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Preface 

This  book  has  been  written  primarily  for  engineers  and  researchers  who 
want  to use  some  advanced  statistical  methods  for  process  monitoring 
and  optimization in order  to  improve  quality  and  productivity in industry, 
and  also  for  statisticians  who  want  to  learn  more  about recent  topics in this 
general  area.  The  book  covers recent advanced  topics in statistical  reasoning 
in quality  management,  control  charts,  multivariate  process  monitoring, 
process  capability  index,  design  of  experiments  (DOE)  and  analysis  for 
process control,  and  empirical  model  building  for process optimization.  It 
will also be of  interest  to  managers,  quality  improvement specialists, grad- 
uate  students,  and  other  professionals  with  an  interest in statistical  process 
control  (SPC)  and its related  areas. 

In  August 1995, the  International  Conference  on  Statistical 
Methods  and  Statistical  Computing  for  Quality  and  Productivity 
Improvement  (ICSQP'95) was  held in Seoul,  Korea,  and  many of the 
authors of  this  book  participated.  A  year  later  after  the  conference,  the 
editors  agreed  to  edit  this  book  and invited some key conference  partici- 
pants  and  some  other  major  contributors in the field who did not  attend  the 
conference.  Authors  from 15 nations  have  joined in this  project,  making this 
truly  a  multinational  book.  The  authors  are all well-known scholars in SPC 
and  DOE  areas.  The  book  provides useful information  for  those  who  are 
eager to  learn  about recent  developments in statistical  process  monitoring 
and  optimization.  It  also  provides  an  opportunity  for  joint discussion all 
over  the  world in the general areas of SPC  and DOE. 

We would like to  thank  Elizabeth  Curione,  production  editor of 
Marcel  Dekker,  lnc.,  for  her  kind  help  and  guidance,  and  Maria  Allegra, 
acquisitions  editor and  manager  at  Marcel  Dekker,  Inc.,  for  making  the 
publication  of  this  book possible. We very  much appreciate  the  valuable 
contributions  and  cooperation of the  authors which made  the  book  a  reality. 
We sincerely hope  that it is a useful  source  of  valuable information  for 
statistical  process  monitoring and  optimization. 

iii 



iv Preface 

We  want to dedicate  this book to  God  for giving us the  necessary 
energy, health,  and  inspiration  to write our  chapters  and  to  edit this book 
successfully. 

Sung H .  Park 
G. Ge0ffrc.y Vining 



Contents 
Preface 
Contributors 

iii 
ix 

PART 1 STATISTICAL  REASONING IN TOTAL  QUALITY 
MANAGEMENT 

1 On-Line  Quality  Control System  Designs 
Genichi  Taguchi 1 

2 Statistical  Monitoring  and  Optimization in Total  Quality 
Management 
Kai Kristensen 19 

3  Quality  Improvement  Methods  and  Statistical  Reasoning 
G.  K. Kanji 35 

4  Leadership Profiles and  the  Implementation of Total  Quality 
Management  for Business  Excellence 
Jens J .  Dahlgaard, Su M i  Park  Dahlgaard,  and 
Anders N~rgaard 45 

5  A  Methodological  Approach  for  the  Integration of SPC 
and  EPC  in  Discrete  Manufacturing Processes 
Enrique  Del  Castillo,  Ruiner Gob, and  Elart  Von  Collani 77 

6 Reliability Analysis  of Customer  Claims 
Pasquale  Erto 

PART 2 CONTROL  CHARTS  AND  PROCESS  MONITORING 

107 

7 Some  Recent  Developments in Control  Charts  for  Monitoring 
a  Proportion 
Marion R.  Reynolds,  Jr., and Zachary  G.  Stoumbos 117 

V 



vi Contents 

8  Process  Monitoring with Autocorrelated  Data 
Douglas C. Montgonwy mlcl  Christinrr M .  Mastrcmgelo 139 

9  An  Introduction  to  the  New  Multivariate  Diagnosis  Theory 
with TWO Kinds  of  Quality  and  Its  Applications 
Gongsu Zlznng 

10 Applications of Markov  Chains in Quality-Related  Matters 
Min-Te Cllao 

1 1  Joint  Monitoring of Process  Mean  and  Variance  Based  on  the 
Exponentially  Weighted  Moving  Averages 
Fa11 Futt Gun 

PART 3 MULTIVARIATE  PROCESS  MONITORING  AND 
CAPABILITY  INDICES 

12 Multivariate  Quality  Control  Procedures 
A .  J. Hcr~~ter 

13 Autocorrelation in Multivariate Processes 
Robert L .  Mcrson r ~ n d  Jolm C. Young 

14 Capability  Indices  for  Multiresponse Processes 
Alcrn Vce\’ers 

15 Pattern  Recognition  and  Its  Applications i n  Industry 
R. Gncrt?rrrlesil\an anel J. R .  Kcttenring 

16 Assessing  Process Capability with  Indices 
Fred A .  Spiring 

PART 4 EXPERIMENTAL  DESIGN  AND  ANALYSIS FOR 
PROCESS  CONTROL 

17 Experimental  Strategies  for  Estimating  Mean  and  Variance 
Function 
G .  Geqffrel> Vining, Diane A .  Schnuh, c1nd  C d  Modigl? 

18 Recent  Developments in Supersaturated  Designs 
Dennis K.  J .  Lin 

161 

175 

189 

209 

223 

24 1 

257 

269 

29 1 

305 



Contents vii 

19 Statistical Methods  for  Product  Development: 
Prototype  Experiments 
David M .  Steinberg  and  Soren Bisgaurd 

20 Optimal  Approximate Designs for B-Spline Regression  with 
Multiple  Knots 
Norbert Gcdfie and Berthold  Heiligers 

21 On Dispersion Effects and  Their Identification 
Bo  Bergman and Anders  Hynf'n 

PART 5 EMPIRICAL  MODEL  BUILDING  AND  PROCESS 
OPTIMIZATION 

22 A  Graphical  Method  for  Model  Fitting in Parameter Design 
with Dynamic  Characteristics 
Sung H.  Park and Je H.  Choi 

23 Joint  Modeling of  the  Mean  and  Dispersion  for  the Analysis 
of  Quality  Improvement  Experiments 
Youngjo Lee and John A .  Nelder 

24 Modeling  and Analyzing  the  Generalized  Interaction 
Clzihiro Hirotsu 

25 Optimization  Methods in Multiresponse  Surface  Methodology 
A n h i  I .  K h r i  a d  Elsie S. Valeroso 

26 Stochastic  Modeling  for  Quality  Improvement in Processes 
M .  F. Ramallwto 

27 Recent  Developments in Response  Surface  Methodology and 
Its  Applications in Industry 
Angela R.  Nefland  Raymond  H.  Myers 

32 1 

339 

359 

373 

387 

395 

41 1 

435 

457 

483 Index 



This Page Intentionally Left Blank



Contributors 

Bo Bergman, Ph.D. Linkoping  University,  Linkoping, and  Department of 
TQM, School  of  Technology  Management,  Chalmers University  of 
Technology,  Gothenburg, Sweden 

Seren Bisgaard, Ph.D. Institute  for  Technology  Management, University 
of St.  Gallen,  St.  Gallen,  Switzerland 

Min-Te  Chao,  Ph.D. Institute of Statistical  Science,  Academia  Sinica, 
Taipei,  Taiwan,  Republic of China 

Je H. Choi, Ph.D. Statistical  Analysis  Group,  Samsung  Display Devices 
Co.,  Ltd.,  Suwon,  Korea 

Jens  J. Dahigaard,  Dr. Merc. Department of Information Science, The 
Aarhus  School of  Business, Aarhus,  Denmark 

Su  Mi Park Dahlgaard, M.Sc., Lic. Orcon. Department of Information 
Science, The  Aarhus  School of  Business, Aarhus,  Denmark 

Enrique Dei  Castillo,  Ph.D. Department of Industrial  and  Manufacturing 
Engineering, The Pennsylvania State University,  University Park, 
Pennsylvania 

Pasquale Erto, M.D. Department of Aeronautical Design,  University of 
Naples  Federico 11, Naples,  Italy 

Norbert Gaffke,  Ph.D. Department of Mathematics,  Universitat  Magde- 
burg,  Magdeburg,  Germany 

Fah Fatt  Gan,  Ph.D. Department of  Statistics  and  Applied  Probability, 
National University  of  Singapore,  Singapore,  Republic  of  Singapore 

ix 



x Contributors 

R.  Gnanadesikan, Ph.D. Department of Statistics,  Rutgers  University, 
New  Brunswick,  New  Jersey 

Rainer Gob, Dr. Institute of  Applied  Mathematics  and  Statistics, 
University  of  Wuerzburg,  Wuerzburg,  Germany 

A. J. Hayter, Ph.D. Department of Industrial  and Systems  Engineering, 
Georgia  Institute of Technology,  Atlanta,  Georgia 

Berthold Heiligers, Ph.D. Department of Mathematics,  Universitit  Magde- 
burg,  Magdeburg,  Germany 

Chihiro Hirotsu, Ph.D. Department of Mathematical  Engineering  and 
Information Physics,  University  of  Tokyo,  Tokyo, Japan 

Anders  HynCn, Ph.D. Department of  Systems  Engineering,  ABB  Corpo- 
rate  Research,  Vasterds,  Sweden 

G. K. Kanji, B.Sc.,  M.Sc.,  Ph.D. Department of  Statistics, Sheffield 
Business  School, Sheffield Hallam  University, Sheffield, England 

J. R. Kettenring, Ph.D. Department of Mathematical Sciences  Research 
Center,  Telcordia  Technologies,  Morristown,  New  Jersey 

AndrC I. Khuri, Ph.D. Department of  Statistics,  University  of  Florida, 
Gainesville,  Florida 

Kai Kristensen,  Dr. Merc. Department of Information Science, The 
Aarhus  School of Business, Aarhus,  Denmark 

Youngjo Lee, Ph.D. Department of  Statistics,  Seoul  National  University, 
Seoul,  Korea 

Dennis K. J. Lin, Ph.D. Department of Management  and  Information 
Systems, The  Pennsylvania  State  University,  University  Park,  Pennsylvania 

Robert L. Mason,  Ph.D. Statistical  Analysis  Section,  Southwest  Research 
Institute,  San  Antonio,  Texas 

Christina M. Mastrangelo, Ph.D. Department of  Systems  Engineering, 
University  of Virginia, Charlottesville,  Virginia 



Contributors xi 

Carl Modigh  Arkwright  Enterprises  Ltd.,  Paris,  France 

Douglas C. Montgomery, Ph.D. Department of Industrial  Engineering, 
Arizona  State  University,  Tempe,  Arizona 

Raymond H. Myers,  Ph.D.  Department of Statistics,  Virginia  Polytechnic 
Institute  and  State  University,  Blacksburg, Virginia 

Angela R. Neff, Ph.D. Department of Corporate  Research  and Develop- 
ment,  General Electric, Schenectady,  New  York 

John A. Nelder, DSc., F.R.S. Department of Mathematics,  Imperial 
College, London.  England 

Anders Nsrgaard,  MSc.  Department of Information Science, The  Aarhus 
School of Business, Aarhus,  Denmark,  and Bulon Management, Viby, 
Denmark 

Sung H. Park, Ph.D. Department of  Statistics,  Seoul  National  University, 
Seoul,  Korea 

M. F. Ramalhoto, Ph.D. Department of Mathematics,  Technical  Uni- 
versity of Lisbon,  “Instituto  Superior  Tkchnico,”  Lisbon,  Portugal 

Marion R. Reynolds, Jr., Ph.D. Departments of  Statistics  and  Forestry, 
Virginia  Polytechnic  Institute  and  State  University,  Blacksburg,  Virginia 

Diane A. Schaub,  Ph.D. Department  of  Industrial  and Systems  Engi- 
neering,  University of Florida,  Gainesville,  Florida 

Fred A. Spiring, Ph.D. Department of  Statistics, The University of 
Manitoba,  and  Department of Quality,  Pollard  Banknote  Limited, 
Winnipeg,  Manitoba,  Canada 

David M.  Steinberg,  Ph.D.  Department of Statistics  and  Operations 
Research,  Tel  Aviv  University,  Tel  Aviv,  Israel 

Zachary G. Stoumbos,  Ph.D. Department of Management Science and 
Information Systems, and  Rutgers  Center  for  Operations  Research 
(RUTCOR), Rutgers  University,  Newark, New Jersey 

Genichi  Taguchi, DSc. Ohken  Associate,  Tokyo,  Japan 



xii Contributors 

Elsie S. Valeroso, Ph.D. Department of Mathematics  and  Statistics,  Mon- 
tana  State  University,  Bozeman, Montana 

Alan  Veevers, BSc.,  Ph.D. Department of Mathematical  and  Information 
Sciences, Commonwealth Scientific and  Industrial  Research  Organization, 
Clayton,  Victoria,  Australia 

G. Geoffrey Vining, Ph.D. Department of Statistics,  Virginia  Polytechnic 
Institute  and  State  University,  Blacksburg, Virginia 

Elart von Collani, Dr.  rer. nat., Dr.  rer. nat. habil., School  of  Economics, 
University of Wuerzburg,  Wuerzburg,  Germany 

John C. Young, Ph.D. Department of Mathematics  and  Computer Science, 
McNeese  State  University,  Lake  Charles,  Louisiana 

Gongxu Zhang Research  Institute  of  Management Science,  Beijing 
University of Science and  Technology, Beijing, People’s  Republic of China 



On-Line Quality Control System 
Designs 

Genichi  Taguchi 
Ohken Associate, Tokyo, Japan 

1. INTRODUCTION 

It is the  responsibility  of  a  production  department to produce  a  product  that 
meets a designed quality level at  the lowest  cost.  However,  it is important  to 
not merely have  the  product  quality meet specifications but  to  also  endeavor 
to bring  quality  as close as possible to  the ideal value. 

2. JAPANESE  PRODUCTS  AND  AMERICAN  PRODUCTS 

Many  Japanese  read  an  article  on  April 17, 1979, on  the  front  page of Asahi 
Shinbun, one of the  most widely circulated  newspapers in Japan,  regarding  a 
comparison of the  quality  of  color television sets  produced by the  Sony 
factory in Japan with that of TVs produced by the  Sony  factory in San 
Diego,  California.  The  comparison was made  on  the  basis of the  color 
distribution, which is related to the  color  balance.  Although  both  factories 
used  the same design, the TVs from  the  San  Diego  factory  had  a  bad 
reputation,  and  Americans  preferred  the  products  from  Japan. Based on 
this fact, Mr.  Yamada,  the vice president  of  Sony  United  States  at  that 
time, described  the  difference in the  article. 

The difference in the  quality  characteristic  distributions is shown in 
Figure 1. It is seen from  the figure that  the  color  quality of Japanese-made 

1 
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m-5 m m + 5  

Figure 1 Distribution of color quality in television sets of Sony U.S. and Sony 
Japan. 

TVs  shown by the solid curve  have  approximately  a  normal  distribution 
with  the  target  value at the  center;  its  standard  deviation is about  one- 
sixth of  the  tolerance  or 10 in  certain  units. 

In quality  control,  the index of tolerance  divided by  six standard 
deviations is called the  process  capability  index, denoted by C,,: 

c -  tolerance 
'' - 6 x standard  deviation 

The process  capability of the  Japanese-made  TVs is therefore 1, and  the 
average  quality level coincides  with  the  target  value. 

The  quality  distribution of the sets produced in San  Diego,  shown by 
the  dash-dot  curve, on the  other  hand,  has less out-of-specification  product 
than  that of the  Japanese-made  sets  and is quite  similar  to  the  uniform 
distribution  for  those  products  that  are within the  tolerance.  Since  the  stan- 
dard  deviation of the  uniform  distribution is given by l/m of  the  toler- 
ance,  its  process  capability  index is given by 

c -  tolerance 
- ( to l e rance /m)  x 6 

= 0.577 

which  shows that  its  process  capability index is worse than  that of the 
Japanese-made  product. 

A product  with  out-of-tolerance  quality is a  bad  product. I t  is an 
unpassed  product, so it should  not be shipped  out.  From  the  opposite 
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point of view, a  product within  tolerance  should be considered  good  and 
should be shipped.  In  a  school  examination,  a  score  above 60 with 100 as  the 
full mark is considered  to  be  a  passing  grade. A product  quality  that  coin- 
cides with  its  target  value should  have  a full mark.  Quality  gradually 
becomes  worse  when it deviates  from  the  target value, and fails when it 
exceeds the specification limits, or f 5  in this  example. 

In  a  school  examination, a score  of 59 or below 59  is failing, 60 or 
above 60 is passing.  The  scores  are  normally classified into  the following 
grades: 

60- 69 D 
70- 79 c 
80- 89 B 
90-100 A 

I put  grades A, B, and C in Figure 1. It is seen that  the  Japanese-made  TVs 
have more A's and fewer B's and C's. 

To reduce  the  Japan-United  States difference, Mr.  Yamada  dictated  a 
narrower  tolerance  for  the  San  Diego  factory,  specifying B as  the lowest 
allowable  quality  limit.  This is wrong, since specifying  a more severe  toler- 
ance  because  of  inferior  process  capability is similar  to  raising  the  passing 
score  from 60 to 70 because  of the  incapability  of  students.  In  schools, 
teachers do  not raise the limit for such students.  Instead,  teachers used to 
lower the  passing  limit. 

As stated  above, loss is caused  when the  quality  characteristic  (denoted 
by y )  deviates  from  the  target  value  (denoted by m) regardless  of  how  small 
the  deviation is. Let the loss be denoted by LO,). LO,) is the  minimum  when y 
coincides  with the  target  value m ,  and we may put  the loss to be 0. 

L(m) = 0 (3) 

When y = m ,  Lo,)  is zero  or  minimum,  and  its  differential coefficient is, 
accordingly,  zero. 

L'(m) = 0 (4) 

Using  the  Taylor  expansion,  the loss function LO,) is expanded  as 

L ' I  (m) -- - 
2! 0, - 
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The  constant  and  linear  terms (differential  terms)  become  zero  from  Eqs. (3) 
and (4). If the  third-order  term  and  the following  terms  can  be  omitted,  the 
loss  function is then 

Let  the  allowance or the  deviation  of y from  the  middle  value by A .  
The  more y deviates  from m ,  the middle  value,  the more loss is caused.  A 
product whose  deviation is less than its  allowance A should  pass  inspection; 
otherwise  the company will lose  more.  When  the  deviation  exceeds  the 
allowance,  the product  should  not be passed.  therefore,  when  the  deviation 
is equal  to  the allowance,  its  loss is equal  to  the loss due  to  the  disposal of 
the  failed product. 

Let A (yen)  signify  the  loss  caused by disposing of a  failed product. 
Putting A and allowance A in Eq. (6), k is obtained  as 

k =  
loss  of  disposing  of  a  failed  product A 

(allowance)2 A2 
- - - 

Assume that  the  cost of  repairing  a  failed  color  TV  set is 600 yen. k is then 
calculated  as 

600 
52 

k = - = 24.0  (yen) 

The loss  function is therefore 

L = 24.001 - m )  2 (9) 

This  equation applies to  the  case when  a  single product is manufactured.  An 
electrical manufacturing  company in India  (BHEL)  said  to me “Our  com- 
pany  manufactures only one  product,  a  certain type  of  nuclear  power sta- 
tion.  There is no second  machinery  of  the  same  type  producted.  Since  the 
variation  of  a  single  product is zero,  standard  deviation in statistics is not 
applicable in our case.” 

Variation is measured by the  deviation  from  a  target  value  or an ideal 
value.  Therefore,  it  can  be  obtained  from  Eq. (6) even when  only one  pro- 
duct is produced. When  there is more  than  one  product,  the  average of Eq. 
(6) is calculated.  Variance (a2), the  average  of  the square of  differences 
between y and  the  target value, is used for  this  purpose. a2 is correctly  called 
the  average  error  squared,  but we  will call  it  variance for simplicity. 
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The loss  function  is given by 

L = ka' 
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(10) 

The  quality level difference  between  Sony U.S. and  Sony  Japan is 
calculated  from  Eq. ( I  1) as  shown in Table 1. 

Table 1 shows  that  although  the  fraction defective of the  Japanese 
Sony  factory is larger,  its loss is one-third  that of  the U.S. Sony  factory. 
In  other  words,  the  Japanese  quality level  is three  times  higher. If  Vice 
President Yamada specified a  narrower  tolerance  such  as I O  x 213, the 
quality level would be improved  (assuming  a  uniform  distribution  within 
the  tolerance  limits): 

1 
L = 24.0 x [= x I O  x 

This  shows  that there is a 1 1  1 (= 200.0 - 88.9) yen improvement,  but  that 
the  Sony U.S. quality level  is still 22. I (= 88.9 - 66.7) yen worse than  that of 
Sony  Japan. 

I f  such  an  improvement  were  attained  by  repairing or adjusting  failed 
products whose  quality level exceeds m f 1013 but lies within m f 5, holding 
33.3% of the  total  production  as seen from  Figure 1, at  a  cost of 600 yen per 
unit,  then the  cost  of  repair  per  unit  would be 

600 x 0.333 = 200(yen)  (13) 

An 1 1  1.1 yen quality  improvement  at  a  cost  of 200 yen is not  profitable.  The 
correct  solution  to  this  problem is to  apply  both  on-line  and off-line  quality 
control techniques. 

I visited  the  Louisville  factory  of  the General Electric Company in 
September 1989. On  the  production line,  workers  were  instructed  to use 

Table 1 Quality  Comparison Between Sony Japan and Sony U.S 

Standard Loss L Fraction 
Country Average deviation Variance (yen) defection (%) 

Japan 172 10/6 ( 1  0/6)* 66.7 0.27 
United States t n  1o/m 100/12 200.0 0.00 
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go-no  go  gauges,  which  determine  only  pass or fail; there  was  a  lack  of 
consciousness  of  the  importance  of  the  quality  distribution  within  tolerance. 
It  was  proposed  that  Shewhart’s  control  charts be used to  control  quality by 
the  distribution of quality  characteristics  on  production lines as  a  substitute 
for  a  method  using specification and  inspection.  Inspectors  tend  to  consider 
production  quality  as perfect if the  fraction defective is zero.  In  Japan,  none 
of the  companies  that  product  JIS  (Japanese  Industrial  Standards)  products 
are satisfied producing  products whose quality level marginally  passes  the 
JIS  specifications.  Instead,  the  companies  always  attempt to reduce  the 
quality  distribution within the  tolerance  range.  Nippon  Denso  Company, 
for example,  demands  that  its  production lines and  vendors  improve  their 
process  capability  indexes  above 1.33. 

To determine  the  process  capability  index,  data yl , y2, . . . , Y , ~  are  col- 
lected once  or  a few times  a day  for 3 months.  The  standard  deviation is 
obtained  from  the following equation,  where m is the  target  value. 

The process  capability  index C,, is calculated  as 

c, = 
tolerance 

60 

The loss function L b )  is then  determined  as 

L = k c  2 

3. WHAT IS ON-LINE  QUALITY  CONTROL? 

Manufacturers  contribute  to society and grow  through  a series of  activities 
including  product  planning,  product  development, design, production,  and 
sales. Within  these  steps,  routine  quality  control  activity  on  production lines 
is called on-line  quality  control.  It  includes  the  following  three activities: 

I .  Diagnosis  and  adjustment  of processes. This is called process 
control. A manufacturing process is diagnosed at  constant  inter- 
vals.  When  the  process is judged  to be normal,  production  is 
continued;  otherwise  the  cause of abnormality is investigated, 
the  abnormal  condition is corrected,  and  production is restarted. 
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Preventive activities such  as  adjusting  a  manufacturing process 
when it appears  to  become  abnormal  are  also  included in this case. 

2. Prediction  and  modification.  In  order  to  control  a  variable  qual- 
ity characteristic in a  production line, measurements  are  made  at 
constant  intervals.  From  the  measurement  results,  the  average 
quality of the  products  to be produced is predicted. If the  pre- 
dicted  value  deviates  from  the  target  value,  corrective  action is 
taken by moving  the level of a  variable (called a signal factor in 
on-line  quality  control)  to  bring  the  deviation  back  to  the  target 
value.  This is called feedback control. 

3. Measurement  and  disposition.  This is also called inspection. 
Every product  from  a  production  line is measured,  and  its  disposi- 
tion, such as  scrapping or repair, is decided on when  the result 
shows  the  product  to be out of specification. 

Case 3 is different  from  cases 1 and 2 in that  a  manufacturing  process 
is the  major  object of treatment  for cases 1 and 2, while products  are  the sole 
object  of  disposition in case 3. 

The  above cases are  explained by an example of controlling  the  sensors 
or measuring  systems  used in robots  or in automatic  control.  Measurement 
and  disposition,  case 3, concern  products, classifying them  into  pass  and fail 
categories and disposing  of  them.  In  a  measuring  system, it is important  to 
inspect  the  measuring  equipment  and  to  determine  whether  the  system 
should be passed or failed. This is different  from  the  calibration  of  equip- 
ment.  Calibration is meant  to  correct  the  deviation of parameters of a piece 
of  measuring  equipment  after  a  certain  period  of use that  corresponds  to  the 
concept  implied in case 2, prediction  and  modification. 

When  measuring  equipment fdls out of calibration,  either  gradually or 
suddenly, it is replaced or repaired, which corresponds  to  the  concept in case 
1, diagnosis  and  adjustment. I t  is difficult in many cases to decide if the 
equipment  should be repaired  or  scrapped.  Generally,  the decision to repair 
or replace is made when the  error of the  measuring  equipment  exceeds  the 
allowance  of  the  product  quality  characteristic. 

When  measuring  equipment  cannot be adjusted by calibration  and  has 
to  be  repaired  or  scrapped (called adjustment in on-line  quality  control),  and 
when  there is a  judging  procedure (called diagnosis in on-line  quality 
control)  for these actions, it is more  important  to design a  diagnosis  and 
adjustment system than  to design a  calibrating  system. 

Radical  countermeasures such as  determining  the  cause  of  the  varia- 
tion,  followed by taking  action  to  prevent  a relapse  (which are described in 
control  chart  methods  and called off-line quality  control  countermeasures) 
are  not discussed in this  chapter. I am confident  that  a  thorough  on-line 
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quality  control system  design is the way to  keep  production lines from fall- 
ing out of control.  It is the  objective  of  this  chapter  to briefly describe  on- 
line quality  control  methods  and give their  theoretical  background. 

4. EQUATION  AND  AN  EXAMPLE FOR DIAGNOSIS  AND 
ADJUSTMENT 

In I Motor  Company in the 1970s, there  are 28 steps in the  truck  engine 
cylinder  block production  line.  Quality  control  activity is necessary to 
ensure  normal  production  at  each  step.  One of the  steps, called boring by 
reamers, is explained  as an example,  which is also  described in detail in Ref. 1 .  

Approximately 10 holes are  bored  at  a time in each  cylinder  block by 
reamers.  A  cylinder  block is scrapped  as  defective if there is any  hole  bore 
that is misaligned by more  than I O  pm,  causing an 8000 yen loss, which is 
denoted by A .  The  diagnosis  cost  to  know  whether holes are being  bored 
straight,  designated by B, is 400 yen, and  the  diagnosing  interval,  denoted by 
11,  is 30 units.  In  the  past  half-year, 18,000 units  were  produced,  and  there 
were  seven quality  control  problems. 

The average  problem  occurrence  interval,  denoted by U, is then 

- 18,000 
zi = - = 2570 (units) 

7 

When  there is a  problem  such  as  a  crooked  hole,  production is stopped, 
reamers  are  replaced,  the first hole  bored  after  the  replacement is checked, 
and if i t  is normal,  the  production is continued.  The  total  cost,  including  the 
cost  of  stopping  the  production line, tool  replacement,  and  labor, is called 
the  adjustment  cost; it is denoted by C and is equal  to 20,000 yen in this 
example. 

In  such  a  process  adjustment  for  on-line  quality  control,  the  para- 
meters  characterizing  the  three  system  element-the  process,  diagnosing 
method,  and  adjusting method-include A ,  B, C, U, and C (the time lag 
caused by diagnosis). The quality  control  cost  when  the  diagnosis  interval 
is 11 is given by the  theory  described in Sections  5  and 6 as follows: 

12 2 u u  

Putting I I  = 30, A = 8000 yen, B = 400 yen, C = 20,000  yen, ii = 2570, and 
C = 1 unit in the  above  equation,  the  quality  control  cost  per  unit  product  of 
this  example  would be 
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400  30 + 1 8000 20,000 1 x 8000 

30  2  (2570) 2570 + 2570 
L = - + -  __ +- 

= 13.3 + 48.2 + 7.8 + 3.1 
= 74.2 (yen) 

With  annual  production of 36,000 units,  the  total  cost  would be 7 2 . 4 ~  
36,000 = 2,610,000 yen. The improvement in quality  control is needed to 
reduce  the  quality  control  cost given by Eq. (19). For this  purpose,  there  are 
two  methods:  one  from  the  pertinent  techniques  and  one  from  managerial 
techniques. The  former  countermeasures  include simplification of  the  diag- 
nosis method  or  reduction of adjusting  the  cost, which must  be specifically 
researched  case by case. For this, see Chapters 4-8 of  Ref. I .  

There  are  methods  to  reduce  quality  control  cost while  keeping current 
process,  current  diagnosis, and  adjustment  methods  unchanged.  These  man- 
agerial  techniques  are  soft  techniques  applicable  to all kinds of production 
processes. Two of these  techniques  are  introduced in this chapter.  One is the 
determination of the  diagnosis  interval,  and  the  other is the  introduction of 
preventive  maintenance such a periodic  replacement. 

The  optimum  diagnosis  interval is given by 

2(u + C)B ‘ I2 
n =  [ A  - C l i ]  

In  the  example of the  boring  process, 

2(2570 + 1) x 400 ’’* 
n = [  

8000 - 20,000/2570 1 = 16 (units) 

The  quality  control  cost  from  Eq. (19) when the  diagnosis  interval is 16 is 

400 16 + 1 8000 20,000 1 x 8000 

16  2  (2570) 2570 + 2570 
L = - + -  - +- 

= 25.0 + 26.5 + 7.8 + 3.1 = 62.4 (yen) 

There is a savings  of 72.4 - 62.4 = 10.0 yen per  unit  product,  or 360,000 yen 
per  year. The value  of L does  not  change significantly even  when n varies by 
20%. When n = 20, for  example, 
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20,000  8000 

= 63.6 (yen) 

The difference from Eq. (22) is only 1.2 yen.  It is permissible to allow about 
20%  error for the values  of  system parameters A ,  B,  C, U, and L ,  or it is 
permissible to  adjust 11 within the  range  of  20%  after  the  optimum  diagnosis 
interval is determined. 

Next,  the  introduction of a  preventive  maintenance  system is 
explained.  In  preventive  maintenance activities, there  are  periodic  checks 
and  periodic  replacement.  In  periodic  replacement,  a  component  part 
(which  could be the  cause of the  trouble) is replaced  with a new one  at  a 
certain  interval. For example.  a  tool  with an average life of 3000 units of 
product is replaced after  producing 2000 units  without  checking. 

Periodic  checking is done  to inspect products  at  a  certain  interval  and 
replace tools if product  quality is within specification at  the time  inspected 
but  there is the possibility that it might  become  out-of-specification  before 
the next  inspection.  In  this  chapter,  periodic  replacement is described. 

In  the  case  of  reamer  boring,  a  majority  of  the  problems  are  caused by 
tools.  The  average  problem-causing  interval is ii = 2570 units,  and  periodic 
replacement is made  at  an  interval of ii’ = 1500, which is much  shorter  than 
the  average life. Therefore,  the  probability of the process  causing trouble 
becomes  very  small.  Assume that  the  replacement  cost,  denoted by C’, is 
approximately  the  same  as  the  adjustment  cost C, or 18,000 yen.  Assume 
that  the  probability of  the  process  causing  trouble is 0.02. This  probability 
includes  the  instance of a  reamer  being  bent by the  pinholes existing in the 
cylinder  block, or  some  other  cause.  Then  the  true  average  problem-causing 
interval will  be improved  from  the  current 2570 units  to 

- 1500 
0.02 

11 = ~ = 75,000 

The  optimum  diagnosis  interval ) I  would be 

i1= [ 2 x (75,000 + 1) x 400 . 
8000 - 20,000/75,000 1 = 87 =. 100 (units) 

The  quality  control  cost is then 
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L = (preventive  maintenance  cost) + (diagnosis  and  adjustment  cost) 

18,000  400 101 8000  20,000 1 x 8000 
- -1500' [%%+i(m) +m+ 75,000 1 
= 12.0 + (4.0 + 5.4 + 0.3 + 0.1) 
= 12.0 + 9.8 = 21.8  (yen) 

This is an improvement  of 63.6 - 21.8 = 41.8 yen per  unit  compared  to  the 
case  without preventive maintenance, which is equivalent  to 1,500,000 yen 
per  annum. If there  were  similar  improvements in each  of  the 27 cylinder 
block production  steps, it would be an improvement  of 42 million yen per 
annum. 

Such  a  quality  control  improvement is equivalent  to  the savings that 
might be obtained  from  extending  the  average  interval been problems 6.3 
times without  increasing  any  cost.  In  other  words,  this  preventive  mainte- 
nance  method  has  a  merit  parallel  to  that of an engineering  technology  that 
is so fantastic  that it could  extend  the  problem-causing  interval by 6.3 times 
without  increasing  any  cost. For details, see Chapters 4-6 of Ref. 1. 

Equations (18) and (20) may be approximately  applied with  satisfac- 
tion  regardless  of  the  distribution of the  production  quantity before the 
problem  and  despite  variations in the  fraction  defective  during  the  problem 
period.  These  statements  are  proved in Sections  5  and 6. 

5. PROOF  OF  EQUATIONS  FOR  NONSPECIFIC 
DISTRIBUTION 

Parameters A ,  B, C, U, e ,  and n in the  previous  section  are  used similarly in 
this  section.  Let P, ( i  = I ,  2, . . .) be the  probability of  causing  trouble  for  the 
first time after  the  production was started  at  the  ith  unit.  The  probability of 
causing  trouble  for  the first time at  the  kth  diagnosis is 

When  a  problem is caused  at  the  kth  diagnosis,  the  number of  defectives 
varies from  the  maximum of n units  to I ;  its  average  number  of  defective 
units is given by 
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Assuming  that 

the  average  number  of  defective  units will  be (n  + l)/2. 

term is 
In  the loss function L, the  average  number  of defectives in the  second 

Since the first, third,  and  fourth  terms of Eq. (18) are  self-explanatory,  the 
loss function is given by 

n 2 

Next,  the  equation  for  the  optimum  diagnosis  interval is derived. The 
average  problem-causing  interval is ii. Since  the  diagnosis is made  at  n-unit 
intervals, it is more  correctly  calculated  to  consider  the losses from  actual 
recovery actions  or by the  time lag caused  once  every ii + n / 2  units. 
Therefore, U + n / 2  is substituted  for ii in Eq. (31). 

It is easily understood  from  the  previous  example  that ii is much  larger  than 
n/2 .  Also, since there is n in the  second  term  of  the  equation, ii + n / 2  in the 
denominator  may  be  approximated  to be U + n / 2  = ii. If  the  approximation 

is made,  the  equation of L is then  approximated  as 

L =  -+-(:)+1(1 B n n + I  2 A C U -:)+-(I n M U  CA ") n U (33) 
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the  above  equation  and  then  putting  it  to  zero gives 

Solving this equation, 11 is obtained  as 

t 1 =  [ 
A - C/U - eA/U 

Since 

C l A  A >> and A >> T 
U li 

the following approximation is made: 

1 1 

A - $ - % = ( A - : ) (  11 ti C 1 A -LA/U - C/U ) 

Putting (35) to (34), 17 is 

6. PROOF  OF  EQUATIONS FOR A  LARGE  FRACTION  OF 
DEFECTIVES  DURING  TROUBLE  PERIOD 

In  this  section, it is to be proved  that Eqs. (18) and (20) can be  used 
approximately even if the  fraction of  defectives during  the  trouble  period 
is larger  than 0. 

When a process is under  normal  conditions, i t  may be deemed  that 
there  are  no defectives. Assume that  the  fraction defective  under abnormal 
conditions is p and  the loss when a defective  units is not  disposed of but is 
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sent on  to  the following  steps is D yen.  After  the  process  causes  trouble,  the 
probability of detecting  the  trouble at  the  diagnosis is p and  the  probability 
of failing to detect  the  trouble is 1 - p .  Accordingly,  the  average  number of 
problems  at  the  time  the  trouble is detected is ( n  + l)p/2. The  probability of 
detecting a problenl at  the second diagnosis  after missing the  detection  at  the 
first  diagnosis is ( I - p ) p ;  then  the  average  number of defectives the inspec- 
tion  fails to detect is ( n  + 1)/2, and  the  number  detected is n p  units. Thus we 
obtain  Table 2 .  

From  Table 2, the  average loss by defectives when a process is  in 
trouble is 

+ I ? / ? [ (  1 - / $ / I  + 2( 1 - p ) 3 p  + . . . + ( i  - 2)( 1 - p)" 'p]  D I 
D is normally  much  larger  than A .  The  amount of loss in Eq. (37) is mini- 
mum when p = 1 and becomes larger  when p is close to zero.  Putting p = 0 
in Eq. (37) gives /7D, showing  that  the  equations  for L and IZ should be 
changed  from Eqs. (18) and (20) to 

Table 2 Diagnosis  and  Probability of Problem  Detection 
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and 

2(U + e)B ‘I’ 

= [2D - C/U] 

where ( 1 1  + I )  = I I  is approximated. 
When  the  fraction  defective  during  the  trouble  period is not 100Y0, it  is 

normal  to  trace back and find defectives when a  trouble is found. In this 
case,  there  are  no  undetected defectives, so D = A .  Equation (37) is there- 
fore 

Putting I I  + 1 k. 1 1 ,  Eq. (40)  becomes 

Therefore,  the loss after  tracing  back  to find defectives is I I A  at  maximum 
and n A / 2  at minimum. I f  the  equations  for L and / I  were  determined  as 

B I ? ;  l(2:) C [ A  L = - + -  - + Y + T  
t1 l i  11 

and 

t 1 = [  2(U + l ) B  ] ’I’ 
2A - C/U (43) 

i t  would  become  overdiagnosis,  which is too  costly.  Although  the  fraction 
defective can  have  any  value, it would be good  enough  to  consider  about 0.5 
for p .  In  that  case, 1.5A is  used instead  of A .  As  described  before, L and I I  

are  not significantly affected by the  error in A up  to 50%, so Eqs. (18) and 
(20) can be satisfactorily  applied. 

7. PREDICTION  AND  MODIFICATION 

I n  the  control of a variable  quality  characteristic,  a  signal  factor is  used 
for  correcting  the  deviation of the  characteristic  from  a  target value. For 
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example,  pressure  of  a  press is a signal factor  to  control  the  thickness of steel 
sheets, and flow of fuel is a  signal  factor  to  control  temperature.  For  such  a 
control,  the following  three  steps  must be taken: 

1. Determine  the  optimum  measuring  interval. 
2. Forecast  the  average  quality of products  produced  before  the  next 

3. Determine  the  optimum  modifying  quantity  against  the  deviation 
measurement. 

of  the  forecasted  value  from  the  target  value. 

After  the  above  parameters  are  determined, 

4. Modify  the  quality  characteristic  made by varying  the level  of the 
signal factor. 

To determine  the  optimum  modifying  quantity, an analysis of variance 
method, called cyclic analysis,  and  the following loss equation  (caused by 
variation)  are useful. 

L = ka' (44) 

where 

loss caused by out-of-specification 
(allowance)' 

k =  

a' = average  of  the  error  from  target value squared (46) 

For  Eq. (44). see  Ref I ,  Chapters 1 and 2. The simplest  prediction 
method is to  consider  the  measured value itself as the  average  quality  of  all 
products  to be produced  before  the  next  measurement.  There  are  many 
methods  for  this  purpose.  However,  it is important  to  determine r$, the 
error  variance of  such  a  prediction. 

The  optimum  modifying  quantity in step 3 is determined by forecast- 
ing the average in step 2, which is denoted by !', and  calculate  the following 
quantity: 

Optimum  modifying  quantity = -B(I* - !qO) (47) 

where yo is the  target value  and 
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Recently, more  and  more  production systems  using automatic  machin- 
ery and  robots  that  handle  the  four  steps listed above  have been developed. 
For such  systems, the  center of quality  control is the  calibration of sensors 
(measuring devices)  employed by automatic  machinery or robots  and  the 
diagnosis of hunting  phenomena.  Steps 1 4  are  therefore  required. 

A simple  example is illustrated in the following. The specification of 
the  thickness of a  metal sheet is 171 f 5 pm. The loss caused by defects is 300 
yen per  meter.  The daily production is  20,00Om, and  the  production line 
operates 5 days  a week or  40hr a  week. Currently,  measurement is made 
once every 2 hr,  costing 2000 yen for  the  measurement and  adjustment 
(correction or  calibration).  There is a  tendency  for  the  average and  variation 
of thickeness to increase  during  the  course  of  production.  The  average 
thickness  increases 3 pm every 2 hr,  and  the  error  variance increases 8 pm2 
in 2 hr. 

Since the  production is 5000 n1 in 2 hr,  the  average  variance a' of the 
products  during  2  hr  assuming  that  adjustment is correctly  made at the  time 
of measurement is 

= 7.0 (49) 

The daily loss in the loss function L, including  the  correcting  cost, is 

300 
5- 

L = 7 X 7.0 X 20,000 + 4 x 2000 = 1,688,000 (yen) (50) 

Letting  the  optimum  measuring  and  adjusting  interval be 1 7 ,  

300 
5- I 1  

L = 7 x 20,000 x 20,000 

= 0.028811~ + 1 9 2 ~  + 40,000,000 
I ?  



18 Taguchi 

The  optimum tI that minimizes Eq. (51) is about 430. Then  the loss due  to 
prediction  and  correction is 

40,000,000 L = 0.0288 x 4302 + 192 x 430 + 430 

= 18 1,000 (yen) ( 5 2 )  

There is an improvement of 1.507 million yen per day.  There is additional 
improvement  due to the  reduction of the  prediction  error.  For  this, see 
Chapter 9 of Ref. 1 .  
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Statistical  Monitoring and Optimization 
in Total Quality  Management 
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1. MEASUREMENT  WITHIN  TOTAL  QUALITY 
MANAGEMENT 

Modern  measurement  of  quality  should, of course, be closely related  to  the 
definition of quality.  The  ultimate  judge of  quality is the  customer, which 
means  that  a system  of  quality  measurement should  focus  on  the  entire 
process  that  leads  to  customer  satisfaction in the  company,  from  the  sup- 
plier to  the  end  user. 

Total  quality  management  (TQM)  argues  that  a  basic  factor in the 
creation  of  customer  satisfaction is leadership,  and it is generally  accepted 
that  a basic  aspect of leadership is the  ability  to  deal  with  the  future.  This 
has been demonstrated very nicely by, among  others,  Mr.  Jan Leschly, 
president  of  Smith  Kline,  who  in  a  recent  speech in Denmark  compared 
his actual way of leading  with  the ideal as he  saw  it.  His  points  are  demon- 
strated in Figure 1 .  I t  appears  that  Mr. Leschly  argues that  today  he  spends 
approximately 60% of his time on ‘%refighting,” 25% on  control,  and 15% 
on the  future. In his own view a  much  more  appropriate way of  leading 
would be to  turn  the figure upside down, so to  speak,  and  spend 60% of his 
time on the  future, 25% on  control,  and only 15% on firefighting. 

The  situation described  by Mr. Leschly  holds true of many  leaders in 
the  Western  world.  There is a  clear  tendency for  leaders i n  general  to be 
much  more focused on  short-term  profits  than  on  the  process  that  creates 
profit.  This  again  may  lead  to firefighting and  to  the possible disturbance of 
processes that  may  be  in  statistical  control.  The result of this may  very well 
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Figure 1 Leadership  today  and tomorrow. (Courtesy of Jan Leschly,  Smith  Kline.) 

be an  increase  in  the  variability  of  the  company’s  performance  and  hence 
and  increase in quality  costs.  In  this  way  “the  short-term  leader”  who 
demonstrates  leadership by fighting  fires  all  over  the  company  may  very 
well be achieving  quite  the  opposite  of  what  he  wants to achieve. 

To  be  more specific, “short-term  leadership”  may  be  synonymous  with 
low quality  leadership,  and  in  the  future it will be  necessary  to  adopt  a 
different  leadership  style  in  order  to  survive,  a  leadership style that  in  its 
nature is long-term  and  that  focuses  on  the  processes  that lead to  the  results 
rather  than  the  results  themselves.  This  does  not, of course,  mean  that  the 
results  are  uninteresting  per se, but  rather  that  when  the  results  are  there  you 
can  do  nothing  about  them.  They  are  the  results of actions  taken  a  long  time 
ago. 

All this is much  easier  said  than  done.  In  the modem business  envir- 
onment  leaders  may  not  be  able  to  do  anything  but  act  on  the  short-term 
basis  because  they do  not  have  the  necessary  information  to  do  otherwise. 
To act  on  a  long-term  basis  requires  that you  have an  information  system 
that  provides  early  warning  and  that  makes  it  possible  for  you to make  the 
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necessary adjustments  to  the processes and gives you  time  to  make  them 
before  they  turn  into  unwanted  business  results.  This is what  modern  mea- 
surement of total  quality is all about. 

This idea is  in  very good  accordance with the official thoughts in 
Europe. In a recent working  document  from  the  European  Commission, 
DGIII, the following is said about  quality  and  quality  management 
(European  Commission, 1995): 

The use of the new methodologies of total  quality  management is for  the 
leaders of the  European  companies a leading  means  to  help  them in the 
current  economic  scenario, which  involves not only dealing with 
changes. but especially anticipating  them. 

Thus,  to  the  European  Commission,  quality is primarily  a  question of 
changes  and  early  warning. 

To  create  an  interrelated system of  quality  measurement it has been 
decided to define  the  measurement  system according  to  Table I ,  where 
measurements  are classified according  to  two  criteria:  the  interested  party 
(the  stakeholder)  and  whether we are  talking  about processes or results. 
Other types  of  measurement  systems  are  given in Kaplan  and  Norton 
( 1996). 

As Table 1 illustrates, we distinguish  between  measurements  related  to 
the process and  measurements  related  to  the  results. The reason  for this is 
obvious in the light of what  has been said above  and in the light of  the 
definition  of TQM.  Furthermore we distinguish  between  three  “interested 
parties:”  the  company itself, the  customer,  and  the society. The first two 
should  obviously be part of a  measurement  system  according  to  the defini- 
tion  of TQM,  and  the  third  has been  included  because  there is no  doubt  that 

Table 1 Measurement of Quality - The  Extended  Concept 

The  company  The  customer  The society 

The process Employee Control-  and  check-  Control  and 
~~ ~~ ~~~~ ~ ~ 

satisfaction  (ESI)  points  concerning  checkpoints 
Checkpoints the  internal definition concerning e.g. 

concerning  the of product  and service environment, life 
internal  structure quality cycles etc. 

The result Business results Customer  satisfaction  ‘Ethical  accounts’ 
Financial  ratios (CSU Environmental 

describing  the 
customer  satisfaction 

Chcckpoints  accounts 
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the  focus  on  companies in relation  to  their effect on society will  be increased 
in the  future  and it is expected that very soon we are  going  to see a lot of new 
legislation within this area. 

Traditional  measurements  have  focused  on  the  lower  left-hand  corner 
of this table, Le., the  business  results, and we have built up extremely 
detailed  reporting systems that  can  provide  information  about all possible 
ways of breaking  down  the business  results.  However, as  mentioned  above, 
this type of information is pointing  backwards in time,  and  at  this  stage it is 
too  late  to do anything  about  the results. What we need is something  that 
can tell  us about what is going  to  happen with  business  results in the  future. 
This type  of information we find in the rest of the  table,  and we especially 
believe and  also  have  documentation  to  illustrate  that  the  top set of  entries 
in the  table  are  related in a  closed loop  that  may be called the  improvement 
circle. This loop is demonstrated in Figure 2. 

The  improvement is particularly  due to an increase in customer  loyalty 
stemming  from an increase in customer  satisfaction.  The  relationship 
between customer  satisfaction  and  customer  loyalty  has  been  documented 
empirically several times. One  example is Rank  Xerox.  Denmark,  who in 
their  application  for  the  Danish  Quality  Award  reported  that  when they 
analyzed  customer  satisfaction  on  a five-point scale where I is  very dissa- 
tisfied and 5 is very satisfied they  observed  that on average 93% of those 
customers  who were  very satisfied (a  score of 5) came back as  customers, 
while  only 60% of  those  who  gave  a 4 came  back. 

Figure 2 The  improvement  circle. 
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Another  example is a large  Danish real estate  company  who in a 
customer  satisfaction  survey  asked  approximately 2500 customers to evalu- 
ate  the  company  on 20 different  parameters.  From  this  evaluation  an  aver- 
age of customer  satisfaction  (customer  satisfaction  index) was calculated. 
The  entire  evaluation  took place  on  a  five-point scale with 5 as  the best 
score, which means  that the  custonler  satisfaction  index will have values in 
the  interval  from 1 to 5.  I n  addition  to the  questions on parameters, a series 
of  questions  concerning  loyalty were asked,  and  from this a loyalty index 
was computed  and related to the  customer  satisfaction  index.  This  analysis 
revealed some very interesting  results, which are  summarized in Figure 3. in 
which the  customer  satisfaction  index is related to the  probability of using 
the real estate  agent  once  again  (probability  of being loyal).  It  appears  that 
there is a very close relationship between customer  satisfaction  and  custo- 
mer  loyalty. The  relationship is beautifully  described by a logistic model. 

Furthermore, it appears  from  Figure 3 that in this  case  the  loyalty is 
around 35% when  the  customer  satisfaction  index is 3, i.e.,  neither  good  nor 
bad.  When the  customer  satisfaction  increases to 4, a  dramatic increase in 
loyalty is observed.  In  this case the  loyalty is more  than 90%. Thus the area 
between 3 and 4 is very important,  and it  appears  that even very small 
changes in customer  satisfaction in this area  may lead to large  changes in 
the  probability  of  loyalty. 

The observed  relationship between business results and  customer loy- 
alty on  the  one  hand  and  customer  satisfaction  on  the  other is very impor- 

Probability  of  loyalty 
12 q 

I 
I 1 

1.0 I 1 
i 

~ Average  customer  satisfaction 

Figure 3 Probability of loyalty as a function of customer satisfaction. 
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tant  information  for  modern  management.  This  information  provides  an 
early  warning  about  future business results and  thus  provides  management 
with an  instrument  to  correct  failures  before they affect business  results. 

The next logical step will  be to  take  the  analysis  one  step  further  back 
and find internal  indicators of quality  that  are closely related to  customer 
satisfaction.  In  this  case  the  warning  system will  be even better.  These 
indicators, which in Table 1 are  named  control  points  and  checkpoints, 
will, of course,  be company-specific  even if some  generic  measures are 
defined. 

Moving even further  back, we come  to  employee  satisfaction  and  other 
measures  of  the  process in the  company.  We expect  these to  be closely 
related  to  the  internally defined quality.  This is actually  one  of  the  basic 
assumptions of TQM.  The  more satisfied and  more  motivated  your  employ- 
ees, the  higher the  quality in the  company [see Kristensen (1996)]. An  indi- 
cator of this has been  established in the  world’s  largest service company,  the 
International Service  System (ISS), where  employee  satisfaction and  custo- 
mer  satisfaction  have  been  measured  on  a  regular basis for  some years  now 
[see Kristensen and  Dahlgaard (1997)]. In  order  to verify the  hypothesis  of 
the  improvement circle in Figure 2, employee  satisfaction  and  customer 
satisfaction  were  measured  for 19 different  districts in the  cleaning  division 
of the  company in 1993. The  results were  measured on a  traditional five- 
point scale, and  the  employee  satisfaction  and  customer  satisfaction indices 
were both  computed  as weighted  averages  of  the  individual parameters.  The 
results  are  shown in Figure 4. 

These  interesting figures show  a  clear  linear  relationship  between 
employee  satisfaction  and  customer  satisfaction. The higher  the  employee 
satisfaction,  the  higher  the  customer  satisfaction.  The  equation of the  rela- 
tionship is as follows: 

CSI = 0.75 + 0.89 ESI, R’ = 0.85 

The coefficients of the  equation  are highly significant. Thus  the  standard 
deviation  of  the  constant  term is 0.33, and  that of the  slope is 0.09. 
Furthermore, we cannot reject a  hypothesis  that  the  slope is equal  to 1 .  

It  appears  from  this  that  a  unit  change in employee  satisfaction gives 
more  or less the  same  change in customer  satisfaction.  We  cannot,  from 
these figures alone, claim that this is a  causal  relationship,  but we believe 
that  combined with other  information  this is strong evidence for  the exis- 
tence  of an  improvement circle like the  one described in Figure 2. To us, 
therefore,  the  creation of a  measurement system along  the lines given in 
Table 1 is necessary.  Only  in this way  will management be able  to lead 
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~ Employee satisfaction 

Figure 4 Relationship between ESI and CSI, 19 districts. 

the company  upstream  and  thus prevent  the  disasters that inevitably follow 
the firefighting of short-term  management. 

An  example  of an  actual  TQM  measurement system is given in Figure 
5 for  a  Danish medical company. It will be seen that the  system follows the 
methodology given in the  Process  section of Table 1.  

2. MEASURING AND MONITORING  EMPLOYEE AND 
CUSTOMER  SATISFACTION 

Since optimization  and  monitoring of  the  internal  quality  are  dealt with 
elsewhere in this  book we are going to concentrate  on  the  optimization 
and  monitoring of customers  whether they are  internal (employees) or exter- 
nal.  First  a  theoretical,  microeconomic  model  of  satisfaction  and  loyalty is 
constructed  and  then we establish  a  “control  chart”  for the  managerial 
control of  satisfaction. 

2.1. A Model of Satisfaction and Loyalty 

Since exactly  the  same  model  applies to both  customer  satisfaction  and 
employee  satisfaction we can  without loss of  generality  base  the  entire  dis- 
cussion on  a model for  customer  satisfaction. 
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RESULT / COMPANY -Tabletshimhour 
*No. of new prod. 

A 

RESULT / CUSTOMER Customer 
satisfaction 

A 

PROCESS / CUSTOMER ++ *Returned goods 
*Complaints 

*Credit notes 
On-time delivery 

PROCESS / COMPANY Employee *Turnover 
satisfaction *Absence 

In  Kristensen  et  al. (1992) a model  linking  customer  satisfaction  to 
company profit was  established. I n  this model,  customer  satisfaction was 
defined a s  

I 1  

CSI = I I ' j C ,  

where 11 is the  number of quality  parameters. II', is the  importance of 21 given 
parameter,  and c, is the  evaluation. I t  was  assumed  that  the profit of the 
company  could be described as 

where cp is an increasing  function  linking  customer  satisfaction  to  conlpany 
earnings  and  the  second  factor on the  right-hand side is a quadratic  cost 
function with IC, as a cost  parameter. 



Total  Quality  Management 27 

By maximizing ( 2 )  with respect to the  individual  satisfactions (e l 's)  it 
can be shown  that  for identical  cost  parameters,  i.e., 

the optimum  allocation of resources will occur when 

0, - ct - vii 
ll'; Wi 

i.e., when the  degree  of fulfilment of customer  expectations is identical for all 
areas.  This is based on the  fact that the  first-order  condition  for  maximiza- 
tion of Eq. (2) is equal to 

From this it will be seen that if the  right-hand  side of Eq. (5) is equal  to 1 
then  a very simple  rule for  optimum  customer  satisfaction will emerge: 

This result, even if it is based on  rather  strong  assumptions,  has become very 
popular  among business  people, and  a  graphical  representation  known  as 
the  quality map where  each parameter is plotted  with 11' on the s axis and c 
on  the  axis  has become  a  more-or-less standard  tool  for  monitoring cus- 
tomer  and employee  satisfaction.  This is the  reason we later on  elaborate  a 
little on the  quality  map. 

But even if this is the case we intend to  take model (2) a step  further in 
order to incorporate  customer loyalty. The  reason  for  this is that  customer 
loyalty  has  gained  a  lot  of  interest among  quality  management researchers 
recently because it seems so obvious  that loyalty and  quality  are related.  but 
we still need a  sensible  model for relating  customer  loyalty to profit [see 
Kristensen and  Martensen (1996)l. 

We  start by assuming  that profit can be described as follows: 

likelihood of quantity 
buying bought 

n =  X - costs 

where quantity  bought is measured in sales prices. 

that this  function  can be described as follows: 
The likelihood  of  buying is, of course,  the  loyalty  function. We assume 
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where 

where c; is the  satisfaction of parameter i for  the  main  competitor.  Thus  the 
elements  of  the  loyalty  function  are  related  to  the  competitive  position  of  a 
given parameter  combined with  the importance of the  parameter. We 
assume  that  the  quantity  bought given  loyalty is a  function of the  customer 
satisfaction  index.  This  means  that we  will model  the  income  or  revenue  of 
the  company  as 

This tells us that  you  may be very satisfied and still not buy  very  much, 
because competition is very tough  and hence  loyalty is low. On the  other 
hand, when competition is very  low, you  may be dissatisfied and still buy 
from  the  company even though  you  try to limit your  buying  as  much  as 
possible. 

Combining ( IO)  with  the  original  model in ( 2 ) ,  we come to the follow- 
ing  model  for  the  company  profit: 

Hence  the  optimum  allocation  of  resources will  be found by maximizing  this 
function with  respect to e;, which is the  only  parameter  that  the  company 
can affect in the  short  run.  Long-run  optimization will,  of course,  be  differ- 
ent,  but this is not  part  of  the  situation we consider  here. 

The first-order  condition  for  the  optimization of Eq. (1 1) is 

6l-I 
- = Lcp‘w; + cpL;wi - 2k;c, 
6ci 

By equating  this  to  zero we get the  following  characterization  result: 
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To make  practical  use of this result we assume  that 

which  means that we may  write  the characterization result as 

- = ff + pL; 
N'; 

To  put it differently, we have  shown  that if company resources  have 
been  allocated  optimally,  then  the  degree  to  which  you live up  to  customer 
expectations  should  be a linear  function  of  the  contribution  to  loyalty.  This 
seems to be a  very logical conclusion  that will improve  the  interpretation of 
the  results  of  customer  satisfaction  studies. 

Practical  use  of  results (4), (6 ) ,  and (15) will  be easy, because in their 
present  form  you  only  need  market  information  to  use  them.  Once  you 
collect information  about c,,  c;, )vi, and  the  customers'  buying  intentions, 
the  models  can be estimated.  In  the  case of  a  loyalty  model  you will most 
likely use  a logit specification for L and  then L; will  be easy to  calculate. 

2.2. Statistical  Monitoring of the  Satisfaction  Process 

Let 

.Y = (f) 
where c is an 11 x 1 vector  of  evaluations  and w is an rz x 1 vector  of impor- 
tances.  Assume  that .x- is multivariate  normal with covariance  matrix 

and  expectation 

According  to  the  theoretical  development we want  to test the  hypothesis 
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Assume  a  sample of N units,  and let the  estimates of (17) and (18) be 

s = (i) 
and 

Let I be  the  identity  matrix of order 1 1 .  Then  our  hypothesis  may  be  written 

Ho: (I1 - I )  = 0 

From this it is seen that  the T' statistic is equal  to 

If the  hypothesis is true,  then 

F =  
N - n  

T 2  
( N  - 1 ) ~  

has an  F-distribution with n and N - IZ degrees  of  freedom. The  hypothesis 
is rejected if the  computed  F-statistic exceeds the  critical  value F a : l r , ~ - l r .  
Let 

S(, = s,. + SI,. - s,,,. - s,',. ( 2 5 )  

Then  simultaneous confidence  intervals for  the differences  between p, and 
p I , ,  may  be  written  as  follows  for  any  vector 1' = ( / I ,  /?, . . . , f l l )  : 

1 ( N  - I ) /?  
/'(? - G) - - / 'SJ  Fa:,l,N-ll I /'(PC - PIJ 

- < /'(C - M') + - /'S(,/ 

[ N   N - 1 1  1 
1 ( N  - l)n 

[ N  N - 1 1  F a : ~ ~ . N - ~ ~  1 
Now  assume  that  the  hypothesis is true,  and let 

I' = (0, . . . , 0, 1,0, . . . , 0) 
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Then we may  write 

or 

To simplify. let us  assume  that a l l  differences have the  same  theoretical 
variance.  Then we may  substitute  the  average .$ for s i , ,  which means  that 
the  interval  for  monitoring  satisfaction will be  constant.  In  that  case we may 
set up  the  “control”  chart  shown in Figure 6 for  monitoring  satisfaction, 
where  the  limits  are given  by 

C 

W 

Figure 6 Quality map. 
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If a parameter falls between the dotted lines we cannot reject the  hypothesis 
that we have optimal  allocation of resources.  If, on  the  other  hand,  a  para- 
meter falls outside  the  limits,  the  process  needs  adjustment. 

We  should  remember  that  the  limits  are  simultaneous. If we want 
individual control limits,  which, of course, will  be much  narrower, we 
may  substitute t a , N - l  for 

( N  - I ) / ?  [ N - n  F a : ~ ~ , N - ~ ~  1 
2.3. An Example 

An  actual  data set from  a  Danish  company is presented in Table 2. Seven 
parameters were measured on a  seven-point  rating  scale. 

Now we are ready to set up the control  chart  for  customer  satisfaction. 
We use formula (30) to get the  limits, 

= f(O.18lJ7.74 X 2.18 = f0 .74  

From the control  chart  (Figure  7) we can see that most of the parameters  are 
in  control  but  one  parameter needs attention.  The  importance of the  envir- 
onnlental  parameter is significantly greater  than  that of the  evaluation of 

Table 2 Data Set (Customer  Satisfaction  for a Printer) 

Importance  Satisfaction  Sample  Variance of 
Parameter Wi C, size difference 

Operation 
User  friendliness 
Print  quality 
Service 
Speed 
Price 
Environmentally 

friendly 

6.68 
5.85 
5.99 
5.32 
3.91 
4.64 
5.17 

6.06 64 1.66 
5.67 

" 2.16 4.18 
2.69 5.02 
2.62 4.94 
2.56 5.38 
1.80 5.48 
1.82 

Average 2.18 
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4 5 6 7 

Figure 7 Control  chart for customer  satisfaction. 

company  performance. Hence the  quality of  this  parameter  must be 
improved. 

3. CONCLUSION 

The use  of  the  concept of total  quality  management  expands  the  need  for 
measurement in the  company.  The  measurement of quality will no longer  be 
limited to  the  production  process.  Now we need to  monitor  “processes” 
such as  customer  satisfaction and employee  satisfaction.  In this chapter I 
have  given a  managerial  model  for  the  control of these  processes, and we 
have  considered  a  practical  “control”  chart  that will help  management 
choose  the  right  parameters  for  improvement. 
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3 
Quality  Improvement  Methods and 
Statistical Reasoning* 

G.K.  Kanji 
Sheffield Hallam University,  Sheffield,  England 

1. PRINCIPLES OF TOTAL  QUALITY  MANAGEMENT 

Total  quality  management  (TQM) is about  continuous  performance 
improvement of individuals,  groups,  and  organizations.  What  differentiates 
total  quality  management  from  other  management processes is the  emphasis 
on  continuous  improvement.  Total  quality is not  a  quick fix; it is about 
changing  the way things  are done-forever. 

Seen in this  way, total  quality  management is about  continuous 
performance  improvement. To improve  performance,  people need to 
know  what  to do and  how  to  do  it,  have  the  right  tools  to do it, be 
able  to  measure  performance,  and receive feedback  on  current levels  of 
achievement. 

Total  quality  management  (Kanji  and  Asher, 1993)  provides  this by 
adhering  to  a set of  general  governing  principles.  They  are: 

1. Delight  the  customer 
2 .  Management by fact 
3. People-based  management 
4. Continuous  improvement 

*For an  extended  version of this paper, see Kanji GK. Total  Quality  Management 5: 105. 1994. 
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Each  of  these principles can be used to  drive  the  improvement  process. 
To achieve this, each  principle is translated  into  practice by using  two core 
concepts,  which  show  how  to  make  the  principle  happen. 

These  concepts  are: 

Customer  satisfaction 
Internal  customers  are real 
All work is a  process 
Measurement 
Teamwork 
People  make  quality 
Continuous  improvement cycle 
Prevention 

Further  details of the  four principles with the  core  concepts  follow. 
The  pyramid principles of TQM  are  shown in Figure 1. 

1.1. Delight  the  Customer 

The first principle  focuses  on  the  external  customers and  asks  “what  would 
delight  them?”  This  implies  understanding needs-both of product  and 
service, tangible  and intangible-and  agreeing  with  requirements and  meet- 
ing them.  Delighting  the  customer  means  being  best at  what  matters  most  to 
customers,  and  this  changes  over time. Being in touch with  these  changes 
and  delighting  the  customer  now  and in the  future  form  an  integral  part of 
total  quality  management. 

The  core  concepts of total  quality  that  relate  to  the  principle of 
delighting  the  customer  are  “customer  satisfaction”  and  “internal  customers 
are  real.” 

1.2. Management by Fact 

Knowing  the  current  performance levels of our  products  or services in our 
customers’  hands  and  of all our employees is the first stage in being  able to 
improve. If we know  where we are  starting  from, we can  measure our 
improvement. 

Having  the  facts necessary to  manage  the business at all levels is the 
second  principle of total  quality.  Giving  that  information  to  people so that 
decisions  are based upon  fact  rather  than  “gut feel” is essential for  contin- 
uous  improvement. 
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Side I 

Rl 
Side 2 

F@l 

Side 3 Side 4 

Figure 1 The  pyramid  principles of TQM. (From Kanji  and  Asher, 1993.) 

The  core  concepts  that  relate  to  management by fact  are  “all  work is a 
process”  and  “measurement.” 

1.3. People-based  Management 

Knowing  what  to  do  and  how  to  do  it  and  getting  feedback  on  performance 
form one  part of encouraging  people  to  take  responsibility  for  the  quality of 
their  own  work.  Involvement  and  commitment  to  customer  satisfaction  are 
ways to  generate  this.  The  third  principle of total  quality  management 
recognizes  that  systems,  standards,  and  technology  in themselves do not 
mean  quality.  The  role of  people  is  vital. 

The  core  concepts  that  relate  to  people-based  management  are  “team- 
work”  and  “people  make  quality.” 
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1.4. Continuous  Improvement 

Total  quality  cannot be a  quick fix or  a  short-term  goal  that will  be reached 
when a  target  has  been  met.  Total  quality is not  a  program  or  a  project. I t  is 
a  management  process  that  recognizes  that  however  much we may  improve, 
our  competitors will continue  to  improve  and  our  customers will expect 
more  from us. The link between customer  and  supplier with  process 
improvement  can be seen in Kanji (1990). 

Here,  continuous improvement-incremental change,  not  major 
breakthroughs-must  be  the  aim of all who wish to move  toward-total 
quality. 

The  core  concepts  that  relate  to  the  company’s  continuous  improve- 
ment  are  “the  continuous  improvement cycle” and  “prevention.” 

Each  concept is now  discussed,  together  with an example  of  how  that 
concept  was  used by a company  to  bring  about  improvement. 

2. CORE  CONCEPTS OF  TQM 

2.1. Internal  Customers  Are  Real 

The  definition of quality [see Kanji (1990)], “satisfying  agreed  customer 
requirements,”  relates  equally  to  internal  and  external  customers.  Many 
writers refer to  the  customer-supplier  chain  and  the  need  to get the  internal 
relationships  working in order  to satisfy the  external  customer. 

Whether  you  are  supplying  information,  products,  or  a service, the 
people  you  supply  internally  depend on their  internal  suppliers  for  quality 
work.  Their  requirements  are  as real as those of external  customers;  they 
may be speed,  accuracy,  or  measurement. 

Internal  customers  constitute  one of the  “big  ideas” of total  quality 
management.  Making  the  most of this idea can be  very time-consuming,  and 
many  structured  approaches  take  a  long time and  can be complicated. 
However,  one  successful  approach is to  take  the  “cost of quality”  and 
obtain  information  about  the  organization’s  performance  and  analyze it. 
Dahlgaard  et  al. (1993)  used  statistical methods  to discuss  the  relationship 
between  the total  quality  cost  and  the  number of  employees in an  organiza- 
tion. 

2.2. All  Work  Is a Process 

The  previous  section  looked  at  internal  customers  and  how  to use the  idea 
that they are real as a focus  for  improvement. 
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Another possible  focus is that of  business  processes. By "process" we 
mean  any  relationship  such a s  billing customers or issuing  credit notes- 
anything  that  has  an  input. steps to follow, and  an  output. A process is a 
combination of methods,  materials,  manpower,  machinery,  etc., which 
taken  together  produce  a  product or service. 

All processes contain  inherent variability, and  one  approach  to  quality 
improvement is progressively to reduce  variation, first by removing  varia- 
tion  due to special causes and second by driving  down  common cause 
variation.  thus bringing  the  process into  control  and  then  improving its 
capability. 

Various  statistical methods,  e.&.,  histograms,  Pareto analysis, control 
charts,  and  scatter  diagrams,  are widely used by quality  managers  and 
others  for process  improvement. 

2.3. Measurement 

The  third  core  concept of total  quality  management is measurement.  Having 
a  measure  of  how we are  doing is the first stage in being able  to  improve. 
Measures  can focus  internally,  i.e.,  on  internal  customer  satisfaction 
(Kristensen  et  al., 1993), or externally,  i.e.,  on  meeting  external  customer 
requirements. 

Examples  of  internal  quality  measurements are 

Production 
Breach of  promise 
Reject level 
Accidents 
Process in control 
Yield/scrap  (and plus value) 

Kristensen  et al. (1993), when  discussing a measurement  of  customer 
satisfaction, used the  usual  guidelines  for  questionnaire  design and surveys 
and statistical  analysis to  obtain  the  customer  satisfaction index. 

2.4. Prevention 

The  core  concept of  prevention is central to  total  quality  management  and is 
one way to move  toward  continuous  improvement. 

Prevention  means  not letting  problems  happen.  The  continual process 
of  driving  possible  failure  out of the system can, over  time, breed a  culture  of 
continuous  improvement. 

There  are two  distinct  ways to approach  this.  The first is to concen- 
trate  on  the design  of  the product itself (whether a hard  product  or a 
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service); the  second is to work on  the  production  process.  However,  the 
most  important  aspect of prevention is quality by design  using  statistical 
reasoning. 

There  are several frequently  used  tools, and failure  mode  and effect 
analysis (FMEA) is one of  the  better  known  ones.  It is associated  with  both 
design  (design FMEA)  and process  (process FMEA). 

Other  frequently  used  methods  are  failure  prevention  analysis,  which 
was  pioneered by Kepner  Tregoe,  and  foolproofing  (or  Pokaoki). The 
advantage of all of these methods is that they provide a structure  or  thought 
process  for carrying  the  work  through. 

2.5. Customer  Satisfaction 

Many  companies, when  they  begin quality  improvement  processes,  become 
very introspective  and  concentrate  on  their  own  internal  problems  almost  at 
the expense of their  external  customers. 

Other  companies,  particularly  in  the service sector,  have  deliberately 
gone out  to  their  customers, first to  survey  what is important  to  the  custo- 
mer and  then  to  measure  their  own  performance  against  customer  targets 
(Kristensen  et  al., 1993). The idea of asking  one’s  customers  to set customer 
satisfaction  goals is a  clear sign of an  outward-looking  company. 

One  example is Federal  Express,  who  surveyed  their  customer  base  to 
identify the  top I O  causes of aggravation.  The  points were  weighted accord- 
ing to  customer views of  how important they  were. A  complete  check  was 
made of all occurrences,  and  a weekly satisfaction  index  was  compiled.  This 
allowed  the company to keep a weekly monitor of customer  satisfaction  as 
measured by the  customer. An understanding  of survey and  statistical  meth- 
ods is therefore  needed  for  the  measurement  of  customer  satisfaction. 

2.6. Teamwork 

Teamwork  can  provide  an  opportunity  for  people  to  work  together in their 
pursuit of total  quality  in  ways in which  they  have not  worked  together 
before. 

People  who  work on their  own or in small,  discrete  work  groups  often 
have a picture  of  their  organization  and  the  work  that it does  that is  very 
compartmentalized. They are  often  unaware of the  work  that is done even 
by people  who  work very close to  them.  Under these  circumstances  they  are 
usually unaware of the  consequences  of  poor  quality in the  work  they 
themselves do. 

By bringing  people  together in terms  with  a  common  goal,  quality 
improvement  becomes easier to  communicate  over  departmental  or  func- 
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tional walls. In  this way the slow breaking  down of barriers  acts  as a plat- 
form  for  change. 

We defined culture  as  “the way  we do  things  here,”  and  cultural 
change  as  “changing  the way we do things  here.” This  change implies 
significant  personal change in the way people  react and in  their  attitudes. 
A benchmarking  approach  can  also  help  to  change  the way  they do 
things. 

Teamwork  can be  improved by benchmarking,  a  method  that is simi- 
lar  to  the  statistical  understanding  of  outliers. 

2.7. People  Make  Quality 

Deming  has  stated  that  the  majority  of  quality-related  problems within an 
organization  are  not within the  control of the  individual  employee. As many 
as 80% of  these  problems are  caused by the  way the  company is organized 
and  managed. 

Examples  where  the  system  gets in the way of people  trying  to do  a 
good  job  are easy to find, and in all cases  simply  telling  employees to do 
better will not solve  the problem. 

It is important  that  the  organization  develop  its  quality  management 
system, and it  should  customize  the system to suit  its  own  requirements. 
Each  element will likely encompass several programs. As a  matter of fact, 
this is where  the  role of statistics is most  evident. 

2.8.  The  Continuous  Improvement  Cycle 

The  continuous cycle of establishing  customer  requirements,  meeting 
those  requirements,  measuring  success, and  continuing  to  improve  can be 
used both  externally  and  internally  to fuel the engine of continuous 
improvement. 

By continually  checking  with  customer  requirements, a company  can 
keep  finding  areas in which  improvements  can be made.  This  continual 
supply of opportunity  can be used to keep  quality  improvement  plans  up- 
to-date  and  to reinforce  the  idea that  the  total  quality  journey is never- 
ending. 

In  order  to  practice  a  continuous  improvement cycle it is necessary to 
obtain  continuous  information  about  customer  requirements, i.e., do  mar- 
ket research.  However, we know  that  market research  requires  a  deep sta- 
tistical understanding  for  the  proper  analysis of the  market  situation. 
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3. STATISTICAL  UNDERSTANDING 

The role  of  statistical  concepts in the  development  of  total  quality  manage- 
ment it nothing new. For  example,  Florence  Nightingale, the  19th  century 
statistician  and  famous  nurse, was  known  as the mother of continuous 
health  care  quality  improvement.  In 1854 she demonstrated  that  a statistical 
approach by graphical  methods could be persuasive i n  reducing  the  cost  of 
poor  quality  care by 90% within a short period  of  time.  Later, in 1930, 
Walter  Shewhart.  another  prominent  statistician, also suggested that  the 
same  kind  of result could be achieved by using  statistical  quality control 
methods. 

The  fundamental aspect  of  statistical understanding is the  variation 
that exists in every process, and the  decisions are  made  on  that basis. If the 
variation in a process is not  known,  then  the  required  output of that process 
will be difficult to manage. 

I t  is also very important to understand  that every process  has an 
inherent  capability  and  that  the  process will be doing well if it operates 
within that  capability. However,  sometimes one  can observe that resources 
are being wasted in solving  a  problem, and simply  not realize that  the 
process is working  at its  maximum  capability. 

In  order  to  understand variability and the control of  variation, it is 
necessary to understand basic  statistical  concepts.  These  concepts are simple 
to understand  and  learn  and  provide powerful  management  tools  for  higher 
productivity  and excellent service. 

In  this  complex  business  world,  managers  normally  operate in an 
uncertain  environment,  and  therefore  their  major  emphasis is on the 
immediate  problems.  In  their  everyday life they  deal  with  problems  where 
the  application  of  statistics  occurs in pursuit  of  organizational  objectives. 

However, as we know,  the  business  world is changing,  and  managers 
along with other  workers  are  adopting this  change  and  also  learning how to 
manage it. For many  people,  the best way of adopting  this  change is to focus 
on statistical  understanding  because it  permeates  all  aspects  of  total  quality 
management. 

We have  already  learned  that “all  work is a  process” and therefore 
identification and  reduction of  a  variation  of  processes  provides  opportunity 
for  improvement.  Here,  the  improvement  process, which recognizes that 
variation is everywhere, gets help  from  the  statistical  world for  this  quality 
journey. 

In general,  managers can  take  many  actions  to reduce  variation to 
improve  quality.  Snee (1990) pointed  out  that  managers  can reduce  varia- 
tion by maintaining  the  constant  purpose of their  employees to pursue a 
common  quality  goal. 
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4. CONCLUSIONS 

In recent  years,  particularly  in Japan  and  the  United  States,  there  has been a 
strong  movement  for  greater  emphasis on  total  quality  management in 
which  statistical  understanding  has been seen to be a major  contributor 
for  management  development. 

It is clear that statistical  understanding  plays a major role in product 
and service quality,  care  of  customers  through  statistical  process  control, 
customer  surveys,  process  capability,  cost of quality,  etc.  The  value of sta- 
tistical  design of experiments,  which  distinguishes  between  special  cause and 
common  cause  variation, is also well established in the  area of quality 
improvement. 

If we also  accept  that “all  work is process,”  that all  processes are 
variable,  and  that  there is a relationship between management  action  and 
quality,  then  statistical  understanding is an essential  aspect of the  quality 
improvement  process. 

Further,  in  the  areas of leadership,  quality  culture,  teamwork,  etc., 
development  can  be seen in  various ways by the use of statistical  under- 
standing. 

In  conclusion, I believe that  total  quality  management  and  statistical 
understanding  go  hand in hand.  People  embarking  on  the  quality  journey 
must  therefore  venture  onto  the  road of total  statistical  understanding  and 
follow  the  lead of total  quality  statisticians. 
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Leadership  Profiles  and the 
Implementation of Total Quality 
Management  for  Business  Excellence 
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1. INTRODUCTION 

Total  quality  management  (TQM) is defined by Kanji  and  Asher, 1993 as 

A company  culture which is characterized by everybody’s participation 
in continuous  improvements of customer  satisfaction. 

To build the  TQM  culture it is important  that every  staff  member-top 
managers,  middle  managers,  and  other  employees-understand  and  apply 
the five basic principles of TQM. These  can be visualized in terms of 
the  TQM  pyramid  (Dahlgaard  and  Kristensen, 1992,  1994) presented in 
Figure I .  

As can be seen from  Figure 1,  the  foundation of the  TQM  pyramid is 
leadership.  All  staff  members  need  leaders  who  can  explain  the  importance 
of TQM principles and  who  can  show  how  those principles can be continu- 
ously  practiced so that  the  organization  gradually achieves  business excel- 
lence. 

Each  staff  member  and  each  group  must  continuously  focus  on  the 
customer  (external  as well as  internal  customers).  They  must  continuously 
try to understand  the  customers’ needs,  expectations,  and  experiences so 
that they can  delight  the  customer. To be able to delight  the  customer, 
continuous  improvement is necessary. World class companies  are  continu- 
ously  trying  to  improve existing products  or  develop new ones.  They  are 
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The 5 Principles of TQM 
A 

Figure 1 The  TQM pyramid. 

continuously  trying  to  work  smarter,  not  harder, by improving  their  pro- 
cesses, and  they  understand  that  the  most  important  asset  to  improve is 
their  people. To support  everybody  in  continuous  improvements,  measure- 
ments  are of vital  importance. To improve  products we need  feedback 
from  customers  (measurements  of  customer  satisfaction  and  other  custo- 
mer  facts). To improve  processes we need  feedback  from  the  various  pro- 
cesses (process  measurements of  defects,  wastage,  quality  costs,  etc.). To 
improve  people we need  feedback  from  employees  (measurements  of 
employee  satisfaction  and  other  facts  related  to  improvement of  people). 
Statistical  methods  can  be  used  in  many of  these  measurements.  The 
application of statistical  methods is often  the  best way to  ensure  high 
reliability  of the  measurements,  and  for  complex  measurements  such  as 
measurements  of people’s  mind-sets  it  may  be  the  only  way  to  generate 
reliable facts (see Section 2). 

Continuously  applying  the five principles  of TQM will gradually  result 
in business excellence. But  what is business  excellence?  Business  excellence 
has  many  definitions.  One  example is (Raisbeck, 1997) 

The overall way of working that results in balanced stakeholder (custo- 
mers,  employees, society, shareholders)  satisfaction so increasing the 
probability of long  term  success as a Business. 



Leadership  Profiles  and  Implementation of TQM 47 

In 1992 the  European  Foundation  for  Quality  Management  (EFQM) 
launched  the  European  Quality  Award  and a model  to be  used for assess- 
ment of the  applicants  for  the  award.  The  model, which is seen i n  Figure 2 ,  
has  gradually  been  accepted as an efficient self-assessment  tool that  compa- 
nies can use to  improve  the  strategic  planning process i n  order  to achieve 
business excellence. Since 1996 the  model has been called the Europccm 
tno t ld  ,fbr TQM u t l r l  business esce l l tvw.  

I t  is not  the aim  of this chapter  to  explain  the  detailed logic behind  the 
model in Figure 2; the  model closely resembles the  Malcolm  Baldridge 
Quality  Award  model  that  was  launched in 1988. The  model signals very 
clearly to  its user that if you  want  good  business results you  have  to  under- 
stand  their  relationships  to  other  results--people  satisfaction,  customer 
satisfaction,  impact  on  society-and,  of  course, to the  enablers.  The 
model gives a  good overview of How  (enablers)  you m y  get desired  results 
(=What ) .  How  to use the  model in a strategic  planning  process,  monitored 
by Shewhart’s  and  Derning’s  PDCA cycle, is explained i n  Section 3. 

Comparing this model  with  the TQM pyramid of Figure I ,  we recog- 
nize that  both  models have  leadership  as an important  element.  There  are 
good  reasons  for  that. Good leadership  and  strong  management  commit- 
ment  have  long  been  recognized  as  the  most  essential  preconditions  for  any 
organization  aspiring  to be world  class.  As  a resu!t, much  effort  has  been 
devoted to the  pursuit of a  “business  excellence”  approach  to  leading  and 
managing  an  organization in order  to achieve  world class performance. 

Combining  the principles of  the TQM pyramid  with  the principles 
(values)  behind  the  European  model  for TQM business and excellence, we 

rh Management  Satisfaction 
(90 points) (90 points) 

(100 points) (80 points) (140 points) ; Satisfiction 
(200 points) 

Resources 
(90 points) 

Impact on 
Society 

(60 points) 

Business Results - ( I  50 points) 

4 b- 
Eanblcn 50% Results 50% 

Figure 2 The European model for TQM and business excellence 
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propose in this  chapter  that  the  fundamental principles of business excel- 
lence be taken  to be the  basic principles of total  quality  management  sup- 
plemented by the principles of the  learning  organization  and  the  creative 
organization.*  The  results  are  the following six principles for  business excel- 
lence: 

1. A focus on  customers  and  their needs 
2. Continuous  improvement 
3. The empowerment and  participation of all staff members 
4. A focus  on  facts 
5. A commitment  to  creativity 
6 A focus  on  continuous  learning 

A lot has been  written about leadership and management’s responsibilities 
for  the  implementation of these  principles and  the  related  concepts,  but 
there  has  not  been  much  concern about identifying  the  different  leadership 
profiles in today’s  business  world and  their  relations  to  the  above principles 
and  the success  criteria  for  business excellence. If a  manager‘s  leadership 
profile does  not  correlate positively with the six principles listed above,  then 
the  manager  may be a  barrier  to  the  implementation of TQM.  In this case 
you  obviously  have  only  three  options: 

1. Fire  the  manager. 
2. Forget  TQM. 
3. Educate  the  manager. 

It is our belief that  education of the  manager is a feasible solution in most 
cases. For  that  purpose we have  developed an integrated  approach  for 
management  development  that is based on  quality  function  deployment 
(QFD; see Section 2). By applying  the QFD technique  to  this  area  it is 
possible to gain information  about  the effect of  different  leadership profiles 
on  the success  criteria  for  business excellence. Without  a  profound  under- 
standing of this  relationship, we cannot achieve  business excellence. 

The  aims of this  chapter  are 

1. To show an example  of  how  statistical  methods  can be  used to 
control  and  develop  the  softer  parts of total  quality  manage- 
ment-the leadership styles (Section 2). 

*Success criteria  taken  from  the EQA business excellence model  hove been supplemented  with 
succcss  criterla  from  the  creative  and  learning  organizations  because  although  creativity  and 
learning  are  implicitly  Included in total  quality  management,  theory  on  total  quality  manage- 
ment  has to a certain  degree neglected these  two  important  disciplines.  The  aspect  that  unites 
all of  the  chosen success criteria is that they all  demand  a  strong  commitment  from  the  senlor 
management  of an organization. 
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2. To provide an overview  of  the role and  application of  statistical 
methods in monitoring  the  implementation of total  quality  man- 
agement to achieve  business  excellence  (Section 3). 

2. THE  EUROPEAN  EMPIRICAL  STUDY ON LEADERSHIP 
STYLES 

To achieve our first aim an empirical  study  was  carried  out  that  involved 
more  than 200 leaders  and  managers of European  companies  and  some 1200 
of  their  employees.  The  format  of  the  study  was  as  follows. 

1. Four  hundred chief  executive officers from  France,  Germany, 
Holland, Belgium, the  United  Kingdom,  and  Denmark  were  ran- 
domly selected from  various  European  databases.  The selection 
criteria  were  that they had  to  be  from  private  companies (100% 
state-owned  companies  were  excluded)  with  more than 50 employ- 
ees. 

2. The selected leaders  were  asked to complete an  86-point  question- 
naire*  composed of two  sections: 
a. 49 questions  asking  leaders  to  rate  the  importance of  a number 

of  aspects  of  modern  business  managementt 
b. 37 questions  asking  leaders  to  rate  the  importance of  a number 

of statements  or success  criteria on business  excellence 
3 .  By analyzing  the  material  supplied by the  leaders in response  to 

the first 49 questions, it was  possible to  plot  the  “leadership  pro- 
file”  of each  individual  respondent.  These  leadership profiles are 
expressed in eight different  leadership  “styles”. 

4. The success criteria, which form  the  focus of the  second  section (37 
questions),  indicate  the key leadership  qualities  required  to  achieve 
business excellence. The higher  the  leaders  scored  on  these  ques- 
tions,  the  more  they  could be said to possess  these  qualities. 

*The  complete Leadership Prolile  questionnaire in fact  consisted  of 106 questions.  The  addi- 
tional 20 questions  covered  cultural issues that do  not  form  part of  this  chapter.  The  questions 
were developed by Gecrt  Hofstede in 1994. 

?The  aspects  of  management  were identified by a  Danish  focus  group  participating in a pilot 
vcrsion  of  this  survey in 1995. developed  by  Anders Nsrgaard  and  Heme Zahll Larscn.  The 
focus  group  conslsted  of  nine  directors  representing  various  areas of business,  who  were  asked 
to identify  the key attributes  of a good  business  leader.  The  attributes so identified were 
classified on  the  basis of an affinity  analysis,  and as a result 49 variables were established. 
These  variables  could  then be used to plot  any  individual  leadership  profile. 
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5.  For  each  leader, 10 employees  were  also  selected to  participate  in 
the  survey.  These  employees  were  asked  to  rate  the  importance of 
the 49 management  aspects,  in  order  to give a  picture of what  the 
employees  considered  desirable  for  ideal  leaders. 

2.1. Descrlption of the  Leadership  Model 

The  leadership  model  that  was  developed  as  the  basis  for  this  analysis is 
designed to  shed  light  on  the  relationship between the  business  leadership 
styles of today's  leaders  and  the  requirements  to  achieve business  excellence. 
By plotting  the  leadership  profile of any  individual  leader,  the  model  pro- 
vides a  tool  to assess the  extent  to  which  he  or  she is working  toward  the 
successful achievement of business excellence. 

Success Criteria 

As described  in  Section 1, the success criteria  for  business excellence  used in 
this  research  comprise  three  main  elements-total  quality  management, 
creativity,  and  learning.  However, since the  interaction  between  an  organi- 
zation's  leadership  and  its  employees  has  a  major  impact  on  whether  these 
criteria  are achieved or not,  this  interaction  becomes,  in  effect,  a  fourth 
success criterion. 

As Figure 3 shows, the  achievement of these  success factors  is  affected 
by the  leadership  profiles of those  in  charge of the  organization.  Although 

Busmess Excellence  Leadershlp Profile 

Figure 3 The  leadership  model. 
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not included  within the  scope  of this chapter, it is reasonable  to  assume  that 
these  leadership profiles are in turn influenced by a number of  “basic vari- 
ables”  such  as leader’s age, education,  and experience and  the size of the 
company  or  the  sector in which it operates. 

The First Success Criterion: Totd Qurrlity Mnncgement. Total  qual- 
ity management is regarded  as  the  main  criterion  for  business excellence. 
Focusing  on  achieving  continuous  improvements in an effort  to  enhance  the 
company’s  strengths  and  eliminate  its  weaknesses, TQM covers all areas of 
the business,  including  its policies and  strategies,  its  management  of  people, 
and  its  work processes. The  core values of the  total  quality-oriented  orga- 
nization  are  a focus on  the  customer,  the  empowerment of  its  people, a focus 
on fact-based  management,  and  a  commitment  to  continuous  improvement. 

Since the  European  Quality  Award  (EQA)  model is the  most  author- 
itative  and  most  widely  used  method  of  assessing TQM in Europe,  core 
aspects of this  model  have  been used to  determine  the  performance of the 
surveyed  leaders  with  regard to  the first success criterion.  The higher  the 
score  the  leaders  achieved in this  part of the  questionnaire,  the  more posi- 
tively they can be said to be working with total  quality  management. 

The Second Success Criterion:  Crentivity. To achieve  business excel- 
lence, organizations  must  also  focus  strongly  on  developing  creativity. 
Urban* (1995, p. 56) has  stated, “If all companies  are  high-quality  and 
low-cost,  creativity will  be the  differentiating  factor.” 

Creativity is an  important  criterion  for business  excellence  because it is 
a vital stimulus  for  improvement  and  innovation. I t  is a  prerequisite  for 
business  excellence that  an  organization  and  its  leaders be both  committed 
to,  and  capable  of,  putting in place an  organizational  structure  that  fosters  a 
creative  environment.  At  the  same time, they  must be able  to  control  and 
make use of that  creativity. Since  creative  ideas do  not  just  surface  sponta- 
neously,  it is essential to  implement  a  creative  planning  process.  The  creative 
organization  aims  to  establish  an effective basis for  innovation  and  contin- 
uous  improvement by adopting  a  systematic  approach  to  the  various  aspects 
of  creativity,  such  as  the  evaluation  of  ideas  and  procedures  for  commu- 
nication. 

For  the  purposes of  this  study,  European leaders’ performance with 
regard  to  this  success  criterion-the  extent  to  which  they  are  proactively 
working  to  generate  and  retain creativity-was  assessed according  to  the 
theory of managing  ideas set out by Simon  Majaro. 

*Glen L. Urban,  Dean o f  the Sloan School of Management.  Massachusetts  Institute of 
Technology. 
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The Third  Success  Criterion:  Learning. To  quote Peter  Senge  (Senge, 
1990, p. 4): “The  organizations  that excel  will  be those  that  discover  how  to 
tap their  people’s commitment  and  capacity  to  learn  at all levels in an 
organisation.” 

The successful organization of the  future will  be a  learning  organiza- 
tion-one that  has  the ability to  take  on new  ideas  and  adapt  faster  than  its 
competitors.  The  model of the  learning  organization  used  for  this  study 
follows  the five learning disciplines set out by Senge.  These disciplines 
have  therefore  served  as  the basis for  evaluating  the  European leaders’ 
performance with  respect to this third success criterion. 

The Fourth Success Criterion: Lenclrr-Et?lpioyee Internction. The 
three  success  criteria above all depend critically on  the  interaction between 
the  leaders and their  employees. For successful  work  with total  quality 
management,  learning,  and  creativity, i t  is important  for  leaders  to get 
their  subordinates  “on  board”  and  to  harness  their  energies in the  pursuit 
of  these  success criteria. A comparison of the views of the employees 
(through  the profile they  provided  of  their  “ideal  leader”)  with  the  actual 
performance of  the  leaders  themselves  was  therefore  used  as  a  measurement 
of  this  interaction. 

2.2. Leadership Styles 

As described  earlier,  the  answers the  leaders  provided  to  the  questionnaire 
formed  the basis of an assessment of them in terms of eight different  leader- 
ship  “styles.”  The  eight  leadership styles were identified by a  factor  analysis. 
The 49 questions  regarding  leadership  capabilities  were  reduced  to eight 
latent  factors.  It is essential to  bear in mind that a leader is not defined 
simply as  belonging  to  one  or  another of  these styles but in terms  of an 
overall profile that  contains  varying degrees of all eight.  In  other  words, it is 
the relative predominance of some styles over  others  that  determines  the 
overall  leadership profile of any given  individual.  The eight leadership styles 
are  described in the  following paragraphs. 

The Captain 

Key attributes:  Commands respect and  trust;  leads  from  the  front; is pro- 
fessionally competent,  communicative, reliable, and  fair. 

The  Captain is in many ways  a “natural”  leader.  He  commands  the 
respect and  trust of his employees and  leads  from  the  front.  He  has  a  con- 
fidence  based on his own  professional  competence,  and  when  a  decision is 
made it is always  carried  out.  He  has  an  open  relationship with his employ- 
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ees. He  treats  them all equally, is usually prepared  to listen to their  opinions, 
and usually  ensures that  information they  require is communicated  to  them. 

The Creative  Leader 

Key attributes: Is innovative,  visionary,  courageous,  inspiring;  has  a  strong 
sense  of  ego. 

The Creative  leader is full of  ideas and is an active  problem  solver  and 
a tireless seeker after  continuous  improvement.  He  has  a clear image  of  the 
direction  the  company  should  pursue in the  future.  He is courageous  and is 
willing to  initiate new projects  despite  the risk of  failure.  He is a  source  of 
inspiration  to his employees.  He  has  a  tendency  to  act  on  inspiration  rather 
than  on  rational  analysis  and is driven by a  strong sense  of  ego. 

The  Involved  Leader 

Key attributes:  Shows  empathy,  practices  a  “hands-on”  approach,  does  not 
delegate,  focuses  on  procedures. 

The Involved  leader  possesses  good  people skills, is well attuned  to  the 
mood of his staff,  and  takes  time  to listen to  their  problems  and  ideas. His 
close  involvement  with his employees gives him  a good overview  of the  tasks 
they are  working  on.  This level of  involvement,  however,  makes it hard  for 
him to  delegate  tasks  rather  than  participate  personally.  He is focused on 
procedures  and  routines in teamwork  and is consequently less  well suited to 
take  an  overall  leadership  role. 

The Task Leader 

Key attributes: Is analytical,  “bottom  line”-driven,  result-oriented,  imper- 
sonal, persevering, intolerant of  mistakes. 

The  Task  leader believes success is measured by bottom-line  financial 
results.  Day-to-day  business in the  organization is carried out  on  the basis 
of impersonal,  rational  analysis.  The  Task  leader is result-oriented  and 
tends  to be extremely  persevering and  determined  once a course of action 
has been  decided. The reliance on  a  rational  attitude  toward  work  and 
procedures  means  that  this  leader  has difficulty accepting  mistakes  made 
by  employees,  with  employee morale  and  performance  consequently  tend- 
ing to  suffer when  they fail to meet the leader’s expectations.  The  Task 
leader  lacks  personal skills when it comes  to  dealing  with  the  problems or 
opinions of  employees. 
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The  Strategic  Leader 

Key attributes:  Focuses  on  strategic  goals,  takes a holistic view of the  orga- 
nization, is a good  planner,  avoids  day-to-day  details, is process-oriented. 
trustworthy. 

The  Strategic  leader  has  an  overall view of the  organization,  focusing 
on longer  term  goals  rather than  day-to-day issues. This  leader is process- 
oriented, believing that  consistent  work processes are essential for positive 
results.  He is very efficient, setting clear objectives for  what  needs  to  be 
achieved.  His  comprehensive  overview of the  organization  and his personal 
efficiency make him  a  highly trustworthy  leader of his employees. 

The Impulsive Leader 

Key attributes: Obsessed  with new ideas,  unfocused,  curious,  energetic, 
participative. 

The Impulsive leader’s most  salient  characteristic is an obsession  with 
new ideas  combined  with an unfocused  energy.  He is constantly  “on fire” 
and lets nothing get in the way of his enthusiasm. As a  result,  he  tends  to 
take  an  interest in a  wide  range of issues and  opportunities  without neces- 
sarily having  the  capability  to  pursue  the possibilities this  process  generates. 
In his fanaticism  to  push  through his latest  ideas,  he  tends  to  appear  auto- 
cratic  and  domineering  to his employees. 

The Specialist Leader 

Key attributes: Is expert,  solitary.  lacks  inspirational  ability, is resistant  to 
change,  calm. 

The Specialist leader is an expert in his field who  prefers  to  work  alone. 
His  leadership is expressed through  the  quality of his expertise  rather  than 
through  any  “people” skills. He is not  good a t  teamwork,  lacking  the  ability 
to  inspire  others  and  having  a  tendency  to be pedantic  and  uncompromising. 
He  appears  calm,  assured,  and in control. 

The Team Builder Leader 

Key attributes: Is tolerant, gives feedback,  acts  as  a  coach,  motivates, 
inspires, is supportive. 

The  Team Builder  leader  perceives  himself  primarily as  a  coach  aiming 
to maximize the  advantages of teamwork.  He gives constructive  feedback 
concerning his employees’  work and  behavior.  He is also very tolerant  and 
understands  the need to support  and  inspire  employees in  critical  situations. 
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2.3. The  Relationship  Between  Success  Criteria  and 

The  three success criteria  and  the  eight  leadership styles are  estimated  in 
this  study  to  determine  the  precise  demands  that  European  leaders  face 
when  they  seek  business excellence. By estimating  the  relationships  among 
the  three success criteria  and  the  eight  leadership styles  it  is  possible to 
isolate  the  leadership styles resulting in the  greatest  impact  on  the success 
criteria. 

With  the  data of 202 European  leaders we have  been able  to  empiri- 
cally  prove  that  the  Team  Builder,  the  Captain,  the  Strategic,  the  Creative, 
and  the  Impulsive  leadership styles  all have  a  positive  impact on  one,  two,  or 
all  three success  criteria.  The  leadership styles are  ranked  according  to  their 
degree  of  influence  on  the  success  criteria.  The  more  success  criteria  the 
leadership styles  influence,  the  more  important  they  are  to  achieving  busi- 
ness excellence, i.e., the  Team  Builder is the  most  important  one  (impacts  on 
three success criteria; see Fig. 4), whereas  the  Impulsive  leader  is  the  least 
important  (impacts  on  one success criterion,  Quality).  The  remaining  leader- 
ship styles-the Involved,  the  Task,  and  the  Specialist leaders-have no 
influence  on  achieving  business excellence. 

However,  it  is not  enough  to  have  knowledge of the  correlation 
between the success criteria  and  the  leadership styles. European  leaders 

Leadership  Styles 

Figure 4 The  correlation  between success criteria  and  leadership styles.  The 
numbers  indicate  the  strength of the  relationships. 
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must  also  take  into  consideration  the  Ideal  Leadership profile outlined by 
the  employees. By using  quality  function  deployment (see Section 2.4) it is 
possible for  managers  to  work with  the demands of the employees. 

2.4. Model  for  Measuring  Excellent  Leadership 

An Excellent Leadership  model  should  integrate  the  demands  that  the suc- 
cessful leader  must  consider  when  trying  to  achieve  business excellence. The 
model  should clarify what  the  leader  should do to improve his performance 
as a  leader in relation to  the success  criteria  for  achieving  business excel- 
lence. 

A product  itnprowment technique called quality  function  deployment 
(QFD) is used as  a  tool  for  measurement of  Excellent  Leadership. The 
essence of this  technique  consists  of  combining  a set of  subjective  variables, 
normally set out by the  demands of customers,  with  a  set  of objective  vari- 
ables  provided by the  manufacturers’  product  developers. As a result of  this 
interactive  process  a  number  of  focus  areas  for  developing  high  quality 
products become apparent,  enabling  manufacturers  to  adapt  their  products 
more precisely to customer  demands. 

Treating  the  leaders  as  “products”  and  the employees as  “customers,” 
QFD is used as  a  technique  for  determining  Excellent  Leadership.  This is the 
reason  for  making  the  parallel  between  leaders  and  products.  In QFD, the 
voice  of the  customer is used to develop  the  product.  A  leader  has  many 
“customers”  such  as employees and  stakeholders.  In this project,  the 
employees  are selected as  our link to  the  customer  part in QFD.  This 
means  that  the voice  of the  employees will serve as  an  important guideline 
for  leaders  today in developing  the  right  leadership  qualities. 

The  information  required  for  the QFD construction  consists  of 

Employee demands of an ideal leader.  The employees’  Ideal  Leader 

The relationship  between  success  criteria  for  achieving  business excel- 

The relationship  between  success  criteria  and  different  leadership 

The  individual leader’s score on  the success  criteria and leadership 

Information  about  the  “best in class”  leaders  within  the  areas  of  per- 

,ofile represents  the  customers’  demands  of  the  “product” in QFD. 

lence. 

styles. 

styles. 

formance  (quality,  learning,  and  creativity). 

The  QFD technique  provides  the possibility to work  with the follow- 
ing  aspects: 
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Figure 5 

1. 
2. 

3. 

Zorreietlon 
matrix 

msessment 1 

The Excellent  Leadership model. 

Assessment  of  the leader’s performance  on  the success  criteria. 
Benchmarking-a comparison  with  “best  in class”-leaders that 
have  the  highest  score  on  the success  criteria. 
Estimation of an Excellent  Leadership  profile  (ELP).  The  ELP is 
used  to  evaluate  whether  or  not  any  leader  matches  the  require- 
ments  for  achieving  business excellence. 

The  integrated  QFD  model is  described  below  and  is  referred to here- 
after  as  the Excellent Leadership  model (Fig. 5).  The  description  provides  an 
explanation of the  model  but  does  not  explain  its full potential.  Only  the 
relevant  parts of the  model’s  matrix  are  explained  in  order to clarify  how 
QFD can  be used in this specific managerial  perspective. 

The  QFD  technique  consists  of a number of different  matrices (collec- 
tions of large  numbers of quantifiable  data), which makes  the  technique 
systematic  and  rational.  Using  each  matrix  as  a  foundation  for  analyzing 
the  empirical  data  on  European  leaders  makes  it  possible  to  work  with  the 
data  in  an easy and  understandable way. Each of the  matrices  in  Figure 5 is 
discussed in  the  following  subsections. 

Attributes-Leadership Styles 
The  attributes  matrix  (far left in  Fig. 5 )  
includes  the  different  attributes of leader- 
ship.  Eight  leadership  styles  have  been 
identified  in  relation to  this  study. As 
explained  earlier,  the  eight  leadership 06011 - styles  were created  on  the  basis of rating n the  importance  of 49 aspects of modern 
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business  management.  However,  in  keeping a general view it  is evident  that 
the  focus is on  the  eight  latent  leadership  factors.  Furthermore,  the devel- 
opment of future  leadership is based on  different  leadership styles, so it  is 
not  essential  to  have  a  high  degree of detail  until  a  later  stage. 

Weights-A  Rating of the  Eight  Leadership  Styles 

The 1150 employees  who  participated  in 
the  survey  also  evaluated  the  importance 
of the 49 aspects of modern  business  man- 
agement  under  consideration  to  their  con- 
cept  of  an  ideal  leader.  This employees’ 
Ideal  Leader  profile  provides  a  rating or 
a weight  of importance for each of the 

eight  leadership styles. With  this  information  the  leader  can  identify  possible 
areas  of  improvement in meeting  employee  demands  for  an  ideal  leader. 

ulena 
F l  

Correlation  Matrix 

The  correlation  matrix is the  heart of the 
Excellent  Leadership  model.  In  this  part 
of the  model  the  correlation  between  the 
individual  leader’s  profile  and  the  employ- 
ees’ Ideal  Leader  profile is estimated. 
Correlating  the  three success criteria  with 
the  eight  leadership styles yields a  picture 

illustrating  the effects that  each of the  individual  leadership styles has  on  the 
success criteria  for  achieving  business excellence. 

