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Preface

BAYSM 2014—the second Bayesian Young Statisticians Meeting—took place at
the WU Vienna University of Economics and Business, Austria, on September 18–
19, 2014. The conference was hosted by the Institute for Statistics and Mathematics
of the Department of Finance, Accounting and Statistics. It attracted more than 100
participants from 25 different countries spread over five continents.

Following BAYSM 2013, the first meeting of this kind in Milan, Italy,
BAYSM 2014 continues to establish a scientific forum for the next generation
of researchers in Bayesian statistics. This inspiring scientific meeting provided
opportunities for M.S. students, Ph.D. students, postdoctoral scholars, young
researchers, and interested parties from the industry to get in touch with the
Bayesian community at large, to expand their professional network, to interact
with colleagues, and to exchange ideas.

The scientific program reflected the wide variety of fields in which Bayesian
methods are currently employed or could be introduced in the future. Three brilliant
keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Uni-
versité Paris-Dauphine), and Mike West (Duke University) were complemented by
24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian
Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and
Methods, as well as a lively poster session with 30 contributions. The presence of
numerous “matured” Bayesians, be it keynote speakers, members of the scientific
committee, or senior discussants, provided invaluable inspiration for all attendant
young researchers. Throughout the whole workshop, participants were able to
discuss open questions, received helpful feedback on their current research, and
were encouraged to pursue their line of research.

This volume comprises a peer-reviewed selection of young researchers’ contri-
butions presented at BAYSM 2014. It is structured in the following way: The first
part, entitled Theory and Methods, is dedicated to mathematical statistics, model
building, and methodological works, demonstrated by examples. The second part,
entitled Applications and Case Studies, focuses on the applications of complex
methods to real-world problems and data. We want to thank all the authors for
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their excellent contributions to this volume. Thanks are also due to all reviewers for
dedicating time and efforts to the improvement of these young researchers’ scientific
attempts.

We would like to take this opportunity to express our gratitude to all those
people who made BAYSM 2014 an outstanding scientific event and an enjoyable
experience. We wish to thank our profound keynote speakers, Chris Holmes,
Christian Robert, and Mike West for their inspiring talks and their most valued
contributions to a lively meeting. Sincere thanks are given to all participants for the
high quality of their presentations. Special thanks go to all the senior discussants
for their valuable feedback, especially Jesus Crespo Cuaresma, Bettina Grün,
Helga Wagner, and the current President of the International Society for Bayesian
Analysis, Sonia Petrone. Finally, we are deeply grateful for the outstanding support
we received from the organizing committee, chaired by Karin Haupt, Deputy Head
of Office FAS D4, the WU Vienna University of Economics and Business, as well
as our sponsors, Accenture, Google, ISBA, and UNIQA.

Hosting this meeting was an exciting and most rewarding experience for us,
and we are very pleased that BAYSM 2014 could continue the great success
of the first meeting. This extraordinary series of scientific meetings for young
researchers in Bayesian statistics will be resumed in June 2016 in Florence, Italy,
with BAYSM 2016. Further information can be found on the BAYSM websites at
baysm2014.wu.ac.at and baysm.org.

Vienna, Austria Sylvia Frühwirth-Schnatter
December 2014 Angela Bitto

Gregor Kastner
Alexandra Posekany

baysm2014.wu.ac.at
http://baysm.org
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Chapter 1
Bayesian Survival Model Based on Moment
Characterization

Julyan Arbel, Antonio Lijoi, and Bernardo Nipoti

Abstract Bayesian nonparametric marginal methods are very popular since they
lead to fairly easy implementation due to the formal marginalization of the infinite-
dimensional parameter of the model. However, the straightforwardness of these
methods also entails some limitations. They typically yield point estimates in the
form of posterior expectations, but cannot be used to estimate non-linear functionals
of the posterior distribution, such as median, mode or credible intervals. This is
particularly relevant in survival analysis where non-linear functionals such as the
median survival time play a central role for clinicians and practitioners. The main
goal of this paper is to summarize the methodology introduced in (Arbel, Lijoi
and Nipoti, Comput. Stat. Data. Anal. 2015) for hazard mixture models in order to
draw approximate Bayesian inference on survival functions that is not limited to the
posterior mean. In addition, we propose a practical implementation of an R package
called momentify designed for moment-based density approximation. By means of
an extensive simulation study, we thoroughly compare the introduced methodology
with standard marginal methods and empirical estimation.

Key words: Bayesian nonparametrics, Completely random measures, Hazard
mixture models, Median survival time, Moment-based approximations, Survival
analysis
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4 J. Arbel et al.

1.1 Introduction

With marginal methods in Bayesian nonparametrics we refer to inferential proce-
dures which rely on the integration (or marginalization) of the infinite-dimensional
parameter of the model. This marginalization step is typically achieved by means
of the so-called Blackwell–MacQueen Pólya urn scheme. We consider the popular
example of the Dirichlet process [4] to illustrate the idea. Denote by YYY = (Y1, . . . ,Yn)
an exchangeable sequence of random variables to which we assign as a prior
distribution a Dirichlet process with mass parameter M and base measure G0, that is

Yi|G iid∼ G,

G ∼ DP(M,G0).

The marginal distribution of YYY , once G has been integrated out, can be derived from
the set of predictive distributions for Yi, given (Y1, . . . ,Yi−1), for each i = 1, . . . ,n.
In this case, such conditional distributions are linear combinations between the
base measure G0 and the empirical distribution of the conditioning variables and
are effectively described through a Pólya urn sampling scheme. Marginal methods
have played a major role in the success of Bayesian nonparametrics since the Pólya
urn generally leads to ready to use Markov chain Monte Carlo (MCMC) sampling
strategies which, furthermore, immediately provide Bayesian point estimators in the
form of posterior means. A popular example is offered by mixtures of the Dirichlet
process for density estimation; for the implementation, see, e.g., the R package
DPpackage by Jara et al. [9]. However, the use of marginal methods has important
limitations that we wish to address here. Indeed, one easily notes that the posterior
estimates provided by marginal methods are not suitably endowed with measures
of uncertainty such as posterior credible intervals. Furthermore, using the posterior
mean as an estimator is equivalent to choosing a square loss function which does
not allow for other types of estimators such as median or mode of the posterior
distribution. Finally, marginal methods do not naturally lead to the estimation of
non-linear functionals of the distribution of a survival time, such as the median
survival time. For a discussion of these limitations, see, e.g., Gelfand and Kottas [5].

The present paper aims at proposing a new procedure that combines closed-
form analytical results arising from the application of marginal methods with an
approximation of the posterior distribution which makes use of posterior moments.
The whole machinery is developed for the estimation of survival functions that are
modeled in terms of hazard rate functions. To this end, let F denote the cumulative
distribution function (CDF) associated with a probability distribution on R+. If F
is absolutely continuous, then the corresponding survival function and cumulative
hazard rate are defined, respectively, by S(t) = 1−F(t) and H(t) =− log(S(t)), and
the hazard rate function is given by h(t) = −S′(t)/S(t). Let us recall that survival
analysis has been a very active area of application of Bayesian nonparametric
methodology: neutral to the right processes were used by [2] as a prior for the
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CDF F , and beta processes by [6] as a prior for the cumulative hazard function
H, both benefiting from useful conjugacy properties. Here we specify a prior on the
hazard rate h. The most popular example is the gamma process mixture, originally
proposed in [3]. More general models have been studied in later work by [10] and
[8]. Bayesian inference for these models often relies on a marginal method, see, e.g.,
[7]. Although quite simple to implement, marginal methods typically yield estimates
of the hazard rate, or equivalently of the survival function, only in the form of the
posterior mean at a fixed time point. Working along the lines of Arbel et al. [1],
we show that a clever use of a moment-based approximation method does provide
a relevant upgrade on the type of inference one can draw via marginal sampling
schemes. We should stress that the information gathered by marginal methods is not
confined to the posterior mean but is actually much richer and, if properly exploited,
can lead to a more complete posterior inference.

Let us briefly introduce Bayesian hazard mixture models. Random parameters,
such as the hazard rate and survival function, are denoted with a tilde on top, e.g.
h̃ and S̃. We endow h̃ with a prior distribution defined by the distribution of the
random hazard rate (RHR)

h̃(t) =
∫
Y

k(t;y)μ̃(dy), (1.1)

where μ̃ is a completely random measure (CRM) on Y=R+, and k( · ; ·) denotes a
transition kernel on R+ ×Y. Under suitable assumption on the CRM μ̃, we have
limt→∞

∫ t
0 h̃(s)ds = ∞ with probability 1. Therefore, we can adopt the following

model

Xi | P̃ iid∼ P̃

P̃((t,∞)) d
= S̃(t)

d
= exp

(
−
∫ t

0
h̃(s)ds

)
,

(1.2)

for a sequence of (possibly censored) survival data XXX = (X1, . . . ,Xn). In this setting,
[3] characterizes the posterior distribution of the so-called extended gamma process:
this is obtained when μ̃ is a gamma CRM and k(t;y) = 1(0,t](y)β (y) for some
positive right-continuous function β : R+ →R+. The same kind of result is proved
in [10] for weighted gamma processes corresponding to RHRs obtained when
μ̃ is still a gamma CRM and k( · ; ·) is an arbitrary kernel. Finally, a posterior
characterization has been derived by [8] for any CRM μ̃ and kernel k( · ; ·).

The rest of the paper is organized as follows. In Sect. 1.2, we provide the closed-
form expressions for the posterior moments of the survival function. We then show
in Sect. 1.3 how to exploit the expression for the moments to approximate the
corresponding density function and sample from it. Finally, in Sect. 1.4 we study
the performance of our methodology by means of an extensive simulation study
with survival data.
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1.2 Moments of the Posterior Survival Function

Closed-form expressions for the moments of any order of the posterior survival
curve S̃(t) at any t are provided in Arbel et al. [1]. For a complete account, we recall
the result hereafter. We first need to introduce some notation. A useful augmentation
suggests introducing latent random variables YYY = (Y1, . . . ,Yn) such that, building
upon the posterior characterization derived by [8], we can derive expressions for the
posterior moments of the random variable S̃(t), where t is fixed, conditionally on XXX
and YYY . To this end, define Kx(y) =

∫ x
0 k(s;y)ds and KXXX (y) = ∑n

i=1 KXi(y). Also, the
almost sure discreteness of μ̃ implies there might be ties among the Yi’s with positive
probability. Therefore, we denote the distinct values among YYY by (Y ∗

1 , . . . ,Y
∗
k ),

where k ≤ n, and, for any j = 1, . . . ,k, we define Cj =
{

l : Yl =Y ∗
j

}
and n j = #Cj.

We can now state the following result.

Proposition 1. Denote by ν(ds,dy) = ρ(s)dscP0(dy) the Lévy intensity of the
completely random measure μ̃ . Then for every t > 0 and r > 0,

E[S̃r(t) |XXX ,YYY ] = exp

{
−
∫
R+×Y

(
1− e−rKt(y)s

)
e−KXXX (y)sν(ds,dy)

}

×
k

∏
j=1

1
B j

∫
R+

exp
{−s

(
rKt(Y

∗
j )+KXXX(Y

∗
j )
)}

sn jρ(s)ds, (1.3)

where B j =
∫
R+ sn j exp

{
−sKXXX(Y ∗

j )
}
ρ(s)ds, for j = 1, . . . ,k.

For evaluating the posterior moments E[S̃r(t) |XXX ] by means of Proposition 1,
we use a Gibbs sampler which proceeds by alternately sampling, at each iteration
� = 1, . . . ,L, from the full conditional distributions of the latent variables YYY and
the parameters of the model, and evaluating E[S̃r(t) |XXX ,YYY ](�) at each step. For an
exhaustive description of the posterior sampling and the expression of the full
conditional distributions, see Arbel et al. [1]. The remain of the paper is devoted
to illustrating how the characterization of the moments provided by Proposition 1
can be used to approximate a density function and, in turn, to carry out Bayesian
inference.

1.3 Moment-Based Density Approximation

The aim is to recover the posterior distribution of the random variable S̃(t)
for any fixed t, based on the knowledge of its moments E[S̃r(t) |XXX ] obtained
from Proposition 1. In order to simplify the notation, let us consider a generic
continuous random variable S on [0,1], and denote by f its density, and its raw
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moments by γr = E
[
Sr
]
, with r ∈ N. Recovering f from the explicit knowledge

of its moments γr is a classical problem in probability and statistics that has
received great attention in the literature, see, e.g., [11] and the references and
motivating applications therein. A very general approach relies on the basis of
Jacobi polynomials (Gi(s) = ∑i

r=0 Gi,rsr)i≥1. They constitute a broad class which
includes, among others, Legendre and Chebyshev polynomials, and which is
well suited for the expansion of densities with compact support [see 11]. Any
univariate density f supported on [0,1] can be uniquely decomposed on such a
basis and therefore there is a unique sequence of real numbers (λi)i≥0 such that
f (s) = wa,b(s)∑∞

i=0λiGi(s) where wa,b(s) = sa−1(1 − s)b−1 is named the weight
function of the basis and is proportional to a beta density in the case of Jacobi
polynomials. From the evaluation of

∫ 1
0 f (s)Gi(s)ds it follows that each λi coincides

with a linear combination of the first i moments of S, specifically λi = ∑i
r=0 Gi,rγr.

Then, the polynomial approximation method consists in truncating the represen-
tation of f in the Jacobi basis at a given level i = N. This procedure leads to
a methodology that makes use only of the first N moments and provides the
approximation

fN(s) = wa,b(s)
N

∑
i=0

(
i

∑
r=0

Gi,rμr

)
Gi(s). (1.4)

It is important to stress that the polynomial approximation (1.4) is not necessarily
a density as it might fail to be positive or to integrate to 1. In order to overcome
this problem, we consider the density π proportional to the positive part of (1.4)
defined by π(s) ∝ max( fN(s),0). We resort to the rejection sampler for sampling
from π . This is a method for drawing independently from a distribution proportional
to a given non-negative function, that exempts us from computing the normalizing
constant corresponding to π . More precisely, the method requires to pick a proposal
distribution p for which there exists a positive constant M such that π ≤ Mp.
A natural choice for p is the beta distribution proportional to the weight function
wa,b. Approximation (1.4) and the rejection sampler were implemented in R. For
the purpose of the paper, we have wrapped up the corresponding code in an R
package called momentify.1In Sects 1.3.1 and 1.3.2 we briefly describe the package
implementation and give a simple working example.

1.3.1 Package Implementation

The major function in package momentify is called momentify and allows
for (i) approximating a density based on its moments, and (ii) sampling from

1The momentify package can be downloaded from the first author’s webpage
http://www.crest.fr/pagesperso.php?user=3130.

http://www.crest.fr/pagesperso.php?user=3130
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this approximate distribution by using the rejection sampler. The synopsis of the
function, together with default values, is given by

momentify(moments, N_moments = length(moments),
N_sim = 1000, xgrid = seq(0, 1, length = 200))

The only required argument is moments, a d-dimensional vector, with d ≥ 2,
composed by the values of the first d consecutive raw moments. The remaining
arguments are optional: N_moments corresponds to N, the number of moments to
be used (where N ≤ d), N_sim is the size of the sample obtained by the rejection
sampler, and xgrid denotes the grid on which the density is to be approximated.

The function returns a list, say res, with the following components: xgrid,
defined in argument, approx_density, the approximated density evaluated on
xgrid, and psample, the sample obtained from approx_density by the
reject algorithm. The class of the output list res is called momentify. For
visualizing the output res, two method functions can be readily applied to this
class, namely plot(res, ...) and hist(res, ...).

1.3.2 Simulated Example

We assess now the quality of this approximation procedure on a particular example
by means of a practical implementation of the momentify package. We specify the
distribution of the random variable S by a mixture, with weights of 1/2, of beta
distributions of parameters (a,b) = (3,5) and (c,d) = (10,3). The raw moments of
any order of S can be explicitly evaluated by

γr = E[Sr] =
a(r)

(a+ b)(r)
+

c(r)
(c+ d)(r)

,

where x(r) = Γ (x + r)/Γ (x). As described above, given a vector of N moments
(γ1, . . . ,γN), the introduced package allows us to approximately evaluate the den-
sity (1.4) and, in turn, to compare it with the true density. The corresponding code
for N = 2, . . . ,10 is the following:

rfun=function(n){bin=rbinom(n,1,.5)
bin*rbeta(n,3,5)+(1-bin)*rbeta(n,10,3)}

true_density=function(n){.5*dbeta(n,3,5)+
.5*dbeta(n,10,3)}

sim_data = rfun(10^5)
moments = mean(sim_data)
for (i in 2:10){

moments = c(moments,mean(sim_data^i))
res = momentify(moments = moments)
plot(res, main = paste("N =",i))
curve(true_density(x),add=TRUE, col = "red")

}
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N = 2

0

1
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N = 5

0

1
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N = 8
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1
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N = 9

0 1

N = 10
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Fig. 1.1 Output of momentify R package. True density f of S (in red) and approximated density
fN (in black) involving an increasing number of moments, from N = 2 (top left) to N = 10 (bottom
right)

The graphical output is given in Fig. 1.1. We can see that four moments are
needed in order to capture the two modes of the distribution, although coarsely.
From seven moments onward, the fit is very good since the two curves are hardly
distinguishable. Following this example as well as other investigations not reported
here, we choose, as a rule of thumb, to work with N = 10 moments. A more
elaborated numerical study is presented in Arbel et al. [1] in the context of survival
analysis.
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1.4 Bayesian Inference

1.4.1 Estimation of Functionals of S̃

Given a sample of survival times XXX = {X1, . . . ,Xn}, we estimate the first N moments
of the posterior distribution of S̃(t), for t on a grid of q equally spaced points
{t1, . . . , tq} in an interval [0,M] by using the Gibbs sampler succinctly described in
Sect. 1.2. We then exploit the estimated moments to sample from an approximation
of the posterior distribution of S̃(ti) for i = 1, . . . ,q according to the methodology
set forth in Sect. 1.3. This allows us to carry out Bayesian inference, with a
focus on the estimation of the median survival time and, for any given t in the
grid, of credible intervals for S̃(t). The same approach can be easily used to
estimate the posterior median and mode of S̃(t) at any given t, and, in line of
principle, any functional of interest. Let us first consider the median survival time
that we denote by m. The identity for the cumulative distribution function of m,
P(m ≤ t|XXX) = P

(
S̃(t) ≤ 1/2|XXX), allows us to evaluate the CDF of m at each time

point ti as ci = P
(
S̃(ti) ≤ 1/2|XXX). Then, we can estimate the median survival time

m by means of the following approximation:

m̂ = EXXX [m] =

∫ ∞

0
P[m > t|XXX ]dt ≈ M

q− 1

q

∑
i=1

(1− ci), (1.5)

where the subscript XXX in EXXX [m] indicates that the integral is with respect to the
distribution of S̃(·) conditional to XXX . Moreover, the sequence (ci)

q
i=1 can be used

to devise credible intervals for the median survival time. Similarly, the posterior
samples generated by the rejection sampler can be easily used to devise, t-by-t,
credible intervals for S̃(t) or to estimate other functionals that convey meaningful
information such as the posterior mode and median. In Sect. 1.4.2, we apply this
methodology in a study involving simulated survival data where we compare the
performance of the moment-based methodology with standard marginal methods.

1.4.2 Applications

For the purpose of illustration, we complete the model specification by assuming
a Dykstra and Laud type of kernel k(t;y) = 1(0,t](y)β , for some constant β > 0,
a gamma CRM μ̃ and an exponential base measure P0 with rate parameter 3.
Moreover, for the hyperparameters c and β we choose independent gamma prior
distributions with shape parameter 1 and rate parameter 1/3. Then, we consider
three samples XXX = (X1, . . . ,Xn) of size n = 20,100,500 from a Weibull distribution
of parameters (2,2) whose survival function is S0(t) = exp(−t2/4). We set M = 6
(the largest observation in the samples is 5.20) and q = 50 for the analysis of each
sample. We approximately evaluate, t-by-t, the posterior distribution of S̃(t) together
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Fig. 1.2 The true survival function S0(t) is the red line in all plots. Bottom row: estimated posterior
mean (black solid line) with 95 % credible intervals for S̃(t) (black thin lines); in blue the posterior
distribution of the median survival time m. Middle row: comparison of the 95 % credible interval
(black line) with the marginal interval (dashed blue line). Top row: Kaplan–Meier estimate (green
line). Sample size n=20 (top row), n=100 (middle row), n=500 (bottom row)

with the posterior distribution of the median survival time m. By inspecting the
bottom row of Fig. 1.2, we can appreciate that the estimated credible intervals for
S̃(t) contain the true survival function. Moreover, the posterior distribution of the
median survival time m (blue curve) is nicely concentrated around the true value m0.
When relying on marginal methods, the most natural choice for quantifying the
uncertainty of posterior estimates consists of considering the quantile intervals
corresponding to the output of the Gibbs sampler, that we refer to as marginal
intervals. This leads to considering, for any fixed t, the interval whose lower and
upper extremes are the quantiles of order, e.g. 0.025 and 0.975, respectively, of
the sample of posterior means

(
E[S̃(t) |XXX ,YYY ](�)

)
�=1,...,L obtained, conditional on

YYY , by the Gibbs sampler described in Sect. 1.2. In the middle row of Fig. 1.2
we have compared the estimated 95 % credible intervals for S̃(t) (black) and the
marginal intervals corresponding to the output of the Gibbs sampler (dashed blue).
In this example, the credible intervals in general contain the true survival function
S0(t), while this does not hold for the marginal intervals. This fact suggests that
the marginal method tends to underestimate the uncertainty associated with the
posterior estimates, and can be explained by observing that, since the underlying
CRM is marginalized out, the intervals arising from the Gibbs sampler output
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capture only the variability of the posterior mean that can be traced back to the
marginalization with respect to latent variables YYY and the parameters (c,β ). As a
result, especially for a small sample size, the uncertainty detected by the marginal
method leads to marginal intervals that can be significantly narrower than the
actual posterior credible intervals that we approximate through the moment-based
approach. The Kaplan–Meier estimates of S̃(t) are plotted on the top row of Fig. 1.2.

On the one hand, as described in Sect. 1.4.1, the moment-based approach enables
us to approximate the posterior distribution of the median survival time m (in blue
in the bottom row of Fig. 1.2). This, in turn, can be used to derive sensible credible
intervals for m. On the other hand, when relying on marginal methods, the posterior
of the median survival time is not available per se. However, in the same way as
we defined marginal intervals in place of credible intervals for the survival function
S̃(t), for every ti the Gibbs sample

(
E[S̃(ti) |XXX ,YYY ](�)

)
�=1,...,L can be used as a proxy

of a posterior sample for S̃(ti) in order to provide the following approximation of
the CDF of m:

P(m ≤ t|XXX)≈ 1/2|XXX)= 1
L

#{� : E[S̃(t) |XXX ,YYY ](�) ≤ 1/2}. (1.6)

As in (1.5), an estimator for the median survival time can be obtained as the mean of
the distribution whose CDF is given in (1.6). We call such an estimator m̂m to denote
the fact that it is obtained by means of a marginal method. Similarly, from (1.6),
marginal intervals for m̂m can be derived as described in Sect. 1.4.1. Finally, we
denote by m̂e the empirical estimator of m and by m0 = 2

√
log2 ≈ 1.665 the true

median survival time. We summarize the estimates we obtained for the median
survival time m in Fig. 1.3 and in Table 1.1. For all the sample sizes considered,
the credible intervals for m̂ contain the true value. Moreover, as expected, when n
grows they shrink toward m0: for instance, the length of the interval reduces from
0.92 to 0.20, when the sample size n increases from 20 to 500. As observed for

Time
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l

l

l

l

l

l

l
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0.5 1 1.5 m0 2
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100
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Fig. 1.3 Comparison of credible intervals for the median survival time m obtained with the
moment-based approach (black line, below for each n) and marginal intervals (blue line, above
for each n), for varying sample size n. The dots indicate the estimators (m̂ in black, m̂m in blue and
m̂e in green). The true median m0 = 2

√
log2 ≈ 1.665 is indicated by the vertical red dashed line



1 Bayesian Survival Model 13

Table 1.1 Comparison of the median survival time estimated by means of the moment-
based method, m̂, by means of the marginal method, m̂m, and the empirical median survival
time m̂e, for different sample sizes n

Moment-based method Marginal Empirical
n m̂ |m̂−m0| CI m̂m |m̂m −m0| CIm m̂e |m̂e −m0|
20 1.26 0.40 0.88–1.80 1.24 0.43 1.09–1.57 0.95 0.71

100 1.52 0.14 1.33–1.76 1.51 0.16 1.45–1.66 1.55 0.12

500 1.66 0.01 1.57–1.77 1.66 0.01 1.63–1.75 1.69 0.03

For the moment-based estimation we show m̂, the absolute error |m̂ − m0| and 95 %
credible interval (CI); for the marginal method, we show m̂m, the absolute error |m̂m −m0|
and the 95 % marginal interval (CIm); the last two columns show the empirical estimate
m̂e and the corresponding absolute error |m̂e − m0|. The true median survival time is
m0 = 2

√
log2 ≈ 1.665

the marginal intervals S̃(t) at a given t, the marginal intervals for m̂m obtained with
the marginal method and described in Equation (1.6) are in general narrower than
the credible intervals obtained by the moment-based approach. Moreover, in this
example, they contain the true m0 only for n = 500. This observation suggests that
the use of intervals produced by marginal methods as proxies for posterior credible
intervals should be avoided, especially for small sample sizes.
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Chapter 2
A New Finite Approximation for the NGG
Mixture Model: An Application to Density
Estimation

Ilaria Bianchini

Abstract A new class of random probability measures, approximating the
well-known normalized generalized gamma (NGG) process, is defined. The new
process is built from the representation of the NGG process as a discrete measure,
where the weights are obtained by normalization of points of a Poisson process
larger than a threshold ε . Consequently, the new process has an as surely finite
number of location points. This process is then considered as the mixing measure in
a mixture model for density estimation; we apply it to the popular Galaxy dataset.
Moreover, we perform some robustness analysis to investigate the effect of the
choice of the hyperparameters.

Key words: Bayesian nonparametric mixture models, A-priori truncation method,
Normalized generalized gamma process

2.1 Introduction to Bayesian Nonparametric
Mixture Models

In this first section we deal with the problem of density estimation from a Bayesian
nonparametric point of view. The nonparametric approach is very useful because
it allows a rich class of models for the data, considering infinite dimensional
families of probability models. Priors on such families are known as nonparametric
Bayesian priors and prevent misleading decisions and inference that may result for
a parametric approach, which requires a strong assumption about the investigated
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phenomenon, cf. [11]. We will see how a particularly flexible class of nonpara-
metric priors within the family of normalized random measures with independent
increments (NRMI) can be applied for density estimation problems.

Mixture models provide a statistical framework for modeling a collection of
continuous observations (X1, . . . ,Xn) where each measurement is supposed to arise
from one of k possible unknown groups and each group is modeled by a density
from a suitable parametric family.

This model is usually represented hierarchically in terms of a collection of
independent and identically distributed latent random variables (θ1, . . . ,θn) as
follows:

⎧⎪⎨
⎪⎩

Xi|θi
ind∼ K(·|θi), i = 1, . . . ,n,

θi|P iid∼ P, i = 1, . . . ,n,

P ∼ Q,

(2.1)

where Q denotes the nonparametric prior distribution and K(·|θ ) is a probability
density function parameterized by the latent random variable θ .

Model (2.1) is equivalent to assume X1, . . . ,Xn i.i.d. according to a probability
density that is a mixture of kernel functions:

X1, . . . ,Xn
iid∼ f (x) =

∫
Θ

K(x|θ )P(dθ ), (2.2)

where P is called mixing measure. Note that if Q selects discrete probability
measures, P is almost surely (a.s.) discrete and the mixture model can be written
as a sum with a countably infinite number of components:

f (x) =
∞

∑
j=1

p jK(x|θ j) ,

where the weights (p j) j�1 represent the relative frequencies of the groups in the
population indexed by θ j. This approach provides a flexible model for clustering
items in a hierarchical setting without the necessity to specify in advance the exact
number of clusters; therefore, it can also be adopted in cluster analysis. In the next
section, the normalized generalized gamma (NGG) prior is introduced, starting from
its construction via normalization of a discrete random measure. As we will see, it is
very flexible and still mathematically tractable at the same time, making it a suitable
choice for Q in the mixture model.

2.2 The NGG Process

Here, we briefly recall how to build a normalized random measure with independent
increments (for an in-depth study, see Chapter 8 of [8]). Consider a (a.s.) discrete
random measure μ(·): it can be expressed as an infinite weighted sum of degenerate
measures:
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μ(·) =∑
i≥1

Jiδτi(·). (2.3)

The random elements (Ji,τi)i�1 are the points of a Poisson process on (R+,X) with
mean measure ν that satisfies the following conditions:

∫
(0,1)

sν(ds,X) < ∞, ν([1,∞)×X)< ∞. (2.4)

This construction produces the most general completely random measure (CRM)
without fixed atoms and non-random measure parts: it selects discrete measures
almost surely.

An important property which one could impose on a CRM is homogeneity,
i.e. the underlying mean measure factorizes. Let P0 be a non-atomic and σ -finite
probability measure on X: if ν(ds,dx) = ρ(ds)P0(dx), for some measure ρ on
R
+, we call μ homogeneous: in this case, the jumps in the representation (2.3) are

independent from the locations.
The sequence (Ji)i≥1 represents the jumps controlled by the kernel ρ and (τi)i≥1

are the locations of the jumps determined by the measure P0 on X. Since μ is
a discrete random measure almost surely, it is straightforward to build a discrete
random probability measure by the normalization procedure, which yields NRMIs,
first introduced by [14].

Obviously the procedure is well defined only if the total mass of the measure
T := μ(X) is positive and finite almost surely:

P(0 < T < ∞) = 1.

This requirement is satisfied if the measure ρ (in the homogeneous case) is such that

∫
R+
ρ(ds) = ∞ ∀x ∈ X. (2.5)

This means that the jumps of the process form a dense set in (0,∞). However, since
the second condition in (2.4) must hold, it turns out that infinite points of the Poisson
process are very small. In fact, we find that the integral of intensity ρ over R+ is
infinite while the subinterval over [0,∞) is finite. Now, we define an NRMI P(·)
as μ(·)/T . It is important to highlight that NRMIs select, almost surely, discrete
distributions, such that P admits a series representation as

P = ∑
j≥1

p jδτ j , (2.6)

where p j = Jj/T ∀ j � 1, where the weights Jj are those in (2.3).
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x

s

Lévy intensity
Fig. 2.1 Example of intensity measure ν(ds,dx) = 1/Γ (1−σ )e−ss−1−σdsP0(dx) where σ = 0.1
and P0 is Gaussian with mean 0 and variance 1

The NRMI addressed here is the NGG process. As stated in [1], a generalized
gamma measure is an NRMI μ with intensity measure equal to

ν(A×B) = P0(B)
∫

A
ρ(ds), A ∈B(R+),B ∈B(X)

where

ρ(ds) =
κ

Γ (1−σ)
s−1−σe−sωds, s > 0. (2.7)

Figure 2.1 displays ν(s,x), where ω = κ = 1, σ = 0.1 and P0 is Gaussian with
mean 0 and variance 1. It is straightforward to define the homogeneous random
probability measure P(·) = μ(·)/T as in (2.6), by the name of NGG process

P ∼ NGG(σ ,κ ,ω ,P0),

with parameters (σ ,κ ,ω ,P0), where 0 � σ � 1, ω ≥ 0, κ ≥ 0. Within this wide
class of priors one finds the following special cases:
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1. The Dirichlet process DP(κ ,P0) which is an NGG(0,κ ,P0) process;
2. The normalized inverse Gaussian process that corresponds to a

NGG(1/2,κ ,P0).

One could wonder why to choose this process instead of using directly the popu-
lar Dirichlet process. The main reason lies in the greater flexibility of the clustering
behavior, achieved by the additional parameter, σ , which tunes the variance of the
number of distinct observations in a sample from P (if σ increases, the variance
increases too; see, for instance, [9]).

2.3 The ε-NGG Approximation

The model we are going to approximate in this section is the so-called NGG mixture
model, ⎧⎪⎪⎨

⎪⎪⎩
Xi|θi

ind∼ K(·|θi), i = 1, . . . ,n,

θi|P iid∼ P, i = 1, . . . ,n,

P ∼ NGG(σ ,κ ,ω ,P0).

(2.8)

From now on, we will consider kernels K(·|θ ) defined on X ⊆ R
p, where p

represents the dimension of the data, and the prior NGG is defined onΘ ⊆ R
m, the

space of the parameters of the kernel. For instance, if K is the univariate Gaussian
distribution, N(μ ,σ2), the latent variable θ could be the couple (μ ,σ2), hence
Θ =(R×R

+). The main problem when dealing with nonparametric mixture models
is the presence of an infinite dimensional parameter P, which makes these models
computationally difficult to handle.

In the literature, one can find two ways to tackle this problem, namely marginal
and conditional methods: on the one hand, the first ones integrate out the infinite
dimensional parameter, leading to generalized Polya urn schemes (see, for instance,
[10] and [12]). This approach has one main limitation: We cannot obtain information
about the latent variables, since the posterior inference involves only the predictive
distribution f (Xn+1|X1,X2, . . . ,Xn). On the other hand, conditional methods build
a Gibbs sampler which does not integrate out the nonparametric mixing measure
but update it as a part of the algorithm itself. The reference papers on conditional
algorithms for Dirichlet process mixtures are the retrospective sampler of [13]
and the slice sampler of [15] (extended in the more general NRMI case in [5]).
Conditional methods can also be based on truncation of the sum defining the mixing
measure P in (2.6): it can be performed both a-posteriori, as in [6] and [1], or
a-priori, as in [7] and [4]. The driving motivation for using conditional methods
is that they provide a “full Bayesian analysis,” i.e. it is possible to estimate either
posterior mean functional or linear and nonlinear functionals, such as quantiles.

