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Preface

The environmental movement of the 1960s and 1970s resulted in the creation of
several laws aimed at protecting the environment, and in the creation of federal,
state, and local government agencies charged with enforcing these laws. Most of
these laws mandate monitoring or assessment of the physical environment, which
means someone has to collect, analyze, and explain environmental data. Numerous
excellent books, guidance documents, and journal articles have been published
to explain various aspects of applying statistical methods to these kinds of environ-
mental data analyses. Also, several specialty software packages for specific
niches in environmental statistics exist, such as for ecology, forestry, and climate
modeling. Not very many software packages provide a comprehensive treatment
of environmental statistics in the context of monitoring the physical environment
as mandated by current environmental law.

EnvStats is an R package for environmental statistics. It is the open-source
successor to the commercial module for S-Plus” called EnvironmentalStats for
S-Plus, which was first released in April 1997. The EnvStats package, along with
the R software environment, provides comprehensive and powerful software for
environmental data analysis. EnvStats brings the major environmental statistical
methods found in the literature and regulatory guidance documents into one
statistical package, along with an extensive hypertext help system that explains
what these methods do, how to use these methods, and where to find them in the
environmental statistics literature. Also included are numerous built-in data sets
from regulatory guidance documents and the environmental statistics literature.
EnvStats combined with other R packages (e.g., for spatial analysis) provides the
environmental scientist, statistician, researcher, and technician with tools to “get
the job done!”

EnvStats and this user’s manual are intended for anyone who has to make
sense of environmental data, including statisticians, hydrologists, soil scientists,
atmospheric scientists, geochemists, environmental engineers and consultants,
hazardous and solid waste site managers, and regulatory agency analysts and
enforcement officers. Some parts of EnvStats incorporate statistical methods that
have appeared in the environmental literature but are not commonly found in any
statistical software package. Some parts are specifically aimed at users who are
required to collect and analyze environmental monitoring data in order to comply
with federal and state Superfund, RCRA, CERCLA, and Subtitle D regulations for
environmental monitoring at hazardous and solid waste sites. All of the functions
in EnvStats, however, are useful to anyone who needs to analyze environmental
data. In fact, all of these functions are useful to anyone who needs to analyze data.
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This manual is divided into 9 chapters. Chapter 1 is an introduction to envi-
ronmental statistics in general and the EnvStats package in particular, and
includes information on system and user requirements, installing the software,
loading and using the package, and getting technical support. The last section
of the chapter includes a tutorial.

Chapters 2, 3, 4, 5, 6, 7, and 8 contain information about how to use
the functions in EnvStats to design sampling programs and perform graphical
and statistical analyses of environmental data. Chapter 9 shows you how to use
EnvStats to perform Monte Carlo simulation and probabilistic risk assessment.

At the back of the book is an extensive list of references for environmental
statistics as well as an index of key words and terms. In addition to using the
index, you are encouraged to use the online hypertext help system as well.

Companion Scripts

Companion R scripts to reproduce the examples in this user’s manual, as well as
scripts for reproducing examples in US EPA guidance documents, are located in
the scripts subdirectory of the directory where the package was installed. See
Chap. 1 for more information.

Companion Textbook and Help Files

This user’s manual provides brief explanations of various topics in environmental
statistics. A companion textbook, currently in preparation and titled Environmental
Statistics with R (Millard et al. 2014), provides more details and can be used as a
textbook for a course in environmental statistics. (The predecessor to this text-
book is Millard and Neerchal 2001.) Space constraints dictate that the examples
in this user’s manual convey a general sense of how various EnvStats functions
can be used. The companion help files list all of the arguments associated with
these functions and give more examples.

Technical Support

Technical support for R is available through the R-help mailing list (see the URL
www.r-project.org for more information). Technical support for questions or
problems specifically related to the functioning of the EnvStats package is
available by e-mailing the author at EnvStats@ProbStatInfo.com.


http://www.r-project.org
mailto:EnvStats@ProbStatInfo.com
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Typographic Conventions

Throughout this user’s manual, the following typographic conventions are used:

e The bold font is used for chapter and section headings, as well as
operating system commands and file names. Sometimes it is also used
for emphasis. R menu selections are shown in an abbreviated form using
this font and the arrow symbol (>) to indicate a selection within a menu,
as in Packages>Load package....

e The italic courier font is used to display what you type within
an R Command or Script Window.

e The courier font is used to display output from R and the names of
R objects.

e The italic font is used for chapter and help file titles within the text,
emphasis, and user-supplied variables within R commands.

e The bold italic font is used for emphasis.

R commands are preceded with the “greater than” sign, i.e., >, which is the default
R prompt. For commands that require more than one line of input, the line or lines
following the first line are indented, whereas within R they are preceded with the
“plus” sign, i.e., +, which is the default R continuation prompt. Note that page
size and formatting for this book determine how command lines are split. As a
user, you can choose to split lines differently or not at all.

A Note About Figure Titles

To conserve space, very few of the plots shown in this user’s manual have titles
above them since all plots are labeled at the bottom with a figure number and title.
However, several plotting functions in EnvStats produce figures with titles at the
top by default if the argument main is not supplied. Thus, there are several
examples in this manual where the figure shown does not include a title at the top,
but if you type in the commands as shown or run the companion script to produce
the figure, you will produce a figure with a title at the top. To create a different
title from the one shown, use the main argument or, to suppress the title, set the
argument main="".
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Chapter 1
Getting Started

1.1 Introduction

Welcome to EnvStats! This user’s manual provides step-by-step guidance to
using this software. EnvStats is an R package for environmental statistics. This
chapter is an introduction to environmental statistics in general and EnvStats in
particular, and includes information on system and user requirements, installing
the software, loading and using the package, and getting technical support. The
last section of the chapter provides a brief tutorial.

1.2 What Is Environmental Statistics?

Environmental statistics is the application of statistical methods to problems
concerning the environment. Examples of activities that require the use of envi-
ronmental statistics include:

e  Monitoring air or water quality.

e  Monitoring groundwater quality near a hazardous or solid waste site.

e Using risk assessment to determine whether a potentially contaminated
area needs to be cleaned up, and, if so, how much.

e Assessing whether a previously contaminated area has been cleaned up
according to some specified criterion.

e Using hydrological data to predict the occurrences of floods.

The term “environmental statistics” also includes work done in atmospheric and
climate-change research and modeling, and the application of statistics in the
fields of ecology, geology, chemistry, epidemiology, and oceanography. This user’s
manual concentrates on statistical methods to analyze chemical concentrations and
physical parameters, usually in the context of mandated environmental monitoring.

Environmental statistics is a special field of statistics. Probability and statistics
deal with situations in which the outcome is not certain. They are built upon the
concepts of a population and a sample from the population. Probability deals
with predicting the characteristics of the sample, given that you know the charac-
teristics of the population (e.g., the probability of picking an ace out of a deck of
52 well-shuffled standard playing cards). Statistics deals with inferring the char-
acteristics of the population, given information from one or more samples from
the population (e.g., estimating the concentration of dissolved oxygen in a lake
based on samples taken at various depths and locations).

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 1
DOI 10.1007/978-1-4614-8456-1 1, © Springer Science+Business Media New York 2013
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The field of environmental statistics is relatively young and employs several
statistical methods that have been developed in other fields of statistics, such as
sampling design, exploratory data analysis, basic estimation and hypothesis testing,
quality control, multiple comparisons, survival analysis, and Monte Carlo simula-
tion. Nonetheless, special problems have motivated innovative research, and both
traditional and new journals now report on statistical methods that have been
developed in the context of environmental monitoring (see the references listed at
the end of this book.)

In addition, environmental legislation such as the Clean Air Act, the Clean
Water Act, the National Environmental Policy Act (NEPA), the Occupational
Safety and Health Act, the Federal Insecticide, Fungicide, and Rodenticide Act
(FIFRA), the Comprehensive Emergency Response, Compensation, and Liability
Act (CERCLA), the Resource and Recovery Act (RCRA) and all of their subse-
quent amendments have spawned environmental regulations and agency guidance
documents that mandate or suggest various statistical methods for environmental
monitoring (see http://www.epa.gov/lawsregs/policy/sgd/byoffice.html).

1.3 What Is EnvStats?

EnvStats is an R package for environmental statistics. It is the open-source
successor to the commercial module for S-Plus” called EnvironmentalStats for
S-Plus, which was first released in April, 1997. The EnvStats package, along with
the R software environment, provides comprehensive and powerful software for
environmental data analysis. EnvStats brings the major environmental statistical
methods found in the literature and regulatory guidance documents into one statis-
tical package, along with an extensive hypertext help system that explains what
these methods do, Zow to use these methods, and where to find them in the envi-
ronmental statistics literature. Also included are numerous built-in data sets from
regulatory guidance documents and the environmental statistics literature.
EnvStats combined with other R packages (e.g., for spatial analysis) provides the
environmental scientist, statistician, researcher, and technician with tools to “get
the job done!”

Because EnvStats is an R package, you automatically have access to all the
features and functions of R, including powerful graphics, standard hypothesis
tests, and the flexibility of a programming language. In addition, with EnvStats
you can use new functions to:

e Compute several kinds of summary statistics and create summary plots to
compare the distributions between groups side-by-side.

e Compute quantities (probability density functions, cumulative distribu-
tion functions, and quantiles) and random numbers associated with new
probability distributions, including the extreme value distribution and the
zero-modified lognormal (delta) distribution.

e Plot probability distributions so you can see how they change with the
value of the distribution parameter(s).
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e Estimate distribution parameters and quantiles and compute confidence
intervals for commonly used probability distributions, including special
methods for the lognormal and gamma distributions.

e Perform and plot the results of goodness-of-fit tests, including a new
generalized goodness-of-fit test for any continuous distribution.

e  Compute optimal Box-Cox data transformations.

e  Compute parametric and non-parametric prediction intervals, simultaneous
prediction intervals, and tolerance intervals.

e Perform additional hypothesis tests not already part of R, including non-
parametric estimation and tests for seasonal trend, Fisher’s one-sample
randomization (permutation) test for location, the quantile test to detect a
shift in the tail of one population relative to another, two-sample linear
rank tests, and the test for serial correlation based on the von Neumann
rank test.

e  Perform power and sample size computations and create associated plots
for sampling designs based on confidence intervals, hypothesis tests,
prediction intervals, and tolerance intervals.

e Perform calibration based on a machine signal to determine decision and
detection limits, and report estimated concentrations along with confidence
intervals.

e Analyze singly and multiply censored (less-than-detection-limit) data
with empirical cdf and Q-Q plots, parameter/quantile estimation and con-
fidence intervals, prediction and tolerance intervals, goodness-of-fit tests,
optimal Box-Cox transformations, and two-sample rank tests.

e  Perform probabilistic risk assessment.

e  Reproduce specific examples in EPA guidance documents by using built-in
data sets from these documents and companion scripts.

1.4 Intended Audience and Users

EnvStats and this user’s manual are intended for anyone who has to make sense of
environmental data, including statisticians, environmental scientists, hydrologists,
soil scientists, atmospheric scientists, geochemists, environmental engineers and
consultants, hazardous and solid waste site managers, and regulatory agency
analysts and enforcement officers. Some parts of EnvStats incorporate statistical
methods that have appeared in the environmental literature but are not commonly
found in any statistical software package. Some parts are specifically aimed at
users who are required to collect and analyze environmental monitoring data in
order to comply with federal and state Superfund, RCRA, CERCLA, and Subtitle
D regulations for environmental monitoring at hazardous and solid waste sites.
All of the functions in EnvStats, however, are useful to anyone who needs to
analyze environmental data.
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EnvStats is an R package. In order to use it, you need to have R installed on
your system (see www.r-project.org) and know how to perform basic operations in
R, such as using the command and script windows, reading data into R, and creating
basic data objects (e.g., data frames). The R documentation provides information
on using R, and there are several excellent introductory books on R (e.g.,
Allerhand 2011; Ekstrem 2012; Zuur et al. 2009) as well as books on how to use R
for specific kinds of analyses (see for example www.springer.com/series/6991).
In addition, you need to have a basic knowledge of probability and statistics.
While this user’s manual provides brief explanations of various topics in
environmental statistics, a companion textbook, Environmental Statistics with R
(Millard et al. 2014), provides more details.