P I  

Substitution 

The  roof of the QFD house,  (Fig. 5 )  con- 
sists  of a  correlation  matrix  that  illustrates 
the  correlation  between  the  three success 
criteria.  This  part of the  model is relevant 
in determining  potential  substitution 
opportunities between the  criteria.  Only 
three  criteria  are  included in this  project, 
which gives only  limited  information on 

substitution.  Using  the 37 elements of the success criteria  might  make  it 
possible  to  come  up  with a more  differentiated view of substitution  between 
the  elements. 
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Assessment 
The  leader’s  performance is measured  on 
the  basis of the  three success  criteria.  This 
assessment  is  carried out by means of a 
self-evaluation,  during  which  the  leader 
answers 37 questions.  The  answers  to 
these  questions  indicate  the leader’s and/ 

. or  organization’s level of  activity on  the 
success criteria  (quality,  learning,  and  creativity),  for  achieving  business 
excellence, illustrated by an  individual  score.  This  assessment  provides  the 
leaders  with  a  score  of  their  current  performance  and  critical  areas in which 
further  allocation of resources is required  for  the  development of  business 
excellence. It is important  to  have  knowledge of one’s current level  if one is 
to set relevant  objectives  for  the  future.  The  three  successive  critieria  should 
be  individually  evaluated. A global  approach is required,  as  they  are 
strongly  correlated 

UfiOO 
0 

. ,  

Benchmarking 

The  right-hand  side of the  model  illus- 
trates  the  profiles  for  “best  in  class” 
within  the  three  success  criteria.  These 
profiles  can be used as  a  benchmark 
against  “best in industry,” which can  gen- 
erate new ideas  for  improvement.  These 
profiles  serve  as  a  foundation  for  the 

Excellent  Leadership profile,  which takes  into  account  the  three success 
criteria  and employees’ demands of an  ideal  leader. 

ndnn 
E 

Areas of Improvement 

The  bottom  matrix in Figure 5 illustrates 
the ‘‘result’’ of the  process.  Multiplying 
the  weights  of  the  employees  with  the 
relationships between the  leadership styles 
and  the  three success criteria  creates  this 
end  product.  Taking  the view of the 
employees,  the  areas of improve-ment 

for  the  leader  can be identified. In  other  words,  the  leader is  provided 
with  concrete  ideas of  ways in which the  respective  areas of improvement 
are  weighted  according  to  employee  demands. 

IO 
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Excellent  Leadership Profile 

The Excellent Leadership  profile  (also 
known  as  the Success Profile),  serves as 
a  benchmark  for  the  leaders.  It is the 
ideal  leadership  profile if the  leader 
wants  to succeed in managing  quality, 
learning,  and  creativity.  In  this  project 
the  overall  objective  was to  create  one 

profile  of an excellent leader  working  actively  with  the  management disci- 
plines  included in the success criteria.  From  this  perspective  this  matrix  at 
the  far  right  in  Figure 5,  is considered  the  most  important  one in our use of 
QFD. 

The  QFD  technique  has served as  the  basis  for  our  research  and 
resulted  in  the  identification of the Excellent Leadership profile. The five 
crucial drivers (leadership  styles)  for  achieving  excellent  leadership were 
identified  by a  factor  analysis. By correlating  leadership  styles  with success 
criteria  for  business excellence  it  was  possible to  identify  the  styles  most 
positively correlated  to  business excellence. Expanding  the  theoretical  foun- 
dation,  as seen in this  chapter  to  treat  the  empirical  data  on  European 
leaders  with QFD  and thereby  take  into  consideration “employees’  ideality” 
has  resulted in a  more  accurate  picture  of  the  true drivers in  the  achievement 
of business  excellence. 

The Excellent Leadership  profile  shown  in  the  rightmost  matrix in the 
QFD-model  can be benchmarked  against  any  segment  or  group of leaders, 
i.e., leaders  from  different  countries  or  sectors, of different  ages,  and so on. 
Two  segments  have been selected for  further  analysis: 

UO€lD’l 
E l  

1. European  leaders’  leadership  profile versus the Excellent 

2. Country-by-country  comparison of European  leaders’  leadership 
Leadership profile. 

profile. 

2.5. The  Excellent  Leadership  Profile 

In  order  to  evaluate  whether  or  not  a  leader is equipped  to lead an  organi- 
zation  to  business excellence, a  benchmark Excellent Leadership  profile 
(ELP)  must  be  developed.  This  illustrates  the  leadership  profile  that is 
best oriented  toward  the  achievement of all three of the  main  business 
excellence  success criteria. 



Leadership  Profiles  and  Implementation  of TQM 61 

The  leadership profile  benchmark is based on  three  groups of leaders, 
the 20 leaders  who  scored  highest on creativity,  quality,  and  learning.  It is 
then  used to  develop  the Excellent  Leadership  profile. 

A Note on the Leadership Profile Graphs Used  in this Study 

1. The eight  leadership  styles  that  make  up  the  leadership  profiles  are 
measured on  a scale  of 0 to 100 (vertical  axis  of  Fig. 6). 

2. Scores above or below 50 points represent  deviations  from  the 
average  of  each  leadership  style. 

3. The closer  a  leader  gets to 100, the  more  strongly his or her  leader- 
ship profile is characterized by the  elements  identified in the 
description  of  that  particular  leadership style. 

4. Conversely,  the further  a score  falls  below 50, the less applicable 
those  elements are  as  a  description  of  the leader's  profile. 

As Figure 6 illustrates,  two  leadership  styles  have  the  predominant 
influence  within  the Excellence Leadership profile-the Strategic  and the 
Task. 

The  Strategic is clearly  the  most important  leadership style when 
it comes to identifying  the  characteristics  required  of  a  leader  seeking 
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Figure 6 The Excellent Leadership profile. Dotted lines represent the  band of 
deviation  from  the excellent leadership profile. 
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business excellence. The  competencies  of  the  Strategic  leader  are  there- 
fore  ones  that  any  leader  hoping  to achieve  business  excellence  must 
continuously  develop.  This  means  that  an  overall view of  the  business 
is essential,  with  practical  details  of daily work  not  being  allowed  to 
prevent a focus  on  strategic  goals  or get in the way  of  setting  clear 
organizational objectives. 

The  strong presence  of the  Task  leadership style within  the ELP under- 
lines the  fact  that a highly  developed  analytical  capability and  an extremely 
result-oriented  approach  are  both necessary  for  the  achievement  of  business 
excellence. The  Captain,  the  Creative,  and  the  Team Builder styles also play 
an  important  part in achieving  business excellence. The  ELP confidence 
interval is above 50, and these styles are  therefore  important  to  the 
Excellent  Leadership profile. 

Compared  to  the results in Figure 4 it  may  seem surprising  that  the 
Task  leadership style has such a strong weight in the  Excellent  Leadership 
profile. The  explanation  for  that is that  our  benchmarks consisted  of  the 20 
leaders  who  had  the  highest  scores  on  quality,  creativity,  and  learning. A 
characteristic of those  leaders  was  that  they  also  showed  a relatively high 
score  on  the  questions  that  correlated positively with  the Task  leadership 
style. 

The remaining  three styles-the Involved,  the  Impulsive,  and  the 
Specialist-are not  regarded  as  important in the  context of the Excellent 
Leadership profile. As can  be seen from  Figure 6, they are all broadly 
“neutral,”  reaching  a  score  around  average.  This  does  not  mean  that they 
can be safely disregarded,  however, since a  score  below  average  (i.e.,  below 
50) would  certainly  represent  a  deviation  from  the  ELP.  In  other  words, 
while  leaders  need  to  strive actively to achieve the  Strategic and  Task 
leadership  competencies  and  also  the  softer  leadership  attributes  of  the 
Creative,  the  Team  Builder, and the  Captain, they  should  not  ignore 
the  other  leadership styles or seek to  eliminate  them  from  their  profile 
altogether. 

2.6. European  Leaders  Versus  the  Excellent  Leadership 

In Figure 7 two profiles are  illustrated:  the  Excellent  Leadership  profile 
interval  (dotted lines) and  the  European leaders’ profile (bold line), the  latter 
being the  average profile of all 202 European  leaders  participating in the 
study.  The  graphs  show  that  there  are large deviations between  the 
European leaders’ profile and  the  ELP  on two  leadership styles: the 
Captain  and  the  Strategic. 

Profile 
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Figure 7 European  lcadcrs versus Excellent Leadership profile. 

The  Strategic: 

1 .  A  score  of  almost 60 indicates that  European leaders do place 
importance  on  the skills of  the  Strategic  leader  and  put  them 
into  practice, by taking a long-term view of the company  and its 
direction,  setting  clear  objectives,  and being focused on  maintain- 
ing  consistent  work  processes. 

2. They need to develop these competencies even further, however, if 
they wish to  match  the  ELP. 

3. The significant deviation between the  leaders’  actual performince 
and the  requirements of the ELP is of  considerable  importance, 
given that the  Strategic  leadership style is the  most  crucial  element 
of  the ELP. 

The  Captain: 

1 .  The  European leaders’ low score on the Captain style category 
indicates that they are  not  “natural” leaders.  At  best. they learn 
leadership skills a s  they grow into their  assignment. 

2. The below 50 score  indicates that these leaders are  not  strongly 
characterized by the  competencies of this  particular  leadership 
style-providing leadership  from  the  front,  encouraging  open 
communication,  and  commanding the respect and  trust of 
employees. 
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3. Although  the  Captain is not  as  crucial  to  the  overall ELP  as,  for 
example,  the  Strategic  leadership style, the  deviation  here is still an 
important  one in terms  of  providing  the  balance  of  leadership 
styles that is needed to achieve  business excellence. 

2.7. European  Leaders  Versus  Employees’  Ideality 

The employees’  Ideal  Leadership profile embodies  the  preferences  expressed 
by the 1150 employees  who  participated  in  the  survey.  Direct  subordinates 
to chief  executives and  managing  directors were  asked  to use  their  answers 
to  the first 49 questions of the survey to describe  their  “ideal”  leader- 
someone  for  whom they  would be willing to  make  an  extra  effort in their 
work.  Comparing  the leaders’ profile with the employees’  Ideal Leadership 
profile shows  whether  the  employees  are in harmony with  the  leader for 
achieving  business  excellence  and  where  they  are in conflict. 

Figure 8 highlights  four  main  areas  of  leadership  where  European 
employees’  expectations differ significantly from  the  actual  performances 
of the  leaders:  the  Captain,  the  Creative  leader,  the  Involved  leader,  and 
the Specialist leader.  (A  difference  of 10 points  or  more is significant). The 
two styles positively correlated to achieving  business  excellence are included 
in the  analysis. 

mm 
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Figure 8 European  leaders versus employees’  ideality. 
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The Captain 

Figure 8 shows  a  difference  of approximately 18 points between  employees’ 
expectations  and  actual  performance in the  Captain  category. 

The  European leaders’ low  score in the  Captain style category  indi- 
cates  that they are  not  “natural”  leaders.  At best, they  learn  leadership skills 
as they  grow into  their  assignment. 

The below 50 score  indicates  that  the  leaders  are  not  strongly  char- 
acterized by the  competencies  of  this  particular  leadership  style-providing 
leadership  from  the  front,  encouraging  open  communication,  and  com- 
manding  the respect and  trust of employees. 

Employees  place  a  much  greater  value  on  the  leadership  characteristics 
of the  Captain  than  their  leaders  do. 

The employees’  score  of  60  indicates that they react positively to a 
strong  “natural”  leader  who  can  guide  them  and  to  whom they  can  look 
with respect, and  that they appreciate  the  continuous flow of information 
provided by the  Captain. 

The Creative 

Figure 8 indicates  a  difference  of  approximately 22 points between actual 
leadership  performance  and  employee  expectations in the  creative style cate- 
gory. 

The Creative style is the  leadership  style  showing  the  most significant 
difference, with  employees rating  the  Creative  attributes very highly, at a 
score  of 70, while  their  leaders  score  below 50. 

The high  score (70) indicates  that, in contrast with the  Strategic  and 
Task styles, European employees  place  a  high  value on  leaders  who  are 
characterized by the  Creative  leadership  competencies. 

The employees  show  a strong  preference  for  a  creative,  inspiring,  and 
courageous  leader,  scoring higher on  this  leadership style than  on  the  other 
seven. This  translates  into  a  strong  demand  among  European employees for 
a leader of vision and  innovation  who is prepared  to deal  with the  increasing 
complexity  of  the  business  environment  and  who sees creativity and  con- 
tinuous  improvement  as  the  keys  to success. European employees seek a 
leader  who  acts  as  a  source  of  inspiration,  motivating  the  workforce  and 
taking  courageous business  decisions.  These  expectations,  however,  are sig- 
nificantly above  the  requirements  their  leaders  need  to  meet in order  to 
achieve  business excellence. 

Comments  on the Specialist 

There was  a  difference of  approximately 15 points between the leaders’ 
profile and  the employees’ ideality profile. 
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The employees’ low score on the Specialist leadership style (below 35) 
can be seen as the  mirror  image of  the  high  value  they  place on the  Captain 
and  Creative styles. The  solitary  nature of  the Specialist leader, his lack  of 
“people” skills and ability to inspire. are  the  direct  antithesis of the 
Captain’s  and  the  Creative leader’s attributes.  The Specialist style of leader- 
ship is clearly not  appreciated or regarded by employees as being  of  great 
value. 

European  leaders,  whose Specialist score  was significantly above  the 
employee  rating  for  that style, place a greater value on this  leadership style 
than  their  enlployees  do. 

2.8. Conclusions 

In seeking to achieve  business excellence, European  leaders may encounter 
resistance among  their  employees. Of  crucial significance in this regard is the 
fact that  European employees  place a markedly  lower  value on the  Team 
Builder and  Strategic  competencies  than is required  for  business excellence. 
By contrast,  their  “ideal”  leader is heavily  characterized  as  being  creative, 
inspiring.  and  an  active  problem  solver. 

The clear  findings  from this research  study  were that  the five crucial 
drivers of business  excellence are  the  Team Builder,  the Captain,  the 
Strategic,  the  Creative,  and  the  Impulsive  leadership styles (Fig. 4). 
Leaders  trying  to  achieve  business  excellence  must  therefore view the 
high-level attainment of  these  sets  of  leadership  competencies a s  their  para- 
mount  objective. 

I t  is important  to  remember, however. that this must  not be done  at 
the cost of neglecting other  leadership  competencies. As the  Excellent 
Leadership profile demonstrates.  the  other  leadership styles may be  of  less 
importance  to achieving  business  excellence than  the five leadership styles 
mentioned  above,  but this does  not  mean  that they  should be neglected 
altogether.  The  overall  balance of  the  ELP  requires  the  other  leadership 
styles to be maintained  at levels within the  ELP  interval.  Maintaining a 
certain  focus on these  competencies is therefore still an  important  aspect 
of excellent leadership. 

3. MONITORING  THE  IMPLEMENTATION OF THE 
SUCCESS  CRITERIA FOR BUSINESS  EXCELLENCE 

Section 2 showed  how it is possible to  measure  and  hence  to  understand  the 
softer  parts  of TQM (the  intangibles).  Remember  that  Dr.  Deming  talked 
about  “the  most  important  numbers being unknown  and  unknowable,” i.e., 



Leadership  Profiles  and  Implementation of TQM 67 

measures of the  qualitative  world.  Section 2 shows an example of how it  is 
possible to  measure  the mind-set  of  people by using  statistical  methods.  This 
section gives an overview on how to  monitor  and  improve  tangibles  (things, 
processes,  etc.) as well as intangibles.  Business  excellence  can be achieved 
only if continuous  improvements  are focused on  both  areas.  Such a focus is 
an  important element  of  the  leadership part of  Figures I and 2. 

3.1. The  Plan-Do-Check-Action  Cycle for Business 
Excellence 

The  problem with  leadership is that  most  managers  are  confused  about how 
to  practice  leadership.  They  need  one  or  more  simple  models  from  which 
they can  learn  what  their  main  leadership  tasks  are  and  how  to  integrate 
those  tasks in the  strategic  planning  process,  a  process  that  generates  the 
yearly  business  plan and also longer  term  plan  for  the  company (3-5 year 
plan) each  year. The  European  model  for  business excellence  may  help 
managers  to solve that  problem.  Both  the yearly  business  plan and  the 
long-term  strategic  plan  can be designed by using the  nine  criteria of the 
model;  i.e.,  the  plan  should  comprise  the result criteria  of  the  model ( w / ~ r / f  
you  want  to  achieve)  and  the  enabler  criteria as well (how you  decide to 
work,  i.e., h o 1 1 3  you  plan  to use intangibles).  Figure 9 gives an overview  of 
this Plan-Do-Check-Action (PDCA)  approach. 

It is seen from  Figure 9 that  action  consists of  a  yearly  self-assessment 
of I t h t  you  have  achieved and h o n l  you  achieved  the  results.  Such a yearly 
self-assessment is invaluable  as  input  to  the  next year's strategic  planning 
process. 

During  the year  the  plan is implemented  with  the  help  of  people in the 
company's  processes, and  the  results  on  people  satisfaction,  customer  satis- 
faction,  impact  on  society,  and  business  results  come in. This  implementa- 
tion  may be visualized as a deployment  of  the  plan  to  the Do  and Check 
levels as  shown in Figure 10. 

Figures 9 and 10 give the guidelines or  the  overall  framework  for 
finding  a  way  to  business excellence. The guidelines are  monitored by the 
PDCA cycle  in which Study  and  Learn  (Check)  constitute  the  crucial  pre- 
condition  for  continuous  improvement of the  strategic  planning  process. 
The framework  has  been  linked  to  the  European  model  for  TQM  and 
business excellence. 

As  was  pointed out i n  Section 2, the  European  model  for business 
excellence is not explicit enough  on  creativity  and  learning. For  that  reason, 
and  also  because  companies  outside  Europe  may wish to  apply  other models 
(e.g.,  the  Malcolm  Baldridge  model),  a  more  general  model is proposed. We 
call the  model  the  PDCA-leadership cycle for  business excellence. This 
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PDCA and  Strategic Planning 

-- 
I 

' I /  ', \ 
\ '\ 

Pian: 
How? 1. Leadership 

2. People  Management 
3. Policy  and Strategy 
4. Resources 
5. Processes 

What? 6. People  Satisfaction 
7. Customer  Satisfaction 
8. impact  on Society 
9. Business  Results 

Action: IO. Self-Assessment 

Figure 9 The  elements of Plan in relation  to  the yearly strategic  planning  process 
(items 1-10), 

model,  which  contains  the key leadership  elements  for  business excellence, is 
shown in Figure 11. 

I t  is seen from  Figure 11  that  the  Plan  component  contains  the vision, 
mission, and  goals of the  company  together  with  the business plan, which 
contains  goals  for  both  tangibles  and  intangibles.  In  the Do phase  the  plan 
has  to be deployed  through policy deployment.  Two  other  elements  are 
crucial  for an effective implementation  of  the  business  plan: (1) the  leader- 
ship style of all managers  and (2) education  and  training.  The Check  phase 
of  the  PDCA-leadership cycle comprises  two  elements: ( I )  Gaps between 
goals  and  results  have  to be identified, and (2) the  gaps have to be studied 
for  learning  purposes.  Once we understand why the  gaps  came  up we are 
ready  for  Action.  This  phase  should result in new  ideas  for  improvement of 
people,  processes, and  products  and new ideas  for  motivation of the  people. 
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PDCA and  Implementation 
, 

Plan: 1. Leadership 
2. People  Management 
3. Policy and Strategy 
4. Resources 

Do: 5. Processes 
Check: 6. People  Satisfaction 

7 Customer  Satisfaction 
8. Impact on  Society 
9 Business Results 

Action: IO. Self-Assessment 

Figure 10 Deployment of the plan to the Do and Check  levels. 

With this  raw  material the  company  has  strong  input for the next PDCA- 
leadership cycle for business excellence. 

Let  us look more specifically at  education  and  training in the Do 
phase. 

3.2. Education  and  Training  for  Business  Excellence 

The overall purpose  of  education  and  training is to build  quality  into  people 
so that it is possible to practice  real  empowerment  for  business excellence. 
This  can be  achieved  only if education  and  training  are  part of an overall 
leadership  process  where  improvements in both  tangibles  and  intangibles 
support  each  other  as  natural  elements  of  the  strategic  planning  process. 
Tangible  world  class  results  are  evidence of business excellence, but  the 
precondition  for  the  tangible  results  are  the  intangible  results  such a s  recog- 
nition,  achievement, and self-realization.  The  intangible  results  are a pre- 
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condition  for  building values into  the processes, i.e., value  building  of  intan- 
gible processes,  which again will improve  the  tangible  results.  Figure 12 
shows  how  this  process is guided by the  principles  of the  TQM  pyramid 
supplemented by education  and  training. 

If  we look at  Education  and  Training  (Fig. 12), we  see that it forms  the 
foundation of a temple and  that  its  aim,  quality of people, is the  roof of the 
temple.  The pillars of the  temple  are  the  main  elements  of  Education  and 
Training: ( I )  learning, (2) creativity, and  (3)  team  building.  Training in  team 
building is a  necessary  element to support  and  complement  creativity  and 
learning. The  importance of team  building  was  also  clearly  demonstrated  in 
Section 2 of  this chapter (see  Figs. 4 and 7). 

The  main  elements of the  three  pillars  are  shown in Figures 13-15. It is 
seen that  the  elements of each  pillar  are  subdivided  into  a logic part  and a 
nonlogic  part.  The logic part of each  pillar contains  the  tools  to be used for 
improvement  of  tangibles  (things,  processes,  etc.),  and  the  nonlogic  part 
contains  the  models, principles, and disciplines that  are needed to  improve 
intangibles  such  as  the  mind-set  of  people  (mental  models,  etc.).  Learning 
and applying  the  tools  from  the logic part of the  three  pillars  may  also 
gradually  have an indirect  positive effect on intangibles. 

Most  of  the  methods  presented in this  volume  are related to the logic 
part  of  the  three  pillars. To build  quality  into  people and  to achieve  business 
excellence, logic is not  enough.  Education  and  training  should  also  comprise 
the  nonlogic  part of the  pillars,  which is a  precondition  for effective utiliza- 
tion  of  the  well-known  logical  tools  for  continuous  improvement. It is a 
common  learning  point of world  class companies  that  managers  are  the 
most  important  teachers  and  coaches of their  employees. That is the  main 
reason why education  and  training  are  integrated in  the  PDCA-leadership 
cycle for  business excellence. 

4. CONCLUSION 

I n  this chapter  the role  of  statistical  methods  in  monitoring  the  implementa- 
tion  of TQM  and business excellence has been  discussed. It  has been argued 
that in order  to achieve  business excellence it is necessary to continuously 
improve  tangibles  (things,  processes) as well as intangibles  (e.g.,  the  mind-set 
of  people). Improving  the  mind-set  of people is the  same a s  building  quality 
into people. Improvement of tangibles  requires  education and training on 
the  well-known  statistical tools  such a s  statistical  process  control. 
Improvement  of  intangibles  requires  education  and  training on nonlogical 
models,  principles, and disciplines.  Both  types of education  and  training  are 
needed to achieve  business excellence. 
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Figure 12 The continuous improvement process for business excellence. 
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Figure 13 The logic and  nonlogic  parts of Learning in Education  and  Training. 
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Figure 14 The logic and nonlogic parts of Creativity in Education  and  Training. 
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Figure  15 The logic and nonlogic parts of Team Building in Education  and 
Training. 

Section 2 showed  how it  is possible to use statistical  methods  to 
understand  and  improve  the  soft  part  of  TQM  implementation: le- ‘1 d er- 
ship styles. Without  understanding  the effects of leadership styles it is 
impossible to practice effective leadership. As leadership is both  the  foun- 
dation of the TQM pyramid  in  Figure 1 and  the first enabler  criterion of 
the  European model  for  business excellence (see Fig. 2). i t  is obvious 
that  the first  step on  the  journey to business excellence should  be  to 
try to assess and improve  the  different  leadership  styles  of  the  company’s 
managers. 

Section 3 showed  how  leadership  can be practiced and  monitored by a 
simple PDCA leadership cycle. I t  was shown  that in this cycle the  imple- 
mentation of the  company’s  business  plan is accomplished by people  work- 
ing i n  the  different  processes  that  are  running  day by day.  These  people need 
education  and  training in the  well-known  statistical  tools for  improvement 
of  tangibles  (things,  processes,  etc.) as well as  education  and  training in 
models,  principles, and disciplines for  improvement  of  intangibles  (the 
mind-set). It was  argued  that  the  company’s business  plan should  contain 
improvement  goals  for  tangibles as well as  intangibles.  Only in this  way  can 
business excellence be  achieved. 
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A Methodological  Approach  to the 
Integration of SPC and EPC in Discrete 
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Rainer  Gob  and  Elart  von  Collani 
University of Wuerzburg,  Wuerzburg,  Germany 

1. INTRODUCTION 

The  control of  industrial  manufacturing  processes  has  long been considered 
from  two  different  points  of  view. Stotistic~rl p r ~ o ~ ~ ~ s . ~  c~orltrol (SPC), which 
traces  back  to  the  work of Walter  Shewhart in the 1920s, was originally 
developed  for  discrete manufacturing  industries  (industries  concerned with 
the  production of  discrete  items).  On  the  other  hand,  continuous  process 
industries,  chemical  industries  for  instance, used various  forms  of  adjust- 
ment  strategies  administered by automatic  controllers.  This type of process 
control became  known as cnginccjritlg prowss corltrd (EPC)  or ~ r l r t o t w t i c  
process c ~ ~ ~ t r d  (APC).  Separately,  both  approaches  have received cnornmus 
interest in the  academic  literature. 

Interest in SPC  and  EPC  integration  originated i n  the 1950s i n  the 
chemical  industries.  Part  of this interest is due  to  the  inertial  elements in this 
type  of production process (e.g.. raw materials with drifting  propcrties)  that 
result i n  autocorrelated  quality  characteristics of  the  end  product. 
Traditional  SPC  methods  assume  instead  i.i.d.  quality  characteristics,  and 
problems  of II high number of false alarms  and  the difficulty in detecting 
process  shifts  occur  under (positive)  autocorrelation  at low lags. I f  the auto- 
correlation  structure  can be modeled and  a  compensatory  variable  can be 

77 



78 Del  Castillo  et  al. 

found  to  modify  the  quality  characteristic,  then  an  EPC scheme is put  into 
place to  compensate  for  such  drifting  behavior.  However,  abrupt,  large 
shifts in the  quality  characteristic  indicate  major  failures  or  errors in the 
process  that  cannot generally  be compensated  for by the  EPC  controller. 
For this reason,  many  authors have  suggested that  an  SPC  chart be added  at 
the  output of an EPC-controlled  production  process  to  detect  large  shifts. 
There is no  clear  methodology,  however,  that  models  such  integration 
efforts in a  formal  and  general way. 

In  contrast,  interest in SPC-EPC  integration  in  discrete  part  manufac- 
turing is more  recent.  In  this  type  of  production  process,  elements  that 
induce  autocorrelation  are  not  common.  However,  drifting  behavior of a 
process that  “ages” is common.  A typical example  of  this is a  metal  machin- 
ing  process in which the  performance of  the  cutting  tool  deteriorates (in 
many cases, almost  linearly)  with  time.  Many  years  ago,  when  market  com- 
petition  was  not so intense, specifications were  wide enough  for  a  produc- 
tion  process  to  drift  without  producing  a  large  proportion of 
nonconforming  product.  With  increasing  competition,  quality specifications 
have  become  more  rigorous, and drifting  behavior,  rather  than being  toler- 
ated, is actively compensated  for by simple EPC schemes. 

Academic  interest in the  area of  SPC-EPC  integration  has  occurred  as 
a  natural  reaction  to  the  requirements of industrial  practices.  However, 
most  of  the  approaches  suggested  during  the  discussion on  this  problem 
argued  from  the  point of  view  of practical necessities alone.  Proponents 
of  either  side  admit  that  many  control  problems in modern  manufacturing 
processes cannot be solved by either  SPC  or  EPC  alone.  As  a  consequence. 
methods  from  each field are  recommended  as  auxiliary  tools in a  scheme 
originally developed  either  for SPC or for  EPC  applications  alone.  None of 
these approaches  have been really successful from  a  methodological  point  of 
view. The  models used  were  originally  designed for  either  proper  SPC or 
EPC  applications  but  not  for  an  integration of the  two. The practical  neces- 
sity of  an  integrating  approach  to  industrial  control  problems is obvious, 
but  a  rigorous  mathematical  model  to reflect this  need is still missing. As a 
reaction  to this methodological  gap,  the  present  chapter  establishes  a  simple 
model  that  integrates  the  positions of SPC  and  EPC. 

2. MODELS  PROPOSED IN THE  LITERATURE FOR SPC- 
EPC  INTEGRATION 

Although diverse authors have  discussed the  different  aims  and  strategies of 
SPC  and  EPC (e.g., Barnard, 1963; MacGregor, 1988, 1990; Box and 
Kramer, 1992; Montgomery  et  al., 1994), few specific models  have  been 
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proposed  for  the  integration of  these fields. Among these  models we find 
algorithmic  statistical  process  control  (ASPC)  and  run-to-run  control  pro- 
cedures. 

2.1. ASPC 

Vander Weil et  al.  (1992) (see also  Tucker  et  al., 1993)  model the  observed 
quality  characteristic 6 ,  of a batch  polymerization  process at time t as 

where the first term on  the  right  represents  a  shift  of  magnitude p that  occurs 
at time to,  x, is the  compensatory  variable,  and  the noise  term is a  stationary 
ARMA( 1 , l )  stochastic process. In  what  the  authors refer to  as  algorithmic 
statistical  process  control  (ASPC), process  shifts are  monitored by a 
CUSUM  chart,  whereas  the  ARMA noise is actively compensated  for by 
an  EPC scheme.  Using  a  similar approach,  Montgomery  et  al. (1994)  pre- 
sented  some  simulation  results.  Clearly,  ASPC is focused on  continuous 
production processes. 

A  basic  weakness  of the  APSC  approach is that  there is no explicit 
stochastic  model  for  the  time f o  of shift occurrence. 

2.2. Run-to-Run Process Control 

Sachs  et  al.  (1995) (see also  Ingolfsson  and  Sachs, 1993) assume  instead  a 
simple  linear  regression  model  with  no  dynamic effects for  controlling  cer- 
tain  semiconductor  manufacturing processes. The  model is 

By using  a control  chart  on  the  residuals of  model (2), called “generalized 
SPC” by the  authors,  their  method  applies  two  different  types of EPC 
schemes: an Exponentially  Weighted  Moving  Average  (EWMA)-based  con- 
troller if the  observed  deviation  from  target is “small” (called “gradual 
control” by the  authors)  and  a Bayesian controller  that  determines  the 
moment  and  magnitude of  larger  deviations in case  they occur.  Other 
authors  (Butler  and  Stefani, 1994; Del  Castillo  and  Hurwitz,  1997)  extended 
model (2) to  the  case  where  deterministic  trends  and  ARMA( 1 , l )  noise exist. 

A  basic  weakness  of the  run-to-run  models is that  the classical ratio- 
nale of SPC  applications is a  shift,  stochastic in time  of  occurrence and/or in 
magnitude.  Again,  this is not reflected by the  run-to-run  models. 



80 Del Castillo et ai. 

3. BASIC  FEATURES OF MODELS IN SPC  AND  EPC 

3.1. Process  Cfianges in SPC  and  EPC 

Any  approach  to  process  control needs  a  model  of yr.oce.v.s c/wngp.y, i.e.,  a 
model  for  the  changes in the  process parameters  (output  mean,  output 
variance,  output  proportion  nonconformance)  that  occur  throughout  pro- 
duction time. On this  topic,  the  traditional  approaches  to  SPC  and  EPC 
differ significantly, corresponding  to  their  origins in different  types  of  indus- 
tries. 

The  overwhelming  majority  of  SPC  models identify process  changes as 
brupt  shifts  of  the  process  parameters  due  to  assignable  causes,  disturbances 
or  shocks  that affect the  manufacturing facilities. These shift models  gen- 
erally share  four basic assumptions: 

1. The  magnitude of  shifts is large relative to  the process  noise var- 
iance. 

2. Shifts  are  rare  events;  the  period  up  to  ,the  occurrence of  the first 
shift  or between  two  successive  shifts is large. 

3. Shifts  can result from  a variety of  assignable  causes.  Detection  of  a 
specific assignable  cause  requires  expert  engineering  knowledge  of 
the  production process, and it is time-consuming  and  expensive. 

4. Control  actions  to remove  assignable  causes  of  variation  are  time- 
consuming  and expensive,  requiring skilled staff,  machinery, and 
material.  These  actions result in rearranging  the process para- 
meters  to  the  “in-control”  or  target values, e.g., recentering  the 
process  mean. That is, these  actions  are corrective in nature. 

Under these assumption,  a  constant  automatic  adjustment  strategy  (i.e.,  an 
EPC)  obviously is not  the  appropriate remedy for process variation. 

Engineering  process  control  models  that  originate in continuous  pro- 
cess industries  consider  process  changes i n  the  form of cot?tir?lro~rs 11tYft.s. In 
contrast  to  the shift models  of  SPC,  the  basic  assumptions of the  EPC 
approach  are  that 

I .  The  drift is slow.  Measured  over a short time  interval,  the  drift 

2. The dpift permanently  continues  throughout  the  production  time. 
3. The  drift is an inherent  property  of  the  production  process.  Expert 

engineering  knowledge  of  the  production  process  provides  knowl- 
edge  of  the  structure  of  the  drift  process. To a  certain  degree,  the 
drift effect can be estimated  and  ‘predicted. 

4. The  control  actions  taken  to  counteract  the  drift effect are  minor 
in terms  of  time  and  expense.  They  follow  a repetitive procedure 

effect is small relative to  the noise  variance. 
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or  algorithm  that  can be left to  automatic  controllers.  These  con- 
trol  actions have no effect on  the  process  parameters  but  rather 
compensate  for  observed  deviations of the  quality  characteristic. 
That is, the  causes  of  the  drifting  behavior  are  not  “corrected”  but 
only conlpcrrsrrterl for. 

Under these assumptions,  constant  automatic  adjustments  are a reasonable 
control  strategy. 

3.2. Open-Loop  and  Closed-Loop  Behavior of a Process 

The  mathematical  models used by SPC  and  EPC reflect different  ideas about 
process  changes and process control. We shall explain  the  differences  and 
similarities  for  the  simple  situation  of  a  process  that,  at  successive  discrete 
time points 0, 1 ,2 ,  . . . , produces  output with a single quality  characteristic 
kO, E,*, . . . . An essential aspect is the  distinction  between  the open-loop 
behavior  (behavior  without  control  actions)  and closed-loop behavior  (beha- 
vior in the  presence  of control  actions) of  such a process. 

In  SPC,  detection  of an assignable  cause and  subsequent  corrective 
action  occurs  only  rarely. If it occurs, it amounts  to  a  complete rcweblwl of 
the  manufacturing  process.  Hence i t  is useful to split the  entire  production 
run  into  the  periods (reneuwl qde,y) between  two  successive  corrective 
actions  (renewals)  and  to  consider  each  renewal cycle along  a  separate 
time  axis 0, 1,2, . . . with corresponding  output  quality  characteristics 
to, kl, k 2 ,  . . . . The effect of control  actions is not reflected in the  output 
model. 

In standard  EPC,  control  actions  are  taken  regularly  at  each time 
point.  Without these permanent  compensatory  actions  the process  would 
exhibit  a  completely  different  behavior.  A  model  of  the  process  behavior 
without  control is indispensable  for  the  design  and  evaluation  of  control 
rules. Thus we have  the  open-loop output  quality  characteristics 
E,;, {;, ti,. . . of the process without  control (left alone)  and  the closed- 
loop  output  quality  characteristics to, kl, {?, . . . of the process  subject to 
control  actions. 

3.3. Process  Changes  in  SPC  Models 

Statistical  process  control is designed for  manufactuqing  processes  that exhi- 
bit discrete parameter  shifts  that  occur  at  random time points.  Thus in SPC 
models  the  most  general  form  of  the  output  process (E,;)N,, is the  sum of a 
mrrrked point process and  a white  mise component.  This  approach is 
expressed by the  model 
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kf! = P, + E ,  

In this formula (P,)~, is a  marked  point process, 

with  a  target p*, with marks ?i2, . . . representing  the sizes of  shifts 1 ,2 ,  . . . 
and  a  counting  process  that gives the  number of  shifts in time  interval 
[O; t). in Eq. (3) is a  white  noise  process  independent  of (P , )~ , , .  The 
white  noise property is expressed by 

E[&,]  = 0, V[E , ]  = 02, E[E,E,+~]  = 0 for all t E No; k E N 

( 5 )  

A simple  and  popular  instance  of  a  marked  point  process is one with 
shifts  occurring  according  to  a Poisson process (Nf)N,. Most  investigations 
on  control  charts use further  simplifications. For instance,  deterministic 
absolute values = A (A > 0) of the  shifts  are  frequently  assumed. 
Many  approaches  assume  a single shift  of  a  given  absolute  value A that 
occurs  after  a  random  (often  assumed  to be exponentially  distributed)  time 
v. In  this  case we have 

where  the random  variable y is the sign of  the  deviation  from  target  with 

In  the  case  of  one-sided  shifts, we have p = 0 or p = 1; in the  case  of  two- 
sided  shifts, it is usually  assumed that p = 0.5. 

3.4. Process  Changes  in  EPC  Models 

Engineering  process  control is designed  for manufacturing  processes  that 
exhibit  continuous  parameter  drifts.  Some typical instances  of  open-loop 
output sequences in EPC models  are as follows. 
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ARMA  Models 

An  important family  of  models  used to  characterize  drifting  behavior  occur- 
ring  due  to  autocorrelated  data is the  family  of ARMA(p, q) models  (Box 
and Jenkins, 1976): 

where (E,)N,is a  white  noise  sequence [see Eq. (5 ) ] .  By introducing  the  back- 
shift  operator Bk3’if( Eq. (7) can be written  as 

or  as 

where h,(B) and $,(B) are  stable  polynomials in B. Sometimes,  nonstation- 
ary  ARIMA(p, d ,  q) models  of  the  form 

have  been used instead  to  model  drifting  behavior in continuous  production 
processes. 

Deterministic Drift 

If the  drifting  behavior is caused by aging of a tool (see, e.g.,  Quesenberry, 
1988), a  simple  regression  model of the  form 

is sufficient to  model  most  discrete  manufacturing processes. Here, T is a 
target value and dt is a  deterministic  time  trend. 

Unit Root Trend 

Alternatively,  a  “unit  root”  process  can be used to  model  linear  drifts by 
using 
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For example, if h,(f?) = I ,  then (9) is a random walk  with drift tt that  has 
behavior  similar  to  that  given by (8) but with  variance  that  increases linearly 
with  time. 

3.5. Common Structure of SPC and EPC Models 

Analyzing  the SPC models of Section 3.3 and  the EPC models of Section 
3.4, we can  point  out  a  common  structure  that is helpful i n  developing  an 
approach  for an integrating  model. 

We shall decompose  the  output  into  two  components. One of these 
components is a function of the white  noise  variables E , ~  alone  and  represents 
completely  uncontrollable  random  variation.  The  other  component, e,, 
represents  the effective state of the  process,  which is subject to  an inherent 
drift  or  to a shift due  to  an  assignable  cause.  Formally, this means  to  con- 
sider the  output  equations (3), (7 ) ,  (8), and (9) as special cases of the model 

In  many  cases 8, is a deterministic  function  of t that  coincides  with  the 
output  mean, i.e., = 8,. The  argument ( E , ~ ) , ~ ~ ,  is required  to allow for 
possible cumulative effects of the  white  noise  variables  on the process out- 
put; see ( 1  3) or (14) below. 

Let  us  rewrite the  models (3), (7) ,  (8), and (9) in terms  of (10). 
As to  the shift model (3), let 

For  the  deterministic  drift  model (S), let 

For  the  random walk  with drift  model [see (9) with h,(B) = 11, let 

Finally,  for  the ARMA@, (1) model (7), we can identify 
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where h, = -hit?' and  where we also identify 

r=O 

4. MODELING  THE  INTEGRATION OF SPC  AND  EPC 

Simultaneous  application of SPC  and  EPC  procedures  to  the  same  manu- 
facturing process  makes  sense  only if the process  exhibits  both  kinds of 
changes  considered in Section 3: discrete  and  abrupt  variation by shift, 
which  represents  the  position  of  SPC, and  continuous  variation by drift, 
which  represents  the  position  of  EPC.  Consequently, an integrative  model 
for  SPC  and  EPC  should  contain  components  corresponding  to  the two 
types  of  process variation  models given in Section 3: a marked  point process 
component  to  justify  the use of SPC (see Section 3.3) and  a  drift  component 
to  justify  the use  of EPC (see Section 3.4). 

In view of the  common  structure of SPC  and  EPC  models  formulated 
by (1 O), a unifying  model for  SPC  and  EPC  can be expressed by the  follow- 
ing  model  for  the  uncontrolled  (open-loop)  process  output \;: 

t; = 3/((P:.1)),s5,9 . . . 3 (P.Y ( E ; )  ),ss,7 (9,s ).T5,? . ' . 7 ( v ) ) , s 5 , ,  (16) ( 1 )  

where . . . , (p6K')N,, are K different  marked  point  processes  represent- 
ing the effect of  shifts  to be treated by SPC [see Eq. (4)], . . . , 
(6!."))),,, are M different  drift  processes  that  represent  the effect of contin- 
uous  drifts  to be treated by EPC [see Eqs. (1 2). (1 3), and (1  5)], and ( E , ~ ) ~ , ,  is a 
white  noise  sequence [see Eq. (5 ) ] .  For  some  applications it is necessary to 
choose all past values (P:)),~<,, (i?$)),s5,, ( E , ~ ) , ~ ~ ,  as  the  arguments of the func- 
tions 3, to allow for possibie  cumulative effects of #), &,  . . . , a(i) , , 80)  
. . . , E , ,  . . . on E,; (see Section 4.2, random walk drift  model). 

Equation (16) gives a generic framework  for  a process  model that 
integrates  the  positions  of  SPC  and  EPC.  Let  us  now  consider  three  impor- 
tant  examples with one  drift  component, i.e., with M = 1. 
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4.1. Additive  Disturbance 

In many cases an  abrupt shift  can be modeled  as  a  translation of the  output 
value 6 ; .  To express this situation in the  terms  of  model (16), we choose 

where ( P , ~ ) ~ , ,  is a  shift  process  of  the  type  introduced by Eq. (4), (qs)No is a 
process that  represents  the effect of continuous  drifts [see Eqs. (12), (13), 
and (15)], and ( E , ~ ) ~ "  is a  white  noise  sequence [see Eq. (5 ) ] .  In many cases, we 
simply  have G , ( ( E , ~ ) , ~ ~ , )  = E ,  [see Eqs. (1  1 )  and (12)]. For examples  of  func- 
tions G , ( ( E , ~ ) , ~ ~ , )  that express  a  cumulative effect of  the  white  noise  variables, 
see Eq. (14). 

4.2. Shift  in  Drift  Parameters 

Usually  the  models  for  drift  processes ( that  are used in EPC  depend  on 
parameters.  These  parameters  can be subject  to  shifts  during  production. 
Engineering  controllers,  however,  are  designed  for fixed and  known  para- 
meter  values and  cannot  handle  such  sudden  parameter  shifts. Even adc1ptive 
EPC schemes  have the  fundamental  assumption  that  the  changes in the 
parameters  are slow compared  to  the  rate  at which observations  are  taken 
(Astrom  and  Wittenmark, 1989). Thus  supplementary  SPC schemes are 
required  to  detect these abrupt changes (Basseville and  Nikiforov, 1993). 
Let  us  consider  two  simple  models  that will  be investigated in some  detail in 
Section 5.  

Shift in Trend Parameter-Deterministic  Drift  Model 

In  the  original  parametric  model, see (12), let the  drift  component (B , )N, ,  be 
described  by  a  deterministic trend, 

14, = T + dt 

i.e., by the  recursion 

with  a parameter d and  a  target  value T .  However,  the  drift  parameter d 
may be subject to  abrupt  shifts,  as  may  occur,  e.g., when  a cutting  tool  starts 
to fail. Thus  the  parameter  value  at time t should be considered  as  a  random 
variable p/, where ( P ~ ) ~ , ,  is a  marked  point process as given by (4)  with  target 
p* = d. Replacing d by pLI in (17) we obtain  the  output  equation 
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I n  the  scheme of Eq.  (16) we have 

Shift in Trend Parameter-Random  Walk  with  Drift  Model 

In  the  original  parametric  model  the  drift  component ( 81)N,, is the  same as in 
the  deterministic  drift  model  [compare  Eqs. (12) and (1  3 ) ] .  Again,  the  para- 
meter d may be subject to  abrupt  shifts.  Thus  the value of the parameter d at 
time t should be considered as a  random  variable p t ,  where (pt)No is a 
marked  point  process as given by (4) with target p* = d. To calculate  the 
effect on  the  output we have to insert pLI for d in the  difference equation (9) 
with h,(B) = 1 .  We  obtain  the  output  equation 

Equation (19)  constitutes  a  special  case  of  Eq.  (16)  with 

I I 

4.3. Additive  Disturbance  and  Shift in Drift  Parameters 

As a  generalization we can consider  a combination of the  models of Sections 
4.1 and 4.2: an  additive  disturbance  component (p!‘)) and  a shift compo- 
nent (p:2))No in the  drift  parameter. Let  us  sketch  thls approach  for  the 
deterministic  trend  and  the  random walk with  drift  models. 

NO. 

Additive Disturbance and Shift in Trend Parameter- 
Deterministic Trend Model 

Consider  the  deterministic  trend  model under the  assumption  that there are 
possible  shifts of the  drift  parameter d represented by a  marked  point  pro- 
cess (p:’))N,l with  target p: = d and  that  there is an  additive  disturbance 
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represented by a  marked  point process ( ~ . ~ j l ) ) ~ ,  with  target 117 = 0. Then we 
obtain  the  output  equation 

Equation ( 2 )  constitutes  a special case  of Eq. (16) with 

K = 2 ,  M = l ,  

Additive Disturbance and  Shift in Trend Parameter-Random 
Walk with Drift Model 

Consider  the  random  walk with drift  model  under  the  assumption  that  there 
are possible  shifts  of the  drift  parameter d represented by a  marked  point 
process ( ~ d ’ ) ) ~ ( ,  with  target p; = cl and  there is an additive  disturbance 
represented by a  marked  point process (p: l ) )N, j  with  target py = 0. Then 
we obtain  the  output  equation 

I I I I 

r = l  I =  I I =  I 

In  the  scheme of Eq. ( 1  6) we have 

K = 2 ,   M =  1 ,  

5. ENGINEERING  PROCESS  CONTROLLERS 

If a compensatory  variable x, can be determined in a  production  system, 
then  a  control rule of  the  form 
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can be devised.  Usually,  a  controller  such  as  Eq.  (22) is found by optimizing 
some  performance  (or  cost) index J .  A common  index is 

where T denotes  the  process  target  and N is the  total  number of  observa- 
tions  the  process is going  to be run.  Minimization of JI results in a m i n b n z m ~  
I I I ~ N M  s c p r e  c~rror (MMSE)  controller  (Box  and  Jenkins, 1976), which is also 
called a n 1 i r 7 i r n u m  ~~rrirrnce controller by Astrom (1970) if E,, denotes devia- 
tion  from  target, in which  case T = 0 in (23). From  the  principle of optim- 
ality  of  dynamic  programming, it  can be shown  that  the minimizing 
criterion (23) is equivalent  to minimizing  each E[(k,  - T)’] separately 
(Soderstrom, 1994, p. 313). 

Other  cost indices have  been proposed  for  quality  control  applications. 
The following  cost  index  was proposed by  Box and  Jenkins (1963) for  their 
“machine  tool”  problem: 

where 6(.u) = 0 if  .u = 0 and F ( s )  = 1 if s # 0. This is a  function  with  quad- 
ratic  off-target  cost  and  a fixed adjustment  cost  independent of the  magni- 
tude of the  adjustment x, - s - ~ .  With this cost  structure,  the  authors 
showed  that i t  is optimal  to wait  until  the  process is sufficiently far  from 
target in order  to  perform  an  adjustment,  a policy that resembles an SPC 
control  chart.  However,  the  width of the  “adjustment limits” is a  function of 
the relative adjustment  cost c/o and is not based on statistical  considerations 
(Box and  Jenkins. 1963; Crowder, 1992). 

Fixed adjustment  costs  may be common in certain  production  pro- 
cesses. However, if x,  represents  a  setting  of  some  machine  (i.e.,  a  setpoint 
for  an  automatic  controller  included with the  equipment), then  the adjust- 
ment  cost c is practically zero  and J2 reduces to  an  MMSE  controller. 

We now  investigate  two  simple  EPC  controllers  for  the  drift  processes 
of  Eqs. (8) (deterministic  trend) and (9)  (random walk  with drift) i n  the 
general framework of  Section 4.3. The simpler  situations of Sections 4.1 
and  4.2  are  obtained as special cases  of the  general  scheme.  Control rules 
will  be designed according  to  the J ,  criterion  (MMSE).  We will assume  that 
the effect of the  sequence ( . Y ~ ) ~ , ,  of compensatory  variables  on  the  output 
process is expressed by 
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which  implies that  the full effect of  the  compensatory  variable is felt imme- 
diately  on  the  quality  characteristic.  Furthermore, we assume as before that 
the  noise  variables ( E , ) ~ ,  form  a  white noise  sequence.  These  two  assump- 
tions  guarantee  that  the  closed-loop  variables to, tl ,  . . . are all independent. 
This  makes it  easier  to see how  the MMSE criterion (23) is equivalent  to 
requiring  that  each  square  deviation  be minimized  separately  without 
recourse  to  dynamic  programming  techniques. 

5.1. Control of Deterministic  Trend 

We  consider  the  deterministic  trend  model  of  Section 4.3 with a possible 
shift in the  trend  parameter d and  an additive  disturbance. By (20) and (25) ,  
the  equation of the  output of  the  controlled  process is 

It is clear that  the  control rule has  to be designed for  the  case  where  the  shift 
components pj‘) are  on  their  targets p;, i.e.,  for  the  case 

By (22), . Y , ~ ~  is independent of E,;  hence 

Obviously,  equality is obtained  for 

and  at  the  “current” time t we implement  the  control  action, 

s ,  = -d(t  + 1) 

Hence  the MMSE controller  as defined by (28) corresponds to a  pure 
“feedforward”  controller  (i.e.,  the  observation is not “fed back”  into 
the  control  equation,  but  rather  the  anticipated  disturbance is used). 
Controller (28) is equivalent  to rule dl in Quesenberry (1988) if the  sample 
size k of that  paper  equals 1 .  
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Under the effect of  the  shift  components (P:‘))~”, the effect of control 
rule (28) on  the  output  can, by (26),  obviously be expressed as 

r = l  

5.2. Control of Random  Walk  with Drift 

An  alternative  model  for  linear  drift is the random walk with drift  stochastic 
process.  As in the  second  subsection  of  Section  4.3, we admit possible addi- 
tive shifts  represented by a  process (p(l))No and possible  shifts in the  drift 
parameter represented by a  process (p; (4 By (21) and (25) the  equation of 
the output of  the  controlled  process is 

As in Section 5.1, the  control rule has  to be designed  for  the  case in 
which the  shift components p:‘) are  on  their  targets pT, i.e., for the  case 

By ( 2 2 ) ,  cr-l  - T + (i + - is independent  of E,; hence 

Obviously,  equality is obtained  for 

which defines the MMSE  control rule. 
It is interesting to  contrast  control rules (28) and (31). Equation (31) is 

a  “feedback”  rule, since the  observed  value for  the  quality  characteristic (5,) 
is sent  back to the  controller to determine  the  next  value  of  the  input  vari- 
able (x,). For -yo = 0 we obviously obtain  from (31) that 

I 

X I  = -nt - C(5; - T )  
I= I 
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The  second  term  on  the  right-hand side of (32) justifies the  name  “discrete 
integral  controller” used for  this  type  of  control rules. 

Finally, let us evaluate  the effect of  control rule (31) on  the  output 
quality  characteristic  under  the effect of  the  shift  components (p!‘))N,l. From 
(30) and (32) we obtain 

Inserting (33) into (32) we obtain 

6. DISCUSSION OF SPC IN THE  PRESENCE OF EPC 

Consider  the  output of a  manufacturing process under  the  simple  drift 
controllers of  the  previous  section.  The output witl~out the presence ‘of para- 
meter  shifts is a special case  of (29) or (33) with constants pjl) = 0 and 
pj2) = c/. In both cases we obtain 

S t  = T + E, for all t E N 

In this case,  the  process  output (k t )N is a sequence  of  i.i.d.  random  variables 
with  mean E[5,] = T on  target  and  the  minimum possible  variance 

For a  successful  SPC-EPC integration, it is necessary to  analyze  the 
output of  processes under  EPC  control with shift components.  For  a  sub- 
stantial  discussion we need  simple  instances  of shift components. 

V[6,] = 2 .  

6.1. Effect of Simple Shifts on EPC-Controlled  Processes 

For  many  applications it  is appropriate  to  assume  simple  structured  shifts of 
the  type  given by Eq. (6). In the  models of  Sections 5.1 and 5.2 let us 
consider  the  output processes under this type  of  shift.  We  assume that 
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where 1.17 = 0, p; = d are  the  target values, AI > 0 is the  absolute  shift size, 
vI is the  random  time  until  occurrence of the  shift,  and y I  is the  random sign 
of the  shift. 

Under these assumptions  the  output  equation (29) of the  deterministic 
trend  model  becomes 

where 

is the  indicator  function of a set B c R. 

with drift  model, we obtain  for t 2 2 
Applying  the  same  assumptions  to  the  output (33) of the  random walk 

For  the  control  variable of the  random walk  with drift  model we obtain, by 
inserting (35) into (34), 

The  equations  for  the simpler  models  with  only one possible  shift 
(either  additive or in  the  drift  parameter)  are  obtained  from (36) and (38) 
either by letting v2 = +oo (only  additive  shifts)  or by letting v I  = +oo (only 
shifts in drift  parameters). 

In  the  following  two  sections we discuss (36) and (38) in two  practi- 
cally relevant situations. 

6.2. Shifts  Occurring  During  Production  Time 

In the  deterministic  trend  case,  the  controller  defined by (28) has  no feed- 
back  from  the  output  and is thus  not  able  to  compensate  for  random  shifts. 
As is obvious  from (36), an additive  shift  takes  the  process  mean  away  from 
its  target T to T + 7, A , ,  but  the  output  at least remains  stable i n  its mean. 
A shift in the  drift  parameter is even more  harmful.  After such a shift,  the 
output  mean  has  a  trend  component ( t  - Lv2j)y2A2. I t  is obvious  that in the 
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presence of possible  shifts  such  a  process should be monitored by a  supple- 
mentary  SPC  scheme. 

The feedback controller of (31) or  (32)  for  the  random walk  with drift 
is able to react both  on  additive  shifts  and  on  shifts  in  the  drift  parameter. 
As is obvious  from (38), due  to  the delay  of one time  period in the  con- 
troller's action,  an  additive  shift leads to  only  a single outlier  of  the output 6, 
at t = t u ,  + 11 but  remains  without effect at  further time points.  A  shift in 
the  drift  parameter  can be more  harmful.  After  such  a  shift,  the  output  mean 
is constantly off  target T at T + y2A2.  However,  this  shift  in  the  mean  has 
serious  consequences  only if I y2A2 I is large or if the  cost  of  being  off  target is 
large.  In  such  cases it is reasonable  to  monitor  the process by supplementary 
SPC  procedures. 

6.3. Effect of a  Biased  Drift  Parameter  Estimate 

In  the  approach of  the  model  presented in Section  4.2, a biased estimate of 
the  drift  parameter d can  be  interpreted  as  a  shift in the  drift  parameter  that 
coincides  with the  setup of  the  process. This is quite useful as it allows us to 
study  the effect of  mistakenly  using  a  biased  trend  parameter  estimate in an 
EPC scheme.  Let d be the biased estimate  that is  used instead  of d in the 
control  equations (28) and (31) or (32). Then we can  describe  the  situation 
by (36) and (38) by letting 

and 

The effect of this type  of  parameter shift in the  trend  and  random walk 
models is exactly the  same  as in Section 6.2. 

6.4. Effect of Constraints in the  Compensatory  Variable 

An  important  aspect in practice,  usually  not  addressed in the  literature  on 
SPC-EPC integration, is that  the  compensatory  variable  must usually be 
constrained  to lie within  a  certain  region  of operation, i.e., 
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for all instants t .  In  particular,  integral  controllers  such  as  Eq.  (31)  can 
compensate  for  shifts of any size provided that  the  controllable  factor is 
unconstrained. 

It is useful to  consider  what  would  happen if the  EPC schemes  given 
by Eqs. (28) and (31) were  applied  to  a  constrained  input  process. Since  the 
drift is linear,  the  control  variable x, moves in the  opposite  direction  than 
the  drift  to keep E,/ on  target.  However,  at  some  point  the  controller  hits  a 
boundary  (either A or E )  and  remains  there  afterward.  In  the  control engi- 
neering literature  this is referred to as  “saturation” of  the  EPC scheme. 

Effect of Constraints Under the Deterministic Trend Model 

Let  us  discuss the  case  of  a  constrained  control  variable in the  trend model 
of  Section 5.1. For simplicity’s sake we discuss  only the  case  of cl > 0 with a 
lower bound A < 0. The case of d < 0 with a  corresponding  upper  bound 
E > 0 is completely  analogous. 

The  relationship  between  the  control  variable x, of Eq. (28) and  the 
constrained  control  variable .VI is 

s I  = - d ( r  + 1 )  if t I - A / d  - 1 
if t > - A / ( ]  - 1 

Hence  the output cI  of  the  process under  constrained  control is 

Under  the  simple  shift  components of type  (35)  the output [ I  satisfies the 
right-hand side of (36) for t 5 -A/ t l .  For t > - A / d  we obtain 

Obviously,  the  arguments in favor  of  supplementary  application of 
SPC schemes in the  trend  model  that  are  put  forward in Section 6.2 also 
hold in the  case of constrained  controllers. 
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Effect of Constraints Under the Random Walk Model 

In  the random walk model we also  restrict attention to the  case cl > 0 with  a 
lower bound A < 0. 

Unlike  the  situation for  the deterministic  trend  model,  the time; until 
hitting or falling below the lower bound A is stochastic  and is defined by 

From  (43) the  distribution of K can be found by first determining  the  con- 
ditional  distribution  under vi and y I  and  then  integrating with respect to the 
corresponding  densities. We shall not investigate  this  problem  here. 

The  relationship between  the control  variable s ,  of (39) and the con- 
strained  control  variable .:, is 

x, = 
x, if t < K 

A i f f l ~  (44) 

Hence  the output k l  of  the  process under  constrained  control is 

Under  the  simple  shift  components of type (35) the  output 5, satisfies the 
right-hand  side  of  (38)  for 2 5 t < K + 1.  For t L 2, t 3 K + 1 we obtain 
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In  the  unconstrained  case,  supplementary  application  of SPC in the 
random walk  model  makes sense in only  special cases (see Section  6.2). 
From  Eq. (46), it is evident that in the  constrained  case  supplementary 
application  of SPC is much  more interesting and  perhaps indispensable. 

6.5. Effect of Using a Wrong Model 

We  now  study  what  would happen if a  wrong  drift  model is used. 
Under a deterministic trend, the  relation between the  closed-loop  out- 

put E,, and  the  control  variable . Y , - ~  is given by (26). If the  integral  controller 
defined by (31) is used in this  model,  the explicit expression  for E,, is 

Under the  simple  shifts  of  type (35) we obtain 

Whether  there  are  parameter shifts or  not,  the  output exhibits twice as great 
a variance  as  in  the case of using  the  correct  model. This case occurs in 
Quesenberry’s (1988) d, and [I3 rules. If p:’) = 0 and p:” = tl for all t ,  then 
E,, = T + ( I  - a)&,, which is an MA(1) process, an  always-stationary  time 
series model  (Box and  Jenkins, 1976). 

If parameter shifts  occur, we have  the  following  result.  Except for  the 
single outlier  for v I  < t 5 v I  + I ,  6 ,  is permanently off target  for t > v, with 
absolute  deviation A*. This,  and  the  uncertainty  about  the  correctness of the 
assumptions of  the  model, make it  advisable to use SPC methods i n  addition 
to  the simple EPC schemes. 

If,  on  the  contrary, the  deterministic  trend  controller  (28) is used in a 
random walk with  drift  process,  the  closed-loop  equation is, by (30). 

I I 

In  the  long  run, if  we let t grow  without  bound  and we  use the inverse 
of  the  difference operator, namely, 

then  the  closed-loop equation is 
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If p;’) = 0 and p:?) = d for all t ,  then  the  previous  equation reduces to 

which is a  nonstationary 
var(kr) + 00 as t + co. 

AR(1) process (Box and  Jenkins, 1976) with 

For  bounded values  of t and  under  the simple  shifts  of  type ( 3 9 ,  we 
obtain 

In this  case,  whether  there are  parameter shifts or  not, the output exhibits 
variance  that increases linearly with  time compared with  the  case  of  using 
the  correct  model.  Thus i t  is evident that using an EPC controller  designed 
for a random walk with  drift  model is “safer”  than using an EPC controller 
designed for  a  deterministic  trend  process in case we selected (by  mistake) 
the  wrong  drift  model. 

Taking the  shifts  into  account we have  the  following  result. There is a 
shift in the  mean  for v l  < t and  a shift that results in a  trend  for v2 < t .  
Again, given the  uncertainty about the  correctness  of  model  assumptions it 
is obviously  advisable to use additional SPC methods. 

7. SHEWHART  CHARTS FOR DETECTION OF SHIFTS IN 
THE  DETERMINISTIC  TREND  MODEL 

In  this  section we investigate  the  design  of  a  simple  two-sided  Shewhart 
chart with fixed sampling  interval  for  detection  of  shifts  (i.e.,  abrupt 
changes) in the  trend  parameter of  the  model in Section  5.1. The  chart is 
defined by the  triple (n ,  c, / I )  of  sample size tI, control limit  width  multiple c, 
sampling  distance / I  (i.e.,  the  number  of  discrete  periods  between  samples), 
where t? E N, c E (0; +m), / I  E N, / I  2 tI. The  control  procedure is as  follows. 

(Sl)  At time  points / I ,  211, 3h,  . . . , k h ,  . . . , output  samples (5c,,, . . . , 

(S2) The  absolute value I& - TI of  the difference  of  the  arithmetic 
E,ch+,l-l) of size tI are  taken  from  the process. 

mean 
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of  the  sample  variables  from  the process  target T is compared 
with the  control limit co/J i .  

(S3) If I&. - TI 5 co/Ji, the  manufacturing process continues with- 
out  intervention. If I&. - TI > co/J i ,  the  manufacturing  pro- 
cess is stopped (giving an out-qf’control signul or alurm) and 
inspected for  the  presence  of an additive  shift or  a shift in the 
trend  parameter. If no  shift is detected,  the  manufacturing  pro- 
cess continues  without  further  intervention. If a  shift is detected, 
the  manufacturing process is renewed, i.e.,  the  conditions  of  the 
start of  the  process at time point 0 are  restored,  e.g., by a  repair 
or by complete  overhaul  of  the  production facilities. After  the 
renewal the  process is restarted at time point 0 of the next 
renewal cycle. 

From  the  point of view of the  optimality principles of mathematical 
statistics,  there  may be better tests for  the  detection  of  a  shift in the  trend 
model than  the test defined by rules (Sl), (S2), (S3). Nevertheless,  the  two 
following arguments  support  an  investigation of Shewhart  charts  under  our 
shift  model: 

I .  The simple structure of Shewhart  charts simplifies the design  of 
optimum  charts in a  statistical  or  economic  scheme  of  optimality. 

2. Shewhart  charts  are widely used in industrial  practice.  Most  often, 
the  charts  applied  are  not designed under  a precise  statistical  and 
economic  model  but  from a heuristic  point  of view (sample sizes 
n = 3 , 5 , 7 ;  3 0  limits as  control  limits).  It is interesting  to investi- 
gate  the  behavior of  such  charts  under  the  trend  model of Section 
5.1.  

Here we investigate  Shewhart  charts  from  a  statistical  point  of view. 
This decision is not  supported by principal  arguments; it merely reflects an 
option  for simplicity. An  economic  design is based on  variables  such  as  the 
number of false alarms,  length of a renewal cycle, and  profit  incurred  from 
items  during  a cycle. It is obvious  that  for  a  model  that  admits  both  an 
additive  shift and  a shift in the  drift  parameter,  the  formulas  for  the dis- 
tributions  and expected  values  of  such  variables are  rather  involved.  Thus  an 
investigation  into  the  economic  design  would  lead  to  mathematical  details 
that  far exceed the  scope  of  the  present  chapter,  which is primarily  interested 
in the  structure of a  fundamental model  of SPC-EPC integration  and  a 
simple  application  thereof. 
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7.1. The  Average Run Length 

An  essential  quantity in the  statistical  design of a  Shewhart  chart is the 
rcverrrge  r11n kng1h (ARL), i.e., the expected number of  samples  until  occur- 
rence of an  alarm,  or,  equivalently,  the averugc time to signcll (ATS), i.e., the 
expected  time until  occurrence of an  alarm.  Run  length  and  time  to  signal 
are usually  calculated  under  the  simplifying  assumption  that  the  process is 
either  stable  without  a  parameter  shift or  stable  at  a given parameter  shift. 
In  this  approach  the  problem of  the  time  until  occurrence of a shift is 
ignored.  Interest  concentrates on the  question,  “How  long  does it take  to 
obtain  an  out-of-control signal if the process  has entered  certain  invariant 
conditions  at  an  arbitrarily fixed time  point O ? ”  

To define the  ARL in terms of the  model  of  Section 5.1 we consider  as 
in Section 6.1 fixed absolute shift sizes A, 1 0 with  given signs z /  E (-1, 1). 
A, = 0 is admitted  to express the  case  that  no shift of type i has  occurred. 
Ignoring  the  times  until  occurrence of shifts  and  assuming  that  the  condi- 
tions of the  process  remain fixed from an  arbitrarily  chosen time point 0 on, 
we obtain in analogy  to (36) the  output  equation 

Under  the  control rules (Sl) ,  (S2), (S3), the 1’1111 length, i.e.,  the  number q of 
samples  until  occurrence of an  alarm, is defined by 

We assume  production speed I ;  i.e., one item is produced in one time unit. 
Then  the  total time  until  occurrence of an  alarm (time  to signrcc) is 

l lh + I 1  - 1 

Define 6, = A , / o .  We use this standardization  to  avoid  the  nuisance  para- 
meter 0. 

The  ARL  can now  be  defined as  the expected  value  of q ,  considered a s  
a function A(zl .  t i l ,  z 2 ,  6?) of the shift amounts 6, and  the signs zI of shifts: 

The  corresponding  expected  total time  until  occurrence  of an  alarm  (ATS) is 
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For explicit calculation  of  the ARL the  noise components ( E , ) ~  are 
assumed as i.i.d.,  each E ,  with normal  distribution N(0; 0’). Hence  under 
the  output  equation (50), the test  statistics (&)N are  independent.  where C k  is 
normally  distributed, with parameters 

Hence  the  alarm  probabilities  are given by 

In the  case  of A2 = 0 (no shift in the  drift  parameter),  the  alarm 
probabilities  are  constant in the  number k of the  sample.  Hence we have 
the classical  case: The  distribution  of  the  run length q is geometric  with 
parameter 

Thus, in particular, 

In the  case of A2 > 0 (shift in the  drift  parameter),  the  alarm  prob- 
abilities  vary  in  the number li of  the  sample. The  distribution  of*the  run 
length q is determined by the  probabilities 
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In  this  case we obtain  no simple  expression  for  the ARL. We  have 

From  a  computational  point of  view, it  is better  to write Eq. (57) in 
recursive form: 

with p( 1) = Pl(z l ,  S I ,  z2 ,  62), and  thus 

rn= I 

7.2. Example 

Chemical  mechanical  planarization (CMP) is an  important process in 
the  manufacturing of semiconductors. A key quality  characteristic in a 
CMP process is the  removal  rate  of silicon oxide from  the  surface  of 
each  wafer.  Since  the  polishing  pads  wear  out  with use, a  negative  tend 
is experienced in this  response, in addition  to  random  shocks  or  shifts.  The 
removal  rate  has  a  target of 1800 and is controlled via a  deterministic 
trend EPC scheme. The  errors  are norm$ly distributed with  mean  zero 
and CJ = 60, and  an  estimate of  the  drift d is used for  control  purposes.  It 
is desired not  to let the  process  run  for  more  than an average  of 10 
samples if a  bias in the  drift  estimate of magnitude 0.010 = 0.6 exists. 
In the  absence  of  shifts in the  mean or  trend,  an ARL of 370  is desired. 
In  addition, positive shifts  of size A I  = l o  should be detected,  on  average, 
after  a  maximum of 12 samples if the  aforementioned biased trend esti- 
mate is (incorrectly)  used by the  EPC. 

Table 1 shows  numerical  computations  for this problem using Eqs. 
(57)-(60) and  varying 17 from 1 to IO. Clearly,  the  desired ARL of 370  is 
obtained with c = 3; thus  the  table  shows  results  for  this value  of c. 
From  the  table, A(0,  0, - 1 , O . O l )  = 10.86 for I I  = 4, and 
A(1 ,  I ,  - 1 , O . O l )  = 13.51 for 11 = 5. Therefore,  the  chart design  with the 
smallest sample size that meets the design specifications calls for using 
n = 5 and c = 3. The h design parameter ( h  2 H )  should be decided  based 
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Table 1 Average Run Lengths for the Example Problem, c = 3, / I  = I O  

4 1 ,  1, l.O.01) a - 1 ,  I ,  1 , O . O l )  A(O,O,  I ,  0.01) A ( 1 ,  I , O ,  0) 
n = A(”1,  I ,  - 1 , O . O l )  = A(1,  I ,  -1 ,O .Ol )  = A(O.0, - l , O . O l )  z A(-I ,  I ,  0,O) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  

9.55 
5.68 
4.00 
3.05 
2.46 
2.06 
1.78 
1.57 
1.43 
1.31 

26.62 
21.37 
18.15 
15.64 
13.51 
1 1.67 
10.06 
8.66 
7.46 
6.43 

18.42 
14.21 
12.16 
10.86 
9.93 
9.21 
8.63 
8.14 
7.72 
7.36 

43.89 
17.73 
9.76 
6.30 
4.49 
3.43 
2.76 
2.31 
2.00 
1.77 

upon  economic  considerations  not  discussed in this  chapter  and was 
therefore set to 10. 

Interestingly,  the  third  and  fourth  columns in Table 1 indicate  that  for 
n < 9, a  negative  drift  “masks” positive shifts and vice versa,  making it 
harder  to  detect  a  shift [i.e., this occurs  when  sign(zl) # sign(,-,)]. Also, we 
have  the  relationship 

Figure 1 shows  a  realization of the  controlled  sample  means  for 
this process (&) with no  shifts in the  mean  occurring in the  simulated 
time. The designed chart limits are  shown  superimposed.  In  the  absence 
of  abrupt  shifts in the  process,  the  SPC  chart will detect  the  biased d 
stimate  after  an  average of  9.93  samples (cf. Table I ,  fourth  column), 
although in the figure it was not  detected  until  sample 11. In  practice, 
production will  be stopped  at  the  alarm time and  corrective  action will 
be taken (e.g., replacing  the  polishing  pad),  which will recenter the 
process. 
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0 ?. b 6 B s s ~ b ~ ~ ~ ~ ~ ~ b ~ ~ 0 ~ ~ q ~ a s s s C 4 9  
Sample, k 

Figure 1 A  realization  of sample  means tk for  the case of a deterministic  trend 
EPC uses a  biased trend  estimate.  The  computed  Shewhart limits for  detecting  such 
bios are also shown. , 
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Reliability  Analysis of Customer  Claims 

Pasquale Erto 
University of Naples  Federico 11, Naples, Italy 

1. INTRODUCTION 

Reliability theory is substantially  the  “science  of  failures,” in the  same way 
in which  medicine is the  “science  of  diseases,”  directed toward  curing  or 
preventing  them.  However,  because  each  failure  virtually  implies  the exis- 
tence  of  customer  dissatisfaction  and  complaints, reliability is  in some  ways 
the science of complaints  also  and,  during  the  warranty  period,  the science 
of  claims.  Besides,  to fully exploit i t  in the  context  of  quality  management, 
we must  always  remember  that  its  operative  meaning is “the  probability  that 
a system  possesses and keeps  its  quality throughout timc.” 

In  general, reliability is a  characteristic of systems that possess and 
keep during  their life the  working  qualities  for  which  they  were  designed  and 
realized. In  this  sense reliability is a time-oriented quulity charucteristic [ l ]  
that  can  also be referred to  technical,  productive,  commercial,  and service 
activities that  perform  their  tasks timely and effectively. Technically, relia- 
bility is quantified  as  the  probability  of  no  failures  (i.e., of performing  the 
required  function)  under given environmental  and  operational  conditions 
and  for  a  stated  period of time. 

I n  order  to be concrete, let us develop this point of  view specifically for 
the  car  industry, which constitutes  a  well-known,  crucial,  and effective 
application field. 

Today,  a new car model  must  meet a specified reliability level from  its 
initial  launching  on  the  market,  on  pain of obscuring  the  company  image, 
which will  be restored  only  with difficulty by subsequent  improvements. 
Generally,  the reliability targets  can be achieved by means of good  design, 
many  preliminary life tests  on  components  or  subsystems,  and  a  quality 
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control policy. Nevertheless, in the case  of  mass production, it is essential to 
verify constantly  that these targets  are really fulfilled in service. In fact,  the 
in-service reliability level may turn  out  to be different  from  the  expected  one, 
mainly  owing to Faults in the  production process and/or  to unforeseen 
stresses induced by the real operating  environment.  Then  the  manufacturer 
has a pressing  need to collect and  analyze field data  to  detect  the  causes of a 
possible  discrepancy  between  the in-service and expected reliability, to be 
able  to immediatel$ adbpt' the  necessary  corrective  actions. 

Obviously, since cars  are  products with a wide  range  of  operating 
environments  and users, one  should  have  a  great  many  manufactured 
units  under  monitoring,  over  their  entire life, to  be  confident in the  measure 
of  their reliability. But  the  impracticability  of  such a policy is quite  evident. 
Thus  the  approach generally undertaken  consists in monitoring only the 
units  belonging to homogeneous  samples of limited size (e.g., a taxi fleet) 
and/or  controlling  the  repair  operations of manufactured  units  during  the 
warranty  period.  Other  sources of information,  such as  the  number of spare 
parts  sold,  are  sometimes used, but they are less informative and  are  not 
considered  here. The  monitoring of a vehicle fleet allows  one  to collect 
information  about  the  entire life of the  product,  taking  into  account  both 
early  and  wear-out  failures.  Moreover, i n  many cases, these fleets are  sub- 
jected to more intensive use than  normal,  and  this  makes  it possible to 
obtain  measures  'of reliability in a relatively short time. Nevertheless,  these 
measures  are  generally valid only  for  the  operating  environment  and  use of 
the  particular  sample  chosen,  and i t  is often difficult to  extend  them to other 
situations. Besides,  they cannot  take  into  account  the  impact of subsequent 
improvements. 

The use  of warranty  data  makes timely information  available  at low 
cost  for reliability evaluations.  Obviously, these data  are  truncated  (i.e., 
limited to  the  first  period of life), so they take  into  account mainly  the 
impact  of  early  failures,  but  their use has  the  advantage  of quickly  allowing 
upboth  to  choose  corrective  actions  and  to check  the effectiveness of  those 
just  adopted. , I  

However,  to  better  understand all the  information nested in the  war- 
ranty  data, we must  consider  that  usually  these  data  report  only  the  com- 
ponent  and  failure  codes  and  the mileage  interval in  which  the failure 
occurred.  For  instance, with specific reference to  the  automobile  world, 
no  information is directly provided about the  number of cars  that  cover 
the  various mileage  intervals  without failures, and hence no  direct  knowl- 
edge is  av:lilable about the  population  to which the observed  failures  must 
be I.eferred. In  this  situation, only approximate  estimation  procedures  are 
usually  used. that is, procedures  that  are  generally  based on some a priori 
(and subjective) evaluation  of  car  distribution  versus mileage  intervals. 
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Instead, using  the reliability analysis  approach, we can  rigorously  estimate 
both  the  failure  and  car  distributions versus  mileage. The  method  has 
already  been successfully used  in real-life cases  that  are  partially  reported 
i n  an illustrative  example  included in this chapter. 

2. ANALYSES  FROM  WARRANTY  DATA OF CARS 

I n  a  modern way of thinking,  quality  means  “customer  satisfaction,”  and it 
is feasible to realize quality, in this sense, only  with  the total  quality  manage- 
ment  approach  to  the  management of the  whole  company. In such  a  con- 
text,  the reliability engineers’  involvement  conforms  to this management 
policy  of  the car  industry  too,  aiming  to involve  everyone’s commitment 
to  obtain  total  quality. 

However, in  order  to  plan, realize, or  control a certain  quality level of 
the  cars  produced,  the  availability of an efficacious practical  measure of “in- 
service” quality is first needed.  In  fact,  one  of  the  fundamental rules for  the 
management of total  quality  consists of turning away  from making decisions 
based  exclusively on  personal  opinions  or  impressions.  Instead,  one  needs  to 
refer to data  that  are really representative  of  the  quality  as  perceived by the 
customers,  such  as  the  warranty  data.  These  data,  however,  contain  only  the 
following information: 

1. Vehicle  type  code 
2. Assembly date 
3. Component  and defect code 
4. Mileage to  failure 

In formal  statistical  language,  the  warranty  data  are  failure  observa- 
tions  from  a  sample  that is both  truncated  (at  the  end of the  warranty 
period)  and  has  items  suspended  at  the  number of kilometers effectively 
covered by the  respective  customers. Thus,  to  carry  out  a reliability analysis. 
both  the  number of failures  and  the  number of suspensions  for  each  mileage 
interval  are  required.  Obviously,  the  warranty  data give no mileage  infor- 
mation  about  those vehicles that  are sold and reach the  end  of  each  mileage 
interval  without  any  claim  being  made.  Thus, no direct information is avail- 
able about the  population  to which  the  reported number of failed items  must 
be referred.  Therefore,  the  usual  procedures used by the  automotive  indus- 
try [ 2 4 ]  require  the  a  priori  estimation  (often  arbitrary)  of  the vehicle dis- 
tribution versus  mileage in order  to  partition  the  total  number  of vehicles 
under  warranty  into mileage  intervals.  Note  that  this  distribution  may also 
be very  different  from  case  to case, since it may  concern vehicles under 
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special maintenance  contract  including  the  warranty  period  or only  a  frac- 
tion  of  the  vehicles  under  warranty (e.g., all vehicles from  a  particular 
production  unit),  as well as all vehicles produced in a  given period,  etc. In 
Ref. 5 it is stressed that  the  number of  claims at a specific age  depends  on 
mileage accumulated, so supplementary  information  on  the mileage  accu- 
mulated  for  the  population of cars in service is needed. 

This  chapter  shows  how  one  can  estimate  simultaneously  both  the 
mileage and the  failure  distribution  functions  without  needing  any  a  priori 
estimation.  In  the next  section,  a special case  that  occurred in a real-life 
situation, in which  the proposed  method of analysis  was successfully used, is 
discussed. 

3. A  REAL-LIFE  RELIABILITY  ANALYSIS 

3.1. The  Available  Data  Set 

Failure  data  normally refer to  about 40  different  components  (or  parts) of 
some  car  model. The kilometers  to  failure  are typically grouped  into  equal- 
width lifetimes, each  of 10,000 km,  and all vehicles under  consideration  are 
sold during  the  same year in which  repairs  are  made. 

In our case  from real life [SI, 498 cars were  sold in the  year,  and  the 
total  number of warranty  claims referred to  the  manufacturer was 70. 
Furthermore, irrespective of  the  parts  involved,  this  number of  claims 
were distributed  over  the lifetimes as  shown in Table 1. 

The  characteristic  that  makes  this  case  peculiar is that  no  age  (from 
selling date)  distribution  and  no  distribution of  covered  kilometers are given 
for  the fleet under  consideration.  Hence, it is not  possible to allocate  the 
unfailed units in each lifeime. To overcome this difficulty we can use the 
reliability analysis  approach,  introducing  an  estimation  procedure  that 
involves at  the  same  time  both  the  failure  and  kilometer  distributions. 

Table 1 Number of Warranty  Claims in Each Lifetime 

Number 
of claims 
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3.2. Method of Analysis 

Let T ,  be the  random  variable  (r.v.)  representing  the  “kilometers  to  failure” 
and G(r) = Pr(T, I t )  its  unknown  distribution  function.  Moreover, let F(r) 
be the  probability  that  a  car  sold  during  the year  of observation  does  not 
exceed  the  kilometers t until  the  end  of  this  year.  The  experimental  context 
under  analysis is equivalent  to  a  sampling  (truncated  at  the end of the 
warranty  period) in which  some  of the items under life testing  have  their 
test randomly  suspended  before  failure.  Thus, an r.v. representing  the  “kilo- 
meters  to  suspension,”  say T s ,  is defined  with  the unknown  distribution 
function F ( t )  = Pr(Ts I t ) .  Hence,  it  follows that  the  probability  that  an 
item fails before f km is 

and  the  probability  that  an  item is suspended  before t km is 

Pr{ (T, < t )  n (T, > TS)}  = [l  - G(s ) ]dF(s )  
0 

T, and T s  being independent  random  variables. 
Assuming  that G(t) and F(r) are  exponential  functions,  that is, G(t) = 

1 - exp(“ar)  and F ( t )  = 1 - exp(-bt), the  probability  that  an item fails 
before t becomes 

~ { 1 - exp[-(a + b) t] )  
a + b  

ll 

and, similarly, the  probability  that  an item is suspended  before t becomes 

b 
a + b  
~ { l -  

Some  comments  on  the  assumption of the  exponential  model  for G(t) 
are  required.  Warranty  data  are essentially data  on  early  failures; hence, 
from  a  theoretical  viewpoint,  kilometers  to  failure  should  have  a  decreasing 
failure  rate.  Then,  as an example,  a  Weibull  model  with  shape  parameters 
less than 1 should be more  sound.  However,  experimental  results have 
shown  that in situations  similar  to  the  present  one (see Refs. 3 and 4), the 
shape  parameter of the Weibull distribution is very close to 1. Hence,  it 
appears  that  there is no practical  advantage  to  using  a  more  complex 
model  than  the  exponential  one  for G(t). 
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To explain  the  choice  made  for F ( t ) ,  some  information given in Ref. 2 
about the  kilometer  distribution  versus  age  (from selling date)  for  a fleet of 
European  cars  can be used. I n  Ref. 2, information is available on the  two 
5% tails of the  distributions  at  3,6,9,  and 12 months of car  age. For each of 
these distributions  a Weibull  model that  had  the  same  two 5 %  tails can be 
assumed. In  Figure I the  kilometer  distributions  (at 3, 6, 9,  and 12 months 
of age)  are  reported using a Weibull probability  distribution.  Then  the 
“compound”  kilometer  distribution, which corresponds  to  car  ages  (from 
selling dates)  uniformly  distributed  over  the  range of 12 months, is drawn. 
As can be seen from  the  estimates  reported in Table 2 (calculated  with  the 
maximum  likelihood  method), this distribution  turns  out  to be very close to 
the  exponential, being close to  one  its  shape  parameter. Even if this result 
cannot be considered decisive proof,  the  exponential  model  appears  to be at 
the very least the  preferential  candidate  for F ( t )  in the  present  situation. 

3.3. Estimation Procedure 

In  order  to  estimate  the  two  unknown  parameters, CI and h, we use a very 
powerful  statistical  estimation  method,  the mnsinum likelihood method. 
The logic of  this  method is very  simple, and even those  who  are  not  statis- 
ticians can  take  advantage of it. I t  is founded  on  the idea that  the  probability 
law we are  looking  for is most likely the one-of the  hypothesized family- 
that  shows  the  maximum  joint  probability  density  of  the  collected data 
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Figure 1 Weibull kilometer  distributions at 3, 6. 9, and 12 months and the corre- 
sponding compound  distribution (heavy line). 
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Table 2 Parameter  Estimates of the Kilometer  Distribution  Drawn in Figure 1 

3 1170 6 mo 9 mo 12 mo  Compound 

Weibull  shape 1.13 1.17 1.13 1.14 0.97 

Weibull scale 5.85 1 1.04 17.56 23.25 13.56 
parameter 

parameter 

sample (called the likelihood function, L) .  So those values of the  unknown 
parameters  that maximize the L function  are  the nzasbnum likelihootl esti- 
m ( I 1 e s .  

The  definition of the  probabilities  of  both  failure  and  suspension 
allows us to  construct  the L function  for a sample  arising  from  the  experi- 
mental  situation  under  study [8]. I n  fact,  letting 

N = total  number of cars  under  observation 
11; = number  of  failures  in  the  ith lifetime (TI,   TI+,),   T,  = 0 
111 = number  of lifetimes 
n = Cy:, 11; = total  number of failures 

the  likelihood  function, L, is found  to  be  proportional  to 

The values of ( I  and h that maximize  this function (given a sample with 
known N and ? I ; )  are  the needed maximum  likelihood  estimates of the 
unknown  parameters N and h. 

Reparameterizing  for  convenience  the  likelihood  function in terms  of n 
and c = n + h and  equating  to  zero  the  partial  derivatives of ln(L) yields the 
equations 

and 

(6a) 
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To solve this  last  nonlinear equation in c, an iterative  method is required 
(e.g., the  Newton-Raphson  method).  An initial  tentative  value, e*, can be 
easily found by taking  into  account  that  the  probability  that  an item fails in 
the  ith  interval has  the  nonparametric  estimate n i / N .  Thus, as an example, 
for the first lifetime ( T I  = 0, T2),  (see equation 3), 

Pr[(O < T, I T2) n (r, > T,)] = -[1 - exp(-c7'2)] = - 
(1 nl 
C N 

and since from  the first likelihood equation, u / c  = n / N ,  an initial  tentative 
value  follows: 

c =  
* -ln(l - n l / n )  

T2 

Then  the  estimates a and b = c - a can  be  obtained  without  any  further 
difficulty. 

3.4. Practical  Example  and  Comments 

The  maximum likelihood method was  applied to the  sample  of  warranty 
claims  from  real life given in Table 1. The following  estimates  of  the 
unknown  parameters a and b were found: 

a = 2.1 1 x IOp5  km" and b = 12.93 x km" 

The model  chosen appears  to fit the  experimental  data with an extremely 
high  degree  of  accuracy. In  Table 3  the  observed and  the  estimated  numbers 
of  failures  for  each lifetime are  reported.  The  estimated average  number  of 
kilometers for  the fleet under test is 1/b = 7734 km, which is a very plausible 
value for a fleet of  cars  whose  ages  are  distributed  over 12 months. 

Table 3 Comparison of Collected  and  Estimated  Numbers of Claims 

Lifetimes (km/1000) 0-10 10-20 20-30 30-40 > 40 
No. of claims,  observed 55 1 1  3 1 0 
No. of claims,  estimated 54 12 3 1 0 
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4. SOME CONCLUDING REMARKS 

Sometimes,  the  evaluation  of  the ability of an item to satisfy customers  can 
be carried out effectively only via reliability analysis.  In  fact,  some  stated  or 
implicit customers’  needs  must be satisfied over time, because  they are time- 
oriented  characteristics. So reliability methods conceived to assess the  prob- 
ability of performing  required  functions  for  a  stated  period of  time can be 
the  most  suitable  ones. 

The analysis  of  customer  claims  presented in this  work is only one 
example  of  the  possible  applications  of  the reliability approach.  Another 
example,  not restricted to  the  warranty  period, is given in Ref. 9. 

Moreover, it must  be  pointed  out  that reliability analysis  can  be used 
not only to  constantly verify that  the  quality  targets  are really fulfilled in 
service, but  also  to  help  improve  any  time-oriented  quality  characteristic of 
a  product by estimating  its  current level in the field. Therefore, collecting 
field failure data over  the  entire life of  a product  and  performing  a reliability 
analysis  can  be an effective policy for achieving continuous  improvement of 
products [6]. 

In  this  context, reliability analysis  allows  one  not  only  to  control  the 
failure  or  degradation of product  performance,  but  also to reduce  the  var- 
iation in the  performance  over  time  among  copies of the  same item [7]. In 
order  to  do  that,  many  practical  methods  for  estimating  failure  distributions 
are  available in the reliability literature,  primarily  those  that  integrate  the 
competence  of  both  engineers and statisticians [lo, 111, since, as  has  already 
been said,  only by involving  everyone’s commitment  can  total  quality be 
achieved. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

Brunelle RD,  Kapur  KC.  Customer-centered reliability methodology. 
Proceedings  of Annual Reliability and  Maintainability  Symposium, 
Philadelphia, 1997, pp. 286-292. 
Toth-Fay  R.  Evaluation of field reliability on  the basis of  the  information 
supplied by the  warranty.  Proceedings of EOQC I1 European  Seminar on 
Life Testing  and Reliability, Torino,  Italy, 1971, pp. 71-78. 
Turpin  MP.  Application of computer  methods  to reliability prediction  and 
assessment  in  a commercial  company.  Reliab  Eng 3: 295-314, 1982. 
Vikman S, Johansson B. Some experiences with a programmed Weibull routine 
for  the  evaluation of field test results. Proceedings  of  EOQC I1  European 
Seminar  on Life Testing  and Reliability, Torino, 1971, p. 70 (ext vers pp. 1-20). 
Kalbfleish JD,  Lawless JF,  Robinson  JA.  Methods  for  the  analysis  and predic- 
tion of warranty claims. Technometrics 33(3 ) :  273-285, 1991. 



116 Erto 

6. Jones  JA,  Hayes  JA. Use of  a field failure  database  for  improvement of product 
reliability. Reliab  Eng Syst  Safety 55: 131-134, 1997. 

7. Waync KY. Kapur  KC.  Customer  driven reliability: Integration of QFD and 
robust design.  Proceedings  of Annual Reliability and  Maintainability 
Symposium,  Philadelphia. 1997. pp. 339-345. 

8. Erto P, Guida  M.  Some  maximum likelihood  reliability estimates  from  war- 
ranty  data of cars in users' operation.  Proceedings of European Reliability 
Confercnce,  Copenhagcn, 1986, pp. 55-58. 

9. Erto, P.  Reliability  assessments by repair shops via maintenance  data. J Appl 

I O .  Erto P, Guida  M.  Estimation of  Weibull  reliability from few life tests. J Qual 

I I .  Erto P, Giorgio  M. Modified  practical Bayes estimators.  IEEE  Trans  Reliab 

Stilt 16(3): 303-313. 1989. 

Reliab  Eng  Int  l(3): 161-164, 1985. 

45(1): 132-137, 1996. 



Some  Recent  Developments in Control 
Charts  for  Monitoring a Proportion 

Marion R. Reynolds, Jr. 
Virginia  Polytechnic  Institute  and  State  University,  Blacksburg,  Virginia 

Zachary G. Stoumbos 
Rutgers  University,  Newark,  New  Jersey 

1. INTRODUCTION 

Control  charts  are used to  monitor a production process to  detect  changes 
that  may  occur in the process.  In many  applications,  information  about  the 
process  may be  in the  form of a classification of  items from  the process into 
one of  two  categories,  such  as  defective  or  nondefective, or  nonconforming 
and  conforming.  The  process  characteristic of  interest is the  proportion p of 
items  that fall  in the first category.  For  convenience in describing  the 
problem  being  considered,  the labels “defective” and  “nondefective” will 
be used in this paper  for  the  two  categories. I t  is usually  assumed that  the 
items  from the process are  independent with probabilityp of  being defective. 
This would  then  imply that  the  total  number of defective  items in a  sample 
of /7 items,  say T ,  has a binomial  distribution. In  most  quality  control 
applications  the  primary  objective in using a  control  chart would be to 
detect an increase in p ,  because an increase in p corresponds  to a decrease 
in quality.  However,  a  decrease i n  p would be of  interest if i t  is important  to 
document an improvement in process quality.  Woodall (1997) gives a gen- 
eral review of control  charts  that  can be applied  to  the  problem of monitor- 
ing p. 

The  traditional  approach  to  applying  a  control  chart  to  monitorp is to 
take  samples  of size I Z  at  regular  intervals  and  plot  the values of the  sample 
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proportion defective, Tln ,  on a  Shewhart  p-chart.  The  p-chart  usually  has 
control limits  set at f 3  standard  deviations from  the  in-control  value po 
(three-sigma  limits). Although  the  p-chart is relatively  easy to set up and 
interpret,  it  has  a  number of  disadvantages.  These  disadvantages  are  parti- 
cularly  critical  when po is close to  zero.  Monitoring  a process  with po  close to 
0 is becoming more  and  more  common with  the  increasing  emphasis on high 
quality  production.  Thus, it is important  to be aware  of  the  disadvantages of 
the  p-chart  and  to  consider  better  alternatives. 

The  distribution of T is discrete, and when po is close to  zero  the 
distribution  of T is also  highly  skewed  (unless n is very large).  This  results 
in the p-chart with 30 limits  having  properties very different  from  what 
would be expected  from  a normal  distribution with 30 limits. For example, 
for  many  values  of n and p o  that might  occur in applications,  the  calculated 
lower control limit is negative, so there is, in effect, no lower control limit. 
This  means  that  the  chart will not be able to detect  decreases  in p .  In 
addition, when p = po,  the  discreteness and skewness  of T can result in a 
probability  above  the  upper  control limit that is far  from  the  value  0.00135 
expected  from  the  normal distribution. If the  probability is far  above 
0.00135,  then  the  false alarm  rate will be much  higher  than expected, 
whereas if the  probability is far below 0.00135, then  the  false  alarm  rate 
will be much lower than  expected.  A lower than expected  false alarm  rate is 
undesirable  because it means  that process  changes will be detected  more 
slowly than necessary. 

The  p-chart is a  Shewhart  control  chart  that  plots,  at  each  sampling 
point, the proportion defective  for that  sample  alone.  Information  from  past 
samples is not used, and  this  results in a  chart  that is not very efficient for 
detecting  small  changes  in p .  In  particular, if po is close to  0,  then  the  p-chart 
requires  a very large  value  of 11 to detect  a  small  increase in p within  a 
reasonable  length of time. The  traditional  approach  to  improving  the effi- 
ciency  of  a Shewhart  chart  for  detecting small  process  changes is to use runs 
rules. For the  p-chart, the use of runs rules  might  also  enable  decreases in p 
to be detected  when  there is no lower control  limit.  The  disadvantages of 
using  large  numbers of  runs rules are  that  the  chart is more difficult to 
interpret  and  the  evaluation of  the  statistical  properties  of  the  chart is 
much more  complicated.  Most  evaluations of the  statistical  properties  of 
runs  rules are based on  the symmetrical normal  distribution, with  regions 
within  the control limits specified in terms of the  standard  deviation of  the 
statistic  being  plotted.  Applying  these  runs  rules  to  the  p-chart  results in the 
same  problem  as with  the control limits;  the  discreteness and skewness  of  the 
distribution  of T can result in runs  rules  with  properties  much  different than 
expected. 
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An additional  disadvantage  to using a  p-chart with runs rules is that 
using runs rules is not  the  most  efficient way to  detect  small  changes i n  p. A 
better  approach  to  obtaining  a  control  chart  that will detect  small  process 
changes is to use a  chart,  such  as  a  CUSUM  chart,  that  directly  and effi- 
ciently uses the  past  sample  data  at  each  sample  point.  Although  the dis- 
creteness  of  the  distribution of T will  be an issue with a CUSUM  chart,  the 
fact  that  the  CUSUM  chart is based on a  sum will make  the  discreteness 
much less of a  problem  than in the  case of the  p-chart. In  the  past,  a 
hindrance  to  the  application of CUSUM  charts  to  monitor 17 is that i t  is 
difficult for  the  practitioner  to  determine  the  CUSUM  chart  parameters  that 
will  give specified properties.  Some  tables  or figures have  been  published 
[see, for  example, Can (1993)], but these  tables  and figures do  not include all 
values of I I  and po that would be of  interest i n  applications. 

Another  approach  to  obtaining  more efficient control  charts is to use a 
control  chart  that  varies  the  sampling  rate  as  a  function of  the  process data. 
Although  a large number of papers have  been  published in recent  years on 
variable  sampling  rate  control  charts [see, e.g., Reynolds  (1996a)  and 
Stoumbos  and  Reynolds (1997b)],  only a few papers  have been  published 
on the specific problem  of  monitoring p [see, e.g., Rendtel (1990) and 
Vaughan (1993)]. The  application of  variable  sampling  rate  control  charts 
to  monitoring p has  been  hindered by the difficulty of  determining  the  chart 
parameters  that will give specified properties. 

The objective of this chapter is to  consider  three highly efficient con- 
trol  charts  for  monitoring p that  can be used in three  different  situations. 
The first control  chart is a  CUSUM  chart, called the  Bernoulli CUSUM 
chart,  that  can be used in situations in which all items from  the process are 
inspected.  The use  of 100% inspection is becoming  more  common as auto- 
matic  inspection  systems  are  implemented.  Also. in the  highly  competitive 
global  markets of today  there is an increasing  emphasis on  maintaining a 
very  low proportion of product  that is defective or  that  does  not meet 
specifications. The  sampling  rates  that  are necessary to  discriminate between 
very low values  of p will frequently  correspond  to 100% inspection. 
CUSUM  charts  for  this  problem have  been  considered before [see, e.g., 
Bourke (1991)l. A  disadvantage of  these CUSUM  charts  has been that 
designing  a CUSUM  chart  for  a  particular  application  has been difficult 
unless the values  of n and p o  in the  application  happen  to  correspond  to 
values in published  tables.  A  contribution  of  the  current  chapter is to  show 
how  to design a  CUSUM  chart  for  the  case of 100% inspection  using 
relatively simple and highly accurate  approximations. 

The  second  control  chart  to be considered is a  CUSUM  chart  that  can 
be applied in situations in which  samples  of IZ items are  taken  from  the 
process at  regular  intervals.  CUSUM  charts  for  this  problem have  been 
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studied  before [see, e.g.,  Gan (1993)l. As in the  case  of 100% inspection,  a 
disadvantage of the  CUSUM  chart in this situation  has been that  designing 
one  for  a  particular  application  has been difficult unless the values  of I?  and 
po  in the  application  happen  to  correspond  to  published results. A contribu- 
tion of  the  current  chapter is to  show  how  to design a  CUSUM  chart  for  the 
binomial  distribution using relatively simple  and highly accurate  approxi- 
mations. 

The  third  control  chart  to be considered  here is a  chart  that  can be 
applied  when it is not feasible to use 100% inspection  but it is feasible to 
vary  the sample size used at  each  sampling  point  depending  on  the  data 
obtained  at  that  sampling  point.  The  sample size is varied by applying a 
sequentid prohnhility ratio test (SPRT)  at  each  sampling  point.  This  SPRT 
chart  for  monitoring p is a  variable  sampling  rate  control  chart,  and it is 
much  more efficient than  charts  that  take  a fixed-size sample.  Methods 
based on relatively simple  and highly accurate  approximations  are given 
for  designing  the SPRT  chart. 

The remainder  of  this  chapter is organized  as follows. Sections 2-5 
pertain  to  the Bernoulli CUSUM  chart,  Sections 6-8 pertain  to  the  binomial 
CUSUM  chart,  and  Sections 9-12 pertain  the  the SPRT  chart.  For  each 
chart,  a  description is given, the  evaluation of  statistical  properties is dis- 
cussed, a design  method is explained,  and  a design  example is given. Some 
general  conclusions  are  given in Section 13. 

2. THE  BERNOULLI  CUSUM  CHART  WHEN  USING 100% 
INSPECTION 

When a l l  items from  the process are  inspected,  the  results of the  inspection 
of the  ith item  can be represented  as  a  Bernoulli  observation X ; ,  which is 1 if 
the  ith  item is defective and 0 otherwise.  Then p corresponds  to P(X,  = 1) .  
The  control  chart  to be considered  for this problem is a  CUSUM  chart 
based  directly  on  the  individual  observations X , ,  X,, . . . without  any  group- 
ing into  segments  or  samples.  This  Bernoulli CUSUM  chart is defined  here 
for  the  problem of detecting an increase in p .  The problem of detecting a 
decrcase in p .  as well as  additional  details  about  the Bernoulli CUSUM 
chart,  are given in Reynolds  and  Stoumbos (1999). 

For detecting an increase in p ,  the Bernoulli CUSUM  control  statistic 
is 
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where y > 0 is the  reference  value.  After  the  inspection of item i this 
CUSUM statistic  adds  the  increment X ,  - y to the  previous  value as long 
as  the  previous value is nonnegative,  but  resets  the  cumulative  sum to 0 if 
the  previous  value drops below 0. The  starting value Bo is frequently t ,  '1 k en 
to be 0 but  can be taken  to be  a  positive  value if a head  start is desired [see 
Lucas  and  Crosier (1982)  for  a  discussion  of  using  a  head start in a CUSUM 
chart].  This  chart will signal that  there  has been an increase in p if Bi 3 h H ,  

where hg is the  control  limit.  The reference  value y can be  chosen by using 
the  representation  of  a CUSUM  chart as a sequence of SPRTs.  To  deter- 
mine  the  value  of y i t  is necessary to specify a  value p 1  > pO that  represents 
an  out-of-control value ofp  that  should be  detected  quickly. For a given in- 
control value p o  and a given out-of-control value p I ,  define  the constants 1'1 
and r2 as 

Then,  from  the basic  definition of an  SPRT (see Section  9), it can be  shown 
that  the  appropriate  choice  for y is 

I t  will usually be convenient if y = 1 /nl, where 111 is an integer. For example, 
if po = 0.005 and pI is chosen to be p 1  = 0.010, then  this will  give 
r1 = 0.00504, r2 = 0.6982, and r 1  / r 2  = 0.00722 = lj138.6. In  this  case, if 
p 1  is adjusted  slightly  from 0.010 to 0.009947,  then r l j r 2  will decrease 
slightly to 1/139. This  means  that  the possible  values of Bi will be  integer 
multiples  of 1/139, and this will be  convenient for plotting  the  chart. In 
general, if p0 and p I  are  small,  then  a slight change in p l  will be sufficient 
to  make y = l / m ,  where nz is an integer. In most cases the precise specifica- 
tion ofp ,  will not  be  critical, so this  slight change in pI will  be of no practical 
consequence. 

3. PROPERTIES OF THE  BERNOULLI  CUSUM  CHART 

The  performance of a  control  chart is usually  evaluated by looking at the 
average  run  length (ARL), which is the  expected number of samples 
required to signal. In the  current  context of 100% inspection,  there  may 
be no  natural division of observations  into  samples  or segments, and  thus,  to 
avoid  confusion, we  will  use the (werage nu~nher. of  ohsetvations to .vigwI 
(ANOS)  instead  of  the  ARL  to  measure the performance  of  control  charts. 
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Assuming  that  the  production  rate is constant,  the ANOS can be easily 
converted  to time  units,  and  for  purposes  of  exposition we  will frequently 
refer to  the ANOS as  a  measure of detection  time.  When  the process is in 
control (p = po) ,  i t  is desirable  to have a  large ANOS so that  the  rate of false 
alarms is low. On  the  other  hand, when  there  has  been  a significant change 
in p ,  i t  is desirable  to have a  small ANOS so that  this  change in p is detected 
quickly. I n  the  previous  section pI was  defined as a value  of p that  should be 
detected  quickly,  and  thus  the ANOS should be small at p = p i .  However, i n  
practice, it is usually  desirable  to  consider  a  range  of  values  of p around pI 
and  to  have  a  chart with good  performance  for all of these  values of p .  

The ANOS of  the  Bernoulli CUSUM can be evaluated by formulating 
the CUSUM as  a  Markov  chain [see Reynolds  and  Stoumbos (1999)]. This 
approach gives the  exact ANOS when r l / r 2  is a  rational  number,  but  the 
disadvantage is that  a  computer  program is usually  required.  The  approach 
to be given  here is from  Stoumbos  and  Reynolds (1996) and Reynolds and 
Stoumbos ( 1  999) and is based on using approximations developed by Wald 
(1947) and  diffusion  theory  corrections  to these approximations  obtained by 
Reynolds  and  Stoumbos (1999) by extending  the  work  of  Siegmund (1985). 
The  approximation  for  the ANOS that is obtained using this approach will 
be called the corrected diifir.sio/l (CD) approximation.  The CD approxima- 
tion will form  the basis of a highly accurate  and relatively simple  design 
method  that  requires only a pocket  calculator to design the Bernoulli 
CUSUM for  practical  applications. 

4. A  METHOD FOR DESIGNING  THE  BERNOULLI  CUSUM 
CHART 

To design a Bernoulli CUSUM chart  for  a  particular  application it  will  be 
necessary to specify po, the  in-control value  of p,  and p I ,  the  value of p that 
the  chart is designed to  detect.  The  values  of po  and p 1  will then  determine 
the reference  value y through  Eq. (3). As discussed above, when po  and pl 
are  small i t  will usually be convenient  to  adjust pI slightly so that y = I / / ? ? ,  
where m is an integer.  The design method is presented  here  for  the  case in 
which 0 < p o  < 0.5. The case in which po L 0.5 is discussed i n  Reynolds  and 
Stoumbos (1999). 

In  designing  the  chart it is also necessary to  determine  the value  for the 
control limit h B .  The value  of h, will determine  the false alarm  rate  and  the 
speed  with  which the  chart  detects increases in p .  A reasonable  approach  to 
determining k, is to specify a desired  value  of the ANOS when p = po and 
then  choose /le to achieve  approximately  this  value of the ANOS. It will 
usually not be possible to achieve  exactly a desired  value of  the ANOS 
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because  the  Bernoulli  distribution is discrete.  Once hg is chosen to achieve 
approximately  the specified ANOS  at p = po,  it will be desirable to look at 
the  ANOS  at p = p1 and  at  other values of p to determine  whether  detection 
of shifts i n  p will be fast  enough.  In practice, it may  be necessary to adjust h g  

to achieve  a  reasonable  balance between the  desire to have a low false alarm 
rate (achieved by choosing  a  large hB) and fast  detection  of  shifts in p 
(achieved by choosing a small h B ) .  