The proposed method is based on an a-priori truncation of P: in particular, we
consider only jumps greater than a threshold ε > 0, which turns out to control the
approximation to the infinite dimensional prior: conditionally on ε , only a finite
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number of jumps has to be considered, hence we resorted to a finite dimensional
problem. In particular, the number of jumps Jj greater than a threshold value ε is
Nε + 1, where Nε is a random variable distributed as

Nε ∼ Poisson(Λε), Λε =
∫ ∞

ε
ρ(ds) =

κωσ

Γ (1−σ)
Γ (−σ ,ωε),

so that its expectation increases as ε decreases. Furthermore, the jumps
(J0,J1, . . . ,JNε ) turn out to be i.i.d. from

ρε(s) =
ρ(s)
Λε

1(ε,∞)(s) =
1

ωσΓ (−σ ,ωε) s−σ−1e−ωs1(ε,∞)(s).

We consider location points (τ0,τ1, . . . ,τNε ) i.i.d. from the base measure P0 and
define the following discrete (a.s.) random probability measure onΘ :

Pε(·) =
Nε

∑
j=0

Jj

Tε
δτ j (·) (2.9)

where Tε = ∑Nε
j=0 Jj. Pε in (2.9) is denoted as ε-NGG(σ ,κ , ω , P0) process. This

process can be seen as an approximated version of the NGG process of Sect. 2.2,
provided that ε is small, since the convergence to the NGG process holds true
provided that ε tends to 0. The main advantage compared to the corresponding
NGG is that in this case the sum defining Pε is finite: We moved from an infinite
dimensional process to a finite dimensional one, which eventually (when ε assumes
a very small value) approximates the NGG.

The mixture model we are going to consider can be expressed as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1, . . . ,Xn|θ1, . . . ,θn ∼∏n
i=1 K(Xi|θi),

θ1, . . . ,θn|Pε ∼ Pε i.i.d.,

Pε ∼ ε-NGG(σ ,κ ,ω ,P0),

ε,σ ,κ ∼ π(ε,σ ,κ).

It can be either considered as an approximation of the NGG mixture model (2.8)
or as a separate model when ε is random. In the latter case, we let data “drive” the
degree of approximation and the model can be significantly different with respect to
its nonparametric counterpart, because ε may assume relatively large values.

Before proceeding to the application of Sect. 2.4, it is useful to remember that
the Bayesian estimate of the true density is

fXn+1(x|X1, . . . ,Xn) =

∫ Nε

∑
j=0

Jj

Tε
K(x|τ j)L (dε,dσ ,dκ ,dP|X1, . . . ,Xn)

which will be estimated through Monte Carlo methods.
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A more detailed description of the ε-NGG mixture model, providing also a proof
of convergence and an MCMC algorithm to sample from the posterior distribution
of the model, can be found in [2].

2.4 An Application to Density Estimation for the Galaxy Data

In this section, we apply the model proposed in Sect. 2.3 to a very popular dataset in
the literature, the Galaxy dataset, exploiting the Gibbs sampler scheme of [2]. These
data are observed velocities of n = 82 different galaxies, belonging to six well-
separated conic sections of space. Specifically, we use Gaussian kernel densities
K(x|θ ) = N(x|μ ,σ2). Hence, P0, the parameter of the nonparametric prior, is a
normal inverse-gamma distribution,

N

(
μ |X̄ ,

σ2

0.01

)
IG

(
σ2|2,1) ,

where X̄ stands for the sample mean, 20.83. This set of hyperparameters, first
proposed by [3], is standard in the literature.

We perform a robustness analysis through a lot of experiments which highlight
the relationship between the posterior estimates and the prior choice of the
parameters. In fact, the choice of a value (or a prior in the random case) for these
parameters is the most complicated part of the model, since it strongly influences
the posterior inference.

Here, we present some results corresponding to different sets of hyperparameters:
we report in Table 2.1 nine combinations of (σ ,κ) together with three values for the
a-priori expected values for the number of groups Kn, namely {3,5,20}, that we
used for our experiments.

Obviously, as mentioned in Sect. 2.2, as σ increases, the variance of Kn increases.
In addition, we consider three different priors for ε , in order to study their influence
on posterior inference. In what follows, we call (A) the case where the prior
is degenerate on a value, i.e. ε = 10−6, (B) where ε ∼ Uni f (0,0.1) and (C)

Table 2.1 Combinations of
parameters (σ ,κ) chosen for
the numerical examples: we
selected three different
couples for each prior mean
number of groups in the data

Index E(Kn) σ κ
1 3 0.001 0.45

2 3 0.1 0.25

3 3 0.2 0.05

4 5 0.001 1.0

5 5 0.2 0.35

6 5 0.3 0.09

7 20 0.2 5.0

8 20 0.4 2.2

9 20 0.6 0.3
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Fig. 2.2 Density estimates
for test cases A7, A8, and A9
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where ε is a Beta(0.69,2.06) scaled to the interval (0,δ = 0.1). In case (C), we
chose an informative prior for ε (with mean 0.25δ and variance 0.05δ 2) which
is concentrated over very small values, since our goal is to approximate the NGG
mixture model. Overall, we will have 27 test cases named A1, . . . ,A9, B1, . . . ,B9,
C1, . . . ,C9.

Figure 2.2 shows the posterior estimates in test cases A7, A8, and A9, proving
reasonable density estimates. We notice that there are only slight differences be-
tween the various density estimates, indicating robustness of the model. Figure 2.3
demonstrates that, when σ assumes larger values, the posterior distributions of Kn

spread to a larger range of possible values. Since the model is more flexible the
posterior mean is free to shift towards the “true” average, being more “sensitive”
to the data. This fact is more evident in cases B and C, where ε is random: the
posterior mode of the number of clusters is around 10, while in case A is around
16. Here, the data determine the degree of approximation such that unreasonable
a-priori information impacts the resulting number of groups less.

Furthermore, we fix σ = 0.1 and κ = 0.45 but we consider ε ∼ Gamma(α,β ),
with support over all positive real numbers; in particular, we choose (α,β ) ∈
{(0.5,2),(0.01,0.1),(1,10)}. The first combination corresponds to a relatively large
mean (0.25) and variance (0.125) for ε . However, a large mass of the distribution
lies around 0 due to the presence of an asymptote in the prior distribution. The
second and third combinations have the same mean (0.1) but the variance is 1 and
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Fig. 2.5 Autocorrelation of variable ε , (a), and scatterplot of ε versus σ , (b): the gray lines
represent the contour levels of the prior

0.01, respectively. We report for brevity only results for (α,β ) = (1,10); however,
we point out that some mixing problems in the chain for ε arise, when increasing
the a-priori variance. Figure 2.4b shows that ε moves a posteriori towards smaller
values with respect to the prior information. Besides, the traceplot of ε , Fig. 2.4a,
exhibits a good mixing for the chain in this case.

Finally, we mention a further test, where all three parameters are random:
in particular, we assume ε ∼ Beta(0.69,2.06) with support on (0,0.1), σ ∼
Beta(1.1,30) and κ ∼ Gamma(1.1,8). The density estimate is satisfying, the only
issue to mention is the high autocorrelation of ε and the correlation between the
two parameters σ and ε (Fig. 2.5). This result is even more pronounced under a less
informative prior distribution for (σ ,ε).



2 ε-NGG Mixture Model 25

2.5 Conclusions

A method to deal with a particularly flexible nonparametric mixture model, namely
the NGG mixture model, is presented. It is based on a-priori truncation of the infinite
sum defining the random probability measure P and it allows to computationally
handle the presence of an infinite dimensional parameter, P, in the mixture model.
In fact, conditionally on a threshold value ε , we can define a new process Pε , which
consists of a finite sum. We showed an application to density estimation for the
popular Galaxy dataset. Through the exposition of several choices of the hyperpa-
rameters we established the robustness of the model and studied the relationship
between posterior estimates and prior elicitation. In particular, we illustrated some
suitable priors for the threshold parameter ε , letting in this case, the data drive the
degree of approximation. If there is no need to consider a fully nonparametric model,
ε may be relatively far from 0, implying smaller computational effort. Overall,
density estimates were satisfying in all the experiments.
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Chapter 3
Distributed Estimation of Mixture Models

Kamil Dedecius and Jan Reichl

Abstract The contribution deals with sequential distributed estimation of global
parameters of normal mixture models, namely mixing probabilities and component
means and covariances. The network of cooperating agents is represented by a
directed or undirected graph, consisting of vertices taking observations, incor-
porating them into own statistical knowledge about the inferred parameters and
sharing the observations and the posterior knowledge with other vertices. The
aim to propose a computationally cheap online estimation algorithm naturally
disqualifies the popular (sequential) Monte Carlo methods for the associated high
computational burden, as well as the expectation-maximization (EM) algorithms for
their difficulties with online settings requiring data batching or stochastic approxi-
mations. Instead, we proceed with the quasi-Bayesian approach, allowing sequential
analytical incorporation of the (shared) observations into the normal inverse-Wishart
conjugate priors. The posterior distributions are subsequently merged using the
Kullback–Leibler optimal procedure.

Key words: Mixture estimation, Distributed estimation, Quasi-Bayesian estimation

3.1 Introduction

The rapid development of ad-hoc networks and the emergence of the so-called
big data phenomenon have brought new challenges for distributed statistical data
processing. For instance, the processing often needs to be decentralized, i.e. without
any dedicated unit in the network. Instead, all agents are responsible for (i) taking
measurements, (ii) processing them, and (iii) sharing the statistical knowledge about
the (usually global) inferred parameters. In addition, the estimation should run
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online in many cases. This means to take observations of a dynamic process and
incorporate them sequentially into the shared knowledge. This often disqualifies
the popular sequential Monte Carlo (MC) approach due to the associated high
computational burden. Excellent surveys on distributed estimation are the recent
papers by Sayed [10] (non-MC) and Hlinka et al. [5] (MC-based).

Despite the great potential of the Bayesian paradigm in this field, its adoption
is still rather the exception than the rule. From the probabilistic viewpoint, the
resulting “classical” (that is, non-Bayesian) algorithms often suffer from statistical
inconsistencies. For instance, point estimators are often combined without reflecting
the associated uncertainty, which may lead to erroneous estimates. The first author’s
work [1] aims at partially filling this gap. It proposes a fully Bayesian approach to
decentralized distributed estimation with fusion, based on minimizing the Kullback–
Leibler divergence. The present contribution extends the results to the case of
mixture models, covered for the static cases, e.g., in [3, 8, 13].

The novelty of the proposed framework lies in a fully analytical Bayesian
processing of observations and shared knowledge about the estimated parameters.
To this end, the underlying theory relies on the quasi-Bayesian approach, proposed
by Smith, Makov, and Titterington [11, 12] and followed by Kárný et al. [6], whose
approach is adopted here. It provides analytical tractability of mixture inference
by relying on point estimators where necessary. Though we focus on normal
mixtures, the results are applicable to homogeneous mixtures of exponential family
distributions.

3.2 Quasi-Bayesian Estimation of Mixture Models

Consider an observable time series {Yt , t ∈ N} with Yt ∈ R
n following a normal

mixture distribution

Yt |φ ,θ ∼ φ1N(μ1,Σ1)+ . . .+φKN(μK ,ΣK)

∼ φ1N(θ1)+ . . .+φKN(θK), (3.1)

where N(μk,Σk) denotes the kth component density, namely a normal distribution
with mean vector μk ∈ R

n and covariance matrix Σk ∈ R
n×n, in the latter notation

summarized by θk = {μk,Σk}. The nonnegative variables φk taking values in the
unit K-simplex are the component probabilities. The number of components K
is assumed to be known a priori. Furthermore, the notation θ = {θ1, . . . ,θK},
φ = {φ1, . . . ,φK} is used.

Let pk(yk|θk) be the probability density function of the kth component, yielding
the mixture density of the form

p(yt |θ ,φ) =
K

∑
k=1

φk pk(yt |θk). (3.2)
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At each time instant t the observation yt is generated by the kt th component
pk(yt |θk), selected with probability φk,

p(yt |θ ,φ ,kt ) =
K

∏
k=1

[φk pk(yt |μk,Σk)]
Sk,t , (3.3)

where Sk,t is the indicator function of the active component

Sk,t =

{
1 if Sk,t = kt ,

0 otherwise.
(3.4)

In other words, St = (S1,t , . . . ,SK,t) can be viewed as a vector with 1 on the
kt th position and zeros elsewhere, and hence follows the multinomial distribution
Multi(1,φ).

From the Bayesian viewpoint the topological property of φ is crucial, as it allows
its modelling with the Dirichlet distribution with parameters κ1, . . . ,κK ,

φ = (φ1, . . . ,φK)∼ Dir(κ1, . . . ,κK), κk > 0 for all k = 1, . . . ,K,

conjugate to the multinomial distribution of St . Sequential estimation of each single
component mean and covariance can then proceed with the conjugate normal
inverse-Wishart distribution (or normal inverse-gamma in the univariate case),

θk = {μk,Σk} ∼ NiW(m,s,a,b), m ∈ R
n, s ∈ R

n×n, a,b > 0.

Exact knowledge of St would make the Bayesian inference of both the component
parameters μk,Σk and mixing probabilities φ easily tractable, since the product (3.3)
simplifies to a single density and a single component probability. Likewise, the
Bayesian inference of mixing probabilities φ is easy under known components, as
the detection of the active one is a relatively simple hypotheses testing problem,
see, e.g., [4]. However, our attention is shifted towards estimating both component
parameters μ ,Σ and mixing probabilities φ . For this sake, we need to derive the
Bayesian update

πφ ,θ (φ ,θ |y1:t ,k1:t) ∝ πφ ,θ (φ ,θ |y1:t−1,k1:t−1)
K

∏
k=1

[φk pk(yt |θk)]
Sk,t

where the joint prior distribution is assumed to be

πφ ,θ (φ ,θ |y1:t−1,k1:t−1) = πφ (φ |y1:t−1,k1:t−1)πθ (θ |y1:t−1,k1:t−1).

The independence of φ and θ allows tractable computation of the posterior
distribution. Indeed, this assumption is not quasi-Bayes specific.
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In this case, Kárný et al. [6] propose to rely on the approach of Smith, Makov,
and Titterington [11, 12] and replace the latent indicators Sk,t defined in Eq. (3.4) by
their respective point estimates with respect to φk and θk of the form

Ŝk,t = E
[
Sk,t |y1:t ,k1:t−1

]
∝ E [φk|y1:t−1,k1:t−1] pk(yt |y1:t−1,k1:t−1), (3.5)

where

pk(yt |y1:t−1,k1:t−1) =

∫
pk(yt |θk)πθk(θk|y1:t−1,k1:t−1)dθk (3.6)

is the predictive distribution (under normal inverse-Wishart prior it is a Student’s
t distribution). To summarize, the estimation of the indicator Sk,t of the active
component k is based on (i) testing the component membership based on the
predictive likelihood (3.6), and (ii) the estimated probability of the particular
component E[φk|·] in (3.5).

The quasi-Bayesian update then takes the weighted form of the regular update
under known St ,

πφ (φ |y1:t ,k1:t) ∝ E

[
Ŝt |y1:t ,k1:t−1

]
πφ (φ |y1:t−1,k1:t−1), (3.7)

πθk(θk|y1:t ,k1:t) ∝ [pk(yt |θk)]
Ŝk,t πθk(θk|y1:t−1,k1:t−1). (3.8)

If the component density is rewritten as the exponential family and the prior
density is conjugate, then, as shown in the Appendix, the update of the relevant
hyperparameters is particularly easy.

3.3 Distributed Estimation

Assume that the distributed estimation runs in a network represented by a directed
or undirected connected graph G(V,E) consisting of a set of vertices V = {1, . . . ,N}
(also called nodes or agents) and a set E of edges, defining the graph topology. The
vertices n ∈V are allowed to communicate with adjacent vertices. For a fixed vertex
n, these neighbors form a complete bipartite subgraph (every neighboring vertex
is connected with n) with radius 1, diameter at most 2 and of type star (unless the
vertex n is of degree 1), where n is the central vertex and all other vertices peripheral.
The set of vertices of this subgraph is denoted by Vn.

The vertices independently observe the process {Yt , t ∈ N}, taking observations

y(n)t ,n ∈ V . These are shared within Vn in the sense that each vertex n has access

to y( j)
t of vertices j ∈ Vn and incorporates them according to the quasi-Bayesian

estimation theory outlined in the previous section. That is, each node n ends with
the joint posterior density
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π (n)
φ ,θ (φ ,θ |ỹ1:t , k̃1:t), (3.9)

resulting from the number of card(Vn) updates of the form (3.7) and (3.8). Here,
tilde denotes the statistical knowledge comprising the Vn’s information relevant to
the particular variable. This step is called adaptation, e.g., [10].1

3.3.1 Combination of Estimates

In the combination step [10], the vertices n ∈ V access Vn’s posterior distribu-
tions (3.9) resulting from the adaptation,

π ( j)
φ ,θ (φ ,θ |ỹ1:t , k̃1:t), j ∈Vn.

Now the goal is to represent (i.e., approximate) them by a single joint posterior

π̃ (n)
φ ,θ parameterizing the mixture (3.1) in consideration. To this end, we adopt

the Kullback–Leibler divergence [7] defined in the Appendix, and seek for π̃ (n)
φ ,θ

satisfying

∑
j∈Vn

αn jD(π̃ (n)
φ ,θ ||π ( j)

φ ,θ )→ min, (3.10)

whereαn j = 1/(card(Vn)) are nonnegative uniform weights assigned to nodes j ∈Vn

summing to unity. Other weight choices, e.g. reflecting properties of the neighboring
vertices are possible as well.

Let us impose an additional assumption simplifying the theory: identical order of

component parameters and significantly overlapping densities π ( j)
φ ,θ of all j ∈ Vn.

This means that the order of the components and their parameterization agrees
at all vertices in Vn (and hence V ). This assumption can be easily removed by
incorporating detection of similar posterior distributions or enforced by starting
from identical initial priors.

We exploit the following general proposition proved, e.g., in [1]. Although we
consider exponential family distributions (where it provides analytically tractable
results), the proposition is not limited to them.

Proposition 1. Let π ( j)
φ ,θ be the posterior probability density functions of vertices

j ∈ Vn and αn j their weights from the unit card(Vn)-simplex. Their approximation

by a single density π̃ (n)
φ ,θ optimal in the Kullback–Leibler sense (3.10) has the form

1The terms “adaptation” and “combination” were introduced by [10]. We adopt them for our
Bayesian counterparts.
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π̃φ ,θ ∝ ∏
j∈Vn

[
π ( j)
φ ,θ

]αn j
. (3.11)

The resulting approximate posterior density hence virtually parameterizes a
much richer mixture, however, the individual densities overlap by the given
assumption. Then Proposition 1 gives a method for reduction to the parametrization
of K components,

π̃ (n)
φ ∝ ∏

j∈Vn

[
π ( j)
φ

]αn j
and θ̃ (n)

φ ∝ ∏
j∈Vn

[
θ ( j)
φ

]αn j
,

which, due to the structure of the conjugate priors (see Appendix) and component
ordering yields

ξ̃ (n)
k,t = ∑

j∈Vn

αn jξ
( j)
k,t , ν̃(n)k,t = ∑

j∈Vn

αn jν
( j)
k,t , and κ̃ (n)

k,t = ∑
j∈Vn

αn jκ
( j)
k,t ,

for the hyperparameters ξ ,ν and κ of the prior distributions for θ and φ , respec-
tively. The resulting KL-optimal posterior is then again conjugate to the model and
can be used for the subsequent adaptation step.

3.4 Simulation Example

The simulation example deals with estimating a three-component normal mixture
model, for simplicity univariate of the form

Y ∼ 1
3

N(−2,1)+
1
3

N(4,1)+
1
3

N(8,2),

with unknown means and variances. The graph G(V,E), whose scheme is depicted
together with the components and samples in Fig. 3.1, consists of a set of vertices
V = {1, . . . ,8} \ {6}. The sixth vertex is disconnected and serves for comparison.

The vertices n ∈ V ∪ {6} take observations y(n)t with t = 1, . . . ,300. Clearly,
one would expect relatively easy identification of the leftmost component, while
the other two may be problematic due to their closeness. The quasi-Bayesian
estimation of components k∈{1,2,3} exploits the conjugate normal inverse-gamma
prior NIG(μk,σk;mk,sk,ak,bk) = N(μk|σ2

k ;mk,σ2sk)× IG(σ2
k ;ak,bk) with initial

hyperparameters mk set to 0, 3, and 6, respectively; the other hyperparameters
are sk = 1,ak = 2,bk = 2 for all k. The prior for the component probabilities is
φ ∼ Dir( 1

3 ,
1
3 ,

1
3 ). This initialization is identical across the graph.

The progress of the point estimates of μk and σk is depicted in Fig. 3.2 for the
isolated vertex 6 (left) and the randomly chosen vertex 4 (right). The point estimates
of μk converge relatively well in both cases, however, the variance estimates
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Fig. 3.1 Left: Layout of the graph with isolated node 6 for comparison. Right: Normalized
histogram and true components of the mixture
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Fig. 3.2 Evolution of estimates of component means and standard deviations. Left: isolated vertex
6. Right: situation at a chosen cooperating vertex 4. Solid black lines depict true values

Table 3.1 Statistics of mean square errors (MSEs) of resulting estimates:
distributed estimation and isolated vertex 6

MSE Min (distr.) Max (distr.) Mean (distr.) Vertex 6

Means μk 0.007 0.007 0.007 0.057

Variances σ 2
k 0.092 0.481 0.222 1.26

Comp. probabilities φ 0 0 0 0.001

converge well only in the case of the distributed estimation (with the exception of
σ2

1 ). This is due to the much richer data available for the interconnected vertices.
The mean squared errors (MSE) of the final estimates are given in Table 3.1.
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3.5 Conclusion

The quasi-Bayesian method for analytically tractable sequential inference of pa-
rameters of probabilistic mixtures has been extended to the case of distributed
estimation of normal mixture model with unknown mixing probabilities and
component parameters. Here, distributed means that there is a graph (network)
of cooperating vertices (nodes, agents) sharing their statistical knowledge (obser-
vations and estimates) with a limited subset of other vertices. This knowledge is
combined at each vertex: the observations are incorporated by means of the Bayes’
theorem, the estimates are combined via the Kullback–Leibler optimal rule.

The main advantage of the method is its simplicity and scalability. Unlike Monte
Carlo approaches, it is computationally very cheap. The authors have recently shown
in [2] that this method is suitable for the whole class of mixture models consisting
of exponential family distributions and their conjugate prior distributions.

One difficulty associated with the method is common for most mixture estimation
methods, namely the initialization. In addition, merging and splitting of components
after the combination of estimates would significantly enhance the suitability of the
approach for dynamic cases. These topics remain for further research.

Appendix

Below we give several useful definitions and lemmas regarding the Bayesian
estimation of exponential family distributions with conjugate priors [9]. The proofs
are trivial. Their application to the normal model and normal inverse-gamma prior
used in Sect. 3.4 follows.

Definition 1 (Exponential family distributions and conjugate priors). Any dis-
tribution of a random variable y parameterized by θ with the probability density
function of the form

p(y|θ ) = f (y)g(θ )exp{η(θ )ᵀT (y)} ,

where f ,g,η , and T are known functions, is called an exponential family distribu-
tion. η ≡ η(θ ) is its natural parameter, T (y) is the (dimension preserving) sufficient
statistic. The form is not unique.

Any prior distribution for θ is said to be conjugate to p(y|θ ), if it can be written
in the form

π(θ |ξ ,ν) = q(ξ ,ν)g(θ )ν exp{η(θ )ᵀξ} ,

where q is a known function and the hyperparameters ν ∈ R
+ and ξ is of the same

shape as T (y).
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Lemma 1 (Bayesian update with conjugate priors). Bayes’ theorem

π(θ |ξt ,νt ) ∝ p(yt |θ )π(θ |ξt−1,νt−1)

yields the posterior hyperparameters as follows:

ξt = ξt−1 +T (yt) and νt = νt−1 + 1.

Lemma 2. The normal model

p(yt |μ ,σ2) =
(σ2)−

1
2√

2π
exp

{
− 1

2σ2 (yt − μ)2
}

where μ ,σ2 are unknown can be written in the exponential family form with

η =

(
μ
σ2 ,

−1
2σ2 ,

−μ2

2σ2

)ᵀ
, T (yt) =

(
y,y2,1

)ᵀ
, g(η) =

(
σ2)− 1

2 .

Lemma 3. The normal inverse-gamma prior distribution for μ ,σ2 with the (non-
natural) real scalar hyperparameters m, and positive s,a,b, having the density

p(μ ,σ2|m,s,a,b) =
ba(σ2)a+1+ 1

2√
2πsΓ (a)

exp

{
− 1
σ2

[
b+

1
2s

(m− μ)2
]}

can be written in the prior-conjugate form with

ξt =

(
m
s
,

m2

s
+ 2b,

1
s

)ᵀ
.

Lemma 4. The Bayesian update of the normal inverse-gamma prior following the
previous lemma coincides with the ‘ordinary’ well-known update of the original
hyperparameters,

s−1
t = s−1

t−1 + 1,

mt = st

(
mt−1

st−1
+ yt

)
,

at = at−1 +
1
2
,

bt = bt−1 +
1
2

(
m2

t−1

st−1
− m2

t

st
+ y2

t

)
.

Definition 2 (Kullback–Leibler divergence). Let f (x),g(x) be two probability
density functions of a random variable x, f absolutely continuous with respect to g.
The Kullback–Leibler divergence is the nonnegative functional
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D( f ||g) = E f

[
log

f (x)
g(x)

]
=

∫
f (x) log

f (x)
g(x)

dx, (3.12)

where the integration domain is the support of f . The Kullback–Leibler divergence
is a premetric; it is zero if f = g almost everywhere, it does not satisfy the triangle
inequality nor is it symmetric.
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Chapter 4
Jeffreys’ Priors for Mixture Estimation

Clara Grazian and Christian P. Robert

Abstract Mixture models may be a useful and flexible tool to describe data with a
complicated structure, for instance characterized by multimodality or asymmetry.
The literature about Bayesian analysis of mixture models is huge, nevertheless
an “objective” Bayesian approach for these models is not widespread, because
it is a well-established fact that one needs to be careful in using improper prior
distributions, since the posterior distribution may not be proper, yet noninformative
priors are often improper. In this work, a preliminary analysis based on the use of
a dependent Jeffreys’ prior in the setting of mixture models will be presented. The
Jeffreys’ prior which assumes the parameters of a Gaussian mixture model is shown
to be improper and the conditional Jeffreys’ prior for each group of parameters
is studied. The Jeffreys’ prior for the complete set of parameters is then used to
approximate the derived posterior distribution via a Metropolis–Hastings algorithm
and the behavior of the simulated chains is investigated to reach evidence in favor
of the properness of the posterior distribution.
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4.1 Introduction

The probability density function of the random variable x of a mixture model is
given as follows:

g(x | ψ) =
K

∑
i=1

wi fi (x | θi) , (4.1)

where x is a random variable with probability density function g(·) which
depends on a parameter vector ψ = (θ1, · · · ,θK ,w1, · · · ,wK), where wi ∈ (0,1)
and ∑K

i=1 wi = 1, K is the number of components and θi is the vector of parameters
of the ith component, whose behavior is described by the density function fi(·).

In this setting, the maximum likelihood estimation may be problematic, even in
the simple case of Gaussian mixture models, as shown in [2]. For a comprehensive
review, see [11]. In a Bayesian setting, [4] and [6] suggest to be careful when using
improper priors, in particular because it is always possible that the sample does not
include observations for one or more components, thus the data are not informative
about those particular components. Avoiding improper priors is not necessary,
however the properness of the posterior distribution has to be proven and works
exist which show that independent improper priors on the parameters of a mixture
model lead to improper posteriors, except for the case where one component has
no observation in the sample is prohibited (as in [3]). Some proposals of “objective
priors” in the setting of mixture models are the partially proper priors in [3, 7] and
[10], the data dependent prior in [12] and the weakly informative prior in [8], which
may or may not be data-dependent.

In this work, we want to analyze the posterior distribution for the parameters of
a mixture model with a finite number of components when the Jeffreys’ definition
of a noninformative prior (see [5]) is applied. In particular, we want to assess the
convergence of the Markov chain derived from an MCMC approximation of the
posterior distribution when using the Jeffreys’ prior for the parameters of a Gaussian
mixture model, even when the prior for some parameters is improper conditional on
the others.

The outline of the paper is as follows: in Sect. 4.2, the Jeffreys’ prior is presented
and an explanation about the reason why improper priors have to be used with
care in the setting of mixture models is given; then, the Jeffreys’ prior for the
weights of a general mixture model conditional on the other parameters is presented
in Sect. 4.2.1 and the Jeffreys’ priors for the means and the standard deviations
when every other parameter is known are presented in Sect. 4.2.2. Section 4.3
describes the algorithms used to implement simulations. Section 4.4 shows the
results for the posterior distributions obtained when using a dependent Jeffreys’
prior for all the parameters of a Gaussian mixture model based on simulations, in
particular including an example for a three-component Gaussian mixture model;
finally, Sect. 4.5 concludes the paper with a discussion.



4 Jeffreys’ Priors for Mixture Estimation 39

4.2 Jeffreys’ Priors for Mixture Models

We recall that Jeffreys’ prior was introduced by [5] as a default prior based on the
Fisher information matrix I(θ ) as

πJ(θ ) ∝ |I(θ )| 1
2 , (4.2)

whenever the latter is well defined. In most settings, Jeffreys’ priors are improper,
which may explain their conspicuous absence in the domain of mixture estimations,
since the latter prohibits the use of most improper priors by allowing any subset
of components to go empty. That is, the likelihood of a mixture model can always
be decomposed into a sum over all possible partitions of the data with K groups at
most, where K is the number of components of the mixture. This means that there
are terms in this sum where no observation from the sample carries information
about the parameters of a specific component. In particular, consider independent
improper priors

π(θ1, · · · ,θK) ∝
K

∏
j=1

π∗(θ j), (4.3)

such that
∫
π∗(θk)dθk = ∞ ∀ k ∈ {1, · · · ,K}. Mixture models are an example of

latent variable models, where the density function may be rewritten in an augmented
version as

g(x;ψ) = ∑
S∈SK

f j(x;S,θ j)
K

∏
j=1

π∗(θ j)π(S | w)π(w), (4.4)

where the summation runs over the set SK of all the KN possible classifications S.
Then, if there is an empty component (let’s say the jth), i.e. a component with no
observation in the sample, the complete-data likelihood does not carry information
about that particular component and the posterior distribution for it will depend only
on the prior and will have an infinite integral, if the prior is improper:

∫
∏

i:Si= j

g(xi;θ j)π∗(θ j)dθ j ∝
∫
π∗(θ j)dθ j = ∞. (4.5)

Another obvious reason for the absence of Jeffreys’ priors is a computational
one, namely the closed-form derivation of the Fisher information matrix is almost
inevitably impossible. The reason are integrals which cannot be analytically com-
puted having the form

−
∫
X

∂ 2 log
[
∑K

k=1 wk f (x|θk)
]

∂θi∂θ j

[
K

∑
k=1

wk f (x|θk)

]
dx. (4.6)
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4.2.1 Jeffreys’ Prior for the Weights of a Mixture Model

Consider a two-component mixture model with known parameters of the component
distributions. The Jeffreys’ prior for the weights is just a function of only one
parameter because of the constraint on the sum of the weights:

πJ (w1) ∝

√∫
X

( f (x;θ1)− f (x;θ2))
2

w1 f (x;θ1)+w2 f (x;θ2)
dx (4.7)

≤
√∫

X

( f (x;θ1)− f (x;θ2))
2

w1 f (x;θ1)
dx (4.8)

=

√
1

w1
c1, (4.9)

where c1 is a positive constant and X is the support of the random variable x which
is modelled as a mixture. The resulting prior may be easily generalized to the case
of K components for which the generic element of the Fisher information matrix is

∫
X

( f (x;θi)− f (x;θK))( f (x;θ j)− f (x;θK))

∑K
k=1 wk f (x;θk)

dx, (4.10)

where i ∈ {1, · · · ,K − 1} and j ∈ {1, · · · ,K − 1}. As shown above, this prior is
proper and it is easy to see that it is convex by studying its second derivative (in
the general case of K components, it can be shown that the prior is still proper
because all the integrals in the Fisher information matrix are finite and the marginals
are still convex). The form of the prior depends on the type of components. For
an approximation of the prior and of the derived posterior distribution based on a
sample of 100 observations for a particular choice of parameters, see Fig. 4.1. We
have compared this approximation to the ones obtained by fixing the parameters
at different values: the Jeffreys’ prior for the weights of a mixture model is more
symmetric as the components are more similar in terms of variance and it is more
concentrated around the extreme values of the support as the means are more distant.

The Jeffreys’ prior for the weights of a mixture model could be approximated
by a beta distribution, which represents the traditional marginal distribution for the
weights of a mixture model (since in the literature the Dirichlet distribution is, in
general, the default choice as proper prior distribution): after having obtained a
sample via Metropolis–Hastings algorithm which approximates the Jeffreys’ prior
(which is not known in closed form), the parameters of the approximating beta
distribution may be estimated from the sample with the method of moments.
Figure 4.2 shows this approximation for the weight of the first component of a
Gaussian mixture model for an increasing number of components, each having the
same standard deviation. It is evident from the figure that the (marginal) Jeffreys’
distribution and its beta approximation tend to be more and more concentrated
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Fig. 4.1 Approximations of the (conditional) prior (top) and derived posterior (bottom) distri-
butions for the weights of the three-component Gaussian mixture model 0.25 ·N(−1,1)+ 0.10 ·
N(0,5)+0.65 ·N(2,0.5)

Fig. 4.2 Beta
approximations of the
(conditional) prior
distributions for the weight of
the first component of a
Gaussian mixture model with
an increasing number K of
components (with a fixed
standard deviation equal to 1
for all the components and
location parameters chosen as
the first K elements of
{−9,9,0,−6,6,−3,3})
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around 0 as the number of components increases. Both the variance and the mean
of the beta approximations tend to stabilize around values close to 0, while it is not
evident that there is a particular behavior for the parameters of the beta distribution,
which could be smaller or greater than 1.

