fig. 10-3. The variables (x,y, z)
are orthogonal shell coordinates. Hence, the coordinate lines on the
middle surface are lines of principal curvature. By Egs. (10.2.9), the differential
areas of the cross sections shown by the hatched lines in Fig. 10-3a are

dA, = o dxdz = A(l —Ri>dxdz

dA, = B dydz = 3(1 — Riy) dyd=
where R, and R, are the principal radii of curvature of the middle surface.
Let N be the tensile in-plane force on a cross section per unit length of
a y-coordinate line as shown in Fig. 10-3b. Then the total tensile force on
the differential element in the x direction is NyBdy. Hence

h/2
N,Bdy = /adiy = dy/ 0,0 dz
—h/2
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where h is the thickness of the shell. Therefore

1 h/2 h/2 >
Nx:—/ 0,0 dz = / (Tx(l——>dz
BJ i "y R,

Similarly, the in-plane tensile force N}, the in-plane shears N, and Ny,
the transverse (or bending) shears Q. and Q), the bending moments
M, and My, and the twisting moments M,, and M,, are evaluated (see
Figs. 10-3b and 10-3c). The completed set of constitutive relations is

Ny

Qx

Q

/2 /2
s [
BJ —h/2 Ry
1 /2 /2
—/ oy dz = / 0y<1—i>dz
A —h/2 —h/2 Ry
1 /2 /2
—/ Tyl dz = / Tay <l — i) dz
B —h/2 —h/2 Ry
1 [h2 h/2
—/ et dz = / Tyx <1 — i) dz
AJp —h/2 R,

1 /2 h/2

—/ T3 dz = / Ty (1 — i) dz
B —h/2 —h/2 Ry

1 h/2 h/Z

—/ Ty dz = / Ty (1 — i) dz
AJn2 —h/2 Ry
—/ 20,0 dz = / 20,
B —h/2 —h/2

1 /2 h/2
—/ zopa dz = / 20y,
AJnp —1/2

1 /2 h/2 >
—/ 2T dz = / 2Ty (1 — —> dz
BJ —h/2 R,

(10.2.19a)

(10.2.19b)

(10.2.19¢)

(10.2.19d)

(10.2.19€)

(10.2.19f)

(10.2.19g)

(10.2.19h)
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Figure 10-4 Unit tangent and normal vectors

1 h/2 h/2 >
My, = —/ 2Ty dz = / 2Ty (1 ——> dz (10.2.191)
A —h/2 —h/2 Ry

The positive senses of forces and moments are shown in Figs. 10-3.
Equations (10.2.19) are also valid for flat plates, with 1/R, = 1/R, = 0.
Likewise they are valid for circular cylindrical shells, with 1/R, = 0 and
A =1and B= R, = R.

The nonlinear equilibrium equations may be derived by summing forces
and moments for a general shell shown in Fig. 10-3. For an intermediate
class of deformations, the angles of rotation 8, and ﬂy are assumed to be
small, and sines and cosines of the angles are replaced by the angles them-
selves and by unity, respectively. Furthermore, quadratic terms representing
nonlinear interaction between the small transverse shearing forces and the
rotations are assumed to be negligibly small.

Novozhilov (1964)° states that the thicknesses of shells for a large number
of applications lie in the range of 1/1000 < h/R < 1/50, that is, in the range
of thin shells. It appears appropriate to neglect z/R relative to unity in the
DMV form of the equations. Then N, = Ny, and My, = M,,.

Define unit tangent vectors as shown in Fig. 10-4. When the curvilinear
coordinate lines are defined by a position vector ¥ emanating from the origin
of the rectangular orthogonal coordinate system, the derivatives of r with
respect to the curvilinear coordinates dr/dx = r and dr/dy = r, are
vectors that are tangent to the s, and s, coordinate lines, and the corre-
sponding unit tangent vectors are given by
rx T

t, = = = =
* It ] A

(10.2.20a)

3 See page 2.
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Iy ry
t, = >— = = 10.2.20b
" ", T B ( )

t,=n =1t xt (10.2.20¢)

The derivatives of the unit tangent vectors are expressed in terms of the
unit tangent vectors themselves (Novozhilov 1964; Klaus 1967; Gould
1988) (see Problem 10.4) as

—A Al
o — =
B R,
tyx 0 ﬁ 0
A
t
Y @ 0 0 ty
by« B
= | _B, B ty (10.2.21)
tyy : 0o —
A R, t,
tx 4
t e 0 0
\ *n,y Rx
—B
0 — 0
Ry

In terms of the stress resultants and moments, the resulting vectors are

F. = (Nety 4+ Nyt, + Qut,)Bdy (10.2.22a)

b = (Nyty + Nyt + Qut,) A dx (10.2.22b)
C. = (— Myt, + M,t,)Bdy (10.2.22¢)
Cy = (— Myt, + Myt,) A dx (10.2.224)

and the load vector is
pABdxdy = (pxtx +pt + pztn) AB dxdy (10.2.22¢)
Applying the equations of static equilibrium yields
Y F=0 (10.2.23a)

Y c=0 (10.2.23b)
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Equation (10.2.23a) becomes
(Fy +F,, dx — F,) + (F, + Fydx — F,) + pAB dxdy = 0
or
F..dx+F,, dy+pABdxdy = 0 (10.2.24)
Substituting Eqs. (10.2.22a), (10.2.22b), and (10.2.22¢) into Eq. (10.2.24)
and dividing through by dxdy gives

[(Nxty + Nugty + Qut) Bl +[(Nywte + Nty + Q) A] |

+ (pxtx + pt + Pgtn>AB =0 (10.2.25)

The difterentiation indicated in Eq. (10.2.25) can be evaluated using the
identities given by Eq. (10.2.21). The resulting vector equations may be
factored into

Fyt, + Fyt, + Fot, = 0 (10.2.26)

Since the unit tangent vectors are independent, Eq. (10.2.26) can only be
satisfied if

F,=0; F,=0; F.=0 (10.2.27)

which yields the three scalar equations of force equilibrium. They are (see
Problem 10.7):

AB

X

(10.2.28a)