The C D  approximation  to  the  ANOS of  the  Bernoulli CUSUM  chart 
uses an  adjusted value  of kg, which will be denoted by hi, in a relatively 
simple formula.  This  adjusted value of hg is 

where E@) can be approximated by 

0.41 0 - 0.0842 log@) - 0.039 1 [log@)13 
-o.oo376[log(p)]4 - o.ooooo8[log(p)]7 

if 0.01 5 p < 0.5 

d P )  x 
if 0 < p < 0.01 

( 5 )  

When p = po,  the C D  approximation to the  ANOS is 

For given values  of rl  and r2 and a  desired  value for  the  in-control  ANOS, 
Eq. (6) can be used to find the  required  value of hi, and  then (4) and ( 5 )  can 
be used to find the  required  value  of h g .  Finding / I :  using (6) can be accom- 
plished by simple  trial and  error. 

In  most  applications it will be desirable to determine  how  fast  a  shift 
from po to p l  will be detected.  The C D  approximation to the  ANOS when 
P =PI 1s 

Note  that / I ;  uses po even though the ANOS is being approximated at p l .  
Approximations  to  the  ANOS  for  other values  of p and a  discussion of the 
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accuracy  of  the CD approximation  are given in Reynolds and  Stoumbos 
(1  999). 

5. AN EXAMPLE OF DESIGNING A BERNOULLI  CUSUM 
CHART 

Consider  a  production  process  for  which it has  been  possible to  maintain  the 
proportion defective at  a low level, po = 0.005, except for  occasional  periods 
in which the  value of p has increased above this level. All items from this 
production process are  automatically  inspected,  and  a  Shewhart  p-chart is 
currently  being  used to  monitor  this  process.  Items  are  grouped  into seg- 
ments  of I I  = 200 items for  purposes of  applying  the  p-chart. If 3 0  limits are 
used  with the  p-chart,  then  the  upper  control limit is 0.01996, and  this is 
equivalent  to  signaling if TI z 4, where q is the  number of defectives in the 
j t h  segment.  When p = po  = 0.005,  this  results in P ( q  2 4) = 0.01868, and 
it was  decided that this probability of  a false alarm was too  high.  Thus,  the 
upper  control limit of the  p-chart was  adjusted so that  a signal is given if 
T/ 5 ,  and this gives a  probability of  0.00355 for  a false alarm.  There is no 
lower control limit because  giving  a signal for T, = 0, the  lowest  possible 
value  of T/, would result in  P(T, = 0) = 0.3670  when p = po ,  and  thus  the 
false alarm  rate  would be unacceptably  high.  When p = p o ,  the expected 
number of segments  until  a signal is 1/0.00355 = 282.05.  Each  segment 
consists  of 200 items, so this  corresponds  to  an  in-control  ANOS of 
56,410  items. 

To design  a  Bernoulli CUSUM  chart  for  this  problem,  suppose  that 
process  engineers  decide  that it would be desirable  to quickly  detect any 
special cause  that  increases p from 0.005 to 0.010 and  that  the  in-control 
ANOS  should be roughly  56,410  (the  value  corresponding  to  the  p-chart in 
current  use).  From  a  previous discussion  of  the  case  of 170 = 0.005 and 
y l  = 0.010, it was  shown  that  adjusting pI slightly from 0.010 to 0.009947 
would give r 1 / r 2  = 1/139,  and  thus I H  = 139. Using  trial  and  error  to  solve 
(6)  to give ANOS(po) X 56,410  results in a  value  of / I >  of  6.515  [this  value of 
/ I >  will give an  in-control ANOS of  56,408 according  to  the  approximation 
of Eq. (6)]. Then, using  (4) and ( 5 )  to  convert  to / I ,  gives ~ ( p )  = 4.646, &(po)m = 0.328, and /lg = 6.187. As a  point  of  interest,  the  exact in- 
control  ANOS using h B  = 6. I87  can be calculated  to be  56,541  by using 
the  methods given in Reynolds  and  Stoumbos (1999). Thus, in this case  the 
C D  approximation gives results that  are extremely close to  the  exact  value 
and  certainly  good  enough  for  practical  applications. 

After / I ,  has been  determined,  Eq.  (7)  can  be  used  to  determine  how 
fast  a  shift  from po  to p ,  will  be detected.  Using / I >  = 6.515 in (7) gives 
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ANOS(pI) 1848. Interestingly,  the  exact ANOS  can be calculated to be 
1856, so the C D  approximation is also very good  at p = p l .  At p = PI ,  the 
ANOS of the  p-chart is 3936 items. Thus,  the  p-chart  would  require  on 
average more  than twice as  long  as  the Bernoulli CUSUM  chart to detect 
a  shift  from yo to p I .  

6. THE  BINOMIAL  CUSUM  CHART 

In  many  applications 100% inspection  of  the  process output will not be 
feasible, and  thus  samples  from  the  output will have to be used for  mon- 
itoring.  In  this  section,  the  problem  of  monitoring p when the data from  the 
process  consist  of  samples  of fixed size tz that  are  taken  at fixed sampling 
intervals  of  length d is investigated. If  T k  is used to represent  the  total 
number  of defectives observed in the kth  sample,  then the  statistics 
T I ,  T,, . . . are  independent  binomial  random variables. The  control  chart 
to be considered  here is a CUSUM  chart based on these  statistics. 

The  binomial  CUSUM  chart uses the  control  statistic 

and signals at  sample h- if Yk 2 h y ,  where Yo is the starting value and y is 
given by (3). The reference value of this CUSUM  chart is t7y = t / r l / r ? ,  and 
this reference value is appropriate  for  detecting a shift to pl .  

In the current  situation in which samples  are  taken  from the  process, 
the  performance  of  a  control  chart  can be measured by the ccverrrge tirne t o  
sigr/nl (ATS). As in the  case  of  using  the ANOS in previous  sections, when 
p = po the  ATS  should be large, and when p shifts  from p o  the ATS  should 
be  small.  In  evaluating  the ATS of the  binomial CUSUM  chart, it wll be 
assumed for simplicity that  the time  required to take  and  plot  a  sample of 11 

observations is negligible relative to the  time d between samples. I n  this  case, 
the ATS  can be expressed  as  the product of d and the avc~crge rnrndwr of’ 
scrr?lplc.s t o  sigrlcrl (ANSS).  Can (1993) discusses Markov  chain  methods  for 
evaluating  the  ANSS  of  the  binomial CUSUM  chart. Here we use C D  
approximations  to design  the  binomial CUSUM  chart. 

When  the  ATS is used as  a  measure of the  time  required to detect a 
shift in p ,  the  ATS is usually computed  assuming  that  the shift in p occurs 
when  process  monitoring starts. However, in many  cases  the  process  may 
run  for  a while at the  in-control  value po and then  shift  away  from po at 
some random time in the future. In  this case the  detection  time  of  interest is 
the time from  the  shift  to  the signal by the control  chart.  For  control  charts 
such  as  the CUSUM  chart, the computation of this  expected  time is com- 
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plicated by the  fact  that  the  CUSUM  statistic  may  not be at its  starting 
value  when  the  shift in p occurs. If it is assumed  that  the  CUSUM  statistic 
has reached  its stationary or steady-state  distribution by the  time  the  shift 
occurs.  then  the  expected  time  from  the shift to  the signal is called the 
steady-state ATS  (SSATS).  When  peforming  comprehensive  comparisons 
of  different  control  charts, it is appropriate  to  consider  the  SSATS  as  a 
measure of detection  time.  However,  for  the  limited  comparisons  to be 
given in the design  examples in this paper,  the  ATS will be  used. 

7. A METHOD FOR DESIGNING  THE  BINOMIAL  CUSUM 
CHART 

A method  for  designing  the  binomial  CUSUM  can be developed by using 
CD approximations  to  the  ANSS  and  the  ATS.  This  method is presented 
here for  the special case in which po  < 0.5 and I/ny is a positive integer. 
Extensions  of this method  to  more general  cases are  currently  under devel- 
opment. 

The CD aproximation  to  the  ANSS of  the  binomial CUSUM uses an 
adjusted  value  of I t y ,  which will  be denoted  as I&, in a relatively simple 
formula.  The  adjusted value of llY is 

When p = p o ,  the CD approximation  to  the  ANSS is 

When p = p I ,  the C D  approximation  to  the  ANSS is 

An  approximation  to  the  ATS is obtained by multiplying  the  ANSS by the 
sampling  interval d. 

To design  a  binomial CUSUM  chart,  the values of po and p I  can  be 
specified, and then  these  values will determine  the  reference  value y through 
Eq. (3). To use the CD approximations given above it will  be necessary to 
choose values of I I  and pI such that 1 /ny is a positive integer.  In this case,  the 
possible  values  of the  binomial CUSUM statistic Y ,  will  be integer multiples 
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of ny. Thus, in considering  values  for h y ,  it is sufficient to  look  at values that 
are integer multiples of ny. These  values  of /lY will correspond  to  certain 
values  of / I * ,  using (9). Using the  approximation (lo), the value  of /I;. can  be 
selected that will  give approximately  the desired  value for  the  in-control 
ANSS. Then  the / t y  to be  used can be obtained  from / I ; ,  by using (9). 

8. AN EXAMPLE OF DESIGNING A BINOMIAL  CUSUM 
CHART 

Consider  a  situation  similar  to  the  example in Section 5 in which  a Shewhart 
p-chart is being  used to  monitor a production process for which  the in- 
control value of p is p o  = 0.005. Instead  of  using 100% inspection for this 
process,  suppose  that i t  is necessary to  take  samples  from  the process out- 
put.  The value of po is relatively small,  and  thus i t  is necessary to  take 
relatively large  samples  for  the  p-chart  to be able  to  detect  small  increases 
in p above po. Suppose  that  samples of size I I  = 200 items are used (the  same 
as  the size of  the  segments in the  example in Section 5) .  To keep  the total 
sampling  effort  to  a  reasonable level, the  samples  are  taken  from  the  process 
every d = 4  hr. As i n  the  previous  example,  the  upper  control limit of  the p-  
chart was  adjusted so that a signal is given if Tk 2 5 ,  which gives 
P(Tk 2 5 )  = 0.00355  when p = po. This  corresponds  to  an  in-control 
ANSS of  1/0.00355 = 282.05 and  an  in-control ATS of 
4(282.05) = 1128.2 hr. 

Consider  now  the  design  of  a  binomial CUSUM  chart  assuming  that 
samples will  be taken every d = 4 h r  as  described  above.  Suppose  that  pro- 
cess engineers  decide  that it is important  to  detect  a shift in p from 
po = 0.005 to p I  = 0.010 and  that i t  would be reasonable to have an in- 
control ANSS of approximately 282 (the  same  as  the  value  for  the p -  
chart). As in the  example in Section 5 ,  adjusting p I  slightly from 0.010 to 
0.009947 will  give y = rl/rZ = 1/139. I f  IZ is taken  to be 139, then  the refer- 
ence  value  of  the  binomial CUSUM  chart becomes r7y = 139/139 = 1. 
Many  practitioners  might prefer to  have I?  = 140, rather  than 139, and 
this  can be achieved by an  additional slight adjustment i n  p I .  I fp l  is adjusted 
to 0.009820,  then this will  give y = r , / r 2  = 1/140. Then,  taking j 7  = 140 
gives  a  reference  value  of rty = 140/140 = 1 .  

The reference  value  for the  binomial CUSUM  chart is 1,  so i t  follows 
that it is sufficient to  look  at values for h y  that  are  integer  multiples of I .  If 
several values of /ly are  tried, it is found  that using h y  = 5 in Eq. (9) gives 
17; = 5.33, and using this h*y in Eq. ( I O )  gives ANSS(Jo) % 228.7. As a point 
of  interest,  the  exact ANSS for this value  of / I  is 228.6. Using h, = 6 i n  Eq. 
(9) gives h*y = 6.33, and using this /I;, in ( I O )  gives ANSS(Jo) M 471.8 (the 
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exact  value is 47 1.3). Neither  of  these  ANSS  values is extremely close to the 
desired  value  of 282, but  suppose  that  it is decided that 228.7 corresponding 
to h Y  = 5 is close enough. Using h Y  = 5 will give an  in-control  ATS of 
approximately  4 x 228.7 = 914.8. Using h Y  = 5 and /7;, = 5.33 in (11) 
gives ANSS(pI) x 11.6 (the  exact  value is 11.9). This  corresponds  to  an 
ATS  at p = p 1  = 0.0098 of  approximately  4 x 11.6 = 46.4hr.  At p = p I ,  
the ATS of  the  p-chart is 80.3 hr.  Thus,  the  binomial  CUSUM  chart will 
detect a shift to p I  faster  than the p-chart will. Note  that the p-chart is 
sampling at a higher  rate than  the  CUSUM  chart (200 every 4  hr versus 
140 every 4  hr),  but the CUSUM  chart  has  a slightly higher false alarm  rate. 

When  the  p-chart is being used to detect  small  increases in p  above  a 
small  value  of p o ,  it is necessary to use a large  sample size to detect  this 
increase in a  reasonable  amount of  time.  This  may  require that  the  sampling 
interval cl  be relatively long in order  to  keep  the  sampling cost to a  reason- 
able level. However,  for  the  binomial CUSUM  chart it is not necessary to 
have  large; it is actually  better to  take smaller  samples at  shorter  intervals. 
Thus,  as  an  alternative to taking  a  sample of = 140 every r l  = 4  hr,  con- 
sider  the option of  taking  a  sample  of /? = 70 every cl = 2  hr. If the  binomial 
CUSUM  chart uses 11 = 70 and p 1  = 0.009820, then  the  reference  value will 
be 11 = 70/140 = 0.5, and the  possible  values for Y,  will be integer  multiples 
of 0.5. Thus, i t  is sufficient to  look  at values for h Y  that  are integer  multiples 
of 0.5. If the  p-chart  has  an  in-control  ATS of 1128 and i t  is desirable to 
have  approximately  the  same  value  for  the  binomial CUSUM with d = 2, 
then  the  in-control  ANSS  should be I128/2 = 564. Using h y  = 5.5 in (9) 
gives /I;. = 5.83, and using  this i n  ( I O )  gives ANSS(po) X 558.5 (the exact 
value is 557.9). This  corresponds  to  an  in-control  ATS of  approximately 
2 x 558.5 = 1 1  17.0.  Using (1 1) gives ANSSGI~) x 24.6 (the  exact  value is 
25. I ) .  This  corresponds to  an  ATS  at p = pI = 0.0098 of approximately 
2 x 24.6 = 49.2 hr.  Compared  to  the  p-chart.  this  binomial  CUSUM  chart 
has  almost the  same false alarm  rate  and  a lower sampling  rate, yet it will 
detect  a  shift to p 1  much  faster. 

As another  alternative  to  taking a sample  of = 140 every d = 4  hr, 
consider  the option of  taking  a  sample of = 35 every hour.  If  the  binomial 
CUSUM  chart uses I ?  = 35 and pI = 0.009820. then  the reference value will 
be n y  = 35/140 = 0.25, and the  possible  values  for Y,  will be integer  multi- 
ples of 0.25. Thus, it is sufficient to look at values for h y  that  are integer 
multiples  of  0.25. If  the  p-chart  has  an  in-control  ATS of 1128 and it is 
desirable  to  have  approximately  the  same  value  for  the  binomial CUSUM 
with d = I ,  then  the  in-control  ANSS  should be 1 128. Using h Y  = 5.75 in (9) 
gives h;. = 8.08, and using this I?;, in (10) gives ANSS@{)) 1228.2 (the 
exact  value is 1226.6). Because cl = 1, this corresponds  to  an  in-control 
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ATS of 1226.2hr.  Using ( 1  1) gives ANSSQl) zz 50.7 (the  exact value is 
51.3). This  corresponds  to  an  ATS  at p = p1 = 0.0098  of  50.7 hr. 

The  three  binomial  CUSUM  charts  that have  been  considered  here 
have  the same  sampling  rate  of 35 observations  per  hour.  However,  their 
false alarm  rates  are  not  exactly  the  same, so it is difficult to  do precise 
comparisons of the  charts. But  based on  the results given for these charts, i t  
seems  clear that  taking small  samples  at  frequent  intervals  would give fast 
detection  of  process  shifts. If I I  is reduced to  the smallest  possible  value, 1, 
then  the  binomial CUSUM  chart reduces to  the Bernoulli CUSUM  chart 
discussed  previously.  Using I I  = 1 might  be  the  best way to  apply a CUSUM 
chart  from  a  statistical  point of view, but  taking  samples of size / I  = 1 might 
be inconvenient in some  applications. 

9. THE SPRT CHART 

CUSUM  charts, such as  the  binomial CUSUM  chart described  previously. 
can be thought of as sequences  of SPRTs carried  out  over  successive  sam- 
pling points.  The  SPRT  chart  to be considered in this section is based on 
using SPRTs in a different  way.  In  particular,  the SPRT  chart is based on 
applying a sequential test (an SPRT)  to  the  individual items  inspected at 
each  sampling  point. A description of the  SPRT  chart  for  the  case of mon- 
itoring  a general parameter is given by Stoumbos  and  Reynolds  (1996)  and, 
for  the  case of monitoring  the  mean of a  normal  distribution, i n  Stoumbos 
and  Reynolds (1997b). More  details  about  the  current  problem of applying 
the  SPRT  chart  to  monitor p are given in Reynolds  and  Stoumbos  (1998). 
In  the  context of hypothesis  testing,  the SPRT is a general  sequential test 
that  can be applied  to test a simple null hypothesis  against a simple  alter- 
native  hypothesis. For  the  case of a test involving the proportion defective p ,  
the SPRT can be  used to test the null hypothesis H,):p = / l o  against  the 
alternative  hypothesis H l : p  = p l .  In  the  context  of  monitoring p ,  po  
would be the  in-control  value  of p ,  and pI would be a value that  should 
be detected  quickly,  as  defined in previous  sections. 

Suppose  that  a  sampling  interval of length d is used for  sampling  from 
the process.  At  each sampling  point items from  the process are inspected one 
by one  and  an  SPRT is applied, with  the  sample size used at  each  sampling 
point being  determined by the SPRT. If  items can be inspected  quickly 
enough,  then  the  inspection  can be done  on  consecutive items a s  they 
come  from  the  process. For example, if an item is produced every IOsec 
and  the  inspection  and  recording of the result take  no  more  than I O  sec, then 
inspection  can be done  as  the items are  produced.  On  the  other  hand, if  the 
inspection  rate is slower than the production  rate, then  inspection  could be 
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done  after  production  on  items  that  have been accumulated.  Alternatively, 
inspection  could  be  done  on  items  as  they  come  from  production.  with  some 
items skipped.  For  example, if an item is produced every I O  sec but inspec- 
tion  requires  between 30 and 40 sec, then  every third  or  fourth  item  could be 
inspected during  inspection  periods. 

If the SPRT applied  at  sampling  point k accepts H o : p  = y o ,  then the 
decision is that  the  process is in control.  The process is then  allowed to 
continue  to  the next sampling  point, k + I ,  at which  time another  SPRT 
is applied. But if the  SPRT  applied  at  sampling  point k rejects Ho,  then this 
is taken as a signal that  there  has been  a change in p .  Action  should  then be 
taken  to find and  eliminate  the  cause of this change in p .  Thus,  the  SPRT 
chart involves  applying an  SPRT  at each  sampling  point  and  giving  a signal 
whenever one of  these SPRTs rejects Ho. 

To define the  SPRT  that is applied  at  sampling  point k ,  let the 
Bernoulli random  variable X,, be defined by X,, = 1 if the  ith  item at  sam- 
pling point k is defective and by X,, = 0 otherwise.  The  statistic used  by the 
SPRT is defined  in  terms  of  a  log  likelihood ratio  using  the  density 
/ ( s ;  p )  = p y (  1 -p)'-." of X,, .  After  the j t h  item is inspected at  sampling 
point k ,  this log  likelihood  ratio  statistic is 

where  the constants r l  and r2 are defined by ( 2 ) ,  and 

, = I  

is the  total  number of  defective  items in the first ,j items  inspected at  sam- 
pling point k. 

The  SPRT  chart requires  the specification of two  constants CI and h, 
h < ( I ,  and uses the  following rules for  sampling  and  making  decisions. 

1. At  sampling  point k ,  if b < Sk/ < a, then  continue  sampling. 
2 .  At  sampling  point k ,  if S,, 2 a, then  stop  sampling  and signal that 

p has  changed. 
3. At  sampling  point k ,  if S,, 5 h, then  stop  sampling  at  sampling 

point k and wait  until  sampling  point k + 1 to begin  applying 
another  SPRT. 

The inequality 
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determines  when  the SPRT  continues  sampling  and is usually called the 
critical  inequality of the  SPRT.  In  some  applications it may be more  con- 
venient to  carry  out  the  SPRT by dividing S k ,  by r2 to  obtain  an  equivalent 
critical inequality. If p ,  > Po, then  this  equivalent critical inequality is 

where g = h/rZ, 11 = a/r2,  and y is given by (3). Thus,  after  inspecting  thelth 
item at  sampling  point k ,  the  SPRT is carried out by determining Tk/, sub- 
tracting y j ,  and  comparing  the result to g and h .  If (1 5) holds,  then  inspec- 
tion is continued  at  this  point; if T k ,  - y j  2 h, then  sampling is stopped  and 
a signal is given; and if Tk/ - y j  5 g ,  then  sampling is stopped  until  the time 
for  sample k + 1 is reached. 

As in the cases  of the Bernoulli CUSUM  and  the  binomial  CUSUM, it  
will usually be convenient  to  have y = l / m ,  where m is a positive integer, so 
that  the  SPRT  statistic Tk, - y j  in (15) will take  on values that  are integer 
multiples  of y. It will usually be possible to  make y = l / m  by a slight 
adjustment of p l .  When y = l /m ,  m a positive integer,  the  acceptance 
limit g in (15) can be chosen  to be an integer  multiple  of llm, and this 
will ensure  that  the  SPRT  statistic Tk, - y j  will exactly hit g when the test 
accepts H,. In  the  development  of  the SPRT  and the SPRT  chart  that 
follows it  is assumed  that y = I/m and  that g is an integer  multiple  of y. 
If T k ,  - y j  is an integer  multiple  of y, then it follows that  the rejection limit h 
can  also be taken  to be an integer  multiple  of y, although Tk, - y j  may still 
overshoot h when the test rejects Ho. 

10. THE  PROPERTIES OF THE  SPRT  CHART 

When  evaluating  any  hypothesis  test,  a  critical  property  of  the test is deter- 
mined by either  the  probability  that  the test accepts  the null hypothesis  or 
the  probability  that  the test rejects the null hypothesis,  expressed as func- 
tions of the value  of the  parameter  under  consideration.  Following  the 
convention in sequential  analysis, we work  with  the operating  cllaracteristic 
(OC)  function, which is the  probability of accepting Ho as a  function of p. 
For most  hypothesis  tests  the  sample size  is  fixed before  the  data  are  taken, 
but  for  a  sequential test the  sample size, say N ,  depends  on  the  data  and is 
thus  a  random  variable.  Therefore,  for  a  sequential test the  distribution of N 
must be considered.  Usually, E ( N ) ,  called the a w a g e  sample tlumber (ASN), 
is used to  characterize  the  distribution of N .  
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Each SPRT either  accepts or rejects Ho,  and  thus  the  number  of 
SPRTs until  a  signal has a  geometric  distribution  with  parameter 
1 - OCg7). Because  each SPRT  corresponds  to  a  sample  from  the process, 
the expected number  of  SPRTs until  a  signal is the  ANSS. For the  SPRT 
chart,  the  ANSS  for  a given 17, say ANSSb), is thus  the  mean  of  the geo- 
metric  distribution, which is 

ANSSQ) = 
1 

1 - OCQ) 

When  there is a fixed time  interval el between  samples and  the  time 
required  to  take  a  sample is negligible, then  the  ATS is the  product of d and 
the  ANSS.  Thus,  the  ATS  at p ,  say ATSO,),  is 

When p = pO, then 1 - OC(p,) = a, where cx is the  probability  of  a  type I 
error  for  the  test.  The  ATS is then 

When p = p i ,  then 0C(pi) = p, where p is the  probability  of  a  type I1  error 
for  the test. The  ATS is then 

Exact  expressions  for  the OC and  ASN  functions  of  the  SPRT  for p 
can  be  obtained by modeling  the SPRT  as a  Markov  chain [see Reynolds 
and  Stoumbos (1998)l. These  expressions,  however,  are relatively compli- 
cated,  and  thus it would be convenient to have  simpler  expressions  that 
could  be used  in pratical  applications.  The  remainder  of this  section is 
concerned  with  presenting  some  simple  approximations  to  the OC and 
ASN  functions.  These  approximations to the OC and  ASN  functions  are 
presented  here for  the  case in  which 0 < po < 0.5. The case in which po 2 0.5 
is discussed in Reynolds  and  Stoumbos (1998). 

When  the  SPRT is used for  hypothesis  testing, it is usually  desirable to 
choose  the  constants g and / I  such  that  the test has specified probabilities  for 
type I and type I1 errors.  The CD approximations to the OC and  ASN 
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functions use an adjusted  value  of / I ,  which will be denoted by / I * ,  in a 
relatively simple  formula.  The  adjusted  value of / I *  is 

It is shown in  Reynolds and  Stoumbos ( 1  998) that choices for g and / I*  based 
on the CD approximations  are 

/ I *  23 - I log(--) I-P 
1’2 

and 

If nomial  values are specified for CY and p, then g and / I *  can be  determined 
by using Eqs. (21) and (22), and then  the  value of / I  can be obtained  from / I *  

by using Eq. (20). 
The CD approximation to the ASN at po and pl can be  expressed 

simply in terms of c1 and P [see Reynolds and  Stoumbos (1998)l. For 
p = p o ,  this  expression is 

and  for p = p l  the  expression is 

Thus,  for given c1 and [3, evaluating  the ASN at po and p 1  is relatively easy. 

11. A METHOD FOR DESIGNING THE  SPRT  CHART 

To design the SPRT chart  for  practical  applications i t  is necessary to deter- 
mine  the  constants g and / I  used in  each SPRT. In many  applications it is 
desirable  to specify the  in-control  average  sampling  rate and the false alarm 
rate  and design the  chart  to achieve  these  specifications.  Spe-ifying the 
sampling  interval r l  and ASN(p,J will determine  the  in-control  average sam- 
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pling  rate, and specifying  ATS(po) will determine  the  false  alarm  rate.  Once 
these quantities  are specified,  the  design  proceeds as follows. 

The value of c1 is determined by using Eq. ( I  8) and  the specified values 
of d and ATS(po). Then, using  (23),  the  value  of p can be determined  from 
the specified value of ASN(p,) and  the value  of c1 just  determined. 
Expression  (23) cannot be solved  explicitly  for p in terms of 01 and 
ASN(p,), so the  solution  for p will have to be determined  numerically. 
Once c1 and  are  determined,  Eqs. (21), (22 ) ,  and (20) can be used to 
determine g and h. 

12. AN  EXAMPLE OF DESIGNING  AN  SPRT CHART 

To illustrate  the  design  and  application  of  the SPRT  chart,  consider  an 
example  similar to the  examples  of  Sections 5 and  8 in which  the  objective 
is to  monitor  a  production process  with po = 0.005. Suppose  that  the  current 
procedure  for  monitoring  this process is to  take samples of n = 200 every 
d = 4  hr  and use a p-chart  that signals if five or  more defectives are  found in 
a  sample.  Suppose  that items are  produced  at  a  rapid  rate  and  an item  can 
be  inspected in a  relatively short time.  In  this  case,  process  engineers are 
willing to use  a  sequential  inspection  plan in which  items are inspected one 
by one  and  the  sample size at each  sampling  point  depends  on  the  data  at 
that  point.  In  this  example  the time  required  to  obtain  a  sample is short 
relative to  the time  between  samples, so neglecting  this  time  in computations 
of quantities such as  the  ATS seems to be  reasonable. 

As in  the  example in Section 5, suppose  that p1 is specified to be 0.010 
and  then  adjusted slightly to 0.009947, so that y = 1/139. For the  first  phase 
of the  example,  suppose  that it is decided that  the  SPRT  chart  should be 
designed to have  the  same  sampling  interval,  the  same  in-control  average 
sampling  rate,  and  the  same  false  alarm  rate  as  the  p-chart.  Then d can be 
taken to be 4,  the  target  for  ASN(po)  can be taken  to be 200, and the  target 
for ATS(p,) can be taken to be 1 128 hr. 

First  consider  the  problem  of  finding g and k in critical  inequality (1 5 )  
of the SPRT. Using  the  specifications  decided upon  for  the  chart, Eq. (18) 
implies that c1 should  be  0.003545.  Then,  solving  (23)  numerically  for p 
gives p = 0.7231. Then, using  Eqs.  (21) and (20) gives h* = 
log(0.2769/0.003545)/0.6928 = 6.2906 and h = 5.9606, and using Eq. ( 2 2 )  
gives g = log(0.7231/0.996455)/0.6928 = -0.4628. Rounding g and 12 to the 
nearest  multiple  of ljl39 gives g = -64/139 = -0.4604 and h = 
828/139 = 5.9568. Thus, the SPRT  chart  can be applied in this  case by 
using  the  critical  inequality 
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-0.4604 < Tk,  - (j139) < 5.9568 (25) 

The in-control  ASN  of  this  chart  should be  approximately 200 (the exact 
value is 198.97), and the  in-control  ATS  should be approximately 1128 hr 
(the  exact  value is 1128.48 hr). Using Eq. (24),  this  chart’s ATS  at 
p = pI = 0.009947  should be approximately d/(l - p) = 4/ (1  - 0.7231) = 
14.45  hr (the exact  value is 14.51 hr).  Thus,  compared  to  the value  of 
78.73  hr  for  the p-chart,  the  SPRT  chart will provide  a  dramatic  reduction 
in the  time  required to detect  the  shift  from po to p1. 

The value  chosen  for pI is really just  a convenient  design  device  for  the 
SPRT  chart, so this  value  of p would  usually not be the  only  value that 
should be detected  quickly. Thus, when  designing an  SPRT  chart in prac- 
tice,  it is desirable  to use the CD approximation  (or the  exact  methods) given 
in Reynolds  and  Stoumbos (1998) to find the  ATS  for  a  range of values  of p 
around p l .  For the  evaluation  to  be given here,  exact ATS values  for  the 
SPRT  chart were  computed  and  are given in column  3  of  Table 1. ATS 
values  for  the p-chart  are given in column  2  of  Table 1 to serve as  a basis  of 
comparison.  Comparing  columns  2  and  3 shows that, except for large  shifts 
in p ,  the  SPRT  chart is much more efficient than  the  p-chart.  When  con- 
sidering the  binomial CUSUM in  Section 8, it  was  argued that  it is better  to 
take small  samples at  more  frequent  intervals  than  to  take large  samples at 
long  intervals. To determine  whether  this is also  true  for  the  SPRT  chart,  an 
SPRT  chart was  designed to have an  approximate  in-control  ASN of 50 and 
a  sampling  interval  of d = 1 hr.  This  would give the  same  sampling  rate  of 
50 observations  per  hour  as in columns  2  and 3. The  ATS values  of  this 
second SPRT  chart  are given in column  4  of  Table 1. Comparing  columns  3 
and  4  shows  that using  a  sampling  interval  of d = 1 with ASN = 50 is better 
than using  a  sampling  interval  of d = 4  with  ASN = 200, especially  for 
detecting  large  shifts. 

In  some  applications,  the  motivation  for using  a  variable  sampling  rate 
control  chart is to reduce  the  sampling  cost  required to  produce  a given 
detection  ability [see Baxley (1996),  Reynolds  (1996b),  and  Reynolds  and 
Stoumbos (1998)l. Because  the SPRT  chart is so much  more efficient than 
the p-chart, it  follows that  the  SPRT  chart  could achieve  the  detection 
ability  of the  p-chart with  a  much  smaller  average  sampling rate. To illus- 
trate this point, the  design method given in Section 11 was  used to design 
some  SPRT  charts with  lower  average  sampling  rates. Columns 5 and  6  of 
Table 1 contain  ATS values  of  two SPRT  charts  that have an  in-control 
average  sampling  rate  of  approximately  half  the  value  for  the  p-chart 
(approximately 25 observations  per  hour).  The SPRT  chart in column 5 
uses d = 2.0 and  has ASN(p0) % 50, and  the  SPRT  chart in column  6 uses 
d = 1.0 and  has  ASN(po) % 25. Although these  two SPRT  charts  are  sam- 
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pling at half  the rate of  the  p-chart, they are still faster at detecting  shifts in 
p.  Columns 7 and 8 of Table 1 contain  ATS values  of  two SPRT  charts  that 
have an  in-control  average  sampling  rate of approximately  one-fourth  the 
value for  the  p-chart  (approximately 12.5 observations  per  hour).  The  SPRT 
chart in column 7 uses ti = 2.0 and h a s  ASN(po) x 50, and  the  SPRT  chart 
in column 6 uses d = 1 .0  and  has  ASN(po) x 25. Comparing  columns 5 and 
6 to  column 2 shows  that  the  SPRT  charts with  half the  sampling  rate  of  the 
p-chart offer faster  detection  than  the  p-chart.  Columns 7 and 8 show  that 
an  SPRT  chart with about  one-fourth  the  sampling  rate of  the  p-chart will 
offer roughly  the  same  detection  capability  as  the  p-chart. 

13. CONCLUSIONS 

It  has been  shown  that  the Bernoulli CUSUM chart,  the  binomial CUSUM 
chart,  and  the  SPRT  chart  are highly efficient control  charts  that  can be 
applied in different  sampling  situations.  Each  of  these  charts is much  more 
efficient than  the  traditional  Shewhart  p-chart.  The design methods based  on 
the  highly accurate CD approximations  provide  a relatively simple  way  for 
practitioners  to design  these charts  for  practical  applications.  Although  the 
design possibilities for these charts  are limited slightly by the  discreteness  of 
the  distribution of  the  inspection  data,  this  discreteness is much less  of a 
problem  than  for  the  p-chart. 

The  SPRT  chart is a variable  sampling  rate  control  chart  that is much 
more efficient than  standard fixed sampling  rate  charts such as  the  p-chart. 
The increased efficiency of  the SPRT  chart  can be used to  reduce  the time 
required  to  detect process  changes or  to reduce the  sampling  cost  required  to 
achieve a given  detection  capability. 
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1. INTRODUCTION 

The  standard  assunlptions when control  charts  are used to  monitor a pro- 
cess are  that  the  data  generated by the  process  when it  is  in control  are 
normally  and  independently  distributed  with  mean p and  standard  deviation 
0. Both p and 0 are  considered fixed and  unknown.  An  out-of-control 
condition is created by an assignable  cause  that  produces  a  change  or 
shift in p or 0 (or  both)  to  some  different  value.  Therefore, we could  say 
that when the process is in control  the  quality  characteristic  at time 1, x,, is 
represented by the  model 

x, = p+&,, t = 1,2,  . . .  (1) 

where E, is normally  and  independently  distributed  with  mean  zero  and 
standard  deviation 0. This is often called the  Shewhart  model of the process. 

When  these assumptions  are satisfied, one  may  apply  either  Shewhart, 
CUSUM,  or  EWMA  control  charts  and  draw reliable conclusions about the 
state of  statistical  control  of  the  process.  Furthermore,  the  statistical  proper- 
ties of the  control  chart, such as  the false alarm  rate with 3 0  control limits, 
or the  average  run  length,  can be easily determined  and used to  provide 
guidance  for  chart  interpretation. Even in situations  where  the  normality 
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assumption is violated to a slight or  moderate degree,  these control  charts 
will still work  reasonably well. 

The  most  important of  these assumptions is that the  observations  are 
independent (or uncorrelated),  because  conventional  control  charts do  not 
perform well  if the  quality  characteristics  exhibit even low levels of correla- 
tion  over  time. Specifically, these control  charts will give misleading  results 
in the  form  of  too  many false alarms if the  data  are  autocorrelated.  This 
point  has been made by numerous  authors, including  Berthouex et  al. 
(1978). Alwan and  Roberts (1988),  Montgomery  and  Friedman (1989), 
Alwan (1992), Harris  and Ross (1991), Montgomery  and  Mastrangelo 
(I99 I ) ,  Yaschin (1993). and  Wardell et al. (1994). 

Unfortunately,  the  assumption of uncorrelated or independent  obser- 
vations is not even approximately satisfied in some  manufacturing  pro- 
cesses. Examples  include  chemical  processes in which consecutive 
measurements on process or  product  characteristics  are  often highly corre- 
lated and  automated test and  measurement  procedures in which every qual- 
i ty characteristic is measured on every unit in time order of production.  The 
increasing use of  on-line  data  acquisition systems is shrinking  the  interval 
between process  observations. As a  result,  the  volume  of  process data col- 
lected per unit  time is increasing  dramatically [see the  discussion in Hahn 
(1989)) All manufacturing processes are driven by inertial  elements, and 
when the  interval between samples  becomes  small  relative to these forces, 
the  observations  on  the  process will be correlated  over  time. 

It is easy to given an analytical demonstration of  this phenomenon. 
Figure 1 shows a simple system consisting  of  a tank of volume V ,  with an 
input  and  output  material  stream having flow ratef'. Let 119, be the  concen- 
tration of  a  certain  material in the input  stream  at time t and x, be the 
corresponding  concentration in the output  stream  at time t .  Assuming 
homogeneity  within  the  tank,  the  relationship between s ,  and II,, is 

-XI 

Figure 1 A tank with volume V and  input  and output material  streams. 
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where T = V / j  is often called the tirue c ~ o n s t c r n t  of the  system. 

then  the  output  concentration  at  time t is 
If the  input  stream  experiences a step  change of 1 1 ' ~  a t  time t = 0 (say), 

s ,  = Wo( I - e"'T) 

Now,  in  practice, we d o  not  observe x, continuously  but  only  at small, 
equally  spaced  intervals of time, At.  In  this  case, 

where CI = I - e -A' /T .  
The  properties  of  the  output  stream  concentration x, depend  on  those 

of the  input  stream  concentration 11-, and  the  sampling  interval.  Figure 2 
illustrates  the  effect  of  the  mean of w, on s,. If  we assume  that  the w, are 
uncorrelated  random  variables,  then  the  correlation between successive 
values of s ,  (or  autocorrelation between s ,  and is  given by 

Note  that if At is much  greater  than T.  then p E 0. That is, if the  interval 
between samples At in the  output  stream is long,  much  longer  than  the  time 
constant T ,  then  the  observations on output  concentration will  be uncorre- 
lated.  However, if At 5 T ,  this will not  be  the case. For  example, if 

Figure 2 The effect  of the process on s , .  
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A t l T  = I ,  p = 0.37 
A t / T  = 0.5, p = 0.61 
A t / T  = 0.25, p = 0.78 
A t / T  = 0.10, p = 0.90 

Clearly, if we sample  at least once  per  time  constant,  there will  be significant 
autocorrelation  present in the  observations.  For  instance,  sampling  four 
times  per  time constant ( A t l T  = 0.25) results in autocorrelation between 
x,  and of p = 0.78. Autocorrelation between  successive observations  as 
small as 0.25 can  cause  a  substantial  increase in the false alarm  rate of  a 
control  chart, so clearly this is an  important issue to  consider in control 
chart  implementation. 

Figure 3 illustrates  the  foregoing  discussion.  This is a  control  chart  for 
individual  measurements  applied  to  concentration  measurements  from  a 
chemical  process taken every hour.  The  data  are  shown in Table 1.  Note 
that  many  points  are  outside  the  control limits (horizontal lines) on  this 
chart. Because of  the  nature of the  production  process  and  the visual 
appearance of the  concentration  measurements in Figure 3, which appear 
to  “drift”  or  “wander” slowly  over time, we would  probably suspect that 
concentration is autocorrelated. 

Figure 4 is a  scatter  plot of concentration  at time t (x,) versus 
concentration  measured  one  period  earlier (.Y,-,). Note  that  the  points 
on  this  graph  tend  to  cluster  along  a  straight line with  a positive slope. 
That is, a relatively low observation of concentration  at  time t - I tends 
to be followed by another low  value at time t ,  while a relatively large 
observation  at time t - 1 tends  to be followed by another  large value at 
time t .  This  type of behavior is indicative of positive  autocorrelation  in 
the  observations. 

It is also possible to  measure  the level of autocorrelation  analytically. 
The  autocorrelation  over a series of  time-oriented  observations is measured 
by the  autocorrelation  function 

where Cov(.x,, .x,-k) is the  covariance of observations  that  are k time  periods 
apart,  and we have  assumed  that  the  observations (called a  time series) have 
constant  variance given by V ( s , ) .  We  usually estimate  the values  of p k  with 
the  sample  autocorrelation  function: 
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Figure 3 Control chart for individuals. 

Table 1 Concentration  Data 

Time, t X Time, t X Time, t X Time, t X 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

70.204 
69.982 
70.558 
68.993 
70.064 
70.29 1 
71.401 
70.048 
69.028 
69.892 
70.1  52 
7 1.006 
70.196 
70.477 
69.510 
67.744 
67.607 
68.168 
69.979 
68.227 
68.497 
67.113 
67.993 
68.1  13 
69.142 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

69.270 
69.738 
69.794 
79.400 
70.935 
72.224 
71.930 
70.534 
69.836 
68.808 
70.559 
69.288 
68.740 
68.322 
68.713 
68.973 
69.580 
68.808 
69.93 1 
69.763 
69.54 1 
69.889 
7  1.243 
69.701 
71.135 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

70.263 
71.257 
73.019 
71.871 
72.793 
73.090 
74.323 
74.539 
74.444 
74.247 
72.979 
71.824 
74.6  12 
74.368 
75.109 
76.569 
75.959 
76.005 
73.206 
72.692 
72.251 
70.386 
70.519 
7 1.005 
71.542 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

71.371 
71.387 
71.819 
71.162 
70.647 
70.566 
70.31 1 
69.762 
69.552 
70.884 
71.593 
70.242 
70.863 
69.895 
70.244 
69.7  16 
68.914 
69.216 
68.431 
67.516 
67.542 
69.136 
69.905 
70.515 
70.234 
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Figure 4 Scatter plot of concentration  at time t ( .Yr )  versus concentration  measured 
one period earlicr (s-,). 

As a general  rule, we need to compute values  of rk for  a few values  of IC. 

k I n/4. Many  software  programs  for statistical data analysis can  perform 
these calculations. 

The  sample  autocorrelation  function  for the  concentration  data is 
shown in Figure 5. The  dashed line on the graph is the  upper  two-standard 
deviation limit on the autocorrelation  parameter pk at lag k .  The lower limit 
(not  shown  here) would be symmetrical.  These  limits are useful in detecting 
nonzero  autocorrelations; in effect, if a  sample  autocorrelation exceeds its 
two-standard  deviation  limit,  the  corresponding  autocorrelation  parameter 
px. is likely nonzero.  Note  that  there is a  strong positive  correlation  at  lag 1; 
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that is, concentration  observations  that  are  one  period  apart  are positively 
correlated with r l  = 0.88. This level of autocorrelation is sufficiently high to 
distort  greatly  the  performance of a  Shewhart  control  chart.  In  particular, 
because we know  that  positive  correlation  greatly increases  the  frequency of 
false alarms. we should be  very suspicious about the  out-of-control signals 
on  the  control  chart in Figure 3. 

Several approaches  have been proposed  for  monitoring processes  with 
autocorrelated  data.  Just  as in traditional  applications of SPC techniques  to 
uncorrelated  data,  our  objective is to  detect  assignable  causes so that if the 
causes  are  removed,  process  variability  can be reduced. The first is to  sample 
from  the process less frequently so that  the  autocorrelation is diminished. 
For example,  note  from  Figure 5 that if we only  took  every  20th  observation 
on  concentration,  there  would be  very little autocorrelation in the  resulting 
data.  However, since the  original  observations  were  taken  every  hour,  the 
new sampling  frequency  would be one  observation every 20 hr.  Obviously, 
the  drawback of  this  approach is that  many  hours  may  elapse between  the 
occurrence  of an assignable  cause  and its detection. 

The  second  general  approach  may be thought of as  a n~ocidhcrseci 
npprocrch. One way that this approach is implemented  involves  building 
an  appropriate  model  for  the process and  control,  charting  the  residuals. 
The basis of  this  approach is that  any  disturbances  from  assignable  causes 
that affect the  original  observations will  be transferred  to  the  residuals. 
Model-based  approaches  are  presented in the  following  subsection. The 
nw0el:fiee n p p r o c d ~  does  not  use  a specific model for  the  process; this 
approach is discussed in Section 3 .  

2. MODEL-BASED  APPROACHES 

2.1. ARlMA  Models 

An  approach  to  process  monitoring with autocorrelated  data  that  has been 
applied widely i n  the  chemical and process  industries is to directly model  the 
correlative  structure  with an  appropriate time series model,  use  that  model 
to remove the  autocorrelation  from  the  data,  and  apply  control  charts  to  the 
residuals. For example,  suppose we could  model  the  quality  characteristic s ,  
as 

where 5 and 4 (-1 < + < 1)  are  unknown  constants  and E, is normally  and 
independently  distributed  with  mean  zero  and  standard  deviation CT. Note 
how  intuitive this model is for  the  concentration  data  from  examining 
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Figure 4. Equation (3) is called a  first-order  autoregressive  model;  the  obser- 
vations .x, from  such  a  model  have  mean \/(1 - 4) and  standard  deviation 
o/(l - 4’)”’, and  the  observations  that  are k periods  apart (.x, and 
have  correlation coefficient @. That is, the  autocorrelation  function  should 
decay  exponentially  just as the  autocorrelation  function of the  concentration 
data did in Figure 5. Suppose  that 4 is an  estimate of 4 obtained  from 
analysis  of  sample  data  from  the process and .? is the fitted value  of .x,. 
Then  the  residuals 

e, = .x, - x, 

are  approximately  normally  and  independently  distributed with  mean zero 
and  constant  variance.  Conventional  control  charts  could now be applied to 
the  sequence  of  residuals.  Points out of control  or  unusual  patterns  on  such 
charts  would  indicate  that  the  parameter 4 had  changed,  implying  that  the 
original  variable I, was out of control.  For  details of  identifying  and  fitting 
time series models  such  as  this  one, see Montgomery  et  al. (1990) and Box et 
al. (1994). 

The  parameters in the  autoregressive  model.  Eq. (3), may be estimated 
by the  method of least squares,  that is,  by choosing  the values  of 5 and 4 
that minimize the  sum of squared  errors E,. Many  statistical  software 
packages  have  routines  for  fitting  these  time series models. The fitted 
value  of this model  for  the  concentration  data is 

x, = 8.38 + O.88~, -~  

We  may  think  of  this  as an  alternative  to  the  Shewhart  model  for  this 
process. 

Figure 6 is an individuals  control  chart  of  the  residuals  from  the fitted 
first-order  autoregressive  model.  Note  that  now  no  points  are  outside  the 
control limits. In  contrast  to  the  control  chart  on  the  individual  measure- 
ments  in  Figure 3, we would  conclude  that  this  process is in  a  reasonable 
state of  statistical  control. 

Other Time Series Models 

The first-order  autoregressive  model  used in the  concentration  example  [Eq. 
(3)] is not  the  only possible  model for  time-oriented  data  that  exhibits a 
correlative  structure.  An  obvious  extension to Eq. (3) is 
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Figure 6 Control  chart  for  individuals  applied  to the residuals  from  the AR(I) 
model. 

which is a secondorder  autoregressive model. In  general, in autoregressive- 
type  models,  the  variable s f  is directly  dependent  on  previous  observations 
x f P l ,  x,-2, and so forth.  Another possibility is to  model  the  dependence 
through  the  random  component E , .  A simple  way  to do this is 

This is called a first-order moving  average model. In this model,  the 
correlation between x, and .x,-I is pI = 4 / ( 1  + e*) and is zero at all other 
lags.  Thus,  the  correlative  structure in .xf extends  backward  for  only  one 
time  period. 

Sometimes  combinations of  autoregressive  and  moving  average  terms 
are  useful.  A ,first-order mixed model is 

This  model  often  occurs in the  chemical  and  process  industries.  The  reason 
is that if the  underlying  process  variable .x, is first-order  autoregressive  and  a 
random  error  component is added  to x,, the result is the mixed  model in Eq. 
(6). In  the  chemical and process  industries,  first-order  autoregressive  process 
behavior is fairly common.  Furthermore,  the  quality  characteristic is often 
measured in a  laboratory (or by an on-line  instrument)  that  has  measure- 
ment  error, which we can usually  think  of as  random  or  uncorrelated.  The 
reported  or observed  measurement  then  consists  of an autoregressive  com- 
ponent  plus  random  variation, so the mixed  model in Eq. (6) is required  as 
the  process  model. 
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in some  applications.  Whereas  the  previous  models  are used to describe 
stationary behavior (that is, x,  wanders  around  a “fixed” mean).  the 
model in Eq. (7) describes nonstationary  behavior  (the  variable x, “drifts” 
as if there were no  fixed value of  the  process mean).  This model  often  arises 
in chemical and process plants when x, is an  “uncontrolled” process output, 
that is, when no  control  actions  are  taken to keep  the  variable close to target 
value. 

The models we have been discussing in Eqs. (3)-(7) are  members of a 
class of time series models called alrtoregllvssive i11tegrccted r11011irlg r rvercgp 
(ARIMA) models. Montgomery  et  al. (1990) and Box et al. (1994) discuss 
these models in detail.  While these models  appear very different  from  the 
Shewhart  model  [Eq.  (l)], they are  actually relatively similar and include  the 
Shewhart  model  as  a  special  case.  Note  that if we let 4 = 0 in Eq. (3), the 
Shewhart  model  results.  Similarly, if we let 8 = 0 in Eq. ( 5 ) ,  the  Shewhart 
model  results. 

Average  Run Length Performance  for Residuals Control Charts 

Several authors have  pointed  out  that residuals control  charts  are  not sen- 
sitive to small  process  shifts [e.g., see Wardell  et  al.  (1994)l.  The  average  run 
length  for  the  residuals  chart  from  an AR(I) model is 

l - P , + P  
ARLRES = 

where P ,  is the  probability  that the run has length 1, that is, the  probability 
that the first residual exceeds f 3 ,  

p ,  = Pr(run length = 1) 
= 1 - @(3 - 6)+ @(-3 - 6) 

@(.) is the  cumulative  distribution  function  of  the  standard  normal  distribu- 
tion.  The  probability  that  any  subsequent  observation will generate  an 
alarm is the  probability  that o, exceeds f 3 ,  

P = 1 - @(3 - 6(1 - 4)) + @(-3 - 6(1 - +)) (10) 

See Willemain and  Runger (1996)  for  the  complete  derivation. 



Process  Monitoring with Autocorrelated  Data 149 

Table 2 ARLs for Residuals  Chart 
~~ ~~ ~ 

Correlation  Shift, 6 / c  
0 0 0.5 1 2  4 

0.00 370.38 152.22 43.89 6.30 1.19 
0.25 370.38 212.32 80.37 13.59 1.32 
0.50 370.38 280.33 152.69 37.93 2.00 
0.90 370.38 364.51 345.87 260.48 32.74 
0.99 370.38 368.95 362.76 3  12.00 59.30 

Note: ARLs measured in observations. 

Table 2 shows  ARLREs  for  representative  values  of  the  autocorrela- 
tion coefficient $I and  shift 6. Note the  poor  performance of the residuals 
chart when the  correlation is high ($I = 0.90 or 4 = 0.99). This  problem 
arises  because the  AR(I) model  responds  to  the  change in the  mean level 
and  partially  incorporates  the  shift in the  mean  into  its  forecasts,  as  seen in 
(13). 

Using an Exponentially Weighted Moving Average  (EWMA)  with 
Autocorrelated Data 

The time series modeling  approach  illustrated in the  concentration  example 
can be time-consuming  and difficult to  apply in practice.  Typically, we apply 
control  charts  to several process  variables.  and  developing an explicit time 
series model for  each  variable  of  interest is potentially  time-consuming. 
Some  authors have  developed  automatic time series model  building  to  par- 
tially alleviate this difficulty [see Yourstone  and  Montgomery (1 989) and  the 
references  therein].  However,  unless the time series model is of  intrinsic 
value in explaining  process  dynamics  (as it sometimes is), this approach 
will frequently  require  more  effort  than  may be justified in practice. 

Montgomery  and  Mastrangelo (1991)  suggested an  approximate  pro- 
cedure  based on the  EWMA.  They use the  fact  that  the  EWMA  can be used 
in certain  situations where the  data  are  autocorrelated.  Suppose  that  the 
process can be modeled by the  integrated  moving  average  model of Eq. (7). 
I t  can be easily shown  that  the  EWMA with h = 1 - 8 is the  optimal  one- 
step-ahead  forecast  for this process. That is, if is the  forecast  for  the 
observation in period t + 1 made  at  the  end of period t ,  then 

.?,+I ( 1 )  = "/ 

where :, = As, + (1  - h ) ~ , - ~  is the  EWMA.  The  sequence of  one-step-ahead 
prediction  errors, 
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is independently  and identically distributed with  mean zero.  Therefore,  con- 
trol  charts  could  be  applied  to these  one-step-ahead  prediction  errors. The 
parameter h (or  equivalently, e) would  be  found by minimizing the  sum of 
squares of the  errors el. 

Now  suppose  that  the process is not modeled  exactly by Eq. (7). In 
general, if the  observations  from  the  process  are positively autocorrelated 
and  the process  mean does  not  drift  too  quickly,  the  EWMA with an  appro- 
priate  value  for h will provide an excellent one-step-ahead  predictor.  The 
forecasting  and  time series analysis field has used this result for  many years; 
for  examples, see Montgomery  et  al. (1990). Consequently, we would  expect 
many processes that obey  first-order  dynamics  (that is, follow  a  slow 
“drift”)  to  be well represented by the  EWMA. 

Consequently,  under  the  conditions  just  described, we may  use  the 
EWMA  as  the basis of  a  statistical  process  monitoring  procedure  that is 
an approximation  of  the exact  time series model  approach.  The  procedure 
would  consist  of  plotting  one-step-ahead  EWMA  prediction  errors  (or 
model residuals) on a  control  chart.  This  chart  could be accompanied by 
a  run  chart of the  original  observations  on  which  the EWMA forecast is 
superimposed.  Our experience  indicates that  both  charts  are usually  neces- 
sary,  as  operational  personnel feel that  the  control  chart of  residuals  some- 
times does  not  provide  a  direct  frame of  reference to  the  process.  The  run 
chart of original  observations  allows process dynamics  to be visualized. 

Figure 7 presents  a  control  chart  for  individuals  applied  to  the  EWMA 
prediction  errors  for  the  concentration  data. For this  chart. h = 0.85. This is 
the value of h that minimizes the  sum  of  squares  of  the  EWMA  prediction 
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Figure 7 EWMA prediction errors with h = 0.85 and Shewhart limits. 
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errors.  This  chart is slightly different  from  the  control  chart of the  exact 
autoregressive  model  residuals  shown in Figure 6, but  not significantly so. 
Both  indicate  a  process  that is reasonably  stable,  with  a  period  around t = 
62 where an assignable  cause  may be present. 

Montgomery  and  Mastrangelo (1991) point  out  that it is possible to 
combine  information  about  the  state of statistical  control  and process 
dynamics  on  a single control  chart. If the  EWMA is a  suitable  one-step- 
ahead  predictor,  then  one  could use z ,  as  the  centerline on  a  control  chart 
for  period r + 1 with upper  and lower control limits at 

UCL,,, = z ,  + 3 0  

and 

LCL/+, = z /  - 3 0  (12) 

and  the  observation s f  + 1 would be compared  to these limits to test for 
statistical  control. We can  think  of  this  as  a tnoving centerline E W M A  con- 
trol chcrrt. As  mentioned  above, in many  cases this would be preferable  from 
an  interpretation  standpoint  to  a  control  chart of  residuals  and a separate 
chart of the  EWMA,  as it  combines  information  about process dynamics 
and  statistical  control in one  chart. 

Figure 8 is the  moving  centerline EWMA  control  chart  for  the  data, 
with h = 0.85. It  conveys  the  same  information about statistical  control  as 

80.000 

78.000 h 

76.000 

74.000 

72.000 
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Figure 8 Moving  centerline EWMA control  chart  applied to the  concentration 
data. 
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the  residual  or  EWMA  prediction  error  control  chart  in  Figure 7, but  oper- 
ating  personnel  often feel more  comfortable with this display. 

A R L  Pcrformmce. Because the  EWMA-based  procedures  presented 
above  are very similar  to  the  residuals  control  chart, they will have  some  of 
the  same  problems  in  detecting  process  shifts. Also. Tseng  and  Adams 
(1994)  note  that because  the EWMA is not  an  optimal  forecasting  scheme 
for  most  processes  [except the  IMA( 1 , l )  model], it will not  completely 
account  for  the  autocorrelation,  and  this  can affect the  statistical  perfor- 
mance  of  control  charts based  on EWMA residuals or prediction  errors. 
Montgomery  and  Mastrangelo (1991)  suggest  the  use  of supplementary 
procedures called tracking  signals  combined with the  control  charts  for 
residuals.  There is evidence that these supplementary  procedures  consider- 
ably  enhance  the  performance of residuals control  charts.  Furthermore, 
Mastrangelo  and  Montgomery (1995)  show that if an  appropriately 
designed tracking  signal scheme is combined  with  the  EWMA-based  proce- 
dure we have  described,  good  in-control  performance  and  adequate  shift 
detection  can be achieved. 

Estirmrting crnd Monitoring 0. The  standard  deviation of the  one- 
step-ahead  errors  or  model  residuals o can be estimated in several ways. 
I f  h is chosen  as suggested above  over  a record of n observations, then 
dividing  the  sum  of  the  squared  prediction  errors  for  the  optimal h by I I  

will produce  an  estimate of 02. This is the  method used in many time series 
analysis  computer  programs. 

Another  approach is to  compute  the  estimate of CJ as is typically done 
in forecasting  systems.  The  mean  absolute  deviation (MAD) could be  used 
in this regard.  The  MAD is computed by applying an  EWMA  to the  abso- 
lute  value of the  prediction  error, 

Since  the MAD  of  a  normal  distribution is related  to  the  standard  deviation 
by 0 E 1.25A, [see Montgomery  et  al. (1990)], we could  estimate  the  stan- 
dard deviation  of  the  prediction  errors  at  time t by 

Another  approach is to  directly  calculate  a  smoothed  variance, 
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MacGregor  and  Ross (1993) discuss  the use of exponentially weighted mov- 
ing  variance  estimates in monitoring the  variability  of a process.  They  show 
how  to find control limits for these  quantities  for  both  correlated  and  uncor- 
related data. 

The  Weighted  Batch  Means Control Chart 

While control  charting the  residuals  from  a  time series model is one way to 
cope  with autocorrelation, there is another way to exploit  these  models.  This 
is the weighted batch  means  chart,  introduced by Runger  and Willemain 
(1995). 

Bischak et  al. (1993)  derived  a way to eliminate autocorrelation  among 
the  averages of successive data values in discrete-event  simulation.  Their 
findings  have  value for statistical  process control, since a way to cancel 
autocorrelation i n  subgroups  maps the  problem  of  autocorrelated  data 
into  the familiar  problem  of  using  independent subgroups  to  monitor  pro- 
cess means. 

Starting with  a stationary  ARIMA  or  ARMA  model, Bischak et a l .  
(1993) derived  the  weights needed to  eliminate  autocorrelation between 
batch  means  as  a  function  of  the  batch size and the  model  parameters. 
Designating  the  batch size by h and  forming thejth batch  from  consecutive 
data values X ( / - l ) h + r ,  thej th  weighted batch  mean is 

r = l  

The  batch size h can be selected to tune  performance  against  a specified shift 
6. 

The weights w i  must  sum  to  unity  for YJ to be an unbiased  estimate  of 
the  process  mean p. For A R b )  processes, the  optimal  weights  are  identical 
in the  middle  of  the  batch but differ in sign and  magnitude  for the first and 
last values in the batch.  For the AR(I) model,  the  weights  are 
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For  example, with h = 64 and 4 = 0.99, the  middle  weights are all 0.016, 
and  the first and last  weights are -1.57 and 1.59, respectively. 

Given  normal  data  and  any  bath size h > I ,  the  optimal weights  pro- 
duce  batch  means  that  are  i.i.d.  normal with mean 

and  variance 

1 Var( Y,) = 
(1  - $)’(h - 1) 

Given (17) and (18). the  standardized  value  of  a  shift  from 11 to p + 6 is 

To adjust  the  on-target ARL to equal ARLO,,,, one  computes  the  control 
limit by solving for A. in 

where h i n  the numerator  accounts  for  the fact that each  batch is h observa- 
tions  long.  Then  the  average run length for  the weighted batch  means 
(WBM)  chart  (measured in individual  observations)  can be computed  as 

Table 3 compares ARLWnM against ARLREs for  a  range  of values of 
batch size h, shift 6, and  autocorrelation 4. The  proper choice of batch size h 
results in superior  performance  for  the WMB  chart. In  general.  the  WBM 
chart is more sensitive than the  residuals chart  for shift 6 5 3 and  autocor- 
relation 0 I 4 5 0.99. 

The  WBM  chart achieves its superiority by, in effect, using larger 
subgroups of  residuals. It is  well known  that  for  independent  data,  larger 
subgroups  provide  greater sensitivity to small  shifts.  Runger  and  Willemain 
(1995)  show that  a  form of  this  conclusion  applies to autocorrelated  data  as 
well. 
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Table 3 ARLs of Residuals  and Weighted Batch  Means  Charts 

Correlation Shift d/s 
f b 0 0.5 1 2  4 

0.25 

0.5 

0.9 

0 RES 
2 
4 
8 

16 
32 
64 

128 
256 

RES 
2 
4 

16 
32 
64 

128 
256 

RES 
2 
4 
8 

16 
32 
64 

128 
256 

RES 
2 
4 
8 

16 
32 
64 

128 
256 

8 

370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 

370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 

370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 

370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 

155.22 
170.14 
86.03 
48.47 
34.33 
37.32 
64.30 

128.00 
256.00 

212.32 
226.37 
135.90 
82.97 
56.18 
49.57 
67.61 

128.07 
256.04 

280.33 
290.61 
21 5.06 
152.45 
108.52 
85.47 
87.30 

132.01 
256.04 

364.51 
366.45 
360.48 
35 1.66 
339.49 
324.61 
310.51 
306.20 
331.71 

43.89 
53.42 
19.33 
12.57 
16.53 
32.00 
64.00 

128.00 
256.00 

80.37 
94.01 
37.84 
21.21 
19.72 
32.22 
64.00 

128.00 
256.00 

152.69 
170. I4 
86.03 
48.47 
34.33 
37.32 
64.30 

128.00 
256.00 

345.87 
355.10 
333.49 
304.84 
270.84 
237.03 
213.34 
216.17 
28 1.96 

6.30 
9.21 
4.88 
8.01 

16.00 
32.00 
64.00 

128.00 
256.00 

13.59 
20.02 

7.70 
8.40 

16.00 
32.00 
64.00 

128.00 
256.00 

37.93 
53.42 
19.33 
12.57 
16.53 
32.00 
64.00 

128.00 
256.00 

260.48 
3 15.45 
254.77 
195.75 
147.13 
115.86 
108.42 
141.32 
256.62 

1.19 
2.25 
4.00 
8 .OO 

16.00 
32.00 
64.00 

128.00 
256.00 

1.32 
3.41 
4.02 
8 .oo 

16.00 
32.00 
64.00 

128.00 
256.00 

2.00 
9.21 
4.88 
8.0 1 

16.00 
32.00 
64.00 

128.00 
256.00 

32.74 
2 14.22 
123.84 
74.03 
50.25 
45.99 
66.32 

128.02 
256.00 
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Table 3 (continued) 

0.99 RES 
2 
4 
8 

16 
32 
64 

128 
256 

370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 
370.38 

368.95 
370.34 
370.28 
370.18 
370.04 
369.86 
369.66 
369.56 
369.88 

362.76 
370.22 
369.97 
369.60 
369.04 
368.30 
367.50 
367.13 
368.40 

3 12.00 
369.75 
368.76 
367.26 
365.08 
362.20 
359.16 
357.81 
362.73 

59.30 
367.86 
363.98 
358.19 
350.02 
339.72 
329.50 
325.79 
343.39 

Note:  ARLs mcnsured in observations. 
Sowc,c,: Runger and Willenxun 1995. 

3. A MODEL-FREE  APPROACH:  THE  BATCH  MEANS 
CONTROL  CHART 

Runger  and Willemain (1996) proposed an unweighted  batch  means (UBM) 
control  chart  as  an  alternative to the weighted batch  means  (WBM)  chart 
for  monitoring  autocorrelated process data. 

The  UBM  chart differs  from  the  WBM chart by giving equal  weights 
to every point  in  the  batch. let the,jth unweighted batch  mean  be 

This  expression  differs  from ( 1  5) only in that 

1 
I,'. - - 

" h '  
i =  I ,  h 

The  important implication of (23) is that  although  one  has to deter- 
mine an  appropriate  batch size h, one does  not need to construct  an ARMA 
nlodel  of  the data.  This model-free approach is quite  standard in simulation 
output analysis, which also  focuses on inference for  long time series with 
high autocorrelation. 

A  model-free  process-monitoring  procedure  was  the  objective of the 
many  schemes  considered by Runger  and Willemain (1996). That work 
showed that the batch  means  can be plotted  and  approximately  analyzed 
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on  a  standard  individuals  control  chart.  Distinct  from  residuals  plots,  UBM 
charts  retain  the  basic simplicity of  averaging  observations  to  form a point 
in  a  control  chart.  With  UBM,  the  control  chart  averaging is used to  dilute 
the  autocorrelation of the  data. 

Procedures for determining  an  appropriate  batch size were  developed 
by Law and  Carson (1979) and  Fishman (1978a,  1978b).  These  procedures 
are  empirical  and do not  depend  on  identifying  and  estimating  a time series 
model. Of  course,  a  time series model  can  guide  the  process  of selecting the 
batch size and  also  provide  analytical  insights. 

Runger  and Willemain  (1996)  provided a  detailed  analysis of batch 
sizes for  AR( 1) models.  They  recommend  that  the  batch size  be selected so 
a s  to  reduce  the lag 1 autocorrelation of the  batch  means  to  approximately 
0. IO. They  suggest  using  Fishman’s  (1978a) procedure, which starts with h = 
1 and  doubles h until  the lag 1 autocorrelation of  the  batch  means is suffi- 
ciently small. This  parallels  the logic of the  Shewhart  chart in that  larger 
batches  are  more effective for  detecting  smaller  shifts;  smaller  batches 
respond  more  quickly  to  larger  shifts. 

Though  a  time series model is not necessary to  construct  a UBM chart, 
Table 4 shows  the  batch size requirements  for  the AR( 1) model for  various 
values of 4 (Kang  and  Schmeiser, 1987). The lower  values of oURM imply 
greater  sensitivity. 

Table 4 Minimum  Batch Size Required for UBM  Chart 
for AR( 1) Data 

4 I1 a( U B M ) / a  a( U B M ) / a  

0.00 
0. I O  
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 
0.99 

1 
2 
3 
4 
6 
8 

12 
17 
27 
58 

118 
596 

1 .oooo 
0.7454 
0.6701 
0.6533 
0.6243 
0.6457 
0.6630 
0.7405 
0.8797 
1.2013 
1.6827 
3.7396 

nja 
1 . 1 1 1 1  
0.8839 
0.8248 
0.7454 
0.7559 
0.7538 
0.8333 
0.9806 
1.3245 
1.8490 
4.0996 

Note: Butch size chosen to make lag-l autocorrelation of batch means 
0. IO. 
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Table 5 Performances of the Unweighted  Batch Means  Control  Chart 

Shift, 610 
0 h Method 0 1 2 

0.9 60 Approximation 3  70  199  98 

0.95 120 Approximation 370  296  20 1 
Monte  Carlo 371 f 2 206 f 3 100 f 1 

Monte  Carlo 371 k 6 303 -+ 4 206 k 2 

Note: ARLs measured in batches. Monte  Carlo  results  based on 5 sets of 5,000 alarms. 
Uncertainties  are 9571 confidence  intervals. 

Table 6 Comparison of Shewhart  Charts  ARLs  for  AR(1) Data 

ShiftJ/cT 
0 Method h 0.00 0.5 1 2  4 - 
0 RES 
0.25 RES 

WBM 
UBM 
WBM 
UBM 

0.50 RES 
WBM 
UBM 
WBM 
UBM 

WBM 
UBM 
WBM 
UBM 

WBM 
UBM 
WBM 
UBM 

0.90 RES 

0.99 RES 

1 
1 
4 
4 

23 
23 

1 
8 
8 

43 
43 

1 
58 
58 

472 
472 

1 
596 
596 

2750 
2750 

10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
IO000 
10000 
10000 
10000 

2823 
4360 
2066 
1279 
233 
210 

652 1 
2230 
1607 
397 
367 

9801 
61  19 
5619 
2547 
2504 
9995 
969 I 
963 1 
9440 
9420 

520 
1183 
320 
149 
34 
32 

2818 
378 
225 
66 
63 

9234 
2548 
2133 
823 
809 

9974 
8868 
8670 
8129 
8074 

34 
116 
23 
1 1  
23 
23 

506 
33 
20 
43 
43 

7279 
548 
423 
476 
476 

6977 
6605 
6178 
6605 
5434 

2 
3 
4 
4 

23 
23 
17 
8 
8 

43 
43 

1828 
96 
81 

472 
472 

4508 
3238 
2847 
3238 
3225 

Note: ARLs measured in observations. 
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Runger  and Willemain (1996) use  the  following approximation  to 
estimate  the  performance of the  UBM  chart: 

h 
1 - @(A0 - ~ / ~ u B M )  + @(-A0 - ~ / ~ u B M )  

ARL = (24) 

This  approximation, which  assumes  that  the  batch  means  are  i.i.d.  normal 
with  mean p and  standard  deviation oUBM as given in Table 4, was 
confirmed by Monte  Carlo  analysis  (Table 5 ) .  

Since  estimating ARLs with (27) is simpler  than extensive Monte 
Carlo  analysis,  the  approximation is used in Table 6. Table 6 compares 
this ARL with  the ARLs of  the  other  two  charts  for selected values  of the 
autocorrelation  parameter 4. The  batch sizes h were  chosen by using Table 3 
to  provide  a  WBM  chart sensitive to  a shift 6 = 1. The  comparison was 
made with  the  in-control ARL,, = 10,000. Table 6 shows  that  both  batch 
means  charts  outperform  the  residuals  chart in almost all cases shown, with 
the  UBM  chart  performing best of all. 
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An Introduction to the  New  Multivariate 
Diagnosis  Theory  with  Two Kinds of 
Quality and Its Applications 

Gongxu  Zhang 
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Republic of China 

1. MULTIOPERATION  AND  MULTI-INDEX  SYSTEM 

I n  factories  multioperation  and  multi-index  systems  are very common.  A 
multioperation system is a system in which its product is processed by a 
production line consisting of two or more  operations.  A multi-index system 
is one i n  which at least one  operation  has two or more indices, such as a 
technical  index and/or a quality  index.  For  example,  a  printed circuit pro- 
duction line consists of 17 operations, with at least two indices and  at  most 
27. Again,  for  analgin (a kind of drug) a production line consists  of six 
operations, with at least two and at  most six indices.  Such  examples exist 
indeed  everywhere. 

2. PROBLEMS  ENCOUNTERED  IN  IMPLEMENTING 
QUALITY  CONTROL  AND  DIAGNOSIS  IN  A 
MULTIOPERATION,  MULTI-INDEX  SYSTEM 

In  a  multioperation, multi-index  system, if  we want to implement  quality 
control  and  diagnosis,  there  are  three  major  problems: 

1. I n  a multioperation  production line,  the  processing of the  preced- 
ing  operating will i n  general influence the current  operation. Since the  pre- 
ceding influence is synthesized  with  the  processing of the current  operation, 
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how do we differentiate  one  from  the  other? If we cannot  differentiate  them, 
we cannot  distinguish  their  quality  responsibility,  and  then we cannot  imple- 
ment scientific quality  control.  Evidently, in  a  multioperation  production 
line, we need to  diagnose  the preceding influence. 

2. In a multi-index  production line, there is the  problem  of  correla- 
tions  among indices. For example, in the  operation of  etching a printed 
circuit,  the  quality  index  of  etching  has  correlations  with  the  technical 
indices: NaOH, C1-,  Cu’+. When  the  etching  index is abnormal, we need 
to diagnose which  technical  index  or indices induced  this  abnormality. 

3. In a multioperation,  multi-index  production line, there  are  both 
the  preceding  influence  and  the  correlations  among indices, making  the 
problem  more  complex. 

3. HOW  TO  DIAGNOSE  THE  PRECEDING  INFLUENCE IN A 
MULTIOPERATION  PRODUCTION  LINE 

In  a  multioperation  production line, we need to use the  diagnosis  theory 
with  two  kinds  of quality  proposed by Zhang  (1982a)  to  diagnose  the pre- 
ceding influence. The basis of  this  theory is the  concept  of  two  kinds of 
quality. 

3.1. Two  Kinds of  Quality 

According  to  the  different ranges  involved in different  definitions  of  quality, 
there  are  two  kinds of product  quality: 

I .  Turd qucdiry is the  product  quality  contributed by the  current 
operation  and all the  preceding  operations.  It is simply product 
quality in the  usual  sense  and is felt directly by the  customer. 

2 .  Pcwtid q u d i t ~ ~  is the  quality specifically resulting  from  the  current 
operation  and  does  not  include  the influence of the  preceding 
operations.  Obviously, it reflects the  work  quality  of  the  current 
operation. 

These  two  kinds  of  quality exist in any  operation.  Total  quality  consists of 
two parts:  the  partial  quality  and  the  preceding influence on it; hence, partial 
quality is only part of total  quality. 

3.2. Importance of the  Concept of Two  Kinds of Quality 

The  concept of two  kinds  of  quality is very important,  as  can be seen  from 
the  following  facts: 
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1. The two  kinds  of  quality exist at each  operation. 
2. The concept of two  kinds of quality is  very general  and exists in all 

processes  of production, service and  management  as well as  many 
other processes. 

3.3.  Fundamental  Thinking of the  Diagnosis  Theory  with 
Two  Kinds of Quality 

The so-called diagnosis is always  obtained  through  a  comparison of a  mea- 
sured  value  with the  standard  value.  For  example, in order  to  diagnose  the 
preceding influence, we can  take  the  partial  quality (which has  no  relation- 
ship  with the  preceding influence) of  the  current  operation  as  the  standard 
value,  and  the  corresponding  total  quality (which  consists  of  both  the  partial 
quality  and  the  preceding influence) as  the  measured  value.  Comparing these 
two  kinds  of  quality, we can  diagnose  the preceding  influence  of the  current 
operation.  The  greater  the difference  between  these  two  kinds  of quality,  the 
more  serious  the  preceding influence. 

Here,  the key problem is how  to  measure  these  two  kinds  of  quality. If  
we  use a  control  chart  to  measure  them, we can use the  Shewhart  control 
chart  to  measure  the  total  quality  and  the cause-selecting Shewhart  control 
chart  proposed by Zhang (1980) to  measure  the  partial  quality. We refer to 
this as  diagnosis  with  two  kinds of control  charts. If we use  the  process 
capability  index  to  measure  the  two  kinds  of  quality, we can use the  total 
process  capability  index  (which is just  the  process  capability  index in the 
usual sense), denoted by Cp,, to  measure  the  total  quality  and  the  partial 
process  capability  index,  denoted by Cl,p, which is a new kind  of  process 
capability  index  proposed by Zhang  (19824,  to  measure  the  partial  quality. 
We refer to this as  diagnosis  with  two  kinds  of  process  capability indices. 
The  former is a  realtime  diagnosis,  and  the  latter is a  diagnosis  over  time. 
See Zhang (1 989, 1990). 

3.4. Steps in Diagnosis  with  Two  Kinds of Control  Charts 

The  steps in diagnosis  with  two  kinds  of  control  charts  are  as  follows. 

Step 1. Construct  the  diagnosis system  between adjacent  operations 
with  technical  relations  as  shown in Figure 1. In Figure I ,  the  connection 
between operations 1 and 2 is the  total  quality  of  operation I ,  and  there exist 
two  kinds of quality  at  operation 2, i.e., total  quality  and  partial  quality. 
Suppose  the  total  qualities of operations 1 and 2 are  measured with  two 
Shewhart  charts,  and  the  partial  quality is measured  with  the  cause-selecting 
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Operation 2 
r"""""""""""""""""""" 

I Total  Shewhart Total -, Shewhart 
I Quality Chart Quality Chart I Diagnosis 

I 
I 

I 

I 
I I System 
I Partial -, Cause-Selecting I 

I Quality Chart I 
I I 

L""""""""""""""""""""1 

Figure 1 Diagnosis system between  adjacent operations. 

Shewhart  chart;  then  the  diagnosis system  can  also  be  referred to  as  a  three- 
chart  diagnosis  system. 

Step 2. Diagnose  the  diagnosis  system  according to  the typical  case 
diagnosis  table.  Table I .  Since  each control  chart  has  two  states, i.e., the 
normal  state  and  the  abnormal  state,  the  three-chart  diagnosis system has 
eight  typical  diagnosis  cases (see Table 1). Comparing  the  three  charts of the 
diagnosis  system  with  the  three-chart  cases  of  Table I ,  we can  diagnose  the 
diagnosis  system. 

From  Table 1 we can see that if we do  not  have  the  diagnosis  theory 
with two  kinds  of  quality  and use only  Shewhart  charts  at  each  operation, 
we may get a false alarm or alarm missing for cases 11, 111, VI, and VII. This 
is already verified by experience  in  factories. It is not  a  fault  of  the  Shewhart 
chart itself; in  fact, i t  is due to our  misunderstanding  of  the  Shewhart  chart. 
The  Shewhart  chart  can be used to reflect total  quality  only;  thus it includes 
the  preceding  influence.  Using  the  Shewhart  chart as if it reflects the  partial 
quality  only  and  has no relation  with  the  preceding  influence is wrong; see 
Zhang (1992b, p. 173). 

3.5. Characteristics of Diagnosis  with  Two  Kinds of 
Control  Charts 

In  Table 1, the  diagnosis  of  each  typical  case is derived  only  from  ordinary 
logical deduction; we did  not use probability and statistics. Thus there  are 
no two  kinds  of  errors.  Table 1 also considers  the  connection  between  pre- 
ceding and succeeding operations. 

The  Shewhart  chart used in Table 1 can be  replaced by some  other all- 
control  chart,  for  example,  the  CUSUM  chart  or  the T' chart.  But,  at  the 
same time,  the  cause-selecting chart  should be  replaced by the  corresponding 
cause-selecting CUSUM chart,  the cause-selecting T' chart, etc. 
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Table 1 Typical Case  Diagnosis  Table 

Cause- 
Shewhart  Shewhart selecting 

Typical  chart  for  chart  for  chart  for 
cases  operation 1 operation 2 operation 2 Diagnosis 

I + + + 

I 1  + + ~ 

I l l  + - + 

IV + 

V - + + 

VI - + - 

VI1 ~ - t 

The  partial  quality is abnormal. 
The preceding influence is also 

abnormal. 
The  partial  quality is normal.  The 

preceding  influence is abnormal. 
The  partial  quality is abnormal. 
The preceding  influence is also 

abnormal. But the  one offsets 
the effect of the  other. 

The preceding  influcncc is ‘I b nor- 
mal. but  the  partial  quality off- 
sets its effect and  makes  the 
total  quality of operation 2 to 
be normal. 

The  partial  quality is dmormal. 
The preceding influence is normal. 
The  partial  quality  and  the preced- 

ing influence arc  both  normal, 
but their total effect is to make 
the  total  quality of operation 2 
become abnormal. 

The  partial  quality is abnormal. 
But the preceding  influence  offsets 

it to make  the  total  quality of 
operation 2 become abnormal. 

The  partial  quality,  the preceding 
inlluence, and  the  total  quality 
are all normal 

4. HOW  TO DIAGNOSE  THE  CORRELATION  AMONG 
INDICES FOR A  MULTI-INDEX  OPERATION 

For  a multi-index  operation. we need to use  the multivariate  diagnosis 
theory  with  two  kinds of quality  proposed by Zhang (1996b, 1997). The 
fundamental  thinking of  this  theory is silnilar  to  that of the  diagnosis  theory 
with  two  kinds  of control  charts. But since this is the  multivariate  case, we 
use  the  multivariate T’ control  chart  and  the cause-selecting T’ control 
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chart  instead of the  corresponding  Shewhart  chart  and  the cause-selecting 
Shewhart  chart in the  three-chart  diagnosis  system. Since the  statistics of the 
T' control  chart  include  the  covariance  matrix of  each  variable  (assuming 
that  the  number of variables is p ) ,  

[.y2; 311 SI2 .;: ." .yT] SI/' 

.YpI sp2 . .. 

where S,, i #. j ,  is the  covariance,  the T2 control  chart  can  consider  com- 
pletely the  correlation  among  variables. 

The  multivariate T' control  chart was proposed by Hotelling in 1947 
and was well used i n  Western  countries  for  multivariate cases. Its  merits  are 
that ( I )  it considers  the  correlations  among  variables  and (2) i t  can give us 
exactly the  probability  of  the first kind of error, a. But  its  greatest drawback 
is that  it  cannot  diagnose which  variable  induced  the  abnormality  when  the 
process is abnormal.  On  the  other  hand,  the best  merit of the  diagnosis 
theory  with  two  kinds of quality is that it can  be used to diagnose  the 
cause  of  abnormality in the  process.  Hence  Zhang  proposed  a new multi- 
variate  diagnosis  theory  with  two  kinds of quality  to  combine  the  above- 
stated  theories  together so that we can  concentrate  their  merits  and  at  the 
same time  avoid  their  drawbacks. 

5. HOW TO  SIMULTANEOUSLY  DIAGNOSE  THE 
PRECEDING  INFLUENCE  AND  THE  CORRELATION 
AMONG  INDICES IN A MULTIOPERATION,  MULTI-INDEX 
SYSTEM 

From  the  preceding  discussions it is evident  that we need to use the  diag- 
nosis  theory  with  two  kinds  of  quality in order  to  diagnose  the  preceding 
influence, and we also  need to use  the multivariate  diagnosis  theory with  two 
kinds of quality in order  to  diagnose  the  correlated indices. In  such  a  com- 
plex system, it is not  enough  to  depend  on  the  technology  only; we must 
consider  statistical  process  control  and  diagnosis (SPCD) too. Besides the 
diagnosis  theories  of  Western  countries  always  diagnose all variables  simul- 
taneously.  Suppose  the  number of variables is p and  the  probability of the 
first kind of error in diagnosing  a  variable is ct, then  the  probability of no 
first kind of error in diagnosing p variables is 
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P()=(I-cc)”zl-ppa 

Thus,  the  probability of the first kind  of error in diagnosing p variables is 

P ,  = 1 -Po z p a  

i.e.  it is proportional  to the number of  variables.  In  the case of a  great 
number  of  variables,  the  value  of P I  may  become  intolerable. To solve 
this  problem,  Zhang  and his Ph.D.  candidate  Dr.  Huiyin  Zheng  (Zheng, 
1995) proposed  the  multivariate  stepwise  diagnosis  theory in 1994. 

5.1. Fundamentals of the  Multivariate  Stepwise  Diagnosis 
Theory 

I f  we tested that the population of  all  variables  concerned  with  the  problem 
is abnormal, we want to identify  the abnormal  variable.  Instead of  diagnos- 
ing  each  variable contained in this  population, we need only  diagnose  the 
most  probable assignable  variable  each  time, for by so doing we can 
decrease  the number  of  steps of diagnosis  needed.  The  steps  of  the  multi- 
variate  stepwise  diagnosis  theory are  as follows: 

Step 1. Test  the  abnormality of  the  population of  all  variables. If it is 

Step 2. Select the most  probable assignable  variable and test  whether 

Step 3.  Test  the  remaining  population of  variables. If it is normal, 

normal, the  diagnosis  stops;  otherwise  proceed to  step 2. 

it is abnormal  or  not. 

then  the  diagnosis  stops,  otherwise  return to  step 2. 

Repeat  steps 1-3 until we can  ascertain  each  variable to be normal  or 
abnormal. 

In practice, in general,  it  takes  only one  to  three  steps  to  complete  the 
multivariate  diagnosis  process. 

5.2. Compiling  the  Windows  Software DlTQ2000 

We  have  compiled  the  Windows  software  DTTQ2000 (DTTQ=diagnosis 
theory  with  two  kinds  of  quality), which combines  the  diagnosis  theory  with 
two  kinds of quality,  the  multivariate  diagnosis  theory  with  two  kinds  of 
quality,  and  the  multivariate stepwise  diagnosis  theory. So far we have 
diagnosed  the  multioperation, multi-index production lines of eleven fac- 
tories more  than 40 times  using  DTTQ2000. All results  of  these  diagnoses 
have been in accordance with practical  production. 
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5.3. Necessity of Application of the  Multivariate  Diagnosis 
Theory  with  Two  Kinds of Quality  and Its DlTQ2000 
Software 

Today’s society has developed into  an  era of  high quality  and high relia- 
bility. The  percent defective  of  some  electronic products is as low as  the 
parts  per million or even parts per billion level, so production  technology at 
the  worksite  must be combined  with  statistical  process  control  and  diagnosis 
(SPCD)  to  guarantee  product  quality. In  fact,  the  requirements  of SPCD 
with  respect to  product  quality  are  more severe than  those of technology. 
For example,  the  control limits of control  charts  are, in general,  situated 
within  the specification limits. In  addition, we consider significant variations 
i n  product  quality  and  nonrandom  arrangements of points  plotted  between 
control limits on  the  control  chart  to be abnormal  and  take  action  to elim- 
inate such abnormalities.  But,  on  the  other  hand,  technology  does  not  pay 
attention  to such  facts. 

At the  worksite,  technicians in general  take  one of the  following 
actions whenever  there is a need  of multivariate  control:  (1)  Put a l l  para- 
meters of the  current  operation  to be within  the specification limits  or (2) 
adopt the  Shewhart  control  chart  to  control each parameter of the  current 
operation.  In  fact, these  two actions  are  virtually  the  same;  both  oversim- 
plify the  multivariate  problem  and resolve it into several univariate 
problems.  Here,  unless all the  variables  are  independent,  otherwise we 
must  consider  the  correlations  among  variables. For example, in the  printed 
circuit  production line there  are  altogether 27 indices at the  operation of  the 
factory  Desmear/PTH. If we supervise this process  with 27 s-R, control 
charts  supervising  each of  the 27 indices individually,  then we can  supervise 
27 averages  and 27 standard  deviations, i.e., 

p , .o , .  i = 1 , 2  ,..., 27 

But we cannot  supervise  the  correlations  among  variables, i.e., the  covar- 
iances among indices, with  such a  univariate S-R,~ control  chart.  There  are 
altogether 351 [= 27(27 - 1)/2] covariance  parameters  or coefficients of 
correlation  to be supervised.  Only by using multivariate  diagnosis  theory 
with  two  kinds  of quality  can we supervise all 405 (= 27 + 27 + 351)  process 
parameters  and  implement  the  SPCD. Using  the DTTQ2000  software we 
have  diagnosed  eleven  factories in China,  and all the  diagnostic results have 
been in fairly good  agreement  with  the  actual  production  results. 

Using the  DTTQ2000  software  with  a  microcomputer, i t  takes  only 
about 1 min  to  perform  one  diagnosis;  thus, it saves much time on  the  spot. 
Not only is the  diagnosis  correct,  but i t  also  avoids  the subjectivity of the 
working  personnel. 
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In  a  factory, it always  takes  a  long  time to  train an experienced engi- 
neer in quality  control  and  diagnosis. If  we  use the  DTTQ2000  software,  the 
training  time is much  reduced. 

5.4. How to  Establish SPCD in a  Multioperation,  Multi- 
index System 

In a  multioperation,  multi-index  system, in order  to  establish  the SPCD we 
must  consider  three  principles: 

Principle 1. A multioperation  production line must  consider  the  pre- 
ceding influence. 

I .  If there is no preceding influence, the  partial  quality will be equal 
to the  total  quality  at  the  current  operation,  and we can use the 
Shewhart  control  chart (which is only  a  kind  of  all-control chart) 
to control  it. 

2. If  there is a  preceding influence, there exist two  kinds  of qual- 
ity,  total  quality  and  partial  quality at the  current  operation. 
Total  quality  can be controlled by the  all-control  chart,  and 
partial  quality  can be controlled  with  the  cause-selecting  control 
chart. 

3 .  Except  for  the first operation  or  the  above-stated case 1,  we can 
construct  a  three-chart  diagnosis system as  shown in Figure 1 .  
Then we can  diagnose this  diagnosis system according to the  typi- 
cal  case  diagnosis  table, Table 1. 

Principl~ 2. A multi-index production line must  consider  the  correla- 
tion among indices. 

1. If the  indices are  not  related, we can use a  univariate  all-control 

2. If the indices are  related, we need to use a multivariate  all-control 
chart  to  control  each index individually. 

chart  to  control  the whole index system. 

Pritlciph 3.  In  a  multioperation,  multi-index  system, we need to 
consider both the  preceding influence and  the  correlation  among indices, 
which makes  the  problem  of  implementing  the SPCD more  complex.  The 
multivariate  diagnosis system with  two  kinds of quality is a  method  for 
solving  this  complex  problem, and its  implementations  show  that  the  the- 
ory is in good  accordance  with  actual  practice. 
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6. APPLICATIONS OF THE  MULTIVARIATE  DIAGNOSIS 
THEORY  WITH MI0 KINDS OF QUALITY 

Here, we show  some  practical  examples of the  multivariate  diagnosis  theory 
with  two  kinds of quality  as follows. 

Example 1 

Operations  4  and 5 of a  production line for  the  drug  analgin have five 
indices, three  of  which  belong  to  the  preceding  operation;  the  other  two 
belong to  the succeeding operation.  Their  data  are a s  follows (see group 
51 data in Table  2): 

Preceding  operation: .xl = 8.80, .x2 = 97.71, s 3  = 89.11 
Succeeding operation: .x4 = 95.67, .xs = 4.37 

Using  the DTTQ2000  software, we know  that  the T’ value is 18.693, greater 
than  the  upper  control limit (UCL) of  13.555 of the T2 control  chart  (Fig. 
2), which  means that  the process is abnormal.  Then, by diagnosing with 
DTTQ2000, we know  that index x 5  is abnormal. 

Example 2 

Using the  DTTQ2000  Windows  software  to  diagnose  the  same  desmear/ 
PTH  operations of  three  printed  circuit  factories, A, B, C, we obtained 
Figure 3. Compare  and criticize these  three  factories. 

Table 2 Data for Operations  4  and  5 of Analgin  Production Line 

Group 
No. s , .Y? x 3  S q  .Y( T Z  Diagnosis 

27 
28 
29 
30 

47 
48 
49 
50 
51 

11.70 
9.70 
9.70 
7.66 

9.00 
8.00 
8.00 
8.80 
8.80 

96.08 
95.85 
95.85 
98.61 

98.42 
97.24 
97.24 
97.71 
97.71 

84.84 
86.55 
86.55 
9 1.06 

89.57 
89.34 
89.34 
89.1 1 
89.1 1 

93.88 
93.51 
95.24 
95.34 

95.89 
95.67 
95.14 
95.90 
95.67 

1.35 
2. I8 
1.32 
1.39 

1.17 
2.98 
1.77 
1.25 
4.37 

11.988 
11.311 
3.765 
4.050 

2.942 
5.544 
1.148 
1.369 

19.214 

Normal 
Normal 
Normal 
Normal 

Normal 
Normal 
Normal 
Normal 
Abnormal 
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13.555 
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Figure 2 T' control chart 

From  Figure  3 we see that  the  desmear/PTH  operation of  factory  A 
(Fig.  3a) is under  statistical  control;  but  the  desmear/PTH  operation of 
factory B (Fig. 3b) has  a  record  of an average  of 1 .O point  per  month  plotted 
outside  the UCL of the T2 control  chart;  and  the  same  operation in factory 
C (Fig. 3c) has  an  average of 1.3 points per month  plotted  outside  the UCL 
of  the T2 control  chart.  Hence,  factories  A, B, and C are in descending  order 
according  to  the  work  quality of the  desmear/PTH  operation.  Thus,  the 
multivariate  diagnosis  theory with  two  kinds of quality  can be used to 
give  us an objective evaluation  of  the  quality of each  factory.  This  method 
can  also be  used to  point  out  their  direction of quality  improvement. 

7. CONCLUSION 

I .  According  to  what  has been stated  above, we can see that  the 
multivariate  diagnosis  theory with  two  kinds  of quality  and  its 
DTTQ2000  Windows  software  have  prospects of being  applied 
to  the field of multioperation,  multi-index systems. Its  greatest 
merit is that  it  considers  the  multivariate  characteristics  of  the 
multioperation,  multi-index system and  can  control all objects 
that  should be controlled by the  system. 

2. The  implementation of  this  theory  at  eleven  factories in China 
shows  that  production  practices  are in fair  agreement  with  the 
theory. 
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Applications of Markov Chains in 
Quality-Related Matters 

Min-Te  Chao 
Academia  Sinica,  Taipei,  Taiwan,  Republic Of China 

1. INTRODUCTION 

To evaluate  the  performance of a  control  chart,  one of the key elements is 
the  average  run  length  (ARL),  which is difficult to  calculate.  However, if the 
underlying  observations  can be embedded  into a finite Markov  chain, then 
an exact ARL can  be  found if the  observations  are  discrete,  and  approx- 
imations  are  available if they are  continuous. I n  this chapter I provide  a 
systematic review  of many  quality-related  topics in situations in which a 
finite Markov  chain  can  be  employed. 

The  most  fundamental  statistical system  consists of a set of indepen- 
dent  random  variables.  Although  this  structure  contains  all  the essential 
features  for  statistical  analysis,  and  in  fact  most  ideas  for  statistical  analysis 
may  have  their  origin  traced  back to  this simple  case,  it  nevertheless  lacks 
the versatility to  describe  the  more  complex systems that  are  often  encoun- 
tered i n  real-life applications. In this chapter I describe  the  next  simplest 
case,  the  Markov  chain  model,  under which  various  quality-related 
problems  can be vividly described  and  analyzed. 

The  most  striking  advantage of a  Markov  chain is its  versatility. It can 
be  used to  describe, e.g., intricate  deterioration processes and complex  main- 
tenance  procedures  (Neuman  and  Bonhomme, 1975) with relative ease. 

Many  complicated  quality-related processes,  when properly  arranged, 
can be embedded  into  a  Markov  chain of reasonable size. Since the  theory  of 
Markov  chains,  particularly finite and  ergodic  Markov  chains, is  well 
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established,  for  various  applications  the essential problem is how to find a 
reasonably sized Markov  chain  to  describe  the  underlying  quality-related 
process. Once  this is done,  the rest of the  analysis is standard. 

In this chapter I consider  various  well-known  procedures  and in each 
case  indicate  why  such  a  Markov  chain  can be constructed.  Efforts  are 
placed on  exploration  rather  than  on  original  research. We first list some 
basic  facts about  a  Markov  chain  (Section 2 ) ,  and in Section 3 examples  are 
given  of  where  some  exact  results can be obtained.  The exact ARL  formula 
and its sampling  distribution  are given in Section 4. I then  introduce in 
Section 5 the  Brook  and  Evans (1972) approximation  technique  and  show 
how it can be applied  to  various  CUSUMs. 

We have concentrated  our  efforts mostly on  control  charts.  The 
Markov  chain  method,  however,  can  also be applied  to  other  quality 
systems. A list of  these  procedures is presented i n  Section 6. 

2. BASIC  FACTS  ABOUT  MARKOV  CHAINS 

In this section I briefly describe  the  necessary  background of a finite Markov 
chain  that will  be needed for  the rest of this  chapter. 

Given  a  sequence  of  random  variables X , ,  X,, . . ., the simplest non- 
trivial structure we can  impose is to assume  that  the X’s are  independent  and 
identically distributed  (i.i.d.).  This  assumption is often used to  describe  a 
sequence  of  observations  of  certain  quality  characteristics  for essentially all 
kinds  of  control  charts. If the X’s  are  correlated,  then  the  probability  struc- 
ture of  these X’s can be  very complicated.  One  of  the  simplest  nontrivial 
dependent cases is that of the X’s following a  Markov  process. 

Roughly  speaking, a sequence {X,,,  17 2 0 )  of random  variables is 
Markovian if i t  has  the  ability to forget  the  past  when  the  present  status 
is given. When we say “present,”  “past,”  or  “future,” we implicitly assume 
that  there is a time  element. We shall in this respect  consider  the  subscript I I  

of X,, as a time  index. Mathematically,  the  Markov  property  can be 
expressed by 

P[X,,+, E AIX,, X, (XOXI,  ..., X,,) E B] = P[X,,+, E AIX,, = X] ( I )  

for a l l  Bore1 sets A c R ,  B c R“”. If, in addition  to  Eq. ( I ) ,  the Y s  take 
values  only i n  a finite set S, which without loss of  generality we may  assume 
to be S =  { I ,  2 ,  ..., s } ,  then we say that  the X’s  follow a finite Markov  chain. 

For  a finite Markov  chain,  the  information  contained i n  Eq. ( I )  can be 
summarized  into, say. 
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If, in addition, P , , : ~  of (2) is independent  of 1 1 ,  then  the  Markov  chain is said 
to have stationary  transition  probabilities. In  this  case, let 

and let II = (x,. x,..., x,s), x, = PIX. = i]. It can be shown  that  for  a  Markov 
chain  with  stationary  transition  probabilities the  knowledge  of n and the 
matrix P is sufficient to determine  the  joint  probability  distribution of 
( X o ,  X,, X,, ...). We call II the  initial  distribution and P the  (stationary) 
transition  probability  matrix. 

In what follows, we shall  always  assume that the Markov  chains  under 
consideration  are finite with  a  certain  initial  distribution and a stationary 
transition  matrix. 

A good technical  reason to use a  matrix P is that we can employ 
matrix  algebra to simplify various  calculations. For example,  the  kth- 
order  transition  probability 

is simply  the (i,j)th element of 9, the  kth  power of the  transition  matrix P ,  
1.e.. 

The  entries of P are  probabilities, so the  row  sums  of P are unity and 
the  entries themselves are all nonnegative. I t  may  happen  that  some of the 
entries  of P are 0. But if we look  at  the sequence P, P ‘ ,  P’, ..., it may  happen 
that  at some k > 0 all  entries of 9 are strictly  positive. If  this is the  case,  this 
means  that if one  starts  from  any  state i, in k steps it is possible to reach state 
, j , and this  holds  true  for  all 1 5 i,.j 5 s .  If$ > O  for  some I< > O  and  for all 
1 5 i,.j 5 s ,  then we say that  the  Markov  chain is irreducible. 

Let,f;”’) be the  probability  that in a Markov  chain  starting  from  statej, 
the first time it goes  back to  thejth  state is at time 11, i.e., 

f “ )  = P [ X ,  # . j ,   # , j ,  .... X,,-, #. j ,  X,, = j l X o  =.jl 
Let 

,I= I 
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The  quantity p, is the  average  time  at  which  a  Markov  chain  starting  from 
state j returns  to  state j ,  and it is called the  mean  recurrence  time  for  state j .  
If p, < 00, then  stateJ is said to be ergodic. If p, <00 for all j E S, then we 
say that  the  Markov  chain is ergodic. 

If a Markov chain is irreducible  and  ergodic,  then  the limits 

exist and  are  independent of  the  initial  state i. Furthermore, uj >O, x;=l 
u, = I ,  and 

The vector u = (uI , 142, ..., u,J is called the  absolute  stationary  probability. If 
a = u, then it can be shown  that 

P[X,, =J] = P[X,  = j ]  (8) 

for a l l j  E S and  for all 2 0, i.e.,  the  Markov  chain is stationary  (instead 
of just  having  a  stationary  transition  probability). 

An  interesting  feature of Eq. (6) is that  its  rate of convergence is 
geometric.  Let U be an s x s matrix  consisting  of  identical  rows,  where 
each  row is u. Then by (7), PU = U P  = U ,  so by induction we have 

p" - u = ( P  - U)" (9) 

The  fact  that ( P  - U)" -+ 0 exponentially  fast  follows  from  the  Perron- 
Frobenius  theorem,  and since it is a little bit too  technical we shall  not 
pursue it further.  This basically explains  that  for  a well-behaved Markov 
chain,  the series in (5) usually  converges  because it is basically a  geometric 
series. Also, the  long-term  behavior  of an ergodic  Markov  chain is indepen- 
dent of  its  initial  distribution. 

Let A be a  subset  of S, and let T = inf{n 2 1, X, E A ] .  Then T i s  the 
first entrance time to  the set A .  For a  control  chart  modeled by a  Markov 
chain,  the set A may  consist  of  the  region  where an  alarm  should be 
triggered  when X,, E A occurs  for  the first time.  Thus T is the  time 
when the first out-of-control signal is obtained,  and E ( T )  is closely related 
to  the  concept of average  run  length  (ARL).  When  the  control  charts 
become more  involved,  the  exact  or  approximate  calculations  of ARLs 
become  involved or impossible  with  elementary  methods.  However,  most 
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(not all) control  charts  can be properly  modeled by a  Markov  chain,  and 
essentially all methods  developed to calculate  the ARLs  are  more  or less 
based on  the possibility that  one  can  embed  the  control  scheme  into  a 
Markov  chain. 

3. DISCRETE  CASE:  EXACT  RESULT 

In  this  section we discuss  cases for which an exact finite Markov  chain  can 
be  found  to  describe  the  underlying  control  chart. I first describe  a  general 
scenario  where  such  a  representation  can be arranged  and  explain why it can 
be done. 

Assume that  the basic observations  are X,, X,, ..., which are  i.i.d.  and 
take values in a finite set A of size k .  The key point is that  the X ' s  are 
discrete  and  the set A is finite. This  may be the  case  when  either  the X ' s  
themselves are  discrete  or  the X ' s  can be discretized. 

Most  control  charts  are  of "finite memory"; i.e., at time n the  decision 
of  whether  to flag an  out-of-control  signal  depends  on ..., X,, 
only.  In  other  words, we may trace  back  to  consult  the recent  behavior  of 
the  observations  to decide  whether  the  chart is out of control,  but we do it 
for  at most r steps  back, r < 00. The case  for  which we have  to  trace  back  to 
the infinite past is excluded. 

Let Y,, = (X,,-,.+,, ..., X,,). The  random  vector Y,, can  take  as 
many  as s = kr<m possible values. It is easy to see that  the Y's  follow a 
Markov  chain with an s x s transition  matrix. Since at time n, Y,, is used 
to decide  whether  the  process is out of control, we see that,  conceptually 
at  least,  for  the  scenario  described  above,  there exists a finite Markov 
chain  for  which  the  behavior  of  the  control  chart  can be completely 
determined. 

However, s = k' can be a  very large number, so the s x s matrix  can be 
too  large  to have  practical  value.  Fortunately, this matrix is necessarily 
sparse  (i.e.,  most  entries  are 0), and if we take  a  good  look  at  the rules of 
the  control  chart,  then  the  chances  are we may find some  means  to  drasti- 
cally reduce  the  number  of  states  of  the  Markov  chain.  Hence,  to  implement 
our general observation, we need  case-by-case  technical works  for  various 
control  charts. 

Example 1. The Standard X Chart 

If groups of size tz is used against f 3 0  limits, define, for  each J?,,, 
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Note  that  the X's are the  coded  values  of  the X ' s .  As  long  as  our only 
concern is whether  the  process is under  control,  the behavior  of  the X 
chart  can be completely  determined by the  coded X ' s .  The  coded X ' s  are 
still i.i.d.,  and  this is a special kind of Markov  chain.  Its  transition  matrix, 
when the  process is under  control.  consists  of  three  identical  rows: 

wherep, = p 3  = @(-3) andp2 = @(3) - @(-3), where @ denotes  the  cumu- 
lative  distribution  function of a  standard  normal  distribution. 

We  can do similar  things for  the  standard R chart. 

Example 2. Shewhart Control Chart  with  Supplementary  Runs 

We often  include additional  run rules on a standard  control  chart to increase 
its  sensitivity in detecting  a  mean  shift. For example, 

Rzrkc T45. I f  four of the  last five observations  are  between (-3 and -1) 
or between 1 and 3, then a signal is suggested. 

The well-implemented  Western  Electric Company (1965) rules also fall into 
this  category. 

I f  we want to implement  rule T45 ( i n  addition  to the standard f 3 o  
rules), we first need to divide  the real line into five disjoint  intervals: 

I, = ( ( t i -  I , r/ ; ]  

with o 5  = -[lo = 00, 11; = -5 + 2i, 1 5 i 5 4.  Hence an s = 5- = 3125-state 
Markov  chain is sufficient to describe  this situation. But a 3145 x 3145 
matrix is too large even for  today's  computers, so well devised tricks are 
needed to  drastically  reduce  the value of s .  I t  turns  out  that it is possible to 
use a 30-state Markov  chain, which is of moderate size. 

Rule T45  can be replaced by other  run rules or  some  combinations  of 
them.  The idea is that in many  cases we may  drastically  cut  the size s, and it  
is possible to find a  constructive  method to implement  such  a  simplification. 
Hence  this type of problem  (evaluate  the  exact ARLs  and  run length  dis- 
tributions  for  Shewhart  control  charts with various  supplementary  run 

5 
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rules) is mathematically  tractable.  For  technical  details,  the full method is 
documented in Champ  and  Woodall (1987) and  programs  are  available in 
Champ  and Woodall (1990). 

