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Preface

Baseball has always been my favorite sport. My childhood was defined by baseball,

from playing Little League, American Legion and in the backyard with my brothers

to spending an inordinate amount of time watching the New York Yankees.

Growing up in Delhi, New York, I was exposed to Yankee baseball and broad-

casters Phil Rizzuto, Frank Messer, and Bill White. Yankee baseball, fishing, and

Skoal. With my friend Jeremy Hunter and brother Gerald. Not only did I have to

watch every game, but I had to read the next day’s NY Post, which I preferred to the

NY Daily News.

The teams that I remember were the 1977 and 1978 teams. Mickey Rivers,

Willie Randolph, Thurman Munson, Reggie Jackson, Chris Chambliss, Lou

Piniella, Graig Nettles, Roy White. I remember cringing often when Bucky Dent

came to bat. And of course, Billy Martin. And while my memory is not good

enough to remember all of the details, I still remember I was playing ball in the front

yard when my brother Michael broke the news of Thurman’s death. Perhaps

because Munson was my favorite player, I initially despised Reggie Jackson.

Only later did I adopt Reggie as my favorite. And I promised to return to Coopers-

town when Reggie got inducted; I made it down for the rained out game but not the

induction ceremony.

It was in Delhi that I started listening to Pete Franklin’s broadcast on 3WE out of

Cleveland. When Reggie became a free agent and signed with the Angels, I became

an Indians fan. And I have suffered even though I do like cheering for the under-

dogs. After 1995 and 1997 and the loss of Manny Ramirez, Albert Belle, Victor

Martinez, and CC Sabathia, it has been difficult but I still watch the Indians

whenever I can. I will admit that I am frustrated with the blackout schedule of

Major League baseball. Because I live in Dayton, OH, I am unable to watch the

Indians on television because this is the Reds market. The Reds had a good year,

making the playoffs, but I would not watch them unless the Indians were in town.

I did go see Mark McGwire play in 1998 and enjoyed watching him walk to first

base a lot. Thanks, Jack. It makes no sense for MLB to not supply a good when there

is a clear demand.
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I had the good fortune of working under Jerry Miner at Syracuse University

during my graduate days. I was able to look beyond his love for the Yankees;

I benefited from his guidance. While at Syracuse, I earned my doctorate degree

in economics. I learned the process of research from Jerry Miner and Bill

Duncombe. I was fortunate to have the support of my wife Amy, who allowed

me to spend an extra year as a graduate student. This allowed me to further develop

my research expertise in performance evaluation.

During my interview at the University of Dayton, I met the late Larry Hadley,

a sports economist who sparked my interest in applying nonparametric and para-

metric techniques to analyze sports economics. Larry was a good and generous

friend who co-authored several papers with me. Our first paper, co-authored with

Elizabeth Gustafson, was on the measurement of technical efficiency in baseball1

and was published in the 1996 book Sports Economics. Elizabeth, Larry, and
I followed this up with Gustafson et al. (1999), a paper on econometric specification

of baseball production. Larry and I also published a 1999 paper in the Baseball
Research Journal on evaluating managers. Every time I co-authored a paper

we would have the same argument. He insisted that I list my name first while

I preferred alphabetical order. He did this because, unlike Larry, I was an untenured

junior faculty and he was looking out for my interests. In hindsight, I should have

appreciated his generosity rather than find ways to win the argument. But I am

happy I won the argument

Larry and I also teamed up on a few research articles, including Ruggiero et al.

(1997), a paper showing that the so-called Pythagoras relationship developed by

Bill James cannot be used to measure performance. The relationship between wins

in a season can be determined from an identity involving total runs scored, total

runs allowed, and the total excess runs. We show the relationship follows algebrai-

cally from the simple fact that a game is won if more runs are scored than allowed.

Larry and I co-authored a paper with Marc Poitras and Scott Knowles on perfor-

mance evaluation of NFL teams in 2000. Finally, Hadley and Ruggiero (2006)

developed a nonparametric model to evaluate free agents. This model is applied to

analyze free agents from the 2009 season.

Unfortunately, I was unable to work further with Larry given his health condi-

tions. I think about Larry often and remember the good times; I will admit that I was

somewhat bothered by Larry’s ability to choose a favorite team during the playoffs,

typically when the Reds were done for the year. Perhaps if I adopted his philosophy

I would not be disappointed every year.

My research has benefitted over the years from discussions with many scholars.

A special recognition goes to participants at the INFORMS annual meetings who

somehow tolerate me. I guess I should extend that to anybody who has ever met

me. I have benefitted from conversations with Andy Johnson, Ole Olesen, Timo

Kuosmanen, and Tim Anderson. Tim presented a paper at INFORMS to evaluate

players; his paper served as a useful reference for my chapter on player evaluation.

1Ruggiero et al. (1996).
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Recently, I have had the pleasure of working on many projects with Andy, who is

on pace to become one of the top researchers in performance evaluation. One of our

recent papers, co-authored with Trevor Collier, develops a modified performance

model useful for sports when inefficiency correlates with other teams’ output.2 This

model is used in this book to measure team efficiency. I also use Collier et al.

(2010b) to evaluate individual players.

Organization of the book

The topics in this book are organized into three parts:

‐ Data envelopment analysis and the evaluation of team performance

‐ Evaluation of individual players and free agents

‐ Historical analysis of Hall of Fame selection and the steroid era

The first two chapters of the book are devoted to a brief literature review and the

development of the nonparametric models for performance evaluation known as

data envelopment analysis (DEA). I do not claim to provide an exhaustive presen-

tation of DEA; this book is intended to be an empirical analysis of Major League

Baseball. I present the basic envelopment models to analyze technical and scale

efficiency that form the basis for DEA. The literature is full of useful extensions that

go beyond the empirical analysis conducted here. In many instances, extensions of

the basic models need to be developed for specific chapter applications. Where

needed, these extensions are presented in the individual chapters.

The rest of part 1 consists of two applications. I measure the team (and manager)

efficiency for the 2009 season in Chap. 3. Cost efficiency for the 2009 season is

measured in Chap. 4. Both these models require extensions due to the tournament

nature of sports; if a team loses a game due to inefficiency, another teammust gain a

win. As a result, the estimated frontier from DEA is biased upward. The correction

from Collier et al. (2010b) is applied.

The rest of the book is devoted to analyzing player performance. Using a model

developed by Collier et al. (2010a), we measure aggregate performance using

a modified linear programming model. In the second part of the book, I focus on

how DEA can be used to evaluate hitters (Chap. 5), pitchers (Chap. 6), and free

agents (Chap. 7). These models provide an overall measure of performance by

aggregating multiple player statistics nonparametrically. The methods could be

used by teams to make better decisions with respect to draft choices, trades, and

free agents.

The last two chapters analyze the performance of players historically. Using

DEA, we develop a measure of aggregate performance by season. This allows us

to compare how a player performed relative to his peers. Using this measure,

2Collier et al. (2010b).
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I analyze the performance of Hall of Fame players and rank the all-time greats.

I also identify Hall of Fame players who arguably do not belong in the Hall. I

also present arguments on noninducted players who do. The final chapter presents

a detailed analysis of steroid use. Using the aggregate measure of performance,

I analyze age–performance profiles of numerous players who played before

and during the steroid era. Results from admitted steroid users vs. pre-steroid

players provide the means to analyze other players. Of course, the results are only

suggestive and are only meant for discussion purposes.

Intended Audience

I recently taught a class on DEA as an upper elective for undergraduate and MBA

students at the University of Dayton. The material presented throughout this book

was at the level of these classes. I spend a lot of time going over the DEA model,

linking it to microeconomic production theory while stressing the importance of

convexity, monotonicity, and free disposability. The class presents theoretical and

methodological extensions that are not presented in this book. Topics covered in

this book were used in the class, both as teaching examples and student topics.

The book is accessible to students in economics, mathematics, operations re-

search, industrial engineering, and business programs. The empirical application to

Major League Baseball would be useful for practitioners in management, sports

management, and sports economics.
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Chapter 1

Introduction

Measuring Technical Efficiency

Koopmans (1951) provided a useful framework for the measurement of efficiency

by defining technical efficiency as feasible input–output combinations where it is

not possible to increase output (decrease inputs) without simultaneously increasing

inputs (decreasing output). In a seminal paper, Farrell (1957) showed how effi-

ciency can be measured relative to a given isoquant as the maximum radial

reduction in observed inputs holding output constant. Farrell further provided the

decomposition of overall efficiency into technical and allocative parts. Farrell’s

paper serves as the foundation for the nonparametric and parametric models of

technical efficiency estimation.1 While Farrell provided a useful foundation for the

measurement of technical efficiency, the model allowed only one output and

assumed constant returns to scale. The assumption was relaxed to allow increasing

returns to scale in Farrell and Fieldhouse (1962).

Data Envelopment Analysis

The Farrell measure was extended in the economics literature by Boles (1966,

1971) who showed that estimation could be achieved by linear programming. Afriat

(1972) provided a variable returns to scale formulation to estimate the nonparamet-

ric frontier. Charnes et al. (1978) introduced the nonparametric linear programming

formulation assuming constant returns to scale to the operations research literature.

Their formulation showed that efficiency in multiple input and multiple output

production technologies could be estimated by specifying a fractional programming

model and provided the linear programming equivalent. Charnes, Cooper and

Rhodes dubbed their technique data envelopment analysis (DEA). The Charnes,

Cooper, and Rhodes version of the model has served as the foundation for the

1 Førsund and Sarafoglou (2002) provide an excellent discussion of the history of data envelop-

ment analysis.
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operations research literature. The model is appealing to microeconomists given the

links to theoretical production theory.

F€are and Lovell (1978) introduced the Russell measure of technical efficiency to

the economics literature at the same time that Charnes, Cooper, and Rhodes intro-

duced the Farrell measure. One of the limitations of the DEA method is the

projection to facets of the isoquant that are not efficient in the Koopmans sense.

The Russell measure projects units to the efficient subset of the isoquant. Extensions

to the Russell measure were provided by Zieschang (1984) and Ruggiero and

Bretschneider (1998).

F€are et al. (1983) provided the linear programming formulation of the variable

returns to scale model. Banker et al. (1984) extended the multiple-input multiple-

output DEA model of Charnes, Cooper, and Rhodes to allow variable returns to

scale. The extension to variable returns to scale was achieved with the inclusion of a

convexity constraint in the linear programming model. Interestingly, Afriat (1972)

introduced the convexity constraint to allow variable returns to scale more than a

decade earlier. Banker et al. (1984) provided a decomposition of productive

efficiency into technical and scale components. The decomposition requires solving

the constant returns to scale model of Charnes, Cooper, and Rhodes and the variable

returns to scale model of Banker, Charnes, and Cooper.

The Farrell measure in DEA can be measured using either an input orientation or

an output orientation. The input orientation seeks the maximum radial reduction in

inputs consistent with observed production. As such, the model can be considered

as removing wasteful inputs and hence, reduce costs. The output orientation seeks

maximum radial addition to observed outputs holding inputs constant. Inefficient

firms that are not achieving frontier output for their input levels are forgoing

additional revenues. A useful microeconomic foundation is provided by F€are
et al. (1994). This book provides an advanced treatment of various models for

estimating not only technical efficiency but also profit and cost efficiencies.2

Stochastic Frontier

Aigner and Chu (1968) extended Farrell’s work by measuring a deterministic model

of production assuming all deviations from the frontier are one-sided. Greene

(1980) showed that OLS could be used instead of programming models to estimate

the deviation from the frontier assuming one-sided errors. Because OLS produces

consistent estimates, a correction to the intercept of the largest residual provides an

estimate of the production frontier. This technique is referred to as corrected OLS

(COLS).

2 F€are et al. (1994) extends F€are et al. (1985). While I have found both books to be extremely

valuable, the 1994 has been most useful in my research.
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Collier et al. (2010a) extended the COLS approach to allow multiple outputs by

developing a two-stage model. In the first stage, variable returns to scale DEA is

applied using only outputs. The resulting measure is an aggregate measure of the

output that can be used in the COLS model. The advantage of this approach is that

the output aggregate is estimated nonparametrically, and the second stage COLS

model provides useful statistical analysis.

A limitation of the COLS model is the inability to properly model measurement

error and other statistical noise. Attributing all deviations to inefficiency in produc-

tion is not appealing. If the data are characterized by statistical noise, measured

deviations in the deterministic models of DEA and COLS caused by noise will be

wrongly attributed as inefficiency. A large body of research in the econometrics

literature was developed to overcome this problem. Aigner et al. (1977) and

Meeusen and van den Broeck (1977) provided the foundation for the stochastic

frontier models with a composed error model. It was assumed that the error term

was composed of inefficiency and statistical noise, both of which are unobservable.

Jondrow et al. (1982) provided an estimate of individual inefficiency based on

the expected value of inefficiency conditional on the observed composed error. The

approach requires distributional assumptions for the error terms; the distributions

are typically chosen based on mathematical convenience. Ruggiero (1999) and

Ondrich and Ruggiero (2001) prove that the cross-sectional models do not hold

any real advantages over deterministic models because the stochastic frontier

estimates and the overall error have a rank correlation of 1. Distributional assump-

tions do allow maximum likelihood estimates of the production frontier but do not

provide good estimates of inefficiency.

Schmidt and Sickles (1984) overcome this problem by using panel data with a

fixed effects estimator. The necessary information for decomposing noise from

inefficiency is gained not from distributional assumptions but rather from informa-

tion on specific units with data across time. The approach provides consistent

estimates under the assumption that inefficiency is time invariant.

Efficiency in Sports Economics

There have been numerous applications of frontier models to analyze sports. In this

section, I highlight several while recognizing there are too many to list. Porter and

Scully (1982) estimated managerial efficiency in MLB using linear programming.

Using slugging average and the ratio of pitcher strikeouts to bases on balls as inputs

and wins as the output, the authors estimate a deterministic model. They conclude

that Earl Weaver was the best manager over the time period considered.3

3 Berri and Bradbury (2010) have a very interesting article on sports economics that discusses

academic and nonacademic researches.
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One of the earliest approaches that applied frontier analysis was the one by Zak

et al. (1979), who employed a deterministic regression model to estimate average

efficiency in the NBA. Horowitz (1994) extended Bill James’ Pythagoras approach

to measure efficiency of managers. The approach estimates the relationship

between wins and runs scored. However, Ruggiero et al. (1997) showed that

estimating equation is a misspecified identity that provides a measure of runs in

excess of the amount needed. If, for example, team A beats team B by a score of 6 to

2, then team A scored three excess runs. Hence, Horowitz’ approach only captures

variation in excess runs over a season.

Ruggiero et al. (1996) measured team/managerial efficiency in Major League

Baseball using a production model of wins as a function of player quality. Gustaf-

son et al. (1999) estimate baseball production using alternative econometric meth-

ods. While the paper did not measure efficiency per se, the estimated production

functions could be modified to do so. Hadley et al. (2000) used a deterministic

regression approach to measure team efficiency in the National Football League.

Using wins as the dependent variable, the authors estimated the Poisson regression

using maximum likelihood.

In addition to the papers listed above, there have been numerous other papers

applying frontier models to analyze efficiency concepts in baseball. Scully (1994)

analyzed managerial efficiency of baseball managers (and coaches in other sports)

and how tenure is related to efficiency. Lewis and Sexton (2004) analyze perfor-

mance in baseball; they develop a method to account for performance variables that

violate the assumption of monotonicity. More recently, Lewis et al. (2009) provide

a thorough investigation into baseball efficiency, analyzing multiple dimensions of

efficiency; the authors analyze efficiency using DEA for over 100 years of baseball

(the modern era).

Anderson and Sharpe (1997) and Mazur (1995) applied DEA to measure per-

formance of individual players. Their model provides a measure of aggregate

performance and is the foundation for the analysis in this book on measuring

aggregate player performance.

Einolf (2004) applied DEA to measure efficiency in Major League Baseball (and

the National Football League) and discussed how inefficiency was related to the

financial structure of the leagues. Volz (2009) applied DEA to analyze the effect

minority status has on managerial tenure in Major League Baseball. Volz finds that

minority managers are about 10% more likely to return the following season after

controlling for performance measures. Chen and Johnson (2010) model the dynam-

ics of performance space using DEA and apply it to an analysis of pitchers.

There have been several papers applying frontier models to analyze performance

in soccer (football).4 Dawson et al. (2000) apply the stochastic frontier model in an

analysis of English soccer teams. Carmichael et al. (2001) use a regression-based

approach applied to specific match play to estimate efficiency of English

4Given applications to American football, we will use the term soccer, however politically

incorrect.
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Premiership association soccer teams. Haas (2003) applied DEA to analyze effi-

ciency in Major League Soccer. Espitia-Escuer and Garcia-Cebrian (2004) esti-

mated technical efficiency of Spanish soccer teams. Barros and Leach (2006)

analyzed the Portuguese and English soccer leagues using DEA.

Frontier models have been applied to other sports as well. Leibenstein and

Maital (1992) establish the link between Leibenstein’s X-efficiency and DEA

with an application to the Boston Bruins offense. Fizel and D’Itri (1996, 1997,

1999) analyzed 147 college basketball teams. Kahane (2005) measured production

efficiency and hiring discrimination in the National Hockey League using the

stochastic frontier approach. Kahane found that inefficiency was linked to coaching

ability, local sports competition, and management experience. Nero (2001) and

Fried et al. (2004) measured efficiency of golfers.

Efficiency in Sports Economics 5



Chapter 2

Data Envelopment Analysis

Technology

Analysis of performance has economic production theory as its foundation. Firms

employ inputs to produce output typically with an incentive to maximize profits.

Firms that are technically inefficient could increase outputs and revenue with the

same inputs or could decrease inputs and cost with the same outputs. Farrell (1957)

provided a decomposition of inefficiency into technical and allocative parts. From

an input-oriented perspective, firms that are not operating on the isoquant asso-

ciated with observed production are technically inefficient. Farrell provided a

comprehensive measure of technical efficiency as the equiproportional reduction

of all inputs holding output at current levels. Allocative efficiency is then measured

relative to the cost minimizing mix of inputs given observed input prices.

Farrell provided the formulation to handle a single output in the case of constant

returns to scale. The paper also discussed decreasing returns to scale and the

extension to multiple outputs. Farrell and Fieldhouse (1962) extended the approach

as a linear program allowing increasing returns to scale. Afriat (1972) provided the

formulation for technical efficiency measurement that was consistent with data

envelopment analysis (DEA). The theoretical foundations of efficiency measure-

ment are provided in F€are et al. (1994).
DEA is the term coined in the operations research literature by Charnes et al.

(1978) (CCR) to measure the technical efficiency of a given observed decision-

making unit (DMU) assuming constant returns to scale. Their linear programming

formulation allowed multiple inputs and multiple outputs. Banker et al. (1984)

(BCC) extended the CCR model to allow variable returns to scale and showed that

solutions to both CCR and BCC allowed a decomposition of CCR efficiency into

technical and scale components.

In this section, we introduce the representation of the technology that serves as

the basis for efficiency measurement. We assume that decision-making units use a

vector of m discretionary inputs X¼ (x1,. . .,xm) to produce a vector of s outputs

Y¼ ( y1,. . .,ys). We represent the individual inputs and outputs of netput ðYj;XjÞ for
DMUj ( j¼ 1, . . ., n) as xij(i¼ 1,. . .,m) and ykj (k¼ 1,. . .,s), respectively. Following
Lovell (1993) we assume that production can be characterized by an input set

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_2,
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LðYÞ ¼ fX : ðY;XÞ is feasibleg: (2.1)

For each output vector Y we define the isoquant for input set L(Y) as

Isoq LðYÞ ¼ fX : X 2 LðYÞ; lX=2LðYÞ; l 2 ½0; 1Þg: (2.2)

The isoquant represents the boundary such that the observed production of Y
cannot be achieved with any equiproportional reduction in all inputs. The definition

of the isoquant for the input set provides the theoretical basis for input-oriented

models of technical efficiency. Alternatively, production can be represented by an

output set

PðXÞ ¼ fY : ðY;XÞ is feasibleg: (2.3)

Similar to the input set, we define the isoquant for the output set P(X) for each
input vector X as

Isoq PðXÞ ¼ fY : Y 2 PðXÞ; l�1Y=2PðXÞ; l 2 ½0; 1Þg: (2.4)

This isoquant represents the boundary of the output set; without additional

resources, equiproportional expansion of all outputs is infeasible. The output set

isoquant provides the basis for evaluating technical efficiency in the output-oriented

model. To make the connection to the formulation of Banker, Charnes, and Cooper,

we define the technology as

T ¼ fðX; YÞ : Y 2 PðXÞg ¼ fðX; YÞ : X 2 LðYÞg: (2.5)

In Sect. 2, the input-oriented models of efficiency are developed; more structure is

also placed on the production technology with assumptions on scale economies.

Input-Oriented Models

The Farrell (1957) input-oriented measure of technical efficiency of DMUj is

given by

FðYj;XjÞ ¼ minfl : lXj 2 LðYjÞg: (2.6)

The Farrell measure projects observed production possibilities as far as possible

ensuring that the resulting projection is on Isoq LðYÞ: One of the maintained

assumptions in traditional DEA models is that all observed production possibilities

are feasible. Consequently, the approach does not allow for measurement error or

other statistical noise and requires proper selection of inputs and outputs.

8 2 Data Envelopment Analysis



Constant Returns to Scale DEA

In order to make the connection between DEA efficiency measurement and the

representation of the technology, we specify the input set LðYÞ with a piecewise

linear representation. Following F€are et al. (1994), this representation under

constant returns to scale is given by

LCðYÞ ¼

X :
Xn

j¼1

ljykj � yk; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi; i ¼ 1; :::;m;

lj � 0; j ¼ 1; :::; n

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

: (2.7)

Likewise, the output set and technology under constant returns to scale are

represented by

PCðXÞ ¼

Y :
Xn

j¼1

ljykj � yk; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi; i ¼ 1; :::;m;

lj � 0; j ¼ 1; :::; n

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

(2.8)

and

TC ¼

ðX; YÞ :
Xn

j¼1

ljykj � yk; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi; i ¼ 1; :::;m;

lj � 0; j ¼ 1; :::; n:

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

(2.9)

The Farrell measures of efficiency defined relative to these piecewise linear

technologies were popularized by Charnes et al. (1978). The model to evaluate the

overall efficiency FCðY0;X0Þ of observed production possibility ðY0;X0Þ is1

1 The measure FCðY0;X0Þ is referred to as an overall measure because it is composed of technical

and scale inefficiency. This is discussed further in Sect. 4.
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FCðY0;X0Þ ¼ min y

subject to

Xn

j¼1

ljykj � yk0; k ¼ 1; :::; s;

Xn

j¼1

ljxij � y xi0; i ¼ 1; :::;m;

lj � 0; j ¼ 1; :::; n:

(2.10)

This model seeks the maximum equiproportional reduction in all inputs

consistent with observed production. Left-hand side of the input and output con-

straints represents feasible frontier production assuming constant returns to scale.

The Farrell measure is illustrated in input space in Fig. 2.1, where it is assumed

that five DMUs (A–E) are observed producing the same output vector Y using two

inputs x1 and x2. Data for the DMUs are given in the following chart:

The input set LCðYÞ and the associated isoquant Isoq LCðYÞ are shown. Four

DMUs (A–D) are observed producing Y efficiently; it is not possible to reduce both

inputs at the same rate while maintaining production of Y. The resulting level of

efficiency for these DMUs is 1. DMU E, on the other hand, is observed producing Y
using excess inputs; it is possible to reduce both inputs from 25 to 15. We note that

an equally weighted convex combination of B and C results in the solution of

(2.10). Based on (2.6) and the solution to (2.10), the resulting Farrell efficiency

measure would be FCðYE;XEÞ ¼ 15=25 ¼ 0:6: Hence, DMU E should be able to

produce the same level of output using 60% of its current input levels.

We can also illustrate constant returns to scale input-oriented efficiency mea-

surement using the piecewise linear technology (2.9). In Fig. 2.2, we assume for

convenience that one input x1 is used to produce one output y1. Data from Fig. 2.2

are given in the following chart:

DMU X1 X2

A 5 30

B 10 20

C 20 10

D 30 5

E 25 25

DMU X1 Y1

A 10 10

B 14 20

C 20 28.57

D 30 32

E 20 14

10 2 Data Envelopment Analysis



Variable Returns to Scale DEA

While Farrell (1957) introduced the model for efficiency analysis, the model was

restrictive with the assumption of constant returns to scale. Farrell and Fieldhouse

(1962) extended this model to allow non-decreasing returns to scale. Afriat (1972)

provides the variable returns to scale model that was popularized in the operations

x110 20 30

10

20

30

x2

A

B

C

D

E

15

15

LC(Y)

Isoq LC(Y) 

25

25

Fig. 2.1 Input-oriented efficiency

measurement and Isoq LC(Y)

x120 30

10

20

30

y1

A

B

C

D

E

TC

9.8

14

Fig. 2.2 Input-oriented efficiency

measurement using TC
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research literature by Banker et al. (1984). Banker et al. (1984) (BCC) show that the

addition of a convexity constraint to the CCR model results in a DEA model that

allows increasing, constant, and decreasing returns to scale. In addition, BCC pro-

vides a decomposition of CCR Farrell efficiency into scale and technical parts.

The input set under variable returns to scale is represented by

LVðYÞ ¼

X :
Xn

j¼1

ljykj � yk; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi; i ¼ 1; :::;m;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(2.11)

The associated variable returns to scale, piecewise linear output sets, and

technology are represented by

PVðXÞ ¼

Y :
Xn

j¼1

ljykj � yk; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi; i ¼ 1; :::;m;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(2.12)

and

TV ¼

ðX; YÞ :
Xn

j¼1

ljykj � yk; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi; i ¼ 1; :::;m;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(2.13)
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With these representations, the Farrell input-oriented measure of technical

efficiency FVðY0;X0Þ for observed production possibility ðY0;X0Þ is found via the

solution to the following linear program:

FVðY0;X0Þ ¼ min y

subject to

Xn

j¼1

ljykj � yk0; k ¼ 1; :::; s;

Xn

j¼1

ljxij � y xi0; i ¼ 1; :::;m;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n:

(2.14)

Relative to Fig. 2.1, the variable returns to scale model will produce the same

results as the constant returns to scale model. This results because all units are

observed producing the same output levels.