4.2.2 Jeffreys’ Prior for the Means and the Standard
Deviations of a Gaussian Mixture Model

Consider a two-component Gaussian mixture model. The conditional Jeffreys’ prior
for the mean parameters depends on the following derivatives:

∂ 2 log f

∂μ2
i

=

⎧⎪⎪⎨
⎪⎪⎩

wiN (μi,σi)

[(
x−μi

σ2
i

)2 − 1
σ2

i

]

w1N (μ1,σ1)+w2N (μ2,σ2)

⎫⎪⎪⎬
⎪⎪⎭

−
⎧⎨
⎩

wiN (μi,σi)exp
(
− 1

2

(
x−μi
σi

))
x−μi

σ2
i

w1N (μ1,σ1)+w2N (μ2,σ2)

⎫⎬
⎭

2

,

(4.11)

for i ∈ {1,2} and

∂ 2 log f
∂μ1∂μ2

=−
w1N (μ1,σ1)

x−μ1
σ2

1
·w2N (μ2,σ2)

x−μ2
σ2

2

w1N (μ1,σ1)+w2N (μ2,σ2)
. (4.12)

With a simple change of variable y = x − μi for some choice of i ∈ {1,2}, it is
easy to see that each element of the Fisher information matrix depends only on the
difference between the means but not on μi alone, therefore it is flat with respect to
each μi. The generalization to K components is obvious.

An approximation of the prior and derived posterior distribution based on a
sample of 100 observations of the means of a two-component Gaussian mixture
model is shown in Fig. 4.3. When only the means are unknown, it is evident that
the prior is constant on the difference between the means and is increasing with the
difference of the means. On the contrary, the posterior distribution is concentrated
around the true values and shows classical label switching. Again, Fig. 4.3 has been
compared to similar approximations obtained by fixing the parameters at different
values: the conditional Jeffreys’ prior for the means of a Gaussian mixture model is
more symmetric, as the standard deviations become more similar and the choice of
the weights seems to influence only the approximation of the posterior distribution,
where the density is more concentrated around the mean linked to the highest
weight.

As an additional proof that the conditional Jeffreys’ prior for the means of a
Gaussian mixture model is improper, consider that, if the location or the scale
parameters of a mixture model are unknown, this makes the model a location
or a scale model, for which the Jeffreys’ prior is improper in the location and
the log-scale parameters, respectively (see [9] for details). In this case also the
conditional Jeffreys’ prior for the standard deviations when all the other parameters
are considered known is improper.
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Fig. 4.3 Approximations of the (conditional) prior (top) and derived posterior (bottom) distribu-
tions for the means of the two-component Gaussian mixture model 0.5 ·N(−5,1)+0.5 ·N(5,10)

4.3 Implementation

Each element of the Fisher information matrix is an integral of the form presented
in Eq. (4.2) which has to be approximated. We have applied both numerical
integration and Monte Carlo integration and the results show that, in general,
numerical integration obtained via Gauss–Kronrod quadrature yields more stable
results. Nevertheless, when one or more proposed values for the standard deviations
or the weights are too small, the approximations tend to be very dependent on
the bounds used for numerical integration (usually chosen to omit a negligible
part of the density). In this case Monte Carlo integration seems to yield more
stable approximations and thus is applied by us. However, in these situations the
approximation could lead to a negative determinant of the Fisher information matrix,
even if it was very small in absolute value (of order 10−25 or even smaller). In
this case, we have chosen to recompute the approximation until we get a positive
number.

The computing expense due to deriving the Jeffreys’ prior for a set of parameter
values is O(d2), where d is the total number of (independent) parameters. A way
to accelerate the Metropolis–Hastings algorithm used to approximate the posterior
distribution derived from the Jeffreys’ prior is the Delayed Acceptance algorithm
proposed by Banterle et al. [1] (Algorithm 1).
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Algorithm 1 Delayed Acceptance algorithm
Choose the initial values w0,μ0,σ 0

for i in 1 : N do
Propose wprop,μ prop,σ prop ∼ K(·, ·, ·|w(i−1),μ (i−1),σ (i−1))
Simulate u1 ∼Uni f (0,1) and u2 ∼Uni f (0,1)

if u1 <
l(wprop,μ prop ,σ prop)

l(w(i−1),μ(i−1) ,σ (i−1))

K(w(i−1) ,μ(i−1) ,σ (i−1) |wprop,μ prop ,σ prop)

K(wprop ,μ prop ,σ prop |w(i−1),μ(i−1) ,σ (i−1))
then

if u2 <
πJ (wprop ,μ prop ,σ prop)

πJ(w(i−1) ,μ(i−1) ,σ (i−1))
then Set (w(i),μ (i),σ (i)) = (wprop,μ prop,σ prop)

else (w(i),μ (i),σ (i)) = (w(i−1),μ (i−1),σ (i−1))
end if

else Set (w(i),μ (i),σ (i)) = (w(i−1),μ (i−1),σ (i−1))
end if

end for

This exact algorithm allows to compute the Jeffreys’ prior (the more expensive
part of the posterior distribution) only when a first accept/reject step depending on
the likelihood ratio (less costly) leads to acceptance and reduces the computational
time by about 80 % (from an average of about 113 h with standard Metropolis–
Hastings algorithm to an average of about 32 h with the Delayed Acceptance
version) for 106 simulations for a three-component Gaussian mixture model with
all parameters unknown, with a decrease of the acceptance rates from about 35 %
with the standard Metropolis algorithm to about 20 % with the Delayed Acceptance.
In combination with a reduction in the acceptance rate, the Delayed Acceptance
version of the Metropolis–Hastings algorithm also induces a reduction of the
effective sample size of about 35 %. We have used an algorithm that is adaptive
during the burn-in period such that it leads to an acceptance rate above 20 % and
below 40 %.

The Delayed Acceptance algorithm is an ideal solution for this setting: the
likelihood is cheap to evaluate while the prior distribution is not only demanding
but also non-informative. Therefore, it should have a limited influence with respect
to the data when computing the posterior distribution and thus an early rejection
due only to the likelihood ratio should not worsen the MCMC performances.
Nevertheless, attention must be paid when applying the algorithm; since the prior
distribution is improper, when the likelihood function is concentrated near regions of
the parameter space where the prior distribution diverges (for examples in the case
of Gaussian mixture models if the likelihood function is concentrated not far from
values of standard deviations near 0), even if the first step based on the likelihood
alone accepts a move, the first derivative of the prior distribution in that point may
be too high in absolute value to allow the acceptance of the move and, therefore, the
chain may be stuck or accept the proposed value only if the move is towards regions
of even higher prior density.

A solution to this problem may be seen in splitting the likelihood ratio and using
a part of it (relative to a small set of observations) jointly with the prior ratio in the
second step. How many observations one has to consider in this splitting depends
on the problem at hand and on the total number of observations.
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4.4 The Posterior Distribution for a Mixture Model
when Jeffreys’ Prior is Used

It is a well-established fact in the literature that using independent improper priors
for mixture models leads to improper posterior distributions, in particular if one of
the components of the mixture model is not represented in the observed sample (i.e.,
there are no observations relative to at least one of the components of the mixture).
One may use improper priors in mixture models by introducing some form of
dependence between the components, as shown in [7]. Actually, the Jeffreys’ prior
does that by considering the Fisher information matrix. Checking for properness
of the posterior distribution is unfeasible in an analytic way and the outcome of
the classical Metropolis–Hastings algorithm and the version described in Sect. 4.3
targeting the posterior distribution derived from using the Jeffreys’ prior has to be
exploited in order to collect evidence that the posterior distribution is proper, even
if the results which will be presented are not a conclusive proof of that.

4.4.1 Output of the MCMC Algorithm

Through extensive simulation, we have seen that for a sufficiently big sample size
(at least equal to 20 for a three-component Gaussian mixture model) the MCMC
chain never diverged. In particular, when the sample size decreases by up to ten data
points, the component with the lowest weight is usually not identified and the chains
may even get stuck, in particular because values of standard deviations close to 0 are
accepted. The uncertainty on the posterior estimates depends on how variable that
particular component is and how big the corresponding weight is. The acceptance
rate of the MCMC algorithm is around 20 % for high sample sizes and it increases
as the sample size decreases, unless the chain gets stuck (this happens with very low
sample sizes).

4.4.2 An Example

Experiments with simulated data have been performed with different numbers of
Gaussian components with different location and scale parameters generating the
data and with different weights. The results are always similar, except for the fact
that the uncertainty on the Bayesian estimates of the parameters increases as the
components are closer, in terms of location. In particular, the Bayesian estimates
of the components with the highest variances and/or the lowest weights are more
variable.

Figures 4.4, 4.5, and 4.6 show the trace plots and the histograms of the MCMC
chains approximating the marginal posterior distributions of the parameters of the
three-component Gaussian mixture model
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Fig. 4.4 Marginal posterior distributions (chains obtained via Metropolis–Hastings algorithm) for
the means of a three-component Gaussian mixture model 0.65 ·N(15,0.5) + 0.25 ·N(−10,1) +
0.10 ·N(0,5)
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Fig. 4.5 Marginal posterior distributions for the standard deviations of the same model as in
Fig. 4.4

0.65 ·N(15,0.5)+ 0.25 ·N(−10,1)+0.10 ·N(0,5) (4.13)

and for a sample size equal to 100. They show that the chains have reached
convergence, with a higher uncertainty when estimating the mean and the standard
deviation of the third component, being the one with the highest variability and the
smallest weight.
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Fig. 4.6 Marginal posterior distributions for the weights of the same model as in Fig. 4.4

4.5 Discussion

The aim of this work is to propose an objective Bayesian analysis for the mixture
model setting. The literature on mixture models shows that attention must be paid
when using improper priors with these models and a generally accepted default
solution does not exist. Nonetheless, we try to introduce a new objective Bayesian
approach to handling mixture models by applying a Jeffreys’ prior which considers
the parameters of the dependent model. The prior has been shown to be improper,
nevertheless extensive simulation studies suggest that the posterior could be proper,
at least for a sufficiently high number of observations.

There are two important drawbacks when using the Jeffreys’ prior for mixture
models. First, the prior depends on integrals which have to be approximated.
Possible solutions to this problem have been investigated, but they are beyond the
scope of this paper. One may refer to [1] for an algorithm which may reduce the
computational time of approximating the posterior distribution. Another solution is
to reparameterize the model, as proposed by Mengersen and Robert [7], and exploit
its independence features to reduce the dimension of the matrix to approximate.
Second, the posterior distribution cannot be managed in an analytic way. Neverthe-
less there is no assurance that a distribution is proper if the Markov chain simulated
via MCMC and used to approximate the posterior seems to converge. Future work
will be aimed at the study of the relationship between the prior distribution and
the likelihood function (in particular, the tails of the two functions) that makes the
posterior proper in the setting of mixture models.

For the moment a widely accepted objective Bayesian approach in the setting
of mixture models does not exist. This work could be seen as a way to understand
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if the Jeffreys’ prior could represent a reasonable alternative to existing solutions.
However, further research is needed, in particular to prove if and in which cases
the posterior distribution derived from the Jeffreys’ prior is proper and to generalize
the Jeffreys’ prior to models with non-Gaussian components or with a non-fixed
number of components.
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Chapter 5
A Subordinated Stochastic Process Model

Ana Paula Palacios, J. Miguel Marín, and Michael P. Wiper

Abstract We introduce a new stochastic model for non-decreasing processes which
can be used to include stochastic variability into any deterministic growth function
via subordination. This model is useful in many applications such as growth curves
(children’s height, fish length, diameter of trees, etc.) and degradation processes
(crack size, wheel degradation, laser light, etc.). One advantage of our approach is
the ability to easily deal with data that are irregularly spaced in time or different
curves that are observed at different moments of time. With the use of simulations
and applications, we examine two approaches to Bayesian inference for our model:
the first based on a Gibbs sampler and the second based on approximate Bayesian
computation (ABC).

Key words: ABC, Gibbs sampling, Growth models, Stochastic processes,
Subordination

5.1 Introduction

Growth processes are usually described using discrete time models where the mean
function is deterministic and a stochastic element is introduced via an additive,
random noise component. An alternative approach is to consider continuous time
modelling. In the literature some stochastic growth models are proposed using
stochastic differential equations to model the variations ([1, 3]). However, the
solution of these equations is not monotonically increasing and therefore can fail
to model non-decreasing growth process like, for example, children’s height, fish
size or crack length. In this work, we introduce a new stochastic model for non-
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decreasing processes that overcomes the problem described above. This model can
be used to include stochastic variability into any deterministic growth function via
subordination. That is, starting from a base process we construct a new process by
applying a time change. Let Xt be a base stochastic process and Tt be the time change
process (subordinator). The time-changed (subordinated process) Yt is defined as
Yt = XTt . The main features of this model are that its paths are non-decreasing
everywhere and, as a particular case, the mean function of the process is equal to
the deterministic growth function used as time change.

5.2 The Model

The growth model that we propose is built upon a homogeneous, continuous time
Markov process. It is commonly observed that growth in biological processes, and
the wear in degradation processes, does not occur continuously. In contrast, growth
or damage occurs per intervals of time. Furthermore, the growth velocity can also
fluctuate. To represent this discontinuous growth, we start our model with a time
homogeneous Markov process {Ut : t ≥ 0} with finite state space S . States are
ordered and they represent different levels of the growth rate. Transitions can only
occur between neighbours. That is, if at time t the process is in state i, after an
exponential amount of time it moves to one of the neighbouring states i → i+ 1 or
i → i− 1. This allows us to represent possible fluctuations in the growth rate but
without abrupt changes. The process Ut is uniquely determined by the generator
matrix, Q, and the initial distribution of the process, ν0. The transition rate matrix
Q is a tridiagonal matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

−α α 0 0 0 . . .

β −(α+β ) α 0 0 . . .

0 β −(α+β ) α 0 . . .
...

...
...

...
...

0 0 0 0 β −β

⎞
⎟⎟⎟⎟⎟⎠

with parameters α > 0, the instantaneous upward jump rate and β > 0, the
instantaneous downward jump rate.

Now we define a continuous state process, {Vt : t ≥ 0}, such that

Vt =

∫ t

0
Usds. (5.1)

This is a non-decreasing, continuous time process which, being the integral of the
growth rate, represents the total growth. Realisations of Vt are the path integrals of
a simple stochastic process and their trajectories are piece-wise linear.

Beyond the growth fluctuations described earlier, most of these processes are
also characterised by growth stages. For example, many growth processes show an
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S-shape curve, where an initial (almost) steady period is followed by an exponential
growth before a deceleration of the growth rate. We introduce these different stages
in the model by manipulating the time (see for time change and subordination [5]),
e.g. when the growth is slow, we want time to slow down but when the growth is
exponential we want time to speed up. Thus, the time velocity will be governed by
a deterministic non-decreasing function. We define our stochastic growth process,
{Yt : t ≥ 0} to be a continuous time stochastic process with continuous state space,
defined as

Yt =VT(t;θθθ ), (5.2)

where T (t;θθθ ) is any deterministic non-decreasing function of time and θθθ is the
vector of parameters.

It can be shown that, assuming a stationary state of the Markov process, the
mean function of the process Yt is proportional to the time change function T :
E[Yt ] = μT (t;θθθ ), where μ is the constant mean of the Markov process in the
stationary state. As a particular case, if a proportion J of the function T is used
as a time change and J = 1/μ , then E[Yt ] = T (t;θθθ ). This fact suggests to use as
time change function any standard parametric function commonly used to model
the phenomena of interest. For example, for population growth a logistic function
could be used; for fish size the von Bertalanffy growth function could be used, etc.
Figure 5.1 shows, on the right, 20 replications of experimental bacterial growth
curves (the data used in this paper is a small subset of [2, 6]), and on the left, 20
realisations of the process Yt when using the Gompertz function as time change.
The real data consists of optical density measurements of bacterial cultures where
the absorbance measurements were conducted at a wavelength of 595 nm.
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Fig. 5.1 Simulated realisations and real bacterial growth curves. (a) Several realisations, (b)
Replications
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The variance of the process Vt is linearly increasing with time and its magnitude
depends on the instantaneous intensity rates of the Markov process. The greater the
intensity rates, the lower the variance.

5.3 Bayesian Inference

The parameters of the model are the intensity rates α and β of the Markov
process and the parameters θθθ of the time change function. For this full model,
the likelihood function f (y|α,β ,θθθ ) is analytically unavailable which implies that
frequentist approaches are infeasible. This limitation restricts the computational
inference options to likelihood-free methods and we will illustrate this approach
with a naive ABC example later in this section. However, for the simpler model with
a Markov process Ut with two states {0,1} and equal upward and downward jump
rates, we obtain an explicit expression for the likelihood when conditioning on the
initial state and the number of jumps in successive time intervals. Assume that we
observe the growth data yt1 < .. . < ytn at a sequence of time points, 0< t1 < .. . < tn,
say. The difference ȳi = yti − yti−1 is equal to the total time spent in state 1 during
the transformed time interval Ti = T (ti)−T (ti−1). Conditioning on the number of
jumps Ni in interval i, it is possible to show that the distribution of ȳi is equal to
the distribution of the order statistics of a uniform (0,Ti) distribution where Ti is
the length of interval i. Then, the conditional likelihood of ȳi follows a scaled beta
distribution and this allows for the implementation of a Gibbs sampling algorithm
(see [4]). In what follows, we will discuss in more detail the implementation of two
Bayesian approaches, namely Gibbs sampling and the ABC algorithm.

5.3.1 Gibbs Sampling

For the simple model with two states {0,1} and equal upward and downward jump
rates λ = α = β , the parameters to be estimated are the intensity rate λ and the
parameters of the time change function θθθ . In addition, the model has two latent
variables, namely the initial state of the Markov process s0 and the number of
jumps per intervals Ni, for i = 1, . . . ,n. We implement the inference approach in
two stages: in a first stage, the parameters of the time change function are estimated
and, assuming them known in the second stage, the intensity rate is estimated.
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Suppose that for each interval i we know the state of the underlying Markov
chain at the starting time Ti−1, that is si−1 and the number of jumps, Ni. Note that,
given the number of jumps per interval and the initial state s0, the successive si can
be calculated as follows:

si = mod(si−1 +Ni,2), i = 1, . . . ,n,

where mod(a,b) represents a modulo b. Suppose that we know the initial state, say
s0, at the start of the first time interval, and the number of state changes that occur
in each time interval, say Ni, for i = 1, . . . ,n. Then, the likelihood function is:

f (ȳ|λ ,s0,N) =
n

∏
i=1

f (ȳi|λ ,si−1,Ni), (5.3)

where N=(N1, . . . ,Nn). The densities of each ȳi are conditionally independent given
the state at the start of interval i and the number of state transitions in the interval.
Moreover, given the number of jumps, the likelihood function is conditionally
independent of λ . Now consider two cases: when Ni is odd and when Ni is even. The
analytical form of the conditional likelihood for these two cases is as follows:

• If Ni is odd, then the process spends half of its time intervals in state 1 and
the remainder in state 0. Therefore, the distribution of the sum of (Ni + 1)/2
intervals is equal to the distribution of the order statistic U((Ni+1)/2), i.e. a scaled
beta distribution

f (ȳi|Ni) =
1

B(Ni+1
2 , Ni+1

2 )

ȳ(Ni+1)/2−1
i (Ti − ȳi)

(Ni+1)/2−1

T Ni
i

,

where B denotes the beta function.
• If Ni is even, then the number of time intervals in period i is odd. Therefore, the

process spends Ni/2+1 time intervals in state 1 if the initial state is 1, or Ni/2 if
the initial state is 0. That is,

f (ȳi|si−1,Ni) =
1

B(Ni
2 + si−1,

Ni
2 +(1− si−1))

ȳNi/2+si−1−1
i (Ti − ȳi)

Ni/2−si−1

T Ni
i

.

The conditional posterior distributions of λ and s0 can be derived analytically.
However, the posterior distribution of Ni does not have a closed form, and
a Metropolis–Hasting step is necessary. Assuming that λ has a gamma prior
distribution, say λ ∼ Gamma(a,b), then we have

f (λ |ȳ,s0,N) ∝ f (ȳ|λ ,s0,N) f (λ |s0,N)

∝ f (N|λ ) f (λ ),

λ |ȳ,s0,N ∼ Gamma(a+ nN̄,b+ nT̄),
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where N̄ = (1/n)Σn
i=1Ni and T̄ = (1/n)∑n

i=1(Ti −Ti−1) is the average length of the
transformed time intervals. Assuming that s0 has a Bernoulli prior distribution with
P(s0 = 1) = p, then

P(s0 = 1|ȳ,λ ,N) =
f (ȳ|λ ,s0 = 1,N)P(s0 = 1)

f (ȳ|λ ,s0 = 1,N)P(s0 = 1)+ f (ȳ|λ ,s0 = 0,N)P(s0 = 0)
.

This is straightforward to sample using a Gibbs step by computing analytically
the conditional posterior probabilities of s0 = 0 and s0 = 1.

The posterior distributions of the Nis do not have a simple closed form and we
use a Metropolis–Hastings algorithm to sample from these distributions based on
generating candidate values from a Poisson distribution centred at the current value
plus 0.5.

To illustrate this approach, a data set was simulated for given values of the
time change function. For this example, we have chosen the Gompertz function
as time change because this is one of the most common and successful parametric
models used to describe bacterial growth. There are several parameterisations of the
Gompertz function. In this work we use:

G(t) = Dexp

(
−exp

(
1+

μe(α− t)
D

))
,

where D is the distance between the maximum and the initial population size, μ
is the maximum growth rate and α is a parameter that describes the lag period
of the bacteria to start the binary fission. Assuming λ = 10, five replications
were generated with 20 observations per curve. Gibbs sampling was performed to
estimate the intensity rate and the results are shown in Fig. 5.2. The Markov chain
has converged and the posterior distribution of λ is centred around the true value.
The posterior mean is equal to 9.42 and the median is 9.38. The 95 % credible
interval is equal to (7.48,11.51).

5.3.2 Naive ABC Example

For the more general case, with multiple states in the Markov chain, the previous
Gibbs sampling cannot be implemented since it is restricted to the case of only two
states in the Markov chain. Instead, likelihood-free methods must be used for the
general case of a state space S = {s1, . . . ,sk}. We illustrate this approach with a
naive ABC implementation.

The ABC algorithm proceeds by sampling parameter values from the prior
distributions and then simulating growth curve data (at the same time points as the
observed data) given these parameter values. The general algorithm is as follows:
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Fig. 5.2 Plots illustrating the Gibbs sampling outcomes. (a) Trace plot of the intensity rate, (b)
Posterior distribution of the intensity rate

1. Sample from the prior distributions the intensity rate λ (i) and
the time change parameters θθθ (i)

2. Simulate data given λ (i),θθθ (i): y(i) ∼ f (y|λ (i),θθθ (i))

3. Reject λ (i),θθθ (i) if d(y(i),y)≥ ε, where d(y(i),y) = ∑n
j=1 w j|y(i)j − y j|

4. Repeat 1-3 until required number of candidates is accepted.

For the case where a single curve is observed, the weights are set to be
equal. When the observed data consist of several replications of the same process,
simulated data are evaluated by taking into account its distance with respect to the
mean curve. The weights account for the variability of the process at different points
of time. After this, we accept the 1 % of the generated parameter values with the
lowest distance between the observed and simulated data.

This simplest rejection-ABC algorithm described above was implemented and
applied to the real bacterial data of Fig. 5.1. The time change function chosen is
again the Gompertz function. The parameters estimated are the intensity rate and the
parameters of the Gompertz function. Informative prior distributions were assumed
for the Gompertz parameters to avoid producing excessively many unreasonable
parameter values. We compared one to one the simulated data with the mean
observed data and summed over all the distances for each observation in a curve.
When computing the distances between the simulated and observed data |y(i)j − y j|
we penalised more for departures at earlier times (when less variability between
curves is normally observed). To set the number of iterations required we first
perform a simulation study. We found that increasing the number of iterations
beyond 100,000 did not improve the accuracy (measured through the relative mean
integrate square error of the parameters). Finally, we kept the best 1 % of the 100,000
sampled parameter values, i.e. the ones which minimise the distance. Several state
spaces were considered and Table 5.1 summarises the results showing the estimated
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Table 5.1 Estimated parameter values given different state spaces

S = {0.8,1} S = {0.8,1,1.2} S = {0.8,1,1.2,1.4} S = {0.8,0.9} S = {0.8,0.9,1}
λ 0.96 1.00 0.99 1.00 1.00

μ 0.28 0.28 0.27 0.28 0.26

α 3.88 3.90 3.87 3.89 3.80

D 1.07 1.03 1.04 1.09 1.10
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Fig. 5.3 Plots illustrating the ABC algorithm’s outcomes. (a) Whole set of generated curves. The
thick black line represents the mean observed curve (determined point-wise), (b) The best 1 % from
the ABC sampler. Thick black lines represent the maximum, the minimum and the mean observed
curves (determined point-wise)

posterior mean values for the parameters of the model. The posterior mean values
for the Gompertz parameter were all biologically reasonable. In addition, Fig. 5.3
illustrates the curves simulated for the case with state space S = {0.8,1}.

5.4 Conclusions

The aim of our work was to propose a new stochastic model suitable for growth
processes and degradation data. Thus, the model developed has two desirable nice
features. First, the growth paths are non-decreasing making the model feasible for
a wide variety of applications such as crack size, fish or human growth. Second,
as a particular case of the model, the mean function of the process is equal to the
parametric function governing the time change. Another advantage of our approach
is its ability to easily deal with data that are irregularly spaced in time or different
curves that are observed at different moments of time. Finally, we have shown with
the use of simulations and applications, two possible Bayesian approaches to fit
the model, namely Gibbs sampling and approximate Bayesian computation. Gibbs
sampling produces very good estimates for the intensity rate, assuming that the
parameters of the time change function are known. Interesting extensions could
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be done with a full Gibbs sampling approach where all parameters are estimated
simultaneously. In this way, the problem of underestimation of the total uncertainty
present in two-stage inference can be overcome. In addition, the main limitation
of this approach is that it is applicable only to models that assume only two states
for the Markov chain. Alternatively, likelihood-free methods could be applied and a
naive example using ABC was shown. This toy example required informative prior
distributions for efficient estimation. More efficient alternatives like MCMC-ABC
or sequential-ABC could be applied to allow for non-informative prior distributions.
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Chapter 6
Bayesian Variable Selection
for Generalized Linear Models Using
the Power-Conditional-Expected-Posterior Prior

Konstantinos Perrakis, Dimitris Fouskakis, and Ioannis Ntzoufras

Abstract The power-conditional-expected-posterior (PCEP) prior developed for
variable selection in normal regression models combines ideas from the power-
prior and expected-posterior prior, relying on the concept of random imaginary data,
and provides a consistent variable selection method which leads to parsimonious
selection. In this paper, the PCEP methodology is extended to generalized linear
models (GLMs). We define the PCEP prior in the GLM setting, explain the
connections to other default model-selection priors, and present various posterior
representations which can be used for model-specific posterior inference or for
variable selection. The method is implemented for a logistic regression example
with Bernoulli data. Results indicate that the PCEP prior leads to parsimonious
selection for logistic regression models, similarly to the case of normal regression.
Current limitations in generalizing the applicability of PCEP and possible solutions
are discussed.

Key words: Power-conditional-expected-posterior prior, Bayesian variable
selection, Generalized linear models

6.1 Introduction

During the last years, research in Bayesian variable selection has focused on
the choice of suitable and meaningful priors for the parameters of compet-
ing models. On the one hand, using proper diffuse priors is problematic since
posterior model odds are highly sensitive to the prior variances owing to the
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Jeffreys–Lindley–Bartlett paradox [1, 14]. On the other hand, the use of improper
priors results in indeterminate posterior odds, since the unknown normalizing
constants do not cancel out in the calculation of Bayes factors. Due to these issues, a
large body of literature is devoted to developing default proper priors for “objective”
Bayesian model selection methods. Important contributions include, among others,
Zellner’s g-prior [24] in its various forms [5], the fractional Bayes factor approach
[17], the intrinsic Bayes factor and the intrinsic prior [2], the intrinsic variable
selection method [3], and the expected-posterior prior [18]. More recently, interest
lies on mixtures of g-priors, including the hyper-g prior [13] with its extensions to
generalized linear models (GLMs) [20] and to economic applications [12].

A key issue in the procedure of forming sensible and compatible prior distri-
butions is the concept of underlying “imaginary” data. This concept is directly
related to the power-prior approach [10] initially developed for “historical” data.
For instance, Zellner’s g-prior can be expressed as a power-prior with a fixed
set of imaginary data [10, 24] and, similarly, that is the case for any mixture of
g-prior, with the difference that additional uncertainty is introduced to the volume
of information that the imaginary data contribute. In addition, the mechanism of
imaginary data forms the basis of the expected-posterior prior [18], which is a
generalization of the intrinsic prior [2]. Recently, the power-prior and the expected-
posterior prior approaches were combined and used for applications of variable
selection in normal linear regression. Initially, Fouskakis et al. [8] introduced
the power-expected-posterior (PEP) prior applying jointly the power-prior and the
expected-posterior prior approaches to the regression parameters and the error
variance. In Fouskakis and Ntzoufras [7] the power-conditional-expected-posterior
(PCEP) prior is developed by combining the two approaches for the regression
parameters conditional on the error variance.

In this paper, we further extend the use of the PCEP prior to applications
in GLMs. We present how the PCEP is defined in the GLM framework, its
interpretation and relationship with power-priors and g-priors, and we also examine
various posterior representations for single-model inference as well as variable
selection. Current results from a Bernoulli logistic regression example indicate that
the PCEP approach results in parsimonious selection, similarly to normal regression
variable selection problems [7]. We also discuss current limitations and possible
solutions for extending the application of the PCEP prior to other commonly used
distributions belonging to the exponential family.

6.2 Model Specification with PCEP in GLMs

In this section, we initially describe the concept of imaginary data and the
connection between the power-prior and g-prior in GLMs. We proceed by defining
the PCEP prior and explaining the advantages of using this approach. We conclude
with three different representations of the posterior distribution under the PCEP
prior which can be used for MCMC sampling.
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6.2.1 Imaginary Data and Power-Prior

Let us consider a set of imaginary data y∗ = (y∗1,y
∗
2, . . . ,y

∗
n∗)

T of size n∗. Then,
for any model M� with parameter vector θ�, likelihood f�(y∗|θ�) and baseline prior
πN
� (θ�), we can obtain a “sensible” prior for the model parameters from

πN
� (θ�|y∗,δ ) ∝ f�(y

∗|θ�)1/δ πN
� (θ�) . (6.1)

This is the power-prior of Ibrahim and Chen [10]. The parameter δ controls the
weight that the imaginary data contribute to the “final” posterior distribution of θ�.
For δ = 1, (6.1) is exactly equal to the posterior distribution of θ� after observing
the imaginary data y∗. For δ = n∗ the contribution of the imaginary data to the
overall posterior is equal to one data point; i.e., a prior having a unit-information
interpretation [11].

6.2.2 Relation of Power-Prior and g-Prior in GLMs

We focus on variable selection problems for generalized linear models (GLMs), i.e.
for models M� with parameters θ� = (β� ,φ�)T and response data y = (y1, . . . ,yn)

T

with likelihood given by

f�(y|β� ,φ�) = exp

(
n

∑
i=1

yiϑ�(i)− b(ϑ�(i))

a(φ�(i))
+

n

∑
i=1

c(yi,φ�(i))

)
,

ϑ�(i) = g ◦ b′−1
(

X�(i)β�
)
,

where X� is an n× d� design matrix and g ◦ b′−1(ϑϑϑ �) is the inverse function of
g ◦ b′(ϑ�) = g

(
b′(ϑ�)

)
, ϑ� and φ� are the location and dispersion parameters of the

exponential family, respectively, a(·), b(·), c(·) are functions specifying the structure
of the distribution, and g(·) is the link function connecting the mean of the response
yi with the linear predictor.

Under the power-prior approach in (6.1) the prior of β� conditional on the
parameter φ� and the imaginary data y∗ of size n∗ is

πN
� (β�|φ�,y∗,δ ) ∝ exp

(
n∗

∑
i=1

y∗i ϑ�(i)− b(ϑ�(i))

δa(φ�(i))

)
πN
� (β�|φ�).

Assuming a reference baseline prior for β�, i.e. πN
� (β�|φ�) ∝ 1, then we have

asymptotically

π̂N
� (β�|φ�,y∗,δ ) ≈ fNd�

(
β� ; β̂ ∗

� ,δ
(
X∗T
� H∗

�X∗
�

)−1
)
, (6.2)
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where β̂ ∗
� is the MLE of β� for data y∗ and design matrix X∗

� , H∗
� = diag(h∗�(i)), with

h∗−1
�(i) =

( ∂g(μ�(i))
∂μ�(i)

)2
a(φ�(i))b′′(ϑ�(i)) and μ�(i) = b′(ϑ�(i)), and fNd (x ; μ ,Σ) denotes

the density of the d-dimensional normal distribution with mean μ and variance-
covariance matrix Σ.

Recall that the extension of Zellner’s g-prior for GLMs, according to the
definition in [16, 20], is of the following form

β�|φ� ∼ Nd�

(
β� ;μ�,g

(
XT
� H�X�

)−1
)
. (6.3)

Thus, the Zellner’s g-prior can be interpreted as a power-prior on imaginary data
with δ having the role of g and X∗

� = X�, H∗
� = H�. The familiar zero-mean

representation in (6.3), i.e. μ� = 0, arises when all imaginary data in (6.2) are the
same, i.e. y∗ = g−1(0)1n∗ , and a(φ�(i)) = φ�/wi, where 1n∗ is a vector of ones of size
n∗ and wi is a known fixed weight; for details, see [16, 20].

6.2.3 Power-Conditional-Expected-Posterior Prior

The PCEP prior is derived by combining the power-prior approach [10] and the
expected-posterior prior approach [18]. Consider initially, the conditional-expected-
posterior (CEP) prior given by

πCEP
� (β�,φ�) = πCEP

� (β�|φ�)πN
� (φ�),

where πN
� (φ�) is the baseline prior for φ� and

πCEP
� (β�|φ�) =

∫
πN
� (β�|φ�,y∗)mN

0 (y
∗)dy∗. (6.4)

Prior (6.4) corresponds to the expected-posterior-prior [18] for β� conditional on φ�,
with the imaginary data coming from the marginal or prior predictive distribution

mN
0 (y

∗) =
∫

f0(y∗|β0,φ0)πN
0 (β0|φ0)πN

0 (φ0)dβ0dφ0,

where f0 and πN
0 are the likelihood and baseline prior, respectively, of the null

model M0. In this context the null model is used as a reference model; see discussion
in Sect. 6.2.4. Applications of this prior to normal regression variable selection can
be found in [6].