1.5 System Requirements

Because EnvStats is an R package, it runs under every operating system that R
runs under, including Windows, UNIX-like, and MacOS X.

1.6 Installing EnvStats

To download and install the EnvStats package, the most up to date information is
available on www.probstatinfo.com. This includes how to find EnvStats on the
Comprehensive R Archive Network (CRAN).

1.7 Starting EnvStats

To start EnvStats, you must have already started R. You can load the package
either from the command window or, if you are running R under Windows, from
the menu.

e To load the package from the command window, type

> library (EnvStats)

e To load the package from the menu, on the R menu bar make the follow-
ing selections: Packages>Load package.... This brings up a dialog box
listing all the packages you currently have installed. Select EnvStats and
click OK.

Loading the package attaches the library of EnvStats functions to the second
position in your search list (type search () at the R prompt to see the listing of
directories on the search list).
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Note: Some of the functions in EnvStats mask built-in R functions. The
masked functions are modified versions of the built-in functions and have been
created to support the other functions in EnvStats, but the modifications should
not affect normal use of R. If you experience unexpected behavior of R after load-
ing EnvStats, try unloading the package (see the Sect. 1.10 below). All of the
functions in EnvStats, whether they mask built-in functions or not, are described
in the help system.

1.8 Getting Help and Using Companion Scripts

To get help for a specific topic, function or dataset, use the ? operator or the help
function, just as you do for other help topics in R. For example, type

> ?EnvStats

or

> help (EnvStats)

to display the general help file for the EnvStats package, type
> ?pdfPlot

or

> help (pdfPlot)

to display the help file for the pdfPlot function, and type
> ?PEPA.94b.tcch.df

or

> help (EPA.94b. tcch.df)

to display the help file for the data frame EPA.94b.tccb.df. For help files
with an associated alias of more than one word, you’ll need to enclose the words
in quotes. For example, typing

> ?"Functions by Category"

will bring up a help file with a hyperlink list of EnvStats functions by category.
Running the command

> help (package="EnvStats")

will bring up a window with basic information about the EnvStats package,
including the version number and a list of functions and datasets. All function
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names start with a lower case letter, and all data object names start with an upper
case letter. Typing

> newsEnvStats ()

will bring up a window with the latest information about the current version of
EnvStats.

There is also a companion PDF file EnvStats-maual.PDF containing a listing
of all the help files. This file is located in the doc subdirectory of the directory
where the EnvStats package was installed. For example, if you installed R under
Windows, this file might be located in the directory C:\Program Files\R-
* %% *\library\EnvStats\doc where *.** * denotes the version of R you are
using (e.g., 3.0.1) or in the directory C:\Users\\Name\Documents\R\win-
library\*.** *\EnvStats\doc where Name denotes your user name on the Win-
dows operating system.

EnvStats comes with sets of companion scripts, located in the scripts subdi-
rectory of the directory where EnvStats was installed. The scripts located in the
directory Manual let you reproduce the output and figures shown in this user’s
manual. The scripts in the other directories let you reproduce examples from
various US EPA guidance documents.

1.9 A Note About Examples and Masking

Some of the examples in this user’s manual ask you to attach a particular data
frame in order to access the variables within the data frame directly. For example,
typing the command:

> attach (EPA. 94b.tccb.df)

will attach the data frame EPA. 94b. tccb. df to your search list. The names of
the variables in this data frame are:

> names (EPA. 94b.tccb.df)
[1] "TcCB.orig" "TcCB" "Censored" "Area"

If you already have a data object in your working directory with one of these
names (e.g., Area), then it will mask the variable that is part of the attached data
frame. In this case you will probably not get the same results as those shown in
this user’s manual. Therefore, it is recommended that when you are typing in the
examples in this user’s manual or running the companion scripts, you do so from a
working directory that has no pre-existing data objects.

If you do attach a data object in order to access variables from it directly, it is
good practice to detach it after you are through with it. For example, typing the
command:

> detach ("EPA.94b.tccb.df")
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will detach the data frame EPA.94b.tccb.df from your search list. In this
user’s manual, we do not explicitly show commands for detaching data objects;
however the companion scripts include commands for detaching data objects.

To avoid problems with masking in your day-to-day work, apart from always
starting with a working directory that has no pre-existing objects in it (not likely
since it is common practice to keep objects for a project in a specific working
directory), there are at least three things you can do:

1. For functions that take a data argument, specify the data source in this
way. For example, typing:

> stripChart (TcCB ~ Area, data = EPA.94b.tccb.df)

will create strip charts of the TcCB data by area by using the data in the
column labeled TcCB in the data frame EPA. 94b.tccb.df and using
the data in the column Area to specify the area.

2. For functions that don’t take a data argument, you can use the R with
function. For example, typing

> with (EPA.94b.tccb.df, summary (TcCB))

will give you summary statistics for the column labeled TcCB in the data
frame EPA.94b.tccb.df.
3. Access the variables directly using the [or $ operators. For example,

typing:
> summary (EPA. 94b. tccb.dfSTcCB)

will give you summary statistics for the column labeled TcCB in the data
frame EPA. 94b. tccb.df.

1.10 Unloading EnvStats

To remove the EnvStats package from your R session, type the following com-
mand at the R prompt:

> detach (package:EnvStats)

1.11 A Tutorial

This section highlights some of the major features of EnvStats. There are several
ways to use this section. If you are fairly new to R, you may want to briefly skim
this section to get an idea of what you can do in EnvStats, and then come back
later after you have read the other chapters of this manual. If you have used R for
a long time and have just installed EnvStats, you may want to follow this tutorial
in depth right now to get acquainted with some of the features available in this R
package. Throughout this section we assume you have started R and also have
loaded EnvStats.
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1.11.1 The TcCB Data

The guidance document Statistical Methods for Evaluating the Attainment of
Cleanup Standards, Volume 3: Reference-Based Standards for Soils and Solid
Media (USEPA 1994b, pp. 6.22-6.25) contains 124 measures of 1,2,3,4-
Tetrachlorobenzene (TcCB) concentrations (ppb) from soil samples at a Reference
site and a Cleanup area (Table 1.1). There are 47 observations from the Reference
site and 77 in the Cleanup area. These data are stored in the data frame
EPA.94b.tccb.df. There is one observation coded as “ND” in this data set as
presented in the guidance document. In the data frame EPA. 94b. tccb.df this
observation is treated as censored at an assumed detection limit of 0.09 ppb (the
smallest observed value). For the purposes of this tutorial, we’ll ignore the fact
that this observation is censored and assumed it has an observed value of 0.09.
See Chap. 8 for more information on dealing with censored data.

Reference area Cleanup area

0.22 0.23 0.26 0.27 <0.09 0.09 0.09 0.12 0.12 0.14 0.16
0.28 0.28 0.29 0.33 0.17 0.17 0.17 0.18 0.19 0.20 0.20
0.34 0.35 0.38 0.39 0.21 0.21 0.22 0.22 0.22 0.23 0.24
0.39 0.42 0.42 0.43 0.25 0.25 0.25 0.25 0.26 0.28 0.28
0.45 0.46 0.48 0.50 0.29 0.31 0.33 0.33 0.33 0.34 0.37
0.50 0.51 0.52 0.54 0.38 0.39 0.40 0.43 0.43 0.47 0.48
0.56 0.56 0.57 0.57 0.48 0.49 0.51 0.51 0.54 0.60 0.61
0.60 0.62 0.63 0.67 0.62 0.75 0.82 0.85 0.92 0.94 1.05
0.69 0.72 0.74 0.76 1.10 1.10 1.19 1.22 1.33 1.39 1.39
0.79 0.81 0.82 0.84 1.52 1.53 1.73 2.35 2.46 2.59 2.61
0.89 1.11 1.13 1.14 3.06 3.29 5.56 6.61 18.40 51.97
1.14 1.20 1.33 168.64

Table 1.1 1,2,3,4-Tetrachlorobenzene (TcCB) concentrations (ppb) from soil samples
To look at the raw data, after loading EnvStats, type EPA. 94b.tccb.df at
the R command prompt:
> library (EnvStats)

> EPA.94b.tccb.df

TcCB.orig TcCB Censored Area
1 0.22 0.22 FALSE Reference
2 0.23 0.23 FALSE Reference
48 <0.09 0.09 TRUE Cleanup
123 51.97 51.97 FALSE Cleanup
124 168.64 168.64 FALSE Cleanup

If you just want to get a feel for the data and don’t need to look at all of the rows,
you can use the R head function to look at just the first few rows:
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> head (EPA.94b. tccb.df)

TcCB.orig TcCB Censored Area
1 0.22 0.22 FALSE Reference
2 0.23 0.23 FALSE Reference
3 0.26 0.26 FALSE Reference
4 0.27 0.27 FALSE Reference
5 0.28 0.28 FALSE Reference
6 0.28 0.28 FALSE Reference

For the remainder of this tutorial, we will assume that you have attached the data
frame EPA. 94b. tccb. df to your search list with the following command:

> attach (EPA.94b.tccb.df)

1.11.2 Computing Summary Statistics

There are two different functions in EnvStats for producing summary statistics.
The function summaryStats produces commonly reported summary statistics
while the function summaryFull provides a much more extensive set:

> summaryStats (TcCB ~ Area, data = EPA.94b.tccb.df)

N Mean SD Median Min Max
Cleanup 77 3.9 20.0 0.4 0.1 168.6
Reference 47 0.6 0.3 0.5 0.2 1.3

> summaryFull (TcCB ~ Area, data = EPA.94b.tccb.df)

Cleanup Reference

Sample Size: 77 47
Mean: 3.915 0.5985
Median: 0.43 0.54
10% Trimmed Mean: 0.6846 0.5728
Geometric Mean: 0.5784 0.5382
Skew: 7.717 0.9019
Kurtosis: 62.67 0.132
Min: 0.09 0.22
Max: 168.6 1.33
Range: 168.5 1.11
1st Quartile: 0.23 0.39
3rd Quartile: 1.1 0.75
Standard Deviation: 20.02 0.2836
Geometric Standard Deviation: 3.898 1.597
Interquartile Range: 0.87 0.36
Median Absolute Deviation: 0.3558 0.2669
Coefficient of Variation: 5.112 0.4739
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These summary statistics indicate that the observations for the Cleanup area are
extremely skewed to the right. This may be indicative of residual contamination.

