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Preface

This book has been written primarily for engineers and researchers who
want to use some advanced statistical methods for process monitoring
and optimization in order to improve quality and productivity in industry,
and also for statisticians who want to learn more about recent topics in this
general area. The book covers recent advanced topics in statistical reasoning
in quality management, control charts, multivariate process monitoring,
process capability index, design of experiments (DOE) and analysis for
process control, and empirical mode! building for process optimization. It
will also be of interest to managers, quality improvement specialists, grad-
uate students, and other professionals with an interest in statistical process
control (SPC) and its related areas.

In August 1995, the International Conference on Statistical
Methods and Statistical Computing for Quality and Productivity
Improvement (ICSQP'95) was held in Seoul, Korea, and many of the
authors of this book participated. A year later after the conference, the
editors agreed to edit this book and invited some key conference partici-
pants and some other major contributors in the field who did not attend the
conference. Authors from 15 nations have joined in this project, making this
truly a multinational book. The authors are all well-known scholars in SPC
and DOE areas. The book provides useful information for those who are
eager to learn about recent developments in statistical process monitoring
and optimization. It also provides an opportunity for joint discussion all
over the world in the general areas of SPC and DOE.

We would like to thank Elizabeth Curione, production editor of
Marcel Dekker, Inc., for her kind help and guidance, and Maria Allegra,
acquisitions editor and manager at Marcel Dekker, Inc., for making the
publication of this book possible. We very much appreciate the valuable
contributions and cooperation of the authors which made the book a reality.
We sincerely hope that it is a useful source of valuable information for
statistical process monitoring and optimization.



iv Preface

We want to dedicate this book to God for giving us the necessary
energy, health, and inspiration to write our chapters and to edit this book
successfully.

Sung H. Park
G. Geoffrey Vining
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1

On-Line Quality Control System
Designs

Genichi Taguchi
Ohken Assaciate, Tokyo, Japan

1. INTRODUCTION

It is the responsibility of a production department to produce a product that
meets a designed quality level at the lowest cost. However, it is important to
not merely have the product quality meet specifications but to also endeavor
to bring quality as close as possible to the ideal value.

2. JAPANESE PRODUCTS AND AMERICAN PRODUCTS

Many Japanese read an article on April 17, 1979, on the front page of Asahi
Shinbun, one of the most widely circulated newspapers in Japan, regarding a
comparison of the quality of color television sets produced by the Sony
factory in Japan with that of TVs produced by the Sony factory in San
Diego, California. The comparison was made on the basis of the color
distribution, which is related to the color balance. Although both factories
used the same design, the TVs from the San Diego factory had a bad
reputation, and Americans preferred the products from Japan. Based on
this fact, Mr. Yamada, the vice president of Sony United States at that
time, described the difference in the article.

The difference in the quality characteristic distributions is shown in
Figure 1. It is seen from the figure that the color quality of Japanese-made
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Figure 1 Distribution of color quality in television sets of Sony U.S. and Sony
Japan.

TVs shown by the solid curve have approximately a normal distribution
with the target value at the center; its standard deviation is about one-
sixth of the tolerance or 10 in certain units.

In quality control, the index of tolerance divided by six standard
deviations is called the process capability index, denoted by C,,:

tolerance

= 6 x standard deviation M
The process capability of the Japanese-made TVs is therefore 1, and the
average quality level coincides with the target value.

The quality distribution of the sets produced in San Diego, shown by
the dash-dot curve, on the other hand, has less out-of-specification product
than that of the Japanese-made sets and is quite similar to the uniform
distribution for those products that are within the tolerance. Since the stan-
dard deviation of the uniform distribution is given by 1/+/12 of the toler-
ance, its process capability index is given by

. tolerance _
r (tolerance/+/12) x 6

0.577 (2)

which shows that its process capability index is worse than that of the
Japanese-made product.

A product with out-of-tolerance quality 1s a bad product. It is an
unpassed product, so it should not be shipped out. From the opposite
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point of view, a product within tolerance should be considered good and
should be shipped. In a school examination, a score above 60 with 100 as the
full mark is considered to be a passing grade. A product quality that coin-
cides with its target value should have a full mark. Quality gradually
becomes worse when it deviates from the target value, and fails when it
exceeds the specification limits, or £5 in this example.

In a school examination, a score of 59 or below 59 is failing, 60 or
above 60 is passing. The scores are normally classified into the following
grades:

60- 69 D
70-79 C
80-8 B
90-100 A

I put grades A, B, and C in Figure 1. It is seen that the Japanese-made TVs
have more A’s and fewer B’s and C’s.

To reduce the Japan—United States difference, Mr. Yamada dictated a
narrower tolerance for the San Diego factory, specifying B as the lowest
allowable quality limit. This is wrong, since specifying a more severe toler-
ance because of inferior process capability is similar to raising the passing
score from 60 to 70 because of the incapability of students. In schools,
teachers do not raise the limit for such students. Instead, teachers used to
lower the passing limit.

As stated above, loss is caused when the quality characteristic (denoted
by y) deviates from the target value (denoted by m) regardless of how small
the deviation is. Let the loss be denoted by L(y). L(y) is the minimum when y
coincides with the target value m, and we may put the loss to be 0.

L(im)=0 3)

When y = m, L(y) is zero or minimum, and its differential coefficient is,
accordingly, zero.

L'(m)=0 4)
Using the Taylor expansion, the loss function L(y) is expanded as

L) = Lim) + L_l('@ y—my+ L 2(,' )

=5 (5~ my 6

(v—m)2+~~
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The constant and linear terms (differential terms) become zero from Egs. (3)
and (4). If the third-order term and the following terms can be omitted, the
loss function is then

L = k(y — m)? (6)

Let the allowance or the deviation of p from the middle value by A.
The more y deviates from m, the middle value, the more loss is caused. A
product whose deviation is less than its allowance A should pass inspection;
otherwise the company will lose more. When the deviation exceeds the
allowance, the product should not be passed. therefore, when the deviation
is equal to the allowance, its loss is equal to the loss due to the disposal of
the failed product.

Let A (yen) signify the loss caused by disposing of a failed product.
Putting 4 and allowance A in Eq. (6), k is obtained as

loss of disposing of a failed product 4
k= 5 =— (N
(allowance) A

Assume that the cost of repairing a failed color TV set is 600 yen. k is then
calculated as

600
k= == 24.0 (yen) (®)

The loss function is therefore
L =24.0(y — m)? )

This equation applies to the case when a single product is manufactured. An
electrical manufacturing company in India (BHEL) said to me “Our com-
pany manufactures only one product, a certain type of nuclear power sta-
tion. There is no second machinery of the same type producted. Since the
variation of a single product is zero, standard deviation in statistics is not
applicable in our case.”

Variation is measured by the deviation from a target value or an ideal
value. Therefore, it can be obtained from Eq. (6) even when only one pro-
duct is produced. When there is more than one product, the average of Eq.
(6) is calculated. Variance (%), the average of the square of differences
between y and the target value, is used for this purpose. o? is correctly called
the average error squared, but we will call it variance for simplicity.
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o’ = average of (y — m)* (10)

The loss function is given by
L =ko (1

The quality level difference between Sony U.S. and Sony Japan is
calculated from Eq. (11) as shown in Table 1.

Table 1 shows that although the fraction defective of the Japanese
Sony factory is larger, its loss is one-third that of the U.S. Sony factory.
In other words, the Japanese quality level is three times higher. If Vice
President Yamada specified a narrower tolerance such as 10 x 2/3, the
quality level would be improved (assuming a uniform distribution within
the tolerance limits):

2

1 21
=240 ——=—x 10 x = | = 88.9 12
L =240 x [m x 10 x 3] (yen) (12)

This shows that there is a 111 (= 200.0 — 88.9) yen improvement, but that
the Sony U.S. quality level is still 22.1 (= 88.9 — 66.7) yen worse than that of
Sony Japan.

If such an improvement were attained by repairing or adjusting failed
products whose quality level exceeds m £ 10/3 but lies within m2 £ 5, holding
33.3% of the total production as seen from Figure 1, at a cost of 600 yen per
unit, then the cost of repair per unit would be

600 x 0.333 = 200 (yen) (13)

An 111.1 yen quality improvement at a cost of 200 yen is not profitable. The
correct solution to this problem is to apply both on-line and off-line quality
control techniques.

I visited the Louisville factory of the General Electric Company in
September 1989. On the production line, workers were instructed to use

Table 1 Quality Comparison Between Sony Japan and Sony U.S.

Standard Loss L Fraction
Country Average deviation Variance (yen) defection (%)
Japan m 10/6 (10/6)* 66.7 0.27

United States m 10/v/12 100/12 200.0 0.00
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go-no go gauges, which determine only pass or fail; there was a lack of
consciousness of the importance of the quality distribution within tolerance.
It was proposed that Shewhart’s control charts be used to control quality by
the distribution of quality characteristics on production lines as a substitute
for a method using specification and inspection. Inspectors tend to consider
production quality as perfect if the fraction defective is zero. In Japan, none
of the companies that product JIS (Japanese Industrial Standards) products
are satisfied producing products whose quality level marginally passes the
JIS specifications. Instead, the companies always attempt to reduce the
quality distribution within the tolerance range. Nippon Denso Company,
for example, demands that its production lines and vendors improve their
process capability indexes above 1.33.

To determine the process capability index, data y(, y,, ..., y, are col-
lected once or a few times a day for 3 months. The standard deviation is
obtained from the following equation, where m is the target value.

1/2
o= {% [(YI —m)2+(y‘2—m)2+"'+()’n _'n)z]}

The process capability index C, is calculated as

tolerance
G, = e (15)

The loss function L(y) is then determined as

L = ko* (16)

3. WHAT IS ON-LINE QUALITY CONTROL?

Manufacturers contribute to society and grow through a series of activities
including product planning, product development, design, production, and
sales. Within these steps, routine quality control activity on production lines
is called on-line quality control. It includes the following three activities:

1. Diagnosis and adjustment of processes. This is called process
control. A manufacturing process is diagnosed at constant inter-
vals. When the process is judged to be normal, production is
continued; otherwise the cause of abnormality is investigated,
the abnormal condition is corrected, and production is restarted.



On-Line Quality Control 7

Preventive activities such as adjusting a manufacturing process
when it appears to become abnormal are also included in this case.

2. Prediction and modification. In order to control a variable qual-
ity characteristic in a production line, measurements are made at
constant intervals. From the measurement results, the average
quality of the products to be produced is predicted. If the pre-
dicted value deviates from the target value, corrective action is
taken by moving the level of a variable (called a signal factor in
on-line quality control) to bring the deviation back to the target
value. This is called feedback control.

3. Measurement and disposition. This is also called inspection.
Every product from a production line is measured, and its disposi-
tion, such as scrapping or repair, is decided on when the result
shows the product to be out of specification.

Case 3 is different from cases 1 and 2 in that a manufacturing process
is the major object of treatment for cases | and 2, while products are the sole
object of disposition in case 3.

The above cases are explained by an example of controlling the sensors
or measuring systems used in robots or in automatic control. Measurement
and disposition, case 3, concern products, classifying them into pass and fail
categories and disposing of them. In a measuring system, it is important to
inspect the measuring equipment and to determine whether the system
should be passed or failed. This is different from the calibration of equip-
ment. Calibration is meant to correct the deviation of parameters of a piece
of measuring equipment after a certain period of use that corresponds to the
concept implied in case 2, prediction and modification.

When measuring equipment falls out of calibration, either gradually or
suddenly, 1t is replaced or repaired, which corresponds to the concept in case
1, diagnosis and adjustment. It is difficult in many cases to decide if the
equipment should be repaired or scrapped. Generally, the decision to repair
or replace is made when the error of the measuring equipment exceeds the
allowance of the product quality characteristic.

When measuring equipment cannot be adjusted by calibration and has
to be repaired or scrapped (called adjustment in on-line quality control), and
when there is a judging procedure (called diagnosis in on-line quality
control) for these actions, it is more important to design a diagnosis and
adjustment system than to design a calibrating system.

Radical countermeasures such as determining the cause of the varia-
tion, followed by taking action to prevent a relapse (which are described in
control chart methods and called off-line quality control countermeasures)
are not discussed in this chapter. I am confident that a thorough on-line
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quality control system design is the way to keep production lines from fall-
ing out of control. It is the objective of this chapter to briefly describe on-
line quality control methods and give their theoretical background.

4. EQUATION AND AN EXAMPLE FOR DIAGNOSIS AND
ADJUSTMENT

In 1 Motor Company in the 1970s, there are 28 steps in the truck engine
cylinder block production line. Quality control activity is necessary to
ensure normal production at each step. One of the steps, called boring by
reamers, is explained as an example, which is also described in detail in Ref. 1.

Approximately 10 holes are bored at a time in each cylinder block by
reamers. A cylinder block is scrapped as defective if there is any hole bore
that is misaligned by more than 10 um, causing an 8000 yen loss, which is
denoted by A. The diagnosis cost to know whether holes are being bored
straight, designated by B, is 400 yen, and the diagnosing interval, denoted by
n, is 30 units. In the past half-year, 18,000 units were produced, and there
were seven quality control problems.

The average problem occurrence interval, denoted by #, is then

1
7 = 13000 = 2570 (units) (amn

When there is a problem such as a crooked hole, production is stopped,
reamers are replaced, the first hole bored after the replacement is checked,
and if it is normal, the production is continued. The total cost, including the
cost of stopping the production line, tool replacement, and labor, is called
the adjustment cost; it is denoted by C and is equal to 20,000 yen in this
example.

In such a process adjustment for on-line quality control, the para-
meters characterizing the three system element—the process, diagnosing
method, and adjusting method—include A, B, C,u, and £ (the time lag
caused by diagnosis). The quality control cost when the diagnosis interval
is 7 is given by the theory described in Sections 5 and 6 as follows:

B 1 /4 C ¢4
L:—+n+ (-_‘)+—_+T (18)
n 2 u u u

Putting n = 30, 4 = 8000 yen, B = 400 yen, C = 20,000 yen, i = 2570, and
£ = 1 unit in the above equation, the quality control cost per unit product of
this example would be
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L= 400 + 3041 (8000) 20,000 + 1 x 8000
30 2 2570 2570 2570
=133+482+7.843.1
= 74.2 (yen) (19)

With annual production of 36,000 units, the total cost would be 72.4x
36,000 = 2,610,000 yen. The improvement in quality control is needed to
reduce the quality control cost given by Eq. (19). For this purpose, there are
two methods: one from the pertinent techniques and one from managerial
techniques. The former countermeasures include simplification of the diag-
nosis method or reduction of adjusting the cost, which must be specifically
researched case by case. For this, see Chapters 4-8 of Ref. 1.

There are methods to reduce quality control cost while keeping current
process, current diagnosis, and adjustment methods unchanged. These man-
agerial techniques are soft techniques applicable to all kinds of production
processes. Two of these techniques are introduced in this chapter. One is the
determination of the diagnosis interval, and the other is the introduction of
preventive maintenance such a periodic replacement.

The optimum diagnosis interval is given by

23 + ¢)B]'?

In the example of the boring process,

_ [ 2(2570 + 1) x 400

172
= 8000—20,000/2570] = 16 (units) @b

The quality control cost from Eq. (19) when the diagnosis interval is 16 is

L

400 + 16 + 1 (/8000 20,000 + 1 x 8000
16 2 2570 2570 2570

=25.0+26.5+ 7.8 + 3.1 = 62.4 (yen) (22)

There is a savings of 72.4 — 62.4 = 10.0 yen per unit product, or 360,000 yen
per year. The value of L does not change significantly even when » varies by
20%. When n = 20, for example,
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L 2400 | 21 /8000 , 20,000 , 8000
~ 20 T 2\2570) T 2570 T 2570

= 63.6 (yen) (23)

The difference from Eq. (22) is only 1.2 yen. It is permissible to allow about
20% error for the values of system parameters 4, B, C, u, and £, or it is
permissible to adjust n within the range of 20% after the optimum diagnosis
interval is determined.

Next, the introduction of a preventive maintenance system is
explained. In preventive maintenance activities, there are periodic checks
and periodic replacement. In periodic replacement, a component part
(which could be the cause of the trouble) is replaced with a new one at a
certain interval. For example, a tool with an average life of 3000 units of
product is replaced after producing 2000 units without checking.

Periodic checking is done to inspect products at a certain interval and
replace tools if product quality is within specification at the time inspected
but there is the possibility that it might become out-of-specification before
the next inspection. In this chapter, periodic replacement is described.

In the case of reamer boring, a majority of the problems are caused by
tools. The average problem-causing interval is & = 2570 units, and periodic
replacement is made at an interval of #’ = 1500, which is much shorter than
the average life. Therefore, the probability of the process causing trouble
becomes very small. Assume that the replacement cost, denoted by C’, is
approximately the same as the adjustment cost C, or 18,000 yen. Assume
that the probability of the process causing trouble is 0.02. This probability
includes the instance of a reamer being bent by the pinholes existing in the
cylinder block, or some other cause. Then the true average problem-causing
interval will be improved from the current 2570 units to

_ 1500

o

The optimum diagnosis interval n would be

o [2 x (75000 + 1) x 400

172
8000 — 20,000/75,000] = 87 = 100 (units) (25)

The quality control cost is then
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L = (preventive maintenance cost) + (diagnosis and adjustment cost)

¢’ [B n+1 (A) C ZA]
=—=+|-+ -] +=+—
u n 2 u u u

_ 18,000 [400 101 ( 8000 ) 20,000 1 x 8000]

1007 2

~ 1500 75,000 75,000 * 75,000
=120+4.04+54+03+0.1)
=12.0+9.8 = 21.8 (yen) (26)

This is an improvement of 63.6 — 21.8 = 41.8 yen per unit compared to the
case without preventive maintenance, which is equivalent to 1,500,000 yen
per annum. If there were similar improvements in each of the 27 cylinder
block production steps, it would be an improvement of 42 million yen per
annum.

Such a quality control improvement is equivalent to the savings that
might be obtained from extending the average interval been problems 6.3
times without increasing any cost. In other words, this preventive mainte-
nance method has a merit parallel to that of an engineering technology that
is so fantastic that it could extend the problem-causing interval by 6.3 times
without increasing any cost. For details, see Chapters 4-6 of Ref. 1.

Equations (18) and (20) may be approximately applied with satisfac-
tion regardless of the distribution of the production quantity before the
problem and despite variations in the fraction defective during the problem
period. These statements are proved in Sections 5 and 6.

5. PROOF OF EQUATIONS FOR NONSPECIFIC
DISTRIBUTION

Parameters A4, B, C, u, £, and » in the previous section are used similarly in
this section. Let P, (i = 1, 2, ...) be the probability of causing trouble for the
first time after the production was started at the ith unit. The probability of
causing trouble for the first time at the kth diagnosis is

Pu—1y+1 + Puge—tye2 + -+ Puge—1)4n (27

When a problem is caused at the kth diagnosis, the number of defectives
varies from the maximum of » units to 1; its average number of defective
units is given by
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nX Py + (= 1) X Pyg_pypo+ -+ 1 X Pyg_1)4n
Puge—iyst + Prg—tya2 + -+ Pugg—1y4an

(28)

Assuming that
Prge-1)+1 = Pogk—1y42 =+ = Pug1)4n (29)
the average number of defective units will be (n + 1)/2.

In the loss function L, the average number of defectives in the second
term is

n+1
2

X on+1
Z > (Puk=1y+1 + Pugk—yr2 + -+ + Pup—yn) =
i

(30)

Since the first, third, and fourth terms of Eq. (18) are self-explanatory, the
loss function is given by

L =—
n+ 2

(31

B n+1(A> C 4
+-+

u u

Next, the equation for the optimum diagnosis interval is derived. The
average problem-causing interval is &. Since the diagnosis is made at n-unit
intervals, it is more correctly calculated to consider the losses from actual
recovery actions or by the time lag caused once every &+ n/2 units.
Therefore, i + n/2 is substituted for # in Eq. (31).

B n+l< A ) C LA (32)

L=-— -

P2 Gaan) Tiren i an
It is easily understood from the previous example that i is much larger than
n/2. Also, since there is » in the second term of the equation, # + n/2 in the
denominator may be approximated to be it + n/2 = ii. If the approximation

1 1
i+n/2 = 5(1_%>

is made, the equation of L is then approximated as

IR

n u U U 23
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the above equation and then putting it to zero gives

B+1 ﬁ _g 1 _(ZA _1_ —0
o 2\u 2i @ \2a)

Solving this equation, » is obtained as

2iB 172
= i) Y

Since

C {4
A>— and A>—
u U

the following approximation is made:

1 1
A—E—Q 1—¢d/u
uoou A-— C/u

14+ ¢4/u
g C/u(A C/u)
TA- C/u(l ) (33)

Putting (35) to (34), n is

_ (2<a+ e)B>”2

A—CJa (36)

6. PROOF OF EQUATIONS FOR A LARGE FRACTION OF
DEFECTIVES DURING TROUBLE PERIOD

In this section, it is to be proved that Eqs. (18) and (20) can be used
approximately even if the fraction of defectives during the trouble period
is larger than 0.

When a process is under normal conditions, it may be deemed that
there are no defectives. Assume that the fraction defective under abnormal
conditions is p and the loss when a defective units is not disposed of but is
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sent on to the following steps is D yen. After the process causes trouble, the
probability of detecting the trouble at the diagnosis is p and the probability
of failing to detect the trouble is 1 — p. Accordingly, the average number of
problems at the time the trouble is detected is (# + 1)p/2. The probability of
detecting a problem at the second diagnosis after missing the detection at the
first diagnosis is (1 — p)p; then the average number of defectives the inspec-
tion fails to detect is (# + 1)/2, and the number detected is np units. Thus we
obtain Table 2.

From Table 2, the average loss by defectives when a process is in
trouble 1s

[(Hzl)p x p+npl(l —plp +(1 —17)21>+-~-]IA
+{‘”+2””+[<1 — PP+ (1= prp+--]

+ np[(1 —p)lp + 2(1 —11)31) +.+{=2)(1 —p)‘_lp]]D

= [”-: 1 Pt +np(l —p):|A + [’——I; l p(1 —p)+n(l —IJ)Z]D (37)

D is normally much larger than 4. The amount of loss in Eq. (37) is mini-
mum when p = | and becomes larger when p is close to zero. Putting p =0
in Eq. (37) gives nD, showing that the equations for L and » should be
changed from Eqgs. (18) and (20) to

L=—
n+ 2

B n+1<2_D>+C+g (38)

u Im u

Table 2 Diagnosis and Probability of Problem Detection

Probability of  Number of defectives Number of defectives

Diagnosis detecting troubles found missed
Ist 2 (n+ Dp/2 0

2nd (1 —=p)p np (n+1)p/2

3rd (1 =pyp np (n+ Dp/2+np
4th (1= »’p np (n+Dp/2+np

ith (I=py'p np (n+ Dp/2+G=2)mp
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and

_ 12
n= [————2(" + e)B_] (39)
2D —C/u
where (n + 1) = n is approximated.

When the fraction defective during the trouble period is not 100%, it is
normal to trace back and find defectives when a trouble is found. In this
case, there are no undetected defectives, so D = A. Equation (37) is there-
fore

n+1
2

[”f Ly (= py+ L p( = )l —p)z]A (40)

Putting #n + 1 = n, Eq. (40) becomes
B pz+%np(l —p)+n(l —[))Z]A :n(l —g)A 41

Therefore, the loss after tracing back to find defectives is n4 at maximum
and nA4/2 at minimum. If the equations for L and n were determined as

2 .
L=§+"+‘(ﬁ) ¢, (42)
n 2 u u u
and
_ 12
_ 2(u + E)E: 43)
24—-CJu

it would become overdiagnosis, which is too costly. Although the fraction
defective can have any value, it would be good enough to consider about 0.5
for p. In that case, 1.54 is used instead of A. As described before, L and n
are not significantly affected by the error in 4 up to 50%, so Eqgs. (18) and
(20) can be satisfactorily applied.

7. PREDICTION AND MODIFICATION

In the control of a variable quality characteristic, a signal factor is used
for correcting the deviation of the characteristic from a target value. For
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example, pressure of a press is a signal factor to control the thickness of steel
sheets, and flow of fuel is a signal factor to control temperature. For such a
control, the following three steps must be taken:

I. Determine the optimum measuring interval.

2. Forecast the average quality of products produced before the next
measurement.

3. Determine the optimum modifying quantity against the deviation
of the forecasted value from the target value.

After the above parameters are determined,

4. Modify the quality characteristic made by varying the level of the
signal factor.

To determine the optimum modifying quantity, an analysis of variance
method, called cyclic analysis, and the following loss equation (caused by
variation) are useful.

L =ko (44)
where
= loss caused by out-of-ipeciﬁcation (45)
(allowance)”
o® = average of the error from target value squared (46)

For Eq. (44). see Ref 1, Chapters | and 2. The simplest prediction
method is to consider the measured value itself as the average quality of all
products to be produced before the next measurement. There are many
methods for this purpose. However, it is important to determine a;, the
error variance of such a prediction.

The optimum modifying quantity in step 3 is determined by forecast-
ing the average in step 2, which is denoted by y, and calculate the following
quantity:

Optimum modifying quantity = —B(»' — »y) 47)

where yg is the target value and
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2
0 when Fy = & 20"

= 1 K ; (48)
1 —— whenF0=Q—~;}—°«>l
F() »

14

Recently, more and more production systems using automatic machin-
ery and robots that handle the four steps listed above have been developed.
For such systems, the center of quality control is the calibration of sensors
(measuring devices) employed by automatic machinery or robots and the
diagnosis of hunting phenomena. Steps 1-4 are therefore required.

A simple example is illustrated in the following. The specification of
the thickness of a metal sheet is i & 5 pum. The loss caused by defects is 300
yen per meter. The daily production is 20,000 m, and the production line
operates 5 days a week or 40 hr a week. Currently, measurement is made
once every 2hr, costing 2000 yen for the measurement and adjustment
(correction or calibration). There is a tendency for the average and variation
of thickeness to increase during the course of production. The average
thickness increases 3 pm every 2 hr, and the error variance increases 8 pm?
in 2hr.

Since the production is 5000 m in 2 hr, the average variance o* of the
products during 2 hr assuming that adjustment is correctly made at the time
of measurement is

1 5000 3 2 8
022—*[ —— ) P —t|dr
5000 }, 5000 5000

=70 (49)
The daily loss in the loss function L, including the correcting cost, is

300

L =" x 7.0 x 20,000 +4 x 2000 = 1,688,000 (yen) (50)

Letting the optimum measuring and adjusting interval be n,

300 1y 3\, 8 20,000
L= 20,000 x |- ) B ki
e X |:n ,L[(sooo) " 5000 ’}‘1’] +2000x =

, 40,000,
— 0.028877 + 1920 + 10:000,000 (51)
n
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The optimum # that minimizes Eq. (51) is about 430. Then the loss due to
prediction and correction is

40,000,000
430
= 181,000 (yen) (52)

L = 0.0288 x 430° 4 192 x 430 +

There is an improvement of 1.507 million yen per day. There is additional
improvement due to the reduction of the prediction error. For this, see
Chapter 9 of Ref. 1.
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1. MEASUREMENT WITHIN TOTAL QUALITY
MANAGEMENT

Modern measurement of quality should, of course, be closely related to the
definition of quality. The ultimate judge of quality is the customer, which
means that a system of quality measurement should focus on the entire
process that leads to customer satisfaction in the company, from the sup-
plier to the end user.

Total quality management (TQM) argues that a basic factor in the
creation of customer satisfaction is leadership, and it is generally accepted
that a basic aspect of leadership is the ability to deal with the future. This
has been demonstrated very nicely by, among others, Mr. Jan Leschly,
president of Smith Kline, who in a recent speech in Denmark compared
his actual way of leading with the ideal as he saw it. His points are demon-
strated in Figure 1. It appears that Mr. Leschly argues that today he spends
approximately 60% of his time on “firefighting,”” 25% on control, and 15%
on the future. In his own view a much more appropriate way of leading
would be to turn the figure upside down, so to speak, and spend 60% of his
time on the future, 25% on control, and only 15% on firefighting.

The situation described by Mr. Leschly holds true of many leaders in
the Western world. There is a clear tendency for leaders in general to be
much more focused on short-term profits than on the process that creates
profit. This again may lead to firefighting and to the possible disturbance of
processes that may be in statistical control. The result of this may very well

19
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Figure 1 Leadership today and tomorrow. (Courtesy of Jan Leschly, Smith Kline.)

be an increase in the variability of the company’s performance and hence
and increase in quality costs. In this way ‘“‘the short-term leader” who
demonstrates leadership by fighting fires all over the company may very
well be achieving quite the opposite of what he wants to achieve.

To be more specific, “‘short-term leadership’’ may be synonymous with
low quality leadership, and in the future it will be necessary to adopt a
different leadership style in order to survive, a leadership style that in its
nature is long-term and that focuses on the processes that lead to the results
rather than the results themselves. This does not, of course, mean that the
results are uninteresting per se, but rather that when the results are there you
can do nothing about them. They are the results of actions taken a long time
ago.

All this is much easier said than done. In the modern business envir-
onment leaders may not be able to do anything but act on the short-term
basis because they do not have the necessary information to do otherwise.
To act on a long-term basis requires that you have an information system
that provides early warning and that makes it possible for you to make the
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necessary adjustments to the processes and gives you time to make them
before they turn into unwanted business results. This is what modern mea-
surement of total quality is all about.

This idea is in very good accordance with the official thoughts in
Europe. In a recent working document from the European Commission,
DGIII, the following is said about quality and quality management
(European Commission, 1995):

The use of the new methodologies of total quality management is for the
leaders of the European companies a leading means to help them in the
current economic scenario, which involves not only dealing with
changes, but especially anticipating them.

Thus, to the European Commission, quality is primarily a question of
changes and early warning.

To create an interrelated system of quality measurement it has been
decided to define the measurement system according to Table 1, where
measurements are classified according to two criteria: the interested party
(the stakeholder) and whether we are talking about processes or results.
Other types of measurement systems are given in Kaplan and Norton
(1996).

As Table 1 illustrates, we distinguish between measurements related to
the process and measurements related to the results. The reason for this is
obvious in the light of what has been said above and in the light of the
definition of TQM. Furthermore we distinguish between three ‘‘interested
parties:” the company itself, the customer, and the society. The first two
should obviously be part of a measurement system according to the defini-
tion of TQM., and the third has been included because there is no doubt that

Table 1 Measurement of Quality — The Extended Concept

The company The customer The society
The process Employee Control- and check- Control and
satisfaction (ESI)  points concerning checkpoints
Checkpoints the internal definition  concerning e.g.
concerning the of product and service environment, life
internal structure  quality cycles etc.
The result Business results Customer satisfaction  ‘Ethical accounts’
Financial ratios (CSI) Environmental
Checkpoints accounts

describing the
customer satisfaction
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the focus on companies in relation to their effect on society will be increased
in the future and it is expected that very soon we are going to see a lot of new
legislation within this area.

Traditional measurements have focused on the lower left-hand corner
of this table, ie., the business results, and we have built up extremely
detailed reporting systems that can provide information about all possible
ways of breaking down the business results. However, as mentioned above,
this type of information is pointing backwards in time, and at this stage it is
too late to do anything about the results. What we need is something that
can tell us about what is going to happen with business results in the future.
This type of information we find in the rest of the table, and we especially
believe and also have documentation to illustrate that the top set of entries
in the table are related in a closed loop that may be called the improvement
circle. This loop is demonstrated in Figure 2.

The improvement is particularly due to an increase in customer loyalty
stemming from an increase in customer satisfaction. The relationship
between customer satisfaction and customer loyalty has been documented
empirically several times. One example is Rank Xerox, Denmark, who in
their application for the Danish Quality Award reported that when they
analyzed customer satisfaction on a five-point scale where 1 is very dissa-
tisfied and 5 is very satisfied they observed that on average 93% of those
customers who were very satisfied (a score of 5) came back as customers,
while only 60% of those who gave a 4 came back.

————
Improved | Improved |
internal \> " employee [
structure satisfaction |

|

y
\
Improved ‘ ‘ improved
business results | linternally defined |
i | | quality ;
! —
Improved i —
customer | /
satisfaction |

Figure 2 The improvement circle.
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Another example is a large Danish real estate company who in a
customer satisfaction survey asked approximately 2500 customers to evalu-
ate the company on 20 different parameters. From this evaluation an aver-
age of customer satisfaction (customer satisfaction index) was calculated.
The entire evaluation took place on a five-point scale with 5 as the best
score, which means that the customer satisfaction index will have values in
the interval from 1 to 5. In addition to the questions on parameters, a series
of questions concerning loyalty were asked, and from this a loyalty index
was computed and related to the customer satisfaction index. This analysis
revealed some very interesting results, which are summarized in Figure 3, in
which the customer satisfaction index is related to the probability of using
the real estate agent once again (probability of being loyal). It appears that
there is a very close relationship between customer satisfaction and custo-
mer loyalty. The relationship is beautifully described by a logistic model.

Furthermore, it appears from Figure 3 that in this case the loyalty is
around 35% when the customer satisfaction index is 3, i.e., neither good nor
bad. When the customer satisfaction increases to 4, a dramatic increase in
loyalty is observed. In this case the loyalty is more than 90%. Thus the area
between 3 and 4 is very important, and it appears that even very small
changes in customer satisfaction in this area may lead to large changes in
the probability of loyalty.

The observed relationship between business results and customer loy-
alty on the one hand and customer satisfaction on the other is very impor-

Probability of loyalty i

Probability

24 /’/

25 30 35 x 25 50

i Average customer satisfaction |

Figure 3 Probability of loyalty as a function of customer satisfaction.
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tant information for modern management. This information provides an
early warning about future business results and thus provides management
with an instrument to correct failures before they affect business results.

The next logical step will be to take the analysis one step further back
and find internal indicators of quality that are closely related to customer
satisfaction. In this case the warning system will be even better. These
indicators, which in Table 1 are named control points and checkpoints,
will, of course, be company-specific even if some generic measures are
defined.

Moving even further back, we come to employee satisfaction and other
measures of the process in the company. We expect these to be closely
related to the internally defined quality. This is actually one of the basic
assumptions of TQM. The more satisfied and more motivated your employ-
ees, the higher the quality in the company [see Kristensen (1996)]. An indi-
cator of this has been established in the world’s largest service company, the
International Service System (ISS), where employee satisfaction and custo-
mer satisfaction have been measured on a regular basis for some years now
[see Kristensen and Dahlgaard (1997)]. In order to verify the hypothesis of
the improvement circle in Figure 2, employee satisfaction and customer
satisfaction were measured for 19 different districts in the cleaning division
of the company in 1993. The results were measured on a traditional five-
point scale, and the employee satisfaction and customer satisfaction indices
were both computed as weighted averages of the individual parameters. The
results are shown in Figure 4.

These interesting figures show a clear linear relationship between
employee satisfaction and customer satisfaction. The higher the employee
satisfaction, the higher the customer satisfaction. The equation of the rela-
tionship is as follows:

CSI =0.75+089ESI, R*=0.85

The coefficients of the equation are highly significant. Thus the standard
deviation of the constant term is 0.33, and that of the slope is 0.09.
Furthermore, we cannot reject a hypothesis that the slope is equal to 1.

It appears from this that a unit change in employee satisfaction gives
more or less the same change in customer satisfaction. We cannot, from
these figures alone, claim that this is a causal relationship, but we believe
that combined with other information this is strong evidence for the exis-
tence of an improvement circle like the one described in Figure 2. To us,
therefore, the creation of a measurement system along the lines given in
Table 1 is necessary. Only in this way will management be able to lead
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Customer satisfaction

Employee satisfaction

Figure 4 Relationship between ESI and CSI, 19 districts.

the company upstream and thus prevent the disasters that inevitably follow
the firefighting of short-term management.

An example of an actual TQM measurement system is given in Figure
5 for a Danish medical company. It will be seen that the system follows the
methodology given in the Process section of Table 1.

2. MEASURING AND MONITORING EMPLOYEE AND
CUSTOMER SATISFACTION

Since optimization and monitoring of the internal quality are dealt with
elsewhere in this book we are going to concentrate on the optimization
and monitoring of customers whether they are internal (employees) or exter-
nal. First a theoretical, microeconomic model of satisfaction and loyalty is
constructed and then we establish a “‘control chart” for the managerial
control of satisfaction.

2.1. A Model of Satisfaction and Loyalty

Since exactly the same model applies to both customer satisfaction and
employee satisfaction we can without loss of generality base the entire dis-
cussion on a model for customer satisfaction.



26 Kristensen

*ROI
RESULT / COMPANY «Tablets/Manhour
*No. of new prod.
A
1
RESULT / CUSTOMER Customer
satisfaction
*Complaints

A

PROCESS/ CUSTOMER *Returned goods [
*Credit notes

On-time delivery

PROCESS / COMPANY Employee *Turnover
satisfaction *Absence

\
A

Figure 5 An example from a Danish medical company.

In Kristensen et al. (1992) a model linking customer satisfaction to

company profit was established. In this model, customer satisfaction was
defined as

n

CSI = Z nes (1)

=1

where # is the number of quality parameters, w; is the importance of a given
parameter, and ¢, is the evaluation. It was assumed that the profit of the
company could be described as

1= (p(i n‘,-(',) - ik,-c,2 (2)
=1 =1

where @ is an increasing function linking customer satisfaction to company
carnings and the second factor on the right-hand side is a quadratic cost
function with &, as a cost parameter.
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By maximizing (2) with respect to the individual satisfactions (¢,’s) it
can be shown that for identical cost parameters, i.e.,

ki =k, Vi )
the optimum allocation of resources will occur when

S0y, 4)

i.e., when the degree of fulfilment of customer expectations is identical for all
areas. This is based on the fact that the first-order condition for maximiza-
tion of Eq. (2) is equal to

¢ (pé'SI
— =t 5
W; 2k, ( )

From this it will be seen that if the right-hand side of Eq. (5) is equal to 1
then a very simple rule for optimum customer satisfaction will emerge:

G =W (6)

This result, even if it is based on rather strong assumptions, has become very
popular among business people, and a graphical representation known as
the quality map where each parameter is plotted with w on the x axis and ¢
on the y axis has become a more-or-less standard tool for monitoring cus-
tomer and employee satisfaction. This is the reason we later on elaborate a
little on the quality map.

But even if this is the case we intend to take model (2) a step further in
order to incorporate customer loyalty. The reason for this is that customer
loyalty has gained a lot of interest among quality management researchers
recently because it seems so obvious that loyalty and quality are related, but
we still need a sensible model for relating customer loyalty to profit [see
Kristensen and Martensen (1996)).

We start by assuming that profit can be described as follows:

likelihood of antit
1'[-_—1610.0 of quantity )
buying bought
where quantity bought is measured in sales prices.
The likelihood of buying is, of course, the loyalty function. We assume
that this function can be described as follows:



28 Kristensen

L=L{&.%,...,0) (3)
where
& =wilc, = ) %

where ¢} is the satisfaction of parameter i for the main competitor. Thus the
elements of the loyalty function are related to the competitive position of a
given parameter combined with the importance of the parameter. We
assume that the quantity bought given loyalty is a function of the customer

satisfaction index. This means that we will model the income or revenue of
the company as

L(C,] Yty Cn)(p (Z W,‘C,) (10)
i=1

This tells us that you may be very satisfied and still not buy very much,
because competition is very tough and hence loyalty is low. On the other
hand, when competition is very low, you may be dissatisfied and still buy
from the company even though you try to limit your buying as much as
possible.

Combining (10) with the original model in (2), we come to the follow-
ing model for the company profit:

n

= LG, ....000 (2”—_: Wi('i) - ki (In
i=l

i=1

Hence the optimum allocation of resources will be found by maximizing this
function with respect to c¢;, which is the only parameter that the company
can affect in the short run. Long-run optimization will, of course, be differ-
ent, but this is not part of the situation we consider here.

The first-order condition for the optimization of Eq. (11) is

%—II = Lo'w; + oL{w; — 2k, (12)
¢

By equating this to zero we get the following characterization result:

Q.9

b, @
= L +L>— 13
W,‘ 2k, ! + ( )

2k,
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To make practical use of this result we assume that

k, =k

;v

i (14)
which means that we may write the characterization result as

S w4 L (15)

Wy

To put it differently, we have shown that if company resources have
been allocated optimally, then the degree to which you live up to customer
expectations should be a linear function of the contribution to loyalty. This
seems to be a very logical conclusion that will improve the interpretation of
the results of customer satisfaction studies.

Practical use of results (4), (6), and (15) will be easy, because in their
present form you only need market information to use them. Once you
collect information about c¢,, ¢, w;, and the customers’ buying intentions,
the models can be estimated. In the case of a loyalty model you will most
likely use a logit specification for L and then L/ will be easy to calculate.

2.2. Statistical Monitoring of the Satisfaction Process
Let

x= (‘i;) (16)

where ¢ is an n x 1 vector of evaluations and w is an n x 1 vector of impor-
tances. Assume that x is multivariate normal with covariance matrix

Z(' Z('H'
— | L | &en 17
Z (ZH'{' ZH') ( )
and expectation
K,
R 18
= () a

According to the theoretical development we want to test the hypothesis

H(): He = Ky (]9)
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Assume a sample of N units, and let the estimates of (17) and (18) be

i= (&
= (@) (20)

S(' S('\V 4
= (s;... s—) @

Let I be the identity matrix of order #. Then our hypothesis may be written

and

Hy: (] —1)(ﬁ) ) (22)

From this it is seen that the T statistic is equal to
T? = N@ = W) [S, + S, = S = Sl 1@ = W) (23)
If the hypothesis is true, then

N-—n 2
F:mT (24)

has an F-distribution with n and N — n degrees of freedom. The hypothesis
is rejected if the computed F-statistic exceeds the critical value F,., y_,.
Let

Sll = S(' + Sn' - Sru' - Sc{w (25)

Then simultaneous confidence intervals for the differences between p,. and
p1,. may be written as follows for any vector ! = (I}, 5, ..., L) :

N —Dn 72 ,
g‘ Fa;n.N—n] =< / (H(- - H-w)

1/2
< [ (C — ll) + |:— [ S{l[ ﬂ‘:;;)" Fa:n.Nn] (26)

I'(c —w) — I:—IS(,I

Now assume that the hypothesis is true, and let

/"=(0,...,0,1,0,..., 0) 27
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Then we may write

I N-1 V2 1, (N=1 V2
¢, = [N [/Sd/ (]V——-Jﬁ Fu] <w; <¢ + l:‘/v [ Sl// (1\/7——]3” Fa]

(28)

or

2\ /2 12 2y /2 172
53, (N —Dn Sd, (N—Dn
C'_<N) [_IV—_n_F" swizatly) vz fo

(29)

To simplify. let us assume that all differences have the same theoretical
variance. Then we may substitute the average §(2, for s?},. which means that
the interval for monitoring satisfaction will be constant. In that case we may
set up the “‘control” chart shown in Figure 6 for monitoring satisfaction,
where the limits are given by

2\ 12 1/2
Sq (N —Dmn
i(N) |: N —n Fa;n.N—n (30)

Figure 6 Quality map.
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If a parameter falls between the dotted lines we cannot reject the hypothesis
that we have optimal allocation of resources. If, on the other hand, a para-
meter falls outside the limits, the process needs adjustment.

We should remember that the limits are simultaneous. If we want
individual control limits, which, of course, will be much narrower, we
may substitute 7, y_; for

(N —Dn 12
[T——;I__ Fa:u.N—n:l (31)

2.3. An Example

An actual data set from a Danish company is presented in Table 2. Seven
parameters were measured on a seven-point rating scale.

Now we are ready to set up the control chart for customer satisfaction.
We use formula (30) to get the limits,

2.18 /(64 — 1)7
L=+ V=7 Fo.0s:7.57 (32)

= £(0.18)v/7.74 x 2.18 = £0.74

From the control chart (Figure 7) we can see that most of the parameters are
in control but one parameter needs attention. The importance of the envir-
onmental parameter is significantly greater than that of the evaluation of

Table 2 Data Set (Customer Satisfaction for a Printer)

Importance Satisfaction Sample Variance of
Parameter w; C, size difference
Operation 6.68 6.06 64 1.66
User friendliness 5.85 5.67 1.82
Print quality 5.99 5.48 1.80
Service 5.32 5.38 2.56
Speed 391 4.94 2.62
Price 4.64 5.02 2.69
Environmentally 5.17 4.18 2.16

friendly

Average 2.18
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® environment
1 1

4 5 6 7

Figure 7 Control chart for customer satisfaction.

company performance. Hence the quality of this parameter must be
improved.

3. CONCLUSION

The use of the concept of total quality management expands the need for
measurement in the company. The measurement of quality will no longer be
limited to the production process. Now we need to monitor “‘processes”
such as customer satisfaction and employee satisfaction. In this chapter 1
have given a managerial model for the control of these processes, and we
have considered a practical ‘“‘control” chart that will help management
choose the right parameters for improvement.
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Quality Improvement Methods and
Statistical Reasoning*

G.K. Kanji
Sheffield Hallam University, Sheffield, England

1. PRINCIPLES OF TOTAL QUALITY MANAGEMENT

Total quality management (TQM) is about continuous performance
improvement of individuals, groups, and organizations. What differentiates
total quality management from other management processes is the emphasis
on continuous improvement. Total quality is not a quick fix; it is about
changing the way things are done—forever.

Seen in this way, total quality management is about continuous
performance improvement. To improve performance, people need to
know what to do and how to do it, have the right tools to do it, be
able to measure performance, and receive feedback on current levels of
achievement.

Total quality management (Kanji and Asher, 1993) provides this by
adhering to a set of general governing principles. They are:

Delight the customer
Management by fact
People-based management
Continuous improvement

el S

*For an extended version of this paper, see Kanji GK. Total Quality Management 5: 105, 1994.
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Each of these principles can be used to drive the improvement process.
To achieve this, each principle is translated into practice by using two core
concepts, which show how to make the principle happen.

These concepts are:

Customer satisfaction

Internal customers are real

All work is a process
Measurement

Teamwork

People make quality
Continuous improvement cycle
Prevention

Further details of the four principles with the core concepts follow.
The pyramid principles of TQM are shown in Figure 1.

1.1. Delight the Customer

The first principle focuses on the external customers and asks “what would
delight them?” This implies understanding needs—both of product and
service, tangible and intangible—and agreeing with requirements and meet-
ing them. Delighting the customer means being best at what matters most to
customers, and this changes over time. Being in touch with these changes
and delighting the customer now and in the future form an integral part of
total quality management.

The core concepts of total quality that relate to the principle of
delighting the customer are ‘‘customer satisfaction’ and “‘internal customers
are real.”

1.2. Management by Fact

Knowing the current performance levels of our products or services in our
customers’ hands and of all our employees is the first stage in being able to
improve. If we know where we are starting from, we can measure our
improvement.

Having the facts necessary to manage the business at all levels is the
second principle of total quality. Giving that information to people so that
decisions are based upon fact rather than “gut feel” is essential for contin-
uous improvement.
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Customer
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Internal customers
are real }‘
%

/ Dclht the Customer 'g

4
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Figure 1 The pyramid principles of TQM. (From Kanji and Asher, 1993.)

The core concepts that relate to management by fact are “all work is a
process” and ‘“‘measurement.”

1.3. People-based Management

Knowing what to do and how to do it and getting feedback on performance
form one part of encouraging people to take responsibility for the quality of
their own work. Involvement and commitment to customer satisfaction are
ways to generate this. The third principle of total quality management
recognizes that systems, standards, and technology in themselves do not
mean quality. The role of people is vital.

The core concepts that relate to people-based management are “‘team-
work” and ‘“people make quality.”
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1.4. Continuous Improvement

Total quality cannot be a quick fix or a short-term goal that will be reached
when a target has been met. Total quality is not a program or a project. It is
a management process that recognizes that however much we may improve,
our competitors will continue to improve and our customers will expect
more from us. The link between customer and supplier with process
improvement can be seen in Kanji (1990).

Here, continuous improvement—incremental change, not major
breakthroughs—must be the aim of all who wish to move toward—total
quality.

The core concepts that relate to the company’s continuous improve-
ment are “‘the continuous improvement cycle” and “‘prevention.”

Each concept is now discussed, together with an example of how that
concept was used by a company to bring about improvement.

2. CORE CONCEPTS OF TQM
2.1. Internal Customers Are Real

The definition of quality [see Kanji (1990)], “satisfying agreed customer
requirements,” relates equally to internal and external customers. Many
writers refer to the customer—supplier chain and the need to get the internal
relationships working in order to satisfy the external customer.

Whether you are supplying information, products, or a service, the
people you supply internally depend on their internal suppliers for quality
work. Their requirements are as real as those of external customers; they
may be speed, accuracy, or measurement.

Internal customers constitute one of the “big ideas™ of total quality
management. Making the most of this idea can be very time-consuming, and
many structured approaches take a long time and can be complicated.
However, one successful approach is to take the “cost of quality” and
obtain information about the organization’s performance and analyze it.
Dahlgaard et al. (1993) used statistical methods to discuss the relationship
between the total quality cost and the number of employees in an organiza-
tion.

2.2. All Work Is a Process

The previous section looked at internal customers and how to use the idea
that they are real as a focus for improvement.
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Another possible focus is that of business processes. By “‘process’™ we
mean any relationship such as billing customers or issuing credit notes—
anything that has an input, steps to follow, and an output. A process is a
combination of methods, materials, manpower, machinery, etc., which
taken together produce a product or service.

All processes contain inherent variability, and one approach to quality
improvement is progressively to reduce variation, first by removing varia-
tion due to special causes and second by driving down common cause
variation, thus bringing the process into control and then improving its
capability.

Various statistical methods, e.g., histograms, Pareto analysis, control
charts, and scatter diagrams, are widely used by quality managers and
others for process improvement.

2.3. Measurement

The third core concept of total quality management is measurement. Having
a measure of how we are doing is the first stage in being able to improve.
Measures can focus internally, i.e., on internal customer satisfaction
(Kristensen et al., 1993), or externally, 1.e., on meeting external customer
requirements.

Examples of internal quality measurements are

Production

Breach of promise

Reject level

Accidents

Process in control
Yield/scrap (and plus value)

Kristensen et al. (1993), when discussing a measurement of customer
satisfaction, used the usual guidelines for questionnaire design and surveys
and statistical analysis to obtain the customer satisfaction index.

2.4. Prevention

The core concept of prevention is central to total quality management and is
one way to move toward continuous improvement.

Prevention means not letting problems happen. The continual process
of driving possible failure out of the system can, over time, breed a culture of
continuous improvement.

There are two distinct ways to approach this. The first is to concen-
trate on the design of the product itself (whether a hard product or a



40 Kaniji

service); the second is to work on the production process. However, the
most important aspect of prevention is quality by design using statistical
reasoning.

There are several frequently used tools, and failure mode and effect
analysis (FMEA) is one of the better known ones. It is associated with both
design (design FMEA) and process (process FMEA).

Other frequently used methods are failure prevention analysis, which
was pioneered by Kepner Tregoe, and foolproofing (or Pokaoki). The
advantage of all of these methods is that they provide a structure or thought
process for carrying the work through.

2.5. Customer Satisfaction

Many companies, when they begin quality improvement processes, become
very introspective and concentrate on their own internal problems almost at
the expense of their external customers.

Other companies, particularly in the service sector, have deliberately
gone out to their customers, first to survey what is important to the custo-
mer and then to measure their own performance against customer targets
(Kristensen et al., 1993). The idea of asking one’s customers to set customer
satisfaction goals is a clear sign of an outward-looking company.

One example is Federal Express, who surveyed their customer base to
identify the top 10 causes of aggravation. The points were weighted accord-
ing to customer views of how important they were. A complete check was
made of all occurrences, and a weekly satisfaction index was compiled. This
allowed the company to keep a weekly monitor of customer satisfaction as
measured by the customer. An understanding of survey and statistical meth-
ods is therefore needed for the measurement of customer satisfaction.

2.6. Teamwork

Teamwork can provide an opportunity for people to work together in their
pursuit of total quality in ways in which they have not worked together
before.

People who work on their own or in small, discrete work groups often
have a picture of their organization and the work that it does that is very
compartmentalized. They are often unaware of the work that is done even
by people who work very close to them. Under these circumstances they are
usually unaware of the consequences of poor quality in the work they
themselves do.

By bringing people together in terms with a common goal, quality
improvement becomes easier to communicate over departmental or func-
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tional walls. In this way the slow breaking down of barriers acts as a plat-
form for change.

We defined culture as “the way we do things here,” and cultural
change as “‘changing the way we do things here.” This change implies
significant personal change in the way people react and in their attitudes.
A benchmarking approach can also help to change the way they do
things.

Teamwork can be improved by benchmarking, a method that is simi-
lar to the statistical understanding of outliers.

2.7. People Make Quality

Deming has stated that the majority of quality-related problems within an
organization are not within the control of the individual employee. As many
as 80% of these problems are caused by the way the company is organized
and managed.

Examples where the system gets in the way of people trying to do a
good job are easy to find, and in all cases simply telling employees to do
better will not solve the problem.

It is important that the organization develop its quality management
system, and it should customize the system to suit its own requirements.
Each element will likely encompass several programs. As a matter of fact,
this is where the role of statistics is most evident.

2.8. The Continuous Improvement Cycle

The continuous cycle of establishing customer requirements, meeting
those requirements, measuring success, and continuing to improve can be
used both externally and internally to fuel the engine of continuous
improvement.

By continually checking with customer requirements, a company can
keep finding areas in which improvements can be made. This continual
supply of opportunity can be used to keep quality improvement plans up-
to-date and to reinforce the idea that the total quality journey is never-
ending.

In order to practice a continuous improvement cycle it is necessary to
obtain continuous information about customer requirements, i.e., do mar-
ket research. However, we know that market research requires a deep sta-
tistical understanding for the proper analysis of the market situation.
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3. STATISTICAL UNDERSTANDING

The role of statistical concepts in the development of total quality manage-
ment it nothing new. For example, Florence Nightingale, the 19th century
statistician and famous nurse, was known as the mother of continuous
health care quality improvement. In 1854 she demonstrated that a statistical
approach by graphical methods could be persuasive in reducing the cost of
poor quality care by 90% within a short period of time. Later, in 1930,
Walter Shewhart, another prominent statistician, also suggested that the
same kind of result could be achieved by using statistical quality control
methods.

The fundamental aspect of statistical understanding is the variation
that exists in every process, and the decisions are made on that basis. If the
variation in a process is not known, then the required output of that process
will be difficult to manage.

[t is also very important to understand that every process has an
inherent capability and that the process will be doing well if it operates
within that capability. However, sometimes one can observe that resources
are being wasted in solving a problem, and simply not realize that the
process is working at its maximum capability.

In order to understand variability and the control of variation, it is
necessary to understand basic statistical concepts. These concepts are simple
to understand and learn and provide powerful management tools for higher
productivity and excellent service.

In this complex business world, managers normally operate in an
uncertain environment, and therefore their major emphasis is on the
immediate problems. In their everyday life they deal with problems where
the application of statistics occurs in pursuit of organizational objectives.

However, as we know, the business world is changing, and managers
along with other workers are adopting this change and also learning how to
manage it. For many people, the best way of adopting this change is to focus
on statistical understanding because it permeates all aspects of total quality
management.

We have already learned that “all work is a process™ and therefore
identification and reduction of a variation of processes provides opportunity
for improvement. Here, the improvement process, which recognizes that
variation is everywhere, gets help from the statistical world for this quality
journey.

In general, managers can take many actions to reduce variation to
improve quality. Snee (1990) pointed out that managers can reduce varia-
tion by maintaining the constant purpose of their employees to pursue a
common quality goal.
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4. CONCLUSIONS

In recent years, particularly in Japan and the United States, there has been a
strong movement for greater emphasis on total quality management in
which statistical understanding has been seen to be a major contributor
for management development.

It is clear that statistical understanding plays a major role in product
and service quality, care of customers through statistical process control,
customer surveys, process capability, cost of quality, etc. The value of sta-
tistical design of experiments, which distinguishes between special cause and
common cause variation, is also well established in the area of quality
improvement.

If we also accept that “‘all work is process,” that all processes are
variable, and that there is a relationship between management action and
quality, then statistical understanding is an essential aspect of the quality
improvement process.

Further, in the areas of leadership, quality culture, teamwork, etc.,
development can be seen in various ways by the use of statistical under-
standing.

In conclusion, I believe that total quality management and statistical
understanding go hand in hand. People embarking on the quality journey
must therefore venture onto the road of total statistical understanding and
follow the lead of total quality statisticians.
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Leadership Profiles and the
Implementation of Total Quality
Management for Business Excellence

Jens J. Dahligaard, Su Mi Park Dahlgaard, and Anders Nergaard
The Aarhus School of Business, Aarhus, Denmark

1. INTRODUCTION

Total quality management (TQM) is defined by Kanji and Asher, 1993 as

A company culture which is characterized by everybody’s participation
in continuous improvements of customer satisfaction.

To build the TQM culture it is important that every staff member—top
managers, middle managers, and other employees—understand and apply
the five basic principles of TQM. These can be visualized in terms of
the TQM pyramid (Dahlgaard and Kristensen, 1992, 1994) presented in
Figure 1.

As can be seen from Figure 1, the foundation of the TQM pyramid is
leadership. All staff members need leaders who can explain the importance
of TQM principles and who can show how those principles can be continu-
ously practiced so that the organization gradually achieves business excel-
lence.

Each staff member and each group must continuously focus on the
customer (external as well as internal customers). They must continuously
try to understand the customers’ needs, expectations, and experiences so
that they can delight the customer. To be able to delight the customer,
continuous improvement is necessary. World class companies are continu-
ously trying to improve existing products or develop new ones. They are
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The 5 Principles of TQM

£
ODY

CONTINUOUS IMPROVEMENT
(PRODUCTS, PROCESSES, PEOPLE)

LEADERSHIP

Figure 1 The TQM pyramid.

continuously trying to work smarter, not harder, by improving their pro-
cesses, and they understand that the most important asset to improve is
their people. To support everybody in continuous improvements, measure-
ments are of vital importance. To improve products we need feedback
from customers (measurements of customer satisfaction and other custo-
mer facts). To improve processes we need feedback from the various pro-
cesses (process measurements of defects, wastage, quality costs, etc.). To
improve people we need feedback from employees (measurements of
employee satisfaction and other facts related to improvement of people).
Statistical methods can be used in many of these measurements. The
application of statistical methods is often the best way to ensure high
reliability of the measurements, and for complex measurements such as
measurements of people’s mind-sets it may be the only way to generate
reliable facts (see Section 2).

Continuously applying the five principles of TQM will gradually result
in business excellence. But what is business excellence? Business excellence
has many definitions. One example is (Raisbeck, 1997)

The overall way of working that results in balanced stakeholder (custo-
mers, employees, society, shareholders) satisfaction so increasing the
probability of long term success as a Business.
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In 1992 the European Foundation for Quality Management (EFQM)
launched the European Quality Award and a model to be used for assess-
ment of the applicants for the award. The model, which is seen in Figure 2,
has gradually been accepted as an efficient self-assessment tool that compa-
nies can use to improve the strategic planning process in order to achieve
business excellence. Since 1996 the model has been called the European
model for TQM and business excellence.

It is not the aim of this chapter to explain the detailed logic behind the
model in Figure 2; the model closely resembles the Malcolm Baldridge
Quality Award model that was launched in 1988. The model signals very
clearly to its user that if you want good business results you have to under-
stand their relationships to other results—people satisfaction, customer
satisfaction, impact on society—and, of course, to the enablers. The
model gives a good overview of How (enablers) you may get desired results
(= What). How to use the model in a strategic planning process, monitored
by Shewhart’s and Deming’s PDCA cycle, is explained in Section 3.

Comparing this model with the TQM pyramid of Figure 1, we recog-
nize that both models have leadership as an important element. There are
good reasons for that. Good leadership and strong management commit-
ment have long been recognized as the most essential preconditions for any
organization aspiring to be world class. As a result, much effort has been
devoted to the pursuit of a “business excellence™ approach to leading and
managing an organization in order to achieve world class performance.

Combining the principles of the TQM pyramid with the principles
(values) behind the European model for TQM business and excellence, we

People People
— Management J_ — Satisfaction J
(90 points) (90 points)
T T
o ) - ' i; li 8;. i T T T
Leadership oliey Processes C\{stom.er :Business Results
(100 pointsy 1 Strat® B~ (140 points) i Satisfaction g o0 i)
(80 points) (200 points) P
Resources ln;pa‘ft on
(90 points) ocu?ty B
L (60 points)
. ] h
< < >
Enablers 50% Results 50%

Figure 2 The European model for TQM and business excellence.
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propose in this chapter that the fundamental principles of business excel-
lence be taken to be the basic principles of total quality management sup-
plemented by the principles of the learning organization and the creative
organization.” The results are the following six principles for business excel-
lence:

A focus on customers and their needs

Continuous improvement

The empowerment and participation of all staff members
A focus on facts

A commitment to creativity

6 A focus on continuous learning

ANl

A lot has been written about leadership and management’s responsibilities
for the implementation of these principles and the related concepts, but
there has not been much concern about identifying the different leadership
profiles in today’s business world and their relations to the above principles
and the success criteria for business excellence. If a manager’s leadership
profile does not correlate positively with the six principles listed above, then
the manager may be a barrier to the implementation of TQM. In this case
you obviously have only three options:

1. Fire the manager.
2. Forget TQM.
3. Educate the manager.

It is our belief that education of the manager is a feasible solution in most
cases. For that purpose we have developed an integrated approach for
management development that is based on quality function deployment
(QFD; see Section 2). By applying the QFD technique to this area it is
possible to gain information about the effect of different leadership profiles
on the success criteria for business excellence. Without a profound under-
standing of this relationship, we cannot achieve business excellence.
The aims of this chapter are

1. To show an example of how statistical methods can be used to
control and develop the softer parts of total quality manage-
ment—the leadership styles (Section 2).

*Success criteria taken from the EQA business excellence model have been supplemented with
success criterta from the creative and learning organizations because although creativity and
learning are implicitly included in total quality management, theory on total quality manage-
ment has to a certain degree neglected these two important disciplines. The aspect that unites
all of the chosen success criteria is that they all demand a strong commitment from the senior
management of an organization.
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2. To provide an overview of the role and application of statistical

methods in monitoring the implementation of total quality man-
agement to achieve business excellence (Section 3).

2. THE EUROPEAN EMPIRICAL STUDY ON LEADERSHIP
STYLES

To achieve our first aim an empirical study was carried out that involved
more than 200 leaders and managers of European companies and some 1200
of their employees. The format of the study was as follows.

1.

Four hundred chief executive officers from France, Germany,

Holland, Belgium, the United Kingdom, and Denmark were ran-

domly selected from various European databases. The selection

criteria were that they had to be from private companies (100%

state-owned companies were excluded) with more than 50 employ-

ees.

The selected leaders were asked to complete an 86-point question-

naire” composed of two sections:

a. 49 questions asking leaders to rate the importance of a number
of aspects of modern business management"

b. 37 questions asking leaders to rate the importance of a number
of statements or success criteria on business excellence

By analyzing the material supplied by the leaders in response to

the first 49 questions, it was possible to plot the “leadership pro-

file” of each individual respondent. These leadership profiles are

expressed in eight different leadership “styles”.

The success criteria, which form the focus of the second section (37

questions), indicate the key leadership qualities required to achieve

business excellence. The higher the leaders scored on these ques-

tions, the more they could be said to possess these qualities.

*The complete Leadership Profile questionnaire in fact consisted of 106 questions. The addi-
tional 20 questions covered cultural issues that do not form part of this chapter. The questions
were developed by Geert Hofstede in 1994.

tThe aspects of management were identificd by a Danish focus group participating in a pilot
version of this survey in 1995, developed by Anders Norgaard and Heine Zahll Larsen. The
focus group consisted of nine directors representing various areas of business, who were asked
to identify the key attributes of a good business lcader. The attributes so identified were
classified on the basis of an affinity analysis, and as a result 49 variables were established.
These variables could then be used to plot any individual leadership profile.
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5. For each leader, 10 employees were also selected to participate in
the survey. These employees were asked to rate the importance of
the 49 management aspects, in order to give a picture of what the
employees considered desirable for ideal leaders.

2.1. Description of the Leadership Model

The leadership model that was developed as the basis for this analysis is
designed to shed light on the relationship between the business leadership
styles of today’s leaders and the requirements to achieve business excellence.
By plotting the leadership profile of any individual leader, the model pro-
vides a tool to assess the extent to which he or she is working toward the
successful achievement of business excellence.

Success Criteria

As described in Section 1, the success criteria for business excellence used in
this research comprise three main elements—total quality management,
creativity, and learning. However, since the interaction between an organi-
zation’s leadership and its employees has a major impact on whether these
criteria are achieved or not, this interaction becomes, in effect, a fourth
success criterion.

As Figure 3 shows, the achievement of these success factors is affected
by the leadership profiles of those in charge of the organization. Although

Creativity

Nationality

e Strategic
Company size

he Captain
g B s
environment
Learning

4 4
Business Excellence Leadership Profile

Figure 3 The leadership model.
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not included within the scope of this chapter, it is reasonable to assume that
these leadership profiles are in turn influenced by a number of “‘basic vari-
ables” such as leader’s age, education, and experience and the size of the
company or the sector in which it operates.

The First Success Criterion: Total Quality Management. Total qual-
ity management is regarded as the main criterion for business excellence.
Focusing on achieving continuous improvements in an effort to enhance the
company’s strengths and eliminate its weaknesses, TQM covers all areas of
the business, including its policies and strategies, its management of people,
and its work processes. The core values of the total quality-oriented orga-
nization are a focus on the customer, the empowerment of its people, a focus
on fact-based management, and a commitment to continuous improvement.

Since the European Quality Award (EQA) model is the most author-
itative and most widely used method of assessing TQM in Europe, core
aspects of this model have been used to determine the performance of the
surveyed leaders with regard to the first success criterion. The higher the
score the leaders achieved in this part of the questionnaire, the more posi-
tively they can be said to be working with total quality management.

The Second Success Criterion: Creativity. To achieve business excel-
lence, organizations must also focus strongly on developing creativity.
Urban” (1995, p. 56) has stated, “If all companies are high-quality and
low-cost, creativity will be the differentiating factor.”

Creativity 1s an important criterion for business excellence because it is
a vital stimulus for improvement and innovation. It is a prerequisite for
business excellence that an organization and its leaders be both committed
to, and capable of, putting in place an organizational structure that fosters a
creative environment. At the same time, they must be able to control and
make use of that creativity. Since creative ideas do not just surface sponta-
neously, it is essential to implement a creative planning process. The creative
organization aims to establish an effective basis for innovation and contin-
uous improvement by adopting a systematic approach to the various aspects
of creativity, such as the evaluation of ideas and procedures for commu-
nication.

For the purposes of this study, European leaders’ performance with
regard to this success criterion—the extent to which they are proactively
working to generate and retain creativity—was assessed according to the
theory of managing ideas set out by Simon Majaro.

*Glen L. Urban, Dean of the Sloan School of Management, Massachusetts Institute of
Technology.
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The Third Success Criterion: Learning. To quote Peter Senge (Senge,
1990, p. 4): “The organizations that excel will be those that discover how to
tap their people’s commitment and capacity to learn at all levels in an
organisation.”

The successful organization of the future will be a learning organiza-
tion—one that has the ability to take on new ideas and adapt faster than its
competitors. The model of the learning organization used for this study
follows the five learning disciplines set out by Senge. These disciplines
have therefore served as the basis for evaluating the European leaders’
performance with respect to this third success criterion.

The Fourth Success Criterion: Leader—Employee Interaction. The
three success criteria above all depend critically on the interaction between
the leaders and their employees. For successful work with total quality
management, learning, and creativity, it is important for leaders to get
their subordinates ““on board” and to harness their energies in the pursuit
of these success criteria. A comparison of the views of the employees
(through the profile they provided of their “‘ideal leader”) with the actual
performance of the leaders themselves was therefore used as a measurement
of this interaction.

2.2. Leadership Styles

As described earlier, the answers the leaders provided to the questionnaire
formed the basis of an assessment of them in terms of eight different leader-
ship “styles.” The eight leadership styles were identified by a factor analysis.
The 49 questions regarding leadership capabilities were reduced to eight
latent factors. It is essential to bear in mind that a leader is not defined
simply as belonging to one or another of these styles but in terms of an
overall profile that contains varying degrees of all eight. In other words, it is
the relative predominance of some styles over others that determines the
overall leadership profile of any given individual. The eight leadership styles
are described in the following paragraphs.

The Captain

Key attributes: Commands respect and trust; leads from the front; is pro-
fessionally competent, communicative, reliable, and fair.

The Captain is in many ways a “natural” leader. He commands the
respect and trust of his employees and leads from the front. He has a con-
fidence based on his own professional competence, and when a decision is
made it is always carried out. He has an open relationship with his employ-
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ees. He treats them all equally, is usually prepared to listen to their opinions,
and usually ensures that information they require is communicated to them.

The Creative Leader

Key attributes: Is innovative, visionary, courageous, inspiring; has a strong
sense of ego.

The Creative leader is full of ideas and is an active problem solver and
a tireless seeker after continuous improvement. He has a clear image of the
direction the company should pursue in the future. He is courageous and is
willing to initiate new projects despite the risk of failure. He is a source of
inspiration to his employees. He has a tendency to act on inspiration rather
than on rational analysis and is driven by a strong sense of ego.

The Involved Leader

Key attributes: Shows empathy, practices a “*hands-on” approach, does not
delegate, focuses on procedures.

The Involved leader possesses good people skills, is well attuned to the
mood of his staff, and takes time to listen to their problems and ideas. His
close involvement with his employees gives him a good overview of the tasks
they are working on. This level of involvement, however, makes it hard for
him to delegate tasks rather than participate personally. He is focused on
procedures and routines in teamwork and is consequently less well suited to
take an overall leadership role.

The Task Leader

Key attributes: Is analytical, “bottom line”—driven, result-oriented, imper-
sonal, persevering, intolerant of mistakes.

The Task leader believes success is measured by bottom-line financial
results. Day-to-day business in the organization is carried out on the basis
of impersonal, rational analysis. The Task leader is result-oriented and
tends to be extremely persevering and determined once a course of action
has been decided. The reliance on a rational attitude toward work and
procedures means that this leader has difficulty accepting mistakes made
by employees, with employee morale and performance consequently tend-
ing to suffer when they fail to meet the leader’s expectations. The Task
leader lacks personal skills when it comes to dealing with the problems or
opinions of employees.
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The Strategic Leader

Key attributes: Focuses on strategic goals, takes a holistic view of the orga-
nization, is a good planner, avoids day-to-day details, is process-oriented.
trustworthy.

The Strategic leader has an overall view of the organization, focusing
on longer term goals rather than day-to-day issues. This leader is process-
oriented, believing that consistent work processes are essential for positive
results. He is very efficient, setting clear objectives for what needs to be
achieved. His comprehensive overview of the organization and his personal
efficiency make him a highly trustworthy leader of his employees.

The Impulsive Leader

Key attributes: Obsessed with new ideas, unfocused, curious, energetic,
participative.

The Impulsive leader’s most salient characteristic is an obsession with
new ideas combined with an unfocused energy. He is constantly “on fire”
and lets nothing get in the way of his enthusiasm. As a result, he tends to
take an interest in a wide range of issues and opportunities without neces-
sarily having the capability to pursue the possibilities this process generates.
In his fanaticism to push through his latest ideas, he tends to appear auto-
cratic and domineering to his employees.

The Specialist Leader

Key attributes: Is expert, solitary, lacks inspirational ability, is resistant to
change, calm.

The Specialist leader is an expert in his field who prefers to work alone.
His leadership is expressed through the quality of his expertise rather than
through any *‘people” skills. He is not good at teamwork, lacking the ability
to inspire others and having a tendency to be pedantic and uncompromising.
He appears calm, assured, and in control.

The Team Builder Leader

Key attributes: Is tolerant, gives feedback, acts as a coach, motivates,
inspires, is supportive.

The Team Builder leader perceives himself primarily as a coach aiming
to maximize the advantages of teamwork. He gives constructive feedback
concerning his employees’ work and behavior. He is also very tolerant and
understands the need to support and inspire employees in critical situations.
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2.3. The Relationship Between Success Criteria and
Leadership Styles

The three success criteria and the eight leadership styles are estimated in
this study to determine the precise demands that European leaders face
when they seek business excellence. By estimating the relationships among
the three success criteria and the eight leadership styles it is possible to
isolate the leadership styles resulting in the greatest impact on the success
criteria.

With the data of 202 European leaders we have been able to empiri-
cally prove that the Team Builder, the Captain, the Strategic, the Creative,
and the Impulsive leadership styles all have a positive impact on one, two, or
all three success criteria. The leadership styles are ranked according to their
degree of influence on the success criteria. The more success criteria the
leadership styles influence, the more important they are to achieving busi-
ness excellence, i.e., the Team Builder is the most important one (impacts on
three success criteria; see Fig. 4), whereas the Impulsive leader is the least
important (impacts on one success criterion, Quality). The remaining leader-
ship styles—the Involved, the Task, and the Specialist leaders—have no
influence on achieving business excellence.

However, it is not enough to have knowledge of the correlation
between the success criteria and the leadership styles. European leaders

@ 24) " The Captain
(40]

The Strategic
@ (20)  The Impulsive

Figure 4 The correlation between success criteria and leadership styles. The
numbers indicate the strength of the relationships.

The Creative
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must also take into consideration the Ideal Leadership profile outlined by
the employees. By using quality function deployment (see Section 2.4) it is
possible for managers to work with the demands of the employees.

2.4. Model for Measuring Excellent Leadership

An Excellent Leadership model should integrate the demands that the suc-
cessful leader must consider when trying to achieve business excellence. The
model should clarify what the leader should do to improve his performance
as a leader in relation to the success criteria for achieving business excel-
lence.

A product improvement technique called quality function deployment
(QFD) is used as a tool for measurement of Excellent Leadership. The
essence of this technique consists of combining a set of subjective variables,
normally set out by the demands of customers, with a set of objective vari-
ables provided by the manufacturers’ product developers. As a result of this
interactive process a number of focus areas for developing high quality
products become apparent, enabling manufacturers to adapt their products
more precisely to customer demands.

Treating the leaders as “‘products” and the employees as “‘customers,”
QFD is used as a technique for determining Excellent Leadership. This is the
reason for making the parallel between leaders and products. In QFD, the
voice of the customer is used to develop the product. A leader has many
“customers” such as employees and stakeholders. In this project, the
employees are selected as our link to the customer part in QFD. This
means that the voice of the employees will serve as an important guideline
for leaders today in developing the right leadership qualities.

The information required for the QFD construction consists of

Employee demands of an ideal leader. The employees’ Ideal Leader
profile represents the customers’ demands of the “product” in QFD.

The relationship between success criteria for achieving business excel-
lence.

The relationship between success criteria and different leadership
styles.

The individual leader’s score on the success criteria and leadership
styles.

Information about the “best in class” leaders within the areas of per-
formance (quality, learning, and creativity).

The QFD technique provides the possibility to work with the follow-
ing aspects:
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Figure 5 The Excellent Leadership model.

1. Assessment of the leader’s performance on the success criteria.

2. Benchmarking—a comparison with “best in class”—leaders that
have the highest score on the success criteria.

3. Estimation of an Excellent Leadership profile (ELP). The ELP is
used to evaluate whether or not any leader matches the require-
ments for achieving business excellence.

The integrated QFD model is described below and is referred to here-
after as the Excellent Leadership model (Fig. 5). The description provides an
explanation of the model but does not explain its full potential. Only the
relevant parts of the model’s matrix are explained in order to clarify how
QFD can be used in this specific managerial perspective.

The QFD technique consists of a number of different matrices (collec-
tions of large numbers of quantifiable data), which makes the technique
systematic and rational. Using each matrix as a foundation for analyzing
the empirical data on European leaders makes it possible to work with the
data in an easy and understandable way. Each of the matrices in Figure 5 is
discussed in the following subsections.

Attributes—Leadership Styles

The attributes matrix (far left in Fig. 5)
includes the different attributes of leader-

ship. Eight leadership styles have been

identified in relation to this study. As

explained earlier, the eight leadership
1]

styles were created on the basis of rating
the importance of 49 aspects of modern
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business management. However, in keeping a general view it is evident that
the focus is on the eight latent leadership factors. Furthermore, the devel-
opment of future leadership is based on different leadership styles, so it is
not essential to have a high degree of detail until a later stage.

Weights—A Rating of the Eight Leadership Styles

The 1150 employees who participated in
the survey also evaluated the importance
of the 49 aspects of modern business man-
agement under consideration to their con-
cept of an ideal leader. This employees’
Ideal Leader profile provides a rating or
a weight of importance for each of the
eight leadership styles. With this information the leader can identify possible
areas of improvement in meeting employee demands for an ideal leader.

Correlation Matrix

The correlation matrix is the heart of the
Excellent Leadership model. In this part
of the model the correlation between the
individual leader’s profile and the employ-
ees’ Ideal Leader profile is estimated.
Correlating the three success criteria with
the eight leadership styles yields a picture
illustrating the effects that each of the individual leadership styles has on the
success criteria for achieving business excellence.

Substitution

The roof of the QFD house, (Fig. 5) con-
sists of a correlation matrix that illustrates
the correlation between the three success
criteria. This part of the model is relevant
in determining potential substitution
—] opportunities between the criteria. Only
:I three criteria are included in this project,
which gives only limited information on
substitution. Using the 37 elements of the success criteria might make it
possible to come up with a more differentiated view of substitution between
the elements.




Leadership Profiles and Implementation of TQM 59

Assessment

The leader’s performance is measured on
the basis of the three success criteria. This
assessment is carried out by means of a
self-evaluation, during which the leader
answers 37 questions. The answers to
these questions indicate the leader’s and/
- or organization’s level of activity on the
success criteria (quality, learning, and creativity), for achieving business
excellence, illustrated by an individual score. This assessment provides the
leaders with a score of their current performance and critical areas in which
further allocation of resources is required for the development of business
excellence. It is important to have knowledge of one’s current level if one is
to set relevant objectives for the future. The three successive critieria should
be individually evaluated. A global approach is required, as they are
strongly correlated

Benchmarking
The right-hand side of the model illus-
trates the profiles for “best in class”
within the three success criteria. These
i profiles can be used as a benchmark
- against “‘best in industry,” which can gen-
——

erate new ideas for improvement. These

I::I profiles serve as a foundation for the

Excellent Leadership profile, which takes into account the three success
criteria and employees’ demands of an ideal leader.

Areas of Improvement

The bottom matrix in Figure 5 illustrates
the “result” of the process. Multiplying
the weights of the employees with the
relationships between the leadership styles
and the three success criteria creates this
end product. Taking the view of the
employees, the areas of improve-ment
for the leader can be identified. In other words, the leader is provided
with concrete ideas of ways in which the respective areas of improvement
are weighted according to employee demands.
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Excellent Leadership Profile

The Excellent Leadership profile (also
known as the Success Profile), serves as
a benchmark for the leaders. It is the
ideal leadership profile if the leader
il wants to succeed i'n‘managingi qual.ity,
|: learning, and Fregtmty. In this project
the overall objective was to create one
profile of an excellent leader working actively with the management disci-
plines included in the success criteria. From this perspective this matrix at
the far right in Figure S, is considered the most important one in our use of
QFD.

The QFD technique has served as the basis for our research and
resulted in the identification of the Excellent Leadership profile. The five
crucial drivers (leadership styles) for achieving excellent leadership were
identified by a factor analysis. By correlating leadership styles with success
criteria for business excellence it was possible to identify the styles most
positively correlated to business excellence. Expanding the theoretical foun-
dation, as seen in this chapter to treat the empirical data on European
leaders with QFD and thereby take into consideration “employees’ ideality”
has resulted in a more accurate picture of the true drivers in the achievement
of business excellence.

The Excellent Leadership profile shown in the rightmost matrix in the
QFD-model can be benchmarked against any segment or group of leaders,
i.e., leaders from different countries or sectors, of different ages, and so on.
Two segments have been selected for further analysis:

1. European leaders’ leadership profile versus the Excellent
Leadership profile.

2. Country-by-country comparison of European leaders’ leadership
profile.

2.5. The Excellent Leadership Profile

In order to evaluate whether or not a leader is equipped to lead an organi-
zation to business excellence, a benchmark Excellent Leadership profile
(ELP) must be developed. This illustrates the leadership profile that is
best oriented toward the achievement of all three of the main business
excellence success criteria.
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The leadership profile benchmark is based on three groups of leaders,
the 20 leaders who scored highest on creativity, quality, and learning. It is
then used to develop the Excellent Leadership profile.

A Note on the Leadership Profile Graphs Used in this Study

1. The eight leadership styles that make up the leadership profiles are
measured on a scale of 0 to 100 (vertical axis of Fig. 6).

2. Scores above or below 50 points represent deviations from the
average of each leadership style.

3. The closer a leader gets to 100, the more strongly his or her leader-
ship profile is characterized by the elements identified in the
description of that particular leadership style.

4. Conversely, the further a score falls below 50, the less applicable
those elements are as a description of the leader’s profile.

As Figure 6 illustrates, two leadership styles have the predominant
influence within the Excellence Leadership profile—the Strategic and the
Task.

The Strategic is clearly the most important leadership style when
it comes to identifying the characteristics required of a leader seeking

40 ..
30 |- .- _
20
The The The The Task The The The The Team
Captan Creative Involved Strategic Impulsve Specialist Builder

—e— Excellent Leadership Profile

Figure 6 The Excellent Leadership profile. Dotted lines represent the band of
deviation from the excellent leadership profile.
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business excellence. The competencies of the Strategic leader are there-
fore ones that any leader hoping to achieve business excellence must
continuously develop. This means that an overall view of the business
is essential, with practical details of daily work not being allowed to
prevent a focus on strategic goals or get in the way of setting clear
organizational objectives.

The strong presence of the Task leadership style within the ELP under-
lines the fact that a highly developed analytical capability and an extremely
result-oriented approach are both necessary for the achievement of business
excellence. The Captain, the Creative, and the Team Builder styles also play
an important part in achieving business excellence. The ELP confidence
interval is above 50, and these styles are therefore important to the
Excellent Leadership profile.

Compared to the results in Figure 4 it may seem surprising that the
Task leadership style has such a strong weight in the Excellent Leadership
profile. The explanation for that is that our benchmarks consisted of the 20
leaders who had the highest scores on quality, creativity, and learning. A
characteristic of those leaders was that they also showed a relatively high
score on the questions that correlated positively with the Task leadership
style.

The remaining three styles—the Involved, the Impulsive, and the
Specialist—are not regarded as important in the context of the Excellent
Leadership profile. As can be seen from Figure 6, they are all broadly
“neutral,” reaching a score around average. This does not mean that they
can be safely disregarded, however, since a score below average (i.e., below
50) would certainly represent a deviation from the ELP. In other words,
while leaders need to strive actively to achieve the Strategic and Task
leadership competencies and also the softer leadership attributes of the
Creative, the Team Builder, and the Captain, they should not ignore
the other leadership styles or seek to eliminate them from their profile
altogether.

2.6. European Leaders Versus the Excellent Leadership
Profile

In Figure 7 two profiles are illustrated: the Excellent Leadership profile
interval (dotted lines) and the European leaders’ profile (bold line), the latter
being the average profile of all 202 European leaders participating in the
study. The graphs show that there are large deviations between the
European leaders’ profile and the ELP on two leadership styles: the
Captain and the Strategic.
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Figure 7 Europcan leaders versus Excellent Leadership profile.

The Strategic:

1. A score of almost 60 indicates that European leaders do place

importance on the skills of the Strategic leader and put them

into practice, by taking a long-term view of the company and its

direction, setting clear objectives, and being focused on maintain-

ing consistent work processes.

They need to develop these competencies even further, however, if

they wish to match the ELP.

3. The significant deviation between the leaders’ actual performance
and the requirements of the ELP is of considerable importance,

given that the Strategic leadership style is the most crucial element
of the ELP.

o

The Captain:

1. The European leaders’ low score on the Captain style category
indicates that they are not “‘natural™ leaders. At best, they learn
leadership skills as they grow into their assignment.

The below 50 score indicates that these leaders are not strongly
characterized by the competencies of this particular leadership
style—providing leadership from the front, encouraging open
communication, and commanding the respect and trust of
employees.

o
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3. Although the Captain is not as crucial to the overall ELP as, for
example, the Strategic leadership style, the deviation here is still an
important one in terms of providing the balance of leadership
styles that is needed to achieve business excellence.

2.7. European Leaders Versus Employees’ Ideality

The employees’ Ideal Leadership profile embodies the preferences expressed
by the 1150 employees who participated in the survey. Direct subordinates
to chief executives and managing directors were asked to use their answers
to the first 49 questions of the survey to describe their “ideal” leader—
someone for whom they would be willing to make an extra effort in their
work. Comparing the leaders’ profile with the employees’ Ideal Leadership
profile shows whether the employees are in harmony with the leader for
achieving business excellence and where they are in conflict.

Figure 8 highlights four main areas of leadership where European
employees’ expectations differ significantly from the actual performances
of the leaders: the Captain, the Creative leader, the Involved leader, and
the Specialist leader. (A difference of 10 points or more is significant). The
two styles positively correlated to achieving business excellence are included
in the analysis.

20
The The The The Task The The The The Team
Captain Creative Invoived Strategic Impulsive Specialist Builder

| @ European leaders —g— European employees |
A B B - E —d

Figure 8 European leaders versus employees’ ideality.
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The Captain

Figure 8 shows a difference of approximately 18 points between employees’
expectations and actual performance in the Captain category.

The European leaders’ low score in the Captain style category indi-
cates that they are not “natural” leaders. At best, they learn leadership skills
as they grow into their assignment.

The below 50 score indicates that the leaders are not strongly char-
acterized by the competencies of this particular leadership style—providing
leadership from the front, encouraging open communication, and com-
manding the respect and trust of employees.

Employees place a much greater value on the leadership characteristics
of the Captain than their leaders do.

The employees’ score of 60 indicates that they react positively to a
strong ‘‘natural” leader who can guide them and to whom they can look
with respect, and that they appreciate the continuous flow of information
provided by the Captain.

The Creative

Figure 8 indicates a difference of approximately 22 points between actual
leadership performance and employee expectations in the creative style cate-
gory.

The Creative style is the leadership style showing the most significant
difference, with employees rating the Creative attributes very highly, at a
score of 70, while their leaders score below 50.

The high score (70) indicates that, in contrast with the Strategic and
Task styles, European employees place a high value on leaders who are
characterized by the Creative leadership competencies.

The employees show a strong preference for a creative, inspiring, and
courageous leader, scoring higher on this leadership style than on the other
seven. This translates into a strong demand among European employees for
a leader of vision and innovation who is prepared to deal with the increasing
complexity of the business environment and who sees creativity and con-
tinuous improvement as the keys to success. European employees seek a
leader who acts as a source of inspiration, motivating the workforce and
taking courageous business decisions. These expectations, however, are sig-
nificantly above the requirements their leaders need to meet in order to
achieve business excellence.

Comments on the Specialist

There was a difference of approximately 15 points between the leaders’
profile and the employees’ ideality profile.
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The employees’ low score on the Specialist leadership style (below 35)
can be seen as the mirror image of the high value they place on the Captain
and Creative styles. The solitary nature of the Specialist leader, his lack of
“people” skills and ability to inspire, are the direct antithesis of the
Captain’s and the Creative leader’s attributes. The Specialist style of leader-
ship is clearly not appreciated or regarded by employees as being of great
value.

European leaders, whose Specialist score was significantly above the
employee rating for that style, place a greater value on this leadership style
than their employees do.