The PCEP prior, which was gradually developed in [7] and [8] for normal
regression models, is constructed by raising the likelihood, involved in (6.4), to the
power 1/δ , that is

πPCEP
� (β�,φ�|δ ) = πPCEP

� (β�|φ�,δ )πN
� (φ�), (6.5)

where
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πPCEP
� (β�|φ�,δ ) =

∫
πN
� (β�|φ�,y∗,δ )mN

0 (y
∗|δ )dy∗ (6.6)

and

πN
� (β�|φ�,y∗,δ ) =

f�(y∗|β�,φ�,δ )πN
� (β� |φ�)

mN
� (y

∗|φ�,δ )
. (6.7)

The likelihood involved in (6.7) is the density-normalized power likelihood, i.e.

f�(y
∗|β�,φ�,δ ) = f�(y∗|β�,φ�)1/δ

∫
f�(y∗|β�,φ�)1/δdy∗

, (6.8)

while

mN
� (y

∗|φ�,δ ) =
∫

f�(y
∗|β�,φ�,δ )πN

� (β� |φ�)dβ� (6.9)

is the prior predictive of y∗ for model M� conditional on φ� and δ and

mN
0 (y

∗|δ ) =
∫

f0(y∗|β0,φ0,δ )πN
0 (β0|φ0)πN

0 (φ0)dβ0dφ0 (6.10)

is the prior predictive of y∗ for model M0 conditional on δ .

6.2.4 PCEP Interpretation and Specification

As seen in (6.6), the PCEP prior is the average of the posterior of β� given y∗ over
the prior-predictive of a reference model. It is therefore an objective prior which
introduces an extra hierarchical level to account for the uncertainty in the imaginary
data. If we further take into account the normal approximation in (6.2), it can also
be considered as a mixture of g-priors with a hyper-prior assigned to y∗ rather than
to the variance multiplicator g (which is here substituted by δ ).

Nevertheless, the PCEP methodology still depends on the selection of the power
parameter δ , the size n∗ of the imaginary sample, and the choice of the reference
model. Following [8], we recommend:

• to set δ = n∗ so that the imaginary sample contributes information equal to one
data point, leading to a unit-information interpretation [11].

• to set n∗ = n and consequently X∗
� = X�; this way we dispense with the need of

selecting and averaging over “minimal” training samples as in the intrinsic and
expected-posterior prior approaches [2, 18]; see [8] for a detailed discussion.

• to use the constant model M0 as the reference model in order to support
a-priori the most parsimonious data-generating assumption; see [22] for a related
discussion.
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As illustrated in [7, 8] for normal regression models, power-expected-posterior
priors result in a consistent variable selection methodology. In addition, variable
selection through PCEP using a g-baseline prior results in more parsimonious
models than the hyper-g and the g-prior [7].

6.2.5 Posterior Distribution Under PCEP in GLMs

In normal regression models the PCEP prior is a conjugate normal-inverse gamma
distribution which leads to fast and simple computations, cf. [7]. For the rest of
GLMs the integration involved for deriving the PCEP prior is intractable. However,
we can use the hierarchical model, i.e. without marginalizing in (6.6), and sample
from the joint posterior distribution of β�,φ� and y∗. From (6.5), (6.6), and (6.7) we
have that

πPCEP
� (β�,φ�,y∗|y,δ ) ∝ f�(y|β�,φ�)πN

� (β�|φ�,y∗,δ )πN
� (φ�)m

N
0 (y

∗|δ )

∝ f�(y|β�,φ�) f�(y∗|β�,φ�,δ )πN
� (β� |φ�)

mN
� (y

∗|φ�,δ )
×πN

� (φ�)m
N
0 (y

∗|δ ). (6.11)

A problem when working with non-normal GLMs is that the prior-predictive
distributions mN

0 (y
∗|δ ) and mN

� (y
∗|φ�,δ ), defined in (6.10), and (6.9) respectively,

are not known in closed form. One solution is to use the Laplace approximation for
both.

Alternatively, we can avoid estimating the prior predictive mN
0 (y

∗|δ ) of the null
model by augmenting the parameter space further and include the parameter vector
(β0,φ0)

T of the null model in the joint posterior. Under this approach, we deduce
that

πPCEP
� (β�,φ�,β0,φ0,y∗|y,δ ) ∝ f�(y|β�,φ�) f�(y∗|β�,φ�,δ )πN

� (β� |φ�)
mN
� (y

∗|φ�,δ )
πN
� (φ�)

× f0(y∗|β0,φ0,δ )πN
0 (β0|φ0)πN

0 (φ0). (6.12)

If we further want to avoid the estimation of mN
� (y

∗|φ�,δ ), we can make use
of the asymptotic result presented in (6.2) (note that we control the effect of the
imaginary data) and work with the following expression

πPCEP
� (β�,φ�,β0,φ0,y∗|y,δ ) ∝ f�(y|β�,φ�)π̂N

� (β�|φ�,y∗,δ )πN
� (φ�)

× f0(y∗|β0,φ0,δ )πN
0 (β0|φ0)πN

0 (φ0), (6.13)

with π̂N
� (β�|φ�,y∗,δ ) as defined in (6.2).
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Sampling from the posterior distributions presented in (6.11), (6.12), and (6.13)
is possible with standard Metropolis-within-Gibbs algorithms, i.e. sampling seq-
uentially each component from the full conditional distribution with Metropolis–
Hastings steps. For commonly used GLMs, such as logistic or Poisson regression
models, φ� = 1, which simplifies the algorithms. It is also worth noting that for
φ� = 1 there is no distinction between the PEP prior developed in [8] and the PCEP
prior [7]. Moreover, computations are simplified further when using a reference
baseline prior, i.e. πN

� (β�|φ�) ∝ 1.

6.3 Variable Selection Under PCEP in GLMs

Here we present a variable selection technique under the PCEP prior based on
the Gibbs variable selection (GVS) algorithm [4]. For simplicity of illustration
we consider GLMs where φ� = 1. In addition, we have to introduce a slight change
in notation for the model indicator, but note that there is a direct one-to-one
correspondence with the previous notation.

GVS introduces a vector of binary indicators γ ∈ {0,1}p representing which of
the p possible sets of covariates are included in a model. Assuming that the constant
is always included, the linear predictor can be written as η = β0 +∑p

j=1 γ jX jβ j.
We partition the vector β into (βγ ,β\γ), corresponding to those components of β
that are included (γ j = 1) and excluded (γ j = 0) from the model, and define the
baseline prior of β and γ as

πN(β ,γ) = πN(β |γ)πN(γ) = πN(βγ |γ)πN(β\γ |γ)πN(γ),

where the actual baseline prior choice involves only βγ , since πN(β\γ |γ) is just
a pseudo-prior used for balancing the dimensions between model spaces. For γ
we use the hierarchical prior γ|τ ∼ Bernoulli(τ) and τ ∼ Beta(1,1) in order to
account for the appropriate multiplicity adjustment [21]. The resulting prior model
probabilities are

πN(γ) =
1

p+ 1

(
p
pγ

)−1

,

where p is the total number of covariates and pγ is the number of covariates that are
included in model Mγ . Under the GVS setting the posterior distribution presented in
(6.11) can be expressed as

πPCEP(βγ ,β\γ ,γ,y∗|y,δ ) ∝ f (y|βγ ,γ) f (y∗|βγ ,γ,δ )πN(βγ |γ)
mN
γ (y∗|δ )

×πN(β\γ |γ)πN(γ)mN
0 (y

∗|δ ). (6.14)
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Some remarks concerning implementation of GVS for the posterior in (6.14) are:

• Commonly, a flat baseline prior is imposed on βγ , therefore πN(βγ |γ) is
eliminated from the corresponding expressions.

• A usual choice for the pseudo-prior of β\γ is the product of independent normal
distributions with means equal to the maximum-likelihood estimates of the full
model and standard deviations equal to the standard errors of these estimates.

• β\γ is sampled directly from the pseudo-prior and the γ j’s from the full
conditional which is a simple Bernoulli distribution; see [4] for details.

• Sampling βγ and y∗ from the full conditionals requires Metropolis–Hastings
steps.

• The full conditional of y∗ depends on mN
0 (y

∗|δ ) and mN
γ (y

∗|δ ) which are
unknown; as discussed in Sect. 6.2.5, one can use the Laplace approximation
or, alternatively, use the posterior distributions presented in (6.12) and (6.13).

A detailed description of the GVS algorithm, based on the posterior distribution
in (6.12), for Bernoulli logistic regression can be found in the appendix.

6.4 Example: Bernoulli Logistic Regression

In this section we present results for a variable selection problem in a logistic
regression application to Bernoulli data, namely the Pima Indians diabetes data
set [19], which contains n = 532 complete records on diabetes presence associated
with p = 7 covariates. The number of competing models is 27 = 128. The particular
dataset has been considered by many authors under various methods, e.g. hyper-g
priors [20] and auxiliary variable selection methods [9, 23].

We adopt a flat baseline prior for the regression parameters, i.e. πN
� (β�) ∝ 1.

Furthermore, based on the recommendations discussed in Sect. 6.2.4, we set δ =
n∗ = n = 532. Initially, we should note that we implemented MCMC runs for the
full model with the purpose of comparing the approaches described in (6.11), (6.12),
and (6.13) based on the three different representations of the posterior distribution.
Our results (not presented here) in terms of posterior summaries are almost identical.

Here, we focus on the results from variable selection using the GVS algorithm
described in Sect. 6.3 combined with the augmented posterior in (6.12). Results are
based on 41,000 iterations, using the first 1,000 for burn-in; the posterior marginal
inclusion probabilities under PCEP are presented in Table 6.1. For comparison
reasons, Table 6.1 also includes the corresponding estimates presented in [20]
under BIC and three variations of the hyper-g prior, namely π(g) = IG(1/2,n/2)
[25], n(g) = 1/[n(1+ g/n)2], i.e. a hyper- g/n prior with a = 4 [13], and π(g) =
IG(10−3,10−3), where IG(a,b) is the inverse-gamma distribution with shape a and
scale b. The estimates for the strongly influential covariates X1,X2,X5, and X6 are
more or less the same under the four approaches. On the contrary, the posterior
marginal inclusion probabilities for covariates X3,X4, and X7 are much lower under
PCEP in comparison with the ones under the hyper-g prior methods. The median
probability model using PCEP and BIC is X1+X2+X5+X6, while the three hyper-g
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Table 6.1 Posterior marginal inclusion probabilities for the Pima Indians diabetes data

Hyper-g priorsa

Variables PCEP BICa IG(1/2,n/2) n(g) = 1/[n(1+g/n)2 ] IG(10−3,10−3)

X1 Number of
pregnancies

0.951 0.946 0.961 0.965 0.968

X2 Glucose
concentration

1.000 1.000 1.000 1.000 1.000

X3 Diastolic
blood
pressure

0.136 0.100 0.252 0.309 0.353

X4 Triceps skin
fold
thickness

0.139 0.103 0.248 0.303 0.346

X5 Body mass
index

0.997 0.997 0.998 0.998 0.998

X6 Diabetes
pedigree
function

0.992 0.987 0.994 0.995 0.996

X7 Age 0.390 0.334 0.528 0.586 0.629
a Results from [20]

methods also include variable X7. These results suggest that the PCEP prior can lead
to more parsimonious selection, which is in agreement with the results presented in
[7, 8] for normal regression models. Boxplots of the posterior marginal inclusion
probabilities and posterior model probabilities for the two best ranking models
under PCEP, derived from splitting the posterior sample into 40 batches of size
1,000, are presented in Fig. 6.1. The maximum a-posteriori model using PCEP is
the same as the median probability model in this example, with a posterior model
probability around 0.50.

6.5 Generalizing the Applicability of the PCEP Prior

A problem which arises when using the PCEP prior in GLMs is that the normalized
power-likelihood presented in (6.8) is not always of a known form or in some cases it
is extremely inconvenient to work with. For the normal and Bernoulli distributions,
the power-likelihood is of the same form, which considerably simplifies computa-
tions. This is also true for the exponential and the beta distributions, but not for all
members of the exponential family.

For instance, for the popular binomial and Poisson regression models the
normalized power-likelihood is a discrete distribution, and although it is feasible
to evaluate it, the additional computational burden may render its implementation
time consuming and inefficient. One possible solution would be the use of an
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Fig. 6.1 Boxplots of the posterior marginal inclusion probabilities (left) and posterior model
probabilities for the two best ranking models (right) under PCEP from 40 batches of size 1,000

exchange-rate algorithm for doubly intractable distributions [15]. A more general
orientation is to redefine the PCEP prior, presented in Sect. 6.2.3, in the following
ways: i) use the unnormalized power-likelihood for model M� but define the prior-
predictive distribution of model M0 based on the real likelihood (with δ=1) and ii)
use the unnormalized power-likelihood both in M� and in M0 and try to normalize
the resulting PCEP prior.

6.6 Future Research

Our main aim is to extend the PCEP methodology to all members of the exponential
family. To this end we are presently examining the PCEP methodology under
the two variations discussed in Sect. 6.5 using unnormalized likelihoods. Current
theoretical results for normal linear regression models show that the two variations
of the PCEP prior have similar asymptotic behavior with the PCEP prior which is
based on the normalized power-likelihood. It remains to be examined theoretically
and/or empirically whether this result is also valid for non-normal GLMs.

Furthermore, for non-normal GLMs, we intend to examine two important
characteristics, namely, the variance of the PCEP prior and the limiting behavior
of the Bayes factor under PCEP. In normal regression the variance of the PCEP
prior is larger than that of the g-prior leading to more parsimonious inference, while
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the asymptotic behavior of the Bayes factor is equivalent to that of the BIC criterion,
thus resulting in a consistent variable selection method [7].

Further research directions under consideration include introducing an extra
hierarchical level by assigning a hyper-prior on δ and also using shrinkage baseline
priors (e.g. LASSO priors) with the purpose of extending the methodology to small
n large p problems.
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Appendix: GVS Implementation Under PCEP for Bernoulli
Logistic Regression

Here we present the details concerning implementation of GVS based on the
data-augmented posterior distribution in (6.12). Let d denote the total number of
covariates, dγ the number of active covariates (γ j = 1), and d\γ the number of
inactive covariates (γ j = 0). The posterior distribution is

πPCEP(βγ ,β\γ ,β0,γ,y∗|y,δ ) ∝ f (y|βγ ,γ) f (y∗|βγ ,γ,δ )πN(βγ |γ)
mN
γ (y∗|δ )

×πN(β\γ |γ)πN(γ) f (y∗|β0,δ )πN(β0).

Analytically, we have that:

• f (y|βγ ,γ) =
n
∏
i=1

[
pyi
γ(i)

(
1− pγ(i)

)1−yi
]
, where pγ(i) =

exp(Xγ(i)βγ)
1+exp(Xγ(i)βγ)

.

• f (y∗|βγ ,γ,δ ) =
n∗
∏
i=1

[
p

y∗i
γ(i)(1− p∗γ(i))

1−y∗i
]
, where p∗γ(i) =

(
p
′
γ(i)

)1/δ

(
p
′
γ(i)

)1/δ
+
(

1−p
′
γ(i)

)1/δ

and p
′
γ(i) =

exp
(

X∗
γ(i)βγ

)

1+exp
(

X∗
γ(i)βγ

) .

• f (y∗|β0,δ ) =
n∗
∏
i=1

[
p

y∗i
0 (1− p∗0)

1−y∗i
]
, where p∗0 =

(
p
′
0

)1/δ

(
p
′
0

)1/δ
+
(

1−p
′
0

)1/δ and p
′
0 =

expβ0
1+expβ0

.

• πN(βγ |γ) ∝ 1 and πN(β0) ∝ 1 (assuming reference baseline priors).
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• πN(β\γ |γ) = Nd\γ

(
β̂[γ=0],Id\γ σ̂β

2
[γ=0]

)
, i.e. a multivariate normal distribution of

dimensionality d\γ , where β̂ and σ̂β are the ML estimates and the corresponding
standard errors, respectively, from the full model regressed on y.

• mN
γ (y

∗|δ ) is the prior predictive of model Mγ which for πN(βγ |γ) ∝ 1 is given by
mN
γ (y

∗|δ ) = ∫
f (y∗|βγ ,γ,δ )dβγ . This density is estimated through the Laplace

approximation as

m̂N
γ (y

∗|β̃γ ,δ ) = (2π)dγ/2|Σ̃|1/2 f (y∗|β̃γ ,γ,δ ),

where β̃γ is the posterior mode and Σ̃ is minus the inverse Hessian matrix
evaluated at β̃γ .

• πN(γ) = 1
d+1

( d
dγ

)−1
for an appropriate multiplicity adjustment.

As recommended in Sect. 6.2.4, we set δ = n∗ and n∗ = n, for which we have
X∗
γ ≡ Xγ . Given these specifications we implement GVS based on the following

Metropolis-within-Gibbs sampling scheme:

A. Set starting values γ(0),β (0)
γ ,β (0)

0 and y∗(0).

B. For iterations t = 1,2, . . . ,N:

1) Sampling of β (t)
γ

a) Given the state of γ and y∗ at iteration t−1, generate β ′
γ from the proposal

distribution q(βγ) = Ndγ (β̂γ , Σ̂βγ ), where β̂γ is the ML estimate from the

regression on yall = (y,y∗)T , using weights wall = (1n,1nn−1)T , and Σ̂βγ
is the estimated variance–covariance matrix of β̂γ .

b) Calculate the probability of move:

αβγ = min

[
1,

f (y|β ′
γ ,γ) f (y∗|β ′

γ ,γ,δ )q(β
(t−1)
γ )

f (y|β (t−1)
γ ,γ) f (y∗|β (t−1)

γ ,γ,δ )q(β ′
γ )

]
.

c) Set

β (t)
γ =

{
β ′
γ with probability αβγ ,
β (t−1)
γ with probability 1−αβγ .
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2) Sampling of β (t)
\γ

a) Given the current state of γ at iteration t−1, generate β ′
\γ from the pseudo-

prior πN(β\γ |γ) = Nd\γ

(
β̂[γ=0],Id\γ σ̂β

2
[γ=0]

)
.

b) Set β (t)
\γ = β ′

\γ with probability equal to 1.

3) Sampling of β (t)
0

a) Given the state of y∗ at iteration t − 1, generate β ′
0 from the proposal

distribution q(β0) = N(β̂0, σ̂2
β0
), where β̂0 is the ML estimate from the

regression on y∗, using weights w∗ = (1nn−1)T , and σ̂β0
is the standard

error of β̂0.

b) Calculate the probability of move:

αβ0
= min

[
1,

f (y∗|β ′
0,δ )q(β

(t−1)
0 )

f (y∗|β (t−1)
0 ,δ )q(β ′

0)

]
.

c) Set

β (t)
0 =

{
β ′

0 with probability αβ0
,

β (t−1)
0 with probability 1−αβ0

.

4) Sampling of y∗(t)

a) Given the current state of βγ and β0 at iteration t, generate y∗′ from
the proposal distribution q(y∗) = Bernoulli(py∗), with the probability of

success given by py∗ =
(pβγ pβ0

)1/δ

(pβγ pβ0
)1/δ+(1−pβγ pβ0

)1/δ , where pβγ =
exp(Xγ βγ)

1+exp(Xγ βγ)

and pβ0
= expβ0

1+expβ0
.

b) Calculate the probability of move:

αy∗ = min

[
1,

f (y∗′ |βγ ,γ,δ ) f (y∗′ |β0,δ )m̂N
γ (y

∗(t−1)|β̃γ ,δ )q(y∗(t−1))

f (y∗(t−1)|βγ ,γ,δ ) f (y∗(t−1)|β0,δ )m̂N
γ (y∗

′ |β̃γ ,δ )q(y∗′)

]
.

c) Set

y∗(t) =

{
y∗′ with probabilityαy∗ ,

y∗(t−1) with probability 1−αy∗ .
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5) Sampling of γ(t)j for j = 1,2, . . . ,d

a) For the current state of βγ ,β\γ and y∗, calculate the current odds

CO(γ j) =

f (y|βγ ,γ j=1,γ\ j) f (y∗|βγ ,γ j=1,γ\ j ,δ )πN(β\γ |γ j=1,γ\ j)

m̂N
γ (y∗|β̃γ ,γ j=1,γ\ j ,δ )

f (y|βγ ,γ j=0,γ\ j) f (y∗|βγ ,γ j=0,γ\ j ,δ )πN(β\γ |γ j=0,γ\ j)

m̂N
γ (y∗|β̃γ ,γ j=0,γ\ j ,δ )

and the prior odds

PrO(γ j) =
d j + 1
d− d j

,

where d j = ∑
i�= j

γi.

b) Calculate O(γ j) = CO(γ j)×PrO(γ j)

c) Sample γ ′j ∼ Bernoulli
(

O(γ j)

1+O(γ j)

)
and set γ(t)j = γ ′j with probability equal

to 1.

C. Repeat the steps in B until convergence.
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Chapter 7
Application of Interweaving in DLMs
to an Exchange and Specialization Experiment

Matthew Simpson

Abstract Markov chain Monte Carlo is often particularly challenging in dynamic
models. In state space models, the data augmentation algorithm (Tanner and
Hung Wong, J. Am. Stat. Assoc. 82(398):528–540, 1987) is a commonly used
approach, e.g. (Carter and Kohn, Biometrika 81(3):541–553, 1994) and (Frühwirth-
Schnatter, J. Time Ser. Anal. 15(2):183–202, 1994) in dynamic linear models.
Using two data augmentations, Yu and Meng (J. Comput. Graph. Stat. 20(3):
531–570, 2011) introduces a method of “interweaving” between the two augmen-
tations in order to construct an improved algorithm. Picking up on this, Simpson
et al. (Interweaving Markov chain Monte Carlo strategies for efficient estimation of
dynamic linear models, Working Paper, 2014) introduces several new augmentations
for the dynamic linear model and builds interweaving algorithms based on these
augmentations. In the context of a multivariate model using data from an economic
experiment intended to study the disequilibrium dynamics of economic efficiency
under a variety of conditions, we use these interweaving ideas and show how to
implement them simply despite complications that arise because the model has
latent states with a higher dimension than the data.

Key words: Ancillary augmentation, Centered parameterization, Data augmenta-
tion, Non-centered parameterization, Reparameterization, Sufficient augmentation,
Time series, State-space model

7.1 Introduction

Several innovations on the original data augmentation (DA) algorithm [25] have
been proposed in the literature, see, e.g., [26] for a thorough overview. One
such innovation is the notion of interweaving two separate DAs together [27].
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This general idea has been picked up on in the dynamic setting by [15] in stochastic
volatility models and [23] in dynamic linear models (DLMs). Previous literature
exploring alternate DAs in state space models includes [19] for the AR(1) plus
noise model, [6] for dynamic regression models, [24] for nonlinear models including
the stochastic volatility model, [8] for the stochastic volatility model, and [9] in the
context of model selection, though there are many more.

Much of this literature focuses on stochastic volatility and similar models
[1, 7, 8, 15, 20, 22, 24], though [23] focuses on DLMs and develops several new data
augmentations for a general class of DLMs. Using these DAs, they construct several
Markov chain Monte Carlo (MCMC) algorithms including interweaving algorithms
based on [27], and compare these algorithms in a simulation study using the local
level model. We seek to illustrate the interweaving methods introduced in [23] in
the context of models that can be expressed either as a hierarchical DLM with equal
state and data dimensions or simply a DLM with a state dimension larger than the
data dimension. The latter representation in particular provides some difficulty in
directly applying the methods discussed in [23], though we show how to easily
overcome this.

Throughout this article we will use the notation p(.|.) to denote the potentially
conditional density of the enclosed random variables, x1:T = (x1, . . . ,xT )

′ when
xt is a scalar, and x1:T = (x′1, . . . ,x

′
T )

′ when xt is a column vector so that x1:T is
also a column vector in both cases. The rest of this paper is organized as follows:
Sect. 7.2 will describe the data which arise from a series of economic experiments,
and Sect. 7.3 will describe the model we wish to fit to these data. Section 7.4 will
cover how to do MCMC in this model, including a fairly standard DA algorithm
and an interweaving algorithm based on the ideas in [23] and [27]. Finally, Sect. 7.5
will contain the results of fitting the model using both algorithms, and Sect. 7.6 will
briefly conclude.

7.2 Data

Economists are interested in determining the factors that affect the level of economic
efficiency within an economy where economic efficiency can roughly be defined
as the proportion of maximum possible dollar value of the total benefits to all
actors in the economy, also known as Kaldor–Hicks efficiency and based on
compensating variation [14, 17]. Studying this in the real world is messy and
difficult in part because computing this proportion is nontrivial. In addition, most
economic models only allow the analysis of equilibrium efficiency. To the extent that
efficiency dynamics are studied, they are typically studied as equilibrium dynamics.
Disequilibrium dynamics are difficult to study but potentially important. In order
to avoid these difficulties while still learning something about the disequilibrium
dynamics of efficiency, a series of laboratory experiments were designed and run
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by a group of experimental economists in order to explore what factors impact the
disequilibrium dynamics of a small laboratory economy [4, 16]. What follows is a
brief description of these experiments.1

In a single session of the experiment, 2, 4, or 8 subjects are recruited to
participate, depending on the treatment. Each subject sits at a computer visually
isolated from the rest of the subjects. On the computer, each subject controls an
avatar in a virtual village where they can interact with the other subjects in the
experiment. At any time during the experiment, subjects can communicate with
each other by typing into a chat window. Each subject in a given session has control
over a house and a field within the village and can view each other subject’s house
and field. The experiment runs for 40 periods, each lasting 100 s. Within a period,
each subject has to make a production decision and a consumption decision. Every
seventh period is a “rest” period where no production or consumption takes place,
but the subjects can still communicate. This results in 35 periods of production and
consumption.

There are two types of goods in this world, each produced in a subject’s field:
red and blue, and two types of subjects: odd and even. Half of the subjects are odd
and half are even. Both odd and even subjects can produce both types of goods
and earn money for consuming both types of goods, but they produce and consume
in different ways. Odd subjects must consume red and blue in a fixed proportion
of one red for every three blue to earn U.S. cents. Even subjects, on the other
hand, must consume two red for every one blue to earn U.S. cents. However, even
subjects are more effective at producing blue while odd subjects are more effective
at producing red. Production occurs in the first 10 s of a period where each subject
must decide how much of that time to devote to producing red and blue, respectively
using a slider on their screen. The last 90 s of the period is reserved for trading and
consumption, though subjects have to discover that they may trade by noticing that
they can use their mouse to drag and drop red and/or blue icons (representing one
unit of red or blue, respectively) onto another subject’s house. The maximum level
of village wide production takes place when each subject spends 100 % of their
time producing the good that they can produce the most efficiently, i.e. odd subjects
produce only red and even subjects produce only blue. Maximum consumption and
thus maximum profit occurs when under maximum production and the subjects
trade extensively with each other. In every period, the efficiency level of the village
is recorded.

A wide variety of treatments were applied to the various sessions of this
experiment, including variations on group size and group formation, various levels
of knowledge about the subject’s own production function, allowing theft or not
and if so, whether mechanisms for punishing theft are available. See [4] and [16]
for a detailed description of these treatments. Each treatment consists of several
replications—anywhere from four to six. The challenge, then, is to model a time
series of proportions that takes into account the nested structure of the replications

1For a more detailed description of the experimental design, see [4] especially, but also [16].



78 M. Simpson

within the treatments. To deal with the proportions, we simply transform the
efficiencies to the real line using the logit transformation, i.e. logit(x) = log (x/(1−
x)). In some replications of some treatments, efficiencies of 100 % or 0 % are
obtained which causes a problem for the logit and other plausible transformations.
We only consider the Steal treatment of [16] in order to avoid this issue and simplify
the model a bit. This allows for a useful illustration of [23] without too much
additional complication. In short, the Steal treatment uses the Build8 structure from
previous treatments that starts the subjects in four groups of two for several periods,
then combines them into two groups of four for several more periods, then finally
combines the groups into a single group of eight for the rest of the experiment. The
only change from this structure is that Steal allows subjects to steal either of the
goods from each other, which was not possible in previous treatments. Kimbrough
et al. [16] has further details about this treatment and the various treatments it
spawned in order to see what institutional arrangements help subjects prevent theft.

7.3 Model

Let j = 1,2, . . . ,J denote the replications of the treatment and t = 1,2, . . . ,T denote
periods within these replications. Then let y j,t denote the observed logit efficiency
of the jth replication in the tth period. Consider the following model

y j,t = μt +θ j,t + v j,t (observation equation)

θ j,t = θ j,t−1 +wj,t (replication level system equation)

μt = μt−1 + ut (treatment level system equation) (7.1)

for j = 1,2, . . . ,J and t = 1,2, . . . ,T , where (v1:J,1:T ,w1:J,1:T ,u1:T ) are mutually
independent with v j,t ∼ N(0,Vj), wj,t ∼ N(0,Wj), and ut ∼ N(0,U). The latent
treatment level logit efficiency is represented by μt and evolves via a random walk.
On the replication level, θ j,t represents replication j’s deviation from the treatment
logit efficiency in period t which also evolves over time via a random walk. Then
μt +θ j,t is replication level latent logit efficiency. Finally y j,t represents the observed
logit efficiency of replication j in period t. The amount replication jth path tends to
differ from the treatment level path is controlled by the relative values of Wj and U—
the larger Wj is relative to U , the less replication jth path is affected by the treatment
level path. Finally, Vj represents how much of the change in logit efficiency is
independent of previous changes. The relative size of Vj compared to Wj and U
tells us how much logit efficiency changes over time due to independent sources of
error relative to the replication and treatment level evolutionary processes. So in this
sense, μt + θ j,t can be seen as the portion of replication j’s logit efficiency that is
carried on into the next period, or sustainable in a certain sense.
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Another way to represent this model is by writing it in terms of the replication
level latent logit efficiencies, φ j,t = μt + θ j,t . Under this parameterization, the
model is

y j,t = φ j,t + v j,t ,

φ j,t = φ j,t−1 +wj,t + ut , (7.2)

for j = 1,2, . . . ,J and t = 1,2, . . . ,T , where we substitute ut for μt − μt−1. This
representation shows us that the replication level latent logit efficiencies evolve
according to a correlated random walk where U controls the degree of correlation
between the replications.

Finally, if we let θt = (μt ,θ ′
1:J,t)

′, yt = y1:J,t , V = diag(V1, . . . ,VJ),
W = diag(U,W1, . . . ,WJ), and F = [1J×1 IJ×J ], we can write the model as a
multivariate DLM:

yt |θ0:T ∼ NJ(Fθt ,V )

θt |θ0:(t−1) ∼ NJ+1(θt−1,W ) (7.3)

for t = 1,2, . . . ,T . This representation will be useful for constructing MCMC
algorithms for the model. Using this representation, we need priors for the Vj’s,
Wj’s, U , and θ0 to complete the model. We will suppose that they are independent
with θ0 ∼NJ+1(m0,C0), Vj ∼ IG(aVj ,bVj), Wj ∼ IG(aWj ,bWj ), and U ∼ IG(aU ,bU).
We will set m0 = 0J+1, C0 = diag(100), aVj = aWj = au = 1.5 and bVj = bWj = bU =
0.25. This prior on the variance parameters has essentially zero mass below 0.02 and
above 2, which allows for a fairly wide range of parameter estimates relative to the
scale of the data. These priors are chosen for convenience in illustrating the MCMC
method of [23] and for simplicity, but a simple way to use the inverse-gamma priors
without their well-known inferential problems [10] is to put gamma hyperpriors
on the b parameters rather than fixing them. The marginal priors on the standard
deviations will then be half-t and in the MCMC samplers we discuss a Gibbs step
will have to be added for drawing the b’s from a gamma distribution. This prior is
the hierarchical inverse-Wishart prior of [13] in the scalar case.

7.4 Markov Chain Monte Carlo

We construct two separate MCMC samplers for this model. One is a naive
data augmentation algorithm and the other takes advantage of the interweaving
technology of [27], particularly the developments of [23] for DLMs. We primarily
use the DLM representation of the model given in (7.3).
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7.4.1 Naive Data Augmentation

The standard DA algorithm characterizes the posterior of (V,W ) by using a Gibbs
sampler to draw from the posterior distribution of (V,W,θ0:T ) [25]. In this particular
case we are also interested in the posterior of θ0:T , which is common in dynamic
models, but this does not change the MCMC strategy. The sampler is based on [5]
and [3] and consists of two steps, a draw from p(θ0:T |V,W,y1:T ) and a draw from
p(V,W |θ0:T ,y1:T ). In order to construct this algorithm we need these two densities.

First, from the DLM representation of the model in (7.3), and the priors we can
write the joint posterior density of V , W , and θ0:T as

p(V,W,θ0:T |y1:T ) ∝ |V |−T/2 exp

[
−1

2

T

∑
t=1

(yt −Fθt)
′V−1(yt −Fθt)

]

×|W |−T/2 exp

[
−1

2

T

∑
t=1

(θt −θt−1)
′W−1(θt −θt−1)

′
]

×exp

[
−1

2
(θ0 −m0)

′C−1
0 (θ0 −m0)

]
U−aU−1 exp

[
− 1

U
bU

]

×
J

∏
j=1

V
−aVj−1

j exp

[
− 1

Vj
bVj

]
W

−aWj−1

j exp

[
− 1

Wj
bWj

]
. (7.4)

From here we can derive the smoothing density, or conditional posterior density
of θ0:T . We use the method of [18], based on [21], for drawing from this density,
called the mixed Cholesky factor algorithm (MCFA) by [23]. The following
derivation closely follows Appendix C of [23]. The full conditional density of θ0:T

can be written as

p(θ0:T |V,W,y1:T ) ∝ exp

[
−1

2
g(θ0:T )

]

where

g(θ0:T ) =
T

∑
t=1

(yt −Fθt)
′V−1(yt −Fθt)+

T

∑
t=1

(θt −θt−1)
′W−1(θt −θt−1)

+ (θ0 −m0)
′C−1

0 (θ0 −m0).