We illustrate input-oriented efficiency assuming variable returns to scale in

Fig. 2.3, which illustrates the technology defined in (2.13). The data in Fig. 2.3 is

the same data used in Fig. 2.2, where it was assumed that one output y1 produced
from one input x1.
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using TV
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DMUs (A–D) are technically efficient, producing on the production frontier;

it is not possible for any of these DMUs to reduce input levels while simultaneously

producing at least as much output. DMU E, on the other hand, is observed produc-

ing in the interior of the technology T. DMU E is observed producing 14 units of

output while using 20 units of the input. However, a convex combination of DMUs

A and B with a weight on A of 0.6 and a weight on B of 0.4 produces the same

output using only 11.6 units of the input. As a result, the efficiency of DMU E is

FVðYE;XEÞ ¼ 11:6=20¼ 0:58:

Output-Oriented Models

While the input-oriented measure projects to the boundary of Isoq LðYÞ; the output-
oriented measure projects to the boundary of PðXÞ: The output-oriented measure of

technical efficiency of DMUj is given by

F�1
o ðYj;XjÞ ¼ maxfy : yYj 2 PðXjÞg: (2.15)

The Farrell output-oriented measure projects observed production possibilities

as far as possible ensuring that the resulting projection is on Isoq PðXÞ: For this
book, we consider the output-oriented efficiency measure to be on the range of

(0, 1) and hence, invert the distance function. Assuming variable returns to scale,

the inverse ~F�1
V ðY0;X0Þ of the output-oriented measure of efficiency for observed

production possibility ðY0;X0Þ is found via the solution to the following linear

program:

~F�1
V ðY0;X0Þ ¼ max c

subject to

Xn

j¼1

ljykj � cyk0; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi0; i ¼ 1; :::;m;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n:

(2.16)

By removing the convexity constraint, we obtain the inverse of the output-

oriented measure of technical efficiency under the assumption of constant returns

to scale:

14 2 Data Envelopment Analysis



~F�1
C ðY0;X0Þ ¼ max c

subject to

Xn

j¼1

ljykj � cyk0; k ¼ 1; :::; s;

Xn

j¼1

ljxij � xi0; i ¼ 1; :::;m;

lj � 0; j ¼ 1; :::; n:

(2.17)

The output-oriented measures are illustrated in Figs. 2.4 and 2.5. In Fig. 2.4,

DMU E is projected assuming constant returns to scale to the frontier, illustrated as

the line from the origin through production possibilities B and C. With the assump-

tion of constant returns to scale, any proportional change in inputs leads to the same

proportional change in output. Hence, any change in the scale of operation is

represented along a ray (plane) from the origin. Assuming constant returns to

scale, the benchmark for E is C and the resulting distance measure is ~F�1
C ðYE;XEÞ¼

2857=14. Inverting ~F�1
C leads to an efficiency estimate of ~FCðYC;XCÞ¼ 0:49. Hence,

given DMU E’s input level of 20, they produce only 49% (2.14) of the maximum

possible output (2.20).

The variable returns to scale frontier is illustrated in Fig. 2.5, with increasing

returns to scale measured along line segment AB, constant returns to scale along BC

and decreasing returns to scale along CD. In the case of the inefficient production

possibility E, the projection to the variable returns to scale leads to a benchmark of C.
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Since production possibility C is operating along the constant returns to scale

portion of the frontier, the resulting efficiency assuming variable returns to scale

is ~FVðYC;XCÞ¼ 0:49: We note that since ~FVðYC;XCÞ ¼ ~FCðYC;XCÞ, production
possibility C is projected to a constant returns to scale portion of the variable

returns to scale frontier.

Measuring Scale Efficiency

In this section, we show that solutions to both the variable and constant returns to

scale models provide relevant information on returns to scale and scale efficiency.

Necessarily, notions of economies of scale exist only along a production frontier.

In order to insure that unit is operating on the variable returns to scale frontier, we

can apply model (2.14) to project units to the variable returns to scale frontier and

remove any technical inefficiency. Then, solving (2.10) allows us to identify other

deviations from the constant returns to scale frontier. First, we will consider the

input oriented models.

The models developed above allow projection to either a constant returns to

scale frontier or a variable returns to scale frontier. If the true technology is

characterized by variable returns to scale, programming model (2.14) identifies

the benchmark for measuring technical efficiency. The constant returns to scale

model (2.10) overestimates true technical inefficiency by projecting to a technically

infeasible point if the relevant technically efficient benchmark is characterized by

either increasing or decreasing returns to scale. If the technically efficient bench-

mark is operating under constant returns to scale, the solution of (2.10) is feasible as

a solution to (2.14) and technical efficiency is not overestimated.
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Banker et al. (1984) introduce the concept ofmost productive scale size consistent

with technically efficient production on the constant returns to scale facet of the

production frontier. Production that occurs on an increasing or decreasing returns

to scale facet is not most productive and hence, scale inefficient.2 The solution of

(2.10) provides a composed measure of technical and scale inefficiency. Given

that (2.14) provides a measure of technical efficiency relative to the variable

returns to scale technology, the ratio of FCðY0;X0Þ to FVðY0;X0Þ provides a

measure of scale efficiency for production possibility ðY0;X0Þ:

SðY0;X0Þ ¼ FCðY0;X0Þ
FVðY0;X0Þ : (2.18)

A useful interpretation is that the variable returns to scale measure (the denomi-

nator) effectively removes technical inefficiency by projecting the unit to the

variable returns to scale frontier; the ratio shows the additional projection that is

possible only if increasing or decreasing returns to scale prevails on the frontier.

Consider inefficient DMU E in Figs. 2.2 and 2.3. Figure 2.3 illustrates the

projection to the technically efficient benchmark on an increasing returns to scale

portion of the frontier. Recall that DMU E is observed using 20 units of input x1
instead of the technically efficient input level of 11.6 to produce an output level y1
of 14. Hence, we found FVðYE;XEÞ ¼ 0:58: The projection assuming constant

returns to scale is shown in Fig 2.2. Assuming constant returns to scale, we found

FCðYE;XEÞ ¼ 9:8=20¼ 0:49. We note that the technically efficient benchmark

(14, 11.6) is on the increasing returns to scale portion of the frontier. The resulting

scale efficiency measure for DMU E is SEðYE;XEÞ ¼ 0:49=0:58 ¼ 0:84. Hence,
DMU E is only 84% scale efficient. We note that the scale efficiency of DMU E

is equal to 9.8/11.6.

The measure of scale efficiency provides a measure of the proximity to most

productive scale size (constant returns to scale). This is illustrated in Fig. 2.6.

Consider technically efficient DMU A which is the furthest from the constant

returns to scale facet BC along the increasing returns to scale facet AB. Starting

at DMU A, as x1 increases along the increasing returns to scale facet AB, the input-
oriented distance between AB and the constant returns to scale frontier BC

decrease. Hence, as a technically efficient benchmark gets closer to the most

productive scale size, FV approaches FC and the scale efficiency approaches unity.

Alternatively, we can measure scale efficiency using the output-oriented model.

Solving models (2.16) and (2.17), we obtain ~F�1
V ðY0;X0Þ and ~F�1

C ðY0;X0Þ, respec-
tively, for production possibility ðY0;X0Þ. In this case, ~F�1

V ðY0;X0Þ projects the

production possibility to the variable returns to scale frontier as the maximum radial

expansion in output consistent with observed inputs. The scale efficiency measure

for production possibility ðY0;X0Þ using the output oriented model is given by

2 Panzar and Willig (1977) provide a useful discussion of returns to scale in multiple output

technologies.
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~SðY0;X0Þ ¼
~F�1
V ðY0;X0Þ
~F�1
C ðY0;X0Þ

: (2.19)

The interpretation of the scale from the output oriented model is similar to the

one from the input oriented model. In Fig. 2.7, we present the output-oriented

measure of scale efficiency. In this case, technically efficient DMU A is projected

up to the constant returns to scale frontier. As production increases along the
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increasing returns to scale facet AB, the vertical distance between points on AB and

the facet from the origin through the B and C narrows. As the technically efficient

benchmark approaches most productive scale size B, the scale efficiency of the

benchmark approaches 1. Likewise, as production increases along the decreasing

returns to scale segment DC away from the most productive scale size C, scale

inefficiency decreases as indicated by the larger arrows as the input level increases.

The results from the input- and output-oriented models provide information not

only about scale efficiency but also about the returns to scale classification. For any

production possibility ðY0;X0Þ, SðY0;X0Þ � 1 and ~SðY0;X0Þ � 1. A benchmark3 is

operating under constant returns to scale using the input-oriented model if

SðY0;X0Þ ¼ 1: If the benchmark is scale inefficient,
Pn

j¼1 l
�
j obtained in the

solution of (2.10) provides information on the scale class; if
Pn

j¼1 l
�
j<1 the

benchmark is operating on the increasing returns to scale portion of the frontier.

Here, a most productive scale size production possibility is being scaled downward

below the constant returns to scale frontier. If
Pn

j¼1 l
�
j>1; the benchmark is

operating under decreasing returns to scale since a most productive scale size

production possibility is scaled beyond the constant returns facet.

For the output-oriented models, the same heuristic applies. If ~SðY0;X0Þ ¼ 1, the

associated benchmark is operating under constant returns to scale. If the unit is

scale inefficient,
Pn

j¼1 l
�
j<ð>Þ 1 in the solution of (2.17) identifies increasing

(decreasing returns to scale).

In this chapter, we introduced standard DEA models that will be used in this

book. Models are classified as input or output oriented with either constant or

variable returns to scale. These models are the basic DEA models that are widely

used in the operations research and economics literatures. Modifications that

are needed to apply to analyze baseball will be developed in the relevant chapters

as necessary. The goal of this chapter was to present the basic models that serve

as the basis for this book. Readers interested in theoretical extensions should

consult F€are et al. (1994) and other sources.

3We refer only to the benchmark to reinforce the notion that returns to scale is not identified for

technically inefficient units.
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Chapter 3

Measuring Team Efficiency

Serial Correlation

In this chapter we discuss the limitation of the standard DEA models in estimating

team and manager inefficiency. If all teams are efficient, the standard assumptions

of the production frontier hold. However, if managerial inefficiency causes a team

to lose a game that should have been won, another team wins a game that should

have been lost. As a result, the departure from the frontier due to inefficiency leads

to upward-biased estimates of the frontier and hence, downwardly biased efficiency

estimates. Lins et al. (2003) first discussed this issue with respect to zero-sum gains

in an analysis of the Olympic games. Collier et al. (2010b) provided a linear

programming model to achieve the same correction.

Consider the following example where we focus on four teams, A, B, C, and D.

We will assume that the output of baseball production is the number of winsW; for

convenience, we will assume that only one input x1 is used to produce the wins.

Initially, we will assume that all four teams are technically efficient, achieving the

maximum number of wins given their input levels. Team data are given in the

following chart:

Team X1 W

A 8 55

B 10 80

C 10 80

D 14 90

The data are illustrated in Fig. 3.1. Teams B and C, which produce the same

number of wins from using the same input level, are operating at the most produc-

tive scale size under constant returns to scale. We note that facet AB (BD) identifies

increasing (decreasing) returns to scale.

Next, we allow inefficiency. Due to managerial inefficiency, team C loses

15 games, allowing teams A, B, and D to gain 5 wins each. Importantly, the

additional 5 wins for each of these three teams is not due to their own production;

absent the inefficiency of team C these observed production “possibilities” are

infeasible. Data due to inefficiency are illustrated in Fig. 3.2.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_3,
# Springer Science+Business Media, LLC 2011
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The estimated variable returns to scale frontier estimated by DEA is now biased

because the inefficiency of teamC is causing infeasible production to appear feasible. In

this example, teams A, B, and D are correctly identified as technically efficient. How-

ever, as shown, these infeasible observations cannot serve as benchmarks for team C.

Applying the output-oriented variable returns to scale DEA model we find that
~F�1
V ðYC;XCÞ ¼ 85=65 ¼ 1:308; , leading to an efficiency estimate for team C of
~FVðYC;XCÞ ¼ 0:765. The identified benchmark for C is team B which produces 85

wins using the same input level. This overestimate the efficiency of team C;
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assuming efficiency, the maximum level of wins given an input level of 10 is 80. In

fact, after removing inefficiency, the model suggests that 315 total wins are

possible. This is not possible given that only 305 games are played.

In the input-oriented model, output is held constant. It would appear that the

use of input-oriented models would solve this problem. However, if inefficiency

does cause losses, the problem of the serially correlated error terms still leads to

infeasible projections. In Fig. 3.2, we see that any convex combination of teams A

and B is outside the technology. Appealing to the input-oriented model, the problem

of infeasibility still remains. Solving the variable returns to scale model, we find

that the benchmark for team C is defined by weights of lA ¼ 0:8 and lB ¼ 0:2. This
implies that C could produce 65 wins with an input level of 8.4. Based on the initial

data, however, it would take an input level of 8.8 to produce 65 wins.

In Sect. 2, we introduce a corrected DEA model due to Lins et al. (2003) and

Collier et al. (2010b).

Corrected DEA

The problem with standard output-oriented or input-oriented model is the projec-

tion to infeasible points due to the serial correlation of the inefficiency term.

If inefficiency affects the number of wins of other teams, then it must be true that

the sum of the wins above the frontier must be equal to the sum of the wins below

the frontier. Adding this constraint ensures that the number of games lost due to

inefficiency equals the number of wins gained from inefficiency. This further

results in a total number of wins equal to the number of games played.

Collier et al. (2010b) introduced a corrected DEA model to account for serial

correlation. Using our notation from Chap. 2 for inputs, we assume that n teams use a

vector of m discretionary inputs X ¼ ðx1; . . . ; xMÞ to produce one output wins (W).

Each team’s production is given by the netput vector ðWj;XjÞ for team j ðj ¼ 1; . . . ; nÞ
as xijði ¼ 1; . . . ;mÞ and Wj, respectively. The standard output-oriented variable

returns to scale DEA model to measure the efficiency of team 0 is given by

~F�1
V ðY0;X0Þ ¼ max c

subject to

Xn

j¼1

ljWj � cW0;

Xn

j¼1

ljxij � xi0; i ¼ 1; :::;m;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n:

(3.1)
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We note that the output constraint holds with equality given that there is only one

output. From the solution of (3.1) for each team, DEA wrongly estimates that each

team j ðj ¼ 1; . . . ; nÞ should have won an additional ~F�1
V ðYj;XjÞ � 1

� �
Wj games.

Since ~F�1
V ðYj;XjÞ � 1; all teams would not lose any games, making it impossible

for any other team to win an additional game. Further, we find thatPn
j¼1

~F�1
V ðYj;XjÞ � 1

� �
Wj is the total amount of additional wins beyond the total

number of games played that DEA estimates.

Collier et al. (2010b) provide a correction to the estimate of efficiency by

defining a constant k ¼ 1=nð ÞPn
j¼1

~F�1
V ðYj;XjÞ � 1

� �
Wj that represents the average

number of additional wins possible and adjusting the frontier downward by this

constant. The corrected number of wins possible for team j is then given by
~F�1
V ðYj;XjÞ � 1

� �
Wj � k: As a result of this correction, it is straightforward to

show that
Pn

j¼1
~F�1
V ðYj;XjÞ � 1

� �
Wj � k

� � ¼ 0: Hence, this correction satisfies the
constraint that the total number ofwins has to equal the total number of games played.

Given the adjustment of the frontier, we now consider how to measure team

efficiency relative to the adjusted frontier. The measure provided by Collier et al.

(2010b) is given by

F̂VðYj;XjÞ ¼
1 if ~F�1

V ðYj;XjÞ � 1
� �

Wj � k � 0;

Wj

~F�1
V ðYj;XjÞ � 1

� �
Wj � k

otherwise.

8
><

>:
(3.2)

Teams that appear above the corrected frontier are identified as technically efficient.

The measure of efficiency for teams below the corrected frontier is the ratio

of observed wins to corrected frontier wins. The results from applying model (3.1)

and correcting for efficiency using (3.2) for our illustrative example are presented

in the following chart:

Team ~F�1
V ð ~F�1

V � 1ÞWj ð ~F�1
V � 1ÞWj � k F̂V

A 1.000 0 �5 1.000

B 1.000 0 �5 1.000

C 1.308 20 15 0.813

D 1.000 0 �5 1.000

The results show that naively applying DEA to analyze efficiency in sports leads to

biased results. Solutionof (3.1) reveals that teamCcouldhavewon20additionalgames,

which is not possible. For the correction, k ¼ 20/4 ¼ 5; correcting the projections by

shifting the frontier down by k leads to the proper evaluation of efficiency.

Team Efficiency in 2009

The output-oriented model and the associated correction due to Collier et al.

(2010b) is applied to analyze the performance of the 30 MLB teams using 2009
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season data. We considered only the regular season except in the case of Detroit and

Minnesotawhoplayed a one gameplayoff to determine theAmericanLeagueCentral

division champions. Data are available on ESPN.com. Following the discussion

above, we choose wins (W) as the output of interest. We consider two inputs to

measure hitters: on-base-percentage (OBP) and slugging percent (SLG).1 Pitchers are

evaluated using the same measures of the opposing hitters. Monotonicity requires,

however, that we transform the inputs so that higher values should lead to no less W.

This is accomplished by subtracting both input measures from 1. For convenience, we

define the inputs for pitchers as NOBP and slugging percent (NSLG).2

1We considered using total bases gained and total bases surrendered as in Lewis and Sexton

(2004). The results were similar.
2Alternatively, we could use the approach of Lewis and Sexton (2004) which reversed the

inequality constraint on the defensive variables.

Table 3.1 MLB 2009 team

data
TEAM W L OBP SLG NOBP NSLG

Arizona 70 92 0.324 0.418 0.670 0.581

Atlanta 86 76 0.339 0.405 0.677 0.610

Baltimore 64 98 0.332 0.415 0.647 0.524

Boston 95 67 0.352 0.454 0.665 0.578

Chicago Cubs 83 78 0.332 0.407 0.676 0.609

Chicago Sox 79 83 0.329 0.411 0.675 0.586

Cincinnati 78 84 0.318 0.394 0.667 0.582

Cleveland 65 97 0.339 0.417 0.649 0.557

Colorado 92 70 0.343 0.441 0.672 0.595

Detroit 86 77 0.331 0.416 0.664 0.578

Florida 87 75 0.340 0.416 0.667 0.592

Houston 74 88 0.319 0.400 0.656 0.560

Kansas City 65 97 0.318 0.405 0.657 0.578

LA Angels 97 65 0.350 0.441 0.662 0.568

LA Dodgers 95 67 0.346 0.412 0.688 0.639

Milwaukee 80 82 0.341 0.426 0.655 0.550

Minnesota 87 76 0.345 0.429 0.669 0.569

NY Mets 70 92 0.335 0.394 0.658 0.582

NY Yankees 103 59 0.362 0.478 0.673 0.592

Oakland 75 87 0.328 0.397 0.671 0.587

Philadelphia 93 69 0.334 0.447 0.671 0.573

Pittsburgh 62 99 0.318 0.387 0.654 0.558

San Diego 75 87 0.321 0.381 0.667 0.594

San Francisco 88 74 0.309 0.389 0.686 0.628

Seattle 85 77 0.314 0.402 0.684 0.606

St. Louis 91 71 0.332 0.415 0.681 0.614

Tampa Bay 84 78 0.343 0.439 0.676 0.583

Texas 87 75 0.320 0.445 0.669 0.584

Toronto 75 87 0.333 0.440 0.661 0.566

Washington 59 103 0.337 0.406 0.648 0.550

Raw data are available on ESPN.com
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The data used in this chapter are reported in Table 3.1. Correlations are reported

in Table 3.2.W is relatively highly correlated with each of the inputs, ranging from

a low of 0.484 with OBP to a high of 0.678 with NOBP. Interestingly, slugging

percent on offense has a higher correlation with wins than does on-base-percentage.

Table 3.2 Correlations of

production variables
W OBP SLG NOBP NSLG

W 1.000

OBP 0.484 1.000

SLG 0.590 0.707 1.000

NOBP 0.678 �0.032 0.048 1.000

NSLG 0.559 �0.072 �0.135 0.905 1.000

Table 3.3 Technical

efficiency results
Team ~F�1

V ð ~F�1
V � 1ÞW

ð ~F�1
V � 1Þ
W � k F̂V

Arizona 1.225 15.734 12.635 0.847

Atlanta 1.046 3.942 0.843 0.990

Baltimore 1.000 0.000 �3.099 1.000

Boston 1.034 3.218 0.119 0.999

Chicago Cubs 1.087 7.249 4.150 0.952

Chicago Sox 1.105 8.323 5.224 0.938

Cincinnati 1.000 0.000 �3.099 1.000

Cleveland 1.045 2.930 �0.169 1.000

Colorado 1.050 4.566 1.467 0.984

Detroit 1.007 0.621 �2.478 1.000

Florida 1.027 2.326 �0.773 1.000

Houston 1.000 0.000 �3.099 1.000

Kansas City 1.078 5.040 1.941 0.971

LA Angels 1.000 0.000 �3.099 1.000

LA Dodgers 1.000 0.000 �3.099 1.000

Milwaukee 1.009 0.682 �2.417 1.000

Minnesota 1.050 4.331 1.232 0.986

NY Mets 1.034 2.354 �0.745 1.000

NY Yankees 1.000 0.000 �3.099 1.000

Oakland 1.078 5.845 2.746 0.965

Philadelphia 1.000 0.000 �3.099 1.000

Pittsburgh 1.000 0.000 �3.099 1.000

San Diego 1.000 0.000 �3.099 1.000

San Francisco 1.000 0.000 �3.099 1.000

Seattle 1.007 0.619 �2.480 1.000

St. Louis 1.024 2.156 �0.943 1.000

Tampa Bay 1.143 11.971 8.872 0.904

Texas 1.000 0.000 �3.099 1.000

Toronto 1.147 11.061 7.962 0.904

Washington 1.000 0.000 �3.099 1.000

In the solution of (3.1), we find k ¼ 1=nð ÞPn
j¼1 ðcV

j � 1Þ
Wj ¼ 3:099
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On the defensive side, this is reversed; teams that keep the opposing team’s batters

off base are more likely to win. In terms of input correlations, not surprisingly we

find that OBP is highly correlated with SLG (0.707) and NOBP is highly correlated

with NSLG (0.905).

Model (3.1) and the appropriate correction were applied to the data. The results

are reported in Table 3.3. Using the standard DEA model, we find that 40% of the

teams are identified as technically efficient. Consequently, the total inefficiency in

terms of lost games by the other 18 teams is approximately 93 games. This allows

us to calculate k ¼ 3:099 and to adjust the amount of wins that could have been

gained by removing inefficiency. The corrected efficiency results are reported in the

last two columns. The adjusted slacks representing losses due to inefficiency are

shown in column 4 and the associated measure of technical efficiency based on

(3.2) is presented in column 5.

After correction, there are seven additional teams identified as efficient: Cleve-

land, Detroit, Florida, Milwaukee, the Mets, Seattle, and St. Louis. The average

efficiency in the overall sample has increased from 0.964 to 0.981. Interestingly,

Cleveland was evaluated to be more inefficient than Boston using the standard DEA

but more efficient after the transformation. This possibility exists only if the two

teams have different output levels.

In this chapter, we showed that the best-practice DEA frontier is biased due to

serial correlation of inefficiency. Collier et al. (2010b) provided a corrected DEA

model to shift the frontier to insure that losses due to inefficiency and hence

production below the frontier are equal to the wins gained from inefficiency. The

associated correction to the efficiency measure is then applied. In this chapter,

the Collier et al. (2010b) model was applied to 2009 season data. The results

revealed that seven teams are wrongly identified as inefficient according to the

standard DEA model.
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Chapter 4

Measuring Cost Efficiency

Introduction

In this chapter, we extend the analysis by analyzing the cost efficiency of MLB

teams. We apply the corrected DEA model introduced in Chap. 3 to analyze the

relationship between team wins and team payroll. One of the concerns for competi-

tive balance is the ability of large market teams to spend higher amounts to lure the

better players. In 2009, the New York Yankees had a total payroll above $200

million, over $50 million above the second-place New York Mets. The median

team payroll was only $80 million.1 Large market teams are able to generate more

local revenue from attendance, advertising, television and radio fees, etc. In 2006, a

new revenue sharing program was agreed upon to restore competitive balance;

teams contribute approximately one third of their local revenue into a pool and the

money is split among the teams.

A criticism of the revenue sharing plan is the vague interpretation of how the

shared revenue should be spent.2 The general agreement reached in 2006 states that

the revenue should be spent to improve on-field performance. However, is not clear

how well the revenue sharing works. Einolf (2004) compared MLB with NFL and

found baseball teams tend to be more inefficient; further, the highly inefficient

teams tend to be those large market teams that spend much higher than the low

market teams. Jane (2010) uses a panel model to analyze team performance and

salary, finding that compressed salaries lead to better performance. Kesenne (2005)

shows that competitive balance improving depends on the goals of the teams; if

teams seek to maximize wins, competitive balance improves with revenue sharing.

However, if the team seeks to maximize profits, then competitive balance could get

worse. In baseball, given the vague instructions on how shared revenue can be

spent, it is not clear that competitive balance would improve.

1 Jose Canseco was brought to the New York Yankees in 2000 to prevent other teams, especially

the Boston Red Sox from playing him. See Canseco (2005).
2 Hal Steinbrenner wrote an opinion in a September 2006 Sporting News against revenue sharing,

claiming it is socialist and anti-American.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_4,
# Springer Science+Business Media, LLC 2011
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In this chapter, we seek to measure the cost efficiency of teams. Recognizing

serial correlation as in Chap. 3, we develop a corrected model that adjusts for the

measurement of cost efficiency. In addition, we consider the effect that outliers

have on the estimation of the frontier.

Cost Efficiency

Assume that teamj forj ¼ 1,. . .,n spends Expj to produce one output win Wj. We

seek to identify the minimum expenditures necessary to produce a given number of

wins. As discussed in Chap. 3, the input-oriented model is still biased if wins are

serially correlated. Before we apply the cost model, we first apply the corrected

DEA model. Data for the 2009 MLB season are shown in Fig. 4.1.

The standard output-oriented variable returns to scale DEA model to measure

the efficiency of team 0 is given by

~F�1
V ðY0;X0Þ ¼ max c

subject to

Xn

j¼1

ljWj � cW0;

Xn

j¼1

ljExpj � Exp0;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n:

(4.1)

The resulting DEA frontier is illustrated in Fig. 4.2.
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Fig. 4.1 Observed MLB 2009 team salary and wins
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The frontier obtained from (4.1) consists of convex combinations of four teams:

Colorado, Florida, the Los Angeles Angels, and the New York Yankees. Florida

spent approximately $37 million to win 87 games while the Yankees spent over

$201 million to win 103. The model indicates that approximately 372 games were

lost due to inefficiency. Applying the Collier et al. (2010b) correction, we adjust the

slack by the constant k ¼ 1=30ð ÞP30
j¼1

~F�1
V ðYj;XjÞ � 1

� �
Wj ¼ 12:41: The cor-

rected frontier is illustrated in Fig. 4.3.

Outlier Correction

The resulting corrected frontier identifies Florida as the only constant returns to

scale point; no team is operating under increasing returns to scale and all teams

other than Florida are operating at decreasing returns to scale. Further, it appears
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that three teams, Florida, San Diego, and Pittsburgh (circled in Fig. 4.3) are outliers.

Outliers can bias the resulting frontier, leading to improper benchmarks. Wilson

(1995) provided a diagnostic test of outliers by analyzing the super efficiency

scores. The super efficiency score ~F�1
S ðYi;XiÞ for team i (i ¼ 1,. . .,n) is calculated

as the solution to the following linear program:

~F�1
S ðYi;XiÞ ¼ max c

subject to

Xn

j¼1

ljWj � cWi;

Xn

j¼1

ljExpj � Expi;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n; j 6¼ i:

li ¼ 0:

(4.2)

Model (4.2) differs from (4.1) with the extra constraint that excludes the unit under

analysis from serving as a benchmark.3 Hence, model (4.2) evaluates teami relative
to all other teams. It is possible that the solution of (4.2) results in ~F�1

S ðYi;XiÞ<1:
Andersen and Petersen (1989) proposed solving model (4.2) for ranking efficient

units. For our purposes, we will employ (4.2) for outlier detection.