Example 3. Discrete CUSUM 

Assume that Y,,, the  i.i.d.  observations  for  a  quality  control  scheme,  are 
integer-valued and  that  a one-sided CUSUM (Van  Dobben  de Bruny, 1968) 
is under  consideration. Define So = 0 and 

S,, = max(0, Y,, + S,,-l], 11 = I ,  2, ... 

Then the  one-sided CUSUM signals an  out-of-control message at stage t~ 
when S,, 2 t .  This is a  situation in which, at first sight,  the  decision to signal 
may  depend  on all data  points  up to time n, so it does  not fall into the 
scenario  described  earlier for  a finite Markov  chain  representation. 

We  may  look at the  construction  somewhat  differently. Since the  pro- 
cess stops when Sf, 2 t ,  obviously  the important values for S,, are 0,1, ..., 
t - 1, t .  When S,, 2 t ,  the  process  stops; hence we may use a ( t  + I)-state 
Markov  chain to describe S,,, with the  last state  behaving like an  “absorbing 
state.” We write  the  transition  probability  matrix as follows: 

where R is t x t ,  0 is a 1 x t vector  of O’s, and 1 is a t x 1 vector of 1’s. A 
typical entry of R is 

r,i = P[S,, =,jlS,,+l = i], 0 5 i,,j 5 t - I 

Expression ( I O )  is typical for  control  charts represented by a finite 
Markov  chain.  Here  the  ARL is the  average time for the  process S,, to 
enter  the  absorbing  state t .  In  symbols, 

ARL = E ( N )  
N = inf(n 2 1 : Sf, 2 t ]  

Example 4. Two-sided CUSUM 

The  CUSUM i n  Example 3 is one-sided, since it detects  the upward shift of 
the  process  mean  only. For a  two-sided  (discrete) CUSUM, suppose  that 
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integer-valued  random  variables Y,, and Z,, are  observed.  Define S,(O) = 
S,(O) = 0, where 

SH(n)  = max(0, Y,, + SH(n - 1)) 
SI>(??) = min(0, Z,, + SL(n - I ) )  

and 

N = inf(n >_ 1 : SH(n) 2 t l  or SL(rz) 5 - t z )  

Normally, we would  have Y,  = X ,  - k l ,  Z, = X ,  + k2 for  some  known  inte- 
gers k l ,  k2. The X‘s are  the  basic  sequence of the  quality  characteristic 
measured  for  control.  The  bivariate process (SH(n),  SL(n)) takes  values in 
{O,l ,  ..., t l }  x {O,l, ..., fz}, and it is possible to write a finite Markov  chain 
with s = ( t l  + l ) ( t 2  + 1 )  states (see Lucas  and  Crosier, 1982). For  a two- 
sided CUSUM, the  number of states of the  underlying  Markov  chain  can 
be reduced to  about t ,  t 2 / 2  by careful  arrangement of states  (Woodall, 1984). 
However, i t  is not  known  whether we can  always  reduce  the  Markov  chain 
of the two-sided CUSUM  to  a linear  function of t l  + r2. 

4. GENERAL  RESULTS 

I have demonstrated with  examples  that it is often  possible to  represent  a 
control  chart with a  Markov  chain with a  transition  probability  matrix of 
the  form (10); i.e., states 0, I ,  ..., t - 1 are  transient  states,  and  one  state, 
state t ,  is absorbing. Let N j  be the  number of  stages,  starting  from  state 
i E (0, 1, ..., t - l ) ,  to reach  the  absorbing  state  for  the first time.  Then it  
follows  from  the standard  Markov  chain  theory  that  the l t h  factorial 
moment of N , ,  i.e., 

pf‘) = E ( N ; ( N ,  - 1) ... ( N ,  - l + 1 ) )   ( 1  1) 

can be found via the  matrix  equation 

where 1 is a t x 1 vector  of 1’s. Furthermore,  the  run  length  distributions of 
N o ,  N l ,  ..., N,-l are given by 

(PINO = r ] ,  PINI  = r ] ,  ..., P[N,-I = 1.1)’ = Rr-’(1 - R ) l  (13) 

r =  1 ,2 ,  ... . 
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What we have  described can  be roughly  summarized  as  follows. If we 
can find a  finite Markov  chain to describe  the  behavior of a  control scheme 
in the  form of Eq. (IO),  then  all  problems  concerning  the ARLs of  the 
control  chart  are solved. The only  technical  concern is that  the size of  the 
transition  matrix  should be manageable. 

5. APPROXIMATIONS:  THE  CONTINUOUS  CASE 

When  the  underlying  quality  characteristic is continuous,  a  situation  may 
rise for which we cannot  embed the control scheme into a finite Markov 
chain. 

Example 5. One-sided CUSUM with Continuous Observations 

Let us consider  a  setup identical to  that of  Example 3 but  with  the Y's 
replaced by i.i.d. N ( k ,  I ) .  where k is a  known  positive constant.  The  run 
length is N ,  defined by 

N = inf(n 2 1 : S,, 2 t ] ,  t > O  

We  proceed to find the  distribution of N .  I t  is easy to see that N takes  values 
1,2, ... only, and it is sufficient to find 

P [ N  > 1.1 = P[SI < t ,  S? < t ,  ..., S,  < t ]  

Since f > 0, it is easy to find P [ N  > O ]  = 1 and P [ N  > 13 = 
P[YI < t ]  = @(t - k ) ,  where @ is the  cumulative  distribution  function  of 
the  standard  normal  distribution. 

The case for P [ N  > 2 ]  is more  complicated. By definition, 

P [ N > 2 ]  = P[SI < t ,  & < t ]  

= I' P[S? < rlS, = s]dF,(.u) 

where F I  is the  cumulative  distribution of SI, i.e., 

The  complication in (15) results  from  the  fact that 

P[SI = 01 = P [ Y ,  5 01 = @(-k)>O 
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hence the  random  variable SI is neither  continuous  nor discrete. I t  has a 
jump  at SI = 0 and is continuous in (0, 03). Substituting (15) into (l4), 
omitting  the  algebra, we have 

P[N>2] = @ ( f  - k)@(-k) + @(f - s - k)&s - k )  (I.\- L1' 
where 4 is the  probability  density  function  for  the  standard  normal. 

But since the  last  integral  has no simple  closed form,  this is about  as 
far a s  we can go analytically.  (We  can find P [ T > 3 ]  in more  complicated 
forms,  but  the  situation quickly runs  out of our  control when we try to find 
P[N>r. ]  for I' = 3,4,  ... .) This basically shows  that there is no easy way to 
calculate  the  exact ARL for  the  one-sided CUSUM  chart if the  observations 
are i.i.d. normal. Also. the above  example  demonstrated  that i t  is necessary 
to use approximate  methods  to find an  approximation  for the ARL for  the 
standard one-sided CUSUM  chart. 

The basic  idea  of  how to find approximate  ARLs is due  to Brook and 
Evans  (1972). Since we can find the  exact ARL of CUSUM when  the Y ' s  are 
discrete,  then  when these observations  are  continuous it is natural to dis- 
cretize  the Y ' s  first. The exact ARL  for the  discrete version of CUSUM 
serves as an  approximation of  the  exact ARL for  the  continuous case. 

Specifically, for the  situation  described i n  Example 5, define 

P[X,, = . j ]  = P[O. - 1/2)< Y,, - k <w(j + 1/2)1v] 
= @((j + 1/2)w) - @((j = 1 /2)119 
& ll~ql(j11~) 

if 113, the  threshold size for  our  "roundoff'  procedure, is small. Since [X , ,  - 
Y,,l 5 II' for all 1 2 ,  we would  intuitively  expect Y,, =X,,. and  ARLs based on 
the X ' s ,  which we may find exactly via the Markov  chain  method, can be 
used to find a reasonable  approximation of the ARLs  for  the  original 
CUSUM based  on continuous  distributions. 

How small  should 11' be in order  to  induce  a  reasonable  approxima- 
tion'? Very little is known  mathematically  although we believe it is workable. 
However,  it is reported  (Brook  and  Evans, 1972) that it is possible to obtain 
agreement to within 5% of  the  limiting  value when f = 5 and  to within 1 %  
when f = 10. 

The basic idea of  Brook and  Evans  can be applied to various 
CUSUMs. Since the  basic  concept is the  same, we shall  only list these 
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cases. Successful attempts have been reported  for  the two-sided CUSUM 
(Woodall, 1984) and  multivariate  CUSUM  (Woodall  and  Ncube, 1985). In 
these  cases,  however,  the sizes of  the  transition  probability  matrices  increase 
exponentially with the  dimension  of  the  problem,  and so far  no efficient way 
to drastically  reduce  the  matrix size is known.  The Brook and  Evans tech- 
nique also applies to weighted CUSUMs (Yashchin, 1989), CUSUMs with 
variable  sampling  intervals (Reynolds et  al., 1990), and the  exponentially 
weighted moving  average  schemes (Saccucci and Lucas, 1990). I n  all  these 
examples,  the control scheme  can be described in the  form 

Si,, = g j ( X , , ,  S j , f , - l ) ,  ? I ;  i = I ,  2, ..., 111 

where g,  are fixed functions and the Y s  are  i.i.d.  continuous  or discrete. For 
example,  for the  two-sided CUSUM, we have H I  = 2 and 

If the Si’s are discretized to t different  values,  then  the control scheme  can be 
approximately  described by an  s-state  Markov  chain, s = t”’. 

Example 6. Another Two-sided CUSUM 

For the standard two-sided CUSUM, a careful arrangement  can reduce  the 
need of t2 states,  where we assume,  for simplicity, that t l  = t2 = t .  If the 
situation is extremely  lucky, i t  can be reduced to 2t - 1 states;  but in general, 
(r’ + r ) / 2  is about the best we can  do  (Woodall, 1984). Hence even for the 
two-sided CUSUM, the  Brook and Evans  technique has its  limitations. 
Another way to look  at  the  problem is to consider a slightly different 
two-sided CUSUM.  The version below is suggested by Crosier  (1986). 

Let So = 0 and define C,,, Sf, recursively by 

This is clearly Markovian. Since there is essentially one  equation  to describe 
the control scheme,  there is no difficulty in using  a  t-state Markov  chain. 
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6. OTHER  APPLICATIONS 

So far we have  limited our discussion to  control  charts.  However,  the 
Markov  chain  technique is so versatile that i t  can  be  applied  to  many 
quality-related  topics. 

A  main  area of application  concerns  various  continuous  sampling 
plans  with  attribute-type  observations. All these  plans are  based  on  a 
sequence  of i.i.d. discrete  observations,  and  the decision  related to these 
plans is normally  based  on  at  most  a finite number of observations  counted 
backward.  This fits into  our  general  scenario of Markov  chains,  and  the 
only  technical  problem left  is to find a Markov chain  of  reasonable size. 

Most  continuous  sampling  plans  (three versions  of  CSP-I and  CSP-k, 

1977). The  ANSIiASQC  21.4  plan falls into  this  category  (Grinde  et  al., 
1987; Brugger, 1989). Other  examples  include  the  two-stage  chain  sampling 
plan  (Stephens  and  Dodge, 1976), the  skip-lot  procedure  (Brugger, 1975), 
process control based on  within-group  ranking  (Bakir  and  Reynolds, 1979), 
startup  demonstration test (Hahn  and  Gage, 1983), and  precontrol  sampling 
plans  (Salvia, 1987). 

A more  important  application of a Markov  chain is to  study  the 
behavior  of  the  quality  scheme, be it discrete  or  continous,  when  the basic 
observations  are  correlated. Very little is known in this respect  when  the 
observations  are  continuous. But if they are  discrete, we may  model  the 
dependence by assuming  that  the  basic  observations  follow a finite 
Markov  chain  also.  In  the  expression  shared by many  quality  systems, 

IC = 2 ,3 ,4 ,  5) can be embedded  into  a  proper  Markov  chain (see Blackwell, 

s,, = $Ax,, 1 s,,- I )  

we see that S,, follows a Markov  chain if X,, follows  a Markov  chain.  Hence 
the  general  idea  described in Section  4 still applies.  However,  studies in this 
respect, although  workable,  are  rare in the  literature.  The only  related  work 
seems to be Chao (1989). 

The  Markov  chain  method  also  finds  its  application in various linearly 
connected reliability systems.  A  general  treatment  can  be  found in Chao and 
Fu (1991).  Readers  are  referred  to  the  review  article by Chao et a l .  (1995). 

7. CONCLUSION 

In  this  chapter I have demonstrated, with  examples  and  general  scenario 
descriptions.  that it is often  possible to define  a Markov  chain  such  that  the 
underlying  quality  control  scheme  can be completely  described by this 
Markov  chain. 
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To evaluate  the  system  performance  of a control   char t ,  or other   qual-  
ity-related schemes, perhaps the  most   dif f icul t   quant i ty   to   calculate  is the 
ARL and its  associated  sampling  distributions.  The Markov  chain  techni-  
que provides a general means for  accomplishing  this  task.  
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Joint  Monitoring of Process  Mean  and 
Variance Based on  the  Exponentially 
Weighted  Moving  Averages 

Fah Fatt Gan 
National  University of Singapore,  Singapore,  Republic of Singapore 

1. INTRODUCTION 

The  Shewhart  chart based on  the  sample  mean 2 was  first  developed to 
monitor a process  mean. The  chart was  then  modified  to  plot  the  sample 
range R to monitor  a process  variance.  Each  chart  was  developed  assuming 
that  the  other process  characteristic is  in control.  The  more  advanced  chart- 
ing  procedures  such as the  cumulative  sum (CUSUM)  and exponentially 
weighted  moving  average (EWMA)  charts were  later  developed  based on the 
same basic assumption.  This  has led to the  design and  evaluation of perfor- 
mance  of  the  mean and variance  charts  separately.  This  kind of analysis 
might  mislead  quality control  engineers  into  making  inferences  concerning 
the  mean or  the  variance  chart  without  making reference to  the  other. 
Experience  with  real manufacturing processes has  shown  that  the process 
variance  tends  to  increase  with  the  process  mean. A decrease  in  the  variance 
when  the mean is  in control is  highly desirable,  but if a  decrease in the 
variance is accompanied by a  decrease in the  mean,  then it is  highly undesir- 
able. Gan (1995) gave an example of a  process  with  a  decrease  in the  var- 
iance  coupled  with  a  change in the  mean  and showed that this  process state 
is difficult to detect. The  mean  chart becomes  insensitive to  the  change in the 
mean  because  the  variance  of the  sample  mean  has  become  smaller.  Any 
detection of a decrease in the  variance  with  the  mean  appearing to be  in 
control  could lead to  the false  conclusion  that  the  process  has  improved.  In 
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short,  the  problem of monitoring  the  mean  and  variance is a  bivariate  one, 
and  both  the  mean  and  variance  charts need to be looked at jointly in order 
to  make  meaningful inferences. 

The use of combined  schemes  involving  simultaneous  mean  and  var- 
iance  charts based on  the EWMAs of  sample  mean  and  variance is discussed 
in Section 2. The average  run  length (ARL) performance of  the  various 
schemes is assessed in Section 3. A simple  design procedure of a  combined 
EWMA scheme  with an elliptical “acceptance”  region is given in Section  4. 
A real data set from  the  semiconductor  industry is used to  illustrate  the 
design and  implementation  in  Section 5. 

2. JOINT  MONITORING OF PROCESS  MEAN  AND 
VARIANCE 

Consider  the  simulated data set given in Gan (1995). The  data set comprises 
80 samples,  each  of  sample size 17 = 5. The first 40  samples  were  generated 
from  the  normal  distribution N ( p O ,  o;), where = 1 and 0; = 1, and  the rest 
were from N ( p o  + 0.4oO/,h, (0.90,)~).  Thus,  the process  was  simulated to be 
in control  for  the first 40 samples,  and between the 40th and 41st  samples  the 
mean shifted upward  to po + o.4a0/,h  and the  variance  decreased  to 
( 0 . 9 0 ~ ) ~ .  A  EWMA chart  for  monitoring  the  mean is obtained by plotting Qo 
= po and Q, = ( I  - A,,,,)Q,-, + hnrX, against  the  sample  number t ,  where 2, 
is the  sample  mean at sample  number t .  A signal is issued if Q, > or 
Q ,  < - /I , , , .  Similarly,  a EWMA chart  for  monitoring  the  variance is 
obtained by plotting yo = E[log(Sf)] = -0.270 (when o = 06) and y, = 
(1 - A,,)q,-, + Av log($), where Sf is the  sample  variance  at  sample  number 
t .  A signal is issued if y, > Hv or 4,  < - hc.. More  details  on  the EWMA 
charts  can be found in Crowder (1 987, 1989), Crowder  and  Hamilton ( 1  992), 
Lucas  and Saccucci (l990),  and  Chang (1993). The EWMA mean  and 
variance  charts based on  the  parameters given in Gan (1995, Table 2, p. 
448,  scheme EE) are  constructed  for  the  data  and  displayed in Figure 1. 

A quality  control engineer has  to  constantly  combine  the  information 
in the  two  charts (which  might not be easily done in practice)  to  make 
meaningful inferences. To  ensure  that  the  charts  are  interpreted  correctly, 
the  two  charts  could be combined  into  one,  and  this  can be done by plotting 
the EWMA of log(S2) against  the EWMA of x as  shown in Figure 2. The 
chart limits of the  two  charts  form  the  four sides of a  rectangular  “accep- 
tance”  region.  Any  point  that falls within  the  region is considered an in- 
control  point  (for  example,  points A and B ) ,  and  any  point  that falls outside 
the region is considered an  out-of-control  point  (for  example,  point C). The 
thick  bar  on  the  plot is not  an  out-of-control region but  represents  the  most 
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Figure 1 EWMA charts based on J? and log(S') for a simulated  data set where the 
first 40 samples were generated  from  the  normal  distribution N ( p u ,  oi), where 11" = 1 
and cri = I ,  and the rest were from N (I+, + 0.40u/./h, (0.90~)'). 

desirable  state,  where  the  mean is on target  and  the  variance  has decreased 
substantially. 

The  advantage of this charting  procedure is immediate: Any inference 
made  can be based on  both  the EWMAs jointly.  The  interpretation of an 
out-of-control signal is easier because the  position of the  point gives an 
indication  of  both  the  magnitude  and  direction  of  the  process  shift. 
However,  the  order  of  the  points is lost if they are  plotted on the  same 
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0.9 C. 
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EWMA of X 
Figure 2 A combined EWMA schemc  with a  rectangular  acceptance region. 
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plot.  To get around  this  problem,  each  point  can be plotted on a new plot in 
a  sequence a s  shown  later in Figure 13. The  disadvantage is that i t  is not  as 
compact a s  the  traditional  procedure  illustrated in Figure 1. 

The  traditional way  of plotting  the  mean  and  variance  charts  sepa- 
rately [see, for  example, Can (1995)] amounts  to  plotting  the  EWMA of 
log(S’) against  the  EWMA of 2 and using a  rectangular  acceptance  region 
for  making decisions. The  main  problem with a  rectangular  acceptance 
region is that  both  points A and B (see Fig. 2 )  are  considered in control, 
although it is fairly obvious  that  point B represents  a  far  more  undesirable 
state  than  that of point A .  An  acceptance  region  that is more  reasonable 
would be an elliptical region as  shown in Figure 3. Takahashi (1989) inves- 
tigated an elliptical type of acceptance  region  for  a  combined  Shewhart 
scheme  based on 2 and S or R. An  economic  statistical  design  for  the 2 
and R charts  was given by Saniga (1989). A  point is considered  out of 
control if it is outside  the elliptical acceptance  region. For example,  point 
B is an  out-of-control  point,  but  point A is an  in-control  point,  for  the 
elliptical region  given in Figure 3. This  chart is called a bull’s-eye chart, 
as  any hit on the bull’s-eye  will provide  evidence  of  the  process  being on 
target. 

For  the  same  smoothing  constants hnr and A,,, in order  for  a  EWMA 
scheme  with an elliptical region to have  the same ARL as the  EWMA 
scheme  with a rectangular  region,  the  chart limits of the  mean  and  variance 
charts  have  to be slightly larger,  as  shown in Figure 4. The idea  of an 
elliptical region  comes  from  the  Hotelling’s  statistic to be discussed later. 
Point A is an  in-control  point  for  the  rectangular  region,  but it is an  out-of- 
control  point  for  the elliptical region.  Similarly,  point B is an  out-of-control 
point  for  the  rectangular  region  but  an  in-control  point  for  the elliptical 
region. Thus,  an elliptical region  would be expected to be more sensitive in 
detecting  large  changes in both  the  mean  and  variance  and less sensitive in 

C 0.3 
5 0.1 
gJ -0.1 z -0.3 
O -0.5 9 -0.7 

w -1.1 
3 -0.9 

-0.4 0.0 0.4 

EWMA of x 
Figure 3 A combined EWMA scheme with an elliptical  acceptance  region. 
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N 0.3 
2 0.1 
2 -0.1 

-0.3 
0 -0.5 

-0.7 

w -1.1 

- 

g -0.9 

-0.4 0.0 0.4 

EWMA of X 

Figure 4 A combined  EWMA scheme  with both  rectangular  and elliptical  accep- 
tance regions. 

detecting a large  shift in one process  characteristic  when  there is little or  no 
change in the  other  characteristic. 

A Shewhart bull’s-eye chart  and a EWMA bull’s-eye chart  are dis- 
played in Figure 5.  The  Shewhart bull’s-eye chart  displays 10,000 random 
points (x, log(S’)) when the process is  in control.  The  EWMA bull’s-eye 
chart  displays  the  EWMA of the  points (x, log (S’)). Both  the  charts  show 
that  the  points  are  roughly  distributed within  elliptical  regions;  hence an 
elliptical  region is a natural  and  more  appropriate decision  region  for a 
Shewhart or EWMA bull’s-eye chart. 

An  equivalent  decision  procedure  for  the  EWMA bull’s-eye chart is to 
check the  distance of the  point  (Q,, qr )  from  the  center (kto, E[log(S’)]) and 
declare  the  point  out  of  control if 

2.0 
1.0 
0.0 

c4 -1.0 
bo -2.0 

-3.0 
-4.0 
-5.0 

h 

2 - 

-2 

I I  a 

PI 0.2 s. 0.0 
2 -0.2 
“0 -0 .4 
< -0.6 

h 

”. - 

- 

2 -0.8 
-1.0 
-1.2 

.0  -1.0 0.0 1.0 2.0  -0.5 0.0 0.5 

x EWMA of X 

Figure 5 Shewhart bull’s-eye chart  and a EWMA bull’s-eye chart based on 10,000 
random  points (x, log(S?)) from  an  in-control  normal  distribution. 
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for  a  point (Qt3  qr )  located above the  horizontal line q r  = E[log(S’)] or if 

for  a  point (er, 4, )  located below the  horizontal line. For a  point  above  the 
horizontal line, 

which is a Hotelling  type  of  statistic.  This  statistic is similar to the  one 
proposed by Lowry et  al. (1992). Thus,  another way of  implementing  the 
bulls’s-eye chart is to plot  the  Hotelling  type  statistic T’ against  the  sample 
number / as  shown in Figure 6, which I shall  refer to as  a  multivariate 
EWMA T 2  chart. 

The  main  problem with  this  charting  procedure is that when a signal is 
issued,  the chart  does  not  indicate which process  characteristic gives rise to 
the  signal. The  omnibus EWMA chart  proposed by Dornangue  and  Patch 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

T2 

0 10 20 30 40 50 60 70 80 

Sample Number 

0.3 
0.1 

-0.1 
-0.3 
-0.5 
-0.7 
-0.9 
-1.1 

-0.4 0.0 0.4 

EWMA of 2 

Figure 6 A multivariate EWMA T’ chart for a simulated data set  where the first 
40 samples were generated  from  the normal distribution N (po, o;), where po = 1 and 
O; = 1, and  the  rest were from N ( p o  + O.4oo/J7i, (0.90~))’. 
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(1991)  has a  similar  problem  of  interpretation. The T2 statistic  indicates  only 
the  magnitude  and  not  the  direction of the  shift.  In  process  monitoring,  the 
direction of a  shift  is at least  as  important  as  the  magnitude of the  shift.  An 
improvement  to  the T2 chart is to  include  a bull’s-eye chart  of  the  points with 
the  most  recent  point  plotted  as  a solid black dot.  Although all the  points  are 
shown in this bull’s-eye chart, in order  to  avoid  overcrowding of points  only 
the  most  recent 40 points,  for  example,  are  plotted  each  time.  The bull’s-eye 
chart will provide  the  information  on  both  the  magnitude  and  direction  of 
any  process  shift.  The  interpretation of the T2 statistic is simple and easy to 
understand with the bull’s-eye chart.  Mason  et  al. (1995) proposed a certain 
decomposition of the  Hotelling  statistic  for  interpretation  of  the  state  of a 
process.  Their  method is mathematically  more  complicated  and  hence  harder 
for a quality  control  engineer  to  understand  and  appreciate. 

3. COMPARISON OF SCHEMES  BASED  ON ARL 

For a comparison of schemes  based on  the  ARL,  the  in-control  mean  and 
variance  are  assumed  to be po = 0 and oi = 1, respectively. Each  sample 
comprises IZ = 5 normally  distributed  observations.  The  mean  and  variance 
investigated  are  given by p = po + Aoo/&i and o = 6oo, where A = 0.0, 
0.2, 0.4, 1.0, and 3.0 and 6 =0.50, 0.75,  0.95, 1.00, 1.05, 1.25, and 3.00. 
Combined schemes  with rectangular  and elliptical acceptance  regions  are 
compared in this sectiotn. All the schemes  have an  approximate  ARL of 
250. The  ARL values  of the schemes  EE, and SS, (combined  EWMA  and 
Shewhart schemes  with rectangular  acceptance  regions) were computed 
exactly  using the  integral  equation  approach given in Gan (1995). The 
rest  were simulated.  Alternatively,  the ARL of the  EWMA bull’s-eye 
chart  EE, could  be  computed by using the  Markov  chain  approach of 
Brook  and  Evans (1972) or  the  integral  equation  approach.  Waldmann’s 
method  (Waldmann, 1986a,  1986b)  could be used  here for  approximating 
the  run  length  distribution of a bull’s-eye chart. Let the  starting values  of  the 
EWMA  mean  and  variance  charts be u and v, respectively; then  the ARL 
function L,.(u, v) of the  combined  scheme  with an elliptical acceptance 
region B can be derived as 

L&, v) = 1 
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where,/:? and.f;og(S2)  are  the  probability  density  functions  of 2 and log (s'), 
respectively. 

The schemes CC (combined CUSUM scheme  with a rectangular 
acceptance  region)  and EE,. are  the  same  as  those given  in Can  (1995). 
The  combined scheme CC consists of a  two-sided CUSUM  mean  chart 
and a two-sided CUSUM variance  chart.  This scheme is obtained by plot- 
ting So = To = 0.0, s, = max[0, s,-, +.VI - and TI = min [0, T,+l + s ,  
+I<,,,] against  the  sample  number t for  the  mean  chart  and by plotting 
SO = TO = 0.0, S, = max[0, SI_, + log(.$) - kr , [ ; ] ,  and T, = min [0, 
TI-, + log(.#) + against t for  the  variance  chart.  The  chart  parameters 
of the  various  schemes  are given in Table I .  More  details  on  the  CUSUM 
charts  can be found in Can ( 1  991) and  Chang (1993). The  ARL  compar- 
isons  are  summarized in Table 2. 

The  ARL values of combined schemes CC, EE,,  and SS, were  simu- 
lated  such that  an  ARL  that is less than I O  has  a  standard  error  of 0.01; an 
ARL  that is at least I O  but less than 50 has  a  standard  error  of 0.1; an  ARL 
that is at least 50 but less than 100 has  a  standard  error of about 0.2; and  an 
ARL  that is at least 100 has  a  standard  error  of  about 1.0. 

EE,. I V ~ S Z L Y  CC. The  performances  of these two schemes are  similar 
except that when  there is a  small  shift in the  mean and a  small  decrease in 
the  variance,  the EE, scheme is much  more sensitive. When  there is a  large 
increase in the  variance,  the EE, scheme is marginally less sensitive. 

EE,. w r . s ~ ~ v  EE,. The performances of these  two  schemes are  similar. 
The EEL, scheme is generally more sensitive than  the EE,. scheme  in  detect- 
ing  increases i n  the  variance and less sensitive in detecting  decreases  in the 
variance  for  the  various  means  investigated. 

Table 1 Control  Chart  Parameters of Combined  Schemes 

Scheme  Acceptancc region Control chart parameters 
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Table 2 Average Run  Lengths of Combined Schemcs with Respcct to the 
Process Mean (p,, + A x q ) / f i )  and  Standard  Deviation (60~)) 

A 6 cc E E r  EE,, ss,. ss,. 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 

0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 

1 .00 
1 .OO 
1 .00 
1 .00 
1 .00 
1 .OO 
1 .00 

3.00 
3.00 
3.00 
3  .00 
3.00 
3.00 
3.00 

0.50 
0.75 
0.95 
1 .00 
1.05 
1.25 
3.00 

0.50 
0.75 
0.95 
I .OO 
1.05 
1.25 
3.00 

0.50 
0.75 
0.95 
I .00 
I .05 
1.25 
3 .OO 

0.50 
0.75 
0.95 
1 .00 
1.05 
1.25 
3.00 

0.50 
0.75 
0.95 
1 .00 
1.05 
1.25 
3.00 

5.9 
24.8 

284.4 
253.6 
138.3 
19.2 
2.5 

5.9 
24.7 

167.8 
145.8 
96.2 
18.4 
2.5 

5.9 
23.2 
62.3 
56.1 
46.9 
16.2 
2.5 

5.8 
10.0 
10.5 
10.4 
10.3 
8.9 
2.4 

2.5 
2.6 
2.6 
2.6 
2.8 
2.7 
2.1 

5.8 
21 .Y 

236.7 
252.3 
137.1 

18.9 
2.6 

5.8 
21.8 

135.3 
129.7 
88.7 
18.0 
2.6 

5.8 
20.5 
51.8 
48.8 
41.7 
15.8 
2.6 

5.7 
9.7 

10.2 
10.2 
10. 1 
8.8 
2.5 

2.6 
2.6 
2.6 
2.6 
2.6 
2.7 
2.2 

6.4 
24.7 

254.8 
252.7 
129.3 

18.1 
2.5 

6.3 
22.8 

136.6 
127.4 
82.3 
17.0 
2.5 

6.1 
18.5 
52.5 
49.0 
39.8 
14.5 
2.5 

5.0 
8.6 

10.6 
10.5 
10.2 
8.0 
2.4 

2.5 
2.1 
2.8 
2.8 
2.8 
2.7 
2.0 

68.9 
322.4 
364.2 
252.2 
161.8 
31.1 
1.2 

68.9 
3 19.8 
328.8 
228.0 
148.2 
30.0 

1.2 

68.9 
309.5 
248.4 
173.6 
1 16.9 

27.1 
1.2 

68.8 
175.7 
64.9 
49.6 
38.3 
15.2 
1.2 

2.3 
2.2 
2.2 
2.2 
2.1 
2.1 
1 . 1  

153.0 
6 12.9 
426.0 
252.7 
145.4 
24.8 

1.2 

150.1 
592.5 
377.6 
227.9 
133.3 
23.9 

1.2 

142.0 
530.6 
276.6 
170.8 
105.7 
21.5 

1.2 

97.6 
217.9 

71.7 
50.6 
36.3 
12.2 

I .2 

2.3 
2.6 
2.4 
2.3 
2.3 
2.0 
1 . 1  
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SS, sersu.s SS,.  The difference in performance is more  substantial. 
The SS, scheme is more sensitive than  the SS, scheme in detecting 
increases in the  variance  but  substantially less sensitive in detecting 
decreases in the  variance, especially for  a  small  change  or  no  change in 
the  mean.  For  larger  changes in the  mean,  the difference is smaller. 

EWMA Schemes versus Shewhart Schemes. The EWMA schemes are 
substantially  more sensitive than  the  Shewhart schemes  except for  the  case 
when  there is a  big change in the  variance. 

In order  to  have  a  better  understanding of the  performance of  these 
schemes, 10,000 random  samples were  simulated  for  four  different  sets  of 
process  characteristics: A = 0.0 and 6 = 0.75, A = 0.4 and 6 = 1.00, A = 
0.4 and 6 = 0.75,  and A = 0.4 and 6 = 1.05. These  are  plotted  as  Figures  7a, 
7b, 7c, and  7d, respectively, for  the  combined  Shewhart  schemes. The 
EWMA of the  points (x, log (S’)) are  plotted  as  Figures 7e, 7f, 7g, and 
7h, respectively. For A = 0.0 and 0.4 and 6 = 0.75, the SS, scheme is more 
sensitive than  the SS, scheme,  and this is indicated by Figures  7a  and 7c, 
which  show that  there  are  more  points  outside  the  rectangular  acceptance 
region than  there  are  outside  the elliptical region. 

For A = 0.4 and 6 = 1.05, SS, is slightly more sensitive, as  indicated 
by Figure  7d, which  shows that  there  are  more  points  outside  the elliptical 
region than  outside  the  rectangular  region.  For A = 0.0, 6 = 0.75  and 
A = 0.4, 6 = 0.75,  for  example,  Figures  7a and 7c show  that  there  are 
very few points  outside  the  acceptance  regions.  In  sharp  contrast,  there 
are  a  substantial  number of points  outside  the  acceptance region in 
Figures 7e and  7g.  This  explains  the  substantial difference in the ARL’s 
of  the EWMA and  Shewhart  schemes.  Plots 7a and 7e correspond  to  the 
case  when  a  process improvement  has  taken place, and  this is reflected much 
more clearly in a EWMA scheme  than  in  a  Shewhart  scheme.  This  means 
that  the EWMA scheme  would be a  more effective tool  for  quality  improve- 
ment.  These  plots  also  suggest  that if sufficient points  are collected for  a 
process and  the  points  are  plotted  on  a bull’s-eye chart, then the  plot will 
provide  valuable  information  regarding  the  overall  state  of  the  process 
characteristics. The  central  location  and  spread of the  points  could  also 
be used to  estimate  graphically  the process  characteristics. 

4. DESIGN OF A EWMA  BULL’S-EYE  CHART  AND 
MULTIVARIATE  EWMA T2 CHART 

A simple  design procedure is provided  here  for  the  design of a EWMA 
bull’s-eye chart.  Table 3 contains  the  chart  parameters of EWMA bull’s- 
eye charts  with  an  in-control ARL of 300 based on a  sample size n = 5. 
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Figure 7 Combined  Shewhart schemes and  combined EWMA schemes  based on 
10,000 random  points  from  out-of-control  normal  distributions. 
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Table 3 Control Chart Parameters of Combined EWMA Schemes with Ellipticd 
Acceptmce Region, In-Control Average Run Length of 300, and Sample Sizc 5 

A,. 

~ ~~ ~ 

0.620 o.021 0.621 0.622 0.622 0.623 0.623 0.623 0.623 0.624 0.624 0.624 0.625 0.625 
0.182 0.241 0.268 (1.294 0.319 (1.343 0.366 0.389 0.410 0.431 0.451 0.471 0.509 0.546 
0.820 0.910 0.953 0.995 1.036 1.077 I . l l h  1.155 1.194 1.232 1.270 1.308 1.383 1.456 

0.710 0.710 0.711 0.711 0.712 0.712 0.782 0.713 0.713 0.713 0.713 0.713 0.714 0.715 

(1.822 0,')Il 0 .Y55  0.996 1.037 1.078 1.117 1.157 1.196 1.234 1.271 1.309 1.384 1.458 

0.752 0.752 0.751 0.753 0.753 0.754 0.754 0.755 0.7.55 0.755 0.756 0.756 0.756 0.757 
0.183 0.242 0.269 (1.295 0.320 0.344 0.367 0.390 0.411 0.432 0.453 0.472 0.510 0.547 

0 . 1 ~ 3  0.242 0.269 0.295 0.320 0.344 0.367 0.389 0.41 I 0.432 0.452 0.472 0.510 0.547 

0.~23 0.917 0.955 0 . ~ 9 7  1 . 0 3 ~  1 . 0 7 ~  I . I I X  1.157 1.196 1.234 1.273 1.310 1.384 1.458 

0.792 0.793 0.793 0.79.3 0.7Y4 0.794 0.794 0.795 0.795 0.796 0.796 0.796 0.797 0.797 
0.183 0.243 0.270 0.296 0.320 0.344 0.367 0.390 0.41 I 0.432 0.453 0.472 0.510 0.547 
0.823 0.913 0.955 0.997 1.038 1.079 I . I I X  1.158 1.196 1.235 1.273 1.310 1.385 1.458 

0331 0.832 0.832 0.833 0.833 0.833 0.814 OM4 0.834 0.835 0.835 0.835 0.835 0.836 
o . 1 ~ 4  0.243 (1.270 0.296 o.321 0.345 0.36~ 0.390 0.411 0.432 0.453 0.472 0.510 0.547 

0 . 8 6 ~  0.870 0.870 0.870 0 . ~ 7 1  0.871 0 . ~ 7 1  0.872 0.872 0 . ~ 7 3  0.873 0373 0.874 0.874 

0.~24 0.913 0 . 9 ~ 6  0.998 1.040 1.080 1 .119  1 . 1 5 ~  1 .197  1.236 1.274 1.311 1.3116 1.460 

0.907 0 . ~ 0 7  0 . ~ 0 ~  0.908 (I.YOX 0.908 0.909 0.909 o.910 0.909 O.YOY 0.91 I 0.91 I 0.91 I 
o . 1 ~ 5  0.243 0.271 0.296 0.321 0.345 n . m  0.390 0.412 0.433 0.451 0.473 o.511 0.548 

0.823 0.913 0.955 0.998 1.039 1.079 1.119 I.I5X 1.196 1.235 1.273 1.311 1.385 1.459 

0.183 0.243 0.270 0.296 0.321 0.345 0.368 0.390 0.412 0.433 0.453 0.473 0.51 I 0.547 

OX25 0.914 0.957 0.999 1.040 I.080 1.120 1.159 l . l Y X  1.236 1.274 1.313 1.387 1.460 

0.943 0.Y43 0.943 0.944 0.944 0.944 0.945 0.945 0.945 0.945 0.946 (1.946 0.946 0.947 
O.IX5 0.244 0.271 0 . 3 7  0.322 0.345 0.368 0.390 0.412 0.433 0.453 0.473 (1.511 0.548 
0.825 0.914 0.Y57 0.999 1.040 1.080 1.120 1.159 l . lY8 1.236 1.274 1.313 l.3X6 1.460 

0.977 (1.97~ 0.979 0.979 0.979 0 . ~ 7 ~  0 . ~ 8 0  (I.YXO o . ~ x o  0.980 O.YRI ( ~ 9 x 1  0 . ~ 8 1  ~ 9 x 1  
O.IX5 0.244 0.271 0.297 0 . 3 2 2  0.346 0.369 0.391 0.412 0.433 0.454 0.473 0.511 (1.548 
0.825 0.914 O.Y58 0.991) 1.040 1.081 1.121 1.160 1.198 1.236 1.275 1.312 l.3X7 1.460 

1.012 1.013 1.013 1.013 i . 0 1 3  1 .014  1.014 1.015 1 . 0 1 5  1.015 1.016 1.016 1.016 1.016 
(1.185 0.244 0.271 (1.297 0.322 0.346 0.369 0.391 0.413 0.433 0.454 0.474 0.51 I 0.548 
0.825 0.915 0 .9X  1.000 1.041 L O X ?  1.121 1.161 1.199 1.237 1.276 1.313 1.387 1.461 

1.045 1.046 1.047 1.047 1.047 1.047 i . 0 4 ~  1.048 1 . 0 4 ~  1.049 1.049 i.n.50 1.049 1.m 
0.185 0.244 0.272 0.297 0.322 0.346 0.369 0.391 0.413 0.434 0.454 0.474 0.512 0.548 
0.826 0,915 0.959 1.000 1,041 1.081 1.121 1.160 1.200 1.238 1.270 1.314 1.3X7 1.462 

1.079 1.07') 1.079 1,079 l.0XO I.0XI 1.0XI I.0XI 1.082 1.082 1.082 1.082 1.083 1.083 
0 . 1 8 5  0.244 0.272 0.297 0.322 0.346 (1 .36~ 0.391 0.413 0.434 0.454 0.474 0.512 0.548 

0.826 0.916 0.958 i.000 1.042 i.ox2 1 .122  1.161 im 1 . 2 3 ~  1.276 1.314 1.389 1.462 
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Similar  tables  covering other  in-control ARLs and  sample sizes are  available 
from  the  author.  These  are  obtained by using  simulation  such  that  the 
simulated  in-control ARL has  an  error of 1.0. The  starting value of the 
mean  chart is given by the  in-control  mean pO, and  the  starting value  of 
the  variance  chart is given by 

Suppose a combined  scheme  with knr = 0.14 and k I I  = 0.16 is desired. Then 
the  chart  parameters of  the  combined  scheme  can be obtained  from  Table 3 
easily as  follows: 

Mean  chart: 

Variance chart: 

The elliptical  acceptance  region can then be constructed using 

for  the elliptical curve  above  the  horizontal line q, = E[log(S')] and using 
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for  the elliptical curve  below the  horizontal line. 

5. A REAL  EXAMPLE 

Quality  control  engineers  would like to  monitor  the  mean ball shear  strength 
of a  connection  on  a  microchip.  From  past  process  data,  the  in-control 
mean is estimated  to be around 72 g, and  the  standard  deviation is estimated 
to be around 10 g. A  sample of size 5 is taken at regular  intervals,  and  the 
ball shear  strength of each  chip is measured.  The  chart limits of the schemes 
discussed  here are  chosen such that  a  combined  mean  and  variance scheme 
has  an  in-control  ARL of about 300. The  smoothing  constants of the 
EWMA  charts  are  chosen  to be k M  = 0.14 and kv = 0.16. 

The individual  Shewhart  charts  of x and log(S’) are displayed in 
Figure 8. The individual EWMA  charts of J? and log(S2) are displayed in 
Figure 9. Both  variance  charts suggest  evidence  of a decrease in the process 
variance. The  two  mean  charts  show  that  the  process  mean is rather 
unstable even though  the  variance  has  somewhat  stabilized  at  later  samples. 
This is an example  where  the  process  mean is unstable while  the  process 
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Figure 8 Shewhart  charts  based  on J? and  log (S’) for the  ball  shear strength  data. 
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Figure 9 EWMA charts based  on J? and log (S') for the ball shear strength data. 

variance is somewhat  stable.  This  could be due  to  the  production of  chips 
with  different  mean ball shear  strengths  for  different  batches  but with the 
variance  within  a  batch  being  more  stable  from  batch  to  batch.  This  points 
to  the need to  search  for ways to  ensure  a  more  stabilized  mean. 

A multivariate  Shewhart T 2  chart  and  a EWMA T2 chart  for  the ball 
shear  strength  data  are  displayed in Figures 10 and 1 I ,  respectively. Both 
charts  show bigger bursts of  activity  after  the  25th  sample.  However,  the 
reasons  for  these  bursts  of activity are  not  clear  from  the  charts. A bull's-eye 
chart would  help a  quality  control engineer to  have  a  better  understanding 
of  the  process  characteristic  when an out-of  control  signal is issued. 

T2 

4.0 
3.5 t 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 
0.0 

0 5 10 15  20 25 30  35 40 45 

Sample  Number 

7.0 3 I I 

6.0 
5.0 0 

4.0 0 

3.0 
2.0 

0.0 
1 .o 

50  72 94 

x 

Figure 10 A multivariate  Shewhart T 2  chart for the ball  shear strength data. 
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Figure 11 A multivariate EWMA T’ chart for the ball shear strength data. 

The  Shewhart  and  EWMA bull’s-eye charts  are displayed in Figures 
12 and 13, respectively. These  types of charts  should ideally be constructed 
using computer  programs.  The  charts  continuously  provide  valuable  infor- 
mation  regarding  the  process  characeristics i n  a  manner  that is easily under- 
stood by quality  control engineers. The  EWMA bull’s-eye chart shows that 
the  out-of-control  points  for  samples 6-8 are  probably  due  to decreases in 
the  mean and variance.  Figure 13 also shows that the  out-of-control  points 
at  samples 26-28 are  probably  due  to  an increase in the  mean  alone.  Similar 
conclusions can be drawn  from the  Shewhart bull’s-eye chart. I f  the  process 
is in control,  then the  points  on  a  Shewhart bull’s-eye chart will be randomly 
scattered. If a  sequence  of  plotted  points are all in a particular  quadrant, 
then the  quality  control engineer  should be on  the  alert and  take  samples 
more  frequently  than  usual (see Stoumbos  and  Reynolds, 1996, 1997). 
Alternatively,  supplementary run rules  could be applied to a  Shewhart 
bull’s-eye chart. 

6. CONCLUSIONS 

Three ways of charting 2 and  log (S’)  for  the  purpose of joint  monitoring of 
both mean and variance were discussed with respect to ease  of  implementa- 
tion  and ease of interpretation.  The  traditional way of  plotting  the  mean  and 
variance  charts  separately  amounts to plotting  log (S’)  against J? based on a 
rectangular  “acceptance”  region.  Using  the  justification of a Hotelling-type 
statistic, it was  shown  that  an elliptical  acceptance region is more  natural 
and  appropriate.  This led to the EWMA bull’s-eye chart  and the  multi- 
variate  EWMA  chart based on  a Hotelling-type T‘ statistic.  A  EWMA 
bull’s-eye chart provides  valuable  information on  both the  magnitude  and 
direction  of  a  shift in the  process  characteristics.  The  multivariate  EWMA 
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chart  provides only the  magnitude  and  not  the  direction  of a  shift.  It is 
recommended  that a EWMA bull's-eye chart be  plotted  beside  a  multivari- 
ate T2 chart  to  help  quality  control  engineers  gain a  better  understanding of 
the process  characteristics.  Average  run  length  comparisons  show  that  the 
performances  of  schemes CC and EE, are  similar except that when  there is a 
small  shift in the  mean  and a  small  decrease  in  the  variance, the  EE,  scheme 
is much  more sensitive. When  there is a  large  increase  in the  variance,  the 
EE, scheme is marginally less sensitive. The performances of the EE, and 
EE, schemes are  also  found to be  similar. The EE,  scheme is generally more 
sensitive than  the EE,  scheme in detecting  increases in the  variance and less 
sensitive in detecting  decreases in the  variance.  The  difference  between SS, 
and SS, is more  substantial.  The SS, scheme is more sensitive than  the SS, 
scheme in detecting  increases  in the  variance  but  substantially less sensitive 
in  detecting  decreases in the  variance,  especially  when  there is little or  no 
change in the  mean. The  EWMA schemes  were found  to be  substantially 
more sensitive than  the  Shewhart schemes  except for  the case  when  there is a 
big change in the  variance.  Finally,  a  simple  design  procedure  for an 
EWMA bull's-eye chart  was  provided. 
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Multivariate  Quality  Control  Procedures 

A. J. Hayter 
Georgia  Institute of Technology,  Atlanta,  Georgia 

1. INTRODUCTION 

In  many  quality  control settings  the product  under  examination may  have 
two or more  related  quality  characteristics, and the  objective  of  the  super- 
vision is to investigate  whether all of these characteristics  are simultaneously 
behaving appropriately.  In  particular, a standard  multivariate  quality  con- 
trol  problem is to consider  whether  an  observed  vector  of  measurements 
.x = (.xI, ..., .xk)’ from  a  particular  sample  exhibits  any  evidence  of a location 
shift  from  a set of “satisfactory” or  “standard” mean  values p = 
(p:, ..., p:)’. The individual  measurements will usually be correlated  due  to 
the nature of  the  problem, so that their  covariance  matrix C will not be 
diagonal. In practice,  the  mean  vector p0 and  covariance  matrix C may be 
estimated  from  an initial  large pool of observations. 

0 

.x , . . . , .\ I J’ 

and the  problem is then to  monitor  further  observations .x in order  to 
identify  any  location  shifts in any of the  mean  values. 

If the  assumption is made  that the data  are normally  distributed,  then 
the  distribution  of an observation .x is N k ( p ,  C), and the  problem is to assess 
the  evidence that p # 1:). In  the  univariate  setting (k = 1) this  problem  can 
be handled with a  Shewhart  control  chart with control limits set to  guaran- 
tee a specified error  rate E. One might  consider  handling  the  multivariate 
problem by constructing  individual  a-level  control  charts  for  each of the k 
variables  under  consideration.  However, it has  long been realized that such 
an  approach is unsatisfactory since it ignores  the  correlation between the 
variables and allows  the  overall error  rate  to be much  larger than a. On  the 
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other  hand, if individual  error  rates of a /k  are  used, then the  Bonferroni 
inequality  ensures  that  the  overall  error  rate is  less than  the  nominal level a. 
However, this procedure is not sensitive enough since the  actual  overall 
error  rate  tends  to be much  smaller  than a because  of the  correlation 
between  the  variables. 

A  multivariate  quality  control  procedure  that  can be successfully 
implemented in manufacturing processes should meet  the  goals  of 

1. Controlling  the  error  rate of false alarms 
2. Providing  a  straightforward  identification of  the  aberrant  vari- 

3. Indicating  the  amount of  deviation  of  the  aberrant  variables  from 
ables 

their  required  values 

In  addition,  for  certain  problems it  is desirable  that  the  multivariate  quality 
control  procedure 

4. Be valid without  requiring  any  distributional  assumptions. 

An overview of  the  multivariate  quality  control  problem  can be found 
in Alt (1985). In this chapter  some  more recent  work on  the  problem is 
discussed. Specifically, Section 2 considers  the  situation  where  the  normality 
assumption is made,  and  the  Hayter  and  Tsui (1994) paper is discussed 
together  with  work by Kuriki (1997). Section 3 considers  the  work  on  non- 
parametric  multivariate  quality  control  procedures by Liu  (1995) and Bush 
(1 996). 

2. PROCEDURES  BASED  ON  A  NORMALITY  ASSUMPTION 

It is clear  that  a basic property of  a good  procedure  for  this  multivariate 
problem is that  an overall  error  rate of the specified level a should be 
maintained  exactly, so that  the  probability of  incorrectly  deciding  that  the 
process is out of control (when  it is, in fact, still in control)  should be equal 
to  the specified value a. Hotelling  (1947)  provided  the first solution  to  this 
problem by suggesting  the  use  of  the  statistic 

T = ( X  - pO)'k"(~ - p ) 2 0 

where 2 is an  estimate of the  population  covariance  matrix C .  However, 
another  prolem is that of  deciding  what  conclusions  can be drawn  once  the 
experimenter  has  evidence  via  the T2 statistic  that  the  process is no  longer  in 
control. Specifically, how is it determined  which  location  parameters  have 
moved  away  from  their  control  values pp? 



Multivariate  Quality  Control  Procedures 21 1 

2.1. Confidence  Intervals  Procedure 

Hayter  and  Tsui (1994) proposed  a  procedure  that  provides  a  solution  to 
this identification  problem  and  to  the  related  problem  of  estimating  the 
magnitudes  of  any differences in the  location  parameters  from  their  stan- 
dard values pp. The  procedure  operates by calculating  a  set  of  simultaneous 
confidence  intervals  for the  variable  means p i  with an exact  simultaneous 
coverage  probability of 1 - a. The process is deemed to be out of control 
whenever any of these  confidence  intervals  does  not  contain  its  respective 
control value ,LL.?, and  the  identification  of  the  errant  variable or variables is 
immediate.  Furthermore,  this  procedure  continually  provides confidence 
intervals  for  the  “current”  mean values p i  regardless  of  whether  the  process 
is  in control  or  not  or  whether a particular  variable is in control  or  not. 

Let X - Nk(O, R) ,  where R is a  general  correlation  matrix with  diag- 
onal  elements  equal  to 1 and  off-diagonal  elements given by pij,  say,  and 
define  the  critical point CR,* by 

p(Ixi1 5 ~ R , E ;  1 5 i 5 k) 

In  the  more  general  case when X - N k ( p ,  C) for  any  general  covariance 
matrix C, let the  diagonal  elements of C be given by 0:. 1 5 i 5 k ,  and 
the  off-diagonal  elements by oji. Then if R is the  correlation  matrix  gener- 
ated  from C, so that pi, = oU/oio,, it follows that 

POX, - pil/o, 5 C R . ~ ;  1 5 i 5 k )  

However,  this  equation  can be inverted  to  produce  the following  exact 1 - M 
confidence level simultaneous  confidence  intervals  for  the p i ,  1 5 i 5 k :  

P(pj  E [ X ,  - oiCR,x, x, + oicR.r ] ;  1 5 i 5 k )  

Notice  that  the  correlation  structure  among  the  random  variables X affects 
the  simultaneous confidence  intervals through  the  critical  point CR,,.  

The  multivariate  quality  control  procedure  operates  as follows. For a 
known  covariance  structure C and  a  chosen  error  rate a, the  experimenter 
first evaluates  the  critical  point CR.?.  Then, following any  observation 
x = (x,, ... sk)‘, the  experimenter  constructs  confidence  intervals. 

p, E [-Y, - o i C R , a ,  -Y, + oiCR..r] 

for  each of the k variables.  The process is considered  to be  in control  as  long 
as each of  these  confidence  intervals contains  the respective standard value 
p!. However,  when an  observation .Y is obtained  for which one  or  more  of 
the confidence  intervals does  not  contain  its respective standard value py, 
then  the  process is stated  to be out of control,  and  the  variable  or  variables 
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whose  confidence  intervals do  not  contain 11: are identified as  those  respon- 
sible for  the  aberrant  behavior. 

This  simple  procedure  clearly meets the  goals set in the introduction 
for  a  good  solution  to  the  multivariate  quality  control  problem. An  overall 
error  rate of a is achieved, since when p = I?) there is an overall  probability 
of 1 - a that each  of  the  confidence  intervals contains the respective value 
p:. Also, the  identification  of  the errant  variables is immediate  and simple, 
and  furthermore,  the  confidence  intervals allow the  experimenter  to assess 
the new mean  values of the  out-of-control  variables.  This is particularly 
useful when the  experimenter can  judge the  process to be still “good 
enough”  and hence allow i t  to  continue. 

2.2. Example 

Consider first the  basic  multivariate  quality  control  problem with IC = 2 so 
that there are  just  two variables  under  consideration.  In  this  case,  the 
required  critical  point CK.? depends  only  on the error size a and the  one 
correlation  term pi? = p, say. I n  tables B.  1-B.4 of  Bechhofer and  Dunnett 
( 1988), values  of  the  critical  point are given for a = 0.20, 0. IO,  0.05, and 0.0 I 
and  for p = 0(0.1)0.9 (the required  values  for CK,? correspond to the  entries 
for 1’ = 2 and v = 00). More  complete tables are given by Odeh  (1982),  who 
tabulates  the  required  critical  points  for  additional values of CY and p (the 
values C,<.% at k = 2 correspond to the  entries  at N = 2). Interpolation 
within these tables  can be used to provide  critical values for  other cases 
not given. An  alternative  method is to use a computer  program  to  evaluate 
the  bivariate normal  cumulative  distribution  function. 

As an example of the  implementation of the  procedure with k = 2, 
consider  the  problem  outlined i n  Alt (1985)  of a lumber  n~anufacturing plallt 
that  obtains  measurements  on  both the st(!jrrle.ss and the berldirlg strength of 
a particular  grade of  lumber.  Samples of size 10 are averaged to produce  an 
observation s = (s i ,  s,)’, and  standard values for these averaged  observa- 
tions  are  taken  to be p = (265,470)’ with a covariance  matrix of 7 ) 

111 this  case  the  correlation is p = 0.6, so that with an error  rate of c1 = 0.05, 
the  tables referenced above give the  critical  point as CR,? = 2.199. 

Following  an  observation s = (si, .x-?)’, the  simultaneous  confidence 
intervals  for  the current mean  values p = (p,, p 2 ) ’  are given by 
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E [SI - 2 1 9 9 J l 0 ,  S I  + 2 . 1 9 9 m  = [SI - 6.95, S I  + 6.951 

pz E [.X? - 2.199J121, S? + 2 . 1 9 9 m  = [s? - 7.65, .X' + 7.651 

These  confidence  intervals  have a,joint confidence level of 0.95. The process 
is considered to be in control  as  long  as  both of  these  confidence  intervals 
contain their respective control values po = (265,470)',  that is, a s  long a s  
258.05 5 .X, 5 271.95 and 462.35 I s 2  5 477.65. However,  following an 
observation .X = (255,465)',  say,  the process  would  be  declared to be out 
of control,  and the first variable stiffness would be identified as  the  culprit. 
Furthermore,  the confidence  interval for  the  mean stiffness level would be 
pI E (248.05,261.95) so that the  experimenter  would  have  an  immediate 
quantification of the  amount of  change in the  mean  stiffness level. An 
additional  example with h- = 4  variables is given in Hayter  and  Tsui (1994). 

2.3. Independence  Assumption 

A general  assumption  of  the  multivariate  quality  control  procedures is that 
observations  obtained  from  the  process  under  consideration  can be taken to 
be independent  of  each  other. Specifically, if a control  chart based on 
Hotelling's T' statistic is employed,  then it  is assumed that the  two  statistics 

Tf = (SI - pO)'f; (.\ - 11') - I  . I  

and 
T' 2 - - (s- ' - p 0 -  )'C"(S2 - klO) 

obtained  from  two  observations ,X' and .X? of the  process are  independent of 
each  other. Individually, these two  statistics  each  have  a scaled F-distribu- 
tion,  but  any  lack  of  independence between them  may seriously affect  the 
interpretation  of  the  control  chart. 

Kuriki  (1997)  shows  how  the effect of  a  dependence between the  vari- 
ables can be investigated. In general,  the joint  cumulative  distribution func- 
tion  of  the  statistics Tf and T: is 

P(Tf 5 2 1 ,  T: 5 . 2 )  = P(J?;S-'J?I I :I,.v~S 5 : 2 )  I - I  

where S = k has  a  Wishart  distribution  and ( y l ,  has a 2k-dimensional 
normal  distribution.  The  random variables and J~ may  not be indepen- 
dent of each other  due  perhaps  to a correlation  between  subsequent  obser- 
vations  taken  from  the  process or  through 1.1'. which may be an average  of 
observations i n  an initial  pool.  This  general  bivariate  F-distribution  can be 
used to assess the effects of a lack of independence  between  observations 
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from  a process if Hotelling's  control  chart is employed, and  Kuriki 
(1997) shows  how it can  be easily evaluated  as  a  two-dimensional  integral 
expression. 

3. NONPARAMETRIC  PROCEDURES 

The flow diagram in Figure 1 illustrates  how  distribution-free  multivariate 
quality  control  procedures  can  be  developed. The left side of the  diagram 
corresponds to  a  traditional  procedure. An  initial pool of "in-control'' data 
observations is often used to determine  the  control  values p0 = 2 ,  and  the 
assumption  that  the  data  have  a  multivariate  normal  distribution is 
required. The  dotted lines correspond  to  distribution-free  procedures  that 
can be employed. 

The middle  procedure is based on  the  consideration of  a nonpara- 
metric test of the  hypothesis 

H o : p = p  0 

. . . . . . . . . . . . . . . . . . . . . . . . . . 

I yes 

Traditional  testing 
technlques I Distribution-free  testlng 

procedures 
Traditional  testing  Distribution-tree testing 

procedures 
Distribution-tree testing 

procedures 

Figure 1 Flow diagram of multivariate  quality  control testing procedures. 
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with p” = S. This  procedure  could be implemented even if there is no initial 
pool of data observations  and fl is simply  some specified target  value. 
However, in general it seems more sensible to  make full use of the  initial 
pool of observations  and  to  develop  a  procedure  indicated  on  the  far  right  of 
the flow diagram in which  the current  data  are  compared with the initial 
pool of observations.  In  this  case,  the  question of interest is whether it is 
plausible that the  two data sets,  the  initial pool of  observations  and the 
current  data  observations,  are actually  observations  from  a  common  distri- 
bution.  A discussion  of  such  procedures that  are developed in Liu (1995) 
and Bush (1996) is provided in this  section. 

3.1. Nonparametric  Multivariate  Control  Charts 

Liu (1995) provides  some nonparametric  multivariate  quality  control  pro- 
cedures  that follow the  right-hand  dotted line of  Figure 1 in that they 
compare  current  observations with an initial  pool  of “in-control”  observa- 
tions.  The main idea is to reduce  the current  multivariate  observation  to  a 
univariate  index  that  can be plotted  on  a  control  chart.  Three types of 
control  charts  are suggested that  are truly nonparametric i n  nature  and 
can be used to detect  simultaneously  any  location  change or variability 
change in the  process. Liu’s procedures  are  motivated by the  “depth” of 
current  measurements within  the  initial pool of  observations  and  are  con- 
ceptually  equivalent to the  procedures  described in Bush (1996)  employing 
functional  algorithms to calculate  the  scores  that  are described in detail in 
the  following  sections. 

3.2. Overview of Nonparametric  Procedures 

Assume that the  initial  pool  consists  of  the  observations 
I +’ s , . . . , . 

where  each s’ is a  k-dimensional  vector that is an observation  from  an 
unknown  distribution  with  mean 1-1’ = (p:, ..., p:) and  covariance  matrix 
C. Note  that the  observations .Y‘ may in fact be defined to be averages of 
several measurements.  The  purpose of  the  quality  control  procedure is to 
determine  whether or  not a new observation  can be considered to be an 
observation  from  this  same  distribution.  The  nonparametric  procedure  tests 
the  following  hypotheses: 

Ho: The new observation and the  initial pool can be considered 
to be p +  I observations  from  the  same  unknown  distribution. 
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H,.,: The new observation  cannot be considered  to be from  the 
same  distribution  as  the  initial  pool. 

I f  the null hypothesis is rejected, then  the  process is declared to be out  of 
control. 

As in other  quality  control  procedures,  the  initial pool of  supposedly 
identically distributed  observations is employed to define the  standards 
against  which  the new observations  are  measured.  Traditionally,  the  initial 
pool is used to  calculate  control limits, but  the  nonparametric  methods 
described  below  require  a  different and  more  direct use of the initial pool. 
Consider  the  two-dimensional  case.  Suppose  a  plot  of s i  versus s 2  reveals an 
elliptical shape. A new observation, so ,  is taken,  and  the  point (s)), x!) is 
added  to  the  graph.  There is no need  for  concern if so plots well within  the 
borders of the ellipse. However,  a  point  outside  the ellipse or on the  fringes 
may signal that  the process is out of control.  Thus  the  nonparametric  qual- 
ity control  procedure  operates by considering  the  location of the new  obser- 
vation  with  respect  to  the  initial  pool. A useful procedure will indicate 
whether a new observation is near  the  center  of  the  initial pool, on  the 
fringes, or  outside. 

3.3. Variable  Transformation 

I t  is convenient  to define testing procedures in terms of a set of  transformed 
observations. I f  the initial pool  and  the new observation  are  combined  to 
form  a set of p + I observations, then let the  sample  average  vector be S = 
(SI, ..., X k )  and  the  sample  covariance  matrix be S,. The  quality  control 
methods  require  calculating  a  distance  measure  between  various  points, 
and  a sensible way to  do this is with  the Mahalanobis  distance, where the 
distance  from s f  to s' is defined  to be 

D;j = (s' - .Y')'S.,' (s' - s') 
I t  can be shown  that  the  Mahalanobis  distance is equivalent  to  the  squared 
Euclidean  distance  between  "standardized"  observations  where 

1" = ( s f  - .V)A 

and A A  ' = S,: I .  Thus, 

D..  - (1" - l j ) ' ( , ?  - J J )  I/" . - 

The  matrix A is easily calculated  from  the  eigenvalues  and  eigenvectors  of 
S,;', but in practice  the  matrix A need  never be calculated, since the  testing 
procedures  can be implemented i n  terms of the  original  observations s f .  I n  
other  words,  while it is convenient  to  define  quality  control  procedures in 
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terms of the  transformed  observations y‘, the  actual  implementation  may be 
performed in terms  of  the  original  observations .I”. 

3.4. Calculation of a p-Value 

The  nonparametric  procedure  produces a set of  scores So, SI ,  .... S,, asso- 
ciated  with  each  observation in the initial pool (Si, 1 p i p p )  and  the new 
observation (So). The  score Si reflects the  “position” of observation yl with 
respect to all p + I observations. In  general,  the  lower  the  score,  the closer 
an  observation is to  the  “center” of the set of observations. Let R,, 0 
- < i 5 p ,  be the  rank of Si among So, ..., S,,, where  average  ranks  can be 
used if there  are ties among  the Si in the usual  manner. 

The value of Ro corresponding to the new observation is of particular 
interest. If the new observation  and a l l  p observations in the  initial  pool  are 
observations  from  the  same  distribution (so that  the process is still in con- 
trol),  the Ro is equally likely to  take  any value from 1 to p + 1 (supposing 
that  there  are  no ties  in the  scores Si). Moreover,  large values  of Ro indicate 
that  the new observation is on the fringe of the initial pool  of  data  points,  an 
event  that  has  an increased probability if the  process has moved out of 
control,  and so a  p-value  for  the null hypothesis  that  the process is in control 
can sensibly be calculated  as 

p-value = 
p + 2 -  Ro 

P +  1 

This  p-value reflects the  proportion of the p + 1 observations  that have 
scores Si no smaller  than So. 

3.5. Decision  Rules 

The decision rules under which a process is declared to be out of control  can 
be chosen by the engineers  implementing  the  procedure.  Notice  that  the p- 
value is limited by the  number of observations i n  the  pool. For example, if 
there  are p + 1 = 100 observations  and Ro = 100, then  the  p-value  for  the 
procedure is 0.01, and  the process can be declared to be out of control if the 
specified probability  of  a false alarm, (x, is greater  than  or  equal  to 0.01. 
Traditionally, the specified error  rate  for  a  quality  control  procedure is often 
taken  to be smaller  than (x = 0.01, which  implies that  for this nonparametric 
procedure a larger  initial  pool  would be needed. 

In addition to the  consideration of  individual  p-values,  “runs  rules” 
may  also be employed.  In  univariate  control  charts, several successive points 
on  the  same side of the  centerline  are  often  allowed to trigger a  stopping rule 
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suggesting  that  there  has been  a change in the  mean  of  the  distribution. 
Similar  runs rules may be adopted  for these nonparametric  procedures. 
For example,  suppose  that  the  p-values  for  a series of  successive  observa- 
tions  are  each less than 0.20 but  that  none of the  individual  p-values is less 
than  the specified a level. One  might  declare  the  process  to be out of control 
on  the basis that these new observations  are a l l  near  the fringes of  the  initial 
pool of observations. 

Runs rules can be designed to  locate  changes in either  the  mean  or  the 
variance  of  the  distribution.  Any  appearance  that a set of new observations 
are  not "well mixed"  within  the initial pool  suggests that  the  distribution 
may  have  changed.  Changes in  the  mean  imply  changes in the  location of 
the  distribution  and  may be identified by a locational  shift in the new 
observations.  Changes in the  covariance  structure C should be indicated 
by changes i n  the  shape of the  distribution. Specifically, increases in the 
variance  of a variable  should be characterized by frequent  observations 
outside  or  on  the fringes of the  distribution. 

I n  conclusion,  the  consideration of the  individual  p-values of  new 
observations  together with an awareness  of  the  location  of  the new observa- 
tions relative to  the initial pool  of  observations  should allow an effective 
determination of out-of-control  signals. 

3.6. Calculation of the  Scores 

There  are  two basic  types  of algorithms  that  can be  used to  construct  the 
scores So, S ,  , ..., S,,. These  are functional algorithms  and linkage algorithms. 

Functional  Algorithms 

With  functional  algorithms  the  scores  are  calculated  from  a series of com- 
parisons  of  the  observations .I" with  each other. Specifically, the  score Si is a 
function of .I,' = (J:,, ...,.vi) and every other  point in the  pool  and  can be 
written  as 

S; =f'(y'; yo, ..., JJ') 

The  function is defined so that  observations  that  are  far  from  the  center of 
the set of observations receive high  scores  while  observations  near  the  center 
receive low  scores.  Three  possible  choices  for  the  function  are  described 
below. 

1 .  The easiest method  to  consider is 



Multivariate  Quality  Control  Procedures 219 

r=l  J = O  

where is the  indicator  function.  In  this  case  the  score  function 
can be thought of as simply  being  calculated from  a  count of  how 
many  points  are  on  either side of  a particular  observation  and  as 
being  similar  to a multivariate sign  test. The score Si will  be close 
to  zero  for  points in the  center  of  the  distribution,  because at the 
center  there  are  roughly  an  equal  number  of  observations in every 
direction.  At  the  perimeter  other  observations  tend  to be to  one 
side,  and  thus  the  score will  be large. For these  scores  the  magni- 
tude of the  difference  between  two  points y' and JJ is ignored,  and 
only  the  direction  of  the  difference is important.  Note  that  there is 
a  large  potential  for ties in the  scores  to  occur with  this method. 

2 .  A  second  procedure is similar  to  the first except that  the  actual 
distances  between  points  are  used to calculate  the  scores.  The 
score Si is calculated  as  the  sum  of  the  Euclidean  distances  from 
y' to every other  point y', 0 5 , j  5 p ,  so that 

Thus Si is the  sum  of  the p distances  from y' to all points in the 
combined  pool.  It is clear  that  the  scores of the  observations  at  the 
center of the  group will tend  to  be lower than  the  scores  for 
perimeter  observations. 

3. The scores  obtained  from  the  third  method  are  calculated by 
comparing  an  observation y' with  a  statistic  based on  the  com- 
bined pool.  This  statistic, 

M = ( M I ,  ..., M k )  

is chosen  to be a  "middle  value"  of  the  combined  pool  of  observa- 
tions  such  as  the  mean  vector  or  the  median  vector.  Typically  the 
scores  can be calculated  as  the  distances of the  observations  from 
this  middle  value so that 

s; = (JI; - M)'CV' - M )  

Again,  note  that  observations  near  the  center of the  pool will have 
small  scores  while  observations  on  the  perimeter will have  larger 
scores.  Note  also  that  this  method  requires  far fewer  calculations 
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than  method (2), although  this difference should  not be important 
with  present  computing facilities. 

Linkage Algorithms 

Linkage  algorithms resemble a  linking  clustering  algorithm in that  the p + 1 
observations  are linked  together  one  point  at  a time. The cluster  begins at 
the  center of the  distribution  and  branches  to all of  the  observations i n  the 
combined pool. Points  are  added  to  the  cluster in succession until a l l  p + 1 
points  are  part of the  cluster.  The  criterion  for  choosing  the  next  point  to be 
added  to  the  cluster is that it should be the  “closest”  observation  to  the 
cluster.  The  distance to the  cluster  can be measured in several different  ways, 
which are discussed  below. The score Si is defined to be equal  to j when y i  is 
theJth  point  added  to  the  cluster  (note  that i n  this  case R,  = Si). The first 
point to be  added  to  the  cluster  can generally be taken to be  the  point closest 
to .F. Observations closest to  the  center will tend  to be added first, and  those 
on  the  perimeter will  be added  last. Also, observations in heavily  concen- 
trated  areas will tend to be added  to  the  cluster before observations  in 
sparsely concentrated  areas, since in dense  regions observations  are closer 
together,  and  therefore  observations will tend  to  be linked in succession 
once  the first observation in that region has been added  to  the  cluster. 

When  these  linkage algorithms  are  applied i t  can be useful to construct 
a “center  value” M ,  which is considered  to be the first point in the  cluster 
(although it may be removed  from the  cluster  later).  Three  possible  ways  to 
decide the  order  in which observations  are  added  to  the  cluster  are described 
below. 

I .  I f  observation 11’ is not  already in the  cluster,  then it  is added  to  the 
cluster if it is the  closest  (among all observations  not  already in the 
cluster)  observation  to  any  observation  already in the  cluster.  In 
other  words,  for  each  observation y‘ not  already in the  cluster,  the 
minimum  distance 

D.. = (I! - I,./)’(\,‘ - J* / )  
!I 

is calculated  over all points J J  already in the  cluster.  The  point y‘ 
with  the  smallest  minimum  distance is then  added  to  the  cluster. 

2 .  Method 1 can be generalized by calculating  the  sum of the it 

slnallest distances  from an  observation  not i n  the  cluster to obser- 
vations  already in the  cluster,  for  a fixed value  of CI. While method 
(1) has N = I ,  it may be sensible to  take N = 2, say,  whereby the 
sum of the  two  smallest  distances from  an  observation  not  in  the 
cluster  to  observations  already i n  the  cluster  are used to  determine 
which observation  should be added  to  the  cluster  next. 
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3. An  additional extension  would be to calculate  the  sum of all of  the 
distances  from  an  observation  not in the  cluster to each  of  the 
observations  already in the  cluster.  This  method is different  from 
method ( 2 ) ,  since in this  case  the  value  of ( I  changes  and is equal to 
the  number  of  observations  currently in the  cluster. 

4. SUMMARY 

A single product  can be described by several  correlated  variables  that  are to 
be monitored by quality  control  procedures.  The  correlation  structure 
between the  variables  should be taken  into  account when designing  a  quality 
control scheme for the product. A good  multivariate  quality  control  proce- 
dure is one  that,  at a specified error  rate a, triggers  the  out-of-control  alarm 
only  with  probability c( when  the  process is still in control  and triggers  the 
alarm  as quickly  as  possible  when  the  process is out of control. In  addition, 
i t  should  provide a simple and easily implementable  mechanism  for  deciding 
which of  the  variables are responsible when the  process is determined  to be 
out of control. Finally, it should  allow easy quantification of the amount by 
which the  out-of-control  variables  have  changed in mean  value.  Recent 
advances in this area provide  more  tools for the  practitioner to meet  these 
goals. 
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Autocorrelation in Multivariate 
Processes 
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Southwest  Research  Institute,  San  Antonio,  Texas 

John C. Young 
McNeese  State  University,  Lake  Charles,  Louisiana 

1. INTRODUCTION 

A basic assumption i n  most  multivariate  control  procedures is that  the 
observation  vectors  are  uncorrelated  over  time.  When this assumption is 
true,  the  graph of any  process  variable  against time should  show only ran- 
dom  fluctuations.  When  the  assumption is false, the  patterns in such  time 
plots  are  systematic  and  often  indicate  the  existence  of  linear  or  quadratic 
trends.  In these latter  situations,  incorrect  signals  can  occur in the  corre- 
sponding  multivariate  control  chart,  and  the effectiveness of the  overall 
control  procedure  may  be  weakened  [e.g., see Alt et al .  (1977) or 
Montgomery  and  Mastrangelo (1991)l. 

Numerous  industrial  processes  produce  data  that  change  over  time. 
This may occur because of such  factors  as  the  continuous  wear  on  equip- 
ment,  the  degenerative effects of environmental  and chemical contamina- 
tion,  and  the  depletion of the  catalyst in a chemical  process. Autocorrelated 
observations  resulting because a process continuously  decays  over time  may 
be detectable if one  samples  the  process  on  a  regular  time  interval.  However, 
process  decay that  occurs in stages  may  appear  to be insignificant and 
undetectable  across  short  time  intervals  but  highly significant and detectable 
when  the  process is monitored  over  extended time  intervals.  Mason et al. 
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(1996) present an excellent example of  a  situation  where  the  autocorrelation 
behaves  as  a  step  function. 

If  autocorrelation goes  undetected  or  ignored, it can  create  serious 
problems in multivariate  control  procedures.  This  often  occurs when the 
effects of  the  autocorrelated  variable  are  confounded with  the  time effects. 
An adjustment  would be needed in such situations in order  to  obtain  a  true 
reading  on  process  performance  at  a given  point in time.  Control  procedures 
for  autocorrelated  data in a  univariate  setting  make  adjustments by model- 
ing the time  dependency  and  examining  the  residuals  of  the  resultant  auto- 
regressive models.  Under  proper  assumptions,  these residuals, or  adjusted 
values (effect of  the  time  dependency  removed),  can be shown to be inde- 
pendent  and  normally  distributed  and  are  thus used as  the  charting  statistic 
in the  control  procedure [see, e.g.,  Montgomery (1991)l. 

The  problem with autocorrelated  data  from  a  multivariate process is 
more  complicated. We  have to be concerned  not only  with  how  these  vari- 
ables  relate  to  the  other  process  variables  but  also  with  how  some  of  the 
process  variables  relate to time  changes. Our  procedure  for  analyzing such 
autocorrelated  data  centers  on  the use of  Hotelling’s T 2  as  the  control 
statistic.  Many  of  the  desirable  properties  of  this  statistic  for  independent 
observations  are  shown  to  apply to this situation. 

2. DETECTION  OF  AUTOCORRELATION IN MULTIVARIATE 
PROCESSES 

Why do certain  types  of  processes  have  a  tendency to generate  observa- 
tions  with  a  time  dependency‘?  Autocorrelation  may be due  to  a  cause-and- 
effect relationship  between  a  process  variable  and  time. If this occurs,  the 
observation  on  the  process  variable is proportional to the  value of the 
variable  at  some  prior time. In  contrast, if the  time  relationship is only 
an empirical  correlation  and  not  a  cause-and-effect  one,  the  current value 
of the  variable,  although  associated  with  the  past  value, is not  determined 
by it. I f  this is the case, the  association is usually due  to  an  unobservable 
“lurking”  variable. 

Consider  two  process  variables  that  are  highly  negatively  correlated 
so that  one  variable increases as the other decreases. Suppose  one of the 
variables,  the  “lurking”  one,  cannot be observed  but is known to increase 
with time. Without  knowledge  of  the  relationship  between  the  two vari- 
ables,  one  would  conclude  that  the  second  variable  has  a  time  dependency 
in its  observations,  as  its  values would  tend to decrease as time  increases. 
For example, if one  considers  the cyclical nature  over time of the  variable 
depicted in Figure I ,  one  might  suspect  that  some  form  of  time effect is 
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Figure 1 Process variable with cycle. 

present.  However,  the  noted  trend is due  to  a "lurking"  variable that  has a 
seasonal  component. Since  the effects of  such  "lurking"  variables,  when 
they are  known  to exist, can be accounted  for by making  adjustments  to 
the  associated  observable  variable,  the  detection of these situations  can be 
a great  aid in the  development  of  a  proper  control  procedure  for  the 
process. 

Detecting  autocorrelation in univariate  processes is accomplished by 
plotting  the process  variable  against  time.  Depending on  the  nature of the 
autocorrelation,  the  plotted  points will either  move up or down  or oscillate 
back and  forth  over  time.  Subsequent  data  analysis  can be used to verify the 
time trend,  determine  lag  times,  and fit appropriate  autoregressive  models. 
The simple and  straightforward  method of graphing  individual  components 
against  time  can be inefficient when  there  are a large number of variables, 
and  the  interpretations  can  become  confounded when  these  components  are 
correlated.  Despite these disadvantages, we have  found  that  graphing each 
individual  variable  over  time is still useful i n  multivariate processes. I n  
addition  to  studying  autocorrelation, it can lead to  the discovery of other 
influential variables. 

To augment  the  above  graphical  method  and  reduce  the  number of 
individual  graphs  that  need  to  be  produced, we additionally  suggest  that a 
time-sequence  variable be added  to  the  data  set. If any of the  other  variables 
correlates  with  the  time-sequence  variable, i t  is highly probable  that i t  cor- 
relates with itself over  time.  Using this approach,  one  can  locate  potential 
variables  that  are  autocorrelated.  Detailed  analysis,  including  the  graphing 
of  the  individual  variable  over  time, will either  confirm  or  deny  the  assertion 
for  individual  variables.  Other  techniques,  such a s  that given in Tracy et a l .  
(1993). also  should be explored. 



226 Mason  and  Young 

3. VARIOUS  FORMS  OF  AUTOCORRELATION 

We examine  two  different  forms  of  autocorrelation:  uniform  decay  and  stage 
decay.  It is important  to recognize  each  type, as  both play an  important role in 
the  development  and  implementation of a  multivariate  control  procedure  for 
autocorrelated  data.  Uniform,  or  continuous, decay  occurs  when  the  observed 
value of the  process  variable is dependent  on  some  immediate  past value. For 
example,  heat  transfer coefficient data behave in this  fashion.  During  the life- 
cycle of a production  unit,  the  transfer of heat is inhibited  owing  to  equipment 
contamination  or  for  other  reasons  that  cannot be observed  or  measured. A 
new  life  cycle is created  when  the  unit is shut  down  and  cleaned.  During  the 
cycle, the process is constantly  monitored  to  ensure  maximum efficiency. 
Figure 2 contains  the  graph of a  heat  transfer coefficient over  a  number  of 
life cycles of a  production  unit.  The  uniform decay of the  unit is evident  from 
the declining  trend in the  plotted  curve  prior to each new  life cycle. 

Stage  decay  occurs  when the time change in a process  variable is incon- 
sistent  on  a daily basis but  occurs in a stepwise  fashion  over  extended  periods 
of time.  This  form  of  autocorrelation is present in processes  where  change  with 
time  occurs very slowly. The  time  relationship results when  the  process  per- 
formance in one  stage is dependent  on  the process performance in the  previous 
stage or stages. The  graph of a  stage  decay  process  variable is presented in 
Figure 3. Notice  that  there is a  distinctive shift in the  process  variable  some- 
where  near  the  middle of the  curve  but  that  the  fluctuations  are  around  similar 
levels below  the  shift and  at higher  but  similar levels above  the  shift. 

4. A CONTROL  PROCEDURE  FOR  A  UNIFORM  DECAY 
PROCESS 

Our  approach  for  obtaining  a  multivariate  control  procedure  for  uniform 
decay  processes is to use Hotelling's T' statistic and  its  associated  orthogo- 

Time 

Figure 2 Life cycles over time. 
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nal  decomposition.  Mason  and  Young (1999) show  that  correct  modeling of 
existing functional  relationships  between  process  variables  increases  the 
sensitivity of  the T2 value in signal detection.  An  overview  of  pertinent 
points of  their  work  and  how  it  relates  to  a  multivariate  control  procedure 
for  autocorrelated processes  with  uniform  decay is discussed  below. 
Mathematical  details  and  data  examples  are  provided in the  original  paper. 

One  example  of an  orthogonal  decomposition of  the T2 value  asso- 
ciated  with  a  p-dimensional data vector, X' = (x,, ..., x,,), is given as 

T 2  = (X - X)'S"(X - X) 
= T: + TZ.1 + . . . + T,,.12...~l-l) 2 

where X and S are  the  usual  estimates of the  population  mean vector and 
covariance  matrix  obtained by using an  in-control  historical  data  set.  In  this 
procedure [see Mason  et  al. (1995) for  a  complete  description],  the first 
component of  a particular  decomposition,  termed  the  unconditional  term, 
is used to  determine  whether  the  observation  on  the j th variable of a signal- 
ing data vector is within the  operational  range of the  process. The general 
form of the j th unconditional T 2  is given by 

where .xJ is the j th component of X ,  and  and si2 are  the  corresponding 
mean  and  variance  estimates  as  determined using the  in-control  data  set. 
The remaining  components,  termed  conditional  terms of the  decomposition, 
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are used i n  detecting  deviations in relationships  among the  variables that 
produced  the  signal.  The  general  form of a conditional T’ term is given by 

This is the square of theith variable  adjusted by the  estimates  of  the  mean 
and variance  of  the  conditional  distribution  of x, given s l ,  s 2 ,  ..., 

The  ordering of the components in the  data vector  determines  the 
representation  of  each  term  of  the  decomposition. As pointed out by 
Mason  et  al. ( 1  995). there are p !  different arrangements of the p components 
of a  data vector, and these lead to p !  decompositions,  each  consisting  of p 
terms. Mason  and  Young (1997)  show that the  unique  terms  of a l l  such 
decompositions will contain all  possible  regressions of an  individual  variable 
on all possible subgroups of  the  remaining p 1  variables. For example,  the 
first component, s , ,  of a  three-dimensional data vector  would  be regressed 
against  all  possible  subgroups of the  other two  variables.  These  regressions 
and the  corresponding  conditional T’ terms  are presented in Table 1. Using 
the  tabulated  results,  a  control  procedure based on  the T’ statistic  can be 
developed  for a set of  process  variables that exhibit  uniform  time  decay in 
the  observations  and,  at the  same time, are  correlated with other process 
variables. As an example,  consider  a  bivariate  vector (.Y,.Y) where  the  vari- 
able J, exhibits  a  first-order  autoregressive  relationship  [i.e., AR(l)]. Note 
that  the  observations  are  actually of the  form (Xt,  Y t ,  YtPl) ,  where t repre- 
sents  the  time  sequence  of  the data.  The AR( 1) relationship  for  can be 
represented in model  form as 

where bo and h l  are  unknown  constants. I f  J, were being monitored while its 
relationship  with s was  ignored, a signal would be produced when the 
observed value of J‘ was not where it should be a s  predicted by the  estimate 
of the  model in Eq. (3). However, if one chooses to examine  the value of J’ 

Table 1 List of Possible Regressions for s ,  When p = 3 

Conditional T’ 
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adjusted  for  the effect of s and the time dependency, a model of the  form 

would be more  appropriate. 
The modeling of time relationships  existing  among the  process vnri- 

ables  requires  adding  additional  lag  variables to the  historical data.  For 
example,  a  historical  data set for a bivariate  process is a data  matrix  con- 
sisting of observations  on the  vector (.vr, J,,), where t = I ,  .... 17. Assuming 
autocorrelation exists among the  observations  on J’ and is of the AR( I )  form 
given in (4), the data set will have to be reconstructed to have  the  form 
( s t ,  y,, J ’ ,+~) .  t = 2, ..., 1 1 ,  in order  to  estimate the mode!. The  ordering of  the 
vector components is arbitrary but is important  to the notation scheme for 
the T’ terms. Interpretation of a signal for this  situation is achieved by 
examining appropriate terms  from all possible  decompositions  of  the  signal- 
ing T’ value.  Details are provided i n  Table 2. 

Higher  order autoregressive  relationships can be examined by adding 
other lag  variables to the  historical data  set.  For  example,  suppose the 
variable J’ has  an AR(2) time  dependency so that 

The  reconstructed  data vector  would be of the  form (.\-,, The 
use of such  time-dependent  models  requires  process  knowledge  and a n  
extensive investigation  of  the  historical data. 

Table 2 Interprctation  of Useful T’ Components in AR(I)  Model 

T’ component  Interprctation 

T f  Checks if x component of data  vector is in operational range of .I-. 
T,’ Checks if J! component of data  vector is  in operational  rangc  of y ,  

Ti, 3 Determines if current value  of y is i n  agreement with the value 

T;. 2 Checks if s and ,v are countercorrelated. Effect of  time is not 

T,’. I Checks if J! and -1- are countcrcorrelatcd.  Not symtnctrical with T:,’. 

Ti. I 3 Determmes if prescnt  value  of J’ is in agreement with the valltc 

predicted  using previous y value, or examines  the value  of 1. with 
the effect of J ’ , - ~  removed. 

removed. 

Effect of  time is not  removed. 

predictcd using s and previous  value  of J’. 
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5. EXAMPLE OF A UNIFORM DECAY  PROCESS 

Consider  a  chemical  process  where  observations  are  taken  on  a  reactor  used 
to  convert  ethylene  (C2H4)  to  ethylene  dichloride  (EDC),  the basic  building 
block for  much  of  the vinyl products  industry.  Feedstock  for  the  reactor is 
hydrochloric  acid  gas  (HCI)  along  with  ethylene  and  oxygen ( ( I 2 ) .  

Conversion of the  feedstock  to EDC  takes place in a  reactor  under  high 
temperature,  and  the process is referred to  as  oxyhydrochlorination  (OHC). 
There  are  many  different  types of OHC reactors  available  to  convert  ethy- 
lene and HCI to  EDC.  One  type,  a fixed-life or fixed-bed reactor,  must  have 
critical components replaced at the  end  of  each  run cycle, as  the  components 
are slowly  depleted  during  operation.  Performance of the  reactor follows the 
depletion  of  the  critical  components; i.e., the  best performance of  the  reactor 
is at  the  beginning of the  run cycle, and it gradually  becomes less efficient 
during  the  remainder of the cycle. This  inherent  uniform  decay in the  per- 
formance of the  reactor  produces  a time  dependency in many  of  the  result- 
ing  process  and  quality  variables. 

Consider  a  steady-state process  where the  reactor efficiency is at 98%. 
The efficiency variable will contain very  little  variation  (due to  the  steady- 
state  conditions), and its  operation  range will be  small.  Any significant 
deviation  from  this  range  should  be  detected by the  process control  proce- 
dure.  However,  over  the life cycle  of  a  uniformly  decaying reactor,  the  unit 
efficiency might  have  a  very  large  operational  range. For instance, it might 
range  from 98% at  the  beginning of a cycle to 85% at the  end of the cycle 
and  would  thus  contain  more  variation  than  a  steady-state  variable. If we 
failed to  consider  the decay in the  process,  any efficiency value  between 85% 
and 98% would be acceptable,  even 85% at  the  beginning of  a cycle. 

A  deviation  beyond  the  operational  range  (established  using  in-control 
historical  data)  for  a  process  variable  can be detected by using  its uncondi- 
tional T 2  term.  In  addition,  incorrect  movement of the  variable  within  its 
range  (occurring because  of improper  relationships  with  other  process vari- 
ables)  can be detected by using the  conditional T2 terms.  However, this 
approach  does  not  account  for  the effects of movement  due to time  depen- 
dencies. Adjusting  for  a  time effect will provide  additional  monitoring of the 
movement  of an individual  variable  within  its  operational  range  when  the 
effect of  its  previous  value(s)  has  been  removed.  Including  time-lag  variables 
in the  computation of the T’ statistic  adds  corresponding  terms  to  the T’ 
decompositions  that  can be used to  monitor  movement of the  variables 
through  time.  This  enhances  the signal detection  performance  of  the  overall 
T’ statistic. 

Although  the  above  reactor process is controlled by many  variables, 
we  will use  only four of  them in this example in order  to  demonstrate  the 
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Figure 4 Reactor  temperature versus time. 

proposed  control  chart  procedure.  These  include  three process  variables, 
labeled TEMP, L3, and  L1,  and  a  measure of feed rate,  labeled RPI.  All, 
with  the  exception  of feed rate,  show  some  type  of time  dependency. 

Temperature  measurements  are  available  from  many  different loca- 
tions  on  a  reactor,  and  together these  play an  important role in the  perfor- 
mance and  control of the  reactor. To demonstrate  the time  decay in all of 
the  measured  temperatures, we present in Figure 4 a  graph of their  average 
over  a  good  production  run. The plot  indicates  that  the  average  temperature 
of the  reactor  gradually increases  over the life cycle of the  unit. 

Figures 5 and 6 contain  graphs of the  other  two  process  variables,  L3 
and  L1,  over time. The decay effect for  L3 in Figure 5 has  the  appearance of 
an  AR(1)  relationship, while that  for L1 in  Figure 6 has  the  appearance of 
some  type  of quadratic  (perhaps  a  second-order  quadratic) or an exponen- 
tial  autoregressive  relationship. 

Feed  flow (RPl)  to a  reactor  consists of  three  components:  the flows of 
02, HC1 gas,  and CzH4. However, since these components  must be  fed in at 
a  constant  ratio,  one  graph is sufficient to  illustrate  the  feed.  During  a  run 
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0.000 

Time 

Figure 5 L3 versus  time. 
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Figure 6 L1 versus time. 

cycle, the feed to  the  reactor is somewhat  consistent and  does  not system- 
atically  vary  with  time.  This is illustrated i n  Figure 7. 

The  correlation  matrix  for  the  four  variables  RP1, L1, L3, and  TEMP, 
including  the  first-order lag variables  for LI,  L3, and  temperature  (LLI, 
LL3, and  LTEMP), is presented in Table 3. Note  the very strong lag corre- 
lation  for  the  three process  variables. For example, L1 has  a  correlation of 
0.93 with its lag value, indicating  that  over 80% of  the  variation  on this 
variable  can be explained by the  relationship  with  its  lag  value.  This  strong 
correlation implies that  an  AR( 1 )  model is a good  approximation  to  the  true 
time  dependency. Also, note the strong  relationship between L1 and  the lag 
of the  temperature.  The  correlation of 0.80 implies that  over 64% of  the 
variation in the  present  value  of L1 can be explained by the  temperature of 
the  unit  during  the last sampling  period. 

To see the effect of  these  time-lag  variables on a T' control  proce- 
dure, we  will compare  the T' values obtained with and  without  the lag 
variables. For  comparison  purposes, we denote  the T' based on  the 
chosen four  variables RPI, L1, L3, and  TEMP by T i  and  the T' 
based on all seven  variables,  including  the  three  lag  variables LLI, 
LL3. and  LTEMP, by T;. Assume  that  each  observation  vector is repre- 
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200000 " 

100000 --  

Time 

Figure 7 RPI versus time. 
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Table 3 Correlation Matrix for Reactor Data 

sented  as  (RP1.  L1, L3, TEMP,  LLI, LL3, LTEMP). Since  the  statistic 
T i  is based on  the first four  components of this vector, it is contained i n  
the  overall  vector T;. Also, all of the t e r m  in the  possible  decomposi- 
tions of T i  are  contained i n  the  various  decompositions of T;. Since T; 
contains  information  on  the time-lag  variables, it will  be more sensitive to 
any  change in the  process. 

The inclusion  of lag variables in the  historical data will produce new 
conditional  terms in the  decomposition of the T; statistic. For example,  the 
unconditional  term T:3, which is contained in both T i  and T;, is used to 
determine if L3 is in its operational  range.  However,  including  the  lag  vari- 
able  LL3  adds  the new conditional  term, Tj?3.LL3, to T; and  allows  one  to 
monitor  the  location of  L3  based on its previous value. For lag values of one 
sampling  period,  this  term  contains  the AR( 1) model 

L3 = ho + h ,  LL3 + error. 

To  compare  the  performance of T; to T i ,  consider a sequence  of 14 
observations (in time order)  on  the  above  four  reactor  variables  and  the 
corresponding  three time-lag  variables. The  data  are  presented  in  Table 4. 
Our  interest lies  in the process  variables LI and  TEMP.  The values  of LI  are 
relatively high  for the first two  observations,  drop  dramatically  for  the next 
two observations,  and  then  gradually increase in value to  near  the  end  of  the 
data  set.  In  contrast,  the  TEMP values start relatively low, gradually rise 
until the  middle  observations,  and  then stabilize near  the  end. 

Table 5 contains  the T; and T: values for  the 14 sample  points.  The u 
level for  both  statistics is 0.0001. Note  that  a  signal is detected by T; 
at  observations 4 and 6, but no signal is detected by T: at  any of the 
observations. 

Interpretation of T’ signals for  autocorrelated  dats is no different  than 
for  data  without time  dependencies.  When  a signal is detected,  the T’ sta- 
tistic is decomposed  to  determine  the  variable  or set of  variables  that  caused 
the  signal.  When T; for  observation 4 is decomposed,  using  the  procedure 
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Table 4 Reactor Data 

Obs. 
No. RPI LI L3 TEMP LLI  LL3  LTEMP 

1 
2 
3 
4 
5 
6 
7 
X 
9 

10 
11 
12 
13 
14 

188.300 
189,600 
198.500 
194.700 
206.800 
198.600 
205,800 
194,600 
148,000 
186,000 
200.200 
189,500 
186,500 
180.100 

0.98 44.13 
0.81 33.92 
0.46 28.96 
0.42 29.61 
0.58 29.31 
0.63 28.28 
0.79 29.08 
0.84 30.12 
0.99 39.77 
1.19 34.13 
1.33 32.61 
1.43 35.52 
1.10 34.42 
0.88 37.88 

510 
52 1 
524 
52 I 
530 
529 
534 
526 
506 
528 
532 
526 
524 
509 

1.40 50.47 
0.98 44.13 
0.81 33.92 
0.46 28.96 
0.42 29.61 
0.58 29.31 
0.63 28.28 
0.79 29.08 
0.84 30.12 
0.99 39.77 
1.19 34.13 
1.33 32.61 
1.43 35.52 
1 .I0 34.42 

498 
510 
52 1 
524 
52 1 
530 
529 
534 
526 
506 
528 
532 
526 
524 

Table 5 T’ Values for Reactor Data 

Observation T; T: 
No (Critical  value = 39.19) (Critical  value = 28.73) 

I 16.98  4.75 
2  14.46  9.95 
3 37.28  24.27 
4 41  .X8  22.78 
5 39.10  27.82 
6  42.71  23.79 
7 37.18  25.27 
8 31.74  13.51 
9  23.58  3.65 

10  18.07  10.99 
11 20.76  19.49 
12  20.43  15.50 
13  22.02  8.39 
14  18.73  1.67 
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described in Mason  et  al. (1997), several large  conditional T’ components 
are  produced,  and  each includes  some  subset  of the  variables  L1, lag LI, 
TEMP,  and lag TEMP.  For example, Tt1,LTEMp has  a value of 18.40. Such  a 
large  conditional T’ term  implies that  something is wrong  with  the  relation- 
ship between LI  and  temperature.  The  predicted value  of LI using LTEMP 
as  a  predictor is not within the  range of the  error of  the  model as determined 
from  the  in-control  historical  data  set.  On closer examination,  the  data in 
Table 4 for  observation 4 suggest that  the value  of LI is too small for  the 
temperature value. With  the  removal  of  these  two  components  from  the 
signaling  observation  vector,  the  subvector  containing  the  remaining five 
variables  produces no signal. The  T2 value for  the  subvector is 15.31, 
which is insignificant  compared  to  the  critical  value of 32.21 (a = 0.0001). 

Given  the  dependency of  L1 on time, as  illustrated in Figure 6, it may be 
surprising  that we did  not find a  problem  with  the  relationship  between LI and 
its lag value. However, in examining  the  values in Table 4, it is clear that  the 
trend in LI  from  observation  3  to  observation 4 is not  unusual,  as  there is a 
downward  trend in L1 from  observation 1 to  observation 4. However, at 
observation 4, the  downward  movement in  L1 is not in agreement  with  the 
upward  movement in the  temperature,  particularly when one  considers  the 
positive  correlation between  these  two  variables  noted in Table  3  for  the his- 
torical data set.  Thus, a process  problem is created,  and  the T’ statistic  signals. 

Analysis  of  the  signaling observation 6 produces  similar  results.  The 
conditional  terms  involving  subsets of LI ,  lag L1, TEMP,  and lag TEMP 
are generally  large in value. For example, T;I,LTEMp has  a value  of 17.72, 
T,,MP,LI has  a  value of 21.98, and  T;~.TEMP,LTEMP  has a value  of 21.53. All 
these  values  indicate that  there is a  problem in the  relationship  between  LI 
and  TEMP relative to  that seen in the  historical  data. 

Note  that Ti, which  did not  include  the effects of the time dependen- 
cies between the process  variables, failed to  detect  the  above two data 
problems.  However, this is not  due  to  a  failure of the T2 statistic,  as  its 
performance is based solely on  the  provided  process  information.  Clearly, 
T; is more sensitive than  Ti, since it has  included  information on the  auto- 
correlation  that is present in three  of  the  four  variables.  Thus,  one  would 
expect its performance in signal detection  to be superior. 

2 

6. A CONTROL  PROCEDURE FOR STAGE  DECAY 
PROCESSES 

Process  decay  that  occurs in stages  was  illustrated in Figure 2. As a general 
rule, this type  of  decay  occurs  over  many  months or years,  and  the time 
dependency is between  different  stages in the  process. For example,  process 
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performance in the  second  stage  might be dependent  on  performance i n  the 
first stage,  and  performance in the  third  stage  might be dependent  on  per- 
formance in the  previous  stages. A process-monitoring  procedure at  any 
given  stage  must adjust  the process  for  its performance in the  previous 
stages.  Thus.  control  procedures  are  initiated  to  detect  when significant 
deviation  occurs  from  the  expected  adjusted  performance  as  determined 
by the  historical  database. An overview  of  how this is done is briefly dis- 
cussed in this section,  and  more  extensive  details  and  examples  can be found 
i n  Mason  et  al.  (1996).  Consider  a  situation  where  a  three-stage life has been 
determined  for  a  production facility consisting  of 11 units.  Observations  are 
homogeneous  within  each  stage  but  heterogeneous  between  stages.  An i n -  
control  historical  data  set,  composed of observations on /I variables  for  each 
unit during  each  stage of operation, is available.  This is represented  symbo- 
lically in Table 6, where  each Xjj  is a  p-dimensional  vector  that  represents an 
observation  on 11 process  variables; i.e., 

X ”  - ( . 
I /  - 3 .y;,~t . .., -y;jp) 

where i = 1,  ..., I ? .  and , j  = 1 ,  2, 3. 
The  proposed  solution  for  the T’ control  procedure  for use  with  such 

stage-decay  process  data is to use a 3p-dimensional  observation  vector  given 
by X ;  = (X,,, X,,, X,,), h- = I ,  2, ..., 17. The vector X ,  represents all the 
observations  taken on the p variables  from  a  given  processing  unit  across 
the  three  stages  of  its life. For a given production  unit,  the  observations 
across  the  three  stages  are  time-related  and  thus  dependent.  However, 
within a given  stage,  observations  are  independent  between  production 
units.  Since X, has  three  components  corresponding  to  the  three life cycles 
of the  unit, i t  will  be possible to  adjust  the p process  variables i n  the T’ 
statistic  for  the  corresponding  stage  dependencies. 

Suppose X ,  can be described by a  multivariate  normal  distribution 
with a  mean  vector  represented a s  p’ = ( p i ,  p2, p 3 ) ,  where  the p,, i = 
1 ,  2, 3. are  the  p-dimensional  mean  vectors  of  the  process  variables at  the 
ith stage. The covariance  structure  for X ,  is given as 

Table 6 Three-Stage Life History 

Unit Stage 1 Stage 2 Stage 3 
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where X,; represents  the  covariance  structure of the  observations  for  the ith 
stage,  i = 1,2,3;  and x,, i # j ,  denotes  the  covariance  structure of  the 
observations between  stages.  Using a  historical  data  set,  standard  estimates (x. S) ,  of the  unknown  population  parameters (p, C) can be obtained,  and a 
control  procedure  based  on an overall T’ can be developed.  Note  that  the 
estimates  are  partitioned in the  same  fashion a s  the  parameters. 

As an example of the  proposed  control  procedure,  suppose  a new 
observation, X. is taken  on  a given  unit in its  third  stage.  The  overall T’ 
for this observation is given by 

and will  be  used a s  the  charting  statistic.  Interpretation of a signaling  vector 
is  keyed to  the  partitioned  parts of X (i.e., the  subvectors  representing 
observations  on  the  unit  at  the  various  stages). Significant components of 
the T’ decomposition  and how  they  pertain to  the  observation vector X 
taken in stage 3, assuming  satisfactory  performance in stages 1 and 2 ,  are 
presented i n  Table 7. 

When  a signalling T’ component is identified, it can be decomposed  to 
locate  the  signaling  variable or  group of  variables.  Suppose  a  problem is 
located in the  conditional T.:,? term.  This implies, from  Table 7. that  the 
observation  vector  taken  at  stage 3, adjusted  for  the  process  performance at 
stage 2, is out of control.  With  this result, however, we  will not know if the 
process  performance is better  or worse than  that  indicated by the historical 
situation unless we further  examine  the  source of the  problem in t e r m  of  the 

Table 7 Interpretation of Components in Stage Decay, p = 3 

Component  Interpretation of component 

T; Checks if thc p components of the  observation  vector X ,  are within 

e .  I Checks process performance  on  stage 3. i.e., X,, adjusting  for  perfor- 

G .  2 Checks  process  performance in stage 3, adjusting  for  pcrformancc in 

T:. I 2 Checks process pcr formmx in stage 3. adjusting  for  performance in 

tolerance. 

mance in stage 1 as given by X , .  

stage 2. 

stages 1 and 2. 
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individual  variables. To  do this, we  will need to  perform  a  second  decom- 
position,  but  this  one will involve  decomposing  the  signaling  conditional T’ 
component. 

For p = 3, one possible  decomposition of T.:,’ is given by 

Interpretation of  these doubly  decomposed  terms is the  same  as  for  any T’ 
with  variable  components. For example, ( T:)3,2 represents an  unconditional 
T’ term  and  can  be used to check  the  tolerance of the first component of the 
observation  vector. 

In  general,  incoming  observations  on  a new unit  are  monitored in a 
sequential  fashion.  When  a  unit is  in stage I ,  only  the  observation XI is 
available,  and  monitoring is based on use  of the  statistic 

If a signal is observed,  the T’ is decomposed  and  the  signaling  variables  are 
determined. For signaling  observations in the  remaining  stages,  the  proce- 
dure is the  same  as  that  outlined  above  for an  observation in stage 3. 

7. SUMMARY 

The  charting of autocorrelated  multivariate  data in a control  procedure 
presents a number of  serious  challenges. A user  must  not  only  examine 
the  relationships existing between the process  variables  to  determine if 
any  are  unusual  but  must  also  adjust  the  control  procedure  for  the effects 
of  the  time  dependencies existing among these  variables.  This  chapter  pre- 
sents  one  possible  solution  to  problems  associated  with  constructing  multi- 
variate  control  procedures  for processes  experiencing  either uniform  decay 
or  stage  decay. 

The  proposed  procedure is based on exploiting  certain  properties  of 
Hotelling’s T’ statistic.  The first useful property is the  inherent  dependency 
of this statistic  on  the  relationships  that exist between and  among  the  pro- 
cess variables. If time  dependencies exist, they can be identified by  including 
time  variables in the  observation  vector  and then  examining  their  relation- 
ships  with  the  process  variables. A second  important  property of T’ is that 
its  signaling  values  can be decomposed  into  components  that  lead  to  clearer 
interpretation of signals. The  resulting  decomposition  terms  can be used to 
monitor  relationships  with  the  other  variables  and  to  determine if they are in 
agreement  with  those  found in the  historical data  set.  This  property is 
particularly  helpful in examining  stage-decay  processes,  as  the  decay  occurs 



Autocorrelation  in  Multivariate  Processes 239 

sequentially  and  thus lends itself to  analysis  by  repeated  decompositions of 
the  T’ statist ic  obtained  at   each  stage.  