1.11.3 Looking at the TcCB Data

Figure 1.1 shows one-dimensional scatterplots (also called strip plots or strip
charts) of the log-transformed TcCB data by area, along with confidence intervals
for the means, created with the EnvStats function stripChart (a modification
of the R function stripchart):

> stripChart (log(TcCB) ~ Area, data = EPA.94b.tccb.df,
col = c("red", "blue"), ylab = "Log [ TcCB (ppb) ]")

Mean=-0.5 Mean=-0.6
SD =14 SD =0.5
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Fig. 1.1 One-dimensional scatterplots, along with 95 % confidence intervals for the mean,
comparing log-transformed TcCB concentrations at Reference and Cleanup areas

Figure 1.2 shows the associated histograms produced with the R function hist:

> par (mfrow = c(2, 1))

> hist(log(TcCB[Area == "Reference'"]), xlim = c(-4, 6),

col = "blue", xlab = "log [ TcCB (ppb) 1",

ylab = "Number of Observations'", main = "Reference Area')
> hist(log(TcCB[Area == "Cleanup"]), xlim = c(-4, 6),

nclass = 30, col = "red", xlab = "log [ TcCB (ppb) ]",

ylab = "Number of Observations'", main = "Cleanup Area')
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Fig. 1.2 Histograms comparing log-transformed TcCB concentrations at Reference and
Cleanup areas
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Fig. 1.3 Boxplots comparing log-transformed TcCB concentrations at Reference and
Cleanup areas
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Figure 1.3 shows side-by-side boxplots produced with the R function boxplot:

> boxplot (log(TcCB) ~ Area, col = c("red", "blue"),
pars = list (outpch = 16), xlab = "Area',
ylab = "Log [ TcCB (ppb) ]")

We see in these plots that most of the observations in the Cleanup area are compa-
rable to (or even smaller than) the observations in the Reference area, but there are
a few very large “outliers” in the Cleanup area. As previously stated, this may be
indicative of residual contamination that was missed during the cleanup process.

1.11.4 Quantile (Empirical CDF) Plots

Figure 1.4 shows the quantile plot, also called the empirical cumulative distribu-
tion function (cdf) plot, for the Reference area TcCB data. It was created with the
EnvStats function ecdfPlot:

> ecdfPlot (TcCB[Area == "Reference"], xlab = "TcCB (ppb)")

<
-

0.8
|

Cumulative Probability
0.4

\ \ \ \ \ \
0.2 0.4 0.6 0.8 1.0 1.2

TcCB (ppb)
Fig. 1.4 Quantile plot of Reference area TcCB data

You can easily pick out the median as about 0.55 ppb and the quartiles as about
0.4 and 0.75 ppb (compare these numbers to the ones listed in Sect. 1.11.2). You
can also see that the quantile plot quickly rises, then pretty much levels off after
about 0.8 ppb, which indicates that the data are skewed to the right (see the histo-
gram for the Reference area data in Fig. 1.2).
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Fig. 1.5 Empirical cdf of Reference area TcCB data compared to a lognormal cdf
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Fig. 1.6 Quantile plots comparing log-transformed TcCB data at the Reference and Cleanup
areas
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Figure 1.5 shows the quantile plot with a fitted lognormal distribution:

> cdfCompare (TcCB[Area == "Reference"], dist = "lnorm",
xlab = "Order Statistics for Reference Area TcCB (ppb)")

> legend(0.65, 0.4, legend = c("Empirical CDF",
"Fitted Lognormal CDF'"), lty = 1:2, col = c(4, 1),
lwd = 3, bty = "n")

We see that the lognormal distribution appears to fit these data quite well. Figure
1.6 compares the empirical cdf for the Reference area with the empirical cdf for
the Cleanup area for the log-transformed TcCB data:

> cdfCompare (log (TcCB[Area == "Reference"]),
log (TcCB[Area == "Cleanup"]),
xlab = "Order Statistics for log [ TcCB (ppb) ]")

> legend (1.5, 0.4, legend = c("Reference Area',
"Cleanup Area'"), lty = 1:2, col = c(4, 1), 1wd = 3,
bty = "p ")

As we saw with the histograms and boxplots, the Cleanup area has quite a few
extreme values compared to the Reference area.
1.11.5 Assessing Goodness-of-Fit with Quantile-Quantile Plots

Figure 1.7 displays the normal Q-Q plot for the log-transformed Reference area
TcCB data (i.e., we are assuming these data come from a lognormal distribution),
along with a fitted least squares line.

> gqPlot (TcCB[Area == "Reference"], dist = "lnorm",
add.line = TRUE, points.col = "blue",
ylab="Quantiles of log [ TcCB (ppb) ]")

Figure 1.8 displays the corresponding Tukey mean-difference Q-Q plot.

> gqPlot (TcCB[Area == "Reference"], dist = "lnorm",
plot.type = "Tukey", estimate.params = TRUE,
add.line = TRUE, points.col = "blue")

As we saw with the quantile plot, the lognormal model appears to be a fairly good
fit to these data.

Some EPA guidance documents (e.g., Singh et al. 2002; Singh et al. 2010a,b)
discourage using the assumption of a lognormal distribution and recommend
instead assessing whether the data appear to fit a gamma distribution. Figure 1.9
displays the gamma Q-Q plot for the Reference area TcCB data:

> gqPlot (TcCB[Area == "Reference'"], dist = "gamma",
estimate.params = TRUE, digits = 2, add.line = TRUE,
points.col = "blue", ylab="Quantiles of TcCB (ppb)")
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Fig. 1.7 Normal Q-Q plot for the log-transformed Reference area TcCB data
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Fig. 1.9 Gamma Q-Q plot for the Reference area TcCB data

The gamma model also appears to be a fairly good fit to these data.

1.11.6 Estimating Distribution Parameters

In EnvStats you can estimate parameters for several parametric distributions. For
example, for the lognormal distribution you can estimate the mean and standard
deviation based on the log-transformed data, or you can estimate the mean and
coefficient of variation based on the original data. For either parameterization,
you can compute a confidence interval for the mean. Here are the results for the
log-transformed Reference area TcCB data:

> elnorm(TcCB[Area == "Reference"], ci = TRUE)

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): meanlog = -0.6195712
sdlog = 0.4679530

Estimation Method: mvue

Data: TcCB[Area == "Reference"]



1.11. A Tutorial 17

Sample Size: 47

Confidence Interval for: meanlog

Confidence Interval Method: Exact

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = -0.7569673
UCL = -0.4821751

and here are the results for the original Reference area TcCB data:
> elnormAlt (TcCB[Area == "Reference'"], ci = TRUE)

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): mean = 0.5989072
cv = 0.4899539

Estimation Method: mvue

Data: TcCB[Area == "Reference"]

Sample Size: 47

Confidence Interval for: mean

Confidence Interval Method: Land

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = 0.5243787
UCL = 0.7016992

If we want to assume a gamma distribution, we can use the egamma function,
which estimates the shape and scale parameters and gives a confidence interval for
the mean:

> egamma (TcCB[Area == "Reference"], ci = TRUE)
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Results of Distribution Parameter Estimation

Assumed Distribution:

Estimated Parameter(s):

Estimation Method:

Data:

Sample Size:

Confidence Interval for:

Confidence Interval Method:

Confidence Interval Type:

Confidence Level:

Confidence Interval:

Gamma

4.8659316
.1230002

shape

Il
o

scale
mle
TcCB[Area == "Reference"]
47

mean

Optimum Power

Normal Approximation

of Kulkarni & Powar (2010)
using mle of 'shape'
two-sided

95%

LCL = 0.5196677
UCL 0.6844993

Or, we can use the egammaAlt function, which estimates the mean and coeffi-
cient of variation, and gives a confidence interval for the mean:

> egammaAlt (TcCB[Area == "Reference'"], ci = TRUE)

Results of Distribution Parameter Estimation

Assumed Distribution:

Estimated Parameter (s):

Estimation Method:

Data:

Gamma
mean = 0.5985106
cv = 0.4533326

mle of 'shape'

TcCB[Area == "Reference"]



Sample Size:
Confidence Interval for:

Confidence Interval Method:

Confidence Interval Type:

Confidence Level:

Confidence Interval:
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47

mean

Optimum Power

Normal Approximation
of Kulkarni & Powar (2010)
using mle of 'shape'
two-sided

95%

LCL =
UCL

0.5196677
0.6844993

You can see that in this case the 95 % confidence intervals for the mean based
on the lognormal distribution and based on the gamma distribution are nearly

identical.

1.11.7 Testing for Goodness of Fit

EnvStats contains several new or modified R functions for testing goodness of fit.
Here we will use the Shapiro-Wilk test to test the adequacy of a lognormal model
and then a gamma model for the Reference area TcCB data (Figs. 1.10 and 1.11).

> TcCB.ref <- TcCB[Area ==

> sw.lnorm <- gofTest (TcCB.ref,

> sw.lnorm

Results of Goodness-of-Fit

Test Method:

Hypothesized Distribution:

Estimated Parameter (s):

Estimation Method:

Data:

Sample Size:

"Reference']

dist = "lnorm")

Shapiro-Wilk GOF

Lognormal

-0.6195712
0.4679530

meanlog

sdlog

mvue

TcCB.ref

47



20

1. Getting Started

Test Statistic:

Test Statistic Parameter:

P-value:

Alternative Hypothesis:

> plot (sw.

lnorm, digits = 3)

W = 0.978638
n = 47
0.5371935

True cdf does not equal the

Lognormal Distribution.

Goodness-of-Fit Results for TcCB.ref

Histogram for TcCB.ref with
Fitted Lognormal Distribution

N

Empirical CDF for TcCB.ref (solid line)
with Fitted Lognormal CDF (dashed line)
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Fig. 1.10 Summary plots of Shapiro-Wilk goodness-of-fit test for lognormal distribution for
Reference area TcCB data

> sw.gamma <- gofTest (TcCB.ref, dist = "gamma')

> plot(sw.gamma, digits = 3)
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Goodness-of-Fit Results for TcCB.ref

Histogram for TcCB.ref with
Fitted Gamma Distribution

Empirical CDF for TcCB.ref (solid line)
with Fitted Gamma CDF (dashed line)
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Quantiles of Gamma(shape =4.87, scale = 0.123)

Fig. 1.11 Summary plots of Shapiro-Wilk goodness-of-fit test for gamma distribution for
Reference area TcCB data

> sw.gamma

Results of Goodness-of-Fit Test

Test Method:

Based on Fitted Distribution

Hypothesized Distribution: Gamma

Estimated Parameter(s): shape = 4.8659316
scale = 0.1230002

Estimation Method: mle

Data:

TcCB.ref

Shapiro-Wilk GOF using Probabilities
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Sample Size: 47

Test Statistic: W = 0.9703805

Test Statistic Parameter: n = 47

P-value: 0.2738988

Alternative Hypothesis: True cdf does not equal the

Gamma Distribution.

The goodness-of-fit tests show that both the lognormal and gamma distributions
appear to fit the Reference area TcCB data.

1.11.8 Estimating Quantiles and Computing Confidence Limits

EnvStats contains functions for estimating quantiles and optionally constructing
confidence limits for the quantiles. Here we will estimate the 90th percentile of
the distribution of the Reference area TcCB, assuming the true distribution is a
lognormal distribution, and compute a 95 % confidence interval for this 90th
percentile.