DMUs identified in the efficient subset that are outliers can have an effect on the

measurement of efficiency of other DMUs. Consider Florida in Fig. 4.2 which won

87 games while spending only $36.834 million. As shown, Florida defines the lower

facet of the frontier and is used in the calculation of efficiency for many teams.

Natural questions raised by Wilson (1995) are how many other DMUs are affected

by this outlier and, what is the impact on the resulting efficiency scores? Wilson

provided a test for the input-oriented model; this is extended to the output-oriented

model considered in this chapter.

Any DMUi with ~F�1
S ðYi;XiÞb1 from (4.2) is efficient. To determine the impact

that efficient uniti has on DMU 0 can be obtained from the solution of the following

linear programming model:

3 It is possible that the constraints lead to infeasibility for the variable returns to scale model; see

Fig. 4.3 and the associated discussion in Wilson (1995). In this chapter, we adopt the procedure

used by Wilson to handle infeasible projections.
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~F�1
S;i ðY0;X0Þ ¼ max c

subject to

Xn

j¼1

ljWj � cWi;

Xn

j¼1

ljExpj � Expi;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; n; j 6¼ i; 0:

li; l0 ¼ 0:

(4.3)

Model (4.3) calculates the super efficiency score for any given DMU 0 with

the additional constraint that efficient DMUi is excluded from the possible refer-

ence set. The total impact that DMUi has on the other DMUs is obtained from the

following equation:

di ¼
X

j¼1
j6¼i

n ~F�1
S ðYj;XjÞ � ~F�1

S;i ðYj;XjÞ
� �

Wj;

where ~F�1
S ðYj;XjÞ and ~F�1

S;i ðYj;XjÞ are defined:

(4.4)

We note that (4.4) differs from Wilson (1995), which distinguishes between the

average and total change from the input-oriented perspective. We multiply the

difference in the distance functions by the number of wins to evaluate the effect

of omission on the number of wins of each team. Efficient units with large values of d
have a larger influence and could be considered for removal. The process is iterated

until all overly influential DMUs are removed. Of course, the method requires an

arbitrary decision rule. In the next section, we apply the outlier detection methodol-

ogy and estimate the corrected frontier after omitting outliers.

Cost Efficiency in 2009

As discussed above, we applied (4.1) and found only four efficient teams: Colorado,

Florida, the Los Angeles Angels, and the NewYork Yankees. The corrected frontier

appeared to be biased by the presence of outliers. Applying the outlier detection

algorithmabove,we found four teams that are influential outliers: Florida, SanDiego,

Colorado, and Pittsburgh. The results of the detection are revealed in Table 4.1.

Florida had the minimum payroll, spending less than $37 million. However, they

were able to achieve 87 wins. Only eight teams had more wins. Florida’s impact on
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other teams was approximately 41 wins, or about 4.5 times the influence of the next

influential team (LA Angels). For this chapter, we adopt the rule that an outlier is

overly influential if d > 10. Using this admittedly arbitrary rule, only Florida was

omitted after the first iteration.

The procedure was repeated after omitting Florida. In the second iteration, two

new teams, Minnesota and San Diego, were identified as efficient. Five teams were

tested as influential outliers. Both San Diego and Colorado had d > 10 and were

identified as influential and removed after the second iteration. San Diego had the

second lowest team payroll in 2009 and was able to achieve a relatively high

number of wins. Colorado achieved 92 wins by spending less than the median

level. Only five teams had more wins than Colorado.

After omitting San Diego and Colorado, two additional teams, the LA Dodgers

and Pittsburgh, achieved efficiency. Of these teams, only Pittsburgh had d> 10 and

hence, was removed as an influential outlier. No other team was identified as an

outlier in the next iteration. Hence, four total teams were removed from the

analysis. We applied the corrected frontier model of Collier et al. (2010b) on the

remaining 26 teams. The resulting constant k¼ 1=26ð ÞP
26

j¼1

~F�1
V ðYj;XjÞ�1

� �
Wj ¼ 9:84:

The corrected frontier is illustrated in Fig. 4.4.

Using the corrected frontier, we can define technical efficiency as the ratio of

observed wins to frontier wins. For those teams that are either identified as outliers

or above the corrected frontier, the team is considered technically efficient. Technical

efficiency results are reported in Table 4.2. The New York Mets and the Cleveland

Indians were themost technically inefficient with efficiency ratings below 0.80. Four

teams (Arizona, Baltimore, Houston, and Kansas City) had technical efficiency

between 80 and 90% while five teams (both Chicago teams, Detroit, Milwaukee,

and Toronto) exhibited low inefficiency with efficiency ratings above 0.90.

Interestingly, many of the inefficient teams made managerial changes during or

after the 2009 season. The Cleveland Indians announced in September that manager

Table 4.1 Outlier detection

results
Iteration Team d Decision

1 Florida 40.650 Remove Florida

Colorado 0.127

LA Angels 8.637

NY Yankees 5.578

2 Minnesota 2.022 Remove San Diego,

ColoradoSan Diego 10.753

Colorado 14.882

LA Angels 8.474

NY Yankees 5.578

3 Minnesota 8.048 Remove Pittsburgh

LA Angels 7.736

NY Yankees 5.578

LA Dodgers 2.669

Pittsburgh 11.884

Models (4.2) and (4.3) were solved to determine d
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Eric Wedge would not be retained and subsequently hired Manny Acta. Acta was

previously fired as the manager of the Washington Nationals, who were identified

as technically efficient (though not productive with only 59 wins). The New York

Mets had already replaced Willie Randolph in the 2008 season with Jerry Manuel.

Kansas City hired Trey Hillman to replace Clint Hurdle for the 2008 season.

Additionally, inefficient teams Arizona and Houston made managerial changes.

Houston replaced Cecil Cooper with interim manager Dave Clark in September

2009, while Arizona replaced Bob Melvin with A.J. Hinch.

An alternative measure of efficiency that can be calculated from the corrected

frontier is cost efficiency. This measure is an input-oriented version that identifies

the minimum cost of achieving a given number of wins. After iteration, seven teams

(both Los Angeles teams, Minnesota, the New York Yankees, St. Louis, Tampa

Bay, and Washington) are identified as on the cost frontier. In this case, we use the

projected frontier wins after correcting for serial correlation and use the following

program to identify minimum costs of team 0:

Minimumcosts ¼ min C0

subject to

X7

j¼1

lj ~Wj � W0;

X7

j¼1

ljExpj � C0;

X7

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; :::; 7:

(4.5)
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Fig. 4.4 Corrected DEA frontier with outliers omitted
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In (4.5),j indexes the seven teams that define the corrected frontier and
~Wj ¼ Wj � k: Similar to our measure of technical efficiency, teams which are either

omitted or lie above the frontier are cost efficient. Efficiency for all other teams are

defined by the ratio of minimum costs to observed expenditures.4 Cost efficiency

results are reported in Table 4.2. Teams that are identified as technically efficient

also appear as cost efficient. The differences in technical and cost efficiency are

4After eliminating outliers, it is not possible to estimate minimum costs for wins less than 59, the

lowest number of wins of the frontier defining seven teams.

Table 4.2 Cost efficiency results

Team W Exp
Technical

efficiency

Cost

efficiency

Arizona 70 73.517 0.873 0.854

Atlanta 86 96.726 1.000 1.000

Baltimore 64 67.102 0.819 0.925

Boston 95 121.746 1.000 1.000

Chicago Cubs 83 134.809 0.933 0.654

Chicago Sox 79 96.069 0.932 0.739

Cincinnati 78 73.559 0.972 0.923

Cleveland 65 81.579 0.791 0.763

Colorado 92 75.201 1.000 1.000

Detroit 86 115.085 0.981 0.921

Florida 87 36.834 1.000 1.000

Houston 74 102.996 0.861 0.615

Kansas City 65 70.519 0.820 0.882

LA Angels 97 113.709 1.000 1.000

LA Dodgers 95 100.415 1.000 1.000

Milwaukee 80 80.183 0.976 0.923

Minnesota 87 65.299 1.000 1.000

NY Mets 70 149.374 0.778 0.421

NY Yankees 103 201.449 1.000 1.000

Oakland 75 62.310 1.000 1.000

Philadelphia 93 113.004 1.000 1.000

Pittsburgh 62 48.693 1.000 1.000

San Diego 75 43.734 1.000 1.000

San Francisco 88 82.616 1.000 1.000

Seattle 85 98.904 1.000 1.000

St. Louis 91 77.605 1.000 1.000

Tampa Bay 84 63.313 1.000 1.000

Texas 87 68.179 1.000 1.000

Toronto 75 80.538 0.914 0.793

Washington 59 60.328 1.000 1.000

Cost efficiency is measured as the ratio of minimum cost to observed spending. Teams on or above

the frontier are identified as cost efficient. Spending is reported in million dollars
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Table 4.3 Estimated costs W Total cost Marginal cost

51 60.548 0.119

52 60.667 0.119

53 60.787 0.119

54 60.906 0.119

55 61.025 0.119

56 61.145 0.119

57 61.264 0.119

58 61.384 0.119

59 61.503 0.119

60 61.622 0.119

61 61.742 0.119

62 61.861 0.119

63 61.981 0.119

64 62.100 0.119

65 62.219 0.119

66 62.339 0.119

67 62.458 0.119

68 62.578 0.119

69 62.697 0.119

70 62.816 0.119

71 62.936 0.119

72 63.055 0.119

73 63.175 0.119

74 63.294 0.119

75 63.869 0.575

76 64.532 0.662

77 65.194 0.662

78 67.885 2.691

79 70.961 3.076

80 74.038 3.076

81 77.114 3.076

82 82.397 5.283

83 88.100 5.702

84 93.802 5.702

85 99.504 5.702

86 106.001 6.496

87 112.648 6.647

88 125.998 13.350

89 140.622 14.623

90 155.245 14.623

91 169.868 14.623

92 184.492 14.623

93 199.115 14.623

Estimated costs are obtained from the solution of (4.5). Costs are

measured in million dollars
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large for some teams, which is not unexpected given the difference between

orientations. Notably, the NY Mets could have achieved the same number of

wins by spending only 42.1% of their team payroll. The Mets had the second

highest payroll but won only 70 games. The efficiency measures provide similar

estimates for Arizona, Baltimore, Cincinnati, Cleveland, Detroit, and Milwaukee.

Model (4.5) was also applied to estimate the minimum cost of achieving

differing wins. The results are reported in Table 4.3. The minimum cost of achie-

ving 51 wins is estimated to be $60.548 million. The marginal cost of achieving an

additional win is $119,000 in the win range of 51–74. This constant marginal cost is

obtained from the slope of the production frontier between Washington and Tampa

Bay. We note that constant returns to scale exists along this production frontier

facet. Marginal costs increase to $2.691 million (from 77 wins to 78 wins) and over

$13 million for additional wins beyond 87.

In this chapter, we developed a best-practice cost frontier. The cost frontier

linking wins to team payroll was estimated after correcting for outliers and the

serial correlation of inefficiency.
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Chapter 5

Evaluating Hitters

Measuring Aggregate Performance

Mazur (1995) applied DEA to rank the performance of MLB players. Mazur

assumed that all players had the same input level and chose three outputs: batting

average, home runs, and runs batted in. These three measures comprise the “triple

crown” in major league baseball. Certainly, a team would prefer players with higher

values of each of these variables. However, as pointed out by Anderson and Sharpe

(1997), runs batted in by a particular player largely depends on the ability of the

player’s teammates to reach base prior to the at bat.

Anderson and Sharpe (1997) introduced a new measure of player performance

using DEA. Their measure, the composite batter index (CBI), was obtained as a

solution of a constant returns to scale input-oriented DEA model using one input

(plate appearances) and five outputs (walks, singles, doubles, triples, and home

runs). The authors argue that constant returns to scale is appropriate because a

doubling of plate appearances should result in a doubling of the outputs. Anderson

and Sharp differs from the method of Mazur by including plate appearances as an

input. Mazur’s model uses only outputs; consequently, Mazur’s approach measures

player’s quality and not efficiency. Anderson and Sharp include a measure of input

in the analysis, and hence, their measure is more properly referred to as an

efficiency measure.

Collier et al. (2010a) extended DEA to provide a measure of aggregate produc-

tion. One of the limitations of standard regression-based approaches is the inability

to measure efficiency in multiple input and output technologies.1A modified DEA

model is applied using only outputs. Consider the output set defined by

PðXÞ ¼ fY : ðY;XÞ is feasibleg (5.1)

which has isoquant

1Grosskopf et al. (1997) and Coelli and Perelman (1999, 2000) apply a stochastic distance

function approach that does allow multiple outputs. However, this approach treats outputs asym-

metrically.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_5,
# Springer Science+Business Media, LLC 2011
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Isoq PðXÞ ¼ fY : Y2PðXÞ; l�1Y=2PðXÞ; l 2 ð0; 1Þg: (5.2)

Here, the isoquant of the output set depends on the vector of inputs. The isoquants

for two output sets are shown in Fig. 5.1. In this case, we assume two different input

vectors X0 < X1 and highlight DMUs that are technically efficient. As shown,

DMUs A–D are observed efficiently producing two outputs given their input vector

X1. DMUs E–H are also efficiently producing given their input vector X0 < X1. The

nested isoquants are consistent with monotonicity.

Following Collier et al. (2010a), we define the aggregate output set as

PA ¼ [N
j¼1PðXjÞ: The aggregate output set assuming two outputs and the associated

isoquant Isoq PA are shown in Fig. 5.2.2 DMUs A–D are observed on the isoquant,

producing the maximum output possible. We consider two other DMUs E, F 2 PA

where E, F =2 Isoq PA:We note that DMUs E and F are not producing the maximum

possible output due to either inefficiency, lower input levels, or both. As shown,

DMU E produces more of both outputs than does DMU F.

Using our notation from Chap. 2, we assume that DMUs use a vector of m
discretionary inputs X ¼ (x1,. . .,xM) to produce a vector of s outputs Y ¼ (y1,. . .,yS)
with DMU j (j¼ 1, . . ., n) data represented by the netput ðYj;XjÞwith xij(i¼ 1,. . .,m)
and ykj (k¼ 1,. . .,s), respectively. We measure the distance from ðY0;X0Þ to Isoq PA

with the following linear programming model:

y1

y2

A

B

C

D

E

Isoq P(X1)

F

G

H

Isoq P(X0)

Fig. 5.1 Output sets and

isoquants

2 Figure 5.2 does not replicate data from Fig. 5.1
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�0 ¼ max �

subject to

Xn

j¼1

ljykjr �yk0; k ¼ 1; s;

Xn

j¼1

lj ¼ 1;

ljr0; j ¼ 1; n:�c

(5.3)

In this case, the input constraints are removed from the traditional output-oriented

model. This model can be considered an output-oriented model where all DMUs

have the same input levels. As shown in Collier et al. (2010a), ��1
0 b1 provides a

measure of aggregate output with ��1
0 ¼ 1 for DMUs that produce the highest level

of aggregate output. Mazur (1995) used this particular model but wrongly labeled

the index as an efficiency measure. Notably, in the context of evaluating baseball

players, the model does not control for innate ability, and hence, is better inter-

preted as a measure of aggregate performance or output and not efficiency.

Returning to Fig. 5.2, we observe that ��1
j ¼ 1 where j¼ A, B, C, and D. Hence,

DMUs A–D achieve the highest aggregate output level; in this case each of these

DMUs has different output mixes. Now consider DMU E where ��1
E ¼ y1E=y1F0<1:

y1y1F

y2F

y2

A

B

C

D

E

Isoq PA
F

y1E y1F'

F'

y2E

y2F'

Fig. 5.2 Measuring aggregate output
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For DMU F, ��1
F ¼ y1F=y1F0<��1

E :DMUs farther from the isoquant of the aggregate

output set is captured by a larger �0 and hence, a lower value of �0
�1. Hence, the

index ��1 provides a measure of aggregate performance.

Evaluating 2009 Hitters

The model developed is applied to analyze the performance of baseball players.

Instead of assuming DMUs represent teams, we consider players and evaluate their

aggregate performance using the approach of Collier et al. (2010a). Anderson and

Sharp (1997) restrict the sample by considering only players who had at least 350

plate appearances and separated the players by league. In the construction of the

CBI, Anderson and Sharp use plate appearances as the input measure; as a result,

their measure should be considered an efficiency measure: each player is evaluated

to a combination of players with no more plate appearances. Hence, a given

player’s outputs are evaluated relative to the input level. In this chapter, we are

not interested in efficiency but rather aggregate performance.

Four outputs are considered: Singles Plus (singles + hit by pitch + base on balls),

Doubles, Triples, and Home Runs. These variables are consistent with the variables
selected by Anderson and Sharpe (1997). Anderson and Sharp exclude hit by pitch

and separate out singles from walks. Singles Plus does not distinguish how a player

reaches first base. A single is usually preferred to a walk or a hit by pitch, but like

runs batted in, this happens in cases when other players have reached base. Also, we

make no distinction between leagues; it is not clear, especially in light of inter-

league play, that a distinction between leagues is relevant. We include traded

players by aggregating their outputs and only consider players with at least 100

plate appearances.3

In this chapter, we analyze 362 MLB players using 2009 data. Data and

performance results are reported for the top 25 hitters in Table 5.1. Nine players

were evaluated as top performers: Derek Jeter, Brian Roberts, Shane Victorino,

Ryan Howard, Chone Figgins, Prince Fielder, Denard Span, Albert Pujols, and Troy

Tulowitzki. Necessarily, the player who leads the majors in any of the individual

output measures will rank as top performers. Derek Jeter and Chone Figgins both

led the majors in Singles Plus with 243. Brian Roberts, Shane Victorino, and Albert
Pujols led the majors with 56 doubles, 13 triples, and 47 home runs, respectively.

3 Since DEA is sensitive to variable selection, we ran a secondary regression to test whether runs or

runs batted in should be included as relevant variables. The test employed in Ruggiero (2005) was

used; the results suggested that these variables should not be included. In addition, we considered

an alternative model using batting average and slugging percent. The correlation between the two

models was 0.71. Interestingly, when using slugging percent and batting average, the result of the

test suggests that runs batted in should be included as an additional variable. For purposes of this

chapter, we will use Singles Plus, Doubles, Triples, and Home Runs.
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Consistent with our measure, Albert Pujols was selected as the National League

Most Valuable Player for 2009. Pujols led the majors with 47 home runs, resulting in

��1 ¼ 1. On the other hand, Joe Mauer was selected as the Most Valuable Player of

the American League. Mauer only achieved ��1¼ 0.908.4Mauer was compared to a

convex combination of Pujols, Derek Jeter, and Chone Figgins. Compared to Jeter,

Mauer had 10 more home runs and 3 more doubles, but reached first base 33 times

less. In addition to Jeter, Figgins, Prince Fielder, and Denard Span all reached first

base more than Mauer. Mark Teixeira reached first base 24 less times, but had 13

Table 5.1 Performance of top 25 hitters

Player Team

Singles

plus Doubles Triples

Home

runs ��1

Derek Jeter NYY 243 27 1 18 1.000

Brian Roberts BAL 182 56 1 16 1.000

Shane Victorino PHI 185 39 13 10 1.000

Ryan Howard PHI 167 37 4 45 1.000

Chone Figgins LAA 243 30 7 5 1.000

Prince Fielder MIL 212 35 3 46 1.000

Denard Span MIN 226 16 10 8 1.000

Albert Pujols SL 217 45 1 47 1.000

Troy Tulowitzki COL 171 25 9 32 1.000

Michael Bourn HOU 196 27 12 3 0.993

Dustin Pedroia BOS 200 48 1 15 0.980

Ryan Braun MIL 196 39 6 32 0.976

Mark Teixeira NYY 186 43 3 39 0.974

Shin-Soo Choo CLE 206 38 6 20 0.964

Pablo Sandoval SF 171 44 5 25 0.962

Michael

Cuddyer

MIN 149 34 7 32 0.960

Stephen Drew ARI 136 29 12 12 0.957

Adrian

Gonzalez

SD 208 27 2 40 0.951

Robinson Cano NYY 162 48 2 25 0.949

Billy Butler KC 170 51 1 21 0.949

Adam Lind TOR 161 46 0 35 0.947

Curtis

Granderson

DET 170 23 8 30 0.946

Chase Utley PHI 210 28 4 31 0.945

Todd Helton COL 212 38 3 15 0.945

Felipe Lopez ARI/

MIL

210 38 3 9 0.939

Top 25 hitters ranked by ��1

4Mauer led the American League in OPS, the sum of on-base and slugging percentages. Mauer

played in 138 games and had around 100 less at bats than did Jeter or Teixeira.
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more doubles, 2 more triples, and 11 home runs. The value of ��1 for Teixeira was

only 0.974. Interestingly, Teixeira and Jeter came in second and third, respectively,

in the MVP voting.

Next, consider the large market teams. The New York Yankees and Philadelphia

Phillies each had three players in the top 25. Robinson Cano joined fellow Yankees

Jeter and Teixeira in the top 25, hitting 48 doubles and 25 home runs. For the

Phillies, Shane Victorino and Ryan Howard were among the hitters with ��1 ¼ 1.

Philly Chase Utley, with 210 Singles Plus, 28 doubles, and 31 home runs with

��1 ¼ 0.945. Of the smaller market teams, Prince Fielder, Denard Span, Albert

Pujols, and Troy Tulowitzki achieved ��1 ¼ 1.

A Weighted Slack Model

The model presented above is nonparametric; as a result, the individual perfor-

mance variables may not be weighted properly. As an example, consider the data

for Dustin Pedroia and Adrian Gonzalez reported in Table 5.1. Pedroia ranked 11th

with ��1 ¼ 0.980 while Gonzalez ranked 18th with ��1 ¼ 0.951. Of the perfor-

mance variables included, Pedroia had 21 more doubles. However, Gonzalez

reached first base more, had one more triple and 25 more home runs. In this case,

Pedroia was closer in percentage terms to the maximum number of doubles than

Gonzalez was to the maximum number of home runs. In order to correct this

problem, we consider the following weighted slack based model as an alternative:

WS0 ¼ max
X4

k¼1

okck

subject to

Xn

j¼1

ljykj � ck � yk0; k ¼ 1; s;

Xn

j¼1

lj ¼ 1;

ok � 0; ¼ 1; s;

Xs

k¼1

ok ¼ 1;

ck � 0; k ¼ 1; s;

lj � 0; j ¼ 1; n:

(5.4)
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This model is the additive form of the Weighted Russell measure introduced by

Ruggiero and Bretschneider (1998). The weights on individual performance vari-

ables are chosen a priori.5 For our purposes, we weight each performance variable

as follows: Singles Plus (0.1), Doubles (0.2), Triples (0.3), and Home Runs (0.4).
This weighting structure is based on the number of bases reached; arguably, home

runs should be weighted higher given that is the only hit that guarantees a run.

The weighted slack measureWS� 0 provides a measure of inverse performance.

Top performers achieve WS ¼ 0 and aggregate performance declines as WS gets

larger. Model (5.4) was applied to the 2009 data; the rank correlation between the

performance measures was 0.984. In the case of Pedroia and Gonzalez, the perfor-

mance rankings were reversed; the weighted slack measure for Pedroia (Gonzalez)

was 10.16 (5.85). Given the high rank correlation, we will use ��1 as our perfor-

mance measure in this chapter.6

Performance and Salary

With limited resources, small market teams are interested in finding quality players

at the lowest cost. In Fig. 5.3, player performance determined by ��1 is plotted

against player salary (in million dollars). The vertical red line indicates the 75th

percentile of ��1 (0.753) and the horizontal red line shows the median player salary

for the sample ($1.925 million). Bargain players are defined as those players in the

lower right quadrant who perform higher than the 75th percentile and earn less than

the median salary. The 30 players in this bargain category are listed in Table 5.2.
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Fig. 5.3 Hitter performance vs. salary

5 In empirical applications, expert opinion or regression analysis could be used to derive the

weights.
6 In the chapters evaluating Hall of Fame players and steroids, we use (5.4) to recognize the

importance of the power game.
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Denard Span and Troy Tulowitzki both achieved rankings ��1 ¼ 1. Span

reached first base 226 times and added 16 doubles and 10 triples. Span earned

slightly more than the league minimum with a salary of $435,000. Tulowitzki, who

finished fifth in the overall voting for the National League MVP, earned $1 million,

about half of the median salary. Small to moderate size market teams had 19 of the

30 bargain players, suggesting that a viable strategy to compete with large market

teams is the development of quality young players.

Table 5.2 2009 bargain players

Player Team

Singles

plus Doubles Triples

Home

runs Salary ($) ��1

Denard Span MIN 226 16 10 8 435,000 1.000

Troy Tulowitzki COL 171 25 9 32 1,000,000 1.000

Michael Bourn HOU 196 27 12 3 434,500 0.993

Dustin Pedroia BOS 200 48 1 15 1,750,000 0.980

Ryan Braun MIL 196 39 6 32 1,032,500 0.976

Shin-Soo Choo CLE 206 38 6 20 420,300 0.964

Pablo Sandoval SF 171 44 5 25 401,750 0.962

Stephen Drew ARI 136 29 12 12 1,500,000 0.957

Billy Butler KC 170 51 1 21 421,000 0.949

Adam Lind TOR 161 46 0 35 411,800 0.947

Mark Reynolds ARI 156 30 1 44 422,500 0.937

Jacoby Ellsbury BOS 198 27 10 8 449,500 0.937

Kendry Morales LAA 142 43 2 34 1,100,000 0.921

Alberto Callaspo KC 166 41 8 11 415,500 0.911

Marco Scutaro TOR 208 35 1 12 1,100,000 0.911

Ben Zobrist TB 180 28 7 27 415,900 0.911

Evan Longoria TB 167 44 0 33 550,000 0.903

Matt Kemp LAN 177 25 7 26 467,000 0.895

Justin Upton ARI 152 30 7 26 412,000 0.861

Angel Pagan NYM 91 22 11 6 575,000 0.846

Asdrubal

Cabrera

CLE 154 42 4 6 416,700 0.836

Ryan Theriot CHC 196 20 5 7 500,000 0.812

James Loney LAD 192 25 2 13 465,000 0.803

Hunter Pence HOU 168 26 5 25 439,000 0.800

Skip Schumaker SL 174 34 1 4 430,000 0.790

Joey Votto CIN 161 38 1 25 437,500 0.785

Yunel Escobar ATL 183 26 2 14 425,000 0.775

Dexter Fowler COL 140 29 10 4 401,000 0.769

Daniel Murphy NYM 119 38 4 12 401,000 0.769

Erick Aybar LAA 155 23 9 5 460,000 0.768

Bargain players earn less than the median salary and have an aggregate performance in the top

quartile
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In this chapter, we applied the nonparametric DEA model for aggregate

performance measurement to rank MLB hitters for the 2009 season. Using various

measures of hits, each playerwas evaluated relative to all other players to index overall

performance. Nine players were identified as maximum performers with observed

production on the furthest isoquant. Interestingly, while National LeagueMVPAlbert

Pujols defined the frontier, American League MVP Joe Mauer did not. Thirty-seven

players were ranked higher than Mauer, including 19 American League players.7

7 This excludes Matt Holliday, who was traded from Oakland to St. Louis in July.
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Chapter 6

Evaluating Pitchers

Measuring Aggregate Performance

In this chapter, we evaluate both starting pitchers and relief pitchers using the

aggregate performance model presented in the Chap. 5. For both classes of pitchers,

we choose three outputs: innings pitched (IP), innings pitched per earned run

(IP/ER), and innings pitched per hit (IP/H). The measures chosen here are consis-

tent with Mazur (1995), who used earned run average, hits per inning pitched, and

the ratio of base on balls to strike outs.1

The sample for 2009 consisted of pitchers who recorded at least 40 outs (13.33

innings). Since some pitchers were both starters and relievers, we classified a

pitcher as a starter if at least 40% of his appearances were as the starting pitcher.