2.8. Conclusions

In seeking to achieve business excellence, European leaders may encounter
resistance among their employees. Of crucial significance in this regard is the
fact that European employees place a markedly lower value on the Team
Builder and Strategic competencies than is required for business excellence.
By contrast, their “ideal” leader is heavily characterized as being creative,
inspiring, and an active problem solver.

The clear findings from this research study were that the five crucial
drivers of business excellence are the Team Builder, the Captain, the
Strategic, the Creative, and the Impulsive leadership styles (Fig. 4).
Leaders trying to achieve business excellence must therefore view the
high-level attainment of these sets of leadership competencies as their para-
mount objective,

It is important to remember, however, that this must not be done at
the cost of neglecting other leadership competencies. As the Excellent
Leadership profile demonstrates. the other leadership styles may be of less
importance to achieving business excellence than the five leadership styles
mentioned above, but this does not mean that they should be neglected
altogether. The overall balance of the ELP requires the other leadership
styles to be maintained at levels within the ELP interval. Maintaining a
certain focus on these competencies is therefore still an important aspect
of excellent leadership.

3. MONITORING THE IMPLEMENTATION OF THE
SUCCESS CRITERIA FOR BUSINESS EXCELLENCE

Section 2 showed how it is possible to measure and hence to understand the
softer parts of TQM (the intangibles). Remember that Dr. Deming talked
about “the most important numbers being unknown and unknowable,” i.e.,
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measures of the qualitative world. Section 2 shows an example of how it is
possible to measure the mind-set of people by using statistical methods. This
section gives an overview on how to monitor and improve tangibles (things,
processes, etc.) as well as intangibles. Business excellence can be achieved
only if continuous improvements are focused on both areas. Such a focus is
an important element of the leadership part of Figures 1 and 2.

3.1. The Plan-Do-Check-Action Cycle for Business
Excellence

The problem with leadership is that most managers are confused about how
to practice leadership. They need one or more simple models from which
they can learn what their main leadership tasks are and how to integrate
those tasks in the strategic planning process, a process that generates the
yearly business plan and also longer term plan for the company (3-5 year
plan) each year. The European model for business excellence may help
managers to solve that problem. Both the yearly business plan and the
long-term strategic plan can be designed by using the nine criteria of the
model; i.e., the plan should comprise the result criteria of the model (what
you want to achieve) and the enabler criteria as well (how you decide to
work, i.e., iow you plan to use intangibles). Figure 9 gives an overview of
this Plan—-Do-Check-Action (PDCA) approach.

It is seen from Figure 9 that action consists of a yearly self-assessment
of what you have achieved and how you achieved the results. Such a yearly
self-assessment is invaluable as input to the next year’s strategic planning
process.

During the year the plan is implemented with the help of people in the
company’s processes, and the results on people satisfaction, customer satis-
faction, impact on society, and business results come in. This implementa-
tion may be visualized as a deployment of the plan to the Do and Check
levels as shown in Figure 10.

Figures 9 and 10 give the guidelines or the overall framework for
finding a way to business excellence. The guidelines are monitored by the
PDCA cycle in which Study and Learn (Check) constitute the crucial pre-
condition for continuous improvement of the strategic planning process.
The framework has been linked to the European model for TQM and
business excellence.

As was pointed out in Section 2, the European model for business
excellence is not explicit enough on creativity and learning. For that reason,
and also because companies outside Europe may wish to apply other models
(e.g., the Malcolm Baldridge model), a more general model is proposed. We
call the model the PDCA-leadership cycle for business excellence. This
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PDCA and Strategic Planning
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Figure 9 The elements of Plan in relation to the yearly strategic planning process
(items 1-10).

model, which contains the key leadership elements for business excellence, is
shown in Figure 11.

It is seen from Figure 11 that the Plan component contains the vision,
mission, and goals of the company together with the business plan, which
contains goals for both tangibles and intangibles. In the Do phase the plan
has to be deployed through policy deployment. Two other elements are
crucial for an effective implementation of the business plan: (1) the leader-
ship style of all managers and (2) education and training. The Check phase
of the PDCA-leadership cycle comprises two elements: (1) Gaps between
goals and results have to be identified, and (2) the gaps have to be studied
for learning purposes. Once we understand why the gaps came up we are
ready for Action. This phase should result in new ideas for improvement of
people, processes, and products and new ideas for motivation of the people.
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Figure 10 Deployment of the plan to the Do and Check levels.

With this raw material the company has strong input for the next PDCA-
leadership cycle for business excellence.

Let us look more specifically at education and training in the Do
phase.

3.2. Education and Training for Business Excellence

The overall purpose of education and training is to build quality into people
so that it is possible to practice real empowerment for business excellence.
This can be achieved only if education and training are part of an overall
leadership process where improvements in both tangibles and intangibles
support each other as natural elements of the strategic planning process.
Tangible world class results are evidence of business excellence, but the
precondition for the tangible results are the intangible results such as recog-
nition, achievement, and self-realization. The intangible results are a pre-
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condition for building values into the processes, i.e., value building of intan-
gible processes, which again will improve the tangible results. Figure 12
shows how this process is guided by the principles of the TQM pyramid
supplemented by education and training.

If we look at Education and Training (Fig. 12), we see that it forms the
foundation of a temple and that its aim, quality of people, is the roof of the
temple. The pillars of the temple are the main elements of Education and
Training: (1) learning, (2) creativity, and (3) team building. Training in team
building is a necessary element to support and complement creativity and
learning. The importance of team building was also clearly demonstrated in
Section 2 of this chapter (see Figs. 4 and 7).

The main elements of the three pillars are shown in Figures 13-15. It is
seen that the elements of each pillar are subdivided into a logic part and a
nonlogic part. The logic part of each pillar contains the tools to be used for
improvement of tangibles (things, processes, etc.), and the nonlogic part
contains the models, principles, and disciplines that are needed to improve
intangibles such as the mind-set of people (mental models, etc.). Learning
and applying the tools from the logic part of the three pillars may also
gradually have an indirect positive effect on intangibles.

Most of the methods presented in this volume are related to the logic
part of the three pillars. To build quality into people and to achieve business
excellence, logic is not enough. Education and training should also comprise
the nonlogic part of the pillars, which is a precondition for effective utiliza-
tion of the well-known logical tools for continuous improvement. It is a
common learning point of world class companies that managers are the
most important teachers and coaches of their employees. That is the main
reason why education and training are integrated in the PDCA-leadership
cycle for business excellence.

4. CONCLUSION

In this chapter the role of statistical methods in monitoring the implementa-
tion of TQM and business excellence has been discussed. It has been argued
that in order to achieve business excellence it is necessary to continuously
improve tangibles (things, processes) as well as intangibles (e.g., the mind-set
of people). Improving the mind-set of people is the same as building quality
into people. Improvement of tangibles requires education and training on
the well-known statistical tools such as statistical process control.
Improvement of intangibles requires education and training on nonlogical
models, principles, and disciplines. Both types of education and training are
needed to achieve business excellence.
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Figure 15 The logic and nonlogic parts of Team Building in Education and
Training.

Section 2 showed how it is possible to use statistical methods to
understand and improve the soft part of TQM implementation: leader-
ship styles. Without understanding the effects of leadership styles it is
impossible to practice effective leadership. As leadership is both the foun-
dation of the TQM pyramid in Figure 1 and the first enabler criterion of
the European model for business excellence (see Fig. 2), it i obvious
that the first step on the journey to business excellence should be to
try to assess and improve the different leadership styles of the company’s
managers.

Section 3 showed how leadership can be practiced and monitored by a
simple PDCA leadership cycle. It was shown that in this cycle the imple-
mentation of the company’s business plan is accomplished by people work-
ing in the different processes that are running day by day. These people need
education and training in the well-known statistical tools for improvement
of tangibles (things, processes, etc.) as well as education and training in
models, principles., and disciplines for improvement of intangibles (the
mind-set). It was argued that the company’s business plan should contain
improvement goals for tangibles as well as intangibles. Only in this way can
business excellence be achieved.
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1. INTRODUCTION

The control of industrial manufacturing processes has long been considered
from two different points of view. Statistical process control (SPC), which
traces back to the work of Walter Shewhart in the 1920s, was originally
developed for discrete manufacturing industries (industries concerned with
the production of discrete items). On the other hand, continuous process
industries, chemical industries for instance, used various forms of adjust-
ment strategies administered by automatic controllers. This type of process
control became known as engineering process control (EPC) or automatic
process control (APC). Separately, both approaches have received enormous
interest in the academic literature.

Interest in SPC and EPC integration originated in the 1950s in the
chemical industries. Part of this interest is due to the inertial elements in this
type of production process (e.g., raw materials with drifting properties) that
result in autocorrelated quality characteristics of the end product.
Traditional SPC methods assume instead i1.i.d. quality characteristics, and
problems of a high number of false alarms and the difficulty in detecting
process shifts occur under (positive) autocorrelation at low lags. If the auto-
correlation structure can be modeled and a compensatory variable can be
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found to modify the quality characteristic, then an EPC scheme is put into
place to compensate for such drifting behavior. However, abrupt, large
shifts in the quality characteristic indicate major failures or errors in the
process that cannot generally be compensated for by the EPC controller.
For this reason, many authors have suggested that an SPC chart be added at
the output of an EPC-controlled production process to detect large shifts.
There is no clear methodology, however, that models such integration
efforts in a formal and general way.

In contrast, interest in SPC-EPC integration in discrete part manufac-
turing is more recent. In this type of production process, elements that
induce autocorrelation are not common. However, drifting behavior of a
process that “‘ages” is common. A typical example of this is a metal machin-
ing process in which the performance of the cutting tool deteriorates (in
many cases, almost linearly) with time. Many years ago, when market com-
petition was not so intense, specifications were wide enough for a produc-
tion process to drift without producing a large proportion of
nonconforming product. With increasing competition, quality specifications
have become more rigorous, and drifting behavior, rather than being toler-
ated, is actively compensated for by simple EPC schemes.

Academic interest in the area of SPC-EPC integration has occurred as
a natural reaction to the requirements of industrial practices. However,
most of the approaches suggested during the discussion on this problem
argued from the point of view of practical necessities alone. Proponents
of either side admit that many control problems in modern manufacturing
processes cannot be solved by either SPC or EPC alone. As a consequence,
methods from each field are recommended as auxiliary tools in a scheme
originally developed either for SPC or for EPC applications alone. None of
these approaches have been really successful from a methodological point of
view. The models used were originally designed for either proper SPC or
EPC applications but not for an integration of the two. The practical neces-
sity of an integrating approach to industrial control problems is obvious,
but a rigorous mathematical model to reflect this need is still missing. As a
reaction to this methodological gap, the present chapter establishes a simple
model that integrates the positions of SPC and EPC.

2. MODELS PROPOSED IN THE LITERATURE FOR SPC-
EPC INTEGRATION

Although diverse authors have discussed the different aims and strategies of
SPC and EPC (e.g., Barnard, 1963; MacGregor, 1988, 1990; Box and
Kramer, 1992; Montgomery et al., 1994), few specific models have been
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proposed for the integration of these fields. Among these models we find
algorithmic statistical process control (ASPC) and run-to-run control pro-
cedures.

21. ASPC

Vander Weil et al. (1992) (see also Tucker et al., 1993) model the observed
quality characteristic &, of a batch polymerization process at time ¢ as

1—068B
& =Wy +bx )+ & (1
1 —o¢B

where the first term on the right represents a shift of magnitude y that occurs
at time g, x, is the compensatory variable, and the noise term is a stationary
ARMAC(1,1) stochastic process. In what the authors refer to as algorithmic
statistical process control (ASPC), process shifts are monitored by a
CUSUM chart, whereas the ARMA noise is actively compensated for by
an EPC scheme. Using a similar approach, Montgomery et al. (1994) pre-
sented some simulation results. Clearly, ASPC is focused on continuous
production processes.

A basic weakness of the APSC approach is that there is no explicit
stochastic model for the time ¢, of shift occurrence.

2.2. Run-to-Run Process Control

Sachs et al. (1995) (see also Ingolfsson and Sachs, 1993) assume instead a
simple linear regression model with no dynamic effects for controlling cer-
tain semiconductor manufacturing processes. The model is

E =pn+bx_ +g (2

By using a control chart on the residuals of mode! (2), called “generalized
SPC” by the authors, their method applies two different types of EPC
schemes: an Exponentially Weighted Moving Average (EWMA)-based con-
troller if the observed deviation from target is “small” (called ‘“gradual
control” by the authors) and a Bayesian controller that determines the
moment and magnitude of larger deviations in case they occur. Other
authors (Butler and Stefani, 1994; Del Castillo and Hurwitz, 1997) extended
model (2) to the case where deterministic trends and ARMA(1,1) noise exist.
A basic weakness of the run-to-run models is that the classical ratio-
nale of SPC applications is a shift, stochastic in time of occurrence and/or in
magnitude. Again, this is not reflected by the run-to-run models.
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3. BASIC FEATURES OF MODELS IN SPC AND EPC
3.1. Process Changes in SPC and EPC

Any approach to process control needs a model of process changes, ie., a
model for the changes in the process parameters (output mean, output
variance, output proportion nonconformance) that occur throughout pro-
duction time. On this topic, the traditional approaches to SPC and EPC
differ significantly, corresponding to their origins in different types of indus-
tries.

The overwhelming majority of SPC models identify process changes as
brupt shifts of the process parameters due to assignable causes, disturbances
or shocks that affect the manufacturing facilities. These shift models gen-
erally share four basic assumptions:

1. The magnitude of shifts is large relative to the process noise var-
1ance. ‘

2. Shifts are rare events; the period up to the occurrence of the first
shift or between two successive shifts is large.

3. Shifts can result from a variety of assignable causes. Detection of a
specific assignable cause requires expert engineering knowledge of
the production process, and it is time-consuming and expensive.

4. Control actions to remove assignable causes of variation are time-
consuming and expensive, requiring skilled staff, machinery, and
material. These actions result in rearranging the process para-
meters to the “in-control” or target values, e.g., recentering the
process mean. That is, these actions are corrective in nature.

Under these assumption, a constant automatic adjustment strategy (i.e., an
EPC) obviously is not the appropriate remedy for process variation.

Engineering process control models that originate in continuous pro-
cess industries consider process changes in the form of continuous drifts. In
contrast to the shift models of SPC, the basic assumptions of the EPC
approach are that

1. The drift is slow. Measured over a short time interval, the drift
effect is small relative to the noise variance.

2. The drift permanently continues throughout the production time.

3. The drift is an inherent property of the production process. Expert
engineering knowledge of the production process provides knowl-
edge of the structure of the drift process. To a certain degree, the
drift effect can be estimated and predicted.

4. The control actions taken to counteract the drift effect are minor
in terms of time and expense. They follow a repetitive procedure
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or algorithm that can be left to automatic controllers. These con-
trol actions have no effect on the process parameters but rather
compensate for observed deviations of the quality characteristic.
That is, the causes of the drifting behavior are not “corrected™ but
only compensated for.

Under these assumptions, constant automatic adjustments are a reasonable
control strategy.

3.2. Open-Loop and Closed-Loop Behavior of a Process

The mathematical models used by SPC and EPC reflect different ideas about
process changes and process control. We shall explain the differences and
similarities for the simple situation of a process that, at successive discrete
time points 0, 1, 2, ..., produces output with a single quality characteristic
€, &1, &ry ... . An essential aspect is the distinction between the open-loop
behavior (behavior without control actions) and closed-loop behavior (beha-
vior in the presence of control actions) of such a process.

In SPC, detection of an assignable cause and subsequent corrective
action occurs only rarely. If it occurs, it amounts to a complete renewal of
the manufacturing process. Hence it is useful to split the entire production
run into the periods (renewal cycles) between two successive corrective
actions (renewals) and to consider each renewal cycle along a separate

time axis 0,1,2,... with corresponding output quality characteristics
Ep &1, Ea, ... - The effect of control actions is not reflected in the output
model.

In standard EPC, control actions are taken regularly at each time
point. Without these permanent compensatory actions the process would
exhibit a completely different behavior. A model of the process behavior
without control is indispensable for the design and evaluation of control
rules. Thus we have the open-loop output quality characteristics
Eo &1, &s, ... Of the process without control (left alone) and the closed-
loop output quality characteristics &, &;, &5, ... of the process subject to
control actions.

3.3. Process Changes in SPC Models

Statistical process control is designed for manufacturing processes that exhi-
bit discrete parameter shifts that occur at random time points. Thus in SPC
models the most general form of the output process (E,,')NU is the sum of a
marked point process and a white noise component. This approach is
expressed by the model
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& =n +eg (3)

In this formula (i), 1s @ marked point process,
N,
W=, 4)
i=1

with a target u*, with marks 8,, 8,, ... representing the sizes of shifts 1, 2, ...
and a counting process (N,)y, that gives the number of shifts in time interval
[0; ). (), in Eq. (3) is a white noise process independent of (u,)y,. The
white noise property is expressed by

Ele]=0, Viel=0o?  Eleg]=0 forallteNykeN
%)

A simple and popular instance of a marked point process is one with
shifts occurring according to a Poisson process (N,)y,. Most investigations
on control charts use further simplifications. For instance, deterministic
absolute values |8, = A(A > 0) of the shifts are frequently assumed.
Many approaches assume a single shift of a given absolute value A that
occurs after a random (often assumed to be exponentially distributed) time
v. In this case we have

o fut+e ift<v
&’—[p*+yA+8, ift>v )

where the random variable v is the sign of the deviation from target with
P(y=1)=p, Py=-D)=1-p, pel0;1]

In the case of one-sided shifts, we have p = 0 or p = 1; in the case of two-
sided shifts, it is usually assumed that p = 0.5.

3.4. Process Changes in EPC Models

Engineering process control is designed for manufacturing processes that
exhibit continuous parameter drifts. Some typical instances of open-loop
output sequences (&, )n, in EPC models are as follows.
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ARMA Models

An important family of models used to characterize drifting behavior occur-
ring due to autocorrelated data is the family of ARMA(p, g) models (Box
and Jenkins, 1976):

E =& 1+ 8+ 08, — e — Mg — o = R g
(7

where (g/)y,1s @ white noise sequence [see Eq. (5)]. By introducing the back-
shift operator B¢ Ji = fi-» Eq. (7) can be written as

(1= ¢ B = 4B — - = 4, B, = (1 = LB =18 - — 4, B,
or as
()
é! - d)p(B) 8,

where A, (B) and ¢,(B) are stable polynomials in B. Sometimes, nonstation-
ary ARIMA(p, d, g) models of the form

G MO
(1-B)¢,(B)

have been used instead to model drifting behavior in continuous production
processes.

Deterministic Drift

If the drifting behavior is caused by aging of a tool (see, e.g., Quesenberry,
1988), a simple regression model of the form

& =T+d+g, (8)

is sufficient to model most discrete manufacturing processes. Here, T is a
target value and dt is a deterministic time trend.

Unit Root Trend

Alternatively, a “unit root” process can be used to model linear drifts by
using
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& =& = —-B¥E/ =d+21(B, &)

For example, if 1,(B) = 1, then (9) is a random walk with drift ¢ that has
behavior similar to that given by (8) but with variance that increases linearly
with time.

3.5. Common Structure of SPC and EPC Models

Analyzing the SPC models of Section 3.3 and the EPC models of Section
3.4, we can point out a common structure that is helpful in developing an
approach for an integrating model.

We shall decompose the output &, into two components. One of these
components is a function of the white noise variables €, alone and represents
completely uncontrollable random variation. The other component, 0,,
represents the effective state of the process, which is subject to an inherent
drift or to a shift due to an assignable cause. Formally, this means to con-
sider the output equations (3), (7), (8), and (9) as special cases of the model

ép/ =F, (61- (8)‘),\'51) (10)

In many cases 0, is a deterministic function of ¢ that coincides with the
output mean, i.e., E[E,;] = 0,. The argument (g,),., is required to allow for
possible cumulative effects of the white noise variables on the process out-
put; see (13) or (14) below.

Let us rewrite the models (3), (7). (8), and (9) in terms of (10).
As to the shift model (3), let

N,
Fi®O.(e)e) =0+e  with 0, =p" +» 3 (1n
=1
For the deterministic drift model (8), let
Fi(0,,(e)s<) =0, + ¢ with 6, =T+dt (12)

For the random walk with drift model [see (9) with A (B) = 1], let
F0,, (<)) =6, +5, with 0, =E_,+dr (13)

Finally, for the ARMA(p, ¢) model (7), we can identify
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4
FilOr. (8)) = 0, + D _ big, (14)
=0
where b, = —\;B' and where we also identify
p—1
0, = Za,-&_,,’ (15)
=0
with ¢; = —§,;B'.

4. MODELING THE INTEGRATION OF SPC AND EPC

Simultaneous application of SPC and EPC procedures to the same manu-
facturing process makes sense only if the process exhibits both kinds of
changes considered in Section 3: discrete and abrupt variation by shift,
which represents the position of SPC, and continuous variation by drift,
which represents the position of EPC. Consequently, an integrative model
for SPC and EPC should contain components corresponding to the two
types of process variation models given in Section 3: a marked point process
component to justify the use of SPC (see Section 3.3) and a drift component
to justify the use of EPC (see Section 3.4).

In view of the common structure of SPC and EPC models formulated
by (10), a unifying model for SPC and EPC can be expressed by the follow-
ing model for the uncontrolled (open-loop) process output &

&= F( e e Oz O (8)i)  (16)

where (uﬁ.”)NO, s (uﬂk)),\,ﬂ are K different marked point processes represent-
ing the effect of shifts to be treated by SPC [see Eq. (4)], (ﬁfv‘))N(),...,
(f)ﬁ"”),\,0 are M different drift processes that represent the effect of contin-
uous drifts to be treated by EPC [see Eqs. (12). (13), and (15)}, and (g,)y, is a
white noise sequence [see Eq. (5)]. For some applications it is necessary to
choose all past values (1), (9Y)__,. (€),<, as the arguments of the func-
tions F, to allow for possible cumulative effects of pfi), uii_)l, cees ﬂ}”, ﬁf’zl,
e s €, €y, ... 0N &,/ (see Section 4.2, random walk drift model).

Equation (16) gives a generic framework for a process model that
integrates the positions of SPC and EPC. Let us now consider three impor-
tant examples with one drift component, i.e., with M = 1.
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4.1. Additive Disturbance

In many cases an abrupt shift can be modeled as a translation of the output
value &,. To express this situation in the terms of model (16), we choose

& = F(()ser 0z (€)s=) = e + % + G (1))

where (p,)y, is a shift process of the type introduced by Eq. (4), (), 1s @
process that represents the effect of continuous drifts [see Eqs. (12), (13),
and (15)], and (g,)y, is a white noise sequence [see Eq. (5)]. In many cases, we
simply have G,((¢,);<,) = &, [see Eqs. (11) and (12)]. For examples of func-
tions G,((g,),,) that express a cumulative effect of the white noise variables,
see Eq. (14).

4.2. Shift in Drift Parameters

Usually the models for drift processes (J,)y, that are used in EPC depend on
parameters. These parameters can be subject to shifts during production.
Engineering controllers, however, are designed for fixed and known para-
meter values and cannot handle such sudden parameter shifts. Even adaptive
EPC schemes have the fundamental assumption that the changes in the
parameters are slow compared to the rate at which observations are taken
(Astrom and Wittenmark, 1989). Thus supplementary SPC schemes are
required to detect these abrupt changes (Basseville and Nikiforov, 1993).
Let us consider two simple models that will be investigated in some detail in
Section 5.

Shift in Trend Parameter—Deterministic Drift Model

In the original parametric model, see (12), let the drift component (&,)y, be
described by a deterministic trend,

0 =T+d!
i.e., by the recursion

8, -9_,=d  %=T (17)

with a parameter d and a target value 7. However, the drift parameter d
may be subject to abrupt shifts, as may occur, e.g., when a cutting tool starts
to fail. Thus the parameter value at time ¢ should be considered as a random
variable p,, where (, )y, is @ marked point process as given by (4) with target
w* =d. Replacing d by p, in (17) we obtain the output equation
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{ 1
&,’=T+Zp,+8,=2(p,-—d)+ﬁ,+8, (18)
1=1 i=l
In the scheme of Eq. (16) we have

t
K = 1 = Mv j:t((p'.s‘)ssp (ﬁ\')xﬁl# (83')551) = Z(p’l - d) + ﬁl + 8I

Shift in Trend Parameter—Random Walk with Drift Model

In the original parametric model the drift component (9,)y, is the same as in
the deterministic drift model [compare Eqs. (12) and (13)]. Again, the para-
meter d may be subject to abrupt shifts. Thus the value of the parameter d at
time ¢ should be considered as a random variable p,, where (i), is a
marked point process as given by (4) with target p* = d. To calculate the
effect on the output we have to insert y, for d in the difference equation (9)
with A,(B) = 1. We obtain the output equation

1 ! ! 1
=T+ m+y 6=y (-d)+%+Y & (19)
=1 1=1 =1 i=1
Equation (19) constitutes a special case of Eq. (16) with

! t
K=1=M,  Fll)er Oser @) = Y =)+ 9+ g
=1 =1

4.3. Additive Disturbance and Shift in Drift Parameters

As a generalization we can consider a combination of the models of Sections
4.1 and 4.2: an additive disturbance component (u,”)N and a shift compo-
nent (! ))N in the drift parameter. Let us sketch thls approach for the
deterministic trend and the random walk with drift models.

Additive Disturbance and Shift in Trend Parameter—
Deterministic Trend Model

Consider the deterministic trend model under the assumption that there are
p0351b1e shlfts of the drift pdrdmeter d represented by a marked point pro-
cess (p, )N with target p; = d and that there is an additive disturbance
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represented by a marked point process (p(,”)NO with target u} = 0. Then we
obtain the output equation

&/ —u“’+T+Zu‘2’+e, W0 3 W = )+ 4 (20)
=1 =1
Equation (2) constitutes a special case of Eq. (16) with

K =2, M =1,

!
FW e 0 (00t ) = WV + D WD = )+ 9, +,

Additive Disturbance and Shift in Trend Parameter—Random
Walk with Drift Model

Consider the random walk with drift model under the assumption that there
are p0551ble shifts of the drift pdrameter d represented by a marked point
process (p )N with target p; = d and there is an additive disturbance
represented by a marked point process (p( ))N with target pu} = 0. Then
we obtain the output equation

H ! !
R RO YD WD SUGEN MRS 3
=1 =1 =1
(21)
In the scheme of Eq. (16) we have

K=2 M =1,

! {
((u‘”)m, (T (fzy).,.g,) =1+ Y WP — D+ 0+ ) e
=1 =1

5. ENGINEERING PROCESS CONTROLLERS

If a compensatory variable x, can be determined in a production system,
then a control rule of the form

X, =f(&n 8y s Xmr N2y ) (22)



Integration of SPC and EPC in Manufacturing 89

can be devised. Usually, a controller such as Eq. (22) is found by optimizing
some performance (or cost) index J. A common index is

e )
= EI:N ;@, -7 } (23)

where T denotes the process target and N is the total number of observa-
tions the process is going to be run. Minimization of J; results in a minimum
mean square error (MMSE) controller (Box and Jenkins, 1976), which is also
called a minimum variance controller by Astrom (1970) if &, denotes devia-
tion from target, in which case T = 0 in (23). From the principle of optim-
ality of dynamic programming, it can be shown that the minimizing
criterion (23) is equivalent to minimizing each E[(§, — T)" ] separately
(Soderstrom, 1994, p. 313).

Other cost indices have been proposed for quality control applications.
The following cost index was proposed by Box and Jenkins (1963) for their
“machine tool” problem:

N
[NZ“@'— T)? + ¢d(x, — .\-,_1)]] (24)

where 8(x) = 0 if x = 0 and &(x) = 1 if x # 0. This is a function with quad-
ratic off-target cost and a fixed adjustment cost independent of the magni-
tude of the adjustment x, — x,_;. With this cost structure, the authors
showed that it is optimal to wait until the process is sufficiently far from
target in order to perform an adjustment, a policy that resembles an SPC
control chart, However, the width of the “adjustment limits™ is a function of
the relative adjustment cost ¢/a and is not based on statistical considerations
(Box and Jenkins, 1963; Crowder, 1992).

Fixed adjustment costs may be common in certain production pro-
cesses. However, if x, represents a setting of some machine (i.e., a setpoint
for an automatic controller included with the equipment), then the adjust-
ment cost ¢ is practically zero and J, reduces to an MMSE controller.

We now investigate two simple EPC controllers for the drift processes
of Eqs. (8) (deterministic trend) and (9) (random walk with drift) in the
general framework of Section 4.3. The simpler situations of Sections 4.1
and 4.2 are obtained as special cases of the general scheme. Control rules
will be designed according to the J; criterion (MMSE). We will assume that
the effect of the sequence (x,)y, of compensatory variables on the output
process (&), is expressed by
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£ = &I, + X, (25)

which implies that the full effect of the compensatory variable is felt imme-
diately on the quality characteristic. Furthermore, we assume as before that
the noise variables (g,)y, form a white noise sequence. These two assump-
tions guarantee that the closed-loop variables &;, §,, ... are all independent.
This makes it easier to see how the MMSE criterion (23) is equivalent to
requiring that each square deviation be minimized separately without
recourse to dynamic programming techniques.

5.1. Control of Deterministic Trend

We consider the deterministic trend model of Section 4.3 with a possible
shift in the trend parameter d and an additive disturbance. By (20) and (25),
the equation of the output of the controlled process is

t
g =pV+ T+ Z W2 e+ 3, (26)

=1

It is clear that the control rule has to be designed for the case where the shift
components u(,/) are on their targets pJ, i.e., for the case

w'=0, w’=d
By (22), x,_; is independent of &,; hence

E[¢, — T)'] = E[(dt + & +x,1)] = Ele]] = ¢
Obviously, equality is obtained for

N_y = —dt (27)
and at the “current” time + we implement the control action,

X, =—d(t+1 (28)

Hence the MMSE controller as defined by (28) corresponds to a pure
“feedforward”™ controller (i.e., the observation &,_, is not “‘fed back” into
the control equation, but rather the anticipated disturbance is used).

Controller (28) is equivalent to rule 4, in Quesenberry (1988) if the sample
size k of that paper equals 1.
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Under the effect of the shift components (p‘,[))No, the effect of control
rule (28) on the output can, by (26), obviously be expressed as

!
L=+ T+Y W —dite, (29)

5.2. Control of Random Walk with Drift

An alternative model for linear drift is the random walk with drift stochastic
process. As in the second subsection of Sectlon 4.3, we admit possible addi-
tive shifts represented by a process (p )N and possible shifts in the drift
parameter represented by a process (u, S)N By (21) and (25) the equation of
the output of the controlled process is

!
g =u" + T+Zu(2)+2z-:.-+x,_l (30)
1=1

As in Section 5.1, the control rule has to be designed for the case in
which the shift components pg” are on their targets yJ, i.e., for the case

ph=0, pP=...=pP=d
By (22),&,_;, — T 4+ d + x,_, — x,_, is independent of g,; hence

E[€ ~TY] = E[Gy — T +d +e 451 — 5] 2 E[ef] = o
Obviously, equality is obtained for

x=T-§—-d+x., (31
which defines the MMSE control rule.

It is interesting to contrast control rules (28) and (31). Equation (31) is
a “feedback” rule, since the observed value for the quality characteristic (,)

is sent back to the controller to determine the next value of the input vari-
able (x,). For x, = 0 we obviously obtain from (31) that

v, =—dt =) (&-T) (32)
=1
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The second term on the right-hand side of (32) justifies the name *‘discrete
integral controller’” used for this type of control rules.

Finally, let us evaluate the effect of control rule (31) on the output
quality characteristic under the effect of the shift components (p(,[))N“. From
(30) and (32) we obtain

VT4 g if =1
=1 w_ o @ ; (33)
W= +T+p" ~d+e ift>2

Inserting (33) into (32) we obtain

t t
Ny=—d = =Y =) e (34)
i=1 =1

6. DISCUSSION OF SPC IN THE PRESENCE OF EPC

Consider the output of a manufacturing process under the simple drift
controllers of the previous section. The output wirhout the presence of para-
meter shifts is a special case of (29) or (33) with constants pﬁ” =0 and
1? = d. In both cases we obtain

£, =T+g¢, forall reN

In this case, the process output (&,)y is a sequence of i.i.d. random variables
with mean E[,]=T on target and the minimum possible variance
Vg ) =o".

For a successful SPC-EPC integration, it is necessary to analyze the
output of processes under EPC control with shift components. For a sub-
stantial discussion we need simple instances of shift components.

6.1. Effect of Simple Shifts on EPC-Controlled Processes

For many applications it is appropriate to assume simple structured shifts of
the type given by Eq. (6). In the models of Sections 5.1 and 5.2 let us
consider the output processes under this type of shift. We assume that
H(l) — H7 if ¢ =V (35)

! u7 + Y/A[ if t > A7
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where uj = 0, pj = d are the target values, A; > 0 is the absolute shift size,
v, is the random time until occurrence of the shift, and v, is the random sign
of the shift.

Under these assumptions the output equation (29) of the deterministic
trend model becomes

&= T 491 B10y, 4o0)(D) + (7 = Va2 Aol 100y (1) + & (36)
where

1 ifte B
1s(1) = { 0 ifreR\B (7
is the indicator function of a set B C R.
Applying the same assumptions to the output (33) of the random walk
with drift model, we obtain for r > 2

2;1 =T+ Y1 All](\’|:\'|+|)(t) + 72A2H(V3:+oo)(f) +g (38)

For the control variable of the random walk with drift model we obtain, by
inserting (35) into (34),

!
Xy ==+ Dd =11 A1y, ooy () = Y2 A2t = [Va Db, 1o0)(?) — ZS,

i=1

(39)

The equations for the simpler models with only one possible shift
(either additive or in the drift parameter) are obtained from (36) and (38)
either by letting v, = 400 (only additive shifts) or by letting v| = 400 (only
shifts in drift parameters).

In the following two sections we discuss (36) and (38) in two practi-
cally relevant situations.

6.2. Shifts Occurring During Production Time

In the deterministic trend case, the controiler defined by (28) has no feed-
back from the output and is thus not able to compensate for random shifts.
As is obvious from (36), an additive shift takes the process mean away from
its target T to T + v, A, but the output at least remains stable in its mean.
A shift in the drift parameter is even more harmful. After such a shift, the
output mean has a trend component (7 — {v,]|)y,A,. It is obvious that in the
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presence of possible shifts such a process should be monitored by a supple-
mentary SPC scheme.

The feedback controller of (31) or (32) for the random walk with drift
is able to react both on additive shifts and on shifts in the drift parameter.
As is obvious from (38), due to the delay of one time period in the con-
troller’s action, an additive shift leads to only a single outlier of the output g,
at 7 = |v; + 1] but remains without effect at further time points. A shift in
the drift parameter can be more harmful. After such a shift, the output mean
is constantly off target T at T + y,A,. However, this shift in the mean has
serious consequences only if |y, A,| is large or if the cost of being off target is
large. In such cases it is reasonable to monitor the process by supplementary
SPC procedures.

6.3. Effect of a Biased Drift Parameter Estimate

In the approach of the model presented in Section 4.2, a biased estimate of
the drift parameter d can be interpreted as a shift in the drift parameter that
coincides with the setup of the process. This is quite useful as it allows us to
study the effect of mistakenly using a biased trend parameter estimate in an
EPC scheme. Let d be the biased estimate that is used instead of d in the
control equations (28) and (31) or (32). Then we can describe the situation
by (36) and (38) by letting

Ay=|d—d), Pl,=1)=1 ifd>d
and
Plyv»=-1)=1 ifd<d

The effect of this type of parameter shift in the trend and random walk
models is exactly the same as in Section 6.2.

6.4. Effect of Constraints in the Compensatory Variable

An important aspect in practice, usually not addressed in the literature on
SPC-EPC integration, is that the compensatory variable must usually be
constrained to lie within a certain region of operation, i.e.,

A < x, or x, <B or A<x,<B
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for all instants t. In particular, integral controllers such as Eq. (31) can
compensate for shifts of any size provided that the controllable factor is
unconstrained.

It is useful to consider what would happen if the EPC schemes given
by Egs. (28) and (31) were applied to a constrained input process. Since the
drift is linear, the control variable x, moves in the opposite direction than
the drift to keep &, on target. However, at some point the controller hits a
boundary (either A or B) and remains there afterward. In the control engi-
neering literature this is referred to as “‘saturation” of the EPC scheme.

Effect of Constraints Under the Deterministic Trend Model

Let us discuss the case of a constrained control variable in the trend model
of Section 5.1. For simplicity’s sake we discuss only the case of ¢ > 0 with a
lower bound 4 < 0. The case of d < 0 with a corresponding upper bound
B > 0 is completely analogous.

The relationship between the control variable x, of Eq. (28) and the
constrained control variable ¥, is

- fx==da+1) ifr<—-A/d—1
Y= {A if 1> —A/d—1 (49)
Hence the output f; of the process under constrained control is
!
-~ l )
& = H(tl) +7T+ ZHE’J + X t+E
=1
M ~ ) -4
T = dt if t < —
w1+ ; H; +g r= d
= 40

W+ Ty WP+ A4, if 6> —

i
=1

Under the simple shift components of type (35) the output E, satisfies the
right-hand side of (36) for t < —A/d. For t > —A/d we obtain

E =T +Y Al 400 (D) + (1 = [Va])Y2 820, 4oo)() +dt + A+,
(42)
Obviously, the arguments in favor of supplementary application of

SPC schemes in the trend model that are put forward in Section 6.2 also
hold in the case of constrained controllers.
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Effect of Constraints Under the Random Walk Model

In the random walk model we also restrict attention to the case d > 0 with a
lower bound 4 < 0. )

Unlike the situation for the deterministic trend model, the time k until
hitting or falling below the lower bound A is stochastic and is defined by

K = min{r|x, < A}

{
= min{tl Zﬁl > —A = (14 Dd =y A8y, 400)(D) = Y2221 — V1))

=1

ﬂ(v3:+oo)(t)] (43)

From (43) the distribution of k can be found by first determining the con-
ditional distribution under v; and v, and then integrating with respect to the
corresponding densities. We shall not investigate this problem here.

The relationship between the control variable x, of (39) and the con-
strained control variable ¥, is

- X if t <k
'\'"{A if r>x (“44)
Hence the output g_,, of the process under constrained control is

. | ! , !
E=m T T+ ) et T

i=1 =1

p‘,”—uﬂ’,+T+p(,2)—d+s, ift<x+1
(45)

t {
pHTHY 0P+ e +a =k
=1 =1

Under the simple shift components of type (35) the output g_,, satisfies the
right-hand side of (38) for 2 <7 <x+ 1. For t > 2,t > x + | we obtain

!
& =T+ 714y, 400)(0) + 1d + 128, max{0, 7 — [vo [} + ZS. +4

=1

(46)
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In the unconstrained case, supplementary application of SPC in the
random walk model makes sense in only special cases (see Section 6.2).
From Eq. (46), it is evident that in the constrained case supplementary
application of SPC is much more interesting and perhaps indispensable.

6.5. Effect of Using a Wrong Model

We now study what would happen if a wrong drift model is used.

Under a deterministic trend, the relation between the closed-loop out-
put &, and the control variable x,_; is given by (26). If the integral controller
defined by (31) is used in this model, the explicit expression for &, is

& =T+ “(/” - Hfljl + H(12) —d+eg —g
Under the simple shifts of type (35) we obtain
E_,, =T+ Y1 AlI](v,;v,+l](1‘) + YZAZD(VZ,+00)(I) + & — & ‘ (47)

Whether there are parameter shifts or not, the output exhibits twice as great
a variance as in the case of using the correct model. This case occurs in
Quesenberry’s (1988) ¢, and 5 rules. If p(,” =0 and p‘,z) = for all ¢, then
£, =T+ (1 — B)g,, which is an MA(1) process, an always-stationary time
series model (Box and Jenkins, 1976).

If parameter shifts occur, we have the following result. Except for the
single outlier for v| < 1 < v, + 1, &, i$ permanently off target for r > v, with
absolute deviation A,. This, and the uncertainty about the correctness of the
assumptions of the model, make it advisable to use SPC methods in addition
to the simple EPC schemes.

If, on the contrary, the deterministic trend controller (28) is used in a
random walk with drift process, the closed-loop equation is, by (30),

! '
£, = T+u§” + Zufz) + Ze,- —dt
i=1 =1

In the long run, if we let r grow without bound and we use the inverse
of the difference operator, namely,

l 0

then the closed-loop equation is
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(2)
€
L dt + o

7D _
& +Hr+1_B 1_B

If p‘,” =0 and piz) = d for all ¢, then the previous equation reduces to

E.31'—]_3

which is a nonstationary AR(1) process (Box and Jenkins, 1976) with
var(§,) = oo as t - co.

For bounded values of ¢ and under the simple shifts of type (35), we
obtain

{
E =T+ 71810y, 4o0) () + max{t — [v2], Ohy2 Ay + Y &, (48)

=1

In this case, whether there are parameter shifts or not, the output exhibits
variance that increases linearly with time compared with the case of using
the correct model. Thus it is evident that using an EPC controller designed
for a random walk with drift model is “safer” than using an EPC controller
designed for a deterministic trend process in case we selected (by mistake)
the wrong drift model.

Taking the shifts into account we have the following result. There is a
shift in the mean for v; < ¢ and a shift that results in a trend for v, < 1.
Again, given the uncertainty about the correctness of model assumptions it
is obviously advisable to use additional SPC methods.

7. SHEWHART CHARTS FOR DETECTION OF SHIFTS IN
THE DETERMINISTIC TREND MODEL

In this section we investigate the design of a simple two-sided Shewhart
chart with fixed sampling interval for detection of shifts (i.e., abrupt
changes) in the trend parameter of the model in Section 5.1. The chart is
defined by the triple (n, ¢, 1) of sample size n, control limit width multiple ¢,
sampling distance / (i.e., the number of discrete periods between samples),
where n € N, ¢ € (0; +00), 4 € N, # > n. The control procedure is as follows.

(S1) At time points h, 24,3k, ..., kh, ..., output samples (&, ..
Cinyn—1) of size n are taken from the process.

(S2) The absolute value (&, — T'| of the difference of the arithmetic
mean

L
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n—1

S
& 1= 5 ; Eihtr 49)

of the sample variables from the process target T is compared
with the control limit co//n.

(S3) If |Ek — T| < co/+/n, the manufacturing process continues with-
out intervention. If |§;, — T'| > ¢6/+/n, the manufacturing pro-
cess is stopped (giving an out-of-control signal or alarm) and
inspected for the presence of an additive shift or a shift in the
trend parameter. If no shift is detected, the manufacturing pro-
cess continues without further intervention. If a shift is detected,
the manufacturing process is renewed, i.e., the conditions of the
start of the process at time point 0 are restored, e.g., by a repair
or by complete overhaul of the production facilities. After the
renewal the process is restarted at time point 0 of the next
renewal cycle.

From the point of view of the optimality principles of mathematical
statistics, there may be better tests for the detection of a shift in the trend
model than the test defined by rules (S1), (S2), (S3). Nevertheless, the two
following arguments support an investigation of Shewhart charts under our
shift model:

1. The simple structure of Shewhart charts simplifies the design of
optimum charts in a statistical or economic scheme of optimality.

2. Shewhart charts are widely used in industrial practice. Most often,
the charts applied are not designed under a precise statistical and
economic model but from a heuristic point of view (sample sizes
n=3,5,7; 3o limits as control limits). It is interesting to investi-
gate the behavior of such charts under the trend model of Section
5.1

Here we investigate Shewhart charts from a statistical point of view.
This decision is not supported by principal arguments; it merely reflects an
option for simplicity. An economic design is based on variables such as the
number of false alarms, length of a renewal cycle, and profit incurred from
items during a cycle. It is obvious that for a model that admits both an
additive shift and a shift in the drift parameter, the formulas for the dis-
tributions and expected values of such variables are rather involved. Thus an
investigation into the economic design would lead to mathematical details
that far exceed the scope of the present chapter, which is primarily interested
in the structure of a fundamental model of SPC-EPC integration and a
simple application thereof.
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7.1. The Average Run Length

An essential quantity in the statistical design of a Shewhart chart is the
average run length (ARL), i.e., the expected number of samples until occur-
rence of an alarm, or, equivalently, the average time to signal (ATS), i.e., the
expected time until occurrence of an alarm. Run length and time to signal
are usually calculated under the simplifying assumption that the process is
either stable without a parameter shift or stable at a given parameter shift.
In this approach the problem of the time until occurrence of a shift is
ignored. Interest concentrates on the question, “How long does it take to
obtain an out-of-control signal if the process has entered certain invariant
conditions at an arbitrarily fixed time point 07"

To define the ARL in terms of the model of Section 5.1 we consider as
in Section 6.1 fixed absolute shift sizes A; > 0 with given signs z; € {—1, 1}.
A; =0 1s admitted to express the case that no shift of type i has occurred.
Ignoring the times until occurrence of shifts and assuming that the condi-
tions of the process remain fixed from an arbitrarily chosen time point 0 on,
we obtain in analogy to (36) the output equation

E=T+o18 + 200 +¢ (50)

Under the control rules (S1), (S2), (S3), the run length, i.e., the number n of
samples until occurrence of an alarm, is defined by

n = min{klk € N, &, — T| > co//n) (51)

We assume production speed 1; i.e., one item is produced in one time unit.
Then the total time until occurrence of an alarm (time to signal) is

nh+n—1
Define 8, = A,/c. We use this standardization to avoid the nuisance para-
meter o.

The ARL can now be defined as the expected value of 1, considered as
a function A(z. 8, z,, 8,) of the shift amounts §; and the signs z; of shifts:

A(z1, 8y, 22, 82) = En] (52)

The corresponding expected total time until occurrence of an alarm (ATS) is

/1/4(:1,81,:2,82)+” —1
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For explicit calculation of the ARL the noise components (g,)y are
assumed as i.i.d., each g with normal distribution N(0; 6°). Hence under
the output equation (50), the test statistics (£, ) are independent, where &, is
normally distributed, with parameters

CE[E] =T 4514 +:3A2(k = 1) (53)

ViEd] = o°/n (54)

Hence the alarm probabilities are given by

Bi(z), 8y, 22, 82) = P(1 & — T|> ca//n)
=1 —d)(c'—:,éil\/l—z—:zSz(/c

ljl>\/’_z

/1——l>ﬁ> (55)

In the case of A, =0 (no shift in the drift parameter), the alarm
probabilities are constant in the number k of the sample. Hence we have
the classical case: The distribution of the run length 1 is geometric with
parameter

+¢<_"—5151«/ﬁ—:282<—

1= d(c — 21814/n) + d(—¢ — 2;81/n) = B(=1. 8y, 22, 0) = Bi(z), 8y, 2, 0)

Thus, in particular,

1
A(51~5|,~"2,0):m (56)

In the case of A; > 0 (shift in the drift parameter), the alarm prob-
abilities vary in the number & of the sample. The dlstubutlon of the run
length 1 1s determined by the probabilities

m—1
pm) =P(n = m) =B, (1,8, 22.8) [ [[1 = Bp(z1. 8;. 22,81 (57)

k=1
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In this case we obtain no simple expression for the ARL. We have

400 m—1

A(z1, 81,2, 8) = ) _{1mB,, (21,81, 22, 87) [ 101 - Bi(z1, 81, 22, 8)]
k=1

m=1

(38)

From a computational point of view, it is better to write Eq. (57) in
recursive form:

Bm(zlv 8l » 22, 82)

p(m) = p(m—1 1 —-B,,_i(z1,61,2,,0 59
140 ) B (71,01, 55.5)) (1 = B,—1(z1, 81, 22, 8))] (59)
with p(1) = B,(zy, 8;, z3, 65), and thus
+00
A(z1, 81,22, 87) = Y _ mp(m) (60)

m=1

7.2. Example

Chemical mechanical planarization (CMP) is an important process in
the manufacturing of semiconductors. A key quality characteristic in a
CMP process is the removal rate of silicon oxide from the surface of
each wafer. Since the polishing pads wear out with use, a negative tend
1s experienced in this response, in addition to random shocks or shifts. The
removal rate has a target of 1800 and is controlled via a deterministic
trend EPC scheme. The errors are normally distributed with mean zero
and o = 60, and an estimate of the drift 4 is used for control purposes. It
is desired not to let the process run for more than an average of 10
samples if a bias in the drift estimate of magnitude 0.01c = 0.6 exists.
In the absence of shifts in the mean or trend, an ARL of 370 is desired.
In addition, positive shifts of size A; = lo should be detected, on average,
after a maximum of 12 samples if the aforementioned biased trend esti-
mate is (incorrectly) used by the EPC.

Table 1 shows numerical computations for this problem using Egs.
(57)-(60) and varying n from 1 to 10. Clearly, the desired ARL of 370 is
obtained with ¢ = 3; thus the table shows results for this value of c.
From the table, A4(0,0,-1,0.01)=1086 for n=4, and
A(1,1,—1,0.01) = 13.51 for n = 5. Therefore, the chart design with the
smallest sample size that meets the design specifications calls for using
n=>5 and ¢ = 3. The h design parameter (4 > n) should be decided based
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Table 1 Average Run Lengths for the Example Problem, ¢ =3, h = 10

A(1,1,1,0.0D) A(—1,1,1,0.01) A(0,0,1,0.01) A(1,1,0,0)
n = A(-1,1,—-1,001) = A(1,1,-1,0.01) = A4(0.0,-1,0.01) = A4(-1,1,0,0)

1 9.55 26.62 18.42 43.89
2 5.68 21.37 14.21 17.73
3 4.00 18.15 12.16 9.76
4 3.05 15.64 10.86 6.30
5 2.46 13.51 9.93 4.49
6 2.06 11.67 9.21 3.43
7 1.78 10.06 8.63 2.76
8 1.57 8.66 8.14 2.31
9 1.43 7.46 7.72 2.00
10 1.31 6.43 7.36 177

upon economic considerations not discussed in this chapter and was
therefore set to 10.

Interestingly, the third and fourth columns in Table 1 indicate that for
n <9, a negative drift “masks™ positive shifts and vice versa, making it
harder to detect a shift [i.e., this occurs when sign(z,) # sign(z,)]. Also, we
have the relationship

A(z1, 8, 25, 87) = A(—2z1, 61, —23, 87)

Figure 1 shows a realization of the controlled sample means for
this process (§,) with no shifts in the mean occurring in the simulated
time. The designed chart limits are shown superimposed. In the absence
of abrupt shifts in the process, the SPC chart will detect the biased d
stimate after an average of 9.93 samples (cf. Table i, fourth column),
although in the figure it was not detected until sample 11. In practice,
production will be stopped at the alarm time and corrective action will

be taken (e.g., replacing the polishing pad), which will recenter the
process.
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Figure 1 A realization of sample means &, for the case of a deterministic trend
EPC uses a biased trend estimate. The computed Shewhart limits for detecting such
bias are also shown. |
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Reliability Analysis of Customer Claims

Pasquale Erto
University of Naples Federico ll, Naples, ltaly

1. INTRODUCTION

Reliability theory is substantially the *“‘science of failures,” in the same way
in which medicine is the “science of discases.” directed toward curing or
preventing them. However, because each failure virtually implies the exis-
tence of customer dissatisfaction and complaints, reliability is in some ways
the science of complaints also and, during the warranty period, the science
of claims. Besides, to fully exploit it in the context of quality management,
we must always remember that its operative meaning is “‘the probability that
a system possesses and keeps its quality throughout time.”

In general, reliability is a characteristic of systems that possess and
keep during their life the working qualities for which they were designed and
realized. In this sense reliability is a time-oriented quality characteristic [1]
that can also be referred to technical, productive, commercial, and service
activities that perform their tasks timely and effectively. Technically, relia-
bility is quantified as the probability of no failures (i.e., of performing the
required function) under given environmental and operational conditions
and for a stated period of time.

In order to be concrete, let us develop this point of view specifically for
the car industry, which constitutes a well-known, crucial, and effective
application field.

Today, a new car model must meet a specified reliability level from its
initial launching on the market, on pain of obscuring the company image,
which will be restored only with difficulty by subsequent improvements.
Generally, the reliability targets can be achieved by means of good design,
many preliminary life tests on components or subsystems, and a quality

107
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control policy. Nevertheless, in the case of mass production, it is essential to
verify constantly that these targets are really fulfilled in service. In fact, the
in-service reliability level may turn out to be different from the expected one,
mainly owing to faults in the production process and/or to unforeseen
stresses induced by the real operating environment. Then the manufacturer
has a pressing need to collect and analyze field data to detect the causes of a
possible discrepancy between the in-service and expected reliability, to be
able to immediately adopt the necessary corrective actions. .

Obviously, since cars are products with a wide range of operating
environments and users, one should have a great many manufactured
units under monitoring, over their entire life, to be confident in the measure
of their reliability. But the impracticability of such a policy is quite evident.
Thus the approach generally undertaken consists in monitoring only the
units belonging to homogeneous samples of limited size (e.g., a taxi fleet)
and/or controlling the repair operations of manufactured units during the
warranty period. Other sources of information, such as the number of spare
parts sold, are sometimes used, but they are less informative and are not
considered here. The monitoring of a vehicle fleet allows one to collect
information about the entire life of the product, taking into account both
early and wear-out failures. Moreover, in many cases, these fleets are sub-
jected to more intensive use than normal, and this makes it possible to
obtain measures ‘of reliability in a relatively short time. Nevertheless, these
measures are generally valid only for the operating environment and use of
the particular sample chosen, and it is often difficult to extend them to other
situations. Besides, they cannot take into account the impact of subsequent
improvements.

The use of warranty data makes timely information available at low
cost for reliability evaluations. Obviously, these data are truncated (i.e.,
limited to the first period of life), so they take into account mainly the
impact of early failures, but their use has the advantage of quickly allowing
us-both to choose corrective actions and to check the effectiveness of those
just adopted. ‘ , co

However, to better understand all the information nested in the war-
ranty data, we must consider that usually these data report only the com-
ponent and failure codes and the mileage interval in which the failure
occurred, For instance, with specific reference to the automobile world,
no information is directly provided about the number of cars that cover
the various mileage intervals without failures, and hence no direct knowl-
edge is available about the population to which the observed failures must
be referred. In this situation, only approximate estimation procedures are
usually used. that is, procedures that are generally based on some a priori
(and subijective) evaluation of car distribution versus mileage intervals.
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Instead, using the reliability analysis approach, we can rigorously estimate
both the failure and car distributions versus mileage. The method has
already been successfully used in real-life cases that are partially reported
in an illustrative example included in this chapter.

2. ANALYSES FROM WARRANTY DATA OF CARS

In a modern way of thinking, quality means “‘customer satisfaction,” and it
is feasible to realize quality, in this sense, only with the total quality manage-
ment approach to the management of the whole company. In such a con-
text, the reliability engineers’ involvement conforms to this management
policy of the car industry too, aiming to involve everyone’s commitment
to obtain total quality.

However, in order to plan, realize, or control a certain quality level of
the cars produced, the availability of an efficacious practical measure of “'in-
service”” quality is first needed. In fact, one of the fundamental rules for the
management of total quality consists of turning away from making decisions
based exclusively on personal opinions or impressions. Instead, one needs to
refer to data that are really representative of the quality as perceived by the
customers, such as the warranty data. These data, however, contain only the
following information:

Vehicle type code

Assembly date

Component and defect code
4. Mileage to failure

W DN —

In formal statistical language, the warranty data are failure observa-
tions from a sample that is both truncated (at the end of the warranty
period) and has items suspended at the number of kilometers effectively
covered by the respective customers. Thus, to carry out a reliability analysis,
both the number of failures and the number of suspensions for each mileage
interval are required. Obviously, the warranty data give no mileage infor-
mation about those vehicles that are sold and reach the end of each mileage
interval without any claim being made. Thus, no direct information is avail-
able about the population to which the reported number of failed items must
be referred. Therefore, the usual procedures used by the automotive indus-
try [2-4] require the a priori estimation (often arbitrary) of the vehicle dis-
tribution versus mileage in order to partition the total number of vehicles
under warranty into mileage intervals. Note that this distribution may also
be very different from case to case, since it may concern vehicles under
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special maintenance contract including the warranty period or only a frac-
tion of the vehicles under warranty (e.g., all vehicles from a particular
production unit), as well as all vehicles produced in a given period, etc. In
Ref. 5 it is stressed that the number of claims at a specific age depends on
mileage accumulated, so supplementary information on the mileage accu-
mulated for the population of cars in service is needed.

This chapter shows how one can estimate simultaneously both the
mileage and the failure distribution functions without needing any a priori
estimation. In the next section, a special case that occurred in a real-life
situation, in which the proposed method of analysis was successfully used, is
discussed.

3. A REAL-LIFE RELIABILITY ANALYSIS
3.1. The Available Data Set

Failure data normally refer to about 40 different components (or parts) of
some car model. The kilometers to failure are typically grouped into equal-
width lifetimes, each of 10,000 km, and all vehicles under consideration are
sold during the same year in which repairs are made.

In our case from real life [8], 498 cars were sold in the year, and the
total number of warranty claims referred to the manufacturer was 70.
Furthermore, irrespective of the parts involved, this number of claims
were distributed over the lifetimes as shown in Table 1.

The characteristic that makes this case peculiar is that no age (from
selling date) distribution and no distribution of covered kilometers are given
for the fleet under consideration. Hence, it is not possible to allocate the
unfailed units in each lifeime. To overcome this difficulty we can use the
reliability analysis approach, introducing an estimation procedure that
involves at the same time both the failure and kilometer distributions.

Table 1 Number of Warranty Claims in Each Lifetime

Lifetimes
(km/1000) | 0-10 10-20 20-30 3040 | >40

Number 55 11 3 1 0
of claims
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3.2. Method of Analysis

Let T, be the random variable (r.v.) representing the *‘kilometers to failure”
and G(1) = Pr(T, < 1) its unknown distribution function. Moreover, let F(¢)
be the probability that a car sold during the year of observation does not
exceed the kilometers ¢ until the end of this year. The experimental context
under analysis is equivalent to a sampling (truncated at the end of the
warranty period) in which some of the items under life testing have their
test randomly suspended before failure. Thus, an r.v. representing the “kilo-
meters to suspension,” say Ty, is defined with the unknown distribution
function F(r) = Pr(7; < t). Hence, it follows that the probability that an

item fails before ¢ km is

Pr{(T; < )N (T, > T} = J;[l ~ F(x)JdG() )
and the probability that an item is suspended before ¢ km is

Pr{(T. < )N (T} > T} = j;[l ~ GEIMF(x) @

T, and T, being independent random variables.

Assuming that G(¢) and F(¢) are exponential functions, that is, G(¢) =
I —exp(—at) and F(¢) = 1 — exp(—bt), the probability that an item fails
before ¢ becomes

(7}
a+b

{1 — exp[—(a + b)1]} (3)

and, similarly, the probability that an item is suspended before ¢ becomes

b
a+b

{1 - exp[—(a + b)1]} €]

Some comments on the assumption of the exponential model for G(r)
are required. Warranty data are essentially data on early failures; hence,
from a theoretical viewpoint, kilometers to failure should have a decreasing
failure rate. Then, as an example, a Weibull model with shape parameters
less than | should be more sound. However, experimental results have
shown that in situations similar to the present one (see Refs. 3 and 4), the
shape parameter of the Weibull distribution is very close to 1. Hence, it
appears that there is no practical advantage to using a more complex
model than the exponential one for G(r).
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To explain the choice made for F(r), some information given in Ref. 2
about the kilometer distribution versus age (from selling date) for a fleet of
European cars can be used. In Ref. 2, information is available on the two
5% tails of the distributions at 3, 6,9, and 12 months of car age. For each of
these distributions a Weibull model that had the same two 5% tails can be
assumed. In Figure 1 the kilometer distributions (at 3, 6, 9, and 12 months
of age) are reported using a Weibull probability distribution. Then the
*“compound” kilometer distribution, which corresponds to car ages (from
selling dates) uniformly distributed over the range of 12 months, is drawn.
As can be seen from the estimates reported in Table 2 (calculated with the
maximum likelihood method), this distribution turns out to be very close to
the exponential, being close to one its shape parameter. Even if this result
cannot be considered decisive proof, the exponential model appears to be at
the very least the preferential candidate for F(¢) in the present situation.

3.3. Estimation Procedure

In order to estimate the two unknown parameters, ¢ and b, we use a very
powerful statistical estimation method, the maximum likelihood method.
The logic of this method is very simple, and even those who are not statis-
ticians can take advantage of it. It is founded on the idea that the probability
law we are looking for is most likely the one—of the hypothesized family—
that shows the maximum joint probability density of the collected data
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Figure 1 Weibull kilometer distributions at 3, 6, 9, and 12 months and the corre-
sponding compound distribution (heavy line).
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Table 2 Parameter Estimates of the Kilometer Distribution Drawn in Figure |

3mo 6 mo 9 mo 12mo  Compound
Weibull shape 113 1.17 1.13 .14 0.97
parameter
Weibull scale 5.85 11.04 17.56 23.25 13.56
parameter

sample (called the likelihood function, L). So those values of the unknown
parameters that maximize the L function are the maximum likelihood esti-
mates.

The definition of the probabilities of both failure and suspension
allows us to construct the L function for a sample arising from the experi-
mental situation under study [8]. In fact, letting

N = total number of cars under observation

n; = number of failures in the jth lifetime (7,, 7). T, =0
m = number of lifetimes

n =3y ., n; = total number of failures

the likelihood function, L, is found to be proportional to

%) N—n m Tiny "y
L x U = G(.\')]dF(x)] ]‘[U - F(.\')dG(x):I
0

=1 T,

n

b N-n m
= (a n h) B[ﬁ {expl—(a + b)T;] — exp[—(a + b)T,»+|]]:| (5)

The values of ¢ and b that maximize this function (given a sample with
known N and n;) are the needed maximum likelihood estimates of the
unknown parameters a and b.

Reparameterizing for convenience the likelihood function in terms of «
and ¢ = a + b and equating to zero the partial derivatives of In(L) yields the
equations

- n 6:
TN (6a)

and
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To solve this last nonlinear equation in ¢, an iterative method is required
(e.g., the Newton—Raphson method). An initial tentative value, ¢*, can be
easily found by taking into account that the probability that an item fails in
the ith interval has the nonparametric estimate n;/N. Thus, as an example,
for the first lifetime (T = 0, T3), (see equation 3),

Pr[(0 < Ty < Ty) N (T, > Tp)] = %[1 — exp(—cT,)] =n—A} O]

and since from the first likelihood equation, a/c = n/N, an initial tentative
value follows:

= —ln(lT—7 ny/n) )

Then the estimates a and b = ¢ — a can be obtained without any further
difficulty.

3.4. Practical Example and Comments

The maximum likelihood method was applied to the sample of warranty
claims from real life given in Table 1. The following estimates of the
unknown parameters ¢ and b were found:

a=211x 10" km™" and bh=1293x 10 km™!

The model chosen appears to fit the experimental data with an extremely
high degree of accuracy. In Table 3 the observed and the estimated numbers
of failures for each lifetime are reported. The estimated average number of
kilometers for the fleet under test is 1/b = 7734 km, which is a very plausible
value for a fleet of cars whose ages are distributed over 12 months.

Table 3 Comparison of Collected and Estimated Numbers of Claims

Lifetimes (km/1000) 0-10 10-20 20-30 30-40 > 40
No. of claims, observed 55 11 3 1 0
No. of claims, estimated 54 12 3 1 0
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4., SOME CONCLUDING REMARKS

Sometimes, the evaluation of the ability of an item to satisfy customers can
be carried out effectively only via reliability analysis. In fact, some stated or
implicit customers’ needs must be satisfied over time, because they are time-
oriented characteristics. So reliability methods conceived to assess the prob-
ability of performing required functions for a stated period of time can be
the most suitable ones.

The analysis of customer claims presented in this work is only one
example of the possible applications of the reliability approach. Another
example, not restricted to the warranty period, is given in Ref. 9.

Moreover, it must be pointed out that reliability analysis can be used
not only to constantly verify that the quality targets are really fulfilled in
service, but also to help improve any time-oriented quality characteristic of
a product by estimating its current level in the field. Therefore, collecting
field failure data over the entire life of a product and performing a reliability
analysis can be an effective policy for achieving continuous improvement of
products [6].

In this context, reliability analysis allows one not only to control the
failure or degradation of product performance, but also to reduce the var-
iation in the performance over time among copies of the same item {7]. In
order to do that, many practical methods for estimating failure distributions
are available in the reliability literature, primarily those that integrate the
competence of both engineers and statisticians [10, 11], since, as has already
been said, only by involving everyone’s commitment can total quality be
achieved.
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1. INTRODUCTION

Control charts are used to monitor a production process to detect changes
that may occur in the process. In many applications, information about the
process may be in the form of a classification of items from the process into
one of two categories, such as defective or nondefective, or nonconforming
and conforming. The process characteristic of interest is the proportion p of
items that fall in the first category. For convenience in describing the
problem being considered, the labels “defective” and “‘nondefective™ will
be used in this paper for the two categories. It is usually assumed that the
items from the process are independent with probability p of being defective.
This would then imply that the total number of defective items in a sample
of n items, say 7. has a binomial distribution. In most quality control
applications the primary objective in using a control chart would be to
detect an increase in p, because an increase in p corresponds to a decrease
in quality. However, a decrease in p would be of interest if it is important to
document an improvement in process quality. Woodall (1997) gives a gen-
eral review of control charts that can be applied to the problem of monitor-
ing p.

The traditional approach to applying a control chart to monitor p is to
take samples of size n at regular intervals and plot the values of the sample

117



118 Reynoids and Stoumbos

proportion defective, T/n, on a Shewhart p-chart. The p-chart usually has
control limits set at +3 standard deviations from the in-control value p,
(three-sigma limits). Although the p-chart is relatively easy to set up and
interpret, it has a number of disadvantages. These disadvantages are parti-
cularly critical when py is close to zero. Monitoring a process with pg close to
0 is becoming more and more common with the increasing emphasis on high
quality production. Thus, it is important to be aware of the disadvantages of
the p-chart and to consider better alternatives.

The distribution of T is discrete, and when p, is close to zero the
distribution of T is also highly skewed (unless » is very large). This results
in the p-chart with 3o limits having properties very different from what
would be expected from a normal distribution with 3¢ limits. For example,
for many values of n and p, that might occur in applications, the calculated
lower control limit is negative, so there is, in effect, no lower control limit.
This means that the chart will not be able to detect decreases in p. In
addition, when p = p,, the discreteness and skewness of 7 can result in a
probability above the upper control limit that is far from the value 0.00135
expected from the normal distribution. If the probability is far above
0.00135, then the false alarm rate will be much higher than expected,
whereas if the probability is far below 0.00135, then the false alarm rate
will be much lower than expected. A lower than expected false alarm rate is
undesirable because it means that process changes will be detected more
slowly than necessary.

The p-chart is a Shewhart control chart that plots, at each sampling
point, the proportion defective for that sample alone. Information from past
samples is not used, and this results in a chart that is not very efficient for
detecting small changes in p. In particular, if py is close to 0, then the p-chart
requires a very large value of n to detect a small increase in p within a
reasonable length of time. The traditional approach to improving the effi-
ciency of a Shewhart chart for detecting small process changes is to use runs
rules. For the p-chart, the use of runs rules might also enable decreases in p
to be detected when there is no lower control limit. The disadvantages of
using large numbers of runs rules are that the chart is more difficult to
interpret and the evaluation of the statistical properties of the chart is
much more complicated. Most evaluations of the statistical properties of
runs rules are based on the symmetrical normal distribution, with regions
within the control limits specified in terms of the standard deviation of the
statistic being plotted. Applying these runs rules to the p-chart results in the
same problem as with the control limits; the discreteness and skewness of the
distribution of T can result in runs rules with properties much different than
expected.
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An additional disadvantage to using a p-chart with runs rules is that
using runs rules is not the most efficient way to detect small changes in p. A
better approach to obtaining a control chart that will detect small process
changes is to use a chart, such as a CUSUM chart, that directly and effi-
ciently uses the past sample data at each sample point. Although the dis-
creteness of the distribution of 7 will be an issue with a CUSUM chart, the
fact that the CUSUM chart is based on a sum will make the discreteness
much less of a problem than in the case of the p-chart. In the past, a
hindrance to the application of CUSUM charts to monitor p is that it is
difficult for the practitioner to determine the CUSUM chart parameters that
will give specified properties. Some tables or figures have been published
[see, for example, Gan (1993)], but these tables and figures do not include all
values of n and p, that would be of interest in applications.

Another approach to obtaining more efficient control charts is to use a
control chart that varies the sampling rate as a function of the process data.
Although a large number of papers have been published in recent years on
variable sampling rate control charts [see, e.g., Reynolds (1996a) and
Stoumbos and Reynolds (1997b)], only a few papers have been published
on the specific problem of monitoring p [see, e.g., Rendtel (1990) and
Vaughan (1993)]. The application of variable sampling rate control charts
to monitoring p has been hindered by the difficulty of determining the chart
parameters that will give specified properties.

The objective of this chapter is to consider three highly efficient con-
trol charts for monitoring p that can be used in three different situations.
The first control chart is a CUSUM chart, called the Bernoulli CUSUM
chart, that can be used in situations in which all items from the process are
inspected. The use of 100% inspection is becoming more common as auto-
matic inspection systems are implemented. Also, in the highly competitive
global markets of today there is an increasing emphasis on maintaining a
very low proportion of product that is defective or that does not meet
specifications. The sampling rates that are necessary to discriminate between
very low values of p will frequently correspond to 100% inspection.
CUSUM charts for this problem have been considered before [see, e.g.,
Bourke (1991)]. A disadvantage of these CUSUM charts has been that
designing a CUSUM chart for a particular application has been difficuit
unless the values of # and p, in the application happen to correspond to
values in published tables. A contribution of the current chapter is to show
how to design a CUSUM chart for the case of 100% inspection using
relatively simple and highly accurate approximations.

The second control chart to be considered is a CUSUM chart that can
be applied in situations in which samples of n items are taken from the
process at regular intervals. CUSUM charts for this problem have been
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studied before [see, e.g., Gan (1993)]. As in the case of 100% inspection, a
disadvantage of the CUSUM chart in this situation has been that designing
one for a particular application has been difficult unless the values of n and
Po in the application happen to correspond to published results. A contribu-
tion of the current chapter is to show how to design a CUSUM chart for the
binomial distribution using relatively simple and highly accurate approxi-
mations.

The third control chart to be considered here is a chart that can be
applied when it is not feasible to use 100% inspection but it is feasible to
vary the sample size used at each sampling point depending on the data
obtained at that sampling point. The sample size is varied by applying a
sequential probability ratio test (SPRT) at each sampling point. This SPRT
chart for monitoring p is a variable sampling rate control chart, and it is
much more efficient than charts that take a fixed-size sample. Methods
based on relatively simple and highly accurate approximations are given
for designing the SPRT chart.

The remainder of this chapter is organized as follows. Sections 2-5
pertain to the Bernoulli CUSUM chart, Sections 6-8 pertain to the binomial
CUSUM chart, and Sections 9-12 pertain the the SPRT chart. For each
chart, a description is given, the evaluation of statistical properties is dis-
cussed, a design method is explained, and a design example is given. Some
general conclusions are given in Section 13.

2. THE BERNOULL! CUSUM CHART WHEN USING 100%
INSPECTION

When all items from the process are inspected, the results of the inspection
of the ith item can be represented as a Bernoulli observation X, which is 1 if
the ith item is defective and 0 otherwise. Then p corresponds to P(X, = 1).
The control chart to be considered for this problem is a CUSUM chart
based directly on the individual observations X, X, ... without any group-
ing into segments or samples. This Bernoulli CUSUM chart is defined here
for the problem of detecting an increase in p. The problem of detecting a
decrease in p. as well as additional details about the Bernoulli CUSUM
chart, are given in Reynolds and Stoumbos (1999).

For detecting an increase in p, the Bernoulli CUSUM control statistic
is

B, =max{0, B} + (X, —v), i=12 .. (1)
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where v > 0 is the reference value. After the inspection of item i this
CUSUM statistic adds the increment X, — vy to the previous value as long
as the previous value is nonnegative, but resets the cumulative sum to 0 if
the previous value drops below 0. The starting value By is frequently taken
to be 0 but can be taken to be a positive value if a head start is desired [see
Lucas and Crosier (1982) for a discussion of using a head start in a CUSUM
chart]. This chart will signal that there has been an increase in p if B; > hy,
where /g is the control limit. The reference value y can be chosen by using
the representation of a CUSUM chart as a sequence of SPRTs. To deter-
mine the value of v it is necessary to specify a value p; > p, that represents
an out-of-control value of p that should be detected quickly. For a given in-
control value p, and a given out-of-control value p,, define the constants r,
and r, as

_ 1 —
L=p and r» = log 1——]'( Po)

n=-—lo
] &1 — Do poll = p1)

Then, from the basic definition of an SPRT (see Section 9), it can be shown
that the appropriate choice for y is

Yy =n/r 3)

It will usually be convenient if y = 1 /m, where m is an integer. For example,
if py=0.005 and p; is chosen to be p; =0.010, then this will give
r = 0.00504, r, = 0.6982, and r;/r» = 0.00722 = 1/138.6. In this case, if
py is adjusted slightly from 0.010 to 0.009947, then r,/r, will decrease
slightly to 1/139. This means that the possible values of B; will be integer
multiples of 1/139, and this will be convenient for plotting the chart. In
general, if py and p, are small, then a slight change in p; will be sufficient
to make y = 1/m, where m is an integer. In most cases the precise specifica-
tion of p; will not be critical, so this slight change in p, will be of no practical
consequence.

3. PROPERTIES OF THE BERNOULLI CUSUM CHART

The performance of a control chart is usually evaluated by looking at the
average run length (ARL), which is the expected number of samples
required to signal. In the current context of 100% inspection, there may
be no natural division of observations into samples or segments, and thus, to
avoid confusion, we will use the average number of observations to signal
(ANOS) instead of the ARL to measure the performance of control charts.
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Assuming that the production rate is constant, the ANOS can be easily
converted to time units, and for purposes of exposition we will frequently
refer to the ANOS as a measure of detection time. When the process is in
control (p = py), it is desirable to have a large ANOS so that the rate of false
alarms is low. On the other hand, when there has been a significant change
in p, it is desirable to have a small ANOS so that this change in p is detected
quickly. In the previous section p; was defined as a value of p that should be
detected quickly, and thus the ANOS should be small at p = p,. However, in
practice, it is usually desirable to consider a range of values of p around p,
and to have a chart with good performance for all of these values of p.

The ANOS of the Bernoulli CUSUM can be evaluated by formulating
the CUSUM as a Markov chain [see Reynolds and Stoumbos (1999)}. This
approach gives the exact ANOS when r|/r; is a rational number, but the
disadvantage is that a computer program is usually required. The approach
to be given here is from Stoumbos and Reynolds (1996) and Reynolds and
Stoumbos (1999) and is based on using approximations developed by Wald
(1947) and diffusion theory corrections to these approximations obtained by
Reynolds and Stoumbos (1999) by extending the work of Siegmund (1985).
The approximation for the ANOS that is obtained using this approach will
be called the corrected diffusion (CD) approximation. The CD approxima-
tion will form the basis of a highly accurate and relatively simple design
method that requires only a pocket calculator to design the Bernoulli
CUSUM for practical applications.

4, A METHOD FOR DESIGNING THE BERNOULLI CUSUM
CHART

To design a Bernoulli CUSUM chart for a particular application it will be
necessary to specify p,, the in-control value of p, and p;, the value of p that
the chart is designed to detect. The values of p, and p; will then determine
the reference value y through Eq. (3). As discussed above, when p, and p,
are small it will usually be convenient to adjust p; slightly so that y = 1 /m,
where m is an integer. The design method is presented here for the case in
which 0 < py < 0.5. The case in which py > 0.5 is discussed in Reynolds and
Stoumbos (1999).

In designing the chart it is also necessary to determine the value for the
control limit sz. The value of /15 will determine the false alarm rate and the
speed with which the chart detects increases in p. A reasonable approach to
determining h is to specify a desired value of the ANOS when p = p, and
then choose fhig to achieve approximately this value of the ANOS. It will
usually not be possible to achieve exactly a desired value of the ANOS
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because the Bernoulli distribution is discrete. Once g is chosen to achieve
approximately the specified ANOS at p = py, it will be desirable to look at
the ANOS at p = p; and at other values of p to determine whether detection
of shifts in p will be fast enough. In practice, it may be necessary to adjust /g
to achieve a reasonable balance between the desire to have a low false alarm
rate (achieved by choosing a large hp) and fast detection of shifts in p
(achieved by choosing a small hg).

The CD approximation to the ANOS of the Bernoulli CUSUM chart
uses an adjusted value of /g, which will be denoted by /7%, in a relatively
simple formula. This adjusted value of Ay is

hg = hg + €(Po)v/Podo 4)
where g(p) can be approximated by

0.410 — 0.0842 log(p) — 0.0391[log(»)])*
—0.00376[log(p)]* — 0.000008[log(p)}’

g(y))% | ]
— —_— - [ 1
3<[ /1 ) if 0 < p <0.0l

(%)

if 0.01 <p <05

When p = p,, the CD approximation to the ANOS is

My — |

e
ANOS =
(o) [F2po — 11l

(6)

For given values of r; and r, and a desired value for the in-control ANOS,
Eq. (6) can be used to find the required value of /i, and then (4) and (5) can
be used to find the required value of /. Finding 4% using (6) can be accom-
plished by simple trial and error.

In most applications it will be desirable to determine how fast a shift
from p, to p; will be detected. The CD approximation to the ANOS when
p=pis

— iy
e 4 hpry — 1

ANOS(p,) ~
[ropy — 1l

(7

Note that A% uses py even though the ANOS is being approximated at p,.
Approximations to the ANOS for other values of p and a discussion of the



124 Reynolds and Stoumbos

accuracy of the CD approximation are given in Reynolds and Stoumbos
(1999).

5. AN EXAMPLE OF DESIGNING A BERNOULLI CUSUM
CHART

Consider a production process for which it has been possible to maintain the
proportion defective at a low level, py = 0.005, except for occasional periods
in which the value of p has increased above this level. All items from this
production process are automatically inspected, and a Shewhart p-chart is
currently being used to monitor this process. Items are grouped into seg-
ments of n = 200 items for purposes of applying the p-chart. If 3¢ limits are
used with the p-chart, then the upper control limit is 0.01996, and this is
equivalent to signaling if 7, > 4, where T, is the number of defectives in the
Jth segment. When p = py = 0.005, this results in P(7, > 4) = 0.01868, and
it was decided that this probability of a false alarm was too high. Thus, the
upper control limit of the p-chart was adjusted so that a signal is given if
T, > 5, and this gives a probability of 0.00355 for a false alarm. There is no
lower control limit because giving a signal for T, = 0, the lowest possible
value of T}, would result in P(T, = 0) = 0.3670 when p = pg, and thus the
false dhrm rate would be unacceptably high. When p = p,, the expected
number of segments until a signal is 1/0.00355 = 282.05. Each segment
consists of 200 items, so this corresponds to an in-control ANOS of
56,410 items.

To design a Bernoulli CUSUM chart for this problem, suppose that
process engineers decide that it would be desirable to quickly detect any
special cause that increases p from 0.005 to 0.010 and that the in-control
ANOS should be roughly 56,410 (the value corresponding to the p-chart in
current use). From a previous discussion of the case of py = 0.005 and
p1 = 0.010, it was shown that adjusting p, slightly from 0.010 to 0.009947
would give r,/r; = 1/139, and thus m = 139. Using trial and error to solve
(6) to give ANOS(pg) ~ 56,410 results in a value of /iy of 6.515 [this value of
Iy will give an in-control ANOS of 56,408 according to the approximation
of Eq. (6)]. Then, using (4) and (5) to convert to /iy gives &(p) = 4.646,
&(po)+/Podo = 0.328, and g = 6.187. As a point of interest, the exact in-
control ANOS using hg = 6.187 can be calculated to be 56,541 by using
the methods given in Reynolds and Stoumbos (1999). Thus, in this case the
CD approximation gives results that are extremely close to the exact value
and certainly good enough for practical applications.

After hy has been determined, Eq. (7) can be used to determine how
fast a shift from pgy to p; will be detected. Using hp = 6.515 in (7) gives
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ANOS(p,) = 1848. Interestingly, the exact ANOS can be calculated to be
1856, so the CD approximation is also very good at p = p;. At p = py, the
ANOS of the p-chart is 3936 items. Thus, the p-chart would require on
average more than twice as long as the Bernoulli CUSUM chart to detect
a shift from p, to py.

6. THE BINOMIAL CUSUM CHART

In many applications 100% inspection of the process output will not be
feasible, and thus samples from the output will have to be used for mon-
itoring. In this section, the problem of monitoring p when the data from the
process consist of samples of fixed size n that are taken at fixed sampling
intervals of length 4 is investigated. If T} is used to represent the total
number of defectives observed in the kth sample, then the statistics
T,, T», ... are independent binomial random variables. The control chart
to be considered here is a CUSUM chart based on these statistics.
The binomial CUSUM chart uses the control statistic

Y, = max{0, Y,_} + (T} — nry), k=1,2,... &)

and signals at sample k if Y, > sy, where Y, is the starting value and vy is
given by (3). The reference value of this CUSUM chart is ny = nry/r,, and
this reference value is appropriate for detecting a shift to p,.

In the current situation in which samples are taken from the process,
the performance of a control chart can be measured by the average time to
signal (ATS). As in the case of using the ANOS in previous sections, when
p = po the ATS should be large, and when p shifts from p, the ATS should
be small. In evaluating the ATS of the binomial CUSUM chart, it wil be
assumed for simplicity that the time required to take and plot a sample of
observations is negligible relative to the time d between samples. In this case,
the ATS can be expressed as the product of d and the average number of
samples to signal (ANSS). Gan (1993) discusses Markov chain methods for
evaluating the ANSS of the binomial CUSUM chart. Here we use CD
approximations to design the binomial CUSUM chart.

When the ATS is used as a measure of the time required to detect a
shift in p, the ATS is usually computed assuming that the shift in p occurs
when process monitoring starts. However, in many cases the process may
run for a while at the in-control value py and then shift away from p, at
some random time in the future. In this case the detection time of interest is
the time from the shift to the signal by the control chart. For control charts
such as the CUSUM chart, the computation of this expected time is com-
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plicated by the fact that the CUSUM statistic may not be at its starting
value when the shift in p occurs. If it is assumed that the CUSUM statistic
has reached its stationary or steady-state distribution by the time the shift
occurs, then the expected time from the shift to the signal is called the
steady-state ATS (SSATS). When peforming comprehensive comparisons
of different control charts, it is appropriate to consider the SSATS as a
measure of detection time. However, for the limited comparisons to be
given in the design examples in this paper, the ATS will be used.

7. A METHOD FOR DESIGNING THE BINOMIAL CUSUM
CHART

A method for designing the binomial CUSUM can be developed by using
CD approximations to the ANSS and the ATS. This method is presented
here for the special case in which py < 0.5 and 1/ny is a positive integer.
Extensions of this method to more general cases are currently under devel-
opment.

The CD aproximation to the ANSS of the binomial CUSUM uses an
adjusted value of Ay, which will be denoted as /£y, in a relatively simple
formula. The adjusted value of hy is

hy =hy +1(1 = 2py), 0 < py <05 )

When p = py, the CD approximation to the ANSS is

hyry
ra * ny(e v — 1)
~{— |y —— 10
ANSS(po) ~ (2 n))(’y e (10)

When p = p,, the CD approximation to the ANSS is

. Y v 1
ANSS(p;) ~ (_'2_) (11’;, _mye " (e )) an

n("?_[)] _ '.l) eh‘),r:(l _ e—nyr:)

An approximation to the ATS is obtained by multiplying the ANSS by the
sampling interval d.

To design a binomial CUSUM chart, the values of py and p, can be
specified, and then these values will determine the reference value y through
Eq. (3). To use the CD approximations given above it will be necessary to
choose values of n and p, such that 1/ny is a positive integer. In this case, the
possible values of the binomial CUSUM statistic Y will be integer multiples
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of ny. Thus, in considering values for /1y, it is sufficient to look at values that
are integer multiples of ny. These values of /iy will correspond to certain
values of iy using (9). Using the approximation (10), the value of i} can be
selected that will give approximately the desired value for the in-control
ANSS. Then the /1y to be used can be obtained from /iy by using (9).

8. AN EXAMPLE OF DESIGNING A BINOMIAL CUSUM
CHART

Consider a situation similar to the example in Section 5 in which a Shewhart
p-chart is being used to monitor a production process for which the in-
control value of p is p, = 0.005. Instead of using 100% inspection for this
process, suppose that it is necessary to take samples from the process out-
put. The value of py is relatively small, and thus it is necessary to take
relatively large samples for the p-chart to be able to detect small increases
in p above p,. Suppose that samples of size n = 200 items are used (the same
as the size of the segments in the example in Section 5). To keep the total
sampling effort to a reasonable level, the samples are taken from the process
every d = 4 hr. As in the previous example, the upper control limit of the p-
chart was adjusted so that a signal is given if T, > 5, which gives
P(T; = 5) =0.00355 when p = py. This corresponds to an in-control
ANSS  of 1/0.00355=282.05 and an in-control ATS of
4(282.05) = 1128.2 hr.

Consider now the design of a binomial CUSUM chart assuming that
samples will be taken every d = 4 hr as described above. Suppose that pro-
cess engineers decide that it is important to detect a shift in p from
po = 0.005 to p; =0.010 and that it would be reasonable to have an in-
control ANSS of approximately 282 (the same as the value for the p-
chart). As in the example in Section 5, adjusting p, slightly from 0.010 to
0.009947 will give vy = r,/r, = 1/139. If n 1s taken to be 139, then the refer-
ence value of the binomial CUSUM chart becomes ny = 139/139 = 1.
Many practitioners might prefer to have n = 140, rather than 139, and
this can be achieved by an additional slight adjustment in p;. If p, is adjusted
to 0.009820, then this will give y =r;/r, = 1/140. Then, taking n = 140
gives a reference value of ny = 140/140 = 1.

The reference value for the binomial CUSUM chart is 1, so it follows
that it is sufficient to look at values for /1, that are integer multiples of 1. If
several values of /i1y are tried, it is found that using iy = 5 in Eq. (9) gives
Iy = 5.33, and using this A}y in Eq. (10) gives ANSS(p,) = 228.7. As a point
of interest, the exact ANSS for this value of /1y is 228.6. Using hy = 6 in Eq.
(9) gives iy = 6.33, and using this /% in (10) gives ANSS(p,) =~ 471.8 (the
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exact value is 471.3). Neither of these ANSS values is extremely close to the
desired value of 282, but suppose that it is decided that 228.7 corresponding
to iy = 5 is close enough. Using Ay =5 will give an in-control ATS of
approximately 4 x 228.7 =914.8. Using hy =35 and I} =5.33 in (11)
gives ANSS(p;) 2 11.6 (the exact value is 11.9). This corresponds to an
ATS at p=p; =0.0098 of approximately 4 x 11.6 =46.4hr. At p =p,,
the ATS of the p-chart is 80.3 hr. Thus, the binomial CUSUM chart will
detect a shift to p; faster than the p-chart will. Note that the p-chart is
sampling at a higher rate than the CUSUM chart (200 every 4 hr versus
140 every 4 hr), but the CUSUM chart has a slightly higher false alarm rate.