> eqglnorm (TcCB[Area == "Reference"], p = 0.9, ci = TRUE)

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): meanlog = -0.6195712
sdlog = 0.4679530

Estimation Method: mvue

Estimated Quantile(s): 90'th %$ile = 0.9803307

Quantile Estimation Method: amle

Data: TcCB[Area == "Reference"]

Sample Size: 47

Confidence Interval for: 90'th %ile

Confidence Interval Method: Exact

Confidence Interval Type: two-sided
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Confidence Level: 95%
Confidence Interval: LCL = 0.8358791
UCL = 1.2154977

1.11.9 Comparing Two Distributions Using Nonparametric Tests

EnvStats contains functions for performing general two-sample linear rank tests
(to test for a shift in location) and a special quantile test that tests for a shift in the
tail of one of the distributions. In this example we will compare the Reference and
Cleanup area TcCB data. Here are the results for the Wilcoxon rank sum test:

> twoSampleLinearRankTest (TcCB[Area == "Cleanup'"],
TcCB[Area == "Reference'"], alternative = "greater')

Results of Hypothesis Test

Null Hypothesis: Fy(t) = Fx(t)
Alternative Hypothesis: Fy(t) > Fx(t) for at least one t
Test Name: Two-Sample Linear Rank Test:

Wilcoxon Rank Sum Test
Based on Normal Approximation

Data: x = TcCB[Area == "Cleanup"]
y = TcCB[Area == "Reference"]
Sample Sizes: nx = 77
ny = 47
Test Statistic: z = -1.171872
P-value: 0.8793758

and here are the results for the quantile test:

> quantileTest (TcCB[Area == "Cleanup"],
TcCB[Area == "Reference"], alternative = "greater",
target.r = 9)

Results of Hypothesis Test

Null Hypothesis: e =0
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Alternative Hypothesis:

Test Name:

Data:

Sample Sizes:

Test Statistics:

Test Statistic Parameters:

P-value:

Note that the Wilcoxon rank sum test is not significant at the 0.10 level (p = 0.88),
while the quantile test is significant at the 0.011 level. The quantile test picked up
the portion of large outlying values in the Cleanup area data. Note: you can also
perform the Wilcoxon rank sum test with the R function wilcox.test. The
EnvStats function two.sample.linear.rank. test lets you perform other
kinds of linear rank tests, including normal scores, Mood’s median, and Savage

SCOres.

1.12 Summary

e Environmental statistics is the application of statistics to environmental

problems.

e EnvStats is an R package for environmental statistics. It includes several
functions for creating graphs and performing statistical analyses that are

Tail of Fx Shifted to Right of

Tail of Fy.
0 < e <= 1, where
Fx(t) = (l-e)*Fy(t) + e*Fz(t),

Fz(t) <= Fy(t) for all t,
and Fy != Fz

Quantile Test

x = TcCB[Area == "Cleanup"]

y = TcCB[Area == "Reference"]
nx = 77

ny = 47

k (# x obs of r largest) = 9
r =9
m = 77.000

n = 47.000

quantile.ub = 0.928

0.01136926

commonly used in environmental statistics.

e To use EnvStats you should be familiar with the basic operation of R and

have an elementary knowledge of probability and statistics.

e EnvStats has an extensive help system that includes basic explanations in

English, as well as equations and references.



Chapter 2

Designing a Sampling Program

2.1 Introduction

The first and most important step of any environmental study is to design the
sampling program. This chapter discusses the basics of designing a sampling
program, and shows you how to use EnvStats to help you determine required
sample sizes. For a more in-depth discussion of sampling design and sample size
calculation, see Millard et al. (2014).

2.2 The Necessity of a Good Sampling Design

A study is only as good as the data upon which it is based. No amount of
advanced, cutting-edge statistical theory and techniques can rescue a study that
has produced poor quality data, not enough data, or data irrelevant to the question
it was meant to answer. From the very start of an environmental study, there must
be a constant dialog between the data producers (field and lab personnel, data
coders, etc.), the data users (scientists and statisticians), and the ultimate decision
maker (the person for whom the study was instigated in the first place). All
persons involved in the study must have a clear understanding of the study
objectives and the limitations associated with the chosen physical sampling and
analytical (measurement) techniques before anyone can make any sense of the
resulting data.

2.3 What Is a Population and What Is a Sample?

In everyday language, the word “population” refers to all the people or organisms
contained within a specific country, area, region, etc. When we talk about the
population of the United States, we usually mean something like “the total number
of people who currently reside in the U.S.”

In the field of statistics, however, the term population is defined operationally
by the question we ask: it is the entire collection of measurements about which
we want to make a statement (Zar 2010; Berthouex and Brown 2002; Gilbert
1987).

For example, if the question is “What is the concentration of dissolved oxygen
in this stream?”, the question must be further refined until a suitable population can
be defined: “What is the average concentration of dissolved oxygen in a particular
section of a stream at a depth of 0.5 m over a particular 3-day period?” In this
case, the population is the set of all possible measurements of dissolved oxygen in

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 25
DOI 10.1007/978-1-4614-8456-1 2, © Springer Science+Business Media New York 2013
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that section of the stream at 0.5 m within that time period. The section of the
stream, the time period, the method of taking water samples, and the method of
measuring dissolved oxygen all define the population.

A sample is defined as some subset of a population (Zar 2010; Berthouex and
Brown 2002; Gilbert 1987). If the sample contains all the elements of the
population, it is called a census. Usually, a population is too large to take a
census, so a portion of the population is sampled. The statistical definition of the
word sample (a selection of individual population members) should not be
confused with the more common meaning of a physical sample of soil (e.g., 10 g
of soil), water (e.g., 5 ml of water), air (e.g., 20 cc of air), etc.

2.4 Random Versus Judgment Sampling

Judgment sampling involves subjective selection of the population units by an
individual or group of individuals (Gilbert 1987). For example, the number of
samples and sampling locations might be determined based on expert opinion or
historical information. Sometimes, public opinion might play a role and samples
need to be collected from areas known to be highly polluted. The uncertainty
inherent in the results of a judgment sample cannot be quantified and statistical
methods cannot be applied to judgment samples. Judgment sampling does not
refer to using prior information and the knowledge of experts to define the area of
concern, define the population, or plan the study. Gilbert (1987) also describes
“haphazard” sampling, which is a kind of judgment sampling with the attitude that
“any sample will do” and can lead to “convenience” sampling, in which samples
are taken in convenient places at convenient times.

Probability sampling or random sampling involves using a random mecha-
nism to select samples from the population (Gilbert 1987). All statistical methods
used to quantify uncertainty assume some form of random sampling has been used
to obtain a sample. At the simplest level, a simple random sample is used in
which each member of the population has an equal chance of being chosen, and
the selection of any member of the population does not influence the selection of
any other member. Other probability sampling methods include stratified random
sampling, composite sampling, and ranked set sampling.

2.5 Common Mistakes in Environmental Studies

The most common mistakes that occur in environmental studies include the
following:

o  Using Judgment Sampling to Obtain Samples. When judgment sampl-
ing is used to obtain samples, there is no way to quantify the precision
and bias of any type of estimate computed from these samples.

e Lack of Samples from Proper Control Populations. If one of the
objectives of an environmental study is to determine the effects of a
pollutant on some specified population, then the sampling design must
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include samples from a proper control population. This is a basic tenet of
the scientific method. If control populations were not sampled, there is
no way to know whether the observed effect was really due to the
hypothesized cause, or whether it would have occurred anyway.

Failing to Randomize over Potentially Influential Factors. An enor-
mous number of factors can influence the final measure associated with a
single sampling unit, including the person doing the sampling, the device
used to collect the sample, the weather and field conditions when the
sample was collected, the method used to analyze the sample, the labo-
ratory to which the sample was sent, etc. A good sampling design
controls for as many potentially influencing factors as possible, and
randomizes over the factors that cannot be controlled. For example, if
data are collected from two sites, and two laboratories are used to analyze
the results, you should not send all the samples from site 1 to laboratory
A and all the samples from site 2 to laboratory B, but rather send samples
collected at each site to each of the laboratories.

Collecting Too Few Samples to Have a High Degree of Confidence in
the Results. The ultimate goal of an environmental study is to answer
one or more basic questions. These questions should be stated in terms
of hypotheses that can be tested using statistical procedures, as well as
what constitutes an important scientific effect since statistically signi-
ficant effects are not always scientifically important. In this case, you
can determine the probability of rejecting the null hypothesis when in fact
it is true (a Type I error), and the probability of not rejecting the null
hypothesis when in fact it is false (a Type II error). Usually, the Type I
error is set in advance, and the probability of correctly rejecting the null
hypothesis when in fact it is false (the power), or the width of a
confidence, prediction, or tolerance interval, is calculated for various
sample sizes and assumed amounts of variability. Too often, this step of
determining power and/or interval width versus sample size is neglected,
resulting in a study from which no conclusions can be drawn with any
great degree of confidence.

2.6 The Data Quality Objectives Process

The Data Quality Objectives (DQO) process is a systematic planning tool based
on the scientific method that has been developed by the U.S. Environmental
Protection Agency (USEPA 2006b). The DQO process provides an easy-to-
follow, step-by-step approach to decision-making in the face of uncertainty. Each
step focuses on a specific aspect of the decision-making process. Data Quality
Objectives are the qualitative and quantitative statements that:

Clarify the study objective.
Define the most appropriate type of data to collect.

Determine the most appropriate conditions under which to collect the
data.
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e Specify acceptable levels of decision errors that will be used as the basis
for establishing the quantity and quality of data needed to support the
decision.

The seven steps in the DQO process are: (1) state the problem, (2) identify the
goals of the study, (3) identify information inputs, (4) define boundaries of the
study, (5) develop the analytic approach, (6) specify performance or acceptance
criteria, and (7) develop the plan for obtaining the data (see Millard et al. 2014, for
more details). Steps 5 and 6 involve deciding what statistical methods you will
use and trading off limits on Type I and Type II errors and sample size.

2.7 Power and Sample Size Calculations

EnvStats contains several functions to assist you in determining how many
samples you need for a given degree of confidence in the results of a sampling
program (see the help file Power and Sample Size). These functions are based on
the ideas of confidence intervals, prediction intervals, tolerance intervals, and
hypothesis tests. If you are unfamiliar with these concepts, please see Millard
et al. (2014).

A very important point to remember is that no matter what you come up with
for estimates of required sample sizes, it is always a good idea to assume you will
lose some percentage of your observations due to sample loss, sample contami-
nation, database issues, etc.

2.8 Sample Size for Confidence Intervals

Table 2.1 lists the functions available in EnvStats for computing required sample
sizes, half-widths, and confidence levels associated with a confidence interval.
For the normal and binomial distributions, you can compute the half-width of the
confidence interval given the user-specified sample size, compute the required
sample size given the user-specified half-width, and plot the relationship between
sample size and half-width. For a nonparametric confidence interval for a
percentile, you can compute the required sample size for a specified confidence
level, compute the confidence level associated with a given sample size, and plot
the relationship between sample size and confidence level. Chapter 5 gives more
details on computing confidence intervals once you have your data.

Bacchetti (2010) presents strong arguments against the current convention in
scientific research for computing sample size that is based on formulas that use a
fixed Type I error (usually 5 %) and a fixed minimal power (often 80 %) without
regard to costs. He notes that a key input to these formulas is a measure of
variability (usually a standard deviation) that is difficult to measure accurately
“unless there is so much preliminary data that the study isn’t really needed.” Also,
study designers often avoid defining what a scientifically meaningful difference is
by presenting sample size results in terms of the effect size (i.e., the difference of
interest divided by the elusive standard deviation). Bacchetti (2010) encourages
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study designers to use simple tables in a sensitivity analysis to see what results of
a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being

studied.