Using this classification, there were 148 starting pitchers and 172 relief pitchers.

For each class, the following linear program was solved to evaluate the perfor-

mance of pitcher “0”00:

�0 ¼ max �

subject to

Xn

j¼1

ljykj � �yk0; k ¼ 1; . . . ; s;

Xn

j¼1

lj ¼ 1;

lj � 0; j ¼ 1; . . . ; n:

(6.1)

Solving this program for each pitcher, we obtain ��1
0 � 1 as the measure of

aggregate performance.

1Mazur redefined and standardized the variables to insure that the measures were consistent with

DEA.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_6,
# Springer Science+Business Media, LLC 2011

49



Evaluating 2009 Starting Pitchers

In this section, we report the results for the starting pitchers using 2009 data. Our

measure of performance is the inverse of the solution of (6.1) for the 148 pitchers

who recorded at least 40 outs and started at least 40% of games in which they

appeared. Results for the top 25 performers are reported in Table 6.1.

Six pitchers identified the outer frontier, achieving the highest performance

ranking. Included in the list of top performers was Zack Greinke, the American

League Cy Young award winner. Greinke pitched over 225 innings and led the AL

with 4.17 innings per earned run. Greinke, however, had only 16 wins. Other AL

starters who achieved the highest ranking included the Detroit Tiger Justin Ver-

lander (19 wins), Toronto Blue Jay Roy Halladay (17 wins), and Seattle Mariner

Felix Hernandez (19 wins). All these top DEA performers were included in the top

five voting for the Cy Young award. Interestingly, the Yankee’s C.C. Sabathia

received the fourth most votes but had ��1 ¼ 0:963. Sabathia also had 19 wins.

The wins of any individual pitcher are determined not only by the quality of the

pitcher but also by the performance of the hitters and fielders. Hence, the choice of

Greinke is consistent with the measure of performance used in this paper. Greinke

had the lowest earned run average in both leagues and his 16 wins accounted for

Table 6.1 Performance of top 25 starting pitchers

Pitcher Team IP IP/H IP/ER Z�1

Chris Carpenter SL 192.67 0.959 4.014 1.000

Justin Verlander DET 240.00 0.833 2.609 1.000

Roy Halladay TOR 239.00 0.872 3.230 1.000

Felix Hernandez SEA 238.67 0.855 3.616 1.000

Zack Greinke KC 229.33 0.917 4.170 1.000

Danny Haren ARI 229.33 0.980 2.867 1.000

Tim Lincecum SF 225.33 0.931 3.634 0.988

Javier Vazquez ATL 219.33 0.958 3.133 0.986

Adam Wainwright SL 233.00 0.818 3.426 0.976

Cliff Lee CLE/PHI 231.67 0.791 2.791 0.967

C.C. Sabathia NYY 230.00 0.842 2.674 0.963

Ted Lilly CHC 177.00 0.937 2.902 0.959

Randy Wolf LAD 214.33 0.886 2.784 0.927

Matt Cain SF 217.67 0.837 3.110 0.926

Bronson Arroyo CIN 220.33 0.765 2.344 0.918

Jair Jurrjens ATL 215.00 0.814 3.468 0.917

James Shields TB 219.67 0.752 2.175 0.915

Joel Pineiro SL 214.00 0.846 2.578 0.914

Ubaldo Jimenez COL 218.00 0.784 2.595 0.911

Jake Peavy SD/CHW 101.67 0.884 2.607 0.902

Josh Beckett BOS 212.33 0.817 2.333 0.900

Jason Marquis COL 216.00 0.715 2.227 0.900

Josh Johnson FL 209.00 0.843 2.787 0.898

Edwin Jackson DET 214.00 0.778 2.488 0.895

Mark Buehrle CHW 213.33 0.784 2.344 0.894

Top 25 starting pitchers ranked by ��1

50 6 Evaluating Pitchers



approximately 25% of the team wins. Verlander, Hernandez, and Sabathia led the

American League with 19 wins. However, both Verlander and Hernandez

accounted for about 22% of the Tiger’s wins while Sabathia accounted for just

over 18%.

In the National League, San Francisco standout Tim Lincecum won the Cy

Young award, narrowly beating out the St. Louis Cardinal’s Chris Carpenter by 6

votes and Adam Wainwright by 10 votes. Carpenter joined Dan Haren as the only

starters in the National League to achieve a performance rating of ��1 ¼ 1:000.
Lincecum won only 15 games, accounting for only about 17% of the Giant’s wins.

Carpenter had the lowest earned run average in the National League, giving up 2.24

earned runs per game. Interestingly, compared to Lincecum, Carpenter accounted

for a higher percentage of team wins (about 19%) and gave up nearly one fourth of

an earned run less. Haren only won 14 games (20% of the Arizona Cardinal’s total

wins), but pitched nearly an inning for every hit surrendered. Based on this analysis,

Carpenter would have been a better choice for the National League Cy Young

award.2

Bargain starting pitchers are reported in Table 6.2. Pitchers are sorted by

descending performance and are included if their salary was below the median

starting pitcher salary of $2.35 million and if their performance was in the top

quartile ð��1>0:848Þ. Data for starting pitcher salary and performance are pre-

sented in Fig. 6.1.

Cy Young winner Tim Lincecum had the highest performance rating of the

group and earned only $650,000 (33.5 percentile). His value was compensated via

Table 6.2 2009 bargain starting itchers

Pitcher Team IP IP/H IP/ER Salary ($) ��1

Tim Lincecum SF 225.33 0.931 3.634 650,000 0.988

Jair Jurrjens ATL 215.00 0.814 3.468 450,000 0.917

James Shields TB 219.67 0.752 2.175 1,500,000 0.915

Ubaldo Jimenez COL 218.00 0.784 2.595 750,000 0.911

Josh Johnson FLO 209.00 0.843 2.787 1,400,000 0.898

Edwin Jackson DET 214.00 0.778 2.488 2,200,000 0.895

Jered Weaver LAA 211.00 0.793 2.398 465,000 0.889

Zach Duke PIT 213.00 0.753 2.219 2,200,000 0.889

Josh Outman OAK 67.33 0.863 2.590 400,000 0.882

Jon Lester BOS 203.33 0.804 2.641 1,000,000 0.868

Scott Baker MIN 200.00 0.826 2.062 750,000 0.864

John Lannan WAS 206.33 0.727 2.318 424,000 0.861

Nick Blackburn MIN 205.67 0.724 2.236 440,000 0.858

Matt Garza TB 203.00 0.760 2.281 433,300 0.855

Bargain pitchers earn less than the median starting pitcher salary and perform in the top quartile

2 Lincecum was voted the Cy Young winner in 2008. Greinke edged Lincecum in the fan voting for

This Year in Baseball top starter honor.
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arbitration when he settled with San Francisco, leading to an increased average

salary of $11.5 million over 2 years.3 Other bargain players who settled were Josh

Johnson (4 years, $39 million), Edwin Jackson (2 years, $13.35 million), Jered

Weaver (1 year, $4.265 million), Zach Duke (1 year, $4.3 million), and Matt Garza

(1 year, $3.35 million.)

Evaluating 2009 Relief Pitchers

Based on the classification of starter vs. relief pitcher discussed above, there were

172 relief pitchers.4 As we did for hitters and starting pitchers, we solved model

(6.1) to obtain the inverse of our aggregate performance measure. Results for the

top 25 relievers are reported in Table 6.3.

Three pitchers achieved the maximum performance rating of ��1 ¼ 1: Brian

Bass (Baltimore), Andrew Bailey (Oakland), and Mike Adams (San Diego). Bass

achieved this rating by pitching in the most innings. Relative to the top 25 relief

pitchers, Bass had the highest earned run average and gave up the most hits per

inning. Bass’ high rating is indicative of a durable relief pitcher who can give

innings but not of a quality pitcher. Indeed, Bass was nontendered by the Orioles

and joined the Pirates by signing a minor-league contract with an invitation to

spring training.

While Adams only pitched 37 innings and did not qualify for any pitching titles,

his ratio of innings pitched was a remarkable 12.33 per earned run. Mariano Rivera,

who was selected as the closer of the year in This Year in Baseball awards, only

achieved a rating of ��1 ¼ 0:881. Compared to Rivera, Andrew Bailey pitched

more innings, gave up fewer hits per inning but had a slightly higher earned run
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Fig. 6.1 Starting pitcher salary vs. performance

3 Salary arbitration information was obtained from http://www.bizofbaseball.com.
4We chose to analyze relief pitchers together. One could argue that the closer is a special type of

relief pitcher. The advantage of this classification comes at using a relative small sample for

inference.
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average. Bailey was selected as the American League Rookie of the Year. Not

surprisingly, Rivera was compared to a convex combination of Bailey and Adams,

with weights of 0.827 and 0.173, respectively.

We also considered bargain players based on the criteria that the relief pitcher

had to be paid below the median salary ($800,000) for relief pitchers but above the

75th percentile in performance (0.824). Data for relief pitcher’s salary and perfor-

mance are presented in Fig. 6.2.

There were 19 bargain relief pitchers; data are reported in Table 6.4 ranked in

descending order of performance. Interestingly, all three top-rated pitchers were

bargain players earning near the league minimum. As mentioned above, Bass was

released by the Orioles and signed a minor-league contract with the Pittsburgh

Pirates. As of this writing, Bass is not performing well in 2010 having appeared in

only three games with an earned run average of 12.79. Andrew Bailey is continuing

to play well for the Athletics in 2010, with an earned run average of 1.88 (almost

identical to 2009) with 12 saves out of 14 opportunities. To date, Bailey has

appeared in 23 games and has pitched 24 innings. Mike Adams settled for a

1-year contract in 2010 with a salary of $1 million. In 26 appearances in 2010, he

has already given up more hits and earned runs while pitching 26.33 innings.

Currently, his earned run average is 2.73.

Table 6.3 Performance of top 25 relief pitchers

Pitcher Team IP IP/H IP/ER ��1

Brian Bass BAL 86.33 0.557 1.837 1.000

Andrew Bailey OAK 83.33 1.142 4.902 1.000

Mike Adams SD 37.00 1.682 12.333 1.000

Todd Coffey MIL 83.67 0.837 3.099 0.986

Ramon Troncoso LAD 82.67 0.689 3.307 0.975

Mark Lowe SEA 80.00 0.800 2.759 0.943

Michael Wuertz OAK 78.67 1.049 3.420 0.942

Shawn Camp TOR 79.67 0.752 2.570 0.936

Brandon Lyon DET 78.67 0.884 3.147 0.933

Ryan Madson PHI 77.33 0.789 2.762 0.912

Matt Guerrier MIN 76.33 0.979 3.817 0.912

Jonathan Broxton LAD 76.00 1.027 3.455 0.911

Lance Cormier TB 77.33 0.766 2.762 0.911

Nick Masset CIN 76.00 0.974 3.800 0.908

Rafael Soriano ATL 75.67 0.934 3.027 0.902

George Sherrill BAL/LAD 69.00 0.873 5.308 0.896

Fernando Rodney DET 75.67 0.670 2.045 0.887

Luke Gregerson SD 75.00 0.781 2.778 0.886

Mike Gonzalez ATL 74.33 0.774 3.717 0.885

Mariano Rivera NYY 66.33 1.087 5.103 0.881

Brandon League TOR 74.67 0.747 1.965 0.880

C.J. Wilson TEX 73.67 0.708 3.203 0.871

Joe Nathan MIN 68.67 1.040 4.292 0.871

Carlos Marmol CHC 74.00 0.617 2.643 0.869

Brad Ziegler OAK 73.33 0.661 2.933 0.865

Top 25 relief pitchers ranked by ��1
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Of the 19 bargain players, 11 were eligible for free agency and settled before

arbitration. In addition to Adams, Mark Lowe ($1.15 million), Shawn Camp ($1.15

million), Lance Cormier ($1.2 million), Brandon League ($1.0875 million), Carlos

Marmol ($2.125 million), Peter Moylan ($1.15 million), Brian Wilson ($4.4375

million), David Aardsma ($2.75 million), and Ramon Ramirez ($1.155 million)

agreed to 1-year contract. Additionally, Nick Masset signed a 2-year contract for a

total salary of $2.58 million. All the free agents signed and will earn well above the

previous year minimum salary.

In this chapter, we focused on the performance of starting and relief pitchers for

the 2009 season. The results indicated that the DEA measure does a good job of

Table 6.4 2009 bargain relief pitchers

Pitcher Team IP IP/H IP/ER Salary ($) ��1

Brian Bass BAL 86.33 0.557 1.837 405,000 1.000

Andrew Bailey OAK 83.33 1.142 4.902 400,000 1.000

Mike Adams SD 37.00 1.682 12.333 414,800 1.000

Ramon Troncosc LAD 82.67 0.689 3.307 401,000 0.975

Mark Lowe SEA 80.00 0.800 2.759 418,000 0.943

Shawn Camp TOR 79.67 0.752 2.570 750,000 0.936

Lance Cormier TB 77.33 0.766 2.762 675,000 0.911

Nick Masset CIN 76.00 0.974 3.800 418,000 0.908

Luke Gregerson SD 75.00 0.781 2.778 400,000 0.886

Brandon League TOR 74.67 0.747 1.965 640,000 0.880

Carlos Marmol CHC 74.00 0.617 2.643 575,000 0.869

Brad Ziegler OAK 73.33 0.661 2.933 405,000 0.865

Peter Moylan ATL 73.00 0.716 3.174 410,000 0.864

Brian Wilson SF 72.33 0.822 3.288 480,000 0.858

David Aardsma SEA 71.33 0.859 3.567 419,000 0.849

Craig Breslow MIN 69.67 0.871 2.679 422,000 0.831

Ramon Ramirez BOS 69.67 0.718 3.167 441,000 0.826

Jim Johnson BAL 70.00 0.707 2.188 420,000 0.826

Brian Stokes NYM 70.33 0.628 2.269 409,500 0.825

Bargain pitchers earn less than the median starting pitcher salary and perform in the top quartile
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Fig. 6.2 Relief pitcher salary vs. performance
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capturing individual performance. The top-performing starting pitchers were all in

the running for the Cy Young award, including Zack Greinke, the eventual winner

in the American League. Based on the DEA measure, Chris Carpenter and Danny

Haren were more deserving than the National League winner, Tim Lincecum, who

achieved a relative high rating of 0.99.
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Chapter 7

Arbitration and Free Agency

Introduction

The first collective bargaining agreement was negotiated in 1968 and has been

modified over time. The current agreement in Major League Baseball was nego-

tiated to expire after the 2011 season.1 In this chapter, we analyze arbitration cases

and nontendered free agents. In most cases, after the player or team files for

arbitration, a settlement is reached, negating the need for a hearing.

The collective bargaining agreement between owners and players is used to help

resolve salary disputes between owners and eligible players. A player who has at

least 3 years but less than 6 years of experience is eligible for salary arbitration.2

If the player has not signed a long-term contract he may file for arbitration, with the

owners providing a salary offer and the player a salary demand. Assuming an

agreement is not reached prior to the scheduled hearing date, the arbitrator selects

either the team offer or the player demand after both sides present their case.

The player and the team are allowed to present evidence based on the player’s

contribution to the club in the previous year (including but not limited to player

performance). Other criteria include consistency of performance, comparative

baseball salaries, and other measures. Importantly, for players with less than 5

years of experience, the arbitration panel gives “particular attention” to player

contracts of other players who have one more year of service, though a player is

entitled to argue comparisons to other players regardless of service. In this chapter,

we focus on arbitration cases and nontendered free agents using these criteria.

As stated in the collective bargaining agreement, other evidence can be submitted;

the model presented here can be extended to evaluate other criteria.

1 The current agreement is available online at http://mlbplayers.mlb.com/pa/index.jsp Information

pertaining to the current agreement that is discussed in this chapter was taken from this agreement.

Additional information was taken from Hadley and Ruggiero (2006).
2 Players with a minimum of 2 full years of service may also be eligible; these players must have

accumulated 86 full days during the past season. Only the top 17% of such players based on total

service qualify for arbitration. These players are known as the “Super Twos”.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_7,
# Springer Science+Business Media, LLC 2011
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Nonparametric Estimation of the Contract Zone

We focus on comparisons of player performance and salaries from the prior season.

The nonparametric model of Hadley and Ruggiero (2006) is illustrated in Fig. 7.1.

Here, we plot performance ��1 against salary for seven hypothetical players. The

upper frontier consists of segments AB, BC, and CD and illustrates the salary

benchmarks from the perspective of the player. The lower frontier is defined by

segments AE, EF, and FD and identifies salary as a cost to the team. Players A, B,

C, and D all earn the maximum observed salary for their associated level of

performance. On the other hand, players A, E, F, and D all earn the minimum

observed salary given their associated level of performance. As shown, players A

and D define both the lower and upper frontiers; player A (D) has the minimum

(maximum) level of performance and hence, has no comparison set for reference.

Now consider player G who does not belong to either frontier. In an arbitration

case, player G would argue that his current salary of SG is too low because a

combination of players B and C earns a higher salary ðSuGÞ for the same level of

performance. This represents the upper bound for negotiation purposes. On the

other hand, the owners would counter with ðSlGÞ, since player E has a lower salary

with the same level of performance. This represents the lower bound based only on

performance.3
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Fig. 7.1 Dual representation and the contract zone

3 The lower bound is constrained because the team must offer a minimum of 80% of the previous

year’s salary and performance bonuses and 70% of the salary and bonus earned 2 years earlier.
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Following Chap. 5, we assume that each player j (j ¼ 1, . . ., n) has a vector of
s performance variables Y ¼ (y1,. . .,yS) and salary S with player j (j¼ 1, . . ., n) data
represented by ykj (k ¼ 1,. . .,s) and Sj. The upper bound from the players perspec-

tive for player 0 is given as the solution to the following linear program:

gu0 ¼ max g

subject to

Xn

j¼1

ljSjrgS0

Xn

j¼1

ljykjb yk0; k ¼ 1; s;

Xn

j¼1

lj ¼ 1;

ljr0; j ¼ 1;; n:

(7.1)

Here, we seek the maximum possible expansion in observed salary consistent with

observed performance4 In this case, the set of comparison players defined by n
should take into consideration the relevant comparison set as set forth by the

collective bargaining agreement. Solution of (7.1) provides the upper bound

Su0 ¼ ðgu0S0Þ of the contract zone
Using the same notation, we can also derive the lower bound for player 0 as the

solution to the following linear program:

gl0 ¼ min g

subject to

Xn

j¼1

ljSjbgS0

Xn

j¼1

ljykjr yk0; k ¼ 1; s;

Xn

j¼1

lj ¼ 1;

ljr0; j ¼ 1;; n:

(7.2)

Once again, the appropriate comparison set as specified in the collective bargaining

agreement determines n. Based on the collective bargaining agreement, it might be

4While Z�1 can be used, it is more appropriate to use the original performance variables to

facilitate a proper convex comparison
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necessary to adjust the lower bound to reflect that teams have a floor that is based on

previous seasons’ salaries. In this case, the lower bound of the contract zone would

be Sl0 ¼ maxðgl0S0; 0:8S0; 0:7St�1
0 Þ; where S0 and St�1

0 reflect the previous two year

salaries of player 0

Based on the solutions of (7.1) and (7.2), Hadley and Ruggiero (2006) defined

the relative contract position for player 0 as

RCP0 ¼ S0 � Sl0
Su0 � Sl0

: (7.3)

The relative contract position positions the players’ observed salary relative to the

contract zone. If the lower bound is equal to the upper bound (as for players A and

D) in Fig. 7.1, the relative contract position is not defined. If the contract zone,

however, does not have a range of zero, we see that a player with current salary on

the lower frontier (like player E), the relative contract position is zero. A player who

has a current salary on the player’s frontier, the contract position is unity. Hence,

where defined, (7.3) provides a rescaling of the contract position to be on the range

of [0,1]

In Sect. 3, we apply these models to select free agents for illustrative purposes

Hitter’s Contract Zone

In order to properly measure the upper and lower bounds of the contract zone for a

particular player, it is required to compare the player to an appropriate comparison

set. For example, it is not relevant for a player to compare a hitter relative to the

salary structure of a starting pitcher. Likewise, a shortstop should not evaluate his

salary relative to a catcher. Necessarily, a classification of hitters is necessary to

facilitate useful comparisons 5 Hitters are evaluated using the same hitting variables

from Chap. 5. Fielding statistics could be included in the modeling or could be used

to inspect the comparisons that define the upper and lower bounds. For our purposes

in this chapter, we separate out the players based on position played and do not try

to account for fielding. Hence, we are taking the second approach that would

require secondary analysis to insure that appropriate comparisons are made

Furthermore, for our empirical analysis, we apply the criteria specified in the

collective bargaining agreement that limits the potential comparison based on

number of years served. Players with less than 5 years of service that file for

arbitration need to provide comparisons to players with no more than 1 more year

5Admittedly, the classification used in this chapter is arbitrary. Hadley and Ruggiero (2006)

evaluated hitters without further classification. A trade-off exists between enriching the informa-

tion set and making inappropriate comparisons. Future research might try to shed light on this

particular issue
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of service. In order to restrict the comparison set, we apply the model developed by

Ruggiero (1996). Let tj represent the number of years of service for player j
(j ¼ 1,. . .,n). For players with tjb4; the upper bound is restricted as follows:6

gu0 ¼ max g

subject to

Xn

j¼1

ljSjrgS0

Xn

j¼1

ljykjb yk0; k ¼ 1; s;

Xn

j¼1

lj ¼ 1;

lj ¼ 0 if tj > t0 þ 1;

ljr0; j ¼ 1; ; n:

(7.4)

In order to classify players, we need to make assumptions about the opportu-

nities available to a given player. Any hitter, even one in the National League, has

an option of being a designated hitter in the American League, perhaps via trade.

Hence, in analyzing the hitters, we allow comparisons with the American League

designated hitters

The position of the catcher is unique. While there may be exceptions, in general,

there are no other positions that can catch at the major league level. Thus, catchers

are not included in the reference set for other players. However, we allow the

possibility that catchers can also play first base. In fact, catchers do play first base

(or other positions) during a given season to alleviate the bodily stress from

catching. Victor Martinez, for example, started at first base 44 times for Cleveland

and 22 times for Boston in 2009. Nonetheless, we assume that catchers could play

first base (or be designated hitters)

Results for catchers are reported in Table 7.1. Fifteen catchers were either

subject to arbitration or became nontendered free agents. Kansas City Royal John

Buck became a free agent in December 2009 and signed a 1-year contract for 2010

to catch for the Toronto Blue Jays. According to our analysis, Buck’s salary, if he

went through arbitration, would have been between $2.32 and $3.55 million.

However, after being released, he agreed on a 1-year contract for 2010 of only $2

million, below the lower bound. Mike Rivera was nontendered by the Brewers in

2009 and is currently under minor-league contract with the Dodgers

6 The model presented in Ruggiero (1996) was developed for public sector applications where

environmental variables that are nondiscretionary affect production. The model is similar because

the reference set is restricted by the rules of collective bargaining agreement
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Jeff Mathis was the only catcher to win his arbitration hearing. Mathis won

his demand of $1.3 million instead of the $700,000 offer by the Angels. Based on

his hitting performance, we calculated his upper bound to be $3.3 million; however,

his lower bound was only $400,000 (below the 2010 minimum). Interestingly,

Mathis was a platoon player with relatively poor hitting statistics. His performance

rating of ��1 ¼ 0.263 placed him in the 14th percentile of overall performance.

However, his work behind the plate compared to teammate Mike Napoli was

helpful in the decision

Twelve of the catchers settled with their teams. Koyie Hill settled for $700,000,

which was above our calculated upper bound. In his seventh season, Hill has only

played in just over 200 games with a career batting average of 0.220. His 2009 salary

of $475,000 placed him closer to the upper boundary. All other catchers settled

above the lower frontier. In addition to Hill, only Russell Martin and Wil Nieves

settled above the average of the contract zone bounds. Martin’s contract zone was

between $3.12 and $6.05 million; he settled for just over $5 million for 1 year with

the Dodgers. Of the catchers on the list, Martin’s salary is the highest. He also had the

highest performance rating with ��1 ¼ 0.741 (72nd percentile). Like Hill, Nieves

settled for a 1-year contract for $700,000, nearly $250,000 above the contract zone

upper bound. Nieves is currently hitting below theMendoza line with a 0.176 batting

average

Next, we consider the first basemen (Table 7.2). Ryan Garko, traded by

the Cleveland Indians to the San Francisco Giants in 2009, was signed by the

Seattle Marines as a free agent. On April 1, 2010, Garko was claimed off waivers by

the Texas Rangers and given a 1-year contract for $550,000. The upper bound for

his salary was calculated to be $2.28 million while the lower bound was just above

the 2009 league minimum. Garko has appeared in only 15 games to date in the 2010

season, and has only three hits in 33 at bats. However, over his five plus seasons, he

has a 0.275 batting average. From 2009, his performance rating ��1 ¼ 0.47 was

below the median from the majors

Los Angeles Dodger James Loney, with ��1 ¼ 0.803 (80th percentile) in 2009,

settled for a 1-year contract worth $3.1 million. His settlement placed him closer to

the upper bound of his contract. Florida Marlin Jorge Cantu, who achieved ��1 ¼
0.826 (83rd percentile), settled for $6 million, just above the average of the contract

zone upper and lower bounds. Seattle Mariner Casey Kotchman, traded from the

Red Sox in the off-season, also earns just above the midpoint of the contract zone.

Kotchman had a performance rating of only ��1 ¼ 0.528 (48th percentile)

The comparison set for the other infielders is more problematic (Table 7.3).

Recognizing that playing third requires different skills than playing either second or

short stop, we compared all in one classification to enrich potential comparisons.