When the p-chart is being used to detect small increases in p above a
small value of pq, it is necessary to use a large sample size to detect this
increase in a reasonable amount of time. This may require that the sampling
interval d be relatively long in order to keep the sampling cost to a reason-
able level. However, for the binomial CUSUM chart it is not necessary to
have #n large; it is actually better to take smaller samples at shorter intervals.
Thus, as an alternative to taking a sample of » = 140 every d = 4 hr, con-
sider the option of taking a sample of n = 70 every d = 2 hr. If the binomial
CUSUM chart uses n = 70 and p; = 0.009820, then the reference value will
be n = 70/140 = 0.5, and the possible values for Y, will be integer multiples
of 0.5. Thus, it is sufficient to look at values for 1y that are integer multiples
of 0.5. If the p-chart has an in-control ATS of 1128 and it is desirable to
have approximately the same value for the binomial CUSUM with d = 2,
then the in-control ANSS should be 1128/2 = 564. Using hy = 5.5 in (9)
gives i} = 5.83, and using this 4y in (10) gives ANSS(py) = 558.5 (the exact
value is 557.9). This corresponds to an in-control ATS of approximately
2 x 558.5 = 1117.0. Using (11) gives ANSS(p,) = 24.6 (the exact value is
25.1). This corresponds to an ATS at p = p, = 0.0098 of approximately
2 x 24.6 = 49.2 hr. Compared to the p-chart, this binomial CUSUM chart
has almost the same false alarm rate and a lower sampling rate, yet it will
detect a shift to p; much faster.

As another alternative to taking a sample of n = 140 every d = 4hr,
consider the option of taking a sample of n = 35 every hour. If the binomial
CUSUM chart uses # = 35 and p; = 0.009820, then the reference value will
be ny = 35/140 = 0.25, and the possible values for Y; will be integer multi-
ples of 0.25. Thus, it is sufficient to look at values for hy that are integer
multiples of 0.25. If the p-chart has an in-control ATS of 1128 and it is
desirable to have approximately the same value for the binomial CUSUM
with = 1, then the in-control ANSS should be 1128. Using /iy = 5.75in(9)
gives I} = 8.08, and using this 4} in (10) gives ANSS(p)) = 1228.2 (the
exact value is 1226.6). Because d = 1, this corresponds to an in-control
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ATS of 1226.2hr. Using (11) gives ANSS(p,) =~ 50.7 (the exact value is
51.3). This corresponds to an ATS at p = p; = 0.0098 of 50.7 hr.

The three binomial CUSUM charts that have been considered here
have the same sampling rate of 35 observations per hour. However, their
false alarm rates are not exactly the same, so it is difficult to do precise
comparisons of the charts. But based on the results given for these charts, it
seems clear that taking small samples at frequent intervals would give fast
detection of process shifts. If n is reduced to the smallest possible value, 1,
then the binomial CUSUM chart reduces to the Bernoulli CUSUM chart
discussed previously. Using n = 1 might be the best way to apply a CUSUM
chart from a statistical point of view, but taking samples of size 7 = | might
be inconvenient in some applications.

9. THE SPRT CHART

CUSUM charts, such as the binomial CUSUM chart described previously.
can be thought of as sequences of SPRTs carried out over successive sam-
pling points. The SPRT chart to be considered in this section is based on
using SPRTs in a different way. In particular, the SPRT chart is based on
applying a sequential test (an SPRT) to the individual items inspected at
each sampling point. A description of the SPRT chart for the case of mon-
itoring a general parameter is given by Stoumbos and Reynolds (1996) and,
for the case of monitoring the mean of a normal distribution, in Stoumbos
and Reynolds (1997b). More details about the current problem of applying
the SPRT chart to monitor p are given in Reynolds and Stoumbos (1998).
In the context of hypothesis testing, the SPRT is a general sequential test
that can be applied to test a simple null hypothesis against a simple alter-
native hypothesis. For the case of a test involving the proportion defective p,
the SPRT can be used to test the null hypothesis Hy:p = py against the
alternative hypothesis H,:p =p,. In the context of monitoring p. p,
would be the in-control value of p, and p, would be a value that should
be detected quickly, as defined in previous sections.

Suppose that a sampling interval of length d is used for sampling from
the process. At each sampling point items from the process are inspected one
by one and an SPRT is applied, with the sample size used at each sampling
point being determined by the SPRT. If items can be inspected quickly
enough, then the inspection can be done on consecutive items as they
come from the process. For example, if an item is produced every 10sec
and the inspection and recording of the result take no more than 10 sec, then
inspection can be done as the items are produced. On the other hand, if the
inspection rate is slower than the production rate, then inspection could be
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done after production on items that have been accumulated. Alternatively,
inspection could be done on items as they come from production, with some
items skipped. For example, if an item is produced every 10 sec but inspec-
tion requires between 30 and 40 sec, then every third or fourth item could be
inspected during inspection periods.

If the SPRT applied at sampling point k accepts Hy: p = pg, then the
decision is that the process is in control. The process is then allowed to
continue to the next sampling point, & + 1, at which time another SPRT
is applied. But if the SPRT applied at sampling point k rejects Hy, then this
is taken as a signal that there has been a change in p. Action should then be
taken to find and eliminate the cause of this change in p. Thus, the SPRT
chart involves applying an SPRT at each sampling point and giving a signal
whenever one of these SPRTs rejects H,.

To define the SPRT that is applied at sampling point &, let the
Bernoulli random variable X}, be defined by X;, = | if the ith item at sam-
pling point k is defective and by X, = 0 otherwise. The statistic used by the
SPRT is defined in terms of a log likelihood ratio using the density
f(x;p) =p (1 = p)'™* of X,,. After the jth item is inspected at sampling
point &, this log likelihood ratio statistic is

. JXwspy) <, N
Zl f(lepo) ;('sz,—n)—;sz, rJj (12)

where the constants r; and r, are defined by (2), and

J
Ty =) Xy (13)
=1

is the total number of defective items in the first j items inspected at sam-
pling point k.

The SPRT chart requires the specification of two constants a and b,
b < a, and uses the following rules for sampling and making decisions.

1. At sampling point &, if b < Sy, < a, then continue sampling.
At sampling point k, if Sy, > a, then stop sampling and signal that
p has changed.

3. At sampling point &, if Sy, < b, then stop sampling at sampling
point k& and wait until sampling point k 4+ 1 to begin applying
another SPRT.

The inequality
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b<Sy<a (14)

determines when the SPRT continues sampling and is usually called the
critical inequality of the SPRT. In some applications it may be more con-
venient to carry out the SPRT by dividing Sy, by r; to obtain an equivalent
critical inequality. If p; > pg, then this equivalent critical inequality is

g<Ty—vj<h (15)

where g = b/ry, h = a/rp, and vy is given by (3). Thus, after inspecting the jth
item at sampling point &, the SPRT is carried out by determining 7}, sub-
tracting v/, and comparing the result to g and Ah. If (15) holds, then inspec-
tion is continued at this point; if T, — yj > A, then sampling is stopped and
a signal is given; and if T}, — v/ < g, then sampling is stopped until the time
for sample & + 1 is reached.

As in the cases of the Bernoulli CUSUM and the binomial CUSUM, it
will usually be convenient to have y = 1/m, where m is a positive integer, so
that the SPRT statistic Ty, — v/ in (15) will take on values that are integer
multiples of y. It will usually be possible to make y = 1/m by a slight
adjustment of p;. When y = 1/m, m a positive integer, the acceptance
limit g in (15) can be chosen to be an integer multiple of 1/m, and this
will ensure that the SPRT statistic Ty, — yj will exactly hit g when the test
accepts Hy. In the development of the SPRT and the SPRT chart that
follows it is assumed that y = 1/m and that g is an integer multiple of y.
If T}, — vj is an integer multiple of y, then it follows that the rejection limit /
can also be taken to be an integer multiple of v, although T, — yj may still
overshoot 4 when the test rejects H,.

10. THE PROPERTIES OF THE SPRT CHART

When evaluating any hypothesis test, a critical property of the test is deter-
mined by either the probability that the test accepts the null hypothesis or
the probability that the test rejects the null hypothesis, expressed as func-
tions of the value of the parameter under consideration. Following the
convention in sequential analysis, we work with the operating characteristic
(OC) function, which is the probability of accepting H as a function of p.
For most hypothesis tests the sample size is fixed before the data are taken,
but for a sequential test the sample size, say N, depends on the data and is
thus a random variable. Therefore, for a sequential test the distribution of N
must be considered. Usually, E(N), called the average sample number (ASN),
is used to characterize the distribution of N.
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Each SPRT either accepts or rejects H,, and thus the number of
SPRTs until a signal has a geometric distribution with parameter
I — OC(p). Because each SPRT corresponds to a sample from the process,
the expected number of SPRTs until a signal is the ANSS. For the SPRT
chart, the ANSS for a given p, say ANSS(p), is thus the mean of the geo-
metric distribution, which is

1

When there is a fixed time interval d between samples and the time
required to take a sample is negligible, then the ATS is the product of ¢ and
the ANSS. Thus, the ATS at p, say ATS(p), is

ATS() = d ANSS() = T —ge (7

When p = p,, then 1 — OC(py) = @, where « is the probability of a type I
error for the test. The ATS is then

d
ATS(py) = 3 (18)
When p = p,. then OC(p;) = B, where B is the probability of a type 1I error
for the test. The ATS is then

d
-8

ATS(;) = (19)

Exact expressions for the OC and ASN functions of the SPRT for p
can be obtained by modeling the SPRT as a Markov chain [see Reynolds
and Stoumbos (1998)]. These expressions, however, are relatively compli-
cated, and thus it would be convenient to have simpler expressions that
could be used in pratical applications. The remainder of this section is
concerned with presenting some simple approximations to the OC and
ASN functions. These approximations to the OC and ASN functions are
presented here for the case in which 0 < py < 0.5. The case in which p > 0.5
is discussed in Reynolds and Stoumbos (1998).

When the SPRT is used for hypothesis testing, it is usually desirable to
choose the constants g and /1 such that the test has specified probabilities for
type I and type I1 errors. The CD approximations to the OC and ASN
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functions use an adjusted value of /i, which will be denoted by /", in a
relatively simple formula. The adjusted value of /" is

W =h +%(1 - 2py), 0<py<0.S5 (20)

It is shown in Reynolds and Stoumbos (1998) that choices for g and /i* based
on the CD approximations are

" ~ilog(‘ - B) 1)

¥y jod

and

g~%10g< P ) (22)

1 —a

If nomial values are specified for o and B, then g and * can be determined
by using Eqs. (21) and (22), and then the value of / can be obtained from /*
by using Eq. (20).

The CD approximation to the ASN at p; and p; can be expressed
simply in terms of o and B [see Reynolds and Stoumbos (1998)]. For
p = py. this expression is

ASN(p,) ~ 2108l = B)/ a]:pz 1_—"?) logB/(1 — )]

(23)

and for p = p, the expression is

ASN(pp) ~ (L= P08 = B)/0] + BlogfB/(1 — o)

npy—n

(24)

Thus, for given a and B, evaluating the ASN at p, and p, is relatively easy.

11. A METHOD FOR DESIGNING THE SPRT CHART

To design the SPRT chart for practical applications it is necessary to deter-
mine the constants g and / used in each SPRT. In many applications it is
desirable to specify the in-control average sampling rate and the false alarm
rate and design the chart to achieve these specifications. Spe-ifying the
sampling interval ¢ and ASN(p,) will determine the in-control average sam-
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pling rate, and specifying ATS(p,) will determine the false alarm rate. Once
these quantities are specified, the design proceeds as follows.

The value of o is determined by using Eq. (18) and the specified values
of d and ATS(py). Then, using (23), the value of B can be determined from
the specified value of ASN(py) and the value of o just determined.
Expression (23) cannot be solved explicitly for B in terms of o and
ASN(py), so the solution for $ will have to be determined numerically.
Once o and B are determined, Egs. (21), (22), and (20) can be used to
determine g and A.

12. AN EXAMPLE OF DESIGNING AN SPRT CHART

To illustrate the design and application of the SPRT chart, consider an
example similar to the examples of Sections 5 and 8 in which the objective
is to monitor a production process with py = 0.005. Suppose that the current
procedure for monitoring this process is to take samples of n = 200 every
d = 4 hr and use a p-chart that signals if five or more defectives are found in
a sample. Suppose that items are produced at a rapid rate and an item can
be inspected in a relatively short time. In this case, process engineers are
willing to use a sequential inspection plan in which items are inspected one
by one and the sample size at each sampling point depends on the data at
that point. In this example the time required to obtain a sample is short
relative to the time between samples, so neglecting this time in computations
of quantities such as the ATS seems to be reasonable.

As in the example in Section 5, suppose that p; is specified to be 0.010
and then adjusted slightly to 0.009947, so that y = 1/139. For the first phase
of the example, suppose that it is decided that the SPRT chart should be
designed to have the same sampling interval, the same in-control average
sampling rate, and the same false alarm rate as the p-chart. Then d can be
taken to be 4, the target for ASN(py) can be taken to be 200, and the target
for ATS(py) can be taken to be 1128 hr.

First consider the problem of finding g and 4 in critical inequality (15)
of the SPRT. Using the specifications decided upon for the chart, Eq. (18)
implies that o should be 0.003545. Then, solving (23) numerically for B
gives P=0.7231. Then, using Egs. (21) and (20) gives h*=
log(0.2769/0.003545)/0.6928 = 6.2906 and h = 5.9606, and using Eq. (22)
gives g = 10g(0.7231/0.996455)/0.6928 = —0.4628. Rounding g and 4 to the
nearest multiple of 1/139 gives g= —64/139 =-0.4604 and h=
828/139 = 5.9568. Thus, the SPRT chart can be applied in this case by
using the critical inequality
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—0.4604 < T}, — (j139) < 5.9568 (25)

The in-control ASN of this chart should be approximately 200 (the exact
value is 198.97), and the in-control ATS should be approximately 1128 hr
(the exact value is 1128.48hr). Using Eq. (24), this chart’s ATS at
p = p; = 0.009947 should be approximately d/(1 —B) =4/ (1 —0.7231) =
14.45hr (the exact value is 14.51 hr). Thus, compared to the value of
78.73 hr for the p-chart, the SPRT chart will provide a dramatic reduction
in the time required to detect the shift from p, to p;.

The value chosen for p, is really just a convenient design device for the
SPRT chart, so this value of p would usually not be the only value that
should be detected quickly. Thus, when designing an SPRT chart in prac-
tice, it is desirable to use the CD approximation (or the exact methods) given
in Reynolds and Stoumbos (1998) to find the ATS for a range of values of p
around p,. For the evaluation to be given here, exact ATS values for the
SPRT chart were computed and are given in column 3 of Table 1. ATS
values for the p-chart are given in column 2 of Table 1 to serve as a basis of
comparison. Comparing columns 2 and 3 shows that, except for large shifts
in p, the SPRT chart is much more efficient than the p-chart. When con-
sidering the binomial CUSUM in Section 8, it was argued that it is better to
take small samples at more frequent intervals than to take large samples at
long intervals. To determine whether this is also true for the SPRT chart, an
SPRT chart was designed to have an approximate in-control ASN of 50 and
a sampling interval of d = 1 hr. This would give the same sampling rate of
50 observations per hour as in columns 2 and 3. The ATS values of this
second SPRT chart are given in column 4 of Table 1. Comparing columns 3
and 4 shows that using a sampling interval of d = 1 with ASN = 50 is better
than using a sampling interval of 4 =4 with ASN = 200, especially for
detecting large shifts.

In some applications, the motivation for using a variable sampling rate
control chart is to reduce the sampling cost required to produce a given
detection ability [see Baxley (1996), Reynolds (1996b), and Reynolds and
Stoumbos (1998)]. Because the SPRT chart is so much more efficient than
the p-chart, it follows that the SPRT chart could achieve the detection
ability of the p-chart with a much smaller average sampling rate. To illus-
trate this point, the design method given in Section 11 was used to design
some SPRT charts with lower average sampling rates. Columns 5 and 6 of
Table 1 contain ATS values of two SPRT charts that have an in-control
average sampling rate of approximately half the value for the p-chart
(approximately 25 observations per hour). The SPRT chart in column 5
uses d = 2.0 and has ASN(p,) ~ 50, and the SPRT chart in column 6 uses
d = 1.0 and has ASN(py) = 25. Although these two SPRT charts are sam-



Table 1 ATS Values for the p-Chart and the SPRT Charts When py = 0.005

p-Chart SPRT charts

obs/hr = 50, obs/hr = 50 obs/hr =~ 25 obs/hr ~ 12.5

n = 200, ASN =199.0 ASN =498 ASN=51.1 ASN=241 ASN=256 ASN=114
p d=4.0 d=4.0 d=10 d=20 d=1.0 d=20 d=1.00
0.005 1128.2 1128.5 1131.6 1100.7 1172.2 1100.1 1233.8
0.008 172.8 323 30.7 53.8 56.6 91.7 102.5
0.010 77.3 14.3 12.7 23.8 24.7 43.2 48.0
0.015 21.8 7.3 5.6 10.5 10.6 18.9 20.7
0.020 10.8 5.7 39 7.3 7.2 12.9 139
0.030 5.6 4.7 2.6 5.0 4.7 8.5 8.8
0.050 4.1 4.2 1.8 34 3.0 5.4 5.4
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pling at half the rate of the p-chart, they are still faster at detecting shifts in
p. Columns 7 and 8 of Table | contain ATS values of two SPRT charts that
have an in-control average sampling rate of approximately one-fourth the
value for the p-chart (approximately 12.5 observations per hour). The SPRT
chart in column 7 uses = 2.0 and has ASN(p,) = 50, and the SPRT chart
in column 6 uses d = 1.0 and has ASN(p,) ~ 25. Comparing columns 5 and
6 to column 2 shows that the SPRT charts with half the sampling rate of the
p-chart offer faster detection than the p-chart. Columns 7 and 8 show that
an SPRT chart with about one-fourth the sampling rate of the p-chart will
offer roughly the same detection capability as the p-chart.

13. CONCLUSIONS

It has been shown that the Bernoulli CUSUM chart, the binomial CUSUM
chart, and the SPRT chart are highly efficient control charts that can be
applied in different sampling situations. Each of these charts is much more
efficient than the traditional Shewhart p-chart. The design methods based on
the highly accurate CD approximations provide a relatively simple way for
practitioners to design these charts for practical applications. Although the
design possibilities for these charts are limited slightly by the discreteness of
the distribution of the inspection data, this discreteness is much less of a
problem than for the p-chart.

The SPRT chart is a variable sampling rate control chart that is much
more efficient than standard fixed sampling rate charts such as the p-chart.
The increased efficiency of the SPRT chart can be used to reduce the time
required to detect process changes or to reduce the sampling cost required to
achieve a given detection capability.
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1. INTRODUCTION

The standard assumptions when control charts are used to monitor a pro-
cess are that the data generated by the process when it is in control are
normally and independently distributed with mean p and standard deviation
o. Both p and o are considered fixed and unknown. An out-of-control
condition is created by an assignable cause that produces a change or
shift in u or o (or both) to some different value. Therefore, we could say
that when the process is in control the quality characteristic at time ¢, x,, is
represented by the model

X, =p+g, t=1,2,... (1)

where ¢, is normally and independently distributed with mean zero and
standard deviation o. This is often called the Shewhart model of the process.

When these assumptions are satisfied, one may apply either Shewhart,
CUSUM, or EWMA control charts and draw reliable conclusions about the
state of statistical control of the process. Furthermore, the statistical proper-
ties of the control chart, such as the false alarm rate with 3o control limits,
or the average run length, can be easily determined and used to provide
guidance for chart interpretation. Even in situations where the normality
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assumption is violated to a slight or moderate degree, these control charts
will still work reasonably well.

The most important of these assumptions is that the observations are
independent (or uncorrelated), because conventional control charts do not
perform well if the quality characteristics exhibit even low levels of correla-
tion over time. Specifically, these control charts will give misleading results
in the form of too many false alarms if the data are autocorrelated. This
point has been made by numerous authors, including Berthouex et al.
(1978), Alwan and Roberts (1988), Montgomery and Friedman (1989),
Alwan (1992), Harris and Ross (1991), Montgomery and Mastrangelo
(1991), Yaschin (1993), and Wardell et al. (1994).

Unfortunately, the assumption of uncorrelated or independent obser-
vations is not even approximately satisfied in some manufacturing pro-
cesses. Examples include chemical processes in which consecutive
measurements on process or product characteristics are often highly corre-
lated and automated test and measurement procedures in which every qual-
ity characteristic is measured on every unit in time order of production. The
increasing use of on-line data acquisition systems is shrinking the interval
between process observations. As a result, the volume of process data col-
lected per unit time is increasing dramatically [see the discussion in Hahn
(1989)]. All manufacturing processes are driven by inertial elements, and
when the interval between samples becomes small relative to these forces,
the observations on the process will be correlated over time.

It is easy to given an analytical demonstration of this phenomenon.
Figure 1 shows a simple system consisting of a tank of volume V, with an
input and output material stream having flow rate f. Let w, be the concen-
tration of a certain material in the input stream at time ¢ and x, be the
corresponding concentration in the output stream at time 7. Assuming
homogeneity within the tank, the relationship between x, and i, is

Wi

—X

Figure 1 A tank with volume V and input and output material streams.
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dx,
X, =w—-T—
e dr
where T = V/f is often called the time constant of the system.
If the input stream experiences a step change of wy at time ¢ = 0 (say),
then the output concentration at time ¢ is

X, =wo(l =T

Now, in practice, we do not observe x, continuously but only at small,
equally spaced intervals of time, At. In this case,

Xo =g 4 0=y — ey = aw + (1= a)x,

where ¢ = 1 — 72T,

The properties of the output stream concentration v, depend on those
of the input stream concentration i, and the sampling interval. Figure 2
illustrates the effect of the mean of w, on x,. If we assume that the w, are
uncorrelated random variables, then the correlation between successive
values of x, (or autocorrelation between x, and x,_,) is given by

p=1—g=¢2""

Note that if Aris much greater than T, then p = 0. That is, if the interval
between samples At in the output stream is long, much longer than the time
constant T, then the observations on output concentration will be uncorre-
lated. However, if At < T, this will not be the case. For example, if

\_\‘Lx,.y _ l

Figure 2 The effect of the process on x,.
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AtT =1, p =037
At/T = 0.5, p = 0.61
At)T =025  p=0.78
At/T =0.10,  p=0.90

Clearly, if we sample at least once per time constant, there will be significant
autocorrelation present in the observations. For instance, sampling four
times per time constant (A7/7T = 0.25) results in autocorrelation between
x, and x,_; of p = 0.78. Autocorrelation between successive observations as
small as 0.25 can cause a substantial increase in the false alarm rate of a
control chart, so clearly this is an important issue to consider in control
chart implementation.

Figure 3 illustrates the foregoing discussion. This is a control chart for
individual measurements applied to concentration measurements from a
chemical process taken every hour. The data are shown in Table 1. Note
that many points are outside the control limits (horizontal lines) on this
chart. Because of the nature of the production process and the visual
appearance of the concentration measurements in Figure 3, which appear
to “drift” or “wander” slowly over time, we would probably suspect that
concentration is autocorrelated.

Figure 4 is a scatter plot of concentration at time ¢ (x,) versus
concentration measured one period earlier (x,_;). Note that the points
on this graph tend to cluster along a straight line with a positive slope.
That is, a relatively low observation of concentration at time ¢ — | tends
to be followed by another low value at time ¢, while a relatively large
observation at time ¢ — 1 tends to be followed by another large value at
time t. This type of behavior is indicative of positive autocorrelation in
the observations.

It is also possible to measure the level of autocorrelation analytically.
The autocorrelation over a series of time-oriented observations is measured
by the autocorrelation function

_ Cov(x;, x,)

= k=0,1,...
Px Vix,)

where Cov(x,, x,_;) is the covariance of observations that are & time periods
apart, and we have assumed that the observations (called a time series) have
constant variance given by V(x,). We usually estimate the values of p, with
the sample autocorrelation function:
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Figure 3 Control chart for individuals.
Table 1 Concentration Data
Time, t X Time, t X Time, t X Time, t X
1 70.204 26 69.270 51 70.263 76 71.371
2 69.982 27 69.738 52 71.257 77 71.387
3 70.558 28 69.794 53 73.¢19 78 71.819
4 68.993 29 79.400 54 71.871 79 71.162
5 70.064 30 70.935 55 72.793 80 70.647
6 70.291 31 72.224 56 73.090 81 70.566
7 71.401 32 71.930 57 74.323 82 70.311
8 70.048 33 70.534 58 74.539 83 69.762
9 69.028 34 69.836 59 74.444 84 69.552
10 69.892 35 68.808 60 74.247 85 70.884
11 70.152 36 70.559 61 72.979 86 71.593
12 71.006 37 69.288 62 71.824 87 70.242
13 70.196 38 68.740 63 74.612 88 70.863
14 70.477 39 68.322 64 74.368 89 69.895
15 69.510 40 68.713 65 75.109 90 70.244
16 67.744 4] 68.973 66 76.569 91 69.716
17 67.607 42 69.580 67 75.959 92 68.914
18 68.168 43 68.808 68 76.005 93 69.216
19 69.979 44 69.931 69 73.206 94 68.431
20 68.227 45 69.763 70 72.692 95 67.516
21 68.497 46 69.541 71 72.251 96 67.542
22 67.113 47 69.889 72 70.386 97 69.136
23 67.993 48 71.243 73 70.519 98 69.905
24 68.113 49 69.701 74 71.005 99 70.515
25 69.142 50 71.135 75 71.542 100 70.234
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Figure 4 Scatter plot of concentration at time r(x,) versus concentration measured
one period earlier (x,_;).

= St (x; = 06 Vo k=01....K )
Z;:](-Vl ~X)

As a general rule, we need to compute values of r, for a few values of k.

k < n/4. Many software programs for statistical data analysis can perform

these calculations.

The sample autocorrelation function for the concentration data is
shown in Figure 5. The dashed line on the graph is the upper two-standard
deviation limit on the autocorrelation parameter p, at lag k. The lower limit
(not shown here) would be symmetrical. These limits are useful in detecting
nonzero autocorrelations; in effect, if a sample autocorrelation exceeds its
two-standard deviation limit, the corresponding autocorrelation parameter
px is likely nonzero. Note that there is a strong positive correlation at lag 1,

o O O O

Iy
o
, © oo o
— oM AN O NGO D

Figure 5 Autocorrelation function for the concentration data.
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that is, concentration observations that are one period apart are positively
correlated with ; = 0.88. This level of autocorrelation is sufficiently high to
distort greatly the performance of a Shewhart control chart. In particular,
because we know that positive correlation greatly increases the frequency of
false alarms, we should be very suspicious about the out-of-control signals
on the control chart in Figure 3.

Several approaches have been proposed for monitoring processes with
autocorrelated data. Just as in traditional applications of SPC techniques to
uncorrelated data, our objective is to detect assignable causes so that if the
causes are removed, process variability can be reduced. The first is to sample
from the process less frequently so that the autocorrelation is diminished.
For example, note from Figure S that if we only took every 20th observation
on concentration, there would be very little autocorrelation in the resulting
data. However, since the original observations were taken every hour, the
new sampling frequency would be one observation every 20 hr. Obviously,
the drawback of this approach is that many hours may elapse between the
occurrence of an assignable cause and its detection.

The second general approach may be thought of as a model-based
approach. One way that this approach is implemented involves building
an appropriate model for the process and control, charting the residuals.
The basis of this approach is that any disturbances from assignable causes
that affect the original observations will be transferred to the residuals.
Model-based approaches are presented in the following subsection. The
model-free approach does not use a specific model for the process; this
approach is discussed in Section 3.

2. MODEL-BASED APPROACHES
2.1. ARIMA Models

An approach to process monitoring with autocorrelated data that has been
applied widely in the chemical and process industries is to directly model the
correlative structure with an appropriate time series model, use that model
to remove the autocorrelation from the data, and apply control charts to the

residuals. For example, suppose we could model the quality characteristic x,
as

x =8+ 0x_ t¢g » (3)
where £ and ¢ (=1 < ¢ < 1) are unknown constants and €, is normally and

independently distributed with mean zero and standard deviation . Note
how intuitive this model is for the concentration data from examining
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Figure 4. Equation (3) is called a first-order autoregressive model; the obser-
vations x, from such a model have mean £/(1 — ¢) and standard deviation
o/(1 — 52, and the observations that are k periods apart (x, and x,_;)
have correlation coefficient ¢*. That is, the autocorrelation function should
decay exponentially just as the autocorrelation function of the concentration
data did in Figure 5. Suppose that ¢ is an estimate of ¢ obtained from
analysis of sample data from the process and X is the fitted value of x,.
Then the residuals

~

e, =x,—X,

are approximately normally and independently distributed with mean zero
and constant variance. Conventional control charts could now be applied to
the sequence of residuals. Points out of control or unusual patterns on such
charts would indicate that the parameter ¢ had changed, implying that the
original variable x, was out of control. For details of identifying and fitting
time series models such as this one, see Montgomery et al. (1990) and Box et
al. (1994).

The parameters in the autoregressive model. Eq. (3), may be estimated
by the method of least squares, that is, by choosing the values of £ and ¢
that minimize the sum of squared errors g,. Many statistical software
packages have routines for fitting these time series models. The fitted
value of this model for the concentration data is

x, = 8.38 + 0.88x,_,

We may think of this as an alternative to the Shewhart model for this
process.

Figure 6 is an individuals control chart of the residuals from the fitted
first-order autoregressive model. Note that now no points are outside the
control limits. In contrast to the control chart on the individual measure-
ments in Figure 3, we would conclude that this process is in a reasonable
state of statistical control.

Other Time Series Models

The first-order autoregressive model used in the concentration example [Eq.
(3)] is not the only possible model for time-oriented data that exhibits a
correlative structure. An obvious extension to Eq. (3) is

Xy =8+ 0+ eax t g 4
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Figure 6 Control chart for individuals applied to the residuals from the AR(1)
model.

which is a second-order autoregressive model. In general, in autoregressive-
type models, the variable x, is directly dependent on previous observations
X,_1, X,_2, and so forth. Another possibility is to model the dependence
through the random component g,. A simple way to do this is

X =p+eg —0 (5)

This is called a first-order moving average model. In this model, the
correlation between x; and x,_; is p; = —6/(1 + 0%) and is zero at all other
lags. Thus, the correlative structure in x, extends backward for only one
time period.

Sometimes combinations of autoregressive and moving average terms
are useful. A first-order mixed model is

X, =&+ x| +¢ —0g_, (6)

This model often occurs in the chemical and process industries. The reason
is that if the underlying process variable x;, is first-order autoregressive and a
random error component is added to x,, the result is the mixed model in Eq.
(6). In the chemical and process industries, first-order autoregressive process
behavior is fairly common. Furthermore, the quality characteristic is often
measured in a laboratory (or by an on-line instrument) that has measure-
ment error, which we can usually think of as random or uncorrelated. The
reported or observed measurement then consists of an autoregressive com-
ponent plus random variation, so the mixed model in Eq. (6) is required as
the process model.
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We also encounter the first-order integrated moving average model
X, =X, +¢g —0¢g_, (7

in some applications. Whereas the previous models are used to describe
stationary behavior (that is, x, wanders around a “fixed” mean), the
model in Eq. (7) describes nonstationary behavior (the variable x, “drifts™
as if there were no fixed value of the process mean). This model often arises
in chemical and process plants when ¥, is an “"'uncontrolled™ process output,
that is, when no control actions are taken to keep the variable close to target
value.

The models we have been discussing in Egs. (3)-(7) are members of a
class of time series models called autoregressive integrated moving average
(ARIMA) models. Montgomery et al. (1990) and Box et al. (1994) discuss
these models in detail. While these models appear very different from the
Shewhart model [Eq. (1)}, they are actually relatively similar and include the
Shewhart model as a special case. Note that if we let & =0 in Eq. (3), the
Shewhart model results. Similarly, if we let 8 = 0 in Eq. (5), the Shewhart
model results.

Average Run Length Performance for Residuals Control Charts

Several authors have pointed out that residuals control charts are not sen-
sitive to small process shifts [e.g., see Wardell et al. (1994)]. The average run
length for the residuals chart from an AR(1) model is

|~ P +P
ARLggs = + 8

where P, is the probability that the run has length 1, that is, the probability
that the first residual exceeds =43,

P, = Pr(run length = 1)
=1-®3-38)+&(-3-19) ©)

@(.) is the cumulative distribution function of the standard normal distribu-
tion. The probability that any subsequent observation will generate an
alarm is the probability that ¢, exceeds £3,

P=1-®3-31—-9¢)+ (-3 -31-19)) (10)

See Willemain and Runger (1996) for the complete derivation.
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Table 2 ARLs for Residuals Chart

Correlation Shift, 8/¢

o 0 0.5 1 2 4
0.00 370.38 152.22 43.89 6.30 1.19
0.25 370.38 212.32 80.37 13.59 1.32
0.50 370.38 280.33 152.69 37.93 2.00
0.90 370.38 364.51 345.87 260.48 32.74
0.99 370.38 368.95 362.76 312.00 59.30

Note: ARLs measured in observations.

Table 2 shows ARLggs for representative values of the autocorrela-
tion coefficient ¢ and shift 8. Note the poor performance of the residuals
chart when the correlation is high (b = 0.90 or ¢ = 0.99). This problem
arises because the AR(1) model responds to the change in the mean level
and partially incorporates the shift in the mean into its forecasts, as seen in

(13).

Using an Exponentially Weighted Moving Average (EWMA) with
Autocorrelated Data

The time series modeling approach illustrated in the concentration example
can be time-consuming and difficult to apply in practice. Typically, we apply
control charts to several process variables. and developing an explicit time
series model for each variable of interest is potentially time-consuming.
Some authors have developed automatic time series model building to par-
tially alleviate this difficulty [see Yourstone and Montgomery (1989) and the
references therein]. However, unless the time series model is of intrinsic
value in explaining process dynamics (as it sometimes is), this approach
will frequently require more effort than may be justified in practice.

Montgomery and Mastrangelo (1991) suggested an approximate pro-
cedure based on the EWMA. They use the fact that the EWMA can be used
in certain situations where the data are autocorrelated. Suppose that the
process can be modeled by the integrated moving average model of Eq. (7).
It can be easily shown that the EWMA with A = | — 0 is the optimal one-
step-ahead forecast for this process. That is, if X,,,(7) is the forecast for the
observation in period f+ 1 made at the end of period 1, then

() =z,

where 2, = Ax, + (1 — A)z,_; is the EWMA. The sequence of one-step-ahead
prediction errors,
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e,=x,—X(t—1) (1)

is independently and identically distributed with mean zero. Therefore, con-
trol charts could be applied to these one-step-ahead prediction errors. The
parameter A (or equivalently, 8) would be found by minimizing the sum of
squares of the errors e,.

Now suppose that the process is not modeled exactly by Eq. (7). In
general, if the observations from the process are positively autocorrelated
and the process mean does not drift too quickly, the EWMA with an appro-
priate value for A will provide an excellent one-step-ahead predictor. The
forecasting and time series analysis field has used this result for many years;
for examples, see Montgomery et al. (1990). Consequently, we would expect
many processes that obey first-order dynamics (that is, follow a slow
“drift”) to be well represented by the EWMA.

Consequently, under the conditions just described, we may use the
EWMA as the basis of a statistical process monitoring procedure that is
an approximation of the exact time series model approach. The procedure
would consist of plotting one-step-ahead EWMA prediction errors (or
model residuals) on a control chart. This chart could be accompanied by
a run chart of the original observations on which the EWMA forecast is
superimposed. Our experience indicates that both charts are usually neces-
sary, as operational personnel feel that the control chart of residuals some-
times does not provide a direct frame of reference to the process. The run
chart of original observations allows process dynamics to be visualized.

Figure 7 presents a control chart for individuals applied to the EWMA
prediction errors for the concentration data. For this chart, A = 0.85. This is
the value of A that minimizes the sum of squares of the EWMA prediction
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Figure 7 EWMA prediction errors with A = 0.85 and Shewhart limits.
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errors. This chart is slightly different from the control chart of the exact
autoregressive model residuals shown in Figure 6, but not significantly so.
Both indicate a process that is reasonably stable, with a period around ¢ =
62 where an assignable cause may be present.

Montgomery and Mastrangelo (1991) point out that it is possible to
combine information about the state of statistical control and process
dynamics on a single control chart. If the EWMA is a suitable one-step-
ahead predictor, then one could use z, as the centerline on a control chart
for period ¢+ 1 with upper and lower control limits at

UCL,_H =7z + 30'
and
LCL,, =z, — 30 (12)

and the observation x, + | would be compared to these limits to test for
statistical control. We can think of this as a moving centerline EWMA con-
trol chart. As mentioned above, in many cases this would be preferable from
an interpretation standpoint to a control chart of residuals and a separate
chart of the EWMA, as it combines information about process dynamics
and statistical control in one chart.

Figure 8 is the moving centerline EWMA control chart for the data,
with A = 0.85. It conveys the same information about statistical control as
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Figure 8 Moving centerline EWMA control chart applied to the concentration
data.
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the residual or EWMA prediction error control chart in Figure 7, but oper-
ating personnel often feel more comfortable with this display.

ARL Performance. Because the EWMA-based procedures presented
above are very similar to the residuals control chart, they will have some of
the same problems in detecting process shifts. Also, Tseng and Adams
(1994) note that because the EWMA is not an optimal forecasting scheme
for most processes [except the IMA(1,1) model], it will not completely
account for the autocorrelation, and this can affect the statistical perfor-
mance of control charts based on EWMA residuals or prediction errors.
Montgomery and Mastrangelo (1991) suggest the use of supplementary
procedures called tracking signals combined with the control charts for
residuals. There is evidence that these supplementary procedures consider-
ably enhance the performance of residuals control charts. Furthermore,
Mastrangelo and Montgomery (1995) show that if an appropriately
designed tracking signal scheme is combined with the EWMA-based proce-
dure we have described, good in-control performance and adequate shift
detection can be achieved.

Estimating and Monitoring o. The standard deviation of the one-
step-ahead errors or model residuals o can be estimated in several ways.
If X is chosen as suggested above over a record of n observations, then
dividing the sum of the squared prediction errors for the optimal A by n
will produce an estimate of o2. This is the method used in many time series
analysis computer programs.

Another approach is to compute the estimate of ¢ as is typically done
in forecasting systems. The mean absolute deviation (MAD) could be used
in this regard. The MAD is computed by applying an EWMA to the abso-
lute value of the prediction error,

A, =ale] + (1 —a)A, . O<ax<l

Since the MAD of a normal distribution is related to the standard deviation
by o 2 1.25A, [see Montgomery et al. (1990)], we could estimate the stan-
dard deviation of the prediction errors at time ¢ by

o = 1.254, (13)
Another approach is to directly calculate a smoothed variance,

&l =06l +(1—o)6;, O<ac<l (14)
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MacGregor and Ross (1993) discuss the use of exponentially weighted mov-
ing variance estimates in monitoring the variability of a process. They show
how to find control limits for these quantities for both correlated and uncor-
related data.

The Weighted Batch Means Control Chart

While control charting the residuals from a time series model is one way to
cope with autocorrelation, there is another way to exploit these models. This
is the weighted batch means chart, introduced by Runger and Willemain
(19995).

Bischak et al. (1993) derived a way to eliminate autocorrelation among
the averages of successive data values in discrete-event simulation. Their
findings have value for statistical process control, since a way to cancel
autocorrelation in subgroups maps the problem of autocorrelated data
into the familiar problem of using independent subgroups to monitor pro-
cess means.

Starting with a stationary ARIMA or ARMA model, Bischak et al.
(1993) derived the weights needed to eliminate autocorrelation between
batch means as a function of the batch size and the model parameters.
Designating the batch size by » and forming the jth batch from consecutive
data values X,_;y,,, the jth weighted batch mean is

b
Y=Y wixgonpse  J=12. (15)
=1

The batch size b can be selected to tune performance against a specified shift
d.

The weights w; must sum to unity for Y, to be an unbiased estimate of
the process mean p. For AR(p) processes, the optimal weights are identical
in the middle of the batch but differ in sign and magnitude for the first and
last values in the batch. For the AR(1) model, the weights are

=

Ty o
1 .

\\’i:m, I‘—‘2,...,b—1 (16b)

o 1

D) (169
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For example, with » = 64 and ¢ = 0.99, the middle weights are all 0.016,
and the first and last weights are —1.57 and 1.59, respectively.

Given normal data and any bath size b > 1, the optimal weights pro-
duce batch means that are i.i.d. normal with mean

E(Y)=q (17
and variance

1

= e )

(18)

Given (17) and (18), the standardized value of a shift from p to p 48 is
As = 8(1 — dp)b—1)"? (19)

To adjust the on-target ARL to equal ARLgy, one computes the control
limit by solving for A in

b
1 — ®(Agy) + P(—Apy)

ARLgy = (20)

where b in the numerator accounts for the fact that each batch is b observa-
tions long. Then the average run length for the weighted batch means
(WBM) chart (measured in individual observations) can be computed as

b

L =
ARLwaw I — d(Aoy — As) + P(—=Apy — As)

2n

Table 3 compares ARLwynm against ARLggs for a range of values of
batch size b, shift 8, and autocorrelation ¢. The proper choice of batch size b
results in superior performance for the WMB chart. In general. the WBM
chart is more sensitive than the residuals chart for shift & < 3 and autocor-
relation 0 < ¢ < 0.99.

The WBM chart achieves its superiority by, in effect, using larger
subgroups of residuals. It is well known that for independent data, larger
subgroups provide greater sensitivity to small shifts. Runger and Willemain
(1995) show that a form of this conclusion applies to autocorrelated data as
well.
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Table 3 ARLs of Residuals and Weighted Batch Means Charts

Correlation Shift d/s
f b 0 0.5 1 2 4
0 RES 370.38 155.22 43.89 6.30 1.19
2 370.38 170.14 53.42 9.21 225
4 370.38 86.03 19.33 4.88 4.00
8 370.38 48.47 12.57 8.01 8.00
16 370.38 34.33 16.53 16.00 16.00
32 370.38 37.32 32.00 32.00 32.00
64 370.38 64.30 64.00 64.00 64.00
128 370.38 128.00 128.00 128.00 128.00
256 370.38 256.00 256.00 256.00 256.00
0.25 RES 370.38 212,32 80.37 13.59 1.32
2 370.38 226.37 94.01 20.02 3.41
4 370.38 135.90 37.84 7.70 4.02
8 370.38 82.97 21.21 8.40 8.00
16 370.38 56.18 19.72 16.00 16.00
32 370.38 49.57 32.22 32.00 32.00
64 370.38 67.61 64.00 64.00 64.00
128 370.38 128.07 128.00 128.00 128.00
256 370.38 256.04 256.00 256.00 256.00
0.5 RES 370.38 280.33 152.69 37.93 2.00
2 370.38 290.61 170.14 53.42 9.21
4 370.38 215.06 86.03 19.33 4.88
8 370.38 152.45 48.47 12.57 8.01
16 370.38 108.52 34.33 16.53 16.00
32 370.38 85.47 37.32 32.00 32.00
64 370.38 87.30 64.30 64.00 64.00
128 370.38 132.01 128.00 128.00 128.00
256 370.38 256.04 256.00 256.00 256.00
0.9 RES 370.38 364.51 345.87 260.48 32.74
2 370.38 366.45 355.10 315.45 214.22
4 370.38 360.48 333.49 254,77 123.84
8 370.38 351.66 304.84 195.75 74.03
16 370.38 339.49 270.84 147.13 50.25
32 370.38 324.61 237.03 115.86 45.99
64 370.38 310.51 213.34 108.42 66.32
128 370.38 306.20 216.17 141.32 128.02

256 370.38 331.71 281.96 256.62 256.00
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Table 3 (continued)

Correlation Shift d/s
f b 0 0.5 1 2 4
0.99 RES 370.38 368.95 362.76 312.00 59.30
2 370.38 370.34 370.22 369.75 367.86
4 370.38 370.28 369.97 368.76 363.98
8 370.38 370.18 369.60 367.26 358.19
16 370.38 370.04 369.04 365.08 350.02
32 370.38 369.86 368.30 362.20 339.72
64 370.38 369.66 367.50 359.16 329.50
128 370.38 369.56 367.13 357.81 325.79
256 370.38 369.88 368.40 362.73 343.39

Note: ARLs measured in observations.
Source: Runger and Willemain 1995,

3. A MODEL-FREE APPROACH: THE BATCH MEANS
CONTROL CHART

Runger and Willemain (1996) proposed an unweighted batch means (UBM)
control chart as an alternative to the weighted batch means (WBM) chart
for monitoring autocorrelated process data.

The UBM chart differs from the WBM chart by giving equal weights
to every point in the batch. let the jth unweighted batch mean be

b
v = (b_l)Z'\‘(j—l)b—H; j=12,... (22)
=1

This expression differs from (15) only in that

u‘,-:l, i=1,...,b (23)

The important implication of (23) is that although one has to deter-
mine an appropriate batch size b, one does not need to construct an ARMA
model of the data. This model-free approach is quite standard in simulation
output analysis, which also focuses on inference for long time series with
high autocorrelation.

A model-free process-monitoring procedure was the objective of the
many schemes considered by Runger and Willemain (1996). That work
showed that the batch means can be plotted and approximately analyzed
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on a standard individuals control chart. Distinct from residuals plots, UBM
charts retain the basic simplicity of averaging observations to form a point
in a control chart. With UBM, the control chart averaging is used to dilute
the autocorrelation of the data.

Procedures for determining an appropriate batch size were developed
by Law and Carson (1979) and Fishman (1978a, 1978b). These procedures
are empirical and do not depend on identifying and estimating a time series
model. Of course, a time series model can guide the process of selecting the
batch size and also provide analytical insights.

Runger and Willemain (1996) provided a detailed analysis of batch
sizes for AR(1) models. They recommend that the batch size be selected so
as to reduce the lag 1 autocorrelation of the batch means to approximately
0.10. They suggest using Fishman’s (1978a) procedure, which starts with » =
1 and doubles b until the lag 1 autocorrelation of the batch means is suffi-
ciently small. This parallels the logic of the Shewhart chart in that larger
batches are more effective for detecting smaller shifts; smaller batches
respond more quickly to larger shifts.

Though a time series model is not necessary to construct a UBM chart,
Table 4 shows the batch size requirements for the AR(1) model for various
values of ¢ (Kang and Schmeiser, 1987). The lower values of oypgy imply
greater sensitivity.

Table 4 Minimum Batch Size Required for UBM Chart
for AR(1) Data

¢ b o(UBM)/o o(UBM)/o
0.00 1 1.0000 n/a
0.10 2 0.7454 1.1l
0.20 3 0.6701 0.8839
0.30 4 0.6533 0.8248
0.40 6 0.6243 0.7454
0.50 8 0.6457 0.7559
0.60 12 0.6630 0.7538
0.70 17 0.7405 0.8333
0.80 27 0.8797 0.9806
0.90 58 1.2013 1.3245
0.95 118 1.6827 1.8490
0.99 596 3.7396 4.0996

Note: Batch size chosen to make lag-1 autocorrelation of batch means
0.10.
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Table 5 Performances of the Unweighted Batch Means Control Chart

Shift, §/o
¢ b Method 0 1 2
0.9 60 Approximation 370 199 98
Monte Carlo 371 +£2 206+ 3 100 + 1
0.95 120 Approximation 370 296 201
Monte Carlo 371+ 6 303+4 206 £ 2

Note: ARLs measured in batches. Monte Carlo results based on 5 sets of 5,000 alarms.
Uncertainties are 95n confidence intervals.

Table 6 Comparison of Shewhart Charts ARLs for AR(1) Data

Shift.8/c
¢ Method b 0.00 0.5 1 2 4
0 REs 1 10000 2823 520 34 2
0.25 RES ! 10000 4360 1183 116 3
WBM 4 10000 2066 320 23 4
UBM 4 10000 1279 149 11 4
WBM 23 10000 233 34 23 23
UBM 23 10000 210 32 23 23
0.50 REs 1 10000 6521 2818 506 17
WBM 8 10000 2230 378 33 8
UBM § 10000 1607 225 20 8
WBM 43 10000 397 66 43 43
UBM 43 10000 367 63 43 43
0.90 RES 1 10000 9801 9234 7279 1828
WBM 58 10000 6119 2548 548 96
UBM 58 10000 5619 2133 423 81
WBM 472 10000 2547 823 476 47
UBM 472 10000 2504 809 476 472
0.99 RES 1 10000 9995 9974 6977 4508
WBM 596 10000 9691 8868 6605 3238

UBM 596 10000 9631 8670 6178 2847
WBM 2750 10000 9440 8129 6605 3238
UBM 2750 10000 9420 8074 5434 3225

Note: ARLs measured in observations.
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Runger and Willemain (1996) use the following approximation to
estimate the performance of the UBM chart:

b
T 1= d(Ag — 8/oupm) + P(—A¢ — /0upm)

ARL (24)

This approximation, which assumes that the batch means are i.i.d. normal
with mean p and standard deviation oypym as given in Table 4, was
confirmed by Monte Carlo analysis (Table 5).

Since estimating ARLs with (27) is simpler than extensive Monte
Carlo analysis, the approximation is used in Table 6. Table 6 compares
this ARL with the ARLs of the other two charts for selected values of the
autocorrelation parameter ¢. The batch sizes b were chosen by using Table 3
to provide a WBM chart sensitive to a shift 8 = 1. The comparison was
made with the in-control ARL, = 10,000. Table 6 shows that both batch
means charts outperform the residuals chart in almost all cases shown, with
the UBM chart performing best of all.
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An Introduction to the New Multivariate
Diagnosis Theory with Two Kinds of
Quality and Its Applications

Gongxu Zhang
Beijing University of Science and Technology, Beijing, People’s
Republic of China

1. MULTIOPERATION AND MULTI-INDEX SYSTEM

In factories multioperation and multi-index systems are very common. A
multioperation system is a system in which its product is processed by a
production line consisting of two or more operations. A multi-index system
is one in which at least one operation has two or more indices, such as a
technical index and/or a quality index. For example, a printed circuit pro-
duction line consists of 17 operations, with at least two indices and at most
27. Again, for analgin (a kind of drug) a production line consists of six
operations, with at least two and at most six indices. Such examples exist
indeed everywhere.

2. PROBLEMS ENCOUNTERED IN IMPLEMENTING
QUALITY CONTROL AND DIAGNOSIS IN A
MULTIOPERATION, MULTI-INDEX SYSTEM

In a multioperation, multi-index system, if we want to implement quality
control and diagnosis, there are three major problems:

1. In a multioperation production line, the processing of the preced-
ing operating will in general influence the current operation. Since the pre-
ceding influence is synthesized with the processing of the current operation,

161
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how do we differentiate one from the other? If we cannot differentiate them,
we cannot distinguish their quality responsibility, and then we cannot imple-
ment scientific quality control. Evidently, in a multioperation production
line, we need to diagnose the preceding influence.

2. In a multi-index production line, there is the problem of correla-
tions among indices. For example, in the operation of etching a printed
circuit, the quality index of etching has correlations with the technical
indices: NaOH, ClI~, Cu**. When the etching index is abnormal, we need
to diagnose which technical index or indices induced this abnormality.

3. In a multioperation, multi-index production line, there are both
the preceding influence and the correlations among indices, making the
problem more complex.

3. HOW TO DIAGNOSE THE PRECEDING INFLUENCE IN A
MULTIOPERATION PRODUCTION LINE

In a multioperation production line, we need to use the diagnosis theory
with two kinds of quality proposed by Zhang (1982a) to diagnose the pre-
ceding influence. The basis of this theory is the concept of two kinds of
quality,

3.1. Two Kinds of Quality

According to the different ranges involved in different definitions of quality,
there are two kinds of product quality:

1. Total quality is the product quality contributed by the current
operation and all the preceding operations. It is simply product
quality in the usual sense and is felt directly by the customer.

2. Partial quality is the quality specifically resulting from the current
operation and does not include the influence of the preceding
operations. Obviously, it reflects the work quality of the current
operation.

These two kinds of quality exist in any operation. Total quality consists of
two parts: the partial quality and the preceding influence on it; hence, partial
quality is only part of total quality.

3.2. Importance of the Concept of Two Kinds of Quality

The concept of two kinds of quality is very important, as can be seen from
the following facts:
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1. The two kinds of quality exist at each operation.

2. The concept of two kinds of quality is very general and exists in all
processes of production, service and management as well as many
other processes.

3.3. Fundamental Thinking of the Diagnosis Theory with
Two Kinds of Quality

The so-called diagnosis is always obtained through a comparison of a mea-
sured value with the standard value. For example, in order to diagnose the
preceding influence, we can take the partial quality (which has no relation-
ship with the preceding influence) of the current operation as the standard
value, and the corresponding total quality (which consists of both the partial
quality and the preceding influence) as the measured value. Comparing these
two kinds of quality, we can diagnose the preceding influence of the current
operation. The greater the difference between these two kinds of quality, the
more serious the preceding influence.

Here, the key problem is how to measure these two kinds of quality. If
we use a control chart to measure them, we can use the Shewhart control
chart to measure the total quality and the cause-selecting Shewhart control
chart proposed by Zhang (1980) to measure the partial quality. We refer to
this as diagnosis with two kinds of control charts. If we use the process
capability index to measure the two kinds of quality, we can use the total
process capability index (which is just the process capability index in the
usual sense), denoted by C,, to measure the total quality and the partial
process capability index, denoted by C,,, which is a new kind of process
capability index proposed by Zhang (1982a), to measure the partial quality.
We refer to this as diagnosis with two kinds of process capability indices.
The former is a realtime diagnosis, and the latter is a diagnosis over time.
See Zhang (1989, 1990).

3.4. Steps in Diagnosis with Two Kinds of Control Charts
The steps in diagnosis with two kinds of control charts are as follows.

Step 1. Construct the diagnosis system between adjacent operations
with technical relations as shown in Figure 1. In Figure 1, the connection
between operations | and 2 is the total quality of operation 1, and there exist
two kinds of quality at operation 2, i.e., total quality and partial quality.
Suppose the total qualities of operations 1 and 2 are measured with two
Shewhart charts, and the partial quality is measured with the cause-selecting
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Operation | Operation 2
i Total _ Shewhart Total ___ Shewhart '
! Quality ~ Chart Quality Chart E Diagnosis
' System
t
|
1

)
: Partiat ___ Cause-Selecting
' Quality Chart

Figure 1 Diagnosis system between adjacent operations.

Shewhart chart; then the diagnosis system can also be referred to as a three-
chart diagnosis system.

Step 2. Diagnose the diagnosis system according to the typical case
diagnosis table, Table 1. Since each control chart has two states, i.e., the
normal state and the abnormal state, the three-chart diagnosis system has
eight typical diagnosis cases (see Table 1). Comparing the three charts of the
diagnosis system with the three-chart cases of Table 1, we can diagnose the
diagnosis system.

From Table 1 we can see that if we do not have the diagnosis theory
with two kinds of quality and use only Shewhart charts at each operation,
we may get a false alarm or alarm missing for cases II, 111, VI, and VII. This
is already verified by experience in factories. It is not a fault of the Shewhart
chart itself; in fact, it is due to our misunderstanding of the Shewhart chart.
The Shewhart chart can be used to reflect total quality only; thus it includes
the preceding influence. Using the Shewhart chart as if it reflects the partial
quality only and has no relation with the preceding influence is wrong; see
Zhang (1992b, p. 173).

3.5. Characteristics of Diagnosis with Two Kinds of
Control Charts

In Table 1, the diagnosis of each typical case is derived only from ordinary
logical deduction; we did not use probability and statistics. Thus there are
no two kinds of errors. Table | also considers the connection between pre-
ceding and succeeding operations.

The Shewhart chart used in Table 1 can be replaced by some other ali-
control chart, for example, the CUSUM chart or the 77 chart. But, at the
same time, the cause-selecting chart should be replaced by the corresponding
cause-selecting CUSUM chart, the cause-selecting 77 chart, etc.
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Table 1 Typical Case Diagnosis Table

Cause-
Shewhart  Shewhart  selecting
Typical chart for chart for chart for

cases operation 1 operation 2 operation 2 Diagnosis
[ + + + The partial quality is abnormal.
The preceding influence is also
abnormal.
I + + - The partial quality is normal. The
preceding influence is abnormal.
111 + - + The partial quality is abnormal.

The preceding influence is also
abnormal. But the one offsets
the effect of the other.

v + - - The preceding influence is abnor-
mal, but the partial quality off-
sets its effect and makes the
total quality of operation 2 to
be normal.

\Y - + + The partial quality is abnormal.
The preceding influence is normat.
Vi - + - The partial quality and the preced-

ing influence are both normal,
but their total effect is to make
the total quality of operation 2
become abnormal.

VI - - + The partial quality is abnormal.

But the preceding influence offsets

it to make the total quality of
operation 2 become abnormal.

VIII - - - The partial quality, the preceding
influence, and the total quality
are all normal

Note:"—"" means normal and ** + ™" means abnormal.

4. HOW TO DIAGNOSE THE CORRELATION AMONG
INDICES FOR A MULTI-INDEX OPERATION

For a multi-index operation, we need to use the multivariate diagnosis
theory with two kinds of quality proposed by Zhang (1996b, 1997). The
fundamental thinking of this theory is similar to that of the diagnosis theory
with two kinds of control charts. But since this is the multivariate case, we
use the multivariate 77 control chart and the cause-selecting T° control
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chart instead of the corresponding Shewhart chart and the cause-selecting
Shewhart chart in the three-chart diagnosis system. Since the statistics of the
T? control chart include the covariance matrix of each variable (assuming
that the number of variables is p),

Sit Si2 e Sy
Sa1 S ... S2p
Sl’l Sp2 e Spp

where S, i #J, is the covariance, the T? control chart can consider com-
pletely the correlation among variables.

The multivariate T* control chart was proposed by Hotelling in 1947
and was well used in Western countries for multivariate cases. Its merits are
that (1) it considers the correlations among variables and (2) it can give us
exactly the probability of the first kind of error, a. But its greatest drawback
is that it cannot diagnose which variable induced the abnormality when the
process is abnormal. On the other hand, the best merit of the diagnosis
theory with two kinds of quality is that it can be used to diagnose the
cause of abnormality in the process. Hence Zhang proposed a new multi-
variate diagnosis theory with two kinds of quality to combine the above-
stated theories together so that we can concentrate their merits and at the
same time avoid their drawbacks.

5. HOW TO SIMULTANEOUSLY DIAGNOSE THE
PRECEDING INFLUENCE AND THE CORRELATION
AMONG INDICES IN A MULTIOPERATION, MULTI-INDEX
SYSTEM

From the preceding discussions it is evident that we need to use the diag-
nosis theory with two kinds of quality in order to diagnose the preceding
influence, and we also need to use the multivariate diagnosis theory with two
kinds of quality in order to diagnose the correlated indices. In such a com-
plex system, it is not enough to depend on the technology only; we must
consider statistical process control and diagnosis (SPCD) too. Besides the
diagnosis theories of Western countries always diagnose all variables simul-
taneously. Suppose the number of variables is p and the probability of the
first kind of error in diagnosing a variable is o, then the probability of no
first kind of error in diagnosing p variables is
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Po=(1—-a)f =1—pa
Thus, the probability of the first kind of error in diagnosing p variables is
P] =1- PO ~ pa

i.c. it is proportional to the number of variables. In the case of a great
number of variables, the value of P; may become intolerable. To solve
this problem, Zhang and his Ph.D. candidate Dr. Huiyin Zheng (Zheng,
1995) proposed the multivariate stepwise diagnosis theory in 1994.

5.1. Fundamentals of the Multivariate Stepwise Diagnosis
Theory

If we tested that the population of all variables concerned with the problem
is abnormal, we want to identify the abnormal variable. Instead of diagnos-
ing each variable contained in this population, we need only diagnose the
most probable assignable variable each time, for by so doing we can
decrease the number of steps of diagnosis needed. The steps of the multi-
variate stepwise diagnosis theory are as follows:

Step 1. Test the abnormality of the population of all variables. If it is
normal, the diagnosis stops; otherwise proceed to step 2.

Step 2. Select the most probable assignable variable and test whether
it is abnormal or not.

Step 3. Test the remaining population of variables. If it is normal,
then the diagnosis stops, otherwise return to step 2.

Repeat steps 1-3 until we can ascertain each variable to be normal or
abnormal.

In practice, in general, it takes only one to three steps to complete the
multivariate diagnosis process.

5.2. Compiling the Windows Software DTTQ2000

We have compiled the Windows software DTTQ2000 (DTTQ = diagnosis
theory with two kinds of quality), which combines the diagnosis theory with
two kinds of quality, the multivariate diagnosis theory with two kinds of
quality, and the multivariate stepwise diagnosis theory. So far we have
diagnosed the multioperation, multi-index production lines of eleven fac-
tories more than 40 times using DTTQ2000. All results of these diagnoses
have been in accordance with practical production.
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5.3. Necessity of Application of the Multivariate Diagnosis
Theory with Two Kinds of Quality and lts DTTQ2000
Software

Today’s society has developed into an era of high quality and high relia-
bility. The percent defective of some electronic products is as low as the
parts per million or even parts per billion level, so production technology at
the worksite must be combined with statistical process control and diagnosis
(SPCD) to guarantee product quality. In fact, the requirements of SPCD
with respect to product quality are more severe than those of technology.
For example, the control limits of control charts are, in general, situated
within the specification limits. In addition, we consider significant variations
in product quality and nonrandom arrangements of points plotted between
control limits on the control chart to be abnormal and take action to elim-
inate such abnormalities. But, on the other hand, technology does not pay
attention to such facts.

At the worksite, technicians in general take one of the following
actions whenever there is a need of multivariate control: (1) Put all para-
meters of the current operation to be within the specification limits or (2)
adopt the Shewhart control chart to control each parameter of the current
operation. In fact, these two actions are virtually the same; both oversim-
plify the multivariate problem and resolve it into several univariate
problems. Here, unless all the variables are independent, otherwise we
must consider the correlations among variables. For example, in the printed
circuit production line there are altogether 27 indices at the operation of the
factory Desmear/PTH. If we supervise this process with 27 x—R, control
charts supervising each of the 27 indices individually, then we can supervise
27 averages and 27 standard deviations, i.e.,

W, O, i=12,..,27

But we cannot supervise the correlations among variables, i.e., the covar-
iances among indices, with such a univariate x~R, control chart. There are
altogether 351 [=27(27 — 1)/2] covariance parameters or coefficients of
correlation to be supervised. Only by using multivariate diagnosis theory
with two kinds of quality can we supervise all 405 (= 27 + 27 + 351) process
parameters and implement the SPCD. Using the DTTQ2000 software we
have diagnosed eleven factories in China, and all the diagnostic results have
been in fairly good agreement with the actual production results.

Using the DTTQ2000 software with a microcomputer, it takes only
about | min to perform one diagnosis; thus, it saves much time on the spot.
Not only is the diagnosis correct, but it also avoids the subjectivity of the
working personnel.
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In a factory, it always takes a long time to train an experienced engi-
neer in quality control and diagnosis. If we use the DTTQ2000 software, the
training time is much reduced.

5.4, How to Establish SPCD in a Multioperation, Multi-
index System

In a multioperation, multi-index system, in order to establish the SPCD we
must consider three principles:

Principle 1. A multioperation production line must consider the pre-
ceding influence.

1. If there is no preceding influence, the partial quality will be equal
to the total quality at the current operation, and we can use the
Shewhart control chart (which is only a kind of all-control chart)
to control it.

If there is a preceding influence, there exist two kinds of qual-

ity, total quality and partial quality at the current operation.

Total quality can be controlled by the all-control chart, and

partial quality can be controlled with the cause-selecting control

chart.

3. Except for the first operation or the above-stated case 1, we can
construct a three-chart diagnosis system as shown in Figure 1.
Then we can diagnose this diagnosis system according to the typi-
cal case diagnosis table, Table 1.

8]

Principle 2. A multi-index production line must consider the correla-
tion among indices.

1. If the indices are not related, we can use a univariate all-control
chart to control each index individually.

2. If the indices are related, we need to use a multivariate all-control
chart to control the whole index system.

Principle 3. In a multioperation, multi-index system, we need to
consider both the preceding influence and the correlation among indices,
which makes the problem of implementing the SPCD more complex. The
multivariate diagnosis system with two kinds of quality is a method for
solving this complex problem, and its implementations show that the the-
ory is in good accordance with actual practice.
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6. APPLICATIONS OF THE MULTIVARIATE DIAGNOSIS
THEORY WITH TWO KINDS OF QUALITY

Here, we show some practical examples of the multivariate diagnosis theory
with two kinds of quality as follows.

Example 1

Operations 4 and 5 of a production line for the drug analgin have five
indices, three of which belong to the preceding operation; the other two
belong to the succeeding operation. Their data are as follows (see group
51 data in Table 2):

Preceding operation: x; = 8.80, x, =97.71, x; = 89.11
Succeeding operation: x4 = 95.67, x5 = 4.37

Using the DTTQ2000 software, we know that the 77 value is 18.693, greater
than the upper control limit (UCL) of 13.555 of the T* control chart (Fig.
2), which means that the process is abnormal. Then, by diagnosing with
DTTQ2000, we know that index x5 is abnormal.

Example 2

Using the DTTQ2000 Windows software to diagnose the same desmear/
PTH operations of three printed circuit factories, A, B, C, we obtained
Figure 3. Compare and criticize these three factories.

Table 2 Data for Operations 4 and 5 of Analgin Production Line

Group

No. X X X3 X4 Xs T2 Diagnosis
27 11.70 96.08 84.84 93.88 1.35 11.988  Normal
28 9.70 95.85 86.55 93.51 2.18 11.311 Normal
29 9.70 95.85 86.55 95.24 1.32 3.765  Normal
30 7.66 98.61 91.06 95.34 1.39 4.050  Normal
47 9.00 98.42 89.57 95.89 1.17 2942  Normal
48 8.00 97.24 89.34 95.67 2.98 5.544  Normal
49 8.00 97.24 89.34 95.14 1.77 1.148  Normal
50 8.80 97.71 89.11 95.90 1.25 1.369  Normal

51 8.80 97.71 89.11 95.67 4.37 19.214  Abnormal
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Figure 2 T7 control chart.

From Figure 3 we see that the desmear/PTH operation of factory A
(Fig. 3a) is under statistical control; but the desmear/PTH operation of
factory B (Fig. 3b) has a record of an average of 1.0 point per month plotted
outside the UCL of the T control chart; and the same operation in factory
C (Fig. 3c) has an average of 1.3 points per month plotted outside the UCL
of the T? control chart. Hence, factories A, B, and C are in descending order
according to the work quality of the desmear/PTH operation. Thus, the
multivariate diagnosis theory with two kinds of quality can be used to
give us an objective evaluation of the quality of each factory. This method
can also be used to point out their direction of quality improvement.

7. CONCLUSION

1. According to what has been stated above, we can see that the
multivariate diagnosis theory with two kinds of quality and its
DTTQ2000 Windows software have prospects of being applied
to the field of multioperation, multi-index systems. Its greatest
merit is that it considers the multivariate characteristics of the
multioperation, multi-index system and can control all objects
that should be controlled by the system.

2. The implementation of this theory at eleven factories in China
shows that production practices are in fair agreement with the
theory.
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Applications of Markov Chains in
Quality-Related Matters

Min-Te Chao
Academia Sinica, Taipei, Taiwan, Republic of China

1. INTRODUCTION

To evaluate the performance of a control chart, one of the key elements is
the average run length (ARL), which is difficult to calculate. However, if the
underlying observations can be embedded into a finite Markov chain, then
an exact ARL can be found if the observations are discrete, and approx-
imations are available if they are continuous. In this chapter I provide a
systematic review of many quality-related topics in situations in which a
finite Markov chain can be employed.

The most fundamental statistical system consists of a set of indepen-
dent random variables. Although this structure contains all the essential
features for statistical analysis, and in fact most ideas for statistical analysis
may have their origin traced back to this simple case, it nevertheless lacks
the versatility to describe the more complex systems that are often encoun-
tered in real-life applications. In this chapter I describe the next simplest
case, the Markov chain model, under which various quality-related
problems can be vividly described and analyzed.

The most striking advantage of a Markov chain is its versatility. It can
be used to describe, e.g., intricate deterioration processes and complex main-
tenance procedures (Neuman and Bonhomme, 1975) with relative ease.

Many complicated quality-related processes, when properly arranged,
can be embedded into a Markov chain of reasonable size. Since the theory of
Markov chains, particularly finite and ergodic Markov chains, is well
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established, for various applications the essential problem is how to find a
reasonably sized Markov chain to describe the underlying quality-related
process. Once this is done, the rest of the analysis is standard.

In this chapter 1 consider various well-known procedures and in each
case indicate why such a Markov chain can be constructed. Efforts are
placed on exploration rather than on original research. We first list some
basic facts about a Markov chain (Section 2), and in Section 3 examples are
given of where some exact results can be obtained. The exact ARL formula
and its sampling distribution are given in Section 4. I then introduce in
Section 5 the Brook and Evans (1972) approximation technique and show
how it can be applied to various CUSUM:s.

We have concentrated our efforts mostly on control charts. The
Markov chain method, however, can also be applied to other quality
systems. A list of these procedures is presented in Section 6.

2. BASIC FACTS ABOUT MARKOV CHAINS

In this section I briefly describe the necessary background of a finite Markov
chain that will be needed for the rest of this chapter.

Given a sequence of random variables X, X-, . . ., the simplest non-
trivial structure we can impose is to assume that the X”s are independent and
identically distributed (i.i.d.). This assumption is often used to describe a
sequence of observations of certain quality characteristics for essentially all
kinds of control charts. If the X’s are correlated, then the probability struc-
ture of these X’s can be very complicated. One of the simplest nontrivial
dependent cases is that of the X’s following a Markov process.

Roughly speaking, a sequence {X,,n > 0} of random variables is
Markovian if it has the ability to forget the past when the present status
is given. When we say “‘present,” “‘past,” or “future,” we implicitly assume
that there is a time element. We shall in this respect consider the subscript n
of X, as a time index. Mathematically, the Markov property can be
expressed by

P[Xu+l € Aan =X, (XOle vy Xn) € B] = P[Xn+l € Aan = -\‘] (1)

for all Borel sets A C R, B C R' If, in addition to Eq. (1), the X's take
values only in a finite set S, which without loss of generality we may assume
to be S=1{1,2, ..., s}, then we say that the X"s follow a finite Markov chain.

For a finite Markov chain, the information contained in Eq. (1) can be
summarized into, say,



Markov Chains in Quality-Related Matters 177
P[Xn+l:j|Xn =1, (XO’ Xl"'v Xn) € B]:P[Xu+l :jIXn = l] = P (2)

If, in addition, p,,; of (2) is independent of n, then the Markov chain is said
to have stationary transition probabilities. In this case, let

P= (p(i),vx.\' (3)

and let # = (1, 7m5..., 7,), m, = P[X, = i]. It can be shown that for a Markov
chain with stationary transition probabilities the knowledge of = and the
matrix P is sufficient to determine the joint probability distribution of
(X, X}, X5, ...). We call = the initial distribution and P the (stationary)
transition probability matrix.

In what follows, we shall always assume that the Markov chains under
consideration are finite with a certain initial distribution and a stationary
transition matrix.

A good technical reason to use a matrix P is that we can employ
matrix algebra to simplify various calculations. For example, the kth-
order transition probability

k . .
Py = PlXuy = J1X, =]

is simply the (i, j)th element of P*, the kth power of the transition matrix P,
ie.,

P=PxPx..xP (k times)

4
_ ) )
The entries of P are probabilities, so the row sums of P are unity and
the entries themselves are all nonnegative. It may happen that some of the
entries of P are 0. But if we look at the sequence P, P*, P, .... it may happen
that at some k >0 all entries of P* are strictly positive. If this is the case, this
means that if one starts from any state /, in & steps it is possible to reach state
J» and this holds true forall 1 <i,j <. prff’ >0 for some & >0 and for all
1 <i,j <s, then we say that the Markov chain is irreducible.
Let_f/'('” be the probability that in a Markov chain starting from state j,
the first time it goes back to the jth state is at time #, i.e.,

S = PIX, # . X # o Xy 7, X = jIX = )]
Let

o0

by =" ®)

n=1
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The quantity , is the average time at which a Markov chain starting from
state j returns to state j, and it is called the mean recurrence time for state j.
If b, <oo, then state j is said to be ergodic. If u,<oo forallj € S, then we
say that the Markov chain is ergodic.
If a Markov chain is irreducible and ergodic, then the limits
w=limpd, — ijes (6)

n—oco

exist and are independent of the initial state i. Furthermore, u; >0, Z‘;Zl
u; =1, and .
V=

w=y up; j€S (7
i=1

The vector u = (u, uy, ..., u,) is called the absolute stationary probability. If
7 = u, then it can be shown that

PLX, =j] = PlX, =] ®)

forallj € S and forall n > 0, i.e., the Markov chain is stationary (instead
of just having a stationary transition probability).

An interesting feature of Eq. (6) is that its rate of convergence is
geometric. Let U be an s x s matrix consisting of identical rows, where
each row is u. Then by (7), PU = UP = U, so by induction we have

PP-U=P-U) )]

The fact that (P — U)" — 0 exponentially fast follows from the Perron—
Frobenius theorem, and since it is a little bit too technical we shall not
pursue it further. This basically explains that for a well-behaved Markov
chain, the series in (5) usually converges because it is basically a geometric
series. Also, the long-term behavior of an ergodic Markov chain is indepen-
dent of its initial distribution.

Let 4 be a subset of S, and let 7 = inf{n > 1, X,, € A}. Then T is the
first entrance time to the set 4. For a control chart modeled by a Markov
chain, the set 4 may consist of the region where an alarm should be
triggered when X, € A4 occurs for the first time. Thus T is the time
when the first out-of-control signal is obtained, and E(T) is closely related
to the concept of average run length (ARL). When the control charts
become more involved, the exact or approximate calculations of ARLs
become involved or impossible with elementary methods. However, most
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(not all) control charts can be properly modeled by a Markov chain, and
essentially all methods developed to calculate the ARLs are more or less
based on the possibility that one can embed the control scheme into a
Markov chain.

3. DISCRETE CASE: EXACT RESULT

In this section we discuss cases for which an exact finite Markov chain can
be found to describe the underlying control chart. I first describe a general
scenario where such a representation can be arranged and explain why it can
be done.

Assume that the basic observations are X, X3, ..., which are i.i.d. and
take values in a finite set 4 of size k. The key point is that the X’s are
discrete and the set A4 is finite. This may be the case when either the X’s
themselves are discrete or the X’s can be discretized.

Most control charts are of “finite memory’’; i.e., at time n the decision
of whether to flag an out-of-control signal depends on X, _, .y, X,_,12, .... X,
only. In other words, we may trace back to consult the recent behavior of
the observations to decide whether the chart is out of control, but we do it
for at most r steps back, r <o0o. The case for which we have to trace back to
the infinite past is excluded.

Let Y, = (X,_re1» Xurs2, --» X;;). The random vector Y, can take as
many as s = k" <oo possible values. It is easy to see that the Y’s follow a
Markov chain with an s x s transition matrix. Since at time »n, Y, is used
to decide whether the process is out of control, we see that, conceptually
at least, for the scenario described above, there exists a finite Markov
chain for which the behavior of the control chart can be completely
determined.

However, s = k" can be a very large number, so the s x s matrix can be
too large to have practical value. Fortunately, this matrix is necessarily
sparse (i.e., most entries are 0), and if we take a good look at the rules of
the control chart, then the chances are we may find some means to drasti-
cally reduce the number of states of the Markov chain. Hence, to implement
our general observation, we need case-by-case technical works for various
control charts.

Example 1. The Standard X Chart

If groups of size n is used against £3c limits, define, for each X,,
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1 if X,<p-3c
X,=1{2 if u—3c <X,<p+3c
3 ifX, >u+3c

Note that the Xs are the coded values of the X's. As long as our only
concern is whether the process is under control, the behavior of the X
chart can be completely determined by the coded X’s. The coded X’s are
still i.i.d., and this is a special kind of Markov chain. Its transition matrix,
when the process is under control, consists of three identical rows:

PP M
Py P2 P
22U I 1]

where p; = p3 = ®(=3) and p, = P(3) — ®(-3), where ® denotes the cumu-
lative distribution function of a standard normal distribution.
We can do similar things for the standard R chart.

Example 2. Shewhart Control Chart with Supplementary Runs

We often include additional run rules on a standard control chart to increase
its sensitivity in detecting a mean shift. For example,

Rule T45. 1If four of the last five observations are between (-3 and -1)
or between 1 and 3, then a signal is suggested.

The well-implemented Western Electric Company (1965) rules also fall into
this category.

If we want to implement rule T45 (in addition to the standard +3c
rules), we first need to divide the real line into five disjoint intervals:

I, = (a;_y, a))

with as = —ay = 00, ¢; = =5+ 2i, 1 <i <4, Hence an s = 5% = 3125-state
Markov chain is sufficient to describe this situation. But a 3145 x 3145
matrix is too large even for today’s computers, so well devised tricks are
needed to drastically reduce the value of s. It turns out that it is possible to
use a 30-state Markov chain, which is of moderate size.

Rule T45 can be replaced by other run rules or some combinations of
them. The idea is that in many cases we may drastically cut the size s, and it
is possible to find a constructive method to implement such a simplification.
Hence this type of problem (evaluate the exact ARLs and run length dis-
tributions for Shewhart control charts with various supplementary run
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rules) is mathematically tractable. For technical details, the full method is
documented in Champ and Woodall (1987) and programs are available in
Champ and Woodall (1990).

Example 3. Discrete CUSUM

Assume that Y,, the i.i.d. observations for a quality control scheme, are
integer-valued and that a one-sided CUSUM (Van Dobben de Bruny, 1968)
is under consideration. Define Sy = 0 and

S, = max{0, Y, + S,_}, n=1,2,..

Then the one-sided CUSUM signals an out-of-control message at stage n
when S, > ¢. This is a situation in which, at first sight, the decision to signal
may depend on all data points up to time »n, so it does not fall into the
scenario described earlier for a finite Markov chain representation.

We may look at the construction somewhat differently. Since the pro-
cess stops when S, > 7, obviously the important values for S, are 0,1, ...,
t—1,1. When S, > t, the process stops; hence we may use a (f + 1)-state
Markov chain to describe S,,, with the last state behaving like an “absorbing
state.” We write the transition probability matrix as follows:

_ R (I-R)1 ,
p 8 0]

where Risrx 7, 01sal x r vector of 0’s, and 1is a r x 1 vector of I's. A
typical entry of R is

Fij = PIS, = jI1Su—1 =1, 0<ij<t-1

Expression (10) is typical for control charts represented by a finite
Markov chain. Here the ARL is the average time for the process S, to
enter the absorbing state 7. In symbols,

ARL = E(N)
N:inf{nz 1 .'S,,ZI}

Example 4. Two-Sided CUSUM

The CUSUM in Example 3 is one-sided, since it detects the upward shift of
the process mean only. For a two-sided (discrete} CUSUM, suppose that
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integer-valued random variables Y, and Z, are observed. Define S;(0) =
S1.(0) = 0, where

Sy(n) = max{0, Y, + Sy(n — 1)}
Sp(n) =min{0, Z, + S, (n - 1)}
and
N=inf{n>=1:Sy(m) =t or S, (n) < —1,}

Normally, we would have Y, = X, — k|, Z, = X, + k, for some known inte-
gers ki, k5. The X’s are the basic sequence of the quality characteristic
measured for control. The bivariate process (Sy(n), S.(n)) takes values in
{0,1, .., 1} x {0,1, ..., 15}, and it is possible to write a finite Markov chain
with s = (#; + 1){#> + 1) states (see Lucas and Crosier, 1982). For a two-
sided CUSUM, the number of states of the underlying Markov chain can
be reduced to about ¢,+,/2 by careful arrangement of states (Woodall, 1984).
However, it is not known whether we can always reduce the Markov chain
of the two-sided CUSUM to a linear function of ¢; + 1.

4. GENERAL RESULTS

I have demonstrated with examples that it is often possible to represent a
control chart with a Markov chain with a transition probability matrix of
the form (10); i.e., states 0, 1, ..., t — 1 are transient states, and one state,
state ¢, is absorbing. Let N; be the number of stages, starting from state

€{0,1,...,r — 1}, to reach the absorbing state for the first time. Then it
follows from the standard Markov chain theory that the £th factorial
moment of N,, i.e.,

W = E(N(N, — 1) .. (N, — €+ 1)} (11)

can be found via the matrix equation

[4 (3] [4 [3
n® = @O O p®,

12
= R0 -R)™"1 (12

where 1 is a ¢ x 1 vector of 1's. Furthermore, the run length distributions of
Ny, Ny, ..., N,_, are given by
(PINg=r}, PIN, =+}, ..., P[N,_; =)' =R I = R)1 (13)

r=1,2,...
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What we have described can be roughly summarized as follows. If we
can find a finite Markov chain to describe the behavior of a control scheme
in the form of Eq. (10), then all problems concerning the ARLs of the
control chart are solved. The only technical concern is that the size of the
transition matrix should be manageable.

5. APPROXIMATIONS: THE CONTINUOUS CASE

When the underlying quality characteristic is continuous, a situation may
rise for which we cannot embed the control scheme into a finite Markov
chain.

Example 5. One-Sided CUSUM with Continuous Observations

Let us consider a setup identical to that of Example 3 but with the Y’s
replaced by 1.i.d. N(k, 1), where k is a known positive constant. The run
length is N, defined by

N=infln>1:8,>1}, >0

We proceed to find the distribution of N. It is easy to see that N takes values
1,2, ... only, and it is sufficient to find

PIN>r]l= P[5, <1, 5 <1, ..., S, <]

Since (>0, it i1s easy to find P[N>0]=1! and P[N>1}=
PlY, <t]= ®(t — k), where ® is the cumulative distribution function of
the standard normal distribution.

The case for P[N > 2] is more complicated. By definition,

P[N>2]:P[S1<f,52<f]

, (14)
- / PS> <11S) = XJdF,(x)
0

where F| is the cumulative distribution of S, i.e.,

®d(x ~ k) if x>0
0 otherwise

Fl(-\‘)=[ (15)

The complication in (15) results from the fact that

P[S, =0] = P[Y, < 0] = &(—k)>0
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hence the random variable S, is neither continuous nor discrete. It has a
jump at Sy =0 and is continuous in (0, co). Substituting (15) into (14),

omitting the algebra, we have
OO

PN >2} = &(1 — k)d(—k) + / Ot — x — k)p(x — k) dx

0
where ¢ is the probability density function for the standard normal.

But since the last integral has no simple closed form, this is about as
far as we can go analytically. (We can find P[T >3] in more complicated
forms, but the situation quickly runs out of our control when we try to find
PN >r] for r = 3,4,....) This basically shows that there is no easy way to
calculate the exact ARL for the one-sided CUSUM chart if the observations
are i.1.d. normal. Also. the above example demonstrated that it is necessary
to use approximate methods to find an approximation for the ARL for the
standard one-sided CUSUM chart.

The basic idea of how to find approximate ARLs is due to Brook and
Evans (1972). Since we can find the exact ARL of CUSUM when the Y's are
discrete, then when these observations are continuous it is natural to dis-
cretize the Y’s first. The exact ARL for the discrete version of CUSUM
serves as an approximation of the exact ARL for the continuous case.

Specifically, for the situation described in Example 5, define

X, =j if =1/ 2w<Y, —k<(j+1/2mw (16)
Then

PIX,=j1 =Pl — /D)<Y, —k<w(+ 1/2)w]
= O(( + [/2)w) — (¢ = 1/2)w)
= we(jw)

if w, the threshold size for our “‘roundoff” procedure, is small. Since | X, —
Y,| < w for all n, we would intuitively expect ¥, =X,, and ARLs based on
the Xs, which we may find exactly via the Markov chain method, can be
used to find a reasonable approximation of the ARLs for the original
CUSUM based on continuous distributions.

How small should w be in order to induce a reasonable approxima-
tion? Very little is known mathematically although we believe it is workable.
However, it is reported (Brook and Evans, 1972) that it is possible to obtain
agreement to within 5% of the limiting value when ¢ = 5 and to within 1%
when 1 = 10.

The basic idea of Brook and Evans can be applied to various
CUSUMs. Since the basic concept is the same, we shall only list these
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cases. Successful attempts have been reported for the two-sided CUSUM
(Woodall, 1984) and multivariate CUSUM (Woodall and Ncube, 1985). In
these cases, however, the sizes of the transition probability matrices increase
exponentially with the dimension of the problem, and so far no efficient way
to drastically reduce the matrix size is known. The Brook and Evans tech-
nique also applies to weighted CUSUMs (Yashchin, 1989), CUSUMs with
variable sampling intervals (Reynolds et al., 1990), and the exponentially
weighted moving average schemes (Saccucci and Lucas, 1990). In all these
examples, the control scheme can be described in the form

Siu = gi(Xnv S/.n—l)v >1;i=12..m

where g, are fixed functions and the Xs are i.i.d. continuous or discrete. For
example, for the two-sided CUSUM, we have m = 2 and

g1(x, y) = max{0, x — k, + y}
2>(x, ¥) = min{0, x + ky + ¥}

If the S;’s are discretized to ¢ different values, then the control scheme can be
approximately described by an s-state Markov chain, s = "

Example 6. Another Two-Sided CUSUM

For the standard two-sided CUSUM, a careful arrangement can reduce the
need of 1 states, where we assume, for simplicity, that ¢, = 1, = r. If the
situation is extremely lucky, it can be reduced to 2 — 1 states; but in general,
(r + 1)/2 is about the best we can do (Woodall, 1984). Hence even for the
two-sided CUSUM, the Brook and Evans technique has its limitations.
Another way to look at the problem is to consider a slightly different
two-sided CUSUM. The version below is suggested by Crosier (1986).
Let Sy = 0 and define C,, S, recursively by

Cn = |Sn—l + Xn ~—aj

0 if C, < ks
ks )

(Sn—l + Xn —a) 1 - F if C,,>I\'S

n

Sn =

This is clearly Markovian. Since there is essentially one equation to describe
the control scheme, there is no difficuity in using a r-state Markov chain.
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6. OTHER APPLICATIONS

So far we have limited our discussion to control charts. However, the
Markov chain technique is so versatile that it can be applied to many
quality-related topics.

A main area of application concerns various continuous sampling
plans with attribute-type observations. All these plans are based on a
sequence of i.i.d. discrete observations, and the decision related to these
plans is normally based on at most a finite number of observations counted
backward. This fits into our general scenario of Markov chains, and the
only technical problem left is to find a Markov chain of reasonable size.

Most continuous sampling plans (three versions of CSP-1 and CSP-k,
k =2,3,4,5) can be embedded into a proper Markov chain (see Blackwell,
1977). The ANSI/ASQC Z1.4 plan falls into this category (Grinde et al.,
1987; Brugger, 1989). Other examples include the two-stage chain sampling
plan (Stephens and Dodge, 1976), the skip-lot procedure (Brugger, 1975),
process control based on within-group ranking (Bakir and Reynolds, 1979),
startup demonstration test (Hahn and Gage, 1983), and precontrol sampling
plans (Salvia, 1987).

A more important application of a Markov chain is to study the
behavior of the quality scheme, be it discrete or continous, when the basic
observations are correlated. Very little is known in this respect when the
observations are continuous. But if they are discrete, we may model the
dependence by assuming that the basic observations follow a finite
Markov chain also. In the expression shared by many quality systems,

Sn = g(Xn‘ Sn~l)

we see that S, follows a Markov chain if X, follows a Markov chain. Hence
the general idea described in Section 4 still applies. However, studies in this
respect, although workable, are rare in the literature. The only related work
seems to be Chao (1989).

The Markov chain method also finds its application in various linearly
connected reliability systems. A general treatment can be found in Chao and
Fu (1991). Readers are referred to the review article by Chao et al. (1995).