AB
F, = [(Bny)7x+(ANy) BNy — Any] ~Q o+ pAB =0
Y

(10.2.28b)

AB AB

F. = [(BQx) x+(AQy) } +Ny—+ N, —+p.AB = 0 (10.2.28¢)
’ g RX Ry

Next, the moment equilibrium equation Eq. (10.2.23b) is evaluated

[P

about axes through point “o0” in Fig. 10-3(b). Summing the moments given
in Egs. (10.22¢) and (10.2.22d) yields
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Z C=C,+Cuadx—C,+C,+Cy,dy—C, (10.2.29a)

Substituting Egs. (10.2.22¢) and (10.2.22d) into Eq. (10.2.29a) gives:

Y C = [(—Myte+ M) B] _dxdy + [(—= Myt + Myt 4] | dxdy
(10.2.29b)

Additional stress vectors contributing to the moment equilibrium include

[Quty — Quty + (Ny — Ny )t AB dxdy (10.2.30)

Expanding Eq. (10.2.29b) in accordance with Eqs. (10.2.21) and combining
the results with Eq. (10.2.30), one obtains

G.t, + Gty + Got. = 0 (10.2.31)

As the unit tangent vectors are independent, Eq. (10.2.31) can only be
satisfied if

G.=0; G, =0; G.=0 (10.2.32)

Equations (10.2.32) lead to three scalar moment-equilibrium equations. As
the third moment-equilibrium equation, however, is identically satisfied if
the symmetry of the stress tensor 0;; = 0;; is invoked (Novozhilov 1964), only
two moment-equilibrium equations will be evaluated. There exist modified
shell theories, such as Klaus (1967), which attempt to redefine the stress
resultants and couples so that G. = 0 can be satisfied. However, none of these
attempts succeed in satisfying the so-called sixth equation unconditionally.

They are (see Problem 10.8):

Gy = —(BMy) .—(AM,) —BxMy: + AyMy + QAB = 0
(10.2.33a)

Gy = (BMy) +(AMy) ,=BxMy + AyMyy — QAB = 0 (10.2.33b)

Rearranging Egs. (10.2.33a) and (10.2.33b) gives

1
QA = E[(BMxy) H(AM,) +B My, — Avny] (10.2.34a)
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1
BQ, = Z[(BMx),x+(AMyx)7y—B,xMy +A7nyy} (10.2.34b)

Substituting the appropriate derivatives of Eqgs. (10.2.34) into Eq. (10.2.28¢)
yields

1
Fe = 37 [(BMy) 4 (AMyx) ,—BMy + Ay My

A x
1
B [(BM.y) A (AM) +B. My — AyM,]
7y
AB AB
FNEZE N, 2 pidB = 0 (10.2.35)
R, R,

Although all stress resultants necessary for the small displacement theory
of general shells have been accounted for by Egs. (10.2.28a), (10.2.28b), and
(10.2.35), there are yet other force components to be added to Eq. (10.2.35)
in order to account for the effect of large displacements that will lead to the
derivation of the equation for elastic buckling of shells. They are

NoB dy = |N.B v+ (NeB dyB.) x| + N, A dxB,
— [NyA dxB, + (N, A dxB)) ydy] + Ny B dyB,
_ [ny BdyB, + (NyB dv,) xdx] + NyeA dx,

— [N B+ (N dB) v

= — (BN, + Bnyﬁy)7x dxdy — (AN,B), + AN,.B,)  dacdy
(10.2.36)

Dividing Eq. (10.2.36) by dxdy for consistent dimensions and adding to Eq.
(10.2.35) gives

1
F, = 2 [(BMX)W—F(AM)/X),)/_BWM}’ + AyMyy)

x
+ {1 [(BMy) +(AM,) +B. M, — A ny]}
B ’x v ’ »  (10.2.37)
— (BN + BNyBy) .~ (AN:B, + ANB,)
—i—NxA—B—i-NyA—B—i-pZAB =0
R R,

X
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In the DMV form of equilibrium equations, terms involving the vertical shear
Qx or Q, divided by the radius of curvature in Egs. (10.2.28) are ignored for
being small for thin shells as in Sanders (1963) and Brush and Almroth (1975).
When they are ignored, Egs. (10.2.28a) and (10.2.28b), and (10.2.37) are
identical to Egs. (10.2.17) (see Problem 10.9) derived by the principle of
minimum total potential energy by way of the calculus of variations.

It should be noted that the use of the equilibrium method of deriving
a governing differential equation based on an isolated free-body diagram is
much easier for a simple structure, such as a column, but for complex three-
dimensional structures, such as a general shell, the energy method is much
more straightforward.

10.3. LINEAR STABILITY EQUATIONS (DONNELL TYPE)

As was done in Chapter 9, the linear differential equations for the deter-
mination of the critical load of a general shell subjected to external loading
are derived by application of the adjacent-equilibrium criterion. The same
equations are then rederived for loss of stability by application of Trefttz
criterion in terms of linear displacement parameters e;, (;, Xii of Egs.
(10.2.13). Equations (10.2.17) govern all linear and nonlinear equilibrium
conditions of the general shell within the confinement of the intermediate
class of deformations. The equations include linear, quadratic, and cubic
terms of variables u, 1, and w;, and therefore are nonlinear. It is now a fairly
simple task to obtain a very good iterative numerical solution by a well-
established finite element code.