Distribution

Function

Output

Normal

Binomial

Nonparametric

ciTableMean

ciNormHalfWidth

ciNormN

plotCiNormDesign

ciTableProp

ciBinomHalfwidth

ciBinomN

plotCiBinomDesign

ciNparConflevel

ciNparN

plotCiNparDesign

Confidence intervals for mean of
normal distribution, or difference
between two means, following
Bacchetti (2010)

Half-width of confidence interval
for mean of normal distribution or
difference between two means

Required sample size for specified
half-width of confidence interval for
mean of normal distribution or
difference between two means

Plots for sampling design based on
confidence interval for mean of
normal distribution or difference
between two means

Confidence intervals for binomial
proportion, or difference between
two proportions, following
Bacchetti (2010)

Half-width of confidence interval
for binomial proportion or
difference between two proportions

Required sample size for specified
half-width of confidence interval for
binomial proportion or difference
between two proportions

Plots for sampling design based on
confidence interval for binomial
proportion or difference between
two proportions

Confidence level of confidence
interval for a percentile, given the
sample size

Required sample size for specified
confidence level of confidence
interval for a percentile

Plots for sampling design based on
confidence interval for a percentile

Table 2.1 Sample size functions for confidence intervals



30 2. Designing a Sampling Program

2.8.1 Confidence Interval for the Mean of a Normal Distribution

The EnvStats function ciTableMean produces a table similar to Table 1 of
Bacchetti (2010) for looking at how the confidence interval for the mean of a
normal distribution or the difference between two means varies with various levels
of variability and the value of the estimated mean or difference between two
means, given the sample size and confidence level. The EnvStats function
ciNormHalfWidth computes the half-width associated with the confidence
interval, given the sample size, estimated standard deviation, and confidence level.
The function ciNormN computes the sample size required to achieve a specified
half-width, given the estimated standard deviation and confidence level. The
function plotCiNormDesign plots the relationships between sample size, half-
width, estimated standard deviation, and confidence level.

The data frame EPA.09.Ex.16.1.sulfate.df contains sulfate con-
centrations (ppm) at one background and one downgradient well. The estimated
mean and standard deviation for the background well are 536 and 27 ppm,
respectively, based on a sample size of n = 8 quarterly samples take over 2 years.
A two-sided 95 % confidence interval for this mean is [514, 559], which has a
half-width of 23 ppm.

> EPA.09.Ex.16.1.sulfate.df

Month Year Well.type Sulfate.ppm

1 Jan 1995 Background 560
Apr 1995 Background 530

15 Jul 1996 Downgradient 610
16 Oct 1996 Downgradient 630

> Sulfate.back <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Background"])

> enorm(Sulfate.back, ci = TRUE)

Results of Distribution Parameter Estimation

Assumed Distribution: Normal

Estimated Parameter (s): mean = 536.25000
sd = 26.69270

Estimation Method: mvue

Data: Sulfate.back

Sample Size: 8
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Confidence Interval for: mean

Confidence Interval Method: Exact

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = 513.9343
UCL = 558.5657

Suppose we are planning a future study and are interested in the size of the
confidence interval. Initially we plan to take eight quarterly samples taken over 2
years, as in the previous study. We could assume an estimated standard deviation
of about 25 or 30 ppm, but based on the 95 % confidence interval for the variance,
which is [311, 2,951] ppm, the true standard deviation may be as small as about
18 ppm or as large as about 54 ppm.

> enorm(Sulfate.back, ci = TRUE,

ci.param = "variance'")Sinterval
Confidence Interval for: variance
Confidence Interval Method: Exact
Confidence Interval Type: two-sided
Confidence Level: 95%
Confidence Interval: LCL = 311.4703

UCL = 2951.4119

Letting the estimated standard deviation vary from 15 to 60 ppm shows that the
width of the confidence interval varies between about 13 and 50 ppm:

> ciNormHalfWidth (n.or.nl = 8, sigma.hat = c(15, 30, 60))
[1] 12.54031 25.08063 50.16126

Assuming a standard deviation of about 30 ppm, if in a future study we take only
four observations, the half-width of the confidence interval should be about
48 ppm:

> ciNormHalfWidth(n.or.nl = 4, sigma.hat = 30)

[1] 47.73669
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Also, if we want the confidence interval to have a half-width of 10 ppm, we would
need to take n = 38 observations (i.e., quarterly samples taken over more than 9
years).

> ciNormN (half.width = 10, sigma.hat = 30)
[1] 38

Figure 2.1 displays the half-width of the confidence interval as a function of the
sample size for various confidence levels, again assuming a standard deviation of
about 30 ppm.

—— 99% Confidence
— — 95% Confidence
90% Confidence

Half-Width

40

20
|

Sample Size (n)

Fig. 2.1 The half-width of the confidence interval for the mean of background sulfate
concentration (ppm) as a function of sample size and confidence level, assuming a standard
deviation of 30 ppm

To create this plot, type these commands:

> plotCiNormDesign (sigma.hat = 30, range.x.var = c (4, 80),
conf = 0.99, xlim = c(0, 80), ylim = c(0, 90), main = "")

> plotCiNormDesign (sigma.hat = 30, range.x.var = c (4, 80),
conft = 0.95, plot.col = 2, plot.lty = 2, add = TRUE)

> plotCiNormDesign (sigma.hat = 30, range.x.var = c (4, 80),
conf = 0.90, plot.col = 4, plot.lty = 3, add = TRUE)
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> legend("topright",
paste(c("99%", "958%", "90%"), "Confidence")
col = c¢(1, 2, 4), 1ty = 1:3, 1lwd = 2, bty = "n")

Considering the data frame EPA.09.Ex.16.1.sulfate.df again, the
estimated mean and standard deviation for the downgradient well are 608 and
18 ppm, respectively, based on a sample size of n = 6 quarterly samples. A two-
sided 95 % confidence interval for the difference between this mean and the
background mean is [44, 100] ppm.

> Sulfate.down <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Downgradient"])

> enorm(Sulfate.down)

Results of Distribution Parameter Estimation

Assumed Distribution: Normal

Estimated Parameter(s): mean = 608.33333
sd = 18.34848

Estimation Method: mvue

Data: Sulfate.down

Sample Size: 6

Number NA/NaN/Inf's: 2

> t.test (Sulfate.down, Sulfate.back,
var.equal = TRUE)Sconf.int

[1] 44.33974 99.82693
attr (,"conf.level")
[1] 0.95

We can use ciTableMean to look how the confidence interval for the difference
between the background and downgradient means in a future study using eight
quarterly samples at each well varies with assumed value of the pooled standard
deviation and the observed difference between the sample means. Our current
estimate of the pooled standard deviation is 24 ppm:

> summary (Ilm(Sulfate.ppm ~ Well.type,
data = EPA.09.Ex.16.1.sulfate.df)) Ssigma

[1] 23.57759
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We see that if this is overly optimistic and in our next study the pooled standard
deviation is around 50 ppm, then if the observed difference between the means is
50 ppm, the lower end of the confidence interval for the difference between the
two means will include 0, so we may want to increase our sample size.

> ciTableMean (nl = 8, n2 = 8, diff = c¢(100, 50, 0),
SD = c(15, 25, 50), digits = 0)

Diff=100 Diff=50 Diff=0
sb=15 [ 84, 116] [ 34, ©66] [-1l6, 16]
sb=25 [ 73, 127] [ 23, 77] [-27, 27]
SD=50 [ 46, 154] [ -4, 104] [-54, 54]

2.8.2 Confidence Interval for a Binomial Proportion

The EnvStats functions ciTableProp produces a table similar to Table 1 of
Bacchetti (2010) for looking at how the confidence interval for a binomial
proportion or the difference between two proportions varies with the value of the
estimated proportion(s), given the sample size, confidence level, and method of
computing the confidence interval. The function ciBinomHalfWidth computes
the half-width associated with the confidence interval for the proportion or differ-
ence between two proportions, given the sample size, estimated proportion(s),
confidence level, and method of computing the confidence interval. The function
ciBinomN computes the sample size required to achieve a specified half-width,
given the estimated proportion(s) and confidence level. The EnvStats function
plotCiBinomDesign plots the relationships between sample size, half-width,
estimated proportion(s), and confidence level.

The data frame EPA. 92c.benzenel.df contains observations on benzene
concentrations (ppb) in groundwater from six background wells sampled monthly
for 6 months. Nondetect values are reported as “<2.”

> EPA.92c.benzenel.df

Benzene.orig Benzene Censored Month Well

1 <2 2 TRUE 1 1

<2 2 TRUE 2 1
35 10 10 FALSE 5 6
36 <2 2 TRUE 6 6

Of the 36 values, 33 are nondetects. Based on these data, the estimated
probability of observing a nondetect is 92 %, and the two-sided 95 % confidence
interval for the binomial proportion based on using the normal score
approximation with continuity correction is [0.76, 0.98]. The half-width of this
interval is 0.11, or 11 % points.
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> with (EPA.92c.benzenel.df , ebinom(Censored, ci = TRUE))

Results of Distribution Parameter Estimation

Assumed Distribution: Binomial
Estimated Parameter(s): size = 36.0000000
prob = 0.9166667
Estimation Method: mle/mme/mvue for 'prob'
Data: Censored
Sample Size: 36
Confidence Interval for: prob
Confidence Interval Method: Score normal approximation

(With continuity correction)

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = 0.7640884
UCL = 0.9782279

Suppose we are planning a future study and are interested in the size of the
confidence interval. Initially we plan to take 36 samples as in the previous study.
Letting the estimated percentage of nondetects vary from 75 % to 95 % shows that
the width of the confidence interval varies between about 15 % and 10 % points.

> ciBinomHalfWidth (n.or.nl = 36, p.hat = c(0.75, 0.85, 0.95))

Shalf.width
[1] 0.14907011 0.12529727 0.09523133

Sn
[1] 36 36 36
Sp.hat

[1] 0.7500000 0.8611111 0.9444444

Smethod

[1] "Score normal approximation, with continuity correction"
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Assuming an estimated proportion of 90 %, if we take only n = 10 observations,
the half-width of the confidence interval would be about 23 % points:

> ciBinomHalfWidth (n.or.nl = 10, p.hat = 0.9)

Shalf.width
[1] 0.2268019

$n
[1] 10

Sp.hat
[1] 0.9

Smethod
[1] "Score normal approximation, with continuity correction"

Also, if we want the confidence interval to have a half-width of 0.03 (3 % points),
we would need to take n =319 observations (a sample size probably not feasible
for many environmental studies!).

> ciBinomN (half.width = 0.03, p.hat = 0.9)

Sn
[1] 319
Sp.hat

[1] 0.8996865

Shalf.width
[1] 0.03466104

Smethod

[1] "Score normal approximation, with continuity correction""

Figure 2.2 displays the half-width of the confidence interval as a function of the
sample size for various confidence levels, based on using the score normal
approximation with continuity correction to construct the confidence interval.

> plotCiBinomDesign (p.hat = 0.9, range.x.var = c(10, 200),
conf = 0.99, xlim = c(0, 200), ylim = c(0, 0.3),

main = "")

> plotCiBinomDesign (p.hat = 0.9, range.x.var = c(10, 200),
conf = 0.95, plot.col = 2, plot.lty = 2, add = TRUE)

> plotCiBinomDesign (p.hat = 0.9, range.x.var = c(10, 200),
conf = 0.90, plot.col = 4, plot.lty = 3, add = TRUE)
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> legend("topright",
paste(c("99%", "958%", "90%"), "Confidence"),
col = c¢(1, 2, 4), 1ty = 1:3, 1lwd = 3, bty = "n")

& J —— 99% Confidence
e — — 95% Confidence
90% Confidence

Half-Width
0.15
|

0 50 100 150 200
Sample Size (n)
Fig. 2.2 The half-width of the confidence interval for the probability of a nondetect as a

function of sample size and confidence level, assuming an estimated nondetect proportion
of 90 %

If we are planning a study to compare the proportion of nondetects at a
background and downgradient well, we can use ciTableProp to look how the
confidence interval for the difference between the two proportions using say 36
quarterly samples at each well varies with the observed estimated proportions.
Here we’ll let the argument pl . hat denote the proportion of nondetects observed
at the downgradient well and set this equal to 20 %, 40 % and 60 %. The argu-
ment p2.hat.minus.pl.hat represents the proportion of nondetects at the
background well minus the proportion of nondetects at the downgradient well.