REFERENCES 

Alt FB, Deutch  SJ,  Walker  JW. (1977). Control  charts  for  multivariate,  correlated 
observations.  ASQC  Technical  Conference  Transactions.  Milwaukee, WI: 
American Society for  Quality  Control,  pp 360-369. 

Mason,  RL,  Young,  JC. (1999). improving  the sensitivity  of the T Z  statistic in 
multivariate process control.  J  Qual  Technol 31. In press. 

Mason  RL,  Tracy  ND,  Young  JC. (1995). Decomposition of T’ for  multivariate 
control  chart  interpretation.  J  Qual  Technol 27:99-108. 

Mason RL. Tracy  ND,  Young  JC. (1996). Monitoring  a  multivariate  step process. J 
Qual  Technol 28:39-50. 

Mason  RL,  Tracy  ND,  Young  JC. (1997). A  practical  approach  for  interpreting 
multivariate T Z  control  chart signals. J  Qual  Technol 29:396-406. 

Montgomery  DC. (1991). Introduction  to  Statistical  Quality  Control. New York: 
Wiley. 

Montgomery  DC,  Mastrangelo  CM. (1991). Some  statistical  process  control  meth- 
ods  for  autocorrelated  data.  J  Qual  Technol 23:179-193. 

Tracy ND,  Mason RL. Young  JC. (1993). Use  of the  covariance  matrix  to  explore 
autocorrelation in process  data.  In: Proceedings  of the  ASA Section on 
Quality  and  Productivity.  Boston,  MA:  American  Statistical  Association.  pp 
133-135. 



This Page Intentionally Left Blank



Capability Indices for  Multiresponse 
Processes 

Alan Veevers 
Commonwealth  Scientific  and  Industrial  Research  Organization, 
Clayton,  Victoria,  Australia 

1. INTRODUCTION 

Production processes can be characterized by the  simple fact that  something 
is produced as a result of a  number of  deliberate  actions.  The  product  may 
be an item  such as a glass bottle, a brake  drum,  a  tennis  ball,  or a block  of 
cheese. Alternatively, i t  may be a polymer  produced in a  batch  chemical 
process or  a  shipment of a  mineral  ore  blended  from  stockpiles  that  are 
being continuously  replenished.  Whatever  the case, there will usually be 
several measurable  quality  characteristics of the  product  for which specifi- 
cations  exist.  These  are  often  a  pair of limits between  which the  appropriate 
measurement is required  to lie. Sometimes  a specification is a one-sided limit 
such as an  upper limit on  the  amount of an impurity in  the  product of a 
chemical  reaction. 

The  extent  to which a process  could or  does  produce  product within 
specifications for a l l  its  measured  quality  characteristics is an indication  of 
the ccrpcrhilit?, of  the  process.  Capability  can be measured  both with and 
without reference to  targeting,  and it is important  to  distinguish between 
these  two situations.  The  principal  reasons why product  may be produced 
out-of-specification,  i.e.,  nonconforming,  are  either  poor  targeting of the 
process  mean or excessive variation  or a combination of both. In  process 
development  or  improvement  campaigns,  the  two  situations  relate  to  the 
following questions. 
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1. Are  the  ranges of variation in my product  characteristics small 

2. How shall I choose  the  aim-point  for my process  mean in order  to 
enough  to fit within the specification ranges? 

. minimize the  proportion of nonconforming  product? 

Cclpubilitllpotenticrl is concerned  with  the first question.  It is a  comparison of 
a  measure  of  process  dispersion  with  the amount of  dispersion  allowed by 
the specifications. Capability  peTji)rmunce addresses  the  second  question  and 
is concerned  with  what  actually  happens  during  a  period  of  stable  produc- 
tion.  These  concepts  have  been  formalized  for  a single response by the 
introduction of  capability indices; see, for  example,  Kane [ I ] ,  of  which C,, 
(for  potential)  and CPk (for  performance)  are  the  most  commonly used. 
These,  and  other, indices are discussed in the  book by Kotz  and  Johnson 
[2], which,  together  with  the  references  therein  and  other  chapters of the 
present  volume,  provide  a  good  summary of single-response  capability 
indices. For multiresponse  processes,  the  question  arises  as  to  whether  or 
not  suitable  and useful multivariate  capability indices exist. If so, they will 
need to  provide  answers  to  the  above  two  questions.  Several indices have 
been proposed  for  multiresponse  processes,  and  some  of  them  are  discussed 
later.  However, it is first necessary to deal  with  some important issues of 
clarification. 

2. CAPABILITY  STUDIES,  PROCESS  MONITORING  AND 
CONTROL 

Since  capability indices were brought  to  the  attention of mathematical  and 
statistical  researchers in the 1980s, there  has  been  some  self-perpetuating 
confusion in the  literature. A number of authors,  for  example  Chan, et al. [3] 
and  Spiring [4], argue  that C,, is a  poor  capability  measure  because it fails to 
take  account of the  target.  What seems to be forgotten is that  the p in C,, 
stands  for  potential  and  there was  never any  intention  that it should  take 
account of the  target. Cp is meant  as  an  aid  to  answering  question 1 posed in 
Section I ,  and  concerns  variation  but  not  location.  On  the  other  hand, C,,k 

was  devised to  help  answer  question 2 and refers to  the  actual  performance 
of the  process  when  targeting  has  taken  place.  There is no need to  compare 
C,, with Cpk (or with any  other  performance  measures), because  they  mea- 
sure  different  things. The fact  that C,, and Cpk are  both  routinely  reported 
during  the  performance  phase in automotive  and  other  manufacturing  pro- 
cesses might  cloud  the issue but  should  not lead to them  being  regarded as 
alternative  measures of the  same  thing.  For  example, if a  stable process is 
reporting C,, = 2.1 and CPk = 0.9, then  the  most likely explanation is that 
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the process  mean is not optimally  targeted. The  information  provided by the 
C,, value tells us that  the process is potentially  capable  without  further  need 
to  reduce  variation.  Process  performance will  be improved,  monitored by 
CPk, by suitably  adjusting  the  target  for  the process mean. 

Similar  considerations  apply  to  multiresponse  capability indices. 
Specifically, there is a  clear  justification  for  developing  analogs of C,, for 
the  multivariate  case  that, of  course,  take  no  account  of  targeting.  Such an 
index will measure  the  potential  of  the  process  to  meet specifications 
(addressing  question 1) but will not, by intent,  measure  actual  performance. 
Different  measures  must be devised for  the  latter  purpose. 

Another  source of  confusion  arises  when  process  capability  and  pro- 
cess control issues are  not  separated.  An  illustration of  the  point  being  made 
here is based on  the following  example. During  the 1997 Australian  Open 
Tennis  tournament,  some of the  top  players  complained  about  the  quality of 
the balls being  used. International  regulations specify that they  shall weigh 
not less than 56.7 g  and  not  more  than 58.5 g and  must be between  6.35 cm 
and 6.67 cm i n  diameter.  The  tennis ball production process  must be set to 
achieve both these specifications simultaneously.  This  defines  a  rectangular 
specification region for  the  bivariate  quality  measure  consisting  of  the 
weight and  diameter of a  tennis  ball.  A  small  sample  of  measurements on 
ordinary  club  tennis balls was obtained  that showed a  correlation of 0.7 
between  weight and  diameter.  This  information was  used to  contrive  the 
situation  shown in Figure 1 to  illustrate  the difference  between  capability 
and  control  considerations.  Suppose  that  a  period of stable  production 
produced  data  approximately following a  bivariate  normal  distribution 
with a correlation coefficient of 0.7.  A  99%  probability ellipse for such a 
distribution is shown in Figure 1. Now  suppose  that  the next  two  measured 
balls are  represented by the + signs in the figure. Two  conclusions  can be 
drawn, first that  the process has  gone  out of statistical  control  and  second 
that  the  two new balls are perfectly capable  of being  used in a  tournament. 
In  fact,  the  two new balls are  arguably  better,  in  the sense of being  nearer to 
the  center  of  the specification region,  than  any  of  the balls produced in the 
earlier  stable  phase. 

From  the process control  point of view, the  out-of-control signals 
must be acted  upon  and  steps  taken  to  bring  the  process  back  into  stable 
production.  Multivariate process control  techniques,  such as that  intro- 
duced by Sparks  et  al. [5]  or  those discussed in a  previous  chapter  of this 
book,  are  available  for this purpose. Based on  multivariate  normal  theory, 
ellipsoidal  control  regions  form  the  natural  boundaries  for  in-control  obser- 
vations.  Points falling outside  the  control region are usually  interpreted  as 
meaning  that  something  has  gone  wrong with the  process.  From  the process 
capability  point of view,  it is whether  or  not  production will consistently 
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Figure 1 A 99% probability ellipse representing the bivariate distribution of the 
tennis ball quality characteristics  lies  comfortably  inside the specification  rectangle. 

meet specifications that is of primary  importance. I n  this  case,  the t-xt that 
the region bounding  the  swarm of data  points  may be ellipsoidal is of minor 
importance.  The  main  concern is whether or  not it fits into  the specification 
region. Capability indices are  not  tools  for process control  and  should  not 
be thought of as  measures by which out-of-control  situations  are  detected. 
They are simply  measures  of  the  extent  to  which  a  process  could  (potential) 
or  does  (performance) meet  specifications. Issues of control  and  capability 
need to be kept  separate;  otherwise unnecessary  confusion can  occur.  For 
example,  although  correlation is of critical  importance i n  control  methodol- 
ogy, it is largely irrelevant  for  many  capability  considerations. 

3. MULTIVARIATE  CAPABILITY  INDICES 

As  pointed out by Kotz  and  Johnson [ 2 ] ,  most  multivariate  capability 
indices proposed so far  are really univariate indices derived  from  the  vector 
of quality  characteristics.  An  exception is the  three-component  vector  index 
introduced by Hubele et a l .  [6]. While a complete review of the  subject to 
date is not  intended,  some of the significant developments  are  mentioned 
here.  The indices fall broadly  into two groups:  those  that use a hyperrectan- 
gular specification region and  those  that use an ellipsoidal specification 
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region.  Within  those  groups  there  are indices that  measure  capability  poten- 
tial  and  some  that  measure  capability  performance. 

Let X, = (Xl ,  X,, ..., X(,)’ represent  the vector  of q quality  character- 
istics, and  suppose  that  an  adequate  model  for X, under  stable  process 
conditions is multivariate  normal with  mean  vector 11 and  variancexovar- 
iance  matrix C. Taking  the widely accepted  value  of  0.27%  to be the largest 
acceptable  proportion of nonconforming items produced,  a process ellipsoid 

(X - p)’C”(X - p) = 2 
where cz is the  0.9973 quantile of  the x* distribution  on (I degrees  of free- 
dom,  can  be  defined.  More  generally, c’ can  be  chosen  to  correspond  to  any 
desired quantile. 

Referring  to  the ellipsoid as  the process  region,  the  two questions  of 
interest  can be rephrased  as follows. 

1 .  With  freedom  of  targeting,  would it be possible for  the process 
region to fit into  the specification region? 

2. During  stable  production with  the  mean  of the process distribu- 
tion  targeted at  the  point T, what  proportion of nonconforming 
product  can  be expected? 

Attempts  at  direct  extension of Cl, set out to compare  a  measure of process 
variation with a  measure  of  the  variation  allowed by the specifications. A 
difficulty immediately  arises  because  the specification region is almost 
always  a  hyperrectangle.  Even if it is not, it is unlikely to be ellipsoidal 
and even more unlikely to be ellipsoidal  with  the  same  matrix C-l as  the 
process  region.  Nonetheless,  capability indices have  been proposed based on 
ellipsoidal specification regions. Davis et al .  [7] assume C = a’I and define a 
spr.c.rrrl m t i o ,  U / o ,  for  the special case of circular  and  spherical specification 
regions.  Here, U is the  radius of the circle or sphere,  and  the  target is the 
center  point.  Thus, they are  addressing  questions 1 and 2 together.  The 
focus of their  article is on  nonconforming  parts,  and they  present  a  table 
giving  the number of nonconforming  parts  per billion corresponding  to  any 
spread  ratio  between  3.44  and 6.85. Chan  et  al. [8] define an ellipsoidal 
specification region  with  the same  matrix  as  the  process  region  and offer 
an extension  of C,,,,, to  address  question 2. Taam et a l .  [9] also  extend C,,,,? 
using an index that is the  ratio of  the  volume  of a modified  specification 
region to  the  volume of a scaled  process  region.  These last two  articles 
(apparently  an  earlier version  of  the  second one)  are discussed by Kotz 
and  Johnson [2] together with  the  suggestions  of  Pearn  et  al.  [lo],  who 
introduce  two indices based on  the  ratio of a generalized  process  length to 
a generalized  length  allowed by the specifications. 
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Tang  and  Barnett [l I]  introduce  three indices for  multiresponse  pro- 
cesses. The first involves  projecting  the  process ellipsoid onto  its  component 
axes and  taking  the  minimum of  the  one-dimensional C,, values  each  scaled 
by a  projection  factor  and  a  deviation  from  target  factor.  They  note  that  this 
index does  not involve the  correlations between  elements  of X,. The second 
index is similar  to  the first but uses the  Bonferroni  inequality  to  determine  a 
process  hyperrectangle  such  that  each side is a lOO(1 - cr/q)% centered 
probability  interval  for  the  marginal  distribution. A usual  choice  would 
be to  take C( = 0.0027. The  third index is based on  a process  region obtained 
using  Sidak’s probability  inequality  but is otherwise  of  a  similar  form  to  the 
first two. Tang  and  Barnett [ I  11 show  that  the  third index is the least con- 
servative  and is favored  over  the  other  two. 

Chen [12] defines  a  general specification region,  or  tolerance  zone, 
consisting  of  all  values  of X, for which h(X, - T) 5 ro. where k (.) is a 
positive function  with  the  same scale as X, and ro  is a  positive  number. 
The process is capable if 

P ( h ( X ,  - T) 5 ro) 2 0.9973 

so, taking I’ to be the  minimum  value  for  which 

P ( h ( X ,  - T) 5 r )  2 0.9973 

a  capability  index  can be defined as ro /r .  The  formulation includes ellipsoi- 
dal  and  hyperrectangular specification regions as special cases.  Hubele  et  al. 
[6] propose  a  three-component  vector  index  for  bivariate  response  processes. 
The first component is an extension  of C,,, namely the  ratio  of  the  area of the 
specification rectangle  to  the  area of  the  process  rectangle. The  second 
component is the significance level  of Hotelling’s T’ statistic testing for  a 
location  shift,  and  the  third is an  indicator of whether  or  not  the process 
rectangle  falls  entirely  within  the specification rectangle.  This  last  com- 
ponent is necessary  because the first component  can give  a C,,-like value 
suitably  greater  than 1 despite  one of the  quality  characteristics  being, in 
itself, not  capable. 

A completely  different  approach is taken by Bernard0  and  Irony [13], 
who  introduce  a  general  multivariate Bayesian  capability  index.  They  use  a 
decision-theoretic  formulation  to  derive  the  index 

Ch(D) = @-‘(P(X, E AID)) 
3 

where A is the specification region, D represents  the  data,  and @ is the 
standard  normal  distribution  function.  The  distribution of X, can be of 



Capability  Indices for Multiresponse  Processes 247 

any type, and  exploration of the  posterior  predictive  distribution  of C,, given 
D is limited only by available  computing  power. 

Most of the  above  indices  are  not easy to use in practice  and present 
difficult problems in the  exploration of their  sampling  distributions.  Two 
approaches  that  don’t suffer  from  this are given by Boyles [14] and Veevers 
[ 151. Boyles moves  away  from  capability  assessment and  promotes  capabil- 
i ty improvement by using exploratory  capability  analysis.  Further  develop- 
ments in this  area  are described by Boyles (in the  present  volume). Veevers’ 
approach is based on  the  concept of process  viability, which is discussed in 
the next section. 

4. PROCESS VIABILITY 

Veevers [ 15, 161 realized the difficulties associated with extensions of Cl, and 
Cl,k to multiresponse  processes  and  concluded  that  the  reasons lay in the 
logic underlying  the structure of Cl, and C,)k. This led to the  notion of 
process viability as a better way of thinking  about process  potential  than 
the logic underlying C,. He  introduced  the viability i d e s  first for a single- 
response  process and then  for  a  multiresponse  process. 

Basically, viability is an  alternative to capability  potential,  leaving  the 
word  “capability” to refer to  capability  performance. For a  single-response 
process it is easy to envisage  a  window  of opportunity  for  targeting the 
process mean.  Consider  the process  distribution, which need not be normal 
and,  conventionally, identify  the lower 0.00135 quantile  and  the  upper 
0.99865 quantile. Place  this  distribution  on  a scale of measurement  that 
has  the lower and  upper specification limits (LSL and USL, respectively) 
marked  on it, with the  lower  quantile  coincident  with  the LSL. If the USL is 
to the  right of the  upper  quantile,  slide  the  distribution  along  the line until 
the  upper  quantile  coincides  with  the USL. The line segment  traced out by 
the  mean of the  distribution is the  window  of opportunity  for  targeting  the 
mean.  The  interpretation of  the  window is that if the  mean is successfully 
targeted  anywhere in it,  then  the  proportion  of  nonconforming items will be 
no greater  than  0.27%. A process for which a  window of  opportunity such 
a s  this exists is said to be v i c h k ;  i.e., all that needs to be done is to  target the 
mean in the  allowable  window. If. however,  the USL is to the left of the 
upper  quantile  (after the first positioning),  then  there is clearly  more  varia- 
tion in the  response than is allowed for by the  specifications, and  the process 
is not viable.  Sliding  the  distribution to the left until  the upper  quantile  and 
the USL coincide  causes  the  mean to trace out a line segment that,  this time, 
can be thought of as  a “negative”  window of opportunity  for  targeting  the 
mean. Referring to the  length  of  the  window, in both cases, as w, a viable 
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process will have  a positive w and  a  nonviable  process  a  negative w .  The 
viability index is defined as 

V ,  = 
11' 

USL - LSL 

If the  process is comfortably  viable,  then w will  be a  reasonable  portion  of 
USL - LSL, but if the  process is only just viable, 11' will  be zero  and V,. = 0. 
Processes that  are  not viable will have V, negative. 

If the  quality  characteristic  has  a  normal  distribution  with  standard 
deviation 0, i t  is easy to see that 6 0  + )I' = USL - LSL for  both positive 
and  negative W, hence V, = 1 - l/C,]. Some  readers will know  that  an 
early capability  ratio  was C, = l / C ,  (see, e.g.,  Amsden et al. [17]), so 
V,. = 1 - C,. Statistical  properties  of  estimators of V,  are relatively 
straightforward to establish,  as  indicated in Veevers [15]. It  must be 
remembered  that  the viability index is a  measure  of  capability  potential 
and addresses  only  question 1. The knowledge  that  a  process is viable is 
valuable  even if an unacceptable  proportion of nonconforming  parts is 
produced when  the  process is operating. I t  means  that  the  process  must 
be targeted  better  (question 2) to achieve  acceptable  capability  perfor- 
mance,  but  there is no need, at this stage,  to  reduce  variation.  Of  course, 
i n  a continuous  improvement  environment,  steps  would be taken to reduce 
variation in the  longer  term,  but  that is separate  from  the  point being 
made  here. 

Extension  of V,. to  multiresponse processes  requires the  definition  of 
a  multidimensional  window  of  opportunity  for  targeting  the  mean. 
Because  the  process is viable, the  distribution of X, can be located  almost 
entirely within the  hyperrectangular specification region, A .  And since 
targeting is not  at issue, the  distribution  can be thought of as free to 
move around.  The  shape of the  distribution will not  change with  this 
movement,  only  its  location. In particular. because the  correlations  are 
fixed, the  orientation of  a  process ellipsoid for  a  multivariate  normal  dis- 
tribution will remain  constant  during  location  shifts.  The  window of 
opportunity  for  targeting the mean  of  the  distribution  consists  of all points 
p for which  the proportion of nonconforming items  would be  less than 
0.27%. The  boundary of the  window  can be envisaged as  the  locus of p as 
the  distribution is moved around inside A while  keeping  exactly 0.27% of 
the  probability  mass  outside A and  99.73% inside A .  Figure 2 shows  the 
window  of  opportunity  for  a viable  bivariate  normally  distributed  process. 
The window is almost  a  rectangle,  with sides parallel  to  the specification 
rectangle,  except  that its corners  are  rounded  due  to  simultaneous  breach- 
ing  of  the  two  marginal specifications. 
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Figure 2 The  window of opportunity  (dotted rectangle) for  targeting  the  mean  for 
a viable bivariate process. The solid  rectangle is the specification  region. 

The viability index for  a  y-dimensional  multiresponse  process is 
defined as 

v -  volume of I t*  

'0 - volume of A 

A process is viable  only if it is separately  viable in  all its  individual  quality 
characteristics.  Otherwise it is not viable, and  variation  must be reduced, 
at least in the  characteristics  that  prompted  the  nonviable  decision.  In 
order  to  produce a practically useful index,  Veevers [ I  51 represents  the 
process distribution by a process  rectangle  that  has  as  its sides the  widths 
of the  one-dimensional  marginal  distributions. The width of a  univariate 
distribution is the  difference  between  the 0.99865 quantile  and  the 0.00135 
quantile  (or a s  appropriate,  depending on the  amount of  probability  to be 
excluded). 

The  window of opportunity  for  a viable  process  can  thus be envisaged 
by sliding this rectangle  around  just inside the specification region and 
ignoring  the  rounding at the  corners.  For  a viable  process this leads to 
the  expression 
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i= I 

where V,.(X,) is the viability index for  the ith quality  characteristic X, .  For 
nonviable  processes,  Veevers [I51 defines  negative  windows  of opportunity 
in such a way as  to  ensure  that  the viability value obtained  for  a (q - I )  
dimensional  process is the  same  as  would be obtained  from  the  q-dimen- 
sional  process by setting  the  marginal  variance of  the yth characteristic 
equal  to  zero. Hence, is defined i n  all nonviable  cases to be 

I',.(/ = 1 - 

where 

0 if V,.(X,) 2 0 
1 if V,.(X,)<O 

As with any index for  multiresponse  processes,  the viability index is best 
used in a  comparative  fashion. In a process  improvement  campaign  the 
viabilities can be compared  after  each  improvement cycle, thus  providing 
a sinlple measure  of  the  progress  being  made. Vrq depends only on  the 
marginal viabilities and is therefore  independent of the  correlation  structure 
of X,. The  correlation coefficients do, however, affect the  proportion of 
nonconforming  items  that  would  occur if the  process  was i n  production. 
If  an  upper  bound of 0.27% is required,  then a conservative  choice  of 
quantiles  to use for  the  calculation  of  the  nlarginal viabilities is 0.00135/q 
and 1 - O.O0135/q. The specific choice in an  improvement  campaign is 
unimportant. since the  emphasis is on changes in VrY rather  than  the  pro- 
portion  nonconforming. 

Having  had  some  experience  with  multiresponse viability calculations, 
the  following  modification to  the Vr4 index is proposed.  First,  note  that  a 
viable  process  with,  say, q = 6 and  marginal viabilities of 0.25 each  (corre- 
sponding to Cl, values  of I .33) has Vr4 = 0.00024. It is difficult to  relate  this 
small  number  to  the  reasonable level of viability it represents.  Further, it 
depends  on q, and  for  larger values  of q the viability index  would be  very 
sInall. These difficulties can be overcome by defining a modified  index 
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for  viable  processes.  This  has  the benefit of  being  interpretable  on  the  scale 
of V,., independently  of q. For  nonviable  processes, Vr9 is negative, so c9 
must  be  defined  as 

which is also  valid  for  viable  processes  and  provides  a  general  definition  of 
V& A plot  of V;* for  a  two-response  process is shown  in  Figure 3. If desired, 
VF9 can be converted  to a capability  potential  index, Ci9, by C;q = 

Viability  calculations  are  illustrated  in  the  following  example used by 
Sparks  et al. [5] to  demonstrate  the  dynamic  biplot  for  multivariate  process 
monitoring. A flat  rolled  rectangular  metal  plate  is  supposed  to be of  uni- 
form  thickness  (gauge)  after  its final  roll. Measurements  are  made  at  four 
positions  on  the  plate,  giving  a  four-dimensional  response  for  the  process. 
The  positions  can be conveniently  referred to  as FL (front left), FR (front 
right), BL (back left), and BR (back  right).  The  original  data  are  subject  to  a 
confidentiality  agreement, so they  have  been  transformed  before  being 
plotted  as  pairwise  scatter  diagrams in Figure 4. Typical  specification  limits 
are  superimposed,  but  it  must be remembered  that  this is  being  done  to 
visualize  process  dispersion  relative  to  specifications and  does  not  represent 
actual  process  performance  with  respect to  targeting.  The  two-, three-, and 
four-dimensional  specification  regions  are  squares,  cubes,  and  a  hypercube, 
as  appropriate. 

The  individual viabilities for FL, FR, BL, and BR are  calculated  as 
0.147,  0.185, 0.1  11, and 0.137,  respectively.  This  implies  the  existence  of  a 
positive  window  of  opportunity  for  targeting  the  mean  and gives Vr4 = 
0.000415 and c4 = 0.143. Using  the  relationship  between viability and  cap- 

1/(1 - G 9 ) .  

Figure 3 The  viability index V;; plotted  against  the widths, W ,  and W2, of the 
marginal distributions for a bivariate  process with unit specification  ranges. 
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ability, this corresponds  to a capability  potential of C;4 = 1.167. Since a l l  
these  values are  intended  for use in comparative  situations,  suppose  some 
process  changes  gave  individual viabilities for  FL,  FR, BL, and BR  of 0.190, 
0.225, 0.175, and 0.210, respectively. Then, V,.4 = 0.00157 and V:4 = 0.199, 
indicating  the  improvement in viability.  Experience in the  use  of viability 
indices is necessary i n  order  to get a feel for  the  extent of  the  improvement. 
Converting  to  a  capability  potential value gives C;4 = 1.248. Practitioners 
used to  working  with C/, may feel more  comfortable  on  this scale of  mea- 
surement in the first instance. 

5. PRINCIPAL  COMPONENT  CAPABILITY 

Although specification regions are generally hyperrectangular,  support  for 
differently  shaped  regions  determined by loss functions is growing.  Consider 
a  situation  where  the  marginal specifications have  ranges 24 ,  i = I ,  2, ..., q. 
By transforming X, to Y,, where  the  elements  of Y, are Y,  = Xj /c l j ,  the 
specification region  becomes  a  hypercube  of side 2. If,  on this scale of 
measurement,  the  loss  associated with an item is proportional  to  the dis- 
tance between Y ,  and  the  center of the region, then  a  hyperspherical  toler- 
ance  region  would be appropriate.  The  word  “tolerance” is used  here to 
distinguish  the  region  from  the specification region,  which  remains  a  hyper- 
cube. 

For the  purpose of  developing  a  capability  index  there  are several 
choices  of  centered  hyperspheres that  approximate  the specification region. 
For example,  there is the  unit-radius  inscribing  hypersphere,  the  &-radius 
outscribing  hypersphere,  and  the  hypersphere  with  the  same  volume  as  the 
specification hypercube. 

If  Y, is adequately modeled by a  multivariate  normal  distribution with 
variance-covariance  matrix E,., then  the  question  of  capability  potential 
revolves around  whether  or  not  the  process ellipsoid will fit inside the  hyper- 
sphere.  This is governed  only by the  “length” of the  principal axis of the 
ellipsoid. A suitable  length  can be obtained by taking  a  multiple of the 
standard  deviation of the first principal  component, ZI ,  of E,, since this 
is along  the  principal axis of the  ellipsoid.  Denoting by hl the eigenvalue 
associated  with ZI ,  it follows that  the  standard  deviation of ZI is 6. 
Hence,  taking 6& to be the  length  of  the  principal  axis of the ellipsoid, 
a  capability  potential  index  can be constructed by comparing this length 
with the  diameter of the  tolerance  region.  Using  the  unit-radius  hypersphere 
gives 
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and using the A-radius  hypersphere gives 

each  of  which  could be  used in its own right as  a  capability  index.  However, 
it  seems a sensible compromise  to  take  the  average of these  two as  a  measure 
of  capability  potential.  Hence,  a  principal  component  capability  index is 
defined as 

More  generally, CilC could be defined as k / f i ,  where k is a  constant  to  be 
determined  from  considerations  of  the  maximum  acceptable  proportion  of 
the  centered  process  distribution  allowed  to be outside  the specification 
region.  Since Cpc is meant  to  be  an index of capability  potential  that is 
intended  for use as  a  comparative  measure,  fine-tuning of k is unimportant 
and will not be further  considered  here. 

The sampling  distribution of  the  natural  estimator of Cl,c can be stu- 
died  using  the  sampling distribution of the eigenvalue  associated  with the 
first principal  component of the  estimated  variance-covariance  matrix E,.. 

The following  example  shows  the  spirit in which Cl,(. may be used. The 
plastic  bracket  and  metal  fitting  attached to  a car's  internal  sun visor are 
manufactured  to specifications relating  to  the  torque involved in the swivel 
action.  Four  torque  quality  characteristics, X4, are  measured  which, in dis- 
guised  units,  have  nominal  values 2, 2.25, 2, 2.25 and specifications (1, 3), ( I ,  
3.5), (1.3). ( I ,  3 .9 ,  respectively. Data  on 30 items from  a  batch gave 

0.0390 0.0306 - 0.0008 - 0.0004 
0.0306 0.0423 - 0.0032 - 0.0018 

- 0.0008 - 0.0032 0.0589 0.0519 
- 0.0004 - 0.0018 0.0519 0.0579 

with  entries  rounded  to  four  decimal places. From  this, i, = 0.1 105, giving 
= 1.21. As an  absolute value  this should be interpreted with caution,  but 

for process  improvement  purposes it is useful as  a  comparative value. A 
sample  of 25 items from  a  batch  produced  under slightly different  conditions 
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gave i, = 0.086 and C/,,. = 1.37, showing  a  marked  improvement. The tnan- 
ufacturer’s  aim is to  keep  the process at these conditions, which  show it to be 
potentially  capable,  and  then  concentrate  on  targeting at  the  nominal values 
to  ensure a capable  performance. 

6. CONCLUSION 

Capability indices for  multiresponse  processes  have  been  discussed. I t  has 
been stressed that  capability  potential indices are useful in their  own right 
and  should  not be confused  or  unfairly  compared with  capability  perfor- 
mance indices. Most of the  literature on indices for  multiresponse  processes 
concerns  extensions  to C,,, and C,,,,,. The viability index, V,., however, 
offers an alternative way of  thinking  about  capability  potential  and  extends 
naturally  to  multiresponse  processes.  A  modification  to  the  multiresponse 
viability index is proposed  that  makes i t  easier to  interpret i n  practice. 
Calculations  are  illustrated  on real data from  a rolling mill. A new principal 
component  capability  index is presented  that is based on a loss function 
proportional  to  the  distance  from  the process  mean to  the  target  point. 
Another real example  from the motor  parts  industry is used to  illustrate 
the use of this index. I n  a l l  cases it is emphasized  that  capability indices for 
multiresponse  processes  are best used in comparative  fashion  and  should be 
treated with caution  as  individual values. 
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1. INTRODUCTION 

In a very general  sense, pattern recognition is often  considered to be  the 
essence of intelligence. For example, an often  heard argument  for  the ability 
of  human chess  masters to beat  state-of-the-art  computer  programs is that 
whereas  the  latter  may  be  fast in enumerating a  large number of moves and 
consequences,  the  masters  tend to rely on  some  innate  “pattern  recognition” 
abilities  based on extensive  experience. In a  more limited sense, pattern 
recognition  arises in many guises i n  industrial  settings,  e.g.,  robotics in 
manufacturing,  detection of errors in massive software  systems, and widely 
used image  analysis  applications in medicine and in such  things as  airport 
luggage  scanners. 

For  purposes of this chapter, the  phrase  “pattern  recognition” is used 
to  indicate  an even more specific statistical  methodological  area,  that of 
classification and clustering. The term  “classification” is used for  situations 
wherein  so-called  training  samples that  can be labeled by their  origin (the 
case of “known”  groups)  are  available  and  one is interested in using these as  
the bases for classifying so-called test samples. Other terminology for this 
class of pattern recognition methods include  discriminant  analysis  and 
supervised  learning. In the  clustering  scenario,  on  the  other  hand,  all  one 
has  are the data  at  hand, with no labels to identify sources  (the case of 
“unknown”  groups),  and the  analysis  leads to finding  groupings of the 

257 
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observations  that  are  more  similar within groups  than  across  them.  This 
setting is also known  as  unsupervised  learning.  There  are,  of  course,  many 
real-world situations  that fall between  the  two  scenarios, and  often  one 
needs a combination of the  two  approaches  to find useful solutions  to  the 
problem  at  hand.  For  instance, while  the  early  development  of so-called 
neural  networks,  which basically are  automatic classifiers implemented i n  
either  software or hardware, focused on supervised  learning methods,  the 
current uses of  these encompass  both supervised and  unsupervised  learning 
algorithms. 

This  chapter  has  three objectives. First,  taking  a  broad view of busi- 
ness and  industry, it seeks to identify a variety of  aspects  of  such  enterprises, 
as well as  examples  of specific problem arising i n  such  facets,  wherein 
classification and  clustering  techniques  are used to find appropriate  solu- 
tions.  Second, using the  theme  of  quality  and  productivity as a  focus,  it 
describes  a  sample  of  applications  (drawn  from  both  the  literature  and 
our experience) in which this theme is a clear  objective of using  such tech- 
niques.  Third, it is aimed at  discussing  some  methodological issues that  cut 
across  applications  and need to be addressed by practitioners  to  ensure 
effective use  of  the methods  as well a s  by researchers  to  improve  the  options 
available  to  practitioners. 

More specifically, Section 2 identifies areas of  business  and industry,  as 
well as some specific examples  of  problems in such  areas,  where classifica- 
tion and  clustering  techniques  have  been  used.  It also describes i n  a bit more 
detail a subset  of  the  examples  where  assessment  and  improvement of qual- 
ity, efficiency, and/or productivity  are explicitly involved a s  a goal  of  the 
analysis.  Section 3 discusses  some  general  methodological issues that need to 
be considered.  Section 4 consists  of  concluding  remarks. 

2. ASPECTS  AND  EXAMPLES OF BUSINESS AND 
INDUSTRIAL  PROBLEMS  AMENABLE TO PAlTERN 
RECOGNITION 

Perhaps  the  better  known  industrial  applications of pattern  recognition, 
including  some  that  were  mentioned in the  introduction,  are in manufactur- 
ing.  However,  one  can identify a  number of facets  that  are  integral  parts of 
business and  industry  as  a  whole  and give rise to  problems  that  are  amen- 
able  to  the  meaningful use of pattern  recognition  methods.  Table 1 contains 
a  partial list of different  facets of a business  enterprise  and  some specific 
examples  of  applications  of classification and  clustering  methods in each 
category. A subset  of  the  examples (identified by asterisks) in Table I ,  
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Table 1 Applications  of Classification and  Clustering  Methods  Within a 
Business Enterprise 

Finance 
Use  of discriminant  analysis  for effective development  of credit ratings of individuals 

and firms,  including bond  ratings [See, e.g., Chapters IV and V of Altman et al. 
(1981).] 

*Use of  discriminant  analysis  and  clustering  for developing “comparable risk” 
groups of companies  for  the  purpose  of  determining  appropriate  “rates of return” 
(Chen  et  al., 1973, 1974; Cohen et a l . ,  1977) 

Marketing 
Use of cluster analysis for  market  segmentation  on  the basis  of geodemographic 

similarity [Sce, e.g., Chapter 12 of Curry (1993)l and  the recent development of 
database  marketing 

*Use of  cluster  analysis  for identifying  “lead  users” and  for  product  development in 
light of the needs  of such lead users (Urban  and  Von  Hippel. 1988) 

Resource  allocation 
Utilization of robotics (entailing the  recognition  of  “shapes”  and “sizes” of objects 

to be assembled into a product) in assembly line manufacturing with gains in 
quality  and  productivity  arising  from decreased  variability and speed as well as 
lower costs in the  long  run [See, e.g., Dagli et  al. (1991).] 

Niche  applications  of  neural  networks for such things  as speech and writing  recogni- 
tion (e.g..  voice-activated dialing  of telephones; automatic verification  of payments 
of bills paid by customers via checks) 

Use of  cluster analysis for  grouping similar jobs  prior  to  the  development of regres- 
sion  models  for  aiding assessment and  improvement of  utilization  of computing 
resources  (Benjamin and  Igbaria, 1991) 

*Use of cluster analysis in the  development of  a curriculum  that  better meets job 
needs and is likely to  enhance  worker  productivity  (Kettenring  et a l . ,  1976) 

Software  engineering 
Use  of fuzzy clustering  to  improve  the efficiency of  a database  querying system 

Use  of discriminant  analysis  for  predicting which software  modules  are  error-prone 

*Use of neural  networks  for  “clone”  recognition in  large software systems (Carter  et 

(Kame1  et al., 1990) 

(Conte  et a l . ,  1986) 

al., 1993; Barson  et  al., 1995) 

Strategic  planning 
*Use of cluster  analysis  for identifying efficient system-level technologies (Mathieu, 

1992; Mathieu  and  Gibson, 1993) 
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wherein  assessment and  improvement of  quality, efficiency, or productivity 
was an explicit goal, is now  described in a bit more  detail. 

2.1. Finance 

AS  noted in Table I ,  classification and clustering are used to establish 
categories of comparable risk so as  to  determine  appropriate  rates  of 
return. 

Historically, and  particularly  during the 197Os, one  role  of  governmen- 
tal regulatory  bodies in the  United  States  was  to set allowed  rates  of return 
on equity  for the  companies  they  regulated.  The  regulated  companies  argued 
that in order to attract  investors they needed higher  rates of return, while the 
regulators felt pressured to keep  them  low.  An  accepted  tenet for resolving 
the  two  conflicting  aims  was that  the  rate of  return  should be commensurate 
with the  “risk”  associated  with  the  firm. For ilnplelnenting  this  principle, 
one  formal  approach  employs the  capital  assets  pricing  model  espoused by 
Lintner (1965), Markowitz (1959), and  Sharpe (1964).  Chen et  al. (1973) 
took  a  different and  more empirical approach by using data  concerning 
several  variables that  are acknowledged to be risk-related  (e.g., debt  ratio, 
price/earnings,  ratio,  stock price variability) and finding  companies  with 
similar risk characteristics  that  could  then  be  compared in terms of their 
rates of return.  Standard & Poor’s COMPUSTAT  database  pertaining  to 
over 100 utilities and over 500 industrials was the  source, and  a  particular 
interest of the  analysis  was to compare AT&T’s rate of  return  within  the 
group of  firms that  shared its risk characteristics. 

At an initial.  general level of analysis,  Chen  et al. (1973) addressed  the 
question of AT&T’s  classification as belonging to  either the  utility group  or 
the  industrial  group  through the use of  discriminant  analysis.  They  found 
strong evidence that  AT&T belonged with the  industrials. To provide  a 
different look,  one could use cluster  analysis to find groups of firms with 
similar risk features  and  further investigate  the  particular  cluster to which 
AT&T  belongs. Since the  primary  interest  of  the  authors was in the  latter, 
and  also  partly because  the  number  of firms was  large, an  attempt was made 
to find  a  “local”  cluster  near AT&T in terms  of  the risk measures  rather 
than clustering  all  the firms [see Cohen  et  al. (1977) for details of the  algo- 
rithm involved]. This analysis led to detecting  a  cluster  of 100 industrial 
firms with risk comparable  to AT&T’s. I n  terms of the  performance  measure 
of rate of return, AT&T’s  value was found to lie below the  median of the 
rates  of  return of this  cluster, thus providing  a quantitative basis for  arguing 
a higher rate of return. 
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2.2. Marketing 

In market  research, classification and  clustering  can serve as aids in product 
development in light of  the  needs  of  lead users. 

Urban  and Von  Hippel (1988) describe  an  innovative  approach  to 
product  development in situations where  the  technology  may be changing 
very rapidly.  Efficiency in developing  a  product  with  an  eye  to  capturing a 
significant share of the  market is the  desired goal.  The efficiency arises from 
studying a carefully chosen  subset  of  the  potential  market  and yet ending up 
having  a  product  that is likely to satisfy the needs of and be adopted by a 
much  larger  group of customers.  The  main  steps of the  approach  proposed 
by Urban  and Von Hippel  are  to use cluster  analysis  for  identifying  a set of 
“lead” users of  the  product, then seek information  from such  users about 
what  features  and  capabilities  they  would like the product  to  have,  and 
finally apply this information  not only to  develop  the  product  but  also  to 
test its  appeal  and utility for a wider group of users. The specific product 
used to illustrate  the  approach is software  for  computer-aided design of 
printed  circuit  boards  (PC-CAD).  Careful choice of variables  that  are likely 
to indicate  “lead”  users is a key part of and  reason  for  the success of the 
initial cluster  analysis.  Variables used included  measures  of  in-house  build- 
ing of PC-CAD systems,  willingness to  adopt systems at  early  stages of 
development,  and  degree  of  satisfaction  with  commercially  available sys- 
tems. A  total of 136 firms  were  clustered on  the basis of such  variables. 
Both  two-  and  three-cluster  solutions  were  studied,  and  the  former  was 
chosen as satisfactory  with  one  of  the  two  clusters  being  predominantly 
“lead” users. Treating  the two  clusters  as if they  were  prespecified ~ -i.e., 
the  discriminant  analysis  framework,  for  instance-the authors  report  that 
the  fraction  correctly classified in the  two  clusters  was  almost 96%. More 
interesting,  when  information  gathered  from  the  lead  users  was  used  to 
design a new PC-CAD system and this new design  was  presented to  the 
participants i n  the  study,  about 92% of the  lead  user group  and 80% of the 
non-lead  group  rated i t  as  their  first choice! Urban  and Von  Hippel  (1988) 
also discuss  the advantages  and  disadvantages  of  their  lead-user  methodol- 
ogy in general contexts. 

2.3. Resource Allocation 

Kettenring et a l .  (1976) describe  the role of  cluster  analysis  to assess the 
current validity of  course  objectives in a multifaceted  industrial  training 
curriculum  for  workers  with  evolving  training  needs.  The  approach  involves 
three  major  components: ( I )  careful  preparation of an inventory  of  the p 
current  elements  of  the  job, (2) collection  of  data  about  the  nature  of  their 
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jobs  and  training  needs  from  a  sample of n  workers  engaged in the  job  at 
which  the training is directed,  and  (3)  cluster  analysis of the  resulting  (p x n) 
matrices in various ways. In  one  analysis,  the p =  169 rows of a  matrix 
indicating  elements  performed on the job by the  sample  of  n = 452  workers 
yielded  insights  into  clusters  of  elements  of  the job  that fit together  and 
might  potentially be taught  together  as  a  module.  These  helped identify 
gaps in the existing curriculum where new resources  were  needed.  In  another 
analysis,  the n = 452 workers were  clustered  into  groups  with  common  train- 
ing  needs. The  range of  needs  across  the  clusters  suggested  that  a  training 
program with flexible options  would be an efficient way to  train  the  workers. 

2.4. Software  Engineering 

Carter  et al. (1993) (see also  Barson et al., 1995) tackle  the  problem  of  clone 
detection  in  large  telecommunications  software  systems. A clone is a  unit of 
software  source  code  that is very  similar  to  some  other  unit of code in the 
same  system. In  large  systems  with  a  long  history,  it  may  happen  that  there 
are several clones  of  the  same  piece  of  software.  These  can  unnecessarily 
inflate the size of the  overall  system  and  make it less efficient to  maintain. 
For example,  should  there be a  fault in one of the  clones, it would  probably 
be present  and need to be corrected in the  others  as well. 

The two  papers  mentioned  above discuss  different  neural  network 
approaches  to  software  clone  detection.  In  Carter  et  al. (1993), an  unsuper- 
vised neural  net is  used to  form  clusters of software  units  based  on  a set of 
features or variables.  The  variables  characterize  different  aspects of  a  unit of 
source  code  such  as  its  physical  layout.  New  units  of  code  can be compared 
against  existing  clusters  to see if they fall within  one of these  clusters. The 
overall  approach is attractive, even though it does  not yet appear  to  have 
been widely applied. 

2.5. Strategic  Planning 

Mathieu (1992) (see also  Mathieu  and  Gibson, 1993)  discusses an interesting 
use of cluster  analysis  for  prioritizing  critical  technologies i n  national policy 
making  and  guiding  the  choice of an efficient system-level  technology. One 
of the  prime difficulties in such situations is the  interdependencies  among  the 
technologies.  This  work  claims  to be the first in the  literature  to  provide  a 
systematic  quantitative  method  for explicitly identifying  “high  perfor- 
mance”  technologies  for  aiding  national  policy  making. As stated by 
Mathieu,  “the  purpose of using  cluster  analysis in technology  planning is 
to  determine  natural  groupings of system level technologies  based  upon  the 
scientific interdependencies  that link these  technologies.” The  particular 
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application discussed in this work  concerned  satellite  technologies  and pol- 
icy making  related to these in Washington, DC. Thirty ( =  n) system-level 
technologies  were  considered  for  the  clustering,  and 72 ( =  p)  binary  vari- 
ables  that  measure  the presence or  absence of 72 element-level support 
technologies in each  of  the  system-level  technologies  were  used  for  the clus- 
ter  analysis. The analysis led to six clusters of the system-level  technologies, 
with the  smallest  of  the  clusters  containing  only  two  technologies  and  the 
largest  group  containing seven. 

For aiding  the  identification of high perormance  technologies,  two 
variables  extraneous  to  the  cluster  analysis were introduced,  market  share 
and sales growth  rate,  and  average values  of  these for all U.S. companies  for 
the system-level  technologies grouped in each  cluster  were  computed. 
Mathieu (1992)  used an interesting  graphical  scheme (see Fig. 1) for a 
two-dimensional  display  of  these  averages  for  the six clusters. The six clus- 
ters  are  represented by circles and labeled  with the  names  given  to  them by 
Mathieu.  The circles are  centered  at  the  average  values  with  diameter pro- 
portional  to  the  total U.S. market size for  each  technology  group and thick- 
ness proportional  to  a  measure of  cluster  “tightness.” The display  thus 
contains  information  on  four  characteristics. Relatively  large and thick 
circles located  toward  the  top left corner of the  display  would  indicate  the 
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Figure 1 Mathieu’s six clusters of system-level technologies. (Copyright 1991 
IEEE.) 
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system-level  technologies that were  preferred. From the  configuration 
shown  here,  Mathieu  concluded  that  while  no single technology  group is 
uniformly dominant with  respect to all four  characteristics,  the  two  labeled 
“onboard  satellite  communications  equipment”  and “scientific satellites” 
appear  to be favorable  choices, while  the  two  labeled “remote  sensing” 
and  “transmission  equipment”  are clearly ruled out in terms  of  the  desire 
to  choose  high  performance  technologies. 

3. SOME  STATISTICAL  METHODOLOGICAL ISSUES 

The discussion in the  previous  section  was  designed  to  leave  the  impression 
that  methods of pattern  recognition  are used in many  facets  of  business  and 
are  having  considerable  impact on  matters of quality  and  productivity. 
Indeed, if one  takes  a  reasonably holistic view of quality  management, it 
is not a stretch  to  conclude  that these methods  are a potent  part of the 
arsenal  of  tools  for  quality  improvement. 

At  the  same  time,  practitioners of  these methods need to be aware of 
the  care  that is necessary  for  their  successful use. The  applications  literature, 
unfortunately, is not  reassuring in this  regard;  subtle  details  are  seldom 
discussed,  and  canned  programs  appear  to be heavily, even  totally, relied 
upon. 

The difficulties start  at  the  earliest  part of the  analysis  when  a  commit- 
ment is made  to  what  data  and which  variables  to use. The  temptation is to 
include  every  variable  of  possible  value  to  avoid  missing  out on an  impor- 
tant  one. The price one  pays  for this ranges  from  a  needlessly  watered  down 
analysis  to  full-blown  distortion  of  the  results.  In  cluster  analysis,  the risk is 
particularly severe: Clear-cut  clusters confined to  a  subspace of  the  variables 
can be completely  overlooked. 

The  traditional  methods of discrillinant  analysis have the nice math- 
ematical  property  of  being  invariant  under  nonsingular  linear  transforma- 
tion  of  the  data.  However, in most  cluster  analysis  procedures, this is not  the 
case. There is explicit or implicit commitment  to a metric  that  at  one 
extreme  may be invariant  but  otherwise  without  rationale  (as when one 
uses the  total  covariance  matrix of  the  entire  data set to  form a weighting 
matrix  for  the  metric)  and  at  the  other  may  involve  no  reweighting  of  the 
variables  and  therefore  no  such  invariance  (as in the  case of Euclidean 
distance).  An  intermediate,  and  far  too  popular,  example is autoscaling  or 
weighting to  equalize  the  total  sample  variances of a l l  the  variables.  This 
works  against  detecting  clusters by all methods  that  take  autoscaled  data,  or 
distances  derived  from  them,  as  input.  Rather  than  putting  the  variables 011 

: ~ I I  equal  footing.  according  to  their  within-cluster  variation  (which is what 
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one would  prefer to  do), it places  variables  with  cluster structure  on  the 
same  overall  footing as those  without such structure  and thereby  makes 
it more difficult to find the  clusters via standard  algorithms. See 
Gnanadesikan  et  al. (1995) for  further discussion and  mitigating  alterna- 
tives. 

Another  worry is which method or algorithm to choose  for  all  ana- 
lyses. Neural networks‘?  Classical  discriminant  analysis, or classification 
trees? A hierarchical method,  or  a  partitioning  method of  cluster  analysis? 
There  are  many choices.  Users need to be sensitive to the  pros  and  cons of 
them and to resist having  the  analysis  driven by the  content of the  nearest 
software  package. A very appealing  strategy in pattern recognition  work is, 
in fact, to apply a thoughtful variety  of methods  to  the  data.  The  hope is 
that  major well-formed patterns will emerge  from  different  looks at the data, 
and  others  that  are less pronounced  but still potentially  noteworthy will 
reveal themselves in at least one  of  the  alternative  calculations. 

The findings can also be made  more credible by subjecting  them to a 
variety  of  sensitivity  analyses for  a  particular  method.  For  example,  con- 
trolled jiggling of  the  data  or systematic  deletion  of  variables and/or  obser- 
vations followed by reapplication  of  the  method  can  help  one  to  appreciate 
just how  stable or fragile the  results are (see Gnanadesikan  et  al., 1977; 
Cohen  et al., 1977). 

As the  number of variables,  p, or observations,  n, grows-and this is 
clearly  the  trend i n  many  industrial applications-a much  more  daunting 
challenge  arises. Many of the standard  pattern recognition  methods  become 
impractical or literally  break down.  The  irony of  this is that with  massive 
sets of data  one needs just such pattern recognition approaches  to bring  the 
data  under  control by dividing  them into  manageable  chunks. 

To illustrate  the  point,  consider  what is probably  the  most  popular 
and widely available  form of clustering,  hierarchical  cluster  analysis. This 
method  operates  on n(n - 1)/2 interpoint  distances to produce  hierarchical 
trees  with  n leaves at the top  and  one  trunk  at  the  bottom.  The  distances 
present data  management challenges when n is large and  the trees, which 
ought  to be studied,  become so big that they cannot  be readily drawn  or 
digested. 

Other  popular  algorithms, such as k-means,  may be more  suitable  as  n 
increases, but they are  not  a  panacea.  Brand new approaches  are really 
needed. For example,  “localizing”  the  analysis so that  one is looking  for 
patterns of  a  particular  type in a  particular region of space  may be one 
effective way to reduce  the  problem to a  reasonable size. See Section 2.1 
for  an  example. 

When  p is too large, other complexities  arise. As indicated  already, 
masking of patterns is a  serious  limitation,  and  available  methods  for 
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variable selection and  dimensionality  reduction,  whether  graphical or 
numerical,  are  unlikely  to  work well. 

To make  matters worse,  even current  practice  for  reducing  the  number 
of  variables  when  p is only  moderately large is open  to  criticism.  Again in 
the  context of cluster  analysis,  a widely advocated  and practiced  technique is 
to  reduce  dimensionality via principal  components  analysis.  Although  this 
can  work well in some  situations,  the logic of this approach is suspect,  and it 
is easy to give examples of when it fails. 

The relative size of n  and  p  can  matter  a lot for  some  types  of  pattern 
recognition  problems. If n is small relative to p, the  already  suspect  reduc- 
tion of variables via principal  components will also  suffer  from  numerical 
instability  problems.  When  both  are very large, entirely new approaches  to 
pattern  recognition  may be the  answer. For example,  one  can  envisage 
extensive distributed  computations of  massive data  sets.  Local  exploration 
may be handled by burrowing deeply into  the local detail.  The  global  solu- 
tion would be obtained by ultimately  stitching  the local solutions  together. 

In summary,  there is much  to  worry  about in terms  of  methodological 
issues if one is to  take  advantage of pattern  recognition  techniques in com- 
plex industrial  problems.  A  “black  box”  or  “canned  program”  approach 
will not  cut i t  and  can easily do more  harm  than  good. 

4. CONCLUDING REMARKS 

Pattern  recognition  methods  are  natural  ones  for helping to  improve  quality 
and  productivity in industrial  settings.  Applications  are  prevalent,  and sev- 
eral  rather  different  ones were  given to illustrate this point.  Nevertheless, 
careful  attention  to  detail is needed to  ensure  that  the  methods, which are 
far  from infallible, are effectively applied.  When they are, they can  be 
powerful  tools in the  search  for  total  quality  management. 
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Assessing  Process  Capability with 
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Manitoba,  Canada 

1. GENESIS 

The  automotivc  industry has been a leading promoter of  process  capability 
indices a s  tools  for  quality  improvement. I t  is 110 longer  alone, as process 
capability indices are now  embraced by a wide variety  of  industries  inter- 
ested i n  assessing the  ability  of a process to meet customers’  requirements. 
The  popularity of these indices is generally attributed  to their  ability to 
provide  a  single-number  summary that relates  process  performance to  pro- 
cess requirements.  Practitioners use the  single-number  summary in many 
ways including ( I )  awarding  supplier  audit  points based on the  magnitude 
of  the  summary  value, ( 2 )  documented  evidence  of  process  perfornlance 
relative to customers’  requirements,  and (3) in identifying  processes in 
need of  improvement. 

The use of single-number  summaries to assess the  overall  perforlnance 
of  a  process  has been criticized: however, when used in conjunction  with 
other  quality tools. the  information provided by these  summaries  can  be 
invaluable.  Under the assumption  that meeting or exceeding customer 
requirements is the  focus  of  most  quality programs  and  considering process 
capability indices to be the  quantification of the process’s ability to meet 
customer  requirements,  thc  increasing use of  process  capability  lneasures 
seems only natural.  Unfortunately, users of  process  capability indices 
have  developed several “bad habits.” in part  due  to a lack of practical, 
statistically  sound  techniques. 

269 
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2. PROCESS  CAPABILITY  INDICES 

Process  capability indices are used to assess a  process’s  ability to meet  a set 
of  requirements.  When  used  correctly  these indices provide  a  measure of 
process performance  that in turn  can be used in the  ongoing assessment  of 
process improvement.  Indices allow  statistically  based  inferences  to be used 
in the  assessment  of  process  capability as well as in the  identification  of 
changes in the  ability  of  the  process  to  meet  requirements. 

I t  is generally  acknowledged  that  Japanese  companies  initiated  the  use 
of  process  capability indices when  they  began  relating  process variation  to 
customer  requirements in the  form of a  ratio.  The  ratio,  now referred to  as 
the pr.orr.ss cupcrhilitl~ ir~des, is defined to  be 

- USL- LSL c y  = 
60 

where  the  difference  between the  upper specification limit (USL)  and  the 
lower specification limit (LSL)  provides  a  measure  of  allowable  process 
spread (i.e., customer  requirements)  and 60, 0’ being the  process  variance, 
a  measure  of  the  actual  process  spread (see Fig. I ) .  

C,, uses  only  the  customer’s  USL and LSL in its assessment  of  process 
capability  and fails to  consider  a  target value. The five processes  depicted by 

4 Allowable Process Spread (USL -LSL) b 

LSL Actual Process  Spread (6 a) USL 

Figure 1 Allowable  process  spread  versus  actual  process  spread. 
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the  numbered  normal curves in Figure 2 have  identical  values  of a2 and 
hence identical  values of C,. However,  because  the  means  of  processes 2, 3, 
4, and 5 all  deviate  from  the  target (T),  these  processes  would be considered 
less capable of  meeting  customer  requirements than process 1. 

Processes  with poor  proximity  to  the  target  have  sparked the  deriva- 
tion  of  several indices that  attempt  to  incorporate a  target  into their assess- 
ment of process  capability.  The  most  common  process  capability  indices 
assume T to be the  midpoint of  the  specification  limits and include 

USL - LSL 
6[0’ + (p  - T)2]’’2 
USL - p 

30 
p - LSL 

CPk = min(C/d, C,,,) 

C,I,,l = 

Cp1, = 

CP, = 30 

and 

C& = (1  - k ) C ,  

Figure 2 Five  processes  with  identical  values of C,,. 
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where k = 2 ( T  - p(/(USL - LSL) and p represents  the  process  mean  such 
that  LSL < p < USL.  The  two  definitions CPk and C;k are numerically 
equivalent  when 0 5 k 5 1.  

Individually, C,,, and CPI consider  only  unilateral  tolerances  (i.e.,  USL 
or LSL, respectively) when  assessing  process capability.  Both use 30 as a 
measure  of  actual  process  spread,  while  the  distance  from  where  the  process 
is centered ( p )  to  the USL (for C,,,) or  to the  LSL  (for CPl) is used as  a 
measure of allowable  process  spread.  Both C,,, and C,,/ compare  the  length 
of one tail of the  normal  distribution (3a) with the  distance between the 
process  mean and  the respective specification limit (see Fig. 3). In  the  case  of 
bilateral  tolerances, C,,,, and C,,/ have an inverse  relationship  and  individu- 
ally do  not  provide  a  complete assessment of process  capability.  However. 
conservatively  taking  the  minimum  of C,,,, and C,,/ results in the  bilateral 
tolerance  measure  defined  as C,k. 

Similar  to CIJ, C,,,,, uses USL - LSL  as a measure  of  allowable  process 
spread  but replaces the  process  variance in the  definition of C/, with the 
process  mean square  error  around  the  target.  For  all processes, C,, and 
C,,,, are  identical when the process is centered  at  the  target [i.e., 
p = T = (USL + LSL)/2];  however, as  the process  mean drifts  from T ,  
C,,,,, becomes  smaller  while C,, remains  unchanged. 

LSL T CL USL 

Figure 3 Target is the  midpoint of the  specification  limits. 
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The generalized analogs of  these  measures do not  assume T to  be  the 
midpoint  of  the specifications (see Fig. 4) and  are of  the  form 

min[USL - T, T - LSL] 
3[0’ + (p, - T)’]”’ Cp,,, = 

Cp,, = 30 USL - T 
CP, = T - L S L ( &  3a IT-”> 

T - LSL 

and 

Note  that  the  original  definitions  of C,,,,,, Cll,, C,,, and C,, are special cases 
of the generalized analogs with T = (USL + LSL)/2. 

The  process  capability indices C,, CI,,,  Cl,,,, CPk, and C,,,,, and  their 
generalized analogs  belong  to  the family  of indices that  relate  customer 
requirements  to  process  performance  as  a  ratio. As process performance 
improves,  through  either  reductions in variation  and/or  moving closer to 

LSL T P USL 

Figure 4 Target is not the  midpoint of the specification  limits. 
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the  target, these indices increase in magnitude  for fixed customer  require- 
ments. In each  case  larger  index  values  indicate  a  more  capable  process. 

Many  modifications  to  the  common indices, as well as several newly 
developed indices, have  been proposed  but  are  not widely used in practice. 
With  remarkably few exceptions  these  recent  developments  can be repre- 
sented  using  the  generic  process  capability  index 

min[USL - T ,  T - LSL] c,,,,. = 3[a2 + w(p - T)2]”2 

where w is a  weight function. Allowing the weight function  to  take  on 
different  values  permits C,,,,, to assume  equivalent  computational  forms 
for  a  host of potential  capability  measures. For example,  with 
T = (USL + LSL)/2  and w = 0, C,,,, is simply C,,, while for 1v = 1, C,,,,. 
assumes  the  generalized  form  of C,,,,. Letting p = lp - TI/a denote  a  mea- 
sure of  “off-targetness,”  the  weight  function 

for 0 < p where d = (USL - LSL)/2  and CI = p - (USL + LSL)/2  allows 
C,,,,. to  represent Cik. The weight function 

k(2 - k )  
\v = 

(1 - k)2p2 

for 0 < k < 1 allows CPw to  represent Cpk, or alternatively,  defining w as  a 
function of C,, 

for 0 < p / 3  < C,, again  results in C,,,,. representing C,,k. 

defined to be 
A  recent  refinement that  combines  properties of both C,,k and C,,,,, is 

min[USL - p, p - LSL] 
Cpmk = 3[a2 + ( p  - T)2]1’2 

and  can be represented by C,,,,, using  the  weight  function 
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3. INTERPRETING  PROCESS  CAPABILITY  INDICES 

Traditionally, process  capability indices have  been  used to  provide  insights 
into  the  number  (or  proportion) of product  beyond  the specification limits 
(i.e., nonconforming).  For  example,  practitioners cite a C,j value of 1 as 
representing 2700 parts  per million (ppm)  nonconforming, while 1.33 repre- 
sents  63  ppm; 1.66 corresponds  to  0.6  ppm;  and  2  indicates < 0.1 ppm. C,,k 
has  similar  connotations, with  a CPk of 1.33 representing  a  maximum  of 
63  ppm  nonconforming. 

Practitioners, in turn, use the  value  of the  process  capability  index  and 
its  associated  number  conforming  to identify capable processes. A process 
with C(, 3 1 has  traditionally  been  deemed  capable,  while C,, < 1 indicates 
that  the  process is producing  more  than  2700ppm  nonconforming  and is 
deemed  incapable  of  meeting  customer  requirements.  In  the  case  of C,,k, the 
automotive  industry  frequently uses 1.33 as  a  benchmark in assessing the 
capability  of  a  process.  Several difficulties arise  when  process  capability 
indices are used in this manner,  including (1) the  robustness of  the indices 
to  departures  from  normality, (2) the  underlying  philosophy  associated  with 
converting index  values to  ppm  nonconforming,  and (3) the use  of  estimates 
as  parameters. 

The  number of parts  per million nonconforming is determined directly 
from  the  properties  of  the  normal  distribution. If the process  measurements 
do  not  arise  from  a  normal  distribution,  none of the indices provide  a valid 
measure  of  ppm.  The  problem lies in the  fact  that  the  actual  process  spread 
(60)  does  not  provide  a  consistent  measure of ppm  nonconforming  across 
distributions.  For  example,  suppose  that  99.73% of  the  process  measure- 
ments fall within the specification limits for five processes,  where  the  statis- 
tical distributions  associated with the processes are (1) uniform,  (2) 
triangular, (3) normal, (4) logistic, and (5) double  exponential (see Fig. 5). 
The values  of C,, for  the five processes are 0.5766,  0.7954, 1.0000, 1.2210, 
and 1.4030, respectively. Hence as  long  as 60  carries a practical  interpreta- 
tion  when  assessing  process  capability and  the  focus is on  ppm  nonconform- 
ing, none of  the indices should be considered  robust to  departures  from 
normality. 
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Figure 5 Five  processes with equivalent  nonconforming but different  values of C,,. 

Inherent in any  discussion of the  number  nonconforming as a measure 
of  process  capability is the  assumption  that  product  produced  just  inside  the 
specification  limit is of  equal  quality  to  that  produced  at  the  target.  This is 
equivalent to assuming a square-well loss function (see Fig. 6) for  the  quality 
variable.  In  practice,  the  magnitudes  of C,,, C,,/, C,,,,, and C,,L are  interpreted 
as a mensure of ppm  nonconforming  and  therefore follow this  square-well 
loss function  philosophy.  Any  changes in the  lnagnitude of these  indices 
(holding  the  customer  requirements  constant) is due  entirely  to  changes in 
the  distance between the specification  limits and  the  process  mean. C/,, C,,,,, 
C'/,/, and C/,k d o  not  consider  the  distance between ,u and T but  are used to 
identify changes in the  amount  of  product  beyond  the specification  limits 

Figure 6 Square-well loss function. 
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(not  proximity  to  the  target)  and  are  therefore  consistent  with  the  square- 
well loss function. 

Taguchi  uses  the  quadratic loss function (see Fig. 7) to  motivate  the 
idea that  a  product  imparts  “no loss” only if that  product is produced  at  its 
target.  He  maintains  that  small  deviations  from  the  target result in a loss of 
quality  and  that  as  the  product increasingly  deviates  from  its  target  there are 
larger  and  larger losses in quality.  This  approach  to  quality  and  quality 
assessment is different  from  the  traditional  approach,  where  no loss in 
quality is assumed  until  the  product  deviates  beyond  its  upper or lower 
specification limit (i.e.,  square-well loss function). Taguchi’s  philosophy 
highlights  the  need  to  have  small  variability  around  the  target.  Clearly in 
this context  the  most  capable  process will  be one  that  produces a l l  of  its 
product  at  the  target, with the next best being  the  process  with  the  smallest 
variability  around  the  target. 

The  motivation  for C,,,, does  not  arise  from  examining  the  number of 
nonconforming  product in a process but  from  looking  at  the  ability of  the 
process to be  in the  neighborhood of the  target.  This  motivation  has  little  to 
do with the  number of nonconforming,  although  upper  bounds  on  the 
number of nonconforming  can be determined  for  numerical  values  of 
C,,,,,. The relationship  between C,,,, and  the  quadratic loss function  and  its 
affinity with the  philosophies  that  support  a loss in quality  for  any  departure 
from  the  target set C,,,,, apart  from  the  other indices. 

C,,k and C,,,,, are  often called second  generation  measures of  process 
capability  whose  motivations  arise directly from  the  inability of C,, to  con- 
sider  the  target  value. The differences in their  associated loss functions 
demarcate  the  two  measures, while the  magnitudinal  relationship between 

Target 

Figure 7 Quadratic loss function. 
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C, and CiIk, C,,,, are  also  different. C1,k and C,,,,, are  functions of C, that 
penalize  the  process for  not  being  centered at the  target.  Expressing C,,,,, and 
Cl,k as 

and 

C/)k = (1 - 
USL 2 ‘p  - - LSL T I  >c/, 

illustrates  the  “penalizing”  relationship  between C,, and C,,,,, CiIk, respec- 
tively. As the  process  mean  drifts  from  the  target  (measured by 
p = lp - T( / (T) ,  both C,,,, and C,,, decline as  a  percentage of Cl, (Fig. 8). 
In the  case  of C,,,,,, this  relationship is independent of the  magnitude  of C,,, 
while C,,, declines as  a  percentage of C,, with  the  rate  of  decline  dependent 
on  the  magnitude  of C,,. For example, in Figure 8, C,,, (5) represents  the 
relationship  between C,,k and C, for C,l = 5, and is different  from CPk (l), 
which represents  the  relationship  between Cllk and Cl, for Ci, = 1. 

Cllk and C,,,,, have  different  functional  forms, are represented by dif- 
ferent  loss  functions, and have  different  relationships  with Ci, as the  process 
drifts  from  the  target.  Hence  although C,,,, and CPk are lumped  together  as 
second  generation  measures,  they  are very different in their  development 
and assessment  of  process  capability. 

I 

I 

. . .  . . . , . .  . CP 

0 1 2 3 4 5 6 7 8 4 ,  
P 

Figure 8 Relationships between C,, and cTPli, C,,,,. 
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4. ANALYZING  PROCESS  CAPABILITY STUDIES 

The usual  estimators of the  process  capability indices are 

or 

Cl,k. = ( 1 - k)C, 
A A  

where k^ = 2lT - .V(/(USL - LSL), s is the  sample  standard  deviatio?, an! S 
is the  sample  mean. The  probability  density  functions  (pdfs) of e/,, C,,,,, C,,, 
and C,,, are easily determined,  assuming  the  processAmeasureFents follow a 
normal  distribution.  However,  the  distributions of C/Jk and Cl,p raise some 
challenges, as  their pdfs  are  functions of dependent  noncentral t distribu- 
tions  for which  only asymptotic  solutions  currently exist. 

4.1. Confidence  Intervals 

Several  inferential  techniques  have  recently  been  developed,  most of which 
have  had  little  impact on  the  practice of judging a process  capable. In 
defense of the  practitioners, several notable texts promote  the use  of esti- 
mates  as  parameters with the  proviso  that  large  sample sizes (i.e., I I  > 50) are 
required.  A general  confidence  interval approach  for  the  common indices 
can be developed  using C,,,. and  its  associated  estimator C,,,,.. The general 
form of  the  estimator  for C,,,,. is 

USL - LSL 
6[6’ + w(S - T)2]1/2 ‘/J!Y = 

where e2 = Cr=,[(si - .V)’/n] and S = C~=,(.Y,/H). Assuming  that  the 
process  measurements  are  normally  distributed it follows that (1) 
a - ( U ’ / I I ) ~ ~ - , ,  ( 2 )  S - N [ p ,  a2/n], and (3) .V and Z 2 / n  are  independent. - 2  
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Assuming 
with 
w ( S  - T)’ 

I V  and T to be nonstochastic,  it follows that (S  - T)’ - (a’/n)x:,, 
noncentrality  parameter h = /?(p - T)’/a2 and - (nt~’/n)x:,~. Defining 

Q$ is a  linear  combination  of  two  independent  chi-square  distributions, 
xipl + ~ I I X ~ , , ,  whose  cumulative  distribution  function  (cdf) Qf,,(x) can be 
expressed as a  mixture of central  chi-square  distributions  with  the  general 
form 

The d i ’ s  are simply  weights  such that d j  = 1 and functions of the 
degrees of freedom (11 - 1 and I), the  noncentrality  parameter (h) .  and  the 
weight  function (w) of  the  linear  combination  of  chi-square  distributions. 
The  functional  form of the di’s for  the  general Qi,,(x) are 

for i = 1,2 .3 ,  . . ., when h denotes  the value of the  noncentrality  parameter 
and I,’ the value of the weight function.  The value  of  the d j ’ s  and Q~,,(.Y) can 
be  calculated  using  the  following  Mathematica  code: 

In[ll: 
* *  To determine  the  di‘s  for  the  number of specified * *  
* *  i’s  enter  the  values  of 1 and w 
1= ; w= 
Do[Print  [Sum[Sum[Exp[-(1)/2] ( (  (1)/2)-(b-k)) ( (  (b-k) ! )- -l)* 
(w^(-.5-b+k))((l-w-(-l))-(k+g-b))Gamma[(.5+g-b)]* 
Binomial [b-l,k]/(Gamma[(g-b+l)IGamma[.51), 

* *  

~ k , O , b ~ l , ~ b , O , g ~ l l , ~ g ~ l , i ~ l  
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In121 : 
**  Approximate the value of the distribution by * *  
* *  replacing an  infinite sum with an finite sum of * *  
* *  i+l terms using values of n, a , 1 and w * *  

((Statistics'ContinuousDistributions' 
;w= ;n= ;a= ; 

Sum[Quantile[ChiSquareDistribution[n+2gl ,a]* 
Sum[Sum[Exp[-(1)/2] (((1)/2)-(b-k))(((b-k)!)--1)* 
(~-(-.5-b+k))((l-w-(-l))-(k+g-b))Gama[(.5+g-b)]* 
Binomial[b-l,k]/(Gama[(g-b+l)lGamma[.51~, 
{k,O,b}l,{b,O,g}l,{g,l,i}l+ 
(Exp[-1/2] (~~(-0.5))*Quantile[ChiSquareDistribution[n] ,a]) 

The pdf of e,,,,. can  then be expressed as a  function of Q?,,(s), al!o- 
wing  confidence  intervals and  statistical  criteria  to be used in  +sses$ng GI,,,, 
while also  providing small sample  distribution  properties  for C,,, e,,,,, Cl)k, 
and Cl,k.. Returning  to  the general  form  of  the  index, 

i t  follows that [(I + w h / t ~ ) ] ' ~ ~ C ~ , , , .  = (USL - LSL)/6a. By considering 

where Qi.,(B) represents  the  value  of  the Qi,,(x) variate  for 1 1 ,  h and  prob- 
ability B. It follows that 

which  implies 
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resulting in a general  confidence  interval  for C,,,. of the  form 

USL - LSL 
60 c/J,!' = ' / J  

and  the  confidence  interval  in Eq. (1) becomes 

where (USL - LSL)/6s. 
Sinularly,  for 11' = I ,  

with confidence  interval 

for 

USL - LSL 
6(s2  + [ n / n  - l](S - T ) 2 } 1 / 2  cplll 

The weight function 

k(2 - k )  
( 1  - k)'p' 

11' = 
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for 0 < k < 1, and  assuming p and k to  be  nonstochastic, results in 
C,,,,. = C;k with  confidence  interval 

where C;k = (1  - k)C,, 
A A  

For 

assuming  that p(0 < p ) ,  cl, and  are  known (Le., nonstochastic), C,,,,. = Cl1k 
results in the confidence  interval 

where CIlk = min(C,,, C,,,). 
The weight function  may  have  to be estimated  on  occasion.  However, 

i t  is often  possible to  obtain  good  information  regarding  the weight  func- 
tions  from  the  data used to  ensure  that  the process is in control. Since we 
require  that  the  process be  in a  state of  statistical  control  prior  to  determin- 
ing  any  process  capability  measure,  this  generally  requires  that  control 
charts be kept  on  the  process.  In  most  situations  the  control  charts will 
provide  very  good  information  regarding  values  necessary in determining 
the weight function.  For  example, S and S from  the  control  chart  can  pro- 
vide information  regarding  and 0, respectively, which in turn  provides  an 
alternative  method  for  determining  the  distribution  function  and  associated 
confidence  interval for  each  of  the  estimated indices. 

A n  

4.2. Monitoring Process Capability 

A criticism of  the  traditional  process  capability  study is that it provides  only 
a  snapshot in time  of  the  process’s  ability to meet customer  requirements. 
Process  capability  studies  are  often  conducted  at  startup  and  then  again 
during  a supplier’s audit  or  after  changes  have been made  to  the  process. 
As a  result,  practitioners  have little knowledge of the process’s  capability 
over time. With  the  advent of small-sample  properties  for  the  various 



284 Spiring 

measures  of  process  capability, it is now  easier  to  incorporate  stochastic 
inferences into  the assessment and  analysis of  process  capability  measures 
and  to assess capability  on  a  continuous  basis. 

If all other  requirements  are  met, it is possible to  estimate process 
capability  using  the  information  gathered  at  the  subgroup level of  the  tradi- 
tional  control  charts.  The  usual  control  chart  procedures  are used to first 
verify the  assumption  that  the  process is in control. If the process is deemed 
in control, then  estimates of the  process  capability can be calculated  from 
the  subgroup  information.  These  estimates  are  then  plotted,  resulting in a 
chart  that  provides  insights  into  the  nature of  a  process’s  capability  over  its 
lifetime. The  proposed  chart is easily appended  to  an J?&R (or s) control 
chart  and  facilitates  judgments  regarding  the  ability of  a  process to meet 
requirements  and  the effect of  changes  to  the  process, while also  providing 
visual evidence  of  process performance. 

Letting .xI, s 2 ,  .x3, . . . , s t ,  represent  the  observations in subgroup t of 
an J?&s control  chart used to  monitor  a  process,  consider 

min[USL - T ,  T - LSL] 
3[s: + n ( S ,  - T ) 2 / ( ~ ?  - I)]’/’ C/l,l, = 

where sf is the  subgroup  sample  variance  and S, the  average of the  observa- 
tions in subgroup t .  If an X&R chart is used,  consider 

min[USL - T .  T - LSL] 
3[( R,/d2)’  + n ( F ,  - T)* / (n  - 1)]’/* c,,,,, = 

where R, denotes  the  range  for  subgroup t and d 2  the  usual control  chart 
constant.  Each  subgroup in the process  provides  a  measure  of  location, .TI, 
and  a  measure  of  variability  (either R, or s f ) .  Hence an  estimate of C,,,,, can 
be determined  for  each  subgroup,  which  results in a series of  estimates  for 
C,,,,, over the life of the process. 

A mean line as well as  upper  and lower limits can be created  for  a 
capability  chart using information  gathered  from  the  control  chart.  Similar 
to  Shewhart  control  charts,  the  upper  and lower limits for C,,,, will represent 
the  interval  expected  to  contain  99.73%  of  the  estimates if the  process has 
not been  changed  or  altered.  The  mean  line,  denoted q, will be 

- min[USL - T ,  T - LSL] 
q J t 1 1  = 

3((S/c4)* + [ n / ( n  - 1)](.?- T)’}‘/* 
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when  using an ,?&s chart.  Assuming  equal  subgroup sizes, S denotes  the 
average of the  subgroup  averages S t .  

S, the  average of the  subgroup  standard  deviations si, 

and c4 the  traditional  constant. 

u- = ~ ~ = , [ ( s ,  - S ) ’ / ( I I  - I)], we can rewrite Eq. (2) as 
Assuming  that  the  process  measurements  are X - N [ p ,  a’] and  using 

A7 

Simplifying this expression we get 

where 

The  upper ( V I )  and lower ( L I )  limits for ~ / 1 1 , ,  in conjunction with an f & s  
chart  depend  on  the  subgroup size I I  and  noncentrality  parameter h. 
Analogous  to  the use of .?and S in Shewhart  charts,  the  noncentrality  para- 
meter h = n(p  - T)’/u2 can be estimated  from  the  control  chart  using 
[(.?-- T)/(S/c4)]’. 

When  using ,?&R charts with equal  subgroup sizes, 

- min[USL - T ,  T - LSL] 
Cp,, = 3( (R /d$  + [ I ? / ( / ?  - 1)](.7 - T)?)I” 

where R denotes  the  average of  the  subgroup  ranges Ri, 



286 Spiring 

and d 2  the  traditional  constant.  The  upper  and lower limits for c/,,,, in 
conjunction with an X & R  chart  are of  the  form Ul = J 3 G  and 
Ll = J2CPrll, where J2,  J3 are  constants  that  depend  on the subgroup size 
and  a  noncentrality  parameter A.  Again  analogous  to  the use of .?and R in 
Shewhart  charts,  the  noncentrality  parameter A = n ( , u  - T ) 2 / ~ 2  can be esti- 
mated  from  the  control  chart using [(.? - T)/(R/d2)]*. 

__ 

5. EXAMPLE 

5.1. The Process 

In  this  example 20 subgroups of size I O  were gathered  from  a  process  for 
which the  customer  had  indicated  that  USL = 1.2, T = 1 and  USL = 0.8. 
I n  this case T is the  midpoint  of  the  specification  limits;  however,  all  calcu- 
lations use the  general  definitions in determining ~,,,,,, and the  associated 
limits. From  the 20 subgroups we found .? = 1.1206 and S = 0.1 1, which 
resulted in an upper  control limit of 1.230 and a  lower control limit  of 
1.014 for S and  an upper  control limit of 0.189 and  a lower  limit of 0.031 
for s .  Looking first at the s chart, the  process  variability  does not  appear 
unusual  (i.e.,  no  out-of-control signals),  which  also  seems to be the case with 
the S chart.  The  control limits and centerlines for  the X & s  charts  are 
included in Figure  9. 

Since the  process appears to be in control, we proceed to determine 
k~,,,, for each subgroup. In  the  case of subgroup 1, S and s were found to be 
1.15 and 0.136, respectively, resulting in 

min[ 1.2 - 1, 1 - 0.81 
3[0.136’ + 10( 1.15 - 1)2/9]”2 c,,,,,, = = 0.32 

kl,,,,, and the  subsequent 19 subgroup values of ?,,,,,, are  plotted in Figure  9. 
Using ( 1 )  the  customer’s  requirements  USL = 1.2, T = 1, and LSL = 0.8, 
(2)  the  process  results .?= 1.1206 and S = 0.11. and  (3)  the  constants I Z  = 10 
and = 0.9727, we determined  that 

A = / ?  (“- 7 T ) 2 =  Io( 1.1206- 1 ) = 11.4 
S/C4 0.1 1 /0.9727 
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min[USL - T ,  T - LSLl 

I 1  - 

0.2 
- - = 0.3918 
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Figure 9 Capability  chart  appcndcd to an  f&s chart. 
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The values of 1. and I, for 11 = I O  and A = 11.4 are 

and 

resulting in the limits 

CJl = 2.23985(0.3918) = 0.87757 and = 0.6120(0.3918) = 0.2398 

which are  sketched in Figure  9. 

5.2. Observations  and  Insights 

Several  things are  evident  from  Figure 9. Clearly,  the  estimates  of  the  pro- 
cess’s capability v a r -  from  subgroup  to  subgroup. Except for  subgroup 19, 
the  fluctuations in C,,,,, appear  to  be  due  to  random  causes.  In  period 19 the 
process  capability  appears  to  have  increased significantly and  warrants 
investigation.  Practitioners  would likely attempt  to  determine  what  caused 
the  capability  to rise significantly and  recreate  that  situation in the  future. 

I f  the  estimated  process  capability  had  dropped  below L,, this would 
signal a  change in the process, and if the  process  capability  was  not at  the 
level required by the  customer,  changes in the process  would be required.  In 
a continuous  improvement  program  the  process  capability  should be under 
constant influence to  increase.  The  capability  chart used in conjunction with 
the  traditional  Shewhart  variables  charts will provide  evidence  of  improve- 
ment. I t  may  also assist in ending  the  unfortunate  practice of  including 
specification limits on  the S chart,  as  the  additional  chart will incorporate 
the limits and  target  into  the  calculation of  process capability. 

Much like the effect of first-time control  charts,  practitioners will  see 
that  process  capability will vary  over the life of the  process,  illustrating  the 
idea that  the  estimates  are  not  parameter values and  should  not be treated  as 
such.  The  procedures  provide  evidence  of  the level of  process  capability 
attained  over  the lifetime of the process rather  than  at  snapshots  taken, 
for  example,  at  the  beginning of  the  process and  not  until  some  change in 
the  process  has  been  implemented.  They will also  provide  evidence  of  the 
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ongoing assessment  of  process  capability for  customers.  The effect of any 
changes  to  the  process will also  show up  on  the  chart,  thereby  providing 
feedback  to  the  practitioner  regarding  the effect changes to the  process  have 
on process  capability. 

6. COMMENTS 

Several  ideas  have  been  presented that  address  some  concerns of two  dis- 
tinguished  quality  practitioners in the  area of  process  capability, Vic Kane 
(Kane, 1986) and Bert Gunter  (Gunter, 1991). Unfortunately,  as  noted by 
Nelson ( 1  992), much  of  the  current  interest in process  capability indices is 
focused on  determining  competing  estimators  and  their  associated  distribu- 
tions,  and little work  has  dealt  with  the  more  pressing  problems  associated 
with  the  practical shortcomings of  the indices. Continuous  monitoring of 
process  capability  represents  a  step  toward  more  meaningful  capability 
assessments.  However,  much  work is needed in this area.  In  particular, as 
practitioners move to  measures of process  capability  that assess clustering 
around  the  target,  the effect of non-normality  may be  less problematic. 
Currently,  however,  meaningful process  capability  assessments i n  the  pre- 
sence of non-normal  distributions  remains  a  research  problem. 
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1. INTRODUCTION 

An important  approach  for  optimizing  an  industrial process  seeks to find 
operating  conditions  that achieve  some target  condition  for  the expected 
value for  a  quality  characteristic  (the  response)  and minimize the process 
variability.  Vining  and  Myers  (1990)  suggest  that  the  response  and  the 
process  variance  form a dual  response  system.  They use the  dual  response 
methodology  proposed by Myers  and  Carter (1973) to find appropriate 
operating  conditions.  This  dual  response  approach  allows  the  analyst  to 
see where the process can achieve  the  target condition  and  where  the process 
variability is acceptable. As a  result,  the  engineer  can  make explicit com- 
promises.  Del  Castillo  and  Montgomery  (1993)  extend  this  method by show- 
ing  how to use  the  generalized  reduced gradient, which is available in some 
spreadsheet  programs  such  as  Microsoft  Excel,  to find the  appropriate  oper- 
ating  conditions. Lin and  Tu (1995)  suggest  a  mean squared  error  approach 
within  this context.  Copeland  and Nelson  (1996)  suggest  a  direct  function 
minimiation of the  mean  squared  error  with a bound on how far  the esti- 
mated  response  can  deviate  from  the  desired  target  value. 

Vining and  Myers (1990) advocate  replicating  a full second-order 
design.  Such an  approach is often  prohibitively  expensive in terms  of  the 
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overall  number  of  design  runs.  Vining  and  Schaub (1996) note  that  often  the 
process  variance  follows  a  lower  order  model  than  the  response.  They  sug- 
gest replicating  only  a  first-order  portion  of  standard  response  surface 
designs,  which significantly reduces the  overall  design size. This  chapter 
extends  the  work of Vining and  Schaub by exploring  alternative ways for 
choosing  the  portion  of  the  design  to  replicate. 

2. CRITERION FOR EVALUATING  DESIGNS 

Suppose we run  an  appropriate  experiment with a  total of 11 runs. Let I Z ~ ,  be 
the  number of distinct  settings  that  are  replicated.  Consider as our model  for 
the  response, 

where y is the I I  x 1 vector  of  response, Xis  the I I  x 11,. model  matrix, B is the 
p,. x 1 vector  of  unknown coefficients, and E is the 11 x 1 vector  of  normally 
distributed  random  errors.  Similarly,  consider  as  the  model  for  the process 
variance. 

7 = zy 

where r is the I ? , ,  x 1 vector  of  linear  predictors, Z is the I I , ,  x pt ,  model 
matrix  for  the  linear  predictors,  and y is the p,, x 1 vector  of unknown 
coefficients.  We  relate  the ith linear  predictor, 7;. to  the ith process  variance CT; by 

where h is a twice  differentiable  monotonic  function.  Define h,! to be the first 
derivative  of / I  with  respect to  the  ith 7 .  Often,  analysts  use  the exp function 
for h, which is similar  to using a log transformation  on  the observed  sample 
variances.  Throughout this chapter, we follow  this convention;  thus, 

This  approach  guarantees  that 0; > 0. 

matrix, J,  is 

2 

Consider  the  joint  estimation of B and y .  The expected information 
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J = [  0 z’wzzz O I  
x’ WI ,x 

where W I ,  and WZ2 are  diagonal matrices  with  nonzero  elements I / $  and 
(h,!/c#)/2, respectively. Vining and  Schaub (1996) prefer to use M ,  the 
expected  inforlnation  matrix  expressed  on a per-unit  basis, where 

1 
M = - J  

11 

In  some  sense, M represents a moment  matrix.  One  problem with this 
approach, however, is that we use all 11 of  the  experimental  runs  to  estimate 
the  response,  but we use only 1 1 , .  distinct  settings to estimate  the  process 
variance.  In  this  chapter, we propose an alternative  moment  matrix, M*, 
defined by 

which is a block diagonal  matrix  with  separate  moment matrices  for  each 
model on the  diagonals. 

One definition  of an  “optimal” design is that it is one  that maximizes 
the  information  present in the data.  Much of  optimal  design  theory uses 
appropriate  matrix no rm  to  measure  the size of the information  matrix. 
The  determinant is the  most  commonly used matrix  norm i n  practice, which 
leads to D-optimal  designs. I n  this  particulnr  case, we must  note that M* 
depends  on  the ~ t ’ s ,  which in turn  depend  on y through the T ~ ’ S .  However. 
we cannot  know y prior to the  experiment; hence. we encounter a problem 
in determining  the  optimal  design.  One  approach  proposed by Vining and 
Schaub (1996) assumes that T~ = to for i = 1 ,  2, . . . , / I .  Essentially,  this 
approach assumes that i n  the  absence of any  prior  information  about the 
process  variance  function,  the  function  could  assume  any  direction  over  the 
region of  interest. By initially assuming  that  the  process  variance  function is 
constant,  the  analyst  does  not bias  the  weights in any  particular  direction. 
With  this  assumption. we can establish that  an  appropriate  D-optimality- 
based criterion  for  evaluating  designs is 
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The  criterion  provides  an  appropriate basis for  comparing designs. By its 
definition, we are  able  to  compare in a  meaningful  fashion  designs  that  use 
different  numbers  of  total  runs and different  replication  schemes. 

3. COMPUTER-GENERATED  DESIGNS 

We  used  this  criterion  within  a  modified DETMAX (Mitchell, 1974) algo- 
rithm  to  generate  optimal  finite-run  designs.  Figures 1-7 display  the  three- 
factor designs  generated by this algorithm  over  a  cuboidal region  of  interest 
for r7 = 14, n = 15, 17 = 18, I? = 22, 17 = 26, 11 = 32, and n = 59, respectively. 
Taken  together, these figures suggest  how the  optimal design  evolves  with 
additional design runs. 

Figure 1 indicates  that  the  computer  starts with  a Notz (1982)  design 
with  a  resolution I11 fraction  replicated.  The  Notz  design is interesting 
because it uses  seven out of the eight cube  or  factorial  points.  It  adds 
three  axial  points in order  to  estimate  the  pure  quadratic  terms.  Figure 2 
shows what  happens  as we add  the next point  to  the  design. As one  should 
expect,  it  brings  in  the  other  factorial  point.  Figure 3 shows  the  optimal 
design for 17 = 18 total  runs.  Interestingly, it starts  adding  the face  centers  of 
the  cube  defined by the  factorial  runs. The resulting  design is a  central 
composite design  with  a  resolution I11 portion  replicated,  which  Vining 

I 
Figure 1 The  three-pdctor D-optimal design for 14 runs over  a  cuboidal  region. 
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Figure 2 The  three-factor  D-optimal design for 15 runs  over a cuboidal region. 

Figure 3 The  three-factor  D-optimal design for 18 runs  over a cuboidal region. 
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I 

Figure 4 The three-factor  D-optimal design for 22 runs over a cuboidal region. 

and  Schaub call a  replicated  factorial  design.  Figure 4 shows that  at tz = 22 
the  design  replicates  all of the  cube  points,  as  opposed to the  replicated 
factorial, which would  replicate  only  a  resolution 111 fraction  of  the full 
factorial.  Interestingly,  Figure  5  shows that  at IZ = 26, the  computer  adds 
midpoints  of  edges.  Vining  and  Schaub  recommend  their  replicated  factorial 
design for  this  situation.  The  optimal design  takes a slightly different strat- 
egy. Figures 6 and 7 show  that  as we continue  to  add  runs,  the  computer 
moves to a 3' factorial  with  replicated  cube  points.  It  appears  that  the 
proposed  criterion  favors  replicating  the  cube  points  and  then  augmenting 
with points  from  the full 3'. 

Figure 8 summarizes  the D values for the  three-factor  computer-gen- 
erated  designs  over  a  cuboidal  region.  Interestingly,  the D value  actually 
seems to peak around 17 = 32 total  runs, with D = 0.5851. The initial 
increase in D with 17 makes  a  lot of sense because  the  extra  runs  provide 
necessary symmetries. As the  cube  points  are replicated  more and  more, we 
presume that  some  imbalance in information  results between the  strict  first- 
order terms and  the  strict  second-order  terms.  This  imbalance may  explain 
why the D values drop slightly from IZ = 32 to the  largest  sample size stu- 
died, 12 = 80. 

Figures 9 and 10 extend  this  study to the  computer-generated  designs 
for  four  and five fxtors ,  respectively. In each  case, D increases as IZ 

increases. The largest  values for D observed were 0.5806 for  the  four-factor 
case and 0.5816 for  the five-factor  case.  These figures suggest either  that D 
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Figure 5 The  three-factor  D-optimal design for 26 runs  over a cuboidal region. 

Figure 6 The  three-factor  D-optimal design for 32 runs over a cuboidal region. 
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i 
1 .  

Figure 7 The  three-factor  D-optimal design for 59 runs  over a cuboidal region. 
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Figure 8 Plot of the value for D for  the  three-factor  computer-generated design 
over a cuboidal region. 
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Figure 9 Plot of the value for D for  the  four-factor  computer-generated design 
over a cuboidal region. 
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Figure 10 Plot of the value for D for  the five-factor computer-generated design 
over a cuboidal region. 
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approaches  some  asymptote  or  that D may  peak at some  sample size larger 
than  the  ones  studied. 

4. COMPARISONS OF DIFFERENT  REPLICATION 
STRATEGIES 

Figures 11-13 use  the D criterion  to  compare  the following  design  strategies 
for  three,  four,  and five factors  over  a  cuboidal  region: 

A fully replicated central  composite design (CCD) 
A fully replicated Notz (1982) design 
A replicated axial  design (a  CCD with  only  the  axial points  replicated) 
A replicated  factorial  design (a CCD with  only a  resolution 111 fraction 

A replicated 3/4 design (a CCD with  only a  3/4  fraction  replicated) 
A replicated full factorial  (a CCD with  the entire  factorial  portion 

replicated) 

replicated) 

The fully replicated CCD should  always be a "near-optimal"  design  for  each 
situation. In  some sense, i t  provides a "gold standard"  for  comparisons. 
However,  replicating  a full CCD is rather expensive i n  terms of overall 
design size. The  Notz design is a minimum  run D optimal design  for the 
second-order  model  over  a  cuboidal  region.  Replicating a minimal  point 
design is one logical way to reduce  the  overall  design size. Vining and 
Schaub (1996) note  that  the replicated Notz design performs  surprisingly 
well i n  the  joint  estimation  of  the two  models.  Vining  and  Schaub  proposed 
the  replicated  axial and  the  replicated  factorial as alternative designs for 
reducing  the  total  number  of  runs. The replicated 3/4 design is another 
possible  alternative.  The  optimal  designs  generated in the  previous  section 
strongly  suggest  the  replicated full factorial  strategy. 

Figure I 1  summarizes  the  three-factor results. In this figure, 111 refers to 
the  number  of  runs  at  each replicated setting. We evaluated  each  design 
using 4, 8, and 12 replicates. As expected,  the  replicated CCD  appears  to 
be the best overall design. Interestingly,  the  replicated full factorial  actually 
was  better  for I H  = 4. The designs that replicated  only a portion of  their  runs 
a l l  became less efficient as  the  replication  increased. We believe that this is 
due  to  an  increase in the  imbalance in these designs. The replicated full 
factorial  performed slightly better  than  the  other  partially  replicated  designs. 
The replicated  3/4  and  the replicated  factorial  performed  very  similarly. The 
replicated axial performed  quite  poorly.  The  replicated  Notz  performed 
almost  as well as  the replicated CCD. 
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Figure 11 Comparisons of designs in terms of D for  the  three-factor  cuboidal  case. 

Table 1 summarizes  the  number of runs  required by each  design.  The 
replicated  factorial  requires the fewest, and  the replicated CCD requires  the 
most.  Our D criterion  takes  the  total  sample size into  account  and  thus 
provides  a  fair  conlparison  for  these designs. I n  many  situations,  the  experi- 
menter  cannot  afford  large  numbers of total  runs  due  to  either time or cost. 
The replicated factorial  appears to be relatively competitive in terms  of  the 
D criterion  while at the  same  time  minimizing  the  total  number  of  runs. In 
this light,  the replicated factorial is often a very attractive design  for this 
type  of experimentation. 

Figure 12 summarizes  the  four-factor  results.  Here,  the  replicated 
CCD performs  uniformly  best.  Once  again,  the  performance of a l l  the 

Table  1 Design Sizes for the  Three-Factor  Case 

111 

Design 4 X 12 

Replicated factorial 
Replicated  axial 
Replicated 3/4 
Replicated full factorial 
Notz 
CCD 

26 42 58 
32 56 X0 
32 56 x0 
38 70 102 
40 80 120 
56 112 168 
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Figure 12 Comparisons of  designs  in terms of D for  the  four-factor  cuboidal case. 

designs that  replicate  only  a  portion of  their  runs  decreases  with  greater 
replication.  The  replicated full factorial,  replicated 3/4 factorial,  and repli- 
cated  factorial  designs all perform similarly, with  the  replicated full factorial 
performing slightly better  than  the  others  and  the replicated  factorial per- 
forming slightly worse. The replicated  axial performs very poorly.  Once 
again,  the replicated Notz  performs similarly to  the replicated CCD. 

Table 2 summarizes  the  total  number  of  runs  for  each  design.  In  this 
case,  the  replicated  factorial  and  the  replicated  axial  require  exactly  the  same 
number of runs.  They in turn  require  fewer  runs  than  any  other  design.  Once 
again,  taking  into  account  Figure 12 and  Table 2, the replicated factorial 
appears  to be a  reasonable design  strategy in many  situations. 

Table 2 Design Sizes for  the  Four-Factor  Case 

m 

Design  4  8 12 

Replicated factorial 
Replicated  axial 
Replicated 3/4 
Replicated full factorial 
Notz 
CCD 

48 80 112 
48 80 112 
60 108  156 
12 136 200 
60 120  180 
96 192  288 
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Figure 13 Comparisons of designs  in terms of D for the five-factor cuboidal case. 

Figure 13 summarizes  the  results  for  the five-factor case.  Interestingly, 
the replicated Notz design  performed  best,  edging  out  the  replicated CCD. 
The replicated  axial again  performed  worst.  We see bigger  differences in 
performance  among  the  other  three, with the  replicated full factorial  per- 
forming  uniformly  better  than  the  replicated 3/4, which in turn  uniformly 
outperformed  the  replicated  factorial. 

Table 3 summarizes  the  total  number  of  runs  required by each  design. 
The  replicated  CCD here  uses a resolution V fraction of  the 2' factorial 
design.  The replicated  factorial,  however,  must use the full 2' factorial 
design in order  to minimize  the number of  replicated points. 
Consequently,  the  replicated  factorial is not  always  the  smallest  design. 

Table 3 Design Sizes for the  Five-Factor  Case 

m 

Design 4 8 12 

Replicated factorial 
Replicated  axial 
Replicated 3/4 
Replicated full factorial 
Notz 
CCD 

66 98 130 
56 96  136 

1 I4 210 306 
14 138 202 
84 168 252 

104 208 312 
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The real message  of Table 3 is that all of the design  strategies  require  a  large 
number of runs. I n  many  situations,  the  total is prohibitive. 

5. CONCLUSIONS 

Our research  suggests  the  following  conclusions. First,  the  proposed D cri- 
terion  suggests that if we fit a  second-order  model  to  the  response  and  a first- 
order model to the process  variance,  then we need to  replicate  only  a  subset 
of the  base  second-order  design.  Second,  this  criterion  appears  to prefer 
replicating  the full factorial  as  the  sample size permits.  Third,  the replicated 
factorial  and  the  replicated 3/4 factorial designs tend to perform well for 
small to  moderate  amounts of  replication.  Finally,  for large amounts of 
replication, we may  want  to  consider  replicating  at least a  resolution V 
fraction  (the replicated full factorial). 
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Recent  Developments in 
Supersaturated  Designs 

Dennis K. J. Lin 
The  Pennsylvania  State  University,  University  Park,  Pennsylvania 

1. AGRICULTURAL  AND  INDUSTRIAL  EXPERIMENTS 

Industrial  management is becoming  increasingly aware of  the benefits of 
running  statistically  designed  experiments.  Statistical  experimental  designs, 
developed by Sir R. A. Fisher in the 1920s, largely originated  from  agricul- 
tural  problems.  Designing  experiments  for  industrial  problems  and design- 
ing  experiments  for  agricultural  problems  are  similar in their  basic concerns. 
There  are,  however,  many differences. The differences listed in Table 1 are 
based on  the  overall  characteristics  of all problems.  Exceptions  can be found 
in some  particular  cases, of  course. 

Industrial  problems  tend  to  contain  a  much  larger  number of factors 
under  investigation  and  usually  involve  a  much  smaller  total  number 
of runs. 

Industrial results are  more  reproducible;  that is, industrial  problems  con- 
tain  a  much  smaller  replicated  variation  (pure  error)  than  that  of  agri- 
cultural  problems. 

Industrial  experimenters  are  obliged  to  run  their  experimental  points  in 
sequence and  naturally  plan  their  follow-up  experiments  guided by 
previous results; in contrast,  agricultural  problems  harvest all results 
at  one  time.  Doubts  and  complications  can be resolved in industry by 
immediate  follow-up  experiments.  Confirmatory  experimentation is 
readily available  for  industrial  problems  and  becomes  a  routine 
procedure to resolve assumptions. 

305 
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Table 1 Differences Between Agricultural and  Industrial  Experiments 

Subject Agriculture Industry 

Number of factors 
Number of runs 
Reproducibility 
Time taken 
Blocking 
Missing values 

Small Large 
Large Small 
Less likely More likely 
Long Short 
Nature Not obvious 
Often Seldom 

The  concept of  blocking  arose  naturally in agriculture  but  often is not 
obvious  for  industrial  problems.  Usually,  industrial  practitioners need 
certain specialized training to recognize and  handle  blocking  variables. 

Missing  values  seem to  occur  more  often in agriculture  (mainly  due  to 
natural losses) than in industry.  Usually, such  problems  can be avoided 
for  industrial  problems by carrying  out well-designed  experiments. 

The  supersaturated design method  considered in this chapter  suggests 
one kind  of  screening  method  for  industrial  problems  involving  a  large 
number of potential relevant factors.  It  may  not be an  appropriate  proposal 
for  some  agricultural  problems. 

2. INTRODUCTION 

Consider  the  simple  fact  that where  there is an effect, there is a  cause. 
Quality  engineers  are  constantly  faced  with  distinguishing  between  the 
effects that  are  caused by particular  factors  and  those  that  are  due  to 
random  error.  The ‘‘null’’ factors  are  then  adjusted  to lower the  cost;  the 
“non-null” (effective) factors  are used to yield better  quality. To distinguish 
between them,  a large number of factors  can  often be listed as possible 
sources  of effects. Preliminary  investigations  (e.g.,  using  professional  knowl- 
edge)  may  quickly  remove  some  of  these “candidate  factors.” I t  is not 
unusual,  however,  to find that  more  than 20 sources  of effects exist and 
that  among  those  factors only a  small  portion  are  actually  active.  This is 
sometimes called “effect sparsity.” A problem  frequently  encountered in this 
area is that of how  to  reduce  the  total  number of  experiments.  This is 
particularly  important in situations  where  an  individual  run is expensive 
(e.g.,  with  respect to money or time).  With  powerful  statistical  software 
readily available  for  data  analysis,  there is no  doubt  that  data  collection is 
the  most  important  part of  such  problems. 
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To  obtain  an  unbiased  estimate of the  main effect of  each  factor,  the 
number of  experiments  must  exceed  (or  at least be equal  to)  the  number  of 
factors  plus  one  (for  estimating  the  overall  grand  average).  When  the  two 
numbers  are  equal,  the design is called a  saturated design; it is the  minimum 
effort  required  to  estimate all main effects. The  standard advice  given to 
users in such  a  screening  process is to use the  saturated  design, which is 
“optimal” based on  certain  theoretical  optimality  criteria.  However,  the 
nonsignificant effects are  not of  interest.  Estimating all main effects may 
be wasteful if the  goal is simply to  detect  the few active  factors. If the 
number of  active  factors is indeed  small,  then  the  use  of  a slightly biased 
estimate will still allow  one  to  accomplish  the  identification of the  active 
factors  but significantly reduce  the amount of  experimental  work. 
Developing  such  screening  designs  has  long  been  a  well-recognized  problem, 
certainly since Satterthwaite (1959). 

When all factors  can be reasonably  arranged  into several groups,  the 
so-called group  screening designs can be used (see, e.g., Watson, 1961). Only 
those  factors in groups  that  are  found  to  have  large effects are  studied 
further  here.  The  grouping  scheme seems to be crucial  but  has  seldom 
been  discussed. The basic assumptions  (such  as  assuming  that  the  directions 
of possible effects are  known), in fact,  depend heavily on  the  grouping 
scheme.  While  such methods  may be appropriate in certain  situations 
(e.g., blood  tests), we are  interested in systematic  supersaturated designs 
for two-level factorial designs that  can  examine k factors in N < k + 1 
experiments in which no  grouping scheme is needed.  Recent  work in this 
area includes, for  example,  that of  Lin  (1991,  1993a,  1993b,  1995, 1998), 
Tang  and  Wu (1997), Wu (1993), Deng  and Lin (1994), Chen  and Lin 
(1998), Cheng (1997), Deng et al.  (1994,  1996a,  1996b), Yamada  and Lin 
(1997) and Nguyen (1996). 

3. SUPERSATURATED  DESIGNS  USING  HADAMARD 
MATRICES 

Lin  (1993a) proposed a class of special supersaturated  designs  that  can be 
easily constructed via half-fractions of the  Hadamard  matrices.  These 
designs can  examine k = N - 2 factors with I I  = N / 2  runs, where N is the 
order of the  Hadamard  matrix  used.  The  Plackett  and  Burman (1946) 
designs,  which  can be  viewed as a special class of Hadamard  matrices,  are 
used to  illustrate  the basic construction  method. 