10.3.1. Adjacent-Equilibrium Criterion

Adjacent (or neighboring) equilibrium configurations are examined using the
procedure outlined by Brush and Almroth (1975), as was done in Chapters 8
and 9. Consider the equilibrium configuration at the bifurcation point. Then,
the equilibrium configuration is perturbed by the small incremental
displacement. The incremental displacement in uy, vq, wy is arbitrary and
tentative. Variables in the two adjacent configurations before and after the
increment are represented by ug, vy, wyand u, v, w. Let

u—>ugy + g
v—vo 4 11 (10.3.1)

w—wy + un
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where the arrow is read as “be replaced by.” Substitution of Egs. (10.31) into
Egs. (10.2.17) results in equations containing terms that are linear, quadratic,
and cubic in wug, vy, wp and uy, vy, wy displacement components. In the
new equation obtained, the terms containing ug, vy, wp alone are equal to
zero as ug, vy, wp constitute an equilibrium configuration, and terms that
are quadratic and cubic in wuy, vy, w; may be ignored because of the
smallness of the incremental displacement. Therefore, the resulting equations
are homogeneous and linear in uy, v1, wy with variable coefficients. The
incrementin i, v, w causes a concomitant change in the internal force such
as

N, — Ny + AN,
oY g (10.3.2)
Ny = Nyo + ANy,

where terms with subscript 0 correspond to the ug, vy, wy displacement,
and AN,, AN,, AN,y are increments corresponding to uy, vy, wy. Let
also Ny1, Ny, Ny represent parts of AN, AN, AN,y, respectively, that
are linear in wuy, v1, wi. For example, from Egs. (10.2.13), (10.2.14a),
(10.2.15), (10.2.16), and (10.2.18),

No=ofL Ay, Lza_wz
Y A Ox R, 2\ dx

n 16V+Bx w+1 ow\ 2
oy aB" R, " 2\ay

Then
1 auo 8u1 A 1
Z(a+a) +AB(V0+V1) —Ex(“/()‘f'wl)
1 aW()Z 6w0 8w1 1 aW12
2 Ox Jx dx 2 dx
N,o+AN,=C

dvg Oy B,
—i—,u[ <ay+ay>+AB(“0+ul)

_i( n )+1% +0w0(9w1 10w, >
ROV ey Ty oy 2 0y
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From which

B,

Similarly,

X

Then

1
B

(31}0 61;1

1 6w02
2 dy
Ny +AN, = C
1
+ulg

1

X

%ﬁ@%

al/l()

(a—x+

—R—(W() + W1)

1 + 1 awOZ
R, T2 0x
B, 1 1 dwp?

a™ "R 2y

)

1 6w02
2 Ox

Owy 0wy

dx Ox

1
Ry

1 ("W12
2 dy

awO aW1

et dy dy

)

(10.3.32)

1 . Jwy 0wy
—w et}
R, " 9x o

Owy Owy

1
*@@ﬂ

()
(50) |}

2
1

(10 +u1) _Ey(WOJFWl)

1
2

w

R)’
A
Y v
AB

w

R,

B,
AB

Bun dwn 13w’
dy dy 2 dy

(91/!1>

Ox
n 1 6w02+
2 dx

A
+A—yB(V0 + V1)
10uw?

2 0x

Owo Oun

Ox Ox
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From which

1 61}1 B’x 1 awO dwl 1 GWQZ
— - —w A — — - —
B dy AB R, dy dy 2 dy
AN, = C
4 (1 au1 +A’y 1 I awO 8w1 i 1 6w12
Flaox "aB™ TR T ax 9x | 2 ox
N, - C 1 (91/1 Bx 1 éwo 0w1
V! Bay AB" R, oy oy
(10.3.3b)
+ 1 6u1 +A’y 1 +8w0 6w1
Flaox TaB" TR T ax ox
N 1—uf1dv Ou B7xv+A7yu+8w8w
v 2 \4dx B AB dx dy
Then
r1/dvg g 1 ]
Z<g+a> +E(”O+”l)
1 —
ny() -+ Any = C—2 s B’X(VO + Vl)j:—BAvy(uo + Ml)
d(wo + w1) d(wo + w1)
+
L Ox dy _
From which
1—pu (1 /v 1 BX(V()) + Ay(l/l()> a(wO) a(W())
Nyo = C——|—( — - - :
0 2 _A<ax> +pm) AB T oy
1—,u_1 aV1 1 Bx(V1)+Ay(M1)
AN, = C——|—| — — —— :
&4 2 _A<ax> pUn) AB

+ wo w1y + Wy xwoy + Wi k1 y
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1—ul{l1/d 1 B, + A

2 A\ dx AB

(10.3.3¢)

+ wo w1y + Wl,xWO7y:|

A similar procedure is taken for the expression of bending moments.

6x1 X Ayﬁyl i8y1 8y B x6x1
My = —D : — _— 4 10.3.3d
! [< 4 "ap ) TM\B TaB ( )
ﬁyl 8y B vﬁxl 5x1 x Ayﬂyl
My, = —D||—+—— e 10.3.3
! [( B " ap ) THMa T as (103.3¢)
1—nu 6y1 x 6xly Ayﬁxl + Bxﬁyl
Mo, = D ’ Y _ 7 10.3.3
vl 2 <A 7B AB (10330

Substituting Egs. (10.3.3) into Egs. (10.2.17) gives

(BNX1)7x+(ANW1)7y—B7xNy1 +AyNyt = 0

(ANy1) ,+(BNiy1) ,—AyNxi + BuNyi = 0

WX

1 A, | 1 /B.
Z(BMX1)’X x— EMxl y+ E(AMyl)’y y— M )

) 2

ol 4 (22000 )+ (Boang) | (D M
xpl,xy A xp1 N B xpl N R, Ry

(BNx()ﬁxl + B]ny()ﬁyl)’x_‘_ (Bleﬂxl + BnyLByl)JC

_ =0
+ (ANyoﬂy + AnyOﬁx)yWL(ANylﬁy + Anyle)y
(10.3.4)
where
may Ayt owy
] = —— - — 10.3.5
€xxl1 A AB R, ( a)
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g1 = %—Z—; (10.3.5b)

e = 22— 78“”;14” a (10.3.5¢)
B = —% (10.3.5d)

B = —% (10.3.5¢)

Substituting Egs. (10.3.3) and (10.3.5) into Egs. (10.3.4) yields a set of three
linear homogeneous equations in u1, v1, wq with variable coefficients in
Nxo, Nyo, Niyo, Byo, and By. These coefficients are evaluated by Egs.
(10.2.17). Egs. (10.3.3), (10.3.4), and (10.3.5) are linear stability equations
for the quasi-shallow shell of general shape under the DMV approximations.