7. CONCLUSION

In this chapter I have demonstrated, with examples and general scenario
descriptions, that it is often possible to define a Markov chain such that the
underlying quality control scheme can be completely described by this
Markov chain.
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To evaluate the system performance of a control chart, or other qual-
ity-related schemes, perhaps the most difficult quantity to calculate is the
ARL and its associated sampling distributions. The Markov chain techni-
que provides a general means for accomplishing this task.
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Joint Monitoring of Process Mean and
Variance Based on the Exponentially
Weighted Moving Averages

Fah Fatt Gan
National University of Singapore, Singapore, Republic of Singapore

1. INTRODUCTION

The Shewhart chart based on the sample mean X was first developed to
monitor a process mean. The chart was then modified to plot the sample
range R to monitor a process variance. Each chart was developed assuming
that the other process characteristic is in control. The more advanced chart-
ing procedures such as the cumulative sum (CUSUM) and exponentially
weighted moving average (EWMA) charts were later developed based on the
same basic assumption. This has led to the design and evaluation of perfor-
mance of the mean and variance charts separately. This kind of analysis
might mislead quality control engineers into making inferences concerning
the mean or the variance chart without making reference to the other.
Experience with real manufacturing processes has shown that the process
variance tends to increase with the process mean. A decrease in the variance
when the mean is in control is highly desirable, but if a decrease in the
variance is accompanied by a decrease in the mean, then it is highly undesir-
able. Gan (1995) gave an example of a process with a decrease in the var-
lance coupled with a change in the mean and showed that this process state
is difficult to detect. The mean chart becomes insensitive to the change in the
mean because the variance of the sample mean has become smaller. Any
detection of a decrease in the variance with the mean appearing to be in
control could lead to the false conclusion that the process has improved. In
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short, the problem of monitoring the mean and variance is a bivariate one,
and both the mean and variance charts need to be looked at jointly in order
to make meaningful inferences.

The use of combined schemes involving simultaneous mean and var-
iance charts based on the EWMAS of sample mean and variance is discussed
in Section 2. The average run length (ARL) performance of the various
schemes is assessed in Section 3. A simple design procedure of a combined
EWMA scheme with an elliptical “acceptance” region is given in Section 4.
A real data set from the semiconductor industry is used to illustrate the
design and implementation in Section 5.

2. JOINT MONITORING OF PROCESS MEAN AND
VARIANCE

Consider the simulated data set given in Gan (1995). The data set comprises
80 samples, each of sample size n == 5. The first 40 samples were generated
from the normal distribution N(}, 0(2,), where py = 1 and o2 = 1, and the rest
were from N(y, + 0.404//1, (0.95,)%). Thus, the process was simulated to be
in control for the first 40 samples, and between the 40th and 41st samples the
mean shifted upward to p, + 0.40y/4/n and the variance decreased to
(0.95,)>. A EWMA chart for monitoring the mean is obtained by plotting Q,
=y and Q, = (I — Ay)Q,_1 + Ap X, against the sample number ¢, where X,
is the sample mean at sample number 7. A signal is issued if Q, > hy, or
Q, < — hy. Similarly, a EWMA chart for monitoring the variance is
obtained by plotting ¢, = E[log(S?)] = —=0.270 (when o? = o3) and q, =
(1 =Ap)g_y + Ay log(S,z), where S,2 is the sample variance at sample number
t. A signal is issued if ¢, > H,- or g, < — h).. More details on the EWMA
charts can be found in Crowder (1987, 1989), Crowder and Hamilton (1992),
Lucas and Saccucci (1990), and Chang (1993). The EWMA mean and
variance charts based on the parameters given in Gan (1995, Table 2, p.
448, scheme EE) are constructed for the data and displayed in Figure 1.

A quality control engineer has to constantly combine the information
in the two charts (which might not be easily done in practice) to make
meaningful inferences. To ensure that the charts are interpreted correctly,
the two charts could be combined into one, and this can be done by plotting
the EWMA of Iog(Sz) against the EWMA of X as shown in Figure 2. The
chart limits of the two charts form the four sides of a rectangular “accep-
tance’ region. Any point that falls within the region is considered an in-
control point (for example, points 4 and B), and any point that falls outside
the region is considered an out-of-control point (for example, point C). The
thick bar on the plot is not an out-of-control region but represents the most
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Figure 1 EWMA charts based on X and log(S?) for a simulated data set where the
first 40 samples were generated from the normal distribution N(p,, o3). where By =1
and o = 1, and the rest were from N {1y + 0.404//n, (0.900)2).

desirable state, where the mean is on target and the variance has decreased
substantially.

The advantage of this charting procedure is immediate: Any inference
made can be based on both the EWMAs jointly. The interpretation of an
out-of-control signal is easier because the position of the point gives an
indication of both the magnitude and direction of the process shift.
However, the order of the points is lost if they are plotted on the same
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Figure 2 A combined EWMA scheme with a rectangular acceptance region.
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plot. To get around this problem, each point can be plotted on a new plot in
a sequence as shown later in Figure 13. The disadvantage is that it is not as
compact as the traditional procedure illustrated in Figure 1.

The traditional way of plotting the mean and variance charts sepa-
rately [see, for example, Gan (1995)] amounts to plotting the EWMA of
log(S?) against the EWMA of X and using a rectangular acceptance region
for making decisions. The main problem with a rectangular acceptance
region is that both points 4 and B (see Fig. 2) are considered in control,
although it is fairly obvious that point B represents a far more undesirable
state than that of point 4. An acceptance region that is more reasonable
would be an elliptical region as shown in Figure 3. Takahashi (1989) inves-
tigated an elliptical type of acceptance region for a combined Shewhart
scheme based on X and S or R. An economic statistical design for the X
and R charts was given by Saniga (1989). A point is considered out of
control if it is outside the elliptical acceptance region. For example, point
B is an out-of-control point, but point 4 is an in-control point, for the
elliptical region given in Figure 3. This chart is called a bull’s-eye chart,
as any hit on the bull’s-eye will provide evidence of the process being on
target.

For the same smoothing constants A, and Ay, in order for a EWMA
scheme with an elliptical region to have the same ARL as the EWMA
scheme with a rectangular region, the chart limits of the mean and variance
charts have to be slightly larger, as shown in Figure 4. The idea of an
elliptical region comes from the Hotelling’s statistic to be discussed later.
Point A is an in-control point for the rectangular region, but it is an out-of-
control point for the elliptical region. Similarly, point B is an out-of-control
point for the rectangular region but an in-control point for the elliptical
region. Thus, an elliptical region would be expected to be more sensitive in
detecting large changes in both the mean and variance and less sensitive in

S 035
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Figure 3 A combined EWMA scheme with an elliptical acceptance region.
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Figure 4 A combined EWMA scheme with both rectangular and elliptical accep-
tance regions.

detecting a large shift in one process characteristic when there is little or no
change in the other characteristic.

A Shewhart bull’s-eye chart and a EWMA bull's-eye chart are dis-
played in Figure 5. The Shewhart bull’s-eye chart displays 10,000 random
points (X, log(5%)) when the process is in control. The EWMA bull’s-eye
chart displays the EWMA of the points (X, log (5%)). Both the charts show
that the points are roughly distributed within elliptical regions; hence an
elliptical region is a natural and more appropriate decision region for a
Shewhart or EWMA bull’s-eye chart.

An equivalent decision procedure for the EWMA bull’s-eye chart is to
check the distance of the point (Q,, ¢,) from the center (i, E[log(SZ)]) and
declare the point out of control if

Q. — 1) {4, — Ellog(SH])’

I (Hy — Ellog(SM])*
2.0 v.4
1.0 o~ 0.2
"L %]
0.0 = 82 .
& _1.0- S V&t
i : e =044
W —2.0 c
© : < —0.6 4
—3.0- 2 08
—4.0 - E —1.0 4
5.0 Srerrrrrrr -1.2 b
—2.0-10 0.0 1.0 2.0 -0.5 0.0 0.5
e EWMA of X

Figure 5 Shewhart bull's-eye chart and a EWMA bull’s-eye chart based on 10,000
random points (X, log(Sz)) from an in-control normal distribution.
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for a point (Q,. g,) located above the horizontal line ¢, = E[log(S?)] or if

(O — 1)’ L o - Ellog(SH)Y
Iy {—hy — Ellog(SH]Y

for a point (Q,, ¢,) located below the horizontal line. For a point above the
horizontal line,

72 =@ = 1)’ 14, — Ellog(S")))”

2, {H, — E[log(5?)])?
1/ 0
=(Q/—Ho 4~ E[l"g(sz)])( /oZM 1/{Hy - E[10g<52>1}2>

( 0 -1 )
q, — Ellog(5%)]

which is a Hotelling type of statistic. This statistic is similar to the one
proposed by Lowry et al. (1992). Thus, another way of implementing the
bulls’s-eye chart is to plot the Hotelling type statistic T? against the sample
number ¢ as shown in Figure 6, which I shall refer to as a multivariate
EWMA T2 chart.

The main problem with this charting procedure is that when a signal is
issued, the chart does not indicate which process characteristic gives rise to
the signal. The omnibus EWMA chart proposed by Domangue and Patch

2.5 .
2.0—: - : : : ?
T 1 D Q
1.0 3 : h 73 R0t
E . E (b
0.5 7 T - \U —1.1 Frrrrrrerrbrr@rere
3 ! -04 0.0 0.4
0.0 4 _
0 10 20 30 40 50 60 70 80 EWMA of X

Sample Number

Figure 6 A multivariate EWMA T2 chart for a simulated data set where the first
40 samples were generated from the normal distribution N (), o), where My = land
0(2) =1, and the rest were from N(y, + 0.400//1, (0.900)2.
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(1991) has a similar problem of interpretation. The T*? statistic indicates only
the magnitude and not the direction of the shift. In process monitoring, the
direction of a shift is at least as important as the magnitude of the shift. An
improvement to the T? chart is to include a bull’s-eye chart of the points with
the most recent point plotted as a solid black dot. Although all the points are
shown in this bull’s-eye chart, in order to avoid overcrowding of points only
the most recent 40 points, for example, are plotted each time. The bull’s-eye
chart will provide the information on both the magnitude and direction of
any process shift. The interpretation of the T statistic is simple and easy to
understand with the bull’s-eye chart. Mason et al. (1995) proposed a certain
decomposition of the Hotelling statistic for interpretation of the state of a
process. Their method is mathematically more complicated and hence harder
for a quality control engineer to understand and appreciate.

3. COMPARISON OF SCHEMES BASED ON ARL

For a comparison of schemes based on the ARL, the in-control mean and
variance are assumed to be p, = 0 and o = 1, respectively. Each sample
comprises # = 5 normally distributed observations. The mean and variance
investigated are given by p = py + Acy/+/n and ¢ = 8oy, where A = 0.0,
0.2, 0.4, 1.0, and 3.0 and 8 = 0.50, 0.75, 0.95, 1.00, 1.05, 1.25, and 3.00.
Combined schemes with rectangular and elliptical acceptance regions are
compared in this sectiotn. All the schemes have an approximate ARL of
250. The ARL values of the schemes EE, and SS, (combined EWMA and
Shewhart schemes with rectangular acceptance regions) were computed
exactly using the integral equation approach given in Gan (1995). The
rest were simulated. Alternatively, the ARL of the EWMA bull’s-eye
chart EE, could be computed by using the Markov chain approach of
Brook and Evans (1972) or the integral equation approach. Waldmann’s
method (Waldmann, 1986a, 1986b) could be used here for approximating
the run length distribution of a bull’s-eye chart. Let the starting values of the
EWMA mean and variance charts be u and v, respectively; then the ARL
function L.(u,v) of the combined scheme with an elliptical acceptance
region B can be derived as

Le(u,v)=1

MM//LC(‘ J’)fx< - AM)“)

) — (1 —
Siog(s?) (M) dx dy
v

A
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where f; and fi, 2, are the probability density functions of X and log (5%).
respectively.

The schemes CC (combined CUSUM scheme with a rectangular
acceptance region) and EE, are the same as those given in Gan (1995).
The combined scheme CC consists of a two-sided CUSUM mean chart
and a two-sided CUSUM variance chart. This scheme is obtained by plot-
ting Sy = Ty = 0.0, S, = max[0, S,_,+%, — ky), and T, = min [0, T,_; + ¥,
+kys] against the sample number ¢ for the mean chart and by plotting
Sy =Ty =00, S,=max[0,S, | +log(s?)—kyy]., and T,=min [0,
T + log(s?) + kyy] against ¢ for the variance chart. The chart parameters
of the various schemes are given in Table 1. More details on the CUSUM
charts can be found in Gan (1991) and Chang (1993). The ARL compar-
isons are summarized in Table 2.

The ARL values of combined schemes CC, EE,, and SS, were simu-
lated such that an ARL that is less than 10 has a standard error of 0.01; an
ARL that is at least 10 but less than 50 has a standard error of 0.1; an ARL
that is at least 50 but less than 100 has a standard error of about 0.2; and an
ARL that is at least 100 has a standard error of about 1.0.

EFE, versus CC. The performances of these two schemes are similar
except that when there is a small shift in the mean and a small decrease in
the variance, the EE, scheme is much more sensitive. When there is a large
increase in the variance, the EE, scheme is marginally less sensitive.

EE, versus EE,. The performances of these two schemes are similar.
The EE, scheme is generally more sensitive than the EE, scheme in detect-
ing increases in the variance and less sensitive in detecting decreases in the
variance for the various means investigated.

Table 1 Control Chart Parameters of Combined Schemes

Scheme Acceptance region Control chart parameters

CcC Rectangular ky =0.224, hy, = 2268, Sy =T, =0.0
l\'[,’(,’ = 0055, H[' = 4006, S() == 00
kVI, = 0.666, h,.’ = _5054, T() =0.0

EE, Rectangular Ay = 0.135, Iy, = —0.345, Hy, = 0.345, @, = 0.000
Ay =0.106, hy = —0.867, Hy = 0.215, @y = —0.270
EE, Elliptical Ay = 0.134, by, = —0.372, Hy, = 0.372, @y = 0.000
Ay =0.106, hy = —0.922, H,, = 0.250, @y = —0.270
SS, Rectangular Iy = —1.383, Hy; = 1.383
hy =—3.789, H;, = 1.531
SS. Elliptical hy = —1.501, Hy; = 1.501

hy = —4.257, H; = 1.635




Monitoring of Process Mean and Variance 197

Table 2 Average Run Lengths of Combined Schemes with Respect to the
Process Mean (y, + A x 64/+/n) and Standard Deviation (3a)

A ) CcC EE, EE, SS, SS.

0.00 0.50 5.9 5.8 6.4 68.9 153.0
0.00 0.75 248 219 247 3224 612.9
0.00 0.95 284.4 236.7 254.8 364.2 426.0
0.00 1.00 253.6 2523 252.7 252.2 252.7
0.00 1.05 138.3 137.1 129.3 161.8 145.4
0.00 1.25 19.2 18.9 18.1 311 2438
0.00 3.00 2.5 2.6 2.5 1.2 1.2
0.20 0.50 59 5.8 6.3 63.9 150.1
0.20 0.75 24.7 21.8 228 319.8 592.5
0.20 0.95 167.8 135.3 136.6 328.8 377.6
0.20 1.00 145.8 129.7 127.4 228.0 2279
0.20 1.05 96.2 88.7 82.3 148.2 1333
0.20 1.25 18.4 18.0 17.0 30.0 239
0.20 3.00 2.5 2.6 2.5 1.2 1.2
0.40 0.50 59 5.8 6.1 68.9 142.0
0.40 0.75 23.2 20.5 18.5 309.5 530.6
0.40 0.95 62.3 51.8 52.5 248.4 276.6
0.40 1.00 56.1 48.8 49.0 173.6 170.8
0.40 1.05 46.9 41.7 39.8 116.9 105.7
0.40 1.25 16.2 15.8 14.5 27.1 215
0.40 3.00 2.5 2.6 2.5 1.2 1.2
1.00 0.50 5.8 5.7 5.0 68.8 97.6
1.00 0.75 10.0 9.7 8.6 175.7 2179
1.00 0.95 10.5 10.2 10.6 64.9 7.7
1.00 1.00 10.4 10.2 10.5 49.6 50.6
1.00 1.05 10.3 10.1 10.2 383 36.3
1.00 1.25 8.9 8.8 8.0 15.2 12.2
1.00 3.00 24 25 2.4 1.2 1.2
3.00 0.50 2.5 2.6 2.5 23 2.3
3.00 0.75 2.6 2.6 2.7 2.2 2.6
3.00 0.95 2.6 2.6 2.8 22 24
3.00 1.00 2.6 2.6 2.8 2.2 2.3
3.00 1.05 2.8 2.6 2.8 2.1 23
3.00 1.25 2.7 2.7 2.7 2.1 2.

1.1

— o

3.00 3.00 2.1 22 2.0
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SS, versus SS,. The difference in performance is more substantial.
The SS, scheme is more sensitive than the SS, scheme in detecting
increases in the variance but substantially less sensitive in detecting
decreases in the variance, especially for a small change or no change in
the mean. For larger changes in the mean, the difference is smaller.

EWMA Schemes versus Shewhart Schemes. The EWMA schemes are

substantially more sensitive than the Shewhart schemes except for the case
when there is a big change in the variance.

In order to have a better understanding of the performance of these
schemes, 10,000 random samples were simulated for four different sets of
process characteristics: A = 0.0 and 6 =0.75, A =04 and 6 = 1.00, A =
0.4and 6 =0.75,and A = 0.4 and & = 1.05. These are plotted as Figures 7a,
7b, 7c, and 7d, respectively, for the combined Shewhart schemes. The
EWMA of the points (X, log (8%)) are plotted as Figures 7e, 7f, 7g, and
7h, respectively. For A = 0.0 and 0.4 and 8 = 0.75, the SS, scheme is more
sensitive than the SS, scheme, and this is indicated by Figures 7a and 7c,
which show that there are more points outside the rectangular acceptance
region than there are outside the elliptical region.

For A =0.4 and 8 = 1.05, SS, is slightly more sensitive, as indicated
by Figure 7d, which shows that there are more points outside the elliptical
region than outside the rectangular region. For A =0.0, § =0.75 and
A =04, §=0.75, for example, Figures 7a and 7c show that there are
very few points outside the acceptance regions. In sharp contrast, there
are a substantial number of points outside the acceptance region in
Figures 7e and 7g. This explains the substantial difference in the ARL’s
of the EWMA and Shewhart schemes. Plots 7a and 7e correspond to the
case when a process improvement has taken place, and this is reflected much
more clearly in a EWMA scheme than in a Shewhart scheme. This means
that the EWMA scheme would be a more effective tool for quality improve-
ment. These plots also suggest that if sufficient points are collected for a
process and the points are plotted on a bull’s-eye chart, then the plot will
provide valuable information regarding the overall state of the process
characteristics. The central location and spread of the points could also
be used to estimate graphically the process characteristics.

4. DESIGN OF A EWMA BULL’'S-EYE CHART AND
MULTIVARIATE EWMA T2 CHART

A simple design procedure is provided here for the design of a EWMA
bull’s-eye chart. Table 3 contains the chart parameters of EWMA bull’s-
eye charts with an in-control ARL of 300 based on a sample size n = 5.
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Figure 7 Combined Shewhart schemes and combined EWMA schemes based on
10,000 random points from out-of-control normal distributions.
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Table 3 Control Chart Parameters of Combined EWMA Schemes with Elliptical
Acceptance Region, In-Control Average Run Length of 300, and Sample Size 5

Ap

Ay 0.08 010 011 012 013 0.14 015 0.16 0.17 0.18 0.9 020 022 0.24

008 hy  0.620 0.621 0.621 0.622 0.622 0.623 0.623 0.623 0.623 0.624 0.624 0.624 0.625 0.625
b 0182 0.241 0.268 0.294 0.319 0.343 0.366 0.389 0.410 0.431 0.451 0.471 0.509 0.546
By 0.820 0910 0.953 0.995 1.036 1.077 1.116 1.155 1.194 1.232 1.270 1.308 1.383 1.456

010 Ay 0710 0710 0.711 0.711 0.712 0.712 0.782 0.713 0.713 0.713 0.713 0.713 0.714 0.715
e 0,183 0.242 0.269 0.295 0.320 0.344 0.367 0.389 0.411 0.432 0.452 0.472 0.510 0.547
fyy 0822 0911 0955 0996 1.037 1.078 1117 1.157 1.196 1.234 1.271 1.309 1.384 1.458

011l 0752 0752 0.753 0.753 0.753 0.754 0.754 0.755 0.755 0.755 0.756 0.756 0.756 0.757
fye o 0,183 0.242 0.269 0.295 0.320 0.344 0.367 0.390 0.411 0.432 0.453 0.472 0.510 0.547
Ry 0823 0912 0.955 0.997 1.038 1.078 1.118 1.157 1,196 1.234 1.273 1.310 1.384 1458

0.02 Ay 0.792 0.793 0.793 0.793 0.794 0.794 0.794 0.795 0.795 0.796 0.796 0.796 0.797 0.797
Iy 0183 0.243 0.270 0.296 0.320 0.344 0.367 0.390 0.411 0.432 0.453 0.472 0.510 0.547
By 0823 0913 0955 0997 1.038 1.079 1118 1.158 1.196 1.235 1.273 1.310 1.385 1.458

013y 0.831 0.832 0.832 0.833 0.833 0.833 0.834 0.834 0.834 0.835 0.835 0.835 0.835 0.836
hye 00184 0.243 0.270 0.296 0.321 0.345 0.368 0.390 0.411 0.432 0.453 0.472 0.510 0.547
Ny 0.823 0913 0.955 0.998 1.039 1.079 1.119 1.158 1.196 1.235 1.273 1.311 1.385 1.459

0.14 iy, 0.869 0.870 0.870 0.870 0.871 0.871 0.871 0.872 0.872 0.873 0.873 0.873 0.874 0.874
By 0184 0.243 0270 0.296 0.32]1 0.345 0.368 0.390 0.412 0433 0453 0473 0.511 0.547
hy 0824 0913 0,956 0.998 1.040 1.080 1.119 1.158 1.197 1.236 1.274 1.311 1.386 1.460

0.15 fy, 0907 0.907 0.908 0.908 0.908 0.908 0.909 0.909 0.910 0.909 0.909 0.911 0.911 0911
hye 0185 0.243 0271 0.296 0.321 0.345 0.368 0.390 0.412 0.433 0.453 0.473 0.511 0.548
By 0825 0914 0.957 0999 1.040 1.08¢ 1.120 1.159 1198 1.236 1.274 1.313 1387 1.460

016 Jryy 0,943 0943 0.943 0944 0944 0.944 0945 0.945 0.945 0.945 0946 0.946 0.946 (.947
Dy 0185 0.244 0.271 0.297 0.322 0.345 0.368 0.390 0.412 0.433 0453 0473 0.511 0.548
hyp 0825 0914 0.957 0.999 1.040 1.080 1.120 1.159 1.198 1.236 1.274 1.313 1.386 1.460

017 hy 0977 6978 0.979 0.979 0.979 0979 0.980 0.980 0.980 0.980 0.981 0981 0.981 0.981
Iy 0,185 0.244 0.271 0.297 0.322 0.346 0.369 0.391 0.412 0.433 0.454 0.473 0.511 0.548
o 0.825 0914 0958 0.999 1.040 1.081 1121 [.160 1.198 [.236 [.275 [.312 1.387 1.460

008 Jiy 1012 1013 1.013 1.013 1.013 1.014 1.014 1.015 1.015 1.01S 1.016 1.016 1.016 1.016
hpe 0.185 0.244 0.271 0.297 0.322 0.346 0.369 0.391 0.413 0.433 0454 0.474 0.511 0.548
hy 0.825 0.915 0.958 1.000 1.041 1.082 [.121 1.16]1 1.199 1.237 1.276 1.313 1.387 1461

0.19 hy 1.045 1.046 1.047 1.047 1.047 1.047 1.048 1.048 1.048 1.049 1.049 1.050 1.049 1.050
By 0.185 0.244 0.272 0.297 0322 0.346 0.369 0.391 0.413 0.434 0.454 0474 0.512 0.548
hyy o 0.826 0915 0959 1.000 1.041 1.081 1121 1.160 1.200 1.238 1.276 1314 1.387 1.462

020 Ay 1079 1079 1079 1079 1.080 1081 1081 1,081 1.082 1.082 {.082 1082 1.083 1.083
Iy 0.185 0,244 0.272 0.297 0.322 0.346 0.369 0.391 0.413 0.434 0.454 0.474 0.512 0.548
I 0.826 0.916 0.958 1.000 1.042 1.082 1.122 1.161 1.200 1.238 1.276 1.314 1.389 1.462
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Table 3 (continued)

Ay

Ay 0.08 0.1¢ 011 012 013 0.14 015 016 0.47 0.18 0.19 020 022 024

022 hy 1.143 1.144 1.144 1.145 1.145 1.145 1.145 1.145 1.145 1.146 1.146 1.147 1.147 1.147
hy- o 0.186 0.245 0.272 0.298 0.323 0.347 0.370 0.392 0.413 0.434 0.454 0.474 0.512 0.548
By 0.827 0916 0.959 1.001 1.042 1.083 1.123 1.162 1.200 1.239 1.277 1.315 1.389 1.462

0.24 hy,  1.206 1.206 1.207 1.207 1.207 1.207 1.208 1.208 1.208 1.209 1.209 1.209 1.210 1.210
My 0.186 0,245 0.273 0.298 0.323 0.347 0.370 0.392 0.414 0.435 0.455 0.474 0.513 0.549
By 0.827 0.917 0.960 1.002 1.043 1.083 1.123 1.162 1.201 1.240 1.278 1.315 1.390 1.463

Similar tables covering other in-control ARLs and sample sizes are available
from the author. These are obtained by using simulation such that the
simulated in-control ARL has an error of 1.0. The starting value of the
mean chart is given by the in-control mean p,, and the starting value of
the variance chart is given by

1 2
_ -+ ;
I 3(m—-1)y 15(n—1)

2 ] l
Ellog(s})] ~ log(6?) — —

Suppose a combined scheme with A, = 0.14 and A, = 0.16 is desired. Then
the chart parameters of the combined scheme can be obtained from Table 3
easily as follows:

Mean chart:

Ay =0.14,  hy = o +0.872 x 54/v/5,
Qo = Ko

Variance chart:

Ay =016, Hyp = 0.390 + log(c3),
hy = —1.158 + log(c?). 0, = Eflog(s?)]

The elliptical acceptance region can then be constructed using

(@ — )’ | {a,— Ellog(SH _ |
Iy {H) — Ellog(SM)])?

for the elliptical curve above the horizontal line ¢, = E[log(Sz)] and using
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(@i — o) | lg; = Ellog(SMY _
e {=hy = Ellog(S?IY

for the elliptical curve below the horizontal line.

5. A REAL EXAMPLE

Quality control engineers would like to monitor the mean ball shear strength
of a connection on a microchip. From past process data, the in-control
mean is estimated to be around 72 g, and the standard deviation is estimated
to be around 10 g. A sample of size 5 is taken at regular intervals, and the
ball shear strength of each chip is measured. The chart limits of the schemes
discussed here are chosen such that a combined mean and variance scheme
has an in-control ARL of about 300. The smoothing constants of the
EWMA charts are chosen to be A, = 0.14 and A, = 0.16.

The individual Shewhart charts of X and log(S?) are displayed in
Figure 8. The individual EWMA charts of X and log(Sz) are displayed in
Figure 9. Both variance charts suggest evidence of a decrease in the process
variance. The two mean charts show that the process mean is rather
unstable even though the variance has somewhat stabilized at later samples.
This is an example where the process mean is unstable while the process
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Figure 8 Shewhart charts based on X and log (S?) for the ball shear strength data.
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Figure 9 EWMA charts based on X and log (S?) for the ball shear strength data.

variance is somewhat stable. This could be due to the production of chips
with different mean ball shear strengths for different batches but with the
variance within a batch being more stable from batch to batch. This points
to the need to search for ways to ensure a more stabilized mean.

A multivariate Shewhart 72 chart and a EWMA T? chart for the ball
shear strength data are displayed in Figures 10 and 11, respectively. Both
charts show bigger bursts of activity after the 25th sample. However, the
reasons for these bursts of activity are not clear from the charts. A bull’s-eye
chart would help a quality control engineer to have a better understanding
of the process characteristic when an out-of control signal is issued.

>
(=]
n

ot
3]

©
=}

T TTSTE IYETRTRTIREICINSITAITIRIIONE
T

g
o

T? log(5?)

[ ) 29 [ ] A *

el ipatnebigul

ORI R O N
cooococoo

Do =W
[ B 4 R ]

e R~ Nl SShLL . ... 50

0 5 10 15 20 25 30 35 40 45

Sample Number

Figure 10 A multivariate Shewhart T2 chart for the ball shear strength data.
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Figure 11 A multivariatt EWMA T2 chart for the ball shear strength data.

The Shewhart and EWMA bull’s-eye charts are displayed in Figures
12 and 13, respectively. These types of charts should ideally be constructed
using computer programs. The charts continuously provide valuable infor-
mation regarding the process characeristics in a manner that is easily under-
stood by quality control engineers. The EWMA bull’s-eye chart shows that
the out-of-control points for samples 6-8 are probably due to decreases in
the mean and variance. Figure 13 also shows that the out-of-control points
at samples 26-28 are probably due to an increase in the mean alone. Similar
conclusions can be drawn from the Shewhart bull’s-eye chart. If the process
is in control, then the points on a Shewhart bull’s-eye chart will be randomly
scattered. If a sequence of plotted points are all in a particular quadrant,
then the quality control engineer should be on the alert and take samples
more frequently than usual (see Stoumbos and Reynolds, 1996, 1997).
Alternatively, supplementary run rules could be applied to a Shewhart
bull’s-eye chart.

6. CONCLUSIONS

Three ways of charting X and log (S%) for the purpose of joint monitoring of
both mean and variance were discussed with respect to ease of implementa-
tion and ease of interpretation. The traditional way of plotting the mean and
variance charts separately amounts to plotting log (S%) against X based on a
rectangular “acceptance’ region. Using the justification of a Hotelling-type
statistic, it was shown that an elliptical acceptance region is more natural
and appropriate. This led to the EWMA bull’s-eye chart and the multi-
variate EWMA chart based on a Hotelling-type T° statistic. A EWMA
bull’s-eye chart provides valuable information on both the magnitude and
direction of a shift in the process characteristics. The multivariate EWMA
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Figure 13 EWMA bull’s-eye charts for the ball shear strength data.
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chart provides only the magnitude and not the direction of a shift. It is
recommended that a EWMA bull's-eye chart be plotted beside a multivari-
ate T? chart to help quality control engineers gain a better understanding of
the process characteristics. Average run length comparisons show that the
performances of schemes CC and EE, are similar except that when there is a
small shift in the mean and a small decrease in the variance, the EE, scheme
is much more sensitive. When there is a large increase in the variance, the
EE, scheme is marginally less sensitive. The performances of the EE, and
EE, schemes are also found to be similar. The EE, scheme is generally more
sensitive than the EE, scheme in detecting increases in the variance and less
sensitive in detecting decreases in the variance. The difference between SS,
and SS, is more substantial. The SS, scheme is more sensitive than the SS,
scheme in detecting increases in the variance but substantially less sensitive
in detecting decreases in the variance, especially when there is little or no
change in the mean. The EWMA schemes were found to be substantially
more sensitive than the Shewhart schemes except for the case when there is a
big change in the variance. Finally, a simple design procedure for an
EWMA bull’s-eye chart was provided.
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Multivariate Quality Control Procedures

A. J. Hayter
Georgia Institute of Technology, Atlanta, Georgia

1. INTRODUCTION

In many quality control settings the product under examination may have
two or more related quality characteristics, and the objective of the super-
vision is to investigate whether all of these characteristics are simultaneously
behaving appropriately. In particular, a standard multivariate quality con-
trol problem is to consider whether an observed vector of measurements
X =(xy, ..., x;)’ from a particular sample exhibits any evidence of a location
shift from a set of “satisfactory” or ‘standard” mean values pd =
(1), ..., n})". The individual measurements will usually be correlated due to
the nature of the problem, so that their covariance matrix ¥ will not be
diagonal. In practice, the mean vector p® and covariance matrix £ may be
estimated from an initial large pool of observations.

X

"

and the problem is then to monitor further observations x in order to
identify any location shifts in any of the mean values.

If the assumption is made that the data are normally distributed, then
the distribution of an observation x is Ny(i, £), and the problem is to assess
the evidence that p # °. In the univariate setting (k = 1) this problem can
be handled with a Shewhart control chart with control limits set to guaran-
tee a specified error rate o. One might consider handling the multivariate
problem by constructing individual a-level control charts for each of the &
variables under consideration. However, it has long been realized that such
an approach is unsatisfactory since it ignores the correlation between the
variables and allows the overall error rate to be much larger than o. On the

209
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other hand, if individual error rates of o/k are used, then the Bonferroni
inequality ensures that the overall error rate is less than the nominal level a.
However, this procedure is not sensitive enough since the actual overall
error rate tends to be much smaller than o because of the correlation
between the variables.

A multivariate quality control procedure that can be successfully
implemented in manufacturing processes should meet the goals of

1. Controlling the error rate of false alarms

2. Providing a straightforward identification of the aberrant vari-
ables

3. Indicating the amount of deviation of the aberrant variables from
their required values

In addition, for certain problems it is desirable that the multivariate quality
control procedure

4. Be valid without requiring any distributional assumptions.

An overview of the multivariate quality control problem can be found
in Alt (1985). In this chapter some more recent work on the problem is
discussed. Specifically, Section 2 considers the situation where the normality
assumption is made, and the Hayter and Tsui (1994) paper is discussed
together with work by Kuriki (1997). Section 3 considers the work on non-
parametric multivariate quality control procedures by Liu (1995) and Bush
(1996).

2. PROCEDURES BASED ON A NORMALITY ASSUMPTION

It is clear that a basic property of a good procedure for this multivariate
problem is that an overall error rate of the specified level o should be
maintained exactly, so that the probability of incorrectly deciding that the
process is out of control (when it is, in fact, still in control) should be equal
to the specified value a. Hotelling (1947) provided the first solution to this
problem by suggesting the use of the statistic

TP = (x-S (x — %

where £ is an estimate of the population covariance mairix X. However,
another prolem is that of deciding what conclusions can be drawn once the
experimenter has evidence via the 77 statistic that the process is no longer in
control. Specifically, how is it determined which location parameters have
moved away from their control values u??
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2.1. Confidence Intervals Procedure

Hayter and Tsui (1994) proposed a procedure that provides a solution to
this identification problem and to the related problem of estimating the
magnitudes of any differences in the location parameters from their stan-
dard values u?. The procedure operates by calculating a set of simultaneous
confidence intervals for the variable means p; with an exact simultaneous
coverage probability of 1 — . The process is deemed to be out of control
whenever any of these confidence intervals does not contain its respective
control value u?, and the identification of the errant variable or variables is
immediate. Furthermore, this procedure continually provides confidence
intervals for the “‘current” mean values b, regardless of whether the process
is in control or not or whether a particular variable is in control or not.

Let X ~ N, (0, R), where R is a general correlation matrix with diag-
onal elements equal to 1 and off-diagonal elements given by py, say, and
define the critical point Cp, by

P(1X)| < Cry; 1 i< k)

In the more general case when X ~ N, (n, X) for any general covariance
matrix %, let the diagonal elements of ¥ be given by 0,2, 1 <i<k,and
the off-diagonal elements by o;. Then if R is the correlation matrix gener-
ated from X, so that p; = 6;/0,0,, it follows that

P(IXI _—“'l'l/cl = CR.'x; 1 = i =< k)

However, this equation can be inverted to produce the following exact 1 — «
confidence level simultaneous confidence intervals for the p;, | <i < k:

P, e [X, —0;Cro, X, + 0;Cpr i 1 =i < k)

Notice that the correlation structure among the random variables X affects
the simultaneous confidence intervals through the critical point Cg 4.

The multivariate quality control procedure operates as follows. For a
known covariance structure £ and a chosen error rate o, the experimenter
first evaluates the critical point Cp,. Then, following any observation
x =(xy,...x;)", the experimenter constructs confidence intervals.

K € [xl - cyI'CR,'JU x, + GiCR,u]

for each of the k variables. The process is considered to be in control as long
as each of these confidence intervals contains the respective standard value
1. However, when an observation x is obtained for which one or more of
the confidence intervals does not contain its respective standard value p’,
then the process is stated to be out of control, and the variable or variables
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whose confidence intervals do not contain p! are identified as those respon-
sible for the aberrant behavior.

This simple procedure clearly meets the goals set in the introduction
for a good solution to the multivariate quality control problem. An overall
error rate of o is achieved, since when p = 1 there is an overall probability
of I — o that each of the confidence intervals contains the respective value

9. Also, the identification of the errant variables is immediate and simple,
dnd furthermore, the confidence intervals allow the experimenter to assess
the new mean values of the out-of-control variables. This is particularly
useful when the experimenter can judge the process to be still ““good
enough™ and hence allow it to continue.

2.2. Example

Consider first the basic multivariate quality control problem with k = 2 so
that there are just two variables under consideration. In this case, the
required critical point Cp ., depends only on the error size o and the one
correlation term py, = p, say. In tables B.1-B.4 of Bechhofer and Dunnett
(1988), values of the critical point are given for o = 0.20, 0.10, 0.05, and 0.01
and for p = 0(0.1)0.9 (the required values for Cp , correspond to the entries
for p = 2 and v = 00). More complete tables are given by Odeh (1982), who
tabulates the required critical points for additional values of o and p (the
values Cp, at k =2 correspond to the entries at N = 2). Interpolation
within these tables can be used to provide critical values for other cases
not given. An alternative method is to use a computer program to evaluate
the bivariate normal cumulative distribution function.

As an example of the implementation of the procedure with k =2,
consider the problem outlined in Alt (1985) of a lumber manufacturing plant
that obtains measurements on both the stiffiness and the bending strength of
a particular grade of lumber. Samples of size 10 are averaged to produce an
observation x = (x, X»)’, and standard values for these averaged observa-
tions are taken to be p” = (265, 470)" with a covariance matrix of

10 6.6
> =
6.6 12.1
In this case the correlation is p = 0.6, so that with an error rate of o = 0.05,
the tables referenced above give the critical point as Cg, = 2.199.

Following an observation x = (X}, X3)’, the simultaneous confidence
intervals for the current mean values p = (p,, p,)" are given by
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Wy € [y = 2.199V10, x| + 2.199/10] = [x, — 6.95, x| + 6.95]
Iy € [xs — 2.199v12.1, Xy 4 2.199/12.1] = [x; — 7.65, x5 + 7.65]

These confidence intervals have a joint confidence level of 0.95. The process
is considered to be in control as long as both of these confidence intervals
contain their respective control values py = (265, 470)’, that is, as long as
258.05 < x, <271.95 and 462.35 < x; < 477.65. However, following an
observation x = (255,465)’, say, the process would be declared to be out
of control, and the first variable stiffness would be identified as the culprit.
Furthermore, the confidence interval for the mean stiffness level would be
B, € (248.05,261.95) so that the experimenter would have an immediate
quantification of the amount of change in the mean stiffness level. An
additional example with & = 4 variables is given in Hayter and Tsui (1994).

2.3. Independence Assumption

A general assumption of the multivariate quality control procedures is that
observations obtained from the process under consideration can be taken to
be independent of each other. Specifically, if a control chart based on
Hotelling’s 7~ statistic is employed, then it is assumed that the two statistics

TP = (' = p") (e = ")
and
T3 = (7 =)' 2707 ~ 1%

obtained from two observations x' and x> of the process are independent of
each other. Individually, these two statistics each have a scaled F-distribu-
tion, but any lack of independence between them may seriously affect the
interpretation of the control chart.

Kuriki (1997) shows how the effect of a dependence between the vari-
ables can be investigated. In general, the joint cumulative distribution func-
tion of the statistics T} and T} is

.l ! — —_
Ty <z, T; < 2) = P(»S l}'l <z, »mS l}"z < )

where S = ¥ has a Wishart distribution and (»1,y2) has a 2k-dimensional
normal distribution. The random variables ¥, and y, may not be indepen-
dent of each other due perhaps to a correlation between subsequent obser-
vations taken from the process or through u®, which may be an average of
observations in an initial pool. This general bivariate F-distribution can be
used to assess the effects of a lack of independence between observations
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from a process if Hotelling’s control chart is employed, and Kuriki
(1997) shows how it can be easily evaluated as a two-dimensional integral
expression.

3. NONPARAMETRIC PROCEDURES

The flow diagram in Figure 1 illustrates how distribution-free multivariate
quality control procedures can be developed. The left side of the diagram
corresponds to a traditional procedure. An initial pool of ““in-control” data
observations is often used to determine the control values p’ = ¥, and the
assumption that the data have a multivariate normal distribution is
required. The dotted lines correspond to distribution-free procedures that
can be employed.

The middle procedure is based on the consideration of a nonpara-
metric test of the hypothesis

o — 40
Hy:p=np
Initial pool ... ...
X', .. XP
Hy. =X
Do
the data have a no
multivariate normal 2ttt
distribution
?
v v
Traditional testing Distribution-free testing Distribution-free testing
techniques procedures procedures
Data

Figure 1 Flow diagram of multivariate quality control testing procedures.
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with p° = %. This procedure could be implemented even if there is no initial
pool of data observations and p’ is simply some specified target value.
However, in general it seems more sensible to make full use of the initial
pool of observations and to develop a procedure indicated on the far right of
the flow diagram in which the current data are compared with the initial
pool of observations. In this case, the question of interest is whether it is
plausible that the two data sets, the initial pool of observations and the
current data observations, are actually observations from a common distri-
bution. A discussion of such procedures that are developed in Liu (1995)
and Bush (1996) is provided in this section.

3.1. Nonparametric Multivariate Control Charts

Liu (1995) provides some nonparametric multivariate quality control pro-
cedures that follow the right-hand dotted line of Figure 1 in that they
compare current observations with an initial pool of “in-control” observa-
tions. The main idea is to reduce the current multivariate observation to a
univariate index that can be plotted on a control chart. Three types of
control charts are suggested that are truly nonparametric in nature and
can be used to detect simultaneously any location change or variability
change in the process. Liu’s procedures are motivated by the “depth™ of
current measurements within the initial pool of observations and are con-
ceptually equivalent to the procedures described in Bush (1996) employing
functional algorithms to calculate the scores that are described in detail in
the following sections.

3.2. Overview of Nonparametric Procedures

Assume that the initial pool consists of the observations
XA

where each x' is a k-dimensional vector that is an observation from an
unknown distribution with mean p° = (p(l), ey pg) and covariance matrix
Z. Note that the observations x' may in fact be defined to be averages of
several measurements. The purpose of the quality control procedure is to
determine whether or not a new observation can be considered to be an
observation from this same distribution. The nonparametric procedure tests
the following hypotheses:

H,: The new observation and the initial pool can be considered
to be p+1 observations from the same unknown distribution.
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H 4: The new observation cannot be considered to be from the
same distribution as the initial pool.

If the null hypothesis is rejected, then the process is declared to be out of
control.

As in other quality control procedures, the initial pool of supposedly
identically distributed observations is employed to define the standards
against which the new observations are measured. Traditionally, the initial
pool is used to calculate control limits, but the nonparametric methods
described below require a different and more direct use of the initial pool.
Consider the two-dimensional case. Suppose a plot of x; versus x, reveals an
elliptical shape. A new observation, x°, is taken, and the point (x}, x9) is
added to the graph. There is no need for concern if x° plots well within the
borders of the ellipse. However, a point outside the ellipse or on the fringes
may signal that the process is out of control. Thus the nonparametric qual-
ity control procedure operates by considering the location of the new obser-
vation with respect to the initial pool. A useful procedure will indicate
whether a new observation is near the center of the initial pool, on the
fringes, or outside.

3.3. Variable Transformation

It is convenient to define testing procedures in terms of a set of transformed
observations. If the initial pool and the new observation are combined to
form a set of p + | observations, then let the sample average vector be ¥ =
(¥, ..., X;) and the sample covariance matrix be S,. The quality control
methods require calculating a distance measure between various points,
and a sensible way to do this is with the Mahalanobis distance, where the
distance from x' to ¥/ is defined to be

Dy = (' = )8 (' = ¥)

It can be shown that the Mahalanobis distance is equivalent to the squared
Euclidean distance between “‘standardized’ observations )', where

W= (= DA
and A4" = S7'. Thus,
Dy=0" =)' 1)

The matrix A is easily calculated from the eigenvalues and eigenvectors of
S7', but in practice the matrix 4 need never be calculated, since the testing
procedures can be implemented in terms of the original observations x'. In
other words, while it is convenient to define quality control procedures in
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terms of the transformed observations ), the actual implementation may be
performed in terms of the original observations x'.

3.4. Calculation of a p-Value

The nonparametric procedure produces a set of scores Sy, S, ..., S, asso-
ciated with each observation in the initial pool (S;, 1 <i < p) and the new
observation (S,). The score S; reflects the “‘position™ of observation y' with
respect to all p + | observations. In general, the lower the score, the closer
an observation is to the “center” of the set of observations. Let R,, 0
<i<p, be the rank of S; among S, ..., S,, where average ranks can be
used if there are ties among the S; in the usual manner.

The value of R, corresponding to the new observation is of particular
interest. If the new observation and all p observations in the initial pool are
observations from the same distribution (so that the process is still in con-
trol), the Ry is equally likely to take any value from 1 to p+ 1 (supposing
that there are no ties in the scores S;). Moreover, large values of Ry indicate
that the new observation is on the fringe of the initial pool of data points, an
event that has an increased probability if the process has moved out of
control, and so a p-value for the null hypothesis that the process is in control
can sensibly be calculated as

p+2—Ry
-value = ——
P p+1
This p-value reflects the proportion of the p 4+ 1 observations that have
scores S; no smaller than S,.

3.5. Decision Rules

The decision rules under which a process is declared to be out of control can
be chosen by the engineers implementing the procedure. Notice that the p-
value is limited by the number of observations in the pool. For example, if
there are p + 1 = 100 observations and Ry = 100, then the p-value for the
procedure is 0.01, and the process can be declared to be out of control if the
specified probability of a false alarm, «a, is greater than or equal to 0.01.
Traditionally, the specified error rate for a quality control procedure is often
taken to be smaller than o = 0.01, which implies that for this nonparametric
procedure a larger initial pool would be needed.

In addition to the consideration of individual p-values, “runs rules™
may also be employed. In univariate control charts, several successive points
on the same side of the centerline are often allowed to trigger a stopping rule
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suggesting that there has been a change in the mean of the distribution.
Similar runs rules may be adopted for these nonparametric procedures.
For example, suppose that the p-values for a series of successive observa-
tions are each less than 0.20 but that none of the individual p-values is less
than the specified o level. One might declare the process to be out of control
on the basis that these new observations are all near the fringes of the initial
pool of observations.

Runs rules can be designed to locate changes in either the mean or the
variance of the distribution. Any appearance that a set of new observations
are not “‘well mixed™ within the initial pool suggests that the distribution
may have changed. Changes in the mean imply changes in the location of
the distribution and may be identified by a locational shift in the new
observations. Changes in the covariance structure T should be indicated
by changes in the shape of the distribution. Specifically, increases in the
variance of a variable should be characterized by frequent observations
outside or on the fringes of the distribution.

In conclusion, the consideration of the individual p-values of new
observations together with an awareness of the location of the new observa-
tions relative to the initial pool of observations should allow an effective
determination of out-of-control signals.

3.6. Calculation of the Scores

There are two basic types of algorithms that can be used to construct the
scores Sy, Sy, ..., S,,. These are functional algorithms and linkage algorithms.

Functional Algorithms

With functional algorithms the scores are calculated from a series of com-
parisons of the observations ' with each other. Specifically, the score S, is a
function of y' = (9, ..., »%) and every other point in the pool and can be
written as

S, =105 yo, e )

The function is defined so that observations that are far from the center of
the set of observations receive high scores while observations near the center
receive low scores. Three possible choices for the function are described
below.

1. The easiest method to consider is
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k P

Si = Z | Z(I{.VL>}’,1 =1 <))l

where I, is the indicator function. In this case the score function
can be thought of as simply being calculated from a count of how
many points are on either side of a particular observation and as
being similar to a multivariate sign test. The score S; will be close
to zero for points in the center of the distribution, because at the
center there are roughly an equal number of observations in every
direction. At the perimeter other observations tend to be to one
side, and thus the score will be large. For these scores the magni-
tude of the difference between two points ' and )’ is ignored, and
only the direction of the difference is important. Note that there is
a large potential for ties in the scores to occur with this method.
A second procedure is similar to the first except that the actual
distances between points are used to calculate the scores. The
score S; is calculated as the sum of the Euclidean distances from
' to every other point ', 0 <j < p, so that

P 4 N
Si=Y VDy=) [0 -0 -]"
J=0 =0

Thus S; is the sum of the p distances from )’ to all points in the
combined pool. It is clear that the scores of the observations at the
center of the group will tend to be lower than the scores for
perimeter observations.

The scores obtained from the third method are calculated by
comparing an observation j' with a statistic based on the com-
bined pool. This statistic,

M= (M],‘..,Mk)

is chosen to be a “middle value’ of the combined pool of observa-
tions such as the mean vector or the median vector. Typically the
scores can be calculated as the distances of the observations from
this middle value so that

Si=0' —M) (' — M)

Again, note that observations near the center of the pool will have
small scores while observations on the perimeter will have larger
scores. Note also that this method requires far fewer calculations
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than method (2), although this difference should not be important
with present computing facilities.

Linkage Algorithms

Linkage algorithms resemble a linking clustering algorithm in that the p + 1
observations are linked together one point at a time. The cluster begins at
the center of the distribution and branches to all of the observations in the
combined pool. Points are added to the cluster in succession until all p + 1
points are part of the cluster. The criterion for choosing the next point to be
added to the cluster is that it should be the *‘closest” observation to the
cluster. The distance to the cluster can be measured in several different ways,
which are discussed below. The score S; is defined to be equal to j when »' is
the jth point added to the cluster (note that in this case R, = S;). The first
point to be added to the cluster can generally be taken to be the point closest
to v. Observations closest to the center will tend to be added first, and those
on the perimeter will be added last. Also, observations in heavily concen-
trated areas will tend to be added to the cluster before observations in
sparsely concentrated areas, since in dense regions observations are closer
together, and therefore observations will tend to be linked in succession
once the first observation in that region has been added to the cluster.

When these linkage algorithms are applied it can be useful to construct
a “‘center value” M, which is considered to be the first point in the cluster
(although it may be removed from the cluster later). Three possible ways to
decide the order in which observations are added to the cluster are described
below.

1. If observation ' is not already in the cluster, then it is added to the
cluster if it is the closest (among all observations not already in the
cluster) observation to any observation already in the cluster. In
other words, for each observation )* not already in the cluster, the
minimum distance

Dy =0 =)0 =)

is calculated over all points )’ already in the cluster. The point 3’
with the smallest minimum distance is then added to the cluster.

2. Method 1 can be generalized by calculating the sum of the a
smallest distances from an observation not in the cluster to obser-
vations already in the cluster, for a fixed value of «. While method
(1) has @ = 1, it may be sensible to take « = 2, say, whereby the
sum of the two smallest distances from an observation not in the
cluster to observations already in the cluster are used to determine
which observation should be added to the cluster next.
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3. An additional extension would be to calculate the sum of all of the
distances from an observation not in the cluster to each of the
observations already in the cluster. This method is different from
method (2), since in this case the value of « changes and is equal to
the number of observations currently in the cluster.

4. SUMMARY

A single product can be described by several correlated variables that are to
be monitored by quality control procedures. The correlation structure
between the variables should be taken into account when designing a quality
control scheme for the product. A good multivariate quality control proce-
dure is one that, at a specified error rate a, triggers the out-of-control alarm
only with probability o« when the process is still in control and triggers the
alarm as quickly as possible when the process is out of control. In addition,
it should provide a simple and easily implementable mechanism for deciding
which of the variables are responsible when the process is determined to be
out of control. Finally, it should allow easy quantification of the amount by
which the out-of-control variables have changed in mean value. Recent
advances in this area provide more tools for the practitioner to meet these
goals.
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1. INTRODUCTION

A basic assumption in most multivariate control procedures is that the
observation vectors are uncorrelated over time. When this assumption is
true, the graph of any process variable against time should show only ran-
dom fluctuations. When the assumption is false, the patterns in such time
plots are systematic and often indicate the existence of linear or quadratic
trends. In these latter situations, incorrect signals can occur in the corre-
sponding multivariate control chart, and the effectiveness of the overall
control procedure may be weakened [e.g., see Alt et al. (1977) or
Montgomery and Mastrangelo (1991)].

Numerous industrial processes produce data that change over time.
This may occur because of such factors as the continuous wear on equip-
ment, the degenerative effects of environmental and chemical contamina-
tion, and the depletion of the catalyst in a chemical process. Autocorrelated
observations resulting because a process continuously decays over time may
be detectable if one samples the process on a regular time interval. However,
process decay that occurs in stages may appear to be insignificant and
undetectable across short time intervals but highly significant and detectable
when the process is monitored over extended time intervals. Mason et al.

223
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(1996) present an excellent example of a situation where the autocorrelation
behaves as a step function.

If autocorrelation goes undetected or ignored, it can create serious
problems in multivariate control procedures. This often occurs when the
effects of the autocorrelated variable are confounded with the time effects.
An adjustment would be needed in such situations in order to obtain a true
reading on process performance at a given point in time. Control procedures
for autocorrelated data in a univariate setting make adjustments by model-
ing the time dependency and examining the residuals of the resultant auto-
regressive models. Under proper assumptions, these residuals, or adjusted
values (effect of the time dependency removed), can be shown to be inde-
pendent and normally distributed and are thus used as the charting statistic
in the control procedure [see, e.g., Montgomery (1991)].

The problem with autocorrelated data from a multivariate process is
more complicated. We have to be concerned not only with how these vari-
ables relate to the other process variables but also with how some of the
process variables relate to time changes. Our procedure for analyzing such
autocorrelated data centers on the use of Hotelling’s T? as the control
statistic. Many of the desirable properties of this statistic for independent
observations are shown to apply to this situation.

2. DETECTION OF AUTOCORRELATION IN MULTIVARIATE
PROCESSES

Why do certain types of processes have a tendency to generate observa-
tions with a time dependency? Autocorrelation may be due to a cause-and-
effect relationship between a process variable and time. If this occurs, the
observation on the process variable is proportional to the value of the
variable at some prior time. In contrast, if the time relationship is only
an empirical correlation and not a cause-and-effect one, the current value
of the variable, although associated with the past value, is not determined
by it. If this is the case, the association is usually due to an unobservable
“lurking” variable.

Consider two process variables that are highly negatively correlated
so that one variable increases as the other decreases. Suppose one of the
variables, the “lurking™ one, cannot be observed but is known to increase
with time. Without knowledge of the relationship between the two vari-
ables, one would conclude that the second variable has a time dependency
in its observations, as its values would tend to decrease as time increases.
For example, if one considers the cyclical nature over time of the variable
depicted in Figure 1, one might suspect that some form of time effect is
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Figure 1 Process variable with cycle.

present. However, the noted trend is due to a “lurking’’ variable that has a
seasonal component. Since the effects of such “lurking” variables, when
they are known to exist, can be accounted for by making adjustments to
the associated observable variable, the detection of these situations can be
a great aid in the development of a proper control procedure for the
process.

Detecting autocorrelation in univariate processes is accomplished by
plotting the process variable against time. Depending on the nature of the
autocorrelation, the plotted points will either move up or down or oscillate
back and forth over time. Subsequent data analysis can be used to verify the
time trend, determine lag times, and fit appropriate autoregressive models.
The simple and straightforward method of graphing individual components
against time can be inefficient when there are a large number of variables,
and the interpretations can become confounded when these components are
correlated. Despite these disadvantages, we have found that graphing each
individual variable over time is still useful in multivariate processes. In
addition to studying autocorrelation, it can lead to the discovery of other
influential variables.

To augment the above graphical method and reduce the number of
individual graphs that need to be produced, we additionally suggest that a
time-sequence variable be added to the data set. If any of the other variables
correlates with the time-sequence variable, it is highly probable that it cor-
relates with itself over time. Using this approach, one can locate potential
variables that are autocorrelated. Detailed analysis, including the graphing
of the individual variable over time, will either confirm or deny the assertion
for individual variables. Other techniques, such as that given in Tracy et al.
(1993), also should be explored.
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3. VARIOUS FORMS OF AUTOCORRELATION

We examine two different forms of autocorrelation: uniform decay and stage
decay. It is important to recognize each type, as both play an important role in
the development and implementation of a multivariate control procedure for
autocorrelated data. Uniform, or continuous, decay occurs when the observed
value of the process variable is dependent on some immediate past value. For
example, heat transfer coefficient data behave in this fashion. During the life-
cycle of a production unit, the transfer of heat is inhibited owing to equipment
contamination or for other reasons that cannot be observed or measured. A
new life cycle is created when the unit is shut down and cleaned. During the
cycle, the process is constantly monitored to ensure maximum efficiency.
Figure 2 contains the graph of a heat transfer coefficient over a number of
life cycles of a production unit. The uniform decay of the unit is evident from
the declining trend in the plotted curve prior to each new life cycle.

Stage decay occurs when the time change in a process variable is incon-
sistent on a daily basis but occurs in a stepwise fashion over extended periods
of time. This form of autocorrelation is present in processes where change with
time occurs very slowly. The time relationship results when the process per-
formance in one stage is dependent on the process performance in the previous
stage or stages. The graph of a stage decay process variable is presented in
Figure 3. Notice that there is a distinctive shift in the process variable some-
where near the middle of the curve but that the fluctuations are around similar
levels below the shift and at higher but similar levels above the shift.

4. A CONTROL PROCEDURE FOR A UNIFORM DECAY
PROCESS

Our approach for obtaining a multivariate control procedure for uniform
. . N o} . . .
decay processes is to use Hotelling's 7~ statistic and its associated orthogo-
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Figure 2 Life cycles over time.
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nal decomposition. Mason and Young (1999) show that correct modeling of
existing functional relationships between process variables increases the
sensitivity of the T 2 value in signal detection. An overview of pertinent
points of their work and how it relates to a multivariate control procedure
for autocorrelated processes with uniform decay is discussed below.
Mathematical details and data examples are provided in the original paper.
One example of an orthogonal decomposition of the T2 value asso-
ciated with a p-dimensional data vector, X’ = (x|, ..., x,), is given as

T’=(X-X)S7'(x - X)
=Ti+To+ 4 Thi o

where X and S are the usual estimates of the population mean vector and
covariance matrix obtained by using an in-control historical data set. In this
procedure [see Mason et al. (1995) for a complete description], the first
component of a particular decomposition, termed the unconditional term,
is used to determine whether the observation on the jth variable of a signal-
ing data vector is within the operational range of the process. The general
form of the jth unconditional T is given by

- \2
2 (% — %)

T} =" (1)

Y]
where x, is the jth component of X, and ¥, and sf are the corresponding

mean and variance estimates as determined using the in-control data set.
The remaining components, termed conditional terms of the decomposition,
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are used in detecting deviations in relationships among the variables that
produced the signal. The general form of a conditional 72 term is given by

= 2
T2 o (\/ - -\‘_1.12...(_1—1))
s12.0-0 =

)

&.2
Cid2ou-h

This is the square of the jth variable adjusted by the estimates of the mean
and variance of the conditional distribution of x, given x|, x5, ..., x,_|.

The ordering of the components in the data vector determines the
representation of each term of the decomposition. As pointed out by
Mason et al. (1995), there are p! different arrangements of the p components
of a data vector, and these lead to p! decompositions, each consisting of p
terms. Mason and Young (1997) show that the unique terms of all such
decompositions will contain all possible regressions of an individual variable
on all possible subgroups of the remaining p—1 variables. For example, the
first component, x, of a three-dimensional data vector would be regressed
against all possible subgroups of the other two variables. These regressions
and the corresponding conditional T? terms are presented in Table 1. Using
the tabulated results, a control procedure based on the T2 statistic can be
developed for a set of process variables that exhibit uniform time decay in
the observations and, at the same time, are correlated with other process
variables. As an example, consider a bivariate vector (x,y) where the vari-
able y exhibits a first-order autoregressive relationship [i.e., AR(1)]. Note
that the observations are actually of the form (X,, Y,, Y,_,), where ¢ repre-
sents the time sequence of the data. The AR(1) relationship for y can be
represented in model form as

Ve =by+ by, +error 3)
where by and b; are unknown constants. If y were being monitored while its
relationship with x was ignored, a signal would be produced when the

observed value of y was not where it should be as predicted by the estimate
of the model in Eq. (3). However, if one chooses to examine the value of y

Table 1 List of Possible Regressions for x; When p =3

: e 2
Regression of Conditional T~
2
X} on x; Ti,
!
X On Xy qu

X] ON X2, X3 Tin
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adjusted for the effect of v and the time dependency, a model of the form
v, = by + byy,_ + byx, +error 4)

would be more appropriate.

The modeling of time relationships existing among the process vari-
ables requires adding additional lag variables to the historical data. For
example, a historical data set for a bivariate process is a data matrix con-
sisting of observations on the vector (x,, y,), where 7 = 1, ..., n. Assuming
autocorrelation exists among the observations on y and is of the AR(1) form
given in (4), the data set will have to be reconstructed to have the form
(x,, ¥, Vst =2, ..., n, in order to estimate the model. The ordering of the
vector components is arbitrary but is important to the notation scheme for
the T? terms. Interpretation of a signal for this situation is achieved by
examining appropriate terms from all possible decompositions of the signal-
ing T? value. Details are provided in Table 2.

Higher order autoregressive relationships can be examined by adding
other lag variables to the historical data set. For example, suppose the
variable y has an AR(2) time dependency so that

Vi = by +byy,_y + bsyi_y + error. (5)

The reconstructed data vector would be of the form (.\‘,,y,..1',_1,)',2"1). The
use of such time-dependent models requires process knowledge and an
extensive investigation of the historical data.

Table 2 Interpretation of Useful 772 Components in AR(1) Model

2l .
T~ component Interpretation
2 . . . . ~
Ty Checks if x component of data vector is in operational range of x.
" - . . . ~
5y Checks if » component of data vector is in operational range of .
3 . . PR . )
T35, Determines if current value of y is in agreement with the value

predicted using previous y value, or examines the valuc of » with
the effect of y,_; removed.

Ti, Checks if x and y are countercorrelated. Effect of time is not
removed.

T3, Checks if y and x are countercorrelated. Not symmetrical with 77 ,.
Effect of time is not removed.

T3, Determines if present value of v is in agrecment with the value

predicted using x and previous value of y.
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5. EXAMPLE OF A UNIFORM DECAY PROCESS

Consider a chemical process where observations are taken on a reactor used
to convert ethylene (C,H,) to ethylene dichloride (EDC), the basic building
block for much of the vinyl products industry. Feedstock for the reactor is
hydrochloric acid gas (HCl) along with ethylene and oxygen (O,).
Conversion of the feedstock to EDC takes place in a reactor under high
temperature, and the process is referred to as oxyhydrochlorination (OHC).
There are many different types of OHC reactors available to convert ethy-
lene and HCI to EDC. One type, a fixed-life or fixed-bed reactor, must have
critical components replaced at the end of each run cycle, as the components
are slowly depleted during operation. Performance of the reactor follows the
depletion of the critical components; i.e., the best performance of the reactor
is at the beginning of the run cycle, and it gradually becomes less efficient
during the remainder of the cycle. This inherent uniform decay in the per-
formance of the reactor produces a time dependency in many of the result-
ing process and quality variables.

Consider a steady-state process where the reactor efficiency is at 98%.
The efficiency variable will contain very little variation (due to the steady-
state conditions), and its operation range will be small. Any significant
deviation from this range should be detected by the process control proce-
dure. However, over the life cycle of a uniformly decaying reactor, the unit
efficiency might have a very large operational range. For instance, it might
range from 98% at the beginning of a cycle to 85% at the end of the cycle
and would thus contain more variation than a steady-state variable. If we
failed to consider the decay in the process, any efficiency value between 85%
and 98% would be acceptable, even 85% at the beginning of a cycle.

A deviation beyond the operational range (established using in-control
historical data) for a process variable can be detected by using its uncondi-
tional T2 term. In addition, incorrect movement of the variable within its
range (occurring because of improper relationships with other process vari-
ables) can be detected by using the conditional T? terms. However, this
approach does not account for the effects of movement due to time depen-
dencies. Adjusting for a time effect will provide additional monitoring of the
movement of an individual variable within its operational range when the
effect of its previous value(s) has been removed. Including time-lag variables
in the computation of the T? statistic adds corresponding terms to the T2
decompositions that can be used to monitor movement of the variables
through time. This enhances the signal detection performance of the overall
T statistic.

Although the above reactor process is controlled by many variables,
we will use only four of them in this example in order to demonstrate the
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Figure 4 Reactor temperature versus time.

proposed control chart procedure. These include three process variables,
labeled TEMP, L3, and LI, and a measure of feed rate, labeled RPI1. All,
with the exception of feed rate, show some type of time dependency.

Temperature measurements are available from many different loca-
tions on a reactor, and together these play an important role in the perfor-
mance and control of the reactor. To demonstrate the time decay in all of
the measured temperatures, we present in Figure 4 a graph of their average
over a good production run. The plot indicates that the average temperature
of the reactor gradually increases over the life cycle of the unit.

Figures 5 and 6 contain graphs of the other two process variables, L3
and L1, over time. The decay effect for L3 in Figure 5 has the appearance of
an AR(1) relationship, while that for L1 in Figure 6 has the appearance of
some type of quadratic (perhaps a second-order quadratic) or an exponen-
tial autoregressive relationship.

Feed flow (RP1) to a reactor consists of three components: the flows of
0O,, HCl gas, and C,H,. However, since these components must be fed in at
a constant ratio, one graph is sufficient to illustrate the feed. During a run
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Figure 5 L3 versus time.
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Figure 6 L1 versus time.

cycle, the feed to the reactor is somewhat consistent and does not system-
atically vary with time. This is illustrated in Figure 7.

The correlation matrix for the four variables RP1, L1, L3, and TEMP,
including the first-order lag variables for L1, L3, and temperature (LL1,
LL3, and LTEMP), is presented in Table 3. Note the very strong lag corre-
lation for the three process variables. For example, L1 has a correlation of
0.93 with its lag value, indicating that over 80% of the variation on this
variable can be explained by the relationship with its lag value. This strong
correlation implies that an AR(1) model is a good approximation to the true
time dependency. Also, note the strong relationship between L1 and the lag
of the temperature. The correlation of 0.80 implies that over 64% of the
variation in the present value of L1 can be explained by the temperature of
the unit during the last sampling period.

To see the effect of these time-lag variables on a T° control proce-
dure, we will compare the T? values obtained with and without the lag
variables. For comparison purposes, we denote the 77 based on the
chosen four variables RP1, LI, L3, and TEMP by 77 and the T
based on all seven variables, including the three lag variables LL1,
LL3. and LTEMP, by 7%. Assume that each observation vector is repre-
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Figure 7 RPI versus time.
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Table 3 Correlation Matrix for Reactor Data

RP1 L1 L3 TEMP LLI] LL3 LTEMP
RP! 1.00
Ll -0.23 1.00
L3 -0.02 0.79 1.00
TEMP 0.12 0.74 0.39 1.00
LLI -0.22 0.93 0.72 0.72 1.00
LL3 -0.03 0.70 0.75 0.49 0.78 1.00
LTEMP] -0.02 0.80 0.53 0.76 0.76 0.42 1.00

sented as (RP1, L1, L3, TEMP, LL1, LL3, LTEMP). Since the statistic
T3 is based on the first four components of this vector, it is contained in
the overall vector T72. Also, all of the terms in the possible decomposi-
tions of T3 are contained in the various decompositions of T3. Since T3
contains information on the time-lag variables, it will be more sensitive to
any change in the process.

The inclusion of lag variables in the historical data will produce new
conditional terms in the decomposition of the T72 statistic. For example, the
unconditional term TE;, which is contained in both T} and T72, is used to
determine if L3 is in its operational range. However, including the lag vari-
able LL3 adds the new conditional term, Tﬁuu. to T72 and allows one to
monitor the location of L3 based on its previous value. For lag values of one
sampling period, this term contains the AR(1) model

L3 = by + b LL3 + error.

To compare the performance of 73 to Tf, consider a sequence of 14
observations (in time order) on the above four reactor variables and the
corresponding three time-lag variables. The data are presented in Table 4.
Our interest lies in the process variables L1 and TEMP. The values of L1 are
relatively high for the first two observations, drop dramatically for the next
two observations, and then gradually increase in value to near the end of the
data set. In contrast, the TEMP values start relatively low, gradually rise
until the middle observations, and then stabilize near the end.

Table 5 contains the T3 and T3 values for the 14 sample points. The o
level for both statistics is 0.0001. Note that a signal is detected by T3
at observations 4 and 6, but no signal is detected by T7 at any of the
observations.

Interpretation of 7% signals for autocorrelated dats is no different than
for data without time dependencies. When a signal is detected, the T2 sta-
tistic is decomposed to determine the variable or set of variables that caused
the signal. When T3 for observation 4 is decomposed., using the procedure
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Table 4 Reactor Data

Obs.
No. RP1 L1 L3 TEMP LLI LL3 LTEMP
i 188,300 0.98 44.13 510 1.40 50.47 498
2 189.600 0.81 33.92 521 0.98 44.13 510
3 198.500 0.46 28.96 524 0.81 33.92 521
4 194,700 0.42 29.61 521 0.46 28.96 524
5 206.800 0.58 29.31 530 0.42 29.61 521
6 198.600 0.63 28.28 529 0.58 29.31 530
7 205,800 0.79 29.08 534 0.63 28.28 529
8 194,600 0.84 30.12 526 0.79 29.08 534
9 148,000 0.99 39.77 506 0.84 30.12 526
10 186,000 1.19 34.13 528 0.99 39.77 506
11 200,200 1.33 32.61 532 1.19 34.13 528
12 189,500 1.43 35.52 526 1.33 32.61 532
13 186,500 1.10 34.42 524 1.43 35.52 526
14 180,100 0.88 37.88 509 1.10 34.42 524

Table 5 77 Values for Reactor Data

Observation T3 T3
No (Critical value = 39.19) (Critical value = 28.73)
1 16.98 4.75
2 14.46 9.95
3 37.28 24.27
4 41.88 22.78
5 39.10 27.82
6 42.71 23.79
7 37.18 25.27
8 31.74 13.51
9 23.58 3.65
10 18.07 10.99
11 20.76 19.49
12 20.43 15.50
13 22.02 8.39
14 18.73 1.67
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described in Mason et al. (1997), several large conditional T2 components
are produced, and each includes some subset of the variables L1, lag L1,
TEMP, and lag TEMP. For example, T¢, | remp has a value of 18.40. Such a
large conditional T? term implies that something is wrong with the relation-
ship between L1 and temperature. The predicted value of L1 using LTEMP
as a predictor is not within the range of the error of the model as determined
from the in-control historical data set. On closer examination, the data in
Table 4 for observation 4 suggest that the value of L1 is too small for the
temperature value. With the removal of these two components from the
signaling observation vector, the subvector containing the remaining five
variables produces no signal. The T? value for the subvector is 15.31,
which is insignificant compared to the critical value of 32.21 (o = 0.0001).

Given the dependency of L1 on time, as illustrated in Figure 6, it may be
surprising that we did not find a problem with the relationship between L1 and
its lag value. However, in examining the values in Table 4, it is clear that the
trend in L1 from observation 3 to observation 4 is not unusual, as there is a
downward trend in L1 from observation 1 to observation 4. However, at
observation 4, the downward movement in L1 is not in agreement with the
upward movement in the temperature, particularly when one considers the
positive correlation between these two variables noted in Table 3 for the his-
torical data set. Thus, a process problem is created, and the T* statistic signals.

Analysis of the signaling observation 6 produces similar results. The
conditional terms involving subsets of L1, lag L1, TEMP, and lag TEMP
are generally large in value. For example, TE].LTEMP has a value of 17.72,
T#emp.L; has a value of 21.98, and TﬁLTEMP'LTEMp has a value of 21.53. All
these values indicate that there is a problem in the relationship between L1
and TEMP relative to that seen in the historical data.

Note that 73, which did not include the effects of the time dependen-
cies between the process variables, failed to detect the above two data
problems. However, this is not due to a failure of the T2 statistic, as its
performance is based solely on the provided process information. Clearly,
T? is more sensitive than T3, since it has included information on the auto-
correlation that is present in three of the four variables. Thus, one would
expect its performance in signal detection to be superior.

6. A CONTROL PROCEDURE FOR STAGE DECAY
PROCESSES

Process decay that occurs in stages was illustrated in Figure 2. As a general
rule, this type of decay occurs over many months or years, and the time
dependency is between different stages in the process. For example, process
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performance in the second stage might be dependent on performance in the
first stage, and performance in the third stage might be dependent on per-
formance in the previous stages. A process-monitoring procedure at any
given stage must adjust the process for its performance in the previous
stages. Thus, control procedures are initiated to detect when significant
deviation occurs from the expected adjusted performance as determined
by the historical database. An overview of how this is done is briefly dis-
cussed in this section, and more extensive details and examples can be found
in Mason et al. (1996). Consider a situation where a three-stage life has been
determined for a production facility consisting of # units. Observations are
homogeneous within each stage but heterogeneous between stages. An in-
control historical data set, composed of observations on p variables for each
unit during each stage of operation, is available. This is represented symbo-
lically in Table 6, where each X; is a p-dimensional vector that represents an
observation on p process variables; i.e.,

’
Xij = (Xg1s Xjas ooy Xip)

where i=1, ..,n,and j =1, 2,3.

The proposed solution for the T2 control procedure for use with such
stage-decay process data is to use a 3p-dimensional observation vector given
by X/ = (Xi1. Xps Xi3), k=1,2,...,n. The vector X, represents all the
observations taken on the p variables from a given processing unit across
the three stages of its life. For a given production unit, the observations
across the three stages are time-related and thus dependent. However,
within a given stage, observations are independent between production
units. Since X, has three components corresponding to the three life cycles
of the unit, it will be possible to adjust the p process variables in the T°
statistic for the corresponding stage dependencies.

Suppose X, can be described by a multivariate normal distribution
with a mean vector represented as p’ = (), pla, p3), where the p,, i=
1,2, 3. are the p-dimensional mean vectors of the process variables at the
ith stage. The covariance structure for X is given as

Table 6 Three-Stage Life History

Unit Stage 1 Stage 2 Stage 3
1 X X1z Xia

2 X:] Xj X23

n an Xn2 Xu3
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Xy Ep Zpg
=] Zy In Xxn
Yy Zyp X

where ¥; represents the covariance structure of the observations for the ith
stage, i=1,2,3; and X, i #j, denotes the covariance structure of the
observations between stages. Using a historical data set, standard estimates
(X. S), of the unknown population parameters (i, £) can be obtained, and a
control procedure based on an overall T? can be developed. Note that the
estimates are partitioned in the same fashion as the parameters.

As an example of the proposed control procedure, suppose a new
observation, X, is taken on a given unit in its third stage. The overall T°
for this observation is given by

T’=X-X)'S'X -X)

and will be used as the charting statistic. Interpretation of a signaling vector
is keyed to the partitioned parts of X (i.e., the subvectors representing
observations on the unit at the various stages). Significant components of
the T° decomposition and how they pertain to the observation vector X
taken in stage 3, assuming satisfactory performance in stages 1 and 2, are
presented in Table 7.

When a signalling 77 component is identified, it can be decomposed to
locate the signaling variable or group of variables. Suppose a problem is
located in the conditional T3, term. This implies, from Table 7. that the
observation vector taken at stage 3, adjusted for the process performance at
stage 2, is out of control. With this result, however, we will not know if the
process performance is better or worse than that indicated by the historical
situation unless we further examine the source of the problem in terms of the

Table 7 Interpretation of Components in Stage Decay, p = 3

Component Interpretation of component

T; Checks if the p components of the observation vector X3 are within
tolerance.

T3, Checks process performance on stage 3, i.e., X3, adjusting for perfor-
mance in stage | as given by X|.

137, Checks process performance in stage 3, adjusting for performance in
stage 2.

T3 Checks process performance in stage 3, adjusting for performance in

stages 1 and 2.
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individual variables. To do this, we will need to perform a second decom-
position, but this one will involve decomposing the signaling conditional 7>
component.

For p =3, one possible decomposition of T;ZJ 1s given by
T3y = (TD;2(T5 )32 + (T2

Interpretation of these doubly decomposed terms is the same as for any 7>
with variable components. For example, (T,2)3‘2 represents an unconditional
T? term and can be used to check the tolerance of the first component of the
observation vector.

In general, incoming observations on a new unit are monitored in a
sequential fashion. When a unit is in stage 1, only the observation X| is
available, and monitoring is based on use of the statistic

TP = (X, - X)'ST' (X, — X))

If a signal is observed, the T? is decomposed and the signaling variables are
determined. For signaling observations in the remaining stages, the proce-
dure is the same as that outlined above for an observation in stage 3.

7. SUMMARY

The charting of autocorrelated multivariate data in a control procedure
presents a number of serious challenges. A user must not only examine
the relationships existing between the process variables to determine if
any are unusual but must also adjust the control procedure for the effects
of the time dependencies existing among these variables. This chapter pre-
sents one possible solution to problems associated with constructing multi-
variate control procedures for processes experiencing either uniform decay
or stage decay.

The proposed procedure is based on exploiting certain properties of
Hotelling’s 77 statistic. The first useful property is the inherent dependency
of this statistic on the relationships that exist between and among the pro-
cess variables. If time dependencies exist, they can be identified by including
time variables in the observation vector and then examining their relation-
ships with the process variables. A second important property of 72 is that
its signaling values can be decomposed into components that lead to clearer
interpretation of signals. The resulting decomposition terms can be used to
monitor relationships with the other variables and to determine if they are in
agreement with those found in the historical data set. This property is
particularly helpful in examining stage-decay processes, as the decay occurs
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sequentially and thus lends itself to analysis by repeated decompositions of
the T? statistic obtained at each stage.
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Capability Indices for Multiresponse
Processes

Alan Veevers
Commonwealth Scientific and Industrial Research Organization,
Clayton, Victoria, Australia

1. INTRODUCTION

Production processes can be characterized by the simple fact that something
is produced as a result of a number of deliberate actions. The product may
be an item such as a glass bottle, a brake drum, a tennis ball, or a block of
cheese. Alternatively, it may be a polymer produced in a batch chemical
process or a shipment of a mineral ore blended from stockpiles that are
being continuously replenished. Whatever the case, there will usually be
several measurable quality characteristics of the product for which specifi-
cations exist. These are often a pair of limits between which the appropriate
measurement is required to lie. Sometimes a specification is a one-sided limit
such as an upper limit on the amount of an impurity in the product of a
chemical reaction.

The extent to which a process could or does produce product within
specifications for all its measured quality characteristics is an indication of
the capability of the process. Capability can be measured both with and
without reference to targeting, and it is important to distinguish between
these two situations. The principal reasons why product may be produced
out-of-specification, i.e., nonconforming, are either poor targeting of the
process mean or excessive variation or a combination of both. In process
development or improvement campaigns, the two situations relate to the
following questions.

241
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1. Are the ranges of variation in my product characteristics small
enough to fit within the specification ranges?

2. How shall I choose the aim-point for my process mean in order to

- minimize the proportion of nonconforming product?

Capability potential is concerned with the first question. It is a comparison of
a measure of process dispersion with the amount of dispersion allowed by
the specifications. Capability performance addresses the second question and
is concerned with what actually happens during a period of stable produc-
tion. These concepts have been formalized for a single response by the
introduction of capability indices; see, for example, Kane [1], of which C,
(for potential) and C,; (for performance) are the most commonly used.
These, and other, indices are discussed in the book by Kotz and Johnson
[2], which, together with the references therein and other chapters of the
present volume, provide a good summary of single-response capability
indices. For multiresponse processes, the question arises as to whether or
not suitable and useful multivariate capability indices exist. If so, they will
need to provide answers to the above two questions. Several indices have
been proposed for multiresponse processes, and some of them are discussed
later. However, it is first necessary to deal with some important issues of
clarification.

2. CAPABILITY STUDIES, PROCESS MONITORING AND
CONTROL

Since capability indices were brought to the attention of mathematical and
statistical researchers in the 1980s, there has been some self-perpetuating
confusion in the literature. A number of authors, for example Chan, et al. [3]
and Spiring [4], argue that C, is a poor capability measure because it fails to
take account of the target. What seems to be forgotten is that the p in C,
stands for potential and there was never any intention that it should take
account of the target. C, is meant as an aid to answering question I posed in
Section 1, and concerns variation but not location. On the other hand, Cp;
was devised to help answer question 2 and refers to the actual performance
of the process when targeting has taken place. There is no need to compare
C, with Cpy (or with any other performance measures), because they mea-
sure different things. The fact that C, and Cp are both routinely reported
during the performance phase in automotive and other manufacturing pro-
cesses might cloud the issue but should not lead to them being regarded as
alternative measures of the same thing. For example, if a stable process is
reporting C, = 2.1 and C,; = 0.9, then the most likely explanation is that
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the process mean is not optimally targeted. The information provided by the
C,, value tells us that the process is potentially capable without further need
to reduce variation. Process performance will be improved, monitored by
C,. by suitably adjusting the target for the process mean.

Similar considerations apply to multiresponse capability indices.
Specifically, there is a clear justification for developing analogs of C, for
the multivariate case that, of course, take no account of targeting. Such an
index will measure the potential of the process to meet specifications
(addressing question 1) but will not, by intent, measure actual performance.
Different measures must be devised for the latter purpose.

Another source of confusion arises when process capability and pro-
cess control issues are not separated. An illustration of the point being made
here is based on the following example. During the 1997 Australian Open
Tennis tournament, some of the top players complained about the quality of
the balls being used. International regulations specify that they shall weigh
not less than 56.7 g and not more than 58.5 g and must be between 6.35 cm
and 6.67 cm in diameter. The tennis ball production process must be set to
achieve both these specifications simultaneously. This defines a rectangular
specification region for the bivariate quality measure consisting of the
weight and diameter of a tennis ball. A small sample of measurements on
ordinary club tennis balls was obtained that showed a correlation of 0.7
between weight and diameter. This information was used to contrive the
situation shown in Figure 1 to illustrate the difference between capability
and control considerations. Suppose that a period of stable production
produced data approximately following a bivariate normal distribution
with a correlation coefficient of 0.7. A 99% probability ellipse for such a
distribution is shown in Figure 1. Now suppose that the next two measured
balls are represented by the + signs in the figure. Two conclusions can be
drawn, first that the process has gone out of statistical control and second
that the two new balls are perfectly capable of being used in a tournament.
In fact, the two new balls are arguably better, in the sense of being nearer to
the center of the specification region, than any of the balls produced in the
earlier stable phase.

From the process control point of view, the out-of-control signals
must be acted upon and steps taken to bring the process back into stable
production. Multivariate process control techniques, such as that intro-
duced by Sparks et al. [5] or those discussed in a previous chapter of this
book, are available for this purpose. Based on multivariate normal theory,
ellipsoidal control regions form the natural boundaries for in-control obser-
vations. Points falling outside the control region are usually interpreted as
meaning that something has gone wrong with the process. From the process
capability point of view, it is whether or not production will consistently
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Figure 1 A 99% probability ellipse representing the bivariate distribution of the
tennis ball quality characteristics lies comfortably inside the specification rectangle.

meet specifications that is of primary importance. In this case, the fact that
the region bounding the swarm of data points may be ellipsoidal is of minor
importance. The main concern is whether or not it fits into the specification
region. Capability indices are not tools for process control and should not
be thought of as measures by which out-of-control situations are detected.
They are simply measures of the extent to which a process could (potential)
or does (performance) meet specifications. Issues of control and capability
need to be kept separate; otherwise unnecessary confusion can occur. For
example, although correlation is of critical importance in control methodol-
ogy, it is largely irrelevant for many capability considerations.

3. MULTIVARIATE CAPABILITY INDICES

As pointed out by Kotz and Johnson [2], most multivariate capability
indices proposed so far are really univariate indices derived from the vector
of quality characteristics. An exception is the three-component vector index
introduced by Hubele et al. [6]. While a complete review of the subject to
date is not intended, some of the significant developments are mentioned
here. The indices fall broadly into two groups: those that use a hyperrectan-
gular specification region and those that use an ellipsoidal specification
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region. Within those groups there are indices that measure capability poten-
tial and some that measure capability performance.

Let X, = (X1, X, .., X(,)' represent the vector of ¢ quality character-
istics, and suppose that an adequate model for X, under stable process
conditions is multivariate normal with mean vector u and variance—covar-
iance matrix . Taking the widely accepted value of 0.27% to be the largest
acceptable proportion of nonconforming items produced, a process ellipsoid

K- ' X-p=c

where ¢’ is the 0.9973 quantile of the x° distribution on ¢ degrees of free-
dom, can be defined. More generally, ¢* can be chosen to correspond to any
desired quantile.

Referring to the ellipsoid as the process region, the two questions of
interest can be rephrased as follows.

1. With freedom of targeting, would it be possible for the process
region to fit into the specification region?

2. During stable production with the mean of the process distribu-
tion targeted at the point T, what proportion of nonconforming
product can be expected?

Attempts at direct extension of C, set out to compare a measure of process
variation with a measure of the variation allowed by the specifications. A
difficulty immediately arises because the specification region is almost
always a hyperrectangle. Even if it is not, it is unlikely to be ellipsoidal
and even more unlikely to be ellipsoidal with the same matrix £ as the
process region. Nonetheless, capability indices have been proposed based on
ellipsoidal specification regions. Davis et al. [7] assume £ = ¢°I and define a
spread ratio, U Jo, for the special case of circular and spherical specification
regions. Here, U is the radius of the circle or sphere, and the target is the
center point. Thus, they are addressing questions 1 and 2 together. The
focus of their article is on nonconforming parts, and they present a table
giving the number of nonconforming parts per billion corresponding to any
spread ratio between 3.44 and 6.85. Chan et al. [8] define an ellipsoidal
specification region with the same matrix as the process region and offer
an extension of ), to address question 2. Taam et al. [9] also extend C,,,,
using an index that is the ratio of the volume of a modified specification
region to the volume of a scaled process region. These last two articles
(apparently an earlier version of the second one) are discussed by Kotz
and Johnson [2] together with the suggestions of Pearn et al. [10], who
introduce two indices based on the ratio of a generalized process length to
a generalized length allowed by the specifications.
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Tang and Barnett [11] introduce three indices for multiresponse pro-
cesses. The first involves projecting the process ellipsoid onto its component
axes and taking the minimum of the one-dimensional C,, values each scaled
by a projection factor and a deviation from target factor. They note that this
index does not involve the correlations between elements of X,,. The second
index is similar to the first but uses the Bonferroni inequality to determine a
process hyperrectangle such that each side is a 100(1 — a/q)% centered
probability interval for the marginal distribution. A usual choice would
be to take o = 0.0027. The third index is based on a process region obtained
using Sidak’s probability inequality but is otherwise of a similar form to the
first two. Tang and Barnett [11] show that the third index is the least con-
servative and is favored over the other two.

Chen [12] defines a general specification region, or tolerance zone,
consisting of all values of X, for which /(X, —T) < r;, where h (:) is a
positive function with the same scale as X, and ry is a positive number.
The process is capable if

P(h(X, —T) < rg) > 0.9973
so, taking r to be the minimum value for which
P(h(X,—T) <r)=0.9973

a capability index can be defined as ry/r. The formulation includes ellipsoi-
dal and hyperrectangular specification regions as special cases. Hubele et al.
[6] propose a three-component vector index for bivariate response processes.
The first component is an extension of C,, namely the ratio of the area of the
specification rectangle to the area of the process rectangle. The second
component is the significance level of Hotelling’s T? statistic testing for a
location shift, and the third is an indicator of whether or not the process
rectangle falls entirely within the specification rectangle. This last com-
ponent is necessary because the first component can give a C,-like value
suitably greater than 1 despite one of the quality characteristics being, in
itself, not capable.