Then g has the form g(θ0:T ) = θ ′
0:TΩθ0:T − 2θ ′

0:Tω +K where K is some constant
with respect to θ0:T , Ω is a square, symmetric matrix of dimension (J + 1)(T + 1)
and ω is a column vector of dimension (J+ 1)(T + 1). This gives θ0:T |V,W,y1:T ∼
N(J+1)(T+1)(Ω−1ω ,Ω−1). Further, Ω is block tridiagonal since there are no cross
product terms involving θt and θt+k where |k| > 1. Because of this, the Cholesky
factor and thus inverse of Ω can be efficiently computed leading to the Cholesky
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factor algorithm (CFA) [21]. Instead of computing the Cholesky factor of Ω all at
once before drawing θ0:T as in the CFA, the same technology can be used to draw
θT , then θt |θ(t+1):T recursively in a backward sampling structure, resulting in the
MCFA. In simulations, the MCFA has been found to be significantly cheaper than
Kalman filter based methods and often cheaper than the CFA [18].

In order to implement the algorithm, we need to first characterize the diagonal
and off diagonal blocks of Ω and the blocks of ω :

Ω0,0 =C−1
0 +G′

1W−1G1

Ωt,t = F ′V−1F + 2W−1 for t = 1,2, . . .T − 1

ΩT,T = F ′V−1F +W−1

Ωt,t−1 =−W−1
t =Ωt−1,t for t = 1,2, . . .T

w0 =C−1
0 m0

wt = F ′V−1yt for t = 1,2, . . .T.

Now let Σ0 =Ω−1
0,0 , Σt = (Ωt,t −Ωt,t−1Σt−1Ωt−1,t)

−1 for t = 1,2, . . . ,T , h0 = Σ0w0,
and ht = Σt(wt −Ωt,t−1ht−1) for t = 1,2, . . . ,T . Then to complete the MCFA we
perform the following draws recursively

θT ∼ N(hT ,ΣT )

θt |θ(t+1):T ∼ N(ht −ΣtΩt,t+1θt+1,Σt ) for t = T − 1,T − 2, . . . ,0.

The second step of the DA algorithm requires a draw from p(V,W |θ0:T ,y1:T ).
Recalling that V = diag(V1, . . . ,VJ) and W = diag(U,W1, . . . ,WJ), this density is

p(V,W |θ0:T ,y1:T ) ∝U−aU−T/2−1 exp

[
− 1

U

(
bU +

1
2

T

∑
t=1

(μt − μt−1)
2

)]

×
J

∏
j=1

V
−aVj−T/2−1

j exp

[
− 1

Vj

(
bVj +

1
2

T

∑
t=1

(y j,t − μt −θ j,t)
2

)]

×
J

∏
j=1

W
−aWj−T/2−1

j exp

[
− 1

Wj

(
bWj +

1
2

T

∑
t=1

(θ j,t −θ j,t−1)
2

)]
.

This is the product of inverse-gamma densities, so a draw from this density can
easily be accomplished by

Vj ∼ IG(ãVj , b̃Vj) for j = 1,2, . . . ,J

Wj ∼ IG(ãWj , b̃Wj) for j = 1,2, . . . ,J

U ∼ IG(ãU , b̃U)
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where ãU = aU + T/2, b̃U = bU + ∑T
t=1(μt − μt−1)

2/2, and for j = 1,2, . . . ,J,
ãVj = aVj + T/2, b̃Vj = bVj + ∑T

t=1(y j,t − μt − θ j,t)
2/2, ãWj = aWj + T/2, and

b̃Wj = bWj +∑T
t=1(θ j,t − θ j,t−1)

2/2. So we can write the naive DA algorithm as
follows:

1. Draw θ0:T ∼ N(Ω−1ω ,Ω−1) using the MCFA.
2. Draw U ∼ IG(ãU , b̃U).
3. For j = 1,2, . . . ,J draw Vj ∼ IG(ãVj , b̃Vj) and Wj ∼ IG(ãWj , b̃Wj).

Note that step 2 and the 2J sub-steps of step 3 can be parallelized since the draws
are all independent, though we do not explore this possibility.

7.4.2 Interweaving

The basic idea of interweaving is to use two separate DAs and “weave” them
together [27]. Suppose we have the DAs γ0:T and ψ0:T . Then an alternating
algorithm for our model consists of four steps:

[γ0:T |V,W,y1:T ]→ [V,W |γ0:T ,y1:T ]→ [ψ0:T |V,W,y1:T ]→ [V,W |ψ0:T ,y1:T ].

The first two steps are simply the two steps of the DA algorithm based on γ0:T while
the last two steps are the two steps of the DA algorithm based on ψ0:T . A global
interweaving strategy (GIS) using these two augmentations is very similar:

[γ0:T |V,W,y1:T ]→ [V,W |γ0:T ,y1:T ]→ [ψ0:T |V,W,γ0:T ,y1:T ]→ [V,W |ψ0:T ,y1:T ].

The only difference is that in step 3, we condition on γ0:T as well as V , W , and y1:T .
Often, this is a transformation using the definition of γ0:T andψ0:T , and not a random
draw. When step 3 is a transformation, this reduces the computational cost relative
to the alternating algorithm. Depending on the properties of the data augmentations
used, changing step 3 in this manner can also drastically improve the behavior of
the Markov chain whether or not step 3 is a transformation [27].

Simpson et al. [23] defines several DAs for the DLM, including the following
two—the scaled disturbances, defined by γt = L−1

W (θt −θt−1), and the scaled errors,
defined by ψt = L−1

V (yt − Fθt) for t = 1,2, . . . ,T and ψ0 = γ0 = θ0 where LX

denotes the lower triangular Cholesky factor of the symmetric and positive definite
matrix X . Since the dimension of yt and θt is not the same, the scaled errors cannot
be directly used without some additional augmentation. Another option is to use a
representation of the model which removes the treatment level states, given in (7.2).
Using this is unwieldy because the full conditional posterior of (W1:J ,U) becomes
complicated since the φ j,t ’s are correlated across groups. Instead of either of those,
we will take a particularly simple approach. Consider the hierarchical representation
of the model given in (7.1). For j = 1,2, . . . ,J define the replication level scaled
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disturbances as γ j,t = (θ j,t − θ j,t−1)/
√

Wj for t = 1,2, . . . ,T and γ j,0 = θ j,0 and
the replication level scaled errors as ψ j,t = (y j,t −μt −θ j,t)/

√
Vj for t = 1,2, . . . ,T

and ψ j,0 = θ j,0. Now let γt = (μt ,γ ′1:J,t )
′ and ψt = (μt ,ψ ′

1:J,t)
′ Then we can easily

interweave between γ0:T andψ0:T since these are one-to-one transformations of each
other. Specifically the GIS algorithm we seek to construct is

1. Draw γ0:T ∼ p(γ0:T |V1:J,W1:J,U,y1:T ).
2. Draw (V1:J,W1:J,U)∼ p(V1:J,W1:J,U |γ0:T ,y1:T )
3. Transform γ0:T → ψ0:T and draw (V1:J,W1:J,U)∼ p(V1:J,W1:J,U |ψ0:T ,y1:T ).

In order to complete this algorithm, we need to characterize the relevant full
conditionals. First, consider the transformation from θ j,0:T to γ j,0:T . The Jacobian is
triangular with a one and T copies of

√
Wj along the diagonal. So the joint posterior

of V1:T ,W1:J,U , and γ0:T is

p(V1:T ,W1:J,U,γ0:T |y1:T ) ∝U−aU−T/2−1 exp

[
− 1

U

(
bU +

1
2

T

∑
t=1

(μt − μt−1)
2

)]

×exp

[
−1

2

J

∑
j=1

T

∑
t=1

γ2
j,t

]
exp

[
−1

2
(m0 − γ0)

′C−1
0 (m0 − γ0)

]

×
J

∏
j=1

V
−aVj−T/2−1

j exp

⎡
⎣− 1

Vj

⎛
⎝bVj +

1
2

T

∑
t=1

(
y j,t − μt − γ j,0 −

√
Wj

t

∑
s=1

γ j,s

)2
⎞
⎠
⎤
⎦

×
J

∏
j=1

W
−aWj−1

j exp

[
− 1

Wj
bWj

]
.

This allows us to write the model as

y j,t = μt +
√

Wj

t

∑
s=1

γ j,s + γ j,0 + v j,t ,

μt = μt−1 + ut , (7.5)

where (v1:J,1:T ,γ1:J,1:T ,u1:T ) are mutually independent with γ j,t ∼ N(0,1),
v j,t ∼ N(0,Vj), and ut ∼ N(0,U) for j = 1,2, . . . ,J and t = 1,2, . . . ,T . The full
conditional of γ0:T is a bit more complicated than that of θ0:T , but we can just
use the MCFA to draw from θ0:T ’s full conditional and transform to γ0:T . The full
conditional of (V1:J,W1:J,U) is

p(V1:T ,W1:J,U |γ0:T ,y1:T ) = p(U |γ0:T ,y1:T )
J

∏
j=1

p(Vj,Wj|γ0:T ,y1:T ).
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Here, p(U |γ0:T ,y1:T ) = p(U |θ0:T ,y1:T ), i.e. the same inverse-gamma distribution
as when we conditioned on θ0:T . However, p(Vj,Wj|γ0:T ,y1:T ) is complicated and
difficult to sample from efficiently. Instead of drawing Vj and Wj jointly, we draw
from their full conditionals. It turns out that Vj|Wj,γ0:T ,y1:T ∼ IG(ãVj , b̃Vj), which
is the same as when we conditioned on θ0:T . The full conditional density is of Wj is
still rather complicated:

p(Wj|Vj,γ0:T ,y1:T ) ∝W
−aWj−1

j exp

[
−bWj

1
Wj

+ cWj

√
Wj − dWjWj

]
,

where

cWj =
∑T

t=1(y j,t − μt − γ j,0)∑t
s=1 γ j,s

Vj
∈ℜ , dWj =

∑T
t=1 (∑t

s=1 γ j,s)
2

2Vj
> 0.

The double summations in cWj and dWj are one consequence of the model no longer
having the Markov property, which can easily be seen from (7.5). These summations
can be expensive for large datasets, though in our experience this is typically not
the most important computational bottleneck. In any case the summations can be
attained much more efficiently via parallelization, especially using a GPU. In order
to sample from this density, we follow [23] (Appendix E) and use an adaptive
rejection sampling approach [12] when it is log concave, and otherwise we use a
Cauchy approximation in a rejection sampling scheme for the density of log(Wj).

Now, we need to characterize the full conditionals given ψ0:T . The Jacobian
matrix of the transformation from θ j,0:T to ψ j,0:T is diagonal with a one and T
copies of

√
Vj along the diagonal. So the joint posterior of V1:T ,W1:J ,U , and ψ0:T is

p(V1:T ,W1:J,U,ψ0:T |y1:T ) ∝U−aU−T/2−1 exp

[
− 1

U

(
bU +

1
2

T

∑
t=1

(μt − μt−1)
2

)]

×exp

[
−1

2

J

∑
j=1

T

∑
t=1

ψ2
j,t

]
exp

[
−1

2
(m0 −ψ0)

′C−1
0 (m0 −ψ0)

]

×
J

∏
j=1

W
−aWj−T/2−1

j exp

[
− 1

Wj

(
bWj +

1
2

T

∑
t=1

(
Δy j,t −Δμt −

√
VjΔψ j,t

)2

)]

×
J

∏
j=1

V
−aVj−1

j exp

[
− 1

Vj
bVj

]

where we define Δx j,t = x j,t − x j,t−1 for t = 2,3, . . . ,T and Δx j,1 = x j,1 for any
variable x j,t except in the case of x j,t = y j,t where we define Δy j,1 = y j,1 −ψ j,0.
This allows us to write the model as

y j,t = y j,t−1 +
√

VjΔψ j,t + ut +wj,t , (7.6)
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where we define y j,0 = (
√

Vj − 1)ψ j,0 and where (w1:J,1:T ,ψ1:J,1:T ,u1:T ) are
mutually independent with ψ j,t ∼ N(0,1), wj,t ∼ N(0,Wj), and ut ∼ N(0,U) for
j = 1,2, . . . ,J and t = 1,2, . . . ,T . While the model is no longer a state space model
under this parameterization, it can be viewed as a state space model for the Δy j,t ’s
with latent states Δψ j,t ’s and ut = Δμt so long as care is taken in defining the
initial values of the data and states. We did not explore this parameterization, mainly
because the scaled disturbances and scaled errors are natural opposites in the sense
tending to yield efficient DA algorithms in opposite ends of the parameter space
[23], and as such are desirable candidates for interweaving.

Similar to the scaled disturbances case, we have

p(V1:T ,W1:J,U |ψ0:T ,y1:T ) = p(U |ψ0:T ,y1:T )
J

∏
j=1

p(Vj,Wj|ψ0:T ,y1:T ).

Once again p(U |ψ0:T ,y1:T ) = p(U |θ0:T ,y1:T ), which is the same inverse-gamma
draw. In fact, the parameters ãU and b̃U do not change from the γ step to the ψ step,
so the second draw of U is redundant and can be removed from the algorithm. The
conditional density p(Vj,Wj|ψ0:T ,y1:T ) is once again complicated and has the same
form as p(Wj,Vj|γ0:T ,y1:T ), i.e. it switches the positions of Vj and Wj. So again we
draw Vj and Wj in separate Gibbs steps, and Wj|Vj,ψ0:T ,y1:T has the same inverse-
gamma density as Wj|θ0:T ,y1:T . The density of Vj|Wj,ψ0:T ,y1:T has the form

p(Vj|Wjψ0:T ,y1:T ) ∝V
−aVj−1

j exp

[
−bVj

1
Vj

+ cVj

√
Vj − dVjVj

]
,

where

cVj =
∑T

t=1Δψ j,t(Δy j,t −Δμt)

Wj
∈ℜ , dVj =

∑T
t=1(Δψ j,t)

2

2Wj
> 0.

This density has the same form as p(Wj|Vj,γ0:T ,y1:T ) so the same rejection sampling
strategy can be used to sample from it.

Finally, we can write the GIS algorithm as follows:

1. Draw θ0:T ∼ N(Ω−1ω ,Ω−1) using the MCFA.
2. Draw U ∼ IG(ãU , b̃U).
3. For j = 1,2, . . . ,J:

a. Draw Vj ∼ IG(ãVj , b̃Vj)
b. Transform θ j,0:T → γ j,0:T and draw Wj ∼ p(Wj|Vj,γ0:T ,y1:T ).
c. Transform γ j,0:T → ψ j,0:T and draw Vj ∼ p(Vj|Wj,ψ0:T ,y1:T ).
d. Draw Wj ∼ IG(ãWj , b̃Wj).

Since (U,V1, . . . ,VJ,W1, . . . ,WJ) are conditionally independent in the posterior no
matter which of the DAs we use, Step 3 can be parallelized and step 2 can come
before or after step 3, though we did not experiment with these possibilities. Steps
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3.b and 3.c can both be accomplished using the rejection sampling method described
in Appendix E of [23], briefly described above. Note that the transformation from
γ j,0:T → ψ j,0:T is defined as ψ j,t = (y j,t − μt −

√
W j∑t

s=1 γ j,s − γ j,0)/
√

Vj for j =
1,2, . . . ,J and t = 1,2, . . . ,T .

In (7.5) and (7.6), it is apparent that using the scaled disturbances or the
scaled errors, the model no longer has the Markov property. This is undesirable
for computational reasons—it causes the double summations in the definitions
of cWi and dWi and increases the computational cost associated with drawing the
latent states—but the cost is worthwhile for convergence and mixing because the
parameterizations are natural opposites in a particular sense. According to both
theorem 1 and theorem 2 of [27], the convergence rate of an interweaving algorithm
is faster when the convergence rate of the fastest underlying DA algorithm is faster,
so in their words it is desirable to seek a “beauty and the beast” pair of DAs where
when one DA algorithm is bad the other is good and vice-versa. Simpson et al. [23]
showed in the local level model that the scaled disturbances and scaled errors yield
DA algorithms which are efficient in opposite ends of the parameter space so that
they exhibit precisely this “beauty and the beast” behavior.

It is also possible to transform the μt ’s in an interweaving approach. The problem
becomes which two parameterizations to use. The scaled disturbances and the scaled
errors make a natural pair because they work well in opposite ends of the parameter
space which, in turn, seems to be driven by one being a data level reparameterization
and the other a latent state level reparameterization. The scaled version of the
μt ’s would still be a latent state level parameterization, and there is no clear data
level reparameterization which corresponds to them. This is a consequence of the
model having a higher dimensional latent state than data, though one method to
overcome this issue that [23] mentions is via additional augmentation—that is,
define missing data on the data level so that the full data, consisting of the observed
and missing data, has the same dimension as the latent state. We sidestep this issue
by leaving the μt ’s untransformed through the algorithm, though there are potential
gains to be made by experimenting with reparameterizing this component of the DA.

7.5 Results

We fit the model in R using both MCMC algorithms, running five chains for
each algorithm at diverse starting points for 20,000 iterations per chain. For both
algorithms, convergence appeared to be attained for all parameters in all chains
in the first 5,000 iterations according to both trace plots and the Gelman–Rubin
diagnostic [2], so we throw away those initial draws as burn in. The GIS algorithm
appeared to converge slightly slower according to the Gelman–Rubin diagnostic for
some of the parameters, though this difference was not apparent in trace plots.

There were, however, significant differences in mixing between the two algo-
rithms. Table 7.1 contains the effective sample size, neff [11], for each parameter as
well as the time in seconds to achieve an effective sample size of 1,000 for each
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parameter, computed for both MCMC algorithms using all 60,000 post burn-in iter-
ations. The GIS algorithm has higher neff for all parameters. For some parameters,
e.g. V5 and W6, this difference is rather small. For others, such as V1 and V2, the
GIS algorithm has an neff roughly twice as large as the DA algorithm. In time per
1,000 effective draws, however, the GIS algorithm under-performs across the board.
When evaluating these times, note that the algorithms were implemented in R where
the code was interpreted, not compiled. Absolute times may differ dramatically
from the times listed in Table 7.1 under different programming languages or based
on whether the code was interpreted or compiled, though relative times should be
roughly comparable at least for interpreted code from other languages. The steps to
draw from p(Wj|Vj,γ0:T ,y1:T ) and p(Vj|Wj,ψ0:T ,y1:T ) are the main culprits, as they
are often very expensive. As the number of periods in the experiment increases,
[23] found that in the local level model the GIS algorithm looks stronger relative to
the DA algorithm since GIS is able to use adaptive rejection sampling more often
and the relative advantage of the improved mixing becomes more important, and
we expect this to hold in our model. Similarly, a judicious choice of priors which
allows for easier full conditionals in the offending steps should result in a faster
computational times for GIS relative to the DA algorithm.

Table 7.2 contains the parameter estimates for the model. The treatment level
variance appears to be smaller than both the replication and observation level
variances, suggesting that changes in logit efficiency over time are driven less by
treatment level dynamics and more by random noise and replication level dynam-
ics. Figure 7.1 also contains plots of each replication’s observed logit efficiency
trajectory, each replication’s posterior median latent logit efficiency trajectory, and
the treatment wide posterior median latent efficiency trajectory. The replication
level latent logit efficiency follows the observed logit efficiency very closely in
each case—it is essentially a smoothed version of the observed logit efficiency.
The treatment latent logit efficiency follows the observed logit efficiencies of
replications 2, 4, 5, and 6 fairly closely, but replication 3 consistently under-
performs the treatment average while replication 1 consistently over performs, at
least in the latter half of periods.

Table 7.2 Parameter estimates, including the posterior mean, poste-
rior median, and a 95 % credible interval for each parameter

Mean 50 % 2.5 % 97.5 % Mean 50 % 2.5 % 97.5 %

V1 0.144 0.136 0.070 0.263 W1 0.101 0.092 0.042 0.216

V2 0.086 0.080 0.040 0.163 W2 0.083 0.075 0.035 0.171

V3 0.116 0.106 0.045 0.248 W3 0.078 0.072 0.035 0.158

V4 0.102 0.095 0.046 0.196 W4 0.104 0.095 0.043 0.216

V5 0.208 0.196 0.075 0.415 W5 0.110 0.096 0.038 0.258

V6 0.162 0.153 0.077 0.296 W6 0.085 0.076 0.034 0.188

U 0.044 0.041 0.023 0.079
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Fig. 7.1 Plots by replication of the observed logit efficiency (y j,t), posterior median latent
replication logit efficiency (φ j,t ), and posterior median latent treatment logit efficiency (μt )

7.6 Conclusion

Simpson et al. [23] explored the interweaving algorithms of [27] for DLMs, but only
implemented them in the univariate local level model. We use their approach in a
model that can be represented as independent local level models conditional on a
univariate sequence of latent states, or as a slightly more complicated DLM with
J-dimensional data and J + 1-dimensional state. This poses some problems with
directly applying the methods in [23], but we show that they are easily overcome.
The resulting sampler has similar convergence and improved mixing properties
compared to the standard data augmentation algorithm with this particular dataset.
In terms of end user time required to adequately characterize the posterior, the
DA algorithm is a bit faster for this particular problem despite worse mixing, but
this is largely due to an inefficient rejection sampling step in the interweaving
algorithm that likely can be improved [23]. This step also tends to become relatively
more efficient in problems with more data as well as less important relative to
improved mixing so that the interweaving algorithm will eventually, with enough
data, outperform the DA algorithm [23].
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Chapter 8
On Bayesian Based Adaptive Confidence Sets
for Linear Functionals

Botond Szabó

Abstract We consider the problem of constructing Bayesian based confidence sets
for linear functionals in the inverse Gaussian white noise model. We work with
a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the
data-driven (slightly modified) marginal likelihood empirical Bayes method for
the choice of this hyper-parameter. We show by theory and simulations that the
credible sets constructed by this method have sub-optimal behaviour in general.
However, by assuming “self-similarity” the credible sets have rate-adaptive size and
optimal coverage. As an application of these results we construct L∞-credible bands
for the true functional parameter with adaptive size and optimal coverage under
self-similarity constraint.

Key words: Credible bands, Empirical Bayes, Minimax, Coverage, Adaptation,
Linear functionals

8.1 Introduction

Uncertainty quantification is highly important in statistical inference. Point estima-
tors without confidence statements contain only a limited amount of information.
Bayesian techniques provide a natural and computationally advantageous way
to quantifying uncertainty by producing credible sets, i.e. sets with prescribed
(typically 95%) posterior probability. In this paper, we investigate the validity of
such sets from a frequentist perspective. We are interested in the question whether
these sets can indeed be used as confidence sets or by doing so one gives a
misleading uncertainty quantification, see, for instance, [12]. In our work, we focus
on credible sets for linear functionals in nonparametric models and their application
to the construction of L∞-credible bands for the functional parameter.
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In infinite-dimensional models, nonparametric priors usually have a tuning- or
hyper-parameter controlling the fine details of the prior distribution. In most of the
cases, the choice of the hyper-parameter in the prior distribution is very influential,
incorrect choices can result in sub-optimal behaviour of the posterior. Therefore,
data-driven, adaptive Bayesian techniques are applied in practice to determine the
value of the hyper-parameter, overcoming overly strong prior assumptions. The two
(perhaps) most well-known Bayesian methods used to achieve adaptive results are
the hierarchical Bayes and the empirical Bayes techniques. In our work, we focus
mainly on the empirical Bayes method, but conjecture results about the hierarchical
Bayes approach as well.

The frequentist properties of adaptive Bayesian credible sets were considered
only in a limited number of recent papers; see [1, 18, 20, 22, 23]. The authors of
these papers have shown that under a relatively mild and natural assumption on
the functional parameter, i.e. the self-similarity condition, the credible sets have
good frequentist coverage and optimal size in a minimax sense. However, for non-
self-similar functions the credible sets provide overconfident, misleading confidence
statements. In these papers mainly the L2-norm was considered, which is the natural
extension of the finite-dimensional Euclidean-norm, but for visualization purposes it
is perhaps not the most appropriate choice. In practice usually the posterior credible
bands are plotted, which correspond to the L∞-norm. The frequentist properties of
L∞-credible bands were investigated in a non-adaptive setting in [6, 24]. Adaptive
L∞-credible bands were considered up to now only in the recent work [18]. In our
work, we also focus on the construction of L∞-credible bands taking a substantially
different and independently developed approach from the one by [18].

In our analysis, we consider a sub-class of (possibly non-continuous) linear
functionals satisfying the self-similarity condition and construct credible sets over
it using empirical Bayes method on a scale of Gaussian priors with varying
regularity; see also [22] for the application of this family of priors to derive
L2-credible sets for the functional parameter. We show that by slightly modifying
the empirical Bayes procedure we can construct credible sets with rate-adaptive size
and good coverage property for the linear functionals of the self-similar functional
parameters. However, there exist certain oddly behaving functional parameters
(not satisfying the self-similarity assumptions), where the empirical Bayes method
provides haphazard and misleading credible sets for the linear functionals of the
functional parameter. This result is in itself of independent interest, since until now
the frequentist properties of credible sets in semi-parametric problems were mostly
investigated in non- adaptive settings, see, for instance, [2, 5, 15, 19] and references
therein.

However, perhaps the main contribution of the present paper is the application of
the derived results about linear functionals to the analysis of L∞-credible bands.
We show that point evaluations of the functional parameters satisfy the self-
similarity assumption on linear functionals. Therefore the above described results
about credible sets for linear functionals apply also to pointwise credible sets for
the functional parameter. Then, putting together these pointwise credible sets we
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arrive to an L∞-credible band, which therefore has again good frequentist properties
for self-similar functional parameters. This technique is essentially different than
the one applied in [18] for the construction of L∞-credible bands, where wavelet
basis with spike and slab priors were considered and a weak Bernstein–von Mises
theorem was proved.

The remainder of the paper is organized as follows. In Sect. 8.2 we introduce
the inverse Gaussian white noise model, where we have carried out our analysis.
In Sect. 8.2.1 we introduce the linear functionals we are interested in (satisfying
the self-similarity constraint) and show that the point evaluations of the functional
parameter satisfy this property. The construction of the empirical Bayes credible sets
is given in Sect. 8.2.2. The main results of the paper are formulated in Sects. 8.2.3
and 8.2.4. In Sect. 8.3, we provide a short numerical analysis demonstrating both
the positive and negative findings of the paper. The proofs of the main theorems are
deferred to Sect. 8.4.

8.2 Main Result

Consider the inverse Gaussian white noise model

Xt =

∫ t

0
Kθ0(s)ds+

1√
n

Bt , t ∈ [0,1],

where Bt is the Brownian motion, 1/n is the noise level, Xt the observed signal,
θ0(·) ∈ L2[0,1] the unknown function of interest and K : L2[0,1] �→ L2[0,1] a given
compact, linear, self-adjoint transformation (but we also allow K = I). From the
self-adjoint property of K follows that its eigenvectors ϕi(·) : [0,1] �→ R form an
orthogonal basis and the compactness ensures that the corresponding eigenvalues
κi are tending to zero. Hence, using series expansion with respect to ϕi we get the
equivalent Gaussian sequence model

Xi = κiθ0,i +
1√
n

Zi, for all i = 1,2, . . . (8.1)

where Xi = 〈X·,ϕi(·)〉 and θ0,i = 〈θ0(·),ϕi(·)〉 are the series decomposition
coefficients of the observation and the true function, respectively, and the random
variables Zi = 〈B·,ϕi(·)〉 are independent and standard normally distributed. We
limit ourselves to mildly ill-posed inverse problems, where

C−2i−2p ≤ κ2
i ≤C2i−2p, (8.2)

with some fixed non-negative constant p and positive C, see [7] for the terminology.
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Suppose furthermore that the unknown infinite-dimensional parameter θ0 =
(θ0,1,θ0,2, ..) belongs to a hyper-rectangle

Θβ (M) = {θ : θ 2
i i1+2β ≤ M for all i = 1,2, . . .}, (8.3)

where β is the regularity parameter and M is the squared radius of the hyper-
rectangle. The minimax estimation rate of the full parameter θ0 is a multiple of
n−β/(1+2β+2p), see [10].

8.2.1 Linear Functionals

In this paper, we focus on the construction of confidence sets for the (possibly
unbounded) linear functionals

Lθ =∑ liθi, (8.4)

where l = (l1, l2, . . .) is in a self-similar hyper-rectangle Lq
s (R), for some q,R, j0,K

Lq
s (R) = {l ∈ �2 : (1/R2) j−1−2q ≤

j+K−1

∑
i= j

l2
i ≤ R2 j−1−2q, for all j > j0}, (8.5)

where the parameters j0 and K are omitted from the notation. We note that, for
instance, the linear functionals in the form li � i−q belong to this hyper-rectangle.

We are particularly interested in the class of non-continuous linear functionals,
the point evaluations of the functional parameter θ . For a specific choice of

the operator K, all point evaluations on t ∈ [0,1] belong to L−1/2
s (R); see the

next paragraph. Therefore, confidence sets for self-similar linear functionals L ∈
L−1/2

s (R) of the series decomposition coefficients θ0 also provide us with pointwise
confidence sets of the function θ0(·). Gluing together the (uniform) pointwise
confidence sets one arrives at L∞-confidence bands.

In this paragraph we show that point evaluations of the function θ0(·) belong
to the self-similar class of linear functionals for appropriate choice of the basis.
Assume that the eigen-basis of the operator K is the sine-cosine basis ϕi(·).
The function θ0(·) can be given with the help of the trigonometric decomposition

θ0(t) =∑
i

θ0,iϕi(t). (8.6)

Since ϕ2
2i+1(t)+ϕ2

2i(t) = sin2(i2πt)+ cos2(i2πt) = 1 we obtain that li = ϕi(t) is in

L−1/2
s (2) with parameters j0 = 1 and K = 3 (since every three consecutive integers

contain a pair of (2i− 1,2i) for some i ∈ N).
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8.2.2 Bayesian Approach

In the Bayesian framework of making inference about the unknown sequence θ0,
we endow it with a prior distribution. In our analysis, we work with the infinite-
dimensional Gaussian distribution

Πα =
∞⊗

i=1

N(0, i−1−2α), (8.7)

where the parameter α > 0 denotes the regularity level of the prior distribution. One
can easily compute the corresponding posterior distribution

Πα(· |X) =
∞⊗

i=1

N
( nκ−1

i

i1+2ακ−2
i + n

Xi,
κ−2

i

i1+2ακ−2
i + n

)
. (8.8)

Furthermore by combining and slightly extending the results of [4] and [15] one can

see that the choice α = β leads to the posterior contraction rate n
− β

1+2β+2p for θ0 ∈
Θβ (M), while other choices of the parameter α provide sub-optimal contraction
rates.

In this paper, however, we are interested in the posterior distribution of the linear
functional Lθ . From Proposition 3.2 of [15] follows that the posterior distribution
of the linear functionals Lθ (assuming measurability with respect to the prior Πα )
takes the form

ΠL
α(·|X) = N

(
∑

i

nliκ−1
i

i−1−2ακ−2
i + n

Xi,∑
i

l2
i κ

−2
i

i1+2ακ−2
i + n

)
. (8.9)

Furthermore it was also shown in Section 5 of [15] that the optimal choice of the
hyper-parameter α is not β , but rather β − 1/2. The resulting optimal rate is of the
order n−(β+q)/(2β+2p)∨ n−1/2; see [9, 11]. Note that in case q ≥ p the smoothness
of the linear functional compensates for the degree of ill-posedness and we get a
regular problem with contraction rate n−1/2. However, in our work we focus on the
more interesting case q < p from the point of view of constructing credible bands.

Since the regularity parameter β of the infinite sequence θ0 is usually not
available, one has to use data-driven methods to choose α , which from now on we
will refer to as the hyper-parameter of the prior. Following [14] and [22] we select a
value for α with the marginal likelihood empirical Bayes method, i.e. we select the
maximizer of

α̂n = arg max
α∈[0,A]

�n(α), (8.10)

where A is some arbitrary large, fixed constant, and �n denotes the corresponding
log-likelihood for α (relative to an infinite product of N(0,1/n)-distributions):
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�n(α) =−1
2

∞

∑
i=1

(
log

(
1+

n

i1+2ακ−2
i

)
− n2

i1+2ακ−2
i + n

X2
i

)
. (8.11)

Then the empirical Bayes posterior for the functional parameter θ is defined as
Πα̂n(·|X) which is obtained by substituting α̂n for α in the posterior distribution
(8.8), i.e.

Πα̂n(B|X) =Πα(B|X)
∣∣∣
α=α̂n

for measurable subsets B ⊂ �2. Slightly adapting the proof of Theorem 2.3 in [14]
we can derive that the posterior distribution of the functional parameter θ achieves
the corresponding minimax contraction rate up to a logarithmic factor.

As conjectured in page 2367 of [15] and Section 2.3 of [14] this suggests that the
present procedure is sub-optimal for the linear functional Lθ0, since adaptation for
the full parameter θ0 and its linear functionals Lθ0 is not possible simultaneously in
this setting. In view of the findings in the non-adaptive case [15] we might expect,
however, that we can slightly alter the procedures to deal with linear functionals.
For instance, it is natural to expect that the empirical Bayes posterior for linear
functionals Lθ , given in (8.4),

ΠL
α̂n−1/2(· |X) =ΠL

α(· |X)
∣∣∣
α=α̂n−1/2

, (8.12)

yields optimal rates. In the present paper we work with this data-driven choice of
the hyper-parameter and investigate the frequentist properties of Bayesian credible
sets constructed from the posterior (8.12).