10.3.2. The Trefftz Criterion

Equations (10.3.4) are rederived on the basis of the minimum potential
energy criterion. Equations (10.2.10) to (10.2.13) represent a general
expression for the potential energy in terms of parameters ¢;;, (3;, Xjj that
are linear functions of the middle surface displacement components
u, v, w. To obtain an expression for the second variation of the total
potential energy, the displacement components are again disturbed

u—uy + uq
v—vy + 11 (10.3.1)
w—wy + wq

Then one collects all terms in the resulting expression that are quadratic in
the virtual deformations uy, v1, wi. Consequently, ¢; is replaced by
ejjo + ejj1, etc., and terms that are quadratic in the quantities with subscript 1
are collected. Since the potential energy of the applied load Eq. (10.2.12) is
a linear functional of the displacement components and makes no contri-
bution to the second variation, 6>V = 0. Therefore

6’1 = 5°U
or

6’11 = 6°U,, + 6°U, (10.3.6)
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Hence, the expressions for the second variation of the membrane and
bending strain energy are found to be (see Problem 10.10):

[(6ex)2 + (5ey)2 +2u(dey) (0¢y)
1o C 1—
55 Um_E// +Tlu(57xy)2:| + |:(€x()+/$€y0) (62896) ABdxdy
1—u 2
+ (Syo—i—,lwxo) (52€y) + Tnyo <527xy) }
(10.3.7a)
and
1 D
552Ub = 5// [(5Kx)2+(5l<y)2+2,u(5Kx) (6xy)
+2(1 — ) (6Kyy) *] AB dxdy (10.3.7b)
From Egs. (10.2.13),
6€x = Cxx1 +6x06x1 62€x = ﬁxl 6Kx = Xaxxl
68)} = gyl +6y06y1 523)/ = Byl 6Ky = Xy
57@; = &1 +6y061 +60ﬁyl 62'ny = Zﬂxlﬁyl 6ny = Xyt
(10.3.8)

From Eq. (10.2.18),
Ny = C(ex + uéy)

Ny = C(ey0 + pexo) (10.3.9)
nyO = C(l - :u)'nyO/Z

Therefore the expression for the second variation of the total potential
energy 1is

(exxt +Bx0B21) + (en1 +5y06y1)2
%6217 _ %// +2,u(exx1 +‘6x06x1) (@yyl +ﬁy06y1) AB dxdy

I—p
+T(€xyl + 6x06y1 + ﬂy()ﬁxl)

1
+§// (Nxoﬁx12 +NyoByy 2 +2ny()6x16y1)AB dxdy

b > P2 2(1— *| AB dxd
+ 2 Xext +ny1 + /"'Xxxleyl_‘_ ( :u)Xxyl xay

(10.3.10)
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Equation (10.3.10) is a general expression for the second variation of
the total potential energy of a thin shell of general shape (shallow
or nonshallow) as no simplifying expressions are adopted in the
derivation.

For quasi-shallow shells, the incremental deformation parameters given
by the DMV approximations are, from Egqs. (10.2.14a), (10.2.15), and

(10.2.16),

M1,x A7y1/1 un
Cxx1l = —— T
A AB R,

vy  Byur  w

T BT 4B R,
1

Vi Wy  Bavi + Ay
euy] = —> 4 W s TR
w4 TR AB
wy,
By = —7x
(10.3.11)

w17
-

w7xx A7xw7x _ A7yw’y
Xaxl = A2 A3 AB2

Youi = wiyy | Bywiy  Bawix
i B2 B3 A2B

Wigy | Aywiyx | Bawiy
Xxyl = P + D
AB A-*B AB

Substituting Egs. (10.3.9) and (10.3.11) into Eq. (10.3.10) and applying the
Euler-Lagrange differential equation given by Egs. (8.3.12) yields (see
Problem 10.11)

(BNu1),+(ANg1),= BNyt + AyNy1 = 0 (10.3.12a)

(ANyl)7y+(BN“Cy1)7x_A,ny1 + B,xnyl =0 (10312b)
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o] () e lgtoen.] (o)

i i

2 A,y B,x A Ny Nyl
+ 2| Mg + | — Mg x+ — My ) + AB X +?y

%

(BNxolgxl + BnyO‘Byl)’x"i‘(Ble 6x0 + Bny1 6y0)’x

_ =0
+(ANyoBy1 + AnyOﬁx1)7y+(ANy16y0 + ANyy16.0) N
(10.3.12¢)
where
Ny = C[(exxl + 6x06x1) + :u(eyyl + ﬁyoﬂyl)] (10.3.13a)
Nyt = C[(eyy1 + ByoBy1) + ilexer + Br0By1)] (10.3.13b)
T—u
nyl = CT(exyl +i8x06y1 +6y06x1) (10313C)
Wy Axwy, Ayw wq B, wy B w1
Mx :D — 9! 3 9! — y 7y — 7yy 7y 7y_ b 9!
! K FERNRE ABZ>+“( B B A’B
(10.3.13d)
wiyy | Bywiy Bawix Wax | Axtv  Aywy
M, =D| (- - - St
. K BB 4B >+“< 2T T
(10.3.13¢)
1— n W1 ,xy Aywl x waly
M = D — X2 - 10.3.13
vl 2 < 4B T 2B T ap ( f

Equations (10.3.12) and (10.3.13) are the linear stability equations for
the shell of general shape, under the DMV approximations.

10.4. APPLICATIONS
10.4.1. Shells of Revolution

Structural shells often take the shapes of shells of revolution. The middle
surface of a shell of revolution is formed by rotating a plane curve (gener-
ator) with respect to an axis in the plane of the curve as shown in Fig. 10-5.
The lines of principal curvature are called the meridians (surface curves
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Parallel

Meridian

o

Figure 10-5 Shell of revolution

intersected by planes containing the axis of rotation) and parallels (surface
curves intersected by planes perpendicular to the axis of rotation). The
parallels and meridians are the same as the latitudes and the longitudes in
a glove. In Fig. 10-6 the meridian of a shell of revolution of positive
Gaussian curvature is illustrated. Points on the middle surface may be
referred to coordinates ¢ and 6, where ¢ denotes the angle between the axis
of rotation and a normal to the middle surface, and @ is a circumferential
coordinate as shown in Fig. 10-5. The principal radii of curvature of the
surface in the ¢ and 6 directions may be denoted by Ry and Ry, respectively.
It is convenient to define an additional variable R defined by the relation

Ry = Rygsin ¢ (10.4.1)

Note that Ry is not a principal radius of curvature as it is not normal to the
surface. Rather, it is a projection of Ry on the horizontal plane.