A completely different approach is taken by Bernardo and Irony 13,
who introduce a general multivariate Bayesian capability index. They use a
decision-theoretic formulation to derive the index

Co(D) = 5 @7 (P(X, € AID)

where A is the specification region, D represents the data, and ® is the
standard normal distribution function. The distribution of X, can be of
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any type, and exploration of the posterior predictive distribution of C;, given
D is limited only by available computing power.

Most of the above indices are not easy to use in practice and present
difficult problems in the exploration of their sampling distributions. Two
approaches that don’t suffer from this are given by Boyles [14] and Veevers
[15]. Boyles moves away from capability assessment and promotes capabil-
ity improvement by using exploratory capability analysis. Further develop-
ments in this area are described by Boyles (in the present volume). Veevers’
approach is based on the concept of process viability, which is discussed in
the next section.

4. PROCESS VIABILITY

Veevers [15, 16] realized the difficulties associated with extensions of C,, and
C, to multiresponse processes and concluded that the reasons lay in the
logic underlying the structure of C, and Cp. This led to the notion of
process viability as a better way of thinking about process potential than
the logic underlying C,. He introduced the viability index first for a single-
response process and then for a multiresponse process.

Basically, viability is an alternative to capability potential, leaving the
word “‘capability” to refer to capability performance. For a single-response
process it is easy to envisage a window of opportunity for targeting the
process mean. Consider the process distribution, which need not be normal
and, conventionally, identify the lower 0.00135 quantile and the upper
0.99865 quantile. Place this distribution on a scale of measurement that
has the lower and upper specification limits (LSL and USL, respectively)
marked on it, with the lower quantile coincident with the LSL. If the USL is
to the right of the upper quantile, slide the distribution along the line until
the upper quantile coincides with the USL. The line segment traced out by
the mean of the distribution is the window of opportunity for targeting the
mean. The interpretation of the window is that if the mean is successfully
targeted anywhere in it, then the proportion of nonconforming items will be
no greater than 0.27%. A process for which a window of opportunity such
as this exists is said to be viable; i.e., all that needs to be done is to target the
mean in the allowable window. If, however, the USL is to the left of the
upper quantile (after the first positioning), then there is clearly more varia-
tion in the response than is allowed for by the specifications, and the process
is not viable. Sliding the distribution to the left until the upper quantile and
the USL coincide causes the mean to trace out a line segment that, this time,
can be thought of as a “"negative” window of opportunity for targeting the
mean. Referring to the length of the window, in both cases, as w, a viable
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process will have a positive w and a nonviable process a negative w. The
viability index is defined as

poo "
USL — LSL

If the process is comfortably viable, then w will be a reasonable portion of
USL — LSL, but if the process is only just viable, w will be zero and V, = 0.
Processes that are not viable will have V, negative.

If the quality characteristic has a normal distribution with standard
deviation o, it is easy to see that 6o + w = USL — LSL for both positive
and negative w, hence V, =1~ 1/C,. Some readers will know that an
early capability ratio was C, =1/C, (see, e.g., Amsden et al. [17]), so
V,=1-—C,. Statistical properties of estimators of V, are relatively
straightforward to establish, as indicated in Veevers [15]. It must be
remembered that the viability index is a measure of capability potential
and addresses only question 1. The knowledge that a process is viable is
valuable even if an unacceptable proportion of nonconforming parts is
produced when the process is operating. It means that the process must
be targeted better {(question 2) to achieve acceptable capability perfor-
mance, but there is no need, at this stage, to reduce variation. Of course,
in a continuous improvement environment, steps would be taken to reduce
variation in the longer term, but that is separate from the point being
made here.

Extension of V, to multiresponse processes requires the definition of
a multidimensional window of opportunity for targeting the mean.
Because the process is viable, the distribution of X, can be located almost
entirely within the hyperrectangular specification region, 4. And since
targeting is not at issue, the distribution can be thought of as free to
move around. The shape of the distribution will not change with this
movement, only its location. In particular. because the correlations are
fixed, the orientation of a process ellipsoid for a multivariate normal dis-
tribution will remain constant during location shifts. The window of
opportunity for targeting the mean of the distribution consists of all points
p for which the proportion of nonconforming items would be less than
0.27%. The boundary of the window can be envisaged as the locus of p as
the distribution is moved around inside 4 while keeping exactly 0.27% of
the probability mass outside 4 and 99.73% inside A. Figure 2 shows the
window of opportunity for a viable bivariate normally distributed process.
The window is almost a rectangle, with sides parallel to the specification
rectangle, except that its corners are rounded due to simultaneous breach-
ing of the two marginal specifications.
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Figure 2 The window of opportunity (dotted rectangle) for targeting the mean for
a viable bivariate process. The solid rectangle is the specification region.

The viability index for a g¢-dimensional multiresponse process is
defined as

volume of w

" yolume of A

A process is viable only if it is separately viable in all its individual quality
characteristics. Otherwise it is not viable, and variation must be reduced,
at least in the characteristics that prompted the nonviable decision. In
order to produce a practically useful index, Veevers [15] represents the
process distribution by a process rectangle that has as its sides the widths
of the one-dimensional marginal distributions. The width of a univariate
distribution is the difference between the 0.99865 quantile and the 0.00135
quantile (or as appropriate, depending on the amount of probability to be
excluded).

The window of opportunity for a viable process can thus be envisaged
by sliding this rectangle around just inside the specification region and
ignoring the rounding at the corners. For a viable process this leads to
the expression
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where V(X)) is the viability index for the ith quality characteristic X,. For
nonviable processes, Veevers [15] defines negative windows of opportunity
in such a way as to ensure that the viability value obtained for a (g — 1)
dimensional process is the same as would be obtained from the g-dimen-
sional process by setting the marginal variance of the gth characteristic
equal to zero. Hence, V,, is defined in all nonviable cases to be

q
Vr(/ =1- 1_[[] - Vr'(Xl)]ll
=1

where

. if V.(X,)>0
Tl i (X)) <0

As with any index for multiresponse processes, the viability index is best
used in a comparative fashion. In a process improvement campaign the
viabilities can be compared after each improvement cycle, thus providing
a simple measure of the progress being made. V,, depends only on the
marginal viabilities and is therefore independent of the correlation structure
of X,. The correlation coefficients do, however, affect the proportion of
nonconforming items that would occur if the process was in production.
If an upper bound of 0.27% is required, then a conservative choice of
quantiles to use for the calculation of the marginal viabilities is 0.00135/¢
and 1 —0.00135/¢4. The specific choice in an improvement campaign is
unimportant, since the emphasis is on changes in V), rather than the pro-
portion nonconforming.

Having had some experience with multiresponse viability calculations,
the following modification to the V,, index is proposed. First, note that a
viable process with, say, ¢ = 6 and marginal viabilities of 0.25 each (corre-
sponding to C, values of 1.33) has V,, = 0.00024. It is difficult to relate this
small number to the reasonable level of viability it represents. Further, it
depends on ¢, and for larger values of ¢ the viability index would be very
small. These difficulties can be overcome by defining a modified index

V* _l/a

ry — rg
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for viable processes. This has the benefit of being interpretable on the scale
of V,, independently of ¢. For nonviable processes, V,, is negative, so V7,
must be defined as

Vig = sign(Vy)| Vgl

which is also valid for viable processes and provides a general definition of
V7, A plot of V7, for a two-response process is shown in Figure 3. If desired,
Vy, can be converted to a capability potential index, Cp,, by Cp, =

Viability calculations are illustrated in the following example used by
Sparks et al. [5] to demonstrate the dynamic biplot for multivariate process
monitoring. A flat rolled rectangular metal plate is supposed to be of uni-
form thickness (gauge) after its final roll. Measurements are made at four
positions on the plate, giving a four-dimensional response for the process.
The positions can be conveniently referred to as FL (front left), FR (front
right), BL (back left), and BR (back right). The original data are subject to a
confidentiality agreement, so they have been transformed before being
plotted as pairwise scatter diagrams in Figure 4. Typical specification limits
are superimposed, but it must be remembered that this is being done to
visualize process dispersion relative to specifications and does not represent
actual process performance with respect to targeting. The two-, three-, and
four-dimensional specification regions are squares, cubes, and a hypercube,
as appropriate.

The individual viabilities for FL, FR, BL, and BR are calculated as
0.147, 0.185, 0.111, and 0.137, respectively. This implies the existence of a
positive window of opportunity for targeting the mean and gives V,, =
0.000415 and V3 = 0.143. Using the relationship between viability and cap-

o
" o
Ve o
o
4
1 5
1.5 A
w, 22 Wa

Figure 3 The viability index ¥V}, plotted against the widths, W, and W,, of the
marginal distributions for a bivariate process with unit specification ranges.
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Figure 4 Pairwise scatter diagrams of thickness data at four locations-—FL, FR,
BL, BR—on 100 metal sheets. Specification rectangles are superimposed.
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ability, this corresponds to a capability potential of Cj4 = 1.167. Since all
these values are intended for use in comparative situations, suppose some
process changes gave individual viabilities for FL, FR, BL, and BR of 0.190,
0.225, 0.175, and 0.210, respectively. Then, V,4 = 0.00157 and V74 = 0.199,
indicating the improvement in viability. Experience in the use of viability
indices is necessary in order to get a feel for the extent of the improvement.
Converting to a capability potential value gives Cpy = 1.248. Practitioners
used to working with €, may feel more comfortable on this scale of mea-
surement in the first instance.

5. PRINCIPAL COMPONENT CAPABILITY

Although specification regions are generally hyperrectangular, support for
differently shaped regions determined by loss functions is growing. Consider
a situation where the marginal specifications have ranges 2d;, i= 1,2, ..., q.
By transforming X, to Y,, where the elements of Y, are Y, = X,/d,, the
specification region becomes a hypercube of side 2. If, on this scale of
measurement, the loss associated with an item is proportional to the dis-
tance between Y, and the center of the region, then a hyperspherical toler-
ance region would be appropriate. The word “tolerance” is used here to
distinguish the region from the specification region, which remains a hyper-
cube.

For the purpose of developing a capability index there are several
choices of centered hyperspheres that approximate the specification region.
For example, there is the unit-radius inscribing hypersphere, the +/2-radius
outscribing hypersphere, and the hypersphere with the same volume as the
specification hypercube.

If'Y, is adequately modeled by a multivariate normal distribution with
variance—covariance matrix X,, then the question of capability potential
revolves around whether or not the process ellipsoid will fit inside the hyper-
sphere. This is governed only by the “length™ of the principal axis of the
ellipsoid. A suitable length can be obtained by taking a multiple of the
standard deviation of the first principal component, Z;, of X, since this
is along the principal axis of the ellipsoid. Denoting by A, the eigenvalue
associated with Z,, it follows that the standard deviation of Z, is /A;.
Hence, taking 6,/A; to be the length of the principal axis of the ellipsoid,
a capability potential index can be constructed by comparing this length
with the diameter of the tolerance region. Using the unit-radius hypersphere
gives
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and using the +/2-radius hypersphere gives
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each of which could be used in its own right as a capability index. However,
it seems a sensible compromise to take the average of these two as a measure
of capability potential. Hence, a principal component capability index is
defined as

c :1+ﬁ

148 6.\/A_—1

More generally, C,,. could be defined as k/ /], where k is a constant to be
determined from considerations of the maximum acceptable proportion of
the centered process distribution allowed to be outside the specification
region. Since C,, is meant to be an index of capability potential that is
intended for use as a comparative measure, fine-tuning of k is unimportant
and will not be further considered here.

The sampling distribution of the natural estimator of C,. can be stu-
died using the sampling distribution of the eigenvalue associated with the
first principal component of the estimated variance—covariance matrix X,.

The following example shows the spirit in which C,,. may be used. The
plastic bracket and metal fitting attached to a car’s internal sun visor are
manufactured to specifications relating to the torque involved in the swivel
action. Four torque quality characteristics, X4, are measured which, in dis-
guised units, have nominal values 2, 2.25, 2, 2.25 and specifications (1, 3), (1,

3.5), (1.3), (1, 3.5), respectively. Data on 30 items from a batch gave

0.0390  0.0306 —0.0008 — 0.0004
. 0.0306  0.0423 —0.0032 —0.0018
=) 0.0008 — 0.0032 0.0589 0.0519

—0.0004 —0.0018 0.0519  0.0579

with entries rounded to four decimal places. From this, X, = 0.1105, giving
C,. = 1.21. As an absolute value this should be interpreted with caution, but
for process improvement purposes it is useful as a comparative value. A

sample of 25 items from a batch produced under slightly different conditions
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gave ):, = 0.086 and f’,,(, = 1.37, showing a marked improvement. The man-
ufacturer’s aim is to keep the process at these conditions, which show it to be
potentially capable, and then concentrate on targeting at the nominal values
to ensure a capable performance.

6. CONCLUSION

Capability indices for multiresponse processes have been discussed. It has
been stressed that capability potential indices are useful in their own right
and should not be confused or unfairly compared with capability perfor-
mance indices. Most of the literature on indices for multiresponse processes
concerns extensions to C,, Cy, and C,,,,. The viability index, V,, however,
offers an alternative way of thinking about capability potential and extends
naturally to multiresponse processes. A modification to the multiresponse
viability index is proposed that makes it easier to interpret in practice.
Calculations are illustrated on real data from a rolling mill. A new principal
component capability index is presented that is based on a loss function
proportional to the distance from the process mean to the target point.
Another real example from the motor parts industry is used to illustrate
the use of this index. In all cases it is emphasized that capability indices for
multiresponse processes are best used in comparative fashion and should be
treated with caution as individual values.
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1. INTRODUCTION

In a very general sense, pattern recognition is often considered to be the
essence of intelligence. For example, an often heard argument for the ability
of human chess masters to beat state-of-the-art computer programs is that
whereas the latter may be fast in enumerating a large number of moves and
consequences, the masters tend to rely on some innate “pattern recognition”
abilities based on extensive experience. In a more limited sense, pattern
recognition arises in many guises in industrial settings, e.g., robotics in
manufacturing, detection of errors in massive software systems, and widely
used image analysis applications in medicine and in such things as airport
luggage scanners.

For purposes of this chapter, the phrase “‘pattern recognition” is used
to indicate an even more specific statistical methodological area, that of
classification and clustering. The term *‘classification’ is used for situations
wherein so-called training samples that can be labeled by their origin (the
case of ““*known” groups) are available and one is interested in using these as
the bases for classifying so-called test samples. Other terminology for this
class of pattern recognition methods include discriminant analysis and
supervised learning. In the clustering scenario, on the other hand, all one
has are the data at hand, with no labels to identify sources (the case of
“unknown” groups), and the analysis leads to finding groupings of the

257
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observations that are more similar within groups than across them. This
setting is also known as unsupervised learning. There are, of course, many
real-world situations that fall between the two scenarios, and often one
needs a combination of the two approaches to find useful solutions to the
problem at hand. For instance, while the early development of so-called
neural networks, which basically are automatic classifiers implemented in
either software or hardware, focused on supervised learning methods, the
current uses of these encompass both supervised and unsupervised learning
algorithms.

This chapter has three objectives. First, taking a broad view of busi-
ness and industry, it seeks to identify a variety of aspects of such enterprises,
as well as examples of specific problems arising in such facets, wherein
classification and clustering techniques are used to find appropriate solu-
tions. Second, using the theme of quality and productivity as a focus, it
describes a sample of applications (drawn from both the literature and
our experience) in which this theme is a clear objective of using such tech-
niques. Third, it is aimed at discussing some methodological issues that cut
across applications and need to be addressed by practitioners to ensure
effective use of the methods as well as by researchers to improve the options
available to practitioners.

More specifically, Section 2 identifies areas of business and industry, as
well as some specific examples of problems in such areas, where classifica-
tion and clustering techniques have been used. It also describes in a bit more
detail a subset of the examples where assessment and improvement of qual-
ity, efficiency, and/or productivity are explicitly involved as a goal of the
analysis. Section 3 discusses some general methodological issues that need to
be considered. Section 4 consists of concluding remarks.

2. ASPECTS AND EXAMPLES OF BUSINESS AND
INDUSTRIAL PROBLEMS AMENABLE TO PATTERN
RECOGNITION

Perhaps the better known industrial applications of pattern recognition,
including some that were mentioned in the introduction, are in manufactur-
ing. However, one can identify a number of facets that are integral parts of
business and industry as a whole and give rise to problems that are amen-
able to the meaningful use of pattern recognition methods. Table 1 contains
a partial list of different facets of a business enterprise and some specific
examples of applications of classification and clustering methods in each
category. A subset of the examples (identified by asterisks) in Table 1,
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Table 1 Applications of Classification and Clustering Methods Within a
Business Enterprise

Finance

Use of discriminant analysis for effective development of credit ratings of individuals
and firms, including bond ratings [See, e.g., Chapters 1V and V of Altman et al.
(1981).]

*Use of discriminant analysis and clustering for developing “‘comparable risk™
groups of companies for the purpose of determining appropriate “rates of return™
(Chen et al., 1973, 1974; Cohen et al., 1977)

Marketing

Use of cluster analysis for market segmentation on the basis of geodemographic
similarity [See, e.g., Chapter 12 of Curry (1993)] and the recent development of
database marketing

*Use of cluster analysis for identifying “‘lead users” and for product development in
light of the needs of such lead users (Urban and Von Hippel, 1988)

Resource allocation

Utilization of robotics (entailing the recognition of “shapes™ and *‘sizes™ of objects
to be assembled into a product) in assembly line manufacturing with gains in
quality and productivity arising from decreased variability and speed as well as
lower costs in the long run [See, e.g., Dagli et al. (1991).]

Niche applications of neural networks for such things as speech and writing recogni-
tion (e.g., voice-activated dialing of telephones; automatic verification of payments
of bills paid by customers via checks)

Use of cluster analysis for grouping similar jobs prior to the development of regres-
sion models for aiding assessment and improvement of utilization of computing
resources (Benjamin and Igbaria, 1991)

*Use of cluster analysis in the development of a curriculum that better meets job
needs and is likely to enhance worker productivity (Kettenring et al., 1976)

Software engineering

Use of fuzzy clustering to improve the efficiency of a database querying system
(Kamel et al., 1990)

Use of discriminant analysis for predicting which software modules are error-prone
(Conte et al., 1986)

*Use of neural networks for *“"clone” recognition in large software systems (Carter et
al., 1993; Barson et al., 1995)

Strategic planning

*Use of cluster analysis for identifying efficient system-level technologies (Mathieu,
1992; Mathieu and Gibson, 1993)
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wherein assessment and improvement of quality, efficiency, or productivity
was an explicit goal, is now described in a bit more detail.

2.1. Finance

As noted in Table 1, classification and clustering are used to establish
categories of comparable risk so as to determine appropriate rates of
return.

Historically, and particularly during the 1970s, one role of governmen-
tal regulatory bodies in the United States was to set allowed rates of return
on equity for the companies they regulated. The regulated companies argued
that in order to attract investors they needed higher rates of return, while the
regulators felt pressured to keep them low. An accepted tenet for resolving
the two conflicting aims was that the rate of return should be commensurate
with the “risk™ associated with the firm. For implementing this principle,
one formal approach employs the capital assets pricing model espoused by
Lintner (1965), Markowitz (1959), and Sharpe (1964). Chen et al. (1973)
took a different and more empirical approach by using data concerning
several variables that are acknowledged to be risk-related (e.g., debt ratio,
price/earnings, ratio, stock price variability) and finding companies with
similar risk characteristics that could then be compared in terms of their
rates of return. Standard & Poor’'s COMPUSTAT database pertaining to
over 100 utilities and over 500 industrials was the source, and a particular
interest of the analysis was to compare AT&T’s rate of return within the
group of firms that shared its risk characteristics.

At an initial, general level of analysis, Chen et al. (1973) addressed the
question of AT&T’s classification as belonging to either the utility group or
the industrial group through the use of discriminant analysis. They found
strong evidence that AT&T belonged with the industrials. To provide a
different look, one could use cluster analysis to find groups of firms with
similar risk features and further investigate the particular cluster to which
AT&T belongs. Since the primary interest of the authors was in the latter,
and also partly because the number of firms was large, an attempt was made
to find a “local” cluster near AT&T in terms of the risk measures rather
than clustering all the firms [see Cohen et al. (1977) for details of the algo-
rithm involved]. This analysis led to detecting a cluster of 100 industrial
firms with risk comparable to AT&T’s. In terms of the performance measure
of rate of return, AT&T's value was found to lie below the median of the
rates of return of this cluster, thus providing a quantitative basis for arguing
a higher rate of return.
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2.2. Marketing

In market research, classification and clustering can serve as aids in product
development in light of the needs of lead users.

Urban and Von Hippel (1988) describe an innovative approach to
product development in situations where the technology may be changing
very rapidly. Efficiency in developing a product with an eye to capturing a
significant share of the market is the desired goal. The efficiency arises from
studying a carefully chosen subset of the potential market and yet ending up
having a product that is likely to satisfy the needs of and be adopted by a
much larger group of customers. The main steps of the approach proposed
by Urban and Von Hippel are to use cluster analysis for identifying a set of
“lead” users of the product, then seek information from such users about
what features and capabilities they would like the product to have, and
finally apply this information not only to develop the product but also to
test its appeal and utility for a wider group of users. The specific product
used to illustrate the approach is software for computer-aided design of
printed circuit boards (PC-CAD). Careful choice of variables that are likely
to indicate ‘“‘lead’ users is a key part of and reason for the success of the
initial cluster analysis. Variables used included measures of in-house build-
ing of PC-CAD systems, willingness to adopt systems at early stages of
development, and degree of satisfaction with commercially available sys-
tems. A total of 136 firms were clustered on the basis of such variables.
Both two- and three-cluster solutions were studied, and the former was
chosen as satisfactory with one of the two clusters being predominantly
“lead™ users. Treating the two clusters as if they were prespecified--i.e.,
the discriminant analysis framework, for instance—the authors report that
the fraction correctly classified in the two clusters was almost 96%. More
interesting, when information gathered from the lead users was used to
design a new PC-CAD system and this new design was presented to the
participants in the study, about 92% of the lead user group and 80% of the
non-lead group rated it as their first choice! Urban and Von Hippel (1988)
also discuss the advantages and disadvantages of their lead-user methodol-
ogy in general contexts.

2.3. Resource Allocation

Kettenring et al. (1976) describe the role of cluster analysis to assess the
current validity of course objectives in a multifaceted industrial training
curriculum for workers with evolving training needs. The approach involves
three major components: (1) careful preparation of an inventory of the p
current elements of the job, (2) collection of data about the nature of their
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jobs and training needs from a sample of n workers engaged in the job at
which the training is directed, and (3) cluster analysis of the resulting (p x n)
matrices In various ways. In one analysis, the p=169 rows of a matrix
indicating elements performed on the job by the sample of n= 452 workers
yielded insights into clusters of elements of the job that fit together and
might potentially be taught together as a module. These helped identify
gaps in the existing curriculum where new resources were needed. In another
analysis, the n= 452 workers were clustered into groups with common train-
ing needs. The range of needs across the clusters suggested that a training
program with flexible options would be an efficient way to train the workers.

2.4. Software Engineering

Carter et al. (1993) (see also Barson et al., 1995) tackle the problem of clone
detection in large telecommunications software systems. A clone is a unit of
software source code that is very similar to some other unit of code in the
same system. In large systems with a long history, it may happen that there
are several clones of the same piece of software. These can unnecessarily
inflate the size of the overall system and make it less efficient to maintain.
For example, should there be a fault in one of the clones, it would probably
be present and need to be corrected in the others as well.

The two papers mentioned above discuss different neural network
approaches to software clone detection. In Carter et al. (1993), an unsuper-
vised neural net is used to form clusters of software units based on a set of
features or variables. The variables characterize different aspects of a unit of
source code such as its physical layout. New units of code can be compared
against existing clusters to see if they fall within one of these clusters. The
overall approach is attractive, even though it does not yet appear to have
been widely applied.

2.5. Strategic Planning

Mathieu (1992) (see also Mathieu and Gibson, 1993) discusses an interesting
use of cluster analysis for prioritizing critical technologies in national policy
making and guiding the choice of an efficient system-level technology. One
of the prime difficulties in such situations is the interdependencies among the
technologies. This work claims to be the first in the literature to provide a
systematic quantitative method for explicitly identifying “high perfor-
mance” technologies for aiding national policy making. As stated by
Mathieu, “the purpose of using cluster analysis in technology planning is
to determine natural groupings of system level technologies based upon the
scientific interdependencies that link these technologies.” The particular
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application discussed in this work concerned satellite technologies and pol-
icy making related to these in Washington, DC. Thirty (=n) system-level
technologies were considered for the clustering, and 72 (=p) binary vari-
ables that measure the presence or absence of 72 element-level support
technologies in each of the system-level technologies were used for the clus-
ter analysis. The analysis led to six clusters of the system-level technologies,
with the smallest of the clusters containing only two technologies and the
largest group containing seven.

For aiding the identification of high perormance technologies, two
variables extraneous to the cluster analysis were introduced, market share
and sales growth rate, and average values of these for all U.S. companies for
the system-level technologies grouped in each cluster were computed.
Mathieu (1992) used an interesting graphical scheme (see Fig. 1) for a
two-dimensional display of these averages for the six clusters. The six clus-
ters are represented by circles and labeled with the names given to them by
Mathieu. The circles are centered at the average values with diameter pro-
portional to the total U.S. market size for each technology group and thick-
ness proportional to a measure of cluster “tightness.” The display thus
contains information on four characteristics. Relatively large and thick
circles located toward the top left corner of the display would indicate the

Onboard Satellite
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Conditioning
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Sales Growth Scientific
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Tracking Transmission
Equipment
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Average Market Share

Figure 1 Mathieu’s six clusters of system-level technologies. (Copyright 1991
IEEE.)
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system-level technologies that were preferred. From the configuration
shown here, Mathieu concluded that while no single technology group is
uniformly dominant with respect to all four characteristics, the two labeled
“onboard satellite communications equipment” and “scientific satellites”
appear to be favorable choices, while the two labeled “‘remote sensing”
and “transmission equipment’ are clearly ruled out in terms of the desire
to choose high performance technologies.

3. SOME STATISTICAL METHODOLOGICAL ISSUES

The discussion in the previous section was designed to leave the impression
that methods of pattern recognition are used in many facets of business and
are having considerable impact on matters of quality and productivity.
Indeed, if one takes a reasonably holistic view of quality management, it
is not a stretch to conclude that these methods are a potent part of the
arsenal of tools for quality improvement.

At the same time, practitioners of these methods need to be aware of
the care that is necessary for their successful use. The applications literature,
unfortunately, is not reassuring in this regard; subtle details are seldom
discussed, and canned programs appear to be heavily, even totally, relied
upon.

The difficulties start at the earliest part of the analysis when a commit-
ment is made to what data and which variables to use. The temptation is to
include every variable of possible value to avoid missing out on an impor-
tant one. The price one pays for this ranges from a needlessly watered down
analysis to full-blown distortion of the results. In cluster analysis, the risk is
particularly severe: Clear-cut clusters confined to a subspace of the variables
can be completely overlooked.

The traditional methods of discriminant analysis have the nice math-
ematical property of being invariant under nonsingular linear transforma-
tion of the data. However, in most cluster analysis procedures, this is not the
case. There is explicit or implicit commitment to a metric that at one
extreme may be invariant but otherwise without rationale (as when one
uses the total covariance matrix of the entire data set to form a weighting
matrix for the metric) and at the other may involve no reweighting of the
variables and therefore no such invariance (as in the case of Euclidean
distance). An intermediate, and far too popular, example is autoscaling or
weighting to equalize the total sample variances of all the variables. This
works against detecting clusters by all methods that take autoscaled data, or
distances derived from them, as input. Rather than putting the variables on
an equal footing, according to their within-cluster variation (which is what
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one would prefer to do), it places variables with cluster structure on the
same overall footing as those without such structure and thereby makes
it more difficult to find the clusters via standard algorithms. See
Gnanadesikan et al. (1995) for further discussion and mitigating alterna-
tives.

Another worry is which method or algorithm to choose for all ana-
lyses. Neural networks? Classical discriminant analysis, or classification
trees? A hierarchical method, or a partitioning method of cluster analysis?
There are many choices. Users need to be sensitive to the pros and cons of
them and to resist having the analysis driven by the content of the nearest
software package. A very appealing strategy in pattern recognition work is,
in fact, to apply a thoughtful variety of methods to the data. The hope is
that major well-formed patterns will emerge from different looks at the data,
and others that are less pronounced but still potentially noteworthy will
reveal themselves in at least one of the alternative calculations.

The findings can also be made more credible by subjecting them to a
variety of sensitivity analyses for a particular method. For example, con-
trolled jiggling of the data or systematic deletion of variables and/or obser-
vations followed by reapplication of the method can help one to appreciate
just how stable or fragile the results are (see Gnanadesikan et al., 1977,
Cohen et al., 1977).

As the number of variables, p, or observations, n, grows—and this is
clearly the trend in many industrial applications—a much more daunting
challenge arises. Many of the standard pattern recognition methods become
impractical or literally break down. The irony of this is that with massive
sets of data one needs just such pattern recognition approaches to bring the
data under control by dividing them into manageable chunks.

To illustrate the point, consider what is probably the most popular
and widely available form of clustering, hierarchical cluster analysis. This
method operates on n{(n — 1)/2 interpoint distances to produce hierarchical
trees with n leaves at the top and one trunk at the bottom. The distances
present data management challenges when n is large and the trees, which
ought to be studied, become so big that they cannot be readily drawn or
digested.

Other popular algorithms, such as k-means, may be more suitable as n
increases, but they are not a panacea. Brand new approaches are really
needed. For example, “localizing™ the analysis so that one is looking for
patterns of a particular type in a particular region of space may be one
effective way to reduce the problem to a reasonable size. See Section 2.1
for an example.

When p is too large, other complexities arise. As indicated already,
masking of patterns is a serious limitation, and available methods for
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variable selection and dimensionality reduction, whether graphical or
numerical, are unlikely to work well.

To make matters worse, even current practice for reducing the number
of variables when p is only moderately large is open to criticism. Again in
the context of cluster analysis, a widely advocated and practiced technique is
to reduce dimensionality via principal components analysis. Although this
can work well in some situations, the logic of this approach is suspect, and it
1s easy to give examples of when it fails.

The relative size of n and p can matter a lot for some types of pattern
recognition problems. If n is small relative to p, the already suspect reduc-
tion of variables via principal components will also suffer from numerical
instability problems. When both are very large, entirely new approaches to
pattern recognition may be the answer. For example, one can envisage
extensive distributed computations of massive data sets. Local exploration
may be handled by burrowing deeply into the local detail. The global solu-
tion would be obtained by ultimately stitching the local solutions together.

In summary, there is much to worry about in terms of methodological
issues if one is to take advantage of pattern recognition techniques in com-
plex industrial problems. A “black box™ or “canned program” approach
will not cut it and can easily do more harm than good.

4. CONCLUDING REMARKS

Pattern recognition methods are natural ones for helping to improve quality
and productivity in industrial settings. Applications are prevalent, and sev-
eral rather different ones were given to illustrate this point. Nevertheless,
careful attention to detail is needed to ensure that the methods, which are
far from infallible, are effectively applied. When they are, they can be
powerful tools in the search for total quality management.
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Assessing Process Capability with
Indices

Fred A. Spiring
The University of Manitoba, Winnipeg, and Pollard Banknote Limited,
Manitoba, Canada

1. GENESIS

The automotive industry has been a leading promoter of process capability
indices as tools for quality improvement. It is no longer alone, as process
capability indices are now embraced by a wide variety of industries inter-
ested in assessing the ability of a process to meet customers’ requirements.
The popularity of these indices is generally attributed to their ability to
provide a single-number summary that relates process performance to pro-
cess requirements. Practitioners use the single-number summary in many
ways including (1) awarding supplier audit points based on the magnitude
of the summary value, (2) documented evidence of process performance
relative to customers’ requirements, and (3) in identifying processes in
need of improvement.

The use of single-number summaries (o assess the overall performance
of a process has been criticized; however, when used in conjunction with
other quality tools. the information provided by these summaries can be
invaluable. Under the assumption that meeting or exceeding customer
requirements is the focus of most quality programs and considering process
capability indices to be the quantification of the process’s ability to meet
customer requirements, the increasing use of process capability measures
seems only natural. Unfortunately, users of process capability indices
have developed several “bad habits,” in part due to a lack of practical,
statistically sound techniques.

269
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2. PROCESS CAPABILITY INDICES

Process capability indices are used to assess a process’s ability to meet a set
of requirements. When used correctly these indices provide a measure of
process performance that in turn can be used in the ongoing assessment of
process improvement. Indices allow statistically based inferences to be used
in the assessment of process capability as well as in the identification of
changes in the ability of the process to meet requirements.

It is generally acknowledged that Japanese companies initiated the use
of process capability indices when they began relating process variation to
customer requirements in the form of a ratio. The ratio, now referred to as
the process capability index, is defined to be

USL —- LSL
“="6

where the difference between the upper specification limit (USL) and the
lower specification limit (LSL) provides a measure of allowable process
spread (i.e., customer requirements) and 6o, o’ being the process variance,
a measure of the actual process spread (see Fig. 1).

C, uses only the customer’s USL and LSL in its assessment of process
capability and fails to consider a target value. The five processes depicted by

¢ Allowable Process Spread (USL -LSL)

LSL A USL

‘;

ctual Process Spread (6 o) >

Figure 1 Allowable process spread versus actual process spread.
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the numbered normal curves in Figure 2 have identical values of o® and
hence identical values of C,. However, because the means of processes 2, 3,
4, and 5 all deviate from the target (7), these processes would be considered
less capable of meeting customer requirements than process 1.

Processes with poor proximity to the target have sparked the deriva-
tion of several indices that attempt to incorporate a target into their assess-
ment of process capability. The most common process capability indices
assume T to be the midpoint of the specification limits and include

_ USL-LSL
" el + (u - T
USL — u
Cpu = 3o
u — LSL
="

Cpk = min(Cp[a C/m)
and

Cox =(1 -k)C,

USL

s

s
[/

/_/

Figure 2 Five processes with identical values of C e
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where k = 2|7 — u|/(USL — LSL) and pu represents the process mean such
that LSL < p < USL. The two definitions C,; and C}; are numerically
equivalent when 0 < & < 1.

Individually, C,,, and C,; consider only unilateral tolerances (i.e., USL
or LSL, respectively) when dssessing process capability. Both use 3o as a
measure of actual process spread, while the distance from where the process
is centered (u) to the USL (for C,,) or to the LSL (for C,) is used as a
measure of allowable process spread. Both ), and C,; compare the length
of one tail of the normal distribution (30) with the dlstance between the
process mean and the respective specification limit (see Fig. 3). In the case of
bilateral tolerances, C,, and C,; have an inverse relationship and individu-
ally do not provide a complete assessment of process capability. However,
conservatively taking the minimum of C,, and C,, results in the bilateral
tolerance measure defined as Cp.

Similar to C,,, C,,,, uses USL — LSL as a measure of allowable process
spread but replaces the process variance in the definition of C, with the
process mean square error around the target. For all processes, C, and
C,y are identical when the process is centered at the target fi.e.,
u =T = (USL + LSL)/2]; however, as the process mean drifts from T,
C,» becomes smaller while C, remains unchanged.

w-T
—
< u-LSL USL- 1 >
4// XNy
LSL T u USL

Figure 3 Target is the midpoint of the specification limits.
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The generalized analogs of these measures do not assume T to be the
midpoint of the specifications (see Fig. 4) and are of the form

_ min[USL — 7, T - LSL]
30% + (u~ Ty

pm
USL-T T -
co— (1 |T — )

= 30 T USL-T
_ T-LSL T —
€ =3, (1 T T-LSL

and
Cpk = min(Cp/’ Cpu)

Note that the original definitions of C,,,, Cp;, C,, and C are special cases
of the generalized analogs with 7= (USL + LSL)/2.

The process capability indices C,, Cp, Cpys Cprn and C,,,, and their
generalized analogs belong to the family of indices that relate customer
requirements to process performance as a ratio. As process performance
improves, through either reductions in variation and/or moving closer to

T-LSL
<

30 iG
<L pa—

>

[ USL

LSL T

Figure 4 Target is not the midpoint of the specification limits.
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the target, these indices increase in magnitude for fixed customer require-
ments. In each case larger index values indicate a more capable process.

Many modifications to the common indices, as well as several newly
developed indices, have been proposed but are not widely used in practice.
With remarkably few exceptions these recent developments can be repre-
sented using the generic process capability index

_ min[USL — 7, T - LSL]
pw 3[0_2 + “,(M _ T)Z]l/2

where w is a weight function. Allowing the weight function to take on
different values permits C,, to assume equivalent computational forms
for a host of potential capability measures. For example, with
T = (USL +LSL)/2 and w =0, C,, is simply C,, while for w=1, C,
assumes the generalized form of C,,,. Letting p = |u — T|/o denote a mea-
sure of “off-targetness,” the weight function

W= d*z——l (pi)
~ \@—laly :

for 0 < p where d = (USL — LSL)/2 and « = u — (USL + LSL)/2 allows

C,, to represent Cy,. The weight function

) k(2 — k)
T (1—k)*p?

for 0 < k < 1 allows C,, to represent Cpy, or alternatively, defining w as a
function of C,,

for 0 < p/3 < C, again results in C,,, representing Cpy.

A recent refinement that combines properties of both Cp; and Cp, is
defined to be

min[USL — u, u — LSL]
302 + (u — TY)?

Cpmk =

and can be represented by C,,, using the weight function
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(1= +p°
W= ——s——m—
22
for ¢ =min[USL — u, u — LSL]/min[USL — T, T — LSL] such that 0 <

c< 1.

3. INTERPRETING PROCESS CAPABILITY INDICES

Traditionally, process capability indices have been used to provide insights
into the number (or proportion) of product beyond the specification limits
(i.e., nonconforming). For example, practitioners cite a C, value of 1 as
representing 2700 parts per million (ppm) nonconforming, while 1.33 repre-
sents 63 ppm; 1.66 corresponds to 0.6 ppm; and 2 indicates <0.1 ppm. Cpy
has similar connotations, with a C, of 1.33 representing a maximum of
63 ppm nonconforming.

Practitioners, in turn, use the value of the process capability index and
its associated number conforming to identify capable processes. A process
with C, > 1 has traditionally been deemed capable, while C, <1 indicates
that the process is producing more than 2700 ppm nonconforming and is
deemed incapable of meeting customer requirements. In the case of Cpy, the
automotive industry frequently uses 1.33 as a benchmark in assessing the
capability of a process. Several difficulties arise when process capability
indices are used in this manner, including (1) the robustness of the indices
to departures from normality, (2) the underlying philosophy associated with
converting index values to ppm nonconforming, and (3) the use of estimates
as parameters.

The number of parts per million nonconforming is determined directly
from the properties of the normal distribution. If the process measurements
do not arise from a normal distribution, none of the indices provide a valid
measure of ppm. The problem lies in the fact that the actual process spread
(60) does not provide a consistent measure of ppm nonconforming across
distributions. For example, suppose that 99.73% of the process measure-
ments fall within the specification limits for five processes, where the statis-
tical distributions associated with the processes are (1) uniform, (2)
triangular, (3) normal, (4) logistic, and (5) double exponential (see Fig. 5).
The values of C, for the five processes are 0.5766, 0.7954, 1.0000, 1.2210,
and 1.4030, respectively. Hence as long as 6¢ carries a practical interpreta-
tion when assessing process capability and the focus is on ppm nonconform-

ing, none of the indices should be considered robust to departures from
normality.
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\ AN
-1 -0.5 0 0.5 1
X

Figure 5 Five processes with equivalent nonconforming but different values of C,,.

Inherent in any discussion of the number nonconforming as a measure
of process capability is the assumption that product produced just inside the
specification limit is of equal quality to that produced at the target. This is
equivalent to assuming a square-well loss function (see Fig. 6) for the quality
variable. In practice, the magnitudes of C,,. Cyy, C,., and Cpy are interpreted
as a measure of ppm nonconforming and therefore follow this square-well
loss function philosophy. Any changes in the magnitude of these indices
(holding the customer requirements constant) is due entirely to changes in
the distance between the specification limits and the process mean. C,,, Cpys
C,, and C, do not consider the distance between p and T but are used to
identify changes in the amount of product beyond the specification limits

©w v Ccr~

LSL Target  USL

Figure 6 Square-well loss function.
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(not proximity to the target) and are therefore consistent with the square-
well loss function.

Taguchi uses the quadratic loss function (see Fig. 7) to motivate the
idea that a product imparts “no loss’ only if that product is produced at its
target. He maintains that small deviations from the target result in a loss of
quality and that as the product increasingly deviates from its target there are
larger and larger losses in quality. This approach to quality and quality
assessment is different from the traditional approach, where no loss in
quality is assumed until the product deviates beyond its upper or lower
specification limit (i.e., square-well loss function). Taguchi’s philosophy
highlights the need to have small variability around the target. Clearly in
this context the most capable process will be one that produces all of its
product at the target, with the next best being the process with the smallest
variability around the target.

The motivation for C,,, does not arise from examining the number of
nonconforming product in a process but from looking at the ability of the
process to be in the neighborhood of the target. This motivation has little to
do with the number of nonconforming, although upper bounds on the
number of nonconforming can be determined for numerical values of
C,- The relationship between C,,, and the quadratic loss function and its
affinity with the philosophies that support a loss in quality for any departure
from the target set C,,, apart from the other indices.

Cyr and C,, are often called second generation measures of process
capability whose motivations arise directly from the inability of C, to con-
sider the target value. The differences in their associated loss functions
demarcate the two measures, while the magnitudinal relationship between

©w »vwaor

[l
Talrget

Figure 7 Quadratic loss function.
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C, and Cp, Cp, are also different. Cjx and C,, are functions of C, that

penalize the process for not being centered at the target. Expressing C,,, and

CI’/\' as

1
{1+ — T)/o)?

Cpm =

and

2l — T
Cp=[1-—E""1
Pk (1 USL — LSL)C”

illustrates the “penalizing” relationship between C, and C,,,, Cp, respec-
tively. As the process mean drifts from the target (measured by
p = |u—T|/o), both Cp, and C,; decline as a percentage of C, (Fig. 8).
In the case of C,,,, this relationship is independent of the magnitude of C,,
while Cp; declines as a percentage of C,, with the rate of decline dependent
on the magnitude of C,. For example, in Figure 8, C, (5) represents the
relationship between Cp and C, for C, = 5, and is different from C,; (1),
which represents the relationship between C,; and C, for C, = 1.

Cp and C,, have different functional forms, are represented by dif-
ferent loss functions, and have different relationships with C,, as the process
drifts from the target. Hence although C,,,, and C),; are lumped together as
second generation measures, they are very different in their development
and assessment of process capability.

100 g i Cp
90
80
70
% 60
50

™~ opres)
30 + Y
20 4 D
10+ Cpk(d,5)

0 R

0 1 2 3 4 5 6 7 8 9

Cpk(h)

Cpm

Figure 8 Relationships between C, and Cpy, Cpp-
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4. ANALYZING PROCESS CAPABILITY STUDIES

The usual estimators of the process capability indices are

- USL — LSL
C —

P 6s

A USL — LSL

Cpm - 5 = 2172
6s{s” +[n/(n — D)(x = T)}

A USL — x

Cpu = -—33‘—

- x—LSL

Co = 3s

Cpk = min(Cpm Cp[)

or
épk‘ = (1 - l;:)ép

where k = 2|T — X|/(USL — LSL), 5 is the sample standard deviation, and X
is the sample mean. The probability density functions (pdf’s) of ¢ P ¢ s C

and € »u are easily determined, assuming the process measurements follow a
normal distribution. However, the distributions of C s and Cp- raise some
challenges, as their pdf’s are functions of dependent noncentral t distribu-

tions for which only asymptotic solutions currently exist.

4.1. Confidence Intervals

Several inferential techniques have recently been developed, most of which
have had little impact on the practice of judging a process capable. In
defense of the practitioners, several notable texts promote the use of esti-
mates as parameters with the proviso that large sample sizes (i.e., n > 50) are
required. A general confidence interval approach for the common indices
can be developed using C,,, and its associated estimator C,,. The general

form of the estimator for C,, is

pu

» _ USL-LSL
M 6[6% 4+ w(x — T

where 6% =Y |[(x;— %?/n] and %= ,(x,/n). Assuming that the
process measurements are normally distributed it follows that (1)
&t ~ (@ /mxi_l, ) ¥~ N[u,o?/n], and (3) X and 6%/n are independent.
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Assuming w and T to be nonstochastic, it follows that (x — T)' Ca /n))(, A
with noncentrality parameter A =n(u —T) /o and
wix=T) ~ (\1'02/71))(%')‘. Defining

n . -
O = 518" +w(¥ = T)')

Q,, s is a lmeal combination of two independent chi-square distributions,
Xoo1 + wxl 1» Whose cumulative distribution function (cdf) Q,,,\(\) can be

expressed as a mixture of central chi-square distributions with the general
form

o0

050 =Y dixireai(X)

=0

The d;’s are simply weights such that ) 2 d; =1 and functions of the
degrees of freedom (7 — 1 and 1), the noncentrality parameter (1), and the
weight function (i) of the linear combination of chi-square distributions.
The functional form of the d;’s for the general Q,z,',\(x) are

dy = w™2e™*?
—k
(/ — —)\/2( ) ,~l/2</+k(l _ Hyﬁl)/\'+l—]
BN
r(G—j+0.5) G-=n!
FOSE—j+ H/\KG—-k =1
fori=1,2,3,..., when A denotes the value of the noncentrality parameter

and w the value of the weight function. The value of the d;’s and Q,z,‘,\(.\') can
be calculated using the following Mathematica code:

In[1]:

** To determine the di’s for the number of specified **
** j’s enter the values of 1 and w **
1= ;W= ;

Do [Print [Sum[Sum[Exp[-(1)/2]1(((1)/2) (b-k)) (((b=-k)!) -1)*
(w (=.5-b+k)}) ((1-w"(-1)) " (k+g-b))Gammal (.5+g~b) 1*
Binomial [b-1,k]/(Gammal (g=~b+1)]}Gammal.5])
{k,0,b}1,{b,0,9}1],{9,1,i}]



Assessing Process Capability with Indices 281

In{2]:
** Approximate the value of the distribution by * %
** replacing an infinite sum with an finite sum of **
** j+1 terms using values of n, a , 1 and w * %
<<Statistics‘ContinuousDistributions’
1= W= in= ;a= ;
Sum{Quantile[ChiSquareDistribution[n+2g],al*
Sum([Sum[Exp[-(1) /2] (((1)/2) (b=k)) (((b-k)!) =1)*
(w™(=.5-b+k)) ((1-w (-1)) " (k+g-b))Gamma{ (.5+g-b) ]*
Binomial([b-1,k]/(Gamma( (g-b+1) ]Gammal[.5]),
{k,0,b}1,{b,0,9}],{g,1,1i}]1+
(Exp[-1/2)1(w"(-0.5))*Quantile[ChiSquareDistribution(n], al)

The pdf of CA’,,,‘. can then be expressed as a function of Qﬁ‘k(,\'), allo-
wing confidence intervals and statistical criteria to be used in assessing C,,,
while also providing small sample distribution properties for C,, C,, Cpy,
and Cp-. Returning to the general form of the index,

USL — LSL
6lo” + w(n — TH}'V?

Cpn' =
it follows that [(1 + wA/n)]'/*C,,. = (USL — LSL)/60. By considering
o 2 g .—’—’— Az Y X — 2 2 — g —_ —
P(ng)s&wawo 71 < 0h(1 Q)—l «

where Q,z,';(ﬂ) represents the value of the Q,z,‘l(x) variate for n, A and prob-
ability g. It follows that

p,-([Qz,A(g)]'”s [ ne-17] "< ona( ‘9])” L

which implies

1/2 1/2
n(l + wi/n) A n(l +wi/n)
Cn'ZCM‘Z 5 Cw :1—
[5gwm} =t [%A%wﬂ) ’ ¥
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resulting in a general confidence interval for C),, of the form

2 1/2 ” 12
. Quala/2) A 0.(1 —a/2) . L
Pi ([m] Cp 2Cp < [m] C,,“.) =l-a

(D

For w =0,

USL — LSL
C/m' = T = Cp

and the confidence interval in Eq. (1) becomes

5 5 172 5 I ) 1/2
Pr(|:Xn—l(a/ )] ép < Cp < |:Xu—l( - (1/ ):l C"wp) —l—a
h n

where €, = (USL — LSL)/6s.
Similarly, for w =1,

USL-LSL
6o +(u—T1)17% ™

=

with confidence interval

) 172 5 172
Xiala/2) A Xl —a/2) A
| | S e C =1-
P' ([’7(1 + A,/’I) C]YIN S CI"H S ’1(1 + )\/’1) }7'" o4

(2
for

. USL — LSL
Pe(s? + [n/n — 1)(F = T)*}/?

The weight function

L ke=k)
(1 —kPp?
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for 0 <k <1, and assuming p and k to be nonstochastic, results in
C,, = Cp¢ with confidence interval

pw
) 1/2 5 1/2
Qrt,k(a/z) éﬂ;l\ < tk < QnA(l - a7/2) é;k —l-a
n(l 4+ wp?) PR= PR p(1 4 wp?)
where é;k =(1- IQ)CA’,,.
For
@)
w=|—>—=-1}l5
(d — lal)”
assuming that p(0 < p), d, and a are known (i.e., nonstochastic), C,, = Cpz

results in the confidence interval

” 1/2 2 172
Oiala/2) A Ol —a/2) A
—_— Cy < Cpi _ Crl=1-
[ndz/(d - |a|)2:| k= Gk = [11(12/((1’ — lal){l Pk ¢

where C = min(Cpy, Cp,)

The weight function may have to be estimated on occasion. However,
it is often possible to obtain good information regarding the weight func-
tions from the data used to ensure that the process is in control. Since we
require that the process be in a state of statistical control prior to determin-
ing any process capability measure, this generally requires that control
charts be kept on the process. In most situations the control charts will
provide very good information regarding values necessary in determining
the weight function. For example, ¥ and § from the control chart can pro-
vide information regarding u and o, respectively, which in turn provides an
alternative method for determining the distribution function and associated
confidence interval for each of the estimated indices.

4.2, Monitoring Process Capability

A criticism of the traditional process capability study is that it provides only
a snapshot in time of the process’s ability to meet customer requirements.
Process capability studies are often conducted at startup and then again
during a supplier’s audit or after changes have been made to the process.
As a result, practitioners have little knowledge of the process’s capability
over time. With the advent of small-sample properties for the various
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measures of process capability, it is now easier to incorporate stochastic
inferences into the assessment and analysis of process capability measures
and to assess capability on a continuous basis.

If all other requirements are met, it is possible to estimate process
capability using the information gathered at the subgroup level of the tradi-
tional control charts. The usual control chart procedures are used to first
verify the assumption that the process is in control. If the process is deemed
in control, then estimates of the process capability can be calculated from
the subgroup information. These estimates are then plotted, resulting in a
chart that provides insights into the nature of a process’s capability over its
lifetime. The proposed chart is easily appended to an X&R (or s) control
chart and facilitates judgments regarding the ability of a process to meet
requirements and the effect of changes to the process, while also providing
visual evidence of process performance.

Letting x;, X3, x3, ..., X, represent the observations in subgroup ¢ of
an X&s control chart used to monitor a process, consider

_ min[USL — 7, T — LSL]
3[s? + n(¥, — T)*/(n — 1)]'?

pm =

where s is the subgroup sample variance and X, the average of the observa-
tions in subgroup ¢. If an X&R chart is used, consider

- min[USL — T, T — LSL]
P 3U(R, Jdy) + (%, = T /(n— 1)])'2

where R, denotes the range for subgroup ¢ and d, the usual control chart
constant. Each subgroup in the process provides a measure of location, ¥,
and a measure of variability (either R, or s,). Hence an estimate of C,,, can
be determined for each subgroup, which results in a series of estimates for
Cp over the life of the process.

A mean line as well as upper and lower limits can be created for a
capability chart using information gathered from the control chart. Similar
to Shewhart control charts, the upper and lower limits for C,,,,, will represent
the interval expected to contain 99.73% of the estimates if the process has
not been changed or altered. The mean line, denoted Com o> Will be

— min[USL — 7, T — LSL]

Com = 3{(5/c)* + In/(n — D)(E— T2
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when using an X&s chart. Assuming equal subgroup sizes, ¥ denotes the
average of the subgroup averages v,

RS N AP
k

X=

§, the average of the subgroup standard deviations s;,

S S+
k

§=

and ¢, the traditional constant. .
Assuming that the process measurements are X ~ N[u, 07] and using
6 = Yo, = ¥)*/(n — 1)], we can rewrite Eq. (2) as

1/2 172

(n—1D(1+A/n) N (n=DA +xr/n)

Pr AT 1 AN CmSCmS 5 AN C)m = l-a
[mqlﬂ—aﬂ) me Xao12(@/2) !

Simplifying this expression we get

~

P"([?_Cpm = Cpm = 13Cpm) =1l-«

where

1_(m4m+wmm
T —a/2)

1/2
) _ =D+t
and - fy = [_xf,,}(?) ]
The upper (U;) and lower (L;) limits for é’,,,,, in conjunction with an X&s
chart depend on the subgroup size n and noncentrality parameter A.
Analogous to the use of Yand § in Shewhart charts, the noncentrality para-
meter A = n(u — T)*/o* can be estimated from the control chart using
(S~ T)/(S/eal.

When using X &R charts with equal subgroup sizes,

—— minfUSL — T, T — LSL]
I 3{(R/d2)2 +[n/(n = DY - TY)'?

where R denotes the average of the subgroup ranges R,,
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Ri+R+---+ R
k

R=

and d, the traditional constant. The upper and lower limits for C,,,,, in
conjunction with an X&R chart are of the form U, = J;Cpy and
L =J,C,, pm» Where Jp, J3 are constants that depend on the subgroup size
and a noncentrality parameter A. Again analogous to the use of ¥and R in
Shewhart charts, the noncentrality parameter A = n(u — T) /a can be esti-
mated from the control chart using [(X — T)/(R/dz)]z.

5. EXAMPLE
5.1. The Process

In this example 20 subgroups of size 10 were gathered from a process for
which the customer had indicated that USL = 1.2, T =1 and USL = 0.8.
In this case T is the midpoint of the specification limits; however, all calcu-
lations use the general definitions in determining C,,,,, and the associated
limits. From the 20 subgroups we found x =1.1206 and 5 = 0.11, which
resulted in an upper control limit of 1.230 and a lower control limit of
1.014 for X and an upper control limit of 0.189 and a lower limit of 0.031
for 5. Looking first at the s chart, the process variability does not appear
unusual (i.e., no out-of-control signals), which also seems to be the case with
the ¥ chart. The control limits and centerlines for the X&s charts are
included in Figure 9.

_ Since the process appears to be in control, we proceed to determine
Cp for each subgroup. In the case of subgroup 1, X and s were found to be
1.15 and 0.136, respectively, resulting in

~ _ min[l2—1,1-0.8]
pmy = 3[0]362 + 10(1.15 — 1)2/9]1/2

=0.32

¢ »m, and the subsequent 19 subgroup values of ¢ »m, are plotted in Figure 9.
Using (1) the customer’s requirements USL = 1.2, T =1, and LSL = 0.8,
(2) the process results Y= 1.1206 and 5 = 0.11, and (3) the constants n = 10
and ¢4 = 0.9727, we determined that

2 2
=T 11206 — 1 \?

= —10( =2 ) =114
= "(s/c4) l0(0.11/0.9727)
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Figure 9 Capability chart appended to an X&s chart.
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The values of I, and I; for n =10 and A = 11.4 are

L [9(1 + 11.4/10)]”2_ [9(1 +11.4/10)

172
| %3.11.4(0.99865) 51.42 ] =0.6120

and

172 5
_ | 90 +11.4/10) /_ 9(1 + 11.4/10) ‘/-_223985
PTG L000135) | T 3.839 =2.

resulting in the himits

U, =2.23985(0.3918) = 0.87757 and L; =0.6120(0.3918) = 0.2398

which are sketched in Figure 9.

5.2. Observations and Insights

Several things are evident from Figure 9. Clearly, the estimates of the pro-
cess’s capability vary from subgroup to subgroup. Except for subgroup 19,
the fiuctuations in C,,,, appear to be due to random causes. In period 19 the
process capability appears to have increased significantly and warrants
investigation. Practitioners would likely attempt to determine what caused
the capability to rise significantly and recreate that situation in the future.

If the estimated process capability had dropped below L,, this would
signal a change in the process, and if the process capability was not at the
level required by the customer, changes in the process would be required. In
a continuous improvement program the process capability should be under
constant influence to increase. The capability chart used in conjunction with
the traditional Shewhart variables charts will provide evidence of improve-
ment. It may also assist in ending the unfortunate practice of including
specification limits on the ¥ chart, as the additional chart will incorporate
the limits and target into the calculation of process capability.

Much like the effect of first-time control charts, practitioners will see
that process capability will vary over the life of the process, illustrating the
idea that the estimates are not parameter values and should not be treated as
such. The procedures provide evidence of the level of process capability
attained over the lifetime of the process rather than at snapshots taken,
for example, at the beginning of the process and not until some change in
the process has been implemented. They will also provide evidence of the
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ongoing assessment of process capability for customers. The effect of any
changes to the process will also show up on the chart, thereby providing
feedback to the practitioner regarding the effect changes to the process have
on process capability.

6. COMMENTS

Several ideas have been presented that address some concerns of two dis-
tinguished quality practitioners in the area of process capability, Vic Kane
(Kane, 1986) and Bert Gunter (Gunter, 1991). Unfortunately, as noted by
Nelson (1992), much of the current interest in process capability indices is
focused on determining competing estimators and their associated distribu-
tions, and little work has dealt with the more pressing problems associated
with the practical shortcomings of the indices. Continuous monitoring of
process capability represents a step toward more meaningful capability
assessments. However, much work is needed in this area. In particular, as
practitioners move to measures of process capability that assess clustering
around the target, the effect of non-normality may be less problematic.
Currently, however, meaningful process capability assessments in the pre-
sence of non-normal distributions remains a research problem.
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1. INTRODUCTION

An important approach for optimizing an industrial process seeks to find
operating conditions that achieve some target condition for the expected
value for a quality characteristic (the response) and minimize the process
variability. Vining and Myers (1990) suggest that the response and the
process variance form a dual response system. They use the dual response
methodology proposed by Myers and Carter (1973) to find appropriate
operating conditions. This dual response approach allows the analyst to
see where the process can achieve the target condition and where the process
variability is acceptable. As a result, the engineer can make explicit com-
promises. Del Castillo and Montgomery (1993) extend this method by show-
ing how to use the generalized reduced gradient, which is available in some
spreadsheet programs such as Microsoft Excel, to find the appropriate oper-
ating conditions. Lin and Tu (1995) suggest a mean squared error approach
within this context. Copeland and Nelson (1996) suggest a direct function
minimiation of the mean squared error with a bound on how far the esti-
mated response can deviate from the desired target value.

Vining and Myers (1990) advocate replicating a full second-order
design. Such an approach is often prohibitively expensive in terms of the
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overall number of design runs. Vining and Schaub (1996) note that often the
process variance follows a lower order model than the response. They sug-
gest replicating only a first-order portion of standard response surface
designs, which significantly reduces the overall design size. This chapter
extends the work of Vining and Schaub by exploring alternative ways for
choosing the portion of the design to replicate.

2. CRITERION FOR EVALUATING DESIGNS

Suppose we run an appropriate experiment with a total of » runs. Let », be
the number of distinct settings that are replicated. Consider as our model for
the response,

y=XB+e

where y is the n x 1 vector of response, X is the 17 x p, model matrix, 8 is the
p. x 1 vector of unknown coefficients, and ¢ is the n x 1 vector of normally
distributed random errors. Similarly, consider as the model for the process
variance,

Tt =24y

where 7 is the n, x 1 vector of linear predictors, Z is the n, x p, model

matrix for the linear predictors, and y is the p, x | vector of unknown

coefficients. We relate the ith linear predictor, 7;, to the ith process variance
2

oj by

o7 = h(z)

where /1 is a twice differentiable monotonic function. Define h; to be the first
derivative of /1 with respect to the ith 7. Often, analysts use the exp function
for h, which is similar to using a leg transformation on the observed sample
variances. Throughout this chapter, we follow this convention; thus,

o = exp(t))
This approach guarantees that o7 > 0.

Consider the joint estimation of g and y. The expected information
matrix, J, is
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where W, and W, are diagonal matrices with nonzero elements 1/67 and
(h!/a?)/2, respectively. Vining and Schaub (1996) prefer to use M, the
expected information matrix expressed on a per-unit basis, where

I
M=-J
n

In some sense, M represents a moment matrix. One problem with this
approach, however, is that we use all # of the experimental runs to estimate
the response, but we use only n, distinct settings to estimate the process
variance. In this chapter, we propose an alternative moment matrix, M*,
defined by

* (1/II)XIW”X 0
M= [ 0 (]/’Il.)Z/W?_zZ]

which is a block diagonal matrix with separate moment matrices for each
model on the diagonals.

One definition of an “optimal™ design is that it is one that maximizes
the information present in the data. Much of optimal design theory uses
appropriate matrix norms to measure the size of the information matrix.
The determinant is the most commonly used matrix norm in practice, which
leads to D-optimal designs. In this particular case, we must note that M*
depends on the o7's, which in turn depend on y through the 7,'s. However.,
we cannot know y prior to the experiment; hence, we encounter a problem
in determining the optimal design. One approach proposed by Vining and
Schaub (1996) assumes that t, =1, for i=1,2,...,n Essentially, this
approach assumes that in the absence of any prior information about the
process variance function, the function could assume any direction over the
region of interest. By initially assuming that the process variance function is
constant, the analyst does not bias the weights in any particular direction.
With this assumption, we can establish that an appropriate D-optimality-
based criterion for evaluating designs is

] P 1 P L/(p,+p.)
o= |) () vz
1 H,
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The criterion provides an appropriate basis for comparing designs. By its
definition, we are able to compare in a meaningful fashion designs that use
different numbers of total runs and different replication schemes.

3. COMPUTER-GENERATED DESIGNS

We used this criterion within a modified DETMAX (Mitchell, 1974) algo-
rithm to generate optimal finite-run designs. Figures 1-7 display the three-
factor designs generated by this algorithm over a cuboidal region of interest
forn=14,n=15n= 18, n =22, n = 26, n = 32, and n = 59, respectively.
Taken together, these figures suggest how the optimal design evolves with
additional design runs.

Figure 1 indicates that the computer starts with a Notz (1982) design
with a resolution III fraction replicated. The Notz design is interesting
because it uses seven out of the eight cube or factorial points. It adds
three axial points in order to estimate the pure quadratic terms. Figure 2
shows what happens as we add the next point to the design. As one should
expect, it brings in the other factorial point. Figure 3 shows the optimal
design for n = 18 total runs. Interestingly, it starts adding the face centers of
the cube defined by the factorial runs. The resulting design is a central
composite design with a resolution III portion replicated, which Vining

X3
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19

9
g

Figure 1 The three-factor D-optimal design for 14 runs over a cuboidal region.
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Figure 2 The three-factor D-optimal design for 15 runs over a cuboidal region.
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Figure 3 The three-factor D-optimal design for 18 runs over a cuboidal region.
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Figure 4 The three-factor D-optimal design for 22 runs over a cuboidal region.

and Schaub call a replicated factorial design. Figure 4 shows that at n = 22
the design replicates all of the cube points, as opposed to the replicated
factorial, which would replicate only a resolution III fraction of the full
factorial. Interestingly, Figure 5 shows that at n = 26, the computer adds
midpoints of edges. Vining and Schaub recommend their replicated factorial
design for this situation. The optimal design takes a slightly different strat-
egy. Figures 6 and 7 show that as we continue to add runs, the computer
moves to a 3 factorial with replicated cube points. It appears that the
proposed criterion favors replicating the cube points and then augmenting
with points from the full 3*.

Figure 8 summarizes the D values for the three-factor computer-gen-
erated designs over a cuboidal region. Interestingly, the D value actually
seems to peak around » =32 total runs, with D = 0.5851. The initial
increase in D with » makes a lot of sense because the extra runs provide
necessary symmetries. As the cube points are replicated more and more, we
presume that some imbalance in information results between the strict first-
order terms and the strict second-order terms. This imbalance may explain
why the D values drop slightly from n = 32 to the largest sample size stu-
died, n = 80.

Figures 9 and 10 extend this study to the computer-generated designs
for four and five factors, respectively. In each case, D increases as n
increases. The largest values for D observed were 0.5806 for the four-factor
case and 0.5816 for the five-factor case. These figures suggest either that D
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Figure 5 The three-factor D-optimal design for 26 runs over a cuboidal region.
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Figure 6 The three-factor D-optimal design for 32 runs over a cuboidal region



298 Vining et al.

X4
L
1
5 S S @ 5
1 | (OB 1
5 © 5
Xy
1 1
X0 )
1O 1 S
Xy
1P 1 D1
ﬁl a
5 A\ 5
1
1({) 1
1
5@ S : 5

Figure 7 The three-factor D-optimal design for 59 runs over a cuboidal region.
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Figure 8 Plot of the value for D for the three-factor computer-generated design
over a cuboidal region.
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Figure 9 Plot of the value for D for the four-factor computer-generated design
over a cuboidal region.
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Figure 10 Plot of the value for D for the five-factor computer-generated design
over a cuboidal region.
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approaches some asymptote or that D may peak at some sample size larger
than the ones studied.

4. COMPARISONS OF DIFFERENT REPLICATION
STRATEGIES

Figures 11-13 use the D criterion to compare the following design strategies
for three, four, and five factors over a cuboidal region:

A fully replicated central composite design (CCD)

A fully replicated Notz (1982) design

A replicated axial design (a CCD with only the axial points replicated)

A replicated factorial design (a CCD with only a resolution 111 fraction
replicated)

A replicated 3/4 design (a CCD with only a 3/4 fraction replicated)

A replicated full factorial (a CCD with the entire factorial portion
replicated)

The fully replicated CCD should always be a ““near-optimal’ design for each
situation. In some sense, it provides a “gold standard™ for comparisons.
However, replicating a full CCD is rather expensive in terms of overall
design size. The Notz design is a minimum run D optimal design for the
second-order model over a cuboidal region. Replicating a minimal point
design is one logical way to reduce the overall design size. Vining and
Schaub (1996) note that the replicated Notz design performs surprisingly
well in the joint estimation of the two models. Vining and Schaub proposed
the replicated axial and the replicated factorial as alternative designs for
reducing the total number of runs. The replicated 3/4 design is another
possible alternative. The optimal designs generated in the previous section
strongly suggest the replicated full factorial strategy.

Figure [ 1 summarizes the three-factor results. In this figure, nz refers to
the number of runs at each replicated setting. We evaluated each design
using 4, 8, and 12 replicates. As expected. the replicated CCD appears to
be the best overall design. Interestingly, the replicated full factorial actually
was better for ;m = 4. The designs that replicated only a portion of their runs
all became less efficient as the replication increased. We believe that this is
due to an increase in the imbalance in these designs. The replicated full
factorial performed slightly better than the other partially replicated designs.
The replicated 3/4 and the replicated factorial performed very similarly. The
replicated axial performed quite poorly. The replicated Notz performed
almost as well as the replicated CCD.
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Figure 11 Comparisons of designs in terms of D for the three-factor cuboidal case.

Table 1 summarizes the number of runs required by each design. The
replicated factorial requires the fewest, and the replicated CCD requires the
most. Our D criterion takes the total sample size into account and thus
provides a fair comparison for these designs. In many situations, the experi-
menter cannot afford large numbers of total runs due to either time or cost.
The replicated factorial appears to be relatively competitive in terms of the
D criterion while at the same time minimizing the total number of runs. In
this light, the replicated factorial is often a very attractive design for this
type of experimentation.

Figure 12 summarizes the four-factor results. Here, the replicated
CCD performs uniformly best. Once again, the performance of all the

Table 1  Design Sizes for the Three-Factor Case

m

Design 4 8 12
Replicated factorial 26 42 58
Replicated axial 32 56 80
Replicated 3/4 32 56 80
Replicated full factorial 38 70 102
Notz 40 80 120

CCD 56 112 168
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Figure 12 Comparisons of designs in terms of D for the four-factor cuboidal case.

designs that replicate only a portion of their runs decreases with greater
replication. The replicated full factorial, replicated 3/4 factorial, and repli-
cated factorial designs all perform similarly, with the replicated full factorial
performing slightly better than the others and the replicated factorial per-
forming slightly worse. The replicated axial performs very poorly. Once

5 10

m

again, the replicated Notz performs similarly to the replicated CCD.

Table 2 summarizes the total number of runs for each design. In this
case, the replicated factorial and the replicated axial require exactly the same
number of runs. They in turn require fewer runs than any other design. Once
again, taking into account Figure 12 and Table 2, the replicated factorial
appears to be a reasonable design strategy in many situations.

Table 2 Design Sizes for the Four-Factor Case

m
Design 4 8 12
Replicated factorial 48 80 112
Replicated axial 48 80 112
Replicated 3/4 60 108 156
Replicated full factorial 72 136 200
Notz 60 120 180
CCD 96 192 288
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Figure 13 Comparisons of designs in terms of D for the five-factor cuboidal case.

Figure 13 summarizes the results for the five-factor case. Interestingly,
the replicated Notz design performed best, edging out the replicated CCD.
The replicated axial again performed worst. We see bigger differences in
performance among the other three, with the replicated full factorial per-
forming uniformly better than the replicated 3/4, which in turn uniformly
outperformed the replicated factorial.

Table 3 summarizes the total number of runs required by each design.
The replicated CCD here uses a resolution V fraction of the 2° factorial
design. The replicated factorial, however, must use the full 23 factorial
design in order to minimize the number of replicated points.
Consequently, the replicated factorial is not always the smallest design.

Table 3 Design Sizes for the Five-Factor Case

m
Design 4 8 12
Replicated factorial 66 98 130
Replicated axial 56 96 136
Replicated 3/4 114 210 306
Replicated full factorial 74 138 202
Notz 84 168 252

CCD 104 208 312
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The real message of Table 3 is that all of the design strategies require a large
number of runs. In many situations, the total is prohibitive.

5. CONCLUSIONS

Our research suggests the following conclusions. First, the proposed D cri-
terion suggests that if we fit a second-order model to the response and a first-
order model to the process variance, then we need to replicate only a subset
of the base second-order design. Second, this criterion appears to prefer
replicating the full factorial as the sample size permits. Third, the replicated
factorial and the replicated 3/4 factorial designs tend to perform well for
small to moderate amounts of replication. Finally, for large amounts of
replication, we may want to consider replicating at least a resolution V
fraction (the replicated full factorial).
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Supersaturated Designs
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1. AGRICULTURAL AND INDUSTRIAL EXPERIMENTS

Industrial management is becoming increasingly aware of the benefits of
running statistically designed experiments. Statistical experimental designs,
developed by Sir R. A. Fisher in the 1920s, largely originated from agricul-
tural problems. Designing experiments for industrial problems and design-
ing experiments for agricultural problems are similar in their basic concerns.
There are, however, many differences. The differences listed in Table 1 are
based on the overall characteristics of all problems. Exceptions can be found
in some particular cases, of course.

Industrial problems tend to contain a much larger number of factors
under investigation and usually involve a much smaller total number
of runs.

Industrial results are more reproducible; that is, industrial problems con-
tain a much smaller replicated variation (pure error) than that of agri-
cultural problems.

Industrial experimenters are obliged to run their experimental points in
sequence and naturally plan their follow-up experiments guided by
previous results; in contrast, agricultural problems harvest all results
at one time. Doubts and complications can be resolved in industry by
immediate follow-up experiments. Confirmatory experimentation is
readily available for industrial problems and becomes a routine
procedure to resolve assumptions.
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Table 1 Differences Between Agricultural and Industrial Experiments

Subject Agriculture Industry
Number of factors Small Large
Number of runs Large Small
Reproducibility Less likely More likely
Time taken Long Short
Blocking Nature Not obvious
Missing values Often Seldom

The concept of blocking arose naturally in agriculture but often is not
obvious for industrial problems. Usually, industrial practitioners need
certain specialized training to recognize and handle blocking variables.

Missing values seem to occur more often in agriculture (mainly due to
natural losses) than in industry. Usually, such problems can be avoided
for industrial problems by carrying out well-designed experiments.

The supersaturated design method considered in this chapter suggests
one kind of screening method for industrial problems involving a large
number of potential relevant factors. It may not be an appropriate proposal
for some agricultural problems.

2. INTRODUCTION

Consider the simple fact that where there is an effect, there is a cause.
Quality engineers are constantly faced with distinguishing between the
effects that are caused by particular factors and those that are due to
random error. The “null” factors are then adjusted to lower the cost; the
“non-null” (effective) factors are used to yield better quality. To distinguish
between them, a large number of factors can often be listed as possible
sources of effects. Preliminary investigations (e.g., using professional knowl-
edge) may quickly remove some of these “candidate factors.” It is not
unusual, however, to find that more than 20 sources of effects exist and
that among those factors only a small portion are actually active. This is
sometimes called ‘‘effect sparsity.” A problem frequently encountered in this
area is that of how to reduce the total number of experiments. This is
particularly important in situations where an individual run is expensive
{e.g., with respect to money or time). With powerful statistical software
readily available for data analysis, there is no doubt that data collection is
the most important part of such problems.
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To obtain an unbiased estimate of the main effect of each factor, the
number of experiments must exceed (or at least be equal to) the number of
factors plus one (for estimating the overall grand average). When the two
numbers are equal, the design is called a saturated design; it is the minimum
effort required to estimate all main effects. The standard advice given to
users in such a screening process is to use the saturated design, which is
“optimal” based on certain theoretical optimality criteria. However, the
nonsignificant effects are not of interest. Estimating all main effects may
be wasteful if the goal is simply to detect the few active factors. If the
number of active factors is indeed small, then the use of a slightly biased
estimate will still allow one to accomplish the identification of the active
factors but significantly reduce the amount of experimental work.
Developing such screening designs has long been a well-recognized problem,
certainly since Satterthwaite (1959).

When all factors can be reasonably arranged into several groups, the
so-called group screening designs can be used (see, e.g., Watson, 1961). Only
those factors in groups that are found to have large effects are studied
further here. The grouping scheme seems to be crucial but has seldom
been discussed. The basic assumptions (such as assuming that the directions
of possible effects are known), in fact, depend heavily on the grouping
scheme. While such methods may be appropriate in certain situations
(e.g., blood tests), we are interested in systematic supersaturated designs
for two-level factorial designs that can examine k factors in N <k 41
experiments in which no grouping scheme is needed. Recent work in this
area includes, for example, that of Lin (1991, 1993a, 1993b, 1995, 1998),
Tang and Wu (1997), Wu (1993), Deng and Lin (1994), Chen and Lin
(1998), Cheng (1997), Deng et al. (1994, 1996a, 1996b), Yamada and Lin
(1997) and Nguyen (1996).

3. SUPERSATURATED DESIGNS USING HADAMARD
MATRICES

Lin (1993a) proposed a class of special supersaturated designs that can be
easily constructed via half-fractions of the Hadamard matrices. These
designs can examine k = N — 2 factors with n = N/2 runs, where N is the
order of the Hadamard matrix used. The Plackett and Burman (1946)
designs, which can be viewed as a special class of Hadamard matrices, are
used to illustrate the basic construction method.

Table 2 shows the original 12-run Plackett and Burman design. If we
take column 11 as the branching column, then the runs (rows) can be split
into two groups: group I with the sign of + 1 in column 11 (rows 2, 3, 5, 6, 7,
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Table 2 A Supersaturated Design Derived from the Hadamard Matrix of Order

12
Run Row 1 2 3 4 5 6 7 8 9 10 Il
] + + - + + + - - - + -
1 2+ - + + + — - - + - +
2 30 - + + + — - + - + +
4  + + + - - - + - + + -
3 5+ + - - - + - + + - +
4 6 + - - + - + + — + +
5 7 - — - + - + + - + + +
S - + - + + - + + + -
9 -+ -+ + -+ + + - -
10+ — + + - + + + - - -
6 1 T

2 - - - - -

|
|
|
|
|
|

and 11) and group II with the sign of —1 in column 11 (rows 1, 4, 8, 9, 10,
and 12). Deleting column 11 from group I causes columns 1-10 to form a
supersaturated design to examine N — 2 = 10 factors in N/2 = 6 runs (runs
1-6, as indicated in Table 2). It can be shown that if group II is used, the
resulting supersaturated design is an equivalent one. In general, a Plackett
and Burman (1946) design matrix can be split into two half-fractions
according to a specific branching column whose signs equal +1 or —1.
Specifically, take only the rows that have +1 in the branching column.
Then, the N — 2 columns other than the branching column will form a
supersaturated design for N —2 N — 2 factors in N/2 runs. Judged by a
criterion proposed by Booth and Cox (1962), these designs have been shown
to be superior to other existing supersaturated designs.

The construction methods here are simple. However, knowing in
advance that Hadamard matrices entertain many ‘“‘good” mathematical
properties, the optimality properties of these supersaturated designs deserve
further investigation. For example, the half-fraction Hadamard matrix of
order n = N/2 = 4t is closely related to a balanced incomplete block design
with (v, b, 1, k) = (21 — 1,41 —2,2t — 2,1 — 1) and A = ¢t — 1. Consequently,
the E(s%) value (see Section 4) for a supersaturated design from a half-frac-
tion Hadamard matrix is /12(11 — 3)/[(2n — 3)(n — 1)], which can be shown to
be the minimum within the class of designs with the same size. Potentially
promising theoretical results seem possible for the construction of a half-
fraction Hadamard matrix. Theoretical implications deserve detailed
scrutiny and are discussed below. For more details regarding this issue,
please consult Cheng (1997) and Nguyen (1996).
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Note that the interaction columns of Hadamard matrices are only
partially confounded with other main-effect columns. Wu (1993) makes
use of such a property and proposes a supersaturated design that consists
of all main-effect and two-factor interaction columns from any given
Hadamard matrix of order N. The resulting design has N runs and can
accommodate up to N(N — 1)/2 factors. When there are k < N(N —1)/2
factors to be studied, choosing columns becomes an important issue to be
addressed.

4. CAPACITY CONSIDERATIONS

As mentioned, when a supersaturated design is used, the abandonment of
perfect orthogonality is inevitable. The designs given in Lin (1993a) based
on half-fractions of Hadamard matrices have a very nice mathematical
structure but can be used only to examine N — 2 factors in N/2 runs,
where N is the order of the Hadamard matrix used. Moreover, these designs
do not control the value of the maximal pairwise correlation r, and, in fact,
large values of r occur in some cases.

Consider a two-level k-factor design in » observations with maximal
pairwise correlation r. Given any two of the quantities (n, k, r), Lin (1995)
presents the possible values that can be achieved for the third quantity.
Moreover, designs given in Lin (1995) may be adequate to allow examina-
tion of many prespecified two-factor interactions. Some of the results are
summarized in Table 3.

Table 3 shows the maximum number of factors, k., that can be
accommodated when both # and r are specified for 3 <n <25and 0 <r <
1/3 (Table 3a for even » and Table 3b for odd n). We see that for r < 1/3,
many factors can be accommodated. For fixed #, as the value of r increases,
kmax also increases. That is, the larger the nonorthogonality, the more fac-
tors can be accommodated. In fact, k,, increases rapidly in this setting.
Certainly the more factors accommodated, the more complicated are the
biased estimation relationships that occur, leading to more difficulty in data
analysis. On the other hand, for fixed r, the value of k., increases rapidly as
n increases. For r < 1/3, one can accommodate at most 111 factors in 18
runs or 66 factors in 12 runs; for r < 1/4, one can accommodate 42 factors
in 16 runs; for r < 1/5, one can accommodate 34 factors in 20 runs.
Provided that these maximal correlations are acceptable, this can be an
efficient design strategy.
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Table 3 Maximal Number of Factors Found, k..., as a Function of » and nr,
for3<n<25andr<1/3

(a) Even n
Number of runs n Maximum absolute cross product, nr = |¢/¢;|
0 2 4 6 8
4 3
6 — 10
8 7 —
10 - 12
12 11 — 66
14 — 13 — 113
16 15 — 42 —
18 — 17 — 111
20 19 — 34
22 — 20 — 92 —
24 23 — 33 — 276
(b) Odd »
Number of runs » Maximum absolute cross product, ar = |¢/¢j|
1 3 5 7
3 3
5 4
7 7 15
9 7 12
11 11 14
13 12 14
15 15 15 37
17 15 17 50
19 19 19 33
21 19 19 34 92
23 23 23 33 94

25 23 23 32 76
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5. OPTIMALITY CRITERIA

When a supersaturated design is employed, as previously mentioned, the
abandonment of orthogonality is inevitable. It is well known that lack of
orthogonality results in lower efficiency; therefore we seek a design that is as
“nearly orthogonal” as possible. One way to measure the degree of non-
orthogonality between two columns, ¢, and ¢,, is to consider their cross-
product, s; = (',f(-j; a larger |s;| implies less orthogonality. Denote the largest
[s;] among all pairs of columns for a given design by s, and we desire a
minimum value for s (s = 0 implies orthogonality). The quantity s can be
viewed as the degree of orthogonality that the experimenter is willing to give
up—the smaller, the better. This is by nature an important criterion. Given
any two of the quantities (n, k, 5), it is of interest to determine what value
can be achieved for the third quantity. Some computational results were
reported by Lin (1995). No theoretical resuits are currently available, how-
ever. It is believed that some results from coding theory can be very helpful
in this direction. Further refinement is currently under investigation.

If two designs have the same value of s, we prefer the one in which the
value of {s;;| = s is a minimum. This is intimately connected with the expec-
tation of s°, E(s%). first proposed by Booth and Cox (1962) and computed

asy sf_/}/(g), where f, is the frequency of s, among all (l;) pairs of

columns.

Intuitively, E(s%) gives the increment in the variance of estimation arising
from nonorthogonality. It is, however, a measurement for pairwise relation-
ships only. More general criteria were obtained by Wu (1993) and Deng et
al. (1994, 1996b). Deng and Lin (1994) outlined eight criteria useful for
supersaturated designs: s = max |c‘[¢,{; E(SZ); p (Lin, 1995); D, A, E;
(Wu, 1993); B criterion (Deng et al., 1996a, 1996b); and r-rank (see
Section 8). Further theoretical justification is currently under study.
Optimal designs in light of these approaches deserve further investigations.
In addition, the notion of multifactor (non)orthogonality is closely related
to the multicollinearity in linear model theory.

6. DATA ANALYSIS METHODS

Several methods have been proposed to analyze the & effects, given only the
n(< k) observations from the random balance design contents (see, e.g.,
Satterthwaite, 1959). These methods can also be applied here. Quick meth-
ods such as these provide an appealing, straightforward comparison among
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factors, but it is questionable how much available information can be
extracted using them; combining several of these methods provides a
more satisfying result. In addition, three data analysis methods for data
resulting from a supersaturated design are discussed in Lin (1995): (1)
normal plotting, (2) stepwise selection, and (3) ridge regression.

To study so many columns in only a few runs, the probability of a false
positive reading (type 1 error) is a major risk here. An alternative to the
forward selection procedure to control these false positive rates is as follows.
Let N=1{i},ip,....i,} and A={i,+1,...,i+k} denote indexes of inert
and active factors, respectively, so that NUA = {1,...,k} = S. If X denotes
the n x p design matrix, our model is Y = ul + XB + ¢, where Yis the n x 1
observable data vector, u is the intercept term, 1 is an n-vector of 1's, Bis a
k x 1 fixed and unknown vector of factor effects, and ¢ is the noise vector. In
the multiple hypothesis testing framework, we have null and alternative
pairs H,: 8, =0 and H; : ; # 0 with H, true for j € N and H; true for
j €A,

Forward selection proceeds by identifying the maximum F statistics at
successive stages. Let F,("') denote the F statistic for testing H, at stage s.
Consequently, define

; (1)
Ji=arg max F
! 1€S={ji i} /

where
F" = RSS(ilji. ..+ j-1)/MSEG. fi. - - s fis1)

Letting max F,m = F", the forward selection procedure is defined by select-
ing variables ji.....j,. where FV) <@ and FV*" > o. If F'") > o, then no
variables are selected.

The type I (false positive) error rate may be controlled by using the
adjusted p-value method (Westfall and Young, 1993). Algorithmically, at
stage j. if pV) > «, then stop; otherwise, enter X, and continue. This proce-
dure controls the type I error rate exactly at level « under the complete null
hypothesis since

P(Rejects at least one H;| all H, true) = P(FY S.f;i”) =«

In addition, if the first s variables are forced and the test is used to
evaluate the significance of the next entering variable (of the remaining k — s
variables), the procedure is again exact under the complete null hypothesis
of no effects among the k — s remaining variables. The exactness disappears
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with simulated p values, but the errors can be made very small, particularly
with control variates. The analysis of data from supersaturated designs
along this direction can be found in Westfall et al. (1998).

7. EXAMPLES

Examples of supersaturated designs as real data sets can be found in Lin
(1993, 1995). Here we apply the concept of supersaturated design to identify
interaction effects from a main-effect orthogonal design. This example is
adapted from Lin (1998). Consider the experiment in Hunter et al. (1982). A
12-run Plackett and Burman design was used to study the effects of seven
factors (designated here as A, B, ---, G) on the fatigue life of weld-repaired
castings. The design and responses are given in Table 4 (temporarily ignore
columns 8-28). For the details of factors and level values, see Hunter et al.
(1982).

Plackett and Burman designs are traditionally known as main-effect
designs, because if all interactions can temporarily be ignored, they can be
used to estimate all main effects. There are many ways to analyze such a
main-effect design. One popular way is the normal plot [see Hamada and
Wu (1992), Figure 1]. Using this method, it appears that factor F is the only
significant main effect. Consequently a main-effect model is fitted as follows:
§ = 5.73 + 0.458F with R® = 44.5%.

Note that the low R’ is not very impressive. Is it safe to ignore the
interaction effects? Hunter et al. claim that the design did not generate
enough information to identify specific conjectured interaction effects. If
this is not the case here, is it possible to detect significant interaction effects?
Hamada and Wu (1992) introduced the concept of effect heredity. After
main effects were identified, they used forward selection regression to iden-
tify significant effects among a group consisting of (1) the effects already
identified and (2) the two-factor interactions having at least one component
factor appearing among the main effects of those already identified. In this
particular example, a model for factor F and interaction FG was chosen:

7 =5.7+0458F —0.459FG, R’ =89% (1)

Now, if we generate all interaction columns, AB, AC, ..., FG, together with
all main-effect columns, A, B, ..., G, we have 7 + 21 = 28 columns. Treat all
of those 28 columns in 12 runs as a supersaturated design (Lin, 1993) as
shown in Table 4. The largest correlation between any pair of the design
columns is £1/3. The results from a regular stepwise regression analysis
(with « = 5% for entering variables) yields the model
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Table 4 The Cast Fatigue Experiment Data with Interaction Columns
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y=15.73 4+ 0.394F — 0.395FG — 0.191AE, R? =95% (2)

a significantly better fit to the data than Eq. (1). An application of the
adjusted p-value method (Westfall, et al. 1998) reaches the same conclusion
in this example.