This assumes that these infielders can argue during arbitration that salaries of other

infield positions are comparable based on hitting performance. Empirically, we do

know that some players rotate around the infield. Nonetheless, if this assumption is

problematic further restrictions can be added to (7.4)

Two infielders, Kelly Johnson (Atlanta Braves) and Garrett Atkins (Colorado

Rockies), signed as free agents with other teams. Johnson signed with Arizona for
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$2.35 million, an amount just above the lower bound. Atkins signed with the

Baltimore Orioles after being nontendered by the Rockies for only $4 million,

more than $1.5 million below the lower bound. And the Orioles hold a club option

of $8.5 million for the 2011 season. Both players had ��1 < 0.44 and were around

the 36th percentile in performance in 2009

The only infielder (as defined by our classification) who went to hearing was

Chicago Cub Ryan Theriot, who was asking for $3.4 million. Theriot lost the

hearing, leading to a 1-year contract for the team’s offer of $2.6 million. According

to our calculations, Theriot’s contract zone was calculated on the range of $500,000

to $6.3 million. The average of the upper and lower bounds was approximately $3.4

million, nearly identical to the amount that Theriot was seeking. Theriot achieved

an overall performance rating of ��1 ¼ 0.812 for 2009, placing him in the 82nd

percentile. Based on our analysis, Theriot’s asking price was more than fair

Eric Bruntlett was nontendered by the Philadelphia Phillies after the 2009 season.

He was signed as a free agent by the Washington Nationals but was released in May

2010. Bruntlett’s contract zone narrowly ranged from $640,000 to $800,000 due to

his relatively poor performance in 2009. Bruntlett’s overall rating was ��1 ¼ 0.125,

placing his performance in the second percentile

The rest of the players settled. Three players, Brendan Harris (Minnesota

Twins), Erick Aybar (Los Angeles Angels), and Ronny Cedeno (Pittsburgh Pirates)

all settled for approximately the average of their contract zone values. The rest of

the players who settled earned more than the lower bound on the contract zone.

Interestingly, Florida Marlin Dan Uggla settled for more than the upper bound,

increasing his salary from $5.35 to $7.8 million. His performance of ��1 ¼ 0.791

placed him in the 79th percentile overall

We view the centerfielder as a special position, requiring more speed (Table 7.4).

Typically, centerfielders are not power hitters and provide a different dimension.

These players can, however, play left or right field. Because we are basing our

analysis on hitting, we allow all outfielders in the referent set for centerfielders.

In other words, we allow the centerfielder to compare hitting performance and

salary with other outfielders. However, in the evaluation of left and right fielders

(who are grouped together), we do not allow comparisons to centerfielders. Again,

modifications can be made to our classification to test the robustness of the results

Two centerfielders went through the arbitration: Cody Ross (Florida Marlins)

won $4.45 million while B.J. Upton (Tampa Bay Rays) lost. Ross was offered an

amount ($4.2 million) that was not much different than his demand. Upton, eligible

for the first time, was seeking $3.3 million but was awarded the offer of $3 million.

Based on hitting performance, both players had a rating around 0.745 (72nd

percentile). In percentage terms, Upton’s salary increased almost 600% while

Ross’ salary doubled

Ryan Church signed as a free agent with the Pittsburgh Pirates from the Atlanta

Braves. His salary decreased from $2.8 million to $1.5 million. Church was earning

above the lower bound and near the average; his rating of ��1 ¼ 0.531 was in the

49th percentile. Currently, in the 2010 season, Church is batting below the Men-

doza line with a batting average of 0.190
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All other centerfielders settled with their teams. Philadelphia Philly Shane

Victorino negotiated a 3-year contract for an annual salary of $7.33 million.

In 2009, Victorino was one of nine players to achieve a top rating of ��1 ¼ 1.

Seattle Mariner Franklin Gutierrez (��1 ¼ 0.709, 69th percentile) negotiated a 4-

year contract approximately $5 million per year. The average salary was above the

upper bound of his contract zone. Los Angeles Dodger Matt Kemp also signed a

multiyear contract, paying him nearly $5.5 per year for 2 years. The annual amount

was above the average contract zone value

The last group of hitters evaluated consisted of the left and right fielders. The

results are reported in Table 7.5. Corey Hart (Milwaukee Brewers) was the only

player in this category who had a hearing. Hart won $4.8 million against the team

offer of $4.15 million. Both the offer and the demand were above Hart’s upper

bound based on his performance. His hitting rating of 0.570 was only in the 53rd

percentile

Three outfielders were not tendered. Jack Cust (Oakland Athletics) signed with

Oakland as a free agent, taking a cut in pay. His 2009 was the upper bound of his

contract zone and he negotiated a 1-year contract for $2.6 million (from $2.8

million). His new salary is still above the average of the contract zone. Overall,

his hitting rating was ��1 ¼ 0.770, which placed him in the 76th percentile

Gabe Gross (Tampa Bay Rays) and Jeremy Reed (New York Mets) were also

nontendered. Gross signed a 1-year contract with the Athletics for $750,000. His

2010 salary is about $250,000 below his lower bound. Gross had a poor hitting year

in 2009 with a performance rating ��1 ¼ 0.378 (29th percentile). Currently, his

batting average is 0.274, over 30 points higher than his career average. It appears

that the Athletics’ decision was excellent. Reed signed a minor-league contract with

the Blue Jays and is currently on the Blue-Jays roster. In 2009, Reed was paid at the

upper bound of his contract zone resulting from a rating of ��1 ¼ 0.205 (seventh

percentile)

Los Angeles Dodger Andre Ethier led the rest of the group that settled. He signed

a 2-year contract with an annual salary of $7.625 million. His ��1 ¼ 0.913 placed

him in the 91st percentile. New York Met Jeff Francoeur settled for $5 million, well

below his average. His rating of 0.720 put him in the 71st percentile. Francoeur’s

upper bound salary is nearly $22 million, due to the reference set inclusion of

Manny Ramirez and Magglio Ordonez7

Interestingly, the outfielder group had a large number of players who settled for

salaries above the upper bounds of their contract zones. Corey Hart (Milwaukee

Brewers), Jeremy Hermida (Boston Red Sox via the Florida Marlins), Melky

Cabrera (Atlanta Braves via the New York Yankees), Carlos Quentin (Chicago

White Sox), Luke Scott (Baltimore Orioles), Josh Will (Washington Nationals), and

Ryan Ludwick (St. Louis Cardinals) all settled higher

7After removing Ordonez and Ramirez from the reference set, the upper bound was reduced by $5

million. A limitation of the models in this chapter is comparisons to players who have off years.

Outlier analysis, as discussed in Chap. 4 could be applied to narrow the upper bounds
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Pitcher’s Contract Zone

In this section, we turn our attention to the pitchers. We separate out starting pitchers

(Table 7.6) from relief pitchers (Table 7.7). It can be argued that starting pitchers

could also relieve; given that the sample size is much larger for pitchers we chose to

separate them in this analysis. There were 32 starting pitchers who were part of the

arbitration process

Three pitchers, Tim Redding (New York Mets), Chien-Ming Wang (New York

Yankees), and Scott Olsen (Washington Nationals), were not tendered. Olsen

became a free agent who re-signed with the Nationals. His salary decreased from

$2.8 million in 2009 to $1 million, which was below the lower bound of his contract

zone. Olsen was being paid near the bottom of his contract zone as evidenced by his

RCP ¼ 0.098. His performance for 2009, however, was only ��1 ¼ 0.592

(10th percentile)

Redding, who earned $2.25 million was not tendered by the Mets and is not

currently pitching in the major leagues. His performance rating of ��1 ¼ 0.704

(36th percentile), however, was higher than Olsen’s. Redding signed as a free agent

with the Colorado Rockies, released and signed by the New York Yankees.

Currently, Redding is pitching for Scranton/Wilkes-Barre in Triple A. Wang was

granted free agency and signed in the off season with the Washington Nationals.

Wang signed for $2 million with even more in performance incentives. Wang is

currently on the disabled list after undergoing surgery on his right soldier

Wandy Rodriguez was the only starting pitcher who had a decision via arbitra-

tion. He lost his hearing and will earn $5 million in 2010. Rodriguez was asking for

$7 million. His asking price was above the contract zone average by approximately

$200,000. Rodriquez’ performance rating of ��1 ¼ 0.876 placed him in the 80th

percentile of starting pitchers

The rest of the starting pitchers settled. With few exceptions, most of the pitchers

who settled were paid below the average of the contract zone upper and lower

bounds. Cleveland Indian Anthony Reyes became a free agent after being non-

tendered by the Indians. He signed a minor-league contract with the Indians and is

currently on the disabled list, recovering from Tommy John surgery. Reyes came

off a poor season, starting only eight games with an earned run average of 6.57. His

performance rating of ��1 ¼ 0.602 placed him in the 12th percentile. Dustin

Nippert (Texas Rangers) started half of the games he appeared in during 2009.

His performance rating of ��1 ¼ 0.737 placed him in the 45th percentile. Currently,

he is a reliever for the Rangers

The pitchers who settled above the average included Tim Lincecum (San

Francisco Giants), Josh Johnson (Florida Marlins), Edwin Jackson (traded from

the Detroit Tigers to the Arizona Cardinals), Justin Verlander (Detroit Tigers), and

Felix Hernandez (Seattle Mariners). Verlander and Hernandez achieved the highest

performance rating of ��1 ¼ 1 and both were locked up with 5-year contracts with
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an annual salary above the upper bound8 Lincecum (2 years) and Johnson (4 years)

were rewarded with multiple year contracts at an annual salary near their upper

bounds. Lincecum had consecutive strong years, winning the National League Cy

Young award both years. Johnson had a strong year with a performance rating of

��1 ¼ 0.898, placing him in the 85th percentile. Edwin Jackson negotiated a

contract for 2 years with an annual salary just above the average of his contract

zone values

In 2009, there were 62 relief pitchers who were part of the arbitration process

(Table 7.7). Only two relief pitchers, Sean Burnett and Brian Bruney, of the

Washington Nationals, had hearings. Both pitchers lost; Burnett was seeking

$925,000 but was awarded $750,000. Burnett’s performance of ��1 ¼ 0.725 ranked

in the 53rd percentile of the relief pitchers. Bruney, who was traded from the

Yankees in the off-season to the Nationals, was seeking $1.85 million. The

Nationals offer of $1.5 million was selected by the arbitrators. Bruney’s rating of

��1 ¼ 0.523 (22nd percentile). Based on 2009 performance, a case could be made

for both pitchers. Both players were asking for salaries within the contract zone

below the average. Bruney was released by the Nationals in May 2010 and signed as

a free agent with the Milwaukee Brewers

Tony Pena (Chicago White Sox) was arbitration eligible but resigned with the

White Sox for $1.2 million. Pena was traded by Arizona to the White Sox in 2009;

based on his performance in 2009, Pena’s contract zone average was about $2.4

million, more than double his 2010 salary. Clay Condrey (Philadelphia Phillies) was

granted free agency and signed with the Minnesota Twins. His negotiated salary of

$900,000 was near the lower bound; however, Condrey is on the disabled list with an

elbow injury. Matt Capps (Pittsburgh Pirates) was nontendered and signed with the

Nationals for $3.5 million, just above the average of the contract zone. Capps’ rating

of ��1 ¼ 0.643 placed his performance in the 37th percentile

Mike MacDougal was released by the Chicago White Sox at the beginning of the

2009 season and signed with the Washington Nationals as a free agent. He was

granted free agency and signed with the Florida Marlins before being released at the

end of spring training. He was subsequently signed as a free agent with the

Washington Nationals. MacDougal is currently playing minor league ball. His

performance rating of ��1 ¼ 0.643 placed him in the 37th percentile with Matt

Capps. Jose Veras was not tendered by the Cleveland Indians and signed as a free

agent with the Florida Marlins. His 2010 salary was below the average contract

zone value given his performance rating of ��1 ¼ 0.602 (33rd percentile)

Logan Kensing (Washington Nationals) was granted free agency and resigned

with the Nationals before being released during spring training. He was signed to a

minor-league contract at the beginning of the season by the Tampa Bay Rays. His

performance in 2009 placed him in the 13th percentile. Santiago Casilla was

8A player who signs a multiple year contract faces less risk of poor performance and the effect that

will have on future negotiations. Likewise, a team reduces the risk of having to pay even more over

the total length if the player performs well
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nontendered by the Oakland Athletics and signed as a free agent with the San

Francisco Giants. His performance rating of 0.531 placed him in the 31st percentile.

Currently, he is enjoying success with the Giants with an earned run average of 1.17

in ten appearances

Several players settled for a salary above their contract zone. Rafael Soriano

(free agent signed by the Atlanta Braves), Carlos Marmol (Chicago Cubs), Brian

Wilson (San Francisco Giants), Grant Balfour (Tampa Bay Rays), J.P. Howell

(Tampa Bay Rays), Frank Francisco (Texas Rangers), and Bobby Jenks (Chicago

White Sox) all signed 1-year contracts. Of these, Soriano (��1 ¼ 0.902), Marmol

(0.869), and Wilson (0.858) were all in the top 20 percentile of performance. The

rest of the relievers settled for a salary above the contract zone minimum

In this chapter, we applied the Hadley and Ruggiero (2006) model to evaluate

player salaries. Unlike Hadley and Ruggiero, we adjusted the lower bound to be

consistent with the collective bargaining agreement’s restriction on team offers.

Further, we restricted comparisons based on similar years of experience and based

on position played
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Chapter 8

The Hall of Fame

Introduction

Selection into the MLB hall of fame is a special honor reserved for the all-time great

players and managers. And, over time, the selection or nonselection of players has

provided controversies for discussion. Many fans believe that Pete Rose belongs in

the HOF based solely on his playing career; other fans are less forgiving about his

admitted gambling on baseball games as a manager. Similar arguments are made

about Shoeless Joe Jackson. On the other side, arguments arise over some players

who have been inducted into the hall. Notably, did Phil Rizzuto deserve the honor

when he was voted in by the Veteran’s Committee in 1994?1 Bill James (1995)

argued that Rizzuto’s career statistics did not warrant his selection.2

In this chapter, we analyze current HOF inductees and notable players who are

not currently in the Hall. In Chap. 5, we introduced our nonparametric measure of

performance to evaluate hitters. In that chapter, we analyzed players from the 2009

season. We extend that model to analyze all major league players by season. In

addition, we analyze all major league pitchers using the model from Chap. 6.

Players will be evaluated on aggregate measures of performance based on ��1

The model used for measuring aggregate performance for any player is given by

1As a Yankee fan in my childhood, I enjoyed Rizzuto on the WPIX broadcasts. But I have never

been swayed that Rizzuto deserved selection. Likewise, perhaps due to fan bias, I did not support

the induction of Pete Rose. In this chapter, however, I focus only on the nonparametric perfor-

mance measure and draw conclusions from this analysis.
2 James’ Whatever Happened to the Hall of Fame is an interesting read rich in analysis. Many of

the examples in this chapter were studied by James.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_8,
# Springer Science+Business Media, LLC 2011
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�0 ¼ max �

subject to

Xn

j¼1

ljykjr �yk0; k ¼ 1; :::; s;

Xn

j¼1

lj ¼ 1;

ljr0; j ¼ 1; :::; n:

(8.1)

We evaluate hitters and starting pitchers for every season using ��1
0 . In Sect. 4, we

identify highly rated players (current and retired) who should be in the Hall

of Fame.3

Players are selected in one of two ways: via voting by the Baseball Writers

Association of America (BBWAA) or by the Veterans Committee, composed of

living inductees.4 The typical path into the hall of fame requires a waiting period of 5

years after the player retires and selection by a screening committee. A player is

voted on by BBWAA members with a minimum of 10 years of membership.

If the player is selected on at least 75% of the ballots cast, the player is inducted

into the hall of fame. However, if the player is selected on less than 5% of the ballots

cast, the player is dropped from future consideration. If a player does not get voted in

by the BBWAA after 20 years since retirement, the player is then eligible for

selection by the Veterans Committee. Many of the controversies resulted

from selection by this committee.

Evaluating Hitters

The performance rating ��1 was calculated for all players for each season.

Following the analysis from Chap. 5, we specified four performance variables:

Singles Plus (singles þ hit by pitch þ base on balls), Doubles, Triples, and Home
Runs. If a player had less than 100 plate appearances, they were removed from the

season’s analysis. Additionally, we do not include postseason performance. Impor-

tantly, the approach used is nonparametric and does not place weight restrictions on

the individual variables. Rather, distance functions are used to measure aggregate

performance relative convex combinations of frontier performers.

In order to derive an overall measure of performance, a weighted average of each

player’s individual season ratings is considered; at bats are used to weight the

performance. The mean is not appropriate given the variance in at bats for a player

3 In this chapter, we ignore the steroid issue and evaluate players only on their performance rating.

The issue of steroids will be analyzed in Chaps. 9 and 10.
4 Prior to 2001, the Veterans Committee did not restrict members to HOF inductees. Controversies

arose over the selection of a few for partisan reasons. Examples are detailed in James (1995).
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across time and between players during a season. The top 25 Hall of Famer hitters

based on the weighted average are reported in Table 8.1.5

Based on our measure, New York Yankee Lou Gehrig is the highest rated player

of all time, with an average performance rating of 0.975. Gehrig is best known for

the consecutive games (2,130) played record that was subsequently broken by

Baltimore Oriole Cal Ripken, Jr. Gehrig collected 493 career home runs, 2,721

hits, and 1,995 runs batted in with a career batting average of 0.340. His numbers

are even more impressive given his early retirement at the age of 36. Gehrig

received the most votes among fans in the MLB All-Century Team.6 Gehrig was

voted into the Hall via a special election.

Table 8.1 Top 25 Hall of Famers ranked by performance rating

Player Position AB H HR Rating

Lou Gehrig 1B 7,935 2,700 492 0.975

Richie Ashburn CF 8,365 2,574 29 0.936

Babe Ruth RF 8,224 2,829 704 0.934

Ted Williams LF 7,605 2,613 507 0.932

Tris Speaker CF 10,176 3,511 117 0.931

Hank Aaron RF 12,364 3,771 755 0.925

Hank Greenberg 1B 5,079 1,594 328 0.923

Eddie Collins 2B 9,869 3,293 47 0.921

Stan Musial LF 10,925 3,610 474 0.920

Mike Schmidt 3B 8,318 2,227 547 0.920

Rogers Hornsby 2B 7,858 2,841 295 0.917

Ralph Kiner LF 5,205 1,451 369 0.913

Sam Crawford RF 9,570 2,961 97 0.912

Billy Williams LF 9,270 2,693 424 0.911

Joe DiMaggio CF 6,821 2,214 361 0.906

Elmer Flick RF 5,457 1,715 47 0.903

Charlie Gehringer 2B 8,784 2,818 183 0.898

Ty Cobb CF 11,434 4,189 117 0.890

Earle Combs CF 5,711 1,852 58 0.887

Earl Averill CF 6,281 2,002 237 0.887

Frank Baker 3B 5,953 1,829 96 0.884

Arky Vaughan SS 6,622 2,103 96 0.883

Joe Morgan 2B 9,195 2,499 268 0.880

Honus Wagner SS 10,430 3,415 101 0.878

Willie Mays CF 10,832 3,274 660 0.878

The position reported is the primary position of the Hall of Famer. The reported rating is the

average seasonal performance weighted by at bats

5 The team listed for the Hall of Famer is the team associated with the player’s induction. In many

cases, the player contributed to more than one team. For this table, we consider only those who

played a majority of years in the modern era. Five players with a majority of years before 1900

would have been included: Roger Connor (0.943), Dan Brouthers (0.937), Jesse Burkett (0.922),

Sam Thompson (0.915), and Billy Hamilton (0.907).
6 The list of players and the number of votes received are available at http://static.espn.go.com/

mlb/news/1999/1023/129008.html.

Evaluating Hitters 79



Centerfielder Richie Ashburn (Philadelphia Phillies) had the second highest

rating with a weighted average of 0.936. Ashburn had career batting average of

0.308, but only hit 29 home runs. In 1978, he received the most votes (158) for

induction but fell short of the required number. He was voted in by the Veterans

Committee in 1995.

New York Yankee is arguably the greatest baseball player of all time. His rating

of 0.934 placed him in the top 3. Ruth still holds the record for career slugging

percentage (0.690); he finished his career with 714 home runs and a 0.342 batting

average. Ruth was voted into the Hall in 1936 by the BBWAA, receiving 215 out of

227 possible votes, becoming one of the first five players inducted. Ruth was the top

vote getter among outfielders in the MLB All-Century Team. Christy Mathewson,

Ty Cobb, Honus Wagner, and Walter Johnson joined Ruth in the 1936 class.

Interestingly, Ty Cobb received seven more votes than Ruth.

Boston Red Sox left fielder Ted Williams was elected to the Hall in his first year

of eligibility, garnering 282 votes out of 303 ballots. Williams played in 21 seasons

but lost 5 years to military service in World War II and the Korean War. Williams

finished his Hall of Fame career with a 0.344 batting average and 521 home runs.

Williams made the MLB All-Century Team, receiving the third highest fan votes

for outfielders behind Babe Ruth and Hank Aaron. Cleveland Indian centerfielder

Tris Speaker had an overall performance rating just below Williams. Speaker had

a career batting average of 0.345 (fifth all time) with over 3500 hits. He had the

most career doubles and outfield assists and was a finalist for the MLB All-Century

Team. In 1936, Speaker received only 133 votes for induction, falling short by 36.

He was inducted in 1937, receiving 165 out of 201 votes.

Milwaukee and Atlanta Brave Hank Aaron is also considered to be one of the

greatest baseball players of all time. His rating based on the nonparametric measure

of DEA is 0.925, placing him sixth in the list and second behind fellow right fielder

Babe Ruth. Aaron had a career batting average of 0.305 while hitting a total of 755

home runs. Aaron surpassed Babe Ruth’s career home run total and held the record

for 33 years. Aaron was the first player of four to achieve career total of over 3,000

hits and 500 home runs. Willie Mays joined Aaron two months later; Eddie Murray

and Rafael Palmeiro joined during a later era. Aaron received the second most votes

for outfielders behind Babe Ruth in joining the MLB All-Century Team. Aaron was

voted into the Hall by the BBWAA; he received 406 out of 416 votes in his first year

of eligibility in 1982.

The next two spots in the top 10 ranked hitters were Hank Greenberg (Detroit

Tiger first-baseman) and Eddie Collins (Philadelphia Athletics). Greenberg had a

career batting average of 0.313 while hitting 331 home runs (58 during the 1938

season). Greenberg’s career numbers were affected by his service in the military; he

only had 67 at bats during the 1941 season and did not play again until 1945.

Greenberg was voted into the Hall by the BBWAA in 1956. Collins had a career

batting average of 0.333 and had 3,315 hits. He was nominated for the MLB All-

Century Team but came in sixth in the voting for second basemen. Collins was

voted into the Hall of Fame by the BBWAA in his fourth try, garnering 213 votes,

seven more than required for induction.
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The final two spots in the top ten belong to St. Louis Cardinals leftfielder Stan

Musial (0.920) and Philadelphia Phillies’ third baseman Mike Schmidt (0.920).

Musial was voted into the Hall on his first year of eligibility in 1969 by the

BBWAA. Musial was nominated for inclusion on the All-Century Team but

finished behind Ken Griffey, Jr., Pete Rose, and Roberto Clemente. He was later

added to the team. His rating of 0.920 placed him behind only Ted Williams for left

fielders in the modern era. Musial amassed 3,630 career hits including 475 home

runs and had a career batting average of 0.331 and a career slugging percentage of

0.559.7

Schmidt only had a career batting average of 0.267 but hit 548 home runs. He is

widely considered the greatest third baseman of all time and was voted onto the All-

Century Team. Schmidt was voted into the Hall in his first year of eligibility,

receiving 444 votes from 460 ballots cast.

Other All-Century Hall of Famers ranked in the top 25 include St. Louis

Cardinals second baseman Rogers Hornsby (0.917), New York Yankee center-

fielder Joe DiMaggio (0.906), Detroit Tigers’ centerfielder Ty Cobb (0.890), Cin-

cinnati Reds second baseman Joe Morgan (0.880), Pittsburgh Pirates shortstop

Honus Wagner (0.878), and San Francisco Giant centerfielder Willie Mays

(0.878). Hornsby, who retired after the 1937 season, was voted into the Hall by

the BBWAA in 1942, after being turned down from 1936 to 1939. Likewise,

DiMaggio was voted into the Hall in 1955, after being rejected the two previous

years.

In Table 8.2, we consider the top two rated hitters for each position.8 The two

highest rated catchers were Cincinnati Red Johnny Bench (0.776) and Detroit Tiger

Mickey Cochrane (0.776). Bench is considered by many to be the greatest catcher

of all time; he was selected as the top catcher by fan voting for the All-Century

Team. Cochrane was nominated for the All-Century Team but came in sixth in the

voting behind Yankee Yogi Berra (0.664), Red Sox Carlton Fisk (0.686), Brooklyn

Dodger Roy Campanella (0.666), and Homestead Gray Josh Gibson, who unfortu-

nately never played in the major leagues.9

The top first basemen were Gehrig (0.975) and Greenberg (0.923), both of whom

made the top 25 list (see Table 8.1). Eddie Collins (0.921) was the top second

baseman, followed by Rogers Hornsby (0.917).10 Both Collins and Hornsby appear

in the top 25 list. Mike Schmidt (0.920) and Frank “Home Run” Baker (0.884) were

identified as the two top three basemen. Schmidt (and Baltimore Oriole HOFer

Brooks Robinson) made the All-Century Team. Baker, who was inducted as a

7Musial lost a year serving in noncombat duty in the U.S. Navy.
8 In Table 8.2, we consider only Hall of Famers who played the majority of time after the modern

era began in 1900.
9 James (2001) ranks Berra as the top catcher, followed by Bench, Campanella, and Cochrane.
10 In James (2001), Joe Morgan was chosen as the best second baseman while Collins and Hornsby

were ranked second and third, respectively.
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Philadelphia Athletic, never received enough votes by the BBWAA but was voted

in by the Veterans Committee in 1955.11

Pittsburgh Pirate shortstops Arky Vaughan (0.883) and Honus Wagner (0.878)

had the highest ratings among shortstops. Vaughan had a career batting average of

0.318 and had 2,103 career hits. Wagner is considered one of the all-time greats

with a 0.327 batting average and 3,415 career hits. Wagner qualified for inclusion

for 22 seasons while Vaughan only had 14. Wagner was hurt by a few seasons with

poor numbers; Wagner should be considered the top short-stop of all time.12 James

(2001) ranks Wagner first and Vaughan second in his all-time rankings.