R,

/e

/ Ry
Axis of rotation

Ry

Figure 10-6 Meridian of shell of revolution
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A closed shell of revolution is called a dome. In particular, if the generator
is a half circle, it is called a sphere. The peak of such a shell is called the pole. A
pole introduces certain mathematical complications as R approaches to zero.

If the curvilinear coordinate in the y or 6 direction is chosen as the
circumferential angle 0, then the distances dsy and dsg along the coordinate
lines are given by the relations

dsy = Ry do (10.4.2a)

dsg = Ry df (10.4.2b)

and the Lamé coefficients are

A=Ry (10.4.32)
B = Ry (10.4.3b)
Furthermore,
R, = Ry (10.4.4a)
R, = Ry (10.4.4b)

Recall the second Codazzi equations given in Eq. (10.2.7)

d/B\ 1 0B

dx\R, " R, 0x
Making use of Egs. (10.4.1), (10.4.3) and (10.4.4), the second equation
becomes

d (Rgsin ¢ 1 dR,
— = — (10.4.5)
do Ry Ry do
From which
Ry _ ¢ (10.4.62)
i = Ry cos 4.6a
or
dRy = dPRy cos ¢ = dsp cos ¢ (10.4.6b)

The variables Ry, Ry, and R characterize the shape of the middle surface
of the undeformed shell and are a function of ¢ only. Variables u, v, w denote
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middle-surface displacement components in the ¢, 6, and normal direc-
tions, respectively. The displacement components, in general, are functions
of both ¢ and 6.

10.4.2. Stability Equations

Specializing Eqs. (10.3.12), (10.3.11), and (10.3.13) for a shell of revolution
by neglecting prebuckling rotation terms (84, and B4)) yields (Brush and
Almroth 19754):

(R()N¢1)’¢—|—R¢N¢917g — Ry Ny cos ¢ =0

(RONM) s TRsNo1g + RypNygi cos ¢ = 0

[L(R()Mm) ] + [&Mm 99 — (Mg cos ¢) }
Ry ¢ o LR ¢

R .
+2 <M¢017¢0 + R—(Z:M(pgl’g cos ¢> - (R0N¢1 + Ry Ny sin (]5)

- [(R0N¢oﬁ¢1 + R0N¢00501)7¢+(R¢N00501 + R¢N¢0oﬁ¢1)ﬁ} =0

(10.4.7)
where
N Ciu —w _|_i(,, 4+ uy cos ¢ — w sin(b)
o1 = R¢ 16— wi) Ry Ve T 1
C(€¢¢1 —l—ueoel) (10.4.82)
1 . H
Ny = C|— 1/1,9 + uy cos ¢ — wy sin ¢) + _(“1745 o W1)
Ry Ry
_ C 6901 +,u€¢¢1) (10.4.8b)
1—u/(Ro (v U6 l—n
Nip — C— (20021 ) =C 10.4.8
0 2 <R¢ <R0> ¢ " RO) y on 7
Mai = D i8¢1,¢ + ﬁ(ﬁm 0+ ﬁ¢1 cos qb) (10.4.8d)
Ry Ro™

4 See page 206.
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My, = D[Rio(ﬂm,g + By cos ¢) +%’2’¢] (10.4.8¢)
Myg = D“T“[ll:—(‘;(%) , + %}"’] (10.4.8)

By = —WR1—(’: (10.4.8g)

By = —%’f (10.4.8h)

Equations (10.4.7) are the essence of DMV theory of the symmetrically
loaded quasi-shallow shell of revolution. According to Novozhilov (1964),”
Donnell (1933) in the United States and Mushtari (1938) in the Soviet
Union apparently derived the theory independently. Later, Vlasov (1964)
improved and generalized the theory significantly.

The coefticients Ng,, Nggo, Ny, in Egs. (10.4.7) are determined by the
linear equilibrium equations obtained from the specialization of Egs.
(10.2.17) for axisymmetric deformation of a shell of revolution. They are

d
—(RoNg) — RNy cos ¢ = —RoRypy

d¢

d

%(RONM) + RyNyg cos ¢ = —RyRypy

i d(RM) d(M ¢) — (RoNg + RgNp sin ¢) = —RgR
d¢ R¢d¢ 0Mg d¢ 6 €Os 04N $LNg S - 0R¢Pz

(10.4.9)

where the constitutive and kinematic relations are given by
Egs. (10.4.13).

As a simplifying approximation in the determination of the coefficients
in the stability equations, the linear bending equation is frequently replaced
by the corresponding linear membrane equation. The first and second terms
in the third equations of Egs. (10.4.9) are considered to be small compared

to the remaining terms. Hence, they are frequently neglected. Then Egs.
(10.4.9) become

5 See pages 88-94.
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d

%(RONd,) — RyNp cos ¢ = —RoRypy
d

%(RONM) + RyNyg cos ¢ = —RoRypg

RoNy + RyNy sin ¢ = RoRyp-

(10.4.10)

Equations (10.4.10) are statically determinate. Hence, solutions can be deter-
mined without constitutive and kinematic relations given by Egs. (10.4.13).

If the shell is not subjected to torsional loading, the coefticient Nygq
becomes zero in Eqs. (10.4.7). In such cases the stability equations obtained
by substitution of Eqs. (10.4.13) into (10.4.7) may be reduced to ordinary
differential equation by selection of solutions of the form

uy = uy(¢p)cos nf
v = v,(¢)sin nf (10.4.11)
wi = wy(¢)cos nf

To sum up, stability equations for shells of revolution are given in Egs.
(10.4.7) in which prebuckling rotation terms are omitted. Linear equilibrium
equations for symmetrically loaded shells of revolution are given in Egs. (10.4.9),
and corresponding linear membrane equations are given in Egs. (10.4.10).

10.4.3. Circular Flat Plates

The middle plane of a circular flat plate may be described by a polar coor-
dinate system of, r and # as shown in Fig. 10-7. In specialization of equations
of the shell of revolution for circular flat plates, it is required that Ry and Ry
go to infinity, the angle ¢ goes to zero, and by virtue of Eq. (10.4.6b).