> ciTableProp(nl = 36, pl.hat = c(0.2, 0.4, 0.6),
n2 = 36, pZ2.hat.minus.pl.hat = c(0.3, 0.15, 0))

Diff=0.31 Diff=0.14 Diff=0
Pl.hat=0.19 [ 0.07, 0.54] [-0.09, 0.37] [-0.18, 0.18]
Pl.hat=0.39 [ 0.06, 0.55] [-0.12, 0.39] [-0.23, 0.23]
Pl.hat=0.61 [ 0.09, 0.52] [-0.10, 0.38] [-0.23, 0.23]
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We see that even if the observed difference in the proportion of nondetects is
about 15 % points, all of the confidence intervals for the difference between the
proportions of nondetects at the two wells contain 0, so if a difference of 15 %
points is important to substantiate, we may need to increase our sample sizes.

2.8.3 Nonparametric Confidence Interval for a Percentile

The function ciNparConfLevel computes the confidence level associated with
a nonparametric confidence interval for the pth quantile (the pth quantile is same
as the 100pth percentile, where 0 < p < 1), given the sample size and value of p.
The function ciNparN computes the sample size required to achieve a specified
confidence level, given the value of p. The function plotCiNparDesign plots
the relationships between sample size, confidence level, and p.

The data frame EPA.92c.copper2.df contains copper concentrations
(ppb) at three background wells and two compliance wells.

> EPA.92c.copperZ2.df

Copper.orig Copper Censored Month Well Well.type

1 <5 5.0 TRUE 1 1 Background
2 <5 5.0 TRUE 2 1 Background
3 7.5 7.5 FALSE 3 1 Background
38 <5 5.0 TRUE 6 5 Compliance
39 5.6 5.6 FALSE 7 5 Compliance
40 <5 5.0 TRUE 8 5 Compliance

There are eight observations associated with each of the three background wells.
Of the 24 observations at the three background wells, 15 are nondetects recorded
as “<5”. The other nine observations at the background wells are: 5.4, 5.9, 6.0,
6.1, 6.4, 6.7, 7.5, 8.0, and 9.2. The estimated 95th percentile of copper
concentration at the background wells is 7.925 ppb.

> Cu.Bkgrd <- with(EPA.92c.copper2.df,
Copper[Well.type == "Background"]

> eqgnpar (Cu.Bkgrd, p = 0.95)

Results of Distribution Parameter Estimation

Assumed Distribution: None
Estimated Quantile(s): 95'th %ile = 7.925

Quantile Estimation Method: Nonparametric
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Data: Cu.Bkgrd

Sample Size: 24

If we use the largest observed value of 9.2 as the upper confidence limit of the
95th percentile of the copper concentration, the associated confidence level is
71 %.

> ciNparConfLevel (n = 24, p = 0.95, ci.type = "upper")
[1] 0.708011

If only four observations had been taken at each well for a total sample size of
n = 12, the associated confidence level would have been 46 %.

> ciNparConfLevel (n = 12, p = 0.95, ci.type = "upper")
[1] 0.4596399

If we want to construct a nonparametric confidence interval for the 95th percentile
of copper concentration with an associated confidence level of at least 95 %, we
would need n = 59 observations (about 20 observations at each background well).

> ciNparN(p = 0.95, ci.type = "upper")
[1] 59
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Fig. 2.3 Confidence level for the one-sided upper nonparametric confidence interval for the
95th percentile versus sample size, using the maximum value as the upper confidence limit
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Figure 2.3 displays the confidence level of the one-sided upper confidence interval
for the 95th percentile as a function of the sample size. To create this plot, type
this command:

> plotCiNparDesign(p = 0.95, ci.type = "upper",
range.x.var = c(2, 100), ylim = c(0, 1))

2.9 Sample Size for Prediction Intervals

Table 2.2 lists the functions available in EnvStats for computing required sample
sizes, half-widths, and confidence levels associated with a prediction interval. For
the normal distribution, you can compute the half-width of the prediction interval
given the user-specified sample size, compute the required sample size given the
user-specified half-width, and plot the relationship between sample size and half-
width. For a nonparametric prediction interval, you can compute the required
sample size for a specified confidence level, compute the confidence level
associated with a given sample size, and plot the relationship between sample size
and confidence level.

Distribution Function Output
Normal predIntNormHalfWidth Half-width of prediction
interval for normal
distribution
predIntNormN Required sample size for
specified half-width of

prediction interval for
normal distribution
plotPredIntNormDesign Plots for sampling design
based on prediction
interval for normal

distribution
Nonparametric predIntNparConfLevel Confidence level of
predIntNparSimultaneousConfLevel prediction interval, given
sample size
predIntNparN Required sample size for
predIntNparSimultaneousN specified confidence
level of prediction
interval
plotPredIntNparDesign Plots for sampling design
plotPredIntNparSimultaneousDesign based on prediction
interval

Table 2.2 Sample size functions for prediction intervals

2.9.1 Prediction Interval for a Normal Distribution

The function predIntNormHalfWidth computes the half-width associated
with the prediction interval for a normal distribution, given the sample size,
number of future observations the prediction interval should contain, estimated
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standard deviation, and confidence level. The function predIntNormN computes
the sample size required to achieve a specified half-width, given the number of
future observations, estimated standard deviation, and confidence level. The
function plotPredIntNormDesign plots the relationships between sample
size, number of future observations, half-width, estimated standard deviation, and
confidence level.

The data frame EPA.92c.arsenic3.df contains arsenic concentrations
(ppb) collected quarterly for 3 years at a background well and quarterly for 2 years
at a compliance well.

> EPA.92c.arsenic3.df

Arsenic Year Well.type

1 12.6 1 Background
2 30.8 1 Background
19 2.6 5 Compliance
20 51.9 5 Compliance

The estimated mean and standard deviation for the background well are 28 and
17 ppb, respectively. The exact two-sided 95 % prediction limit for the next k£ = 4
future observations is [—25, 80], which has a half-width of 52.5 ppb and includes
values less than 0, which are not possible to observe.

> As.Bkgrd <- with (EPA.92c.arsenic3.df,
Arsenic[Well.type == "Background"])

> predIntNorm(As.Bkgrd, k = 4, method = "exact")

Results of Distribution Parameter Estimation

Assumed Distribution:

Estimated Parameter(s):

Normal

mean = 27.51667

sd = 17.10119
Estimation Method: mvue
Data: As.Bkgrd
Sample Size: 12
Prediction Interval Method: exact

Prediction Interval Type:

two-sided
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Confidence Level: 95%
Number of Future Observations: 4
Prediction Interval: LPL = -24.65682

UPL = 79.69015

In fact, given an assumed standard deviation of s = 17, the smallest half width
you can achieve for a prediction interval for the next k=4 future observations is
42 ppb, based on an infinite sample size. Unlike a confidence interval, the half-
width of a prediction interval does not approach 0 as the sample size increases.
Figure 2.4 shows a plot of sample size versus half-width for a 95 % prediction
interval for a normal distribution for various values of & (the number of future
observations), assuming a standard deviation of s = 17.

k
-= k
k

oo
=N B

Half-Width

40

0 10 20 30 40 50
Sample Size (n)

Fig. 2.4 The half-width of a 95 % prediction interval for arsenic concentrations (ppb) as a
function of sample size and number of future observations (k), assuming a standard
deviation of 17 ppb
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Type these commands to create the plot:

> plotPredIntNormDesign (range.x.var = c(4, 50), k = 4,
sigma.hat = 17, xlim = c¢(0, 50), ylim = c¢(30, 110),
main = "")

> plotPredIntNormDesign (range.x.var = c(4, 50), k = 2,
sigma.hat = 17, plot.col = 2, plot.lty = 2, add = TRUE)

> plotPredIntNormDesign (range.x.var = c(4, 50), k =1,
sigma.hat = 17, plot.col = 4, plot.lty = 3, add = TRUE)

> legend("topright", c("k=4", "k=2", "k=1"),
col = c¢(1, 2, 4), 1ty = 1:3, 1lwd = 3, bty = "n")

2.9.2 Nonparametric Prediction Interval

The function predIntNparConfLevel computes the confidence level
associated with a nonparametric prediction interval, given the minimum number
of future observations the interval should contain (k), the number of future observ-
ations (m), and sample size. The function predIntNparN computes the sample
size required to achieve a specified confidence level, given the number of future
observations. The function plotPredIntNparDesign plots the relationships
between sample size, confidence level, and number of future observations.

Table 2.3 shows the required sample size for a two-sided nonparametric
prediction interval for the next m future observations (assuming k = m) for various
values of m and required confidence levels, assuming we are using the minimum
and maximum values as the prediction limits. The values for the table are
generated using this command:

> predIntNparN(m = rep(c(1, 5, 10), 2),
conf.level = rep(c(0.9, 0.95), each = 3))

Confidence level (%)  # future observations (m)  Required sample size (n)

90 1 19
5 93
10 186
95 1 39
5 193
10 386

Table 2.3 Required sample sizes for a two-sided nonparametric prediction interval, using
the minimum and maximum values as the prediction limits

Figure 2.5 displays the confidence level of a two-sided nonparametric
prediction interval as a function of sample size for various values of m, using the
minimum and maximum values as the prediction limits. To create this figure, type
these commands:
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> plotPredIntNparDesign (range.x.var = c(2, 100), k =1,
m=1, xlim = ¢c(0, 100), ylim = c¢(0, 1), main = "")

> plotPredIntNparDesign (range.x.var = c(2, 100), k = 5,
m =5, plot.col = 2, plot.lty = 2, add = TRUE)

> plotPredIntNparDesign (range.x.var = c(2, 100),
k =10, m = 10, plot.col = 4, plot.1lty = 3, add = TRUE)

> legend("bottomright", c("m= 1", "m= 5", "m=10"),
col = c¢c(1, 2, 4), 1lty = 1:3, 1lwd = 3)
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Fig. 2.5 The confidence level of a two-sided nonparametric prediction interval as a function
of sample size, for various values of the number of future observations (1)

2.10 Sample Size for Tolerance Intervals

Table 2.4 lists the functions available in EnvStats for computing required sample
sizes, half-widths, coverage, and confidence levels associated with a tolerance
interval. For the normal distribution, you can compute the half-width of the
tolerance interval given the user-specified sample size and coverage, compute the
required sample size given the user-specified half-width and coverage, and plot
the relationship between sample size, half-width, and coverage. For a non-
parametric prediction interval, you can compute the required sample size for a
specified confidence level and coverage, compute the confidence level associated
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with a given sample size and coverage, compute the coverage associated with a
given sample size and confidence level, and plot the relationship between sample
size, confidence level, and coverage.

Distribution Function Output

Normal tolIntNormHalfWidth Half-width of tolerance interval for
normal distribution

tolIntNormN Required sample size for specified
half-width of tolerance interval for
normal distribution

plotTolIntNormDesign Plots for sampling design based on
tolerance interval for normal
distribution
Nonparametric ~ tolIntNparConflevel Confidence level of tolerance interval,

given the coverage and sample size
tolIntNparCoverage Coverage of tolerance interval, given
confidence level and sample size
tolIntNparN Required sample size for specified
confidence level and coverage of a
tolerance interval

plotTolIntNparDesign Plots for sampling design based on a
tolerance interval

Table 2.4 Sample size functions for tolerance intervals

2.10.1 Tolerance Interval for a Normal Distribution

The function tolIntNormHal fWidth computes the half-width associated with
a tolerance interval for a normal distribution, given the sample size, coverage,
estimated standard deviation, and confidence level. The function tolIntNormN
computes the sample size required to achieve a specified half-width, given the
coverage, estimated standard deviation, and confidence level. The function
plotTolIntNormDesign plots the relationships between sample size, half-
width, coverage, estimated standard deviation, and confidence level.