Table 2 shows  the  original  12-run  Plackett  and  Burman  design. If we 
take  column 1 1  as  the  branching  column,  then  the  runs  (rows)  can be split 
into  two  groups:  group I with the sign of + 1 in column 1 1  (rows 2, 3, 5, 6, 7, 
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Table 2 A Supersaturated Design  Derived  from  the Hadamard  Matrix of Order 
12 

R u n  Row 1 2 3 4 5 6 7 8 9 10 1 1  
~~~ 

I + + - + + + -  - - + -  
1 2 + -  + + + -  - - + -  + 
2 3 -  + + + -  - - + -  + +  

4 + + + -  - - + -  + + -  
3 5 + + -  - - + -   + + -  + 
4 6 + -  - - + -  + + -  + +  
5 7 -  - - + -  + + -  + + +  

8 -  - + - + + -  + + + -  
9 -  + -  + + -  + + + -  

I O  + - + + -  + + + -  - 
6 I I  - + + -   + + + -  - - + 

12 - 

- 
- 

- - - - - - - - - - 

and 11) and  group I 1  with  the sign of -1 in column 1 1  (rows 1. 4, 8, 9, I O ,  
and 12). Deleting  column 1 1 from  group I causes  columns 1-10 to form a 
supersaturated design to  examine N - 2 = I O  factors i n  N / 2  = 6 runs  (runs 
1-6, as indicated in Table 2). It  can be shown  that if group I1 is used,  the 
resulting supersaturated design is an  equivalent  one. In  general, a Plackett 
and  Burman (1946) design matrix  can  be split into two  half-fractions 
according to a specific branching  column  whose signs equal + 1 or -1.  
Specifically, take only  the  rows that have + 1 in the  branching  column. 
Then, the N - 2 columns  other  than  the  branching  column will form a 
supersaturated design for N - 2 N - 2 factors in N / 2  runs.  Judged by a 
criterion  proposed by Booth  and  Cox  (l962), these  designs  have been shown 
to be superior to other existing supersaturated designs. 

The  construction  methods here are simple.  However,  knowing i n  
advance  that  Hadarnard matrices  entertain  many  “good”  mathenmtical 
properties,  the  optimality  properties of these supersaturated designs  deserve 
further  investigation. For example,  the  half-fraction  Hadanlard nlatrix of 
order 17 = N / 2  = 4t is closely related to a  balanced  incomplete block design 
with ( u ,  / I ,  I . ,  /<) = (2r - I ,  41 - 2 , 2 t  - 2, t - 1) and h = t - 1. Consequently, 
the E(.?) value (see Section  4)  for a supersaturated design  from a half-frac- 
tion Hadamard  matrix is n ’ ( r 7  - 3)/[(2rl  - 3 ) ( n  - I)], which can be shown to 
be the  minimum  within  the  class of designs with the  same size. Potentially 
promising  theoretical  results seem possible for  the  construction  of a half- 
fraction  Hadamard  matrix.  Theoretical  implications deserve  detailed 
scrutiny and  are discussed below. For more  details  regarding  this issue. 
please consult  Cheng (1997) and Nguyen ( 1996). 
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Note  that  the  interaction  columns of Hadamard  matrices  are only 
partially  confounded with other main-effect columns. Wu  (1993)  makes 
use  of  such a  property  and  proposes  a  supersaturated design that  consists 
of a l l  main-effect and  two-factor  interaction  columns  from  any given 
Hadamard  matrix of order N .  The  resulting design  has N runs  and  can 
accommodate up to N ( N  - 1)/2 factors.  When  there  are k < N ( N  - 1)/2 
factors  to be studied,  choosing  columns  becomes an  important issue to be 
addressed. 

4. CAPACITY  CONSIDERATIONS 

As mentioned, when a  supersaturated design is used, the  abandonment of 
perfect orthogonality is inevitable. The designs  given in Lin  (1993a)  based 
on  half-fractions  of  Hadamard  matrices have a very nice mathematical 
structure  but  can  be used  only to  examine N - 2 factors in N / 2  runs, 
where N is the  order of  the  Hadamard  matrix used. Moreover, these  designs 
do not  control  the value  of the  maximal  pairwise  correlation r ,  and, in fact, 
large  values  of I’ occur in some cases. 

Consider  a  two-level  k-factor  design in n observations with  maximal 
pairwise correlation I’. Given  any  two  of  the  quantities ( t z ,  k ,  I’) ,  Lin  (1995) 
presents  the  possible  values  that  can be achieved for  the  third  quantity. 
Moreover, designs  given in  Lin (1995)  may  be adequate  to allow  examina- 
tion  of  many  prespecified  two-factor  interactions.  Some  of  the results are 
summarized in Table 3. 

Table  3  shows  the  maximum  number of factors, klllilX, that  can be 
accommodated when both I I  and I’ are specified for  3 I 11 I 25 and 0 I I’ I 
1/3 (Table 3a for even 17 and  Table 3b for  odd n ) .  We see that  for r 5 1/3, 
many  factors  can be accommodated.  For fixed 1 1 ,  as  the value  of r increases, 
k,ll;,, also increases. That is, the  larger  the  nonorthogonality,  the  more  fac- 
tors  can be accommodated.  In  fact, k,,,  increases  rapidly in this  setting. 
Certainly  the  more  factors  accommodated,  the  more  complicated  are  the 
biased estimation  relationships  that  occur,  leading  to  more difficulty i n  data 
analysis. On the  other  hand,  for fixed 1‘, the  value  of k,,,, increases  rapidly a s  
11 increases. For r 5 1/3,  one  can  accommodate  at  most 11 1 factors in 18 
runs  or 66 factors in 12 runs;  for I’ I 1/4,  one  can  accommodate 42 factors 
in 16 runs;  for I’ I 1/5, one  can  accommodate 34 factors in 20 runs. 
Provided  that these  maximal  correlations  are  acceptable, this can be an 
efficient design  strategy. 
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Table 3 Maximal  Number of Factors Found, k,,,;,,, as a  Function of 11 and t lr ,  

for 3 5 ) I  5 25 and r 5 113 

(a) Even n 

Number of runs tz Maximum  absolute cross product, nr = Ic,!cjl 

0  2  4  6 8 

4  3 
6 
8 7 

- I O  
- 

I O  
12 11 - 66 
14 
16 15 42 
18 
20  19 
22 
24  23 

-~ 12 

- 13 - 1 I3 
~~ -~ 

- 17 

20 

- 1 1 1  
~. 34 

33 
- " 92 - 

- - 276 

(b) Odd 11 

Number of runs 11 Maximum  absolute cross product, nr = Jc,!ciJ 

1 3  5  7 

3 
5 
7 
9 

1 1  
13 
15 
17 
19 
21 
23 
25 

3 
4 
7 
7 

11 
12 
15 
15 
19 
19 
23 
23 

15 
12 
14 
14 
15  37 
17  50 
19  33 
19 34 92 
23  33  94 
23  32  76 
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5. OPTIMALITY  CRITERIA 

When  a  supersaturated design is employed,  as  previously  mentioned,  the 
abandonment of orthogonality is inevitable.  It is  well known  that lack of 
orthogonality results in lower efficiency; therefore we seek a design that is as 
“nearly  orthogonal” a s  possible.  One  way to measure  the  degree  of  non- 
orthogonality between  two  columns, c, and cJ, is to  consider  their  cross- 
product, sii = c:cJ; a  larger I . s j i l  implies less orthogonality.  Denote  the largest 
1 . ~ ~ 1  among all pairs  of  columns  for  a  given  design by s ,  and we desire a 
minimum  value  for s ( s  = 0 implies orthogonality).  The  quantity s can be 
viewed as the  degree  of  orthogonality  that  the  experimenter is willing to give 
u p t h e  smaller,  the  better.  This is  by nature  an  important  criterion.  Given 
any  two  of  the  quantities (17, k ,  s ) ,  it is of  interest  to  determine  what value 
can be achieved for  the  third  quantity.  Some  computational results were 
reported by Lin (1995). No theoretical  results  are  currently  available,  how- 
ever.  It is  believed that  some  results  from  coding  theory  can be  very helpful 
in this  direction.  Further refinement is currently  under  investigation. 

If two  designs  have the  same value  of s, we prefer  the  one in which  the 
value  of I s i . l  - s is a minimum.  This is intimately  connected  with  the  expec- 
tation of s-, s ). first proposed by Booth  and  Cox (1962) and  computed 4 E( 2 

~~ 

a s z  &/( i), where ,f; is the  frequency  of s f  among all (i) pairs of 

columns. 

Intuitively, E(.?) gives the  increment in the  variance  of  estimation  arising 
from  nonorthogonality.  It is, however,  a  measurement  for  pairwise  relation- 
ships  only.  More  general  criteria were obtained by Wu  (1993) and  Deng  et 
al. (1994,  1996b).  Deng  and  Lin  (1994)  outlined  eight  criteria useful for 
supersaturated designs: s = max )c,!cj(;  E(s2);  p (Lin, 1995); D,., A , ,  E ,  
(Wu, 1993); B criterion  (Deng  et  .al., 1996a,  1996b); and  r-rank (see 
Section 8). Further  theoretical  justification is currently  under  study. 
Optimal designs in light of  these approaches deserve further  investigations. 
In  addition,  the  notion of  multifactor  (non)orthogonality is closely related 
to  the  multicollinearity in linear  model  theory. 

6. DATA  ANALYSIS  METHODS 

Several methods  have been proposed  to  analyze  the k effects, given  only  the 
n ( c  k )  observations  from  the  random  balance design contents (see, e.g., 
Satterthwaite, 1959). These  methods  can  also be applied  here.  Quick  meth- 
ods such as these  provide an  appealing,  straightforward  comparison  among 
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factors,  but it is questionable  how  much  available  information  can be 
extracted using them;  combining several of these methods provides a 
more  satisfying  result. In  addition, three data analysis methods  for  data 
resulting  from  a supersaturated design are discussed in Lin (1995): (1) 
normal plotting. (2) stepwise  selection, and (3) ridge regression. 

To study so many  columns i n  only a few runs,  the  probability  of a false 
positive  reading (type 1 error) is a  major risk here.  An  alternative to the 
forward  selection  procedure to control these false positive  rates is as follows. 
Let N = ( i l ,  i z ,  . . . , i,,} and A = (i,, + 1. . . . , i + k }  denote indexes of inert 
and active  factors, respectively, so that N U A = ( I ,  . . . , k )  = S. If X denotes 
the / I  x p design matrix,  our  model is Y = P I  + Xg + E ,  where Y is the I I  x 1 
observable  data vector, p is the  intercept  term, 1 is an n-vector of I's, f i  is a 
h- x 1 fixed and  unknown vector  of  factor  effects, and c is the noise vector. I n  
the  multiple  hypothesis  testing  framework. we have  null and  alternative 
pairs H/  : pi = 0 and H f '  : pi # 0 with H/  true  for .i E N and HI' true  for 

. I  E A. 
Forward selection  proceeds by identifying  the  maximum F statistics at 

successive stages. Let F,'"' denote the F statistic  for testing H ,  at  stage s .  
Consequently, define 

where 

In addition, if the first s variables are , f i v c w l  and  the test is used to 
evaluate  the significance of the next entering  variable  (of  the  remainillg k - s 
variables),  the  procedure is again  exact  under  the  complete null hypothesis 
of no effects among  the li - s remaining  variables. The exactness  disappears 
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with simulated p values,  but  the errors  can be made very small,  particularly 
with control  variates.  The analysis  of data  from  supersaturated designs 
along  this  direction  can  be  found in Westfall et  al. (1998). 

7. EXAMPLES 

Examples  of supersaturated designs  as real data sets can be found in Lin 
(1993, 1995). Here we apply  the  concept  of  supersaturated design to identify 
interaction effects from  a  main-effect orthogonal design.  This  example is 
adapted  from Lin (1998). Consider  the  experiment in Hunter  et  al. (1982). A 
12-run  Plackett  and  Burman design  was used to study  the effects of seven 
factors  (designated  here as A,  B, . . ., G )  on the  fatigue life of  weld-repaired 
castings. The design and responses are given in Table 4  (temporarily  ignore 
columns 8-28). For the  details of  factors  and level values, see Hunter et al. 
(1982). 

Plackett  and  Burman designs are  traditionally  known  as main-effect 
designs,  because if all  interactions  can  temporarily be ignored, they can be 
used to estimate  all  main effects. There  are  many ways to analyze  such  a 
main-effect  design. One  popular way is the normal plot [see Hamada  and 
Wu ( 1  992), Figure I]. Using  this  method, it appears  that  factor F is the  only 
significant main  effect.  Consequently  a  main-effect  model is fitted as follows: 
j = 5.73 + 0.458F  with R’ = 44.5%. 

Note  that the low R’ is not very impressive. Is it safe to ignore  the 
interaction effects? Hunter et al. claim that  the design  did not  generate 
enough  information  to identify specific conjectured  interaction effects. If 
this is not  the case here, is it possible to detect significant interaction effects‘? 
Hamada  and  Wu (1992) introduced  the  concept of effect heredity.  After 
main effects were identified, they used forward  selection  regression to iden- 
tify significant effects among a group consisting of ( I )  the effects already 
identified and (2) the  two-factor  interactions  having  at least one  component 
factor  appearing  among the  main effects of those  already  identified.  In  this 
particular  example,  a  model  for  factor  F  and  interaction  FG  was  chosen: 

j = 5.7 + 0.4583 - 0.459FG, R’ = 89% (1) 

Now, if we generate all interaction  columns, AB,  AC, . . ., FG,  together with 
all  main-effect  columns, A, B, . . ., G ,  we have 7 + 21 = 28 columns.  Treat all 
of those 28 columns in 12 runs  as a supersaturated design  (Lin, 1993) as 
shown in Table 4. The largest  correlation between any  pair of  the design 
columns is f 1 / 3 .  The results  from  a  regular stepwise regression  analysis 
(with a! = 5% for  entering variables) yields the  model 
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j = 5.73 + 0.394F - 0.395FG - 0.191AE, R' = 95% (2) 

a significantly better fit to  the  data  than Eq. ( I ) .  An application of the 
adjusted  p-value  method  (Westfall,  et  al. 1998) reaches  the  same  conclusion 
in this example. 

Note  that  the  AE  interaction, in general,  would  never be chosen  under 
the effect heredity  assumption.  Of  course,  most  practitioners  may  consider 
adding  main effects A, E,  and  G  to  the final model  because  of the signifi- 
cance  of  interactions  FG  and AE. The  goal here is only to identify potential 
interaction effects. In  general,  for  most  main-effect  designs,  such  as  Plackett 
and  Burman type  designs  (except  for 2""' fractional  factorials),  one  can 
apply  the following procedure [see Lin  (1998) for  the  limitations]: 

Step 1. Generate all interaction  columns  and  combine  them with  the 
main-effect columns. We  now  have k(k + 1)/2 design columns. 

Step 2. Analyze  these k(k + 1)/2 columns with tt experimental  runs  as  a 
supersaturated  design.  Data  analysis  methods  for such a  supersatu- 
rated  design are  available. 

Note  that if the  interactions  are indeed inert,  the  procedure will work well, 
and if the effect heredity  assumption is indeed  true,  the  procedure will end 
up with the  same  conclusion as  that of Hamada  and  Wu (1992). The  pro- 
posed procedure will always result in better  (or  equal)  performance  than 
that of Hamada  and  Wu's  procedure. 

8. THEORETICAL  CONSTRUCTION  METHODS 

Deng et al.  (1994) proposed  a  supersaturated design  of the  form 
X,. = [H, RHC], where H is a  normalized  Hadamard  matrix, R is an  ortho- 
gonal  matrix,  and C is an 11 x ( n  - c) matrix  representing  the  operation of 
column  selection.  Besides  the  fact  that  some new designs  with  nice  properties 
can be obtained this way,  the X,. matrix  covers  many existing supersaturated 
designs.  This  includes  the  supersaturated  designs  proposed by Lin  (1993a), 
Wu  (1993), and  Tang  and  Wu (1993).  Some  justifications  of its optimal 
properties  have  been  obtained as follows. 

It  can be shown  that 

xix,. = ( C'i'R'H  H'RHC) ttl+,. = ( c d , ,  'w 
n1/,-,. 

where W = H'RH = (wj,) = (h/Rh,) and hi is thejth column  of H. Further, 
the  following  theorem can be demonstrated. 
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Theorem 

Let H be  a Hadamard  matrix  of  order I I  and B = ( h l ,  . . . , h,) be an n x I’ 

matrix with  all  entries f l  and V = H’B = ( u j i )  = h,(h,. Then 

I .  For  any fixed 1 5 j 5 1’, I? = Cy=, L$. 
2. In  particular, let B = RH and W = H’RH = (wv) .  We  have 

a. (I/n)W is an 12 x IZ orthogonal  matrix. 
b. I? = Cy=l N$ = CJLI bt$.  

c. wj, is always  a  multiple  of 4. 
d. If H’ is column-balanced,  then fn = Cy=, 1 1 ’ ; ~  = x.’=, wv 

Corollary 

For  any R and C such  that ( I )  R’R = I and (2) rank (C) = I I  - c, all X,. 
matrices  have an identical E(.?) value. 

This implies that  the  popular E(.?) criterion used in supersaturated designs 
is invariant  for  any  choice  of R and C. Therefore, it is not effective for 
comparing  supersaturated designs. In fact,  following  the argument in 
Tang  and  Wu (1993),  the  designs given here will always  have  the  minimum 
E(.?) values  within  the  class  of  designs of the  same size. One  important 
feature  of  the  goodness of a  supersaturated  screening design is its  projection 
property (see Lin  1993b). We  thus  consider  the  r-rank  property  as defined 
below. 

Definition 

Let X be a column-balanced  design  matrix.  The  resolution  rank  (or I’ rank, 
for  short)  of X is defined as , /  = d - I ,  where d is the  minimum  number 
subset of columns  that  are linearly dependent. 

The following  results are  provided by Deng  et  al. (1994). 

1. If no  column in any  supersaturated design X is fully aliased,  then 

2 .  )?Rh, = Cyxl 1lIqh;. 
3. Let W = H’D(h/)H, where D(h/) is the  diagonal  matrix  associated 

with hl, namely,  the  Ith  column  vector of H; and 11 = 41. Then 
a.  If r is odd,  then  there  can be  exactly  three 0’s in each  row, or 

each  column,  of W. The rest of n v , ,  can  only be of  the  form 
f 8 k  + 4, for  some  nonnegative  integer k .  

b. If t is even,  then  every entry wji in W can  be  of  the  form f S k ,  
for  some  nonnegative  integer IC. 

the I’ rank  of X is at least  3. 
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These results are  only  the first step.  Extension  of  these  results  to  a  more 
general class of supersaturated designs in the  form S K  = (RIHC1, . . . , RK 
HCK) is promising. 

9. COMPUTER  ALGORITHMIC  CONSTRUCTION  METHODS 

More  and  more  researchers  are benefiting from using computer  power  to 
construct designs for specific needs.  Unlike  some  cases from  the  optimal 
design  perspective  (such as  D-optimal design). computer  construction of 
supersaturated designs is not well developed yet. Lin  (1991) introduced 
the first computer  algorithm  to  construct  supersaturated designs. Denote 
the largest correlation in absolute value among all design columns by I', as 
a simple  measure  of  the  degree of nonorthogonality  that  can willingly  be 
given up. Lin  (1995)  examines  the  maximal number of factors  that  can be 
accommodated in such  a  design  when I' and 11 are given. 

AI Church  at  GenCorp  Company used the  projection  properties in Lin 
and  Draper (1992,  1993) to  develop  a  software  package  named  DOE0  to 
generate  designs  for  mixed-level  discrete  variables.  Such  a  program  has  been 
used at several sites in GenCorp.  A  program  named  DOESS is one of the 
results and is currently in a test stage. Dr.  Nam-Ky  Nguyen (CSIRO, 
Australia) also independently  works  on  this  subject.  He  uses an exchange 
procedure  to  construct  supersaturated  designs  and  near-orthogonal  arrays. 
A  commercial  product called Gendex is available  for sale to  the  public,  as  a 
result.  Algorithmic  approaches  to  constructing  supersaturated  designs  seem 
to have  been a  hot  topic in recent  years. For example, Li and  Wu (1997) 
developed a so-called columnwise-pairwise  exchange algorithm. Such an 
algorithm seems to  perform well for  constructing  supersaturated designs 
by various  criteria. 

10. CONCLUSION 

I .  Using supersaturated designs  involves more risk than using 
designs  with more  runs.  However, i t  is far  superior  to  other  experi- 
mental  approaches such as subjectively selecting factors  or  chang- 
ing factors  one  at a time. The  latter  can be shown  to have 
unresolvable  confounding  patterns,  though  such  confounding  pat- 
terns  are  important  for  data  analysis  and  follow-up  experiments. 

2. Supersaturated designs are very useful in early  stages  of  experi- 
mental  investigation  of  complicated  systems  and  processes invol- 
ving  many factors.  They  are  not used for  a  terminal  experiment. 



318 Lin 

Knowledge of the  confounding  patterns  makes possible the  inter- 
pretation  of  the  results  and  provides  the  understanding  of  how  to 
plan  the  follow-up  experiments. 

3 .  The success of a supersaturated design depends heavily on  the 
“effect  sparsity”  assumption.  Consequently,  the  projection  prop- 
erties  play an  important  role  in  designing a supersaturated  experi- 
ment. 

4. Combining several data analysis  methods  to  analyze  the  data 
resulting  from a supersaturated design is always  recommended. 
Besides the  stepwise selection procedure  [and  other  methods  men- 
tioned  in Lin (1993)], PLS (partial least squares),  adjusted p value 
(see Westfall,  et al. (1998)), and Bayesian approaches  are  promis- 
ing  procedures  for use in identifying  active  factors. 

5. Another  particularly  suitable use for  these  designs  is  in  testing 
“robustness,” where the  objective is not  to  identify  important 
factors  but  to  vary  all  possible  factors so that  the  response will 
remain  within  the  specifications. 
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1. INTRODUCTION 

Many  authors have  emphasized  the  importance of product  development  for 
long-term  business  survival [la]. The  rapid pace  of  technological  progress 
in today's  economy  makes it increasingly important  to reduce  development 
time  and get new products  to  market  quickly.  Page [5] discovered  that  most 
of the  development cycle was  devoted to the  physical  development of the 
product. In our experience,  much  of that  effort goes into  experiments  whose 
goals  may  include  improving  performance,  comparing  design  alternatives, 
increasing  reliability,  or  verifying  that  the  product  meets  its  stated  goals  and 
specifications. Thus efficient methods of experimentation  can be of  great 
value in ramping up  the  learning  curve  and  accelerating  the  product  devel- 
opment process [6, 71. 

In this chapter we focus i n  particular  on  the use  of  factorial experi- 
ments  for  prototype  testing,  building  on  the ideas in Bisgaard and  Steinberg 
[8]. Prototype  tests  provide design  engineers  with  valuable  information 
about the  performance of products before  they are sent further  downstream 
for  tooling  and  ramp-up  for  production.  The knowledge  acquired  from 
these tests can  be used to  optimize  and  robustify  products.  Often  a  sequence 
of prototypes is built,  beginning  with  computer-aided  design (CAD) draw- 
ings and  leading  to  the  construction of a full-scale product. Since prototype 
tests can  be  run  from  early on in the  development cycle, they can  help 
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eliminate  potential  quality  problems  without  the  large  costs  and  delays  that 
are usually  incurred  when  problems  are  discovered i n  the  later  phases  of  the 
design-to-production cycle. 

The  common  paradigm  for  prototype testing is to build and  evaluate  a 
single model at each  stage.  This  approach is implicit in the excellent account 
by Wheelwright and  Clark [ 3 ,  Chapter 101 of  the role of prototypes in  
product  development. 

I t  is our experience that  great  gains  can be made by using  factorial 
experiments  to  study  and  improve  product design at the  prototype  stage. 
Several  alternatives  can be made,  varying  important design factors  accord- 
ing to  a  factorial  plan.  The results of  such  experiments  can  substantially 
accelerate  the  path  from  concept  development  to finished product  and  can 
significantly lower the risk of  discovering  serious  quality  problems  late in the 
development cycle. 

A striking  example of the  importance of  rapid  feedback at early  stages 
in the  design  process is presented by Clark  and  Fujimoto [9, Chapter 71 in 
their  comprehensive  study  of auto  manufacturers.  They  found  that  the lead 
time for  developing  a new car was about 25% less in Japan  than in the 
United  States.  One  major  reason  for  this difference  was that  the  Japanese 
companies were  much more successful than  their  American  counterparts  at 
rapidly  reducing  the  number  of  design  problems  early in the  development 
process. Clark  and  Fujimoto  credited  this difference to  the  prototyping 
strategies  that were  prevalent in the  two  countries.  The U.S. companies 
built few prototypes  and  treated  them  as  master  models;  the  Japanese  com- 
panies built many  prototypes  and used  them to  provide  information  for 
finding  and  solving  design  problems. Our  approach  couples  the  power of 
statistical  experiments  with  the  Japanese  strategy. 

Prototype  experiments  have  two  interesting  statistical  features.  First, it 
is typically much  more  expensive  to  build  a  prototype  than  to test it.  Thus 
there is good  reason,  once  a  prototype is built,  to test it extensively. The 
relevant test conditions, which can  often be laid out in a  factorial  plan, will 
then be nested  within the  prototype  configurations, in what is known  as  a 
split-plot  structure.  Second,  interest  often  focuses on  a  performance  curve 
rather  than  on  a single number  output.  In  motor  testing,  for  example,  the 
test might  examine fuel consumption  as  a  function of  load  or  rpm,  torque  as 
a  function  of  rpm,  compression  ratio  as  a  function  of  a single 360" stroke,  or 
the  curve  trace  of  the  torque or power  delivered through  a  gear  shift cycle 
from  forward  through  neutral  to reverse and  back  again.  Other  examples 
include  the hysteresis curve in the  testing  of  transformers,  the  spectrum of 
the  emitted light in the  testing  of light bulbs,  the  hardness as a  function 
of depth in ion implantation of steel, the  pressure  versus  time  curve in a 
pyrotechnic  chain,  and  the  characteristic  curve in the  testing  of  transistors. 
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Experiments  that  include  factors  related  to  product design along with 
factors  that reflect test settings  have  received  some  attention  within  the 
robust  parameter design  strategy  of  Taguchi [IO].  The  paradigm recom- 
mended by Taguchi is to use  a  factorial  design  to  prepare  product  or  system 
configurations  and  then  to  run  each  configuration  at  different  settings  (fol- 
lowing  a  second  factorial  plan)  of  noise  and  signal  factors. The noise factors 
might reflect possible variations in the  production  or use environment,  and 
the signal factors  represent  adjustable  inputs  that  the  product  user  can 
control  to  produce  a desired  response (e.g., the  force  applied  to a brake 
pedal).  This  paradigm is similar  to  the  setting we have in mind, in particular 
what  Taguchi  has called “dynamic  experiments,”  which  study  the  perfor- 
mance  curve  of  a  product  with  respect  to  a signal factor.  However, our 
method of  analysis  differs  from  that  proposed by Taguchi.  An  approach 
similar  to  ours was proposed by Miller and  Wu [ I   I ]  for  robust design 
experiments  with signal factors. 

In this chapter we describe  the  general  statistical  methodology  pro- 
posed by Bisgaard and  Steinberg [8] for  prototype  tests. We  begin in the next 
section  with  a  general  discussion  of  the  product  design  process  and  the role 
of prototype  testing.  Section 3 presents  a  number  of  examples  of  prototype 
experiments.  Section 4 describes  a  simple  two-stage  analysis that is appro- 
priate when  the  experiment  focuses  on  a  performance  curve  and  the test 
conditions  are nested  within prototypes.  Section 5 illustrates  the  analysis 
with an experiment  to  improve  an  engine  starting system [12]. Some  con- 
cluding  remarks  follow in Section 6. 

2. THE PRODUCT  DESIGN  PROCESS 

In  Figure 1 we show  a  schematic  representation  of  the  product  development 
process first introduced by Bisgaard [6]. The steps  shown  there  are  the  same 
ones  found in most  traditional texts on  product  development,  but we 
emphasize in Figure 1 that  the  development process is best  viewed as  one 
that is cyclical and  ongoing,  not  a  linear  procession  with  a  distinct  beginning 
and  end.  Most  products evolve from  similar  predecessors,  go through  a 
sequence  of  improvement cycles, and  ultimately  spawn new products. 
These cycles within  the product  development  process  have  much in common 
with  the  Plan-Do-Check-Act cycle of Deming [I31 and  Shewhart [20]. 

One of  the  most  important  features  of  the  development  process  shown 
in  Figure 1 is the  acquisition  of new knowledge at each  stage.  Experiments 
often play  a key role in unlocking  these secrets of nature. Even  when  the 
source  of insight is a  theoretical  breakthrough  or  comes  from  observational 
data,  experiments will typically be needed to verify the  theory. In our own 
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Figure 1 A conceptual view of the product development  process as a cyclic learn- 
ing cycle,  analogous  to  Shewhart and Deming’s  Plan-Do-Check-Act  cycle. 

contacts  with  design  engineers, we regularly  see  experiments  used  to  test new 
concepts,  compare  designs,  evaluate new materials,  optimize  performance, 
improve  quality  and reliability, and verify performance  specifications. 
Efficient experimentation  can be a  crucial  tool in the  quest  to  bring  high 
quality  products to market  ahead of the  competition.  Carefully  planned 
factorial  experiments  can  provide  invaluable  knowledge  throughout  the 
development cycle. See Bisgaard  and  Ellekjaer [7] for  a  broad  conceptual 
account. 

The  prototype  stage is especially well suited to experimental  work. 
Typically  prototypes  are  built  fairly  early  in  the  development of a new 
product,  when  it is easiest to  make  design  changes.  Factorial  experiments 
on  prototypes  can  be  an  ideal  method  for  comparing  design  alternatives 
and  shaping  the  direction of future  development.  Once  that  direction is set 
and  large  amounts  of  time  and  money  have been  invested,  it  becomes 
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increasingly difficult to  make  any  fundamental  changes  to the product 
design. Thus the biggest payoff  from additional knowledge, and hence 
from  good  experiments, is at  the early  stages in the  development cycle 
when prototypes  are being built and  studied. 

3. PROTOTYPE  EXPERIMENTS:  SOME  EXAMPLES 

3.1. Airplane  Wing 

Initial  prototype development  often  takes  the  form  of CAD drawings  rather 
than  actual physical mock-ups.  Software  that  simulates  the  proposed  oper- 
ating  environment  can  then be used to study  the  performance  of  the  design 
on the computer.  The  experiment in question here was  carried  out by a team 
of engineers at the  “concept  design”  stage.  The  two  main  goals were to 
improve  the  performance  of  the wing. as measured by thrust per unit  weight, 
and  to minimize  the  cost  per  unit  performance. Five different  aspects  of  the 
wing were studied:  the sizes of  three physical dimensions,  the  number of 
strength  supports on the  wing, and the  type  of  material used in construction. 
Two possible  values were considered  for  each of these  factors,  and eight 
prototypes were then  defined, in accord  with a standard z5” fractional 
factorial  experiment.  Each  prototype was carefully  drawn by the design 
team using CAD software.  The weight and cost of each prototype wing 
was  then  calculated  and finite element  analysis  was used to  compute the 
thrusts. 

3.2. Engine  Throttle  Handle 

Bisgaard [I41 described an  experiment to improve  the  performance of the 
throttle  handle  for  an  outboard  motor.  The goal of the  experiment was to 
derive appropriate  tolerances  for seven physical dimensions by studying 
their effects on  friction in the  handle.  The  throttle  handle is assembled 
from  three  parts:  a  knob. a handle,  and a tube. Of the  dimensions  studied, 
three were related to the knob, three to the  handle,  and  one  to the  tube.  An 
interesting  feature of this  experiment is that  separate  experimental  plans 
were set up  for  making  prototypes of each  of  the  three components (a 23 
plan for the  knobs. a 2’” plan for the  handles,  and a 2’ plan for the  tubes). 
All possible  matchings  of  the  prototype  components were then  assembled 
and tested for  friction. 
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3.3.  Engine  Exhaust 

Taguchi [IO, p. 13 11 described an experiment  to reduce the CO content of 
engine  exhaust. Seven  different  characteristics  of  the  engine  design  were 
studied  using  a  saturated two-level  design that specified eight prototype 
engines.  Each  engine  was  then  run at three  different  driving  modes,  which 
constituted  the test conditions  for this study. Bisgaard and  Steinberg [8] 
analyzed  the  results  from  this  experiment and  found  that  one of the  factors 
had  an  interesting,  and  statistically significant, effect on  the  shape of  the 
response  curve, as shown in Figure 2. With this factor  at its low level, the 
response  curve  was  lower at  the  middle  driving  mode  but higher at  the  high 
mode.  The  engineering significance of  this effect depends  on which  driving 
modes will  be encountered  most  often.  The lower  driving  modes likely cor- 
respond  to  the  sort  of  stop-and-start traffic common in large cities, and it 
might  then  be  desirable to  choose  the  factor  at  its low level to  reduce  the CO 
content  at these modes. 

3.4. Kitchen  Mixer 

Ott [I51 described an experiment  to  improve  a  kitchen mixer. Each mixer 
was  assembled  from  three  components:  a  top  unit,  a  bottom  unit,  and  gears. 
An  experiment  was  run  to  determine  which  of  these  three  components  was 
the  cause  of inefficient operation.  Forty-eight mixers  were  used in the  study, 
half  of  them efficient and half inefficient. Each  mixer  was  disassembled, and 
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Figure 2 The  estimated  response  curves  for CO exhaust versus driving  mode  at  the 
two levels of factor A for  the engine exhaust  experiment.  The response curve with A 
at its high level (solid line) is lower than the curve with A at its low level (dashed linc) 
across most of the  driving  modes but shows a sharp increase at high driving  modes. 
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then 48 new mixers  were  assembled, swapping  parts  from  the  original mixers 
to  form  a 23 factorial  design  whose  factors  were  the  three  components.  The 
two levels for  each  factor  were  determined by the  source of the  component 
in an efficient (or inefficient) mixer. The  experiment clearly pointed  to  the 
tops  as  the  source of  the  problem. 

3.5. Pyrotechnic  Device 

Milman  et  al. [16] reported on  an experiment  to  improve  the safety of  a 
pyrotechnic device. I t  was  known  that  the safety improvements  could be 
achieved by using  a new type  of initiator,  but  there was  concern  that this 
change  would adversely affect the  performance of the device. An  experiment 
was run  to test 24 prototype devices, mating  each of  three  safe  initiators  with 
four types  of  main  charge and  two types  of  secondary charge.  The observed 
response  for  each  prototype  device  was  a  trace  of  pressure  against  time. 

3.6. Fluid  Flow  Controller 

Bisgaard and Steinberg [8] described an experiment  to  study how prototype 
fluid flow control devices  respond to  changes in electrical input  and flow 
rate.  The  controller was  assembled from  two  components.  Two  experimen- 
tal  factors described  dimensions of the first component,  and  a  third  factor 
described  a  dimension  of the  second  component. As in the  engine  throttle 
experiment,  the  eight  prototype  controllers  were  formed by making  four 
versions  of  the first component (following  a 22 plan)  and  two versions  of 
the second component  and  then  mating all possible pairs of components. 
Each  prototype was  subjected  to six test conditions  formed by crossing  three 
levels of the electrical input with  two flow rates. 

3.7. Hearing  Aid 

A  remote  control unit developed to  permit easy control of  a  new, miniatur- 
ized hearing  aid suffered from  poor  reception.  A  factorial  experiment was 
carried  out  to test several conjectures  as  to  the  source  of  the  problem, in 
particular  that  the  difficult-to-control  variation in the  receptor coil was 
causing  variations in the  transmission  frequency  and  that  the  type  of 
cover  used  was  affecting  reception. The experiment  showed  that coil varia- 
tion  was  the  major  problem  and  that  it  could  be easily remedied by exploit- 
ing  a  large interaction between  the coil and the  transmission  program 
(another  factor in the  experiment).  The  choice of  cover  was  found  to  have 
no effect at all. 
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3.8. Bearing  Manufacture 

Although we have  emphasized throughout this chapter the use of  factorial 
experiments  for  prototype  products,  the  same ideas can be applied to  pro- 
totype  process  development.  Hellstrand [17] described an experiment con- 
ducted  at  SKF,  one of the  world's  largest manufacturers of ball  bearings, to 
improve  a  production process. The goal  of  the  experiment  was to improve 
bearing life, and three  factors were studied in a 23 plan:  heat  treatment, 
osculation,  and cage  design. The  experiment uncovered  a  large  interaction 
effect between heat  treatment  and  osculation  that led to a fivefold increase in 
bearing life. 

4. ANALYSIS OF PROTOTYPE  EXPERIMENTS 

4.1. Standard  Experimental  Plans 

Some  prototype  experiments  are  standard  factorials or fractional  factorials 
(e.g.,  the  airplane wing and  throttle  handle  experiments). No special  meth- 
ods  are needed for the  analysis  of  these  experiments. 

4.2. Two-Stage  Analysis  for  Nested  Test  Conditions 

Prototypes  are typically much  more expensive to  make  than  to test, and it 
will then be advisable to apply  a  sequence of test conditions to each proto- 
type. This scheme  generates a split-plot structure in which the test condi- 
tions  are nested within  the prototype design. The analysis  should  correctly 
account  for the  nesting. 

We suggest a  simple, yet general,  two-stage  analysis  method for experi- 
ments  with nested test conditions: 

1 .  Estimate  the effects of  the test factors  for each prototype. We 
discuss below some useful ways to summarize  these effects. 

2. Use the effects found i n  stage 1 as  "data" in a  standard  factorial 
analysis to study  the effects of the design factors  that guided the 
construction of the  prototypes. 

As an  example,  suppose  there is a single test factor t and interest 
focuses on the  performance  curve  that describes  its  relationship to  an  output 
1'. For each prototype, fit a  polynomial  performance  curve.  The  model 
equation  for  the  ith  prototype is 
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where gl( t )  is a  polynomial  of  degree 1. We  define the  polynomials so that 
they are  orthogonal with  respect to  the levels of  the test factor.  An  advan- 
tage  of this is that only the  mean level effects involve interprototype  (“whole 
pIot”) error.  Any effects related to the  slope  or  curvature  or  higher  order 
properties  of  the  performance  curve will involve only intraprototype (“sub- 
plot”) error. We also scale the  orthogonal  polynomials so that 

where  the  sum  runs  over all the test settings.  The  scaling  guarantees  that all 
the coefficients (except  the constant) will have  the  same  variance,  a  property 
that is important  at  the  second  stage of the  analysis. 

The use  of orthogonal  polynomials  with  our  scaling  convention  leads 
to  simple coefficient estimates. If we denote by yl’ = (vi,, . . . , J’;,~) the  obser- 
vations on  the  ith  prototype  at  each of the s test conditions,  the least squares 
estimates  of  the coefficients are given by 

The  constant  term is the  average of the s observations,  and  the  polynomial 
coefficients are  simple  linear  contrasts. 

At the  second  stage of the  analysis,  each  of  the  polynomial coefficients 
found  above is treated as a  response  variable  and  a  separate  analysis is 
carried out  for the coefficients of each  degree.  The  analysis  of  the  constant 
terms reveals which factors affect the  mean level  of the  performance  curve, 
the  analysis  of  the  linear coefficients shows  which factors affect slope, etc. 
Important effects that  stand  out  from  error  can be identified with standard 
tools  such  as  normal  probability  plots  and  analysis  of  variance  (ANOVA). 
Note  that  the effects on  the  mean level include  “whole  plot”  error,  but 
effects on other  aspects of the  performance  curve,  including  average coeffi- 
cients,  involve  only “subplot”  error.  ANOVA  can  account  for this situation 
by doing  a  split-plot  analysis. For  the  graphical  analysis,  separate  plots  must 
be prepared  for  the  two sets of effects. Our scaling  convention  from  stage 1 
implies that all the  performance  curve coefficients have  the  same  variance. 
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We take  similar  care  at  the  second  stage  to  ensure  that  the effects have  the 
same  variance  and  can  thus be combined  on  a single probability  plot. We 
recommend  computing  the  average  value  of  each coefficient (for  ease  of 
interpretation)  and  then scaling all the  design Factor contrasts  to have the 
same  variance as the  average.  This  property  can be checked by setting  up  the 
regression  matrix Z for  the design factor effects with all elements in  the first 
column  equal  to 1 and then  verifying that Z’Z = n l ,  where I is the  identity 
matrix.  Each row  of the  matrix (Z’Z)”Z’ = (l/n)Z’ then gives one of the 
factor effects. 

Orthogonal  polynomials  are  a  convenient choice to  describe  a  perfor- 
mance  curve,  but  other sets of orthogonal  functions  could  also be used. For 
some  of  the  engine testing applications  described in Section 1, we would 
naturally expect  periodic  behavior.  In  that case, trigonometric  functions 
could be used to  generate  orthogonal  contrasts in the test conditions. 

Some  experiments  involve  more  than  one test factor.  Examples  above 
are  the fluid flow controller  and  the  engine  starting system  studies. For these 
experiments,  the  natural  approach is to  estimate  the effect of  each test factor 
for  each of the  prototypes.  Interactions  among  the test factors  can also be 
included if the test array  permits  their  estimation.  The  analysis will then 
reveal which product  characteristics  can be used to affect the  dependence  of 
the  response  on  the  various test factors. For example, in the fluid flow 
controller  experiment,  one  important  goal was to  obtain  accurate predic- 
tions of the  relationship  between  the  response  and  the test conditions so that 
controllers  could  be designed to meet any desired  response  pattern. 

The  two-stage  analysis  has  an  appealing simplicity. I t  can  also be 
justified more  formally  using  theory  developed  for  growth  curve  models in 
our  performance  curve  context. Bisgaard and  Steinberg [8] showed  that,  for 
these  models,  the  two-stage  analysis  actually computes generalized least 
squares  estimates  of  the  parameters  (maximum  likelihood  estimates if the 
data  are  normally  distributed). We refer interested  readers  to  that  article  for 
details on  the  statistical  model  and  its  analysis. 

Our analysis  approach  shares  some  common  ground with that recom- 
mended by Taguchi [ I O ]  for  robust design  experiments,  but  there  are  some 
important differences that we would like to  point  out.  The  approach  taken 
by Taguchi is to  compute,  for  each  prototype,  a single summary  measure 
across all the test conditions.  This  summary  measure, which  he calls a 
signal-to-noise  ratio, is then  taken  as  a  response  variable  much  as in our 
stage 2 analysis. The  major difference  between  Taguchi’s approach  and  ours 
is that we compute  a  complete, multicoefficient summary  at  our first stage, 
as  opposed  to Taguchi’s use of a  univariate  summary.  This  difference  may 
appear small but is in fact  substantial.  The  single-number  summary  can 
throw  away  much  valuable  information  that is captured by the  complete 
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summary.  Steinberg and Bursztyn [18] and Bisgaard and  Steinberg [8] 
showed  that  Taguchi’s  approach  can miss important effects and identify 
spurious effects that  are easily handled by the multicoefficient summary. 

4.3. Analysis with Analog Traces 

The  observed  response  for  each  prototype  may be a  continuous  analog  trace 
against time, as in the  pyrotechnic  experiment.  These  curves  can be analyzed 
by applying  the  methods  of  Section 4.2 to  a digitized version  of  the  response 
along  a  grid of  time points. 

An  alternative  strategy  that is often useful is to  take  as  response vari- 
ables  particular  features of the observed performance  curves  that  are of 
interest.  In  the  experiment on the  pyrotechnic device, an  important  feature 
was  the  delay  time (i.e., the  time  from  activation  until  the  pressure first 
begins to  increase).  Feature  analysis  has  the  advantage of focusing  attention 
on  the  most salient aspects  of  the  performance  curves.  Most  features will 
involve both whole  plot and  subplot  error  components  and will have differ- 
ing  variances. So it will not in general be possible to  combine  estimated 
effects for  different  features (as we do  above  for  the  performance  curve 
effects). 

Feature  analysis  can  also be applied  when  physical  considerations 
suggest a  nonlinear  model  that,  modulo  some  unknown  parameters, 
describes  the  response  curve. The estimated  parameters  can  then be taken 
as  the first-stage summaries of the  performance  curves  for  the  prototypes. 
Box and  Hunter [19] applied  for this approach  for  nonlinear  models. 

5. EXAMPLE:  THE  ENGINE  STARTING  SYSTEM 
EXPERIMENT 

In  this  section we show  how our two-stage  analysis  method  can be applied 
to  an experiment  on  engine  starting  systems  that  was  described by Grove 
and  Davis [12, p. 3291. For  additional  examples, we refer the interested 
reader  to Bisgaard and  Steinberg [SI. 

The goal  of  the  engine  starting  system  experiment  was  to  reduce  the 
sensitivity of  the  system  to  variations in ambient  temperature.  The  perfor- 
mance  of  the  system  was  evaluated via the  relationship  between  the  air-to- 
fuel (AF)  ratio  at the  tip  of  the  spark  plug  and  the fuel mass pulse, which is 
controlled by the  electronic  engine  management  system.  This  measure  was 
adopted because the  automotive  engineers  knew  that it was a key indicator 
of  ignition success. The experiment  studied  seven  components  of  the  starting 
system:  injector type, distance  from  injector  tip  to  valve  head,  injection 
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timing,  valve  timing,  spark  plug  reach,  spark  timing,  and fuel rail pressure. 
Six different  injector  types  were  used;  three levels were used for each of  the 
remaining  factors.  The L18 orthogonal  array was  used to define  the  experi- 
mental  plan  for  the  prototype  starting systems.  Each  of  the 18 systems  was 
then tested at six conditions,  formed by crossing  three fuel mass  pulses (30, 
45,  and 60 msec)  with  two temperatures ( -15T and +15"C). Two tests were 
run  at  each  condition, so there  are 12 results  for  each  prototype. 

The full data  set,  additional  details  on  the  experiment,  and  a  number 
of  alternative  analyses  can be found in Grove  and  Davis [ 121. We  proceed 
here  only  with our  approach. 

Increasing  the fuel mass  pulse (FMP) injects more fuel into  the engine, 
and  initial  plots of the  data  for  each  prototype  show,  as  expected, a negative 
correlation between  the AF ratio  and  the  FMP.  They  also  show  that  the A F  
ratio is typically higher at - 15°C than  at +15"C. A  number of  possible 
models  might be considered  linking  the A F  ratio  to  the  FMP,  and  there is 
not clear evidence in the  experiment  to  prefer  one  model  over  another. For 
some  prototypes,  the A F  ratio is almost  a  linear  function of the FMP;  for 
others  the inverse  of the A F  ratio is nearly  linear,  and  for  others  the  log  of 
the  ratio is most  nearly linear. We elected to  work with  the  relationship 
between the  logarithm of the A F  ratio  and  the  logarithm of  the FMP, 
which  seemed to be most  appropriate  for  the full set of prototypes  both 
for  achieving  linearity and  for  reducing  the  dependence of  residual  variation 
on  the  mean level  of response.  But we caution  that  other metrics  could  also 
be  used and  might  lead  to  somewhat  different  conclusions. 

The first stage of our analysis is to  estimate  for  each  prototype  the 
effects of  log FMP  and  temperature,  including  their  interactions, on log AF 
ratio.  The levels of FMP were  equally  spaced (30, 45, and 60 msec), and if 
we had  kept FMP  on its  original scale we could  have  used  standard poly- 
nomial  contrasts  to  compute  its  linear  and  quadratic effects. For example, 
the  linear effect would be proportional  to  the  average of  the results at 60 
msec minus  the  average  of  the results at 30 msec. The  logarithms of  the 
FMP levels are 3.40, 3.81, and 4.09,  and  the  resulting scaled contrasts  are 
(-0.372, 0.040, 0.332)  (linear)  and (0.169, -0.406,  0.237) (quadratic).  The 
main effect contrast  for  temperature is (-0.289,  0.289). The  interaction 
contrasts  are  similar  to  the FMP contrasts,  but multiplied by 1 or -1, 
according  to  whether  the  temperature is high or low, respectively. Each  of 
the  contrasts, when squared  and  summed  over  the 12 test points, gives a  sum 
of I ,  in accord  with our scaling convention. 

The  second  stage of our analysis  estimates  the effects of the design 
factors  on  each of the  first-stage coefficients. Since  there are 18 prototypes, 
the  "average" contrast in the  effects  computation has  each  element  equal to 
1/18. ,411 the  remaining  factor effect contrasts  are scaled to  have  the  same 
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sum of squares.  The  linear  contrast  for  each  three level factor is (-0.068, 0, 
0.068), and  the  quadratic  contrast is (0.0393, -0.0786, 0.0393). Injector 
type,  the 6 level factor, is represented by  five orthogonal  contrasts.  These 
contrasts  are  formed by taking  the  main effects and  interactions of  the 2 and 
3 level columns  that were used at  the design  stage to assign  the levels of this 
factor. 

Figure 3 shows  a  normal  probability  plot  of  the effects on  mean level 
(i.e.,  on  the  constant  terms  from  the  within-prototype  regressions).  None of 
the  contrasts  sharply  deviates  from a straight line through  the  origin. Only 
the  two  lowest  values  hint at  statistical significance. The  strongest  contrast is 
one  that  corresponds  to  injector type and  indicates  that types 4, 5, and 6 
have  lower  average AF ratios  than  do  types I ,  2, and 3. The  other  large 
contrast is for  the  linear effect of fuel rail pressure  and  indicates lower 
average AF ratios with  higher  pressure. 

Normal Probability Plot  for Effects on Mean Level 
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Figure 3 A normal  probability plot of the  factor effccts on  the mean level 
response from our stage 2 analysis  of the  engine  starting system experiment. 
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Figure 4 shows  a  normal  probability  plot  for  the effects related  to  the 
performance  curve.  The  contrasts  for  the  linear effect of  log FMP  and  for 
the effect of temperature  are clearly significant and  dominate all the  others. 
Figure 5 shows  a  normal  probability  plot  without  the  two  very  large  con- 
trasts  and helps to clarify  which  contrasts  stand out  from noise. The only 
contrasts  that  appear  to be statistically significant are  the  three  largest  and 
the  two  smallest,  all  of  which  correspond  to  interaction effects with  tem- 
perature.  The  factors  that  interact with temperature  are  the  injector  type 
(two significant contrasts),  the  distance  from  the  injector  tip  to  the valve 
head  (both  the  linear  and  quadratic  components),  and  the valve  timing  (the 
linear  component).  The next  largest  negative  contrast is the  interaction 
between temperature  and  the  quadratic  component of the valve  timing, so 
it  seems prudent  to also take  account of  this effect in developing  a  model  for 
the  system. 

21 . .  

N .  
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Figure 4 A normal  probability plot of the  factor effects on  the  performance  curve 
from  our  stage 2 analysis  of  the  engine  starting system experiment. 
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Figure 5 A normal  probability plot of the  factor  effects on the  performance curve 
from our stage 2 analysis of the engine starting system  experiment,  after  deleting the 
two large effects due to the linear contrasts for fuel  mass  pulse  and temperature. 

We can now use the  above  information  to  compare  different system 
configurations.  First, we observe  that  the  experiment  has indeed borne  out  a 
clear linear  relationship  between log AFR  and log FMP.  The average rela- 
tionship  estimates  log AFR by 3.83-1 . I3  (log FMP).  For  the  three fuel mass 
pulses  used in the  experiment,  the  resulting  estimates  of log AFR  are 4.25 (at 
30 msec),  3.79 (at 45 msec), and 3.46 (at 60 msec). There is no detectable 
curvature in the  log  AFR-log FMP relationship,  and  the  only  possible 
dependence  on  the  design  factors is that  the  mean level of the line may 
decrease  when  injector 4, 5, or 6 is used and when fuel rail pressure is 
increased. The design factors have no effect on  the  slope of the line. 
Overall, we conclude  that  the  relationship is quite  consistent  across  the 
prototype  conditions. 

There is also  a  strong  relationship between log AFR  and tempera- 
ture,  but it is affected by interactions with  three  of  the  design  factors.  It is 
easiest to  study  and  model  those effects by computing  the  average  stage 1 
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temperature effect at each level of  the  relevant factors, which are listed in 
Table 1.  The average  temperature effect was - 1.173. Since  the  goal  of  the 
experiment  was to reduce sensitivity to  temperature  variation, we seek 
levels of  the  three  factors  that  make  the  temperature effect closer to 0. 
The best choice is to  take  an  injector  of type 6 and use the  middle  tip-to- 
head  distance  and  the  low level of  valve  timing (the middle level  is almost 
equally  good). I f  we assume  that  the design factors  have  additive effects on 
the  temperature effect, the  estimated  increases in that effect from  each  of 
these  choices are 0.296 (from  injector type), 0.225 (from  the  tip-to-head 
distance),  and 0.153 (from  the valve  timing). The estimated  temperature 
effect is then -0.499, about 60% closer to 0 than its average value. Thus 
the  experiment  has identified factor  settings  that  substantially  reduce  the 
sensitivity to  temperature,  resulting in less variation in product  response 
and  more  uniform  starting  performance. 

I t  is worth  noting  that if we place the  mean level effects and  the 
performance  curve effects on  the  same  probability  plot  (after  appropriate 
scaling of  the  mean level effects), many of  the  mean level effects stand  out 
from  the line through  the  origin,  contrary  to  our  earlier  conclusion  that  at 
most  two contrasts  are significant and  then  just  barely.  This finding  suggests 
that  the  within-prototype  error,  on which we base  the  statistical significance 
of  the  performance  curve  contrasts, is too  small  for  judging  the  mean level 
contrasts.  That, in turn, implies that  a  substantial  amount of the  variability 
i n  the  data  may be at  the  interprototype level. This  information  could 
be valuable  for  future  efforts  to  make  the  performance  curves still more 
uniform. 

Table 1 Average Estimated Ten1perature Effect from  the  Stagc 1 Analysis at 
Each Level of the  Three  Factors  That  Had Significant Interactions wlth 
Temperature in the  Stage 2  Analysis 

Level 

Factor 1 2 3 4 5 6 

Injector  type -1.581 -1.058 -1.268 -1.202 -1.055 -0.877 
Tip-to-head  distance - 1.507 -0.948 - 1.066 
Valve timing - 1.020 - 1.030 - 1.469 
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6. CONCLUSIONS 

Prototype testing is an  important  stage in the  development of new products 
and  production processes. Great  gains  are possible by exploiting  factorial 
designs in prototype  studies. Engineers can use these  studies to  compare 
design options,  to increase  the  feedback  from  the  prototypes, and  to accel- 
erate  the design process. 

Statistical  methods  for  prototype  experiments  must  take  account of 
the  fact that  prototypes, being expensive to build but  often  cheap  to test, 
may be run  through  a  battery of  test  conditions, which themselves constitute 
a factorial  design. Our two-stage  analysis  provides  a  simple  scheme for 
modeling  the  ensuing  performance  curve and its  dependence on the  design 
factors.  It  correctly  accounts  for  the  split-plot  error  structure  that arises 
when the test conditions  are nested within  the prototype design and  permits 
quick  identification  of important effects from  normal  probability  plots. 
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Optimal  Approximate  Designs  for 
B-Spline  Regression  with  Multiple  Knots 

Norbert  Gaffke  and  Berthold  Heiligers 
Universitat  Magdeburg,  Magdeburg,  Germany 

1. INTRODUCTION 

Piecewise  polynomial  regression  may  serve  as an  alternative  to  nonlinear 
regression  models in the  case  of  a single real regressor  variable, since poly- 
nomial splines possess excellent approximation  properties. If the  knots have 
been  chosen  appropriately,  the  spline  model is linear  in  the  parameters, and 
hence  tools from  linear  model  analysis and experimental  design  can be 
utilized. For  an overview on  the use of polynomial  splines in regression 
modeling,  the  reader is referred to  Ref. 1. 

Let [a, h] be a  compact  interval (a ,  h E R, a < h) with  associated  parti- 
tion by given knots, 

where L 2 I .  A polynomial  spline  (with  respect  to  the  knots K ~ ,   K ~ ,  . . . , K t )  of 
degree at  most d >_ 1 is a  function  on [a,  61 that  coincides  on  each  subinter- 
val [K,, K , + ~ ]  with some  polynomial  of  degree at most d ,  0 5 i 5 L - 1, and 
that satisfies some  smoothness  conditions  at  the  interior  knots K ~ ,  . . . , Ke-1, 

stated  next. Let s I ,  . . . , se-1 be given  integers  with 0 5 si I (1- 1 for all 
i = 1 , .  . . , L - 1, where s, denotes  the desired  degree of  smoothness  at 
knot K, of the spline functions  considered.  We  abbreviate K = ( K ~ ,  . . . , K ~ )  

for  the vector  of knots  and s = (sI, . . . , s e - 1 )  for  the  vector of smoothness 
degrees.  Let S,(K, s) be  the  set of all polynomial  splines of degree at  most d 
with  respect to  the  knots K being si times continuously  differentiable  at K, for 
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all i = I ,  . . . , e - 1 .  Note  that .si = 0 means  simply continuity  at K,, and e = 
1 describes ordinary clth degree  polynomial regression. Obviously, S,,(K, s)  is 
a linear  space,  and its dimension is known  to be (cf.  Ref. 2, Theorem 5) 

To define the  particular B-spline basis B , ,  . . . , BI, of S,(K, s )  to be 
employed, we assign multiplicity e/ - s, to  each  interior  knot K,, i = 
I ,  . . . , e - 1, and multiplicity e l  + 1 to  both  boundary  knots.  Consider  the 
extended knot  vector t having  the  knots K( ) ,  . . . , K~ as  components where 
each knot is repeated  according  to its multiplicity,  i.e., 

Now  a family Bi,[,, i = 1, . . . , k + el - q; q = 0, I ,  . . . , e / ,  of functions  on [a, h] 
is recursively  defined as  follows. 

where 

Then  the B-spline basis BI ,  . . . , BI, of SJK, s) is given by 

(cf. Ref. 2, Theorems I O  and 11) .  
I t  is not difficult to see that  the basis enjoys  the  properties 
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0 5 B j ( s )  5 1 for all i = 1, . . . , k and all s E [N, h] (5a) 
B , ( s )  = 1 if and only if s = N (5b) 
B ~ ( s )  = 1 if and only if s = h (5c) 

B j ( s )  = 1 for all s E [ ( I ,  h] ( 5 4  
I =  I 

I [G f , / + 2 )  if i =  1 

( t k  I hl if i = k  
( s  E [N, h] : B,(s) > 0) = ( I , ,  t ,+ l ,+ l )  if i = 2, . . . , k - 1 (5e) 

We  note  that the  small support  property (5e) is a  particular  feature of the 
basic  splines Bi. Figure 1 shows  the B-splines for a  special  case. 

A further  favorable  property  of  the B-spline basis, Eq. (4), is its up i -  
wricmce under affine-linear transformation of the  knot vector K .  That is, i f  
the  interval [a, b] (and its knots K , ,  i = 0, . . . , e )  are  transformed  to  another 

‘ I  B2 1 B3 

1 BG 

Figure 1 B-Splines for d = 3. I = 3 .  K = (0,0.5,0.7, 1). and s = (2, 1). 
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interval [i, 61 with  knots K ,  = L(K;) ,  i = 0, . . . , e, by the affine-linear trans- 
formation L,  then  the  B-spline basis B l ,  . . . , B k  of S d ( K ,  s) defined corre- 
spondingly by Eqs. (3) and (4) is 

&X) = B;(L-I(s)) for all i = 1 ,  . . . , k and  all .X E [i, 61 (6) 

Hence  Eq. (6) allows us to  standardize  the  interval [a, h],  e.g.,  to [0, I]. 

member  of  the  space S ~ ( K ,  s), i.e., 
The spline regression  model states  that  a regression function y is a 

for  some coefficient vector 8 = (e,, . . . , O k ) ’ ,  which has  to be estimated  from 
the  data  (the  prime  denotes  transposition).  Under  the  standard  statistical 
assumptions  that  the  observations of the  regression function  at  any x values 
are  uncorrelated and have  equal  (but possibly unknown)  variance c2, the 
ordinary least squares  estimator of 8 will  be used. So for  designing  the 
experiment,  i.e.,  for  choosing  the s values at which the  observations of 
y ( x )  are  to  be  taken,  the  concepts of optimal  linear regression  design 
apply.  For  mathematical  and  computational  tractability we restrict  our- 
selves to  the  approximate  theory.  An  approximate design 6 consists of a 
finite set of  distinct  support  points -xI, . . . , .x,. E [ a ,  h] (where  the  support size 
r 2 1 may  depend  on 6) and  corresponding weights <(xl), . . . , c(x,) > 0 with 

6(.xi) = 1. The design 6 calls  for C(.x,) x 100% of all observations of the 
regression function  at x, for all i = 1 , .  . . , r .  The  moment  matrix  (or  infor- 
mation  matrix)  of 6 is given  by 

where B(x) = ( B , ( s ) ,  . . . , Bk(s ) ) ’ .  Note  that, by Eq. (5e), for all s E [a, h] the 
matrix  B(s)B(x)’  has  a  principal block  of size (d + 1) x (d + 1) outside 
which all the  entries  of B(s)B(x)’ vanish.  Hence  the  moment  matrix M(6)  
of  the  design 6 is a  band  matrix with d diagonals  above  and below  the  main 
diagonal, Le., the  (i,j)th entries of M(6)  are  zero whenever )i - j l  > d. 

Under  a design 6, all coefficients 8;, i = 1, . . . , k,  are  estimable if and 
only if the  moment  matrix of 6 is nonsingular,  or  equivalently if and only if 
it is positive  definite.  Among  those  designs 6 [with M(6)  being positive 
definite], an  optimal design is one  that minimizes @(M(( ) ) ,  where @ is a 
given  (real-valued)  optimality  criterion  defined on  the set PD(k) of all 
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positive definite k x k matrices.  We  are  concerned  here  with Kiefer's @/, 
criteria (-00 p p 5 1) including  the  most  popular D ,  A ,  and E criteria 
through p = 0, - 1 ,  "a, respectively. These  are defined by 

Q o ( M )  = [det(M)]"'k, @-m(M)  = I / h l ( M )  

where h l ( M )  5 h2(M)  p . . . I h k ( M )  denote  the eigenvalues of M E PD(k), 
arranged in ascending  order. We note  that @,(M) is continuous  as  a  func- 
tion of p .  In particular, @-,(M) = limp+-, O,,(M) for all M E PD(l<),  and 
hence  the non-smooth E criterion  can be approximated by a  smooth QP 
(with,  e.g., p = -50). 

In  Section 2 we describe  the  algorithm  and  discuss  the  numerical 
results.  Some results on  the  support of optimal designs  for special cases 
are  proved in Section 3, providing  thus  a first step  toward  a  theoretical 
explanation of  the  numerical  results. 

2. COMPUTING  NUMERICALLY  OPTIMAL  DESIGNS 

The basic algorithm we used is that of Gaffke  and Heiligers [3], with  neces- 
sary  adaptations  to  the  present  situation of  polynomial spline regression as 
are described in detail in Ref. 4. So we only briefly outline  the  method. 

A sequence  of  moment  matrices M,, ,  11 = I ,  2, . . ., is computed,  corre- 
sponding  to  some  approximate designs t,,, 11 = 1,2, . . .. The  current design 
t,!, however, is not computed (except for  the final iteration when  the  algo- 
rithm  terminates).  Thus  an  increasing set of support  points calling for  some 
clustering or elimination rules is avoided.  For twice continuously  differenti- 
able  optimality  criteria @ having  compact level sets (as,  e.g.,  the @/, criteria 
with "co < p < I), the  generated  sequence  of  moment  matrices M,, have 
been  shown  to  converge  to  an  optimal  solution  to 

Minimize @ ( M )  (Sa) 
Subject  to A4 E Conv{  B(s)B(s)' : s E [N,  b]} n PD(k)  (8b) 

where 0 is the  optimality  criterion  under  consideration  and  Conv S denotes 
the convex hull of a set S of  matrices (cf. Ref. 3, Theorem 2.2). Note  that, by 
Eq. (7), restriction  (Sb)  just  expresses  that  a feasible matrix M is nonsingular 
and is the  moment  matrix of  some  approximate  design. 
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So the  algorithm solves problem (8) numerically.  Additionally,  for  the 
final iterate M * ,  say, a decomposition is computed (see below), 

with r E N, N 5 x: < . . . < x: 5 b, and \ v ; , .  . . , \IJ: > 0 such that 
wf = 1 .  A numerically optimal design is then  given by c* having  sup- 

port  points s: and weights [*(.x:) = $, i = 1, . . . , r .  
Any  starting  point MI is chosen  from  the feasible set (Sb), e.g., MI = 

M ( t l )  with an initial  design < I  whose support  contains k distinct  points .xl < 
. . . < s k  such  that Bi(si )  > 0 for all  i = 1,  . . . , k (see Lemma 1 in Section 3). 
Given 17 E N and  the  current  (feasible)  iterate M,, ,  a feasible search  direction 
M,, is computed  as  the  optimal  solution of a  quadratic convex  problem 
- 

Here we have  denoted by lowercase  letters m,,, r??, and m ( s , )  the  moment 
vectors obtained  from M,,, M ,  and M ( s , )  = B(s,)  = B(s,)B(s,)’ ,  respec- 
tively, by a usual  vector  operation  turning  matrices  to  column  vectors. 
Owing  to  the  symmetry  and  the  band  structure of the  moment  matrices it 
suffices to  apply  the vector operation  to  the  main  diagonal  and  the d diag- 
onals  above  the  main  diagonal. So the  vector operator  considered  here 
selects that  part of a  symmetric  matrix A and  arranges  the  entries in some 
fixed order,  resulting in a  vector  vec(A) E RE;, where K = ( d  + l)(k - d / 2 ) .  
In Eqs. ( I O )  we have 

where s I ,  . . . , .x, are  certain  points  from [ a ,  h] to be  described  next (note  that 
these points  including  their  total  number r depend  on r7, but  this  dependence 
is dropped here to simplify the  notation),  and G,, denotes  the  gradient of Q, 

at M,, in  the  space  of  symmetrical k x k matrices  endowed  with  the  scalar 
product ( A ,  B) = tr(AB). The  matrix V occurring when  vectorizing the  gra- 
dient is a fixed K x K diagonal  matrix with diagonal  entries  equal  to 1 or 2, 
such that  those  components of vec(G,,) coming  from  the  diagonal of G,, 
receive weight 1 while  the  off-diagonal  elements  are  weighted by 2. This is 
to  ensure  that g,, is the  gradient  at m , ,  of the  function 
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where vet-' is the  inverse operation of vec, converting  an  K-dimensional 
vector into  a  band  matrix [ n ?  being restricted in Eq. ( 1   1 )  to  the set of all 
vectors  obtained by vectorizing positive definite band  matrices].  Note  that 
although M,, is a  band  matrix,  this is not  true in general for  the  gradient G,,, 
e.g., for  the Q,, criteria  with -GO < 11 < 1 we have 

The  points s,, i = 1, . . . , 1', in (lob) are  most  crucial  for  obtaining  a  good 
search  direction by solving the  quadratic  problem.  Their choice is guided 
by the  equivalence  theorem, i.e., the  first-order  optimality  conditions  for 
problem (8). A feasible moment  matrix M* is an  optimal  solution if and 
only if 

B(s) '(-G*)B(s) 5 tr(-G*M*)  for all s E [ a ,  h ]  (12) 

where G* is the  gradient of Q at M*.  Moreover, if M* is an  optimal  solution, 
then  for  any  representation of M *  as 

with  some 

one  has 

B(s:)'(-G*)B(s:) = tr(-G*M*)  for all i = 1 ,  . . . , I' 

From this it appears  reasonable  to  choose in (lob) the local maximum  points 
s I ,  . . . , s,. of  the  function 

(including,  of  course, its glohnl maximum  points). In fact,  computing these is 
not  too difficult, since B(s) '(-G,,)B(s) is a  polynomial spline of  degree at 
most  2d.  i.e.,  a  polynomial  of  degree at  most 2d on each  subinterval 
[K ; ,  K , + ~ ] ,  i = 0, . . . , e - 1. Thus,  standard  routines  for  computing all zeros 
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of  polynomials  can  be  used.  Figure 2 shows an  example of  the  function (13) 
for  an  early  iterate  and  for  the final one. 

The  matrix H,, i n  (loa) is a  positive  definite K x K matrix, which 
should  be an approximation of the  Hessian  matrix of 4 from (1 1) at n z , , .  
A good job is done by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
update 

where 

with any  positive  definite  initial  choice of H I .  
The  quadratic  minimization  problem ( IO)  can be solved by the 

Higgins-Polak method  as described in Ref. 3 .  Let H,, be the  solution 

3s - 

2s - 

15 - 

5 .  

Figure 2 The  function (13) for  iterate I I  = IO (dotted line) and  for  the final iterate 
11 = 43 (solid line). Under  consideration is the  cubic  spline  model as in Figure I ,  and 
the  optimality  criterion is the A criterion (I, = -1). 
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obtained.  We  note  that  the Higgins-Polak method  also  provides weights 
wo, wI,. . . , w,. 2 0 summing  up  to 1 and  such  that 

but this is used  only in the final step (see below).  Let M,, = vec”(E,,).  Now, 
a  search  along  the line segment 

(with  some fixed a! < I ,  usually close to 1)  is performed  to  obtain  the next 
iterate M,,+l. 

To summarize,  the  method  for  solving (8) is a  modified quasi- 
Newton  method.  The  search  direction is based on  a  local  second-order 
approximation of the objective function 0. The  constraint set in (lob) over 
which the  quadratic  approximation is minimized  may be viewed as  a 
polyhedral  neighborhood of the  current  vector  iterate m,,. It  may  appear 
more  natural  to minimize that  quadratic  approximation  over  the  set of d l  
moment  vectors 

r77 = vec(M), M E Conv{B(.y)B(s) : .x E [a, h ] }  

This,  however, is practically  impossible. 
After  termination of the  algorithm with  a final iterate M,, (for  stopping 

criteria see Ref. 3), a  corresponding numerically optimal design c* is com- 
puted by applying  the Higgins-Polak method  to  the  problem of  minimizing 
the final quadratic  approximation  (loa)  over  the slightly smaller set 

that is, the final vector iterate m,, is removed from  the  generator set in (lob). 
This  has  proved  to be favorable, since otherwise  a positive w O  may  occur in 
(14)  that  could  prevent  the  identification  of  a  corresponding  design. We thus 
obtain  an  optimal  solution m*, say,  to  that  quadratic  problem,  a  non-empty 
subset I of indices from [ I ,  . . . , I ) ,  and positive weights It,;, i E I ,  summing 
up  to 1 and  such  that 
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In all our numerical  experiments we observed  that 117* is very  close to  the 
final vector iterate m,, and  shares numerically  the same value  of 4. Hence,  a 
numerically optimal design is given by (* supported by s i ,  i E I ,  and weights 

The  algorithm  shows  good  convergence  behavior, in particular  a  good 
Ioccrl convergence  rate  as it is usually  observed by a  quasi-Newton  method. 
For instance,  the  D-optimal  designs  for spline degree ri = 2 and  one single 
interior  knot  (i.e.? = 2,  s I  = 1) derived  theoretically in Ref. 5,  page 43, and 
in Ref. 6, Theorem 2, are  found very accurately by the  algorithm.  For 
degrees d = 3,4,  5 and  one single interior  knot,  D-optimal designs  within 
the class of  designs  with  minimum support size k were found numerically by 
Lim [6]. The present  algorithm  computed precisely these  designs as  the 
numerically D-optimal  ones  in  the class of d l  designs (up  to  two  printing 
errors  in  the  tables  on page 176 of  Ref. 6). 

(*(x;) = w;. 

Table 1 Numerically  Optimal Designs in the  Spline  Model  (Fig. 1) 

D A E 

Support Weight Support Weight Support Weight 

0.00000 0.14286 0.00000 0.08848 0.00000 0.07361 
0.00000 0.14286 0.00000  0.09128 0.00000 0.07361 

0.16329 0.14286 0.15315 0.16875 0.14473 0.17424 
0.14473 0.14286 0.14473 0.16962 0.14473 0.  I 7424 

0.43037 0.14286 0.434 15 0.1 8454 0.43418 0.20559 
0.43418 0.14286 0.43418 0.18134 0.43418 0.20559 

0.62989 0. I4286 0.63363 0.14444 0.633  16 0.17364 
0.63316 0.14286 0.63316 0.14328 0.63316 0.17364 

0.75929 0.14286 0.75807 0.15269 0.75720 0.14992 
0.75720 0.14286 0.75 720 0.14820 0.75720 0.14992 

0.90894 0.14286 0.9 1 I79 0.17049 0.9  1907 0.15293 
0.91907 0.14286 0.91907 0.17121 0.91907 0.15293 

1 .ooooo 0.14286 1 .ooooo 0.09062 I .ooooo 0.07008 
I .00000 0.14286 I .00000 0.09506 I .00000 0 .o 7008 

Note:  Under  consideration are the D, A. and E eriterla.  The  numbers in italics give the  optimal 
designs  supported by the  Chebyshev  points. 
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Table 1 shows  a few numerical  results  for  the D and A criteria  and  the 
approximate E criterion i n  the  cubic  spline  model  as in Figures 1 and 
2. The designs  addressed in Table 1 by italics are  the D-, A - ,  and  E- 
optimal designs  within  the  subclass  of  those  designs concentrated  on  the 
Chebyshev  points, Le., supported by the k extrema1 points of  the equioscil- 
lating spline in S,/(K, s) (cf. Ref. 7, Section 2). For the D and A criteria  these 
are  computed by a simplified variant of the  above  algorithm, fixing s I ,  . . . , 
x,.(r = k )  to  those  Chebyshev  points,  while  the  E-optimal  design is from  Ref. 
7, Theorem 4. By that  theorem  the  E-optimal design (among crll designs) is 
supported by the  Chebyshev  points. We see from  Table 1 that  the 
optimal design  numerically  coincides  with  the  E-optimal  design. For the D 
and A criteria  the  Chebyshev restricted designs do  not differ much  from  the 
numerically optimal designs. The D efficiency of the  former with  respect to 
the  latter is 0.99335, and  the A efficiency is 0.99476.  Similar  results  hold true 
for  other spline setups. 

In all the  cases we considered,  the  numerically  optimal  design  has 
minimum  support size and  the  boundary  points CI and h are  support  points. 
For D optimality,  the  minimum  support size property  has been  conjectured 
in Ref. 5 ,  page 45, Conjecture I .  In  our final section we present  some  first 
results toward  a  theoretical  foundation  of  the  observed  phenomena. 

3. SOME  RESULTS  ON  OPTIMAL  SSPLINE  REGRESSION 
DESIGNS 

The B-spline basis B,, . . . , Bk  of S(K, s)  defined by (4) enjoys  the  fundamen- 
tal  property of totnl positivit),; i.e.,  for  any  points s I ,  . . . , .q. such that CI 5 
s i  < . . . < s k  5 b the  collocation  matrix 

is totally positive. Recall that  a k x k matrix A = (u;,.~);,,=~ .,_,, is said to be 
totally positive if and  only if all its  minors  are  nonnegative, i.e., if and only if 
for anyp E ( I , .  . . , k )  and  allp row and  column indices 1 5 il < . . . < i,, 5 k 
and 1 5,jl < . . . < j,, 5 k one  has 

Moreover, by Ref. 2, Theorem 12, the  collocation  matrix  (16) is nonsingular 
if and only if its  diagonal  elements  are positive. From this we obtain 
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Lemma 1 

For  any design [, the  moment  matrix of ( from  Eq. (7) is nonsingular  (and 
hence  positive definite) if and  only if there  are  support  points zI  < ... < z,,. 
of 6 such that Bj(z,)  > 0 for all i = 1, . . . , k .  

Proof. Arrange  the  support  points of [ in increasing  order, 
c[ 5 .x1 < . . . < .x, p b, say. We may  write 

where 

N ( 6 )  = (B;(.X-,)),=L .k and W ( [ )  = diag(((sl), . . .((x,)) 
/ = I .  . I  

Obviously, M(6)  is nonsingular if and only if the rows  of N ( ( )  are 
linearly independent,  or  equivalently, if and only if there exist k column 
incides 1 p j l  < . . . < jk p r such that  the  submatrix 

is nonsingular. As noted  above, this is equivalent to Bi(z,)  > 0 for all 
i = I ,  . . . , k ,  and  the  lemma is proved. 0 

A design 6 is said to be udnissible~for S(,(K, s), if and only if there is no 
design  such that M(6)  p M ( i )  and M ( ( )  # M(&). That is, the  admissible 
designs are precisely those  whose  moment  matrices  are  maximal  with  respect 
to  the  Loewner  partial  ordering  in  the set of all moment  matrices of  designs. 
The Loewner partial  ordering in the set of all symmetrical k x k matrices is 
defined by 

A p B if and only if B - A is positive  semidefinite 

Note  that  admissiblity of a design does  not  depend  on  the  particular  choice 
of the basis of the spline space S ~ ( K ,  s). For, if we choose  another  basisf = 
( f l ,  . . . ,fi)’ (e.g., the  truncated  power basis as in Ref. 8). then  this is related 
to  our B-spline basis B = ( B , ,  . . . , Bk)’ by a  linear  transformation,  i.e., 

f ’  = TB, for  some  nonsingular k x k matrix T .  Hence  the  resulting  moment 
matrices  of  designs  under basis f ,  
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(s,, . . . , x,. being the  support  points of () are related to  the  moment  matrices 
M(6)  under  the B-spline basis by 

M , ( t )  = TM(6)T’ for all designs e (18) 

Obviously,  for  the  Loewner  partial  ordering we have 

A s B G+ T A T ’ S  TBT’ 

for  any  symmetrical k x k matrices A and B. 

Loewner  partial  ordering,  i.e., 
Any  reasonable  optimality  criterion @ is decreasing  with respect to  the 

If A ,  B are positive  definite and A 5 B, then @ ( A )  2 @(B) .  (19) 

Many  optimality  criteria @ are strict/y decreasing; i.e., if additionally A # B 
in (19), then @ ( A )  > @(B) .  Examples  are  the @/, criteria  for finite 11 we used 
in Section 2. If @ is strictly decreasing,  then  obviously  any  @-optimal  design 
is admissible. 

The result of  Ref. 8, Theorem I .  1, states  that a design t is admissible 
for S,/(K, s )  if and  only if 

where supp(6) denotes  the  support of e and L s J  is the largest integer 5 s .  For 
the case that s i  E (0, 1) for all i = I ,  . . . , C - I ,  the  observed  minimum  sup- 
port size property of @,-optimal designs  (where p < 00) is explained by the 
following result (cf. also  Ref. 8, pp. 1558-1559). 

Lemma 2 

Let s, E (0, I }  for all i = 1, . . . , C - 1. If ( is admissible  for S(/(K, s) and  the 
moment  matrix M ( e )  is nonsingular,  then  the  support size of 6 is equal  to k 
[the  dimension of S ~ ( K ,  s)], and  the  boundary  knots KO, K~ and all the  interior 
knots K; with smoothness s i  = 0 are in the  support o f t .  

Proof: By ( I ) ,  k = Crl+ 1 - a, where a denotes  the  number of 
interior  knots K; with s i  = 1. Consider  the B = C + 1 - a knots 

K;, < . . . < Klp  
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which are  the  end  knots of the  interval and the  interior  knots with smooth- 
ness zero. By Eq. (20), for all u = I ,  . . . , B - I ,  

where a,, denotes  the  number  of  knots  of  smoothness 1 in the  interval 
(K,,,? K,,,+, ). Hence, 

Since M ( t )  is nonsingular, we have  #supp(t) 2 k ,  and  thus K,, , . . . , K,,, E 
supp([) and  #supp(e) = k .  0 

For  polynomial spline  regression  with  higher  smoothness,  a  theoretical 
explanation  of  the  minimum  support size property of @,-optimal designs is 
still outstanding.  It  has  not even been proved that the support of  a @/,- 
optimal  design necessarily includes  the boundary  points of  the  interval 
[ o ,  h]. However, for D  optimality (p = 0) the  latter  can be proved (see 
Lemma 3 below; see also  Ref. 6, Lemma I ) .  

For the rest of the chapter we  will be concerned  with  D-optimal 
designs for  polynomial spline  regression. As is well known  [and is obvious 
from Eq. (18)], D optimality  of  a  design  (within  any  class  of  designs)  does 
not  depend  on the  particular  choice of the  basis  of  the  space S[/(K, s); thus, 
we  will use  the notion of  a  D-optimal  design  for S[,(K. s). The following 
result has been stated by Kim [6, Lemma I]. However,  the  proof given in 
that  paper is not convincing, in our view, and we give different  proof  here. 

Lemma 3 

The  D-optimal design for S(/(K, s) (with arbitrary degree,  knots, and  asso- 
ciated  multiplicities)  has both  boundary  points K() = CI and K~ = h among  its 
support  points. 

P ~ m f  Let 6 be any design with nonsingular  moment  matrix M ( c ) ,  
and let s I  < . . . < x, be the  support  points of 6.  Consider  the  representation 
(17)  of M ( < ) .  I n  the  following we denote by N t ( ; : : : : : ; l )  the  submatrix  of N ( 6 )  
with respective row and column indices 1 p i, < . . . < i,, 5 li and 1 5 j1 < 
. . . <,j,, 5 I' (where 1 5 p 5 k ) ,  i.e., 
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By (17)  and  the  Cauchy-Binet  formula, we have 

Suppose  that s I  > N. We will prove  that  cannot be D optimal. 
Let f be the  design obtained  from 6 by replacing  the  support  point S I  

by CI and f(u) = ((s,), <(.x,) = ((si) for a l l  i = 2, . . . , I'. By (21)  and  its version 
for <, we obtain 

det M ( c )  - det M ( i )  

From (5a)-(5e) we see that  the first column of Ni ( l l , ~ ~ ~ . - ~  . . . . .)  is the first unit 
vector in Rk; thus 

Since  the  collocation  matrix NE (;::::::::,> is totally positive, we have by the 
Hadamard-type  inequality (cf. Ref. 9, p. 191) and by (sa), 

Moreover, by (5b),  the last inequality in (24) is strict  whenever  the matrix 
N6 i:;;;;.lk is nonsingular. In fact,  such  indices 2 5 j 2  < ' . . < . j k  5 I' exist. 
For, by (21), since M(<) is nonsingular,  there exist indices 1 a,j, < 

j z  < . . . < . j k  I I' such that  NE( /I '.:.") .I".....lk is nonsingular,  and  again by apply- 
ing  the  Hadamard-type  inequality  to  the  latter  totally positive matrix we 
obtain 

( 
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Together with Eqs. (22)-(24), it follows that 

det M ( ( )  < det M ( i )  

and  thus 6 canot be D  optimal. 
The case for s,. < h is treated  analogously. 

Some  results on D-optimal  designs  for S,/(K, s) within the  class ofmini- 
mum support clesig~w were derived i n  Ref. 10. Actually, in that  paper differ- 
ent  polynomial degrees d j  on each  subinterval  [K,, K,+~],  i = 0, . . . , .!! - I ,  
were admitted,  but we will not follow  this  extension  here. For  short,  a design 
with support size k = dimSd(K, s) that is D  optimal  within  the  subclass  of all 
designs with support size k will be called a D-optimd minin7unl support 
desigrl,for S[\(K, s). As is  well known,  a  D-optimal  minimum  support design 
assigns  equal  weights I lk  to each  of  its support  points. As  the  proof of 
Lemma 3 shows,  the result of that lemma  pertains also to a  D-optimal 
minimum  support design.  Hence, by ( l7) ,  a  D-optimal  minimum  support 
design for  S,/(K, s )  is determined by its support  points 

where x* = ( S T ,  . . . , s k )  IS an optimal  solution to the  problem * ’  

Maximize  det N ( x )  
Subject to xI  = CI < s 2  < . . . < s k - l  < .yk = h 

For the  case  of merely continuous  polynomial spline  regression (that is, 
.si = 0 for all i = 1 , .  . . , .!! - I )  it was  claimed by Park [ I O ,  p. 1521 by some- 
what heuristic arguments,  that the  D-optimal  minimum  support  design in 
S[/(K, 0) is obtained by putting  together the support  points of  the  D-optimal 
designs for  ordinary  dth degree  polynomial  regression  on  the  subintervals 
[K,,  K;+,], i = 0, . . . , e - I .  We give a  proof thereof in Corollary 5. We  start 
with a  more  general  result. 
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Lemma 4 

Let io E { 1, . . . , e - I ]  be such  that  the  interior  knot K,, has  smoothness 
.Y;, = 0. Then  the  support of  the  D-optimal  minimum  support  design  for S, 
( K ,  s )  is the  union of the  supports of the  D-optimal  minimum  support  designs 
for S,/(K('), & I ) )  and  for S[,(K(*), s ( ~ ) ) ,  respectively, where 

K ( l )  - - (Kg, K I ,  . . . , K,,), - - (s I , . . . , "in - I ) 

K(2) = (K,n, K,,,+I, . . . , Kg) s(2) = (S;,+I, . . . , se+l) 

(If io = 1 or io = - I ,  the  sets S d ( ~ ( I ) ,  & I ) )  or S ~ ( K ( ~ ) ,  s(2)) are  to be under- 
stood as the  space  of all clth-degree  polynomials  over [ K ~ ,  KI]  or [ K ~ - I ,   ~ e ] ,  
respectively.) 

Proof. Consider  the  vector t = ( t l ,  . . . , t k+d+l )  of  multiple  knots  from 
Eq.  (2). Let ko be the index for which 

From (5e) we see that 

B , ,  . . . , Bk,-l vanish on [K;~,, h] 

and 

&,+I, . . . , B k  vanish  on tu, K,,] 

Also, observing (sa) and  (5d), we have 

Let x = ( x I ,  . . . , .xk) satisfy  (25)  and  such  that  the  collocation  matrix N ( x )  is 
nonsingular, i.e, B,(.x,) > 0 for all i = I ,  . . . , k. By (27a)-(27c), s ~ , - ~  < K,, 

and N ~ , , + ~  > K,,,. Hence  the  Hadamard  type  inequality  for  totally  positive 
matrices  entails,  using  notations  for  submatrices as in the  proof of 
Lemma 3 ,  
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0 < det N(x) 

5 det N, 
I , . . . , k ( ) -  . . . ,  k 
l,...,ko- 1 ko+1,  . . . ,  k '> Bk,l( .~ku) det N, ("" + ' 

5 det N, 
1, ..., k o -  1 k " + 1  , . . . ,  k 
I , . . . , / < ( ) -  1 

If xk , ,  = kill, then  the  column  vector (B~(K,,,, . . . , B~(K,,)) '  is the koth unit 
vector in Rk,  as follows from by (27c),  (5a), and  (5d). Hence, if sk,, = K ; ( ~ ,  

then  there is equality in (28a)-(28c), but otherwise  there is strict  inequality 
throughout.  Consequently,  an  optimal  solution x* to (25a) and (25b)  must 
satisfy .I$,, = K , ~ ~ .  Now,  for  any x satisfying  (25b) and ski, = K,,], we may  write 

Hence 

det  N(x) = det N,(x(')) det N 2 ( x ( * ) )  

where we have  denoted 

Equation (29)  ensures that  an optimal  solution x* of  (25)  must be such that 
x*(') is an  optimal  solution  to the  problem 

and x*(2) is an  optimal  solution to the  problem 
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Now  the  assertion  follows by observing  that  the  matrices N l ( x " ' )  and 
N2(-t?') are  the  collocation  matrices  to x") and x(?) under special bases  of 
the  spline  spaces S(/(K('), , $ I ) )  and S,[(K(?), ,+')), respectively. For,  note  that by 
(26) and ( I ) ,  /io is the  dimension of the  space  SI/(^('), ,s(')). The B-splines 
B I ,  . . . , Bk restricted to  the  interval [ ( I ,  K,,,] are clearly members of 
S,I(K('), .s(')i; they are linearly independent [since by (29) there is a nonsin- 
gular  collocation  matrix in these splines], and hence  they are a basis of  the 
space S,/(K('), . + I ) ) .  Similarly, i t  can be seen that  the  dimension O f  S,/ (K ' " ,  
is equal  to k - ko + I ,  and  the B-splines Bk,,, . . . , B k  restricted to  the  inter- 
val [K,,,, h] form  a basis of the  space s(/(~(?),  s(:)). 0 

Repeated  application of Lemma 4 for merely continuous  polynomial 
spline  regression yields 

Corollary 5 

The  support of the  D-optimal  minimum  support  design  for S,/(K, 0) is the 
union of the  supports of  the  D-optimal  designs  for  ordinary  tlth-degree 
polynomial  regressions  over the  subintervals [ K , ,   K , + ~ ] ,  i = 0, . . . , L' - I .  
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1. INTRODUCTION 

Understanding  variation is fundamental  to  quality  improvement  and  custo- 
mer  satisfaction. That was realized early by Shewhart (1931) and  later 
emphasized  by,  for  example,  Deming  (1986, 1993). While Shewhart  and 
Deming  mainly  concentrated  on  the  reduction  of  variation by removing 
so-called  assignable  or special causes of variation,  Taguchi (1986)  suggested 
a  systematic way to  make  products  and processes insensitive to  sources of 
variations (see also  Taguchi  and  Wu (1980)). This  strategy is usually called 
robust design methodology  or  robust design  engineering; see, for  instance, 
Kackar (1985), Phadke (1989), and  Nair (1992). An  important  step is to 
identify factors,  controllable by the  designer  or  process  developer,  that 
affect the  dispersion  of  a  response  variable y of  interest. 

Let x denote  a vector  of control  factors,  and let z be a  vector  of 
environmental  variables  that  vary in a  way  usually not  controllable by the 
designer,  although  some of  its  components  might be controllable  during  the 
course of an experiment.  A  quite  general  way to describe  the  outcome y is 

where f ( x )  is the  expectation  of y, .f’(x) + g(z) + h ( x ,  z) is the  conditional 
expectation of y given z; here h(x, z) corresponds  to  the  interaction between 
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x and z. In robust design methodology we want  to  determine levels of the 
factors, i.e., components of x, such that  the effect on y of  the  variation of E 

and  z is made  as  small  as possible  whileJ'(x) is kept  on  target. Assume that  it 
is possible to vary a l l  components of  z in an experiment.  Then  the  interac- 
tion  between x and  z is important in order  to identify a  robust design; see, 
for  example, Box et a l .  (1988) and Bergman and  Holmquist (1988). Very 
often,  however, we cannot vary all components of z; we have to find factors 
(components of x) that affect the  dispersion of J'. i.e., variables  having a 
dispersion effect. To clarify this approach we expand  the  variance of J' by 
conditioning  on  the  environmental f. dctors z: 

The two  terms in the  variance  of J' can be interpreted  as  follows.  The  first 
term on the  right, E[Var[l*lz]], portrays how the  variance  of J', given z, is 
affected by dispersion effects, i.e., factors  affecting  the  spread  of  the  data. 
The  second  term  on  the  right, Var[E[ylz]]. portrays  how  the  variance of J, is 
affected by parameters in the  location  model-including fixed effects of  z 
such as design by environmental  interaction effects. The  approach is moti- 
vated by the  incorporation of  dispersion effects, since direct  location  mod- 
eling of both design factors  and  environmental  factors is allowed; thus  this 
standpoint reduces  the risk of confounding  location effects and  dispersion 
effects. Theoretical  justification  for  the  approach is also  provided by 
Shoemaker  et  al.  (1991), Box and  Jones  (1992),  and  Myers et a l .  (1992). 

In  this  chapter we discuss  how to identify control  factors,  i.e.,  product 
or process parameters,  having  dispersion effects; in particular, we discuss 
how  dispersion effects can be identified using  unreplicated  experimental 
designs i n  the 2k"' series of fractional  factorial designs (see Bergman  and 
Hynen. 1997). For some  extensions  to  more  general  designs, see Blomkvist 
et al. (1997) and Hynkn and  Sandvik  Wiklund  (1996). 

2. IMPROVING ROBUSTNESS  THROUGH DISCOVERY OF 
DISPERSION EFFECTS 

When it is possible to vary environmental  (noise)  factors in an experiment, 
robustness  improvement is possible through  location effect modeling if 
interaction effects are  found.  However, in this section  improving  robustness 
through  minimization  of  the first variance  term in (2) is considered. It  was 
not  until fairly recently that  dispersion effect modeling  became  a  central 
issue i n  parameter  design,  originally  not  emphasized even by Taguchi. 
Historically,  there  are  many  anecdotes  associated  with  dispersion effect 
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modeling,  but  many of  these are merely anecdotes  or aimed at  making  the 
estimation of  location effects as efficient as possible. During  the  past  decade 
this  problem  area  experienced  a  rapid  growth of interest, as shown by the 
number of applications  and  published  papers.  In  general,  there  are two 
approaches  for  dispersion effects modeling:  Either  the  experiment is repli- 
cated,  or it is not.  Major  emphasis in this chapter is placed on  the  latter case; 
however,  for  the  sake  of  completeness  both  approaches  are  considered. 

In  a  replicated  experiment,  identification of dispersion effects is fairly 
straightforward.  Depending  on  the  error  structure of  the  experiment,  e.g., 
on  whether  or  not  the replicates are  carried  out fully randomized,  the  iden- 
tified dispersion  effects  are effects measuring  variability  either  between or 
within  trials.  Some  may  use  the  terms rqdiccrres and cl~rplicates, or genuirw 
and , f C / s c ~  replicates, respectively. If we compute  sample  variances,  under 
each  treatment  combination,  on which new effects can be computed,  the 
analysis is rather  uncomplicated.  Taking  the  logarithm  prior  to  computing 
the effects improves  estimation (see Bartlett  and  Kendall, 1946). The new 
effects, which can be seen as  dispersion effect estimates,  can be plotted  on 
normal  probability  paper  to  discriminate  between  large  and  small effects or 
analyzed  with  other  techniques  such  as  analysis  of  variance. For  more  back- 
ground  on this topic, see Nair  and  Pregibon (1988) and  Bisgaard  and  Fuller 
(1995). 

If the  problem  of  dispersion effect modeling is a fresh arrival.  identi- 
fication  of  dispersion effects from  unreplicated  experiments is of even more 
recent date.  Rather  pioneering, Box and  Meyer (1986b)  published a paper 
addressing  dispersion effect identification  from  unreplicated  two-level  frac- 
tional  factorial  experiments in the 2k-/' series. Their  contribution was not 
entirely  unique;  Daniel (1976). Glejser (1969), and  many  others  had  touched 
upon  the  subject  earlier,  but Box and  Meyer were the  first  to  propose dis- 
persion effect identification  from  unreplicated  experiments  as an  important 
aspect  of  parameter design. In  a  paper by Bergman and Hynkn (1997), in 
which the  problem  area is surveyed and  a new method is introduced; dis- 
persion effects from  unreplicated  designs in the 2k-/' series can  now be 
identified with  well-known  statistical significance testing  techniques (see 
 SO Section 3). It is still too  early  to  judge  the significance of  the new 
method,  but  compared  to existing methods  the new proposal  does  not 
rely on  distributional  approximations  or  model  discrimination  procedures 
that  are  entirely  ad  hoc.  There is, however, an assumption of llorlllality that 
is rather critical (see Hynen, 1996). Moreover,  the  method  proposed in 
Bergman and  Hynen (1997) is generalized to  experilnental designs other 
than  the two-level  designs from  the 2"/' series by Blolnkvist et a].  (1997) 
and  to  the  inner  and  outer  array  setup by Hynln  and Sandvik  Wiklund 
(1996). The use of normal  probability  plotting  and  transfornlatiolls in 



362 Bergman  and  Hynen 

combination with the  method  of Bergman and  Hynen ( 1  997) is considered 
by Blomkvist et  al. (1997). 

A  different  approach  to  the  same  problem was  taken by Nelder  and 
Lee  (1991) and by Engel and  Huele (1996). In both  papers  a generalized 
linear  model  approach is taken: see also  McCullagh  and  Nelder (1 989). 

Overall,  even if many  problems  remain  to be solved, the  contribution 
provided by the  papers cited above  constitutes  a  technique  that  can be useful 
for  many  purposes.  It  can be  used to  identify general  heteroscedasticity,  to 
relate  heteroscedasticity  to  certain  factors  studied in the  experiment, or 
simply to  provide  an  additional  component  to  the design  engineer’s toolbox 
useful for  identifying  the  most  robust  design  solution.  Also  note  that  the 
techniques  used  for  unreplicated  designs  may be  used  in conjunction with 
duplicated  designs  to identify different  components.  The  method suggested 
by Bergman  and  Hynen (1997) is discussed in the  following  section. 

3. DISPERSION  EFFECTS IN TWO-LEVEL  FRACTIONAL 
FACTORIAL  DESIGNS 

Let i denote  one of  the  factors in an unreplicated  two-level  fractional fac- 
torial  design.  Define a;+ as  the  average  variance  of  the  observations  when 
factor i is at  its high level, and let a;- be defined  correspondingly.  Factor i is 
said to  have  a  dispersion effect if c$+ # a;-. Natural  but naive indicators  for 
a:+ and 0;- are  the  sample  variances based on all observations when factor i 
is at its high and low level, respectively, Le., s’(i+) and s2(i-). Box and 
Meyer  (1986b)  suggested the use  of ratios F, = s2(i+)/s2(i-) to identify 
dispersion effects. However,  despite  the  notation, they  noted  that  the F 
ratios  did  not  belong  to  an F distribution  owing  to  the presence of disper- 
sion and  location effect aliasing.  The  location effects had  to be eliminated 
before  estimating  dispersion effects. Therefore,  estimates were  calculated 
from  residuals  obtained  after  eliminating  suspected  location effects. Later, 
some  alternatives  to Box and Meyer’s approach were given. Nair  and 
Pregibon  (1988)  extended  the  method  to  the  case  with  replications. 
Furthermore,  essential  contributions  are given by Wang (1989) and 
Wiklander (1994), who  propose  alternatives  to  the  unreplicated case. 

3.1. Location  Effects 

Let y be the ( 1 2  x 1)  response  vector  from  a  complete or  fractional  factorial 
experiment  with an (n  x n)  design matrix X with  column  vectors 
xo, . . . , x,,+I. Column x. is a  column of I’s, and  the  remaining  columns 
represent  contrasts  for  estimating  the  main  and  interaction effects. We 
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assume  that  the  observations y l ,  . . . , y,, are  independent  with  variances 
Vbli] = ai, u = I ,  . . . , n. Possibly, a,, depends  on  the  factors  varied in the 
experiment.  Note  that,  for  example, 

Let z = (I/n)X’y be  the  vector  of  estimated  mean  response,  main,  and 
interaction effects. As usual, we denote E[z]  = f l ,  whereupon zg, . . . , zl,-l are 
independent with equal  variances 

As noted by Box and  Meyer (1993), the  “vital few and  trivial  many”  prin- 
ciple suggested by Juran  (the  Pareto principle) ensures  that in most  cases 
only  a few B’s are  nonnegligible.  Therefore, we can use the  normal  plotting 
technique  suggested by Daniel  (1976) to find these B’s (see also  Daniel, 
1959). Of  course,  there  may be problems  due  to  confoundings when  highly 
fractionated designs are used, but  this issue is not discussed further  here. 
See, for  example, Box and  Meyer  (l986a, 1993), who give an interesting 
approach  to these problems using  Bayesian  techniques. 

Under  the  Pareto  principle,  only  a few degrees of  freedom  are  used  to 
estimate nonnegligible /3 values. Therefore,  the  remainder of  the  contrasts 
can be used to  estimate  the  variance ai, i.e., 

In  order  to identify dispersion effects, we shall  use  additional  contrasts 
that  are based on  linear  combinations of those  column  vectors in X asso- 
ciated  with negligible location effects. 

3.2. Dispersion Effects 

Box and  Meyer (1986b)  created new column  vectors  based  on  columns  from 
the  original  design  matrix X: 

1 1 
2 X/li+ =?(x,  +x,.,) and xj l i -  =-(x, - x,.,) 
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where x,./ is the  column  vector  corresponding  to  the  row-wise (Hadamard) 
product of x, and x/; Le., if xi and x/ correspond  to  main  location effects, 
then xi./ corresponds  to  the i x j interaction effect. Note,  for  example,  that 
the uth  element of xili+ is equal  to x,,~ if x,,, = + I  and  zero  otherwise. 

Let us now introduce  the set r, of nonordered pcrirs of column  vectors 
(x/, x,.,} from X, such  that  the  pair (x,,,  x,.,,) is excluded and  neither of  the 
corresponding  contrasts z/ = xly and :I.l = x,',y has been  judged  to  estimate 
nonnegligible location effects, i.e.,  their  expected  values  are  judged  to be 
zero: 

E[xlyl = E[x,!;y] = 0 

Note  that  there  are ( n  - 1)/2 members  of TI if all location effects are 
judged to be negligible, i.e., if we have E[xjy] = 0 for a l l j .  It is straightfor- 
ward to  show  that  the  contrasts  corresponding  to ( I ) ,  ziIj+ = x,lli+y and 
zil i- = X~;~-Y, have  variances 

Vur[zili+] = -aj+ and V ~ W [ ; ~ ~ , - ]  = -a;-, respectively (3) n 2 11 7 

2 2 

Now, let xi be associated  with  a  studied  factor, i.e., let x,'y estimate  one 
of the  main effects. If a;+ and 0;- are  different,  this  factor  has a dispersion 
effect. Therefore,  the difference  between and gives information 
about  the  magnitude of this dispersion effect. If we can find many indices 
.j such that (x,,  x,:i} belongs to r,, then all the  corresponding &+ and 
can be  used to  estimate  the difference  between ai?, and c$-. Moreover, since 
the  column  vectors xili+ are  orthogonal,  the  contrasts ~/21~+ are  independent. 
Therefore, we can use an F test for  testing Hi" : D;+ = 0;- against 
H i ,  : a:+ # c$- with  the test statistic 

Under Hi,,. the  distribution of F is an F distribution with ( m ,  n 7 )  
degrees of freedom, where t n  is the  number of elements (xi, xi.i} in r,. 
Note  that  the test is double-sided; i.e., both  large  and small values of F, 
supply  evidence  against  the null hypothesis. 
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3.3. Alternative  Expressions 

The intuitive  understanding  of  the  above  expressions  might be somewhat 
vague.  However,  more  intuitive  expressions  exist. Compute new “residuals,” 
F,,, z[ = I ,  . . . , I ? ,  based on a location  model  including  the  active  location 
effects expanded with the effects associated with column i and all interaction 
terms  between i and  the active  location  effects.  Then  the  statistic 0;” may 
be computed a s  

A third  interpretation is the  following.  Given  the identified location 
model, fit separate regressions to the  two  sets  of data associated with the 
high and low levels of  column i, respectively; i.e., use column i a s  a  branch- 
ing column.  Compute the  corresponding  residual  vectors, i,+ and i,-, and 
calculate 0BH a s  

This  alternative is, in fact,  a  generalization  of  the  parametric test suggested 
by Goldfeld  and  Quandt (1965). They  proposed  a  similar  approach  for 
identifying  heteroscedasticity in a  more general  regression  model. 

Regarding  the  three  alternatives, we see that  the second one intuitively 
explains  the  differences between D f H  and  the  methods based directly  on 
residuals. That is, it is necessary to adjust  the  original  residuals to  obtain 
independence between the  two  sets of residuals. This independence is, of 
course,  conditional  on  the  judgments  made in ( 2 )  but  provides  the sufficient 
requirements  for DBH being F-distributed.  The  third  alternative is the  most 
natural way forward  to generalize  the  proposed  method to designs other 
than the 2”p series, e.g.,  to  nongeometric  Plackett  and  Burman designs and 
to  factorial  designs with more  than  two levels (see Blomkvist et al.. 1997). 

4. AN ILLUSTRATION  FROM  DAVIES (1956) 

I n  Davies (1956), data  from  an  improvement  study  concerning the quality  of 
dyestuff  was  presented. The  outcome was also given an interesting  reanalysis 
by Wiklander (1994). We use the  same  data set to illustrate  our  method.  The 
improvement  study  was  carried out  as a z5-’ fractional  factorial  experiment 
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without replicates involving five factors, labeled A-E. The defining  relation 
was  chosen  as I = -ABCDE. The  quality of  the  dyestuff  was  measured 
by a  photoelectric  spectrometer,  which  gave  a  quality  characteristic  of 
“the  smaller  the  better”  type;  i.e.,  the lower the value  recorded,  the  better 
the  quality.  Responses  and all 15 orthogonal  columns  concerning  location 
main  and  interaction effects are given in Table 1. 

Since no  independent  error  estimate is available,  the  normal  probabil- 
ity plot  of  contrasts suggested by Daniel  (1976) is a  convenient  tool  for 
analysis (see Fig. 1). From this plot it appears  that  factor D is the  only 
location effect present in the  data; hence columns  other  than D can be 
used for  estimating  dispersion effects. In  Davies  (1956)  only  location effects 
were  considered,  but  Wiklander  (1994)  detected  and  showed  evidence  of  a 
dispersion effect from  factor E. Further  investigations will  be conducted 
using our  method. 

An estimate of  the  dispersion effect from  factor E becomes  available 
on  combining  certain  columns  according  to Eq. (1). The  pairs of columns 
included  must be judged  to  belong  to  the set rE, Le., judged  not  to  corre- 
spond  to  active  location effects. These new contrasts  and  their  calculated 
values appear in Table 2. 

For  illustration,  the  contrast zAIE+ is derived by combining  columns A 
and AE, i.e., 

Furthermore,  testing Hi, : c r j +  = 0;- against H i ,  : cr:+ # 0;- for  other  factors 
will require  calculations  analogous  to  those in Table 2 but based on  other 
contrasts.  The  results  from  such  a  procedure  are  presented in Table 3. Note 
however,  that  the five F tests are  not  independent. 

From  Table 3, we  see that  factor E has  a  dispersion effect that is 
difficult to  disregard.  Wiklander (1994)  detected this dispersion effect and 
found it significant. However,  she  used  only (3, 3) degrees  of  freedom in a 
similar  test.  Furthermore, even factor D might  have  a  dispersion effect that 
was not  detected by Wiklander (1994). However,  a  complete  analysis  of data 
should  always  involve  residual  analysis,  which  here reveals a  possible 
abnormality in observation 11. Treating y I  I as  a missing observation  and 
recalculating it by setting  some negligible contrast  to  zero (see Draper  and 
Stoneman, 1964)  shows that  the  dispersion effect from D becomes insignif- 
icant.  Furthermore.  the  dispersion effect from E is fairly insensitive to 