In leftfield, Ted Williams (0.932) and Stan Musial (0.92) achieved the highest

rating. Both players are on the All-Century Team for outfielders and widely

considered the two best of all time. Both players appear in Table 8.1 in the Top

25 rated Hall of Famers. More controversial is the selection of Richie Ashburn and

Tris Speakers as the top centerfielders. Both players are rated in the top 10 based on

the DEA measure. This results because the method is nonparametric; Ashburn

reached first base enough to warrant overall high scores, but lacked power. While

Speaker is ranked fourth, Ashburn appears 16th on James (2001) list. The top three

according to James are Willie Mays, Ty Cobb, and Mickey Mantle. While not

considered in this chapter, weight structures could be placed on the individual

performance measures to account for the differences.13

Table 8.2 All Hall of Fame hitters by position

Position Player AB H HR Rating

Catcher Johnny Bench 7,572 2,034 388 0.776

Mickey Cochrane 5,071 1,622 117 0.746

First base Lou Gehrig 7,935 2,700 492 0.975

Hank Greenberg 5,079 1,594 328 0.923

Second base Eddie Collins 9,869 3,293 47 0.921

Rogers Hornsby 7,858 2,841 295 0.917

Third base Mike Schmidt 8,318 2,227 547 0.920

Frank Baker 5,953 1,829 96 0.884

Shortstop Arky Vaughan 6,622 2,103 96 0.883

Honus Wagner 10,430 3,415 101 0.878

Leftfield Ted Williams 7,605 2,613 507 0.932

Stan Musial 10,925 3,610 474 0.920

Centerfield Richie Ashburn 8,365 2,574 29 0.936

Tris Speaker 10,176 3,511 117 0.931

Rightfield Babe Ruth 8,224 2,829 704 0.934

Hank Aaron 12,364 3,771 755 0.925

We only consider Hall of Famers who played the majority of time after 1900

11 James (2001) ranking has Schmidt first, followed byKansas City Royal George Brett, Milwaukee

Braves Eddie Mathews, Boston Red Sox Wade Boggs, and Frank Baker.
12 No attempt was made to discount for longer careers and outlier seasons.
13 Ruggiero and Bretschneider (1998) introduced the weighted Russell measure to allow weighting

of individual variables.
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In Table 8.3, we consider the position players inducted into the Hall of Fame

who had the lowest rating. Often, arguments about who belongs in the Hall center

on comparisons of a given player to Hall of Famers. Of course, such comparisons

assume that all players who were selected deserve to be in the hall. A better

comparison would be to median values for each position.

According to the DEAmeasure, Cincinnati Reds catcher Ernie Lombardi (0.513)

and Chicago Cubs catcher Gabby Hartnett (0.559) are the lowest rated. The

maximum number of votes Lombardi received by the BBWAA was 34, falling

short by 193 votes. He was selected in 1986 by the Veterans Committee. From 1947

to 1954, Harnett was unsuccessful in garnishing enough votes. He did receive

enough votes from the BBWAA in 1955. James (1995) argues that Chicago

White Sox catcher Ray Schalk (0.561) was the worst catcher selected to the Hall.

Based on our measure, his rating is similar to Harnett’s and St. Louis Browns’

catcher Rick Ferrell (0.560).

At first base, Chicago Cub Frank Chance (0.669) and George Kelly (0.691)

were rated the lowest. Both players failed to get enough votes to be voted in by the

BBWAA but were selected by the Veterans Committee. Both players made James

(1995) of undeserving Hall of Famers. At second base, Pittsburgh Pirate Bill

Mazeroski (0.650) and Chicago Cub Johnny Evers (0.677) were the lowest rated

hitters. Mazeroski was elected to the Hall of Fame by the Veterans Committee while

Evers earned enough votes from the BBWAA. James (1995) argued that Evers was

not a good choice; in James (2001) he ranks Mazeroski, who was voted into the Hall

in 2001, even lower than Evers and would likely agree with this selection.

Asmentioned in Chap. 5, themeasure of performance ��1 does not parametrically

weight each of the performance variables. Instead, performance is measured using a

distance function. As a result, and as illustrated in Chap. 5, it is possible that a player

is ranked higher having more doubles even with less home runs as another player.

Table 8.3 Lowest rated Hall of Fame hitters by position

Position Player AB H HR Rating Voted By

Catcher Ernie Lombardi 5,855 1,792 190 0.513 Veterans

Gabby Hartnett 6,274 1,875 234 0.559 BBWAA

First base Frank Chance 4,180 1246 19 0.669 Veterans

George Kelly 5,849 1758 147 0.691 Veterans

Second base Bill Mazeroski 7,691 2,004 138 0.650 Veterans

Johnny Evers 5,961 1,623 12 0.677 BBWAA

Third base Freddie Lindstrom 5,532 1,727 103 0.672 Veterans

George Kell 6,437 1,978 77 0.719 Veterans

Shortstop Travis Jackson 6,078 1,768 135 0.600 Veterans

Joe Tinker 6,357 1,668 31 0.643 BBWAA

Leftfield Chick Hafey 4,475 1,423 161 0.699 Veterans

Willie Stargell 7,763 2,189 472 0.761 BBWAA

Centerfield Lloyd Waner 7,670 2,423 27 0.741 Veterans

Edd Roush 7,284 2,362 68 0.748 Veterans

Rightfield Kiki Cuyler 7,118 2,289 128 0.772 Veterans

Tommy McCarthy 5,031 1,478 44 0.784 Veterans

Players are listed according to lowest ratings by position
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The weighted slack model (5.4) from Chap. 5 was estimated as an alternative. The

resulting rank correlation for 2009 hitters was 0.984, suggesting robustness with

respect to the DEA modeling.

Evaluating Pitchers

In this section, we derive an overall rating for the Hall of Fame pitchers. We apply

model (8.1) using three individual performance variables: innings pitched (IP),

innings pitched per earned run (IP/ER), and innings pitched per hit (IP/H). Only five

pitchers who were predominately relief pitchers have been inducted into the Hall.

Only Oakland Athletic Dennis Eckersley was voted in by the BBWAA in his first

year of eligibility. Goose Gossage (New York Yankees) was inducted by the

BBWAA in 2008 on his ninth try. Chicago White Sox pitcher Hoyt Wilhelm was

elected in 1985 by the BBWAA in his eighth year of eligibility. After falling 42

votes short in his first vote in 1991, Rollie Fingers (Oakland Athletics) was voted in

the next year by the BBWAA. St. Louis Cardinal Bruce Sutter received ten votes

beyond the minimum needed in 2006, his 13th year of eligibility. Given the

predominance of starting pitchers in the Hall, and the increased importance of

the relief pitcher after the 1960s, we only consider starting pitchers in this analysis.

The model was applied for each season for pitchers who started at least ten games.

Similar to hitters, we derive an overall rating of performance using a weighted

average of each season’s performance. For the pitchers, we use outs recorded to

weight season performance. The top 25 Hall of Fame pitchers based on the

weighted average are reported in Table 8.4. Included in the table are career earned

run average (ERA), winning percent (WPCT), strike outs (K), the strike out to base

on balls ratio (K/BB), and innings pitched (IP). Pitchers are listed according to

their weighted rating.

We only include pitchers who played the majority of time from 1900 on. There

were some very good pitchers who played in the 1800s that would have been

included. New York Giant Amos Rusie (0.935) had a career earned run average

of 3.073 with 1,934 strikeouts and 293 wins. As pointed out by James (2001), the

quality of play in the nineteenth century was lower than in the modern era. Rusie

was voted in by the Veteran’s Committee in 1977. Other top pitchers in this

category include Boston Beaneaters Kid Nichols (0.930) and John Clarkson

(0.927), New York Giants Tim Keefe (0.914) and Mickey Welch (0.857), Provi-

dence Gray Charley Radbourn (0.904), and Buffalo Bison Pud Glavin (0.876).

Using our method, Cleveland Spider Cy Young was the best pitcher of all time,

achieving an average rating of 0.937. Young won a career 511 games and pitched

over 7,354 innings, both major league records. Walter Johnson (417 wins) is the

only other pitcher to reach the 400 mark. Young placed third in fan voting for the

All-Century Team behind Nolan Ryan and Sandy Koufax. Young’s greatness was
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established a year after his death with the annual awarding of the Cy Young Award

given to the best pitcher(s) in baseball.14

Cleveland Indian Addie Joss was the second highest rated pitcher of all time with

a rating of 0.930. Joss pitched from 1902 to 1910 and was inducted by the Veterans

Committee in 1978. While Joss only had 160 wins, his career earned run average of

1.89 is second best all time.15 Importantly, the rating system used here evaluates a

player relative to his peers.16 Brooklyn Dodger Dazzy Vance was the third highest

rated pitcher; he was voted into the Hall in 1955 by the BBWAA. Vance won the

Triple Crown (lowest earned run average, most wins, most strikeouts) in 1924.

Los Angeles Dodger Sandy Koufax was the fourth highest rated pitcher of all

time. Koufax played only 11 seasons with the Dodgers and was forced to retire due

to arthritis at the age of 30. Koufax had a career earned run average of 2.76 and

Table 8.4 Top 25 Hall of Fame starting pitchers by performance rating

Player ERA WPCT K K/BB IP Rating

Cy Young 2.627 0.618 2,803 2.303 7354.7 0.937

Addie Joss 1.887 0.623 920 2.527 2327.0 0.930

Dazzy Vance 3.240 0.585 2,045 2.435 2966.7 0.913

Sandy Koufax 2.761 0.655 2,396 2.933 2324.3 0.912

Carl Hubbell 2.978 0.622 1,677 2.313 3590.3 0.911

Ed Walsh 1.816 0.607 1,736 2.814 2964.3 0.910

Walter Johnson 2.167 0.599 3,509 2.574 5914.7 0.897

Pete Alexander 2.560 0.642 2,198 2.311 5190.0 0.897

Warren Spahn 3.086 0.597 2,583 1.801 5243.7 0.881

Christy Mathewson 2.133 0.665 2,502 2.964 4780.7 0.877

Robin Roberts 3.405 0.539 2,357 2.613 4688.7 0.877

Tom Seaver 2.862 0.603 3,640 2.619 4782.7 0.876

Dizzy Dean 3.024 0.644 1,163 2.567 1967.3 0.876

Lefty Grove 3.058 0.680 2,266 1.909 3940.7 0.874

Juan Marichal 2.889 0.631 2,303 3.248 3507.3 0.870

Whitey Ford 2.745 0.690 1,956 1.801 3170.3 0.863

Jim Palmer 2.856 0.638 2,212 1.687 3948.0 0.861

Catfish Hunter 3.256 0.574 2,012 2.109 3449.3 0.859

Mordecai Brown 2.057 0.648 1,375 2.043 3172.3 0.856

Don Sutton 3.261 0.559 3,574 2.661 5282.3 0.854

Rube Waddell 2.161 0.574 2,316 2.884 2961.3 0.854

Fergie Jenkins 3.338 0.557 3,192 3.202 4500.7 0.849

Stan Coveleski 2.891 0.602 981 1.223 3082.0 0.835

Gaylord Perry 3.105 0.542 3,534 2.563 5350.3 0.833

Don Drysdale 2.948 0.557 2,486 2.908 3432.0 0.833

The reported rating is the average seasonal peformance weighted by outs recorded

14 Beginning in 1967, the Cy Young Award was given to the best pitcher from each league.
15 James (2001) rescales the earned run average by the league average and discounts for parks.

After adjustment, Joss still ranks in the top 10 all time.
16 Only players who played a majority of the time after 1900 were considered.
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struck out 2,396 batters. He was a three-time Cy Young Award winner and four-

time World Series champion. Koufax was the youngest person elected to the Hall,

gaining entry on his try in 1972.

Carl Hubbell (New York Giants) and EdWalsh (ChicagoWhite Sox) placed fifth

and sixth all time. Hubbell was voted in on his third try in 1947 by the BBWAA

while Walsh was voted in by the Veterans Committee in 1946. Hubbell was aWorld

Series champion who won 253 games while posting a 2.98 earned run average.

Walsh won 195 games with the lowest career earned run average (1.82) of all time.

Washington Senator Walter Johnson was inducted into the Hall in 1936 as one of

the first five members. Johnson, a member of the All-Century Team, won 417

games (second only to Cy Young) and had a 2.17 earned run average. His 110

shutouts is still the major league record. James (2001) argues that Johnson was the

best pitcher of all time.

Grover Cleveland (Pete) Alexander (Philadelphia Phillies) finished just behind

Walter Johnson. He was voted into the Hall in 1938, 2 years after the initial

inductions. Alexander won 373 games (third best all time) and had a 2.56 earned

run average over 20 seasons. Alexander pitched 90 shutouts, second only to

Johnson. He won the Triple Crown four times and was nominated to be on the

All-Century Team. James (2001) rates Alexander as the third best of all time.

The final two spots in the top 10 belong to Milwaukee Brave Warren Spahn

(0.881) and New York Giant Christy Mathewson (0.877). Spahn was voted in by the

BBWAA in 1973 while Mathewson was one of the initial five inducted in 1936.

Both Spahn and Mathewson are members of the All-Century Team. Spahn was a

17-time All Star selection who won 363 games with a career earned run average of

3.09. He won the Cy Young Award in 1957. Mathewson won 373 games and had a

career earned run average of 2.13 (eighth best all time). He was a two Triple Crown

winner who was rated fifth best of all time by James (2001). Mathewson ranks

seventh all time according to James.

Players Deserving Induction

In this section, we consider highly rated players who deserve to be in the Hall of

Fame. Using the nonparametric rating system, we consider players who should be in

the Hall but who are not. For some players, this is because they have not yet qualified

or who are still playing. Table 8.5 lists players who have played in at least ten

seasons by the end of the 2009 season. We use the weighted ratings defined above.

Players who appear in Table 8.5 have a rating that is higher than the median Hall

of Fame player rating at that position. Next, we consider specific players who have

appeared in at least nine seasons, including current players.17

17 Ratings of current players are expected to go down. Most players realize a decline in their

seasonal ratings as they play beyond their age of peak performance.
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Table 8.5 Players rated above median Hall of Fame rating by position

Player Years Rating

Pitcher Pedro Martinez 14 0.900

Tiny Bonham 10 0.895

Don Newcombe 10 0.883

Deacon Phillippe 10 0.883

Babe Adams 14 0.881

Red Lucas 13 0.878

Harry Brecheen 11 0.874

Dolf Luque 13 0.870

Sal Maglie 10 0.868

Andy Messersmith 10 0.868

Curt Schilling 16 0.863

John Candelaria 13 0.859

Greg Maddux 22 0.855

Billy Pierce 15 0.852

Catcher Jason Kendall 15 0.783

Joe Torre 18 0.767

Ted Simmons 21 0.767

Thurman Munson 11 0.728

Gene Tenace 15 0.717

Mickey Tettleton 14 0.698

Mike Piazza 18 0.692

Jorge Posada 15 0.663

Manny Sanguillen 13 0.662

Ivan Rodriguez 21 0.657

Lance Parrish 20 0.652

Bill Freehan 15 0.646

Paul Lo Duca 13 0.642

Earl Battey 13 0.634

Darrell Porter 17 0.619

First base Todd Helton 13 0.937

Pete Rose 25 0.928

Jeff Bagwell 15 0.901

Lance Berkman 11 0.881

Mark McGwire 17 0.868

Henry Larkin 10 0.858

Dick Allen 15 0.857

Harry Davis 25 0.852

Rafael Palmeiro 20 0.851

Carlos Delgado 17 0.844

Bill White 13 0.842

Lu Blue 13 0.839

Don Mattingly 14 0.837

Fred Luderus 13 0.837

Second base Eddie Stanky 12 0.860

Chuck Knoblauch 12 0.859

Craig Biggio 20 0.846

Alfonso Soriano 11 0.824

Jim Gilliam 14 0.824

Roberto Alomar 19 0.821

Cupid Childs 13 0.820

(continued)
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Table 8.5 (continued)

Player Years Rating

Third base Al Rosen 10 0.868

Ron Santo 15 0.853

Harlond Clift 13 0.849

Chipper Jones 16 0.848

Eddie Yost 18 0.841

Stan Hack 16 0.840

Buddy Lewis 11 0.818

Red Rolfe 10 0.815

Ken Boyer 17 0.809

Ned Williamson 13 0.802

Darrell Evans 22 0.794

Sal Bando 16 0.794

Deacon White 20 0.792

Shortstop Jimmy Rollins 10 0.939

Derek Jeter 15 0.912

Alex Rodriguez 16 0.896

Michael Young 10 0.862

Donie Bush 17 0.848

Johnny Pesky 12 0.844

Maury Wills 15 0.840

Dick Groat 15 0.828

Ed McKean 13 0.826

Harvey Kuenn 17 0.819

Rafael Furcal 10 0.809

Nomar Garciaparra 15 0.805

Miguel Tejada 13 0.793

Tony Fernandez 19 0.792

Leftfield Joe Jackson 14 0.938

Barry Bonds 22 0.918

Minnie Minoso 18 0.914

George Burns 15 0.880

Albert Belle 12 0.878

Topsy Hartsel 14 0.870

Bob Johnson 13 0.862

Manny Ramirez 18 0.852

Centerfield Roy Thomas 14 0.926

Brett Butler 18 0.893

Jimmy Barrett 10 0.890

Dom DiMaggio 11 0.876

Rightfield Bobby Abreu 15 0.928

Gavvy Cravath 12 0.909

Rocky Colavito 16 0.857

Ken Singleton 15 0.850

Tony Oliva 15 0.850

Buck Freeman 11 0.850

Vladimir Guerrero 14 0.842

Bobby Bonds 15 0.840

Brian Giles 16 0.840

Jackie Jensen 12 0.840

Mike Tiernan 13 0.839

Only players with a majority of seasons after 1900 are considered
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Pete Rose

As a long time critic of Rose who has always argued that he does not deserve the

honor of being in the Hall of Fame, I certainly understand why many argue against

his inclusion. Whether or not he bet for or against his team winning is irrelevant; he

could have made improper decisions to win a game he bet on by using players

inappropriately and consequently, sacrificing the next few games.

He broke the rules.

He bet on baseball.

His lifetime ban from participating begs the question “Who would hire him

anyway?” Of course there will be an owner who would exploit the opportunity to

make quick money on the publicity stunt. But would somebody really want Rose to

manage his/her team given his inactivity and history? Rose’s rating was 0.928,

placing him 15th. Rose belongs in the Hall of Fame.

Ichiro Suzuki18

Suzuki began his career in 2001 with the Seattle Mariners after playing 9 years in

Japan. In Japan, he had a career batting average of 0.353 with 1,278 hits. In 2001, he

collected 242 hits with a batting average of 0.350, becoming the American League

Rookie of the Year and Most Valuable Player. In his 10 years (as of June 25, 2010)

in MLB, Suzuki has 2,130 hits with a career batting average of 0.333. He is a nine-

time All-Star and nine-time Gold Glove Award winner. Absent an injury in 2010,

he is set to tie Pete Rose’s record ten 200-hit seasons; unlike Rose, Suzuki has done

it consecutively.

Suzuki’s current rating of 0.983 ranks higher than Gehrig. He will be a member

of the Hall of Fame.

Albert Pujols

Current St. Louis Cardinal Albert Pujols rating of 0.974 places him in third place

behind Gehrig. Like Suzuki, Pujols is in his tenth season and hence, qualifies for the

Hall. Currently, Pujols has 381 home runs, 1,798 hits with a career batting average

of 0.333. Pujols is an eight-time All-Star who won a Gold Glove Award in 2006.

Pujols is also a World Series champion. Pujols will be a member of the Hall of

Fame.

18 Suzuki does not appear in Table 8.5 because he only had 9 years of service at the end of 2009.
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Joe Jackson

Shoeless Joe Jackson ranks seventh all time with a rating of 0.938. Jackson had a

career batting average of 0.356, collecting 1,772 hits in 13 seasons. In his last

season before he was banned from baseball, Jackson had 218 hits and a 0.382

batting average. There is no question that Jackson’s statistics warrant membership

in the Hall of Fame. Jackson was acquitted but was banned from baseball. While he

admitted guilt, it is not clear he was actually guilty. Joe Jackson belongs in the Hall

of Fame.

Todd Helton

Todd Helton began his career with the Colorado Rockies in 1997. In his 13þ
seasons, he has 2,192 hits with a career batting average of 0.326. Helton also has

327 home runs. Helton is a five-time All-Star and three-time Gold Glove Award

winner. His current rating of 0.937 places him ninth all time.

Bobby Abreu

Bobby Abreu began his career in 1996 with the Houston Astros. He was drafted

by the Tampa Bay (Devil) Rays in the 1997 expansion draft and was traded to the

Philadelphia Phillies. In 2006, Abreu was traded to the New York Yankees and was

granted free agency in 2008, signing with the Angels. In 14þ seasons, Abreu has a

career 0.298 batting average with 2,186 hits, 195 home runs and 358 stolen bases.

Abreu’s rating of 0.928 currently places him 14th. As pointed out in footnote 17,

however, it is expected that Abreu’s rating will decline as his career advances

beyond his peak age.

Barry Bonds

Barry Bonds holds the single season home run (73) and career home run (762). He

also has the most career walks (2,558) and intentional walks (688). Bonds is a

14-time All-Star, eight-time Gold Glove Award winner and seven-time NL Most

Valuable Player. Without a doubt, his statistics and the associated rating of 0.918

make Bonds a shoo-in for the Hall.

But what about the steroids? We analyze Bonds’ enhanced performance in

Chap. 9.
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Put Bonds in the Hall of Fame. Perhaps they can build a special room for the

steroid users. Maybe in the basement.

Minnie Miñoso

Miñoso’s rating of 0.914 places him in the 26th spot. Miñoso played in 17 seasons

(though two were publicity stunts), collecting 1,963 hits with a career batting

average of 0.298. Miñoso was a nine-time All-Star selection and a three-time

Gold Glove Award winner.

Miñoso is the highest rated left fielder, excluding Shoeless Joe Jackson and

Barry Bonds, who is not in the Hall of Fame. His rating is only lower than Hall of

Fame left fielders Ted Williams and Jesse Burkett. Miñoso deserves to be in the

Hall of Fame.

Billy Pierce

Billy Pierce began his career with the Detroit Tigers in 1945 at the age of 18. He

pitched only ten innings that year. After a lopsided trade, Pierce became a starter

with the Chicago White Sox in 1949, posting a 7–15 record with a 3.88 earned run

average. In his 12 seasons with the White Sox, he won 186 games with an earned

run average of 3.19. In his career, Pierce won 211 games, had an earned run average

of 3.27 and struck out 1,999. He was a seven-time All-Star selection and a member

of the 1945 Tigers World Series team. Pierce’s DEA rating (0.852) is higher than

notable Hall of Fame pitchers Gaylord Perry, Don Drysdale, Jim Bunning, Bob

Gibson, Steve Carlton, Bob Lemon, Bob Feller, and Nolan Ryan. Billy Pierce

deserves to be in the Hall of Fame.

Joe Torre

Joe Torre played 18 seasons with the Milwaukee (Atlanta Braves), St. Louis

Cardinals, and the New York Mets. Torre was a nine-time All-Star selection, a

Gold Glove Award winner in 1965, and the 1971 National League Most Valuable

Player. In his career, he had a 0.297 batting average with 2,342 hits including 252

home runs. His DEA rating of 0.767 ranks higher than all Hall of Fame catchers

except for Johnny Bench. Overall, Torre’s statistics are comparable to Yogi Berra’s

and Gary Carter’s. For example, Torre had more hits, a higher batting average than

Berra and Carter (2,092), a higher batting average, and more combined doubles and

triples. Torre’s slugging percentage was higher and he had more total bases than

Carter. Torre, however, had less home runs (252) than Berra (358) and Carter (324).

Joe Torre deserves to be in the Hall of Fame as a player.

Players Deserving Induction 91



Ron Santo

Ron Santo played 15 years in the Majors, all of them in Chicago. He played his first

14 seasons with the Cubs and played his final season with the White Sox. Over his

career, Santo collected 2,254 hits including 342 home runs. Santo was a nine-time

All-Star selection who won five Gold Gloves. James (1995) argues that Santo

would be the first player he would choose to induct into the Hall if he could. His

rating of 0.853 is just below George Brett’s (0.861) and above Brooks Robinson’s

(0.763). Robinson is considered to be the best defensive third baseman of all time,

winning 16 Gold Gloves. Santo, in contrast, only won 5. Offensively, however,

Santo was better. Per season, Santo had more hits (163 vs. 159), home runs (25 vs.

15), and runs batted in (96 vs. 76). Santo had a higher batting average (0.277 vs.

0.267) and a higher slugging percentage (0.464 vs. 0.401). Santo deserves to be in

the Hall of Fame.
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Chapter 9

Steroids in MLB: An Analysis of Hitters

Introduction

Among the most controversial topics in major league baseball is the steroid era,

apparently beginning in the mid-1980s and continuing until the mid-2000s.1 Ster-

oids not only help players rehabilitate injuries faster, but with proper diet and

weight training, they help build muscle and increase strength. Steroids have been

linked to many of the top stars in baseball and much has been written about the

topic.2

Some remarkable feats were accomplished in the steroid era; notably Maris’

individual season home run record of 61 was shattered by Mark McGwire with 70

home runs. In that 1998 season, both McGwire and Sammy Sosa (66 home runs)

topped Maris in a drawn out battle that McGwire eventually won. Barry Bonds later

shattered McGwire’s record, hitting 73 home runs in 1971. Did steroids or other

performance-enhancing drugs contribute to these remarkable seasons? If the ath-

letes did take the illegal drugs, the natural question is “why?.” Were they taken to

help recover from injuries? In this chapter and Chap. 10, we analyze the impact that

steroids had on performance. In this chapter we focus on the hitters.3

1 Tom House, a relief pitcher who played in the 1970s with the Atlanta Braves, Boston Red Sox,

and Seattle Mariners admits to steroid use during his career. Widespread use did not begin until the

1990s.
2 Other than the players who have admitted using steroids, it is not possible to know with certainty

who has taken steroids. In this chapter, we will investigate not only players who have admitted

steroid use but also those players who have been implicated. The true frequency of use will never be

known. In this chapter, we only analyze performance of various players and do not draw definitive

conclusions as to if or when a player used steroids. Canseco (2005, 2008), Radomski (2009),

Fainaru-Wada and Williams (2006), and the Mitchell Report (2007) provided information that

was used for this chapter. Other information was obtained from the website http://thesteroidera.

blogspot.com.
3 I have been told by a former college star that Canseco’s claim about the widespread use is

probably accurate. He told me that steroids were openly used in summer traveling leagues. Most

use apparently was to help the body heal and not to gain massive muscle and power. The best we

can do with our analysis is identifying if steroid use allowed the players to enhance their relative

performance.

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_9,
# Springer Science+Business Media, LLC 2011

93



In 2010, McGwire admitted to steroid use beginning before the 1990 season,

and on a regular basis since 1993 including 1998. He claims that his usage was at a

low dosage and that he did not gain strength nor enhance his performance. The

admission provided vindication for Jose Canseco who claimed to have personally

injected McGwire, a charge that McGwire has denied numerous times. Obviously,

McGwire’s belief that his steroid use did not enhance his performance is not shared

by many.

In addition to McGwire, several other players have admitted steroid use during

their playing days. Notably, Jason Giambi, Benito Santiago, and Gary Sheffield

(among others) testified before a grand jury investigating BALCO (Bay Area

Laboratory Co-operative) that they used illegal performance-enhancing drugs

made by BALCO and provided by Greg Anderson, the personal trainer of Barry

Bonds. Bonds also testified that he used the “Clear” and the “Cream” from BALCO

but was unaware that the products were steroids. The products were used as

complements to mask steroid use. Testimony was leaked that Bonds name was on

documents from 2001 to 2003 that implicated him steroid use.4

Victor Conte, the owner of BALCO, and Anderson pleaded guilty to one count

of conspiracy to distribute anabolic steroids. The revelations from the BALCO

prompted MLB Commissioner Bud Selig to appoint George Mitchell in March

2006 to investigate steroid use. The results of the report suggested widespread use

of illegal performance-enhancing drugs for over a decade. In an anonymous survey

conducted in 2003, about 5–7% of the players tested positive. It is possible that the

percentage was much higher because players knew when the tests would be con-

ducted and the use of human growth hormones (HGH) was undetectable. Mitchell

concludes that the problem is serious and undermines the integrity of the game and

calls into question baseball records.