Again using the data frame EPA.92c.arsenic3.df containing arsenic
concentrations, we saw in Sect. 2.9.1 that the estimated mean and standard
deviation for the background well are 28 and 17 ppb, respectively, based on a
sample size of n = 12 quarterly samples. The two-sided -content tolerance limit
with 95 % coverage and associated confidence level of 99 % is [—39, 94], which
has a half-width of 66.5 ppb and includes values less than 0, which are not
possible to observe.

> tolIntNorm (As.Bkgrd, coverage = 0.95,
cov.type = "content", conf.level = 0.99)
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Results of Distribution Parameter Estimation

Assumed Distribution:

Estimated Parameter (s):

Estimation Method:

Data:

Sample Size:

Tolerance Interval Coverage:

Coverage Type:

Tolerance Interval Method:

Tolerance Interval Type:

Confidence Level:

Tolerance Interval:

In fact, given an assumed standard deviation of s = 17, the smallest half width you
can achieve for a tolerance interval with 95 % coverage and 99 % confidence is
33 ppb, based on an infinite sample size. Unlike a confidence interval, the half-
width of a tolerance interval does not approach 0 as the sample size increases.
Figure 2.6 shows a plot of sample size versus half-width for a -content tolerance
interval for a normal distribution with confidence level 99 % for various values of
coverage, assuming a standard deviation of s=17.

commands:

> plotTolIntNormDesign (range.x.var =

sigma.hat = 17,
c(0,

coverage

xlim = 50), ylim =

> plotTolIntNormDesign (range.x.var =

sigma.hat = 17,

plot.col = 2, plot.lty =

coverage

Normal

27.51667
17.10119

mean
sd

mvue

As.Bkgrd

12

95%

content

Wald-Wolfowitz Approx

two-sided

99%
LTL = -38.66445
UTL = 93.69778

c(5, 50),
= 0.99, conf = 0.99,
c(0, 200), main = "")
c(5, 50),
= 0.95, conf = 0.99,
2, add = TRUE)

It was created with these
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> plotTolIntNormDesign (range.x.var = c(5, 50),
sigma.hat = 17, coverage = 0.90, conf = 0.99,
plot.col = 4, plot.lty = 3, add = TRUE)

> legend("topright",
paste(c("99%", "95%", "90%"), "Coverage"),
col = c¢(1, 2, 4), lty=1:3, 1wd=3, bty = "n")

§ — —— 99% Coverage
— — 95% Coverage
90% Coverage

Half-Width
100
|
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Sample Size (n)

Fig. 2.6 The half-width of a tolerance interval for arsenic concentrations (ppb) as a function
of sample size and coverage, assuming a standard deviation of 17 ppb

2.10.2 Nonparametric Tolerance Interval

The function tolIntNparConfLevel computes the confidence level
associated with a nonparametric tolerance interval, given the coverage and sample
size. The function tolIntNparCoverage computes the coverage associated
with the tolerance interval, given the confidence level and sample size. The
function tol IntNparN computes the sample size required to achieve a specified
confidence level, for a given coverage. The function plotTolIntNparDesign
plots the relationships between sample size, confidence level, and coverage.

Table 2.5 shows the required sample size for a two-sided nonparametric
tolerance interval for various values of coverage and required confidence levels,
assuming we are using the minimum and maximum values as the tolerance limits.
The values for the table are generated using this command:



48 2. Designing a Sampling Program

> tolIntNparN (coverage = rep(c(0.8, 0.9, 0.95), 2),
conf.level = rep(c(0.9, 0.95), each = 3))

Confidence level (%) Coverage (%) Required sample size ()
90 80 18
90 38
95 77
95 80 22
90 46
95 93

Table 2.5 Required sample sizes for a two-sided nonparametric tolerance interval, using the
minimum and maximum values as the tolerance limits

Figure 2.7 displays the confidence level of a two-sided nonparametric
tolerance interval as a function of sample size for various values of coverage,
using the minimum and maximum values as the tolerance limits.
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Fig. 2.7 The confidence level of a two-sided nonparametric tolerance interval as a function
of sample size, for various values of coverage

To create this plot, type these commands:

> plotTolIntNparDesign (range.x.var = c(2, 100),
coverage = 0.8, xlim = c¢(0, 100), ylim = c(0, 1),
main = "")
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> plotTolIntNparDesign (range.x.var = c(2, 100),
coverage = 0.90, plot.col = 2, plot.lty = 2, add = TRUE)

> plotTolIntNparDesign (range.x.var = c(2, 100),
coverage = 0.95, plot.col = 4, plot.lty = 3, add = TRUE)

> legend ("bottomright",
paste(c("80%", "90%", "95%"), "Coverage"),
col = c¢(1, 2, 4), 1lty = 1:3, 1lwd = 3, bty = "n")

2.11 Sample Size and Power for Hypothesis Tests

Table 2.6 lists the functions available in EnvStats for computing required sample
sizes, powers, and minimal detectable differences associated with several different
hypothesis tests. In this section, we will illustrate how to use EnvStats functions
to explore the relationship between sample size and power for testing the mean of
a normal distribution, testing a binomial proportion, and using simultancous
prediction limits with retesting. See Millard et al. (2014) and the help files for the
functions listed in Table 2.6 for more examples of exploring the relationship
between sample size and power for other kinds of hypothesis tests.

Test Function Output
Student’s t-test tTestPower Power of t-test
tTestAlpha Type I error of t-test
tTestN Required sample size for specified power
of t-test
tTestScaledMdd Required scaled minimal detectable

difference (8/c) for specified power of t-
test

plotTTestDesign Plots for sampling design based on t-test
Student’s t-test, ~tTestLnormAltPower Power of one- or two-sample t-test
lognormal assuming lognormal distribution
distribution

tTestLnormAltN Required sample size for specified power

for one- or two-sample t-test assuming
lognormal distribution
tTestLnormAltRatioOfMeans Required ratio of means for specified
power for one- or two-sample t-test
assuming lognormal distribution

plotTTestLnormAltDesign Plots for sampling design based on one-
or two-sample t-test assuming lognormal
distribution

Table 2.6 Sample size and power functions for hypothesis tests
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Test

Function

Output

ANOVA F-test

Proportion test,
binomial
distribution

Linear trend
t-test

Prediction
interval, normal
distribution

aovPower

aovN

plotAovDesign

propTestPower

propTestN

propTestMdd

plotPropTestDesign

linearTrendTestPower

linearTrendTestN

linearTrendTestScaledMds

plotLinearTrendTestDesign

predIntNormTestPower

plotPredIntNormTestPowerCurve

predIntNormSimultaneousTestPower

plotPredIntNormSimultaneousTestPower

Curve

Power of F-test for one-
way ANOVA

Required sample size for
specified power of F-test
for one-way ANOVA

Plots for sampling design
based on F-test for one-
way ANOVA

Power of one- or two-
sample proportion test

Required sample size for
specified power for one-
or two-sample proportion
test

Required minimal
detectable difference for
specified power for one-
or two-sample proportion
test

Plots for sampling design
based on one- or two-
sample proportion test

Power of test for non-zero
slope

Required sample size for
specified power for test of
non-zero slope

Required minimal
detectable slope for
specified power for test of
non-zero slope

Plots for sampling design
based on test for non-zero
slope

Power of test based on
prediction interval for
normal distribution

Power curve for test based
on prediction interval for
normal distribution

Power of test based on
simultaneous prediction
interval for normal
distribution

Power curve for test based
on simultaneous
prediction interval for
normal distribution

Table 2.6 (continued). Sample size and power functions for hypothesis tests
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Test Function Output

Prediction interval, predIntLnormAltTestPower Power of test based
lognormal on prediction interval
distribution for lognormal

distribution

plotPredIntLnormAltTestPowerCurve Power curve for test
based on prediction
interval for lognormal
distribution

predIntLnormAltSimultaneousTestPower  Power of test based
on simultaneous
prediction interval
for lognormal

distribution
plotPredIntlnormAltSimultaneousTest Power curve for test
PowerCurve based on

simultaneous
prediction interval
for lognormal

distribution
Prediction interval, predIntNparSimultaneousTestPower Power of test based
nonparametric on nonparametric

simultaneous
prediction interval

plotPredIntNparSimultaneousTestPower Power curve for test
Curve based on
nonparametric
simultaneous
prediction interval

Table 2.6 (continued). Sample size and power functions for hypothesis tests

2.11.1 Testing the Mean of a Normal Distribution
Power and sample size calculations based on Student’s t-test involve four quantities:

The fixed type I error (also called the a-level).

The desired power of the test.

The sample size(s).

The scaled minimal detectable difference (scaled MDD), also often called
the effect size. For the one-sample case, the scaled MDD is the differ-
ence between the true population mean and the population mean hypo-
thesized under the null hypothesis, divided by the population standard
deviation. For the two-sample case, the scaled MDD is the difference
between the true population means for the two groups minus the differ-
ence between the population means hypothesized for the two groups
under the null hypothesis, divided by the population standard deviation
(the standard deviation is assumed to be the same for both groups).
Because the term “effect size” is sometimes used to denote simply the
difference between the means, we always use the term scaled MDD to
denote this quantity.

bl e
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The EnvStats function tTestPower computes the power associated with the
Student’s t-test to perform a hypothesis test for the mean of a normal distribution
or the difference between two means, given the sample size, scaled MDD, and o.-
level. The function tTestAlpha computes the a-level given the power, sample
size, and scaled MDD. The function tTestN computes the sample size required
to achieve a specified power, given the scaled MDD and a-level. The function
tTestScaledMdd computes the scaled MDD associated with user-specified

values of power, sample size, and a-level. The function plotTTestDesign

plots the relationships between sample size, power, scaled MDD, and o-level.

The guidance document Statistical Analysis of Ground-Water Monitoring Data
at RCRA Facilities: Unified Guidance (USEPA 2009) contains an example on
pages 22—6 to 22-8 that uses vinyl chloride (ppb) concentrations at two different
compliance wells. There are 4 years of quarterly observations at each of the two
wells. The first year of data corresponds to the background period and the
subsequent 3 years correspond to the compliance period. The data in this example
are stored in the data frame EPA.09.Ex.22.1.VC.df.

> EPA.09.Ex.22.1.VC.df

Year Quarter Period Well VC.ppb
1 1 1 Background GW-1 6.3
2 1 2 Background GW-1 9.5
31 4 3 Compliance GW-2 7.5
32 4 4 Compliance GW-2 9.7

The groundwater protection standard (GWPS) has been set to 5 ppb. During
compliance monitoring, we want to test the null hypothesis that the mean vinyl
chloride concentration is less than or equal to 5 ppb versus the alternative that it is
greater than 5 ppb based on using 1 year of data (i.e., four quarterly observations).
We want to have 80 % power of detecting an increase of twice the GWPS (i.e.,
detecting a true mean vinyl chloride concentration of 10 ppb, a difference of 5 ppb
between the assumed mean under the null hypothesis and the mean under the
alternative hypothesis).

In this example, first we’ll use the first year (background period) of monitoring
to estimate the standard deviation of vinyl chloride measurements to determine the
required a-level. Then we’ll see how changing the a-level and sample size affects
the power.

For the first year (background period) of monitoring, the observed means and
standard deviations are 8.9 and 2.4 ppb for Well 1, and 7.4 and 3.9 ppb for Well 2,
and the pooled estimate of standard deviation (assuming the standard deviation is
the same at the two wells) is 3.2 ppb.