Figure 10-7 Circular flat plate
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Rilinw (Rgdgp) = dRy = dr

Then sin¢ = 0 and cos ¢ = 1. Substituting these values into Egs.
(10.4.7) gives

(rNy) ,+Nigg — Ny = 0 (10.4.12a)

(rNyg) ,+Npg +Nyg = 0 (10.4.12b)

1 1
(M), +2 (Mre,ra + _Mr0,9> + (—Me,oa - Me,r>
r r (10.4.12¢)

- |:(7Nr06y + ’/Nrﬂoﬁﬂ)J_'_(Nrﬁoﬂr + Nﬁoﬂﬁ)ﬂ] =0

where the subscript ¢ has been replaced by r. The corresponding consti-
tutive and kinematic relations to Eqs. (10.4.8) are

N, = C{uﬂ +E(Vﬂ+u)} — Cley + pegy) (10.4.13a)
r
1
Ny = c[;(uﬂ +u) + WJ] = C(egg + uey) (10.4.13b)
L—p| v\ ug I—u
Ny = C r(—) o, (10.4.13¢)
2 r/.r r 2
n
M, — D[ﬂm +7(69,0+6,)} (10.4.13d)
1
My = D ;(‘80,0 +51) +:u'18r7r (10.4.13¢)
1- r
My = —“H@) +6’”] (10.4.13f)
2 r/), r
B, = —w, (10.4.13g)
8y = —2 (10.4.13h)
r

Substituting Egs. (10.4.13) into Egs. (10.4.12) yields a set of three homo-
geneous equations in #, v, w in which the third equation is uncoupled
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from the first two as in the case for a rectangular plate. The moment
expressions in Eqgs. (10.4.13) are identical to those given by Szilard (1974).

As a specific example, consider the axisymmetric buckling of a plate
subjected to a uniform compressive force around the circumference N,, =
—N Ib/in. Then 85 = N,y = 0. Let 8, = B to simplify the notation.
Equation (10.4.12¢) specializes to

dZ(M) dM—l—d(Nﬁ)—O (10.4.14)
drzr ' dr b dry - o
where
d
M, :D[—BJFE(%]
dr

1 d
M@ =D |:—)6 + ,u—ﬁ:|

r dr
Integrating Eq. (10.4.14) gives

d

E(er) — My +rNB = ¢
where ¢ 1s an integral constant. As M, = My = 0 for N = 0, ¢y must be
equal to zero. Substituting the expressions for M, and My into the above

equation and rearranging gives

B dB N
2 (125208 = 10.4.1
rdr2+rd1f ( Dr G (10.4.15)

Equation (10.4.15) is the same as Egs. (a) and (b) in Timoshenko and Gere
(1961).° As a homogeneous equation, it has nontrivial solutions only for
discrete values of the applied load N. The smallest solution is the critical
load N,.

Following the procedure given in Timoshenko and Gere (1961),” the
general solution is readily obtained. Let «> = N/D and u = ar. With
these new variables, Eq. (10.4.15) may be rewritten as

2df>  dB

2 —
Wz (¥ —1) =0 (10.4.16)

6 See page 389.
7 See page 390.
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The general solution of this equation is given by Grossman and Derrick

(1988)®
B = AJi(u) + A2Y1(u) (10.4.17)

where Ji(u) and Y;(u) are Bessel functions of the first and second kinds of
order one, respectively. At the center of the plate (r = u = 0), 8 must be
equal to zero in order to satisty the condition of symmetry. Since
Y1(0)— %, A must be equal to zero’ and

B = AiJi(u)

Solutions for two boundary conditions are given by Timoshenko and Gere
(1961). For the clamped edge, 8 = 0 at r = a and therefore J;(aa) = 0.
Maple® gives the smallest nontrivial solution aa = 3.8317. Hence the
critical load is

_ 3.8317°D _ 14.68D

o —
a2 2

(10.4.17)
a

For the simply supported plate

(M), = D("ﬁ#‘ﬁ) 0

dr r

Therefore

y _

B0 B0

dr rl.—o
or
p i
I
u 4 u=~™oa

Applying the derivative formula dJi(u)/du = Jo — J1/u, where Jy is the
Bessel function of the first kind of order zero from Grossman and Derrick
(1988) '’ to the above equation gives

aafo(aa) — (1 = u)fi(aa) = 0
For u = 0.3,
aao(aa) — 0.7]; (aa) = 0
8 See page 276.

9 See Grossman and Derrick (1988), page 277.
10 gee page 278.
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The smallest nonzero value of aa satisfying the above equation obtained
from Maple® is aa = 2.04885, say s = 2.049. Hence, the critical load is

_2.049°D 42D

o =
a2 2

(10.4.18)

a

10.4.4. Conical Shells

As an example of shells of revolution, consider a truncated conical shell with
a vertex angle of 2« shown in Fig. 10-8. The longitudinal coordinate s and
a circumferential coordinate 6 are chosen as the orthogonal curvilinear
coordinates. Of course, the axial coordinate 1 can be chosen as the other
curvilinear coordinate instead of s, if so desired.

In the equations for shells of revolution Eqs. (10.4.7), Ry approaches to
infinity for a cone, and hence

lim (Ry d¢p) = ds (10.4.19)

R¢ — 0
Furthermore, from Fig. 10-8, it is evident that the meridian angle ¢ =
(m/2) — a =constant and Ry = ssin «. Alsosin ¢ = cos @ and cos ¢ =
sin «. Substituting these values into Eqs. (10.4.7) and rearrangement yields

1
(sN;) s+ =Ny — Np = 0 (10.4.20a)
” Sin &
1 1,
—Nyg+—(sNyg) .= 0 (10.4.20b)
sin o S »S

2 1
(sM) +.—<Mxe,sa +—M~e.0) +
S1n & S ’

,88

——Mp 00 —Mp s — Ny cot o
sSIn~o

1
- {(SNsoﬂx+5Ns0050),3+m(1\7s0055+N0050)79 =0

(10.4.20¢)