changes in y I  I ,  and  it is therefore  reasonable  to  consider E as  the only  active 
dispersion effect on  the  dyestuff  data. Of course,  there is also  always  the risk 
of  overestimating  the significance due  to  the  multiple test effect. 

2 



Table 1 Design Matrix, Responses, and Confounding Structure up to Two-Factor Interactions for the Dyestuff Data 

u A B C D AB AC AD BC BD C D  -DE -CE -BE -AE -E j',, 

1 -  - - - + + + + + + - - - - + 201.5 
2 +  - - - - - - + + + + + + - - 178.0 
3 -  + - - - + + - - + + + - + - 183.5 
4 +  + - - + - - - - + - - + + + 176.0 g 
5 -  - + - + - + - + - + - + + - 188.5 
6 +  - + - - + - - + - - + - + + 178.5 3 
7 -  + + - - - + + - - + + - + 174.5 8 
8 +  + + - + + - + - - + - - - - 196.5 = 
9 -  

10 + - - + - - + + - - + - - + + 240.5 2 
1 1  - + - + - + - - + - + - + - + 208.5 

13 - - + + + - - - - + + + - - + 274.0 

+ + + - - - + + + - - - + - 256.0 
E 

15 - 
16 + + + -1 + + + + + + + + + + + 274.5 (D 

- - + + - + - - - + + + - 255.5 2 

12 + + - + + - + - + - - + - - - 244.0 2 
2 14 + - + + - + + - - + - - + - - 257.5 2. 

z 
% 
5. 

(D 
+ 

=! 
0 

3 
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Figure 1 Normal  probability  plot  of  contrasts  for  the  dyestuff  data. 

Table 2 Contrasts of Use for Estimating  the  Dispersion  Effect  from  Factor E 

Contrast E = '' f " E = '"" 

-7.5 
0.5 

37.5 
9.5 

26.5 
35.0 

11.0 
-61 .0 

75.0 
124.0 
"2.0 

6.5 

Table 3 F Ratios  for  the  Five  Factors  from  the  Dyestuff  Data 

F ratio  d.f. P value 

0.36 
2.83 
0.37 
4.47 
0.14 
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5. GENUINE  REPLICATES  AND  SPLIT-PLOT  DESIGNS 

Genuine replicates require full randomization  both between runs  and 
within  replications,  which  entails  a  large  amount  of  experimental  work 
(see, e.g., Box et a l . ,  1978, p. 319). When  experiments  are  expensive,  as 
is often  the  case i n  industry,  the  randomization  procedure within replicates 
is sometimes  neglected and  the  experiment is given a  split-plot  structure. 
As seen  in one of the  examples  provided by Bergman and  Hynen (1997), 
this does  not have to be a  disadvantageous  property  but  can  instead be 
used to  estimate  two  different  variance  components.  Earlier  analytic tech- 
niques  did not  support this special property,  for which  reason  split-plot 
designs  have  received  some  criticism.  However,  some  constructive remarks 
were made by  Box and  Jones (1 992), Lucas  and  Ju (1 992), and  Anbari  and 
Lucas ( 1994). 

The  method  presented in this  chapter is applicable to experiments  with 
both  genuine  and  split-plot  replicates.  Genuine replicates simply  increase the 
degrees of freedom  associated  with  the test statistic,  Eq. (4), while  split-plot 
replicates enable  estimation of one  additional  variance  component. 
Therefore,  the  latter  of  these  two  techniques  ought  to give the  greatest 
increase in knowledge  of  how  the  system really works. 

6. ON THE  PLANNING OF ROBUST  DESIGN 
EXPERIMENTS 

The  area of robust design  methodology is constantly  developing;  thus a 
routine  for  planning  experiments is very difficult to  establish. In particular, 
developments  enabling new methods  for  dispersion effect estimation will 
require  changes in existing robust design  techniques.  We do  not claim 
that  the  method  presented in this chapter is the final step  within this area. 
On  the  contrary,  further research is necessary to fully understand  the  impact 
of  dispersion  estimation  on  experimental  work.  In this chapter, we have 
focused  mainly on  identification,  although  the  success  of an experiment is 
dependent  on  thorough  planning.  Therefore,  some effects on  the  planning 
phase  are  worth  mentioning. 

Finding new techniques  for testing and  estimating  dispersion  effects 
from  unreplicated  experiments is a  large  step  toward  improving  design 
economy.  For  instance,  at  the screening  stage  of  sequential experimentation, 
replicates for  identifying  dispersion effects will not  be necessary. 
Furthermore, i t  becomes  possible to  estimate  additional  variance  compo- 
nents,  which gives  new perspectives on  the use of  some special designs  such 
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as split-plot  designs as well as Taguchi’s  cross-product designs.  Finally, and 
probably  the  most  important issue to  keep in mind, no technique is so 
perfect that  sequential  experimentation becomes unimportant.  Problem sol- 
ving is an iterative  learning  process,  where  “all-encompassing”  solutions 
seldom  come  instantaneously.  The Plan-Do-Study-Act  cycle, or  the 
Deming cycle  (see Deming, 1993),  is a model  for every learning  process, 
even the  experimental  one. 
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ABSTRACT 

Detecting  the  relationship between the  mean and  variance of the  response 
and finding  the control  factors with dispersion effects in parameter design 
and analysis  for  dynamic  characteristics are  important. In  this paper,  a 
graphical  method, called  multiple  mean-variance  plot, is proposed to detect 
the  relationship between the  mean  and  variance of the  response.  Also to find 
the  control  factors with  dispersion  effects,  the  analysis of covariance  method 
is proposed,  and its  properties  are  studied  compared with  the  dynamic 
signal-to-noise ratio. A case  study is presented to illustrate  the  proposed 
methods. 

1. INTRODUCTION 

Achieving high product  quality  at low cost is a very important goal in 
modern  industry.  One of  the  most  popular statistical  methods  using an 
experimental  design  approach to reach this  goal is parameter design, 
which is often called robust  parameter design. Parameter design was  pro- 
posed by Taguchi  (1986, 1987) and explained  further by Box (1988),  Leon  et 
al. (1987), Nair (1992), Phadke (1989), and  Park (1996), among  many 
others.  The main idea of parameter design is to  determine  the  setting of 
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control  factors  (or design parameters) of a  product  or  process  in which the 
response  characteristic is robust  to  the  uncontrollable  variations  caused by 
the noise factors  and hence has a small  variability. 

The  parameter design  uses  the S/N (signal  to noise) ratio 10 log 
(p2/02), for  the  static  characteristics  (hereafter  it will  be called the  static 
S/N ratio),  where p and o2 are  the  mean  and  variance of the  response, 
respectively. S/N is the  ratio of the  power  of  the  signal  to  the  power  of 
the noise. The  S/N  ratio  for  the  dynamic  characteristics, which will  be here- 
after called the  dynamic  S/N  ratio, is defined as 10 log (p2/02) under  the 
model J = CI + DM + E or y = PM + E ,  where y is the  response, M is the 
signal factor,  and o2 is the  variance  of  the  error E .  Here P2 implies the  power 
of the signal, and o2 implies  the  power  of  the noise. 

The usefulness  of the  dynamic S/N ratio  has been  proved, since many 
engineering  systems  can  be  adequately  described  as  dynamic  characteristic 
problems. See, for  instance,  many  case  studies  presented in the  American 
Supplier  Institute (1991)  symposium on Taguchi  methods. 

2. DESCRIPTION OF THE  DYNAMIC  CHARACTERISTICS 
SYSTEM 

In  the  parameter  design,  the  experimental  factors  are classified according  to 
their roles into  the following  three classes. 

1 .  Signal factor ( M ) .  This  factor influences  the  average  value but  not 
the  variability  of  the  response.  It is also called the  target-control 
factor. 

2. Noise  factor ( N ) .  This  factor  has  an influence  over the  response 
variability  but  cannot  be  controlled in actual  applications. 

3. Control  factor (x). This  factor  can be controlled  and  manipulated 
by the  engineer, and its level  is selected to  make  the  product’s 
response  robust  to  noise  factors.  It is the  goal  of  the  experiment 
to  determine  the best levels of the  control  factors  that  are  robust  to 
noise factors  under  the existence  of  a signal factor. 

Parameter design  systems are classified into  two  categories  according 
to  the  nature of the  target  value  of  the  response.  One is the  static system, 
which has  a fixed target value, and  the  other is the  dynamic system,  which 
has  varied  target  values  according  to  the levels  of the signal factor.  The 
dynamic system is shown in Figure 1. In this section  the  dynamic  character- 
istic problem  which  has  a  continuous signal input  and  a  continuous  output 
with some  control  factors  and  noise  factors is considered. 
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t 
Figure 1 Dynamic system of parameter design. 

3. UNKNOWN  VARIANCE  FUNCTION  AND  DETECTION 

Let y v k  denote  the  response  corresponding  to  the  ith  setting of  the  control 
factors,  ,jth level  of the signal factor,  and  kth noise factor  or  repetition,  for 
i = 1, ..., I; j = 1, ..., 177; and  k = I ,  ..., n. Then  the  data  structure of  the 
response in the  dynamic system is assumed  to be expressed as 

The  data  structure in this  section  has  the  following  assumptions: 

1. The  error  has  zero  expectation  and  variance 0;. 

2. The expectation  of y u k  is.f;.(M,) for all k  and  can be expressed as  a 
polynomial, especially the  first-order  polynomial a, + p,M, or 

3. The effect of the noise factors is included in the  error  variance 05, 
so the  subscript of the  variance  term 0;. does  not  contain k. 

4. The variance  of  the  response  depends  on  its  expected  value  and 
can be expressed as 0; x V[E(yvk)],  where  the  variance  function V 
(.) represents  the  relationship  of  the  variance of the  response  to  its 
mean,  and  the  term 0: represents  the  remaining  part,  which 
depends  on  the  ith  control  factor  setting. 

PiM,. 

The  experimenter is interested in finding  the  control  factor  setting  that 
makes 0: small and minimizes 0; x V[E(yijk)]. In  general  the  relationship 
between the  mean  and  variance is unknown,  and  the  detection  and  modeling 
of the  variance  function V(.)  is important. 
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For  the  detectiong of V(.)  and model  fitting,  the  following  three-step 
optimization  procedure is proposed. 

Step 1. Detect  the  relationship  between  mean  and  variance by con- 

Srcy 2. Find  the  control  factors with  dispersion effects by the  analysis 

S r q  3. Fit the  response  as  a  functionf)(M,) of the signal factor M to 

structing  a  multiple mean-variance plot. 

of covariance  (ANCOVA)  method. 

adjust  the sensitivity of the  response  to  the signal factor M .  

3.1 Detecting  the  Relationship  Between  Mean  and 
Variance by Using  a  Multiple  Mean-Variance  Plot 

To detect  the  relationship V( . )  between the  variance  and  the  mean  of  the 
response,  a  multiple  mean-variance  plot  (MMVP) is suggested.  Nair  and 
Pregibon (1986) proposed  the mean-variance plot,  and  Lunani  et  al. (1995) 
proposed  the  sensitivity-standard  deviation (SS) plot  for  the  dynamic  char- 
acteristic  problems.  Lunani  et  al.  considered  the  model  where  the  variance 
structure satisfies the  relationship 

Under  this  model  there is a  logarithmic  relationship  between  the sensitivity 
measure (pi) and  the  standard  deviation ( s i ) ,  

log(s;) = log(0J + -log((3,) 
e A  
2 (2) 

where si and s i  are  obtained  from  the regression  fitting for  each  control 
factor  setting i. Lunani  et  al.  plotted [log (pi), log(sj)]  for  each  control  factor 
and visually examined  the  plots  to  check  the  nature  of  the  relationship.  They 
noticed  that when some  control  factors  have  dispersion effects, the  inter- 
cepts  log (0,) can vary from  one  control  factor  setting  to  another,  making it  
possible to have several parallel lines with a  common  slope 8/2 in the SS plot 
under model (2). 

The  MMVP is proposed  for  model (1). I t  is the  combination of the 
mean-variance  plot and  the  multiple SS plot.  Under  model ( l ) ,  there is a 
logarithmic  relationship  between Jii and ,s;., 
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where ,s; = Ck (yuk - ju)2/(n - I ) .  Note  that  the expected  values of j , ,  and 
.s$ are E(jju) =.fi(Mj) = pi, and E(s:) = Vvi(M,)]o’ = V(pu)o;, where 
p.. = E(yijk). The  procedure used for  the  MMVP is as follows. 

1. Get 1 x 111 data of pairs (Tu, si) for  each  control  factor  setting i and 

2. Plot these  paired  data [log Ci;;,), log (s:.)] on  the  scatter  plot  for 

3. Identify the  points of the  frame of each  control  factor  according  to 

4. Detect  the  variance  relationship V(.). 

For example, if the  orthogonal  array LIR as  the  inner  array  and a 
three-level signal factor  are used for  experiments,  a  total  of 54 (= 18 x 3 )  
paired  data [log CF;,), log (s;)] are  obtained. By plotting [log (4;;,), log (s~~)], 
detection  of  the  form  of V( . )  is possible. If the  points  are  scattered like an 
exponential  function,  the  exponential  function  taken  on  log (-F;,), Yi, would 
make  the  points  linear. If that is the case, then V(p) = exp(8F) is selected as 
the  proper  variance  function.  For  an  example see Figure 2 in Section 4. 

Like  the SS plot of Lunani et al., if the  variance  function is properly 
selected and  the  assumption of model (1) holds,  then  the  points  on  the  frame 
of  the  control  factor with  dispersion effects are identified on  separate lines. 
Then  the  control  factors with  dispersion effects can be easily found. 

Note  that when the  objective  of  the  analysis is focused on the  variance 
of the  response,  the  term  log ( . s2 )  is usually used rather  than s2 for  certain 
statistical  reasons.  One  reason is that  the effect on  dispersion  may be reason- 
ably  considered  as  a  multiplicative effect rather  than  an  additive effect. 
Moreover,  a  linear  model  on log (.?) can be easily used without  constraint. 
In  addition,  the  performance of log (s2) is stable when the  hteroscedasticity 
problem  occurs.  Logothetis  (1989)  showed  that  the  mean of log (.y2) depends 
on log (02) and F I ,  and the  variance  of log (.?) is stable  depending  on  only 1 2 ,  

and  furthermore log ( s 2 )  converges  to  approximate  normality  as n increases. 

!I 

each signal factor level .j. 

each  control  factor. 

its levels. 

3.2. Finding  the  Control  Factors  with  Dispersion  Effects by 
the  ANCOVA  Method 

In the  second  step,  finding  the  control  factors  with  dispersion effects, the 
implementation of the  ANCOVA  method is proposed  where  the  covariate is 
determined  from  the selected variance  function at step I .  This  method is an 
extension  of  the  models  of  Logothetis  (1989)  and  Engel (1992). 

Logothetis ( 1  989) thought  that  the  relationship  could be detected by 
using  the  regression  model on log (.$) with an  independent  variable log G;): 
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Engel (1992) noticed that  the  parameter log (a) is a  nonconstant term in the 
Logothetis  model  and replaced it by the  term  log (af) ,  which is a  linear 
function of  the  control  factors. 

When  the  logarithm is taken  on  the  variance  term in model ( I ) ,  the following 
equation is obtained. 

Here x, is the row  vector  of  the control  factors,  and y is a  parameter  vector. 
When this model is applied  to  practical  applications,  the  fitting  model (7) is 
used as  the  form of ANCOVA. Here  the  sample  variance .sf on log is the 
dependent  variable,  the  control  factors  are  the  factor  given  in  the  vector xi, 
and  the  sample  mean Ti, or its  function / ~ ( j j j ~ )  is the  covariate,  where 
/ l ( . )ol  = V(.):  

The  control  factors of significance are selected to have  dispersion effects 
from  the  analysis of  the  model. 

Note  that this model  has  two  main  differences  from  Engel's  model: 

1.  The variance  function V(p) is a  general function  instead  of p6. 
2 .  The coefficient 8; is considered  a  nonconstant  parameter. 

The  variance  function V(p) cannot be easily detected in the  static 
system, so the  power  of  the  mean  model ( 5 )  is mainly  used in Engel's 
paper. But in the  dynamic system V(p) can be detected,  and it can  have  a 
general  form.  When several V(p)'s are  candidates,  for  example, V ( p )  = p"' 
or V(p)  = exp(e,p),  the  variance  function V(p) can  also be detected  at  step 
1, and  the selection of V(p) can be done by some  variable selection techni- 
que of the regression  with  log (s;) as  the  dependent  variable.  The  variance 
function V(p) is preferred  that  separates  the  plotted  points  into  parallel lines 
with  a  common  slope  and  different  intercepts,  because  the  control  factors 
with  dispersion effects need to be detected and well selected there.  Taking 
V(p)  as pH is the  direct  generalization  of  the  model  of  Engel. 

A nonconstant 8; has  the  practical  meaning  that  as  the  mean  increases 
the  variance  can  increase  at  a  different  rate  at  each level of  some  control 
factors. If the coefficients of the lines look identical  from  the  search  at  step 1, 
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then  fitting  model  (7) is the  ANCOVA  method  without  interaction between 
the  covariate  and  the  factors.  At  the  beginning of  the  analysis,  model (7) 
with constant  term 8 is used. If the  points  are  separated  into lines with 
different  slopes in the  frame of  some  control  factors,  then  changing  the 
variance  function V(p) or  extending  the  term 8 into 8; may  be  considered. 

When V(p) = pLB and  the  parameter 8 is taken  as  equal  to 2 before- 
hand,  the  ANCOVA  method is equivalent to  the  procedure  for  finding  the 
control  factors  to maximize the  static  S/N  ratio. We can  observe  that  the 
following  model is derived  from  model (7): 

The  dynamic  characteristic  approach  has  some  merits  compared  to  the 
static  characteristic  approach  for  detecting  the  variance  function.  One is that 
it has  a  large  numer of  degrees  of  freedom  when the  dispersion effects of 
control  factors  are  checked.  In  the  example of  Engel (1 992), the  inner  array 
is saturated, so there is no degree of freedom  allowed for  covariate log G;). 
However,  the  ANCOVA  method  has  a  large  number of  degrees  of  freedom 
when  the level-of-signal factor is large.  Another  merit is the  distribution of 
the  mean  response.  As  the  mean  value is more widely spread,  the precision 
of estimation of the  variance  function  increases  (Davidian and  Carroll, 
1987). In  the  static system  the  response is usually distributed  around  the 
fixed target  value  and less spread.  But in the  dynamic system the  target  value 
varies according  to  the signal input value, and the  response is widely spread 
according  to  the  signal  factor level. Taguchi's  optimization  procedure with 
the  dynamic S/N ratio  does  not  enjoy these  merits. The  sample  variances of 
each  signal  factor level are  combined  into  one  quantity,  the  dynamic  S/N 
ratio.  Here  the  ANCOVA  method is proposed  to utilize these  merits by 
taking  the  sample  mean  and  the  sample  variance  at  each  signal  factor level. 

3.3. Fitting  the  Response as a  Function of the  Signal 
Factor 

When  the  variance  of  the  response is a  function of the levels of the signal 
factor,  the use of weighted least squares  (WLS) is recommended  to  estimate 
, f ) (M)  for  each i. After  the  control  factors  with  dispersion  effezs  are  chosen 
at  step 2 ,  the  variance  of  response yQk is estimated  as %.* VO;,>. Then  the 
weights are  the inverse of  the  estimated  variance of  each  response,  and  the 
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WLS method is applied  for  each  control  factor  setting i to  adjust  the sensi- 
tivity of the  response to  the  signal  factor M .  

4. AN EXAMPLE:  CHEMICAL  CLEANING  EXPERIMENT 

In  this  section,  the data set  from  the  chemical  cleaning  process  for  Kovar 
metal  components  (American  Supplier  Institute, 1991) is  reanalyzed to show 
how  to use the  ANCOVA  method  and  multiple mean-variance plot  pro- 
posed in Section 3 to find the  control  factors  with  dispersion effects and  the 
functional  relationship between the  mean and  the  variance. 

The response y is the  amount of the  material removed as a result of the 
chemical  cleaning  process. The inner  array is L18 including a two-level factor 
A and three-level factors B, C, D, E, F, and G. The  outer  array  consists  of a 
three-level  signal factor M crossed  with L, for a compound  array  of  three 
two-level noise  factors X ,  Y ,  Z .  The signal  factor M is the  acid  exposure 
time,  which is known  to  have a linear  impact on  the  expected  value  of  the 
response. By imposing  the  linearity of the  signal  factor,  the  process becomes 
predictable and  more  controllable  from  the  engineering knowledge. The 
information  about  the  experimental  factors  and  the  raw  data  are given in 
Tables 1 and 2. 

Table 1 Experimental  Factors and Levels for Chemical  Cleamng  Experiment 

Factor level 

Factor  label  and  description 0 1 2 

Control  factor 
A Part status at Britc-dip 
B Descale  acid  exposure  time 
C Descale  acid  strength 
D Descale  acid  temperature 
E Nitric/acetic (ratio) 
F Percent i n  Brite-dip  acid 
C Brite-dip  acid  temperature 

Noise factor 
X Descale  acid age 
Y Brite-dip  acid  age 
Z Part type 

Dry Wet 
BO Bl B2 
Cn CI C? 
Low Med  High 
EO El E2 
Low Med  High 
standard Remachine 

New Uscd 
New Used 
Stampcd Machined 

Signal factor 
M Exposure  time in Brite-dip A4 I M? M3 
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Table 2 Experimental Layout and Raw Data for Chemical  Cleaning  Experiment 

Signal  factor I " 
0 0 1 1  

Control factor 

1 3 2 6 2 2 1 0  18 I 2  2 1 1 2 0 
21 2 5 6 1 2 0  17 1 2 1 0 0 1 2 
17 1 7 3 4 1 8  16 1 2 0 2  2 0 I 
31 5 6 5 9 3 2  15 I 1 2 0 1 1 0  
2 6 4 8   7 7 3 7  14 1 I 1 2 0 0 2 
2 7 3 9 2 8 1 9  13 1 1 0 1 2  2 I 
1 6 2 0 1 7  8 12 1 0 2 1 I 0 2 
2 5 4 2 3 6 2 1  I I  1 0 1 0 0 2 1 
2 5 4 3   4 0 3 2  10 I 0 0 2  2 I 0 
1 9 2 4 2 7 1 7  9 0  2  2 0 1 1 1  
25 3 3 4 5 3 6  8  0  2 1 2 0 0 0 
1 2 1 8 2 3 1 3  7 0  2 0 I 2  2  2 
1 4 2 0 2 3 1 6  6 0  I 2  2 0 0 I 
1 1  3 2 7 1 4  5 0 I I 1 2 2 0 
27  39 5024 4 0 I 0 0 1 1 2 
26  36 3826  3 0 0 2  2  2  2  2 
2 7 3 1   3 0 2 5  2 0 0 I I 1 1 I 
9 1 1   1 5 1 1  I 0  0 0 0 0 0 0 
1 2 3 4  C o l . 1 2 3 4 5 6 7  
0 1 1 0  A B C D E F G  
0 1 0 1  

M? Noise 
factor 

0 0 1 1  
0 1 0 1  
0 1  I O  

0 0 1 1  x 
O I O I ~ Y  
0 1 1 0  z 

I 2 3 4 1 1  2 3 4 1  
14  17  22  14 
43  55  63  43 
40  57  71  44 
51  86  92  48 
24  33  37  22 
27  30  44  20 
26  31  32  23 
34  45  95  55 
33  46  46  27 
38  53  62  41 
42  49  63  36 
22  32  36 20 
46  62  55  36 
42  84  104  60 
58  88 98  50 
23  31  56  30 
30 43  95  36 
23  27  27  20 

19  29  26 18 
67  63  88  43 
59  82  02  59 
78 113 123  68 
32  34  51  31 
38  50  59  28 
29  42  46  29 
42  66  127 80 
40  61  70  33 
56  73  95  51 
47  58  81  56 
34 43  53  33 
58  84  78  48 
52 1 1  I 109  78 
77 115 128  71 
32  42  67  40 
40  60 I24 60 
26  52  41  28 

The response data yj,k (i  = 1, ..., 18; j = I ,  2 ,3;  k = 1 , 2 , 3 , 4 )  are  sum- 
marized into 18 x 3 paired data [log (i;ji), log (si)] for each control  factor 
setting i and signal factor level j .  These  paired  data k,i), log (si)] and [log 
(Tii), log (si)] are  plotted in Figures 2a and 2b. These figures definitely show 
that a  function  relationship  exists between the  variance  and  mean of the 
response and  can be explained by a linear  function  on  the log-log scale.  We 
can  assume  that h(p) = 1.1 rather  than h ( p )  = exp(p)  for  model (7). 

In  Figure 3, the  multiple  mean-variance  plots  of [log (.Vi,), log (si)] 
show which control  factors  have dispersion  effects.  In  the  frame of factor A ,  
the  points  for level I (symbol + ) are  shown  along with  the  points for level 0 
(0). Two  separate fitting lines can be drawn, with a common slope and 
different  intercepts.  When  the level of factor A is 0, the  response  has  a 
smaller  variance. By similar work, level 0 of factor B can be selected. For 
factor C the  difference  between levels 0 (0) and 2 (0) does  not look large, and 
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Figure 2 Plots of [log ( j i i ) ,  log (si)] and LFji,  log (s;)] for chemical cleaning 
experiment. 

either  of  those  may be selected. In  the  other  frames  of  Figure 3. the  points 
are  not divided into  separate lines according  to  the levels of factors D, E, F, 
and G. 

The results from  the  analysis of  the  dynamic S/N ratio  are  presented in 
Table 4. These  results  show  that A ,  B,  C, and D are  the  important  factors 
with  respect to  the S/N ratio.  The best level selected is A o ,  Bo, C, and D l ,  
which is similar  to  the selected level in the  results  from  the ANCOVA 
method except  for factor D. But in the ANCOVA method,  factors C and 
D are  not very significant (their p values are 0.053 and 0.057, respectively), 
and  other levels of these factors  may be selected. 



Factor A Factor B 

1.2 1.4 1.6  1.8 2 0  

Factor C 

1.2 1.4 1.6  1.8  2.0 

Factor E 

+# 

0 0 

1.2 1.4 1.6 1.8 2 0  

Factor D 

0 + J 7 

1.2 1.4 1.6 1.8 2 0  

Factor  F 

1.2 1.4 1.6 1 8  2.0  1.2 1.4 1 6   1 8  2.0 
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1.2 1.4 1.6 1  8  2.0 

Figure 3 Multiple plots of [log (Fo). log (s;)] for chemical  cleaning experiment. 
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Table 3 ANOVA  Table  for  the  ANCOVA  Method with Covariate log ( P i i )  

Source D F  Adjusted SS F p Vulue 

Covariate 
A 
B 
C 
D 
E 
F 
G 

A x B  
l e )  

Pooled  error 
T 

1 
I 
2 
2 
2 
2 
2 
2 
2 
37 
45 
53 

4.81013  100.12 0.000 
0.323  13 5.66 0.022 
0.91742 7.01  0.002 
0.35064 3.15  0.053 
0.30866  3.06  0.057 
0.09540 
0.14475 
0.05400 
0.18098 
2.59806 
3.091 12 

17.92377 

Table 4 ANOVA  Table  for  the  Dynamic  Signal-to-Noise  Ratio 

Source D F  Adjusted SS F P( % 1 
A 1 
B 2 
C 2 
D 2 
E 2 
F 2 
G 2 

A x B  2 
( (>) 2 

Pooled error 8 
T 17 

14.010 14.84  12.13 
30.166 15.98 26.27 
32.4  17 17.17  28.34 
23.101 12.24  19.84 
0.002 
2.620 
1.667 
3.542  2.42  1.93 
0.803 
5.907 1 1.49 

109.132 100.00 
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1 .  INTRODUCTION 

The Taguchi  method  for  analyzing  quality  improvement  experiments  has 
been  much  discussed. It first defines summarizing  quantities called perfor- 
mance  measures  (PMs)  and  then  analyzes  them  using  analysis  of  variance. 
PMs  are defined as  functions of the  response y ;  however, we believe that 
they should be regarded  as  quantities  of  interest  derived  after  analysis  of  the 
basic  response  and  defined  as  functions  of  the fitted values or  parameter 
estimates.  One  of  Taguchi’s  signal-to-noise  ratios (SNRs) involves Cyp4.  
This is not  a  good  estimate of pp4, though fiP4 might be acceptable. 
However,  as Box (1  988) showed,  Taguchi’s  signal-to-noise ratios  make sense 
only  when  the log  of the  response is normally  distributed.  The  correct 
statistical  procedure is (1) to  analyze  the  basic  responses using appropriate 
statistical  models  and  then (2) to  form  quantities of  interest  and  measures of 
their  uncertainty.  Taguchi’s  procedure  inverts  this  established process  of 
statistical  analysis by forming  the  PMs first and then  analyzing  them. 
However,  most  writers  concentrate  on  the  analysis  of  PMs,  though  they 
may  use other  than  signal-to-noise  ratios. Miller and  Wu (1996) refer to 
the  Taguchi  approach  as  performance  measure  modeling  (PMM)  and  the 

387 
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established  statistical  approach  as  response  function  modeling  (RFM). 
They,  of  course,  recommend RFM. However,  what  they  actually do 
seems to be closer to  the  PMM  approach.  The  major difference is that 
they  consider  statistical  models  for  responses  before  choosing  PMs. 
Because  of  the  initial data  reduction  to  PMs,  their  primary  tool  for  analysis 
is restricted to  graphical  tools such as  the  normal  probability  plot. 
Interpretation of such  plots  can be subjective. Because information  on  the 
adequacy of  the  model is  in the residuals, analysis  using PMs makes  testing 
for lack  of fit difficult or  impossible. 

In 1991, we (Nelder  and Lee, 1991) published  a  paper  giving  a  general 
method  that  allows  analysis of data  from  Taguchi  experiments in a  statis- 
tically natural way.  exploiting  the  merits of standard  statistical  methods.  In 
this  chapter, we provide  a  detailed  exposition of our  method  and  indicate 
how to  extend  the  analysis  to  Taguchi  experimental  data  for  dynamic sys- 
tems. 

2. THE MODEL 

Taguchi  robust  parametric  design  aims to find the  optimal  setting of control 
(i.e., controllable)  factors  that minimizes the  deviation  from  the  target  value 
caused by uncontrollable noise Factors. Robustness  means  that  the  resulting 
products  are then less sensitive to  the noise Factors. Suppose  a  response 
variable J* can be modeled by a GLM with E()*,)  = p, and 
var (1.;) = @;V(p,), where 4; are  dispersion  parameters  and V ( ) the  var- 
iance  function.  The  variance of y; is thus  the  product of  two  components; 
V ( p i )  expresses the  intrinsic  variability  due  to  the  functional  dependence of 
the  variance  on  the  mean p,, while @; expresses the  extrinsic  variability, 
which is independent of the  range of means  involved.  Suppose we have 
control  factors C1, ..., Cl, and noise factors N , ,  ..., N(/ .  In our 1991 paper 
we considered  the  following  joint  models  for  the  mean  and  the  dispersion 

where g ( ) is the link function  for  the  mean,  and.fi(CI, .... C, ,  N 1 ,  ..., N , )  are 
linear  models  for  experimental  designs,  e.&.,  the  main effect of the  model is 
C , +  ...+ C ,  + N I +  ...+ N,. The  log link is assumed  for  the  dispersion  as  a 
default;  there  are  often insufficient data  to discriminate  between  different 
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link  functions.  We need to choose  for  each  model  a  variance  function,  a link 
function,  and terms in the  linear  predictor. By choosing  an  appropriate 
variance  function  for  the  mean, we aim to eliminate  unnecessary  complica- 
tions i n  the  model due  to  functional  dependence between the  mean and 
variance  [the  separation of Box (1988)l. It is useful if the final mean  and 
dispersion  models  have as few common  factors  as possible. The link func- 
tion for  the  mean  should give the  simplest  additive  model  [the  parsimony of 
Box ( 1  988)]. 

Control  factors  occuring  in.fi( ) only or in both,/;( ) and/;( ) are used 
to minimize the  extrinsic  variance, and  control  factors  occurring  in./, ( ) only 
are then used to  adjust  the mean to a  target  without  affecting  the  extrinsic 
variability. 

If we analyze  PMs such as SNRs, calculated  over  the  noise  factors  for 
each  combination of the control  factors, it is then  impossible to make infer- 
ences about the  noise  factors in the  model for the mean.  This  reduction of 
data leads to the  number of responses  for  the  dispersion  analysis being only 
a fraction  of  those  available  for  the  mean. We do  not have  such  problems 
since we analyze  the  entire set of data; see Lee and  Nelder (1998). 

3. THE  ALGORITHM 

When  a GLM family  of  distributions  does  not exist for  a given V(p;). 
Wedderburn's  (1974)  quasi-likelihood  (QL) is often used for inference 
from  the  mean  model ( I ) .  However, it cannot be used for  joint inference 
from  both  mean and dispersion  models;  for  this we need Nelder and 
Pregibon's  (1987)  extended  quasi-likelihood (EQL), defined by 

where I / ,  = -2 (19, - u)/V(u)du denotes  the GLM deviance component l: 
For given +;, the  EQL is, apart  from  a  constant, the  quasi-likelihood 

(QL) of Wedderburn (1974) for  a GLM with  variance  function V(p,). Thus 
maximizing Q+ with respect to will give us the QL  estimators with prior 
weights 1 /+,, satisfying 
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The  EQL  provides  a scaled  deviance  with  component d,/+;, and this 
deviance  may be used as  a  measure  of  discrepancy, so that we can  create 
an analysis-of-deviance  table  for  a  nested set of  models, as with GLMs.  The 
differences  of  such  deviances  allow  us to identify significant experimental 
factors  on  the  same link scale and  to  compare  different link functions  for  the 
mean  model ( I ) .  

For given p,, the  EQL gives  a GLM with the  gamma  distribution  for 
the  deviance  components d,, and this forms  the basis of  the  dispersion 
model.  Thus,  with  the  EQL we can identify significant experimental  factors 
for  both  the  mean  and  the  dispersion  models.  However, when the  number of 
mean  parameters is relatively large  compared with the  sample size, disper- 
sion estimators  can be seriously  biased without  appropriate  adjustment  for 
the  degrees  of freedom.  The  REML  technique removes this bias  for mixed 
linear  models  (Patterson  and  Thompson, 1971). Cox  and Reid  (1987) 
extended  the REML idea to  a wider class of  models  that satisfy an  ortho- 
gonality  relation  of  the  form E(a2Q + spay) = 0. The Cox-Reid  adjusted 
profile EQL becomes 

where W’ is an 11 x n diagonal  matrix with ith  element { I/(+;V(p,))} 
(@,/aq,). Thus  for inference from  the  dispersion  model (2) we (Lee  and 
Nelder. 1998) use Q:; then aQ:/ay = 0 gives estimating  equations  for y, (--a2 
@lay2)” a  variance  estimate  for T, and -2Q: the basis of  a  deviance  test. To 
overcome  the  slow  computation of REML  estimation, we (Lee and  Nelder, 
1998)  have  developed an efficient approximation. 

The  EQL is the  true  likelihood  for  the  normal  and  inverse  Gaussian 
distributions, so our  estimators  (deviance tests) for p and y are  the  ML  and 
REML  estimators  (likelihood  ratio  and  adjusted  likelihood  ratio tests), 
respectively. The  EQL  also gives good  approximations  for  the  remaining 
distributions of the GLM family.  There  are two approximations in the 
assumed  model  for  the  dispersion. The first lies in assuming  that 
E((/)  = +; in general  the  bias is small  except in extreme cases, e.g., 
Poisson  errors  with  small p. Such biases enter  the  analysis  for  the  mean 
only  through  the weight and do  not  much affect the  estimates  of p. The 
second  approximation is the  assumption of  a gamma  error  for  the  dispersion 
analysis,  regardless  of  the  error  chosen  for  the  mean.  The  justification  for 
this is the effectiveness of the  deviance  transform in inducing a good  approx- 
imation to normality  for all the  GLM  distributions (Pierce and  Schafer, 
1986), excluding  extreme  cases  such  as  binary  data; see also  the  simulation 
study of  Nelder  and Lee (1992). 
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In  summary,  our  model  consists of  two  interlinked GLMs,  one  for  the 
mean  and  one  for  the  dispersion  as follows. The  two  connections,  one in 
each  direction,  are  marked.  The  deviance  component  from  the  model  for  the 
mean  becomes  the  response for  the  dispersion  model,  and  the  inverse  of  the 
fitted values for  the  dispersion  model give prior weights for  the  mean  model. 
(See Table I . )  In  consequence, we can use all the  methods  for  GLMs  for 
inferences from  the  joint  models,  including  various  model-checking  proce- 
dures. 

4. STATISTICAL  MODELS FOR DYNAMIC  SYSTEMS 

Recently,  there has been an emphasis  on  making  the  system  robust  over  a 
range  of  input  conditions, so the  relationship  between  the  input (signal 
factor)  and  output  (response) is of  interest.  Following  Lunani  et  al. 
(1997), we refer to this  as  a  dynamic  system.  Miller  and Wu (1996) and 
Lunani  et  al. (1997)  have  studied  Taguchi's method  for  dynamic systems. 
Suppose we have  a  continuous signal factor M ,  measured at m values. These 
researchers  consider  models  analogous  to  the  mean  and  dispersion  models 

and 

where g( ) is the link function  for  the  mean  and I (  ) is the  function  describ- 
ing  the  relationship  between  the  input (signal factor)  and  output  (response). 

Table 1 

GLM  Mean  Dispersion 

Response 

Mean 

Variance 

Deviance  component 

Prior weight 1 
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The  function I (  ) may be known  a  priori  or  may  have  to be identified. 
Lunani  et al. assume  that I ( M )  = M P ,  i.e.,  that i t  is a  linear  function  with- 
out  an  intercept,  and Miller and  Wu select I ( M )  = bo + p, M + p 2 M 2 .  The * 
operator in Eq. (3) represents  the  fact  that  parameters  of I (  ) are modeled as 
functions of C, and N / .  In dynamic systems  the signal factor is used to  adjust 
the  mean  using  the  mean  model (3), and  control  factors  are set to  optimize 
the sensitivity measure [see Miller and  Wu (1996) and  Lunani et al. (1997)l. 

The  fitting of dynamic systems  has so far  been done i n  two  stages; in 
stage I parameters in I (  ) are  estimated  for  each  run,  and in stage I1 models 
are fitted separately  to  each set of stage I parameter  estimates. For example, 
with Z ( M )  ,= Po + & , M  + &M’ we fit I ( M )  for  each  individual  run,  com- 
puting bo, P I ,  and p2, and  then fit separate  models  for these as  functions of 
C, and N , .  However,  the  model  chosen by this approach  may  not fit the data 
well because data  reduction  to  PMs  under  the  wrong  model  makes  testing 
for lack  of fit difficult. Our  method  analyzes  the whole data set and  does  not 
require  two  stages  of  fitting. All that is necessary is that  the  software  allow 
the specification of compound  terms of the  form A . s  in the  linear  predictor, 
denoting  that  the  slope  for s varies with the level of  the  factor A .  

5. ADVANTAGES OF THE  GLM  APPROACH 

The  advantage of analyzing all the  individual  responses  using  two  inter- 
linked GLMs over  the  analysis  of  variance  of PMs (with  possible transfor- 
mation of the  data)  are  as follows: 

1 .  Box’s (1988)  two  criteria, separation  and  parsimony,  cannot 
necessarily both be achieved by a single data  transformation, 
while the  GLM  analysis achieves  them  separately by choosing 
appropriate  variance  and link functions  for  the  two  interlinked 
GLMs. Analysis is thus  always  carried  out on the  original  data. 

2. Any GLM  can be used for  modeling  the  means.  Thus  counts, 
proportions,  and positive continuous  quantities  can be incorpo- 
rated  naturally  into  the  model. 

3. Our  model uses all the  information i n  the  data.  For  example,  the 
dispersion  analysis  has a response  for  each  observation,  just  as 
with the  mean.  Compare  this  with  the use of s: calculated  over 
the  noise  factors  for  each  combination  of  the  control  factors;  this 
leads to  the  number of  responses  for  the  dispersion  analysis  being 
only a  fraction of that  available  for  the  mean.  Such sf do  not use 
random  variation  but  are  functions of arbitrarily selected levels for 
the  noise factors.  Furthermore, when the .s; (p) are  computed  over 



Joint  Modeling of the  Mean  and  Dispersion 393 

noise  (signal)  factors in static  (dynamic)  systems it is impossible  to 
make inferences about those  noise  (signal) factors in the model for 
the  dispersion  (mean).  With  this  approach,  the signal Factor can- 
not be included in the  dispersion  model (4) for  dynamic systems. 

4. The model is defined for  any  design.  For  example,  our  method  can 
be used for  dynamic systems as easily as  for  static systems, and 
we can  also  consider  more  general  models  such  as  log (+) = 

5. The use of a GLM for  fitting  the  dispersion  model  means  that 
model-checking  techniques,  such  as residual plots,  developed  for 
GLMs generally can be applied  directly  to  both  parts  of  the  joint 
model. 

.fS(C,, ..., C,,, N I ,  ..., N , ,  M )  for (4). 

6. CONCLUSION 

Data from  Taguchi  experiments  should be analyzed in a  statistically  natural 
way so that existing statistical  methods  can be used;  this  allows  for  statis- 
tically efficient likelihood inferences, such as  the  likelihood-ratio  test,  model- 
checking  diagnostics  to test the  adequacy of the  model,  and  maximum like- 
lihood  estimation  or restricted maximum  likelihood  estimation  to be used. 
Our  method  supports these  desirable  aims. 
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Modeling and Analyzing  the 
Generalized  Interaction 

Chihiro  Hirotsu 
University of Tokyo,  Tokyo,  Japan 

1. INTRODUCTION 

The analysis  of  interaction is the key  in a  wide variety of  statistical  problems 
including  the  analysis  of  two-way  contingency  tables,  the  comparison  of 
multinomial  distributions,  and  the  usual two-way  analysis  of  variance.  It 
seems,  however,  that  it  has been  paid much less attention  than  it deserves. 

In the usual  analysis  of  variance,  both  of  the  two-way  factors  have 
generally  been  assumed to  be  controllable,  and  the  combination  that gives 
the highest  productivity  has  been  searched  for.  We  should,  however,  also 
consider  the possibilities that  the  factors  may be indicative  or  variational. By 
an indicative  factor we mean  a fixed but  uncontrollable  factor such as  the 
region in the  adaptability test of rice varieties where the  problem is to  choose 
the best level  of the  controllable  factor  (the  variety of rice) for  each level  of 
the  indicative  factor  (region) by considering  the  interaction  between  these 
two factors.  Then  a  procedure is desired for  grouping  the levels of  the 
indicative  factor  whose  responses  against  the levels of the  controllable  factor 
are  similar so that a common level of  the  controllable  factor  can be assigned 
to every level  of the  indicative  factor within  a group. 

By a  variational  factor we mean  a  factor  that is fixed and indicative 
within an experiment  but  acts  as if it were  a random noise  when the result is 
extended  to  the real world. A typical example is the  noise factor in Taguchi’s 
parameter  design,  where  the  problem is to  choose  the level of the  control- 
lable  factor  to give not only the highest but  also  the  most  stable  responses 
against  the wide  range  of levels of  the  noise  factor. For all these problems 
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the  usual omnibus F test for  interaction is not very useful, and row-wise 
and/or columnwise  multiple comparison  procedures have been proposed 
(Hirotsu, 1973, 1983a, 1991a). Those  procedures  are  also useful for model- 
ing and  analyzing contingency  tables and  multinomial  distributions  not 
restricted  narrowly to the  analysis of variance  (Hirotsu, 1983b, 1993). 

Another interesting  problem is detecting  a  two-way  changepoint  for 
the departure  from  a simple  additive or multiplicative  model  when  there are 
intrinsic natural  orderings  among the levels of  the  two-way  factors. 
Detecting  a  change in the  sequence  of  events is an old  problem in statistical 
process control,  and  there is a large  body of literature  dealing with this. 
These  works,  however,  are  mostly  for  univariate series of  independent  ran- 
dom variables  such as normal,  gamma,  Poisson,  or binomial [e.g., see, 
Hawkins  (1977),  Worsley (l986),  and Siegmund (198611. Therefore in this 
chapter I discuss an  approach to detecting a two-way  changepoint. 

2. MODELING  THE  INTERACTION IN THE  ANALYSIS OF 
VARIANCE  FRAMEWORK 

Suppose  that we are given two-way  observations  with  replications  and 
assume  the  model 

= 11,~ + &i ik,  i = 1 ,  ..., a; j = I ,  ..., h; k = 1, ..., I' 

where  the ejik are  independently  distributed  as N(0 ,  0'). The pii may be 
modeled  simply by pi; = 11 + ai + pi if the  hypothesis of no  interaction is 
accepted.  When it is rejected, however, we are faced with a  more  compli- 
cated  model,  and it is desirable  to  have  a simplified interaction  model  with 
fewer degrees  of  freedom.  Several  models  have been proposed  along this 
line. including  those  of  Tukey  (1949), Mandel (1967). and  Johnson  and 
Graybill (1972). The block interaction  model  obtained a s  a result of  the 
row-wise and column-wise  multiple comparisons is also a useful alternative 
(Hirotsu, 1973. 1983a, 1991a). 

For row-wise multiple comparisons we define an interaction  element 
between two  rows,  the nzth and  the  nth, say, by 

L ( w  11)  = (lJz)PA(p,,, - p,J 

where hi, = (pi,, ..., pi,,)' and P/, is a ( h  - 1) x h matrix satisfying = Ih-1 
and P,,PL = /(, = h.'j,j; with / a n  identity  matrix and j a  vector  of 1's. Then 
a  multiple  comparison  procedure for testing L(m; n) = 0 is given in Hirotsu 
(1983a) to  obtain  homogeneous  subgroups of  rows so that in each  of  them 
all  interaction  elements  are  zero.  The  columns  can be dealt  with  similarly. 
Then  the  resulting  model can be expressed as 
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with (up);, = 0, (crp),, = 0 and (~rp);~ = (~r~)~ , , , ,  if i, i' E G,, and j ,  j '  E J! . ,  
where GI, ,  I I  = I ,  ..., A and J ( , ,  I I  = I ,  ..., B denote the  homogeneous  sub- 
groups of rows and  columns, respectively. We use the  usual dot bar  notation 
throughout the  paper.  Model ( I )  may be called  the  block  interaction  model 
with  df(A - l ) ( B  - 1 )  for  interaction.  The row-wise and/or columnwise m u l -  
tiple  comparisons seem particularly useful for  dealing  with  indicative or 
variational  factors: see Hirotsu (1991;~  199lb, 1992) for  details. 

3. THE GENERALIZED  INTERACTION 

We encounter  two-way  table  analysis even i n  the  one-way  analysis  of  var- 
iance  framework if only we take the nonparametric  approach. 

The  data i n  Table 1 are the half-life of  the  drug  concentration in blood 
for low and high doses  of an  antibiotic.  This is a simple  two-sample 
problem. I n  the nonparametric  approach, however, we change  those data 
into  rank  data a s  given i n  Table 2. I n  Table 2 we are interested in whether 
the 1's are  more likely to occur to the  right than to the left for the high dose 
relative to  the low dose  since that would suggest that the high dose is more 
likely to prolong  the half-life. 

Table 3 is the result of a dose-response  experiment and gives the  same 
type  of data with Table 2 where  the  ordered  categories are  thought  to be tied 
ranks. Again  the high categories seem to occur  Inore  frequently i n  the higher 
dose. I t  is the  problem  of  analyzing  interaction to confirm these observa- 
tions  statistically. 

The  outconle of  a  Bernoulli  trial can also be expressed in a similar way 
to  Table 2. We give an  example in Table 4, where  the  probability  of  occur- 
rence changes  from 0.2 to 0.4 at the 1 I th  trial. 

The  outcomes of an  independent  binomial  sequence  are also summar- 
ized similarly to Table 4. We give an  example in Table 5, which is taken  from 
a clinical trial  for heart disease. 

Table 1 Half-lifc o f  Antibiotic Drug 

25 1.5s 1.63 1.49 1.53 2.14 
200 1.78 1.93 1 .x0 2.07 I .70 
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Table 2 Rank  Data  Obtained  from  Tablc 1 

Rank 

Dose 1 2 3 4 5 6 7 8 9 1 0  
~~ ~ 

25 1 1 1 1 0 0 0 0 0 1  
200 0 0 0 0 1 1 1 1 1 0  

~ _ _ _ _ _ _ _ _ _ _ _ _ ~  

Table 3 Usefulness in a Dose-Finding  Experiment 

1 2  3  4 5 6 
Slightly Not Slightly 

Drug  Undesirable  undcsirable useful useful Useful Excellent Total 

AF3lng 7 4 33 21 10 I 76 
AF6mg 5  6 21 16 23 6 77 

Table 4 Outcome of Bernoulli Trial with Probability  Change  at  the 1 Ith Trial 

R u n  

Table 5 Independent Binomial Sequcnce 

Dose level (mg) 

Outcome 100 150  200  225  300 

Failure 
Success 
Total 

16 I K  9 9 5 
20 23 27 26 9 
36 41 36 35 14 
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In  any of  Tables 2-5  we denote by p j j  the  occurrence  probability of the 
(i,,j) cell, i = 1, 2 ; j  = 1, ..., k .  Then in Tables 2 and 3 we are  interested in 
comparing  two  multinomials ..., P;,~(JI;. = l) ,  i = 1,2,  and  Tables 4 and 5 
are  concerned with comparisons of k binomials (plJ,p?,j(p,J = I ) , . j  = 1, ..., k .  
Regardless  of  the  differences  between  the  sampling  schemes,  however, we 
are  interested in both cases in testing  the null hypothesis, 

against  the  ordered  alternative, 

P A  P 2 2  P 2 k  
- 

PI1 PI? 
<-s ... 5 -  

P l k  

taking  into  the  account  the  natural  ordering in columns.  In (3) we assume 
that  at least one  inequality is strict.  It then  includes as  its  important special 
case  a  changepoint  model, 

where J is an  unknown  changepoint,  the  detection of which is an old 
problem in statistical  process  control. 

The hypotheses (2), (3), and (4) can  be expressed in terms of the 
interaction  parameters in the log-linear model 

The  interaction  term (~$3)~ can  be  interpreted  as  an  odds  ratio  parameter in 
this  context.  Thus we can generalize the  usual  analysis  of  interaction  into  the 
analysis  of  odds  ratio  parameters in multinomials,  where an  ordered  alter- 
native  hypothesis is often  of  particular  interest. 

Under  the null hypothesis,  Eq. (2), we base our statistical  inference  on 
the  conditional  distribution given sufficient statistics.  Regardless of the  sam- 
pling  schemes,  this  leads to  the  hypergeometric  distribution given all the  row 
and  column  marginal  totals [see Plackett (19Sl)l. This is why we need not 
distinguish  Tables 2 and 3 from  Tables 4 and  5. 
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4. A SAMPLE  PROBLEM 

Given half-life data (1.21,  1.63, 1.37, 1 S O ,  1.81) at a  dose level of 50 mg/ 
(kg . day) in addition  to  Table 1, we obtain  Table 6. We  also  have  placebo 
data in the  doseeresponse  experiment, with  which we obtain  Table 7. 

Next  suppose  that  the  products  from  an  industrial process are classi- 
fied into  three  classes (lst,  2nd,  3rd)  and their  probabilities  of  occurrence  are 
changed  from (1/3, 1/3. 1/3)  to  (2/3,  1/6,  1/6) at  the 1 lth trial. An example of 
the  outcome is shown in Table 8. This is regarded a s  an  independent 
sequence  of  trinomials. 

I t  should be noted  that in all three  examples  the  row-wise and/or 
columnwise  multiple  comparisons  are  essential.  Noting  the  existence of 
the  natural  orderings in both  rows and  columns, we are  particularly  inter- 
ested  in  testing  the  null  hypothesis 

against  the  ordered  alternative 

Table 7 Uscfulncss in a Dose-Finding  Experiment 

1 2  3 4 5 6 
Slightly Not Slightly 

Drug  Undesirable  undesirablc useful useful Useful Excellent Total 

Placebo 3 6 31 9 15 1 71 
AF3mg I 4 33 21 10 1 I 6  
AF6tng 5 6 21 I6  23 6 77 
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Table 8 Products Classified into Thrcc Classcs 

RUII 

3rd I I ( 1 0 0 0  I 0 0  I n o o o o o o  I o o  
2nd 0 0 0  I I I O  I I O 0 0  I 0 0  I 0 0 0 0  

I S l  o o ~ o o o o o n o ~ ~ o ~ ~ o ~ o ~ ~  
Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

with at  least one  inequality  strict.  Again  the  alternative  hypothesis  includes 
as its  special  case a two-way changepoint  model  such  that  the  inequality 

holds  only  when i 5 I ,  i' L I + 1 and , j  5 J., j '  > J + I ,  where ( I ,  J )  is the 
unknown  changepoint.  This is a natural  extension  of  the one-way change- 
point  model (4). 

5. TESTING  THE ORDERED ALTERNATIVE FOR 
INTERACTION-TWO-SAMPLE  CASE 

The analyses  of  interaction in the  analysis of variance  model  and in the log- 
linear  model are parallel to  some  extent.  at least for two-way  tables [see 
Hirotsu (1983~1, 1983b)], and  here we  give only  the  procedure  for  the  latter 
for  brevity. 

5.1. Comparing  Treatments 

The  most  popular  procedure  for  comparing  treatments is Wilcoxon's rank 
sun1 test. I n  that  procedure  theJth  category is  given the  score of the mid- 
rank, 

and  the  rank  sum  of  each  treatment is defined by 

W, = w j ~ * l j ,  i = 
I 

2 

1.2 
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where ~ 3 , ~  is the  observed  frequency in the  (ij)th cell. The  standardized 
difference  of the  rank  sums is then  defined by 

*) = (x) (jj + - Z) I2 - 1 1 

where 

For evaluating  the  p-value  of  W(1; 2) we can use a  normal  approximation. 
The  network  algorithm of Mehta  et  al. (1989) can  also be applied  to give the 
exact  p-value.  As an example,  for  the data of Table 4 we obtain W(1;  2) = 
1.320  with  the  two-sided p-value 0.187 by the  normal  approximation. 

Another possible approach is the  cumulative  chi-square  method 
(Hirotsu, 1982). For this  method we partition  the  original  table  at  the j th 
column  to  obtain  a 2 x 2  table by pooling  columns as in Table  9  and 
calculate  the  goodness-of-fit  chi-square  statistic 

Then  the  cumulative  chi-square  statistic is defined by 

x*? = XI + ... + Xk-1 2 2 

The null distribution of x** is  well approximated by the  distribution of 
the  constant  times  the  chi-square  variable dxt ,  where  the  constant d and  the 
degrees  of  freedom v are given by the  formulas 

Table 9 Calculating the Cumulative Chi-square Statistic 

Column  pooled 

Row (1, ..., j )  o’+ 1 ,  ..., k )  Total 

1 
2 
Total 

?‘I 

Yz. 
Y.. 
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and 

v = ( k  - I ) /d  

When  the yJ are all equal  as in Table 4, x*2 is  well characterized by the 
expansion 

where x:,x:, . . . are  the  linear,  quadratic,  etc.  chi-square  components  each 
with  one  degree of freedom (do  and  are asymptotically  mutually  indepen- 
dent; see Hirotsu (1986) for  details.  More specifically, x f l )  is just  the  square 
of the  standardized  Wilcoxon  statistic.  Thus  the  statistic is used to test 
mainly  but  not  exclusively  the  linear  trend in p 2 j / p I ,  with  respect to j .  For 
the  data of Table  4, = 30.579 and  constants  are  obtained  as d = 6.102 
and v = 3.114. The  approximated two-sided  p-value is then  obtained  as 
0.183. 

5.2 Changepoint  Analysis 

The maximal  component of the  cumulative  chi-square  statistic 

x a  = maxj x, 2 

is known  as  the  likelihood  ratio test statistic  for  changepoint  analysis  and 
has been  widely  applied for  the  analysis  of  multinomials  with  ordered  cate- 
gorical  responses since it is a very easy statistic  to  interpret.  Some  exact  and 
efficient algorithms have  been obtained  for  calculating  its  p-value, which is 
based on  the  Markov  property of the  sequence  of  the  chi-square  compo- 
nents, x:, . . . , xi-l [see Worsley  (1986) and  Hirotsu  et  al. (1992)l. Applying 
those  algorithms  to  Table  4, we obtain  the two-sided  p-value  0.135 for 
x M  = 5.488,  which  gives moderate evidence for  the  change in the  probability 
of  occurrence. 

In  comparing  the  three  statistics  introduced  above  for  testing  the 
ordered  alternatives  (3),  the  Wilcoxon  statistic  tests  exclusively  a  linear 
trend,  max x 2  is appropriate  for testing the  changepoint  model  (4),  and 
x*2 keeps  a  high  power  over  a  wide  range  of the  ordered  alternatives. As 
an example  of  comparing  two  multinomials  with  ordered  categorical 
responses,  the  three  methods  are  applied  to  the data of Table 3, and  the 
results  are  summarized in Table IO.  For reference, the  usual  goodness-of-fit 

2 
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Table 10 Three  Methods Applied to Tahlc 3 

Test statistic  Two-sided p-valuc 

W’( I :  2) = 2.488 
X:’ = 18.453 
X j f  = 10.303 
x’ = 12.762 

0.0 128 
0.0096 
0.0033 
0.0257 

chi-square  value is shown  at  the  bottom of  the  table: it does  not  take  the 
natural  ordering  into  account  and as a consequence is not so efficient as the 
other  three  methods  for  the  data. 

6. TESTING  THE ORDERED ALTERNATIVE FOR 
INTERACTION-GENERAL  CASE 

6.1. Comparing  Treatments  on  the  Whole 

As ;HI overall test for the  association  between  ordered  rows and columns. 
rank  correlations such as Spearman’s p or  Kendall’s r and  the  Jonckheere 
test are well known.  Here we introduce a doubly  cumulative  chi-square 
statistic  defined by 

so that Y(,Il = J-,,  is the  grand  total of observations.  The  (i..j)th  component x3 
is the goodness-of-fit  chi-square  value  for  the 2 x 2 table  obtained in the 
same  way as Table 9 by partitioning  and  pooling  the  original N x /< data at 
the ith row and  the ,jth column. 

The  statistic x**’ is again well approximated by (/x: with 
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As an  example, the  doubly  cumulative  chi-square  method is applied to  Table 
7. For  calculating xi it is convenient to prepare  Table 1 I .  

The  constants  are  obtained as 

tl = til X (12 = 1.5125 X 1.2431 = 1.8802, v = (3 - 1)- 
6 -  1 
1 .X802 

= 5.3 I9 

Then  the  p-value of x**? = 0.00773 + ... + 1.41212 = 31.36087 is evaluated 
a s  0.0065 by the  distribution 1.8802 x:,3l9. This is highly significant,  suggest- 
ing  the  dose  dependence  of  responses. 

6.2. Multiple  Comparisons of Treatments 

Although  the  doubly  cumulative  chi-square  value  generally  behaves well i n  
suggesting  any  relation between ordered  rows  and  columns, it cannot  point 
out the optimum level of treatment.  For  the dose-response experiment an 
interesting approach is to detect  dose levels between which are observed  the 
most significantly different  responses or the  steepest  slope  change.  A possi- 
ble approach  to this is to  partition rows between i and i + 1,  to  obtain the 
appropriate  statistic S(1, ..., i; i + 1 .  ..., k )  to  compare two groups of rows 
( I ,  ..., i) and ( i  + 1. ..., k - l),  and then to  make multiple comparisons of 
S( I ,  ..., i; i + 1. ..., k )  for i = 1 .  .... k - 1 .  For the  rank-based  approach, S 
can  naturally be taken as the  Wilcoxon  statistic, which we denote by 

Ordcrcd category 

Dose (1) (2  - 6 )  (1.2)(3 - 6) ( I  - 3)(4 - 6) ( I  - 4)(5. 6) ( 1  - 5 ) ( 6 )  Total 
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W (  1 ,  ..., i; i + 1.  ..., k). The  statistic S can  also be based on  the  cumulative 
chi-square  statistic,  which we denote by x*’( 1 ,  ..., i; i + 1,  . . . , k ) .  They  are 
calculated a s  two-sample test statistics  between  the  two  subgroups  of  rows 
(1,  . . . , i) and ( i  + 1 ,  ..., k). The  formula  to  obtain  the  asymptotic  p-value of 
max W (  1 ,  .... i; i + 1,  .... k) is given in Hirotsu et al. (1992), and  the  one  for 
max x*’( 1 ,  ..., i; i + 1. ..., k) in Hirotsu  and  Makita (1992), where  the  max- 
imum is taken  over i = 1, ..., k - 1. The  multiple  comparison  approaches 
applied  to  the  data of Table  7  are  summarized in Table 12. 

6.3. Two-way Changepoint  Analysis 

The  maximal  component of  the  doubly  cumulative  chi-square  statistic, 
denoted by max  max x’ij, can  be useful for testing the two-way changepoint 
model  Eq. ( 5 ) .  An efficient algorithm  to  obtain  the  exact  p-value of max  max 
x$ is proposed in Hirotsu (1994. 1997). Applying it to  Table  8,  the one-sided 
p-value  of 

max,  max, xf = 7.500 

is obtained  as 0.0476,  which  suggests  the  increased  probability  of  occurrence 
of  the first class in later  periods. 

The  max  max  chi-square value can  also be  used in the  context  of  the 
dose-response  experiment.  When  applied to  the  data of Table  7,  the  exact  p- 
value  of  max  max xi = 10.033 is evaluated as 0.014; see Hirotsu (1997) for 
details. 

6.4. Modeling  by  the  Generalized  Linear  Model 

Another useful approach  for  modeling  multinomials with  ordered  categories 
is to use a generalized  linear  model,  such as  proportional  odds  and  propor- 
tional  hazards  models.  The  goodness-of-fit  chi-square value  of  the  block 
interaction  model  applied  to  the  taste-testing  data of five foods in five 
ordered  categorical  responses by Bradley et al.  has  been  compared  to  fitting 
of  the  proportional  odds  model of Snell (1964) and  its  extension 
(McCullagh, 1980); see Hirotsu (1990, 1992) for  details. 

Table 12 Multiplc Comparisons of Three Dose Levels 

Test statistic Two-sided  p-value 

niax W = W(1.2; 3) = 2.7629 0.0 I I 
max x*2 = x*’( I ,  2; 3) = 24.010  0.005 
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7. SOME EXTENSIONS 

7.1. General  Isotonic  Inference 

A  monotonicity  hypothesis in a  dose-response  relationship,  say can be 
naturally  extended to the  convexity  hypothesis (Hirotsu, 1986) and the 
downturn  hypothesis (Simpson and  Margolin, 1986), which are  stated in 
the  one-way  analysis of variance  setting  as 

H,. : 112 - PI I P3 - p2 F .” 5 Po - Pu-I 

and 

H” : pI F ... 5 Pr+l 2 p,+z 2 ... 2 T = 1, ..., p,l-l 

respectively. In  Hirotsu (1986) a  statistic is introduced  for  testing  those 
hypotheses, and  an application  of its maximal  component is also discussed 
in  Hirotsu  and  Marumo (1995). These  ideas  can be extended to two-way 
tables, and a row-wise multiple comparisons  procedure was  introduced in 
Hirotsu  et  al. (1996) for classifying subjects  based on  the 24 h profile of their 
blood  pressures, which returns to approximately  its  starting level after 24 h, 
where  the  cumulative  chi-square and  linear  trend statistics are obviously 
inappropriate.  For a more general  discussion for  the  isotonic  inference, 
one  should refer to  Hirotsu (1998). 

7.2. Higher  Way  Layout 

The ideas of the  present chapter  can be naturally  extended to higher way 
layouts.  As  one of those  examples,  a  three-way  contingency  table  with  age at 
four levels, existence of  metastasis  into a  lymph  node  at  two levels, and  the 
soating  grade  at  three levels, is analyzed in Hirotsu (1992). An  example of 
highly fractional  factorial  experiments  with  ordered  categorical  responses is 
given in Hamada  and  Wu (1990); see also  the  discussion  following that 
article. 

8. CONCLUSION 

The analysis of interaction seems to have been paid  much less attention  than 
it  deserves.  First,  the character of the  two-way  factors  should be taken  into 
account in making  statistical  inference to answer  actual  problems  most 
appropriately. Row-wise and/or columnwise  multiple comparisons  are  par- 
ticularly useful when one of  the  factors is indicative or variational.  Second, 
analysis  of the generalized interaction is required even in the  one-way ana- 
lysis of  variance  framework if the  responses are  ordered  categorical, which 
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includes  rank data  as  an  important special case. Then testing  the  ordered 
alternatives  for  interaction is of particular  interest,  and  the  cumulative  chi- 
square  statistic  and its maximal  component  are  introduced  in  addition to the 
well-known rank  sum  statistic. Based on these  statistics,  a  method of multi- 
ple comparisons of ordered  treatments is introduced  as well as  an  overall 
homogeneity  test.  Third,  the  independent  sequence of  multinomials  can be 
dealt  with similarly to  the  multinomial  data with ordered  categories. For 
example, a sequence  of  Bernoulli  trials  can be dealt  with  as  two  multino- 
mials  with cell frequencies all zero  or  unity. In  this  context we are  interested 
in changepoint  analysis,  for which  the  maximal component of the  cumula- 
tive chi-square  statistic is useful. When  there  are  natural  orderings in both 
rows and  columns,  the  maximal  component of the  doubly  cumulative  chi- 
square  statistic is introduced  for  detecting  a two-way changepoint.  Finally 
those  row-wise and/or colurnnwise  multiple comparisons  are useful not  only 
for comparing  treatments  but  also  for defining  the  block interaction  model. 
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1. INTRODUCTION 

One of the  primary objectives in a  response  surface  investigation is the 
determination of the  optimum  of  a  response of interest.  Such an  undertak- 
ing  may  also  be  carried out when several responses  are  under  consideration. 
For example, in a  particular  chemical  experiment,  a resin is required  to  have 
a  certain  minimum viscosity, high softpoint  temperature,  and high  percen- 
tage yield (see Chitra, 1990,  p. 107). The  actual  realization of the  optimum 
depends  on  the  nature of  the  response(s)  and  the  form  of  the  hypothesized 
(empirical)  model(s)  being fitted to  the  data  at  hand. 

Optimization in response  surface  methodology (RSM) has  received  a 
great  deal  of  attention,  particularly  from  experimental  researchers.  This is 
evidenced by the  numerous  articles  on  optimization  that  have  appeared in a 
variety  of  professional  journals. See, for  example,  Fichtali  et  al. (1990), 
Floros (1992), Floros  and  Chinnan  (1988a, 1988b), Guillou  and  Floros 
(1993), Mouquet  et  al. (1992), and  the  two review articles by Khuri (1996) 
and  Myers  et  al. (1989), to  name  just  a few. 

For  the  most  part,  current  optimization  techniques in RSM apply 
mainly  to  single-response  models.  There  are,  however,  many  experimental 
situations  where several response  variables  are  of  interest and  can  subse- 
quently be measured  for  each  setting of a  group of control  variables.  Such 
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experiments  are  referred  to  as t~~ultiresponse esperitnents. For example,  the 
quality  of  a  product  may  depend  on several measurable  characteristics 
(responses). Hill and  Hunter (1966)  were perhaps  the first authors  to 
make reference to  multiresponse  applications in chemistry  and chemical 
engineering. A review of  RSM  techniques  applicable to multiresponse 
experiments is given by Khuri (1996). See  also  Khuri  and  Cornell  (1996, 
Chapter 7). 

The  optimization  problem in a  multiresponse  setting is not  as well 
defined as in the single-response case. In particular, when  two or  more 
responses are  considered  simultaneously,  their  data  are  multivariately dis- 
tributed. In this case, the  meaning  of  “optimum” is unclear,  because  there is 
no  unique way to  order  such  data.  Obviously,  the  univariate  approach of 
optimizing  the  responses  individually  and  independently  of  one  another is 
not  recommended.  Conditions  that  are  optimal  for  one  response  may be far 
from  optimal  or even  physically  impractical for  the  other  responses  from  the 
experimental  point  of  view. 

The  purpose of this chapter is to  provide  a  comprehensive survey  of 
the  various  methods  of  multiresponse  optimization  currently in use in RSM. 
A comparison of  some of these methods is made in Section 3 using  two 
numerical  examples  from  the  semiconductor  and  food  science  industries. 

2. METHODS OF MULTIRESPONSE  OPTIMIZATION 

Multiresponse  optimization  requires  finding  the  settings  of  the  control vari- 
ables  that yield optimal,  or  near  optimal, values for  the  responses under 
consideration.  Here,  “optimal” is used  with  reference to  conditions deemed 
more  acceptable,  or  more  desirable,  than  others  with  respect to  a certain 
criterion.  Multiresponse  optimization  techniques  can be graphical  or  analy- 
tical. 

2.1 Graphical Techniques 

In the  graphical  approach  to  optimization,  response  models  are fitted indi- 
vidually to  their  respective data.  Contour plots  are  generated  and  then 
superimposed  to  locate  one  or  more  regions in the  factor  space where all 
the  predicted  responses  attain  a  certain  degree  of  “acceptability.”  There  can 
be several candidate  points  from which the  experimenter  may  choose.  Note 
that these  plots limit consideration of the  control  variables  to only  two. If 
there  are  more,  then  the  remaining  variables  are assigned fixed values. In 
this case,  a  large  number  of  plots will have  to be generated. 
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Contour  plotting was initially used in the  early  development of RSM. 
For example, it was  described by Hill and  Hunter (1966) in reference to  an 
article by Lind et  al. (1960). More recently, an  improved  graphical  technique 
was  deployed using computer-generated  contour surfaces,  with  three  control 
variables,  instead  of  two,  represented on the  same  diagram.  This technique 
was discussed, for  example, by Floros  and  Chinnan (1988b),  who  credited 
Box (1954) and Box and  Youle (1955) for being the  originators of this  idea. 

It is worth  noting  here  that renewed interest in the  graphical  approach 
has evolved in recent years due to advances in computer  technology.  This 
approach is simple and easily adaptable  to  most  commonly used computer 
software  packages.  However, it has several disadvantages. For example,  its 
capability is limited in large  systems  involving  several control variables and 
responses.  Also, since only  two or three control variables can be represented 
in the  same  plot,  the  number  of  generated  plots  can be quite  large, as was 
mentioned  earlier.  This  makes i t  difficult to identify one set of conditions  as 
being  optimal.  Furthermore,  the  graphical  approach  does  not  account  for 
the  possibility  of  having  correlated  responses, which may  also be heterosce- 
dastic.  Obviously, graphs based on such responses are not very reliable and 
may  adversely affect the  finding of optimum  conditions.  In  particular, fail- 
ure to recognize multi-collinearities among  the responses can lead to mean- 
ingless results in  the  fitting of the  response  models (see Box et a l . ,  1973) and 
hence in the  determination of optimum  conditions. 

2.2 Analytical  Techniques 

Analytical  techniques  apply  mainly to linear  multiresponse  models. Let I’ 

denote the  number  of  response  variables,  and let x = (sI, s 2 ,  ..., sk)’ be a 
vector of 1,- related control variables. The  model  for  the ith response is of  the 
form 

1’; = f l ( x ) p ;  + E,,  i = 1 ,  2, ..., I’ (1) 

wheref,(x) is a  vector  of order p i  x 1 whose  elements  consist  of  powers and 
products of powers  of  the  elements of x up  to degree d;(? I ) ,  p, is a  vector of 
pi unknown  constant coefficients, and E,  is random  experimental  error. 
Suppose  that  there  are IZ sets of  observations  on .vl, ~ 3 ~ .  ..., )I,.. The  corre- 
sponding design  settings  of x are  denoted by xI, x2, ..., x,,. From (1) we have 

j’,,, =f( (x , , )P;  + E,,,, i = 1 ,  2, ...( r ;  Li = 1, 2, ...) I ?  (2) 

where yrri is the rrth observation  on  Model ( 2 )  can be written in vector 
form  as 
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y i = X , p i + e , ,  i =  1 , 2  ,..., r (3) 

where yi  and E; are  the vectors  of J ~ , , ~ ’ S  and E , , ~ ’ s ,  respectively, and X ,  is a 
matrix of order x p i .  It is assumed  that X ,  is of full column  rank  and  that 
E(&,) = 0 and Var(Ei) = o?Z,,, where I,, is the  identity  matrix ( i  = I ,  2, ..., r ) .  
Furthermore, we assume  that  COV(E,,E.~) = ovZ,,, i #. j .  Let E = (oii). The 
models in Eq. (3) can be combined  into  a single linear  multiresponse  model 
of  the  form 

where X is a  block-diagonal  matrix,  diag (Xl ,  X z ,  ..., X , ) ,  p = [pi : : 
... : pi] and E = [cl : E? : ... : E : ] ’ .  Hence, Var(E) = x @ I, , ,  where @ denotes 
the  direct  product  ofmatrices.  The best linear  unbiased  estimator  (BLUE) of fl 
is given by (see Khuri  and  Cornell, 1996, Chapter 7) 

r /  

s = [X’(E-l @ Z , , ) X ] - ’ X r ( ~ - ’  @ I,,)y 

In general, b depends  on  the  variance-covariance  matrix E, which is 
unknown-and  must  therefore be estimated.  Zellner  (1962)  proposed  the 
estimate E = (6q), where 

Srivastava  and Giles (1987, p. 16) showed that f: is singular if I’ > 11.  They 
demonstrated  thatAr 5 11 is a, necessary,  but not sufficient, condition  for  the 
nonsingularity  of E. Using x in place  of in Eq. (5) produces  the  following 
estimate  of fL 

This is known  as Zellner’s seemingly unrelated  regression (SUR)  estimate of 
p. It is also  referred to  as  an  estimated generalized least squares  (EGLS) 
estimate of p. It  can be computed using PROC  SYSLIN (SAS, 1990a). In 
particular, if X i  = X .  (i = I ,  2, ..., r ) ,  then it is easy to show  that (5) reduces 
to 
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In this case,  the  BLUE of pi coincides  with its  ordinary least squares (OLS) 
estimate,  which  does  not  depend on C, that is, 

This special case  occurs  when  the  response  models in ( I )  are of the  same 
degree and  form  and  are fitted using  the same  design. 

From  Eqs. ( I )  and (7), the  ith  predicted  response, ?(,;(x), at a point x in 
a  region R is given by 

where is the  portion of p, in Eq. (7) that  corresponds  to pi. 
Now by a  multiresponse  optimization  of  the  responses we mean find- 

ing  an x in R at which ?(,;(x), i = I ,  2, ..., r ,  attain  certain  optimal values. The 
term  “optimal” is defined  accoding  to  some  criterion.  In  the  next  two sec- 
tions,  two  optimality  criteria  are  defined  and  discussed. 

The Desirability Function Approach 

The  desirability  function  approach (DFA) was introduced by Harrington 
(1965). The response  models in ( I )  are first fitted individually  using  OLS 
estimates  of  the p j ’ s ,  namely, 

The  corresponding  predicted responses are 

The jT(x)’s are  then  transformed  into  desirability  functions  denoted by d j ( x ) ,  
where 0 5 d j ( x )  5 I ,  i = 1,2,  ..., r .  The value of d j ( x )  increases  as  the  “desir- 
ability”  of  the  corresponding  response increases. In  a  production process, 
the  responses y l ,  y 2 ,  ..., y r  usually  measure particular  characteristics of a 
product. 

The  choice of  the  desirability  function is subjective and  depends  on 
how  the  user  assesses  the  desirability  of  a  given  product  characteristic. 
Harrington (1965) used exponential-type  desirability  transformations. 
Later,  Derringer and Suich  (1980) introduced  more  general  transformations 
that offer the user greater flexibility in setting  up  desirability values. 
Derringer  and  Suich  considered one-sided and two-sided  desirability  trans- 
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formations.  The  former  are  employed when  the ff(x)'s are to be maximized. 
In this case, c/;(x) is defined by 

I1 otherwise 

where u i  is the  minimum  acceptable  value  of f T  and u; is such that higher 
values of jT would not lead to  further increase in the  desirability  of  the  ith 
response ( i  = 1. 2 ,  ..., r ) .  The value s is specified by the user. Note  that if the 
minimization of ?:(x) is desired,  then (];(x) is chosen  as 

I 1  otherwise 

where ii and V i  are specified values (i  = 1, 2, 3, ..., r ) .  Two-sided  desirability 
transformations  are used  when y j  has  both  minimum  and  maximum  con- 
straints.  The  corresponding (/;(x) is given by 

r&) = 

0 otherwise 

where  here u; and q are, respectively, minimum  acceptable  and  maximum 
acceptable  values  of jT, ci is that value  of ft considered  "most  desirable" 
(target  value), and s and t are specified by the user. 

Once  the  desirability  functions  for  all  the  responses  have  been  chosen, 
the c/;(x)'s are  then  combined  into  a single function,  denoted by [/(x), which 
measures  the  overall  desirability  of  the  responses.  Derringer  and  Suich 
(1980) adopted  the  geometric  mean of  the c/;(x)'s as such a  function,  that is, 
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We note  that 0 5 d ( x )  5 1 and  that d ( x )  = 0 if any of  the tl;(x)’s is equal  to 
zero.  Thus if a  product  does  not meet a specified characteristic, it is deemed 
unacceptable.  Large  values of t l  correspond  to  a highly  desirable  product. 
Hence,  optimum  conditions  are  found by maximizing &x) over  the experi- 
mental  region.  The  nlultiresponse  optimization  problem  has  therefore been 
reduced to  the  maximization of the single function (/(x). 

More recently, Derringer  (1994)  referred  to  the  desirability  function 
approach  as  the  desirability  optimization  methodology.  He also provided 
information  concerning  software  availability  for  its  computer  implementa- 
tion.  Note  that  the  actual  maximization of d ( x )  can be carried  out  only by 
using  search  methods,  as  opposed  to  gradient-based  methods,  because d ( x )  
is not  differentiable  at  certain  points. Del Castillo et a l .  (1996)  proposed 
modified  desirability  functions  that  are  everywhere  differentiable so that 
more efficient gradient-based  optimization  procedures  can be used. 

The  Generalized  Distance  Approach  (GDA) was introduced by Khuri 
and  Conlon (1981). The responses are  assumed  to be adequately 
represented by polynomial  models of the  same  degree  and  form within  the 
experimental  region R .  In this case,  the Xi’s i n  models ( 3 )  are  equal  to  a 
common  matrix X,. The  estimates of p i ,  i = 1,2, ..., r,  and  the 
corresponding  expressions  for  the  predicted responses are given  by Eqs. 
(9)  and ( 1  1). respectively. 

If  the  assumptions  made  earlier in Section 2.2 concerning  the  distribu- 
tions of the responses are  valid,  then 

wheref(x) is the  common  form  off,(x), i = I ,  2, ..., I’,  and oji is the  (i,,j)th 
element  of C, the  variance-covariance  of  the  responses.  Hence, i f j ( s )  LCl 
(x) : .&(x) : ... : ?,.(x)]’ is the  vector  of  predicted  responses,  then its variance- 
covariance  matrix is given by 

Since X ,  = X ”  for i = 1 ,2 ,  ..., I’, an unbiased  estimator of C is given by 
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where Y = bl : y2  : ... : y,.] is the n x I‘ matrix of  multiresponse data  and po 
is the  number of columns of X0 [see Khuri  and  Conlon (1981), formula 2.31. 
I! r 5 n - Po, then Eo will  be nonsingular  provided  that Y is of rank r.  Using 
E,, in place  of E in (14), an unbiased  estimator of VarE(x)] is obtained, 
namely, 

The main  idea  behind the generalized  distance approach is based on 
measuring  the  distance  of j ( x )  from  the so-called ideal optimum, which is 
defined as follows: Let 6; denote  the  optimumAvaluc if j i ( x )  obtained  indi- 
vidually  over a region R, i = 1, 2, ..., r.  Let 4 = &, ..., +,.)’. If these 
individual  optima  are  attained  at  the  same  point in R, then an ideal opti- 
mum is said to be achieved.  In  general,  the  occurrence of  such an  optimum is 
very  rare, since the 4;’s attain  their  individual  optima  at  different  locations 
in R .  In this case, we search  for  the  IoFation  of  a  near  ideal  optimum,  a  point 
x. in R at which j ( x )  is “closest”  to 4. Here, “closeness” is determined by a 
metric p$(x), $1 defined as follows: 

P W ) ,  61 = [ N x >  - 6 ) ’ G k i w 1 1 - 1 6 ( 4  - 6)I1I2 

Thus  the  multiresponse  optimization  probjem in this approach  has been 
reduced to  the  minimization  of pp(x), 41 with  respect to x over R .  
Optimum  conditions  found in this  manner result in a so-called compromise 
ideal optimum. 

Several other  metrics  were  proposed  in  Khuri  and  Conlon (1981), for 
example, 

where &,;; is the  ith  diagonal  element of Eo(i = 1, 2,  ..., r ) .  The metric pI  is 
appropriate whenever the  responses  are  statistically  independent. The metric 

measures  the  total relative deviation  of >(x) from $. It  can be used  when 
Eo is ill-conditioned. 
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Remark 1. It  should  be  noted  that in the  generalized distance 
approach, $i  is treated  as  a fixed quantity, when in fact it is randokn 
(i = 1 ,2 ,  ..., r ) .  To account  for  the  randomness in the  elements of 4, 
Khuri  and  Conlon (1981) developed  a  rectangular  confidence  region, C,, 
on @, the vector  of true  individual  optima  over  the region R. For a fixed x in 
R, the  maximum  of pp(x), q] is obtained with  respect to q in Cb. This 
maximum  provides  a  conservative  estimate  of pp(x), 41, the  metric  that 
should be minimized  with  respect to x instead of p E ( x ) ,  41. The maximum 
so obtained, which is a  function of x, is minimized  with  respect to x over R. 
A more  detailed  discussion  concerning this max-min  approach is also given 
in Khuri  and  Cornell (1996, Chapter 7). 

The  computer  implementation of Khuri  and  Conlon’s (1981) general- 
ized distance  approach,  including  the use of  the  confidence  region C+, is 
available  through  the MR (for  multiple  responses)  software  written by 
Conlon (1988).  A copy of the MR code  along with the  accompanying  tech- 
nical report  and  examples  can  be  downloaded  from  the  Internet  at  ftp:// 
ftp.stat.ufl.edu/pub/mr.tar.Z. Note  that  the  mr.tar.Z file  is compressed.  It 
should be uncompressed  and  then  compiled.  Furthermore, MR fits a sec- 
ond-degree  polynomial  model  to  each  response. 

An Extension of K h r i  and Conlon’s (1981) GDA. The generalized 
distance  approach (GDA) described  earlier  requires  that all fitted response 
models  be of the  same  form  and  degree  and  depend  on all the  control 
variables  under  consideration.  Valeroso (1996) extended  the GDA by mak- 
ing  it  applicable to models  that  are  not necessarily of the  same degree or 
form.  The following is a  summary of  Valeroso’s  extension. 

The  models  considered  are  of  the  form given in (1).  The SUR (or 
EGLS) estimates of pi are  obtained  from  formula (7). The expressions  for 
the  predicted  responses  are  given by formula (10). Let j , ( x )  = 
LCcr~(x),jc,2(x), ..., jcAx)l’. Then, 

where A’(x) = diag[f;(x),f;(x), . . . , f , ! (  x)]. An estimate of  the  variance-cov- 
ariance  matrix of j , ( x )  is approximately  of  the  form 

GE, (x ) ]  = A’(x)[X’(k” @Z,,)fl-’A(x) 

where  the  elements  of 2 are given in (6). The metric p defined in (16) is now 
replaced  by 



420 Khuri and Valeroso 

~,,li)~,(x), $,,I = [G,.(x) - $ , , ) ’ { A ’ ( x ) [ X ’ ( g - ’  ~ I , I ) X ] ” A ( x ) ) ” G , , ( ~ )  - $c,)]’’2 

(18) 

where &(, = @ ( , 2 ,  ..., $,,)’ and $,, is the  individual  optimum of fc,i(x) 
over  the  region R. Minimizing  the  metric p,, over R results in a  simultaneous 
optimization  of  the I’ predicted  responses. 

Valero:o’s (1996)  extension  also  includes an  accountability of the  ran- 
domness of @(, by applying  a  max-min  approach similar to the one described 
in Remark I .  

. . A  

2.3. Other  Optimization  Procedures 

There  are  other  optimization  procedures  that involve  more than  one 
response.  Some  of these procedures,  however,  are  not  truly  multivariate in 
nature since they do  not seek simultaneous  optima in the  same  fashion  as in 
Section 2.2. 

The Dual Response Approach 

The  dual response approach  (DRA) was introduced by Myers  and  Carter 
(1973). It  concerns  the  optimization of a single response, identified a s  the 
primary  response,  subject to equality  constraints  on  another response 
labeled  the  secondary  response.  Both  responses are fitted to second-degree 
models. Biles (1975)  extended  this idea by considering  more  than  one sec- 
ondary response. 

Del Castillo  and  Montgomery (1993) presented an alternative way to 
solve the DRA problem by using  a  nonlinear  optimization  procedure  called 
the generalized reduced  gradient (GRG)  algorithm. They  demonstrated  the 
advantages  of  this  algorithm  and  made  a reference to software  packages  for 
its computer  implementation. 

The  DRA can be used in experimental  situations where both the  mean 
and variance  of  a  process are of  interest.  One is considered  the  primary 
response and  the  other  the  secondary response [see Vining and  Myers 
(1990) and  Myers  et  al. (1992)l. Previously,  the DRA was used by Khuri 
and  Myers (1979) to provide an  improvement  to the  method of ridge ana- 
lysis, which is an  optimization  procedure  for  a single response  represented 
by a second-degree  model  within  a  spherical region [see Draper (1963)l. The 
modification  imposed  certain quadratic  constraints  for  the  purpose of  limit- 
ing  the size of the  prediction  variance.  More recently, several authors ela- 
borated  further  on  the use of the  DRA in conjunction  with  the  modeling of 
both the  mean  and variance. For example, Lin and Tu (1995) suggested 
using  the  nlean  squared error  (MSE)  as a new objective  function to be 
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minimized. This MSE is the  sum of the  estimated  process  variance  and  the 
square of the  differnce between the  estimated  process  mean  and  some  target 
value.  Copeland  and  Nelson (1996) proposed using direct  function  minimi- 
zation based on  Nelder  and  Mead's (1965) simplex method. Lin and  Tu 
(1995, p. 39) made an interesting comment by stating  that the use of  the 
DRA  for solving  the  mean-variance  problem  can  work well only when the 
mean and  variance  are  independent. 

Optimization via Constrained Confidence Regions 

Optimization via constrained  confidence  regions  (Del  Castillo, 1996) is 
somewhat  related to the DRA.  The responses are fitted individually using 
either  first-degree or second-degree  models.  Confidence  regions on the  loca- 
tions  of  the  constrained  stationary  points  for the  individual  responses are 
obtained if their  corresponding  models  are  of  the  second  degree. If some of 
the  models are of the first degree,  then  confidence  cones on the  directions  of 
steepest  ascent (or descent) are used.  These regions (or cones)  are  then 
treated as constraints in a nonlinear  programming  problem where one 
response is defined as  a  primary response. The next step  requires finding a 
solution  that lies inside a l l  the  confidence  regions and/or cones. 

A Fuzzy  Modeling  Approach 

The fuzzy modeling  approach of Kin1 and Lin (1998) is based on the so- 
called fuzzy multiobjective  optimization  methodology. It is assumed that the 
degree  of  satisfaction of the  experimenter with respect to the ith response is 
maximized when .$(x) [see formula (1 l)] is equal to its  target  value TI and 
decreases as  .?:(x) moves  away  from Ti, i = I ,  2, ..., I'. I f  )~~'1"' and )y"' denote 
lower and  upper  bounds  on the ith response, respectively, then  the  degree o f  
satisfaction with respect to the ith response is defined by a function  called 
the  membership  function, which we denote by nlj[ i . : (x)] ,  i = I ,  2, ..., I', and is 
given by 

The values of )~;'''I1 and )y'" can be chosen as the  individual  optima of .?:(x) 
over a region R .  We  note  that the  definition of this  function is similar to that 
of  the  desirability  function.  Simultaneous  optimization of the  responses is 
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achieved by maximizing  the  minimum  degree  of  satisfaction,  that is, 
mini(mi~;T(x)], i = 1,2, ..., r } .  Additional  constraints  may be added  to  this 
formulation  as  appropriate. 

The Procedure of Chitra (1990) 

The  procedure  of  Chitra (1990) is similar  to  the generalized  distance 
approach.  Chitra defined  different  types of objective  functions  to  be  mini- 
mized.  These  functions  measure  deviations  of  the  responses  from  their  target 
values. The  procedure  allows  the inclusion  of several constraints  on  the 
responses  and  control  variables. 

Remcrrk 2. The generalized  distance approach is the  only  multire- 
sponse  optimization  procedure  that  takes  into  account  the  variance-covar- 
iance  structure of the  responses.  We recall that  this  structure  affects  the fit of 
the  models.  It  should  therefore  be  taken  into  consideration in any  simulta- 
neous  optimization. Also, in order  to  avoid  any difficulties caused by multi- 
collinearities  among  the  responses,  the  multiresponse  data  should first be 
checked for  linear  dependences  among  the  columns  of Y [see formula (1  5)] .  
Khuri  and  Cornell (1996, pp. 255-265) provide  more  details  about  this  and 
show  how  to  drop  responses  considered  to be linearly dependent  on  other 
responses. 

The  extension of the generalized distance  approach in Section 2.2 
makes  it  now  possible  to  apply this procedure  to  models  that  are  not of 
the  same  form  or  dependent  on  the  same  control  variables.  On  the  other 
hand,  the  desirability  function  approach,  although  simple  to  apply, is sub- 
jective, as it depends  on  how  the user interprets  desirabilities of the  various 
responses. The user should be very  familiar  with  the  product  whose  char- 
acteristics  are  measured by the  responses  under  consideration.  Derringer 
(1994, p. 57) provided  some  insight  into  the  choice  of  desirability values. 
He  stated  that  “the process  of  assigning  desirability  curves and  their weights 
is best done by consensus in the  early  stages  of  product  conception. The 
consensus  meeting  should  include an expert  facilitator  and  representatives 
from  all  functional  areas involved  with the  product.”  Care  should  therefore 
be exercised in setting up desirability  functions.  Improperly  assessed desir- 
abilities  can  lead  to  inaccurate  optimization  results. 

It  should be recalled that  in  Derringer  and  Suich (1980), no  account 
was  given  of the  variance-covariance  matrix  of  the  responses,  not  even  at  the 
modelling  stage.  Del  Castillo  et  al.  (1996,  p. 338), however,  recommended 
using Zellner’s (1962) SUR estimates  to fit the  models in ( I )  [see formula 
(7)]. Furthermore,  the  desirability  function  approach  has  no  built-in  proce- 
dure  for  detecting  those  responses, if any,  that  are  either  linearly  dependent 
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or highly  multicollinear.  Ignoring  such  dependences  can  affect  the  overall 
desirability and hence  the  determination  of  optimum  conditions. 

3. EXAMPLES 

In  this  section, we illustrate  the  application  of  the  extended  generalized 
distance  approach  (GDA)  and  the desirability  function approach  (DFA) 
of  Section 2.2 and  the  dual response approach  (DRA) using  the G R G  
algorithm  of  Section 2.3. We  present  two  examples,  one  from  the  semicon- 
ductor  industry  and  the  other  from the  food  industry. 

3.1 A Semiconductor  Example 

An experiment  was  conducted to determine  the  performance of a  tool used 
to  polish computer wafers. Three  control variables  were  studied: .x1 = down 
force, .x2 = table  speed,  and -x3 = slurry concentration.  The  measured 
responses  were  removal rate of  metal  (RR), oxide  removal  rate 
(OXRATE),  and within-wafer standard  deviation  (WIWSD).  The objective 
of the  experiment  was to maximize y1 = selectivity and minimize y 2  = non- 
uniformity,  where 

RR  WIWSD 
= OXRATE 

and y 2  = 
RR 

A Box-Behnken design  with  eight  replications at the  center  and  two  replica- 
tions at each noncentral  point was  used.  Each treatment  run  required  two 
wafers. The first  wafer  was  used to  measure RR  and  WIWSD.  The second 
wafer  was used to  measure  OXRATE.  The design  points and  corresponding 
values  of y1 and y 2  are given in Table 1. 

Before  determining  the  optima  associated  with y l  and y2 ,  we need to 
select models that  provide  good fits to these  responses.  Since  the  models 
are fitted  using  Zellner’s  (1962)  seemingly  unrelated  regression (SUR) 
parameter  estimation [see formula (7)], measures  of  the  goodness  of fit 
for SUR models  should  be  utilized.  These  include  Sparks’  (1987)  PRESS 
statistic  and McElroy’s  (1977) R2 statistic. The  latter is  interpreted  the 
same way as the  univariate R2 in that it  represents  the  proportion  of the 
total  variation  explained by the SUR multiresponse  model.  These  mea- 
sures  provide  the  user  with  multivariate  variable  selection  techniques, 
which, in general,  require  screening  a  large  number  of  subset  models. 
To reduce  the number of  models  considered,  Sparks  (1987)  recommends 
using  the  univariate R2,  adjusted R2,  and Mallows’ C, statistics  to identify 
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Table 1 Experimental Design and  Response Values (Semiconductor  Example) 

Coded control  variables Responses 

s , 
0 
0 
1 
1 

-1 
- I  

I 
1 
1 
1 
0 
0 

- I  
-1 

0 
0 
0 
0 

- 1  
- I  

0 
0 
0 
0 
1 
1 
0 
0 

-1 
-1 
0 
0 

0 
0 
0 
0 
0 
0 

-1 
-1 

1 
1 
0 
0 
1 
I 
1 
1 

-1 
-1 
0 
0 

-1 
-1 

0 
0 
0 
0 
I 
I 

-1  
- I  

0 
0 

0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

-1 
- 1  
-1 
-1  

1 
1 
0 
0 

- I  
-1 
-1 
-1 

0 
0 
0 
0 

0.49074 
0.39208 
0.85866 
0.74129 
0.33484 
0.29645 
0.57887 
0.62203 
0.70656 
0.88  189 
0.43939 
0.46587 
0.30218 
0.36169 
0.60465 
0.53486 
0.48908 
0.4368 I 
0.25005 
0.19546 
0.52298 
0.42990 
0.45782 
0.469 I O  
0.63714 
0.79454 
0.88856 
0.842  18 
0.13258 
0.13665 
0.498 10 
0.46321 

y2 

0.18751 
0.19720 
0.12090 
0.16544 
0.65322 
0.75198 
0.15566 
0.10841 
0.14648 
0.09600 
0.24803 
0.23759 
0.55831 
0.71  183 
0.23622 
0.26489 
0.24406 
0.38756 
0.6305 1 
0.72421 
0.25327 
0.25019 
0.32923 
0.29522 
0. I2583 
0.19912 
0.27198 
0.29578 
0.62442 
0.53618 
0.29392 
0.37023 

“good”  subset  models.  For  each  combination of  such  models,  Sparks’ 
PRESS and McElroy’s R’ statistics  are  computed.  The  “best”  multire- 
sponse  model is the  one with  the  smallest PRESS statistic  value  and a 
value of McElroy’s R2 close to 1. On  this basis, the following  models  were 
selected for  and y 2 :  



Multiresponse  Surface  Methodology 425 

.?[,.I(X) = 0.441 + 0.2382.1-1 + 0.1 109.~2 - 0.0131~3 
(19) + 0.0429.~; + 0.0912s: - 0 . 0 7 7 3 . ~ ~ ~ ~  

jc,2(.y) = 0.2727 - 0.2546~1 + 0.0014~2 - 0.01 14s3 + 0.1216.~;  (20) 

The  SUR  parameter  estimates,  their  estimated  standard  errors,  the values of 
the  univariate R’, adjusted R’, and C,, statistics  and  values of McElroy’s R’ 
and Sparks’  PRESS  statistics  are given in Table 2. Note  that  the  SUR 
parameters  estimates were obtained using PROC  SYSLIN in SAS 
(1990a), and  the  univariate R’, adjusted R’, and C,, statistics were computed 
using PROC  REG in SAS (1989). From  Table  2 it can be  seen that  models 
( 1  9) and (20)  provide  good fits to  the  two responses. 

On  the basis of models  (19) and (20), the  individual  optima of jc,l(x) 
and j ,?(x) over  the  region R = ((sI, s 2 ,  s 3 ) l  x:=l .Y: I 2)  are given  in Table 
3. These  values  were computed using  a Fortran  program  written by Conlon 
(1992),  which is based on Price’s (1977) optimization  procedure.  The simul- 
taneous  optima of j , l (x)  and Tr2(x)  over R were determined by using the 
extension of the GDA (see Section  2.2). The minimization of pe in (18) was 

Table 2 SUR Parameter  Estimates and Values of C,,, R’, and  Adjusted R’ 
(Semiconductor Example) 

Responses“ 

Parameter ?’<,I J’t.2 

0.4410(0.0190) 
0.2382(0.0155) 
0.1109(0.0155) 

-0.0131(0.0155) 

0.2727(0.0135) 

0.0014(0.0135) 
-0.2546(0.0 135) 

-0.01 14(0.0135) 

-0.0773(0.0219) 
0.1216(0.0191) 

0.0429(0.0219) 
0.09  12(0.02 19) 

6.17 
0.91 
0.89 

4.39 
0.93 
0.91 

“The  number in parentheses is the  standard error. 
Note: McElroy’s R’ = 0.9212: Sparks’ PRESS statistic = 103.9. 
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carried  out using  a program  written in PROC IML of  SAS  (1990b). The 
results are  shown in Table 3. 

To  apply  the  DFA, we use formulas (12) and (13) for t l l ( x )  and d2(x ) ,  
respectively, where 

I 1  otherwise 

and 

if jc,2 2 1.0 

I’ otherwise 

Note  that  the values  0.95 and 0.20 in d l  and d 2 ,  respectively, are of the  same 
order of magnitude  as  the  individual  maxima  and  minima of jc,l and j,,,, 
respectively. Note  also  that,  on  the basis of  a recommendation by Del 
Castillo  et  al.  (1996,  p. 338), we have  used  the SUR predicted  responses, j e l  
(x) and j e 2 ( x ) ,  instead  of j ; ( x )  and j ; ( x ) .  The  latter  two  are  the  ones nor- 
mally  used in the DFA  and  are  obtained by fitting  the  models  individually 
[see formula (1 l)].  The  overall  desirability  function d ( x )  = [ d , ( ~ ) d ~ ( x ) ] ” ~  
was  maximized  over R using the  Fortran  program  written by Conlon 
(1992). Alternatively,  Design-Expert  (Stat-Ease, 1993) software  can  also 
be used to maximize d(x) .  The  DFA results  are given in Table 4. 

The results for  the DRA  are given in Table 5. In  applying  this  proce- 
dure  to  the  present  example,  each of  the  two  responses  was  considered  as  the 

Table 3 Individual  and GDA Simultaneous  Optima for the  Semiconductor 
Example 

~ ~~~ ~ ~~ ~ 

Response  Optimum  Location 

Individual  optima 
.PPI (1) Max = 0.8776 (0.7888,0.9031,  -0.7479) 
i r 2 ( X )  Min = 0.1302 (0.9443,  -0.0468.0.9689) 

id ( 4  Max = 0.8641 (0.9976,0.9127,  -0.3961) 
5.Z(X) Min = 0.1463 (0.9976,0.9127,  -0.3961) 

Simultaneous  optima (GDA) 

Note: Minimum value of pr in Eq.18 is 0.8610. 
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Table 4 DFA Simultaneous  Optima  for  the  Semiconductor  Example 

Response  Optimum  Location 

. F p l  (1) Max = 0.8772 (0.8351,0.7951,  -0.8172) 
;”,(X) Min = 0.1556 (0.8351.0.7951,  -0.8172) 

Note: The maximum of d ( x )  over R is 0.9609. 

primary  response.  Its  optimum  value  was  then  obtained  over R using  the 
constraint  that  the  other  response is equal  to  its  individual  optimum  from 
Table 3. Values  of the  DRA  optima in Table 5 were computed  on  the basis 
of the G R G  algorithm using the  “solver”  tool,  which is available in the 
Microsoft Excel (Microsoft, 1993)  spreadsheet  program. For  more  details 
on  how  to use this tool, see Dodge  et  al. (1995). 

The results  of  applying GDA,  DFA,  and  DRA  are summarized in 
Table 6. We note  that  the results are  similar  to  one  another.  The  maxima 
of j p , ( x )  under GDA  and  DFA are close, and  both  are  higher  than  the 
maximum  under  DRA.  Their  overall  desirability values are also higher. 

3.2. A Food Industry Example 

Tseo  et a l .  (1983)  investigated  the effects of -xl = washing  temperature, s 2  = 
washing  time,  and .x3 = washing  ratio on springiness bl), thiobarbituric 
acid number ( y 2 ) ,  and percent  cooking loss ( y 3 )  for minced  mullet flesh. It 
is of  interest  to  simultaneously maximize yl  and minimize y 2  and y 3 .  The 
design  settings in the  original  and  coded  variables  and  the  corresponding 
multiresponse  data  are given in Table  7.  Note  that  the design  used is a 
central  composite design  with  three  center point  replications  and an axial 
parameter  equal  to 1.682. The  same  data set was reproduced in Khuri  and 
Cornell  (1996,  pp. 295-296). 

The  multivariate  variable selection techniques  [Sparks’  (1987)  PRESS 
statistic and McElroy’s  (1977) R’ statistic]  mentioned in the  previous  section 
were  used, and  the following SUR models  were  obtained: 

Table 5 DRA  Optima  for  the  Semiconductor  Example 

Response  Optimum  Location 

j‘4 (x) 0.7639 ( 1  .O, 0.3299.0.9440) 
.F&) 0.1488 (1.0.0.7751, -0.6319) 
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Table 6 Comparison of GDA.  DFA.  and  DRA Results for the  Semiconductor 
Example 

Method 

GDA 
~~ 

DFA  DRA 
Optimal  response  valuc (0.86.0.1  5) (0.88,O.  16) (0.76.0.15) 
Optin1al settings (1.0,0.91,-0.40) (0.84.0.80.-0.82) See Table 5. 
Minimum  metric (p(,) 0.8610 1.1768 Not  applicable. 
Ovcrall  desirability 0.9537 0.9609 0.8967 

Fl,l(-r) = 1.8807 - 0.0974~1 - 0.0009~2 + 0.0091~3 - 0.1030.yf 
+ 0.00 13s: + 0.0028s: 

fe2(X) = 22.5313 + 5.6609~1 - 0.1719r2 - 1.2268.~~ + 7.8739s; 

+ 0.1489s: + 2 . 6 9 2 0 . ~ ~ ~ ~  + 0 . 1 7 5 2 . ~ ~ ~ ~  

.?,,3(X) = 17.81 18 + 0.7442~1 - 0.0120~2 - 1 . 0 7 1 0 ~ ~  + 3.4798s; 

+ 0.8288s: + 1.6731.~: + 1 . 3 0 2 0 ~ ~ ~ ~  + 1.9716sl.y3 

Table 7 Experimental  Design  and  Response Values (Food Industry  Example) 

Original  control  variables  Coded  control  variables  Responses 

XI x2 xi s I s 2 s 3  .1'1 J'? .1'3 

26.0  2.8 18.0 "1.000  -1.000  -1.000 
40.0 2.8 18.0 1.000 -1.000 
26.0 8.2 18.0 -1.000 1.000 
40.0 8.2 18.0 1 .OOO 1.000 
26.0 2.8 27.0 -1.000 -1.000 
40.0 2.8 27.0 1.000 -1.000 
26.0 8.2 27.0 -1.000 1.000 
40.0 8.2 27.0 1.000 1.000 
21.2  5.5  22.5 -1.682 0.000 
44.8  5.5  22.5  1.682  0.000 
33.0 1.0 22.5  0.000 -1.682 
33.0 10.0 22.5 0.000 1.682 
33.0 5.5 14.9 0.000 0.000 
33.0 5.5 30.1 0.000 0.000 
33.0 5.5 22.5 0.000 0.000 
33.0 5.5 22.5 0.000 0.000 
33.0 5.5 22.5 0.000 0.000 

-1.000 
-1 .000 
-1 .000 

I.000 
1.000 
1.000 
1.000 
0.000 
0.000 
0.000 
0.000 

-1.682 
1.682 
0.000 
0.000 
0.000 

1 .X3 
1.73 
1 .X5 
1.67 
1 .X6 
1.77 
1.88 
1.66 
1.81 
1.37 
1.85 
1 .92 
1.88 
1 .YO 
1.89 
1.88 
1.87 

29.31 
39.32 
25.16 
40.8 1 
29 .x2 
32.20 
22.0 1 
40.02 
33.00 
51.59 
20.35 
20.53 
23.85 
20.16 
2 I .72 
21.21 
21.55 

29.50 
1 9.40 
25.70 
27. I O  
2 I .40 
24.00 
19.60 
25. 10 
24.20 
30.60 
20.90 
18.90 
23.00 
21.20 
18.50 
18.60 
16.80 
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The  estimated  standard  errors  for  the  parameter  estimates,  the values of the 
univariate R', adjusted R', and C,, statistics,  and  values of McElroy's R' 
Sparks' PRESS statistics  are given in  Table 8. We  can see that  the fits of the 
three  models are  quite  good. 

The  individual  optima  and  the GDA simultaneous  optima  over  the 
region R = ((sI. x ? ,  .x3)\ x:=l .x: 5 3 )  are given  in Table 9. 

The  results of the DFA are presented i n  Table I O .  Here,  the  desirabil- 
ity values were computed using the  functions 

t i , @ )  = T l > , ( X )  - 1.3 if 1.3 < jc,l < 2.5 

otherwise 
2.5 - 1.3 

d' (s) = ?:,'(X) - 5 1 if 17 < 51 

otherwise 
I7 - 51 

Table 8 SUR Parameter  Estimates  and  Values of C,,, R', and  Adjusted R' 
(Food Industry Example) 

Responses" 

Intercept 1.8807(0.0207) 22.531 3(0.8854) 17.81 lg(0.8097) 
.Y , -0.0974(0.0097)  5.6609(0.5538)  0.7442(0.3818) 
X ?  -0.0009(0.0097) -0.1719(0.5538) -0.0120(0.3818) 
s.3 0.009 l(0.0097) - I  .2268(0.5538)  -1.0710(0.3818) 

.Y I .Y? 2.6920(0.7234)  1.3020(0.4370) 
s 1 s 3  I .97 16(0.4323) 
.Y?.Yj 0.1752(0.7158) 

7 
.Yi -0.1030(0.0107)  7.8739(0.5823)  3.4798(0.4198) 
S I  0.0013(0.0107)  0.1489(0.5823)  0.8288(0.4198) 
sj 0.0028(0.0107)  1.6731(0.4162) 7 

ci, 6.61 7.82 8.59 
R- 0.93 0.95 0.87 

Adj. R' 0.88 0.9 I 0.74 

"Thc number insldc  parenthescs IS  thc standard crror. 
Notc: McElroy's R' = 0.9271; Sparks' PRESS statlstic = 230.21. 
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Table 9 Individual  and  GDA  Simultaneous  Optima for the Food Industry 
Example 

Response  Optimum  Location 

Individual  optima 
.?‘,I (x) Max = 1.9263 (-0.4661,  -0.3418,  1.6276) 
!;‘,?(X) Min = 18.8897 (-0.5347.  1.1871.  1.1415) 
.?&) Min = 17.4398 (-0.2869,  0.2365,  0.4970) 

.?d (x) Max = 1.9136 (-0.5379,  1.0435,  0.8622) 

.PPZ(X) Min = 19.3361 (-0.5379,  1.0435,  0.8622) 

.?Ax) Min = 17.9834 (-0.5379,  1.0435.  0.8622) 

Simultaneous  optima  (GDA) 

Note: Minimum  value of p<, In Eq. (18) IS 0.9517. 

= if 14 < jC,3 < 30 14 - 30 
otherwise 

In  setting  up these  functions, we assumed  that  the  ranges of acceptable 
values for  the  three responses are 1.3 < y I  < 2.5, 17 < y z  < 51, and 14 

Finally, for the DRA, each of the  three  responses  was  considered  to be 
the  primary  response,  and its optimum value  over R was  obtained  under  the 
constraints  that the other  two responses are  equal  to their  respective  indi- 
vidual optima  from  Table 9. The results are  shown in Table 1 1 .  

A  summary of  the  optimization  results  of  applying GDA,  DFA,  and 
DRA to this  example is given in Table 12. Here  also  the  results  are  similar, 
with the GDA  and  DFA providing slightly smaller  minima for 4’2 and y 3  

than the DRA. 

< ~ ‘ 3  < 30. 

Table 10 DFA Simultaneous  Optima  for  the  Food  Industry  Example 

Response  Optimum  Location 

?;?I (x) Max = 1.9127 (-0.4504,  0.6176,  0.8081) 
?;<,?(X) Min = 19.8768 (-0.4504.  0.6176,  0.8081) 
?;&) Min = 17.6386 (-0.4504,  0.6176.  0.8081) 
Note: The maximum of (/(x) over R is 0.7121. 
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Table 11 DRA  Optima  for  the  Food  Industry  Example 

Response Optimum  Location 

(-0.5617, 1.1228. 0.9415) 
(-0.3514, 0.2824,  0.5605) 
(-0.5077, 1.0716, 1.2625) 

Table 12 Comparison of GDA,  DFA,  and  DRA  Results  for  the  Food  Industry 
Example 

GDA  DFA  DRA 

Optimal  response  values (1.91.  19.34,  17.98) (1.91.  19.88.  17.64) (1.91.  20.55,  18.61) 
Optimal  settings (-0.54.  1.04,  0.86) (-~0.45, 0.62,  0.81) See Table 1 1  

Minimum  metric (p,,) 0.95  I7 1.2832 Not  applicable 
Overall  desirability 0.7098 0.7121 0.6885 
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Stochastic  Modeling  for  Quality 
Improvement in Processes 

M. F. Ramalhoto 
Technical  University of Lisbon,  Lisbon, Portugal 

1. INTRODUCTION 

In  any service industry  there  are essentially two  types  of products  to be 
considered,  product service and  product  supply. Product service can be 
defined as  how  the service has been  provided,  and product supply is what 
has  been  provided  (this is, in many cases, what is commonly called product). 
The  product service is usually  provided  through  a service delivery  process  of 
a  queuing  system.  The service delivery  process is essentially described  by  a 
queuing  model.  This  paper  deals only  with the  product service. 

To develop policies to  provide  consistently  high  product service for  a 
wide  range  of  customer  types and  arrival  and service rates at  “reasonable” 
cost is one of the  ultimate  targets  of  most  queuing  system  managers. 
Usually,  those  are  not  easy  targets. The present  chapter  presents  a  metho- 
dology  to  address  them. 

In  Section 2 the  differences  between product service and  product  sup- 
ply are discussed. In  Section 3 a  way is provided  of  quantifying  delay and 
discomfort in the  queuing system  of  the service industry  in  order  to achieve  a 
product service of  high  quality.  Six  external  queuing  system  quality  dimen- 
sions  and  four  internal  queuing system quality  dimensions  are  defined  to 
address delay and  discomfort.  The  external  quality dimensions--perfor- 
mance, flexibility, serviceability (responsiveness), reliability, courtesy  (empa- 
thy), and  appearance  (tangib1es)”provide  a way to  establish  a  kind of 
channel of communication between the  queuing system managers  and 
operators  and  their  customers  (they allow  the managers  to  understand 
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their  customers’  expectations and perceptions of the  queuing  system).  The 
first three  internal  quality dimensions-timeliness, integrity, and predictabil- 
ity-provide a way to establish  a  kind of channel  of  communication between 
the  managers  and  the  actual physics of the  queuing system (they  allow  the 
managers  to  identify  and  understand  the  limitations of the production  pro- 
cess). The  fourth  internal  quality dimension--customer  satisfaction- 
provides  a way to establish  a  kind of channel of communication between 
the  managers  and  their  market  competitors.  Once we have  established  the 
channels  of  communication we have to  learn  how  to use them to commu- 
nicate efficiently and  to find the  solution or the way of coping with the 