The implications with respect to the analysis in this book is clear. If steroids do in

fact improve performance, then the ranking of individual player performance would

be distorted, leading to an undervaluing for the honest player. This in turn has large

financial implications for players who chose to use the illegal performance-enhancing

drugs. Further, to the degree that a team had more players using performance-

enhancing drugs, the team could end up winning more games and perhaps, influence

the outcome of division races. According to theMitchell report, all teams had a player

test positive. But the degree of use likely varied between teams.

In this chapter, we focus on some of the known cases of steroid use. In addition,

we analyze some players who have been implicated in an attempt to discern a

pattern that could help shed light on the topic. For benchmarking purposes, we first

focus on players who were not part of the steroid era. We also analyze some stars

who played during the steroid era but who have not been implicated.

4 http://www.sfgate.com/cgi-bin/article.cgi?file¼/c/a/2004/12/03/MNGGFA0UDU65.DTL, the

online article from the San Francisco Chronicle, provides more details.
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Profiles, Pre-steroids

In this section, we analyze the age-performance profiles of noted hall of fame hitters

prior to the mid-1980s. Given the physical demands placed on ballplayers and the

eventual decline due to age, it is natural to consider the effect that steroids and other

performance-enhancing drugs had on performance by comparing how a player

performed across time. We would expect that young players improve with experi-

ence with diminishing returns eventually setting in. The reduction in abilities of a

given player due to aging will be compounded by an increase in the proportion of

younger players as time increases. In cases of steroid use, we can try to identify

outliers given knowledge on player usage.5

The measure of performance considered for hitters is the weighted slack-based

measure introduced in Chap. 5:

WS0 ¼ max
X4

k¼1

okck

subject to

Xn

j¼1

ljykj � ck � yk0; k ¼ 1; . . . ; s;

Xn

j¼1

lj ¼ 1;

ok � 0; k ¼ 1; . . . ; s;

Xs

k¼1

ok ¼ 1;

ck � 0; k ¼ 1; . . . ; s;

lj � 0; j ¼ 1; . . . ; n:

(9.1)

A lower value of this slack measure indicates better performance. We calculate the

slack measure for all players in all seasons. Given the purported widespread use of

steroids in the previous decades and the denial of many who have been implicated,

it is not possible to develop baseline cases from the same era. A player who has not

been implicated might have actually used steroids. Likewise, it is possible that a

player has been wrongly implicated. To insure proper baseline cases, we consider

several outstanding players from previous time periods.

Under the assumption that performance improves as a rookie gains experience

and eventually declines due to age, we estimate a quadratic regression of the form

5Admittedly, the analysis requires assumptions and interpretation. Absent actual admissions of

usage, this may be the best we can hope for.
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WSt ¼ aþ b1Aget þ b2Age
2
t þ et: (9.2)

In order to observe the theoretical shape of the age–performance curve, the para-

meters will be economically significant if a>0; b1<0; andb2>0: The equation for

each player was estimated using Tobit to account for the truncation arising from

observing only relative and not absolute performance. From (9.2), we can identify

the predicted age that maximizes performance as:

Age� ¼ �b̂1
2b̂2

: (9.3)

The age of optimal or peak performance Age� was calculated using a separate

regression for each player. We were unable to calculate this age for some players

due primarily to a lack of observations of full seasons. In Table 9.1, we report the

results for all players with at least 400 career home runs. Estimates with the wrong

parameter sign or that were statistically insignificant were excluded. For example,

Mark McGwire (583 home runs) was not included; we discuss his case in Sect. 3.2.

Players are ranked in descending order according to the number of home runs that

were hit.

Current career home run record holder Barry Bonds had the highest

Age� ¼ 33:03 among the sluggers with at least 400 home runs. The second highest

age was achieved by Dave Winfield with Age� ¼ 32:49, suggesting Winfield

peaked about half a year earlier than Bonds.6 Winfield retired in 1995; while he

played during the early steroid years, there has been no evidence tying him to

steroid use.

Two steroid era players, Ralfael Palmeiro (31.59) and Jim Thome (31.28), are

ranked third and fourth. Palmeiro allegedly tested positive for Stanzolol, an ana-

bolic steroid, in 2005 and was identified by Canseco (2005) as a user. Palmeiro

denies that he ever intentionally used steroids. Thome has never been implicated as

a steroid user. Both players are analyzed in the next section. Willie Stargell’s age of

peak performance was estimated to be Age� ¼ 31:14, placing him in fifth place and

nearly 2 years below Barry Bonds. Stargell retired before the beginning of the

steroid era.

Next, we turn to age–performance profiles of some notable Hall of Fame hitters

to serve as benchmarks for other players.

Babe Ruth

We first consider Babe Ruth, arguably the best player of all time. Ruth held the

long-standing career home run record with 714. The age–performance relationship

6Winfield was born in October, about 2.5 months after Bonds’ birthday.
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for Ruth is shown in Fig. 9.1. Weighted slack, measured on the vertical axis,

captures the distance from best practice performance using model (5.4) from

Chap. 5. If the weighted slack is zero, the player achieved the frontier during that

season; lower values of slack indicate better performance. The age of any player

was approximated as the year under analysis less the birth year. To the degree that

this inaccurately measures a player’s actual age relative to a season, the horizontal

axis is affected, but not the qualitative results.

In Fig. 9.1, each observation plots the age and associated season’s slack.

Table 9.1 Estimated age of optimal performance

Name Position HR AB/HR Age Age2 Age*

Barry Bonds Lf 762 12.92 �14.005 0.212 33.03

Hank Aaron Rf 755 16.38 �10.175 0.181 28.14

Babe Ruth Rf 714 11.76 �30.079 0.495 30.36

Willie Mays Cf 660 16.49 �17.152 0.287 29.92

Sammy Sosa Rf 609 14.47 �21.086 0.347 30.38

Frank Robinson Rf 586 17.08 �7.601 0.138 27.50

Alex Rodriguez Ss 583 14.24 �21.019 0.373 28.17

Harmon Killebrew 1b 573 14.22 �15.084 0.264 28.60

Rafael Palmeiro 1b 569 18.40 �13.868 0.219 31.59

Jim Thome 1b 564 13.66 �17.702 0.283 31.28

Reggie Jackson Rf 563 17.52 �10.563 0.173 30.46

Mike Schmidt 3b 548 15.24 �29.840 0.479 31.12

Mickey Mantle Cf 536 15.12 �16.664 0.304 27.42

Jimmie Foxx 1b 534 15.23 �29.587 0.520 28.43

Willie McCovey 1b 521 15.73 �14.725 0.240 30.71

Eddie Mathews 3b 512 16.67 �10.001 0.189 26.47

Mel Ott Rf 511 18.50 �10.908 0.191 28.52

Gary Sheffield Rf 509 18.11 �9.520 0.155 30.62

Eddie Murray 1b 504 22.49 �8.731 0.159 27.48

Lou Gehrig 1b 493 16.23 �110.063 1.920 28.66

Fred McGriff 1b 493 17.76 �9.634 0.171 28.23

Willie Stargell Lf 475 16.69 �18.284 0.294 31.14

Stan Musial 1b 475 23.10 �16.088 0.270 29.79

Carlos Delgado 1b 473 15.40 �17.512 0.288 30.42

Dave Winfield Rf 465 23.66 �14.293 0.220 32.49

Carl Yastrzemski Lf 452 26.52 �3.684 0.068 27.05

Jeff Bagwell 1b 449 17.37 �20.142 0.343 29.33

Andre Dawson Rf 438 22.66 �10.255 0.174 29.52

Juan Gonzalez Rf 434 15.11 �18.540 0.368 25.17

Cal Ripken Ss 431 26.80 �7.682 0.147 26.22

Mike Piazza C 427 16.19 �5.781 0.115 25.14

Billy Williams Lf 426 21.95 �25.038 0.423 29.58

Jason Giambi 1b 409 16.20 �31.867 0.522 30.50

Duke Snider Cf 407 17.59 �30.660 0.534 28.69

Vladimir Guerrero Rf 407 17.20 �22.795 0.419 27.19

To bit regression results reported for each player. All parameters were statistically significant at

the 5% level
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The parameter estimates for Ruth are â ¼ 437:135; b̂1 ¼ �30:079, and

b̂2 ¼ 18:097. The associated predicted performance for Ruth’s age is illustrated

with the curve.

Based on our estimates, Ruth’s performance was maximized at Age� ¼ 30:36.7

This occurred during the 1925 season where Ruth was suffering from some

mysterious illness. From this point on, we predict diminishing returns have set in.

Ruth went on to perform relatively well, producing on the frontier for 6 more years.

The circled observations represent some of the observations where Ruth did not

have 400 at bats. These included his first three seasons and the 1925 season.

We note that Ruth achieved the frontier in 1918 with only 317 at bats; in his last

year he only had 365 at bats but the resulting predicted performance is consistent

with observed performance.

Hank Aaron

In Fig. 9.2 we consider the age–performance profile of Hank Aaron, the player who

shattered Ruth’s mark with 755 career home runs. Aaron started out with a

weighted slack of approximately 22 in his rookie season. He performed relatively

worse only once (in his last major league season when he had only 271 at bats). The

profile of Aaron indicates a clear decrease in performance just before he turned 30.

Based on the regression results, this occurred at Age� ¼ 28:14. Importantly, like

Ruth, Aaron still had some frontier performances after this age.

Like Ruth’s profile, nearly all of the observed age–performance observations

for Aaron lie above the trend line. One notable exception for Aaron occurred in

1971 at the age of 37; Aaron performed on the frontier while the predicted value

was about 7.
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Fig. 9.1 Age–performance profile of Babe Ruth

7 Since Ruth was born on February 6, he turned 30 right before the beginning of the 1925 season.

That season turned out to be one of his worst; Ruth only played in 98 games during that season.
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Willie Mays

Next, we consider the age–performance profile of Willie Mays, a superstar who hit

660 career home runs. Mays was inducted into the hall in his first year of eligibility.

He was voted on the All-Century Team and placed second (behind Ruth) on the list

of the 100 greatest players ever. Mays’ age–performance profile is illustrated in

Fig. 9.3. The trend is clear; Mays’ performance increased until about age 30 and

declined thereafter.

Based on the parameter estimates, Mays’ optimal performance occurred at

Age� ¼ 29:92. The three circled observations represent the points where Mays

had only 127 at bats (1952), 195 at bats (1972), and 209 at bats (1973). The squared

box represents an outlier where his performance was better than predicted; his

actual weighted slack value was 10.3, half of his predicted value (20.67).
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Fig. 9.2 Age–performance profile of Hank Aaron
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Fig. 9.3 Age–performance profile of Willie Mays
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Mike Schmidt

Mike Schmidt’s career overlapped with the beginning of the steroid era. He retired

in May 1989 after only 148 at bats. Schmidt’s Age� ¼ 31:12 is nearly identical to

that of Stargell’s. Schmidt has not been implicated in steroid use, and his

age–performance profile (Fig. 9.4) provides evidence that he did not use steroids.

In 1986, at the age of 37, Schmidt appeared on the frontier. Based on the

regression analysis, we predict a small slack of 5.56 for that year. The amount is

consistent with about an extra home run and double and is consistent with non-

enhanced performance.

Pete Rose

We also consider the age–performance profile of Pete Rose, the all-time hit leader.

Rosewas a career 0.303 hitter, collecting 4,256 hits. His case is included because Rose

was not a slugger, hitting only 160 career home runs. His age–performance profile is

presented in Fig. 9.5.8

The estimated age of Rose’s optimal performance was Age� ¼ 31:79, about
1.5 years later than Ruth’s; the trend is consistent with theory. Nearly all observa-

tions lie above the trend and there are no significant outliers. This suggests that the

age–performance profile is robust across types of batters. Nearly all the profiles

considered in the pre-steroid era took on this basic shape.
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Fig. 9.4 Age–performance profile of Mike Schmidt

8 According to Radomski (2009), Pete Rose Jr. claimed that his father was a regular user of

amphetamines, which were widespread in baseball. Amphetamines increase focus and energy

levels and are considered a performance-enhancing drug. MLB banned amphetamine use in 2006.
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Profiles, Admitted and Implicated Steroid Users

In this section, we analyze age–performance profiles of players who have either

admitted using steroids or who have been implicated. Of course, it is possible that

some of the players discussed in this section did not take steroids; hopefully the

analysis can shed light on the innocent.

Lenny Dykstra

First, we will analyze Lenny Dykstra, who was implicated in the Mitchell report.

According to Mitchell, Philadelphia’s General Manager Lee Thomas suspected

Dykstra’s steroid use in 1993 after he reported to spring training. In addition,

Radomski (2009) claims that Dykstra was improperly using steroids in 1990 and

placed him on a better regimen.

The age–performance profile of Dykstra is presented in Fig. 9.6. Two trend lines

are included. The dashed line represents the predicted slack from the tobit regres-

sion results using all 12 observations. The estimated peak age is Age� ¼ 27:17.
Three circled observations appear to be outliers, indicating better performance than

would have been expected. We reran the regression after excluding these three

observations. The resulting predictions are shown with the solid trend line. The

three years in question correspond to the 1990, 1993, and 1994 seasons. After

removing these three observations, his estimated peak age falls to 25.33.

According to Radomski (2009), Dykstra showed up over 30 pounds heavier for

spring training and claims that Dykstra admitted to steroid use. He further claims

that Dykstra was hitting the ball better and harder in the first half of the 1990 season.

Dykstra’s incorrect use of steroids, however, purportedly led to a poor second half

of the season. After his 1990 season, Dykstra played the next two seasons with

injuries caused by a car accident and being hit by a pitch. According to the Mitchell

report, Dykstra admitted using steroids throughout his career.
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Fig. 9.5 Age–performance profile of Pete Rose
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The analysis for Dykstra is informative. Unlike the age–performance profiles in

Sect. 2, there are clear outliers with performance better than predicted.

Mark McGwire

In his first book Juiced, Canseco (2005) claims that he and Mark McGwire often

injected steroids together. For a long time, McGwire denied using steroids and

declined to talk about his past use in 2005 while under oath and testifying to

Congress.9 McGwire was first implicated during Operation Equine, an FBI steroid

investigation in the 1990s. McGwire and Canseco’s names came up during

the investigation and evidence suggested that McGwire was a hardcore user.10

McGwire admitted to using steroids prior to the 1990 season.

In Fig. 9.7, we present the age–performance profile of McGwire. McGwire had a

dominant rookie year (1987), batting 0.289 while hitting 49 home runs and driving

in 118 runs. Based on his performance, McGwire won the Rookie of the Year

award, winning all first place votes. He had a strong second year, but it was not as

good as his rookie season. In 1987, at the age of 23, his slack of zero placed him on

the frontier.11 In 1988, his slack increased to about 9; a year later his slack increased
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Fig. 9.6 Age–performance profile of Lenny Dykstra

9 According to 60 minutes, McGwire denied the allegations in 2005 by stating “Once and for all, I

did not use steroids nor any illegal substance.” See http://www.cbsnews.com/stories/2005/08/05/

60minutes/main761932_page2.shtml?tag¼contentMain;contentBody. By his own admission in

2010, this statement was a lie.
10 The implication was discussed in a March 2005 New York Daily News article “Hitting the

Mark: FBI informants say McGwire was juiced,” by Michael O’Keefe, Christian Red and T.J.

Quinn. The article was accessed online.
11McGwire was born on October 1 and would have turned 24 before the end of the season. For

convenience, and without loss of generality, we use our measure of age for the discussion.
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to 12. It was around this time that Canseco claimed that the “Bash Brothers” were

regularly using steroids.

McGwire’s age–performance profile is not typical because he had a dominant

rookie season. Even after that, while his performance declined, his performance

was near the frontier. Furthermore, given that he has admitted using steroids

throughout his career, it is harder to discern a pattern. We estimated three

separate trend lines from three separate regressions. The dashed line represents

the predicted values from estimating the Tobit regression using all observations.

From this regression, it appears that peak performance occurred at

Age� ¼ 29:53.
Based on the dashed trend line, there are four observations (circled) that appear to

be outliers. These correspond to the 1996–1999 seasons; in all these years McGwire

performed on the frontier, including the infamous 1998 season. In addition, in the

1994 season, there is an outlier due to having only 135 at bats. We removed the low

at bat year and the last three seasons for which he performed on the frontier (1997,

1998, and 1999 seasons) and reran the regression. The resulting trend is illustrated

with the solid black line. This further illustrates the 4 years of outliers. The

corresponding age of optimal performance was calculated to be Age� ¼ 27:83.
From this, it appears that his age of peak performance by 1.5 years.

We also consider fitting a regression line using only observations after the 1993

season. This trend line is illustrated in red. The red trend line does the best job of

capturing the performance in the second half of McGwire’s career. The associated

peak performance occurs at Age� ¼ 34:30. This suggests that McGwire gained at

least 4 years of optimal performance. McGwire hit 583 career home runs; during

these four outlier years, he hit 245 (42%) of his 583 home runs. If we project the

four outliers to the black trend line, we estimate that McGwire would have hit 119

(using similar points from earlier years). Hence, McGwire likely gained around 125

career home runs given his steroid use. Would McGwire have hit over 500 career

home runs absent steroids? Unfortunately, we will never know.
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Fig. 9.7 Age–performance profile of Mark McGwire
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Jose Canseco

The other half of the “Bash Brothers,” Jose Canseco, was among the first to admit

steroid use. Canseco’s 2005 book Juiced: Wild Times, Rampant Roids, Smash Hits,
and How Baseball Got Big was a best-selling book “that started the steroid

scandal.”12 Canseco admits to having used steroids as early as 1984 in the minor

leagues and throughout his major league career. In addition, he claims to have

injected Rafael Palmeiro, Juan Gonzalez, Ivan Rodriguez, Jason Giambi, Wilson

Alvarez, and Dave Martinez, among others, and implicates Brett Boone.

An analysis of Canseco is harder because his steroid use was spread out over his

entire career. In addition, Canseco was often injured and his performance was

influenced by his number of at bats. The correlation between his slack at bats was

0.86; as he got more at bats, he performed better.

Canseco’s age–performance profile is revealed in Fig. 9.8. Looking at the

original data, a pattern is not apparent. He only achieved the frontier twice in his

career and his performance fluctuated from year to year. We note first that in two of

his seasons he had less than 250 at bats. These observations are circled. We consider

two trend lines based on his number of at bats. The lower trend line indicates better

performance; for these observations he had at least 425 hits. The lower trend

indicates an age of optimal performance of Age� ¼ 26:61. The higher trend

line indicates lower performance and occurred when Canseco had less than 400 at

bats. The associated age of optimal performance occurs at Age� ¼ 30:14. It is not
clear how to interpret these results, especially without detailed knowledge of the

actual steroid use and nature of the injuries. Perhaps extensive play on steroids in a

given year resulted in nagging injuries.
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Fig. 9.8 Age–performance profile of Jose Canseco

12 This description is written on the cover of Juiced.

104 9 Steroids in MLB: An Analysis of Hitters



Ken Caminiti

Ken Caminiti played Major League baseball during the steroid era. Unlike many

others, Caminiti admitted his steroid use.13 In an interview with Sports Illustrated
conducted in 2002, Caminiti claimed that he began using steroids in 1996. According

to theMitchell Report, however, former teammates claimed that Caminiti was openly

using steroids in 1995. Caminiti speculated that at least half of Major League players

used steroids. During the 1996 season, he hit 0.326 with 40 home runs and 130 runs

batted in. For his performance, Caminiti won the National League Most Valuable

Player Award. Caminiti’s age–performance profile is presented in Fig. 9.9.

Like other players who started using steroids in the middle of the their careers,

Caminiti’s profile has the expected shape. The age of his optimal performance was

estimated to be Age� ¼ 30:62. The largest outlier where performance is better than

expected occurs at age 33 during his MVP 1996 season. Interestingly, the years

before and after his MVP season also appear to be outliers, though closer to the

predicted value. This is consistent with the claims in the Mitchell Report that

Caminiti started using steroids earlier than 1996 and continued after.

Jason Giambi

Jason Giambi started his Major League career in Oakland in 1995. In 2001 he

signed a 7 year, $120 million contract with the New York Yankees. While in

Oakland, he played with Jose Canseco in 1997. Canseco names Giambi as one of
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Fig. 9.9 Age–performance profile of Ken Caminiti

13 Caminiti suffered from other substances abuse, admitting to a problem with alcohol and cocaine.

Caminiti died of an overdose of cocaine and opiates in 2004.
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the players whom he personally injected with steroids.14 Chapter 15 of Canseco’s

2005 book Juiced is titled “Giambi, The Most Obvious Juicer in the Game.” In the

chapter, Canseco alleges that Giambi and McGwire were open and casual about

their steroid use. In Canseco’s opinion, Giambi had average abilities that were

greatly enhanced by steroid abuse.

Giambi’s age–performance profile is presented in Fig. 9.10. Given the admitted

use of steroids, we are able to construct two trends. In the first regression, we

consider all data points. This trend line is dashed and indicates an age of optimal

performance of Age� ¼ 30:50. For the second regression, we omitted his first year

due to low at bats (176) and the corresponding seasons where he admitted steroid

use (2001–2003). This regression resulted in Age� ¼ 28:97, suggesting that Giambi

was able to defy nature by 1.5 years. The circled range contains many questionable

years where he performed better than expected. These outliers include the

1999–2003, 2005, 2006, and 2008 seasons. In 2004, Giambi was treated for a

tumor and only had 264 at bats. Likewise, in 2007 he only had 254 at bats due to

injuries.

The results confirmCanseco’s assessment of Giambi. Our analysis reveals that his

performance was enhanced; if Giambi did in fact stop taking performance-enhancing

drugs after 2003, it is not clear what explains his outlier performance during the 2008

season. Do steroids have lasting performance benefits after a player stops using?

Gary Sheffield

Gary Sheffield began his Major League career with the Milwaukee Brewers in 1988

and has played on several other teams. Sheffield is a career 0.292 hitter with 509

home runs. Sheffield was implicated in the BALCO scandal and testified before the
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Fig. 9.10 Age–performance profile of Jason Giambi

14 Giambi was also implicated in the BALCO scandal. According to the Mitchell report, BALCO

founder Victor Conte sold and advised numerous athletes (including Barry Bonds) on the “Clear”

and the “Cream.” Giambi was one of the implicated. Testifying before Congress in the BALCO

investigation, Giambi admitted steroid use but focused on the links to BALCO.
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grand jury in 2003 that he had used undetectable steroids. Sheffield was implicated

in the Mitchell Report as one of the athletes who not only bought the BALCO drugs

but also were advised on the use. Evidence of a transaction involving BALCO and

Sheffield was found in a search of Greg Anderson (Barry Bonds’ personal trainer)

condominium. Sheffield denied knowledge that the “Cream” was a steroid and that

it was only applied to heal his knee.

Sheffield’s profile is presented in Fig. 9.11. We consider two trend lines; the

dashed line is based on all observations. In this case, the estimated peak age is

Age� ¼ 29:19. Using this trend, however, reveals many outlier performances. This

results because Sheffield had a lot of years that were above the trend. As an

alternative, I considered a trend line based on only the lower envelope of perfor-

mance. This solid trend line reveals only one outlier (2009 season) that results from

only 268 at bats. The peak age under with this specification is 30.42 which is not

inconsistent with expectations. These results suggest that Sheffield did not benefit

from steroid use or other performance-enhancing drugs. While this may not be the

case given the dispersion of the data, I believe Sheffield should be given the benefit

of the doubt.

Barry Bonds

Barry Bonds is perhaps the most controversial case involving steroids. Bonds began

his Major League career with the Pittsburgh Pirates in 1986. In 7 years with the

Pirates he hit 176 home runs. In 1992, he signed as a free agent with the San

Francisco Giants. Bonds played 15 seasons with the Giants, hitting another 586

home runs. His batting average increased from 0.275 with the Pirates to 0.312 with

the Giants. In the 1998 home run battle between Sosa and McGwire, Bond hit only

37. In 2000, Bonds had his best home run total to date, hitting 49 home runs. The

next year, Bonds hit 73 home runs, shattering the single season mark. He is the
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Fig. 9.11 Age–performance profile of Gary Sheffield
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career leader in home runs and walks and is in the top five all time in runs batted in,

total bases and runs scored. Bonds is the only player to hit at least 500 home runs

and steal at least 500 bases.

In 2006, Mark Fainaru-Wada and LanceWilliams releasedGame of Shadows, an
explosive book that alleges that Bonds used many steroids including stanozolol.

According to Fainaru-Wada and Williams, the home run chase between Sosa and

McGwire was at the root of Bonds’ decision to start using steroids. The book alleges

that Greg Anderson, Bonds’ weight trainer, started injecting Bonds with stanozolol

after the 1998 season. The case against Bonds is damning and the story told in

Game of Shadows is more plausible than the denials issued by Bonds.15

In the appendix of the book, the authors present evidence that supports the case

of steroid use. The details include collaborating evidence regarding the relationship

between Anderson, Bonds, and BALCO. Bonds’ former girlfriend, Kimberly Bell,

testified that Bonds admitted steroid use to her in 2000 and blamed steroids for the

1999 injury. Bonds only appeared in 102 games that year. In addition, the raid on

Anderson’s condominium uncovered damning documentation that detailed Bonds’

steroid use. The evidence suggests Bonds paid for growth hormones, the Cream and

the Clear and Depo-testosterone. A calendar provided details about his regimen.

Bonds’ age–performance profile is shown in Fig. 9.12. The results are consistent

with theory from the beginning of his career through the mid-1990s. In his first six

seasons, Bonds did not achieve the frontier. In his last season with the Pirates he

performed on the frontier. During this time, he had impressive numbers, hitting 176

home runs and stealing 251 bases. Bonds continued on the frontier (except for the

strike-shortened 1994 season) until 1998. Two trend lines are illustrated. The

dashed trend line reflects predictions using all observations. The associated age of

peak performance is estimated to be Age� ¼ 33:03. As discussed earlier, Bonds’

age was 2.5 years after Ruth’s estimated peak age. Other than this estimate, the

dashed age–performance trend does not contain the usual outliers that we have
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Fig. 9.12 Age–performance profile of Barry Bonds

15 Bonds sued because the book contained sealed grand jury testimony. Bonds dropped the lawsuit.

See http://sports.espn.go.com/mlb/news/story?id¼2381381 for more information.
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observed from other admitted steroid users. Part of the reason is that the positively

sloped portion of the trend line is derived from the relatively lower performance

observed in Bonds’ last two seasons. In these seasons, he had less than 400 at bats.

The second (solid) trend line was estimated without the last two observations.