For fixed hyper-parameterα the posterior in (8.9) is a one-dimensional Gaussian
distribution hence a natural choice of the credible set is the interval

Ĉn,α = [L̂θ n,α − ζγ/2sn(α), L̂θ n,α + ζγ/2sn(α)], (8.13)

where L̂θ n,α is the posterior mean, s2
n(α) the posterior variance given in (8.9),

and ζγ is the (1− γ)-quantile of the standard normal distribution. We note that the

mean L̂θ n,α of the posterior distribution of the linear functional is exactly the linear
functional L of the posterior mean of the full parameter θ̂n,α given in (8.8). One can
easily see that the preceding interval accumulates a (1− γ) fraction of the posterior
mass. Then the empirical Bayes credible sets are obtained by replacing α with the
data-driven choice α̂n − 1/2 in (8.13). We introduce some additional flexibility, by
allowing the blow up of the preceding interval with a constant factor D > 0, i.e.

ĈL
n (D) = [L̂θ n,α̂n−1/2 −Dζγ/2sn(α̂n − 1/2), L̂θn,α̂n−1/2 +Dζγ/2sn(α̂n − 1/2)].

(8.14)
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8.2.3 Negative Results

However, matters seem to be more delicate than one would expect from the non-
adaptive case. For certain oddly behaving functions the posterior distribution (8.12)
achieves only sub-optimal contraction rates. Furthermore, the credible sets (8.14)
have coverage tending to zero.

Theorem 1. Let n j be positive integers such that n1 ≥ 2 and n j ≥ n4
j−1 for every j,

and let K > 0. Let θ0 = (θ0,1,θ0,2, . . .) be such that

θ0,i =

⎧⎨
⎩Kn

− 1/2+β
1+2β+2p

j , if n
1

1+2β+2p
j ≤ i < 2n

1
1+2β+2p
j , j = 1,2, . . . ,

0, else,
(8.15)

for some positive constants β , p. Then the constant K > 0 can be chosen such
that the coverage of the credible set tends to zero for every q ∈ R, D,R > 0 and
L ∈ Lq

s (R):

Pθ0(θ0 ∈ Ĉn j (D))→ 0.

Furthermore, the posterior distribution attains sub-optimal contraction rate

ΠL
α̂n j−1/2(Lθ : |Lθ0 −Lθ | ≥ mn−(β+q)/(1+2β+2p)

j |X)
Pθ0→ 1, (8.16)

as j → ∞ for a positive, small enough constant m and linear functional L
satisfying (8.5).

The proof of Theorem 1 is given in Sect. 8.4.1. The sub-optimal contraction
rate of the posterior distribution and the bad coverage property of the credible sets
are due to the mismatch of the underlying loss functions. In the empirical Bayes
method, the hyper-parameter α is chosen to maximize the marginal likelihood
function. This method is related to minimizing the Kullback–Leibler divergence
between the marginal Bayesian likelihood function and the true likelihood function.
At the same time, the evaluation of the posterior distribution is given with respect
to some linear functional L of the functional parameter θ0. Optimal contraction
rate and good coverage follow from optimal bias-variance trade-off. However, the
likelihood based empirical Bayes method intends to minimize the Kullback–Leibler
divergence, which is not an appropriate approach in general for balancing out the
bias and variance terms. Therefore, the empirical Bayes (and we believe that also
the hierarchical Bayes method) leads to sub-optimal rate and poor coverage.
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8.2.4 Self-Similarity

To solve this problem, we can introduce some additional constraint on the regularity
classΘβ (M). The notion of self-similarity originates from the frequentist literature
[3, 8, 13, 16, 17], and was adapted in the Bayesian literature [1, 18, 22]. We call a
series in the hyper-rectangle θ0 ∈Θβ (M) self-similar if it satisfies

ρN

∑
i=N

θ 2
0,i ≥ εMN−2β , ∀N ≥ N0, (8.17)

where N0,ε and ρ are some fixed positive constants. Furthermore we denote the

class of functions satisfying the self-similar constraint by Θβ
s (M), where we omit

the parameters N0,ε,ρ from the notation. We denote by Θs(M) the collection of
self-similar functions with regularity in a compact interval of regularity parameters
β ∈ [βmin,βmax]:

Θs(M) = ∪β∈[βmin,βmax]Θ
β
s (M). (8.18)

Here, we omit again the dependence on βmin and βmax in the notation and assume
that βmin >−q, else Lθ0 would be infinite.

We show that uniformly over L ∈ Lq
s (R) and θ0 ∈Θs(M) the coverage of credible

sets ĈL
n (D) for the linear functionals Lθ0 tends to one. Furthermore we prove that

the size of the credible sets achieves the corresponding minimax contraction rate.

Theorem 2. There exists a large enough positive constant D such that the empirical
Bayes credible sets ĈL

n (D) have honest asymptotic coverage one over the self-similar
linear functionals L ∈ Lq

s (R) of the functional parameter θ0 satisfying (8.5), i.e.

inf
θ0∈Θs(M)

Pθ0

(
Lθ0 ∈ ĈL

n (D), ∀L ∈ Lq
s (R)

)→ 1. (8.19)

Furthermore, the radius of the credible sets is rate adaptive, i.e. there exists a
positive constant C1 > 0 such that for all β ∈ (q,βmax] we have

inf
θ0∈Θβ

s (M)

Pθ0

(
sn(α̂n − 1/2)≤C1n−

β+q
2β+2p ,∀L ∈ Lq

s (R)
)→ 1. (8.20)

We defer the proof to Sect. 8.4.2. The credible band on [0,1] can be constructed
with the help of the linear functionals ϕi(t) introduced in (8.6), i.e. the point
evaluations of the basis ϕi(·) at t ∈ [0,1]. Following from its definition (8.14) the
credible band takes the form

[θ̂n(t)−Dζγ/2sn(t, α̂n − 1/2), θ̂n(t)+Dζγ/2sn(t, α̂n − 1/2)], t ∈ [0,1], (8.21)
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where θ̂n(t) is the posterior mean and s2
n(t, α̂n − 1/2) is the posterior variance

for α = α̂n − 1/2 given in (8.12) belonging to the linear functional L = (li)i≥1 =
(ϕi(t))i≥1. By combining Theorem 2 and the argument given in the last paragraph
of Sect. 8.2.1 we get that the credible band (8.21) has honest coverage and rate-
adaptive size.

Corollary 1. Assume that the eigen-vectors ϕi(·) of the linear operator K form
the sine-cosine basis. Then there exists a constant D such that the empirical Bayes
credible bands, given in (8.21), have honest asymptotic coverage one

inf
θ0∈Θs(M)

Pθ0(|θ0(t)− θ̂n,α̂n−1/2(t)| ≤ Dζγ/2sn(t, α̂n − 1/2), ∀t ∈ [0,1]
)→ 1.

(8.22)

Furthermore, the size of the credible band is rate optimal in a minimax sense, i.e.
there exists a C1 > 0 such that for all β ∈ (1/2,βmax]

inf
θ0∈Θβ

s (M)

Pθ0

(
sn(t, α̂n − 1/2)≤C1n

− β−1/2
2β+2p

)→ 1. (8.23)

8.3 Simulation Study

We investigate our new empirical Bayes method in an example. We consider the
model (8.1) with K = I (the identity operator) and work with the sine-cosine basis
on [0,1], i.e. ϕ1(t) = 1, ϕ2i(t) =

√
2cos(2π it), ϕ2i+1(t) =

√
2sin(2π it) for t ∈ [0,1].

First, we illustrate that for self-similar functions our method provides reasonable
and trustworthy credible sets which could be used as confidence bands. We define
the true function θ0(t) with the help of its sine-cosine basis coefficients, i.e.
we take θ0,i = i−2 cos(i):

θ0(t) = cos(1)+
√

2
∞

∑
i=1

(2i)−2 cos(2i)cos(2π it)

+
√

2
∞

∑
i=1

(2i+ 1)−2 cos(2i+ 1)sin(2π it).

For computational convenience we work only with the first 103 Fourier coefficients
of the true function. We simulate data from the corresponding distribution with noise
level n = 100,103,104 and 105. Figure 8.1 shows the true function in pointed black,
the posterior mean in dashed red and the 95% credible bands (without blowing it
up by a constant factor D) in blue. One can see that for every noise level n the
credible band has good coverage and is concentrating around the truth as n increases,
confirming the results of Corollary 1.
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Fig. 8.1 Empirical Bayes credible bands for a self-similar function. The true function is drawn in
pointed black, the posterior mean in dashed red and the credible bands in blue. From left to right
we have n = 100,103,104 and 105

To illustrate the negative result derived in Theorem 1 (for the point evaluation
linear functionals) we consider a non-self-similar function θ0(t) defined by its
series decomposition coefficients with respect to the sine-cosine basis. We take the
coefficients to be θ0,1 = 1/10, θ0,4 = 1/30, θ0,20 =−1/20, θ0,i = i−3/2 if 24 j

< i ≤
2 ·24 j

for j ≥ 2, and 0 otherwise:

θ0(t) =0.1+

√
2

30
cos(4πt)−

√
2

20
cos(30πt)

+
∞

∑
j=2

(√
2

24 j

∑
i=24 j−1+1

(2i)−3/2 cos(2π it)+ (2i+ 1)−3/2sin(2π it)
)
.

For simplicity we consider again only the first 103 Fourier coefficients of the true
function. Then we simulate data from the corresponding distribution with various
noise levels n = 200,500,103,2 ·103,5 ·103,104,105 and 108. In Fig. 8.2 we plotted
the 95% L∞-credible bands with blue lines, the posterior mean with dashed red
line and the true function with pointed black line. One can see that for multiple
noise levels we have overly confident, too narrow credible bands (n = 500,103,2 ·
103,104), while for other values of the noise levels n we have good coverage (n =
200,5 ·103,5 ·104,108). This periodicity between the good and the bad coverage of
the credible sets continuous as n increases (but to see it we have to zoom into the
picture).

8.4 Proofs and Lemma

8.4.1 Proof of Theorem 1

Following [14, 21] and [22] we introduce the notation
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Fig. 8.2 Empirical Bayes credible bands for a non-self-similar function. The true function is
drawn in pointed black, the posterior mean in dashed red and the credible bands in blue. From
left to right and top to bottom we have n = 200,500,103,2 ·103,5 ·103,104,105 and 108

hn(α;θ0) =
1+ 2α+ 2p

n1/(1+2α+2p) logn

∞

∑
i=1

n2i1+2α(log i)θ 2
0,i

(i1+2α+2p+ n)2 , α ≥ 0,

and define

αn(θ0) = inf{α ∈ [0,A] : hn(α;θ0)≥ 1/(16C8)},
αn(θ0) = sup{α ∈ [0,A] : hn(α;θ0)≤ 8C8},

where the parameter A was introduced in (8.10). From the proof of Theorem 5.1 of
[22] one can see that

inf
θ0∈�2

P(αn ≤ α̂n)→ 1. (8.24)

Furthermore, let us introduce the notations

BL
n(α) = |Eθ0 L̂θα −Lθ0| and Vn(α) = |L̂θα −Eθ0 L̂θα |,

where L̂θα denotes the posterior mean of the linear functional Lθ for a fixed hyper-
parameter α > 0. Similarly to the proof of Theorem 3.1 of [22], it follows from
the triangle inequality that θ0 ∈ ĈL

n (D) implies BL
n(α̂n − 1/2) ≤ Vn(α̂n − 1/2) +

Dζγ/2sn(α̂n − 1/2). Therefore following from the convergence (8.24) we have
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Pθ0(Lθ0 ∈ ĈL
n (D))≤Pθ0

(
inf

α≥αn−1/2
Bn(α)≤D sup

α≥αn−1/2

[
Dζ γ

2
sn(α)+Vn(α)

])
+o(1).

(8.25)

From the proof of Theorem 3.1 of [22] follows that αn j
> β + 1/2 for j large

enough. Following from the proof of Theorem 5.3 of [15], we get that both sn j (α)
and Vn j(α) are bounded from above by a multiple of n−(1/2+β+q)/(1+2β+2p)

j �
n−(β+q)/(2β+2p)

j with probability tending to one.
Furthermore, for fixed hyper-parameterα the bias corresponding to the posterior

mean (8.12) is

BL
n(α) = |∑

i

liθ0,i

1+ n ji−1−2ακ2
i

|.

Note that following from the definition of Lq
s (R) given in (8.5), we conclude that

j+K−1

∑
i= j

|li| ≥ max
i∈{ j, j+1,..., j+K−1}

|li| ≥ j−1/2−q/(RK).

Then, for α ≥ αn j
−1/2≥ β the squared bias B2

n(α) corresponding to the sequence
(8.15) can be bounded from below by

( 2n
1

1+2β+2p
j

∑
i=n

1
1+2β+2p
j

C−1
0 |li|Kn

− 1/2+β
1+2β+2p

j

1+ n ji−1−2ακ2
i

)2
� n

− 1/2+β
1+2β+2p

j

2n1/(1+2β+2p)
j /K−1

∑
i=n1/(1+2β+2p)

j /K

(i+1)K

∑
j=iK+1

|li|

� n
− 1/2+β

1+2β+2p
j

2n1/(1+2β+2p)
j /K−1

∑
i=n

1/(1+2β+2p)
j /K

i−1/2−q, (8.26)

which is further bounded from below by n−(2β+2q)/(1+2α+2p)
j � n−2(β+q)/(2β+2p)

j .
Therefore, the probability on the right-hand side of the inequality (8.25) tends to
zero.

Finally, we note that following from the sub-optimal order of the bias term
(8.26) the posterior distribution achieves sub-optimal contraction rate around the
true value Lθ0.

8.4.2 Proof of Theorem 2

First, we note that following from the inequalities (6.9) and (6.10) of [22] we obtain
for all β ∈ [βmin,βmax] that
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β −K1/ logn ≤ inf
θ0∈Θβ (M)

αn(θ0)≤ sup
θ0∈Θβ

s (M)

αn(θ0)≤ β +K2/ logn, (8.27)

for some positive constants K1 and K2 depending only on βmin,βmax,M,C,ρ and ε .
Then, for convenience we introduce the notation

r2
n,γ(α) = D2ζ 2

γ/2s2
n(α) = D2ζ 2

γ/2

∞

∑
i=1

l2
i κ

−2
i

i1+2ακ−2
i + n

. (8.28)

Using the notations of Sect. 8.4.1, the coverage of the empirical Bayes credible
set, similarly to the inequality (8.25), can be bounded from below by

inf
θ0∈Θs(M)

Pθ0

(
Lθ0 ∈ ĈL

n (D), ∀L ∈ Lq
s (R)

)
(8.29)

≥ inf
θ0∈Θs(M)

Pθ0

(
BL

n(α̂n −1/2)+Vn(α̂n −1/2) ≤ rn,γ (α̂n −1/2), ∀L ∈ Lq
s (R)

)

≥ inf
θ0∈Θs(M)

Pθ0

(
sup

α∈[αn−1/2,αn−1/2]
L∈Lq

s (R)

Vn(α)≤ inf
α∈[αn−1/2,αn−1/2]

L∈Lq
s (R)

[
rn,γ (α)−BL

n(α)
])−o(1).

Therefore, it is sufficient to show that there exist constants C1,C2 and C3

satisfying C3 >C2 +C1 such that for all β ∈ [βmin,βmax] and θ0 ∈Θβ
s (M)

sup
α∈[αn−1/2,αn−1/2]

BL
n(α)≤C1n−

β+q
2β+2p , (8.30)

Pθ0

(
sup

α∈[αn−1/2,αn−1/2]
Vn(α)≤C2n

− β+q
2β+2p

)
→ 1, (8.31)

inf
α∈[αn−1/2,αn−1/2]

rn,γ(α)≥C3n
− β+q

2β+2p . (8.32)

We first deal with inequality (8.32). Applying assumptions (8.5) and (8.28) one
can obtain that

r2
n,γ (α)≥

D2ζ 2
γ/2

C2

∞

∑
i= j0/K+1

(Ki)2p

((K + 1)i)1+2α+2p+ n

(i+1)K−1

∑
j=iK

l2
j

≥
D2ζ 2

γ/2K2p−2q

R2C2(K + 1)1+2α+2p

∞

∑
i= j0/K+1

i−1−2q+2p

i1+2α+2p+ n
,

which following from Lemma 1 is further bounded from below by constant times

D2n−
1+2α+2q
1+2α+2p for 1 + 2α + 2q > 0 and infinity else. Therefore, by applying the

inequality (8.27) we obtain that C3 can be arbitrary large for a large enough choice
of D2.
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Next we deal with the convergence (8.31). From the proof of Theorem 5.3 of [15]
we get that Vn(α) = |tn(α)Z| with Z a standard normal random variable and

t2
n (α) =

∞

∑
i

nl2
i κ

−2
i

(i1+2ακ−2
i + n)2

≤ R2C4
∞

∑
i

ni−1−2q+2p

(i1+2α+2p+ n)2 .

The right-hand side of the preceding display similarly to s2
n(α) is bounded from

above by constant times n−
1+2α+2q
1+2α+2p for 1+2α+2q> 0 and infinity otherwise. Then

following from the inequality (8.27) one can obtain for q < p that

sup
α∈[αn−1/2,αn−1/2]

tn(α) = tn(αn − 1/2)� n−
αn+q

2αn+2p � n−
β+q

2β+2p ,

providing us the convergence (8.31).
Finally, we deal with the bias term (8.30). Following from assumptions (8.3) and

(8.5), we have

|BL
n(α)| ≤

∞

∑
i=1

|liθ0,i|i1+2ακ−2
i

i1+2ακ−2
i + n

≤C2RK
∞

∑
i=1

i2α+2p−β−q

i1+2α+2p + n
.

From the inequality (8.27) we have for α ≥ αn − 1/2 and large enough n that the
inequality β + q < 1 + 2α + 2p holds, hence the preceding inequality is further

bounded from above by constant times n−
β+q

1+2α+2p by applying Lemma 1 (with m =
0). So we can conclude that for α ≥ αn − 1/2 ≥ β − 1/2−K1/ logn

|BL
n(α)|� n−(β+q)/(1+2α+2p) � n−(β+q)/(2β+2p).

To prove adaptivity we note that following again from the inequality (8.27) we
have

sup
α∈[αn−1/2,αn−1/2]

sn(α)� n−(αn+q)(2αn+2p) � n−(β+q)/(2β+2p).

8.4.3 Lemma 10.2 of [22]

Lemma 1 (Lemma 10.2 of [22]). For any l,m,r,s ≥ 0 with c := lr− s−1 > 0 and
n ≥ e(2mr/c)∨r,

(3r + 1)−l(logn/r
)m

n−c/r ≤
∞

∑
i=1

is(log i)m

(ir + n)l ≤ (3+ 2c−1)
(
logn/r

)m
n−c/r.

suggesting changes, which improved the quality of the manuscript.
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Chapter 9
Identifying the Infectious Period Distribution
for Stochastic Epidemic Models Using
the Posterior Predictive Check

Muteb Alharthi, Philip O’Neill, and Theodore Kypraios

Abstract Under the Bayesian framework, we develop a novel method for assessing
the goodness of fit for the SIR (susceptible-infective-removed) stochastic epidemic
model. This method seeks to determine whether or not one can identify the
infectious period distribution based only on a set of partially observed data using
a posterior predictive distribution approach. Our criterion for assessing the model’s
goodness of fit is based on the notion of Bayesian residuals.

Key words: SIR, Epidemic models, MCMC, Predictive distribution, Bayesian
residual

9.1 Introduction

Poor fit of a statistical model to data can result in suspicious outcomes and
misleading conclusions. Although the area of parameter estimation for stochastic
epidemic models has been a subject of considerable research interest in recent years
(see, e.g., [1, 7, 9]), more work is needed for the model assessment in terms of
developing new methods and procedures to evaluate goodness of fit for epidemic
models. Therefore, it is of importance to seek a method for assessing the quality of
fitting a stochastic epidemic model to a set of epidemiological data.

The most well-known stochastic model for the transmission of infectious dis-
eases is considered, that is the SIR (susceptible-infective-removed) stochastic
epidemic model. We recall methods of Bayesian inference using Markov chain
Monte Carlo (MCMC) techniques for the SIR model where partial temporal data
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are available. Then, a new simulation-based goodness of fit method is presented.
This method explores whether or not the infectious period distribution can be
identified based on removal data using a posterior predictive model checking
procedure.

9.2 Model, Data and Inference

We consider a SIR stochastic epidemic model [2] in which the rate of new infections
at time t is given by βn−1X(t)Y (t), where X(t) and Y (t) represent the number of
susceptible and infective individuals at t in a closed homogeneous population of size
N = n+ 1, which consists of n initial susceptibles and one initial infective, and β
denotes the infection rate parameter.

Following [3, 5], let fTI (·) denote the probability density function of TI (the length
of the infectious period, which is assumed to be a continuous random variable)
and let θ indicate the parameter governing TI . Also, define I = (I1, . . . , InI ) and
R = (R1, . . . ,RnR), where I j and R j are the infection and removal times of individual
j and where we shall assume, for simplicity, that the total number of infections and
removals are equal, that is nI = nR = m (this assumption can be relaxed, see [8] for
the details). Assuming a fully observed epidemic (complete data) with the initial
infective labelled z such that Iz < I j for all j �= z, the likelihood of the data given the
model parameters is

L(I,R|β ,θ ,z) =
(

m

∏
j=1, j �=z

βn−1Y (I j−)

)
· exp

(−βn−1A
) · m

∏
j=1

fTI (R j − I j) ,

where A =∑m
j=1∑

N
k=1(R j ∧ Ik − Ik ∧ I j) with Ik =∞ for k = m+1, . . . ,N . Here, I j−

denotes the time just prior to I j and R j− is defined similarly.
Unfortunately, incomplete data (where we observe only removal times) are the

most common type of epidemic data. As a result, the likelihood of observing only
the removal times given the model parameters is intractable. One solution to make
the likelihood tractable is to use the data augmentation technique by treating the
missing data as extra (unknown) parameters [8]. For instance, let TI ∼ Exp(γ),
where γ is referred to as the removal rate. By adopting a Bayesian framework and
assigning conjugate gamma prior distributions to the model parameters [8] that are
β ∼ Gamma(λβ ,νβ ), (with mean = λβ/νβ ) and γ ∼ Gamma(λγ ,νγ ), we get the
following full conditional posterior distributions:

β |γ,I,R ∼ Gamma
(
λβ +m− 1,νβ + n−1A

)
,

γ|β ,I,R ∼ Gamma

(
λγ +m,νγ +

m

∑
j=1

(R j − I j)

)
,
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as well as

π(I|β ,γ,R) ∝

(
m

∏
j=1, j �=z

Y (I j−)

)
· exp

(−βn−1A
) · m

∏
j=1

exp(−γ(R j − I j)) .

The model parameters β and γ can be updated using Gibbs sampling steps as they
have closed form of the posterior distributions. However, the infection times need
to be updated using a Metropolis–Hastings step. Having done that, we can obtain
samples from the marginal posterior distributions of the model parameters.

When the length of the infectious periods is assumed to be constant, we have two
model parameters to be updated, namely the mean of the infectious period E(TI) = c
and the infection rate parameter β . However, if we let the infectious periods to
have a gamma distribution Gamma(α,δ ), in addition to estimating the infection
rate parameter β , we shall assume for computational reasons that the gamma shape
parameter α is known (although it can be considered as unknown parameter to be
estimated from the data, see [6] for the details) and the scale parameter δ is unknown
and has to be estimated using MCMC output.

9.3 Methodology

We are concerned with identifying the infectious period distribution of the SIR
model based only on removal data. In the SIR stochastic epidemic model, regardless
of the type of infectious period distribution (we consider Exponential, Gamma and
Constant), the total population size is constant and satisfies N = X(t)+Y (t)+Z(t),
where Z(t) denotes the number of removed individuals at event time t with
X(0)≥ 1,Y (0)≥ 1 and Z(0) = 0; note that Z(s) ≤ Z(t) for any 0 ≤ s ≤ t;s, t ≥ 0.

However, due to the fact that epidemic data are partially observed it is sufficient
for our purpose to consider only the times when removals occur instead of looking
at all event times. Assuming that all infected individuals are removed by the end of
the epidemic, the behaviour of the three models in terms of Z(r1),Z(r2), . . . , differs,
where r j represents the j-th removal time.

We turn our attention to taking advantage of this difference to distinguish
between these three models when fitting them to data in the case of partial
observations. Let Robs = (Robs

1 , . . . ,Robs
m ) and Rrep = (Rrep

1 , . . . ,Rrep
m ) denote the

observed and replicated removal times, respectively, and also let π(Rrep i|Robs)
represent the removal times predictive distribution. Then our proposed method can
be generally described by the Algorithm 1.

Step 3 in the Algorithm 1 can be done simply by keeping simulating (until the
desired sample size is obtained) from the model using the model parameter posterior
distributions while rejecting simulations that do not match the observed final size.
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Algorithm 1 Generic algorithm for our method

1. Given Robs, fit an SIR model using MCMC to get samples from π(β |Robs) and π(θ |Robs).

2. Draw β i ∼ π(β |Robs) and θ i ∼ π(θ |Robs), i = 1, . . . ,M.

3. Use β i and θ i to draw samples from π(Rrep i|Robs) conditioning on mrep i = mobs.

4. Compare Robs and π(Rrep i|Robs) graphically as well as using Bayesian residual criterion.

9.4 Illustration

To illustrate our method, 93 removal times were simulated from an SIR model in
which TI ∼ Exp(0.5) and β = 1.5 in a population of size N = 100, that consists of
n = 99 initial susceptibles and one initial infective.

Throughout the analysis, uninformative gamma prior distributions with parame-
ters λβ = λγ = λδ = 1 and νβ = νγ = νδ = 0.001 were set to the parameters of the
SIR models and it was assumed that the gamma shape parameter, when fitting the
SIR model with gamma infectious period TI ∼ Gamma(α,δ ) is known (α = 10).

By looking at Fig. 9.1, it is clearly noticeable that the observed data fit very well
within the predictive distribution of the exponential SIR model, the model that has
generated the data.

As mentioned above, our preferred criterion to measure the goodness of fit is the
Bayesian residual [4], that is, conditioning on mrep i = mobs,

d j = Robs
j −E(Rrep i

j |Robs), j = 1, . . . ,m,

where E(Rrep i
j |Robs) =

∫
Rrep i

j π(Rrep i
j |Robs) dRrep i

j ≈ 1
M ∑M

i=1 Rrep i
j .

It is worth mentioning here that the quantity ∑m
j=1 d2

j could provide an overall
measure of fit. Figure 9.2 shows the Bayesian residual distributions for the three
models in which it is qualitatively obvious that there is a high density accumulated
near zero, coming from the Exponential SIR model, compared to the other two
models. On top of that, quantitatively, the sum of the squared Bayesian residuals
∑m

j=1 d2
j are 96.3, 354.7 and 812.6 for the Exponential, Gamma and Constant SIR

models, respectively. Therefore, as expected, the Exponential SIR model, from
which the data was generated, has the smallest value of the sum of the squared
Bayesian residuals.

9.5 Conclusion

Bayesian inference for the SIR model has been introduced, where the epidemic
outbreak is partially observed. We have proposed a method to assess the goodness
of fit for the SIR stochastic model based only on removal data. A simulation study
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Fig. 9.1 Comparison of the removal times predictive distribution for the three SIR models
(top left: Exponential, top right: Gamma, bottom: Constant) based on 1,000 realizations and
conditioning on the observed final size, where the dotted line indicates the observed data and the
solid line represents the predictive mean

has been performed to test the proposed method. Using the posterior predictive
assessment for checking models, this diagnostic method is able to identify the true
model reasonably well.

One advantage of this method is that it looks explicitly at the discrepancy
between observed and predicted data, which avoids using unobserved quantities in
the process of assessment, see [10] as an example. Furthermore, this method is still
valid when including an extra state, the exposed period, to the SIR model in which
individuals in this state are infected but not yet infectious.

Acknowledgements The first author is supported by a scholarship from Taif University, Taif,
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Fig. 9.2 The Bayesian
residual distributions for each
SIR model based on 1,000
samples from the
conditioning predictive
distribution for the three
models
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Chapter 10
A New Strategy for Testing Cosmology
with Simulations

Madhura Killedar, Stefano Borgani, Dunja Fabjan, Klaus Dolag,
Gian Luigi Granato, Susana Planelles, and Cinthia Ragone-Figueroa

Abstract Structural properties of clusters of galaxies have been routinely used
to claim either tension or consistency with the fiducial cosmological hypothesis,
known as ΛCDM. However, standard approaches are unable to quantify the
preference for one hypothesis over another. We advocate using a ‘weighted’ variant
of approximate Bayesian computation (ABC), whereby the parameters of the strong
lensing-mass scaling relation, α and β , are treated as the summary statistics. We
demonstrate then, for the first time, the procedure for estimating the likelihood for
observing α and β under the ΛCDM framework. We employ computer simulations
for producing mock samples, and account for variation between samples for
modelling the likelihood function. We also consider the effects on the likelihood,
and consequential ability to compare competing hypotheses, if only simplistic
computer simulations are available.

Key words: Bayesian statistics, ABC, Simulations, Cosmology, Galaxy clusters
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10.1 Introduction

Our standard model of cosmology, ΛCDM, is one in which our universe is made
up primarily of dark energy, has a large amount of dark matter, and only a small
fraction of ordinary matter; it is currently undergoing a period of expansion and
an expansion that is accelerating. This model appears to describe the contents and
evolution of the universe very well, and has been determined through the analysis
of several astrophysical objects and phenomena. One additional dataset with the
potential to provide complementary information is the mass-structure of clusters of
galaxies [1, 2, 22, 24]. These objects contain hundreds to thousands of galaxies, as
well as hot gas and dark matter, and they gravitationally lens and distort the images
of more distant galaxies.

Strong lensing efficiencies, as characterised by the effective Einstein radii
(denoted θE ) scale well with the mass of clusters at large over-densities [14]. If any
given set of galaxy clusters sample are, in fact, stronger lenses than predicted by the
ΛCDM model, they will have larger θE for a given total mass at low over-densities
(e.g., M500). The earliest studies of similar galaxy-cluster properties revealed a
significant difference between the observations andΛCDM predictions [1, 15]. Thus
began the hunt for solutions to the so-called tension with ΛCDM cosmology.

Previous works in the literature have claimed either ‘tension’ or ‘consistency’
with ΛCDM, or insufficient data [6, 11, 18, 21, 23, 27], but do not allow one to
compare competing cosmological hypotheses. In the present work, we propose a
Bayesian approach to the cosmological test using galaxy cluster strong lensing
properties.

10.2 The Bayesian Framework

A Bayesian approach is advocated, in which one determines the relative preference
of two hypothetical cosmological models, C1 and C2, in light of the data D, by
calculating the Bayes factor B:

B =
L (D|C1)

L (D|C2)
(10.1)

where L denotes the likelihood of the data assuming a cosmology.
The aim then is to calculate, under one chosen hypothesis:ΛCDM, the likelihood

of observing the structural properties of a particular sample of galaxy clusters. This
sample is detected using a well-defined selection criteria and all relevant properties
have been measured [5, 7, 13, 16, 17, 26, 27].
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10.2.1 Weighted ABC

Achieving the aforementioned goal is non-trivial, because a likelihood function
related to the original observables (θE and M500) is intractable. This is because: (a)
computer simulations are deemed necessary for describing the irregular structure
of galaxy clusters, which undergo non-linear structure formation; (b) there are a
finite (and relatively small) number of clusters that can be simulated in a reasonable
amount of time, and thus the full θE–M500 space cannot be sampled. Therefore, this
problem is an ideal case for which one may apply a variant of approximate Bayesian
computation (ABC) [4, 25]. What we propose is not a likelihood-free approach,
however, and rather than rejecting mock samples that are dissimilar to the real data,
they are down-weighted. Thus, we refer to the novel approach described below as
Weighted ABC.

We assume a power-law relation between the strong lensing and mass proxies,
and perform a fitting to the following function in logarithmic space1:

log

[
M500

9× 1014M�

]
= α log

[
θE

20”

√
Dd

Dds

]
+β (10.2)

with parameters α and β , and aim to find the likelihood of observing the scaling
relationship. α and β act as summary statistics for the dataset. However, rather
than calculating precise values for α and β , one would determine a probability
distribution that reflects the degree of belief in their respective values. The relevant
fitting procedure is described in Sect. 10.2.2.

Next, we outline how to calculate the likelihood of observing α and β . In
the following, ι represents background information such as knowledge of the
cluster selection criteria, the method of characterising the Einstein radius, and
the assumption that there exists a power-law relation between strong lensing and
mass.

1. Computer simulations (see [3, 14, 19, 20]) are run within the framework of a
chosen cosmological hypothesis, C. In our case, C represents the assumption that
ΛCDM (or specific values for cosmological parameters) is the true description
of cosmology.

2. Simulated galaxy clusters are selected according to specified criteria, ideally
reflecting the criteria used to select the real clusters.

3. Different on-sky projections of these three-dimensional objects produce different
apparent measurements of structural properties. Therefore, we construct a large

1The pivot mass 9×1014M� is chosen to approximate the logarithmic average of the observed and
simulated clusters. Similarly, the pivot Einstein radius is chosen to be 20 arcseconds. Dd represents
the angular diameter distance from an observer on Earth to the galaxy cluster lens, while Dds
represents the angular diameter distance from the galaxy cluster lens to a more distant galaxy, in
our case chosen to be fixed to a redshift of z = 2.
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number of mock samples from these by randomly choosing an orientation-angle
for each cluster. Equation (10.2) is fit to each mock sample (See Sect. 10.2.2), to
determine a posterior over α and β : Pi(α,β |C, ι) denotes the result for the ith
of N mock samples. We combine these, to give the probability, P(α,β |C, ι) ≡
∑N

i=1 Pi(α,β |C, ι), that one would observe the scaling relation {α ,β} under the
hypothesis C. The result can be interpreted as a likelihood function as a function
of data: α and β .

4. Fit Eq. (10.2) to the data to obtain the posterior probability distribution for α and
β , P(α,β |ι). The normalised posterior is then interpreted as a single ‘data point’:
the distribution represents the uncertainty on the measurement of α and β .

5. Calculate the likelihood, L , of observing the α–β fit as we did, by integrating
over the product of the two aforementioned posteriors—now re-labelled ‘data-
point’ and ‘likelihood function’.