Note that the AE interaction, in general, would never be chosen under
the effect heredity assumption. Of course, most practitioners may consider
adding main effects A, E, and G to the final model because of the signifi-
cance of interactions FG and AE. The goal here is only to identify potential
interaction effects. In general, for most main-effect designs, such as Plackett
and Burman type designs (except for 277 fractional factorials), one can
apply the following procedure [see Lin (1998) for the limitations]:

Step 1. Generate all interaction columns and combine them with the
main-effect columns. We now have k(k + 1)/2 design columns.

Step 2. Analyze these k(k + 1)/2 columns with »# experimental runs as a
supersaturated design. Data analysis methods for such a supersatu-
rated design are available.

Note that if the interactions are indeed inert, the procedure will work well,
and if the effect heredity assumption is indeed true, the procedure will end
up with the same conclusion as that of Hamada and Wu (1992). The pro-
posed procedure will always result in better (or equal) performance than
that of Hamada and Wu’s procedure.

8. THEORETICAL CONSTRUCTION METHODS

Deng et al. (1994) proposed a supersaturated design of the form
X, = [H, RHC], where H is a normalized Hadamard matrix, R is an ortho-
gonal matrix, and C is an n x (n — ¢) matrix representing the operation of
column selection. Besides the fact that some new designs with nice properties
can be obtained this way, the X, matrix covers many existing supersaturated
designs. This includes the supersaturated designs proposed by Lin (1993a),
Wu (1993), and Tang and Wu (1993). Some justifications of its optimal
properties have been obtained as follows.
It can be shown that

xx —( M HRHC)_/( nl, WC
HCTNCHRH al,_. )T \C'W al,_.

where W = H'RH = (wj;) = (h/Rh;) and h; is the jth column of H. Further,
the following theorem can be demonstrated.
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Theorem

Let H be a Hadamard matrix of order n and B=(b,,...,bh,) be an n x r
matrix with all entries £1 and V = H'B = (v;) = h/b;. Then

" 2

l. Foranyfixed l<j<rnm=3", vy
2. In particular, let B=RH and W = H'RH = (v;). We have
a. (I/n)W is an n x n orthogonal matrix.
bt =3Y", w%,- =3 ;.
c. wy; is always a multiple of 4.
d. If H' is column-balanced, then 4n = 3" w; = 3"

1 H",‘j.

Corollary

For any R and C such that (1) R'R =1 and (2) rank (C) =n —¢, all X,
matrices have an identical E(s°) value.

This implies that the popular E(s%) criterion used in supersaturated designs
is invariant for any choice of R and C. Therefore, it is not effective for
comparing supersaturated designs. In fact, following the argument in
Tang and Wu (1993), the designs given here will always have the minimum
E(s*) values within the class of designs of the same size. One important
feature of the goodness of a supersaturated screening design is its projection
property (see Lin 1993b). We thus consider the r-rank property as defined
below.

Definition

Let X be a column-balanced design matrix. The resolution rank (or r rank,
for short) of X is defined as /' =« — 1, where d is the minimum number
subset of columns that are linearly dependent.

The following results are provided by Deng et al. (1994).

1. If no column in any supersaturated design X is fully aliased, then
the r rank of X is at least 3.
2. nRh; =37 wih,
3. Let W = H'D(h))H, where D(h,) is the diagonal matrix associated
with h;, namely, the /th column vector of H; and n = 4¢. Then
a. If r1s odd, then there can be exactly three 0's in each row, or
each column, of W. The rest of w;; can only be of the form
+8k + 4, for some nonnegative integer k.
b. If #is even, then every entry w;; in W can be of the form £8k,
for some nonnegative integer k.
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These results are only the first step. Extension of these results to a more
general class of supersaturated designs in the form Sg = (R/HCy, ..., R
HCy) is promising.

9. COMPUTER ALGORITHMIC CONSTRUCTION METHODS

More and more researchers are benefiting from using computer power to
construct designs for specific needs. Unlike some cases from the optimal
design perspective (such as D-optimal design). computer construction of
supersaturated designs is not well developed yet. Lin (1991) introduced
the first computer algorithm to construct supersaturated designs. Denote
the largest correlation in absolute value among all design columns by r, as
a simple measure of the degree of nonorthogonality that can willingly be
given up. Lin (1995) examines the maximal number of factors that can be
accommodated in such a design when r and n are given.

Al Church at GenCorp Company used the projection properties in Lin
and Draper (1992, 1993) to develop a software package named DOEO to
generate designs for mixed-level discrete variables. Such a program has been
used at several sites in GenCorp. A program named DOESS is one of the
results and is currently in a test stage. Dr. Nam-Ky Nguyen (CSIRO,
Australia) also independently works on this subject. He uses an exchange
procedure to construct supersaturated designs and near-orthogonal arrays.
A commercial product called Gendex is available for sale to the public, as a
result. Algorithmic approaches to constructing supersaturated designs seem
to have been a hot topic in recent years. For example, Li and Wu (1997)
developed a so-called columnwise—pairwise exchange algorithm. Such an
algorithm seems to perform well for constructing supersaturated designs
by various criteria.

10. CONCLUSION

1. Using supersaturated designs involves more risk than using
designs with more runs. However, it is far superior to other experi-
mental approaches such as subjectively selecting factors or chang-
ing factors one at a time. The latter can be shown to have
unresolvable confounding patterns, though such confounding pat-
terns are important for data analysis and follow-up experiments.

2. Supersaturated designs are very useful in early stages of experi-
mental investigation of complicated systems and processes invol-
ving many factors. They are not used for a terminal experiment.
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Knowledge of the confounding patterns makes possible the inter-
pretation of the results and provides the understanding of how to
plan the follow-up experiments.

3. The success of a supersaturated design depends heavily on the
“effect sparsity” assumption. Consequently, the projection prop-
erties play an important role in designing a supersaturated experi-
ment.

4. Combining several data analysis methods to analyze the data
resulting from a supersaturated design is always recommended.
Besides the stepwise selection procedure {and other methods men-
tioned in Lin (1993)], PLS (partial least squares), adjusted p value
(see Westfall, et al. (1998)), and Bayesian approaches are promis-
ing procedures for use in identifying active factors.

5. Another particularly suitable use for these designs is in testing
“robustness,”” where the objective is not to identify important
factors but to vary all possible factors so that the response will
remain within the specifications.
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David M. Steinberg
Tel Aviv University, Tel Aviv, Israel

Soren Bisgaard
University of St. Gallen, St. Gallen, Switzerland

1. INTRODUCTION

Many authors have emphasized the importance of product development for
long-term business survival [1-4]. The rapid pace of technological progress
in today’s economy makes it increasingly important to reduce development
time and get new products to market quickly. Page {5] discovered that most
of the development cycle was devoted to the physical development of the
product. In our experience, much of that effort goes into experiments whose
goals may include improving performance, comparing design alternatives,
increasing reliability, or verifying that the product meets its stated goals and
specifications. Thus efficient methods of experimentation can be of great
value in ramping up the learning curve and accelerating the product devel-
opment process {6, 7).

In this chapter we focus in particular on the use of factorial experi-
ments for prototype testing, building on the ideas in Bisgaard and Steinberg
[8]. Prototype tests provide design engineers with valuable information
about the performance of products before they are sent further downstream
for tooling and ramp-up for production. The knowledge acquired from
these tests can be used to optimize and robustify products. Often a sequence
of prototypes is built, beginning with computer-aided design (CAD) draw-
ings and leading to the construction of a full-scale product. Since prototype
tests can be run from early on in the development cycle, they can help
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eliminate potential quality problems without the large costs and delays that
are usually incurred when problems are discovered in the later phases of the
design-to-production cycle.

The common paradigm for prototype testing is to build and evaluate a
single model at each stage. This approach is implicit in the excellent account
by Wheelwright and Clark [3, Chapter 10] of the role of prototypes in
product development.

It is our experience that great gains can be made by using factorial
experiments to study and improve product design at the prototype stage.
Several alternatives can be made, varying important design factors accord-
ing to a factorial plan. The results of such experiments can substantially
accelerate the path from concept development to finished product and can
significantly lower the risk of discovering serious quality problems late in the
development cycle.

A striking example of the importance of rapid feedback at early stages
in the design process is presented by Clark and Fujimoto [9, Chapter 7] in
their comprehensive study of auto manufacturers. They found that the lead
time for developing a new car was about 25% less in Japan than in the
United States. One major reason for this difference was that the Japanese
companies were much more successful than their American counterparts at
rapidly reducing the number of design problems early in the development
process. Clark and Fujimoto credited this difference to the prototyping
strategies that were prevalent in the two countries. The U.S. companies
built few prototypes and treated them as master models; the Japanese com-
panies built many prototypes and used them to provide information for
finding and solving design problems. Our approach couples the power of
statistical experiments with the Japanese strategy.

Prototype experiments have two interesting statistical features. First, it
is typically much more expensive to build a prototype than to test it. Thus
there is good reason, once a prototype is built, to test it extensively. The
relevant test conditions, which can often be laid out in a factorial plan, will
then be nested within the prototype configurations, in what is known as a
split-plot structure. Second, interest often focuses on a performance curve
rather than on a single number output. In motor testing, for example, the
test might examine fuel consumption as a function of load or rpm, torque as
a function of rpm, compression ratio as a function of a single 360° stroke, or
the curve trace of the torque or power delivered through a gear shift cycle
from forward through neutral to reverse and back again. Other examples
include the hysteresis curve in the testing of transformers, the spectrum of
the emitted light in the testing of light bulbs, the hardness as a function
of depth in ion implantation of steel, the pressure versus time curve in a
pyrotechnic chain, and the characteristic curve in the testing of transistors.
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Experiments that include factors related to product design along with
factors that reflect test settings have received some attention within the
robust parameter design strategy of Taguchi [10]. The paradigm recom-
mended by Taguchi is to use a factorial design to prepare product or system
configurations and then to run each configuration at different settings (fol-
lowing a second factorial plan) of noise and signal factors. The noise factors
might reflect possible variations in the production or use environment, and
the signal factors represent adjustable inputs that the product user can
control to produce a desired response (e.g., the force applied to a brake
pedal). This paradigm is similar to the setting we have in mind, in particular
what Taguchi has called “dynamic experiments,”” which study the perfor-
mance curve of a product with respect to a signal factor. However, our
method of analysis differs from that proposed by Taguchi. An approach
similar to ours was proposed by Miller and Wu [11] for robust design
experiments with signal factors.

In this chapter we describe the general statistical methodology pro-
posed by Bisgaard and Steinberg [8] for prototype tests. We begin in the next
section with a general discussion of the product design process and the role
of prototype testing. Section 3 presents a number of examples of prototype
experiments. Section 4 describes a simple two-stage analysis that is appro-
priate when the experiment focuses on a performance curve and the test
conditions are nested within prototypes. Section 5 illustrates the analysis
with an experiment to improve an engine starting system [12]. Some con-
cluding remarks follow in Section 6.

2. THE PRODUCT DESIGN PROCESS

In Figure 1 we show a schematic representation of the product development
process first introduced by Bisgaard [6]. The steps shown there are the same
ones found in most traditional texts on product development, but we
emphasize in Figure 1 that the development process is best viewed as one
that is cyclical and ongoing, not a linear procession with a distinct beginning
and end. Most products evolve from similar predecessors, go through a
sequence of improvement cycles, and ultimately spawn new products.
These cycles within the product development process have much in common
with the Plan-Do-Check-Act cycle of Deming {13] and Shewhart [20].
One of the most important features of the development process shown
in Figure 1 is the acquisition of new knowledge at each stage. Experiments
often play a key role in unlocking these secrets of nature. Even when the
source of insight is a theoretical breakthrough or comes from observational
data, experiments will typically be needed to verify the theory. In our own
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Figure 1 A conceptual view of the product development process as a cyclic learn-
ing cycle, analogous to Shewhart and Deming’s Plan-Do—-Check—Act cycle.

contacts with design engineers, we regularly see experiments used to test new
concepts, compare designs, evaluate new materials, optimize performance,
improve quality and reliability, and verify performance specifications.
Efficient experimentation can be a crucial tool in the quest to bring high
quality products to market ahead of the competition. Carefully planned
factorial experiments can provide invaluable knowledge throughout the
development cycle. See Bisgaard and Ellekjaer [7] for a broad conceptual
account.

The prototype stage is especially well suited to experimental work.
Typically prototypes are built fairly early in the development of a new
product, when it is easiest to make design changes. Factorial experiments
on prototypes can be an ideal method for comparing design alternatives
and shaping the direction of future development. Once that direction is set
and large amounts of time and money have been invested, it becomes
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increasingly difficult to make any fundamental changes to the product
design. Thus the biggest payoff from additional knowledge, and hence
from good experiments, is at the early stages in the development cycle
when prototypes are being built and studied.

3. PROTOTYPE EXPERIMENTS: SOME EXAMPLES
3.1. Airplane Wing

Initial prototype development often takes the form of CAD drawings rather
than actual physical mock-ups. Software that simulates the proposed oper-
ating environment can then be used to study the performance of the design
on the computer. The experiment in question here was carried out by a team
of engineers at the “‘concept design™ stage. The two main goals were to
improve the performance of the wing, as measured by thrust per unit weight,
and to minimize the cost per unit performance. Five different aspects of the
wing were studied: the sizes of three physical dimensions, the number of
strength supports on the wing, and the type of material used in construction.
Two possible values were considered for each of these factors, and eight
prototypes were then defined, in accord with a standard 2572 fractional
factorial experiment. Each prototype was carefully drawn by the design
team using CAD software. The weight and cost of each prototype wing
was then calculated and finite element analysis was used to compute the
thrusts.

3.2. Engine Throttle Handle

Bisgaard [14] described an experiment to improve the performance of the
throttle handle for an outboard motor. The goal of the experiment was to
derive appropriate tolerances for seven physical dimensions by studying
their effects on friction in the handle. The throttle handle is assembled
from three parts: a knob, a handle, and a tube. Of the dimensions studied,
three were related to the knob, three to the handle, and one to the tube. An
interesting feature of this experiment is that separate experimental plans
were set up for making prototypes of each of the three components (a 2°
plan for the knobs, a 2°~' plan for the handles, and a 2! plan for the tubes).
All possible matchings of the prototype components were then assembled
and tested for friction.
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3.3. Engine Exhaust

Taguchi [10, p. 131] described an experiment to reduce the CO content of
engine exhaust. Seven different characteristics of the engine design were
studied using a saturated two-level design that specified eight prototype
engines. Each engine was then run at three different driving modes, which
constituted the test conditions for this study. Bisgaard and Steinberg [8]
analyzed the results from this experiment and found that one of the factors
had an interesting, and statistically significant, effect on the shape of the
response curve, as shown in Figure 2. With this factor at its low level, the
response curve was lower at the middle driving mode but higher at the high
mode. The engineering significance of this effect depends on which driving
modes will be encountered most often. The lower driving modes likely cor-
respond to the sort of stop-and-start traffic common in large cities, and it
might then be desirable to choose the factor at its low level to reduce the CO
content at these modes.

3.4. Kitchen Mixer

Ott [15] described an experiment to improve a kitchen mixer. Each mixer
was assembled from three components: a top unit, a bottom unit, and gears.
An experiment was run to determine which of these three components was
the cause of inefficient operation. Forty-eight mixers were used in the study,
half of them efficient and half inefficient. Each mixer was disassembled, and

10 20 30
Driving Mode

Figure 2 The estimated response curves for CO exhaust versus driving mode at the
two levels of factor A4 for the engine exhaust experiment. The response curve with 4
at its high level (solid line) is lower than the curve with 4 at its low level (dashed linc)
across most of the driving modes but shows a sharp increase at high driving modes.
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then 48 new mixers were assembled, swapping parts from the original mixers
to form a 2> factorial design whose factors were the three components. The
two levels for each factor were determined by the source of the component
in an efficient (or inefficient) mixer. The experiment clearly pointed to the
tops as the source of the problem.

3.5. Pyrotechnic Device

Milman et al. [16] reported on an experiment to improve the safety of a
pyrotechnic device. It was known that the safety improvements could be
achieved by using a new type of initiator, but there was concern that this
change would adversely affect the performance of the device. An experiment
was run to test 24 prototype devices, mating each of three safe initiators with
four types of main charge and two types of secondary charge. The observed
response for each prototype device was a trace of pressure against time.

3.6. Fluid Flow Controller

Bisgaard and Steinberg [8] described an experiment to study how prototype
fluid flow control devices respond to changes in electrical input and flow
rate. The controller was assembled from two components. Two experimen-
tal factors described dimensions of the first component, and a third factor
described a dimension of the second component. As in the engine throttle
experiment, the eight prototype controllers were formed by making four
versions of the first component (following a 2° plan) and two versions of
the second component and then mating all possible pairs of components.
Each prototype was subjected to six test conditions formed by crossing three
levels of the electrical input with two flow rates.

3.7. Hearing Aid

A remote control unit developed to permit easy control of a new, miniatur-
ized hearing aid suffered from poor reception. A factorial experiment was
carried out to test several conjectures as to the source of the problem, in
particular that the difficult-to-control variation in the receptor coil was
causing variations in the transmission frequency and that the type of
cover used was affecting reception. The experiment showed that coil varia-
tion was the major problem and that it could be easily remedied by exploit-
ing a large interaction between the coil and the transmission program
(another factor in the experiment). The choice of cover was found to have
no effect at all.
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3.8. Bearing Manufacture

Although we have emphasized throughout this chapter the use of factorial
experiments for prototype products, the same ideas can be applied to pro-
totype process development. Hellstrand [17] described an experiment con-
ducted at SKF, one of the world’s largest manufacturers of ball bearings, to
improve a production process. The goal of the experiment was to improve
bearing life, and three factors were studied in a 2° plan: heat treatment,
osculation, and cage design. The experiment uncovered a large interaction
effect between heat treatment and osculation that led to a fivefold increase in
bearing life.

4. ANALYSIS OF PROTOTYPE EXPERIMENTS
4.1. Standard Experimental Plans

Some prototype experiments are standard factorials or fractional factorials
(e.g., the airplane wing and throttle handle experiments). No special meth-
ods are needed for the analysis of these experiments.

4.2, Two-Stage Analysis for Nested Test Conditions

Prototypes are typically much more expensive to make than to test, and it
will then be advisable to apply a sequence of test conditions to each proto-
type. This scheme generates a split-plot structure in which the test condi-
tions are nested within the prototype design. The analysis should correctly
account for the nesting.

We suggest a simple, yet general, two-stage analysis method for experi-
ments with nested test conditions:

1. Estimate the effects of the test factors for each prototype. We
discuss below some useful ways to summarize these effects.

Use the effects found in stage | as “‘data™ in a standard factorial
analysis to study the effects of the design factors that guided the
construction of the prototypes.

[N

As an example, suppose there is a single test factor ¢ and interest
focuses on the performance curve that describes its relationship to an output
y. For each prototype, fit a polynomial performance curve. The model
equation for the ith prototype is
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where g/(1) is a polynomial of degree /. We define the polynomials so that
they are orthogonal with respect to the levels of the test factor. An advan-
tage of this is that only the mean level effects involve interprototype (“whole
plot™) error. Any effects related to the slope or curvature or higher order
properties of the performance curve will involve only intraprototype (*‘sub-
plot™) error. We also scale the orthogonal polynomials so that

Zg%({,):l, I=1,....m
j=]

where the sum runs over all the test settings. The scaling guarantees that all
the coefficients (except the constant) will have the same variance, a property
that is important at the second stage of the analysis.

The use of orthogonal polynomials with our scaling convention leads
to simple coefficient estimates. If we denote by y, = (vj, ..., »;;) the obser-
vations on the ith prototype at each of the s test conditions, the least squares
estimates of the coefficients are given by

f;i.() =) (2a)
Bi./ = Zg/((,)}’it/, I=1,....m (2b)
=1

The constant term is the average of the s observations, and the polynomial
coefficients are simple linear contrasts.

At the second stage of the analysis, each of the polynomial coefficients
found above is treated as a response variable and a separate analysis is
carried out for the coefficients of each degree. The analysis of the constant
terms reveals which factors affect the mean level of the performance curve,
the analysis of the linear coefficients shows which factors affect slope, etc.
Important effects that stand out from error can be identified with standard
tools such as normal probability plots and analysis of variance (ANOVA).
Note that the effects on the mean level include “‘whole plot™ error, but
effects on other aspects of the performance curve, including average coeffi-
cients, involve only “subplot™ error. ANOVA can account for this situation
by doing a split-plot analysis. For the graphical analysis, separate plots must
be prepared for the two sets of effects. Our scaling convention from stage |
implies that all the performance curve coefficients have the same variance.
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We take similar care at the second stage to ensure that the effects have the
same variance and can thus be combined on a single probability plot. We
recommend computing the average value of each coefficient (for ease of
interpretation) and then scaling all the design factor contrasts to have the
same variance as the average. This property can be checked by setting up the
regression matrix Z for the design factor effects with all elements in the first
column equal to 1 and then verifying that Z'Z = nl, where [ is the identity
matrix. Each row of the matrix (Z'2)™'Z’ = (1/n)Z’ then gives one of the
factor effects.

Orthogonal polynomials are a convenient choice to describe a perfor-
mance curve, but other sets of orthogonal functions could also be used. For
some of the engine testing applications described in Section 1, we would
naturally expect periodic behavior. In that case, trigonometric functions
could be used to generate orthogonal contrasts in the test conditions.

Some experiments involve more than one test factor. Examples above
are the fluid flow controller and the engine starting system studies. For these
experiments, the natural approach is to estimate the effect of each test factor
for each of the prototypes. Interactions among the test factors can also be
included if the test array permits their estimation. The analysis will then
reveal which product characteristics can be used to affect the dependence of
the response on the various test factors. For example, in the fluid flow
controller experiment, one important goal was to obtain accurate predic-
tions of the relationship between the response and the test conditions so that
controllers could be designed to meet any desired response pattern.

The two-stage analysis has an appealing simplicity. It can also be
justified more formally using theory developed for growth curve models in
our performance curve context. Bisgaard and Steinberg [8] showed that, for
these models, the two-stage analysis actually computes generalized least
squares estimates of the parameters (maximum likelihood estimates if the
data are normally distributed). We refer interested readers to that article for
details on the statistical model and its analysis.

Our analysis approach shares some common ground with that recom-
mended by Taguchi [10] for robust design experiments, but there are some
important differences that we would like to point out. The approach taken
by Taguchi is to compute, for each prototype, a single summary measure
across all the test conditions. This summary measure, which he calls a
signal-to-noise ratio, is then taken as a response variable much as in our
stage 2 analysis. The major difference between Taguchi’s approach and ours
is that we compute a complete, multicoefficient summary at our first stage,
as opposed to Taguchi’s use of a univariate summary. This difference may
appear small but is in fact substantial. The single-number summary can
throw away much valuable information that is captured by the complete
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summary. Steinberg and Bursztyn [i18] and Bisgaard and Steinberg [8]
showed that Taguchi’s approach can miss important effects and identify
spurious effects that are easily handled by the multicoefficient summary.

4.3. Analysis with Analog Traces

The observed response for each prototype may be a continuous analog trace
against time, as in the pyrotechnic experiment. These curves can be analyzed
by applying the methods of Section 4.2 to a digitized version of the response
along a grid of time points.

An alternative strategy that is often useful is to take as response vari-
ables particular features of the observed performance curves that are of
interest. In the experiment on the pyrotechnic device, an important feature
was the delay time (i.e., the time from activation until the pressure first
begins to increase). Feature analysis has the advantage of focusing attention
on the most salient aspects of the performance curves. Most features will
involve both whole plot and subplot error components and will have differ-
ing variances. So it will not in general be possible to combine estimated
effects for different features (as we do above for the performance curve
effects).

Feature analysis can also be applied when physical considerations
suggest a nonlinear model that, modulo some unknown parameters,
describes the response curve. The estimated parameters can then be taken
as the first-stage summaries of the performance curves for the prototypes.
Box and Hunter [19] applied for this approach for nonlinear models.

5. EXAMPLE: THE ENGINE STARTING SYSTEM
EXPERIMENT

In this section we show how our two-stage analysis method can be applied
to an experiment on engine starting systems that was described by Grove
and Davis [12, p. 329]. For additional examples, we refer the interested
reader to Bisgaard and Steinberg [8].

The goal of the engine starting system experiment was to reduce the
sensitivity of the system to variations in ambient temperature. The perfor-
mance of the system was evaluated via the relationship between the air-to-
fuel (AF) ratio at the tip of the spark plug and the fuel mass pulse, which is
controlled by the electronic engine management system. This measure was
adopted because the automotive engineers knew that it was a key indicator
of ignition success. The experiment studied seven components of the starting
system: injector type, distance from injector tip to valve head, injection
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timing, valve timing, spark plug reach, spark timing, and fuel rail pressure.
Six different injector types were used; three levels were used for each of the
remaining factors. The L4 orthogonal array was used to define the experi-
mental plan for the prototype starting systems. Each of the 18 systems was
then tested at six conditions, formed by crossing three fuel mass pulses (30,
45, and 60 msec) with two temperatures (—15°C and 4+15°C). Two tests were
run at each condition, so there are 12 results for each prototype.

The full data set, additional details on the experiment, and a number
of alternative analyses can be found in Grove and Davis [12]. We proceed
here only with our approach.

Increasing the fuel mass pulse (FMP) injects more fuel into the engine,
and initial plots of the data for each prototype show, as expected, a negative
correlation between the AF ratio and the FMP. They also show that the AF
ratio is typically higher at —15°C than at +15°C. A number of possible
models might be considered linking the AF ratio to the FMP, and there is
not clear evidence in the experiment to prefer one model over another. For
some prototypes, the AF ratio is almost a linear function of the FMP; for
others the inverse of the AF ratio is nearly linear, and for others the log of
the ratio is most nearly linear. We elected to work with the relationship
between the logarithm of the AF ratio and the logarithm of the FMP,
which seemed to be most appropriate for the full set of prototypes both
for achieving linearity and for reducing the dependence of residual variation
on the mean level of response. But we caution that other metrics could also
be used and might lead to somewhat different conclusions.

The first stage of our analysis is to estimate for each prototype the
effects of log FMP and temperature, including their interactions, on log AF
ratio. The levels of FMP were equally spaced (30, 45, and 60 msec), and if
we had kept FMP on its original scale we could have used standard poly-
nomial contrasts to compute its linear and quadratic effects. For example,
the linear effect would be proportional to the average of the results at 60
msec minus the average of the results at 30 msec. The logarithms of the
FMP levels are 3.40, 3.81, and 4.09, and the resulting scaled contrasts are
(—0.372, 0.040, 0.332) (linear) and (0.169, —0.406, 0.237) (quadratic). The
main effect contrast for temperature is (—0.289, 0.289). The interaction
contrasts are similar to the FMP contrasts, but multiplied by 1 or —1,
according to whether the temperature is high or low, respectively. Each of
the contrasts, when squared and summed over the 12 test points, gives a sum
of 1, in accord with our scaling convention.

The second stage of our analysis estimates the effects of the design
factors on each of the first-stage coefficients. Since there are 18 prototypes,
the “average” contrast in the effects computation has each element equal to
1/18. All the remaining factor effect contrasts are scaled to have the same
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sum of squares. The linear contrast for each three level factor is (—0.068, 0,
0.068), and the quadratic contrast is (0.0393, —0.0786, 0.0393). Injector
type, the 6 level factor, is represented by five orthogonal contrasts. These
contrasts are formed by taking the main effects and interactions of the 2 and
3 level columns that were used at the design stage to assign the levels of this
factor.

Figure 3 shows a normal probability plot of the effects on mean level
(i.e., on the constant terms from the within-prototype regressions). None of
the contrasts sharply deviates from a straight line through the origin. Only
the two lowest values hint at statistical significance. The strongest contrast is
one that corresponds to injector type and indicates that types 4, 5, and 6
have lower average AF ratios than do types 1, 2, and 3. The other large
contrast is for the linear effect of fuel rail pressure and indicates lower
average AF ratios with higher pressure.

Normal Probability Plot for Effects on Mean Level
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Figure 3 A normal probability plot of the factor effects on the mean level of
response from our stage 2 analysis of the engine starting system experiment.
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Figure 4 shows a normal probability plot for the effects related to the
performance curve. The contrasts for the linear effect of log FMP and for
the effect of temperature are clearly significant and dominate all the others.
Figure 5 shows a normal probability plot without the two very large con-
trasts and helps to clarify which contrasts stand out from noise. The only
contrasts that appear to be statistically significant are the three largest and
the two smallest, all of which correspond to interaction effects with tem-
perature. The factors that interact with temperature are the injector type
(two significant contrasts), the distance from the injector tip to the valve
head (both the linear and quadratic components), and the valve timing (the
linear component). The next largest negative contrast is the interaction
between temperature and the quadratic component of the valve timing, so
it seems prudent to also take account of this effect in developing a model for
the system.
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Figure 4 A normal probability plot of the factor effects on the performance curve
from our stage 2 analysis of the engine starting system experiment.
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Figure 5 A normal probability plot of the factor effects on the performance curve
from our stage 2 analysis of the engine starting system experiment, after deleting the
two large effects due to the linear contrasts for fuel mass pulse and temperature.

We can now use the above information to compare different system
configurations. First, we observe that the experiment has indeed borne out a
clear linear relationship between log AFR and log FMP. The average rela-
tionship estimates log AFR by 3.83-1.13 (log FMP). For the three fuel mass
pulses used in the experiment, the resulting estimates of log AFR are 4.25 (at
30 msec), 3.79 (at 45 msec), and 3.46 (at 60 msec). There is no detectable
curvature in the log AFR-log FMP relationship, and the only possible
dependence on the design factors is that the mean level of the line may
decrease when injector 4, 5, or 6 is used and when fuel rail pressure is
increased. The design factors have no effect on the slope of the line.
Overall, we conclude that the relationship is quite consistent across the
prototype conditions.

There is also a strong relationship between log AFR and tempera-
ture, but it is affected by interactions with three of the design factors. It is
easiest to study and model those effects by computing the average stage 1
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temperature effect at each level of the relevant factors, which are listed in
Table 1. The average temperature effect was —1.173. Since the goal of the
experiment was to reduce sensitivity to temperature variation, we seek
levels of the three factors that make the temperature effect closer to 0.
The best choice is to take an injector of type 6 and use the middle tip-to-
head distance and the low level of valve timing (the middle level is almost
equally good). If we assume that the design factors have additive effects on
the temperature effect, the estimated increases in that effect from each of
these choices are 0.296 (from injector type), 0.225 (from the tip-to-head
distance), and 0.153 (from the valve timing). The estimated temperature
effect is then —0.499, about 60% closer to 0 than its average value. Thus
the experiment has identified factor settings that substantially reduce the
sensitivity to temperature, resulting in less variation in product response
and more uniform starting performance.

It is worth noting that if we place the mean level effects and the
performance curve effects on the same probability plot (after appropriate
scaling of the mean level effects), many of the mean level effects stand out
from the line through the origin, contrary to our earlier conclusion that at
most two contrasts are significant and then just barely. This finding suggests
that the within-prototype error, on which we base the statistical significance
of the performance curve contrasts, is too small for judging the mean level
contrasts. That, in turn, implies that a substantial amount of the variability
in the data may be at the interprototype level. This information could
be valuable for future efforts to make the performance curves still more
uniform.

Table 1 Average Estimated Temperature Effect from the Stage | Analysis at
Each Level of the Three Factors That Had Significant Interactions with
Temperature in the Stage 2 Analysis

Level

Factor 1 2 3 4 5 6

Injector type —~1.581 —1.058 —1268 1202 —1.055 —-0.877
Tip-to-head distance —1.507 —-0.948 —1.066
Valve timing —-1.020 —-1.030 —1.469
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6. CONCLUSIONS

Prototype testing is an important stage in the development of new products
and production processes. Great gains are possible by exploiting factorial
designs in prototype studies. Engineers can use these studies to compare
design options, to increase the feedback from the prototypes, and to accel-
erate the design process.

Statistical methods for prototype experiments must take account of
the fact that prototypes, being expensive to build but often cheap to test,
may be run through a battery of test conditions, which themselves constitute
a factorial design. Our two-stage analysis provides a simple scheme for
modeling the ensuing performance curve and its dependence on the design
factors. It correctly accounts for the split-plot error structure that arises
when the test conditions are nested within the prototype design and permits
quick identification of important effects from normal probability plots.
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Optimal Approximate Designs for
B-Spline Regression with Multiple Knots

Norbert Gaffke and Berthold Heiligers
Universitdt Magdeburg, Magdeburg, Germany

1. INTRODUCTION

Piecewise polynomial regression may serve as an alternative to nonlinear
regression models in the case of a single real regressor variable, since poly-
nomial splines possess excellent approximation properties. If the knots have
been chosen appropriately, the spline model is linear in the parameters, and
hence tools from linear model analysis and experimental design can be
utilized. For an overview on the use of polynomial splines in regression
modeling, the reader is referred to Ref. 1.

Let [a, b] be a compact interval (a, b € R, a < b) with associated parti-
tion by given knots,

A=Ky <K < - <Ky <Kg=b

where £ > 1. A polynomial spline (with respect to the knots kg, &4, ..., k) of
degree at most d > 1 is a function on [a, b] that coincides on each subinter-
val [«,, x,41] with some polynomial of degree at most d, 0 <i < ¢ — 1, and
that satisfies some smoothness conditions at the interior knots «y, ..., k,_y,
stated next. Let s(,...,8,_; be given integers with 0 <s; <d — 1 for all
i=1,...,¢£—1, where s, denotes the desired degree of smoothness at
knot «, of the spline functions considered. We abbreviate « = (ky, .. ., k)
for the vector of knots and s = (s, ..., 5,_;) for the vector of smoothness
degrees. Let S,(«, s) be the set of all polynomial splines of degree at most d
with respect to the knots « being s; times continuously differentiable at «, for

339



340 Gaffke and Heiligers

alli=1,...,¢— 1. Note that 5s; = 0 means simply continuity at «,, and ¢ =
| describes ordinary dth degree polynomial regression. Obviously, S,(k, ) is
a linear space, and its dimension is known to be (cf. Ref. 2, Theorem 5)

-1

k=td+1-) s (1)

=]

To define the particular B-spline basis By, ..., B, of S,(«,s) to be
employed, we assign multiplicity ¢ —s, to each interior knot «,i=
l,..., ¢ — 1, and multiplicity d + |1 to both boundary knots. Consider the
extended knot vector ¢ having the knots «, ..., x, as components where
each knot is repeated according to its multiplicity, i.e.,

t=( o tgge) =(a, oo a iy, o Ky Ky ke, Dy D) (2)

(l’ + 1 (1 — 8 (/ — 81 d + 1

Now a family B; ,,i=1,....k+d —q;q=0,1,...,d, of functions on [a, b]
is recursively defined as follows.

1 ifrn<x<t
B (x) — [ 1 =9 1+1
0= 10 otherwise

and for ¢ > 1,
B; [(x) = w; ((X)Bj 41 (X) + [1 = wigy ((D]Biy1g-1(X) (3)

where

W q(.\‘) = [E)\ LAY t) ift},iler<wti{ézl i l<j<k+d—-g+l1l<g<d
i o

Then the B-spline basis By, ..., B, of S,(«, s) is given by
B; = Biy, i=1,...,k 4

(cf. Ref. 2, Theorems 10 and 11).
It is not difficult to see that the basis enjoys the properties
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0<Bi(v)=<l foralli=1,..., kandall x € [a, h] (5a)
Bi(x)=1 if and only if x =« (5b)
B.(x)=1 if and only if x =5 (5¢)
k
Z Bi(x)=1 for all x € [a, b] (5d)
=1
[a, ty2) ifi=1
{xela,b]: B(x) >0} =4 (1, t,rus1) ifi=2,..., k—1 (5e)
(ty, b} ifi=k

We note that the small support property (5e) is a particular feature of the
basic splines B;. Figure 1 shows the B-splines for a special case.

A further favorable property of the B-spline basis, Eq. (4), is its equi-
variance under affine-linear transformation of the knot vector «. That is, if
the interval [a, b] (and its knots «,, i = 0, ..., £) are transformed to another

By B, B3

00 o0 0.0 /L
—
00 65 o7 10 oo os o7 10 o0 0s o7 10
@ [§8] @ o @ M

' [
By
LX) 05 ,\ LX)
oo 00 00 _—/\
——————
ao 63 o7 1.0 0.0 os o7 10 0.0 0s o7 1.0
@ m @ o @ M

Bq

0s

60 s 07 19
@ o)

Figure 1 B-Splines for d =3, /=3, «=(0,0.5,0.7, 1), and s = (2, 1).
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interval {d, 5] with knots &, = L(k;), i =0,...,¢, by the affine-linear trans-
formation L, then the B-spline basis B, ..., B, of S,(%,s) defined corre-
spondingly by Eqgs. (3) and (4) is

B(®=B/(L'(¥) foralli=1,...,kandall % [a,b] (6)

Hence Eq. (6) allows us to standardize the interval [a, 4], e.g., to [0, 1].
The spline regression model states that a regression function y is a
member of the space Sy(k, ), i.e.,

k
y(x) = ZOiB,(x) all x € {a, b]
i=]

for some coefficient vector 8 = (8, ..., 6;)’, which has to be estimated from
the data (the prime denotes transposition). Under the standard statistical
assumptions that the observations of the regression function at any x values
are uncorrelated and have equal (but possibly unknown) variance o2, the
ordinary least squares estimator of 8 will be used. So for designing the
experiment, i.e., for choosing the x values at which the observations of
y(x) are to be taken, the concepts of optimal linear regression design
apply. For mathematical and computational tractability we restrict our-
selves to the approximate theory. An approximate design & consists of a
finite set of distinct support points x, ..., X, € [a, b] (where the support size
r > 1 may depend on &) and corresponding weights §(x;), ..., &(x,) > 0 with
> &(x;) = 1. The design & calls for £(x,) x 100% of all observations of the
regression function at x, for all i = 1, ..., r. The moment matrix (or infor-
mation matrix) of £ is given by

M) = &(x)B(x)B(x,)’ Q)
=1

where B(x) = (B,(x), ..., By(x))'. Note that, by Eq. (5¢), for all x € {a, b] the
matrix B(x)B(x)’ has a principal block of size (d + 1) x (d + 1) outside
which all the entries of B(x)B(x)’ vanish. Hence the moment matrix M(§)
of the design £ is a band matrix with 4 diagonals above and below the main
diagonal, i.e., the (i, j)th entries of M (&) are zero whenever i —j| > d.
Under a design &, all coefficients 6,/ = 1, ..., k, are estimable if and
only if the moment matrix of £ is nonsingular, or equivalently if and only if
it is positive definite. Among those designs & [with M(§) being positive
definite], an optimal design is one that minimizes ®(M(&)), where & is a
given (real-valued) optimality criterion defined on the set PD(k) of all
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positive definite & x & matrices. We are concerned here with Kiefer’s @,
criteria (—oo < p < 1) including the most popular D, A, and E criteria
through p = 0, —1, —oo, respectively. These are defined by

l k —1/p
(M) = (EZM(M)”) if p ¢ {0, —o0)
=1
Oo(M) = [detM)] ', _ (M) = 1/1(M)

where A((M) < A,(M) < --- < A (M) denote the eigenvalues of M € PD(k),
arranged in ascending order. We note that ®,(M) is continuous as a func-
tion of p. In particular, ®_, (M) = lim,_, _,, ®,(M) for all M € PD(k), and
hence the non-smooth E criterion can be approximated by a smooth &,
(with, e.g., p = —50).

In Section 2 we describe the algorithm and discuss the numerical
results. Some results on the support of optimal designs for special cases
are proved in Section 3, providing thus a first step toward a theoretical
explanation of the numerical results.

2. COMPUTING NUMERICALLY OPTIMAL DESIGNS

The basic algorithm we used is that of Gaffke and Heiligers [3], with neces-
sary adaptations to the present situation of polynomial spline regression as
are described in detail in Ref. 4. So we only briefly outline the method.

A sequence of moment matrices M,,n = 1,2, ..., is computed, corre-
sponding to some approximate designs &,,n = 1,2, .... The current design
£,, however, is not computed (except for the final iteration when the algo-
rithm terminates). Thus an increasing set of support points calling for some
clustering or elimination rules is avoided. For twice continuously differenti-
able optimality criteria ® having compact level sets (as, e.g., the &, criteria
with —oco < p < 1), the generated sequence of moment matrices M, have
been shown to converge to an optimal solution to

Minimize ®(M) (8a)
Subject to M € Conv{B(x)B(x)": x € [a, b]} N PD(k) (8b)

where @ is the optimality criterion under consideration and Conv S denotes
the convex hull of a set S of matrices (cf. Ref. 3, Theorem 2.2). Note that, by
Eq. (7), restriction (8b) just expresses that a feasible matrix M is nonsingular
and is the moment matrix of some approximate design.
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So the algorithm solves problem (8) numerically. Additionally, for the
final iterate M, say, a decomposition is computed (see below),

,
M* =) " wiB(x)B(Y) ©)
=1
with relN, a<xf<---<xy<b, and w},...,w >0 such that
Yoi—ywi = 1. A numerically optimal design is then given by £* having sup-
port points x7 and weights £ (x)) =w},i=1,...,r.

Any starting point M, is chosen from the feasible set (8b), e.g., M| =

M (&) with an initial design &, whose support contains & distinct points x; <

- < x; such that Bi(x;) > Oforalli=1,..., k (see Lemma 1 in Section 3).

Given n € N and the current (feasible) iterate M,,, a feasible search direction
M, is computed as the optimal solution of a quadratic convex problem

Minimize g, (m1 —m,) + %(m —m,) H,(m — m,) (10a)
Subject to m € Conv{m(x,), ..., m(x,), m,} (10b)

Here we have denoted by lowercase letters m,, m, and m(x,) the moment
vectors obtained from M,, M, and M(x,) = B(x,) = B(x,)B(x,)’, respec-
tively, by a usual vector operation turning matrices to column vectors.
Owing to the symmetry and the band structure of the moment matrices it
suffices to apply the vector operation to the main diagonal and the d diag-
onals above the main diagonal. So the vector operator considered here
selects that part of a symmetric matrix 4 and arranges the entries in some
fixed order, resulting in a vector vec(4) € R*, where K = (d + 1)(k — d/2).
In Eqgs. (10) we have

m, = vec(M,), m(x;) = vec(B(x;)B(x,)), g, =V vee(G,)

where x1, ..., X, are certain points from [q, b] to be described next (note that
these points including their total number r depend on #, but this dependence
is dropped here to simplify the notation), and G, denotes the gradient of ¢
at M, in the space of symmetrical & x k matrices endowed with the scalar
product (4, B) = tr(4B). The matrix ¥ occurring when vectorizing the gra-
dient is a fixed K x K diagonal matrix with diagonal entries equal to 1 or 2,
such that those components of vec(G,) coming from the diagonal of G,
receive weight 1 while the off-diagonal elements are weighted by 2. This is
to ensure that g, is the gradient at i, of the function

P(m) = d(vec™ ' (m)) (1D
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where vec™' is the inverse operation of vec, converting an K-dimensional
vector into a band matrix [ being restricted in Eq. (11) to the set of all
vectors obtained by vectorizing positive definite band matrices]. Note that
although M,, is a band matrix, this is not true in general for the gradient G,,,
e.g., for the @, criteria with —oo < p < | we have

Gn = - % [q)p(Mn)]lH-l M!I;_I

The points x,,i = 1,...,r, in (10b) are most crucial for obtaining a good
search direction by solving the quadratic problem. Their choice is guided
by the equivalence theorem, i.e., the first-order optimality conditions for
problem (8). A feasible moment matrix M™* is an optimal solution if and
only if

B(x)'(—G")B(x) < tr(—=G*M™) for all x € [a, b] (12)

where G” is the gradient of ® at M*. Moreover, if M* is an optimal solution,
then for any representation of M™ as

M* = " wiB(x)B())

1=1

with some
,
ren, X1, ..., X ea, b, Wi, owe >0, E wi =1
=1

one has
B(:x)) (—=G")B(xT) = tr(—G*M™) foralli=1,...,r

From this it appears reasonable to choose in (10b) the /ocal maximum points
Xy, ..., x, of the function

B(¥)'(=G,)B(x), x € [a, b] (13)

(including, of course, its global maximum points). In fact, computing these is
not too difficult, since B(x)'(—G,)B(x) is a polynomial spline of degree at
most 2d, i.e., a polynomial of degree at most 2d on each subinterval
[«is k1) i =0, ..., € — 1. Thus, standard routines for computing all zeros
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of polynomials can be used. Figure 2 shows an example of the function (13)
for an early iterate and for the final one.

The matrix H, in (10a) is a positive definite K x K matrix, which
should be an approximation of the Hessian matrix of ¢ from (11) at m,.

A good job is done by the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update

Hn = Hn-] + (‘yl;all)_lyllyl; - (‘Slleu—lsn)—l(Hn—lan)(Hn—lsn),

where

v
3%}

5,, =My, —m,_, Yn = 8un — &n-1> n

with any positive definite initial choice of H,.
The quadratic minimization problem (10) can be solved by the
Higgins—Polak method as described in Ref. 3. Let i, be the solution

|
35 =4 |
|
|
25 = |
!
I
-
H
3
i
o ] !
15 {
|
|
i
] |
[
| sF
!
577
JI;
0.0 a.5 0.7 1.0

(2) M

Figure 2 The function (13) for iterate n = 10 (dotted line) and for the final iterate
n = 43 (solid line). Under consideration is the cubic spline model as in Figure 1, and
the optimality criterion is the A4 criterion (p = —1).
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obtained. We note that the Higgins-Polak method also provides weights
Wo, Wi, ..., W, > 0 summing up to 1 and such that

r
i, = wom, + Z wom(x,) (14)
i=l

but this is used only in the final step (see below). Let M, = vec ™! (m,). Now,
a search along the line segment

(1—(1)M,,+(XM,,, OSQS&

(with some fixed @ < 1, usually close to 1) is performed to obtain the next
iterate M, .

To summarize, the method for solving (8) is a modified quasi-
Newton method. The search direction is based on a local second-order
approximation of the objective function ®. The constraint set in (10b) over
which the quadratic approximation is minimized may be viewed as a
polyhedral neighborhood of the current vector iterate m,. It may appear

more natural to minimize that quadratic approximation over the set of all
moment vectors

m = vec(M), M € Conv{B(x)B(x) : x € [a, b]}

This, however, is practically impossible.

After termination of the algorithm with a final iterate M,, (for stopping
criteria see Ref. 3), a corresponding numerically optimal design &* is com-
puted by applying the Higgins-Polak method to the problem of minimizing
the final quadratic approximation (10a) over the slightly smaller set

Conv{m(x)), ..., m(x,)}

that is, the final vector iterate m,, is removed from the generator set in (10b).
This has proved to be favorable, since otherwise a positive wy, may occur in
(14) that could prevent the identification of a corresponding design. We thus
obtain an optimal solution m*, say, to that quadratic problem, a non-empty
subset I of indices from {1, ..., r}, and positive weights w}, i € I, summing
up to 1 and such that

m* = Z wim(x;) (15)

€l
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In all our numerical experiments we observed that m" is very close to the
final vector iterate m, and shares numerically the same value of ¢. Hence, a
numerically optimal design is given by £* supported by x;, i € I, and weights
E*(x)) = wi.

The algorithm shows good convergence behavior, in particular a good
local convergence rate as it is usually observed by a quasi-Newton method.
For instance, the D-optimal designs for spline degree ¢ = 2 and one single
interior knot (i.e., £ = 2, 5, = 1) derived theoretically in Ref. 5, page 43, and
in Ref. 6, Theorem 2, are found very accurately by the algorithm. For
degrees ¢ = 3,4, 5 and one single interior knot, D-optimal designs within
the class of designs with minimum support size k were found numerically by
Lim [6]. The present algorithm computed precisely these designs as the
numerically D-optimal ones in the class of «@// designs (up to two printing
errors in the tables on page 176 of Ref. 6).

Table 1 Numerically Optimal Designs in the Spline Model (Fig. 1)

D A E

Support Weight Support Weight Support Weight

0.00000 0.14286 0.00000 0.08848 0.00000 0.07361
0.00000 0.14286 0.00000 0.09128 0.00000 0.07361

0.16329 0.14286 0.15315 0.16875 0.14473 0.17424
0.14473 0.14286 0.14473 0.16962 0.14473 0.17424

0.43037 0.14286 0.43415 0.18454 0.43418 0.20559
0.43418 0.14286 0.43418 0.18134 0.43418 0.20559

0.62989 0.14286 0.63363 0.14444 0.63316 0.17364
0.63316 0.14286 0.63316 0.14328 0.63316 0.17364

0.75929 0.14286 0.75807 0.15269 0.75720 0.14992
0.75720 0.14286 0.75720 0.14820 0.75720 0.14992

0.90894 0.14286 0.91179 0.17049 0.91907 0.15293

0.91907 0.14286 0.91907 0.17121 0.91907 0.15293
1.00000 0.14286 1.00000 0.09062 1.00000 0.07008
1.00000 0.14286 1.00000 0.09506 1.00000 0.07008

Note: Under consideration are the D, A, and E criteria. The numbers in italics give the optimal
designs supported by the Chebyshev points.
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Table 1 shows a few numerical results for the D and A criteria and the
approximate E criterion ®_g, in the cubic spline model as in Figures 1 and
2. The designs addressed in Table 1 by italics are the D—, A—, and E-
optimal designs within the subclass of those designs concentrated on the
Chebyshev points, i.e., supported by the k extremal points of the equioscil-
lating spline in S;(«, s) (cf. Ref. 7, Section 2). For the D and A criteria these
are computed by a simplified variant of the above algorithm, fixing xy, ...,
x,(r = k) to those Chebyshev points, while the E-optimal design is from Ref.
7. Theorem 4. By that theorem the E-optimal design (among all designs) is
supported by the Chebyshev points. We see from Table 1 that the ®_sq-
optimal design numerically coincides with the E-optimal design. For the D
and A criteria the Chebyshev restricted designs do not differ much from the
numerically optimal designs. The D efficiency of the former with respect to
the latter is 0.99335, and the A efficiency is 0.99476. Similar results hold true
for other spline setups.

In all the cases we considered, the numerically optimal design has
minimum support size and the boundary points « and b are support points.
For D optimality, the minimum support size property has been conjectured
in Ref. 5, page 45, Conjecture 1. In our final section we present some first
results toward a theoretical foundation of the observed phenomena.

3. SOME RESULTS ON OPTIMAL B-SPLINE REGRESSION
DESIGNS

The B-spline basis By, ..., B; of S(k, s) defined by (4) enjoys the fundamen-
tal property of rotal positivity; i.e., for any points xy,...,: v, such that ¢ <
Xy < --- < x; < b the collocation matrix

(Bilx)Dij=1...x (16)

is totally positive. Recall that a k x k matrix 4 = (¢;;);,-,._ is said to be
totally positive if and only if all its minors are nonnegative, i.e., if and only if
forany p e {I,...,k}and all p row and column indices | <i, < --- < ih <k
and 1 <j, <--- < j, <k one has

>0

wou=lo..p =

det((l,‘“ J.-)

Moreover, by Ref. 2, Theorem 12, the collocation matrix (16) is nonsingular
if and only if its diagonal elements are positive. From this we obtain
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Lemma 1

For any design &, the moment matrix of & from Eq. (7) is nonsingular (and
hence positive definite) if and only if there are support points z; < --- < z,
of £ such that Bi(z,) >0 foralli=1,..., k.

Proof. Arrange the support points of & in increasing order,
a <Xy <---<Xx, <bh, say. We may write

M(E) = NEWENE) (17)

where
NE = Bix)aye  and  W(E) = diagtr). .. £(x)

Obviously, M (&) is nonsingular if and only if the rows of N(§) are
linearly independent, or equivalently, if and only if there exist & column
incides 1 <j, < --- < ji < rsuch that the submatrix

(Bi(z)iv=t...k where z, = x;;v=1,...,k

is nonsingular. As noted above, this is equivalent to B;(z,) > 0 for all
i=1,...,k, and the lemma is proved. ]

A design £ is said to be admissible for Sy(x, s), if and only if there is no
design & such that M(§) < M(E) and M(¢) # M(g). That is, the admissible
designs are precisely those whose moment matrices are maximal with respect
to the Loewner partial ordering in the set of all moment matrices of designs.
The Loewner partial ordering in the set of all symmetrical k x k matrices is
defined by

A < B if and only if B — A4 is positive semidefinite

Note that admissiblity of a design does not depend on the particular choice
of the basis of the spline space S,(k, s). For, if we choose another basis f =
(fis---.f&) (e.g., the truncated power basis as in Ref. 8), then this is related
to our B-spline basis B=(B,,...,B;)’ by a linear transformation, i.e.,
f = TB, for some nonsingular & x k matrix 7. Hence the resulting moment
matrices of designs under basis [,

Mp(E) = > &x)f(x)f(x)
i=1
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(x1, ..., x, being the support points of &) are related to the moment matrices
M((&) under the B-spline basis by

M(&) = TMET' for all designs & (18)
Obviously, for the Loewner partial ordering we have
A< B &= TAT < TBT'

for any symmetrical k x k matrices 4 and B.
Any reasonable optimality criterion & is decreasing with respect to the
Loewner partial ordering, i.e.,

If A4, B are positive definite and A < B, then ®(4) > d(B). (19)

Many optimality criteria ® are strictly decreasing; i.e., if additionally A4 % B
in (19), then ®&(4) > ®(B). Examples are the @, criteria for finite p we used
in Section 2. If & is strictly decreasing, then obviously any ®-optimal design
is admissible.

The result of Ref. 8, Theorem 1.1, states that a design & is admissible
for S,(x, s) if and only if

#supp) Nk, k) <d -1+ Z ld — %s,] forall0<i<j<e,

ri<t<y

(20

where supp(¥) denotes the support of & and | x] is the largest integer < x. For
the case that 5; € {0, 1} foralli=1,...,£ — [, the observed minimum sup-
port size property of ®,-optimal designs (where p < 00) is explained by the
following result (cf. also Ref. 8, pp. 1558-1559).

Lemma 2

Lets, € {0,1} foralli=1,...,¢— 1. If § is admissible for S,(k, s) and the
moment matrix M (£) is nonsingular, then the support size of £ is equal to k
[the dimension of S,(«, )], and the boundary knots «;, «, and all the interior
knots «; with smoothness s; = 0 are in the support of .

Proof. By (1), k=4¢€d+1—«, where o denotes the number of
interior knots «; with 5; = 1. Consider the 8 = ¢ 4+ | — « knots

Kip <0 <Ky,
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which are the end knots of the interval and the interior knots with smooth-
ness zero. By Eq. (20), forallv=1,...,8-1,

#supp(§) N (k. &, ) <d — T+ a(d—1)

where «, denotes the number of knots of smoothness 1 in the interval
(1, k,,,)- Hence,

A—1
#EUPPE\ K, i, D S B= DA =D+ =1 a,

v=1

=B-l4+a)d-1)=Ed-1)=k-8

Since M(§) is nonsingular, we have #supp(§) > k, and thus «,, .. LK, €

supp(§) and #supp(§) = k. ]

For polynomial spline regression with higher smoothness, a theoretical
explanation of the minimum support size property of & ,-optimal designs is
still outstanding. It has not even been proved that the support of a &,-
optimal design necessarily includes the boundary points of the interval
[a, b]. However, for D optimality (p = 0) the latter can be proved (see
Lemma 3 below; see also Ref. 6, Lemma 1).

For the rest of the chapter we will be concerned with D-optimal
designs for polynomial spline regression. As is well known [and is obvious
from Eq. (18)], D optimality of a design (within any class of designs) does
not depend on the particular choice of the basis of the space S,(«, 5); thus,
we will use the notion of a D-optimal design for Sy(«, s). The following
result has been stated by Kim [6, Lemma 1]. However, the proof given in
that paper is not convincing, in our view, and we give different proof here.

Lemma 3

The D-optimal design for S,(k, s) (with arbitrary degree, knots, and asso-
ciated multiplicities) has both boundary points «y = a and x; = b among its
support points.

Proof. Let & be any design with nonsingular moment matrix M(£),
and let ¥; < --- < x, be the support points of §&. Consider the representation
(17) of M(&). In the following we denote by N; (;: """ ’P) the submatrix of N(&)

..... Jp

with respective row and column indices 1 <ij <--- <i, <k and 1 <j; <

- <j, < r(where | <p <k), ie,
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T A
Nl = (Butw),,

By (17) and the Cauchy—Binet formula, we have

detM®= > (]‘[.g( v))det NE(’ k) 1)

Py < sr \v=1 ok

Suppose that x} > a. We will prove that & cannot be D optimal.

Let E be the design obtained from & by replacmg the support pomt Xy
by a and §(a) = &(xy), E(\,) =&(x;) foralli=2,...,r. By (21) and its version
for E we obtain

det M(&) — det M(£)

k
1,2,...,k 1,2,...,k
= X E(x, [detN(” ) dtN( )]
25,%2_“(_“5,,5( ')(I“:Iz -’\)) 1ok Vi

(22)

From (5a)-(5¢) we see that the first column of N; ( Z) is the first unit
vector in R*; thus S

det N; (1 2 ,)_detN (2 'k> (23)
1]7,...,]/\ o Jk

Since the collocation matrix N 1}:::::,) is totally positive, we have by the

Hadamard-type inequality (cf. Ref. 9, p. 191) and by (5a),

2,...,k 2,k '
0 < det NE(I ]7 Jl\> < BI(\I)NE</ ]]\) < det Né‘(}% ,I.\I‘> (24)

Moreover, by (5b), the last inequality in (24) is strict whenever the matrix
NE(,/§:::::_£\;) is nonsingular. In fact, such indices 2 < j, < .-+ < j, <r exist.
For, by (21), since M(£) is nonsingular, there exist indices | </} <
Ja < -+ < ji <r such that Ng(“'f’,“) is nonsingular, and again by apply-
ing the Hadamard-type inequality to the latter totally positive matrix we
obtain
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1,2,...,k Lok
1225 -0 Jk ’ 20 Jk

Together with Eqs. (22)—(24), it follows that
det M(£) < det M(£)

and thus & canot be D optimal.
The case for x, < b is treated analogously.

Some results on D-optimal designs for Sy(«, s) within the class of mini-
mum support designs were derived in Ref. 10. Actually, in that paper differ-
ent polynomial degrees «; on each subinterval [k, «,1],i=0,...,¢—1,
were admitted, but we will not follow this extension here. For short, a design
with support size k = dim S;(«, s) that is D optimal within the subclass of all
designs with support size k will be called a D-optimal minimum support
design for S,(k, s). As is well known, a D-optimal minimum support design
assigns equal weights 1/k to each of its support points. As the proof of
Lemma 3 shows, the result of that lemma pertains also to a D-optimal
minimum support design. Hence, by (17), a D-optimal minimum support
design for S,(x, s) is determined by its support points

XN=a<x5<- - <xi_<xi=b

where x* = (x7, ..., x}) is an optimal solution to the problem

Maximize det N(x) (25a)

Subjecttox; =a<xy < - - <X <X, =b (25b)
where x =(x,...,x;) and N(x) denotes the collocation matrix to
Niye.oy X, L€

N(x) = (Bf('\‘./))r.jzl,...,k

For the case of merely continuous polynomial spline regression (that is,
s;=0 foralli=1,...,£—1) it was claimed by Park [10, p. 152] by some-
what heuristic arguments, that the D-optimal minimum support design in
S,(k, 0) is obtained by putting together the support points of the D-optimal
designs for ordinary dth degree polynomial regression on the subintervals

[k, ki1, i =0,..., € — 1. We give a proof thereof in Corollary 5. We start
with a more general result.
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Lemma 4

Let iy € {l,...,£— 1} be such that the interior knot «, has smoothness
5;, = 0. Then the support of the D-optimal minimum support design for S,
(k, $) is the union of the supports of the D-optimal minimum support designs
for S,(x", sV) and for S, sy, respectively, where

1 1
”:(/(o,xl,...,x,o), s”:(sl,...,s,»o_l)

2) 2
( =(K,0,K,U+|,...,K[) S( )Z(Si0+1,...,S(+1)

K

K

(Ifig =l oriyp = £ — 1, the sets S (", sy or S (P, 5Py are to be under-
stood as the space of all dth-degree polynomials over [kg, «(] or {ky_y, k¢,
respectively.)

Proof. Consider the vector ¢t = (¢, ..., t;,441) of multiple knots from
Eq. (2). Let kg be the index for which

Kkgt1 = =+ = tipd = Ky,
ie.,
-l =1
ko=d+1+) (d=s)=ipd+1-Y s (26)
=1 =1
From (5e) we see that
By, ..., By, vanish on [k, , b] (27a)
and
Biys1s -+ .o By vanish on [a, «, ] (27b)
Also, observing (5a) and (5d), we have
By (k) =1 (27c¢)
Let x = (x, ..., x) satisfy (25) and such that the collocation matrix N(x) is
nonsingular, i.e, B{x,) > 0 for all i =1,..., k. By (27a)-(27c), Xko—1 < Ky
and xj 4 > «,. Hence the Hadamard type inequality for totally positive

matrices entails, using notations for submatrices as in the proof of
Lemma 3,
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0 < det N(x)

saenm () a0 1)) @)
e R LXSE W B
S GRS LA s

If xi, =k, then the column vector (BI(K,O,...,Bk(K,O))’ is the kyth unit
vector in R, as follows from by (27c¢), (5a), and (5d). Hence, if x; = «;,
then there is equality in (28a)-(28c), but otherwise there is strict inequality
throughout. Consequently, an optimal solution x* to (25a) and (25b) must
satisfy v} = «,,. Now, for any x satisfying (25b) and x;, = «,,, we may write

g7 0T ) = e
det N(fz j: ; f) = det No(x?)
Hence
det N(x) = det N, (x'V) det No(x?) (29)

where we have denoted

=), MED) = (B)),

Ko
2 2 .
x(—) = (’\-l\'n’ T '\'k)’ NZ(x( )) = (B"('\_/))l‘l=ko ..... k

Equation (29) ensures that an optimal solution x* of (25) must be such that
x*1 is an optimal solution to the problem

Maximize det N;(x")

Subject to a = x| < X3 < -+ < N < Xg, =K,

*(2)

and x™*' is an optimal solution to the problem

Maximize det Ng(x(z))

Subject to k,, =Xy, < X 41 < - < Xpy <X =b
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Now the assertion follows by observing that the matrices Nl(x“’) and
N>(x?) are the collocation matrices to x'D and x® under special bases of
the spline spaces Sy, sVyand S, (2, '), respectively. For, note that by
(26) and (1), ky is the dimension of the space S(/(K“) sy, The B-splines
B, .... By, restricted to the interval [« «,] are clearly members of
S, (K“) “)) they are linearly independent [smce by (29) there is a nonsin-
gular collocation matrix in these splines], and hence they are a basis of the
space S‘/(K(l) sM). Similarly, it can be seen that the dimension of S,[(K( D52
is equal to k — ky + I, and the B-splines BA . ..., By restricted to the mter—
val [k, , b] form a basis of the space Sa(k" 2) 2 )). O

Repeated application of Lemma 4 for merely continuous polynomial
spline regression yields

Coroliary 5

The support of the D-optimal minimum support design for S,(x, 0) is the
union of the supports of the D-optimal designs for ordinary dth-degree
polynomial regressions over the subintervals [k, x,.1), i =0,..., £ — L.
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1. INTRODUCTION

Understanding variation is fundamental to quality improvement and custo-
mer satisfaction. That was realized early by Shewhart (1931) and later
emphasized by, for example, Deming (1986, 1993). While Shewhart and
Deming mainly concentrated on the reduction of variation by removing
so-called assignable or special causes of variation, Taguchi (1986) suggested
a systematic way to make products and processes insensitive to sources of
variations (see also Taguchi and Wu (1980)). This strategy is usually called
robust design methodology or robust design engineering; see, for instance,
Kackar (1985), Phadke (1989), and Nair (1992). An important step is to
identify factors, controllable by the designer or process developer, that
affect the dispersion of a response variable y of interest.

Let x denote a vector of control factors, and let z be a vector of
environmental variables that vary in a way usually not controllable by the
designer, although some of its components might be controllable during the
course of an experiment. A quite general way to describe the outcome y is

y=f(x)+g(@) + h(x,2) + € (x,2) ()

where f(x) is the expectation of y, f(x) + g(z) + h(x, z) is the conditional
expectation of y given z; here h(x, z) corresponds to the interaction between

359
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x and z. In robust design methodology we want to determine levels of the
factors, i.e., components of x, such that the effect on y of the variation of €
and z is made as small as possible while f(x) is kept on target. Assume that it
is possible to vary all components of z in an experiment. Then the interac-
tion between x and z is important in order to identify a robust design; see,
for example, Box et al. (1988) and Bergman and Holmquist (1988). Very
often, however, we cannot vary all components of z; we have to find factors
(components of x) that affect the dispersion of y, i.e., variables having a
dispersion effect. To clarify this approach we expand the variance of y by
conditioning on the environmental factors z:

Var{y] = E[Var[y|z]] + Var[E[y|z]] (2)

The two terms in the variance of y can be interpreted as follows. The first
term on the right, E[Var[v|z]], portrays how the variance of y, given z, is
affected by dispersion effects, i.e., factors affecting the spread of the data.
The second term on the right, Var[E[y|z]], portrays how the variance of y is
affected by parameters in the location model—including fixed effects of z
such as design by environmental interaction effects. The approach is moti-
vated by the incorporation of dispersion effects, since direct location mod-
eling of both design factors and environmental factors is allowed; thus this
standpoint reduces the risk of confounding location effects and dispersion
effects. Theoretical justification for the approach is also provided by
Shoemaker et al. (1991), Box and Jones (1992), and Myers et al. (1992).

In this chapter we discuss how to identify control factors, i.e., product
or process parameters, having dispersion effects; in particular, we discuss
how dispersion effects can be identified using unreplicated experimental
designs in the 2K7 series of fractional factorial designs (see Bergman and
Hynén. 1997). For some extensions to more general designs, see Blomkvist
et al. (1997) and Hynén and Sandvik Wiklund (1996).

2. IMPROVING ROBUSTNESS THROUGH DISCOVERY OF
DISPERSION EFFECTS

When it is possible to vary environmental (noise) factors in an experiment,
robustness improvement is possible through location effect modeling if
interaction effects are found. However, in this section improving robustness
through minimization of the first variance term in (2) is considered. It was
not until fairly recently that dispersion effect modeling became a central
issue in parameter design, originally not emphasized even by Taguchi.
Historically, there are many anecdotes associated with dispersion effect
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modeling, but many of these are merely anecdotes or aimed at making the
estimation of location effects as efficient as possible. During the past decade
this problem area experienced a rapid growth of interest, as shown by the
number of applications and published papers. In general, there are two
approaches for dispersion effects modeling: Either the experiment is repli-
cated, or it is not. Major emphasis in this chapter is placed on the latter case;
however, for the sake of completeness both approaches are considered.

In a replicated experiment, identification of dispersion effects is fairly
straightforward. Depending on the error structure of the experiment, e.g.,
on whether or not the replicates are carried out fully randomized, the iden-
tified dispersion effects are effects measuring variability either between or
within trials. Some may use the terms replicates and duplicates, or genuine
and false replicates, respectively. If we compute sample variances, under
each treatment combination, on which new effects can be computed, the
analysis is rather uncomplicated. Taking the logarithm prior to computing
the effects improves estimation (see Bartlett and Kendall, 1946). The new
effects, which can be seen as dispersion effect estimates, can be plotted on
normal probability paper to discriminate between large and small effects or
analyzed with other techniques such as analysis of variance. For more back-
ground on this topic, see Nair and Pregibon (1988) and Bisgaard and Fuller
(19995).

If the problem of dispersion effect modeling is a fresh arrival. identi-
fication of dispersion effects from unreplicated experiments is of even more
recent date. Rather pioneering, Box and Meyer (1986b) published a paper
addressing dispersion effect identification from unreplicated two-level frac-
tional factorial experiments in the 28~ series. Their contribution was not
entirely unique; Daniel (1976), Glejser (1969), and many others had touched
upon the subject earlier, but Box and Meyer were the first to propose dis-
persion effect identification from unreplicated experiments as an important
aspect of parameter design. In a paper by Bergman and Hynén (1997), in
which the problem area is surveyed and a new method is introduced; dis-
persion effects from unreplicated designs in the 2" series can now be
identified with well-known statistical significance testing techniques (see
also Section 3). It is still too early to judge the significance of the new
method, but compared to existing methods the new proposal does not
rely on distributional approximations or model discrimination procedures
that are entirely ad hoc. There is, however, an assumption of normality that
is rather critical (see Hynén, 1996). Moreover, the method proposed in
Bergman and Hynén (1997) is generalized to experimental designs other
than the two-level designs from the 27 series by Blomkvist et al. (1997)
and to the inner and outer array setup by Hynén and Sandvik Wiklund
(1996). The use of normal probability plotting and transformations in
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combination with the method of Bergman and Hynén (1997) is considered
by Blomkvist et al. (1997).

A different approach to the same problem was taken by Nelder and
Lee (1991) and by Engel and Huele (1996). In both papers a generalized
linear model approach is taken: see also McCullagh and Nelder (1989).

Overall, even if many problems remain to be solved, the contribution
provided by the papers cited above constitutes a technique that can be useful
for many purposes. It can be used to identify general heteroscedasticity, to
relate heteroscedasticity to certain factors studied in the experiment, or
simply to provide an additional component to the design engineer’s toolbox
useful for identifying the most robust design solution. Also note that the
techniques used for unreplicated designs may be used in conjunction with
duplicated designs to identify different components. The method suggested
by Bergman and Hynén (1997) is discussed in the following section.

3. DISPERSION EFFECTS IN TWO-LEVEL FRACTIONAL
FACTORIAL DESIGNS

Let i denote one of the factors in an unreplicated two-level fractional fac-
torial design. Define o7, as the average variance of the observations when
factor i is at its high level, and let 67 be defined correspondingly. Factor i is
said to have a dispersion effect if o,—2+ # o7_. Natural but naive indicators for
a,-2+ and a,»z_ are the sample variances based on all observations when factor i
is at its high and low level, respectively, 1.e., s°(i+) and s*ii—). Box and
Meyer (1986b) suggested the use of ratios F, = s%(i+)/s*(i—) to identify
dispersion effects. However, despite the notation, they noted that the F
ratios did not belong to an F distribution owing to the presence of disper-
sion and location effect aliasing. The location effects had to be eliminated
before estimating dispersion effects. Therefore, estimates were calculated
from residuals obtained after eliminating suspected location effects. Later,
some alternatives to Box and Meyer’s approach were given. Nair and
Pregibon (1988) extended the method to the case with replications.
Furthermore, essential contributions are given by Wang (1989) and
Wiklander (1994), who propose alternatives to the unreplicated case.

3.1. Location Effects

Let y be the (n x 1) response vector from a complete or fractional factorial
experiment with an (n x n) design matrix X with column vectors
Xg, ..., X,_;. Column x¢ is a column of I’s, and the remaining columns
represent contrasts for estimating the main and interaction effects. We
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assume that the observations y,,...,y, are independent with variances
Viy] = 0,2,, u=1,...,n Possibly, o, depends on the factors varied in the
experiment. Note that, for example,

Let z = (1/m)X’y be the vector of estimated mean response, main, and
interaction effects. As usual, we denote Elz] = f, whereupon zy, ..., z,_; are
independent with equal variances

1 n )
Var[z, ] = — o k=0,...,n—1
[l\] I’l?’;a

As noted by Box and Meyer (1993), the “vital few and trivial many” prin-
ciple suggested by Juran (the Pareto principle) ensures that in most cases
only a few B’s are nonnegligible. Therefore, we can use the normal plotting
technique suggested by Daniel (1976) to find these B's (see also Daniel,
1959). Of course, there may be problems due to confoundings when highly
fractionated designs are used, but this issue is not discussed further here.
See, for example, Box and Meyer (1986a, 1993), who give an interesting
approach to these problems using Bayesian techniques.

Under the Pareto principle, only a few degrees of freedom are used to
estimate nonnegligible B values. Therefore, the remainder of the contrasts

can be used to estimate the variance ag‘, ie.,

In order to identify dispersion effects, we shall use additional contrasts
that are based on linear combinations of those column vectors in X asso-
ciated with negligible location effects.

3.2. Dispersion Effects

Box and Meyer (1986b) created new column vectors based on columns from
the original design matrix X:

| 1
Xjie =50 +X,) and - ox = (X - X,,) (1)
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where x,, is the column vector corresponding to the row-wise (Hadamard)
product of x, and x;; i.e., if x; and x, correspond to main location effects,
then x;, corresponds to the i x j interaction effect. Note, for example, that
the uth element of x;, is equal to x,; if x,, = +1 and zero otherwise.

Let us now introduce the set I, of nonordered pairs of column vectors
{x,,x,,;} from X, such that the pdir {xg, x,.0} 1s excluded and neither of the
correspondmg contrasts z, = x,y and z,, = x,;y has been judged to estimate

nonnegligible location effects i.e., their expected values are judged to be
Zero:

E[x/yl = E[x/;y]=0 )

Note that there are (7 — 1)/2 members of T, if all location effects are
judged to be negligible, i.c., if we have E[x/y] = 0 for all j. It is straightfor-
ward to show that the contrasts corresponding to (1), z;;, = x,-'|,-+y and
Zjji- = X}y, have variances

Varlzyi] = ga,-2+ and Varlzy;_] = gaf_, respectively  (3)

Now, let x; be associated with a studied factor, i.e., let x,y estimate one
of the main effects. If o+ and o7_ are d1fferent this factor has a dispersion
effect. Therefore, the difference between .j|,+ and -”,_ gives information
about the magnitude of this dispersion effect. If we can find many 1nd1ces
J such that {x,, x,;} belongs to I',, then all the correspondmg H”,+ and ~,|,_
can be used to estlmate the difference between o7, and a,_ Moreover, since
the column vectors x;,;, are orthogonal, the contrasts ,|, + are mdependent
Therefore we can use an F test for testing Hy: o,+ =0} against
H; :o ,-+ #* c,_ with the test statistic

2
Z{/‘]L\',,.\‘,.,)el‘,] Zjli+

F = (4)

> Zj
{il;.x, e} “jli-

Under H,, the distribution of F is an F distribution with (m, m)
degrees of freedom, where m is the number of elements {x;, x;;} in [,
Note that the test is double-sided; i.e., both large and small values of F,
supply evidence against the null hypothesis.
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3.3. Alternative Expressions

The intuitive understanding of the above expressions might be somewhat
vague. However, more intuitive expressions exist. Compute new “residuals,”
Foo 0=1,...,n, based on a location model including the active location
effects expanded with the effects associated with column / and all interaction
terms between i and the active location effects. Then the statistic D# may
be computed as

Z'\‘lll:+1 FIZ‘
Z.\ =-1 75

w=

DIBH —

A third interpretation is the following. Given the identified location
model, fit separate regressions to the two sets of data associated with the
high and low levels of column i, respectively; i.e., use column 7 as a branch-
ing column. Compute the corresponding residual vectors, F,, and f,_, and
calculate D?# as

n/2 2
DIBH _ Dt it

- Zn/z -2
u=I Fa—

This alternative is, in fact, a generalization of the parametric test suggested
by Goldfeld and Quandt (1965). They proposed a similar approach for
identifying heteroscedasticity in a more general regression model.
Regarding the three alternatives, we see that the second one intuitively
explains the differences between D?? and the methods based directly on
residuals. That is, it is necessary to adjust the original residuals to obtain
independence between the two sets of residuals. This independence is, of
course, conditional on the judgments made in (2) but provides the sufficient
requirements for D being F-distributed. The third alternative is the most
natural way forward to generalize the proposed method to designs other
than the 2877 series, e.g., to nongeometric Plackett and Burman designs and
to factorial designs with more than two levels (see Blomkuvist et al., 1997).

4. AN ILLUSTRATION FROM DAVIES (1956)

In Davies (1956), data from an improvement study concerning the quality of
dyestuff was presented. The outcome was also given an interesting reanalysis
by Wiklander (1994). We use the same data set to illustrate our method. The
improvement study was carried out as a 2°~! fractional factorial experiment
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without replicates involving five factors, labeled 4—FE. The defining relation
was chosen as | = —4ABCDE. The quality of the dyestuff was measured
by a photoelectric spectrometer, which gave a quality characteristic of
“the smaller the better” type; i.e., the lower the value recorded, the better
the quality. Responses and all 15 orthogonal columns concerning location
main and interaction effects are given in Table 1.

Since no independent error estimate is available, the normal probabil-
ity plot of contrasts suggested by Daniel (1976) is a convenient tool for
analysis (see Fig. 1). From this plot it appears that factor D is the only
location effect present in the data; hence columns other than D can be
used for estimating dispersion effects. In Davies (1956) only location effects
were considered, but Wiklander (1994) detected and showed evidence of a
dispersion effect from factor E. Further investigations will be conducted
using our method.

An estimate of the dispersion effect from factor E becomes available
on combining certain columns according to Eq. (1). The pairs of columns
included must be judged to belong to the set I'g, i.e., judged not to corre-
spond to active location effects. These new contrasts and their calculated
values appear in Table 2.

For illustration, the contrast z g, is derived by combining columns 4
and AE, i.e.,

zqee = (1/2)(X4 +X4.0)y

Furthermore, testing Hyg : o,2+ =0l against H, : a,~2+ + o7 for other factors
will require calculations analogous to those in Table 2 but based on other
contrasts. The results from such a procedure are presented in Table 3. Note
however, that the five F tests are not independent.

From Table 3, we see that factor E has a dispersion effect that is
difficult to disregard. Wiklander (1994) detected this dispersion effect and
found it significant. However, she used only (3, 3) degrees of freedom in a
similar test. Furthermore, even factor D might have a dispersion effect that
was not detected by Wiklander (1994). However, a complete analysis of data
should always involve residual analysis, which here reveals a possible
abnormality in observation 11. Treating y;, as a missing observation and
recalculating it by setting some negligible contrast to zero (see Draper and
Stoneman, 1964) shows that the dispersion effect from D becomes insignif-
icant. Furthermore, the dispersion effect from E is fairly insensitive to
changes in y;;, and it is therefore reasonable to consider E as the only active
dispersion effect on the dyestuff data. Of course, there is also always the risk
of overestimating the significance due to the multiple test effect.



Table 1 Design Matrix, Responses, and Confounding Structure up to Two-Factor Interactions for the Dyestuff Data
u A B C D AB AC AD BC BD CD -DE -CE -BE -AE -E Vi
i - - - - + + + + + + — - - - + 201.5
2+ - - - - - - + + + + + + -~ 178.0
3 — + — — — + + — - + + + — + — 183.5
4 + + - - + - - - - + - - + + + 1760
5 - - + — + - + - + - + — + + - 188.5
6 + _ + - — + - — + - - + - + + 178.5
7 _ + + _ _ — + + - —_ - + + - + 174.5
8 + + + - + + - + - - + - - - - 1965
9 - - — + + + — + - - — + + + - 255.5
10 + - - + — - + + — — + - - + + 2405
11 _ T _ + _ + _ — + - + — + - + 2085
12 + + — + + - + - + - — + - - — 244.0
13 - — + + + — — — - + + + — — + 274.0
14 + - + + — + + - — + — — + — - 2575
15 - + + + — - - + + + — - - + - 256.0
16 + + + + + + + + + + + + + + + 2745

[9€ uonesynuap| 118y pue s}oaY3 uolsiadsig
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Figure 1 Normal probability plot of contrasts for the dyestuff data.

Table 2 Contrasts of Use for Estimating the Dispersion Effect from Factor £

Contrast E=""+" E = ©_"
SAIEE -7.5 11.0
TBIEL 0.5 —61.0
Qe 37.5 75.0
ZABIEx 9.5 124.0
TACIEL 26.5 -20
ZAD|E+ 35.0 6.5

Table 3 F Ratios for the Five Factors from the Dyestuff Data

Hy, F ratio d.f. P value
Oy =07 0.36 (6.6) 0.239
Ohy = Op 2.83 (6.6) 0.231
OFy = 0p_ 0.37 (6,6) 0.252
Ohy =09 4.47 (7.7 0.0665

0%, =0t 0.14 (6.6) 0.0305




Dispersion Effects and Their Identification 369
5. GENUINE REPLICATES AND SPLIT-PLOT DESIGNS

Genuine replicates require full randomization both between runs and
within replications, which entails a large amount of experimental work
(see, e.g., Box et al., 1978, p. 319). When experiments are expensive, as
is often the case in industry, the randomization procedure within replicates
is sometimes neglected and the experiment is given a split-plot structure.
As seen in one of the examples provided by Bergman and Hynén (1997),
this does not have to be a disadvantageous property but can instead be
used to estimate two different variance components. Earlier analytic tech-
niques did not support this special property, for which reason split-plot
designs have received some criticism. However, some constructive remarks
were made by Box and Jones (1992), Lucas and Ju (1992), and Anbari and
Lucas (1994).

The method presented in this chapter is applicable to experiments with
both genuine and split-plot replicates. Genuine replicates simply increase the
degrees of freedom associated with the test statistic, Eq. (4), while split-plot
replicates enable estimation of one additional variance component.
Therefore, the latter of these two techniques ought to give the greatest
increase in knowledge of how the system really works.

6. ON THE PLANNING OF ROBUST DESIGN
EXPERIMENTS

The area of robust design methodology is constantly developing; thus a
routine for planning experiments is very difficult to establish. In particular,
developments enabling new methods for dispersion effect estimation will
require changes in existing robust design techniques. We do not claim
that the method presented in this chapter is the final step within this area.
On the contrary, further research is necessary to fully understand the impact
of dispersion estimation on experimental work. In this chapter, we have
focused mainly on identification, although the success of an experiment is
dependent on thorough planning. Therefore, some effects on the planning
phase are worth mentioning.

Finding new techniques for testing and estimating dispersion effects
from unreplicated experiments is a large step toward improving design
economy. For instance, at the screening stage of sequential experimentation,
replicates for identifying dispersion effects will not be necessary.
Furthermore, it becomes possible to estimate additional variance compo-
nents, which gives new perspectives on the use of some special designs such
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as split-plot designs as well as Taguchi’s cross-product designs. Finally, and
probably the most important issue to keep in mind, no technique is so
perfect that sequential experimentation becomes unimportant. Problem sol-
ving is an iterative learning process, where “all-encompassing” solutions
seldom come instantaneously. The Plan-Do-Study-Act cycle, or the

Deming cycle (see Deming, 1993), is a model for every learning process,
even the experimental one.
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ABSTRACT

Detecting the relationship between the mean and variance of the response
and finding the control factors with dispersion effects in parameter design
and analysis for dynamic characteristics are important. In this paper, a
graphical method, called multiple mean-variance plot, is proposed to detect
the relationship between the mean and variance of the response. Also to find
the control factors with dispersion effects, the analysis of covariance method
is proposed, and its properties are studied compared with the dynamic
signal-to-noise ratio. A case study is presented to illustrate the proposed
methods.

1. INTRODUCTION

Achieving high product quality at low cost is a very important goal in
modern industry. One of the most popular statistical methods using an
experimental design approach to reach this goal is parameter design,
which is often called robust parameter design. Parameter design was pro-
posed by Taguchi (1986, 1987) and explained further by Box (1988), Leon et
al. (1987), Nair (1992), Phadke (1989), and Park (1996), among many
others. The main idea of parameter design is to determine the setting of
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control factors (or design parameters) of a product or process in which the
response characteristic is robust to the uncontrollable variations caused by
the noise factors and hence has a small variability.

The parameter design uses the S/N (signal to noise) ratio 10 log
(pz/cz), for the static characteristics (hereafter it will be called the static
S/N ratio), where p and o’ are the mean and variance of the response,
respectively. S/N is the ratio of the power of the signal to the power of
the noise. The S/N ratio for the dynamic characteristics, which will be here-
after called the dynamic S/N ratio, is defined as 10 log (B?/c?) under the
model y =o+ BM + ¢ or y = BM + &, where y is the response, M is the
signal factor, and o is the variance of the error . Here B implies the power
of the signal, and o’ implies the power of the noise.

The usefulness of the dynamic S/N ratio has been proved, since many
engineering systems can be adequately described as dynamic characteristic
problems. See, for instance, many case studies presented in the American
Supplier Institute (1991) symposium on Taguchi methods.

2. DESCRIPTION OF THE DYNAMIC CHARACTERISTICS
SYSTEM

In the parameter design, the experimental factors are classified according to
their roles into the following three classes.

1. Signal factor (M). This factor influences the average value but not
the variability of the response. It is also called the target-control
factor.

2. Noise factor (N). This factor has an influence over the response
variability but cannot be controlled in actual applications.

3. Control factor (x). This factor can be controlled and manipulated
by the engineer, and its level is selected to make the product’s
response robust to noise factors. It is the goal of the experiment
to determine the best levels of the control factors that are robust to
noise factors under the existence of a signal factor.

Parameter design systems are classified into two categories according
to the nature of the target value of the response. One is the static system,
which has a fixed target value, and the other is the dynamic system, which
has varied target values according to the levels of the signal factor. The
dynamic system is shown in Figure 1. In this section the dynamic character-
istic problem which has a continuous signal input and a continuous output
with some control factors and noise factors is considered.
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Control Factors

—» | Signal | ——p —_— Output Response

Input (Dynamic Characteristic)

T

Noise Factors

Figure 1 Dynamic system of parameter design.

3. UNKNOWN VARIANCE FUNCTION AND DETECTION

Let y;; denote the response corresponding to the ith setting of the control
factors, jth level of the signal factor, and kth noise factor or repetition, for
i=1,..0Lj=1,.., mand k=1, ..., n. Then the data structure of the
response in the dynamic system is assumed to be expressed as

Yik =f{M)) + e (1

The data structure in this section has the following assumptions:

. . pl
1. The error g has zero expectation and variance cj.

2. The expectation of y;; is f;(M,) for all k and can be expressed as a
polynomial, especially the first-order polynomial o, + ;M, or
BiMj'

3. The effect of the noise factors is included in the error variance o
so the subscript of the variance term 0%,- does not contain k.

4. The variance of the response depends on its expected value and
can be expressed as 67 x VIE(y;)], where the variance function V
(+) represents the relationship of the variance of the response to its
mean, and the term o7 represents the remaining part, which
depends on the ith control factor setting.

2
ij»

The experimenter is interested in finding the control factor setting that
makes o? small and minimizes o? x VIE(y)]- In general the relationship
between the mean and variance is unknown, and the detection and modeling
of the variance function V(-) is important.
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For the detectiong of V(-) and model fitting, the following three-step
optimization procedure is proposed.

Step 1. Detect the relationship between mean and variance by con-
structing a multiple mean—variance plot.

Step 2. Find the control factors with dispersion effects by the analysis
of covariance (ANCOVA) method.

Step 3. Fit the response as a function fi(M;) of the signal factor M to
adjust the sensitivity of the response to the signal factor M.

3.1 Detecting the Relationship Between Mean and
Variance by Using a Multiple Mean—Variance Plot

To detect the relationship V(-) between the variance and the mean of the
response, a multiple mean—variance plot (MMVP) is suggested. Nair and
Pregibon (1986) proposed the mean—variance plot, and Lunani et al. (1995)
proposed the sensitivity—standard deviation (SS) plot for the dynamic char-
acteristic problems. Lunani et al. considered the model where the variance
structure satisfies the relationship

Var (_1,'1:”\,) = B?O‘,z for some 0

Under this model there is a logarithmic relationship between the sensitivity
measure (B,) and the standard deviation (s;),

log(s) = log(c) + 3 log(f) @

where B, and s; are obtained from the regression fitting for each control
factor setting /. Lunani et al. plotted [log ([3 ), log(s;)] for each control factor
and visually examined the plots to check the nature of the relationship. They
noticed that when some control factors have dispersion effects, the inter-
cepts log (,) can vary from one control factor setting to another, making it
possible to have several parallel lines with a common slope 8/2 in the SS plot
under model (2).