identified problems.  Most  of  those  problems  have  to do with  the design of 
the service delivery process. 

Behind a service delivery process  there is usually a  queuing  model 
responsible for its  failure or its success. In Section 4 the  most  relevant 
queuing  models  addressing  the  reduction  of  delay  and  discomfort  and 
their  functional  relationship  with  the  basic  queuing  model  parameters  are 
presented and discussed (two  analytical  queuing models that consider  the 
quality  dimension flexibility, one  queuing model that  considers the  custo- 
mers’ perceptions of waiting and service, and a brief reference to  approx- 
imations  and  bounds  for  queuing models  with  time-dependent  arrival  rates 
and  to retrial  queuing  models).  Usually,  there are  more  than  one  queuing 
model  able to respond  to the  needs of a  particular service delivery process. 
Each  queuing  model  option  might lead to different levels of delay and 
discomfort  reduction,  impact  on  customer  satisfaction,  and  costs.  The  aim 
is to  find  the  “optimal” choice that balances i t  all. I n  Section 5 a  simulation- 
decision  framework,  called  total  quality  queue  management, is described 
that explicitly considers  and  evaluates  alternative  queuing model options 
and  makes the necessary decisions by selecting  those  particular options 
that  provide the best projected performmce scores, in terms of specified 
scoring  criteria,  based  on  measures  linked to the  quality  dimensions  selected. 
Section 6 consists of conclusions  and  further  remarks. 

2. PRODUCT  SERVICE  AND  PRODUCT  SUPPLY 

2.1. Distinguishing  Product  Service  and  Product  Supply 

There might be situations  where  a  clear  cutoff between the  product service 
and  the  product  supply is too difficult to achieve.  However,  usually  the 
product supply is an object and the product service is not. Also, in most 
cases, a  poor  product service might  ruin an excellent quality  product  supply 
and vice versa.  Therefore,  both  the  quality  improvement  of  product service 
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and  that of product  supply have to be looked  for  and  considered  equally 
important. 

Quality  improvement of the  product  supply is linked to  stochastic 
maintenance, reliability, quality  control,  and  experimental design  techniques. 
Furthermore,  an  important  problem is how to achieve a  high-quality  product 
supply  without  increasing  cost. I n  many  situations  the  study of interactions 
among  maintenance,  reliability,  and  control  charts,  through  a  total  quality 
management (TQM) approach,  might  help  to reach that  goal.  However,  that 
is not  the  concern of this chapter, which  deals  only  with  the product service. 

It  has  been  recognized by several authors  including Deming (see, e.&., 
Ref. 1 )  that  people  who  work in queuing systems are usually not  aware  that 
they too have a  product  to sell and  that this product is the service they are 
providing.  The  product service is frequently invisible to  the  operators. They 
have difficulties in seeing the  impact of  their  performance 011 the  success or 
failure  of  the  organization  that  employs  them,  on  the  security  of  their  jobs, 
and  on  their wages. Perhaps it would make sense to  propose a quality index 
(based on some  of  the  quality  dimensions  to be defined  next)  for  most of the 
relevant queuing systems  of common citizens’ everyday life (that  would  also 
help  their  operators  to  understand  better  the  importance of  their  mission). 
Just  imagine all  the  queuing systems  relevant to  our everyday life operating 
under  the  customer  satisfaction  criterion efficiently, adequately,  and  at 
controlled  costs. 

2.2. Identification of Differences 

Product service cannot  be  stored, so apparently  at least some  measurements 
must be almost  immediate.  In  fact,  product service is intangible  and  ephem- 
eral  or  perishable. I t  cannot be stockpiled  and  must be produced  on  demand 
(it  should be noted  that  similar  constraints now exist on  the  production of at 
least some  product  s~,pply, owing to  the new requirements in manufacturing 
production, such as just-in-time  or  zero  inventory).  Frequently,  the delivery 
of the  product service involves the  customer  and begins a very time-sensitive 
relationship  with  the  customer.  The  involvement  of  the  customer  also  makes 
the definition of quality of  the  product service vary  over  time  much more 
quickly than  that of the  product  supply.  Customers also add  uncertainties  to 
the  process,  because i t  is often difficult to  determine  their  exact  requirements 
and  what they  regard as an acceptable  standard  for  the  product service. This 
problem is magnified by the  fact  that  standards  are very  often subjective, 
based on personal  preferences or  moods  rather  than  on technical perfor- 
mance  that  can be easily measured [2]. Whereas  a  product service may  have 
completely satisfied a  customer  yesterday, exactly  the same  product service 
may  not do so today because  of the  customer’s  mood.  On  the  other  hand, 
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with  the same  equipment  and  for  the  same  required service, because  of  the 
mood of  the  operator (if the  operator is a  human),  the  product service might 
be of poor  quality  today even if usually it is not.  Queuing  and  waiting in 
general are  at the  same time  personal  and  emotional.  Qualitative  and  quan- 
titative  aspects  of  human  behavior  toward  waiting  have  to be addressed. In 
most  cases if customers  are  pleasantly occupied  while  waiting (entertain- 
ment, socially relevant  information,  opportunity  to  make  interesting  con- 
tacts, job  opportunities,  extra  information  about  the  queuing system  itself, 
etc.),  their  perception of  the  length  of  the  waiting  time  and  of  whether it is 
“reasonable”  may differ substantially. Unlike  the product  supply, which can 
usually be sampled  and tested for  quality,  the  product service cannot,  at 
least not easily. The record  of an inspection  of  the  product service cannot  be 
assumed  to be a  “true” reflection of  its  quality.  For  instance,  during inspec- 
tion  the  operator (if a  human)  might  be  quicker,  more  courteous,  and  more 
responsive to  customers  than if left alone.  (However, if the  operator feels 
pleasure in providing  a  high  quality  product service and is proud of con- 
tributing  to  the  higher  standards of  the  queuing  system,  he  or  she  works well 
even without  any  kind of inspection.)  Moreover,  unlike  the  control of qual- 
ity in the  product  supply [l], the  quality  of  the  product-service  depends  both 
on  the  operator  and  on  the  customer.  Also,  product service can be classified 
a s  poor by some  and  good by others.  Indeed,  its  qualification,  good  or 
faulty,  need  not  be  consistent. 

On assessing the effectiveness of a  product service, quantitative  and 
qualitative  factors  have  to be taken  into  consideration. It is also expected 
that  different  individuals will have  different  judgments  and  different  opi- 
nions about many  factual issues. Nevertheless, if the process continues  long 
enough,  the  observers  are expected to  independently  arrive  at very  similar 
interpretations.  That, obviously.  encourages  the  development  of  mechan- 
isms  of communicatiotn between the system’s management  and  their  custo- 
mers. Moreover,  product service is delivered at the  moment it is produced. 
Any quantification  or  measurement  taken is thus  too  late  to  avoid  a  failure 
or defect  with that  particular  customer.  However,  that  situation  might be 
alleviated if a  communication  mechanism is already in operation  (for 
instance,  at  the exit the  customer  could be asked,  or given a  short  and 
clear  questionnaire,  to  quantify  the  product service just received according 
to  the  quality  dimensions  to be defined in the next  section  and  to briefly state 
what  he  or she  would like to see improved in it; means  of  contacting  the 
customer  for  mutually relevant communication in the  future  should  also be 
recorded if the  customer is interested). The success  of the  communication 
mechanism  depends  heavily  on  showing  customers  that  they  have  been 
heard by the  system managers  and  that their relevant  opinions really 
make  a difference. 



Stochastic  Modeling  for  Process Quality 439 

Nevertheless, product service quality  must  always be balanced 
between customer  expectations  and  their  perception  of  the  product service 
received. A higher  quality  product service is one with  which  the  customers’ 
perceptions meet or exceed their  expectations.  It is obvious  that it is much 
more difficult to define quantitative  terms  for the  features  that  contribute  to 
the  quality  of  product service than  to  quantify  the  quality of  the product 
supply.  Therefore,  the  primary  area of difficulty is that of  identifying appro- 
priate  quality  “measures”  (quantities  resulting  from  measurements or  quan- 
tification) that we call here  quality  dimensions.  These  quality  dimensions 
also serve as a common language among  the  customers,  operators,  and 
managers. 

3. QUALITY  DIMENSIONS 

I shall classify the  quality  dimensions  into  external  and  internal. 

3.1. External Quality Dimensions 

The quality  dimensions-performance, flexibility, serviceability  (responsive- 
ness),  reliability,  courtesy  (empathy), and  appearance  (tangib1es)“are here 
called  external  quality  dimensions  and defined as follows, in a slightly dif- 
ferent way than in Refs 3 and 4. Note  that all  external  quality  dimensions 
are defined from  the  customer’s  viewpoint. 

Pe~;forn~m~c.e is the  primary  operating  characteristics of the  queuing 
system. I t  can be “measured” by, for  instance, the  “absence or perceived 
absence  of  waiting  time,” “total  sojourn time in the system not exceeding 
X units of time.”  “competitive price,” etc. 

FlcsibilitJ~ is the  queuing system’s built-in  ability to quickly  respond to 
changes i n  demand.  It  can be “measured” by, for  instance,  the  duration of 
a traffic peak  (how quickly  the  peak is gotten rid of). 

Scrviceuhilit~~ (responsi~~c~ne.~.~) is the  ability  of  the  queuing system to 
respond to the  individual  needs of a particular  customer. It can be mea- 
sured  by,  for  instance, the  time to respond  to  those individual needs, 
including  length of time to answer  enquiries or  to answer  complaints. 

Reliability is the  ability to always  perform  the  product service depend- 
ably,  knowledgeably and  accurately,  and  as expected by the customer. 

C o w t r q ~  (enzpathJ)) is the  caring,  individualized attention provided to 
the  customer,  the  effort  to  understand  the  customer’s  needs,  the  ability to 
convey  trust and confidence. Those  are  factors  more linked to  standards 
of  preferential human  behavior, which are  most subjective and difficult to 
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control  and  evaluate.  They need separate  attention  and  joint research 
work  with other specialists in order  to set up  adequate ways  of quantify- 
ing them. 

A p p c m m e  (trrngibles) is the  quality  appearance  of  the  physical  envir- 
onment  and  materials, facilities, equipment,  personnel,  and  communica- 
tions  used  to  produce  the  product service. To quantify this quality 
dimension,  joint  research  work with other specialists is also  required  to 
set up the  right  questions  to  lead  to an  adequate way of  quantifying  them. 

The first four  dimensions  are  mainly  concerned  with  the  cost-benefit 
characteristics of the  particular  queuing system under  study. In fact, in 
many  situations  once they  reach  reasonably  high ranks it is easier  to 
improve  the last two  dimensions.  Otherwise,  a very kind  operator  who 
does  not  know  the job well  will very soon be considered  to be of little use 
to  the  customer.  An office  full  of well-dressed operators  and  sophisticated 
equipment is not necessarily  the  most important  factor  for  the  customer, 
particularly if the first four  dimensions  are  not  ranked  high.  They  might 
even  represent an insult for  the  customer  who  knows  that, directly or  indir- 
ectly, he or she is paying  for  that  luxury. 

Those  quality  dimensions  are of  great  value  as  facilitators  of  system 
improvement  but  not in the  ongoing  business  of  monitoring  and  improving 
product service quality  and  cost  reduction.  They  can be obtained only after 
the  product service is delivered. Also,  they reflect the views of  the  customer 
and  not necessarily the real state of  the  system.  They  indicate  the  targets, 
from  the  point of view of  the  customers,  that  must be aimed  for.  However,  a 
lot more might be learned by comparing  the  ranking of  those  quality 
dimensions  with  the  “real”  state  of  the  system  (for  instance, by establishing 
priority  targets  and  identifying  the  need  to  add  more  relevant  quality 
dimensions).  In  fact,  other  external  quality  dimensions  could be envisaged, 
such as  managers’,  operators’,  and,  when  applicable,  customers’  commit- 
ment  to  quality. That is, of course,  another  external  quality  dimension  that 
is difficult  to  measure  but  not so difficult to quantify. 

3.2. Internal  Quality  Dimensions 

We  need  “measures”  that will help us to deliver what  the  customer  expects  or 
to  improve  the  queuing system  beyond  customers’  expectations at reasonable 
prices. For  that,  the  quality  dimensions timeliness, integrity,  predictability, 
and  “customer  satisfaction,” called here internal  quality  dimensions,  are 
adopted.  The  quality  dimension timeliness has been  referred  to, by several 
authors.  as  one of the  most influential components in the  quality  of  a  product 
service, because  the product service has  to be produced  on  demand. 
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Tinle1itles.s is formed by the necess time, which is the  time  taken to gain 
attention  from  the system; time qumit1g, which is the  time  spent  waiting 
for service (and which can  be influenced by the  length  of  the  queue and/or 
its  integrity);  and rrctior~ time, which is the  time  taken to provide  the 
required  product service. 

Integrity deals  with  the  completeness  of service and  must set out  what 
elements  are  to  be  included in order  for  the  customer  to  regard  the service 
as  satisfactory.  This  quality  dimension will set out precisely what  features 
are  essential  to  the  product service. 

Prcvfictahility refers to  the  consistency  of  the service and  also  the per- 
sistence or  frequency of the  demand.  Standards  for  predictability identify 
the  proper processes and  procedures  that need to be followed.  They  may 
include  standards  for  the  availability of  people,  materials,  and  equipment 
and schedules  of operation. 

Customer satisfaction is defined  here as the way to  provide  the  targets 
of success, which  may be based on relative market  position  for  the  provi- 
sion  of a specific queuing  system. 

So far, we have  established  external  and  internal  channels  of  commu- 
nication  and  “measures”  that tie together, in equal  terms  though  with  dif- 
ferent roles, the  managers,  their  operators  (as  part of the  production 
process), customers,  and  market  competitors.  The aim is to build up  a 
fair partnership of  system managers,  operators,  market  competitors,  and 
customers, a l l  able  to  communicate  among themselves and  committed  to 
quality  improvement  and  cost  reduction  of  the  system.  Let me call this the 
mnnnger tetrrthedrorl cowcept (see Fig. 1). This  concept  allows a TQM 
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approach  to  the  quality of queuing systems i n  the way discussed,  for 
instance, in Refs. 4-6. 

Furthermore,  the first internal  quality  dimension is clearly part of  the 
theory  of  queues.  Namely,  access  time has to do with the  theory  of  retrial 
queues,  and  queuing time and  action time are  waiting  time  and service time, 
respectively. Unlike  manufacturing,  the  production process in queuing sys- 
tems  of  the service industry is usually quite visible to  customers, since they 
are  often  part of  this  process. Therefore, it is crucial  to place  some quality 
improvement  efforts  on  improving  the  production  process. The service 
delivery  process might  be seen a s  the  process of producing  the  product- 
service. Parasuraman  et a l  [7], through  external  quality  dimensions,  have 
also identified the service delivery  process as  the key to  improving  product 
service quality  and building customer  loyalty. To improve  the service deliv- 
ery  process essentially means  to  improve  the  queuing  model  behind it. 
Timeliness  provides  basic  measures  of  its performance. 

Let  me now give examples  of  queuing  model  studies  relevant  to  the 
quality  improvement  of  the service delivery  process. 

4. SOME  EXAMPLES OF IMPORTANT  QUEUING  MODELS 
IN QUALITY  SERVICE 

Some  “product service failures  or defects are very often  linked to  “unaccep- 
table  access  time,” “unacceptable  queuing  time,”  “unacceptable  action 
time,”  and  “unacceptable  sojourn time  in the  system.” All are clearly mea- 
sured in queuing  theory  terms.  Those  failures  or  defects,  as  already  men- 
tioned,  might  ruin  the  ranking of most df the  other  quality  dimensions.  The 
way to  prevent  those  failures  or  defects rests in the  quality of the design  of 
the  process  delivery  of  the queuing  system.  Often, if nothing is done  to 
spread  out  the  arrival  pattern  or  to  change  the service rate  or  to  modify 
the service discipline, the  queuing system  experiences very uneven traffic 
flows and  serious  failures  or  defects  occur in the  product service. All of 
those  possible  failures or defects have costs. Very often  the  cost  of  delay 
is to lose customers. 

4.1. Two  Queuing  Models  that  Consider  the  Quality 
Dimension  Flexibility 

Queuing  models  that  address  the  queuing  system  quality  have  to be able  to 
efficiently deal with the  peak  duration  that  might  occur in those  systems. 
Very often,  the  rate of arrival  to  the system is  very uneven,  subject to 
random  fluctuation,  or periodically  time-dependent.  Designing  such  a  queu- 
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ing system specially to meet  the  peak demands is not always  the best action 
to take,  because it can be costly and  the excess capacity  can have  negative 
psychological effects on the customer. 

On the  other  hand,  a  poor  rank in flexibility might lead to  poor 
ranks in almost all  the  other  quality  dimensions.  Most  traditional  queuing 
models are unable to respond  quickly to changes in their  environment. 
(The basic  queuing  parameter, namely,  the  number of operators, is usually 
assumed to be unchanged  no  matter  what is happening in the  queuing 
system.)  The result is unacceptable  queue sizes and waiting  times.  Long 
queues  are, with few exceptions  (e.g.,  the restaurant with excellent food, 
product supply at a good  price),  always  considered an indication  of  poor 
product service. 

Ramalhoto  and Syski [8] show  how  quality  management  concepts 
of  satisfying  the  customer  can be incorporated  into the design of queu- 
ing  models.  They  propose  and  study  a  queuing  model  that  aims to 
provide  managers  with a way of dealing  with  some  temporary  peak 
situations,  that is to say, to have high ranking in the flexibility quality 
dimension.  The model is essentially  a G/G/c/FCFS  (or a G/G/c/c+d/ 
FCFS, i.e. first come first served queuing  model  with e,  c operators 
and  d waiting  position;  d is omitted  when  equal to zero or infinite) 
queuing  model  under  the  following  additional  decision  rule,  called  here 
rule 1. 

Rule 1. If the  queue size exceeds h (the  action  line),  introduce  another 
server (or k servers, k 2 1); when it falls below CI (the  prevention or ‘1 * 1 arm 
line),  withdraw  one  server  (or k servers, I< 2 I ) ,  h > a .  

For the M/M/ queuing  model c, (i.e., first come first served 
queuing model  with  Poisson  arrival  process and  exponential service 
times  distribution  with  cooperators  and infinite waiting  positions) 
under rule 1,  the  equilibrium  distribution  of  the  state  of  the  two- 
dimensional  Markov process that  characterizes  the  queuing model is 
derived.  Some  first-passage-time  problems useful in the  quality design 
of  the  queuing system are solved.  Several  extensions of these analytical 
results to  more general  settings,  including  nonhomogeneous  Poisson 
arrivals,  are discussed. 

For the M/M/c  queue  under rule I ,  where  the  arrival  rate is denoted by 
h and  the service rate by p, p = h/[ (c  + li)p], z = h/(cp) ,  p < r ,  p < I ,  and 

for i = 0, 1 ,  2 ,  ...; tz = c, c + k ,  denote  the  steady-state  probability of 
having i customers in the  queuing  system  and tI operators serving, 
Ramalhoto  and Suski  prove, among  other results. that [Ref. 8, p. 163, 
Eqs. (9) and ( I O ) ]  
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A measure  of  preference  to use c + k operators  for  a  short period of 
time (Ref. 8, p. 164, Eqs. (18) and (19)], is given by D(h,[ .+k) ,  the entrance 
probability to the set of  states ( i ,  c) for i = 0, ..., CI - 1,  before  entering  the 
set of  states ( i ,  c + k )  for i = h + 1, h + 2, ..., when starting  from the bound- 
ary  state (h ,  c + k ) .  The value of D ( h , c + k )  gives an  indication of  the  tendency 
toward c operators, when starting with c + k operators. 

By letting t + I ,  Ramalhoto  and Syski [SI obtained 

with p = c/(c + k ) .  
Other rules could be considered as  alternatives  to rule I ;  for  instance: 

R u k  2. When  the  queue size exceeds h (the  action  line),  shorten  the 
service time (for  instance, by deferring  some  tasks to be worked  out  later, by 
dividing and scheduling when the service can be provided in multiple  sepa- 
rate  segments, or by reducing  the  quality of service). 

Ruko 3.  Identify classes of service needed by customers  (each  class 
requiring  a  different service time and being of different "value"), and  treat 
the  customers in separate  queues, when  the  total  queue  length exceeds h (the 
action  line). 

Which rule is preferable?  Section 5 addresses  this  question. 
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Affinity Operators 

There  are several important  examples of queuing systems in the service 
industry, where it is “more efficient” to have a  customer serviced by one 
operator  than by any  other.  Thus  the system  schedules customers  on  the 
queue of  their  affinity  operator. To address  the  inevitable  imbalance in the 
number of customers assigned to  each  operator,  there  are several policies 
that  can be considered.  Any  conventional  queuing  model  under rule 3 might 
also be seen as  a related model.  Nelson  and  Squillante [9] consider a general 
threshold  policy  that allows  overloaded  operators  to  transfer  some of  their 
customers  to  underloaded  operators.  They  vary  four policy control  para- 
meters.  Decomposition  and  matrix-geometric  techniques yield closed-form 
solutions.  They  illustrate  the  potential  sojourn time benefits even  when  the 
costs of violating affinities are  large  and  experimentally  determine  optimal 
threshold values. One of the  important  applications of those  models is  in 
maintenance  after sales, which has become a significant portion of manu- 
facturing  quality. 

4.2. An  Analytical  Queuing  Model  that  Considers  the 
Customers’  Perceptions of Waiting  and  Service 

Conventional  queuing  control  theory  considers  the  costs of  waiting in 
terms of time and  money. For instance,  Kitaev  and  Rykov [IO] collect 
the  newest results of the  theory of Markov  (semi-Markov  and semi- 
regenerative)  decision  processes related to queuing  models  and  show  its 
applications  to  the  control of  arrivals, service mechanism, and service 
discipline. The theory of Markov decision  processes  claims that  under 
certain  conditions  there exists an  optimal  Markov  stationary  strategy 
that  can be constructed  according  to  an  optimal  principle based on  an 
optimality  equation. Usually  this approach  does  not  account for 
customers’  perceptions of waiting  time  and service. 

Carmon et al. [ I  I ]  examine  how  the service should be divided and 
scheduled  when it can be provided in multiple  separate  segments.  They 
analyze  variants of this problem by using a model  with a  conventional 
function  describing  the  waiting  cost,  which is modified to  account  for 
some  aspects of the  psychological  cost  of  waiting in line. They  analytically 
show. in some  particular cases, that  considerations of the psychological  cost 
can result in prescriptions  that  are  inconsistent  with  those  dictated by 
conventional  queuing  control.  From these  results  and  the  comments in 
the  previous  sections, it is obvious  that psychologically  based queuing 
research  has a very important role to play in quality  improvement i n  service 
industries. 
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4.3. Numerical  Approximations  for  Queuing  Models  with 
Time-Dependent  Arrival  Processes 

In  any real-life queuing system of  a service industry,  there is seasonal  (daily, 
weekly, and so on)  patterns of traffic, rush  hours  and slack times. Queuing 
models  with  nonhomogeneous  stochastic process  arrivals  better reflect these 
time-dependent  traffic  situations.  However,  the  analysis  of  time-dependent 
behavior is very difficult and very often  impossible, even for the  simplest 
conventional  queuing  models.  Nevertheless,  the  infinite  server  queue  with 
nonhomogeneous  Poisson  arrivals  and  general service time  distribution is 
one of  the very rare  exceptions,  where  time-dependent  analysis is completely 
known  and useful in practice. 

In Ref. 12, it is shown  that in the  ergodic M/M/r/r + d  queuing 
model, on the  one  hand, the  distribution  of  almost  any  relevant  queuing 
characteristic  can be rewritten in terms  of the  third  Erlang  formula  (the 
probability  of  nonimmediate service), which depends only on I’ and rp, 
where p is the  traffic  intensity. On the other  hand,  the  number of  waiting 
customers,  number of servers  occupied,  number of customers in the sys- 
tem,  waiting  time in the  queue,  and  total  sojourn time in the  system, in the 
stationary  state,  are  sums of  the  corresponding  random  variables of the 
M/M/r/r loss queuing  model (well approximated by the infinite-server 
queue  for  almost  any value  of  the  basic parameters involved, and even 
for  the  time-dependent  case) and of  the M / M / l / l /  + (d-I)  queuing  model, 
respectively, weighted by the  third  Erlang formula.  The  third  Erlang  for- 
mula  value  also  indicates a “heavy/low” traffic situation. An  extension  of 
some  of  those  results to the M/M/r/r+d queuing  model  with  constant 
retrial  rate is presented in Ref. 13, where  the  probability of not  avoiding 
the orbit parallels  the  role  of  the  third  Erlang  formula.  In both models  the 
decomposition’s  physical  properties seem to be robust  to several  general- 
izations,  including  the  time-dependent  (transient)  case.  However, in many 
situations,  namely,  the  time-dependent  ones,  there is no closed formula  for 
most of the  probability  distributions.  Therefore,  exact  comparisons  are  not 
possible. Approximations  and  bounds might be obtained  through  this 
decomposition  approach. 

It is  well known  that  many  queuing system practitioners  empirically 
approximate the M,/M/r/r + d  queuing  model  with  nonhomogeneous 
Poissosn  arrivals by the  infinite-server  queuing  model  with  nonhomoge- 
neous  Poisson  arrivals. Based on  this practice and  on  the results  presented 
in Ref. 12, Ref. 14 provides  a  simple-to-use  empirical approximation 
method to obtain  bounds  and  approximations  for the M,/G/r/r + d  queuing 
model.  Other  authors, such as  Whitt  and his coauthors  at the AT&T 
Laboratories,  have developed other,  more sophisticated approaches  to 
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tackle  the  problem of obtaining  approximations  and  bounds  for  the  M,/G/r/ 
r + d  queuing  model. A lot of research  work is still  needed on  this  queuing 
model.  Its  great  importance  in  the  service  industry  has  already been shown, 
for  instance, in Ref. 15. 

4.4. The Retrial Queuing  Model 

As shown  in  the  previous  section,  the access  time to  the  queuing  system is 
one of the  components of the  internal  quality  dimension timeliness. In  fact, 
usually,  a  customer  whose first  call for access to  the  queuing system is 
unsuccessful will repeat  the  call,  once  or  several  times, in quick  succession, 
thus giving rise to  the  phenomenon of repeated  attempts.  The  retrial  queu- 
ing  model  studies  this  phenomenon.  The effect  of repeated  attempts is to 
lead  to  additional  theoretical difficulties,  even for  the  M/M/1/1  queuing 
model  with  constant  retrials.  The  study  of  the  M/M/r/r  queuing  model 
with  retrials  involves  multidimensional  random  walks.  Approximations 
and  numerical  methods  for  this  queuing  model  date  back  to 1947 [16], but 
Ref. 17 is the first book  completely  dedicated  to  retrial  queues. 

When  a  queuing system  is very successful  it  is  usually  because more 
customers  are  seeking access. If not  properly  controlled,  the  number of  cus- 
tomers  seeking  access  might  eventually  ruin  the  queuing  system’s  quality 
reputation.  Therefore,  it is crucial  to  understand  the  interplay  of  the  basic 
parameters-A, arrival  rate; v, service  rate;  and a, access rate-and their 
influence on  the  most  relevant  quality  dimensions.  Figures 2-4 illustrate 
the  kind of three-dimensional  surfaces  that  represent  the  mean  and  the 

Figure 2 Mean value of the waiting time in the M/M/l/I queuing model  with 
constant  retrial rate and h = 1.5. 
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Figure 3 Variance of the  waiting  time  in  the M/M/l/l queuing  model  with  con- 
stant  retrial  rate  and h = 1.5. 

Figure 4 Mean  value of the  waiting  time  in  the M/M/l/l + 1 queuing  model  with 
constant  retrial  rate  and h = 1.5. 

4 0  0 

Figure 5 Variance of the  waiting  time  in  the M/M/l/l+ 1 queuing  model  with 
constant  retrial  rate  and h = 1.5. 

448 
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Figure 6 Mean  value of the  waiting  time  in  the  M/M/2/2  queuing  model  with  con- 
stant retrial rate and h = 1.5. 

variance of the  waiting  time,  as  functions  of 01 and v, for  the M/M/1/1 (one 
server  and  no  waiting  position),  M/M/1/1+  1  (one  server  and  one  waiting 
position),  and M/M/2/2 retrial  queuing  models  with  constant  retrial  rate a 
and  for  different  ergodicity  intensities.  Results of this  kind  help  to  evaluate 
the  range of arrival,  retrial,  and  service  rates  that  provide  consistently high 
product  service  quality  in  an  increasingly successful queuing  system.  (Also, 
for  example,  providing k extra  servers,  as  in  Section 4.1, when h or/and 01 

increase  beyond  a  certain  threshold  might  be  an  adequate  short-term policy 
to  maintain  the  high  quality of the  product service in an  increasing successful 
queuing  system). 

4 0 "  

Figure 7 Variance of the waiting  tlme  in  the M/M/2/2 queuing  model  with  con- 
stant retrial rate and h = 1.5. 
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Remrrk 1. Perhaps  it  should be noted  that if the design  of the deliv- 
ery  process is no  longer fit for  the  purposes  required, it will cause a kind  of 
“common  cause  variation.”  The  temporary  changes in the  arrival  or service 
mechanism will cause  a  kind of “special  cause variation.”  Both  causes of 
variation have to be addressed. 

Remcrrk 2. The  following types of robustness  are  desirable: ( I )  The 
queuing  model  behind  the delivery  process is robust if its  expected perfor- 
mance is not  too  much affected by “reasonable”  changes i n  the  arrival  and 
departure  rates. (2) The  operator is robust if its  performance is not  too much 
affected by “reasonable”  product service changes  required by the  customer. 

Ren7~rk 3.  Instead  of  setting  up  direct  inspection of the  operators, 
promote  channels of communication  among  customers  and  operators  to 
build a  joint  commitment  to  improving  the  quality of the  product service. 

RP/??mk 4 .  Whenever possible, eliminate  or  substantially  reduce  wait- 
ing  time  and  queue size. Managers  and  operators  should  network with 
customers  through,  for  instance, new technologies in order  to have  custo- 
mers’  arrivals as close as possible to  the  instant they  begin service. 

R C W I N ~ ~  5 .  Specific goals  should be set for  certain  quality  dimensions, 
such as access  time not  greater  than s ,  duration of  peaks  not  greater  than J’, 

queuing time  (waiting  time)  not  greater  than z ,  action time (service time)  not 
greater  than h,  and delivery  process idle time not  greater  than 11. A cost- 
benefit analysis  should  be  established  for  queuing  systems i n  monopolistic 
or ugently  needed service industries. 

Rcnlcrrk 6. An efficiently run  queuing system should  inform  its  cus- 
tomers  at  arrival  that (1) on  average,  the  waiting  time  to  initiate service is 
shorter  than  a  certain value and (2) its queuing size (if not visible) is shorter 
than  a  certain  value.  Whenever  needed, it should  spread  out  arrivals,  for 
instance, by (3) setting  up  appointment  schemes, (4) pricing at  peak  load 
intervals,  when  applicable,  and (5) establishing  priority  schemes  for special 
classes of customers. 

Retmrrk 7. Build on  the I S 0  9000 gains by introducing  a  request  for  a 
good  understanding of  customers’  needs a s  well as  operators’  limitations 
(by  the  manager  tetrahedron  concept)  and  the use  of an  adequate delivery 
process  design. 

Queuing  theory  certainly  has  a role to play in the  search  for  the  better 
adjusted  nlodels  to  the  needs of quality  management of service industry 
queuing  systems.  However,  the  probabilistic  results  needed  to  understand 
and  control  the  stochastic  behavior of those  queuing systems cannot all be 



Stochastic  Modeling for Process  Quality 451 

determined  analytically  and  need an interdisciplinary  approach. They  have 
to be obtained by a  mixture  of  educated  intuition  (based  on  some  of  the 
queuing  analytical  and  algorithmic results available),  heuristics,  simulation, 
and decision making guided by research  findings  on  the  psychology  of 
waiting. 

In  fact,  what  seems  to be required  here is the  creation of a  framework 
with  the ability to  jointly  consider  data  management  (from  the  internal  and 
external  quality  dimensions  selected),  process  delivery  design  (robust  queu- 
ing  models,  including  psychologically  based  queuing  models),  and  decision 
making also based on cost-benefit  analysis. As already  stressed, in most 
situations  the service delivery  process is the  one  that,  more  often  than 
not, needs special attention. 

5. EMPIRICAL  MODEL  BUILDING FOR THE  QUALITY 
IMPROVEMENTOFQUEUINGSYSTEMS 

Usually  more  than  one  queuing  model is capable of  responding  to  the need 
to improve  or redesign a  particular service delivery  process. Each  queuing 
model option  might lead to  different levels of reduction of  delay and dis- 
comfort,  impact  on  customer  satisfaction,  and  costs.  The  aim, in most cases, 
is to find the  “optimal”  solution  that  balances  the  customer delay and 
discomfort  against  operator idleness at  the  same  cost. 

Ramalhoto [ 181 formulated  a  practical  simulation decision  framework 
that  considers  and  evaluates  alternative  queuing  model  options  and  makes 
the necessary  decisions by selecting those  particular  options  that  provide  the 
best prqjected  performance  scores, in terms  of specified scoring  criteria, 
based on  measures  linked  to  the  quality  dimensions selected. The  queuing 
model  options  are defined as  “control  parameters” in this  framework.  For 
instance,  the  queuing  models  corresponding  to rules 1 ,2 ,  and 3, respectively, 
defined i n  Section 4. I ,  can be represented  quantitatively by the  following 
three  basic control  parameters: X , ,  the  regular size of  the service staff; X 2 ,  
the  percentage by which  the service times for  each  customer  are  to be 
reduced  or  expedited  (as  a  function of queue  length or  any  other relevant 
quantity); X 3 ,  the  amount by which  the  regular service staff is augmented by 
other  personnel  (such as secretarial  or clerical staff  to  meet  periods  of  heavy 
demand); X,, the  number of  different classes of service needed by customers; 
and X , ,  the  percentage  of  the  regular service staff  to  allocate  to  each of  those 
different classes of service. This  framework is called total  quality  queue 
management. 
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5.1. The  Total  Quality  Queue  Management  Framework 

Basically, the  total  quality  queue  management  framework  consists of four 
components: a stochastic  demand  model, a decision  system, an  outcome 
calculator,  and a scoring  system.  The  stochastic  demand  model  represents 
our projection  (and  the  uncertainties in our projection) of the  rates of arrival 
and service requirements  of  the  customers. The decision  system  searches 
systematically  over the  multidimensional  space  defined by the  control  para- 
meters X , ,  ..., X ,  to find an  optimal  combination of values, X ; ,  ..., X,*, for 
these control  parameters  that will  yield the  “best” system performance given 
the  stochastic  demand  that  has  been specified for  the  particular  problem. 

To enable  the decision  system to  compute  and  evaluate  the  conse- 
quences  of  any specific set of control  parameter values, it has  to use the 
results of  the  outcome  calculator  and  the  scoring  system. The  outcome 
calculator  and  the  scoring system  have to be constructed a s  entirely  separate 
and  independent systems. 

The  outcome  calculator  calculates  (or  projects)  the specific outcome(s) 
that will result from  any specific assumptions  concering  customer  demand 
and  any specific decisions  concerning  the  values of the  control  parameters. 
In particular,  for  any such combination of assumptions,  the  outcome  calcu- 
lator must be able  to  compute  the  pertinent  outcome  parameters (which are 
defined i n  terms  of  objective  physical  quantities  such a s  queue length. cus- 
tomer  waiting  time, service cost,  and  other  pertinent  descriptors of the  out- 
comes)  that  may be needed to  evaluate  the  queuing system  performance in 
terms  of  the selected quality  dimensions.  Clearly,  the  outcome  calculator is 
concerned  with  the  objective  physical  outcomes  of  the  queuing  system (in 
principle, i t  has  nothing  to do with  the  customers’  goals, objectives, prio- 
rities, or  expectations).  It  should be able to provide  the real ranking value  of 
the  quality  dimensions selected. 

The  scoring system has to be concerned  with  the  subjective  desirability 
of the  outcomes in terms  of  customers’  expectations,  perceptions  of  waiting 
and service, and  current  goals  and objectives. That  should be done  through, 
for  instance,  a  careful  analysis  of  complaints,  behavioral  queuing  research, 
and relevant customer  questionnaires  and surveys  addressing  the  quality 
dimensions selected. The  purpose of  the  scoring  system is to assign to 
each outcome a ranking of  the  quality  dimensions selected that  corresponds, 
as  accurately as possible, to  the  customers’ real objectives and  expectations 
for  that  particular  queuing  system. 

The  actual  implementation of the  total  quality  queue  management 
framework  to  a specific queuing system  might  be done,  for  instance, follow- 
ing ;I “value-driven”  approach.  However,  other  approaches might be 
envisaged. 
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One  of  the  interesting  features of this  framework is that we have  two 
ranking schemes for the  quality  dimensions  selected.  The first is an inevita- 
ble consequence  of  the  structure of  the  queuing system and its  relevant 
physical law (it reflects the voice of  the real system), and  the second reflects 
the  customers’  perceptions and  expectations of the  queuing system ( i t  
reflects the voice of  the  customer). So the  comparison of the  two  rankings 
might be very important to the  queuing system’s learning  process. 

The  total  quality  queue  management  framework is expected to help 
managers  gain  insight  into  the  main  factors  that influence product service 
quality  and identify  process  changes that will improve it .  

6. CONCLUSIONS  AND FURTHER REMARKS 

Studies  have  shown  that  indicators  often  distort a program  from  the begin- 
ning by forcing a focus on the  indicators  rather  than  on  the  true  underlying 
goals. The result is generally  a  lack of sustained success. And i n  many cases 
there is no success at a l l  save in the  artificial  indicators, which can  often be 
manipulated  with  little effect on  the underlying  process.  Unfortunately, in 
several situations  the  harm  caused by those  artificial  indicators is very pain- 
ful. That is indeed a  serious risk to be avoided.  Therefore, an effective 
process of judging  the  costs  and  consequences of the  choices necessarily 
incorporates a learning  process. An  important result of such  learning is a 
shared vision with  the  managers, operators  (many  operators  know  a lot 
about their jobs  and  about  the  queuing system they are  working with and 
also  have  the  capability of taking  direct  action), and  customers  about how 
the  process  works and how it should  work in order  to  confront  the  chal- 
lenges it faces. 

In this  chapter,  product service is treated a s  “manufacturing in the 
field.” I t  is advocated  that it should be carefully  planned,  audited  for  quality 
control,  and regularly reviewed for  performance  improvement  and  customer 
reaction.  The  methodology presented is an  attempt  to  construct a learning 
queuing system that is able to assess (internally and  externally) its  own 
actions  and  judge  and  adjust the  process through which it  acts.  It relies 
on  teamwork  among  customers,  operators,  and  nlanagers  to unify some 
goals,  on  a scientific approach,  and on decision  making  based on reliable 
data. In  fact, i t  is based on analysis.  simulation, data, policies, and  options. 
The idea is also to question policies whenever appropriate.  Adequate  data 
have  to be collected and  studied statistically, and  options have to be ana- 
lyzed, including  the option to change policies. 

In real life, changes  are very often  costly in terms of money. time. 
psychological  tensions, and so on.  for  many  reasons  (e.g.,  the new changes 
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in practice do  not  perform  as well as  expected),  and  many  things  can  go 
irreversibly wrong.  Therefore, whenever possible, the  total  quality  queue 
management  framework,  or  any  other  adequate system’s thinking  frame- 
work,  should be used (and  its  solutions  tested,  including  the  budgeted  costs) 
in connection  with  virtual reality experimentation  technology. 

Rernark 8. There is also  a need to  systematically  judge all the  other 
aspects  of  the  queuing  system,  namely,  the  product  supply  and  information 
technology  involved.  Key  benchmark  measures  and  standards  are  also 
needed. 

Renlark 9. When  an  appointment scheme for  the  arrivals is being 
used, most likely the  manager will prefer a tight  schedule  that limits idle 
time,  while a  customer may  prefer  to  arrive  late  to  avoid  waiting.  When 
commitment  on  both sides is lacking,  cost  penalties on  both sides often lead 
to  more successful appointment schemes  with “reasonable”  average idle 
time and  waiting  time. 

Remark 10. In a  queuing system  there are essentially two  main  rea- 
sons  for  customer  dissatisfaction: (1) a waiting  time  that exceeds a  threshold 
level and ( 2 )  dissatisfaction  with  the service received. The  latter  can be 
caused by the  poor  quality of  either  the  product service or  the  product 
supply  or  an excessively  high cost. 

Remurk 11. Interdisciplinary  advanced  studies in the fields of data 
analysis,  decision  analysis,  queuing  theory,  quality  management, and  the 
psychology  of  individuals, time, and  change  are needed to  create  more 
successful queuing systems for  the service industries.  Communication,  infor- 
mation,  and  commitment  are  also  important  tools.  Queuing system  studies 
could  also  incorporate  the  latest  behavioral  queuing  research  (accumulated 
across  the fields of  psychology,  marketing,  economics,  and  sociology)  to 
alleviate  the  human  tensions  and  humiliation of  waiting. 

Remark 12. Future  customer visits to  any  queuing system  when alter- 
natives exist (nonmonopolistic  or  non-urgently needed service) heavily 
depend  on  the price and  quality of the service product  quality  and  the 
product  supply  provided by this  queuing  system. I t  is  well accepted by all 
that  having  to  wait  beyond  certaitn limits is one of  the  crucial  factors in 
customer  satisfaction.  However,  as  shown i n  Ref. 19, customers’ final dis- 
satisfaction  with  waiting  for service is also very highly correlated with  their 
global  retrospective  (dis)satisfaction  judgments,  which affect their  future 
actions. 

Renmrk 13. Little  has  been  written  on  how  queuing  system  quality is 
related to  conventional  productivity,  profitability,  and sales performance 
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measures.  The  direct effect of queuing system  redesign  initiatives on  those 
measures  needs  deeper  investigation. 

Remurk 14. It  should be noted  that  the service industry is spreading 
over  to  manufacturing. In the “service factory”  concept,  the service is iden- 
tified as  the “fifth competitive  priority”  (as  opposed  to  the  traditional  four 
competitive  priorities-cost,  quality, delivery, and flexibility) in manufactur- 
ing  strategy. The idea is that  the  manufacturing  organization  can become 
more  competitive by employing  a  broader  range of services provided by the 
factory  personnel  and facilities (for  instance,  maintenance  after sales of their 
own  goods). 

Renzurk 15. It  should be emphasized  that a high quality  queuing 
system is only  the result of constant  effort  to  control  and  to  improve  each 
single aspect of the  queuing system as well as  not  to  disregard synergies, 
integral  (total)  management,  and  strong  market  awareness. 

ACKNOWLEDGEMENT 

The  Author  thanks  Professor  Gomez-Corral  for  the  elaboration of the 
figures 2 to 7. 

The  author  has  also benefited from  discussions  with  colleagues  from 
Princeton  University,  Maryland  University, and  Rutgers  University  during 
her  half-year  sabbatical in 1998 at  Princeton  University. 

This  work  was  carried out with the  support  from  the  “Fundaqao 
para  a CiEncia e  a  Tecnologia”  under  the  contract  number 134-94 of 
the  Marine  Technology  and  Engineering  Research  Unit-Research  Group 
on Queueing  Systems  and  Quality  Management, and  the  project  INTAS 
9 M 8 2 8 ,  1997-2000, on  “Advances in Retrial  Queueing  Theory”. 

REFERENCES 

1. WE Deming.  Out of the Crisis, MIT-CAES.  Cambridge,  MA:  Cambridge 
University  Press, 1986. 

2. CA  King. Service quality  assurance is different for  advanced engineering 
studies.  Qual  Prog  June: 1 4 1 8 ,  1985. 

3. M F  Ramalhoto.  Queueing system  of the service industry-A TQM  approach. 
In: G K  Kanji,  ed.  Total  Quality  Management. Proceedings  of the  First  World 
Congress.  London:  Chapman & Hall, 1995. pp 40741 I .  

4. B Bergman, B. Klefsjo. Quality  from  customer needs to  customer  satisfaction. 
McGraw-Hill,  New York, 1994. 



456 Ramalhoto 

5 .  

6.  

7. 

8. 

9. 

IO.  

11. 

12. 

13. 

14. 

15. 

16. 

17. 
18. 

19. 

G K  Kanji.  Quality  and  statistical  concepts. I n :  G K  Kanji,  ed.  Total  Quality 
Management.  Proceedings  of  the  First  World  Congress.  London: Chapn1an & 
Hall, 1995. pp. 3-10. 
K Dahlgaard, K Kristensen, G K  Kanji.  TQM-leadership. I n :  G K  Kanji.  ed. 
Total  Quality  Management. Proceedings  of the First World  Congress.  London: 
Chapman & Hall, 1995, pp 73-84. 
A Parasuraman,  LL Berry,  VA Zeithaml.  Understanding  customer  expecta- 
tions  of service. Sloan  Manage Rev Spring: 39-48, 1991. 
M F  Ra1nalhoto. R. Syski. Queueing  and  quality service. Invest Oper 16(2): 155- 
172. 1995. 
R D  Nelson. MS  Squillante.  Stochastic  analysis of  affinity scheduling  and  load 
balancing in  parallel queues.  (Submitted  for  publication) 
MY  Kitaev. VV Rykov.  Controlled  Queueing Systems. Boca Raton,  FL:  CRC 
Press. 1995. 
Z Carmon.  JG  Shanthikumar, TF Carmon. A psychological  perspective on 
service segmentation models: The significance  of accounting  for  consumers' 
perceptions of  waiting and service. Manage Sci 41(11): 180&1815. 1995. 
M F  Ramalhoto.  Generalizations of Erlang  formulae  and  some of  their  2nd 
order  properties. I n :  A  Bachem,  V Derigs, M Junger, R Schrader,  eds. 
Operations Research '93, GMOOR. Physica-Verlag.  Heidelberg. 1993. pp 
412-417. 
M F  Ramalhoto, A Gomez-Corral.  Some  decomposition  formulae  for  the  M/ 
M/,'r/r + d queue with constant retrial rate.  Communications in Statistics- 
Stochastic Models: 14(1 & 2), 1998, 123-145. 
M F  Rnmalhoto.  The  state  of  the  M,/G/oo  queue  and its importance  to  the 
study  of  the  M/G/r/r + d queue.  (Submitted  for  publication). 
L Green, P Kolesar, A Svoronos.  Some effects of nonstationarity  on  multi- 
servcr Markovian  queueing system. Oper  Res 39:502-51 I .  1991. 
I Kosten.  On  the influence of repeated  calls in the  theory of probabilities of 
blocking. Ingenieur 59: 1-25, 1947. 
GI Falin. JGC Templeton.  Retrial  Queues.  London:  Chapman & Hall. 1997. 
M F  Ramalhoto.  Stochastic modelling  in the  quality  improvement of service 
industries-~-~Some new approaches. proceedings  of International  Conference  on 
Statistical  Methods  and  Statistical  Computing  for  Quality  and  Productivity 
Improvement. ICSQP'95. Seoul, 1995, pp 27-35. 
Z Carmon, D Kahneman.  The experienced  utility  of queueing: Experience 
profilcs and retrospective evaluation of simulated  queues.  Working  paper, 
F U ~ L I ~ I  School. Duke University. 1993. 



Recent  Developments in Response 
Surface  Methodology and Its 
Applications in Industry 

Angela R. Neff 
General  Electric,  Schenectady,  New York 

Raymond H. Myers 
Virginia  Polytechnic  Institute  and  State  University,  Blacksburg,  Virginia 

1. INTRODUCTION 

It is interesting  to  note  that  there  are  a limited number of areas of statistics 
that  are  almost entirely motivated by and  dependent on real problems.  They 
do not  progress  merely  because  of  innovative  mathematical  rigor,  but  rather 
their  development is a  function of the  increased  complexity  of  problems 
faced by practitioners. Such is the  case  with  response  surface  methodology 
(RSM). The  fundamental  goal  remains  the  same a s  i t  was in the  late 1940s 
and  early 1950s: to find optimum process conditions  through  experimental 
design and  statistical  analysis.  While  the  term  “quality  improvement” 
became a classic and  overused  term in the 1980s and 1990s, RSM  dealt 
with quality  improvement  problems 30 years  earlier. 

There is no  question  that RSM has  received  unprecedented attention 
in recent  years and  has been the beneficiary of Genichi  Taguchi  and  the 
quality  era.  It  has been put  forth  as  a  serious  alternative  to specific Taguchi 
methodology. In fact,  the  RSM  approach  has been  suggested as  a  collection 
of  tools  that will allow  for the  adoption of Taguchi principles while  provid- 
ing  a  more  rigorous  approach  to  statistical  analysis.  Much  progress  con- 
tinues  to be made  as RSM benefits from  mathematical  optimization 
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methods,  statistical  graphics,  robust  fitting, new design  ideas,  Bayesian sta- 
tistics, optimal design  theory,  generalized  linear  models,  and  many  other 
advances.  Researchers in  all fields are  able  to  focus  on  applications of  RSM 
because of the  substantial  improvement in the  software  that is  used for 
RSM.  There is no  doubt  that high quality  software is one of the  better 
communication  links between  the  statistics  researcher and  the  user. 

In this chapter we discuss and review some  of  the  recent  developments 
in RSM and how  they are  having  and will continue  to have an impact on 
applications in industry. 

2. MEAN  AND  VARIANCE  MODELING  AND  ROBUST 
PARAMETER  DESIGN 

Along  with  the  realization  that  product  quality  depends  on  understanding 
process variation  as well as  targeting of  the  mean  came  the  concept  of 
response  surface  modeling  for  both  the  process  mean  and  variance. 
Taguchi’s clever consideration  and use of  noise  models  allowed this area 
to  advance.  Robust  parameter design (RPD) is a  principle  that  emphasizes 
proper choice  of levels of controllable process  variables (purmneters in 
Taguchi’s  terminology) in order  to  manufacture a product with  minimal 
variation  around  a  predetermined  target.  These  controllable process vari- 
ables  (controlled in experiments as well as in product  and process  design) are 
referred to a s  c.ot~trolfuctors. It is assumed  that  most of the  variation  around 
the  target is due  to  the  inability  to  control a second set of variables called 
noise,firctor..s. Some  examples  of  noise  factors  are  environmental  conditions, 
raw  material  properties,  variables  related  to  how  the  consumer  handles  or 
uses the  product,  and even the  tolerances  around  control  factors.  [The 
reader is referred to  Myers  and  Montgomery (1995) for  illustrations of 
control  and  noise  variables  for  various  applications.]  The objective in 
RPD is to design the process by selecting levels of the  control  factors in 
order  to achieve r.obz1.stne.s.~ (insensitivity) to  the  inevitable  changes in the 
noise factors.  This  can be achieved through  the  appropriate design and 
analysis  of  experiments  that  include  noise as well as control  factors, since 
even the noise factors  are  often within our  control  for  purposes of  experi- 
mentation.  This  philosophy is perhaps Taguchi’s  greatest contribution  to 
the  quality  movement. 

Compared  to  the design and  analysis  techniques utilized by Taguchi 
(Taguchi  and  Wu (1980)), response  surface  methods  can  accomplish RPD 
through  more  rigorous  analysis  and efficient experimentation.  For  more  on 
the  RSM  approach  compared  to  Taguchi’s  methods,  read Vining and  Myers 
(1990), Myers  et  al.  (1992a),  Khattree (1996), and  Lucas (1994). 
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Independent of  the  approach  taken,  however,  the  ability  to  incorporate 
robustness  to noise factors  into a process  design depends  on  the existence 
and detection  of  at least one  control x nose  interaction.  It is the  structure of 
these interactions  that  determines  the  nature of  nonhomogeneity  of  process 
variance  that  characterizes  the  parameter design problem.  For  illustration, 
consider  a  problem  involving  one  control  factor, x, and  one noise factor, z .  
Figure 1 shows  two  potential  outcomes  of  the  relationship  between  factors .x 
and z and  their effects on  the  response, y .  In  Figure la, it can be seen that 
the  response y is robust  to  variability in the  noise factor z when  the  variable 
x is controlled  at  its low  level. When .x is at its  high level, however,  the 
change in z has an effect of 15 units  on  the  response. I n  other  words,  the 
presence of the .x= interaction  indicates  that  there is an  opportunity  to 
reduce the  response  variability  through  proper  choice  of  the level of the 
control  factor. In contrast,  Figure l b  shows  that when  there is no  control 
x noise  interaction,  the  variability in y induced by the  noise  factor  cannot be 
“designed out” of the  system, since the  variability is the  same (i.e., homo- 
geneous) at  both levels of  the  control  factor. 

While the  estimation of control x noise  interactions is important  for 
understanding how  best to  control  process  variance,  the  control  factor  main 
effects, as well as  interactions  among  control  factors,  are  equally  important 
for  understanding  how  to  drive  the  response  mean  to  its  target.  The  dual 
response  surface  approach, which  addresses  both  process  mean  and  var- 
iance,  begins  with the  response  model, 

)’(X, Z) = Po + x’P + X’BX + z’y + X‘AZ + E (1 )  

In  the  response  model, x and z represent  the y,. x 1 and I‘, x 1 vectors  of 
control  and noise factors, respectively. The I’, x I’, matrix B contains coeffi- 
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Figure 1 (a )  Control by noise interaction. (b) No control by noise interaction. 
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cients of control x control  interactions (which  includes  quadratics). while 
the  matrix A is an I’, x I’, matrix of control x noise interactions.  While it is 
possible to have  interactions or even quadratics  among noise  factors,  the 
previously defined response  model will accommodate  many real-life appli- 
cations. I t  is assumed that E - N(0 ,  ozl), implying that  any  nonconstancy of 
variance  of  the  process is due  to  an inability to  control  the noise  variables. 
The  assumption  on  the noise  variables is such  that  the  experimental levels of 
each z, is centered at  some  mean p, with the f l  levels set at p, f co:,, where 
c is a constant. 1 ,  i, etc. As a  result, it is assumed that 

E(z )  = 0. Var(z) = ozIrt 2 

thus implying that noise  variables are  uncorrelated with known  variance. 
Taking  expectation  and  variance  operators on the  response  model in 

( I ) ,  we can  obtain  estimates of  the  mean  and  variance response  surfaces  as 

~:[I(x)] = hox’b + X’BX 

and 

Var[1(x) = (f + A’x)’V(f + A’x) + 6: 
An equivalent  form of  the  variance  model,  under  the  assumption  that 
V = 0’1, is given by 

var ,~~*(x) l  = b t ~ ’ ( x ) ~ ( x )  + 6: 

where  I(x) = (f + A’x), which is the  vector of partial  derivatives of )(x, z) 
with respect to z. In these equations, b, f, B, and A contain regression 
coefficients from  the fitted  model of Eq. (1). with 6; representing  the 
error mean square  from  this model fit. Notice  the  role  that A plays in the 
variance  model, recalling that i t  contains the coefficients of  the important 
control x noise  interactions.  Running  the process at  the levels of x  that 
minimize Ill(x)ll  will  in turn minimize the  process  variance. I f  however, 
A = 0, the  process  variance does  not  depend  on  x,  and hence one  cannot 
create  a  robust  process by choice of settings  of  the  control  factors  (illu- 
strated  previously with the  simple  example in Figure 1). 

Various  analytical  techniques  have been developed for  the  purpose of 
process understanding  and  optimization based on the dual response  surface 
models. Vining and  Myers (1990) proposed  finding  conditions in x  that 
minimize Var,l~*(x)] subject to  ,&-J(X)] being held at  some  acceptable 
level. Lin and  Tu (1996)  consider a mean  squared  error  approach  for the 
“target is best”  case. Other  methods, given in Myers  et  al.  (1997),  focus on 
the  distribution  of  response  values in the  process.  These  include  the devel- 
opment of prediction  intervals for  future response values as well as  the 
development of tolerance  intervals to include a t  least 100% of the  process 
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values  with  some specified probability.  An  exanlple  taken  from  Myers  et a l .  
(1997) will be used to graphically  illustrate  the dual response  surface 
approach  and  the usefulness of the  analytical  measures  previously  men- 
tioned. 

The  data  for this  example.  taken  from Montgomery (1997), comes 
from a factorial  experiment  conducted i n  a U.S. pilot  plant to  study the 
factors  thought to influence  the  filtration  rate  of  a  chemical  bonding  sub- 
stance.  Four  factors were varied in this  experiment:  pressure (si), formalde- 
hyde  concentration (x?) ,  stirring  rate (s3, and  temperature ( 2 ) .  There is 
interest in maximizing  filtration rate while also  dealing  with  the  variation 
transmitted by fluctuations of temperature in the  process. For this  reason, 
temperature is treated  as  a noise  variable. All four  factors  are varied at the 
f l  levels i n  a 24 factorial  arrangement, with  the f 1 levels of  temperature 
assumed to be at fo,, representing  temperature  variability in the  process. 
The fitted response  model is given by (Montgomery, 1997). 

f = 70.025 + 10.8125~ + 4.9375.~2 + 73125.~3 - 9 . 0 6 2 5 ~ 2 ~  + 8 . 3 1 2 5 ~ 3 ~  - 0.5625.\-,.~3 

with R’ = 0.9668 and 6, = 4.5954. Note  that  there  are  two  control x noise 
interactions  present in the  model,  indicating that  the variability  transmitted 
from  temperature  fluctuations  can be reduced through  proper choice of 
formaldehyde  concentration (.y2) and  stirring  rate (r3). Pressure (.Y,) was 
found to have  no significant effect on filtration  rate CY). The  estimated 
mean and  variance  models  are  therefore given by 

E[I(.Y~, .\-3)] 70.02 + 4.9375.yz + 7.3125~3 - 0 . 5 6 2 5 ~ 2 ~ 3  

and 

Var,[lf.y2, s3)] = (10.8125 - 9.0625.~~ + 8.3125~3)’ + (4.5954)’ 

Figure 2 shows  the  overlaid contour  plots  for  the response  surface  models  of 
the  process  mean and  standard  deviation.  The trade-off  between  maximizing 
filtration  rate while attempting  to minimize  variance is evident.  Figure 3 
contains  a  contour plot of  mean  filtration  rate  along  with  the  locus  of  points 
l ( s z ,  sj) = 0, defining a line of minimum  estimated  process  variance.  The 
shaded  region  represents  a 95% confidence  interval around this line of 
minimum  variance.  From  Figure 3, the  mean-variance  trade-off  becomes 
even more  clear, since we can achieve  barely  more than 73 gal/hr  for the 
estimated  process  mean while minimizing  the  process  variance  (with  co- 
ordinates s? = I ,  s 3  = 0.2). 

In  Figure  4 we see lower 95?4 one-sided  prediction  limits, while Figure 
5  depicts lower 95%  tolerance h i t s  on  filtration  rates with  probability 0.95. 
Both of these  illustrations  indicate  that  the  process  should be operated  at a 
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Figure 2 Contour  plot of both  the  mean  filtration  rate  and  the  process  standard 
deviation. 
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Figure 3 Contour plot of mean  filtration rate and  the line of minimum  process 
variance with its 95% confidence  region. 
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Figure 4 Contour  plot of lower 95%  one-sided prediction limits 

high concentration of formaldehyde ( s 2 )  with reasonable flexibility in the 
operating level of stirring  rate (.Y?). 

Combining  the  information  from  the  four  plots  provides  powerful 
insights  into  the  process,  namely, that  operating  at  the (.Y* = 

I .o 

-1.0 

-1.0 o..o 1 0  

x2 

Figure 5 Contour plot of 0.95 content lower 95% one-sided tolerance limits. 
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1.0, .xj = -0.21) condition will minimize the  process  variance  with 
promising  results  indicated by the  prediction and  tolerance limits. 

Taguchi’s parameter design  has had  a  profound effect on the rise in 
interest and use of RSM in industry.  There  are  developments in other  areas 
of  interest,  however,  that  should  and likely will enhance  its  role,  not  only in 
traditional  quality  improvement  but also in biostatistics and biomedical 
applications. 

3. NEW DEVELOPMENTS IN RSM 

3.1. Role of Computer-Generated Designs 

The  computer  has been an  important  tool in the  construction  of experimen- 
tal designs since the  early 1980s. However,  the  focus  has been almost  entirely 
on  criteria  that have  their  underpinnings  steeped in normal  theory linear 
models.  In  this  situation, of course,  the  alphabetic  optimality  criteria devel- 
oped by Kiefer (1959) and  others  can be applied  without  knowledge of the 
parameters.  However,  as we emphasize in what follows. many  of  the 
response  surface  applications in the  present  and  the  future  involve  nonlinear 
and/or non-normal  theory  applications in which  optimal  designs  depend on 
knowledge  of  the  parameters.  Uncertainty about model  parameters in these 
cases as well as uncertainties in more  standard cases about model  assump- 
tions,  goals,  the  presence of outliers, or missing design  points result in the 
need for  considerations  of  design  robustness  as  a  serious  alternative to 
optimal  design.  Almost  without  exception.  commercial computer  software 
deals  with design optimality  and  does  not  address  robustness. I t  is clear that 
computer-generated design cannot reach its full potential  without  consider- 
ing these matters as well as  dealing with various  kinds of graphical  metho- 
dology that allow  the  practitioner to compare  and  evaluate  experimental 
designs. In what  follows we discuss computer  graphics  that relate to RSM 
designs and provide  some  insight  into new developments.  These new devel- 
opments necessitate  design  robustness as a companion  to the RSM analysis 
tools  that  are  currently finding use in industry. 

3.2. Role of Creative Computer Graphics 

Practitioners of RSM are  undoubtedly familiar  with  the use of three-dimen- 
sional  and  contour  plots  for visualizing a predicted  response. In a multi- 
response  optimization  problem,  the  practice of overlaying  multiple contour 
plots is extremely  helpful for visualizing any  potential  compromises  that 
must be made in order  to  determine the  process optimum. Statistical  soft- 
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ware  packages  such a s  Design-Expert and  Minitab (version 12) have built-in 
features  for  generating these overlaid  plots. 

There  are  also  graphical  techniques  that  are extremely useful for eval- 
uating  the  prediction  capability of experimental designs. TWO such graphical 
methods  that  are discussed here are variance  dispersion graphs  and predic- 
tion  variance contour plots.  Both of these graphical  techniques  enable  the 
user to visualize the  stability of prediction  variance throughout  the design 
space, thus providing a mechanism  for  comparing  competing  designs. 

The  graphical technique referred to  as  the variance  dispersion  graph 
(VDG) was developed by Giovannitti-Jensen  and  Myers (1  989) and Myers 
et al.  (1992b). A variance  dispersion  graph  for an RSM design displays  a 
“snapshot” of the  stability of the scaled prediction  variance, v(x) = N Var 
y(x)/o’, and how  the design compares  to an “ideal.” For  a spherical design 
[see Rozum (1990) and  Rozum  and Myers (1991) for  extensions to cuboidal 
designs], the  VDG  contains  four  graphical  components: 

1 .  A plot of the  spherical  variance V‘ against  the  radius I’. The sphe- 
rical variance is essentially v(x) averaged (via integration)  over  the 
surface of a  sphere of radius I’. 

2. A plot of the  maximum .(X) on a  radius I’ against I’. 

3. A plot of the  minimum .(X) on  a  radius I’ against I’. 

4. A horizontal line at 74x) = p ,  to represent  the  “ideal”  case. 

Figure 6 illustrates  the utility of VDGs  for  comparison of two  spherical 
designs for k = 3 variables,  the CCD with a= f i  and three  center  points 
and the Box-Behnken design. also with three  center  points. Both designs 
have been scaled so that  points  are  at  a  radius f i  from  the design center. 
The following  represent  obvious  conclusions  from  the  two VDGs in Figure 
6 (Myers  and  Montgomery, 1995): 

1. Note  that  there is very little difference between the  minimum, 
average, and  maximum of ?)(x) for  the CCD, indicating  that i t  is 
nearly  rotatable.  This  should  not be surprising since a = 1.682 
results in exact  rotatability. 

2. The values of .(X) are very comparable  for  the two designs near 
the design center. Any difference is accounted  for by the difference 
in sample sizes ( N  = 17 for  the CCD. N = 15 for  the  BBD). 

3 .  The  CCD  appears  to be the  better design for  prediction  from 
radius 1.0 to f i ,  based on greater  stability in 74x) and a max 
?)(x) that is smaller  than that of the  BBD. 

4. The  comparison with the ideal design [ ~ ( x )  = 10.01 is readily seen 
for  both designs. 
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Figure 6 Variance  dispersion  graphs for CCD and Box-Behnken designs fork = 3 
design variables. 

Another  graphical  method of displaying  the  stability of the  prediction 
variance is a  display of contours of constant prediction  variance. Like the 
VDG, this technique  enables  the user to visualize the  behavior of 4 x )  over 
the design space.  Unlike  the VDG, a contour  plot  of 7 4 ~ )  allows  one to 
determine  the direction in which V ( X )  is most  unstable.  This  technique is now 
illustrated  through  a  comparison of two  competing designs of equal size, the 
3 - 11A hybrid with  one  additional  center  point  and  a  D-optimal  design. 
The 12-run  D-optimal design was  generated using SAS Proc  Optex,  assum- 
ing the  three-factor full quadratic model. The  candidate list from which the 
design was selected was structured to be similar to the  spherical  space 
encompassed by the  hybrid  design. Contour plots of the unscaled prediction 
standard  error ( v ( x ) / N )  were generated for each design, under  the  assump- 
tion of a full quadratic model.  Figures 7a and  7b  contain these contour plots 
for  the  hybrid  and  D-optimal designs, respectively. Note  that each contour 
plot  represents  a slice of the design space  where  factor C is fixed at its 
midpoint  condition,  and  therefore  the  center  contour  represents  the  stan- 
dard  error of prediction at  the center of the design space.  Studying  these 
plots  provides  information about two key aspects of the designs: (1) near- 
ness to  rotatability  and (2) stability/consistency of prediction  variance 
throughout  the space. 

The hybrid design, known  to be  nearly  rotatable,  also  has very stable 
and consistent  prediction  variance throughout the  space. The D-optimal 
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Figure 7 Contours of standard  error of prediction  for  (a)  hybrid 31 IA and (b) D- 
optimal design. 
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design, in contrast, is not  rotatable, which can be seen by the  inconsistency 
of  the  prediction  variance i n  the  corners  of  the  plotted  space.  In  addition to 
the  D-optimal  design  being  unstable in the  center of the  design  space, we 
also  observe an overall  higher  degree  of  prediction  variability throughout 
relative to that of  the  hybrid  design. 

Independent of the  designs  studied,  however,  the  power of the  graphi- 
cal techniques is evident.  Graphical  tools such  as  those  presented in this 
section allow the  researcher to quickly  gain  information about design per- 
formance  and  characteristics  of  the  response  surface. 

3.3. Bayesian or Two-Stage Design 

In more  and  more  applications,  the ability to design an  experiment  depends 
on a priori  knowledge of the  response  surface  model. For  example, when 
designing  experiments  for  nonlinear  models,  the  parameters of the  non- 
normal  error  models  must be known. Even for  the case  of  the  linear 
model,  identification of “optimal” designs depends  on knowledge  of  the 
model  regressors.  In  fact, we can say that it is rare when we truly know 
enough  to design the  experiment effectively without  invoking  prior  infonna- 
tion or conducting  a  preliminary  experiment, 

Consider  the  following logistic regression  model, used frequently in 
biomedical  applications: 

where J’; E (0, 1 )  indicates  whether  the  ith  subject  responded to dose x ,  of a 
given drug. I t  is therefore  assumed  that E ,  is approxinlately Bernoulli (0, 
p i (  1 - p i ) ) ,  where 

1 

The  corresponding  Fisher  information  matrix is given by 

Note  that  the  information  matrix is a function  of  the  unknown p’s. This 
makes i t  impossible to directly use traditional design  optinlality  criteria  for 
generating  an efficient design, since they depend  on being able  to optimize 
some  norm on the  Fisher  information  matrix. For example,  construction of 
the  D-optimal  design  for  the  above  model would require  that  the  doses s I ,  

s 2 ,  ..., x,, be chosen such that  Det[N-II(P)] is maximized. I n  order  to  do this, 
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the  scientist  would be forced to make his or her best guess at the  values of Po 
and P I .  The resulting  design will  be D-optimal  for the specified values, which 
unfortunately  may  be very different  from  the truth,  thus resulting in an 
inefficient design. 

Chaloner  and Verdinelli (1995) review a Bayesian approach  to design- 
optimality  that  incorporates  prior  information  about the  unknown  para- 
meters in the  form  of  a  probability  distribution.  This provides  a 
mechanism for building in robustness  to  parameter misspecification, since 
a  distribution  of  the  parameter is specified, not merely a  point  estimate.  The 
resulting Bayesian design  optimality  criterion is a  function  of  the  Fisher 
information  matrix.  integrated  over  the  prior  distribution  on  the  para- 
meters. For example,  the Bayesian D-optimal design for the  previously 
defined logistic  model is found by choosing  the levels of s that will maximize 
the  expression 

where is the  prior  probability  distribution of P = [Po, PI].  Other creative 
approaches  have been taken  that  provide a  robustness  to  parameter mis- 
specification. For example,  a  minimax  approach is provided by Sitter (1992). 

A  two-stage  design is another  method used to achieve  robustness  to 
parameter misspecification. The  strategy behind  designing in two  stages is to 
generate  parameter  information  from  data in the first stage  that  can then be 
used to select the  remaining  experimental  runs with maximum efficiency. A 
two-stage  procedure  may  implement  any  pair  of  design  criteria  that  meet  the 
first-stage  objective  as well as  the  objective of the  combined  design. For 
example,  Abdelbasit  and  Plackett (1983) and  Minkin (1987) studied  the 
efficiency of  two-stage  D-optimal  designs for  binary responses, thus  apply- 
ing D optimality to  obth stages.  Myers  et  al.  (1996)  developed  a  two-stage 
procedure  for the logistic regression  model that uses D optimality in the  first 
stage followed by Q optimality i n  the  second. 

To illustrate  the  two-stage  method,  a brief description  of  the  two-stage 
D-optimal  design ( D - D  optimality)  procedure  for  the  logistic  model is now 
given. The first step in the D-D (and  also D-Q)  procedure is the  selection of a 
first-stage  D-optimal  design. In  order  to  implement D optimality in the  first 
stage,  the  experimenter  must  estimate  the  unknown P with a best guess, bo. 
The N ,  runs  for the  first-stage design are  then chosen to satisfy  the  first- 
stage  D-optimality  criterion, given by 

Max Det[(N;'I(P)]B=b, 
D 
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with p replaced by bo and D representing all possible designs of size N I .  
After design and execution of the first-stage experiment, N ,  observations  are 
available to  estimate p. The “best guess” of p is updated by replacing bo with 
the MLE of p. The second  stage of the  two-stage process uses b, thus  making 
it  conditional  on  the results of the first stage. To complete  the D - D  
procedure, it is necessary to  choose a set of N 2  second-stage design points 
that will create  a  combined design that is conditionally D optimal.  The N 2  
points  are chosen to satisfy 

where D is now  the set of all possible designs of size N2 and I l ( p )  is fixed 
after  the first stage. 

Letsinger (1995) and Myers et al. (1996) evaluated  the efficiency of 
two-stage  procedures relative to their single-stage competitors. In doing so, 
they showed that  the best performance of the  two-stage designs was 
achieved when the  first-stage design contained only 30% of the  combined 
design size, thus reserving 70% of the  observations  for  the  second  stage, 
when more  parameter  information is present. 

Even for  the  normal  linear  model, successful implementation of design 
optitmality  criteria is often difficult in practice.  This is due  to  the fact that 
the  model  content  must be known  a  priori. In other  words,  the  experimenter 
must be able to specify which regressors are needed to model  the  response, 
in order  to  generate  the most efficient design for  constructing  the specified 
model. If too  many regressors are specified, some design points  (and  con- 
sequently  valuable  resources)  may be wasted on  estimatiton of unimportant 
terms. If too few regressors are specified, then  some  terms that  are needed in 
the  model  may  not even be estimatable. 

Suppose  an experimenter identifies a set of regressors, s ,  containing all 
p + q regressors he or she believes might be needed in modeling  the  behavior 
of a  response J-. The linear  model is written  as y = X p  + E, with y denoting 
the I?  observations  to be collected in an experiment,  under  the  assumption 
that y ( p ,  o2 - N ( X P ,  0’1). The model  matrix, X ,  has  dimensions 11 x (p + q) ,  
with the p + y columns defined by the set of regressors, x. Quite  often,  the 
experimenter  has knowledge of the  process or system that allows him or her 
to identify p of the  regressors as prin?ar.y ternw. These  are  the  terms  that  the 
experimenter  strongly believes are needed in modeling  the  response. The 
remaining  terms are  the poterzticrl torms, i.e., those  terms about which the 
experimenter  has  uncertainty. For example,  the  experimenter  may  know 
from  past experience that  certain process variables  must be included in 
the  model as main effects (i.e.,  linear  terms) but is uncertain if higher 
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order  interactions  (such  as  quadratics)  are  needed.  The key  is to  incorporate 
this  information  into  the  experimental  design, so that limited resources are 
first focused on  estimation o the  primary  terms (in this case  the  main 
effects), while also using some  resources  for  estimation of the  potential 
terms. 

DuMouchel  and  Jones (1994) proposed  a Bayesian D-optimality  cri- 
terion  for  the efficient estimation of both  primary  and  potential terms. Let 
Pprl and Ppot represent  the  parameters  corresponding  to  primary  and  poten- 
tial terms, respectively. The  approach taken by DuMouchel  and  Jones is to 
assume  a  diffuse  prior  distribution  (arbitrary  prior  mean with infinite prior 
variance)  for Ppr,. This is reasonable because these parameters  are expected 
to be significantly different  from  zero,  but no assumption of direction of 
effect is made.  The  potential terms,  however, are perceived to have smaller 
coefficients than the coefficients of primary  terms. For this reason, Ppo, is 
assigned an N(0 ,  o’?I), with o2 and T’ known.  Fortunately,  the design can 
be constructed  independently of 0’. The value of T?, however,  affects  the 
choice of the  design, since it  reflects the degree of uncertainty  associated 
with the  potential  terms relative to CY?. Under  the  assumption  that  primary 
and  potential terms are uncorrelated (achieved through  proper scaling of the 
s’s), the  joint  prior  distribution assigned to Ppr, and Ppo, is the N ( 0 ,  
~ ‘ T ’ K ” ) ,  where K is a (p + (I) x (p + (I) diagonal  matrix  whose first p diag- 
onal  elements  equal 0 and whose remaining (I diagonal  elements  equal I .  
Under the  assurnption that YIP, o2 - N(XP, O’I), the resulting posterior 
distribution of P = [Ppr,, Ppo,]’ is also  normal, with mean b = (X’X + K T ~ ) - ’  
X’y and  variance V = 02(X’X + K / T ~ ) - ’ .  The Bayesian D-optimal design is 
that which minimizes the Bayes risk, proportional  to 

log Det[V] = log Det[o’(X’X + K/r*)”] 

In  practice,  the appropriate design may be found by selecting the rows 
of X  from  a predefined candidate  list, so that 1VI is minimized. Note  that the 
diagonals of V associated with Ppot are  somewhat stabilized  through  prior 
information (given through T), identical to the  technique used in ridge 
regression. The  other  diagonals of V associated with Ppr,, however, are 
more  dependent on design. As a  result,  the Bayesian D-optimal design 
will support  estimation of both Ppr, and Ppot, but with higher priority 
given to ljpr,. 

Consider  an  application in which three  factors  are  to be studied,  with 
emphasis being placed on the  estimation of main effects and  interactions 
(Pprl =[intercept, P I ,  P z ,  P3, P I ? ,  P I3 ,  PZ3]’) while there is still some  interest in 
the  estimation of quadratics (Ppo, = [ P l l ,  P2’, P3J). The  performance of the 
Bayesian D-optimal designs versus  the  familiar face-centered cubic  (fcc) 
design is compared in Table 1 for  various  “true models.” All designs contain 
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N = 16 runs,  and all Bayesian D-optimal designs were produced by SAS 
(Proc  OPTEX).  The metric used for design comparison is the scaled D 
criterion,  N[Det(X'X)-']''",  calculated  for  the  true  model in each  case. 

From  Table 1 we see that in almost every case  the Bayesian D-optimal 
designs outperform  the fcc design. The  performance of the  two Bayesian D- 
optimal designs depends  on  the accuracy of the  experimenter's  prior  knowl- 
edge about the relative significance of primary  and  potential terms, reflected 
through  the choice of the  parameter 'c. For examploe, if it is  believed that  the 
quadratics  are all within f2o of zero  (i.e.,  most likely insignificant) and 
therefore defines r = 2/3, the  resulting design will  be most efficient when 
the  true  model  contains no quadratic terms.  This design is not the best 
choice, however, if all quadratic terms  truly  belong in the  model. In that 
case  a  larger value of T, such as z = 5, would  have been a  better choice for 
controlling  the design construction. 

This weakness in the Bayesian D-optimal  designs  should  not at all 
detract.  however,  from  the  work of DuMouchel  and  Jones.  In fact,  their 
greatest  contribution was to  provide  a basis for  the  development of more 
efficient Bayesian design criteria, such as two-stage  procedures,  for  the  pur- 
pose of generating efficient designs  under  model  (regressor)  uncertainty. 
Consider  the  value of adopting  the  method of DuMouchel  and  Jones  to 
produce a first-stage design with robustness to regressor uncertainty. 
Analysis of the  first-stage data  could  then  provide  additional  information 
about the relative importance of the p + (I regressors, enabling  the  remaining 
design points  (second-stage  design) to be chosen  with  greater efficiency. The 
second-stage design could then be generated  from  any  optimality  procedure 
that  incorporates the  improved model knowledge. 

The two-stage approach described above was developed by Neff et al. 
(1997) for  the  purpose of developing  numerous Bayesian two-stage design 
optimality  procedures  for  the  normal  linear  model  under regressor uncer- 
tainty.  Their  work suggests that efficiency and  robustness is gained from  a 
two-stage design of size N = 2(p + q + 2), with half of the design points 

Table 1 Values of Determinant for Evaluation of FCC  and Bayesian D-optimal 
Designs 

Parameters  contained FCC Bayesian D-opt Bayesian D-opt 
i n  the true model (t = 5) (= 2/31 
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allocated to each  stage of the  design.  One  such  two-stage Bayesian approach 
is illustrated by a brief description of a Bayes D-D optimality  procedure. 
Using this procedure,  the  first-stage design is chosen to be D optimal  accord- 
ing to  the  method of DuMouchel  and  Jones.  Consequently, the first-stage 
posterior  distribution of p = [ppri, 4,J’ is normal, with E ( p j / y I )  = (X;Xl + 
K/z’)-’X[yI and variance V I  = o-(X;X,  + K/T’)-’. Basing inferences on 
the first-stage posterior of p, the p + q standardized  estimates of the 
model  parameters (coefficients) after  the first stage are 

where cjj  is the,jth  diagonal element of ( I/o’)V1. Since the  estimated effect 
of  any regressor .x/ is proportional  to its  standardized  estimated  coefficient, 
the relative importance of the  various  model  terms  can be estimatedn by the 
relative sizes of the @‘s (in absolute  value).  Nornlalizing these 4;’s (in 
absolute value) produces a set of discrete  scores or “weights of evidence” 
that  quantify the relative importance of each  model  term. In other  words, a 
new set of z’s, (T~, ‘cZ, ..., z,,+[,}, is produced based on this updated  prior 
information.  Going  into the  second  stage, beliefs about  the relative impor- 
tance  of  the p + (I model  terms are expressed as plo-, z-, y,(O, 02T), where T 
is a 0) + q) x 0) + q)  diagonal  matrix with z l ,  t?, ..., zl,+[{ appearing on the 
diagonals.  Setting  the  prior  mean  to  zero  at this point is arbitrary, since it 
will have no  impact  on the  second-stage design criterion. Still under  the 
assumption of a  normal  linear  model,  the  second-stage  posterior  distribu- 
tion is also normal, with posterior  covariance  matrix V2 = 
o’(X;XI + XiX2 + T-I)-’. Thus the  second-stage  conditionally  D-optimal 
design is found by selecting the rows of X’ from a candidate list such that 
IVz( is minimized. Due  to  the  structure of T-’, the  diagonals of V? corre- 
sponding  to less important regressors are already  somewhat  stabilized. 
Design points  that  provide  information  about  the  more  important regres- 
sors  and thus stabilize the  corresponding  diagonals will  be chosen  for  the 
second-stage  design. For a  performance  comparison of this  procedure  as 
well as  other two-stage Bayesian design procedures relative to their single- 
stage  competitors,  the  reader is referred to Neff et  al. (1997). 

7 7  

3.4. Generalized Linear Models 

The  normal linear  model is the model that  has been most  commonly used  in 
response  surface  applications. The  assumptions  underlying  this  model  are, 
of course, that  the model errors  are normally  distributed with constant 
variance. I n  many  quality  improvement  applications in industry, however, 
the  quality  characteristic or response  most  naturally follows a probability 
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distribution  other  than  the  normal.  Consider,  for  example,  a  quality 
inlprovement  program at  a plastics manufacturer focused on reducing  the 
number of surface defects on i11jection-molded parts.  The response in this 
case is the defect count per part, which most  naturally follows a  Poisson 
distribution,  where  the  variance is not  constant  but is instead  equal to  the 
mean.  Consider  also  applications in the field of reliability, in which the 
equipment’s time to failure is the  quality  response  under  study.  Again,  the 
most  natural  error  distribution is not the normal,  but instead  the  exponen- 
tial or  gamma,  both of which have  nonconstant  variance  structures.  These 
types of problems nicely parallel similar  problems that exist in the  bio- 
medical field, particularly in the  area of dose-response studies and survival 
analysis. 

Regression models based on  distributions such as the  Poisson, gamma, 
exponential,  and  binomial fall into  a family of distributions  and  models 
known as generalized linear  models (GLM). See McCullough and Nelder 
(1989) for  an excellent text on  the subject.  In  addition  the  reader is referred 
to Myers and  Montgomery (1997) for  a  tutorial  on GLM. In  fact, all dis- 
tributions  belonging  to  the  exponential family are  accommodated by GLM. 
These  models have already been used a  great  deal in biomedical fields but 
are  just now drawing  interest in manufacturing  areas. I n  the  past,  the 
approach  has been to normalize  the  response  through  transformation, so 
that  OLS model  parameter  estimates  could be calculated. Hamada  and 
Nelder (1997) show several examples in which the  appropriate  transforma- 
tion either did not exist or  produced unsatisfactory  results  compared to the 
appropriate  GLM  model. They  also  spoint out  that with the  progress that 
has been made in computing in this area,  the  GLM models are  just  as easily 
fit as the  OLS model  to  the  transformed data.  A few example  software 
packages with GLM capability are  GLIM, SAS PROC  GENMOD, S- 
plus, and  ECHIP. 

I t  is interesting  that  some  work  has been done  that provides  a  con- 
nective tissue between generalized linear  models and  robust  parameter 
design.  This  relationship between the  two fields is extremely important,  as 
it allows  the  response  surface approach  to Taguchi’s  parameter design to be 
generalized to clearly non-normal  applications  that were previously dis- 
cussed in this section. Engel and Huele (1996) build a  foundation  for this 
important  area,  and there will certainly be other  developments. 

The difficulty  comes in designing  experiments for  GLM models. 
Design optimality  criteria become complex, and designs are  not simple to 
construct even in the  case of only  two design variables. See, for  example, 
Sitter and  Torsney ( 1  992) and  Atkinson  and Haines (1  996). One most  con- 
stantly be aware  that even if an  optimal design is found it requires  parameter 
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specifications. As a  result,  the use of robust or two-stage  designs will likely, 
in the  end, be the  most  practical approach. 

3.5. Nonparametric  and  Semiparametric  Response  Surface 
Methods 

Consider  a  response  surface  problem in which the  quality  characteristic 
(response) of interest is expected to behave in a highly nonlinear  fashion 
as  a function of a set of process  variables.  Although  the  model  form is 
unknown,  the model structure is of less importance  than  the ability to locate 
the process conditions  that result in the  optimum  response  value.  The  pri- 
mary  interest is  in prediction of the  response and  understanding  the general 
nature of the  response  surface.  Additionally, in many of these kinds of 
problems the ranges in the design problems  are wider than in traditional 
RSM in which local approximations  are  sought. 

In  the  problem  above,  greater  model flexibility is required  than  can be 
achieved with a  low-order  polynomial  model.  Nonparametric  and  semipara- 
metric regression models  can be combined with standard experimental 
design tools to provide  a  more flexible approach  to  the  optimization of 
complex  problems.  Some of the  nonparametric  modeling  methods  that 
may be considered are  thin-plate spline  models,  Gaussian  stochastic process 
models,  neural  networks, generalized additive  models (GAMS),  and multiple 
adaptive regression splines (MARS).  The reader is referred to  Haaland  et  al. 
(1 994) for  a brief description of each  model type. Vining and Bohn (1  996) 
introduced  a  semiparametric  as well as  a  nonparametric  approach  to mean 
and variance  modeling. The  semiparametric strategy involved the use of a 
nonparametric  method  to  obtain variance  estimates which then  became 
inputs  to modeling  the  response  mean via weighted least squares. As an 
alternative  approach they suggested utilizing a  nonparametric  method  for 
modeling  the  response  mean as well as  the variance. 

Haaland et al .  (1996) point  out  that  the experimental designs used for 
nonparametric  response  surface  methods  can  include  some of the  traditional 
designs. For example,  one  may execute a series of fractional  factorials fol- 
lowed by a  central  composite  design,  then  develop  a  global  model using a 
nonparametric  method. An alternative  to this design approach is to execute 
a single spcrce-filling design, which covers  the  entire region of operability in 
one large experiment.  This type of design is not based on  any model  form 
but  instead  contains  points that  are  spread  out uniformly (in some sense) 
over  the  experimental  region. The  intent is that  no  point in the  experimental 
region will be very far from  a design point. Space-filling designs have pri- 
marily been used in computer experiments but have  also been applied in 
physical experiments in the  pharmaceutical  and  biotechnology  industries. 
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See Haaland et al .  (1994) for references. Among the space-filling designs is a 
class of  distance-based design criteria  that focus on selection  of  a set of 
design points  that  have  adequate coverage and  spread  over the  experimental 
(or  operability) region. Two  software  packages  that will construct  distance- 
based designs are  SAS  PROC  OPTEX  and  Design-Expert. 

3.6. Hard-to-Change or Hard-to-Control Design Variables 

111 the design and analysis  of  industrial  experiments, one  often  encounters 
variables that  are  hard to change or  hard  to  control.  Consider  the following 
example. A product engineer  for  a  plastics manufacturer is conducting  an 
experiment to determine  the effect of  extrusion  conditions  on  various  phy- 
sical properties  of  the  resulting  plastic  pellets.  The  three  independent  vari- 
ables to be studied  are screw design, screw speed. and  extrusion  rate. 
Minimal screw design  changes  can  occur  during  the  experiment, since 
each  change  requires costly line downtime.  For  this  reason, screw design 
is referred to as  a  “hard-to-change”  variable.  Also, since screw designs  vary 
between plant sites,  the product engineer has  no  control over which screw 
design will ultimately be used at  each site. For this  reason, screw design is 
also labeled  a “hard-to-control”  variable. 

This  has been emphasized in recent  years due  to the important role  of 
noise  variables that  are  hard to control. Box and  Jones (1992) investigated 
the use of  split-plot  designs  as  an  alternative to Taguchi’s  crossed arrays  for 
more efficiently studying  noise  and  control variables.  Lucas and  JU (1992) 
pointed out  that  often the  designs for these  situations  are  not completely 
randomized  but  are  rather  quite like a  split  plot and yet we analyze  them 
incorrectly as  CRDs. 

Strictly  speaking,  the  hard-to-control variables are whole-plot  vari- 
ables  with levels that  are  randomly assigned to larger  whole-plot  experimen- 
tal units (EUs).  The  appropriate levels of the  easier to  control variables are 
randomly  assigned to smaller  experimental  units  within  each  whole  plot 
(thus  making them  subplot  variables).  As discussed by Letsinger et al. 
(1996),  this  birandomization  structure  leads to complications in analysis, 
since the error  assumptions associated  with  the basic response  surface 
model  [i.e.,  all E, - N ( 0 ,  o’)] are  no longer  valid. Let be the  whole-plot 
error  variance  and o: the  subplot  error  variance resulting from the  first and 
seonc  randomization, respectively. The model and  error  assumptions then 
become 

y = x p + 6 + E  

where 
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6 + E " N ( O , V )  

and 

V = o ~ J  + o ~ I  

Assuming that there a re i  whole plots,  then J is a  block-diagonal  matrix with 
nonzero  blocks of the  form lbixl x and hi is the  number  of observa- 
tions in the  ith  whole  plot, i = 1 ,2 ,  ...,.j. Note  that while observations 
belonging to different  whole-plot EUs  are  independent, those h i ,  observa- 
tions within a given whole  plot are  correlated. 

Practitioners  may be tempted to ignore  the  birandomization  error 
structure,  analyzing  the  data  as if they came  from  a completely randomized 
design (CRD).  The analysis of a  split-plot design as  a CRD, however,  can 
lead to erroneously  concluding that whole-plot  factors are significant when 
in fact they are  not, while at  the  same time erroneously  eliminating  from  the 
model significant subplot  terms  including  whole-plot-subplot  interactions. 
Unlike  model  estimation  for  the CRD, the error variances play a  major role 
in the  estimation of coefficients in the  birandomization  model.  Under  the 
assumption of normal  errors,  the  maximum likelihood estimate (MLE) of 
the  model is now obtained  through  the generalized least squares (GLS) 
estimation  equations 

(b) = ( x ' v - ' x ) - ' x ' v - ' y  

and 

Var(b) = (X'V-'X)-' 

Note  that  both estimating  equations  depend on  and CY: through  the 
matrix V; therefore  proper  estimation of these error variances becomes a 
priority. 

Appropriateness of various  model and  error  estimation  methods is 
dependent  on  the  structure of the  birandomization design (BRD).  The gen- 
eral class of BRDs is divided into two subclasses: the crossed and the  non- 
crossed. The distinguishing  characteristic is that in the  case of the crossed 
BRD,  subplot  conditions  (i.e.,  factor level combinations)  are  identical  across 
whole  plots.  This is the  familiar  split-plot design, which may result from 
restricted randomization of a 2 k ,  3 k ,  or mixed-level factorial  design.  In  the 
case of the  noncrossed BRD, each whole plot may have a  different  number 
of subplot  EUs  as well as  different  factor  combinations.  Such a design could 
result from restricted randomization of a 2"-" fractional  factorial design or 
second-order design such as  the  central  composite design (CCD)  or Box- 
Behnken design. 
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For the  crossed BRD, Letsinger et al. (1996) show that  GLS = OLS 
under  certain  model  conditions,  and  therefore error variance  knowledge is 
not  essential  for  model  estimation.  Model  editing,  however,  does  depend on 
the  availability of estimates of 0; and o,?. One  approach  to estimating these 
variances  makes use of whole-plot  and  subplot lack of fit. See Letsinger et 
al. (1986) for details. 

In general,  model  estimation and editing are  more complex for  the 
noncrossed BRD. I t  is interesting to  point  out, however, that when the 
model is first-order,  parameter  estimation  can be accomplished using the 
equivalency of GLS = OLS  (as in the crossed case). Once  again,  model lack 
of fit can be used to develop  estimators  for  the  error  variances,  although  the 
procedure is more complex than  that for  the crossed BRD. Both estimation 
and editing of a  second-order  model,  however,  depend  on  estimates of oi 
and 0: through  the  matrix V. Three  competing  methods  are mentioned  here: 
OLS,  iterated reweighted least squares  (IRLS),  and restricted maximum 
likelihood (REML). 

One  can  argue  that in some cases OLS is an acceptable  method, even 
though it ignores  the  dependence among  observations within each  whole 
plot of the  BRD.  In fact, OLS provides an unbiased  estimator of 0. Also, for 
designs that provide little or  no lack-of-fit information  (for  estimation of o,? 
and o:), the  researcher  may be better served by not  trying to estimate V than 
by introducing  more  variability  into  the  analysis.  The  IRLS  method begins 
with an initial OLS estimate of 0, then uses an iterative  procedure  for 
estimating oi, 0; and p until  convergence is reached in fi. The  REML 
method, first developed by Anderson  and  Bancroft (1952) and Russell 
and Bradley (1958), is similar to  MLE except that it uses the  likelihood of 
a transformation of the  response, y.  Refer to Searle et al. (1992) for a 
discussion on REML  and its relationship to MLE.  The  PROC  MIXED 
procedure in SAS (1992) can  be  adapted  to  calculate REML estimators. 
Letsinger et al. (1996) give details on  the use of PROC  MIXED for  the 
analysis of a BRD. 

The recent reminder  that  many  RSM  problems are  accompanied by 
designs that  are  not completely  randomized will hopefully  produce new and 
useful tools  for  the  practitioner.  In that regard it is of great  interest to  note 
the  similarity between the  split-plot  RSM  problem  (as  far as analysis is 
concerned)  and  the  approach  taken with generalized estimating  equations 
that find  applications in the  biostatistical and biomedical fields. The analysis 
is  ver similar,  though in the  longitudinal data  applications there generally is 
no designed experiment.  Liang and Zeger (1986) and  others extend  this 
work to generalized linear  models and indeed assume  various  correlation 
structures  rather  than  the  exchangeable  correlation  structure  induced by the 

7 7  
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approach discussed above.  The  RSM  practitioners  can benefit greatly by 
borrowing  from  their  colleagues in other fields. 

4. CONCLUSION 

Response  surface  methodology is growing.  More statistical  researchers are 
getting  involved,  dealing with a wider variety of complex  problems.  RSM 
will always play a large role in quality  improvement.  Much  more  develop- 
ment  work is needed,  however, to ensure  that the methods  are flexible 
enough  to meet the  challenges  presented by other  than the traditional fields 
of applications.  In  addition,  strong  communication is needed to solidify the 
growing  interest of practitioners i n  the  biological and biomedical fields. 
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Multivariate  capability indices, 244 
Multivariate  control  chart: 

Multivariate  control  procedure  for 

Multivariate processes, 224 
Multivariate  quality  control  procedure, 
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376, 381 

q-dimensional , 249 
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nonparametric, 21 5 
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Distribution-free, 214 

Multivariate stepwise diagnosis. 167 
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Optimum modifying quantity. 16 
Ordinary least squares  (OLS), 415 
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Orthogonal decomposition of the T’ 

Out-of-tolerance,  2 
value, 227 

Parameter design, 373 
Pattern recognition, 257 

Performance measures (PMs), 387 
Performance  measure modeling 

(PMM), 387 
PDCA-leadership cycle, 70 
People-based management, 37 
Piecewise polynomial regression, 339 
Plackett  and Burman design. 307,  313 
Plan-Do-Check-Act cycle  of Deming, 

Plan-Do-Check-Action(PDCA), 67 
Plan-Do-Study-Act cycle,  370 
Polynomial splines, 339 
Potential  terms, 470 
Prevention, 39 
Preventive maintenance system, 10 
Primary terms, 470 
Principal component capability index, 

Process variable with cycle, 225 
Process capability, 243 

Index, 2,  269,  270, 273 
Process change, 80 
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Process control,  6, 243 

algorithmic  statistical (ASPC), 79 
automatic (APC), 77 
engineering (EPC), 77 
run-to-run, 79 
statistical(SPC), 77 

generalized, 79 
Process decay, 235 
Process performance, 269,  273 
Process variability, 291 
Process variance, 29 1 

Process viability, 247 
Product development. 323 
Product development process, 324 
Product service, 435 

323 

254 

model for, 292 

Product  supply, 435 
Products: 
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Japanese, 1 

Prototype experiments. 322 
Prototype tests, 323 
Prototype experiments, 325 

analysis of, 328 
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Quadratic loss function, 277 
Quality: 
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partial, 162 
two  kinds  of, 162 

Quality control: 
cost, 8 
on-line, 6 

external, 439 
internal, 440 
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Quality dimension, 439 

Quality function  deployment (QFD), 

Quality improvement, 437, 457 

Quasi-likelihood (QL), 389 
experiments, 387 

extended quasi-likelihood (EQL), 
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retrial, 447 
with time-dependent arrival process, 
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Queuing model: 

445 
Queuing system, 435 
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analysis, I10 
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Response  function  modeling (RFM),  

Response surface  methods: 
388 

nonparametric. 475 
semiparametric. 47 

Response  surface  methodology 
(RSM). 41 1, 457 

Restricted maximum likelihood 
(REML)  technique, 390, 478 

Robust design experiments, 323 
planning of. 369 
engineering, 359 

improvement. 360 
Robustness,458 

Robust  parameter deslgn. 373, 458 
Robust  parametric design, 388 

Satisfaction  and  loyalty  model, 25 
Satisfaction process, 29 
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plot, 376 
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Service delivery process, 435 
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Shift in trend  parameter, 86 
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Signal factor. 374 
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Statistical process control  and 
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Statistical  understanding. 42 
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computer  construction  of, 317 

Supervised learning, 258 
Systematic  supersaturated designs, 307 

Taguchi’s philosophy, 277 
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Total  quality  management  (TQM), 19. 
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European  model  for. 47 
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Total  quality  queue  management, 451 
Transition  matrix, 177 
Two-stage  analysis  method  for 
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Two-stage design, 469 
Two-stage  D-optimal design (D-D 
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Two-way table analysis, 397 

Unconditional T’, 227 
Uniform decay  process, 226, 230 

Unsupervised  learning, 258 
Upper specification limit (USL). 270 

cxamplc of. 230 

Variance  dispersion  graph  (VDG), 465 
Variance  function, 375. 389 
Variation. 4 
Viability  index, 247, 248. 249 
Viable, 247 
Viable bivariate process, 249 
Vital few and trivial many. 363 

Warranty  data, 109 
White noise, 81 
Whole-plot variables. 476 



Whole-plot  experimental units, 476 

x & R (or s) control  to  monitor 
process capability. 284 

Index 489 

Zellner’s seemingly unrelated 
regression(SUR)  estimate, 414 
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