The result of integrating the product of P(α,β |C, ι) and P(α,β |ι) for the dataset is
mathematically equivalent to integrating the product for each mock separately, then
taking the average over all mock samples:

∫ [ 1
N

N

∑
i=1

Pi(α,β |C, ι)
]
P(α,β |ι)dα dβ =

1
N

N

∑
i=1

∫
Pi(α,β |C, ι)P(α,β |ι)dα dβ

(10.3)

Thus, what we have described above is equivalent to the weighting of each mock
sample according to its similarity to the real data, where the metric is the convolution
of the two (mock and real) posterior probability distributions P(α,β |ι).

10.2.2 Summary Statistic Fitting

The summary statistics α and β are parameters of the scaling relation between
strong lensing efficiency and total cluster mass [Eq. (10.2)]. The procedure for
calculating L , as described in Sect. 10.2.1, requires one to fit real or mock data to
determine the posterior distribution on α and β . We employ the Bayesian linear
regression method outlined in [10]. Additionally, we acknowledge that intrinsic
scatter is likely to be present, and thus introduce a nuisance parameter, V , which
represents intrinsic Gaussian variance orthogonal to the line.

For this subsection, we change notation in order to reduce the subscripts: the
mass of the i-th cluster lens as Mi, and the scaled Einstein radius as Ei. Each data-
point is denoted by the vector Zi = [logMi, logEi]. Their respective uncertainties
(on the logarithms) are denoted σ2

M and σ2
E . Since we assume the uncertainties

for Einstein radii and cluster mass are uncorrelated, the covariance matrix, Si,
reduces to:

Si ≡
(
σ2

M 0
0 σ2

E

)
(10.4)

In the case of a mock sample of simulated clusters, Si = 0.
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Consider now the following quantities: ϕ ≡ arctanα , which denotes the angle
between the line and the x-axis, and b⊥ ≡ β cosϕ which is the orthogonal distance
of the line to the origin. The orthogonal distance of each data-point to the line is:

Δi = v̂�Zi −β cosϕ (10.5)

where v̂ = [−sinϕ ,cosϕ ] is a vector orthogonal to the line.
Therefore, the orthogonal variance is

Σ2
i = v̂�Siv̂ . (10.6)

Following [10], we calculate the likelihood over the three-dimensional parameter
space:Θ1 ≡ {α,β ,V}:

lnL = K−
N

∑
i=1

1
2

ln(Σ2
i +V)−

N

∑
i=1

Δ2
i

2Σ2
i +V

(10.7)

where K is an arbitrary constant, and the summation is over all clusters in the
considered sample.

While we ultimately (aim to) provide the parameter constraints on α and β , flat
priors for these tend to unfairly favour large slopes. A more sensible choice is flat
for the alternative parameters ϕ and b⊥. We apply a modified Jeffreys prior on V :

π(V ) ∝
1

V +Vt
(10.8)

This is linearly uniform on V for small values and logarithmically uniform on V for
larger values with a turnover, Vt , chosen to reflect the typical uncertainties.

Thus, for each Θ1, we may define an alternative set of parameters Θ2 ≡
{ϕ ,b⊥,V}, for which the prior is given by:

π(Θ2) = π(ϕ ,b⊥)π(V )

∝ π(V ) (10.9)

where π(V ) is given by Eq. 10.8. The prior on Θ1 is then dependent on the
magnitude of the Jacobian of the mapping between the two sets of parameters:

π(Θ1) = π(Θ2)det∂Θ2
∂Θ1

≡ π(Θ2)
1

(1+α2)3/2 (10.10)
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Boundaries on the priors are sufficiently large2: −8 ≤ β ≤ 8; −40 ≤ α ≤ 40; 0 ≤
V ≤ Vmax. Vmax is chosen to reflect the overall scatter in the data. The posterior is
calculated following Bayes’ theorem:

P(Θ1|D) ∝L (D|Θ1)π(Θ1) (10.11)

and is normalised. In practice, the posterior distribution was sampled by employing
emcee [8], the python implementation of the affine-invariant ensemble sampler for
Markov chain Monte Carlo (MCMC) proposed by [9].

As we are interested in the constraints on α and β , we then marginalise over the
nuisance parameter, V .

10.3 Results

In Fig. 10.1, we show the relation between the Einstein radii and the cluster mass
M500. The real cluster sample is represented by red circles. For simulated clusters,
the situation is more complicated. Since different lines of sight provide a large
variation in projected mass distribution, each cluster cannot be associated with an
individual Einstein radius, nor a simple Gaussian or log-normal distribution [14].
We therefore measure the Einstein radius for 80 different lines of sight and, for ease
of visualisation, describe the distribution of Einstein radii for each simulated cluster
by a box-plot.

Fig. 10.1 Strong lensing
efficiency, characterised by
scaled Einstein radii, θE,eff,
plotted as a function of mass.
The range of Einstein radii for
simulated clusters are shown
by the blue box-plots. The red
circles represent the real
clusters. The red line marks
the maximum a-posteriori fit
to observational data, while
the thin blue lines mark the fit
to 20 randomly chosen mock
samples from simulations
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2The physically motivated choice of restricting α ≥ 0 is also explored; however, this has very minor
effects on the final results despite removing the (small) secondary peak in the marginal posterior
on α and β .
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Fig. 10.2 Left: 1-σ and 2-σ constraints on parameters of the strong lensing—mass relation given
the real cluster data (red contours), with a maximum a posteriori fit marked by a red circle.
Overplotted in blue dots are the best fits to 80 mock observations of simulated galaxy clusters.
A typical 1-σ error is shown as a blue ellipse. Right: Same as the middle panel, but the blue
circle and curves mark, respectively, the maximum and the 1-σ and 2-σ contours of the likelihood
function found by combining all 80 mocks. Ultimately, the likelihood, L ≈ 0.3, is found by
convolving the functions marked by the red and blue contours

We fit the observational data to the lensing-mass relation and after marginalising
out the nuisance parameter,V , present the posterior distribution forα and β , denoted
by red contours in the left-hand panel of Fig. 10.2. This fit is reinterpreted as a single
‘data-point’. To estimate the likelihood, as a function of possible data, we employ
simulations. Many mock samples are individually fit to the lensing-mass relations;
the maximum of the posterior is shown as a blue point and a typical 1-σ error shown
as a blue ellipse. By adding the posteriors for each mock sample and renormalising,
we estimate the required likelihood function, shown by the blue contours in the
right-hand panel of Fig. 10.2. By multiplying by the ‘data-point’ distribution and
integrating over the parameter space, we find L ≈ 0.3.

Note that one cannot comment on whether the likelihood is large or small.
Currently, such simulations are only available for the fiducial ΛCDM cosmological
model. However, if the same process is repeated for simulations under a different
model, then the Bayes factor can be calculated [see Eq. (10.1)] and, after accounting
for priors, may (or may not) reveal a preference for one of the cosmologies, in light
of this data. Alternative cosmological models may include, for example, those with
a different relative dark matter to dark energy ratio, interactions between the two
dark components, or a different normalisation for the structure power spectrum.
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10.4 Computational Challenge

The approach described above is an exciting new strategy for calculating the
likelihood for observing strong lensing galaxy clusters for a chosen cosmological
hypothesis. However, we recognise that the calculation involves running computer
simulations that can take months. Computationally ‘cheaper’ simulations ignore
several astrophysical processes in the formation of galaxy clusters and it is debatable
whether these would be sufficient.

In order to determine the severity of this problem, we repeat the aforementioned
procedure using galaxy cluster counterparts from such simulations, at varying levels
of complexity and realism, and find that the likelihood, L , can then vary by a factor
of three or four. If the cheaper simulations are employed, then the selection criteria
must also be replaced with an alternative compromise. We test this alternative and
find that L changes by a factor of two.

Our findings suggest that if a model-comparison study was carried out using a
simulation based on an alternative cosmological hypothesis and resulting in a Bayes
factor of 20 or more [see Eq. (10.1)], then the cheaper simulations (or toy models
based on these) would be sufficient. However, in the event that the Bayes factor B
is found to be smaller, then the computationally expensive but realistic simulations
would be necessary.
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Chapter 11
Formal and Heuristic Model Averaging Methods
for Predicting the US Unemployment Rate

Jeremy Kolly

Abstract We consider a logistic transform of the monthly US unemployment rate.
For this time series, a pseudo out-of-sample forecasting competition is held between
linear and nonlinear models and averages of these models. To combine predictive
densities, we use two complementary methods: Bayesian model averaging and
optimal pooling. We select the individual models combined by these methods with
the evolution of Bayes factors over time. Model estimation is carried out using
Markov chain Monte Carlo algorithms and predictive densities are evaluated with
statistical tests and log scores. The sophisticated averages of linear and nonlinear
models turn out to be valuable tools for predicting the US unemployment rate in the
short-term.

Key words: Nonlinearity, Model combination, Markov chain Monte Carlo methods,
Bayes factors, Forecast evaluation

11.1 Introduction

Many studies point out that nonlinear models are able to yield superior predictions
of the US unemployment rate [1, 2, 4, 8, 11, 12]. Among them, [2, 4] argue in favor
of the logistic smooth transition autoregression (LSTAR). This nonlinear regime-
switching model, proposed by [13], can be written as:

yt = φ10 +
p

∑
j=1

φ1 jyt− j +G(st ;γ,c)
(
φ20 +

p

∑
j=1

φ2 jyt− j

)
+ εt ,

G(st ;γ,c) =
1

1+ exp[−γ2(st − c)]
,
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where the εt are i.i.d. N(0,σ2) and where the logistic transition function G(·)
depends on the observable transition variable st and contains γ and c; the smoothness
and location parameters, respectively.

In the contributions mentioned previously, the linear models are found to be good
competitors. This may mean that linear and nonlinear models provide complemen-
tary descriptions of the US unemployment process. The present research takes this
possibility into account by investigating the predictive performance of averages of
linear and nonlinear models. Some of the above-mentioned studies consider model
combination. However, their approaches are either limited or different. Furthermore,
note that we will combine Bayesian predictive densities. They have the advantage
of being small-sample results that incorporate parameter uncertainty.

The plan of this chapter is the following. Section 11.2 presents the model averag-
ing methods. Section 11.3 describes the forecasting experiment. Section 11.4 shows
real-time weights over the forecasting period and evaluates predictive performance.
Section 11.5 concludes.

11.2 Model Averaging Methods

Consider the model space M = {M1, . . . ,MK} where each model delivers a
predictive density p(yT+1|y1:T ,Mk) for the future observation yT+1 given the sample
y1:T = (y1, . . . ,yT )

′. These predictive densities can be used to form the mixture
density:

pwT (yT+1|y1:T ) =
K

∑
k=1

wT,k p(yT+1|y1:T ,Mk), (11.1)

where the weight vector wT = (wT,1, . . . ,wT,K)
′ depends on data until time T

and satisfies ∑K
k=1 wT,k = 1 and wT,1, . . . ,wT,K ≥ 0. The naive equally weighted

model averaging (EWMA) method results when wT,k = 1/K for all k. By setting
wT,k = p(Mk|y1:T ) for all k, we obtain the formal Bayesian model averaging (BMA)
method proposed by [9]. Assuming equal prior model probabilities, the kth posterior
model probability (PMP) can be written as:

p(Mk|y1:T ) =
p(y1:T |Mk)

∑K
l=1 p(y1:T |Ml)

.

In what follows, marginal likelihoods p(y1:T |Mk) are estimated by bridge sam-
pling [10].

BMA presumes that the data generating process (DGP) belongs to M. As
this is questionable, we also consider a heuristic method that does not make this
assumption; the optimal pooling (OP) method developed by [5, 6]. The OP weights
are obtained by solving:
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max
wT

T

∑
t=t0+1

ln

[
K

∑
k=1

wT,k p(yt |y1:t−1,Mk)

]

subject to
K

∑
k=1

wT,k = 1 and wT,1, . . . ,wT,K ≥ 0,

where the objective function is the cumulative log score of (11.1) over yt0+1:T given
the training sample y1:t0 .

11.3 Setting Up the Experiment

Denote by ut the seasonally adjusted monthly US unemployment rate in percentage
points from 1:1948 for civilians of 20 years and over. A forecasting competition
is held between autoregressive (AR), LSTAR and random walk (RW) models for
yt = ln[0.01ut/(1− 0.01ut)] and averages of these models. For the LSTAR model,
we set st = ut−1 − ut−13 as recommended in [2] where several possible definitions
of st are compared with Bayes factors on a similar data set. Our prior choices are
summarized in Table 11.1. We estimate the AR model with the Gibbs sampler, the
LSTAR model with the Metropolis-within-Gibbs developed in [2] and use analytical
results for the RW model. The composition of the model averages in competition is
determined using Fig. 11.1; the four emerging models are retained for the BMA, OP,
and EWMA methods. Moreover, as OP may sometimes attribute positive weights
to inferior models, the RW model is also retained for this method. Finally, one-
month ahead predictive densities of individual models and model combinations are
simulated from 1:1980 to 12:2009 using 360 expanding estimation windows starting
in 2:1949 for estimating individual models and computing their weights.

Table 11.1 Prior choices σ 2 φ a γ c

RW IG(10−6 ,10−6)

AR IG(10−6 ,10−6) N(0, I)

LSTAR IG(10−6 ,10−6) N(0, I) N(3,0.1)b N(0,0.1)b

a The vector φ contains the intercept and autoregression coeffi-
cients
b We performed a sensitivity analysis. Log marginal likelihoods
were computed on the whole data set for AR and LSTAR
models with different lag lengths and for a RW model. Then, we
multiplied by 5 the prior variance of γ and c and carried out the
same calculations. The estimates with the more diffuse prior were
marginally lower and the ranking between models almost the
same. Furthermore, we computed Bayesian information criteria
(that neglect the prior) and also obtained about the same ranking.
See [7, Section 3.1] for more details
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Fig. 11.1 Evolution of PMPs over time for the AR(p) and LSTAR(p), p = 1, . . . ,8. The PMPs are
computed once a year over expanding samples starting in 2:1949

11.4 Results

Fig. 11.2 presents the real-time weights produced by the BMA and OP methods
over the forecasting period. On the top panel, we see that BMA neglects the RW
model and does not select a single model. On the bottom panel, we observe that the
OP weights of the AR(4), LSTAR(3), and RW models are almost always equal to
zero. Surprisingly, the weights of both methods exhibit a common pattern: linearity
is favored until roughly the middle of the forecasting period, while nonlinearity
dominates afterward.

We now evaluate predictive performance of our models and model combinations
(hereafter our models) with the Diebold–Mariano test, cf. [3], the efficiency test
of West and McCracken, cf. [14], and the log score approach. Let the index
t = 1, . . . ,360 represent the forecasting period. Table 11.2 shows for our models
MSPEk =

1
360 ∑

360
t=1(yt − ȳt,k)

2 and MAPEk =
1

360 ∑
360
t=1 |yt − ymed

t,k | where ȳt,k is the

predictive mean and ymed
t,k the predictive median. We see that both criteria give

about the same ranking which is dominated by the model averaging methods. The
statistical significance of differences between MSPEs or MAPEs is investigated with
the Diebold–Mariano test. Tables 11.3 and 11.4 display the robust p-values of this
test. We see that BMA outperforms the AR models under both loss structures and
that the RW model is beaten by several models under quadratic loss.
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Fig. 11.2 BMA weights (top panel) and OP weights (bottom panel) allocated to the AR(4), AR(6),
LSTAR(3), LSTAR(4), and RW models over the forecasting period

To realize the efficiency test of West and McCracken, we first estimate yt =
φ0 + φ1ỹt,1 + . . .+ φ8ỹt,8 + εt where the ỹt,k are point predictions provided by our
models. Then, F-tests of yt = ỹt,k + εt against the unrestricted model are performed
for all k using a heteroscedasticity and autocorrelation consistent covariance matrix
estimate. A model that passes the test is called efficient relative to the others.
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Table 11.2 Measures of
predictive performance

MSPE × 100 MAPE

BMA 0.081616 0.022216

OP 0.082526 0.022268

EWMA 0.082587 0.022403

LSTAR(4) 0.083266 0.022513

LSTAR(3) 0.084826 0.022725

AR(4) 0.084995 0.022730

AR(6) 0.085021 0.022778

RW 0.095979 0.022747

Table 11.3 Diebold–Mariano test p-values when using quadratic loss

OP EWMA LSTAR(4) LSTAR(3) AR(4) AR(6) RW

BMA 0.3435 0.4638 0.5900 0.3214 0.0428 0.0219 0.0427
OP – 0.9428 0.7399 0.3326 0.2588 0.1029 0.0646
EWMA – 0.7249 0.2732 0.2216 0.1634 0.0546
LSTAR(4) – 0.1665 0.6481 0.6113 0.1153

LSTAR(3) – 0.9647 0.9565 0.1445

AR(4) – 0.9858 0.0586
AR(6) – 0.1028

Table 11.4 Diebold–Mariano test p-values when using linear loss

OP EWMA LSTAR(4) LSTAR(3) AR(4) AR(6) RW

BMA 0.7281 0.3604 0.5009 0.2746 0.0543 0.0349 0.4961

OP – 0.3192 0.4365 0.1816 0.1613 0.0654 0.5396

EWMA – 0.7043 0.2724 0.2920 0.1789 0.6431

LSTAR(4) – 0.3316 0.6951 0.5973 0.7921

LSTAR(3) – 0.9930 0.9176 0.9790

AR(4) – 0.8157 0.9792

AR(6) – 0.9646

Table 11.5 reports the robust p-values of this test performed using predictive means
and medians. In both cases, only the BMA and OP methods pass the test at about
the 1 % significance level.

Finally, we compute LS360,k = ∑360
t=1 ln p(yt |yt−1,Mk), where yt−1 contains data

up to t − 1 for our different models. The outcomes are displayed in Table 11.6.
The LSTAR(4) model obtained the highest log score and the rest of the ranking is
again dominated by the model averaging methods. Furthermore, we also present in
Fig. 11.3 the evolution of LSt1,k −LSt1,l for t1 = 1, . . . ,360 for some relevant model
pairs. It is noteworthy that the AR(6) model outperforms OP and the LSTAR(4)
model at the beginning of the forecasting period and that the cumulative evidence
starts to favor the LSTAR(4) over BMA, OP and the AR(6) only in the late 1990s.
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Table 11.5 Efficiency test
p-values

Using means Using medians

BMA 0.016072 0.010171

OP 0.012757 0.008844

EWMA 0.004977 0.002310

LSTAR(4) 0.001683 0.001124

LSTAR(3) 0.000102 0.000080

AR(6) 0.000099 0.000046

AR(4) 0.000066 0.000031

RW 0.000000 0.000000

Table 11.6 Predictive
performance

LS360

LSTAR(4) 713.2529

OP 711.8163

BMA 711.0672

EWMA 710.1152

LSTAR(3) 710.1128

AR(6) 708.4054

AR(4) 706.0151

RW 684.1699
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Fig. 11.3 Cumulative log predictive Bayes factors over the forecasting period
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11.5 Conclusion

Our initial presumption that linear and nonlinear models approximate the US
unemployment DGP in a complementary manner is supported by the dynamic
behavior of the BMA and OP weights, by the good predictive performance of
the BMA and OP methods and by the cumulative log predictive Bayes factors. It
remains difficult to discriminate between the BMA and OP methods. However, only
BMA provides a formal treatment of model uncertainty.
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Chapter 12
Bayesian Estimation of the Aortic Stiffness based
on Non-invasive Computed Tomography Images

Ettore Lanzarone, Ferdinando Auricchio, Michele Conti, and Anna Ferrara

Abstract Aortic diseases are one relevant cause of death in Western countries. They
involve significant alterations of the aortic wall tissue, with consequent changes in
the stiffness, i.e., the capability of the vessel to vary its section secondary to blood
pressure variations. In this paper, we propose a Bayesian approach to estimate the
aortic stiffness and its spatial variation, exploiting patient-specific geometrical data
non-invasively derived from computed tomography angiography (CTA) images. The
proposed method is tested considering a real clinical case, and outcomes show good
estimates and the ability to detect local stiffness variations. The final objective is to
support the adoption of imaging techniques such as the CTA as a standard tool for
large-scale screening and early diagnosis of aortic diseases.

Key words: Ordinary differential equations, Parameter estimation, Aortic stiffness,
Descending aorta, Computed tomography angiography

12.1 Introduction

Arterial stiffness, i.e., the capability of the vessel to vary its section secondary to
blood pressure variations, is recognized as a significant predictor of cardiovascular
morbidity and mortality [1, 11]. Stiffening of the arterial wall leads to increased
systolic and pulse pressures, which in their turn may induce left ventricular
hypertrophy and failure, atherosclerosis, as well as aneurysm formation and rupture.
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Hence, the knowledge of the arterial stiffness appears to be fundamental for
clinical purposes, but its determination should be performed in a non-invasive
manner for large-scale screening and early diagnosis of cardiovascular pathologies.

For a non-invasive estimation, a useful approach consists of an indirect evaluation
of the stiffness through in vivo measurements of both blood pressure and vessel
inner radius over the cardiac cycle. However, at present, this indirect evaluation
is performed considering only the maximum and minimum values of pressure and
radius waveforms over the cardiac cycle, based on a simple ratio between pressure
and radius ranges. Such an approach neglects the information contained in the
temporal trend of observed variables and does not include any evaluation about
the uncertainty related to the estimated stiffness.

Our goal is to improve the estimation procedure. This work proposes a stochastic
method to assess the stiffness of a given aortic region and its spatial variation,
exploiting the entire radius and pressure waveforms over the cardiac cycle, and
providing the credibility interval associated with the estimates.

Aortic pressure and radius observations are linked through a (linear elastic)
constitutive equation of the arterial wall, where a constitutive equation is a relation
between two physical quantities that is specific to a material and describes the
response of the material to external forces. Then, the aortic stiffness is estimated
by means of a Bayesian estimation approach able to include the uncertainty of both
input variables (pressure and radius) as well as of the arterial stiffness [3, 8]. This
methodology has already given good results in other fields, e.g., biology [2], heat
transfer [7], and also biomechanics [6]. In this paper, we exploit its potentialities in
the arterial stiffness estimation.

12.2 Stiffness Estimation

We consider n cross-sections of an aortic segment. Each section i (with i = 1, . . . ,n)
is assumed to be a thin-walled circular tube of isotropic linear elastic material with
inner radius ri, thickness hi, and Young modulus Ei (i.e., the ratio of the stress along
an axis to the strain along that axis in the range in which they are proportional). Its
constitutive equation is:

dri =
r2

i (t)
Eihi −Pi(t)ri(t)

dPi, (12.1)

where ri(t) and Pi(t) are the state variables observed at section i over time t, whereas
Eihi is unknown. The latter is assumed as a random quantity given by the sum of a
constant expected value [Eihi]0 and a Gaussian white noise ξE

i (t) scaled by η :

Eihi = [Eihi]0 +ηξE
i (t). (12.2)
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Time t is discretized into instants t j, and state variables into values ri, j =
ri(t j) and Pi, j = Pi(t j), respectively. Then, the discretized constitutive equation is
solved for Pi, j and two further white noises are introduced, related to pressure
(ξP

i, j) and radius (ξ r
i, j) measurement errors. These noises are assumed additive and

proportional to Pi, j−1 and to the mean between ri, j and ri, j−1, respectively.

Hence, Eq. (12.1) is rewritten as:

Pi, j =
Pi, j−1ri, j

2ri, j − ri, j−1
+

[Eihi]0
ri, j

(
1− ri

2ri, j − ri, j−1

)

+
η

ri, j

(
1− ri

2ri, j − ri, j−1

)
ξE

i, j + εPi, j−1ξP
i, j +ψ

ri, j + ri, j−1

2
ξ r

i, j (12.3)

In this way, the conditioned density f
(
Pi, j|Pi, j−1,ri, j ,ri, j−1, [Eihi]0 ,η2,ε2,ψ2

)
is

Gaussian, with:

μi, j =
Pi, j−1ri, j

2ri, j − ri, j−1
+

[Eihi]0
ri, j

(
1− ri

2ri, j − ri, j−1

)
(12.4)

σ2
i, j =

η2

r2
i, j

(
1− ri

2ri, j − ri, j−1

)2

+ ε2P2
i, j−1 +ψ2

(
ri, j + ri, j−1

)2

4
(12.5)

Finally, given m+ 1 observations at instants {t0, . . . , t j, . . . , tm} over the cardiac
cycle, the likelihood function is:

f
(
P̂i|r̂i, [Eihi]0 ,η

2,ε2ψ2)=
=

m

∏
j=1

f
(
Pi, j|Pi, j−1,ri, j ,ri, j−1, [Eihi]0 ,η

2,ε2,ψ2) (12.6)

where P̂i and r̂i denote the respective set of observations.
Parameters to estimate are [Eihi]0 ∀i, η2, ε2 and ψ2. Following the Bayesian

setting, prior densities are defined for each mentioned parameter.
We assume a priori independence among all error parameters (η2, ε2, and

ψ2), and between each parameter [Eihi]0 and the measurement errors (ε2 and ψ2).
Moreover, we assume that all parameters [Eihi]0 are conditionally independent
given η2.

Then, the choice of the prior densities follows the configuration usually adopted
in the literature (e.g., in [6]):

g
(
η2)= IG(αη ,βη)

g
(
ε2)= IG(αε ,βε)

g
(
ψ2)= IG

(
αψ ,βψ

)

g
(
[Eihi]0 |η2)= N

(
[Eh]prior

0 ,2η2
)
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Parameters for these prior densities are assigned based on physiological values
derived from the literature. Indeed, [Eh]prior

0 is set equal to 800 Pa ·m considering
a Young modulus of 0.4 MPa and a wall thickness of 2 mm. As for the errors,
parameters are assigned such that the expected value of g

(
η2
)

is [Eh]prior
0 /10, the

expected value of g
(
ε2
)

is 104, and the expected value of g
(
ψ2

)
is 10−3 Pa2/m2.

Hence, αη = 0.125, βη = 0.1, αε = 0.01, βε = 0.01, αψ = 100, and βψ = 10 are
assumed.

12.3 Radius and Pressure Dataset

The evaluation of arterial stiffness according to the proposed stochastic method
involves in vivo measurements of inner radius and blood pressure waveforms over
the cardiac cycle at n cross-sections of the considered arterial district. In our study,
we consider eight sections of the aortic arch and the early part of the descending
aorta.

In the following, we outline the methodology to derive the dataset from in vivo
measurements. As discussed below (Sect. 12.3.2), the requirement to keep the entire
approach non-invasive leads to include a differential model for generating pressure
waveforms.

12.3.1 Radius

Radii ri, j are obtained from patient-specific computed tomography angiography
(CTA) images. Recent advances in CTA technology have made four-dimensional
(4D) imaging of arterial districts possible, allowing coupling spatial three-
dimensional (3D) and temporal information. Indeed, each CTA image is analyzed to
get the internal vessel radius of each considered cross-section. Then, the presence of
a certain number of images (20 in our case) allows assessing the temporal evolution
of radii over the cardiac cycle.

Briefly, the adopted imaging analysis consists of the following three steps:

1. Acquisition of patient-specific medical images.
2. Segmentation and anatomical reconstruction of the 3D lumen profile, using the

open source software ITK-Snap (http://www.itksnap.org), which is based on a
3D active contour segmentation method [13]. The segmented models are then
exported to stereo-lithography representation (STL format) for the subsequent
virtual slicing.

3. Virtual slicing of the 3D reconstruction to get the mean radius at each slice. The
slicing procedure is performed as follows:

• definition of the aortic centerline;
• definition of n cutting planes normal to the centerline and equally spaced along

the centerline;

http://www.itksnap.org
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• detection of the cross-sectional contour points in each plane and spline
interpolation;

• calculation of the center of mass for each cross-sectional contour, and
computation of the mean radius as the mean value of distances between the
center of mass and the contour points.

The entire slicing procedure is implemented through a Python-script exploit-
ing and combining modules of VTK library (http://www.vtk.org) and of VMTK
library (http://www.vmtk.org).

12.3.2 Pressure

Direct non-invasive measures of blood pressure in central arteries, e.g., in the aorta,
are not feasible nowadays; in fact, direct measurement requires catheterization,
which is usually performed only during surgery and not in the clinical routine.

Alternatively, two indirect approaches can be followed for obtaining pressure in
central arteries: to generate the pressure waveforms by means of an appropriate
mathematical model of the arterial circulation, or to derive the aortic pressure
from peripheral measurements. However, also in the second case, the central aortic
pressure is derived from the peripheral one by means of a mathematical model.

We follow the first alternative, and blood pressures Pi, j are generated using a
lumped parameter model of the arterial circulation, based on [4, 5].

Such a model describes the arterial tree from the aortic valve to the capillaries
by means of 63 large artery segments and 30 peripheral networks, which are
appropriately connected in parallel and series to reproduce structure of the arterial
system. Each segment is represented by an electrical circuit, in which tension and
electric current are the analogous of pressure and flow in the vessel, respectively.
Thus, each segment is characterized by two ordinary differential equations, one for
blood pressure and one for blood flow. Moreover, each segment is characterized
by resistances, inductances, and compliances, whose values are given by the vessel
geometrical and mechanical properties [12]. The input of the overall tree is the blood
flow waveform through the aortic valve.

Numerically solving the equations, the temporal evolution of pressure in each
segment is obtained. Then, pressure waveforms corresponding to the considered
cross-sections are taken, and values at the instants of CTA images are extracted.

12.4 Application to a Real Clinical Case and Results

The proposed approach is applied to a real clinical case, considering an elderly
female patient with a descending aorta dilation, probably related to an aneurysm,
which suggests a localized vessel stiffening. Figures 12.1 and 12.2 schematically

http://www.vtk.org
http://www.vmtk.org


138 E. Lanzarone et al.

Fig. 12.1 Segmentation of an acquired CTA image using open source software ITK-Snap

Fig. 12.2 3D reconstruction
of the considered aorta lumen
using open source software
ITK-Snap. The district is
virtually sliced in eight
equally spaced sections
starting from the left
subclavian artery. The aortic
centerline used for slicing is
also represented

show the segmentation of the aorta and the 3D reconstruction of the aorta lumen,
for one of the acquired CTA images. Then, the obtained radii at the eight cross-
sections are reported in Table 12.1.

As for the lumped parameters model, the peripheral resistances are increased by
40 % with respect to the original values [4, 5] in order to consider the observed
patient’s hypertension. The obtained pressures at the eight cross-sections are
reported in Table 12.2.
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Table 12.1 Cross-sectional radii [mm] at the eight cross-sections

Time % Sect. 1 Sect. 2 Sect. 3 Sect. 4 Sect. 5 Sect. 6 Sect. 7 Sect. 8

0 12.91 12.77 13.95 15.37 15.43 14.41 12.87 12.46

5 13.16 12.97 14.10 15.55 15.68 14.43 12.95 12.61

10 13.31 13.18 14.54 15.76 15.89 14.54 13.20 12.76

15 13.36 13.35 14.57 16.02 15.97 14.67 13.18 12.91

20 13.38 13.39 14.60 16.12 16.11 14.78 13.32 13.00

25 13.47 13.48 14.71 16.13 16.12 14.78 13.36 12.94

30 13.49 13.42 14.67 16.05 16.12 14.71 13.27 12.89

35 13.56 13.48 14.57 16.00 16.01 14.67 13.24 12.84

40 13.47 13.42 14.38 15.86 15.95 14.64 13.21 12.78

45 13.35 13.29 14.37 15.79 15.88 14.57 13.22 12.76

50 13.30 13.20 14.35 15.73 15.74 14.51 13.11 12.74

55 13.18 13.07 14.12 15.57 15.70 14.50 13.05 12.69

60 13.14 13.01 14.05 15.49 15.71 14.43 13.04 12.60

65 13.11 12.95 14.03 15.47 15.60 14.41 13.00 12.56

70 13.07 12.88 13.93 15.35 15.56 14.38 12.96 12.57

75 13.01 12.86 13.90 15.29 15.47 14.35 12.93 12.54

80 12.96 12.80 13.85 15.27 15.41 14.32 12.88 12.49

85 12.95 12.75 13.77 15.16 15.40 14.21 12.85 12.39

90 12.84 12.66 13.70 15.11 15.36 14.24 12.86 12.40

95 12.83 12.72 13.71 15.14 15.34 14.26 12.78 12.39

100 12.91 12.77 13.95 15.37 15.43 14.41 12.87 12.46

Time is expressed in percentage with respect to the cardiac cycle (equal to 0.8 s), and
the first and the last observations coincide due to the periodic cycle

Estimates are obtained by means of a Gibbs sampling scheme, implemented in
JAGS [10] with 200,000 iterations, a burn-in of 10,000 iterations, and a thinning
interval of 10. Satisfactory traceplots are obtained, thus indicating the convergence
of the Markov chain.