The MMVP is proposed for model (1). It is the combination of the
mean-variance plot and the multiple SS plot. Under model (1), there is a
logarithmic relationship between y; and sﬁ

log(s}) = log(a?) + log[ V' (¥;)] 3)
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where s,j =X i — )U) J(n—1). Note that the expected values of y; and
sy are E(iy) =filM) =y, and E(s}) = V[fiM)]o; = V(u,)o;, where
#; = E(vj). The procedure used for the MMVP is as follows.

1. Get !/ x m data of pairs (3, s,_%-) for each control factor setting i and
each signal factor level j.

2. Plot these paired data [log (v;), log (s,,)] on the scatter plot for
each control factor.

3. Identify the points of the frame of each control factor according to
its levels.

4. Detect the variance relationship V(-).

For example, if the orthogonal array Lz as the inner array and a
three-level signal factor are used for experiments, a total of 54 (= 18 x 3)
paired data [log (v;), log (S,?j)] are obtained. By plotting [log (y;). log (sf,-)],
detection of the form of V(-) is possible. If the points are scattered like an
exponential function, the exponential function taken on log (¥;), y; would
make the points linear. If that is the case, then V' (u) = exp(By) is selected as
the proper variance function. For an example see Figure 2 in Section 4.

Like the SS plot of Lunani et al., if the variance function is properly
selected and the assumption of model (1) holds, then the points on the frame
of the control factor with dispersion effects are identified on separate lines.
Then the control factors with dispersion effects can be easily found.

Note that when the objective of the analysis is focused on the variance
of the response, the term log (%) is usually used rather than s* for certain
statistical reasons. One reason is that the effect on dispersion may be reason-
ably considered as a multiplicative effect rather than an additive effect.
Moreover, a linear model on log (s°) can be easily used without constraint.
In addition, the performance of log (s%) is stable when the hteroscedasticity
problem occurs. Logothetis (1989) showed that the mean of log (s*) depends
on log (5%) and n, and the variance of log (s%) is stable depending on only #,
and furthermore log (s?) converges to approximate normality as n increases.

3.2. Finding the Control Factors with Dispersion Effects by
the ANCOVA Method

In the second step, finding the control factors with dispersion effects, the
implementation of the ANCOVA method is proposed where the covariate is
determined from the selected variance function at step 1. This method is an
extension of the models of Logothetis (1989) and Engel (1992).

Logothetis (1989) thought that the relationship could be detected by
using the regression model on log (s?) with an independent variable log (3;):
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log(s;) = log(er) + 8log(F;) + ¢, @)

Engel (1992) noticed that the parameter log (¢) is a nonconstant term in the
Logothetis model and replaced it by the term log (), which is a linear
function of the control factors.

log(s?) = log(e,) + 0 log(3;) + &; (5)

When the logarithm is taken on the variance term in model (1), the following
equation is obtained.

log[Var(y)] = Xy + log[V(E(y;#))] (6)

Here x, is the row vector of the control factors, and y is a parameter vector.
When this model is applied to practical applications, the fitting model (7) is
used as the form of ANCOVA. Here the sample variance s,z, on log is the
dependent variable, the control factors are the factor given in the vector X;,
ando the sample mean y; or its function /(y;) is the covariate, where
h(:)" = V()

log(s3) = x,y + 6; log[h(¥;)] + error (7

The control factors of significance are selected to have dispersion effects
from the analysis of the model.
Note that this model has two main differences from Engel’s model:

1. The variance function V(u) is a general function instead of pé.
2. The coefficient 9; is considered a nonconstant parameter.

The variance function V{(u) cannot be easily detected in the static
system, so the power of the mean model (5) is mainly used in Engel’s
paper. But in the dynamic system V(i) can be detected. and it can have a
general form. When several V(u)’s are candidates, for example, V() = uO'
or V(u) = exp (6;n), the variance function V(u) can also be detected at step
1, and the selection of ¥(n) can be done by some variable selection techni-
que of the regression with log (s,gj) as the dependent variable. The variance
function V() is preferred that separates the plotted points into parallel lines
with a common slope and different intercepts, because the control factors
with dispersion effects need to be detected and well selected there. Taking
V(u) as u’ is the direct generalization of the model of Engel.

A nonconstant 0, has the practical meaning that as the mean increases
the variance can increase at a different rate at each level of some control
factors. If the coefficients of the lines look identical from the search at step 1,
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then fitting model (7) is the ANCOVA method without interaction between
the covariate and the factors. At the beginning of the analysis, model (7)
with constant term 0 is used. If the points are separated into lines with
different slopes in the frame of some control factors, then changing the
variance function V() or extending the term 0 into 6; may be considered.

When V(p) = p” and the parameter 0 is taken as equal to 2 before-
hand, the ANCOVA method is equivalent to the procedure for finding the
control factors to maximize the static S/N ratio. We can observe that the
following model is derived from model (7):

log(sf,-) =2 log(y;) + x;y + error (8a)

p2 1
log(s,zj) - 2log(yy) = — log(}j ): _—IB(S/N)i = X;y + error (8b)

2
85

The dynamic characteristic approach has some merits compared to the
static characteristic approach for detecting the variance function. One is that
it has a large numer of degrees of freedom when the dispersion effects of
control factors are checked. In the example of Engel (1992), the inner array
is saturated, so there is no degree of freedom allowed for covariate log (;).
However, the ANCOVA method has a large number of degrees of freedom
when the level-of-signal factor is large. Another merit is the distribution of
the mean response. As the mean value is more widely spread, the precision
of estimation of the variance function increases (Davidian and Carroll,
1987). In the static system the response is usually distributed around the
fixed target value and less spread. But in the dynamic system the target value
varies according to the signal input value, and the response is widely spread
according to the signal factor level. Taguchi’s optimization procedure with
the dynamic S/N ratio does not enjoy these merits. The sample variances of
each signal factor level are combined into one quantity, the dynamic S/N
ratio. Here the ANCOVA method is proposed to utilize these merits by
taking the sample mean and the sample variance at each signal factor level.

3.3. Fitting the Response as a Function of the Signal
Factor

When the variance of the response is a function of the levels of the signal
factor, the use of weighted least squares (WLS) is recommended to estimate
Ji{(M) for each i. After the control factors with dispersion effects are chosen
at step 2, the variance of response y; is estimated as E?,-z V/(}?,_,). Then the
weights are the inverse of the estimated variance of each response, and the
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WLS method is applied for each control factor setting i to adjust the sensi-
tivity of the response to the signal factor M.

4. AN EXAMPLE: CHEMICAL CLEANING EXPERIMENT

In this section, the data set from the chemical cleaning process for Kovar
metal components (American Supplier Institute, 1991) is reanalyzed to show
how to use the ANCOVA method and multiple mean—variance plot pro-
posed in Section 3 to find the control factors with dispersion effects and the
functional relationship between the mean and the variance.

The response y is the amount of the material removed as a result of the
chemical cleaning process. The inner array is L4 including a two-level factor
A and three-level factors B, C, D, E, F, and G. The outer array consists of a
three-level signal factor M crossed with L, for a compound array of three
two-level noise factors X, Y, Z. The signal factor M is the acid exposure
time, which is known to have a linear impact on the expected value of the
response. By imposing the linearity of the signal factor, the process becomes
predictable and more controllable from the engineering knowledge. The
information about the experimental factors and the raw data are given in
Tables 1 and 2.

Table 1 Experimental Factors and Levels for Chemical Cleaning Experiment

Factor level

Factor label and description 0 1 2
Control factor
A Part status at Brite-dip Dry Wet
B Descale acid exposure time By B, B,
C Descale acid strength Co C, C,
D Descale acid temperature Low Med High
E Nitric/acetic (ratio) Ey E, E,
F Percent in Brite-dip acid Low Med High
G Brite-dip acid temperature standard  Remachine

Noise factor

X Descale acid age New Used
Y Brite-dip acid age New Used
Z Part type Stamped  Machined

Signal factor
M Exposure time in Brite-dip M, M, M,




Parameter Design with Dynamic Characteristics 381

Table 2 Experimental Layout and Raw Data for Chemical Cleaning Experiment

Signal factor M, M, M, Noise
factor

0 0 1 1 0 0 1 1 0 0 I 1 X

Control factor 0 1 0 1 0o 1 0 1 0 1 0 1 Y

A B C D E FG 01 1 0 01 10 01 1t 0 Z
Col. 1 2 3 4 5 6 7 1 2 3 4 I 2 3 4 I 2 3 4
P10 0 0 0 0 00 9 11 15 11 14 17 22 14 | 19 29 26 18
20 0 o I 1 11 27 31 30 25 [ 43 55 63 43 | 67 63 88 43
30 0 2 2 2 2 212636 3826140 57 71 44 | 59 82 92 59
4 0 1L 0 0 1 1 2127 39 5024 | 51 8 92 48 | 78113123 68
50 1 1 1 2 20 11 3 27 14 | 24 33 37 22 | 32 34 51 31
6 0 1 2 2 0 0 1| 14 20 23161 27 30 44 20 | 38 50 59 28
70 2 0 1 2 2 2] 1218 2313 |26 31 3223 |29 42 46 29
8§ 0 2 1 2 0 0 0] 25 33 4536 | 34 45 95 55 | 42 66127 80
9 0 2 2 0 1 1 1|19 24 2717 | 33 46 46 27 | 40 61 70 33
01 0 0 2 2 1 0] 25 43 40 32 | 38 53 62 41 56 73 95 St
It'1 0 1 0 0 2 1] 2542 3621 | 42 49 63 36 | 47 58 81 56
121 0 2 1 1 0 2 16 20 17 8 | 22 32 36 20 | 34 43 53 33
131 1 0 1 2 21 27 39 28 19 | 46 62 55 36 | 58 84 78 48
14 1 1 1 2 0 0 21} 26 48 77 37 | 42 84104 60 | 52111109 78
IS 1 1 2 0 1 1 0131 5 59 32 (58 8 98 50 | 77115128 71
61 2 0 2 2 01 17 17 34 18 | 23 31 56 30 | 32 42 67 40
17 1 2 1 0 0 1 2] 21 25 61 20 | 30 43 95 36 | 40 60124 60
8 1 2 2 1 1 2 0] 1326 2210 |23 27 2720 | 26 52 4] 28

The response data yy (i =1, .., 18;j =1,2,3; k = 1,2, 3, 4) are sum-
marized into 18 x 3 paired data [log (), log (s,,)] for each control factor
setting 7 and signal factor level j. These paired data ), log (s,])] and [log
(¥, log (s,,)] are plotted in Figures 2a and 2b. These figures definitely show
that a function relationship exists between the variance and mean of the
response and can be explained by a linear function on the log-log scale. We
can assume that /() = p rather than i(p) = exp(n) for model (7).

In Figure 3, the multiple mean—variance plots of [log (¥, log (s%i)]
show which control factors have dispersion effects. In the frame of factor A,
the points for level 1 (symbol +) are shown along with the points for level 0
(o). Two separate fitting lines can be drawn, with a common slope and
different intercepts. When the level of factor A4 is 0, the response has a
smaller variance. By similar work, level 0 of factor B can be selected. For
factor C the difference between levels 0 (o) and 2 (o) does not look large, and
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Figure 2 Plots of [log (¥;). log (sg-)] and [y;, log (sf,)] for chemical cleaning
experiment.

either of those may be selected. In the other frames of Figure 3, the points
are not divided into separate lines according to the levels of factors D, E, F,
and G.

The results from the analysis of the dynamic S/N ratio are presented in
Table 4. These results show that A4, B, C, and D are the important factors
with respect to the S/N ratio. The best level selected is 4y, By, Cy and Dy,
which is similar to the selected level in the results from the ANCOVA
method except for factor D. But in the ANCOVA method, factors C and
D are not very significant (their p values are 0.053 and 0.057, respectively),
and other levels of these factors may be selected.
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Table 3 ANOVA Table for the ANCOVA Method with Covariate log (¥)

Source DF Adjusted SS F p Value

Covariate 1 4381013 100.12 0.000

A 1 0.32313 5.66 0.022

B 2 0.91742 7.01 0.002

C 2 0.350064 3.15 0.053

D 2 0.30866 3.06 0.057
E 2 0.09540
F 2 0.14475
G 2 0.05400
Ax B 2 0.18098
(e) 37 2.59806
Pooled error 45 3.09112
T 53 17.92377

Table 4 ANOVA Table for the Dynamic Signal-to-Noise Ratio

Source DF Adjusted SS F p(%)
A 1 14.010 14.84 12.13
B 2 30.166 15.98 26.27
C 2 32.417 17.17 28.34
D 2 23.101 12.24 19.84
E 2 0.002
F 2 2.620
G 2 1.667
Ax B 2 3.542 2.42 1.93
(e) 2 0.803
Pooled error 8 5.907 11.49
T 17 109.132 100.00
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Joint Modeling of the Mean and
Dispersion for the Analysis of Quality
Improvement Experiments

Youngjo Lee
Seoul National University, Seoul, Korea

John A. Nelder
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1. INTRODUCTION

The Taguchi method for analyzing quality improvement experiments has
been much discussed. It first defines summarizing quantities called perfor-
mance measures (PMs) and then analyzes them using analysis of variance.
PMs are defined as functions of the response y; however, we believe that
they should be regarded as quantities of interest derived after analysis of the
basic response and defined as functions of the fitted values or parameter
estimates. One of Taguchi’s signal-to-noise ratios (SNRs) involves ¥y~
This is not a good estimate of 3 p~*, though ¥ {i™* might be acceptable.
However, as Box (1988) showed, Taguchi’s signal-to-noise ratios make sense
only when the log of the response is normally distributed. The correct
statistical procedure is (1) to analyze the basic responses using appropriate
statistical models and then (2) to form quantities of interest and measures of
their uncertainty. Taguchi’s procedure inverts this established process of
statistical analysis by forming the PMs first and then analyzing them.
However, most writers concentrate on the analysis of PMs, though they
may use other than signal-to-noise ratios. Miller and Wu (1996) refer to
the Taguchi approach as performance measure modeling (PMM) and the
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established statistical approach as response function modeling (RFM).
They, of course, recommend RFM. However, what they actually do
seems to be closer to the PMM approach. The major difference is that
they consider statistical models for responses before choosing PMs.
Because of the initial data reduction to PMs, their primary tool for analysis
is restricted to graphical tools such as the normal probability plot.
Interpretation of such plots can be subjective. Because information on the
adequacy of the model is in the residuals, analysis using PMs makes testing
for lack of fit difficult or impossible.

In 1991, we (Nelder and Lee, 1991) published a paper giving a general
method that allows analysis of data from Taguchi experiments in a statis-
tically natural way, exploiting the merits of standard statistical methods. In
this chapter, we provide a detailed exposition of our method and indicate
how to extend the analysis to Taguchi experimental data for dynamic sys-
tems.

2. THE MODEL

Taguchi robust parametric design aims to find the optimal setting of control
(i.e., controllable) factors that minimizes the deviation from the target value
caused by uncontrollable noise factors. Robustness means that the resulting
products are then less sensitive to the noise factors. Suppose a response
variable y can be modeled by a GLM with E(y)=p, and
var (1;) = &;V(1,). where ¢; are dispersion parameters and V' () the var-
iance function. The variance of y; is thus the product of two components;
V(1,) expresses the intrinsic variability due to the functional dependence of
the variance on the mean p,, while ¢; expresses the extrinsic variability,
which is independent of the range of means involved. Suppose we have
control factors C, ..., C, and noise factors Ny, ..., N,. In our 1991 paper
we considered the following joint models for the mean and the dispersion

n =g =/1(Cy, ... Gy Nivoou Ny) (1)
and

§ = log(¢) = f2(Cy, ..., Cp, Ny, .oy N) (2)
where g ( ) is the link function for the mean, and fi(C,, ..., C,, Ny, ..., N,) are

linear models for experimental designs, e.g., the main effect of the model is
C)+..+C, + Nj+..+N,. The log link is assumed for the dispersion as a
default; there are often insufficient data to discriminate between different
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link functions. We need to choose for each model a variance function, a link
function, and terms in the linear predictor. By choosing an appropriate
variance function for the mean, we aim to eliminate unnecessary complica-
tions in the model due to functional dependence between the mean and
variance [the separation of Box (1988)]. It is useful if the final mean and
dispersion models have as few common factors as possible. The link func-
tion for the mean should give the simplest additive model [the parsimony of
Box (1988)].

Control factors occuring in f>( ) only or in both fi( ) and f5( ) are used
to minimize the extrinsic variance, and control factors occurring in f;( ) only
are then used to adjust the mean to a target without affecting the extrinsic
variability.

If we analyze PMs such as SNRs, calculated over the noise factors for
each combination of the control factors, it is then impossible to make infer-
ences about the noise factors in the model for the mean. This reduction of
data leads to the number of responses for the dispersion analysis being only
a fraction of those available for the mean. We do not have such problems
since we analyze the entire set of data; see Lee and Nelder (1998).

3. THE ALGORITHM

When a GLM family of distributions does not exist for a given V().
Wedderburn's (1974) quasi-likelihood (QL) is often used for inference
from the mean model (1). However, it cannot be used for joint inference
from both mean and dispersion models; for this we need Nelder and
Pregibon’s (1987) extended quasi-likelihood (EQL), defined by

—20% = Z[% + log[2nd; VO',-)]}

1
where d; = *2/ (v; — w)/ V(1)du denotes the GLM deviance component

v

For given ¢,, the EQL is, apart from a constant, the quasi-likelihood
(QL) of Wedderburn (1974) for a GLM with variance function ¥(y,). Thus
maximizing Q" with respect to B will give us the QL estimators with prior
weights 1/¢;, satisfying

00+ Vil |k,
B Z[dx V(u,)} ap =0
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The EQL provides a scaled deviance with component d;/¢;, and this
deviance may be used as a measure of discrepancy, so that we can create
an analysis-of-deviance table for a nested set of models, as with GLMs. The
differences of such deviances allow us to identify significant experimental
factors on the same link scale and to compare different link functions for the
mean model (1).

For given p,, the EQL gives a GLM with the gamma distribution for
the deviance components d;, and this forms the basis of the dispersion
model. Thus, with the EQL we can identify significant experimental factors
for both the mean and the dispersion models. However, when the number of
mean parameters is relatively large compared with the sample size, disper-
sion estimators can be seriously biased without appropriate adjustment for
the degrees of freedom. The REML technique removes this bias for mixed
linear models (Patterson and Thompson, 1971). Cox and Reid (1987)
extended the REML idea to a wider class of models that satisfy an ortho-
gonality relation of the form E(3*Q + dBdy) = 0. The Cox—Reid adjusted
profile EQL becomes

2n

-20¢ = Zl% + 10g[21t¢,~V(y,~)]} +log det(X W*X)

where W* is an n x n diagonal matrix with ith element {1/(d;V (1))}
(3u,/0m;). Thus for inference from the dispersion model (2) we (Lee and
Nelder, 1998) use OF; then Q¢ /8y = 0 gives estimating equations fory, (—8
0%/8y*)™" a variance estimate for 7, and —2Q¢ the basis of a deviance test. To
overcome the slow computation of REML estimation, we (Lee and Nelder,
1998) have developed an efficient approximation.

The EQL is the true likelihood for the normal and inverse Gaussian
distributions, so our estimators (deviance tests) for  and y are the ML and
REML estimators (likelihood ratio and adjusted likelihood ratio tests),
respectively. The EQL also gives good approximations for the remaining
distributions of the GLM family. There are two approximations in the
assumed model for the dispersion. The first lies in assuming that
E(d)y = ¢; in general the bias is small except in extreme cases, e.g.,
Poisson errors with small p. Such biases enter the analysis for the mean
only through the weight and do not much affect the estimates of B. The
second approximation is the assumption of a gamma error for the dispersion
analysis, regardless of the error chosen for the mean. The justification for
this is the effectiveness of the deviance transform in inducing a good approx-
imation to normality for all the GLM distributions (Pierce and Schafer,
1986), excluding extreme cases such as binary data; see also the simulation
study of Nelder and Lee (1992).
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In summary, our model consists of two interlinked GLMs, one for the
mean and one for the dispersion as follows. The two connections, one in
each direction, are marked. The deviance component from the model for the
mean becomes the response for the dispersion model, and the inverse of the
fitted values for the dispersion model give prior weights for the mean model.
(See Table 1.) In consequence, we can use all the methods for GLMs for
inferences from the joint models, including various model-checking proce-
dures.

4. STATISTICAL MODELS FOR DYNAMIC SYSTEMS

Recently, there has been an emphasis on making the system robust over a
range of input conditions, so the relationship between the input (signal
factor) and output (response) is of interest. Following Lunani et al
(1997), we refer to this as a dynamic system. Miller and Wu (1996) and
Lunani et al. (1997) have studied Taguchi’s method for dynamic systems.
Suppose we have a continuous signal factor M, measured at m values. These
researchers consider models analogous to the mean and dispersion models

n=gW =I(M)xfi(Cy, ..., Cp, Ny, ... N,) 3)
and
log(d)) =f2(C1, . Cp’ va veey N’I) (4)

where g( ) is the link function for the mean and /() is the function describ-
ing the relationship between the input (signal factor) and output (response).

Table 1

GLM Mean Dispersion

Response ¥ d

Mean i — ¢

Variance oV(p) 2¢?

Link n=g(w {=log¢

Deviance component d=2 /u ' '};/zul)l du 2[—— log(%) + %(P]
Prior weight l/o4———— 1
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The function /() may be known a priori or may have to be identified.
Lunani et al. assume that /(M) = MB, i.e., that it is a linear function with-
out an intercept, and Miller and Wu select I(M) Bo + By M + B, M2 The *
operator in Eq. (3) represents the fact that parameters of /( ) are modeled as
functions of C, and N,. In dynamic systems the signal factor is used to adjust
the mean using the mean model (3), and control factors are set to optimize
the sensitivity measure [see Miller and Wu (1996) and Lunani et al. (1997)).
The fitting of dynamic systems has so far been done in two stages; in
stage I parameters in J( )} are estimated for each run, and in stage Il models
are fitted separately to each set of stage I parameter estimates. For example,
with (M) = By + B, M + BzM2 we fit /(M) for each individual run, com-
puting B, B;. and B,, and then fit separate models for these as functions of
C, and N,. However, the model chosen by this approach may not fit the data
well because data reduction to PMs under the wrong model makes testing
for lack of fit difficult. Our method analyzes the whole data set and does not
require two stages of fitting. All that is necessary is that the software allow
the specification of compound terms of the form A.x in the linear predictor,
denoting that the slope for x varies with the level of the factor 4.

5. ADVANTAGES OF THE GLM APPROACH

The advantage of analyzing all the individual responses using two inter-
linked GLMs over the analysis of variance of PMs (with possible transfor-
mation of the data) are as follows:

1. Box’s (1988) two criteria, separation and parsimony, cannot
necessarily both be achieved by a single data transformation,
while the GLM analysis achieves them separately by choosing
appropriate variance and link functions for the two interlinked
GLMs. Analysis is thus always carried out on the original data.

2. Any GLM can be used for modeling the means. Thus counts,
proportions, and positive continuous quantities can be incorpo-
rated naturally into the model.

3. Our model uses all the information in the data. For example, the
dispersion analysis has a response for each observation, just as
with the mean. Compare this with the use of .s',z calculated over
the noise factors for each combination of the control factors; this
leads to the number of responses for the dispersion analysis being
only a fraction of that available for the mean. Such s? do not use
random variation but are functions of dl‘bltrdl‘lly selected levels for
the noise factors. Furthermore, when the s (B) are computed over
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noise (signal) factors in static (dynamic) systems it is impossible to
make inferences about those noise (signal) factors in the model for
the dispersion (mean). With this approach, the signal factor can-
not be included in the dispersion model (4) for dynamic systems.

4. The model is defined for any design. For example, our method can
be used for dynamic systems as easily as for static systems, and
we can also consider more general models such as log (¢) =
f(Cy,s .y Cpo Ny, oy Ny, M) for (4).

5. The use of a GLM for fitting the dispersion model means that
model-checking techniques, such as residual plots, developed for
GLMs generally can be applied directly to both parts of the joint
model.

6. CONCLUSION

Data from Taguchi experiments should be analyzed in a statistically natural
way so that existing statistical methods can be used; this allows for statis-
tically efficient likelihood inferences, such as the likelihood-ratio test, model-
checking diagnostics to test the adequacy of the model, and maximum like-
lihood estimation or restricted maximum likelihood estimation to be used.
Our method supports these desirable aims.
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1. INTRODUCTION

The analysis of interaction is the key in a wide variety of statistical problems
including the analysis of two-way contingency tables, the comparison of
multinomial distributions, and the usual two-way analysis of variance. It
seems, however, that it has been paid much less attention than it deserves.

In the usual analysis of variance, both of the two-way factors have
generally been assumed to be controllable, and the combination that gives
the highest productivity has been searched for. We should, however, also
consider the possibilities that the factors may be indicative or variational. By
an indicative factor we mean a fixed but uncontrollable factor such as the
region in the adaptability test of rice varieties where the problem is to choose
the best level of the controllable factor (the variety of rice) for each level of
the indicative factor (region) by considering the interaction between these
two factors. Then a procedure is desired for grouping the levels of the
indicative factor whose responses against the levels of the controllable factor
are similar so that a common level of the controllable factor can be assigned
to every level of the indicative factor within a group.

By a variational factor we mean a factor that is fixed and indicative
within an experiment but acts as if it were a random noise when the result is
extended to the real world. A typical example is the noise factor in Taguchi’s
parameter design, where the problem is to choose the level of the control-
lable factor to give not only the highest but also the most stable responses
against the wide range of levels of the noise factor. For all these problems
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the usual omnibus F test for interaction is not very useful, and row-wise
and/or columnwise multiple comparison procedures have been proposed
(Hirotsu, 1973, 1983a, 1991a). Those procedures are also useful for model-
ing and analyzing contingency tables and multinomial distributions not
restricted narrowly to the analysis of variance (Hirotsu, 1983b, 1993).
Another interesting problem is detecting a two-way changepoint for
the departure from a simple additive or multiplicative model when there are
intrinsic natural orderings among the levels of the two-way factors.
Detecting a change in the sequence of events is an old problem in statistical
process control, and there is a large body of literature dealing with this.
These works, however, are mostly for univariate series of independent ran-
dom variables such as normal, gamma, Poisson, or binomial [e.g., see,
Hawkins (1977), Worsley (1986), and Siegmund (1986)]. Therefore in this
chapter I discuss an approach to detecting a two-way changepoint.

2. MODELING THE INTERACTION IN THE ANALYSIS OF
VARIANCE FRAMEWORK

Suppose that we are given two-way observations with replications and
assume the model

Yijk = l.l” +81:I'I\" i= 1, veey a;j = l, veey b, k= 1, ey F

where the ¢ are independently distributed as N(0, o”). The H; may be
modeled simply by p; = p+o; + B; if the hypothesis of no interaction is
accepted. When it is rejected, however, we are faced with a more compli-
cated model, and it is desirable to have a simplified interaction model with
fewer degrees of freedom. Several models have been proposed along this
line, including those of Tukey (1949), Mandel (1967), and Johnson and
Graybill (1972). The block interaction model obtained as a result of the
row-wise and column-wise multiple comparisons is also a useful alternative
(Hirotsu, 1973, 1983a, 1991a).

For row-wise multiple comparisons we define an interaction element
between two rows, the mth and the nth, say, by

L(n1; n) = (IV2) Py (W, ~ )

where @, = (W, ..., i) and Pjisa (b — 1) x b matrix satisfying Py P, = I,
and P,P; = I, = b™'j,js with I an identity matrix and j a vector of 1's. Then
a multiple comparison procedure for testing L(r; n) = 0 is given in Hirotsu
(1983a) to obtain homogeneous subgroups of rows so that in each of them
all interaction elements are zero. The columns can be dealt with similarly.
Then the resulting model can be expressed as
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My =H, +Rr, —H + (aB)y (N

with (aB), =0.(aB), =0 and (ap); = (9B), ;- if i, i' € G, and j, jed.
where G,,u=1,..,4 and J.,v=1, ..., B denote the homogeneous sub-
groups of rows and columns, respectively. We use the usual dot bar notation
throughout the paper. Model (1) may be called the block interaction model
with df(4 — 1)(B — 1) for interaction. The row-wise and/or columnwise nmul-
tiple comparisons seem particularly useful for dealing with indicative or
variational factors; see Hirotsu (1991a, 1991b, 1992) for details.

3. THE GENERALIZED INTERACTION

We encounter two-way table analysis even in the one-way analysis of var-
iance framework if only we take the nonparametric approach.

The data in Table 1 are the half-life of the drug concentration in blood
for low and high doses of an antibiotic. This is a simple two-sample
problem. In the nonparametric approach, however, we change those data
into rank data as given in Table 2. In Table 2 we are interested in whether
the 1's are more likely to occur to the right than to the left for the high dose
relative to the low dose since that would suggest that the high dose is more
likely to prolong the half-life.

Table 3 is the result of a dose-response experiment and gives the same
type of data with Table 2 where the ordered categories are thought to be tied
ranks. Again the high categories seem to occur more frequently in the higher
dose. It is the problem of analyzing interaction to confirm these observa-
tions statistically.

The outcome of a Bernoulli trial can also be expressed in a similar way
to Table 2. We give an example in Table 4, where the probability of occur-
rence changes from 0.2 to 0.4 at the 11th trial.

The outcomes of an independent binomial sequence are also summar-
ized similarly to Table 4. We give an example in Table 5, which is taken from
a clinical trial for heart disease.

Table 1 Half-life of Antibiotic Drug

Dose
(mg/(kg - day Data

25 1.55 1.63 1.49 1.53 2.14
200 1.78 1.93 1.80 2.07 1.70
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Table 2 Rank Data Obtained from Table 1

Rank
Dose 1 2 3 4 ) 6 7 8 9 10
25 1 1 1 1 0 0 0 0 0 1
200 0 0 0 0 1 1 1 1 1 0

Table 3 Usefulness in a Dose-Finding Experiment

1 2 3 4 5 6
Slightly Not  Slightly
Drug Undesirable undesirable useful useful Useful Exccllent Total

AF3mg 7 4 33 21 10 1 76
AF6mg 5 6 21 16 23 6 77

Table 4 Outcome of Bernoulli Trial with Probability Change at the 11th Trial

Run
Outcome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nonoccurrence | 1 0 1 1 0 1 1 I 1 1 1 1 10 0 1 1 0 0
Occurrence o 0o 1 o 0o 1 o0 0 0 0 0 0 0 0 1 1 0 0 1 1
Total | S T AR ENNS S AN NS KN (NN ARG NN (N NN AN (N NS I NN
Table 5 Independent Binomial Sequence
Dose level (mg)

Outcome 100 150 200 225 300
Failure 16 18 9 9 5
Success 20 23 27 26 9

Total 36 41 36 35 14
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In any of Tables 2-5 we denote by p;; the occurrence probability of the
(i,j) cell, i=1,2;j=1,... k. Then in Tables 2 and 3 we are interested in
comparing two multinomials (p;;, ..., pplp;. = 1), i = 1,2, and Tables 4 and 5
are concerned with comparisons of k binomials (py;, pyjlp, = 1),/ =1,.... k.
Regardless of the differences between the sampling schemes, however, we
are interested in both cases in testing the null hypothesis,

Pu _Pn_ P

. ()
Pu P Pk
against the ordered alternative,
P < P2 <. < P2k 3)
Py P Pk

taking into the account the natural ordering in columns. In (3) we assume
that at least one inequality is strict. It then includes as its important special
case a changepoint model,

P
P _ Py luw Dok @)
Pn Py P+t Pk

where J is an unknown changepoint, the detection of which is an old
problem in statistical process control.

The hypotheses (2), (3), and (4) can be expressed in terms of the
interaction parameters in the log-linear model

logp; = u+ao, + B; + (@B);

The interaction term («f); can be interpreted as an odds ratio parameter in
this context. Thus we can generalize the usual analysis of interaction into the
analysis of odds ratio parameters in multinomials, where an ordered alter-
native hypothesis is often of particular interest.

Under the null hypothesis, Eq. (2), we base our statistical inference on
the conditional distribution given sufficient statistics. Regardless of the sam-
pling schemes, this leads to the hypergeometric distribution given all the row
and column marginal totals [see Plackett (1981)]. This is why we need not
distinguish Tables 2 and 3 from Tables 4 and 5.
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Table 6 Rank Data for the Half-Life Data

Rank
Dose
(mg kg - day) 1 2 3 4 5 6 (18 9 10 11 1213 14 15 Total
25 0 0 | 0 1 1 1 0 0 0 0 0 0 1 5
50 1 1 0 1 0 0 1 0 0 0 1 0 0 0 5
200 0 0 0 1] 0 0 0 1 i 1 0 1 1 0 5

4. A SAMPLE PROBLEM

Given half-life data (1.21, 1.63, 1.37, 1.50, 1.81) at a dose level of 50 mg/
(kg - day) in addition to Table 1, we obtain Table 6. We also have placebo
data in the dose-response experiment, with which we obtain Table 7.

Next suppose that the products from an industrial process are classi-
fied into three classes (1st, 2nd, 3rd) and their probabilities of occurrence are
changed from (1/3, 1/3. 1/3) to (2/3, 1/6, 1/6) at the 1 1th trial. An example of
the outcome is shown in Table 8. This is regarded as an independent
sequence of trinomials.

It should be noted that in all three examples the row-wise and/or
columnwise multiple comparisons are essential. Noting the existence of
the natural orderings in both rows and columns, we are particularly inter-
ested in testing the null hypothesis

Pisnt/Pit = Pivia/Pi2 = - = Pivik/Piks i=1.,a-1
against the ordered alternative

Pient/Pit Z Pig12/Pi2 S oo 2 Pipri/ Piks i=1.,a-1

Table 7 Uscfulness in a Dose-Finding Experiment

1 2 3 4 5 6
Slightly Not  Slightly
Drug Undesirable undesirable useful useful Uscful Excellent Total
Placebo 3 6 37 9 15 1 71
AF3mg 7 4 33 21 10 1 76
AF6mg 5 6 21 16 23 6 77
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Table 8 Products Classified into Three Classcs

Run
Class 1 2 3 4 5 6 7 & 9 10 fL 12 13 14 15 16 17 18 19 20
3rd 1 1 0 0 0 o 1 0 0 1 0 0 0 0 0 0 0 1 0 0
2nd ¢ 0o o 1 1 (L o0 * 1 0 0O 0 1 0o 06 1 0 0 0 O
1st ¢ ¢ 1 ¢ o 0 0 0o 0o 0o 1 1 0 I 1 © 1 O 1 1
Total P ¢t r v tr t 1°r +tr vt 1r t 1 v 1 1 11

with at least one inequality strict. Again the alternative hypothesis includes
as its special case a two-way changepoint model such that the inequality

Piilby < Pij /Py (5)

holds only when i < 7.i"> I+ 1 and j <J.j > J + 1, where ({.J) is the
unknown changepoint. This is a natural extension of the one-way change-
point model (4).

5. TESTING THE ORDERED ALTERNATIVE FOR
INTERACTION—TWO-SAMPLE CASE

The analyses of interaction in the analysis of variance model and in the log-
linear model are parallel to some extent. at least for two-way tables [see
Hirotsu (1983a, 1983b)], and here we give only the procedure for the latter
for brevity.

5.1. Comparing Treatments

The most popular procedure for comparing treatments is Wilcoxon’s rank
sum test. In that procedure the jth category is given the score of the mid-
rank,

y,+1

wi=yy+..+y,,+ 3

and the rank sum of each treatment is defined by

Wo=) oy =12
g
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where y; is the observed frequency in the (i,/)th cell. The standardized
difference of the rank sums is then defined by

W@D_(H1U21+l_m;% ud
T \ et w Y Y2 o Yo

where

2
2 2 2wy,
O, = Z(l)j}’_j - (—)‘

For evaluating the p-value of W(l; 2) we can use a normal approximation.
The network algorithm of Mehta et al. (1989) can also be applied to give the
exact p-value. As an example, for the data of Table 4 we obtain W(1;2) =
1.320 with the two-sided p-value 0.187 by the normal approximation.

Another possible approach is the cumulative chi-square method
(Hirotsu, 1982). For this method we partition the original table at the jth
column to obtain a 2 x 2 table by pooling columns as in Table 9 and
calculate the goodness-of-fit chi-square statistic

fzﬂﬁh—W%f
! nnY,Y,

_ ¥ Yy, — . Y.,,/)"..)2

N Y1.V2. YJ )_’J

Then the cumulative chi-square statistic is defined by
2= e 2

The null distribution of x*? is well approximated by the distribution of
the constant times the chi-square variable dx%, where the constant d and the
degrees of freedom v are given by the formulas

Table 9 Calculating the Cumulative Chi-Square Statistic

Column pooled

Row 1,...7) G+1,...k) Total
1 Yy )EU g
2 Yy Yy »2

Total Y Y, }{:
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2 (Mt h )V1+-~-+)‘k—2> yit+..+y;
=14+—=—({=2 ot A=
d= l+/\—1(x teat o T,
©
and
v=(k—1)/d

When the y, are all equal as in Table 4, x*z is well characterized by the
expansion

2 _ k k k
X 2X(1) + 3X(7) +...+ = 1)k)CI\ 1
where Xl’Xz’ ...are the linear, quadratic, etc. chi-square components each
with one degree of freedom (df) and are asymptotlcally mutually indepen-
dent; see Hirotsu (1986) for details. More specificalty, x(,) 18 Just the square
of the standardized Wilcoxon statistic. Thus the statistic x* is used to test
mainly but not excluswely the linear trend in p,;/p;, with respect to j. For
the data of Table 4, x*“ = 30.579 and constants are obtained as d = 6.102
and v =3.114. The approximated two-sided p-value is then obtained as
0.183.

5.2 Changepoint Analysis
The maximal component of the cumulative chi-square statistic
2 2
Xy = Max; ¥,

is known as the likelihood ratio test statistic for changepoint analysis and
has been widely applied for the analysis of multinomials with ordered cate-
gorical responses since it is a very easy statistic to interpret. Some exact and
efficient algorithms have been obtained for calculating its p-value, which is
based on the Markov property of the sequence of the chi-square compo-
nents, x%, ... Xy [see Worsley (1986) and Hirotsu et al. (1992)]. Applying
those algorithms to Table 4, we obtain the two-sided p-value 0.135 for
X3¢ = 5.488, which gives moderate evidence for the change in the probability
of occurrence.

In comparing the three statistics introduced above for testing the
ordered alternatives (3), the Wilcoxon statistic tests exclusively a linear
trend, max x° is appropriate for testing the changepoint model (4), and
x'2 keeps a high power over a wide range of the ordered alternatives. As
an example of comparing two multinomials with ordered categorical
responses, the three methods are applied to the data of Table 3, and the
results are summarized in Table 10. For reference, the usual goodness-of-fit
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Table 10 Three Methods Applied to Table 3

Test statistic Two-sided p-value
Wi(l:2)y=2.488 0.0128
x:' = 18.453 0.0096
X3 = 10.303 0.0033
¥’ =12.762 0.0257

chi-square value is shown at the bottom of the table: it does not take the
natural ordering into account and as a consequence is not so efficient as the
other three methods for the data.

6. TESTING THE ORDERED ALTERNATIVE FOR
INTERACTION—GENERAL CASE

6.1. Comparing Treatments on the Whole

As an overall test for the association between ordered rows and columns,
rank correlations such as Spearman’s p or Kendall's  and the Jonckheere
test are well known. Here we introduce a doubly cumulative chi-square
statistic defined by

u—1 h-1

X**'.’: ZZX?,
/

i
X.Z = Y‘i‘,’( Y’I - Yf/’ Y(U/ Yul)):2
if Yi/)( Yuh - Yih) Y"j( Y”h - Y‘l/)

H

Y= Zi"hn. i=1l . aj=1,..k

I m

so that ¥, = v _is the grand total of observations. The (i, /)th component X:z,
is the goodness-of-fit chi-square value for the 2 x 2 table obtained in the
same way as Table 9 by partitioning and pooling the original ¢ x k data at
the ith row and the jth column.

The statistic x*** is again well approximated by dy; with

t/:(lllllz, V:(”— 1)5\7?_(713

where d| is given by formula (6) and ¢ is calculated similarly from row
margins,
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2 ot Yan
=1+ <ﬁ+y'+yz+...+ﬁ—L)
a—1\r Y3 Ya-1

Vo=t )/ Qi+ )

As an example, the doubly cumulative chi-square method is applied to Table
7. For calculating x,z, it is convenient to prepare Table 11.
The constants are obtained as

6—1

d =d; x dy =1.5125 x 1.2431 = 1.8802, v:(3—l)ﬁ;~8-0—2

=5.319

Then the p-value of x*** = 0.00773 + ... 4+ 1.41212 = 31.36087 is evaluated
as 0.0065 by the distribution 1.8802 x_%}w. This is highly significant, suggest-
ing the dose dependence of responses.

6.2. Multiple Comparisons of Treatments

Although the doubly cumulative chi-square value generally behaves well in
suggesting any relation between ordered rows and columns, it cannot point
out the optimum level of treatment. For the dose-response experiment an
interesting approach is to detect dose levels between which are observed the
most significantly different responses or the steepest slope change. A possi-
ble approach to this is to partition rows between / and i 4+ 1, to obtain the
appropriate statistic S(1, ..., #; i + 1, ..., k) to compare two groups of rows
(1, ..., Hand (/+1....,k = 1), and then to make multiple comparisons of
S(.....iii+ 1., k) for i=1,...,k — 1. For the rank-based approach, S
can naturally be taken as the Wilcoxon statistic, which we denote by

Table 11 Calculating the Doubly Cumulative Chi-Squarc Statistic

Ordered category

Dose (12 ~6) (12)3~6) (1 ~3)4~6) (1~4)56) (1~ 5)6) Total

(N 5 72 [l 66 32 45 48 29 71 6 71
(2.3) 10 137 20 127 90 57 120 27 145 2 147

i = 0.00773 ¥} = 0.01961 3, = 7.88007 %3, = 10.03340 i = 6.06959

(t2) 12 141 22 131 76 77 113 40 146 7 153
(3) 3 68 9 62 46 25 55 16 70 1 71
y3, = 101589 %3, = 0.11796 y3, = 446771 3, = 0.33680 y3, = 141212

Total 15 209 31 193 122 102 168 56 216 8 224
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W(l, .., iii+1...., k). The statistic S can also be based on the cumulative
chi-square statistic, which we denote by y**(1, ... ;i +1,---, k). They are
calculated as two-sample test statistics between the two subgroups of rows
(1,.--,9and (i + 1, ..., k). The formula to obtain the asymptotic p-value of
max Wﬁ(l, w By i+ 1, ... k) is given in Hirotsu et al. (1992), and the one for
max x*“(1,....i; i+ 1, ..., k) in Hirotsu and Makita (1992), where the max-
imum is taken over i =1,...,k — 1. The multiple comparison approaches
applied to the data of Table 7 are summarized in Table 12.

6.3. Two-Way Changepoint Analysis

The maximal component of the doubly cumulative chi-square statistic,
denoted by max max y?ij, can be useful for testing the two-way changepoint
model Eq. (5). An efficient algorithm to obtain the exact p-value of max max
x,z, is proposed in Hirotsu (1994, 1997). Applying it to Table 8, the one-sided
p-value of

max, max, x,z, = 7.500

is obtained as 0.0476, which suggests the increased probability of occurrence
of the first class in later periods.

The max max chi-square value can also be used in the context of the
dose-response experiment. When applied to the data of Table 7, the exact p-
value of max max x,?,- = 10.033 is evaluated as 0.014; see Hirotsu (1997) for
details.

6.4. Modeling by the Generalized Linear Model

Another useful approach for modeling multinomials with ordered categories
is to use a generalized linear model, such as proportional odds and propor-
tional hazards models. The goodness-of-fit chi-square value of the block
interaction model applied to the taste-testing data of five foods in five
ordered categorical responses by Bradley et al. has been compared to fitting
of the proportional odds model of Snell (1964) and its extension
(McCullagh, 1980); see Hirotsu (1990, 1992) for details.

Table 12 Multiple Comparisons of Three Dose Levels

Test statistic Two-sided p-value

max W = W(l,2;3)=2.7629 0.011
max ** = x**(1,2; 3) = 24.010 0.005
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7. SOME EXTENSIONS
7.1. General Isotonic Inference

A monotonicity hypothesis in a dose-response relationship, say can be
naturally extended to the convexity hypothesis (Hirotsu, 1986) and the
downturn hypothesis (Simpson and Margolin, 1986), which are stated in
the one-way analysis of variance setting as

Ho: - SH3—Hy <o SR — Hyo

and

Hp: W< Sl 2 He2 = 2 By =1, . Ky

respectively. In Hirotsu (1986) a statistic xTz is introduced for testing those
hypotheses, and an application of its maximal component is also discussed
in Hirotsu and Marumo (1995). These ideas can be extended to two-way
tables, and a row-wise multiple comparisons procedure was introduced in
Hirotsu et al. (1996) for classifying subjects based on the 24 h profile of their
blood pressures, which returns to approximately its starting level after 24 h,
where the cumulative chi-square and linear trend statistics are obviously
inappropriate. For a more general discussion for the isotonic inference,
one should refer to Hirotsu (1998).

7.2. Higher Way Layout

The ideas of the present chapter can be naturally extended to higher way
layouts. As one of those examples, a three-way contingency table with age at
four levels, existence of metastasis into a lymph node at two levels, and the
soating grade at three levels, is analyzed in Hirotsu (1992). An example of
highly fractional factorial experiments with ordered categorical responses is

given in Hamada and Wu (1990); see also the discussion following that
article.

8. CONCLUSION

The analysis of interaction seems to have been paid much less attention than
it deserves. First, the character of the two-way factors should be taken into
account in making statistical inference to answer actual problems most
appropriately. Row-wise and/or columnwise multiple comparisons are par-
ticularly useful when one of the factors is indicative or variational. Second,
analysis of the generalized interaction is required even in the one-way ana-
lysis of variance framework if the responses are ordered categorical, which
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includes rank data as an important special case. Then testing the ordered
alternatives for interaction is of particular interest, and the cumulative chi-
square statistic and its maximal component are introduced in addition to the
well-known rank sum statistic. Based on these statistics, a method of multi-
ple comparisons of ordered treatments is introduced as well as an overall
homogeneity test. Third, the independent sequence of multinomials can be
dealt with similarly to the multinomial data with ordered categories. For
example, a sequence of Bernoulli trials can be dealt with as two multino-
mials with cell frequencies all zero or unity. In this context we are interested
in changepoint analysis, for which the maximal component of the cumula-
tive chi-square statistic is useful. When there are natural orderings in both
rows and columns, the maximal component of the doubly cumulative chi-
square statistic is introduced for detecting a two-way changepoint. Finally
those row-wise and/or columnwise multiple comparisons are useful not only
for comparing treatments but also for defining the block interaction model.
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Surface Methodology

André |. Khuri
University of Florida, Gainesville, Fiorida

Elsie S. Valeroso
Montana State University, Bozeman, Montana

1. INTRODUCTION

One of the primary objectives in a response surface investigation is the
determination of the optimum of a response of interest. Such an undertak-
ing may also be carried out when several responses are under consideration.
For example, in a particular chemical experiment, a resin is required to have
a certain minimum viscosity, high softpoint temperature, and high percen-
tage yield (see Chitra, 1990, p. 107). The actual realization of the optimum
depends on the nature of the response(s) and the form of the hypothesized
(empirical) model(s) being fitted to the data at hand.

Optimization in response surface methodology (RSM) has received a
great deal of attention, particularly from experimental researchers. This is
evidenced by the numerous articles on optimization that have appeared in a
variety of professional journals. See, for example, Fichtali et al. (1990),
Floros (1992), Floros and Chinnan (1988a, 1988b), Guillou and Floros
(1993), Mouquet et al. (1992), and the two review articles by Khuri (1996)
and Myers et al. (1989), to name just a few.

For the most part, current optimization techniques in RSM apply
mainly to single-response models. There are, however, many experimental
situations where several response variables are of interest and can subse-
quently be measured for each setting of a group of control variables. Such

1M1
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experiments are referred to as multiresponse experiments. For example, the
quality of a product may depend on several measurable characteristics
(responses). Hill and Hunter (1966) were perhaps the first authors to
make reference to multiresponse applications in chemistry and chemical
engineering. A review of RSM techniques applicable to multiresponse
experiments is given by Khuri (1996). See also Khuri and Cornell (1996,
Chapter 7).

The optimization problem in a multiresponse setting is not as well
defined as in the single-response case. In particular, when two or more
responses are considered simultaneously, their data are multivariately dis-
tributed. In this case, the meaning of “optimum” is unclear, because there is
no unique way to order such data. Obviously, the univariate approach of
optimizing the responses individually and independently of one another is
not recommended. Conditions that are optimal for one response may be far
from optimal or even physically impractical for the other responses from the
experimental point of view.

The purpose of this chapter is to provide a comprehensive survey of
the various methods of multiresponse optimization currently in use in RSM.
A comparison of some of these methods is made in Section 3 using two
numerical examples from the semiconductor and food science industries.

2. METHODS OF MULTIRESPONSE OPTIMIZATION

Multiresponse optimization requires finding the settings of the control vari-
ables that yield optimal, or near optimal, values for the responses under
consideration. Here, ““optimal” is used with reference to conditions deemed
more acceptable, or more desirable, than others with respect to a certain
criterion. Multiresponse optimization techniques can be graphical or analy-
tical.

2.1 Graphical Techniques

In the graphical approach to optimization, response models are fitted indi-
vidually to their respective data. Contour plots are generated and then
superimposed to locate one or more regions in the factor space where all
the predicted responses attain a certain degree of “acceptability.” There can
be several candidate points from which the experimenter may choose. Note
that these plots limit consideration of the control variables to only two. If
there are more, then the remaining variables are assigned fixed values. In
this case, a large number of plots will have to be generated.
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Contour plotting was initially used in the early development of RSM.
For example, it was described by Hill and Hunter (1966) in reference to an
article by Lind et al. (1960). More recently, an improved graphical technique
was deployed using computer-generated contour surfaces, with three control
variables, instead of two, represented on the same diagram. This technique
was discussed, for example, by Floros and Chinnan (1988b), who credited
Box (1954) and Box and Youle (1955) for being the originators of this idea.

It is worth noting here that renewed interest in the graphical approach
has evolved in recent years due to advances in computer technology. This
approach is simple and easily adaptable to most commonly used computer
software packages. However, it has several disadvantages. For example, its
capability is limited in large systems involving several control variables and
responses. Also, since only two or three control variables can be represented
in the same plot, the number of generated plots can be quite large, as was
mentioned earlier. This makes it difficult to identify one set of conditions as
being optimal. Furthermore, the graphical approach does not account for
the possibility of having correlated responses, which may also be heterosce-
dastic. Obviously, graphs based on such responses are not very reliable and
may adversely affect the finding of optimum conditions. In particular, fail-
ure to recognize multi-collinearities among the responses can lead to mean-
ingless results in the fitting of the response models (see Box et al., 1973) and
hence in the determination of optimum conditions.

2.2 Analytical Techniques

Analytical techniques apply mainly to linear multiresponse models. Let r
denote the number of response variables, and let x = (x), X5, ..., X;)’ be a
vector of k related control variables. The model for the ith response is of the
form

vi=fiobi+e,  i=12..r ()

where f,(x) is a vector of order p; x 1 whose elements consist of powers and
products of powers of the elements of x up to degree d;(> 1), B, is a vector of
p; unknown constant coefficients, and ¢, is random experimental error.
Suppose that there are n sets of observations on y;, y,, ..., »,. The corre-
sponding design settings of x are denoted by x,, x», ..., x,,. From (1) we have

ylll :fi,(xll)l;i + Emv I = 17 2, e U= 1, 2, veey 11 (2)

where y,; i1s the uth observation on y;. Model (2) can be written in vector
form as
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yi=Xp+e, i=1,2.,r 3

where y; and g, are the vectors of y,’s and ¢,’s, respectively, and X, is a
matrix of order n x p;. It is assumed that X, is of full column rank and that
E(e,) = 0 and Var(g;) = 0,21,,, where I, is the identity matrix (i = 1, 2, ..., ).
Furthermore, we assume that Cov(e,, ¢;) = o;1,. i #j. Let £ = (o). The
models in Eq. (3) can be combined into a single linear multiresponse model
of the form

y=Xp+e “)

where X is a block-diagonal matrix, diag (X|, X2, ..., X,),p=[B; : B :
..:B] . ande =[e| 1 &5 : ... : /]’ Hence, Var(e) = E® I, where &) denotes
the direct product of matrices. The best linear unbiased estimator (BLUE) of p
is given by (see Khuri and Cornell, 1996, Chapter 7)

p=X'C'QL)XI"'X'E ' @1y (5)

In general, ﬁ depends on the variance-covariance matrix X, which is
unknown and must therefore be estimated. Zellner (1962) proposed the
estimate X = (G;), where

~

1 ' ’ -~ ’ -1y’ ..
&y =~ yilla = XaX/ X)X, = XX X) 7 X)ly i j =120
(6)

Srivastava and Giles (1987, p. 16) showed that X is singular if r > n. They
demonstrated that r < » is a necessary, but not sufficient, condition for the
nonsingularity of X. Using X in place of X in Eq. (5) produces the following
estimate of B.

B =X C'QI)XI"'X'E'®1,)y 7

This is known as Zellner’s seemingly unrelated regression (SUR) estimate of
B. It is also referred to as an estimated generalized least squares (EGLS)
estimate of B. It can be computed using PROC SYSLIN (SAS, 1990a). In
particular, if X; = Xy (i = 1,2, ..., r), then it is easy to show that (5) reduces
to

b=, @XoXo)" Xoly @)
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In this case, the BLUE of §; coincides with its ordinary least squares (OLS)
estimate, which does not depend on X, that is,

B, = (XXo) " Xipin i=1,2,..,r 9)

This special case occurs when the response models in (1) are of the same
degree and form and are fitted using the same design.

From Egs. (1) and (7), the ith predicted response, §,(x), at a point x in
a region R is given by

Foil®) = L1 OB =120 (10)

where ﬁ(,,. is the portion of ﬁ‘, in Eq. (7) that corresponds to ;.

Now by a multiresponse optimization of the responses we mean find-
ing an x in R at which 7,,(x), i = 1,2, ..., r, attain certain optimal values. The
term “optimal” is defined accoding to some criterion. In the next two sec-
tions, two optimality criteria are defined and discussed.

The Desirability Function Approach

The desirability function approach (DFA) was introduced by Harrington
(1965). The response models in (1) are first fitted individually using OLS
estimates of the B;’s, namely,

Br=X/X)"'X/y,,  i=1,2..r
The corresponding predicted responses are
P =fl@B, i=1,2, ., (n

The p}(x)’s are then transformed into desirability functions denoted by di(x),
where 0 < di(x) < 1,i =1, 2, ..., r. The value of d;(x) increases as the “desir-
ability” of the corresponding response increases. In a production process,
the responses v, ys,..., ¥, usually measure particular characteristics of a
product.

The choice of the desirability function is subjective and depends on
how the user assesses the desirability of a given product characteristic.
Harrington (1965) used exponential-type desirability transformations.
Later, Derringer and Suich (1980) introduced more general transformations
that offer the user greater flexibility in setting up desirability values.
Derringer and Suich considered one-sided and two-sided desirability trans-
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formations. The former are employed when the j(x)’s are to be maximized.
In this case, di(x) 1s defined by

0 if 77 <u;
fv;k(x) — U : . Ak

d,-(x) = [_U—IT(II:I if U <y, <v; (12)
1 otherwise

where u; is the minimum acceptable value of J¥ and v; is such that higher
values of 7 would not lead to further increase in the desirability of the ith
response (i = 1, 2, ..., r). The value s is specified by the user. Note that if the
minimization of 77(x) is desired, then d;(x) is chosen as

0 if ¥7 >4
A~k —~ Ay
VilX) — v; o~ ~ ~
di(x) = [—’[E—)_D—’:| if i; <77 < (13)
i 1
1 otherwise

where #; and 7; are specified values (i = 1, 2, 3, ..., r). Two-sided desirability
transformations are used when y; has both minimum and maximum con-
straints. The corresponding d;(x) is given by

~ s
V; (x) — U . R
I:'-L—————' ifu; < 9! <¢

¢ — U
dix) = { [7(x) — v’ , nx
—Y if C, <y S
¢, =Y
0 otherwise

where here u; and v; are, respectively, minimum acceptable and maximum
acceptable values of 77, ¢; is that value of 7/ considered “most desirable”
(target value), and s and ¢ are specified by the user.

Once the desirability functions for all the responses have been chosen,
the d;(x)’s are then combined into a single function, denoted by d(x), which
measures the overall desirability of the responses. Derringer and Suich
(1980) adopted the geometric mean of the d;(x)'s as such a function, that is,

, 1/r
d(x) = []‘[ d,-(x):|

=1
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We note that 0 < d(x) < 1 and that d(x) = 0 if any of the d;(x)’s is equal to
zero. Thus if a product does not meet a specified characteristic, it is deemed
unacceptable. Large values of d correspond to a highly desirable product.
Hence, optimum conditions are found by maximizing d(x) over the experi-
mental region. The multiresponse optimization problem has therefore been
reduced to the maximization of the single function d(x).

More recently, Derringer (1994) referred to the desirability function
approach as the desirability optimization methodology. He also provided
information concerning software availability for its computer implementa-
tion. Note that the actual maximization of d(x) can be carried out only by
using search methods, as opposed to gradient-based methods, because d(x)
is not differentiable at certain points. Del Castillo et al. (1996) proposed
modified desirability functions that are everywhere differentiable so that
more efficient gradient-based optimization procedures can be used.

The Generalized Distance Approach (GDA) was introduced by Khuri
and Conlon (1981). The responses are assumed to be adequately
represented by polynomial models of the same degree and form within the
experimental region R. In this case, the X's in models (3) are equal to a
common matrix Xy The estimates of f§;, = 12,...,r, and the
corresponding expressions for the predicted responses are given by Egs.
(9) and (11), respectively.

If the assumptions made earlier in Section 2.2 concerning the distribu-
tions of the responses are valid, then

Var[p,(x)] = £'(x)(X¢Xo) " f(x)5;;
and

Cov[Fi(x), 5] = £ ()Xo Xo) f(¥)o;.  i#)

where f(x) is the common form of f(x), i =1,2,...,r, and o;; is the (i, )th
element of X, the variance-covariance of the responses. Hence, if j(x) = [,
(x) 1 Pp(x) ... s $,(x)]" is the vector of predicted responses, then its variance-
covariance matrix is given by

Var[j(x)] = f'(x)(X§Xo)"f () (14)
Since X, = X, for i =1,2, ..., r, an unbiased estimator of X is given by

1

n=po

Ty = YL, — Xo(XoXo) "' XY (15)
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where ¥ = [y, : vy, : ... 1 y,] is the n x r matrix of multiresponse data and p,
is the number of columns of X [see Khuri and Conlon (1981), formula 2.3].
If r < n — py, then Xy will be nonsingular provided that Y is of rank r. Using
Y, in place of X in (14), an unbiased estimator of Var[p(x)] is obtained,
namely,

Varlp(o)] = £ ()X Xo) f ()

The main idea behind the generalized distance approach is based on
measuring the distance of y(x) from the so-called ideal optimum, which is
defined as follows: Let ¢; denote the optimum value if §;(x) obtained indi-
vidually over a region R, i=1,2,..,r. Let ¢ = (¢, &y, ..., d,)". If these
individual optima are attained at the same point in R, then an ideal opti-
mum is said to be achieved. In general, the occurrence of such an optimum is
very rare, since the ¢,’s attain their individual optima at different locations
in R. In this case, we search for the location of a near ideal optimum, a point
Xp in R at which p(x) is “closest™ to d) Here, “‘closeness” is determined by a
metric p[p(x), d)] defined as follows:

pli(x), &] = [(G(x) — &) (Var[po)]} (v(x) T

_[0@ - 95" 6o - ¢>] (16)
L1OXXo) ()

Thus the multiresponse optimization problem in this approach has been
reduced to the minimization of p[p(x), ¢] with respect to x over R.
Optimum conditions found in this manner result in a so-called compromise
ideal optimum.

Several other metrics were proposed in Khuri and Conlon (1981), for
example,

R 172
T Pi(x) — o
PP, ¢ = E Soif (X5 Xo) 'S m}

~ [, _ ~ ‘ 5 172
pali(x), d] = [Z Q(x)&)z_fb,l]
=1 i

where &; is the ith diagonal element of )io(i =1, 2,...,r). The metric p, is
appropriate whenever the responses are statistically independent. The metric
p, measures the total relative deviation of y(x) from ¢. It can be used when
X, is ill-conditioned.
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Remark 1. Tt should be noted that in the generalized distance
approach, ¢; is treated as a fixed quantity, when in fact it is random
(i=12,...r). To account for the randomness in the elements of ¢,
Khuri and Conlon (1981) developed a rectangular confidence region, Ci,
on ¢, the vector of true individual optima over the region R. For a fixed x in
R, the maximum of p[p(x), n] is obtained with respect to n in Cy. This
maximum provides a conservative estimate of p[y(x), d], the metric that
should be minimized with respect to x instead of p[p(x), ¢]. The maximum
so obtained, which is a function of x, is minimized with respect to x over R.
A more detailed discussion concerning this max-min approach is also given
in Khuri and Cornell (1996, Chapter 7).

The computer implementation of Khuri and Conlon’s (1981) general-
ized distance approach, including the use of the confidence region C,, is
available through the MR (for multiple responses) software written by
Conlon (1988). A copy of the MR code along with the accompanying tech-
nical report and examples can be downloaded from the Internet at ftp://
ftp.stat.ufl.edu/pub/mr.tar.Z. Note that the mr.tar.Z file is compressed. It
should be uncompressed and then compiled. Furthermore, MR fits a sec-
ond-degree polynomial model to each response.

An Extension of Khuri and Conlon’s (1981) GDA. The generalized
distance approach (GDA) described earlier requires that all fitted response
models be of the same form and degree and depend on all the control
variables under consideration. Valeroso (1996) extended the GDA by mak-
ing it applicable to models that are not necessarily of the same degree or
form. The following is a summary of Valeroso’s extension.

The models considered are of the form given in (1). The SUR (or
EGLS) estimates of B; are obtained from formula (7). The expressions for
the predicted responses are given by formula (10). Let p.(x)=
[Per(x), Fea(x), .., Fer(x)]". Then,

Polx) = AP, (17)

where A'(x) = diag[f{(x), f3(x). ..., f,(x)]. An estimate of the variance-cov-
ariance matrix of y,(x) is approximately of the form

Varlj(x)] = A@X'E Q@ L)X] ' A(x)

where the elements of ¥ are given in (6). The metric p defined in (16) is now
replaced by
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Pelie(x), b,] = [(o(x) — &) IA X ET R L)X A Go(x) — )]
(18)

where ¢, = (¢, &)(,2, (13(,,)’ and ci)w is the individual optimum of ¥,(x)
over the region R. Minimizing the metric p, over R results in a simultaneous
optimization of the r predicted responses.

Valeroso's (1996) extension also includes an accountability of the ran-

domness of ¢, by applying a max-min approach similar to the one described
in Remark 1.

2.3. Other Optimization Procedures

There are other optimization procedures that involve more than one
response. Some of these procedures, however, are not truly multivariate in
nature since they do not seek simultaneous optima in the same fashion as in
Section 2.2.

The Dual Response Approach

The dual response approach (DRA) was introduced by Myers and Carter
(1973). It concerns the optimization of a single response, identified as the
primary response, subject to equality constraints on another response
labeled the secondary response. Both responses are fitted to second-degree
models. Biles (1975) extended this idea by considering more than one sec-
ondary response.

Del Castillo and Montgomery (1993) presented an alternative way to
solve the DRA problem by using a nonlinear optimization procedure called
the generalized reduced gradient (GRG) algorithm. They demonstrated the
advantages of this algorithm and made a reference to software packages for
its computer implementation.

The DRA can be used in experimental situations where both the mean
and variance of a process are of interest. One is considered the primary
response and the other the secondary response [see Vining and Myers
(1990) and Myers et al. (1992)]. Previously, the DRA was used by Khuri
and Myers (1979) to provide an improvement to the method of ridge ana-
lysis, which 1s an optimization procedure for a single response represented
by a second-degree model within a spherical region [see Draper (1963)]. The
modification imposed certain quadratic constraints for the purpose of limit-
ing the size of the prediction variance. More recently, several authors ela-
borated further on the use of the DRA in conjunction with the modeling of
both the mean and variance. For example, Lin and Tu (1995) suggested
using the mean squared error (MSE) as a new objective function to be



Multiresponse Surface Methodology 421

minimized. This MSE is the sum of the estimated process variance and the
square of the differnce between the estimated process mean and some target
value. Copeland and Nelson (1996) proposed using direct function minimi-
zation based on Nelder and Mead's (1965) simplex method. Lin and Tu
(1995, p. 39) made an interesting comment by stating that the use of the
DRA for solving the mean-variance problem can work well only when the
mean and variance are independent.

Optimization via Constrained Confidence Regions

Optimization via constrained confidence regions (Del Castillo, 1996) is
somewhat related to the DRA. The responses are fitted individually using
either first-degree or second-degree models. Confidence regions on the loca-
tions of the constrained stationary points for the individual responses are
obtained if their corresponding models are of the second degree. If some of
the models are of the first degree, then confidence cones on the directions of
steepest ascent (or descent) are used. These regions (or cones) are then
treated as constraints in a nonlinear programming problem where one
response is defined as a primary response. The next step requires finding a
solution that lies inside all the confidence regions and/or cones.

A Fuzzy Modeling Approach

The fuzzy modeling approach of Kim and Lin (1998) is based on the so-
called fuzzy multiobjective optimization methodology. Tt is assumed that the
degree of satisfaction of the experimenter with respect to the ith response is
maximized when 77(x) [see formula (11)] is equal to its target value T, and
decreases as 77(x) moves away from T, i = 1,2, ..., r. If /™" and """ denote
lower and upper bounds on the ith response, respectively, then the degree of
satisfaction with respect to the ith response is defined by a function called
the membership function, which we denote by my[i7(x)],i=1,2,...,r, and is
given by

0 if 1",;“ < ),;mn or f;k > .‘Y}nux
T, — Vi (x)
_— - i Juimn n¥ :
HI«[.f'*(\')] = T — ypmin if y"" < W <T
i i\~ ' ,‘,
n*
BT e
RS AL A A if T < ],f < ‘,l‘lld)\
max ! Vi Vi
ymax

The values of ¥ and y™* can be chosen as the individual optima of 7 (x)

over a region R. We note that the definition of this function is similar to that
of the desirability function. Simultaneous optimization of the responses is
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achieved by maximizing the minimum degree of satisfaction, that is,
min{n,[Jf(x)], i = 1,2, ..., r}. Additional constraints may be added to this
formulation as appropriate.

The Procedure of Chitra (1990)

The procedure of Chitra (1990) is similar to the generalized distance
approach. Chitra defined different types of objective functions to be mini-
mized. These functions measure deviations of the responses from thetr target
values. The procedure allows the inclusion of several constraints on the
responses and control variables.

Remark 2. The generalized distance approach is the only multire-
sponse optimization procedure that takes into account the variance-covar-
iance structure of the responses. We recall that this structure affects the fit of
the models. It should therefore be taken into consideration in any simulta-
neous optimization. Also, in order to avoid any difficulties caused by multi-
collinearities among the responses, the multiresponse data should first be
checked for linear dependences among the columns of Y [see formula (15)].
Khuri and Cornell (1996, pp. 255-265) provide more details about this and
show how to drop responses considered to be linearly dependent on other
responses.

The extension of the generalized distance approach in Section 2.2
makes it now possible to apply this procedure to models that are not of
the same form or dependent on the same control variables. On the other
hand, the desirability function approach, although simple to apply, is sub-
jective, as it depends on how the user interprets desirabilities of the various
responses. The user should be very familiar with the product whose char-
acteristics are measured by the responses under consideration. Derringer
(1994, p. 57) provided some insight into the choice of desirability values.
He stated that *‘the process of assigning desirability curves and their weights
is best done by consensus in the early stages of product conception. The
consensus meeting should include an expert facilitator and representatives
from all functional areas involved with the product.” Care should therefore
be exercised in setting up desirability functions. Improperly assessed desir-
abilities can lead to inaccurate optimization results.

It should be recalled that in Derringer and Suich (1980), no account
was given of the variance-covariance matrix of the responses, not even at the
modelling stage. Del Castillo et al. (1996, p. 338), however, recommended
using Zellner’s (1962) SUR estimates to fit the models in (1) [see formula
(7)]. Furthermore, the desirability function approach has no built-in proce-
dure for detecting those responses, if any, that are either linearly dependent
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or highly multicollinear. Ignoring such dependences can affect the overall
desirability and hence the determination of optimum conditions.

3. EXAMPLES

In this section, we illustrate the application of the extended generalized
distance approach (GDA) and the desirability function approach (DFA)
of Section 2.2 and the dual response approach (DRA) using the GRG
algorithm of Section 2.3. We present two exampies, one from the semicon-
ductor industry and the other from the food industry.

3.1 A Semiconductor Example

An experiment was conducted to determine the performance of a tool used
to polish computer wafers. Three control variables were studied: x; = down
force, x, = table speed, and x; = slurry concentration. The measured
responses were removal rate of metal (RR), oxide removal rate
(OXRATE), and within-wafer standard deviation (WIWSD). The objective
of the experiment was to maximize y, = selectivity and minimize y, = non-
uniformity, where

_RR and _ WIWSD
Y1 = OXRATE 2= TRR

A Box-Behnken design with eight replications at the center and two replica-
tions at each noncentral point was used. Each treatment run required two
wafers. The first wafer was used to measure RR and WIWSD. The second
wafer was used to measure OXRATE. The design points and corresponding
values of y; and y, are given in Table 1.

Before determining the optima associated with y; and y,, we need to
select models that provide good fits to these responses. Since the models
are fitted using Zellner’s (1962) seemingly unrelated regression (SUR)
parameter estimation [see formula (7)), measures of the goodness of fit
for SUR models should be utilized. These include Sparks’ (1987) PRESS
statistic and McElroy’s (1977) R® statistic. The latter is interpreted the
same way as the univariate R? in that it represents the proportion of the
total variation explained by the SUR multiresponse model. These mea-
sures provide the user with multivariate variable selection techniques,
which, in general, require screening a large number of subset models.
To reduce the number of models considered, Sparks (1987) recommends
using the univariate R?, adjusted R?, and Mallows’ C, statistics to identify
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Table 1 Experimental Design and Response Values (Semiconductor Example)

Coded control variables Responses
Ayl X> X3 i L]
0 0 0 0.49074 0.18751
0 0 0 0.39208 0.19720
1 0 1 0.85866 0.12090
1 0 1 0.74129 0.16544
-1 0 1 0.33484 0.65322
-1 0 1 0.29645 0.75198
1 -1 0 0.57887 0.15566
1 -1 0 0.62203 0.10841
1 1 0 0.70656 0.14648
] 1 0 0.88189 0.09600
0 0 0 0.43939 0.24803
0 0 0 0.46587 0.23759
-1 1 0 0.30218 0.55831
-1 1 0 0.36169 0.71183
0 1 1 0.60465 0.23622
0 1 1 0.53486 0.26489
0 -1 -1 0.48908 0.24406
0 -1 -1 0.43681 0.38756
—1 0 ~1 0.25005 0.63051
-1 0 -1 0.19546 0.72421
0 -1 1 0.52298 0.25327
0 -1 1 0.42990 0.25019
0 0 0 0.45782 0.32923
0 0 0 0.46910 0.29522
1 0 -1 0.63714 0.12583
1 0 -1 0.79454 0.19912
0 1 -1 0.88856 0.27198
0 1 -1 0.84218 0.29578
-1 -1 0 0.13258 0.62442
-1 -1 0 0.13665 0.53618
0 0 0 0.49810 0.29392
0 0 0 0.46321 0.37023

“good” subset models. For each combination of such models, Sparks’
PRESS and McElroy’s R® statistics are computed. The “best” multire-
sponse model is the one with the smallest PRESS statistic value and a
value of McElroy’s R’ close to 1. On this basis, the following models were
selected for y; and y,:
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$ou(x) = 0.441 4 0.2382x, + 0.1109x, — 0.0131x4

: 19
+0.0429x3 +0.0912x3 — 0.0773x5x; (1

Poa(¥) = 0.2727 — 0.2546x, + 0.0014x, — 0.0114x3 + 0.1216x7  (20)

The SUR parameter estimates, their estimated standard errors, the values of
the univariate R%, adjusted R?, and C, statistics and values of McElroy’s R
and Sparks’ PRESS statistics are given in Table 2. Note that the SUR
parameters estimates were obtained using PROC SYSLIN in SAS
(1990a), and the univariate R*, adjusted R?, and C, statistics were computed
using PROC REG in SAS (1989). From Table 2 it can be seen that models
(19) and (20) provide good fits to the two responses.

On the basis of models (19) and (20), the individual optima of #,,(x)
and p,(x) over the region R = {(x}, X1, x3)| Z?:l x2 <2} are given in Table
3. These values were computed using a Fortran program written by Conlon
(1992), which is based on Price’s (1977) optimization procedure. The simul-
taneous optima of §,;(x) and ¥.(x) over R were determined by using the
extension of the GDA (see Section 2.2). The minimization of p, in (18) was

Table 2 SUR Parameter Estimates and Values of C,, R, and Adjusted R’
(Semiconductor Example)

Responses®
Parameter el Fen
Intercept 0.4410(0.0190) 0.2727(0.0135)
X 0.2382(0.0155) —0.2546(0.0135)
X 0.1109(0.0155) 0.0014(0.0135)
3 ~0.0131(0.0155) —0.0114(0.0135)
XX
RYRE
XaX3 —0.0773(0.0219)
N 0.1216(0.0191)
X3 0.0429(0.0219)
X3 0.0912(0.0219)
Gy 6.17 4.39
2 0.91 0.93
adj.R? 0.89 0.91

“The number in parentheses is the standard error.
Note: McElroy’s R =0.9212: Sparks’ PRESS statistic = 103.9.
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carried out using a program written in PROC IML of SAS (1990b). The
results are shown in Table 3.

To apply the DFA, we use formulas (12) and (13) for d,(x) and dy(x),
respectively, where

0 if 3, <0
di(x) = %’*g) if 0 <y, <095
1 otherwise
and
0 if pp>1.0

dy(x) = %2%)___11 if 0.20 < §,, < 1.0

1 otherwise

Note that the values 0.95 and 0.20 in d; and d,, respectively, are of the same
order of magnitude as the individual maxima and minima of y,, and y,,
respectively. Note also that, on the basis of a recommendation by Del
Castillo et al. (1996, p. 338), we have used the SUR predicted responses, j,
(x) and J,.,(x), instead of y}(x) and y3(x). The latter two are the ones nor-
mally used in the DFA and are obtained by fitting the models individually
[see formula (11)]. The overall desirability function d(x) = [d,(x)d,(x)]"/
was maximized over R using the Fortran program written by Conlon
(1992). Alternatively, Design-Expert (Stat-Ease, 1993) software can also
be used to maximize d(x). The DFA results are given in Table 4.

The results for the DRA are given in Table 5. In applying this proce-
dure to the present example, each of the two responses was considered as the

Table 3 Individual and GDA Simultaneous Optima for the Semiconductor
Example

Response Optimum Location
Individual optima
Per(x) Max = 0.8776 (0.7888, 0.9031, —0.7479)
Fea(x) Min = 0.1302 (0.9443, —0.0468, 0.9689)
Simultaneous optima (GDA)
Yer(x) Max = 0.8641 (0.9976,0.9127, —0.3961)
Pea(x) Min = 0.1463 (0.9976,0.9127, —0.3961)

Note: Minimum value of p, in Eq.18 is 0.8610.
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Table 4 DFA Simultaneous Optima for the Semiconductor Example

Response Optimum Location
Peor(x) Max = 0.8772 (0.8351,0.7951, —0.8172)
Fea(X) Min = 0.1556 (0.8351,0.7951, —0.8172)

Note: The maximum of d(x) over R is 0.9609.

primary response. Its optimum value was then obtained over R using the
constraint that the other response is equal to its individual optimum from
Table 3. Values of the DRA optima in Table 5 were computed on the basis
of the GRG algorithm using the *“‘solver” tool, which is available in the
Microsoft Excel (Microsoft, 1993) spreadsheet program. For more details
on how to use this tool, see Dodge et al. (1995).

The results of applying GDA, DFA, and DRA are summarized in
Table 6. We note that the results are similar to one another. The maxima
of J.1(x) under GDA and DFA are close, and both are higher than the
maximum under DRA. Their overall desirability values are also higher.

3.2. A Food Industry Example

Tseo et al. (1983) investigated the effects of x| = washing temperature, x, =
washing time, and x; = washing ratio on springiness (;), thiobarbituric
acid number (y,), and percent cooking loss (y3) for minced muliet flesh. It
is of interest to simultaneously maximize y; and minimize y, and y;. The
design settings in the original and coded variables and the corresponding
multiresponse data are given in Table 7. Note that the design used is a
central composite design with three center point replications and an axial
parameter equal to 1.682. The same data set was reproduced in Khuri and
Cornell (1996, pp. 295-296).

The multivariate variable selection techniques [Sparks’ (1987) PRESS
statistic and McElroy’s (1977) R? statistic] mentioned in the previous section
were used, and the following SUR models were obtained:

Table 5 DRA Optima for the Semiconductor Example

Response Optimum Location

Palx) 0.7639 (1.0, 0.3299, 0.9440)
P (x) 0.1488 (1.0, 0.7751, —0.6319)




428 Khuri and Valeroso

Table 6 Comparison of GDA, DFA, and DRA Results for the Semiconductor
Example

Method
GDA DFA DRA
Optimal response value  (0.86,0.15) (0.88,0.16) (0.76,0.15)
Optimal settings (1.0,0.91,-0.40) (0.84,0.80.-0.82) See Table 5.
Minimum metric (p,.) 0.8610 1.1768 Not applicable.
Overall desirability 0.9537 0.9609 0.8967

$o1(x) = 1.8807 — 0.0974x, — 0.0009x; + 0.0091x3 — 0.1030x7
+0.0013x3 4 0.0028x3

F0(x) = 22.5313 + 5.6609x, — 0.1719x; — 1.2268x; + 7.8739x7
+0.1489x3 + 2.6920x, x5 + 0.1752x5x5

Fa(x) = 17.8118 + 0.7442x; — 0.0120x, — 1.0710x; + 3.4798x7
+0.8288x3 + 1.6731x3 + 1.3020x, x5 + 1.9716x, x4

Table 7 Experimental Design and Response Values (Food Industry Example)

Original control variables  Coded control variables Responses

X X, X; X X5 X3 RN ¥ n

26.0 2.8 18.0  -1.000 —1.000 —1.000 1.83 29.31  29.50
40.0 2.8 18.0 1.000 —1.000 ~1.000 1.73 39.32 19.40
26.0 8.2 180  ~1.000  1.000 —-1.000 1.85 25.16  25.70
40.0 8.2 18.0 1.000 1.000 -1.000 1.67 40.81 27.10
26.0 2.8 27.0  —1.000 -1.000  1.000 1.86 29.82 2140
40.0 2.8 27.0 1.000 -1.000 1.000 1.77 3220 24.00
26.0 8.2 270 -1.000 1.000 1.000 1.88 22.01 19.60
40.0 8.2 27.0 1.000  1.000 1.000  1.66 40.02  25.10
21.2 5.5 225  —-1.682 0.000 0.000 1.8t 33.00 2420
448 5.5 225 1.682  0.000 0.000 1.37 51.59  30.60
33.0 1.0 22,5 0.000 -1.682  0.000 1.85 20.35  20.90
33.0 10.0 225 0.000 1.682  0.000 192 20.53 18.90
33.0 5.5 14.9 0.000 0.000 -—1.682 1.88 23.85  23.00
33.0 5.5 30.1 0.000  0.000 1.682 1.90 20.16  21.20
33.0 5.5 2255 0.000  0.000  0.000 1.89 21.72 18.50
33.0 5.5 22.5 0.000  0.000  0.000 1.88 21.21 18.60
33.0 5.5 2255 0.000  0.000  0.000 1.87 21.55 16.80
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The estimated standard errors for the parameter estimates, the values of the
univariate R?, adjusted R*, and C, statistics, and values of McElroy’s R
Sparks’ PRESS statistics are given in Table 8. We can see that the fits of the
three models are quite good.

The individual optima and the GDA simultaneous optima over the
region R = {(v), x5, X3)] Z?:l x? < 3} are given in Table 9.

The results of the DFA are presented in Table 10. Here, the desirabil-
ity values were computed using the functions

0 if ¥, <13
Fa(x)—1.3 ) .
dl(x) = 7‘5‘_—13—' if 1.3 < Vo < 2.5
1 otherwise
0 if 5> 51
g - 51
1 X) = .‘L’Z(x) . ,\'7
da(x) TS if 17 < 3,5 < 51
1 otherwise

Table 8 SUR Parameter Estimates and Values of C,, R?, and Adjusted R
(Food Industry Example)

Responses®

Parameter el T Foa
Intercept 1.8807(0.0207) 22.5313(0.8854) 17.8118(0.8097)
X) —0.0974(0.0097) 5.6609(0.5538) 0.7442(0.3818)
X —0.0009(0.0097) —0.1719(0.5538) —0.0120(0.3818)
AW 0.0091(0.0097) —1.2268(0.5538) —1.0710(0.3818)
XX 2.6920(0.7234) 1.3020(0.4370)
1, 1.9716(0.4323)

Xy 0.1752(0.7158)

.\'% —0.1030(0.0107) 7.8739(0.5823) 3.4798(0.4198)
.\-§ 0.0013(0.0107) 0.1489(0.5823) 0.8288(0.4198)
\% 0.0028(0.0107) 1.6731(0.4162)

(Vz; 6.61 7.82 8.59

. 0.93 0.95 0.87

Adj. R 0.88 0.91 0.74

“The number inside parenthescs 1s the standard crror.

Note: McElroy's R® = 0.9271; Sparks’ PRESS statistic = 230.21.
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Table 9 Individual and GDA Simultaneous Optima for the Food Industry

Example

Response Optimum

Location

Individual optima

Fer(x) Max = 1.9263
Pea(x) Min = 18.8897
Fe3(x) Min = 17.4398
Simultaneous optima (GDA)

Fer(x) Max = 1.9136
Pealx) Min = 19.3361
Fe3(x) Min = 17.9834

(-0.4661, —0.3418, 1.6276)
(-0.5347, 1.1871, 1.1415)
(-0.2869, 0.2365, 0.4970)

(-0.5379, 1.0435, 0.8622)
(-0.5379, 1.0435, 0.8622)
(-0.5379, 1.0435, 0.8622)

Note: Minimum value of p, 1n Eq. (18) 15 0.9517.

0
dy(x) =

In setting up these functions, we assumed that the ranges of acceptable
values for the three responses are 1.3 < y; <2.5,17 <y; <51, and 14

< y3 < 30.

Finally, for the DRA, each of the three responses was considered to be
the primary response, and its optimum value over R was obtained under the
constraints that the other two responses are equal to their respective indi-

Jea(x) =30
14 =30

if y,3 > 30
if 14 < 3,3 <30

otherwise

vidual optima from Table 9. The results are shown in Table 11.

A summary of the optimization results of applying GDA, DFA, and
DRA to this example is given in Table 12. Here also the results are similar,
with the GDA and DFA providing slightly smaller minima for y, and y;

than the DRA.

Table 10 DFA Simultaneous Optima for the Food Industry Example

Location

Response Optimum

Fer(x) Max = 1.9127
Pealx) Min = 19.8768
Pe3(x) Min = 17.6386

(-0.4504, 0.6176, 0.8081)
(-0.4504, 0.6176, 0.8081)
(-0.4504, 0.6176, 0.8081)

Note: The maximum of d(x) over R is 0.7121.
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Table 11 DRA Optima for the Food Industry Example

Response Optimum Location

For(x) 1.9145 (-0.5617, 1.1228, 0.9415)
Poal(x) 20.5507 (-0.3514, 0.2824, 0.5605)
Ppz(x) 18.6124 (-0.5077, 1.0716, 1.2625)

Table 12 Comparison of GDA, DFA, and DRA Results for the Food Industry

Example

GDA DFA DRA
Optimal response values  (1.91, 19.34, 17.98)  (1.91, 19.88, 17.64) (1.91, 20.55, 18.61)
Optimal settings (-0.54, 1.04, 0.86)  (--0.45, 0.62, 0.81)  See Table 11
Minimum metric (p,) 0.9517 1.2832 Not applicable
Overall desirability 0.7098 0.7121 0.6885
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Stochastic Modeling for Quality
Improvement in Processes

M. F. Ramalhoto
Technical University of Lisbon, Lisbon, Portugal

1. INTRODUCTION

In any service industry there are essentially two types of products to be
considered, product service and product supply. Product service can be
defined as how the service has been provided, and product supply is what
has been provided (this is, in many cases, what is commonly called product).
The product service is usually provided through a service delivery process of
a queuing system. The service delivery process is essentially described by a
queuing model. This paper deals only with the product service.

To develop policies to provide consistently high product service for a
wide range of customer types and arrival and service rates at “‘reasonable”
cost is one of the ultimate targets of most queuing system managers.
Usually, those are not easy targets. The present chapter presents a metho-
dology to address them.

In Section 2 the differences between product service and product sup-
ply are discussed. In Section 3 a way is provided of quantifying delay and
discomfort in the queuing system of the service industry in order to achieve a
product service of high quality. Six external queuing system quality dimen-
sions and four internal queuing system quality dimensions are defined to
address delay and discomfort. The external quality dimensions—perfor-
mance, flexibility, serviceability (responsiveness), reliability, courtesy (empa-
thy), and appearance (tangibles)}—provide a way to establish a kind of
channel of communication between the queuing system managers and
operators and their customers (they allow the managers to understand
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their customers’ expectations and perceptions of the queuing system). The
first three internal quality dimensions—timeliness, integrity, and predictabil-
ity—provide a way to establish a kind of channel of communication between
the managers and the actual physics of the queuing system (they allow the
managers to identify and understand the limitations of the production pro-
cess). The fourth internal quality dimension—-customer satisfaction—
provides a way to establish a kind of channel of communication between
the managers and their market competitors. Once we have established the
channels of communication we have to learn how to use them to commu-
nicate efficiently and to find the solution or the way of coping with the
identified problems. Most of those problems have to do with the design of
the service delivery process.

Behind a service delivery process there is usually a queuing model
responsible for its failure or its success. In Section 4 the most relevant
queuing models addressing the reduction of delay and discomfort and
their functional relationship with the basic queuing model parameters are
presented and discussed (two analytical queuing models that consider the
quality dimension flexibility, one queuing model that considers the custo-
mers’ perceptions of waiting and service, and a brief reference to approx-
imations and bounds for queuing models with time-dependent arrival rates
and to retrial queuing models). Usually, there are more than one queuing
model able to respond to the needs of a particular service delivery process.
Each queuing model option might lead to different levels of delay and
discomfort reduction, impact on customer satisfaction, and costs. The aim
is to find the “optimal” choice that balances it all. In Section 5 a simulation-
decision framework, called total quality queue management, is described
that explicitly considers and evaluates alternative queuing model options
and makes the necessary decisions by selecting those particular options
that provide the best projected performance scores, in terms of specified
scoring criteria, based on measures linked to the quality dimensions selected.
Section 6 consists of conclusions and further remarks.

2. PRODUCT SERVICE AND PRODUCT SUPPLY
2.1. Distinguishing Product Service and Product Supply

There might be situations where a clear cutoff between the product service
and the product supply is too difficult to achieve. However, usually the
product supply is an object and the product service is not. Also, in most
cases, a poor product service might ruin an excellent quality product supply
and vice versa. Therefore, both the quality improvement of product service
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and that of product supply have to be looked for and considered equally
important.