In this case, the positively portioned segment is estimated by exploiting the

observed downward sloping relationship earlier in his career and the symmetry of

the quadratic function. In this case the estimated peak age was Age� ¼ 40:88.16

The well-documented change in Bonds’ physique, together with the available

evidence, should leave little doubt regarding his steroid use. The resulting effects on

his performance are undeniable. Unfortunately, Bonds’ steroid use will likely

prevent his inclusion into the Hall of Fame, which would have likely happened if

he never used steroids. It is also unfortunate that the cherished baseball records

dating back to Ruth, Maris, and Aaron are held by the steroid users. Bonds did earn

nearly $200 million as salary from playing baseball. Whether or not the money is

worth is another question.

Sammy Sosa

Sammy Sosa is best known for his 1998 season when he competed with McGwire to

see who would break Maris’ single season home run (61) record. Sosa lost that race

but managed to hit 66 home runs, 5 more than Maris. In 1999 and 2001, Sosa also

hit more home runs than Maris, hitting 63 and 64, respectively. Later in his career,

he joined Ruth, Mays, Aaron, and Bonds in the exclusive 600 career home run club.

Sosa was one of the players who tested positive for performance-enhancing drugs,

but he has denied it. Figure 9.13 illustrates his age–performance profile.
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Fig. 9.13 Age–performance profile of Sammy Sosa

16 As we remove the frontier performance from the end of his career, the peak age decreases, but

the resulting trend line illustrates outlier performance.
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Sosa’s profile is straight forward. The years he appeared on the frontier are all

outliers. In that time frame, Sosa hit 177 home runs. Sosa’s trend line also reveals

the difficulty of identifying steroid usage. Sosa did not appear on the frontier in

1998, and the observation is not an outlier with respect to the trend. But this results

because of the comparison with McGwire, who has admitted using performance-

enhancing drugs. Assuming Sosa did use steroids in 1998, the data will not reveal it

without a more dynamic analysis. In Sosa’s case, his peak age was estimated to be

Age� ¼ 30:06, which coincides with his 1998 season.

If a player only uses steroids between the ages of 28 and 32, the age-profile

analysis would likely not capture outlier performance.

Manny Ramirez

Former Cleveland Indian Manny Ramirez tested positive in 2009 for human

chorionic gonadotropin (HCG), a fertility drug used between steroid cycles to

restore natural testosterone production. It is alleged that Ramirez also tested

positive for artificial steroids.17 Ramirez received a 50 game suspension but

claimed the drug was prescribed for a personal health reason, implying that he

did not use performance-enhancing drugs. Ramirez claims to have passed 15 drug

tests in the 5 years prior.

Ramirez’ age–performance profile is shown in Fig. 9.14. The trend line that best

captured his performance was obtained by omitting 3 years of relatively poor

performance.18 His peak performance happened at an estimated Age� ¼ 29:30.
However, his 2008 season is an outlier, suggesting enhanced performance.

There are other players who have been implicated, tested positive or who have

admitted steroid use. Alex Rodriguez, for example, admitted steroid use. However,
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Fig. 9.14 Age–performance profile of Manny Ramirez

17 http://thesteroidera.blogspot.com/2009/05/manny-ramirez-suspended-50-games-for.html.
18 By removing these observations, we obtain a more favorable trend for Ramirez.
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given that he turned 34 years old during the 2009 season, there is insufficient data to

conduct a proper analysis. Our goal was to analyze the steroid issue using DEA.

We have analyzed some of the greats from the pre-steroid era and some of the major

stars who were either known or suspected of steroid use. For completeness, we turn

our attention to a few players who played during the era but who have not been

implicated.

Other Steroid-Era Players

In this section, we consider other players who played during the steroid era.

We make no claim as to actual steroid use but provide age–performance profiles.

We focus on the three superstars: Ken Griffey Jr., Carlos Delgado, and Jim Thome.

Ken Griffey Jr.

Ken Griffey Jr. began his Major League career with the Seattle Mariners. He played

in 22 seasons before retiring in the 2010 season. Griffey finished with a career 0.284

batting average with 630 career home runs. Griffey was voted to the All-Century

Team and was a 13 time all-star and 1997 American League MVP. Griffey was

known not only for his hitting but also for his fielding, winning ten gold gloves.

Griffey was traded in 2000 to the Cincinnati Reds, his father’s original team.

Whereas Griffey was considered among the best ever based on his career in

Seattle, his career declined due to injuries while he was a Red. From 2001 until

2006, Griffey appeared in an average of 93 games. Griffey suffered a serious injury

in 2004 in which his hamstring tore off the bone.19 While it is not known with

certainty, it is widely believed that Griffey was steroid free throughout his career.
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Fig. 9.15 Age–performance profile of Ken Griffey Jr.

19 There was some speculation that this type of injury results from steroid use.
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Griffey’s age–performance profile is presented in Fig. 9.15. The circled obser-

vations represent the years where Griffey had less than 400 at bats. The trend

line obtained after removing these points is illustrated. As shown, there are no

significant outliers before the trend. Griffey’s peak age was estimated to be

Age� ¼ 28:25. Based on this analysis, there is no reason to believe Griffey’s

performance was enhanced.

Carlos Delgado

Carlos Delgado began his career with the Toronto Blue Jays in 1993. His first strong

season was in 1996 at the age of 24. Delgado has had a solid year with 473 career

home runs and a 0.280 batting average. And, like Griffey, he has not been

implicated in steroid use. His age–performance profile is presented in Fig. 9.16.

Until 2009, Delgado has played relatively injury free. In 1994, he only had 130

at bats; this observation is circled. There are a few seasons (2001, 2002, and 2004)

with worse than expected performance. In those years, he hit 39, 33, and 32 home

runs, respectively. We note that he played well during these seasons; the calculated

slack is relative to the performance of other in this period, including admitted

steroid users. The trend line was estimated without these four observations. Delga-

do’s peak age was estimated to be Age� ¼ 30:20. As shown, only his 2008 season

appears to be an outlier with possible enhanced performance. During 2008, at the

age of 36, Delgado hit 38 home runs for the Mets while batting 0.271.

I would conclude that Delgado’s performance was not enhanced.

Jim Thome

Jim Thome began playing for the Cleveland Indians in 1991. The 1995 season was

Thome’s first playing in over 100 games. In that year, he hit 25 home runs while

Carlos Delgado

0

10

20

30

40

0 10 20 30 40
Age

S
la

ck

Fig. 9.16 Age–performance profile of Carlos Delgado
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batting 0.314. Thome played in 12 seasons for the Indians, hitting 334 home runs at

that time. In 2002, he hit his single season high 52 home runs for the Indians.

Thome was a key player for the Indians in both years (1995 and 1997) the team

made the World Series. In 2002, he signed as a free agent with the Philadelphia

Phillies, and in 2006 he was traded to the Chicago White Sox. Thome has also

played for the Dodgers (2009) and is currently playing for the Twins. Overall,

Thome has an impressive record, with a career batting average of 0.277 with 570

home runs (11th all time). As a slugger, Thome (13.70) ranks behind only McGwire

(10.61), Ruth (11.76), Ryan Howard (12.54), and Barry Bonds (12.92) in at bats per

home run.

Jim Thome has not been implicated using performance-enhancing drugs.

A search of the Internet reveals some speculation, claiming that Thome’s power

numbers increased in the early 2000s.21 Thome’s maximum home run production

occurred at age 31. Ruth’s highest home run total was achieved at the age of 32.

At the same age, Thome hit more home runs than Ruth only four times: 27, 30, 31,

and 39. Over those four ages, Thome hit only 20 more home runs than Ruth. The

primary reason was at age 30, Ruth suffered a mysterious illness and hit 21 (22) less

home runs than his previous (following) year. Ruth and Thome hit the same number

of home runs at the same age twice; both hit 2 at age 22 and both hit 34 at age 38.

In 12 instances, Ruth hit on average 16.5 more home runs at the same age.

Thome’s age–performance profile is presented in Fig. 9.17. Two profiles are

considered; the dashed trend line illustrates predictions using all observations.

The trend is clearly biased because the middle years indicate relatively low

performance, even though these were Thome’s best years. Of course, his

relative performance was low because he was being compared to other players with

enhanced performance. The solid trend line controls for those years; in this case,

Thome achieved a peak age at Age� ¼ 31:16. This is similar to Mike Schmidt’s peak

age. From this trend, it does not appear that Thome’s performance was enhanced.
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Fig. 9.17 Age–performance profile of Jim Thome

21 See, for example, http://bleacherreport.com.
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Chapter 10

Steroids in MLB: An Analysis of Pitchers

Introduction

In the last chapter, we applied DEA to obtain ameasure of aggregate performance by

each hitter in each season. We then analyzed each player’s age–performance profile

to identify unusual performances. The theory is that eventually, diminishing returns

sets in as a player gets older. A quadratic specification was chosen to identify the age

of peak performance and to predict performance as age increases. Using stars who

played prior to the steroid era, we established benchmark age–performance profiles.

We then applied the method to known steroid users to see if enhancement allowed

players to defy the standard profiles. The results do provide insight into potential

steroid use.

Most of the public attention on steroid use is focused on the hitters. After all,

some of the historic hitting records that have been held for decades were shattered.

Roger Maris’ single season home run mark of 61 established in 1961 was broken 37

years later by Mark McGwire’s record 70. McGwire bested Maris again in 1999

with 65. Sammy Sosa beat Maris’ mark three times when he hit 66, 63, and 64 home

runs in 1998, 1999, and 2001. McGwire’s new record did not last long as Barry

Bonds hit 73 home runs in 2001. This was the first season Bonds ever hit more than

50 home runs and he did it in only 476 at bats.

Hank Aaron broke Babe Ruth’s career home run mark by hitting his 715th on

April 8, 1974. Aaron hit 40 more home runs in his career, establishing 755 as the

new mark to beat. Aaron’s record fell on August 7, 2007 when Barry Bonds hit his

756th career home run. Another great record shattered by an alleged steroid user.

We know that there have been pitchers who have tested positive for steroid use.

In the case of the pitcher, however, we have not seen the transformation into body

building types who gain 30 pounds of muscle in a short period of time. Pitchers

might take it to increase strength, perhaps to add velocity to a fastball or to help in the

recovery process. Nonetheless, because most notable records are hitting and the

obvious case of steroid abuse has been by hitters, pitchers have not been scrutinized.

Major League Baseball instituted a new drug policy in 2004 which included

random testing and suspensions. In 2005, players and owners agreed to harsher

penalties including a 50 game suspension for first time offenses. Manny Ramirez

J. Ruggiero, Frontiers in Major League Baseball, Sports Economics,

Management and Policy 1, DOI 10.1007/978-1-4419-0831-5_10,
# Springer Science+Business Media, LLC 2011
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was perhaps the biggest name to have tested positive, receiving a 50 game suspension

in 2009. Interestingly, nearly 50% of those who have tested positive since 2004 have

been pitchers.

In this chapter, we employ model (6.1) from Chap. 6 to evaluate pitcher 0:

�0 ¼ max �

subjectto

Xn

j¼1

ljykjr �yk0; k ¼ 1;��� ; s;

Xn

j¼1

lj ¼ 1;

ljr0; j ¼ 1;��� ; n:

(10.1)

This model was applied to analyze pitchers in all Major League seasons; the

resulting estimate ��1
it measures the performance of pitcher i in time period t.

Following Chap. 6, we choose three individual performance statistics: innings

pitched (IP), innings pitched per earned run (IP/ER), and innings pitched per hit

(IP/H). We solved (10.1) for each pitcher who started at least ten games in a given

season.

Maintaining our assumption that marginal performance decreases eventually as

the player gets older, we estimate a quadratic regression of the form (we suppress

the pitcher subscript)

��1
t ¼ aþ b1Aget þ b2Age

2
t þ et: (10.2)

In order to observe the theoretical shape of the age–performance curve, the para-

meters will be economically significant if b1r0 and b2b0:We note that this differs

from the measure used in Chap. 9 because a higher value of ��1
it is associated with

better performance. The equation for each player was estimated using Tobit, with

an upper bound of 1, to account for the truncation arising from observing only

relative and not absolute performance. Given the quadratic function, the estimated

age of optimal performance is the same as in Chap. 9:

Age� ¼ �b̂1
2b̂2

: (10.3)

Profiles, Pre-steroids

In this section we consider age–performance profiles of some of the all-time great

pitchers who pitched before the steroid era.
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Cy Young

We first consider Cy Young, identified in Chap. 8 as the highest rated pitcher of all

time. Young still holds the record for the most wins (511) and had a career earned

run average of 2.63 with 2,803 strikeouts. Young began his career in 1890 with the

Cleveland Spiders at the age of 23 and pitched in 22 seasons. His age–performance

profile is presented in Fig. 10.1.

We note that there are instances where some years Young performed consis-

tently below the trend line. The effect is to pull the trend line down. We delete some

of these observations to obtain a better estimate of the curvature. The qualitative

results are not changed. Young’s profile reveals the expected quadratic trend. His

age of peak performance was estimated to be Age� ¼ 32:01.

Walter Johnson

Walter Johnson began his career for the Washington Senators in 1907. He pitched

in 21 seasons, all for the Senators, winning 417 games with a career earned run

average of 2.17. Johnson was voted onto the All-Century Team and is considered

one of the greatest pitchers of all time. Johnson still holds the record for career

shutouts with 110. His age–performance profile is shown in Fig. 10.2.

Like Young’s, Johnson’s quadratic trend line is a good predictor of actual

performance. We see that his performance declines as he gets older after his peak

performance Age� ¼ 29:57.

Warren Spahn

Warren Spahn began his career with the Boston Braves in 1942. He pitched with the

Braves (Boston and Milwaukee) for 20 of his 21 seasons and is considered one of
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Fig. 10.1 Age–performance profile of Cy Young
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the best left-handed pitchers of all time. Spahn won 363 games, fifth best all time

and best among left-handed pitchers, with a career earned run average 3.09. Spahn

missed three full seasons due to World War II beginning when he was 22. Spahn’s

career is a useful benchmark given that he appeared in 14 all-star games. His profile

is presented in Fig. 10.3.

Spahn’s trend reveals the typical pattern, with peak performance estimated to be

at Age� ¼ 33:03. This age should be discounted because he lost 3 years of pitching
due to the war. Spahn’s profile appears to have several outliers; two outliers appear

in his first two full seasons and several appear at the end of his career. The lost years

together with the lower than expected performances in the middle of his career, we

conclude that Spahn’s profile is not a useful benchmark.

Whitey Ford

Whitey Ford spent his entire career (18 seasons) with the New York Yankees,

winning 236 games (a club record) with an earned run average of 2.75. Ford was a

ten-time all-star, 1961 Cy Young Award winner, and a six times World Series

champion. Ford did not pitch at ages 22 and 23 due to service during the Korean

War. Ford’s profile is shown in Fig. 10.4.

Observing the data, it appears that Ford’s first season was an outlier. This was his

only season prior to his service. After removing this outlier, the resulting trend

presents a good fit. His peak age was estimated to be Age� ¼ 30:32 and there do not
appear to be any enhanced outliers beyond this age.

Tom Seaver

Tom Seaver began his career with the New York Mets in 1967 at the age of 22.

He pitched in 20 seasons, winning 311 games with a career 2.86 earned run average.

Seaver was a 12-time all-star and three-time National League Cy Young Award
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Fig. 10.2 Age–performance profile of Walter Johnson
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winner (1969, 1973, and 1975). Seaver’s age–performance profile is presented in

Fig. 10.5

Seaver’s profile reveals a trend consistent with diminishing returns. His peak age

was estimated to be Age� ¼ 31:36. As expected, there are no performance-

enhanced outliers in Seaver’s profile.

Profiles, Admitted and Implicated Steroid Users

In this section, we analyze profiles of players who have either admitted using

steroids or who have been implicated.

Paul Byrd

Paul Byrd began his Major League career in 1995 with the New York Mets. He has

played with seven teams over 14 seasons; in his first three seasons he was used in a

relief role but became a starter in 1998. Byrd first had ten starts in 1999 with the
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Fig. 10.4 Age–performance profile of Whitey Ford
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Fig. 10.3 Age–performance profile of Warren Spahn
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Philadelphia Phillies. Byrd was among the players listed in the Mitchell Report as

one of the alleged purchasers of HGH from Florida rejuvenation centers between

2002 and 2005. The San Francisco Chronicle broke the story on Byrd, who bought

over 1,000 vials of HGH. In response, Byrd admitted using HGH, but claimed it was

legitimate use because he suffered from growth-hormone deficiency and that he

took only what was prescribed by his doctor. According to the Chronicle, two of

Byrd’s prescriptions were written by a dentist. In his career, Byrd has won 107

games with a 4.39 earned run average.1

Byrd’s age–performance profile is illustrated in Fig. 10.6. We recognize that

Byrd only has nine observations in our sample, beginning at the age of 29. This

makes establishing a pattern more difficult. Using all observations, the trend line is

shown with a suspected outlier at age 32 during the 2002 season. The evidence

linking Byrd to HGH use started at the end of the season, however. The estimated

age of peak performance was Age� ¼ 35:53. This is higher than would be expected,
but may partly result from the limited sample.

Kevin Brown

Kevin Brown started pitching in the Major Leagues in 1986 with the Texas

Rangers. Brown has played for six major league teams over 19 seasons, winning

211 games with a career earned run average of 3.28. Brown was implicated by

Radomski, who claims Kevin Brown was a knowledgeable steroid user before he

started selling him steroids and HGH after 2001. Evidence of a transaction between

Brown and Radomski was seized by federal agents; the receipt is included in the

Mitchell Report. In addition, the Mitchell Report reveals that the Dodgers officials

suspected steroid use by Brown in 2003. Brown’s prolife is presented in Fig. 10.7.

Brown’s profile contains observations of relative low performance relative to the

trend. In addition, the circled observations appear to suggest enhanced

1 See http://www.sfgate.com/cgi-bin/article.cgi?file¼/c/a/2007/10/22/MN69STUND.DTL.
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Fig. 10.5 Age–performance profile of Tom Seaver
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performance. The associated age of peak performance is estimated to be

Age� ¼ 30:57.2 We note that the circled observations are consistent with the

available evidence.

Roger Clemens

Roger Clemens began his career with the Boston Red Sox in 1984 at the age of 21.

He played 13 seasons with the Red Sox, winning 192 games with an earned run

average of 3.06. During his last season with the Red Sox, Clemens went 10–13 with

an earned run average of 3.63. In December 1996, he signed as a free agent with the

Toronto Blue Jays. In his first two seasons, he regained his old form, winning 20

games each season and posting an earned run average of 2.05 and 2.65, respec-

tively. In 2002, he signed as a free agent with the New York Yankees and spent five

seasons, where he won another 77 games. In 2004, he signed as a free agent with the
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Fig. 10.6 Age–performance profile of Paul Byrd
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Fig. 10.7 Age–performance profile of Kevin Brown

2Other trends were considered; this appears to provide the most reasonable fit. In order to include

the circled observations within the trend, more observations have to be removed, and the age of

peak performance increases.
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Houston Astros. In his first year, at the age of 41, Clemens won 18 games and had a

2.98 earned run average. In 2005, Clemens posted his lowest earned run average of

1.87, winning 13 games. Overall, Clemens won 354 games with a career earned run

average of 3.12. Clemens won 7 Cy Young Awards; he won his first in 1986 and his

last in 2004 at the age of 41.

Clemens was implicated as a steroid and/or HGH user by Canseco (2005)

and Radomski (2009) and is mentioned nearly 100 times in the Mitchell Report.

One of Radomski’s customers was Brian McNamee, a bullpen catcher for the New

York Yankees (1993–1995). McNamee was hired by the Toronto Blue Jays as its

strength and conditioning coach (1998–1999). In 2000, McNamee was hired by the

Yankees as an assistant strength and conditioning coach. According toMcNamee, he

injected Clemens with steroids during the 1998, 2000, and 2001 seasons. McNamee

was released by the Yankees after the 2001 season, but he apparently kept working

with Clemens. Radomski sold HGH and steroids to McNamee from 2000 to 2004.

Clemens has repeatedly and forcefully denied using performance-enhancing

drugs. In January 2008, Randy Hendricks, Clemens’ agent, released a report

purportedly providing statistical analysis showing Clemens did not take steroids.3

In the report, they provide comparisons to Randy Johnson, Curt Shilling, and Nolan

Ryan (all of whom also pitched during the steroid era). However, comparisons are

not made to the great pitchers from the past. Bradlow et al. (2008) provided an

alternative analysis by analyzing trajectories assuming a quadratic specification.

Their analysis is similar to the age-profile regressions used here; however, they use

individual statistics instead of an overall measure of performance. The authors

conclude that Clemens’ trajectory is atypical and hence, does not provide evidence

against performance enhancing drug use.4

Clemens age–performance profile is presented in Fig. 10.8. Unlike the other

pitchers analyzed, Clemen’s profile indicates a tale of two pitchers. Two trends are

apparent, both of which are consistent with our expectations if they were not for the

3 http://www.rogerclemensreport.com/reports/ClemensReport.pdf.
4 http://bpp.wharton.upenn.edu/jwolfers/Papers/ClemensAnalysis.pdf.

Roger Clemens

0
0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40 50
Age

P
er

fo
rm

an
ce

Fig. 10.8 Age–performance profile of Roger Clemens

122 10 Steroids in MLB: An Analysis of Pitchers



same pitcher. During August in the 1995 season, Clemens turned 33 years old. The

first trend line captures his career from 1984 until 1995. His age of peak perfor-

mance was estimated to be Age� ¼ 26:81 for this trend. The first trend is indicative
of standard performance over a career, but the peak performance of 27 is a few

years short of expected. The 1995 season also appears as the starting point for the

second trend, which has an estimated Age� ¼ 40:05. The results are consistent with
an enhanced performance.

Chuck Finley

Chuck Finley pitched for the California/Anaheim Angels from 1986 through 1999;

in these 14 seasons he won 165 games with an earned run average of 3.72.

He signed as a free agent with the Cleveland Indians in December 1999. In his

two and a half seasons with the Indians, he won an additional 29 games with a 4.59

earned run average. Cleveland traded him to the Cardinals in July 2002. Over his

career, he won 200 games with earned run average of 3.85. After filing for divorce

from her husband, Tawny Kitaen claimed that Finley used steroids and boasted that

he was able to beat MLB steroid tests.

Finley’s profile is illustrated in Fig. 10.9. The initial trend line (not shown) had

the wrong first and second derivatives. While not as obvious as Clemens’ profile, it

turns out two trends work well in explaining his performance. Like Clemens, his

profile is split at the age of 33 in 1995. The first (second) trend line has a peak age of

Age� ¼ 28.37 (36.44). Unlike Clemens, his predicted peak performance declined at

the second maximum. The results suggest some enhancement, as suggested by

Kitaen. Absent additional information, however, not much more can be said.

Other Steroid-Era Pitchers

In this section, we consider other pitchers who played during the steroid era. Of

course, no claim is made regarding the use of performance-enhancing drugs.
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Bret Saberhagen

Bret Saberhagan began his Major League career in 1984 with the Kansas City

Royals. Saberhagen won 167 games over 16 seasons with a career earned run

average of 3.34. Saberhagen also played for the Mets, the Rockies, and the Red

Sox. Saberhagen was a two-time American League Cy Young Award winner and

was selected to three all-star games. In 1998, Saberhagen won the AL Comeback

Player of the Year Award. Saberhagen’s profile is presented in Fig. 10.10.

We consider two trends for Saberhagen. The dashed trend excludes his good

seasons in 1998 and 1999. The excluded observations, of course, appear as outliers

in this case because we do not observe performance beyond these seasons. The

associated peak age of performance was calculated as Age� ¼ 24:41. If instead, we
exclude the first two years when he was 20 and 21, we obtain the solid trend line. In

this case, the last two seasons are not outliers. Peak age in this case is estimated to

be Age� ¼ 28:73. Since this age is below most pitchers peak ages, we should

conclude that Saberhagen’s performance was not enhanced.

Nolan Ryan

Nolan Ryan began his Major League career in 1966 with the New York Mets at the

age of 19. He pitched in only two games. In 1968, he started 10 games, won 6, and

had an earned run average of 3.09. Over his career, he pitched in a major league

record 27 seasons, recording 324 wins with an earned run average of 3.19. Ryan

holds the record for career strikeouts with 5,714. Ryan holds the record with seven

no-hitters and is known for his 100þ mph fastball. Ryan’s career overlapped with

the steroid era, so we include him as a benchmark. His profile is shown in

Fig. 10.11.
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Ryan’s peak age was estimated to be Age� ¼ 33:54. Based on the trend, there

appear to be three enhanced outliers corresponding to the 1990–1992 seasons when

he played for the Texas Rangers. Ryan has never been implicated.

Randy Johnson

Randy Johnson started his major league career in 1988 for the Montreal Expos.

He was traded the next season to the Seattle Mariners, where he played in ten

seasons, winning 130 games with a 3.42 earned run average. In 1998 he was traded

to the Houston Astros where he won ten games with a 1.28 earned run average. In

December 1998 he signed as a free agent with the Arizona Diamondbacks. In 2002,

at the age of 38, Johnson won 24 games while posting a 2.32 earned run average.

Johnson later played for the Yankees, the Diamondbacks, and the San Francisco

Giants in 2009. In his career, he won 303 games and had a 3.29 earned run average.

Johnson was selected to ten all-star games, won the 1995 American League Cy

Young Award, and won the National League Cy Young Award four times (1999,

2000, 2001, and 2002). At the age of 40, Johnson became the oldest pitcher to throw

a perfect game. Johnson ranks first all-time in strikeouts per nine innings pitched and

second all time with 4,875 strikeouts. Johnson’s profile is presented in Fig. 10.12.

After removing some relatively poor performances, we estimated his performance;

the resulting trend line is shown. Interestingly, there appear no enhanced outliers;

however, his peak age is estimated to be a remarkable Age� ¼ 38:08.

Curt Schilling

Curt Schilling’s major league career lasted 20 seasons; he did not start ten games in

a season until he pitched for the Philadelphia Phillies in 1992. While with the

Phillies, he won 101 games with an earned run average of 3.35. After the Phillies,
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he played for the Diamondbacks and finished his career with the Red Sox. Overall,

his earned run average was 3.46, and he won 216 career games. Schilling was a six-

time all-star selection and a member of three World Series champion teams.

Schilling’s profile is presented in Fig. 10.13. Based on the profile, there are no

enhanced outlier years. His age of peak performance is estimated to be

Age� ¼ 35:12. While this appears high, we note that he only pitched in 132.33

innings in his first four seasons, less than the amount he pitched as a regular starter

in 1992. Schilling has not been implicated in steroid use.

Pedro Martinez

The final pitcher we consider is Pedro Martinez, who began with the Los Angeles

Dodgers.Martinez was a relief pitcher while with the Dodgers became a starter in his

third after being traded to the Montreal Expos. In his four season with the Expos,

Martinez won 55 games while posting a 3.06 earned run average. After the 1997

season, Montreal traded Martinez to the Boston Red Sox, where he pitched won 117
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games in 7 seasons. Overall, he has won 219 games. His winning percentage of 0.687

is sixth all time. Martinez was an eight-time all-star selection, three-time Cy Young

Award winner, a World Series Champion, and won the American League Triple

Crown in 1999 at the age of 27. Martinez’ profile is presented in Fig. 10.14.

Martinez’ profile does not indicate any performance enhancement; his age of

peak performance is estimated to be Age� ¼ 29:80.
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