Estimates of the products [Eihi]0 for all i are obtained, and Young moduli Ei

are then derived assuming hi = 2 mm ∀i. The spatial trend of Ei along with the
considered aortic segment is plotted in Fig. 12.3, in terms of posterior mean and
posterior standard deviation. Estimates consistent with the literature [9] and with
other deterministic techniques are found. Moreover, the stiffness spatial variation
is caught, in agreement with the characteristics of the considered clinical case
where a localized stiffening was expected at some sections. Finally, other prior
hyperparameters around the adopted ones have been tested, and the posterior
estimates are not affected by them.
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Table 12.2 Cross-sectional pressures [mmHg] at the eight cross-sections

Time % Sect. 1 Sect. 2 Sect. 3 Sect. 4 Sect. 5 Sect. 6 Sect. 7 Sect. 8

0 92.34 92.31 92.27 92.24 92.20 92.17 92.13 92.10

5 101.98 101.08 100.20 99.26 98.37 97.56 96.83 96.14

10 121.46 121.22 120.95 120.61 120.24 119.84 119.41 118.87

15 133.55 133.44 133.31 133.14 132.95 132.75 132.53 132.27

20 138.92 139.08 139.23 139.39 139.54 139.68 139.81 139.94

25 141.30 141.59 141.87 142.17 142.47 142.76 143.05 143.35

30 140.69 141.04 141.38 141.75 142.11 142.46 142.80 143.17

35 135.81 136.24 136.66 137.12 137.57 138.00 138.41 138.84

40 133.26 133.19 133.13 133.08 133.04 133.03 133.04 133.08

45 132.46 132.56 132.65 132.75 132.85 132.93 133.01 133.08

50 129.72 129.78 129.83 129.89 129.95 130.00 130.06 130.11

55 126.20 126.20 126.19 126.19 126.19 126.19 126.18 126.18

60 122.77 122.68 122.59 122.48 122.37 122.26 122.15 122.03

65 119.09 118.94 118.79 118.61 118.44 118.27 118.09 117.90

70 114.77 114.71 114.65 114.57 114.49 114.40 114.32 114.21

75 109.84 109.81 109.79 109.76 109.74 109.71 109.69 109.67

80 105.12 105.19 105.26 105.34 105.42 105.51 105.59 105.68

85 101.15 101.25 101.36 101.48 101.61 101.73 101.86 102.00

90 97.71 97.80 97.89 98.00 98.10 98.21 98.31 98.43

95 94.71 94.74 94.76 94.79 94.82 94.86 94.89 94.94

100 92.34 92.31 92.27 92.24 92.20 92.17 92.13 92.10

Time is expressed in percentage with respect to the cardiac cycle (equal to 0.8 s), and
the first and the last observations coincide due to the periodic cycle
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Fig. 12.3 Young modules Ei estimated at each section i with an assumed wall thickness hi = 2 mm
∀i: posterior means and error bars equal to posterior standard deviations
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12.5 Conclusions

In this paper, we propose a non-invasive approach to estimate the aortic stiffness of
a specific subject/patient and its regional changes. The aortic stiffness is computed
combining cross-sectional radial enlargements of the aorta with the respective
pressure waveforms, taking into account their entire waveforms over the cardiac
cycle. In particular, cross-sectional radii are obtained elaborating 4D CTA images,
whereas pressures are simulated using a lumped parameter model of the arterial
circulation to keep the methodology non-invasive. Finally, the approach exploits a
Bayesian estimation method to include the uncertainty of both the input variables,
i.e., vessel radii and blood pressures, and the estimated stiffness.

Results are promising, and computational times for obtaining estimates once
CTA images are stored (including the time for dataset generation) are limited
to some seconds. Low computational times of the proposed methodology are
fundamental for large-scale application, thus ensuring a practical clinical application
of the method.

Future work will be conducted for considering more complex constitutive
equations able to better detail the 3D structure of the vessels, whereas the equation
adopted in this paper refers to a section of a cylindrical incompressible vessel.
This means that, when applied to cases in which a sudden variation of radius is
present, the movement of largest section could be slowed by the neighboring ones
and result in a stiffness overestimation. Moreover, we will investigate the possibility
of coupling the Bayesian estimation with more complex computational analyses,
e.g., the Finite Element Analysis.

Acknowledgements The authors acknowledge Flagship Project “Factory of the Future
Fab@Hospital”, funded by Italian CNR and MIUR organizations. Michele Conti acknowledges
ERC Starting Grant through the Project ISOBIO: Isogeometric Methods for Biomechanics (No.
259229).

References

[1] Dernellis, J., Panaretou, M.: Aortic stiffness is an independent predictor of progression to
hypertension in non-hypertensive subjects. Hypertension 45, 426–431 (2005)

[2] Gilioli, G., Pasquali, S., Ruggeri, F.: Bayesian analysis of a stochastic predator-prey model
with nonlinear functional response. Math. Biosci. Eng. 9, 75–96 (2012)

[3] Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer,
Berlin (1992)

[4] Lanzarone, E., Liani, P., Baselli, G., Costantino, M.L.: Model of arterial tree and peripheral
control for the study of physiological and assisted circulation. Med. Eng. Phys. 29, 542–555
(2007)

[5] Lanzarone, E., Casagrande, G., Fumero, R., Costantino, M.L.: Integrated model of end-
othelial NO regulation and systemic circulation for the comparison between pulsatile and
continuous perfusion. IEEE Trans. Bio-Med. Eng. 56, 1331–1340 (2009)



142 E. Lanzarone et al.

[6] Lanzarone, E., Ruggeri, F.: Inertance estimation in a lumped-parameter hydraulic simulator
of human circulation. J. Biomech. Eng. Trans. ASME 135, 061012 (2013)

[7] Lanzarone, E., Pasquali, S., Mussi, V., Ruggeri, F.: Bayesian estimation of thermal conduc-
tivity and temperature profile in a homogeneous mass. Numer. Heat Transfer B Fund. 66,
397–421 (2014)

[8] Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn.
Springer, Berlin (2003)

[9] Pearson, A.C., Guo, R., Orsinelli, D.A., Binkley, P.F., Pasierski, T.J.: Transesophageal
echocardiographic assessment of the effects of age, gender, and hypertension on thoracic
aortic wall size, thickness, and stiffness. Am. Heart J. 128, 344–351 (1994)

[10] Plummer, M.: JAGS: a program for analysis of Bayesian graphical models using Gibbs
sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, Vienna, Austria (2003)

[11] Quinn, U., Tomlinson, L.A., Cockcroft, J.R.: Arterial stiffness. J. Roy. Soc. Med. 1, 1–18
(2012)

[12] Westerhof, N., Bosman, F., Vries, C.J.D., Noordergraaf, A.: Analog studies of the human
systemic arterial tree. J. Biomech. 56, 121–143 (1969)

[13] Yushkevich, P.A., Piven, J., Hazlett, H., Smith, R., Ho, J.G.S., Gerig, G.: User-guided 3d
active contour segmentation of anatomical structures: significantly improved efficiency and
reliability. Neuroimage 31, 1116–1128 (2006)



Chapter 13
Bayesian Filtering for Thermal Conductivity
Estimation Given Temperature Observations

Laura Martín-Fernández and Ettore Lanzarone

Abstract International standards often require complex experimental layouts to
estimate the thermal conductivity of materials, and they marginally take into account
the uncertainty in the estimation procedure. In this paper, we propose a particle
filtering approach coupled with a simple experimental layout for the real-time
estimation of the thermal conductivity in homogeneous materials. Indeed, based
on the heat equation, we define a state-space model for the temperature evaluation
based on the unknown conductivity, and we apply a Rao-Blackwellized particle
filter. Finally, the approach is validated considering heating and cooling cycles given
to a specimen made up of polymethylmethacrylate (PMMA) in forced convection.
Results show good estimates in accordance with the PMMA conductivity range, and
computational times confirm the possibility of a real-time estimation.

Key words: Thermal conductivity estimation, Temperature transient method, Real-
time estimation, Rao-Blackwellized particle filter

13.1 Introduction

The thermal conductivity of materials is an important parameter for handling and
choosing materials in contexts where the thermal behaviour needs to be considered
or controlled. This occurs in different fields (e.g., thermal insulation, environmental
heating or cooling, heat exchange) and in several industrial applications. Unfor-
tunately, the thermal conductivity of materials is not always known a priori, and
needs to be estimated when a specific specimen of a material is being considered.
Thus, a cheap conductivity estimation procedure would be a useful tool for several
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applications. Moreover, the quantification of the uncertainty associated with the
estimates would allow a robust analysis of thermal behaviour, based on stochastic
material parameters.

International standards propose several methods for estimating the thermal
conductivity of materials [2, 5, 6]. However, they require complex experimental
layouts and marginally consider uncertainty in the estimation procedure.

To improve the approach, a Bayesian estimation of conductivity coupled with a
simple experimental layout has recently been proposed in [8]. This exploits MCMC
simulation for obtaining the conductivity posterior density, possibly including the
generation of latent temperatures in points where temperature is not acquired.
However, this approach requires acquiring all temperature measurements before
data are processed and estimates are provided.

In this paper, we propose a Rao-Blackwellized Particle Filter (PF) that allows
real-time estimation instead of waiting for the entire dataset. The algorithm has
already been applied to parameter estimation in ordinary differential equations
[9, 10]. In this work, we apply it to the heat equation, i.e., a partial differential
equation. The aim is to exploit the benefits of the simple experimental layout already
proposed while integrating real-time estimation.

13.2 Method

In this section, we first describe the state-space model we refer to, which is derived
from the unidirectional heat equation. Then, we present the application of the Rao-
Blackwellized PF to this state-space model.

13.2.1 State-Space Model

We consider the following nonlinear state-space model, which is derived from the
spatial and temporal discretizations of the unidirectional heat equation, as in [8].

T j = T j−1 + g jλ0 +Q jΔw j, (13.1)

o j = T j +H jξξξ j, (13.2)

where:

• T j is the vector of true temperatures at each discretized point at time j
( j = 1, . . . ,F);

• λ0 is the thermal conductivity to estimate;

• g j = τL j−1;

• τ is the time interval of the temporal discretization;

• Q j = ηDL j−1 ;
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• Δw j is a vector of independent Wiener processes;

• o j is the corresponding vector of noisy temperature observations;

• H j = εDT j ;

• η and ε are the errors related to the noise processes;

• ξξξ j is a vector of independent white noise processes;

• DX denotes a diagonal matrix with di,i = xi;

• L j−1 = AT j−1 +b j−1.

Moreover,

A =− 1
ρch2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 2 −1 0
0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

, b j =
1

ρch2

⎡
⎢⎢⎢⎢⎢⎣

T0, j

0
...
0

TN+1, j

⎤
⎥⎥⎥⎥⎥⎦

N×1

,

where N is the number of discretized internal points, T0, j and TN+1, j are the
temperatures at the surface points, h is the distance between two consecutive points
in the material, ρ and c are the material density and specific heat, respectively.

13.2.2 Rao-Blackwellized Particle Filter

The prior of T0 is defined as a delta measure that is centred at the corresponding
acquired value and, based on Eq. (13.1), it is expressed by

p
(
T j|T j−1,λ0

)
= N

(
T j−1 + g jλ0,τQ jQ�

j

)
. (13.3)

We remark that, as the temperature dynamics depend on the unknown parameter λ0,
the process T j is not Markovian.

Considering ΔT j = T j −T j−1, Eq. (13.1) can be rewritten as a linear-Gaussian
state-space model with state variable λ0 and observation vector ΔT j:

λ0, j = λ0, j−1,

ΔT j = g jλ0, j +Q jΔw j .
(13.4)

The conditional density of ΔT j given λ0, j is expressed by a Gaussian density:

p
(
ΔT j |λ0, j

)
= N

(
g jλ0, j,τQ jQ�

j

)
.
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Moreover, we assume that λ0 is a priori Gaussian, with mean value λ̂0,0 and
variance P0. Then, its posterior density at time j is also Gaussian:

p
(
λ0|ΔT1: j

)
= N

(
λ̂0, j,Pj

)
,

with

λ̂0, j =

∫
λ0 p

(
λ0|ΔT1: j

)
dλ0

and

Pj =
∫ (

λ0 − λ̂0, j

)2
p
(
λ0|ΔT1: j

)
dλ0.

Due to the state-space model of Eq. (13.4) being linear in λ0 and the Gaussian
likelihood of λ0, j, we can apply a Kalman filter [1, 7] to exactly compute the
posterior distribution of λ0.

In this paper, we apply a Rao-Blackwellized PF (RBPF) [3, 4] to jointly
approximate the posterior distribution of the temperatures and estimate the unknown
conductivity λ0. The proposed PF handles S particles; hence, a set of S Kalman
filters running in parallel is implemented.

In this way,

p
(

T j|T(i)
0: j−1,o1: j−1

)
= N

(
βββ (i)

j ,B(i)
j

)
, (13.5)

where:

βββ (i)
j = g(i)j λ̂

(i)
0, j−1 +T(i)

j−1,

B(i)
j = g(i)j P(i)

j−1g(i)
�

j + τQ(i)
j Q(i)�

j ,

and superscript (i) indicates the particle T(i)
0: j.

Finally, the posterior estimate of λ0 at each time j is obtained using the statistics
generated by the RBPF. In particular, the posterior mean and variance of λ0

conditional on the observations o1: j can be approximated as

λ̂ S
0, j =

S

∑
i=1

v(i)j λ̂
(i)
0, j,

PS
j =

S

∑
i=1

v(i)j

[(
λ̂ (i)

0, j − λ̂ S
0, j

)2
+P(i)

j

]
,

where v(i)j is the importance weight related to the particle T(i)
j .

In this way, a real-time estimation that evolves over time is achieved.
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13.3 Application to the Experimental Layout

The proposed approach has been applied to estimate the thermal conductivity of a
polymer, for which a conductivity range of variability is known due to the polymer
family, whereas the specific value within this range is unknown.

The experimental layout, as in [8], consists of a specimen made up of PMMA,
with square faces (side of 20 cm) and thickness of 15 cm. Seven thermocouples are
put in the specimen in the centre of the square faces along a line: two external
thermocouples on the square faces and five equally spaced internal thermocouples
within the specimen. Finally, lateral rectangular faces are thermally insulated to
guarantee unidirectional heat flow. A picture of the specimen is reported in Fig. 13.1.

Three experiments have been conducted (A, B and C): each time a heating
and cooling cycle, lasting about 40 h, has been given to the specimen in forced
convection, within a range where the PMMA conductivity is constant (see [6],
Part 5). Temperature signals were acquired from the thermocouples with a frequency
of 10 Hz, and then digitalized. A time interval of 60 s (1 min) was considered;
thus, the temperature observations were taken directly every 600 digitalized values,
without any moving average or filtering. As example, temperature trends acquired
in experiment B are reported in Fig. 13.2.

Fig. 13.1 PMMA specimen with square faces, seven inserted thermocouples, and lateral rectan-
gular faces thermally insulated
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Fig. 13.2 Acquired trends in experiment B: faster dynamics refer to boundary temperatures,
whereas slower dynamics are observed while moving towards the centre of the specimen

The proposed RBPF has been implemented in Visual Basic using the Microsoft
Net Framework 4. Then, the computations have been run on a Microsoft Windows
machine with 8 cores and 15 GB RAM, which was installed on a server with an
AMD Opteron 6328 processor. We have applied the algorithm with S = 600,000
particles, τ = 60 s, η = 0.00015, and ε = 0.0015.

We have first validated the approach considering several simulated datasets of
2 h, in which boundary and initial conditions are taken from the experiments,
whereas internal temperatures are simulated with different conductivities within the
PMMA range.

Then, we have applied the proposed RBPF to the real datasets of the experiments,
considering the entire experiment duration.

13.4 Results

As for the validation phase, results show estimation errors always lower than 1 %.
Indeed, Table 13.1 shows the estimated conductivity for three different simulated
values of conductivity λ ∗

0 , and for both a period of 2 h during the heating phase and
a period of 2 h during the cooling phase.

Considering the application to the real acquired datasets, results in Table 13.2
show stable estimations among the experiments within the PMMA range, associated
with low variances.

As for experiment A, we also show the plots of the λ0 estimation over time
(Fig. 13.3a) and the estimated internal temperatures compared to the observed ones
(Fig. 13.3b–f). Results show that the estimated value of λ0 is stabilized after few
time instants, thus allowing low errors in temperature estimates already from the
first points.
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Table 13.1 Posterior mean and variance of λ0 estimates (in W
mK ) obtained

by the proposed PF algorithm for the six simulated datasets considered

λ ∗
0 = 0.18 λ ∗

0 = 0.20 λ ∗
0 = 0.22

Heating λ0 mean
[

W
mK

]
0.1808 0.2002 0.2204

λ0 variance
[

W 2

m2K2

]
5.16 ·10−12 2.04 ·10−9 6.05 ·10−12

Cooling λ0 mean
[

W
mK

]
0.1791 0.2013 0.2197

λ0 variance
[

W 2

m2K2

]
7.84 ·10−9 8.49 ·10−12 2.42 ·10−8

Table 13.2 Posterior mean and variance of λ0 estimates (in W
mK )

obtained by the proposed PF algorithm for the real datasets of the three
experiments

Experiment A Experiment B Experiment C

λ0 mean
[

W
mK

]
0.2044 0.2097 0.2169

λ0 variance
[

W 2

m2K2

]
2.64·10−14 3.14·10−14 3.21·10−14

13.5 Discussion and Conclusions

In this paper, we have applied a PF for the joint estimation of thermal conductivity
and temperatures in a solid homogeneous material. The linear structure of the model
and the Gaussian noise processes allowed us to apply a Rao-Blackwellized PF
that uses a bank of Kalman filters for the analytical integration of the unknown
parameter, when approaching the posterior density of the temperatures.

The proposed approach seems to be able to improve the estimation procedure of
thermal conductivity in homogeneous materials, by equipping the layout of [8] with
a real-time estimation.

The estimated distribution of conductivity and the temperature trajectories show
satisfactory fits to the data, thus confirming the goodness of the proposed method.
Moreover, the thermal conductivity value is stabilized after few time instants,
allowing to accurately follow the temperature profile along the experiment.

Real-time estimation is also confirmed, since the computational time to process
a time step is lower than the time step itself.

Future work will be conducted to include the joint estimation of latent tempera-
tures in points where a thermocouple is not inserted, to generalize the particle-filter
approach to non-homogeneous materials (by considering a specific thermal conduc-
tivity for each acquired point that may vary over time), and to evaluate the behaviour
when applied to two-dimensional and three-dimensional problems.

Acknowledgements This work has been supported by the “Consejería de Economía, Innovación,
Ciencia y Empleo de la Junta de Andalucía” of Spain under Project TIC-03269.
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Fig. 13.3 (a) mean λ0, j (in W
mK ) over time instants j (in seconds); (b)–(f) internal estimated (dotted

lines) and acquired (solid lines) temperatures (in ◦C) over time instants j (in seconds)
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Chapter 14
A Mixture Model for Filtering Firms’ Profit
Rates

Ellis Scharfenaker and Gregor Semieniuk

Abstract Existing methods for sample selection from noisy profit rate data in the
industrial organization field of economics tend to be conditional on a covariate’s
value that risks discarding valuable information. We condition sample selection on
the profit rate data structure instead by use of a Bayesian mixture model. In a two-
component (signal and noise) mixture that reflects the prior belief of noisy data, each
firm profit rate observation is assigned an indicator latent variable. Gibbs sampling
determines the latent variables’ posterior densities, sorting profit rate observations to
the signal or noise component. We apply two model specifications to empirical profit
rate cross-sections, one with a normal and one with a Laplace signal component. We
find the Laplace specification to have a superior fit based on the Bayes factor and
the profit rate sample to be time stationary Laplace distributed, corroborating earlier
estimates of cross-section distributions. Our model retains 97 %, as opposed to as
little as 20 %, of the raw data in a previous application.

Key words: Mixture model, Sample selection, Laplace distribution, Profit rates,
Gibbs sampler

14.1 Introduction

The formation of a general rate of profit, around which profit rates of competitive
firms gravitate, was stressed by classical political economists beginning with Adam
Smith [11], who theorized that through competition and capital mobility a tendency
of the equalization of profit rates across all competitive industries would emerge.
At the same time, individual firms would be able to increase their profit rates
through innovations and cost-cutting, until new entrants into their market would
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compete the profit rate back down. This would lead to a cross-section of profit rates
where most of the firms would have profit rates close to the average. Neoclassical
economic theory assumes equal profit rates and therefore a degenerate distribution
under perfect competition [12].

The shape of empirical cross-sectional distributions of profit rates has been
scarcely investigated; however, [2] finds Laplace profit rate cross-sections in a small
sample of only long-lived firms from Thomson Datastream data. One problem with
the study of profit rates is that the data is “noisy.” An observed profit rate of more
than 50 % would raise the eyebrows of most economists, let alone the profit rates
greater than 1,000 % or smaller than −1,000 % present in the data. In order to
effectively rid the dataset of observations far from the mode, [2] discard all firms
that live less than 27 years, the time period spanned by their unbalanced panel. With
this method they retain only 20 % of their original data. Sample selection based on a
covariate such as age or size for studying the distributions of firm characteristics is
justified under the belief that small or young firms belong to an entirely different
set of data that are subject to separate “entry and exit” constraints [2]. Other
studies start from a preselected data set of only large firms [1, 3, 8]. However, the
essentially arbitrary determination of what is “long lived” or “large” may prevent
an understanding of how the large majority of competitive firm profit rates are
distributed, since a large share of firms are small or short-lived. The implicit prior
when applying this method is that young or small firms may produce noisy outliers
that arise from possible accounting problems when studying ratios of variables
such as the profit rate. We believe a more flexible method for sample selection that
explicitly models the noise and signal can improve this line of research.

We construct a Bayesian mixture model to select a sample based on the profit
data structure rather than a cut-off in a covariate. To do this, we continue to assume
that cross-sections of profit rate observations are distributed as a mixture of a
peaked signal that contains most of the data and a flat noise component, but it
is not known which observations belong to which mixture component. This can
be found by assigning an indicator latent variable to each firm and estimating
the marginal posterior densities of each of them: a high mean posterior density
assigns the observation to the signal distribution, a low one to noise. We find closed
form full conditional posterior densities for all but one parameter and estimate
the remaining parameter’s posterior density numerically. Applying Gibbs sampling
from the set of conditional posterior densities, we make posterior inference about
each observation being in the signal or noise component. By selecting a plausible
mixture model informed by economic theory and previous research, we find that
Bayesian methods far outperform the existing non-statistical selection methods in
terms of data conservation. Further, our results have significant implications for
future work in the distributional analysis of economic variables as our method of
data selection is easily extendable.
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14.2 Model Specification

As discussed in Sect. 14.1, economic theory suggests profit rate cross-sections are
unimodally distributed with only moderate mass in the tails and previous empirical
research has highlighted the problems of outliers. A mixture model with two
components, one peaked, one flat, incorporates this prior knowledge. The flat noise
component models the outliers and the peaked signal component models the profit
rates of firms from which to select the sample.

14.2.1 Observation Model and Priors

Two model specifications MN and ML are considered. The signal density, fs, for
model MN is normal, for model ML Laplace. The noise density, fn is (diffusely)
normal. Then for either model a weighted mixture density f of the profit rate
distribution with parameter blocks θs and θn and N data points Y = (y1, . . . ,yn) is

f (yi|q,θs,θn) = q fs(yi|θs) + (1− q) fn(yi|θn), (14.1)

with q being a weighing parameter. Assigning a latent variable, Z = (z1, . . . ,zn) with
zi ∈ {0,1}∀ i to each observation gives the equivalent specification

f (yi|q,zi,θs,θn) = fs(y|θs)
zi fn(yi|θn)

(1−zi), (14.2)

where zi ∼ Bernoulli(q). If zi = 1, then observation i is in the signal component, if
zi = 0, it is noise. For the two models the specifications are

fN (yi|q,μN ,σN ,μn,σn) = qN(yi|μN ,σN ) + (1− q)N(yi|μn,σn), (14.3)

fL (yi|q,μL ,σL ,μn,σn) = qL(yi|μL ,σL ) + (1− q)N(yi|μn,σn). (14.4)

To sample from the full marginal posterior densities of all parameters we choose
appropriate priors. For most parameters, these are conjugate priors:

π(q)∼U(0,1), π(μN |χ ,ξ )∼ N(χ ,ξ ), π(σN |α,β )∼ IG(α,β ), (14.5)

π(μn|ν,υ)∼ N(ν,υ), π(σn|δ ,γ)∼ IG(δ ,γ). (14.6)

However, the Laplace distribution with density

f (y|μ ,σ) = 1
2σ

e−|y−μ|σ−1
, (14.7)

is not a member of the exponential family [9]. Priors are chosen that admit a closed
posterior form for the scaling parameter σL and the location parameter choice
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follows [10, p. 20] which can be used to represent the posterior density as an N + 1
component mixture of truncated normal distributions.1

π(μL |τ)∼ N(0,τ), π(σL |φ ,ψ) ∼ IG(φ ,ψ) . (14.8)

14.2.2 Inference

We use the Gibbs sampler in the class of Markov chain Monte Carlo methods
for posterior inference. Without requiring direct knowledge of the intractable joint
posterior density of the parameter vector, θ , the Gibbs sampler produces a sequence

of each parameter {θ (g)
j }G

g=1 from its full conditional posterior density. This is a
Markov chain whose stationary distribution is that of the joint posterior density
[4, 7]. For inference with the mixture model it is therefore sufficient to specify
all full conditional posterior densities, π(θ j|θk �= j ,Y ). Denoting the count of latent
variables equal one as ∑N

i=1 zi = M and the count of latent variables equal zero as
∑N

i=1(1− zi) = N −M = K, the full conditional posterior densities for weighing and
noise parameters are

π(q|μs,σs,μn,σn,Z,Y )∼ Beta(M+ 1, K + 1), (14.9)

π(μn|σn,Z,ν,υ ,Y )∼ N

(
ν−1 +σ−1

n ∑N
i=1(1− zi)yi

1
υ + K

σn

,
1

1
υ + K

σn

)
, (14.10)

π(σn|μn,Z,δ ,γ,Y )∼ IG

(
δ +

1
2

K, γ+
1
2

N

∑
i=1

(1− zi)(yi − μn)
2

)
, (14.11)

for both models. For the model MN the full conditional posteriors are

π(zi = 1|q,μN ,σN ,μn,σn,Zj �=i,Y )

∼ Bern

(
qN(yi|μN ,σN )

qN(yi|μN ,σN )+ (1− q)N(yi|μn,σn)

)
(14.12)

π(μN |σN ,Z,χ ,ξ ,Y )∼ N

(
χ−1 +σ−1

N ∑N
i=1 ziyi

1
ξ +

M
σN

,
1

1
ξ +

M
σN

)
(14.13)

π(σN |μN ,Z,α,β ,Y )∼ IG

(
α+

1
2

M, β +
1
2

N

∑
i=1

(yi − μN )2

)
. (14.14)

1We thank Christian Robert for pointing out this possibility during the BAYSM’14 conference.
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For model ML the full conditional posteriors are additionally

π(zi|q,μL ,σL ,μn,σn,Zj �=i,Y )

∼ Bern

(
qL(yi|μL ,σL )

qL(yi|μL ,σL )+ (1− q)N(yi|μn,σn)

)
, (14.15)

π(σL |μL ,Z,φ ,ψ ,Y )∼ IG(φ +M, ψ+
N

∑
i=1

zi(yi − μL )), (14.16)

π(μL |σL ,Z,τ,Y )∼ c
N

∏
i=1

L(μL |yi,σL )ziN(0,τ). (14.17)

Equation (14.17) requires estimation of the posterior over a grid of points, and
this approximation is used both for Gibbs sampling and marginal posterior density
estimation. All other posterior densities are in closed form.

After G rounds of sampling from the Gibbs sampler, the Gibbs output can be used
to make a numerical estimate of the marginal likelihood of each model, π(y|Mi). The
marginal likelihood of a model with a given vector of parameters θ ∗ is

π(y) =
π(y|θ ∗)π(θ ∗)

π(θ ∗|y) . (14.18)

Chib [5] has shown that the Gibbs output can be used to estimate π(y), if full
conditional posterior densities are available for each of K parameters by writing
posterior densities as

π(θ ∗|y) = π(θ ∗
1 |y)×π(θ ∗

2 |y,θ ∗
1 )× . . .×π(θ ∗

K|y,θ ∗
1 , . . .θ

∗
K−1), (14.19)

which can be estimated from the Gibbs sampler by resampling for each parameter

π(θ ∗
1 |y) =

1
G

G

∑
g=1

π(θ ∗
1 |y,θ g

2 . . .θ
(g)
K ),

π(θ ∗
2 |y,θ ∗

1 ) =
1
G

G

∑
g=1

π(θ ∗
2 |y,θ ∗

1 ,θ
(g)
3 . . .θ (g)

K ), and so forth. (14.20)

We use this method to estimate the marginal likelihood, using the approximation
from (14.17) for the conditional posterior density estimate of μL . The next section
presents results from applying this inference procedure to a new dataset.
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14.3 Results

14.3.1 Data

The data is from COMPUSTAT comprising US stock market-listed companies in
years 1962–2012, for which profit rate cross-sections have not yet been analyzed.2

We calculate the profit rate by dividing the difference of net sales and operating
costs, which equals operating income before depreciation, by total assets.3 Gov-
ernment as well as financial services, real estate, and insurance have been excluded
because the former does not partake in competition and the latter adheres to different
accounting conventions for revenue calculation that makes this part of the industries
incomparable. Outliers in some years with absolute value above 10,000 % have
also been excluded to make inference comparable between years with outliers three
orders of magnitude larger and most other years with all outliers within the bounds.
Therefore, our data is comprised of firms under the standard industrial classification
(SIC) numbers 1,000–6,000 and 7,000–9,000, a total of 279,891 observations with
on average 5,500 annual observations, a 3.5 times larger dataset than previously
analyzed profit rate data [2].

14.3.2 Posterior Inference for Two Models

The Gibbs sampler is run 1,000 times for every year for both models, and the
first 100 burn-in iterations are discarded. All chains converge quickly to the
posterior distribution and diagnostics show stationarity for all years.4 The boxplots
in Fig. 14.1 show narrow posterior distributions for all parameters in every year
for both models. The value of q between 90 % and 100 % indicates that more than
nine tenths of firm observations are sorted into the signal distribution. The changing
location of the parameter values over time is of economic interest but is beyond the
scope of the current paper. The parameters from the noise component of the mixture
(not shown) settle on very different values over the years depending on the nature of
the noise in each year. It is noticeable that model MN samples lower q parameters
on average, indicating that this model assigns a higher fraction of observations to
the noise component. This should be expected, given that the Laplace distribution
has fatter tails than the normal distribution and that there are large outliers in the
data. The question is which model fits the data better.

2Although the data is available from 1950, as [6] points out, there is a serious selection bias in
pre-1962 data that is tilted toward big historically successful firms.
3These are COMPUSTAT items (SALES), (XOPR), and (AT ).
4See Appendix for details.
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Fig. 14.1 Boxplots of Gibbs output for the signal distribution fs, with weighing parameter q (top),
location parameter μ (center), and scale parameter σ (bottom) for every year for both models. The
left panel shows results for the Laplace signal model, the right panel for the normal signal model

14.3.3 Model Comparison

In order to select a model, Fig. 14.2 compares log marginal likelihoods (LML) of
the two models. Results for model ML are robust to respecifications of the grid
for (14.17). The Bayes factor ranges over the orders of magnitude 1,700 and 5,300.
The data clearly increase the odds in favor of the Laplace model, ML , in every single
year. Therefore, we analyze the signal distribution obtained by the model ML .
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Fig. 14.2 Log marginal likelihoods of Laplace model (circles) and normal model (triangles). The
marginal likelihood favors the Laplace model in every year

14.3.4 The Filtered Distribution

The Gibbs sampler of model ML also yields a series of samples for each latent
variable zi with realizations of either one or zero. A choice has to be made about
what share of ones in each series qualifies the corresponding observation, yi to be
assigned to the signal. The motivation of the model is to keep as much of the original
data as possible, so we adopt a simple filter rule A , whereby all observations
whose latent variable posterior mean is greater than 0.05 belong to the signal.5

This ensures discarding only observations that lie far away from the mode. Since
[2] has suggested that 20 % of their data are Laplace distributed, we apply a second
filter rule B that keeps only those observations in the signal whose latent variable
posterior mean is above 0.99. Only observations close to the Laplace density are
retained.

Table 14.1 shows that both choice rules remove all extreme outliers and shrink
the minimum and maximum toward the median. Filter rule A retains 97 % of the
data, and the more restrictive filter rule B retains 90 %. It is also evident that there
is no perceptible change in the interquartile range and that the 95th percentile has
a similar value for all samples. Only the fifth percentile differs, which is clarified
below.

Figure 14.3 shows the signal distribution on a log density scale for a selection
of years under the permissive choice rule A in the top panel, and the restrictive
choice rule B in the bottom panel. Ninety percent of the data are Laplace (the
Laplace or double exponential density appears as a tent shape for a density plot

5Discarding zi whose share below any value in the range 0.01–0.9 corresponds to discarding 3–5 %
of the data. Therefore, the data filter is not very sensitive to permissive choice rules other than 0.05.
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Table 14.1 Summary statistics including several quantiles, of pooled raw profit rates (r) and
signal profit rates after discarding all observation with latent posterior mean below 0.05 (rule A )
and after discarding all observation with latent posterior mean below 0.99 B

Min 5 Perc. 1st Qu. Median Mean 3rd Qu. 95 Perc. Max % Retained

r −99.50 −0.615 0.027 0.112 −0.047 0.174 0.298 99.49 100

rA : 0.05 −1.657 −0.381 0.038 0.114 0.067 0.174 0.296 1.801 97.25

rB: 0.99 −1.657 −0.125 0.038 0.114 0.067 0.175 0.292 1.801 90.01

Fig. 14.3 Histogram plots on a log density scale of profit rates (r) for a selection of cross-sections
after filtering for permissive (top) and restrictive (bottom) choice rules. At least 90 % of data are
Laplace distributed and another 7 % add a negative skew
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with a log scale). The next 7 % of the data add negative skewness, giving rise to
the different fifth percentile in the summary statistics table. A much larger share
of observations, including younger firms, are Laplace. Only 6 % of the data would
remain,if we had applied the previously used decision rule of keeping only firms
alive over the 51 years spanned by the data set (or 33 % for firms surviving at least
27 years). This shows that the mixture model retains much more data and therefore
information about firm competition than a selection based on a covariate such as
firm age.

14.4 Conclusion

We construct a Bayesian mixture model as a sample selection tool that explicitly
models the component of microeconomic data typically discarded as noise. In this
model, latent variables assign observations to either signal or noise based on the
specification of the priors and the data structure. By Gibbs sampling from all full
conditional posterior distributions, we find posterior densities for the latent variables
that allow us to select a sample of firms without confounding noise for economic
analysis. Unlike previous work, the latent variable Gibbs sampler procedure yields
a distribution without having to make additional assumptions about minimum size
or age. Comparison of marginal likelihoods favored a Laplace signal distribution.
We select a sample containing more than 97 % of the data allowing us to investigate
the distributional form of profit rates in the U.S. economy arising from competition
between firms. This filtering logic is applicable to other univariate data sets that
include confounding outliers.

Acknowledgements We would like to thank Duncan Foley, Sid Dalal, Sid Chib, and two
anonymous referees for providing helpful guidance for this research. The data was made available
by Columbia University Library.

Appendix

To show stationarity of the Markov chains from our Gibbs sampler we display the
trace plots for a selection of years in Fig. 14.4. The stationarity of all Markov chains
is supported by the Geweke and Heidelberger–Welch diagnostics.
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