Quality improvement of the product supply is linked to stochastic
maintenance, reliability, quality control, and experimental design techniques.
Furthermore, an important problem is how to achieve a high-quality product
supply without increasing cost. In many situations the study of interactions
among maintenance, reliability, and control charts, through a total quality
management (TQM) approach, might help to reach that goal. However, that
is not the concern of this chapter, which deals only with the product service.

It has been recognized by several authors including Deming (see, e.g..
Ref. 1) that people who work in queuing systems are usually not aware that
they too have a product to sell and that this product is the service they are
providing. The product service is frequently invisible to the operators. They
have difficulties in seeing the impact of their performance on the success or
failure of the organization that employs them, on the security of their jobs,
and on their wages. Perhaps it would make sense to propose a quality index
(based on some of the quality dimensions to be defined next) for most of the
relevant queuing systems of common citizens’ everyday life (that would also
help their operators to understand better the importance of their mission).
Just imagine all the queuing systems relevant to our everyday life operating
under the customer satisfaction criterion efficiently, adequately, and at
controlled costs.

2.2. Identification of Differences

Product service cannot be stored, so apparently at least some measurements
must be almost immediate. In fact, product service is intangible and ephem-
eral or perishable. It cannot be stockpiled and must be produced on demand
(it should be noted that similar constraints now exist on the production of at
least some product supply, owing to the new requirements in manufacturing
production, such as just-in-time or zero inventory). Frequently, the delivery
of the product service involves the customer and begins a very time-sensitive
relationship with the customer. The involvement of the customer also makes
the definition of quality of the product service vary over time much more
quickly than that of the product supply. Customers also add uncertainties to
the process, because it is often difficult to determine their exact requirements
and what they regard as an acceptable standard for the product service. This
problem is magnified by the fact that standards are very often subjective,
based on personal preferences or moods rather than on technical perfor-
mance that can be easily measured [2]. Whereas a product service may have
completely satisfied a customer yesterday, exactly the same product service
may not do so today because of the customer’s mood. On the other hand,
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with the same equipment and for the same required service, because of the
mood of the operator (if the operator is a human), the product service might
be of poor quality today even if usually it is not. Queuing and waiting in
general are at the same time personal and emotional. Qualitative and quan-
titative aspects of human behavior toward waiting have to be addressed. In
most cases if customers are pleasantly occupied while waiting (entertain-
ment, socially relevant information, opportunity to make interesting con-
tacts, job opportunities, extra information about the queuing system itself,
etc.), their perception of the length of the waiting time and of whether it is
“reasonable™ may differ substantially. Unlike the product supply, which can
usually be sampled and tested for quality, the product service cannot, at
least not easily. The record of an inspection of the product service cannot be
assumed to be a “‘true” reflection of its quality. For instance, during inspec-
tion the operator (if a human) might be quicker, more courteous, and more
responsive to customers than if left alone. (However, if the operator feels
pleasure in providing a high quality product service and is proud of con-
tributing to the higher standards of the queuing system, he or she works well
even without any kind of inspection.) Moreover, unlike the control of qual-
ity in the product supply [1], the quality of the product-service depends both
on the operator and on the customer. Also, product service can be classified
as poor by some and good by others. Indeed, its qualification, good or
faulty, need not be consistent.

On assessing the effectiveness of a product service, quantitative and
qualitative factors have to be taken into consideration. It is also expected
that different individuals will have different judgments and different opi-
nions about many factual issues. Nevertheless, if the process continues long
enough, the observers are expected to independently arrive at very similar
interpretations. That, obviously. encourages the development of mechan-
isms of communicatiotn between the system’s management and their custo-
mers. Moreover, product service is delivered at the moment it is produced.
Any quantification or measurement taken is thus too late to avoid a failure
or defect with that particular customer. However, that situation might be
alleviated if a communication mechanism is already in operation (for
instance, at the exit the customer could be asked, or given a short and
clear questionnaire, to quantify the product service just received according
to the quality dimensions to be defined in the next section and to briefly state
what he or she would like to see improved in it; means of contacting the
customer for mutually relevant communication in the future should also be
recorded if the customer is interested). The success of the communication
mechanism depends heavily on showing customers that they have been
heard by the system managers and that their relevant opinions really
make a difference.
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Nevertheless, product service quality must always be balanced
between customer expectations and their perception of the product service
received. A higher quality product service is one with which the customers’
perceptions meet or exceed their expectations. It is obvious that it is much
more difficult to define quantitative terms for the features that contribute to
the quality of product service than to quantify the quality of the product
supply. Therefore, the primary area of difficulty is that of identifying appro-
priate quality ‘‘measures’ (quantities resulting from measurements or quan-
tification) that we call here quality dimensions. These quality dimensions
also serve as a common language among the customers, operators, and
managers.

3. QUALITY DIMENSIONS

1 shall classify the quality dimensions into external and internal.

3.1. External Quality Dimensions

The quality dimensions—performance, flexibility, serviceability (responsive-
ness), reliability, courtesy (empathy), and appearance (tangibles)—are here
called external quality dimensions and defined as follows, in a slightly dif-
ferent way than in Refs 3 and 4. Note that all external quality dimensions
are defined from the customer’s viewpoint.

Performance 1s the primary operating characteristics of the queuing
system. 1t can be “measured” by, for instance, the “"absence or perceived
absence of waiting time,” “total sojourn time in the system not exceeding
X units of time.”” “‘competitive price,” etc.

Flexibility is the queuing system’s built-in ability to quickly respond to
changes in demand. It can be “‘measured™ by, for instance, the duration of
a traffic peak (how quickly the peak is gotten rid of).

Serviceubility (responsiveness) is the ability of the queuing system to
respond to the individual needs of a particular customer. It can be mea-
sured by, for instance, the time to respond to those individual needs,
including length of time to answer enquiries or to answer complaints.

Reliability 1s the ability to always perform the product service depend-
ably, knowledgeably and accurately, and as expected by the customer.

Courtesy (empathy) is the caring, individualized attention provided to
the customer, the effort to understand the customer’s needs, the ability to
convey trust and confidence. Those are factors more linked to standards
of preferential human behavior, which are most subjective and difficult to
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control and evaluate. They need separate attention and joint research
work with other specialists in order to set up adequate ways of quantify-
ing them.

Appearance (tangibles) is the quality appearance of the physical envir-
onment and materials, facilities, equipment, personnel, and communica-
tions used to produce the product service. To quantify this quality
dimension, joint research work with other specialists is also required to
set up the right questions to lead to an adequate way of quantifying them.

The first four dimensions are mainly concerned with the cost—benefit
characteristics of the particular queuing system under study. In fact, in
many situations once they reach reasonably high ranks it is easier to
improve the last two dimensions. Otherwise, a very kind operator who
does not know the job well will very soon be considered to be of little use
to the customer. An office full of well-dressed operators and sophisticated
equipment is not necessarily the most important factor for the customer,
particularly if the first four dimensions are not ranked high. They might
even represent an insult for the customer who knows that, directly or indir-
ectly, he or she is paying for that luxury.

Those quality dimensions are of great value as facilitators of system
improvement but not in the ongoing business of monitoring and improving
product service quality and cost reduction. They can be obtained only after
the product service is delivered. Also, they reflect the views of the customer
and not necessarily the real state of the system. They indicate the targets,
from the point of view of the customers, that must be aimed for. However, a
lot more might be learned by comparing the ranking of those quality
dimensions with the “real” state of the system (for instance, by establishing
priority targets and identifying the need to add more relevant quality
dimensions). In fact, other external quality dimensions could be envisaged,
such as managers’, operators’, and, when applicable, customers’ commit-
ment to quality. That is, of course, another external quality dimension that
is difficult to measure but not so difficult to quantify.

3.2. Internal Quality Dimensions

We need “measures” that will help us to deliver what the customer expects or
to improve the queuing system beyond customers’ expectations at reasonable
prices. For that, the quality dimensions timeliness, integrity, predictability,
and “customer satisfaction,” called here internal quality dimensions, are
adopted. The quality dimension timeliness has been referred to, by several
authors, as one of the most influential components in the quality of a product
service, because the product service has to be produced on demand.
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Timeliness is formed by the access time, which is the time taken to gain
attention from the system; time queuing, which is the time spent waiting
for service (and which can be influenced by the length of the queue and/or
its integrity); and action time, which is the time taken to provide the
required product service.

Integrity deals with the completeness of service and must set out what
elements are to be included in order for the customer to regard the service
as satisfactory. This quality dimension will set out precisely what features
are essential to the product service.

Predictability refers to the consistency of the service and also the per-
sistence or frequency of the demand. Standards for predictability identify
the proper processes and procedures that need to be followed. They may
include standards for the availability of people, materials, and equipment
and schedules of operation.

Customer satisfaction is defined here as the way to provide the targets
of success, which may be based on relative market position for the provi-
sion of a specific queuing system.

So far, we have established external and internal channels of commu-
nication and ““measures” that tie together, in equal terms though with dif-
ferent roles, the managers, their operators (as part of the production
process), customers, and market competitors. The aim is to build up a
fair partnership of system managers, operators, market competitors, and
customers, all able to communicate among themselves and committed to
quality improvement and cost reduction of the system. Let me call this the
manager tetrahedron concept (see Fig. 1). This concept allows a TQM

CUSTOMERS

MARKET OPERATORS
COMPETITORS (Production Process)

Figure 1 Manager tetrahedron.
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approach to the quality of queuing systems in the way discussed, for
instance, in Refs. 4-6.

Furthermore, the first internal quality dimension is clearly part of the
theory of queues. Namely, access time has to do with the theory of retrial
queues, and queuing time and action time are waiting time and service time,
respectively. Unlike manufacturing, the production process in queuing sys-
tems of the service industry is usually quite visible to customers, since they
are often part of this process. Therefore, it is crucial to place some quality
improvement efforts on improving the production process. The service
delivery process might be seen as the process of producing the product-
service. Parasuraman et al [7], through external quality dimensions, have
also identified the service delivery process as the key to improving product
service quality and building customer loyalty. To improve the service deliv-
ery process essentially means to improve the queuing model behind it.
Timeliness provides basic measures of its performance.

Let me now give examples of queuing model studies relevant to the
quality improvement of the service delivery process.

4. SOME EXAMPLES OF IMPORTANT QUEUING MODELS
IN QUALITY SERVICE

Some “"product service failures or defects are very often linked to ““unaccep-
table access time,” ‘‘unacceptable queuing time,” ‘“‘unacceptable action
time,” and “‘unacceptable sojourn time in the system.” All are clearly mea-
sured in queuing theory terms. Those failures or defects, as already men-
tioned, might ruin the ranking of most of the other quality dimensions. The
way to prevent those failures or defects rests in the quality of the design of
the process delivery of the queuing system. Often, if nothing is done to
spread out the arrival pattern or to change the service rate or to modify
the service discipline, the queuing system experiences very uneven traffic
flows and serious failures or defects occur in the product service. All of
those possible failures or defects have costs. Very often the cost of delay
is to lose customers.

" e

4.1. Two Queuing Models that Consider the Quality
Dimension Flexibility

Queuing models that address the queuing system quality have to be able to
efficiently deal with the peak duration that might occur in those systems.
Very often, the rate of arrival to the system is very uneven, subject to
random fluctuation, or periodically time-dependent. Designing such a queu-
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ing system specially to meet the peak demands is not always the best action
to take, because it can be costly and the excess capacity can have negative
psychological effects on the customer.

On the other hand, a poor rank in flexibility might lead to poor
ranks in almost all the other quality dimensions. Most traditional queuing
models are unable to respond quickly to changes in their environment.
(The basic queuning parameter, namely, the number of operators, is usually
assumed to be unchanged no matter what is happening in the queuing
system.) The result is unacceptable queue sizes and waiting times. Long
queues are, with few exceptions (e.g., the restaurant with excellent food,
product supply at a good price), always considered an indication of poor
product service.

Ramalhoto and Syski [8] show how quality management concepts
of satisfying the customer can be incorporated into the design of queu-
ing models. They propose and study a queuing model that aims to
provide managers with a way of dealing with some temporary peak
situations, that is to say, to have high ranking in the flexibility quality
dimension. The model is essentially a G/G/c¢/FCFS (or a G/G/¢/c+d/
FCFS, ie. first come first served queuing model with ¢, ¢ operators
and d waiting position; d is omitted when equal to zero or infinite)
queuing model under the following additional decision rule, called here
rule 1.

Rule 1. 1f the queue size exceeds b (the action line), introduce another
server (or k servers, k > 1); when it falls below a (the prevention or alarm
line), withdraw one server (or k servers, k > 1), b > a.

For the M/M/ queuing model ¢, (i.e., first come first served
queuing model with Poisson arrival process and exponential service
times distribution with cooperators and infinite waiting positions)
under rule 1, the equilibrium distribution of the state of the two-
dimensional Markov process that characterizes the queuing model is
derived. Some first-passage-time problems useful in the quality design
of the queuing system are solved. Several extensions of these analytical
results to more general settings, including nonhomogeneous Poisson
arrivals, are discussed.

For the M/M/c queue under rule 1, where the arrival rate is denoted by
A and the service rate by p, p = A/[(c + k)], t=2/(cp), p < 7, p < 1, and
eim for i=0,1,2,..;n=c,c+k, denote the steady-state probability of
having 7/ customers in the queuing system and » operators serving,
Ramalhoto and Suski prove, among other results, that [Ref. 8, p. 163,
Egs. (9) and (10)]
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A measure of preference to use ¢ + & operators for a short period of
time (Ref. 8, p. 164, Eqs. (18) and (19)], is given by Dy, .4k, the entrance
probability to the set of states (i, c¢) for i =0, ..., « — 1, before entering the
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ary state (b, ¢ + k). The value of Dy ., gives an indication of the tendency
toward ¢ operators, when starting with ¢ + & operators.
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By letting r — 1, Ramalhoto and Syski [8] obtained

-1
p(l — p""”) b—-a+1
D(b.c+k) = |:l + 1 — P b—a

with p = ¢/(¢ + k).
Other rules could be considered as alternatives to rule 1; for instance:

Rule 2. When the queue size exceeds b (the action line), shorten the
service time (for instance, by deferring some tasks to be worked out later, by
dividing and scheduling when the service can be provided in multiple sepa-
rate segments, or by reducing the quality of service).

Rule 3. Identify classes of service needed by customers (each class
requiring a different service time and being of different *‘value™), and treat
the customers in separate queues, when the total queue length exceeds b (the
action line).

Which rule is preferable? Section 5 addresses this question.
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Affinity Operators

There are several important examples of queuing systems in the service
industry, where it is “more efficient” to have a customer serviced by one
operator than by any other. Thus the system schedules customers on the
queue of their affinity operator. To address the inevitable imbalance in the
number of customers assigned to each operator, there are several policies
that can be considered. Any conventional queuing model under rule 3 might
also be seen as a related model. Nelson and Squillante [9] consider a general
threshold policy that allows overloaded operators to transfer some of their
customers to underloaded operators. They vary four policy control para-
meters. Decomposition and matrix-geometric techniques yield closed-form
solutions. They illustrate the potential sojourn time benefits even when the
costs of violating affinities are large and experimentally determine optimal
threshold values. One of the important applications of those models is in
maintenance after sales, which has become a significant portion of manu-
facturing quality.

4.2. An Analytical Queuing Model that Considers the
Customers’ Perceptions of Waiting and Service

Conventional queuing control theory considers the costs of waiting in
terms of time and money. For instance, Kitaev and Rykov [10] collect
the newest results of the theory of Markov (semi-Markov and semi-
regenerative) decision processes related to queuing models and show its
applications to the control of arrivals, service mechanism, and service
discipline. The theory of Markov decision processes claims that under
certain conditions there exists an optimal Markov stationary strategy
that can be constructed according to an optimal principle based on an
optimality equation. Usually this approach does not account for
customers’ perceptions of waiting time and service.

Carmon et al. [11] examine how the service should be divided and
scheduled when it can be provided in muitiple separate segments. They
analyze variants of this problem by using a model with a conventional
function describing the waiting cost, which is modified to account for
some aspects of the psychological cost of waiting in line. They analytically
show, in some particular cases, that considerations of the psychological cost
can result in prescriptions that are inconsistent with those dictated by
conventional queuing control. From these results and the comments in
the previous sections, it is obvious that psychologically based queuing
research has a very important role to play in quality improvement in service
industries.
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4.3. Numerical Approximations for Queuing Models with
Time-Dependent Arrival Processes

In any real-life queuing system of a service industry, there is seasonal (daily,
weekly, and so on) patterns of traffic, rush hours and slack times. Queuing
models with nonhomogeneous stochastic process arrivals better reflect these
time-dependent traffic situations. However, the analysis of time-dependent
behavior is very difficult and very often impossible, even for the simplest
conventional queuing models. Nevertheless, the infinite server queue with
nonhomogeneous Poisson arrivals and general service time distribution is
one of the very rare exceptions, where time-dependent analysis is completely
known and useful in practice.

In Ref. 12, it is shown that in the ergodic M/M/r/r+d queuing
model, on the one hand, the distribution of almost any relevant queuing
characteristic can be rewritten in terms of the third Erlang formula (the
probability of nonimmediate service), which depends only on r and rp,
where p 1s the traffic intensity. On the other hand, the number of waiting
customers, number of servers occupied, number of customers in the sys-
tem, waiting time in the queue, and total sojourn time in the system, in the
stationary state, are sums of the corresponding random variables of the
M/M/r/r loss queuing model (well approximated by the infinite-server
queue for almost any value of the basic parameters involved, and even
for the time-dependent case) and of the M/M/1/1/+ (d-1) queuing model,
respectively, weighted by the third Erlang formula. The third Erlang for-
mula value also indicates a “heavy/low™ traffic situation. An extension of
some of those results to the M/M/r/r+d queuing model with constant
retrial rate is presented in Ref. 13, where the probability of not avoiding
the orbit parallels the role of the third Erlang formula. In both models the
decomposition’s physical properties seem to be robust to several general-
izations, including the time-dependent (transient) case. However, in many
situations, namely, the time-dependent ones, there is no closed formula for
most of the probability distributions. Therefore, exact comparisons are not
possible. Approximations and bounds might be obtained through this
decomposition approach.

1t is well known that many queuing system practitioners empirically
approximate the M/M/r/r+d queuing model with nonhomogeneous
Poissosn arrivals by the infinite-server queuing model with nonhomoge-
neous Poisson arrivals. Based on this practice and on the results presented
in Ref. 12, Ref. 14 provides a simple-to-use empirical approximation
method to obtain bounds and approximations for the M,/G/r/r +d queuing
model. Other authors, such as Whitt and his coauthors at the AT&T
Laboratories, have developed other, more sophisticated approaches to
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tackle the problem of obtaining approximations and bounds for the M/G/r/
r+d queuing model. A lot of research work is still needed on this queuing
model. Its great importance in the service industry has already been shown,
for instance, in Ref. 15.

4.4. The Retrial Queuing Model

As shown in the previous section, the access time to the queuing system is
one of the components of the internal quality dimension timeliness. In fact,
usually, a customer whose first call for access to the queuing system is
unsuccessful will repeat the call, once or several times, in quick succession,
thus giving rise to the phenomenon of repeated attempts. The retrial queu-
ing model studies this phenomenon. The effect of repeated attempts is to
lead to additional theoretical difficulties, even for the M/M/1/1 queuing
model with constant retrials. The study of the M/M/r/r queuing model
with retrials involves multidimensional random walks. Approximations
and numerical methods for this queuing model date back to 1947 [16], but
Ref. 17 is the first book completely dedicated to retrial queues.

When a queuing system is very successful it is usually because more
customers are seeking access. If not properly controlled, the number of cus-
tomers seeking access might eventually ruin the queuing system’s quality
reputation. Therefore, it is crucial to understand the interplay of the basic
parameters—A, arrival rate; v, service rate; and o, access rate—and their
influence on the most relevant quality dimensions. Figures 24 illustrate
the kind of three-dimensional surfaces that represent the mean and the

v>(1+Ao-1

Figure 2 Mean value of the waiting time in the M/M/1/1 queuing model with
constant retrial rate and A = 1.5.



Figure 3 Variance of the waiting time in the M/M/1/1 queuing model with con-
stant retrial rate and A = 1.5.

v>(Ata)(2a)1 [(ot4d))-1 -a]

Figure 4 Mean value of the waiting time in the M/M/1/1 + 1 queuing model with
constant retrial rate and A = 1.5.

Figure 5 Variance of the waiting time in the M/M/1/1+1 queuing model with
constant retrial rate and A = 1.5.
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v>(A+o)(200)-1 [(a(o+2A))1 -at]

Figure 6 Mean value of the waiting time in the M/M/2/2 queuing model with con-
stant retrial rate and A = 1.5.

variance of the waiting time, as functions of o and v, for the M/M/1/1 (one
server and no waiting position), M/M/1/1+1 (one server and one waiting
position), and M/M/2/2 retrial queuing models with constant retrial rate o
and for different ergodicity intensities. Results of this kind help to evaluate
the range of arrival, retrial, and service rates that provide consistently high
product service quality in an increasingly successful queuing system. (Also,
for example, providing k extra servers, as in Section 4.1, when A or/and o
increase beyond a certain threshold might be an adequate short-term policy
to maintain the high quality of the product service in an increasing successful
queuing system).

Figure 7 Variance of the waiting time in the M/M/2/2 queuing model with con-
stant retrial rate and A = 1.5.
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Remark 1. Perhaps it should be noted that if the design of the deliv-
ery process is no longer fit for the purposes required, it will cause a kind of
“common cause variation.” The temporary changes in the arrival or service
mechanism will cause a kind of “special cause variation.” Both causes of
variation have to be addressed.

Remark 2. The following types of robustness are desirable: (1) The
queuing model behind the delivery process is robust if its expected perfor-
mance is not too much affected by “reasonable” changes in the arrival and
departure rates. (2) The operator is robust if its performance is not too much
affected by “‘reasonable” product service changes required by the customer.

Remark 3. Instead of setting up direct inspection of the operators,
promote channels of communication among customers and operators to
build a joint commitment to improving the quality of the product service.

Remark 4.  Whenever possible, eliminate or substantially reduce wait-
ing time and queue size. Managers and operators should network with
customers through, for instance, new technologies in order to have custo-
mers’ arrivals as close as possible to the instant they begin service.

Remark 5. Specific goals should be set for certain quality dimensions,
such as access time not greater than v, duration of peaks not greater than y,
queuing time (waiting time) not greater than z, action time (service time) not
greater than /i, and delivery process idle time not greater than u. A cost-
benefit analysis should be established for queuing systems in monopolistic
or ugently needed service industries.

Remark 6. An efficiently run queuing system should inform its cus-
tomers at arrival that (1) on average, the waiting time to initiate service is
shorter than a certain value and (2) its queuing size (if not visible) is shorter
than a certain value. Whenever needed, it should spread out arrivals, for
instance, by (3) setting up appointment schemes, (4) pricing at peak load
intervals, when applicable, and (5) establishing priority schemes for special
classes of customers.

Remark 7. Build on the ISO 9000 gains by introducing a request for a
good understanding of customers’ needs as well as operators’ limitations
(by the manager tetrahedron concept) and the use of an adequate delivery
process design.

Queuing theory certainly has a role to play in the search for the better
adjusted models to the needs of quality management of service industry
queuing systems. However, the probabilistic results needed to understand
and control the stochastic behavior of those queuing systems cannot all be
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determined analytically and need an interdisciplinary approach. They have
to be obtained by a mixture of educated intuition (based on some of the
queuing analytical and algorithmic results available), heuristics, simulation,
and decision making guided by research findings on the psychology of
waiting.

In fact, what seems to be required here is the creation of a framework
with the ability to jointly consider data management (from the internal and
external quality dimensions selected), process delivery design (robust queu-
ing models, including psychologically based queuing models), and decision
making also based on cost-benefit analysis. As already stressed, in most
situations the service delivery process is the one that, more often than
not, needs special attention.

5. EMPIRICAL MODEL BUILDING FOR THE QUALITY
IMPROVEMENT OF QUEUING SYSTEMS

Usually more than one queuing model is capable of responding to the need
to improve or redesign a particular service delivery process. Each queuing
model option might lead to different levels of reduction of delay and dis-
comfort, impact on customer satisfaction, and costs. The aim, in most cases,
is to find the “optimal” solution that balances the customer delay and
discomfort against operator idleness at the same cost.

Ramalhoto [18] formulated a practical simulation decision framework
that considers and evaluates alternative queuing model options and makes
the necessary decisions by selecting those particular options that provide the
best projected performance scores, in terms of specified scoring criteria,
based on measures linked to the quality dimensions selected. The queuing
model options are defined as ‘“‘control parameters™ in this framework. For
instance, the queuing models corresponding to rules 1, 2, and 3, respectively,
defined in Section 4.1, can be represented quantitatively by the following
three basic control parameters: X, the regular size of the service staff; X,
the percentage by which the service times for each customer are to be
reduced or expedited (as a function of queue length or any other relevant
quantity); X5, the amount by which the regular service staff is augmented by
other personnel (such as secretarial or clerical staff to meet periods of heavy
demand); X, the number of different classes of service needed by customers;
and X, the percentage of the regular service staff to allocate to each of those
different classes of service. This framework is called total quality queue
management.
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5.1. The Total Quality Queue Management Framework

Basically, the total quality queue management framework consists of four
components: a stochastic demand model, a decision system, an outcome
calculator, and a scoring system. The stochastic demand model represents
our projection (and the uncertainties in our projection) of the rates of arrival
and service requirements of the customers. The decision system searches
systematically over the multidimensional space defined by the control para-
meters X}, ..., X5 to find an optimal combination of values, X7, ..., X3, for
these control parameters that will yield the “best™ system performance given
the stochastic demand that has been specified for the particular problem.

To enable the decision system to compute and evaluate the conse-
quences of any specific set of control parameter values, it has to use the
results of the outcome calculator and the scoring system. The outcome
calculator and the scoring system have to be constructed as entirely separate
and independent systems.

The outcome calculator calculates (or projects) the specific outcome(s)
that will result from any specific assumptions concering customer demand
and any specific decisions concerning the values of the control parameters.
In particular, for any such combination of assumptions, the outcome calcu-
lator must be able to compute the pertinent outcome parameters (which are
defined in terms of objective physical quantities such as queue length, cus-
tomer waiting time, service cost, and other pertinent descriptors of the out-
comes) that may be needed to evaluate the queuing system performance in
terms of the selected quality dimensions. Clearly, the outcome calculator is
concerned with the objective physical outcomes of the queuing system (in
principle, it has nothing to do with the customers’ goals, objectives, prio-
rities, or expectations). It should be able to provide the real ranking value of
the quality dimensions selected.

The scoring system has to be concerned with the subjective desirability
of the outcomes in terms of customers’ expectations, perceptions of waiting
and service, and current goals and objectives. That should be done through,
for instance, a careful analysis of complaints, behavioral queuing research,
and relevant customer questionnaires and surveys addressing the quality
dimensions selected. The purpose of the scoring system is to assign to
each outcome a ranking of the quality dimensions selected that corresponds,
as accurately as possible, to the customers’ real objectives and expectations
for that particular queuing system.

The actual implementation of the total quality queue management
framework to a specific queuing system might be done, for instance, follow-
ing a ‘‘value-driven” approach. However, other approaches might be
envisaged.
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One of the interesting features of this framework is that we have two
ranking schemes for the quality dimensions selected. The first is an inevita-
ble consequence of the structure of the queuing system and its relevant
physical law (it reflects the voice of the real system), and the second reflects
the customers’ perceptions and expectations of the queuing system (it
reflects the voice of the customer). So the comparison of the two rankings
might be very important to the queuing system’s learning process.

The total quality queue management framework is expected to help
managers gain insight into the main factors that influence product service
quality and identify process changes that will improve it.

6. CONCLUSIONS AND FURTHER REMARKS

Studies have shown that indicators often distort a program from the begin-
ning by forcing a focus on the indicators rather than on the true underlying
goals. The result is generally a lack of sustained success. And in many cases
there is no success at all save in the artificial indicators, which can often be
manipulated with little effect on the underlying process. Unfortunately, in
several situations the harm caused by those artificial indicators is very pain-
ful. That is indeed a serious risk to be avoided. Therefore, an effective
process of judging the costs and consequences of the choices necessarily
incorporates a learning process. An important result of such learning is a
shared vision with the managers, operators (many operators know a lot
about their jobs and about the queuing system they are working with and
also have the capability of taking direct action), and customers about how
the process works and how it should work in order to confront the chal-
lenges it faces.

In this chapter, product service is treated as “manufacturing in the
field.” It is advocated that it should be carefully planned, audited for quality
control, and regularly reviewed for performance improvement and customer
reaction. The methodology presented is an attempt to construct a learning
queuing system that is able to assess (internally and externally) its own
actions and judge and adjust the process through which it acts. It relies
on teamwork among customers, operators, and managers to unify some
goals, on a scientific approach, and on decision making based on reliable
data. In fact, it is based on analysis, simulation, data, policies, and options.
The idea is also to question policies whenever appropriate. Adequate data
have to be collected and studied statistically, and options have to be ana-
lyzed, including the option to change policies.

In real life, changes are very often costly in terms of money. time,
psychological tensions, and so on, for many reasons (e.g., the new changes
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in practice do not perform as well as expected), and many things can go
irreversibly wrong. Therefore, whenever possible, the total quality queue
management framework, or any other adequate system’s thinking frame-
work, should be used (and its solutions tested, including the budgeted costs)
in connection with virtual reality experimentation technology.

Remark 8. There is also a need to systematically judge all the other
aspects of the queuing system, namely, the product supply and information
technology involved. Key benchmark measures and standards are also
needed.

Remark 9. When an appointment scheme for the arrivals is being
used, most likely the manager will prefer a tight schedule that limits idle
time, while a customer may prefer to arrive late to avoid waiting. When
commitment on both sides is lacking, cost penalties on both sides often lead
to more successful appointment schemes with ‘‘reasonable” average idle
time and waiting time.

Remark 10. In a queuing system there are essentially two main rea-
sons for customer dissatisfaction: (1) a waiting time that exceeds a threshold
level and (2) dissatisfaction with the service received. The latter can be
caused by the poor quality of either the product service or the product
supply or an excessively high cost.

Remark 11.  Interdisciplinary advanced studies in the fields of data
analysis, decision analysis, queuing theory, quality management, and the
psychology of individuals, time, and change are needed to create more
successful queuing systems for the service industries. Communication, infor-
mation, and commitment are also important tools. Queuing system studies
could also incorporate the latest behavioral queuing research (accumulated
across the fields of psychology, marketing, economics, and sociology) to
alleviate the human tensions and humiliation of waiting.

Remark 12. Future customer visits to any queuing system when alter-
natives exist (nonmonopolistic or non-urgently needed service) heavily
depend on the price and quality of the service product quality and the
product supply provided by this queuing system. It is well accepted by all
that having to wait beyond certaitn limits is one of the crucial factors in
customer satisfaction. However, as shown in Ref. 19, customers’ final dis-
satisfaction with waiting for service is also very highly correlated with their
global retrospective (dis)satisfaction judgments, which affect their future
actions.

Remark 13. Little has been written on how queuing system quality is
related to conventional productivity, profitability, and sales performance
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measures. The direct effect of queuing system redesign initiatives on those
measures needs deeper investigation.

Remark 14. 1t should be noted that the service industry is spreading
over to manufacturing. In the “service factory” concept, the service is iden-
tified as the “fifth competitive priority” (as opposed to the traditional four
competitive priorities—cost, quality, delivery, and flexibility) in manufactur-
ing strategy. The idea is that the manufacturing organization can become
more competitive by employing a broader range of services provided by the
factory personnel and facilities (for instance, maintenance after sales of their
own goods).

Remark 15. It should be emphasized that a high quality queuing
system is only the result of constant effort to control and to improve each
single aspect of the queuing system as well as not to disregard synergies,
integral (total) management, and strong market awareness.
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1. INTRODUCTION

It is interesting to note that there are a limited number of areas of statistics
that are almost entirely motivated by and dependent on real problems. They
do not progress merely because of innovative mathematical rigor, but rather
their development is a function of the increased complexity of problems
faced by practitioners. Such is the case with response surface methodology
(RSM). The fundamental goal remains the same as it was in the late 1940s
and early 1950s: to find optimum process conditions through experimental
design and statistical analysis. While the term ‘‘quality improvement”
became a classic and overused term in the 1980s and 1990s, RSM dealt
with quality improvement problems 30 years earlier.

There is no question that RSM has received unprecedented attention
in recent years and has been the beneficiary of Genichi Taguchi and the
quality era. It has been put forth as a serious alternative to specific Taguchi
methodology. In fact, the RSM approach has been suggested as a collection
of tools that will allow for the adoption of Taguchi principles while provid-
ing a more rigorous approach to statistical analysis. Much progress con-
tinues to be made as RSM benefits from mathematical optimization
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methods, statistical graphics, robust fitting, new design ideas, Bayesian sta-
tistics, optimal design theory, generalized linear models, and many other
advances. Researchers in all fields are able to focus on applications of RSM
because of the substantial improvement in the software that is used for
RSM. There is no doubt that high quality software is one of the better
communication links between the statistics researcher and the user.

In this chapter we discuss and review some of the recent developments
in RSM and how they are having and will continue to have an impact on
applications in industry.

2. MEAN AND VARIANCE MODELING AND ROBUST
PARAMETER DESIGN

Along with the realization that product quality depends on understanding
process variation as well as targeting of the mean came the concept of
response surface modeling for both the process mean and variance.
Taguchi’s clever consideration and use of noise models allowed this area
to advance. Robust parameter design (RPD) is a principle that emphasizes
proper choice of levels of controllable process variables (parameters in
Taguchi’s terminology) in order to manufacture a product with minimal
variation around a predetermined target. These controllable process vari-
ables (controlled in experiments as well as in product and process design) are
referred to as control factors. It is assumed that most of the variation around
the target is due to the inability to control a second set of variables called
noise factors. Some examples of noise factors are environmental conditions,
raw material properties, variables related to how the consumer handles or
uses the product, and even the tolerances around control factors. [The
reader is referred to Myers and Montgomery (1995) for illustrations of
control and noise variables for various applications.] The objective in
RPD is to design the process by selecting levels of the control factors in
order to achieve robustness (insensitivity) to the inevitable changes in the
noise factors. This can be achieved through the appropriate design and
analysis of experiments that include noise as well as control factors, since
even the noise factors are often within our control for purposes of experi-
mentation. This philosophy is perhaps Taguchi’s greatest contribution to
the quality movement.

Compared to the design and analysis techniques utilized by Taguchi
(Taguchi and Wu (1980)), response surface methods can accomplish RPD
through more rigorous analysis and efficient experimentation. For more on
the RSM approach compared to Taguchi’s methods, read Vining and Myers
(1990), Myers et al. (1992a), Khattree (1996), and Lucas (1994).
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Independent of the approach taken, however, the ability to incorporate
robustness to noise factors into a process design depends on the existence
and detection of at least one control x nose interaction. It is the structure of
these interactions that determines the nature of nonhomogeneity of process
variance that characterizes the parameter design problem. For illustration,
consider a problem involving one control factor, x, and one noise factor, z.
Figure 1 shows two potential outcomes of the relationship between factors x
and z and their effects on the response, y. In Figure la, it can be seen that
the response y is robust to variability in the noise factor z when the variable
x is controlled at its low level. When x is at its high level, however, the
change in z has an effect of 15 units on the response. In other words, the
presence of the xz interaction indicates that there is an opportunity to
reduce the response variability through proper choice of the level of the
control factor. In contrast, Figure 1b shows that when there is no control
X noise interaction, the variability in y induced by the noise factor cannot be
“designed out™ of the system, since the variability is the same (i.e., homo-
geneous) at both levels of the control factor.

While the estimation of control x noise interactions is important for
understanding how best to control process variance, the control factor main
effects, as well as interactions among control factors, are equally important
for understanding how to drive the response mean to its target. The dual
response surface approach, which addresses both process mean and var-
iance, begins with the response model,

yx,2) =By +x P+ x'Bx+z'y+x'Az+¢ (N

In the response model, x and z represent the r. x 1 and r. x 1 vectors of
control and noise factors, respectively. The r, x r, matrix B contains coeffi-

(@) (®)
20 20 x=+]
x=-1
y y
10 10
-1 z +1 -1 z +1

Figure 1 (a) Control by noise interaction. (b) No control by noise interaction.
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cients of control x control interactions (which includes quadratics), while
the matrix A is an r, x r. matrix of control x noise interactions. While it is
possible to have interactions or even quadratics among noise factors, the
previously defined response model will accommodate many real-life appli-
cations. It is assumed that € ~ N(0, o*1), implying that any nonconstancy of
variance of the process is due to an inability to control the noise variables.
The assumption on the noise variables is such that the experimental levels of
each z, is centered at some mean p, with the £1 levels set at W, £ o, where
cis a constmt 1,4 3. etc. As a result, it is assumed that

E(z) =0, Var(z) = o2,

thus implying that noise variables are uncorrelated with known variance.
Taking expectation and variance operators on the response model in
(1), we can obtain estimates of the mean and variance response surfaces as

E[r(x)] = box'b + x'Bx
and
Varli(x) = (¥ + A'X)'V(§ + A'X) + &2

An equivalent form of the variance model, under the assumption that
V = o’l, is given by

Var.[y(x)] = &2'(0)I(x) 4 &2

where I(x) = (¥ + A’x), which is the vector of pdrtldl derivatives of y(x, z)
with respect to z. In these equations, b, ¥, B, and A conldm regression
coefficients from the fitted model of Eq. (1), with 67 representing the
error mean square from this model fit. Notice the role that A plays in the
variance model, recalling that it contains the coefficients of the important
control x noise interactions. Running the process at the levels of x that
mlmmlze 1(x){i will in turn minimize the process variance. If however,
A =0, the process variance does not depend on x, and hence one cannot
create a robust process by choice of settings of the control factors (illu-
strated previously with the simple example in Figure 1).

Various analytical techniques have been developed for the purpose of
process understanding and optimization based on the dual response surface
models. Vining and Myers (1990) proposed finding conditions in x that
minimize Var.[(x)] subject to E.[y(x)] being held at some acceptable
level. Lin and Tu (1996) consider a mean squared error approach for the
“target is best” case. Other methods, given in Myers et al. (1997), focus on
the distribution of response values in the process. These include the devel-
opment of prediction intervals for future response values as well as the
development of tolerance intervals to include at least 100% of the process
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values with some specified probability. An example taken from Myers et al.
(1997) will be used to graphically illustrate the dual response surface
approach and the usefulness of the analytical measures previously men-
tioned.

The data for this example, taken from Montgomery (1997), comes
from a factorial experiment conducted in a U.S. pilot plant to study the
factors thought to influence the filtration rate of a chemical bonding sub-
stance. Four factors were varied in this experiment: pressure (x;), formalde-
hyde concentration (x,), stirring rate (x3;, and temperature (z). There is
interest in maximizing filtration rate while also dealing with the variation
transmitted by fluctuations of temperature in the process. For this reason,
temperature is treated as a noise variable. All four factors are varied at the
+1 levels in a 2* factorial arrangement, with the +1 levels of temperature
assumed to be at +o., representing temperature variability in the process.
The fitted response model is given by (Montgomery, 1997).

¥ =70.025 + 10.81252 + 4.9375x; + 7.3125x3 — 9.0625.x52 + 8.3125x32 — 0.5625x7.x

with R* = 0.9668 and &, = 4.5954. Note that there are two control x noise
interactions present in the model, indicating that the variability transmitted
from temperature fluctuations can be reduced through proper choice of
formaldehyde concentration (x,) and stirring rate (v3). Pressure (x;) was
found to have no significant effect on filtration rate (v). The estimated
mean and variance models are therefore given by

E[y(x, x3)] = 70.02 + 4.9375x; + 7.3125x3 — 0.5625x5 x;
and
Var.[y(xy, x3)] = (10.8125 — 9.0625x, + 8.3125.\'3)2 + (4.5954)2

Figure 2 shows the overlaid contour plots for the response surface models of
the process mean and standard deviation. The trade-off between maximizing
filtration rate while attempting to minimize variance is evident. Figure 3
contains a contour plot of mean filtration rate along with the locus of points
1(\7, x3) = 0, defining a line of minimum estimated process variance. The
shaded region represents a 95% confidence interval around this line of
minimum variance. From Figure 3, the mean-variance trade-off becomes
even more clear, since we can achieve barely more than 73 gal/hr for the
estimated process mean while minimizing the process variance (with co-
ordinates x» = 1, x3 = 0.2).

In Figure 4 we see lower 95% one-sided prediction limits, while Figure
5 depicts lower 95% tolerance limits on filtration rates with probability 0.95.
Both of these illustrations indicate that the process should be operated at a
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Figure 2 Contour plot of both the mean filtration rate and the process standard
deviation.
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X3 004

Figure 3 Contour plot of mean filtration rate and the line of minimum process
variance with its 95% confidence region.
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Figure 4 Contour plot of lower 95% one-sided prediction limits.

high concentration of formaldehyde (x,) with reasonable flexibility in the
operating level of stirring rate (x»).

Combining the information from the four plots provides powerful
insights into the process, namely, that operating at the (x, =
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Figure 5 Contour plot of 0.95 content lower 95% one-sided tolerance limits.
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1.0, x; = —0.21) condition will minimize the process variance with
promising results indicated by the prediction and tolerance limits.
Taguchi’s parameter design has had a profound effect on the rise in
interest and use of RSM in industry. There are developments in other areas
of interest, however, that should and likely will enhance its role, not only in

traditional quality improvement but also in biostatistics and biomedical
applications.

3. NEW DEVELOPMENTS IN RSM
3.1. Role of Computer-Generated Designs

The computer has been an important tool in the construction of experimen-
tal designs since the early 1980s. However, the focus has been almost entirely
on criteria that have their underpinnings steeped in normal theory linear
models. In this situation, of course, the alphabetic optimality criteria devel-
oped by Kiefer (1959) and others can be applied without knowledge of the
parameters. However, as we emphasize in what follows, many of the
response surface applications in the present and the future involve nonlinear
and/or non-normal theory applications in which optimal designs depend on
knowledge of the parameters. Uncertainty about model parameters in these
cases as well as uncertainties in more standard cases about model assump-
tions, goals, the presence of outliers, or missing design points result in the
need for considerations of design robustness as a serious alternative to
optimal design. Almost without exception, commercial computer software
deals with design optimality and does not address robustness. It is clear that
computer-generated design cannot reach its full potential without consider-
ing these matters as well as dealing with various kinds of graphical metho-
dology that allow the practitioner to compare and evaluate experimental
designs. In what follows we discuss computer graphics that relate to RSM
designs and provide some insight into new developments. These new devel-
opments necessitate design robustness as a companion to the RSM analysis
tools that are currently finding use in industry.

3.2. Role of Creative Computer Graphics

Practitioners of RSM are undoubtedly familiar with the use of three-dimen-
sional and contour plots for visualizing a predicted response. In a multi-
response optimization problem, the practice of overlaying multiple contour
plots is extremely helpful for visualizing any potential compromises that
must be made in order to determine the process optimum. Statistical soft-
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ware packages such as Design-Expert and Minitab (version 12) have built-in
features for generating these overlaid plots.

There are also graphical techniques that are extremely useful for eval-
uating the prediction capability of experimental designs. Two such graphical
methods that are discussed here are variance dispersion graphs and predic-
tion variance contour plots. Both of these graphical techniques enable the
user to visualize the stability of prediction variance throughout the design
space, thus providing a mechanism for comparing competing designs.

The graphical technique referred to as the variance dispersion graph
(VDG) was developed by Giovannitti-Jensen and Myers (1989) and Myers
et al. (1992b). A variance dispersion graph for an RSM design displays a
“snapshot” of the stability of the scaled prediction variance, v(x) = N Var
#(x)/o°, and how the design compares to an “ideal.” For a spherical design
[see Rozum (1990) and Rozum and Myers (1991) for extensions to cuboidal
designs], the VDG contains four graphical components:

1. A plot of the spherical variance V' against the radius r. The sphe-
rical variance is essentially v(x) averaged (via integration) over the
surface of a sphere of radius r.

2. A plot of the maximum v(x) on a radius r against r,

3. A plot of the minimum »(x) on a radius » against r.

4, A horizontal line at v(x) = p, to represent the “ideal” case.

Figure 6 illustrates the utility of VDGs for comparison of two spherical
designs for k = 3 variables, the CCD with a = +/3 and three center points
and the Box—Behnken design, also with three center points. Both designs
have been scaled so that points are at a radius +/3 from the design center.
The following represent obvious conclusions from the two VDGs in Figure
6 (Myers and Montgomery, 1995):

1. Note that there is very little difference between the minimum,
average, and maximum of v(x) for the CCD, indicating that it is
nearly rotatable. This should not be surprising since o = 1.682
results in exact rotatability.

2. The values of v(x) are very comparable for the two designs near
the design center. Any difference is accounted for by the difference
in sample sizes (N = 17 for the CCD, N = 15 for the BBD).

3. The CCD appears to be the better design for prediction from
radius 1.0 to /3, based on greater stability in v(x) and a max
v(x) that is smaller than that of the BBD.

4. The comparison with the ideal design [v(x) = 10.0} is readily seen
for both designs.
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Figure 6 Variance dispersion graphs for CCD and Box-Behnken designs for k = 3
design variables.

Another graphical method of displaying the stability of the prediction
variance is a display of contours of constant prediction variance. Like the
VDG, this technique enables the user to visualize the behavior of v(x) over
the design space. Unlike the VDG, a contour plot of »(x) aliows one to
determine the direction in which v(x) is most unstable. This technique is now
illustrated through a comparison of two competing designs of equal size, the
3 — 114 hybrid with one additional center point and a D —optimal design.
The 12-run D-optimal design was generated using SAS Proc Optex, assum-
ing the three-factor full quadratic model. The candidate list from which the
design was selected was structured to be similar to the spherical space
encompassed by the hybrid design. Contour plots of the unscaled prediction
standard error (v(x)/N) were generated for each design, under the assump-
tion of a full quadratic model. Figures 7a and 7b contain these contour plots
for the hybrid and D-optimal designs, respectively. Note that each contour
plot represents a slice of the design space where factor C is fixed at its
midpoint condition, and therefore the center contour represents the stan-
dard error of prediction at the center of the design space. Studying these
plots provides information about two key aspects of the designs: (1) near-
ness to rotatability and (2) stability/consistency of prediction variance
throughout the space.

The hybrid design, known to be nearly rotatable, also has very stable
and consistent prediction variance throughout the space. The D-optimal
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Figure 7 Contours of standard error of prediction for (a) hybrid 311A and (b) D-
optimal design.
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design, in contrast, is not rotatable, which can be seen by the inconsistency
of the prediction variance in the corners of the plotted space. In addition to
the D-optimal design being unstable in the center of the design space, we
also observe an overall higher degree of prediction variability throughout
relative to that of the hybrid design.

Independent of the designs studied, however, the power of the graphi-
cal techniques is evident. Graphical tools such as those presented in this
section allow the researcher to quickly gain information about design per-
formance and characteristics of the response surface.

3.3. Bayesian or Two-Stage Design

In more and more applications, the ability to design an experiment depends
on a priorl knowledge of the response surface model. For example, when
designing experiments for nonlinear models, the parameters of the non-
normal error models must be known. Even for the case of the linear
model, identification of “optimal” designs depends on knowledge of the
model regressors. In fact, we can say that it is rare when we truly know
enough to design the experiment effectively without invoking prior informa-
tion or conducting a preliminary experiment.

Consider the following logistic regression model, used frequently in
biomedical applications:

1

= -+ €,
P +exp[—(Bo + ;B
where 1; € {0, 1} indicates whether the ith subject responded to dose x, of a

given drug. It is therefore assumed that g, is approximately Bernoulli (0,
pi(1 = p;)). where

Yi

1
T 4exp[=(By + B

Pi i=1,2,...N

The corresponding Fisher information matrix is given by

1(B) = I: ZPia qi ZI’f‘Ii-\} :|
Zl’i(/i—V: ZP:“[;‘-\'?

Note that the information matrix is a function of the unknown f's. This
makes it impossible to directly use traditional design optimality criteria for
generating an efficient design, since they depend on being able to optimize
some norm on the Fisher information matrix. For example, construction of
the D-optimal design for the above model would require that the doses v,
X», ..., X, be chosen such that Det[N_ll(B)] is maximized. In order to do this,
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the scientist would be forced to make his or her best guess at the values of B,
and B,. The resulting design will be D-optimal for the specified values, which
unfortunately may be very different from the truth, thus resulting in an
inefficient design.

Chaloner and Verdinelli (1995) review a Bayesian approach to design-
optimality that incorporates prior information about the unknown para-
meters in the form of a probability distribution. This provides a
mechanism for building in robustness to parameter misspecification, since
a distribution of the parameter is specified, not merely a point estimate. The
resulting Bayesian design optimality criterion is a function of the Fisher
information matrix, integrated over the prior distribution on the para-
meters. For example, the Bayesian D-optimal design for the previously
defined logistic model is found by choosing the levels of x that will maximize
the expression

/ log Det{ V" I(B)l(B)dp

where n(B) is the prior probability distribution of B = [B,, B;]. Other creative
approaches have been taken that provide a robustness to parameter mis-
specification. For example, a minimax approach is provided by Sitter (1992).

A two-stage design is another method used to achieve robustness to
parameter misspecification. The strategy behind designing in two stages is to
generate parameter information from data in the first stage that can then be
used to select the remaining experimental runs with maximum efficiency. A
two-stage procedure may implement any pair of design criteria that meet the
first-stage objective as well as the objective of the combined design. For
example, Abdelbasit and Plackett (1983) and Minkin (1987) studied the
efficiency of two-stage D-optimal designs for binary responses, thus apply-
ing D optimality to obth stages. Myers et al. (1996) developed a two-stage
procedure for the logistic regression model that uses D optimality in the first
stage followed by Q optimality in the second.

To illustrate the two-stage method, a brief description of the two-stage
D-optimal design (D-D optimality) procedure for the logistic model is now
given. The first step in the D-D (and also D-Q) procedure is the selection of a
first-stage D-optimal design. In order to implement D optimality in the first
stage, the experimenter must estimate the unknown B with a best guess, by,.
The N, runs for the first-stage design are then chosen to satisfy the first-
stage D-optimality criterion, given by

Max Det[(NflI(B)]B:bn
D
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with B replaced by by and D representing all possible designs of size N;.
After design and execution of the first-stage experiment, N, observations are
available to estimate B. The ““best guess™ of B is updated by replacing by with
the MLE of B. The second stage of the two-stage process uses b, thus making
it conditional on the results of the first stage. To complete the D—D
procedure, it is necessary to choose a set of N, second-stage design points
that will create a combined design that is conditionally D optimal. The N,
points are chosen to satisfy

MI;dX Det[(N, + N2) ™' [1;(B) + Ly (B)}p—s

where D is now the set of all possible designs of size N, and I,(B) is fixed
after the first stage.

Letsinger (1995) and Myers et al. (1996) evaluated the efficiency of
two-stage procedures relative to their single-stage competitors. In doing so,
they showed that the best performance of the two-stage designs was
achieved when the first-stage design contained only 30% of the combined
design size, thus reserving 70% of the observations for the second stage,
when more parameter information is present.

Even for the normal linear model, successful implementation of design
optitmality criteria is often difficult in practice. This is due to the fact that
the model content must be known a priori. In other words, the experimenter
must be able to specify which regressors are needed to model the response,
in order to generate the most efficient design for constructing the specified
model. If too many regressors are specified, some design points (and con-
sequently valuable resources) may be wasted on estimatiton of unimportant
terms. If too few regressors are specified, then some terms that are needed in
the model may not even be estimatable.

Suppose an experimenter identifies a set of regressors, x, containing all
p + g regressors he or she believes might be needed in modeling the behavior
of a response y. The linear model is written as y = Xf + &, with y denoting
the n observations to be collected in an experiment, under the assumption
that y|B, o> ~ N(XB, o’I). The model matrix, X, has dimensions n x (p + ¢),
with the p + ¢ columns defined by the set of regressors, x. Quite often, the
experimenter has knowledge of the process or system that allows him or her
to identify p of the regressors as primary terms. These are the terms that the
experimenter strongly believes are needed in modeling the response. The
remaining terms are the potential terms, i.e., those terms about which the
experimenter has uncertainty. For example, the experimenter may know
from past experience that certain process variables must be included in
the model as main effects (i.e., linear terms) but is uncertain if higher
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order interactions (such as quadratics) are needed. The key is to incorporate
this information into the experimental design, so that limited resources are
first focused on estimation o the primary terms (in this case the main
effects), while also using some resources for estimation of the potential
terms.

DuMouchel and Jones (1994) proposed a Bayesian D-optimality cri-
terion for the efficient estimation of both primary and potential terms. Let
Bon and B, represent the parameters corresponding to primary and poten-
tial terms, respectively. The approach taken by DuMouchel and Jones is to
assume a diffuse prior distribution (arbitrary prior mean with infinite prior
variance) for B,. This is reasonable because these parameters are expected
to be significantly different from zero, but no assumption of direction of
effect is made. The potential terms, however, are perceived to have smaller
coefficients than the coefﬁc1ents of prlmary terms. For this reason, B, is
assigned an N(0, o’1°1), with o’ dnd 7% known. Fortunate]y, the design can
be constructed independently of . The value of 12, however, affects the
choice of the design, since it reflects the degree of uncertainty associated
with the potential terms relative to o°. Under the assumption that primary
and potential terms are uncorrelated (achieved through proper scaling of the
X s) the joint prior distribution assigned to B, and B, is the N(0,
o’ ’K” 1, where K is a (» + ¢) x (p + ¢) diagonal matrix whose first p diag-
onal elements equal 0 and whose remaining ¢ diagonal elements equal 1.
Under the assumption that y|B, ol ~ N(XB, o°I), the resulting posterior
distribution of § = [B,,,, Bpm] is also normal with mean b = (X'X + Kt*)™!
X'y and variance V = o*(X'X + K/t%)~". The Bayesian D-optimal design is
that which minimizes the Bayes risk, proportional to

log Det[V] = log Det[c*(X'X + K/t%)™!]

In practice, the appropriate design may be found by selecting the rows
of X from a predefined candidate list, so that {V| is minimized. Note that the
diagonals of V associated with B, are somewhat stabilized through prior
information (given through ), identical to the technique used in ridge
regression. The other diagonals of V associated with B, however, are
more dependent on design. As a result, the Bayesian D-optimal design
will support estimation of both B, and Bpot» but with higher priority
given to B,

Consider an application in which three factors are to be studied, with
emphasis being placed on the estimation of main effects and interactions
(Bpn =[intercept, By, By, By, Bi2. Bi3, B23]’) while there is still some interest in
the estimation of quadratics (Byo = [By). B22, B33]). The performance of the
Bayesian D-optimal designs versus the familiar face-centered cubic (fcc)
design is compared in Table 1 for various ““true models.” All designs contain
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N = 16 runs, and all Bayesian D-optimal designs were produced by SAS
(Proc OPTEX). The metric used for design comparison is the scaled D
criterion, N[Det(X’X)~'1"/7, calculated for the true model in each case.

From Table 1 we see that in almost every case the Bayesian D-optimal
designs outperform the fcc design. The performance of the two Bayesian D-
optimal designs depends on the accuracy of the experimenter’s prior knowl-
edge about the relative significance of primary and potential terms, reflected
through the choice of the parameter t. For examploe, if it is believed that the
quadratics are all within £2¢ of zero (i.e., most likely insignificant) and
therefore defines T = 2/3, the resulting design will be most efficient when
the true model contains no quadratic terms. This design is not the best
choice, however, if all quadratic terms truly belong in the model. In that
case a larger value of 1, such as T = 5, would have been a better choice for
controlling the design construction.

This weakness in the Bayesian D-optimal designs should not at all
detract, however, from the work of DuMouchel and Jones. In fact, their
greatest contribution was to provide a basis for the development of more
efficient Bayesian design criteria, such as two-stage procedures, for the pur-
pose of generating efficient designs under model (regressor) uncertainty.
Consider the value of adopting the method of DuMouchel and Jones to
produce a first-stage design with robustness to regressor uncertainty.
Analysis of the first-stage data could then provide additional information
about the relative importance of the p + ¢ regressors, enabling the remaining
design points (second-stage design) to be chosen with greater efficiency. The
second-stage design could then be generated from any optimality procedure
that incorporates the improved model knowledge.

The two-stage approach described above was developed by Neff et al.
(1997) for the purpose of developing numerous Bayesian two-stage design
optimality procedures for the normal linear model under regressor uncer-
tainty. Their work suggests that efficiency and robustness is gained from a
two-stage design of size N = 2(p + ¢ + 2), with half of the design points

Table 1 Values of Determinant for Evaluation of FCC and Bayesian D-optimal
Designs

Parameters contained FCC Bayesian D-opt Bayesian D-opt
in the true model (t=9) (=2/3)

Bos Br. B2, Ba, Bias Bia. Bos 1.65 1.42 1.20

Bos B1+ Ba: Bs. Biz- Bisze Paz. B 1.85 1.68 1.56

B()’ Bl’ BZ‘ BJ» BIZY BU- BZ}- Bll- Bllv '333 2.33 2.18 2.47
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allocated to each stage of the design. One such two-stage Bayesian approach
is illustrated by a brief description of a Bayes D-D optimality procedure.
Using this procedure, the first-stage design is chosen to be D optimal accord-
ing to the method of DuMouchel and Jones. Consequently, the first-stage
posterxor distribution of B = [By;. BJ,O,] is normal w1th EB;/y) = XX, +
K/r )"'X{y, and variance V| = o*(XiX +K/r ) Basmg inferences on
the first-stage posterior of B, the p+ ¢ standardized estimates of the
model parameters (coefficients) after the first stage are

ﬁ/ E(B/[yl)

Cjj

where ¢;; is the jth diagonal element of (1/0 )V,. Since the estimated effect
of any 1egressor X, 18 proportlonal to its standardized estimated coefficient,
the relative importance of the various model terms can be estimated by the
relative sizes of the PB;’s (in absolute value). Normahzmg these B s (in
absolute value) produces a set of discrete scores or ““weights of ev1dence
that quantify the relative importance of each model term. In other words, a
new set of T’s, {1y, Ta, ..., Tpq}, 18 produced based on this updated prior
information. Going into the second stage, beliefs about the reldtlve impor-
tance of the p + ¢ model terms are expressed as Blo?, T .9,0,0 T), where T
is a (p+¢) x (p+ q) diagonal matrix with 1|, 5, ..., 7,4, appearing on the
diagonals. Setting the prior mean to zero at this point is arbitrary, since it
will have no impact on the second-stage design criterion. Still under the
assumption of a normal linear model, the second-stage posterior distribu-
tion is also normal, with posterior covariance matrix V,=
o’ (X;X, + X3X, + T~")~". Thus the second-stage conditionally D-optimal
design is found by selecting the rows of X, from a candidate list such that
[V,| is minimized. Due to the structure of T~!, the diagonals of V5 corre-
sponding to less important regressors are already somewhat stabilized.
Design points that provide information about the more important regres-
sors and thus stabilize the corresponding diagonals will be chosen for the
second-stage design. For a performance comparison of this procedure as
well as other two-stage Bayesian design procedures relative to their single-
stage competitors, the reader is referred to Neff et al. (1997).

3.4. Generalized Linear Models

The normal linear model is the model that has been most commonly used in
response surface applications. The assumptions underlying this model are,
of course, that the model errors are normally distributed with constant
variance. In many quality improvement applications in industry, however,
the quality characteristic or response most naturally follows a probability
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distribution other than the normal. Consider, for example, a quality
improvement program at a plastics manufacturer focused on reducing the
number of surface defects on injection-molded parts. The response in this
case is the defect count per part, which most naturally follows a Poisson
distribution, where the variance is not constant but is instead equal to the
mean. Consider also applications in the field of reliability, in which the
equipment’s time to failure is the quality response under study. Again, the
most natural error distribution is not the normal, but instead the exponen-
tial or gamma, both of which have nonconstant variance structures. These
types of problems nicely parallel similar problems that exist in the bio-
medical field, particularly in the area of dose-response studies and survival
analysis.

Regression models based on distributions such as the Poisson, gamma,
exponential, and binomial fall into a family of distributions and models
known as generalized linear models (GLM). See McCullough and Nelder
(1989) for an excellent text on the subject. In addition the reader is referred
to Myers and Montgomery (1997) for a tutorial on GLM. In fact, all dis-
tributions belonging to the exponential family are accommodated by GLM.
These models have already been used a great deal in biomedical fields but
are just now drawing interest in manufacturing areas. In the past, the
approach has been to normalize the response through transformation, so
that OLS model parameter estimates could be calculated. Hamada and
Nelder (1997) show several examples in which the appropriate transforma-
tion either did not exist or produced unsatisfactory results compared to the
appropriate GLM model. They also spoint out that with the progress that
has been made in computing in this area, the GLM models are just as easily
fit as the OLS model to the transformed data. A few example software
packages with GLM capability are GLIM, SAS PROC GENMOD, S-
plus, and ECHIP.

It is interesting that some work has been done that provides a con-
nective tissue between generalized linear models and robust parameter
design. This relationship between the two fields is extremely important, as
it allows the response surface approach to Taguchi’s parameter design to be
generalized to clearly non-normal applications that were previously dis-
cussed in this section. Engel and Huele (1996) build a foundation for this
important area, and there will certainly be other developments.

The difficulty comes in designing experiments for GLM models.
Design optimality criteria become complex, and designs are not simple to
construct even in the case of only two design variables. See, for example,
Sitter and Torsney (1992) and Atkinson and Haines (1996). One most con-
stantly be aware that even if an optimal design is found it requires parameter
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specifications. As a result, the use of robust or two-stage designs will likely,
in the end, be the most practical approach.

3.5. Nonparametric and Semiparametric Response Surface
Methods

Consider a response surface problem in which the quality characteristic
(response) of interest is expected to behave in a highly nonlinear fashion
as a function of a set of process variables. Although the model form is
unknown, the model structure is of less importance than the ability to locate
the process conditions that result in the optimum response value. The pri-
mary interest is in prediction of the response and understanding the general
nature of the response surface. Additionally, in many of these kinds of
problems the ranges in the design problems are wider than in traditional
RSM in which local approximations are sought.

In the problem above, greater model flexibility is required than can be
achieved with a low-order polynomial model. Nonparametric and semipara-
metric regression models can be combined with standard experimental
design tools to provide a more flexible approach to the optimization of
complex problems. Some of the nonparametric modeling methods that
may be considered are thin-plate spline models, Gaussian stochastic process
models, neural networks, generalized additive models (GAMs), and multiple
adaptive regression splines (MARS). The reader is referred to Haaland et al.
(1994) for a brief description of each model type. Vining and Bohn (1996)
introduced a semiparametric as well as a nonparametric approach to mean
and variance modeling. The semiparametric strategy involved the use of a
nonparametric method to obtain variance estimates which then became
inputs to modeling the response mean via weighted least squares. As an
alternative approach they suggested utilizing a nonparametric method for
modeling the response mean as well as the variance.

Haaland et al. (1996) point out that the experimental designs used for
nonparametric response surface methods can include some of the traditional
designs. For example, one may execute a series of fractional factorials fol-
lowed by a central composite design, then develop a global model using a
nonparametric method. An alternative to this design approach is to execute
a single space-filling design, which covers the entire region of operability in
one large experiment. This type of design is not based on any model form
but instead contains points that are spread out uniformly (in some sense)
over the experimental region. The intent is that no point in the experimental
region will be very far from a design point. Space-filling designs have pri-
marily been used in computer experiments but have also been applied in
physical experiments in the pharmaceutical and biotechnology industries.
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See Haaland et al. (1994) for references. Among the space-filling designs is a
class of distance-based design criteria that focus on selection of a set of
design points that have adequate coverage and spread over the experimental
(or operability) region. Two software packages that will construct distance-
based designs are SAS PROC OPTEX and Design-Expert.

3.6. Hard-to-Change or Hard-to-Control Design Variables

In the design and analysis of industrial experiments, one often encounters
variables that are hard to change or hard to control. Consider the following
example. A product engineer for a plastics manufacturer is conducting an
experiment to determine the effect of extrusion conditions on various phy-
sical properties of the resulting plastic pellets. The three independent vari-
ables to be studied are screw design, screw speed, and extrusion rate.
Minimal screw design changes can occur during the experiment, since
each change requires costly line downtime. For this reason, screw design
is referred to as a “‘hard-to-change” variable. Also, since screw designs vary
between plant sites, the product engineer has no control over which screw
design will ultimately be used at each site. For this reason, screw design is
also labeled a ““hard-to-control™ variable.

This has been emphasized in recent years due to the important role of
noise variables that are hard to control. Box and Jones (1992) investigated
the use of split-plot designs as an alternative to Taguchi’s crossed arrays for
more efficiently studying noise and control variables. Lucas and Ju (1992)
pointed out that often the designs for these situations are not completely
randomized but are rather quite like a split plot and yet we analyze them
incorrectly as CRDs.

Strictly speaking, the hard-to-control variables are whole-plot vari-
ables with levels that are randomly assigned to larger whole-plot experimen-
tal units (EUs). The appropriate levels of the easier to control variables are
randomly assigned to smaller experimental units within each whole plot
(thus making them subplot variables). As discussed by Letsinger et al.
(1996), this birandomization structure leads to complications in analysis,
since the error assumptions associated with the basic response surface
model [i.e., all €, ~ N(O, o?)] are no longer valid. Let o3 be the whole-plot
error variance and o- the subplot error variance resulting from the first and
seonc randomization, respectively. The model and error assumptions then
become

y=Xp+d+¢

where
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d+¢&~ N@O,V)
and
V=03J+01

Assuming that there are j whole plots, then J is a block-diagonal matrix with
nonzero blocks of the form 15,4 x 15,1 and b; is the number of observa-
tions in the ith whole plot, i=1,2,...,j. Note that while observations
belonging to different whole-plot EUs are independent, those b;, observa-
tions within a given whole plot are correlated.

Practitioners may be tempted to ignore the birandomization error
structure, analyzing the data as if they came from a completely randomized
design (CRD). The analysis of a split-plot design as a CRD, however, can
lead to erroneously concluding that whole-plot factors are significant when
in fact they are not, while at the same time erroneously eliminating from the
model significant subplot terms including whole-plot-subplot interactions.
Unlike model estimation for the CRD, the error variances play a major role
in the estimation of coefficients in the birandomization model. Under the
assumption of normal errors, the maximum likelihood estimate {(MLE) of
the model is now obtained through the generalized least squares (GLS)
estimation equations

B)=XV'X)IX'Vy
and
Var(B) = (X'V7'X)"!

Note that both estimating equations depend on of and o2 through the
matrix V; therefore proper estimation of these error variances becomes a
priority.

Appropriateness of various model and error estimation methods is
dependent on the structure of the birandomization design (BRD). The gen-
eral class of BRDs is divided into two subclasses: the crossed and the non-
crossed. The distinguishing characteristic is that in the case of the crossed
BRD, subplot conditions (i.e., factor level combinations) are identical across
whole plots. This is the familiar split-plot design, which may result from
restricted randomization of a 2%, 3%, or mixed-level factorial design. In the
case of the noncrossed BRD, each whole plot may have a different number
of subplot EUs as well as different factor combinations. Such a design could
result from restricted randomization of a 277 fractional factorial design or a

second-order design such as the central composite design (CCD) or Box—
Behnken design.
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For the crossed BRD, Letsinger et al. (1996) show that GLS = OLS
under certain model conditions, and therefore error variance knowledge is
not essential for model estimation. Model editing, however, does depend on
the availability of estimates of o? and o7. One approach to estimating these
variances makes use of whole-plot and subplot lack of fit. See Letsinger et
al. (1986) for details.

In general, model estimation and editing are more complex for the
noncrossed BRD. It is interesting to point out, however, that when the
model is first-order, parameter estimation can be accomplished using the
equivalency of GLS = OLS (as in the crossed case). Once again, model lack
of fit can be used to develop estimators for the error variances, although the
procedure is more complex than that for the crossed BRD. Both estimation
and editing of a second-order model, however, depend on estimates of o3
and o2 through the matrix V. Three competing methods are mentioned here:
OLS, iterated reweighted least squares (IRLS), and restricted maximum
likelihood (REML).

One can argue that in some cases OLS is an acceptable method, even
though it ignores the dependence among observations within each whole
plot of the BRD. In fact, OLS provides an unbiased estimator of B. Also, for
designs that provide little or no lack-of-fit information (for estimation of o2
and cﬁ), the researcher may be better served by not trying to estimate V than
by introducing more variability into the analysis. The IRLS method begins
with an 1n1tlal OLS estimate of P, then uses an iterative procedure for
estimating o2, o> and B until convergence is reached in B The REML
method, first developed by Anderson and Bancroft (1952) and Russell
and Bradley (1958), is similar to MLE except that it uses the likelihood of
a transformation of the response, y. Refer to Searle et al. (1992) for a
discussion on REML and its relationship to MLE. The PROC MIXED
procedure in SAS (1992) can be adapted to calculate REML estimators.
Letsinger et al. (1996) give details on the use of PROC MIXED for the
analysis of a BRD.

The recent reminder that many RSM problems are accompanied by
designs that are not completely randomized will hopefully produce new and
useful tools for the practitioner. In that regard it is of great interest to note
the similarity between the split-plot RSM problem (as far as analysis is
concerned) and the approach taken with generalized estimating equations
that find applications in the biostatistical and biomedical fields. The analysis
is ver similar, though in the longitudinal data applications there generally is
no designed experiment. Liang and Zeger (1986) and others extend this
work to generalized linear models and indeed assume various correlation
structures rather than the exchangeable correlation structure induced by the
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approach discussed above. The RSM practitioners can benefit greatly by
borrowing from their colleagues in other fields.

4. CONCLUSION

Response surface methodology is growing. More statistical researchers are
getting involved, dealing with a wider variety of complex problems. RSM
will always play a large role in quality improvement. Much more develop-
ment work is needed, however, to ensure that the methods are flexible
enough to meet the challenges presented by other than the traditional fields
of applications. In addition, strong communication is needed to solidify the
growing interest of practitioners in the biological and biomedical fields.

REFERENCES

Abdelbasit KM, Plackett RL. (1983). Experimental design for binary data. J Am Stat
Assoc 78:90-98.

Anderson RL, Bancroft TL. (1952) Statistical Theory in Research, New York:
McGraw-Hill.

Atkinson AC, Haines LM. (1996). Designs for nonlinear and generalized linear
models. In: Gosh S, Rao CR, eds. Handbook of Statistics, vol. 3.
Amsterdam: Elsevier, pp. 437-475.

Box GEP, Jones S. (1992). Split-plot designs for robust product experimentation. J
Appl Stat 19:3-26.

Chaloner K, Verdinelli 1. (1995). Bayesian experimental design: A review. Stat Sci
10:273-304.

Dumouchel W, Jones B. (1994). A simple Bayesian modification of D-optimal
designs to reduce dependence on an assumed model. Technometrics 36:37-47.

Engel J, Huele AF. (1996). A generalized linear modeling approach to robust design.
Technometrics 38:365-373.

Giovannitti-Jensen A, Myers RH. (1989). Graphical assessment of the prediction
capability of response surface designs. Technometrics 31:159-171.

Haaland PD, McMillan N., Nychka D, Welch W. (1994). Analysis of space-filling
designs. Comput Sci Stat 26:111-120.

Haaland PD, Clarke RA, O’Connell MA, Nychka DW. (1996). Nonparametric
response surface methods. Paper presented at 1996 ASA Meeting, Chicago, IL.

Hamada M, Nelder JA. (1997). Generalized linear models for quality improvement
experiments. J Qual Technol 29:292-308.

Khattree R. (1996). Robust parameter design: A response surface approach. J Qual
Technol 28:187-198.

Kiefer J. (1959). Optimum experimental designs (with discussion). J. Roy Stat Soc,
Ser B 21:272-319.



480 Neff and Myers

Letsinger JD, Myers RH, Lentner M. (1996). Response surface methods for bi-
randomization structures. J Qual Technol 28:381-397.

Letsinger WC. (1995). Optimal one and two-stage designs for the logistic regression
model. Dissertation, Virgina Polytechnic Institute and State University.
Liang KY, Zeger SL. (1986). Longitudinal data analysis using generalized linear

models. Biometrika 73(1):13-22.

Lin D, Tu W. (1995). Dual response surface optimization. J Qual Technol 27:34-39.

Lucas JM. (1994). How to achieve a robust process using response surface metho-
dology. J Qual Technol 26:248-260.

Lucas JM, Ju HL. (1992). Split plotting and randomization in industrial experiments.
ASQC Quality Congress Transactions, 27:34-39.

McCullough P, Nelder JA. (1989). Generalized Linear Models. 2nd ed. New York:
Chapman and Hall.

Minkin S. (1987). Optimal designs for binary data. J Am Stat Assoc 82:1098-1103.

Montgomery DC. (1997). Design and Analysis of Experiments. 4th ed. New York:
Wiley.

Myers RH, Montgomery DC. (1995). Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. New York: Wiley.
Myers RH, Montgomery DC. (1997). A tutorial on generalized linear models. J Qual

Technol 29:274-291.

Myers RH, Khuri Al, Vining GG. (1992a). Response surface alternatives to the
Taguchi robust parameter design approach. Am Stat 46:131-139.

Myers RH, Vining G. Giovannitti-Jensen A, Myers SL. (1992b). Variance dispersion
properties of second-order response surface designs. J Qual Technol 24:1-11.

Myers RH, Kim Y, Griffiths KL. (1997). Response surface methods and the use of
noise variables. J Qual Technol 29:429-440.

Myers WR, Myers RH, Carter, WH Jr, White KL Jr. (1996). Two stage designs for
the logistic regression model in single agent bioassays. J Biopharm Stat, April
issue.

Neff AR, Myers RH, Ye K. (1997). Bayesian two stage designs under model uncer-
tainty. VP1 & SU Tech Rep. 97-33.

Rozum MA. (1990). Effective design augmentation for prediction. PhD Thesis,
Virginia Tech.

Rozum MA, Myers RH. (1991). Variance dispersion graphs for cuboidal regions.
Paper presented at ASA Meeting, Atlanta, GA.

Russell TS, Bradley RA. (1958). One-way variances in the two-way classification.
Biometrika 45:111-129.

SAS (1992). Tech Rep P-229. SAS/STAT Software, Release 6.07. Cary, NC.

Searle SR, Casella G, McCulloch CE. (1992). Variance Components. New York:
Wiley.

Sitter RS. (1992). Robust designs for binary data. Biometrics 48:1145-1155.

Sitter RS. Torsney B. (1992). D Optimal designs for generalized linear models. In:
Kitsos CP, Muller WG, eds. Advances in Model Oriented Data Analysis.
Heidelberg: Physica-Verlag, pp 87-102.



Response Surface Methodology 481

Taguchi G, Wu Y. (1980). Introduction to Off-Line Quality Control. Central Japan
Quality Control Association. (Available from American Supplier Institute,
Dearborn, MI1.)

Vining GG, Bohn L. (1996). Responsc surfaces for the mean and the process var-
iance using a nonparametric approach. J Qual Technol 30:282-291.

Vining GG, Myers RH. (1990). Combining Taguchi and response surface philoso-
phies: A dual response approach. J Qual Technol 22:38-45.



This Page Intentionally Left Blank



Index

Acceptance region, 196
Additive disturbance, 87
Admissible for a design, 350
Affine-linear transformation, 341
Affinity operator, 444
Allowance A, 4
Alternative moment matrix, 293 (see
also moment matrix)
Analysis of covariance (ANOCOVA),
377
Analysis of variance (ANOVA), 329,
376, 395
Approximate designs, 343
ARIMA model, 145
Autocorrelated data, 145, 224,
Autocorrelation, 224
Autocorrelation function, 142
sample, 144
Autoregressive model:
first-order, 146
second-order, 147
Average loss by defectives, 14
Average number of defective units,
11
Average number of observations to
signal (ANOS), 121
Average number of samples to signal
(ANSS), 125

Average problem occurrence interval,
8
Average run length (ARL), 100, 121,
175, 178, 195
for the residual chart, 148
performance, 152
Average sample number (ASN), 131
Average time to signal (ATS), 100, 125
steady-state (SSATS), 126

Bayes D-D optimality procedure, 473
Bayesian design, 469
Behavior:

closed-loop, 81

open-loop, 81
Best linear unbiased estimator

(BLUB), 414

Biased drift parameter estimate, 94
Birandomization structure, 476, 477
Block interaction model, 396
Box-Behnken design, 465
B-spline, 340
Business excellence:

six principles for, 48

success criteria for, 50

Candidate factors, 30
Capability of the process, 24

483
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Capability potential, 2
Capability performance, 242
Capability indices, 242, 246

Central composite design (CCD), 294,

465, 477
fully replicated, 300
Changepoint analysis, 403
two-way, 406
Changepoint model, 399
two-way. 401
one-way, 401
Chart:
cause-selecting Shewhart, 163-164
control, 117, 139
cause-selecting T2, 165-166
moving centerline EWMA, 151
(see also EWMA)
multivariate 72, 165
T2, 170
two kinds of, 163
unweighted batch means (UBM),
156
CUSUM, 119-121 (see also
CUSUM),
Bernoulli CUSUM |, 120
designing, 122
properties of, 121
binomial CUSUM, 125
designing, 126
exponentially weigheted moving
averages (EWMA), 189
omnibus, 194
EWMA bull's-eye, 193, 198, 206
multivariatc EWMA T2, 194, 204
multivariate Shewhart 72, 203
p-. 118
Shewhart bull's-eye, 193, 205
SPRT, 120, 129 (see also SPRT):
designing, 133
properties of, 131
two-sided CUSUM mean, 196
two-sided CUSUM variance, 196
weighted batch means(WBM),
153-154
X. 180

Classification, 257, 259
Classification and clustering methods,
259
Columnwise-pairwise exchange
algorithm, 317
Combined CUSUM scheme with a
rectangular acceptance region
(CQO), 196
Comparing treatment, 401
Compensatory variable, 94
Completely randomized design (CRD),
477
Computer-generated designs, 294, 464
Computer-generated contour surface,
413
Computer-aided design (CAD), 321
Confidence intervals procedure, 211
Confidence intervals of process
capability indices, 279
Conditional 77, 228
Constrained confidence region, 421
Continuous improvement cycle, 41
Continuous improvement process, 72
Contour plot, 412
Control factors, 359, 374, 458
Control x noise interaction, 459
Control of deterministic trend, 90
Control of random walk with drift, 91
Corrected diffusion (CD), 122
Cumulative chi-square method, 402
Cumulative sum (CUSUM),189
Bernoulli CUSUM chart, 120
binomial CUSUM chart, 125
combined CUSUM scheme with a
rectangular acceptance region,
196
chart, 119-121
discrete, 181
two-sided, 181, 185
two-sided CUSUM mean chart, 196
two-sided CUSUM variance chart,
196
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Customer requirements, 269
Customer satisfaction, 36, 40, 109
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Degree of acceptability, 412
Discriminant analysis, 259
Decision rules, 217
Design factors, 360
Desirability, 415
function approach (DFA), 415
optimization methodology, 417
transformation, 415-416
Deterministic drift model, 86
Deterministic trend model, 87, 95, 98
DETMAX algorithm, 294
Diagnosis and adjustment, 8
Dispersion effect, 360, 363, 377
Dispersion effect modeling, 360
D-optimality based criterion, 293
D-optimal design, 352, 468
Bayesian, 471
twelve-runs, 466
D-optimal minimum support design,
354
Dose-response experiment, 400
Doubly cumulative chi-square statistic,
404
Diagnosis theory with two kinds of
quality (DTTQ), 167
Dual response approach, 291, 420
Dual response surface approach, 459
Dynamic experiments, 323
Dynamic characteristics, 374
Dynamic S/N ration, 374
Dynamic system, 391

Effect sparsity, 306

Efficient design strategy, 309

Elliptical, 196

Employee satisfaction indices (ESI), 24

Employees® ideality, 64

Environmental factors, 360

Environmental interaction effect:
design by, 360

Environmental variables, 359

Index 485

Estimated generalized least squares
(EGLS) estimate, 414
European Quality Award (EQA), 51

EWMA, 149
EWMA bull’s eye chart, 193, 198,
206
moving centerline EWMA control
chart, 157
multivariate EWMA T2, 194, 204
omnibus, 194
prediction error, 150
Excellent leadership profile (ELP), 60,
61

Functional algorithm, 218

Fuzzy modeling approach, 421

Fuzzy multiobjective optimization
methodology. 421

Generalized distance approach (GDA),
417

Generalized interaction, 397

Generalized least squares (GLS), 477

Generalized linear model (GLM), 388,
406, 474

Generalized reduced gradient (GRG)
algorithm, 420

Generic process capability index, 274

Group screening designs, 307

Hadamard matrices, 307
Hard-to-change variable. 476
Hard-to-control variable, 476
Hybrid design. 466

Improvement:
circle, 22
continuous, 38
process, 36
Information matrix, 342
expected, 293
Interaction, 395
Isotonic inference, 407
Iterated reweighted least squares
(IRLS), 478
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JIS (Japanese Industrial Standards), 6
Joint models for the mean and the
dispersion, 388

Knots, 339

Large fraction of defectives, 13
Leadership model, 50
excellent, 56-57
Leadership styles, 52
Likelihood function, 113
Linear multiresponse model, 413
Linkage algorithm, 220
Link function for the mean, 388
Location effects, 363
Loss function, 3
Lower control limit, 118
Lower specification limit (LSL), 270

Manager tetrahedron concept, 441
Maximum likelihood estimate, 113
Maximum likelihood method, 112
Marked point process, 81
Markov chain, 175
finite, 176
finite and ergodic, 175
Mean absolute deviation (MAD), 152
Mean and variance modeling, 458
Mean and variance response surface,
460
Mean-variance plot, 376
Measurement, 39
of quality, 21
Measuring equipment, 7
Minimum mean square error (MMSE)
controller, 89
Minimum variance controller, 89
Mixed model, first-order 147
Monitoring process capability, 283
Model-based approach, 145
Model-free approach, 145
Model-free process-monitoring
procedure, 156
Moment matrix. 293, 342 (see also
information matrix):

[Moment matrix]
alternative, 293
Moving average model:
first-order, 147
first-order integrated, 148
autoregressive integrated, 148
Multi-index system, 161
Multi-index production line, 162
Multioperation production line, 161
Multiple comparison of treatments,
405
Multiple mean-variance plot (MMVP),
376, 381
Muitiresponse capability indices, 243
Multiresponse experiment, 412
Multiresponse optimization, 412
Multiresponse processes, 242
g-dimensional , 249
Multivariate Bayesian capability index,
246
Multivariate capability indices, 244
Multivariate control chart:
nonparametric, 215
Multivariate control procedure for
autocorrelated processes, 227
Multivariate processes, 224
Multivariate quality control procedure,
210
Distribution-free, 214
Multivariate stepwise diagnosis, 167

Noise factor, 374, 458
Nonparametric procedure, 215
Normal probability plots, 329
Notz design, 294

fully replicated, 300
Numerically optimal design, 344

Optimal B-spline regression designs,
349

Optimality criteria in designs, 311

Optimum diagnosis interval, 9

Optimum measuring interval, 16

Optimum modifying quantity, 16

Ordinary least squares (OLS), 415



Orthogonal decomposition of the T°
value, 227
Out-of-tolerance, 2

Parameter design, 373
Pattern recognition, 257
Performance measures (PMs), 387
Performance measure modeling
(PMM), 387
PDCA-leadership cycle, 70
People-based management, 37
Piecewise polynomial regression, 339
Plackett and Burman design, 307, 313
Plan-Do-Check-Act cycle of Deming,
323
Plan-Do-Check-Action(PDCA), 67
Plan-Do-Study-Act cycle, 370
Polynomial splines, 339
Potential terms, 470
Prevention, 39
Preventive maintenance system, 10
Primary terms, 470
Principal component capability index,
254
Process variable with cycle, 225
Process capability, 243
Index, 2, 269, 270, 273
Process change, 80
in EPC models, 82
Process control, 6, 243
algorithmic statistical (ASPC), 79
automatic (APC), 77
engineering (EPC), 77
run-to-run, 79
statistical(SPC), 77
generalized, 79
Process decay, 235
Process performance, 269, 273
Process variability, 291
Process variance, 291
model for, 292
Process viability, 247
Product development, 323
Product development process, 324
Product service, 435
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Product supply, 435
Products:
American, 1
Japanese, 1
Prototype experiments, 322
Prototype tests, 323
Prototype experiments, 325
analysis of, 328

Q optimality, 469
Quadratic loss function, 277

Quality:
total, 162
partial, 162

two kinds of, 162
Quality control:
cost, 8
on-line, 6
Quality dimension, 439
external, 439
internal, 440
Quality function deployment (QFD),
56
Quality improvement, 437, 457
experiments, 387
Quasi-likelihood (QL), 389
extended quasi-likelihood (EQL),
389
Cox-Reid adjusted profile EQL, 390
Queuing model:
analytical, 445
in quality service, 442
retrial, 447
with time-dependent arrival process,
445
Queuing system, 435

Random walk model, 96
Reliability, 107

analysis, 110
Renewal, §1
Replicated axial design, 300
Replicated factorial design, 294, 300
Replicated 3/4 design, 300
Replicated full factorial, 300
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Response function modeling (RFM),
388
Response surface methods:
nonparametric, 475
semiparametric, 47
Response surface methodology
(RSM), 411, 457
Restricted maximum likelihood
(REML) technique, 390, 478
Robust design experiments, 323
planning of, 369
engineering, 359
Robustness,458
improvement, 360
Robust parameter design, 373, 458
Robust parametric design, 388

Satisfaction and loyalty model, 25

Satisfaction process, 29

Sensitivity-standard deviation (SS)
plot, 376

Sequential probability ratio test
(SPRT), 120

critical inequality of the, 131

Service delivery process, 435

Shift in drift parameters, 86

Shift in trend parameter, 86

Short-term leader, 20

Short-term leadership, 20

Signal factor, 374

Signal to Noise (S/N) ratio, 374

Simultaneous optimization, 421

Space-filling design, 475

SPC-EPC integration, 78

Spline model, 339

Spline regression model, 342

Split-plot designs, 368

Spread ratio, 245

Square-well loss function, 276

Stage decay process, 235

Static characteristics (static S/N ratio),

374
Stationary transition probability, 177
Statistical process control and
diagnosis (SPCD), 166

Statistical understanding, 42
Supersaturated designs, 307

examples of, 313

computer construction of, 317
Supervised learning, 258
Systematic supersaturated designs, 307

Taguchi’s philosophy, 277
Teamwork, 40
Total quality management (TQM), 19,
35,45
European model for, 47
5 principles of TQM, 46
pyramid, 46
pyramid principles of, 37
Total quality queue management, 451
Transition matrix, 177
Two-stage analysis method for
cxperiments, 32
Two-stage design, 469
Two-stage D-optimal design (D-D
opumality), 469
Two-way table analysis, 397

Unconditional 77, 227

Uniform decay process, 226, 230
example of, 230

Unsupervised learning, 258

Upper specification limit (USL), 270

Variance dispersion graph (VDG), 465
Variance function, 375, 389
Variation, 4

Viability index, 247, 248, 249

Viable, 247

Viable bivariate process, 249

Vital few and trivial many, 363

Warranty data, 109
White noise, &1
Whole-plot variables, 476
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Whole-plot experimental units, 476 Zellner’s seemingly unrelated
regression(SUR) estimate, 414
X &R (or s) control to monitor
process capability, 284
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