Figure 10-8 Conical shell
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where the subscript ¢ has been replaced by s using the relationship given in
Eq. (10.4.19). Converting directly from Egs. (10.4.8), the constitutive
relations for conical shells are

wivg
N, = C |:”.5 + —(—, + u+ w cot a)] (10.4.21a)
' S \S1n ¢
1/ vy
Ny = C [_( —— 4+ u + w cot a) + ,uu75] (10.4.21b)
S \SIn &
1 —
Ny = C “(us—-3+- aeld ) (10.4.21¢)
2 ’ §  ssinQ
M, = D[ﬁ”—%5<fﬂi+—m>] (10.4.21d)
’ s \sin «
1
My = {—<f§£—+mi>—+uﬁw} (10.4.21¢)
S\ S1In &«
1=
My ::1)———J5[s<§ﬁ> 4 _be } (10.4.21f)
2 s ) ssina
B = —w, (10.4.21g)
By = —0 (10.4.21h)
sSin &

It should be of interest to note that at one extreme, when & = /2, these

equations reduce to the equations for flat circular plates and at the other

extreme, for o = 0, these equations correspond to the expressions for

cylindrical shells in Chapter 9 with the replacement of s sin « by the radius R.
Substituting Eqs. (10.4.21) into Egs. (10.4.20) gives

u 1—u ugy L+u vy

5“53+”,s__+ ) .
S 2 ssin“a 2 sin« (10.4.22)
3—u vy w
————— 4+ (uw,——) cotaa = 0
2 ssina S
T4+u ug 3—p ug 1—u
2 i 2 s 5
sin « ssin « (10.4.22b)
1—pu v V9o we
+ vVs— =) +t—5 -+ ———cota = 0
2 s ssin“a ssin «
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Wss W W W 66 W 5566 w66
Ds(w qop e W W o Wbh o Westh |y W
S N 52 53 S?)Slnza 5281n20£ 5451n2a
w 0000 (] u wcoto
+4, 7 )—l—C( —+ -+ —I—,uu,s)cota
sTSIin S sin & N N ’

sin & ssin «

wg
<N<60W,s + Nyo ) =0
sin & 0

wp
— |:<N<05W,s + Nseo.—’> +
(10.4.220)

Equations (10.4.22) give a coupled set of three homogeneous differential
equations in u, v, and w.

Consider, as an example, a conical shell subjected to uniform external
hydrostatic pressure or internal suction p, in pounds per square inch and an
axial compressive force P in pounds. Suppose that a membrane analysis is
adequate for the prebuckling static deformation; then the coefficients are

computed by the simple static relations

1

Ny = —Ep(,s tan o — Ngog = —pestan o, Nygg = 0 (10.4.23)

27s sin o
Substituting these values into Eqs. (10.4.22) reveals that Eq. (10.4.22¢) is
a stability equation with variable coefficients. In general, a solution for critical
values of the applied load needs to rely on numerical methods. An excellent
numerical analysis is reported by Baruch, Harari, and Singer (1967). They
obtained extensive numerical results based on the Galerkin procedure for
hydrostatic-pressure loading, with a fairly wide range of parameters.

10.4.5. Shallow Spherical Caps

A cross section of a spherical cap is shown in Fig. 10-8. The middle surface
is described by curvilinear coordinates r and . The rise H of the shell is
much smaller than the base chord (2a).

From Fig. 10-9, r, = R, a constant, and sin ¢ = r/R. For the shallow
shell, approximately, cos¢ = 1 and ryd¢p = dr. Substituting these
approximations into Eq. (10.4.7) yields

(rN;), + Nigg— Ng = 0 (10.4.24a)
(rNyg) , + Nogg+ Ny = 0 (10.4.24b)
1 1 r
(M) ,+2 <Mr07r0+ ;Mr-ﬁ,(i) + (;Ma,oa—Mar) + o (NA+Np)
(10.4.24¢)
_ [(erﬂ,,+yzv,,9oﬁg)7r+(N,{,0f:,+N{,056)70} —0
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Figure 10-9 Shallow spherical cap (after Brush and Almroth, Buckling of Bars, Plates,
and Shells. McGraw-Hill, 1975). Reproduced by permission.

where
N, = C(ey + uegpy) (10.4.25a)
Ny = Clegg + uey) (10.4.25b)
1—u
Nig = C— ey (10.4.25¢)
w
Cyp = Uy — — (10425d>
TR
ey = retu w (10.4.25¢)
r R
0y = r(f) el (10.4.250
r/ r r
B It
M, = D[ﬂm (Y +ﬁr)} (10.4.262)
1
My = D{;(ﬁa,e +6,) + uﬁr,y] (10.4.26b)

My = Di_F [r(@> WP "6] (10.4.260)
2 r), r

)
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8, = —w, (10.4.26d)
By = 20 (10.4.26¢)
r

For R— o, Egs. (10.4.24) and (10.4.25) reduce to Egs. (10.4.12) and
(10.4.13) for the case of a circular flat plate.

It is noted that substitution of constitutive and kinematic relations of
Egs. (10.4.25) into Eq. (10.4.24¢) and considerable algebraic operations and
rearrangements (see Problem 10.12) give

N+Ny 1

wg

(10.4.27)

where

V() = V3v()

Equations (10.4.24a), (10.4.24b), (10.4.25), and (10.4.27) give a coupled set
of three homogeneous equations in u, v, and w.

Suppose the spherical cap is subjected to a uniform external pressure
pe normal to the middle plane and that the prebuckling state may
be approximated by a membrane analysis. Then N,y = Ny =
—peR/2 and N,y = 0. Substituting these values into Eq. (10.4.27) and
rearranging vyields

_ N+ Ny
R

1
DV*w +3 peRVZw = 0 (10.4.28)

The set of three equations in u, 1, w mentioned above can be reduced to
two equations in w and a stress function f. According to Novozhilov
(1964),"" Vlasov (1944) first introduced an arbitrary function known as the
Airy stress function f defined by

1.1 o
r

)

1 see page 90.
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Equation (10.4.27) can be written
4 1 2 1 2
DV W—EVf—l-zpcRV w =20 (10.4.30)

However, it is found (see Problem 10.13) from Egs. (10.4.25) that

1 1 1 1 1
_ EVZW = V—Zem@g — ; e, + ’/—2(;/26‘9077)7r— ,,_2(r€"0)7ﬂ9 (10.4.31a)
2(14u)

1 1
er = —(N, —uNp) egg = —(Ng—uN;) e = o

Ny (10.4.31b
Eh Eh o (10.4.310)

Hence, the stress function f must satisfy the compatibility condition (see
Problem 10.14)

Eh

Vi = T Viw (10.4.32)

Equations (10.4.30) and (10.4.32) reduce the problem to a set of two
coupled homogeneous differential equations in f and w. These equations
have nontrivial solutions only for discrete values of p,, which may be termed
periodic eigenvalues. The smallest eigenvalue is called p,,.

Hutchinson (1967) gives a simple solution. Let x = rcos # and y =
rsin §. As the Laplacian, in general terms, is given by

V() = ALB{ E( )ﬂ] K [%( )76] ,5} (10.4.33)

for the case of shells of revolution, it becomes

0 =110, 0] + 500

= ()wr—i‘%()’r’}‘%()’ﬁ&

For the case of Cartesian coordinate system, it is

VZ( ) = ( )7xx +( )ﬂy)’

Equations (10.4.30) and (10.4.32) are satisfied by products of sinusoidal
functions of the form

w = cos(lex%) cos(l@%) f = Cqcos (kxg) cos(kyZR) (10.4.34)
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where k, and k, are mode shape parameters and C; is a constant.
Substituting Eq. (10.4.34) into Eq. (10.4.32) gives

C, = EhR (/exZ +Iey2> (10.4.35)

Substituting Eq. (10.4.35) and D = EK®/[12(1 — u?)] into Eq. (10.4.30)
yields

 2Eh 1 5o\ (h)?
p, = T[ (k2 +82) +m<kx +k, )(;> } (10.4.36)

The classical buckling pressure is found by minimizing Eq. (10.4.36) with
respect to kxz + leyz. The smallest is P, found for

R
k2 +k = 24/3(1 - ”Z)Z

Substituting this value to Eq. (10.4.36) gives

2F <h>2
p,=—— (= (10.4.37)
3(1 —u?)\R

This is the same result as given by Hutchinson (1967).

Equation (10.4.37) is the same as that given for a complete spherical
shell subjected to hydrostatic pressure by Timoshenko and Gere (1961)
based on Legendre functions. It is interesting to note that Gould (1988)
introduces Vlasov’s effort of investigating the stability of pressurized shells
without even considering the buckling mode shape functions. The
solution functions in Eqs. (10.4.34) do not satisfy the boundary condi-
tions at the edge of a spherical cap, and for a full sphere, the edge on
which a combination of boundary conditions can be assessed is not well
defined. Therefore, the present simplified buckling analysis is limited to
buckling-mode wavelengths that are sufficiently small compared with the
radius of the shell. Even under such limitations, the critical pressure
predicted by Eq. (10.4.37) is in very poor agreement with test results. It is
now firmly believed that the source of such discrepancy is due to two
factors: the neglect of nonlinearity in the prebuckling static analysis and
the influence of initial imperfections. A means for introducing further
refinements into the analysis, such as finite deformation analysis of
shallow shells and postbuckling and imperfection sensitivity analysis, may
be realized by well-established modern-day finite element codes.
However, many design procedures are based on the elastic critical load,
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reduced by a “knockdown factor” of five or even more. This is perhaps
the reason why Miller'> of CB&I (Chicago Bridge and Iron) relied
heavily on experimental investigations for the company’s new form of
shell structures to build until the late 1980s, when reliable finite element
codes were made available.

The subject of this book is the buckling behavior of structural members
that are subjected to loading that induces compressive stresses in the body.
Buckling is essentially flexural behavior. As such, it has been necessary to
investigate the flexural behavior of each structural element covered in the
book. However, quite a few structural members can carry the applied load
primarily or dominantly through membrane actions. In such cases, the static
analysis for membrane action is considerably less complicated than the
analysis for combined membrane and flexural actions. When compressive
stresses are developed in the body, an elastic buckling strength check is
necessary, but for loading cases that produce no, or low, compressive stress,
a simplified membrane analysis may suffice.
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PROBLEMS

10.1 Derive the Lamé coefticients Eq. (10.2.2) from Fig. 10-1.

10.2 Derive Eq. (10.2.4).

10.3 Derive Eq. (10.2.5).

10.4 Derive Eq. (10.2.7).

10.5 Show that the application of Euler-Lagrange differential equations to
the energy equations Egs. (10.2.10) to (10.2.12) along with Egs.
(10.2.14a), (10.2.15), and (10.2.16) yields the nonlinear equilibrium
equations for the shell of the general shape in Egs. (10.2.17).

10.6 Show that (a) Equations (10.2.17) can be specialized for a circular
cylindrical shell Egs. (9.2.9) by setting A = 1, B = R, = R, and
1/R, = 0, (b) Equations (10.2.17) can also be converted to the
nonlinear equilibrium equations for a rectangular flat plate (von
Karman plate equations) Egs. (8.2.18) by setting A = B = 1 and
1/R, = 1/R, = 0, and (c) Similarly, Egs. (10.2.17) can also be
converted to the nonlinear equilibrium equation for a column
Eq. (1.7.14).

10.7 Verity Egs. (10.2.28).

10.8 Verify Egs. (10.2.33).

10.9 Verify that Egs. (10.2.28a) and (10.2.28b), and (10.2.37) are identical
to Egs. (10.2.17).

10.10 Derive Eq. (10.3.7) following the procedure outlined in Section 8.3.
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10.11 Derive Egs. (10.3.12) by applying Eqs. (8.3.12) and (10.3.11) on
Eq. (10.3.10).

10.12 Derive Eq. (10.4.27) by substituting Egs. (10.4.26) into Eq.
(10.4.24¢).

10.13 Derive Eq. (10.4.31a) from Egs. (10.4.25a2)—-10.4.25f).

10.14 Derive Eq. (10.4.32) relating the stress function f and the displace-
ment component w for a shallow spherical cap.
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