> summaryStats (VC.ppb ~ Well, data = EPA.09.Ex.22.1.VC.df,
subset = Period == "Background", digits = 1)
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N Mean SD Median Min Max
GW-1 4 8.9 2.4 8.8 6.3 11.9
GW-2 4 7.4 3.9 7.4 3.0 12.0

> VC.Im.fit <- Im(VC.ppb ~ Well,
data = EPA.09.Ex.22.1.VvC.df,
subset = Period == "Background")

> summary (VC.1m.fit) Ssigma
[1] 3.200976

However, if we compute a two-sided 95 % confidence interval for the true
standard deviation based on the background period data, we see that it may be as
high as about 6 ppb:

> sqrt (enorm(VC.Im.fitSresiduals, ci = TRUE,
ci.param = "variance")SintervalSlimits)

LCL UCL
1.959408 6.031586

Assuming population standard deviations of 3.2 and 6 ppb, basing the one-sample
t-test on n =4 observations, we need to set the type I error level to 0.057 or 0.23
respectively in order to achieve 80 % power of detecting a true concentration of
vinyl chloride of 10 ppb:

> tTestAlpha(n.or.nl = 4, delta.over.sigma = 5 / c(3, 6),
power = 0.8, sample.type = "one.sample',
alternative = '"greater")

[1] 0.05763283 0.22936065

If we set the significance level to 1 % and assume a standard deviation of
3.2 ppb, we can see how the power varies with sample size:

> tTestPower (n.or.nl = c(4, 8, 12),
delta.over.sigma = 5 / 3.2, alpha = 0.01,
alternative = '"greater")

[1] 0.3173891 0.8839337 0.9911121

If we set the significance level to 1 %, the desired power to 90 %, and assume
a standard deviation of 6 ppb, we would need a sample size of at least n =22 to
detect an average vinyl chloride concentration that is 5 ppb above the GWPS:

> tTestN(delta.over.sigma = 5 / 6, alpha = 0.01,
power = 0.9, alternative = "greater")

[1] 22
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Fig. 2.8 Power versus sample size for a one-sample t-test with a significance level of 1 %,
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Fig. 2.9 Scaled minimal detectable difference versus sample size for a one-sample t-test
with a significance level of 1 %, assuming a power of 90 %
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Figure 2.8 plots power as a function of sample size for a significance level of
1 %, assuming a scaled minimal detectable difference of 1. Use this command to
produce it:

> plotTTestDesign (alpha = 0.01, delta.over.sigma = 1,
range.x.var = c(2, 35), xlim = c¢(0, 35), ylim = c(0, 1),
alternative="greater", approx = FALSE)

Figure 2.9 plots the scaled minimal detectable difference as a function of sample
size for a significance level of 1 %, assuming a power of 90 %.

> plotTTestDesign(y.var = "delta.over.sigma",
alpha = 0.01, power = 0.9, range.x.var = c(2, 15),
xlim = ¢(0, 15), ylim = c(0, 40), alternative="greater",

approx. = FALSE)

2.11.2 Testing a Binomial Proportion

The guidance document Statistical Analysis of Ground-Water Monitoring Data at
RCRA Facilities: Unified Guidance (USEPA 2009) contains an example on page
22-20 that involves determining whether more than 10 % of chlorine gas
containers are stored at pressures above a compliance limit. We want to test the
one-sided null hypothesis that 10 % or fewer of the containers are stored at
pressures greater than the compliance limit versus the alternative that more than
10 % are stored at pressures greater than the compliance limit. We want to have at
least 90 % power of detecting a true proportion of 30 % or greater, using a 5 %
Type I error level. The example in the guidance document uses the normal
approximation to the binomial distribution (without a continuity correction) to
determine we need to check 30 containers:

> propTestN(p.or.pl = 0.3, pO.or.p2 = 0.1, alpha = 0.05,

power = 0.9, sample.type = "one.sample',
alternative = "greater", approx = TRUE, round.up = TRUE)
[1] 30

However, a quick simulation shows that the true Type I error of the hypothesis test
based on the normal approximation without using the continuity correction is
inflated above 5 % and is really about 7 %:

> set.seed (274)
> N <= 10000

> Reject.vec <- logical (N)
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> for(i in 1:N) {
Reject.vec[i] <- prop.test(
x = rbinom(n = 1, size = 30, prob = 0.1), n =30, p = 0.1,
alternative = '"greater'", correct = FALSE) S$p.value < 0.05

}

> mean (Reject.vec)
[1] 0.071

The 95 % confidence interval for the true Type I error level based on our
simulation of 10,000 trials is [6.6 %, 7.6 %]:

> binom.test (x = sum(Reject.vec), n = length (Reject.vec),
p = 0.05)Sconf.int

[1] 0.06604181 0.07620974

We could try basing our sample size calculation on the test based on the
normal approximation with the continuity correction, but simulation shows that
the continuity correction makes the true Type I error rate about 2.5 % with a 95 %
confidence interval of [2.2 %, 2.8 %] for the true Type I error rate:

> set.seed(538)
> N <- 10000
> Reject.vec <- logical (N)

> for(i in 1:N) {
Reject.vec[i] <- prop.test/(
x = rbinom(n = 1, size = 30, prob = 0.1), n =30, p = 0.1,
alternative = '"greater'", correct = TRUE) Sp.value < 0.05

}

> mean (Reject.vec)

[1] 0.0248

> binom.test (x = sum(Reject.vec), n = length(Reject.vec),
p = 0.05)Sconf.int

[1] 0.02184098 0.02803999

If we base our sample size calculation on the exact binomial test instead of the
test based on the normal approximation, we can set how much the actual Type I
error rate can deviate from what we specify by using the tol.alpha argument
to propTestN. By default, tol.alpha is equal to 10 % of the value of
alpha, so in this case tol.alpha=0.005 which means the smallest the true
Type I error rate can be is 0.045, and the required sample size is 34:
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> propTestN(p.or.pl = 0.3, pO.or.p2 = 0.1, alpha = 0.05,

power = 0.9, sample.type = "one.sample',

alternative = "greater'", approx = FALSE, round.up = TRUE)
$n
[1] 34
Spower

[1] 0.9214717

Salpha
[1] 0.04814433

Sg.critical.upper
[1] 6
If we allow the true Type I error to deviate by 0.01, the required sample size is 33:

> propTestN(p.or.pl = 0.3, pO.or.p2 = 0.1, alpha = 0.05,

power = 0.9, sample.type = "one.sample", tol.alpha = 0.01,
alternative = "greater'", approx = FALSE, round.up = TRUE)
$n
[1] 33
Spower

[1] 0.9055545

Salpha
[1] 0.04170385

Sg.critical.upper
[1]1 6

2.11.3 Testing Multiple Wells for Compliance with Simultaneous
Prediction Intervals

The guidance document Statistical Analysis of Ground-Water Monitoring Data at
RCRA Facilities: Unified Guidance (USEPA 2009) contains an example on page
19-23 that involves monitoring n,, = 100 compliance wells at a large facility with
minimal natural spatial variation every 6 months for n. =20 separate chemicals.
There are n =25 background measurements for each chemical to use to create
simultaneous prediction intervals. We would like to determine which kind of
resampling plan based on normal distribution simultaneous prediction intervals to
use (1-of-m, 1-of-m based on means, or Modified California) in order to have
adequate power of detecting an increase in chemical concentration at any of the
100 wells while at the same time maintaining a site-wide false positive rate
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(SWFPR) of 10 % per year over all 4,000 (100 wells x 20 chemicals x semi-
annual sampling) comparisons.

The EnvStats functions for computing power based on simultaneous prediction
limits include the argument r that is the number of future sampling occasions
(r=2 in this case because we are performing semi-annual sampling), so to com-
pute the individual test Type I error level oy (and thus the individual test
confidence level), we only need to worry about the number of wells (100) and the
number of constituents (20): Oy = 1 —(1—a)"™ ", The individual confidence
level is simply 1—oyeq. Plugging in 0.1 for a, 100 for nw, and 20 for nc yields an
individual test confidence level of 1—oty = 0.9999473.

> nc <- 20

> nw <- 100

> conf.level <- (1 - 0.1)"(1 / (nc * nw))
> conf.level

[1] 0.9999473

Now we can compute the power of any particular sampling strategy using the
EnvStats function predIntNormSimultaneousTestPower. For example,
to compute the power of detecting an increase of three standard deviations in
concentration using the prediction interval based on the “1-0f-2” resampling rule,
type this command:

> predIntNormSimultaneousTestPower (n = 25, k = 1,
m=2, r =2, rule = "k.of.m", delta.over.sigma = 3,
pi.type = "upper", conf.level = conf.level)

[1] 0.3900202

The following commands will reproduce the table shown in Step 2 on page
19-23 of the EPA guidance document:

> rule.vec <- c(rep("k.of.m", 3), "Modified.CA",
rep("k.of.m", 3))

> m.vec <- c(2, 3, 4, 4, 1, 2, 1)

> n.mean.vec <- c(rep(1, 4), 2, 2, 3)
> n.scenarios <- length(rule.vec)

> K.vec <- numeric (n.scenarios)

> Power.vec <- numeric (n.scenarios)

> K.vec <- predIntNormSimultaneousK(n = n, k =1, m = m.vec,
n.mean = n.mean.vec, r = r, rule = rule.vec,
pi.type = "upper", conf.level = conf.level)



2.11. Sample Size and Power for Hypothesis Tests 59

> Power.vec <- predIntNormSimultaneousTestPower(n = n, k =1,

m = m.vec, n.mean = n.mean.vec,

delta.over.sigma = 3, pi.type
conf.level = conf.level)

r = r, rule = rule.vec,

"upper n,

> data.frame (Rule = rule.vec, k = rep(l, n.scenarios),

m = m.vec, N.Mean = n.mean.vec,

Power = round (Power.vec,

2),

K = round(K.vec, 2),

Total.Samples = m.vec * n.mean.vec)

Rule
k.of.m
k.of.m
k.of.m

Modified.CA
k.of.m
k.of.m
k.of.m 1

N.Mean

e e

m
2
3
4
4
1
2
1

g o s W N
W NN R

NN W N RN W

K Power Total.Samples

.16
.33
.83
.57
.62
.33
.99

0.
.65
.81
.71
.41
.85
.71

O O O O O o

39

W DN DD W N

The above table shows the k-multipliers for each prediction interval, along with
the power of detecting a change in concentration of three standard deviations at
any of the 100 wells during the course of a year, for each of the sampling
strategies considered. The last three rows of the table correspond to sampling
strategies that involve using the mean of two or three observations.

Figure 2.10 shows the power curves for the first four sampling strategies. It
was created with these commands:

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,

k=1, m=4, r =2, rule="k.of.m", pi.type = "upper”,
conf.level = conf.level,
xlab = "SD Units Above Background", main = "")

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,

k=1, m=3, r =2,

conf.level = conf.level,

plot.lty = 2)

add

rule="k.of.m", pi.type = "upper”,
TRUE, plot.col = 2,

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,

k=1, m=2, r = 2,

conf.level = conf.level,

plot.1lty = 3)

add

rule="k.of.m", pi.type = "upper”,
TRUE, plot.col = 3,

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,

r = 2, rule="Modified.CA", pi.type = "upper",

conf.level = conf.level,

plot.lty = 4)

add

TRUE, plot.col = 4,
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> legend(0, 1, c("l-of-4", "Modified CA", "lI-of-3",
"l-of-2"), col = c(1, 4, 2, 3), 1ty = c(1, 4, 2, 3),
lwd = 2, bty = "n")
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Fig. 2.10 Power versus increase in concentration for various testing strategies based on
simultaneous prediction limits, with 100 wells, 20 chemicals, semi-annual sampling, and an
annual SWFPR of 10 %

Figure 2.11 shows the power curves for the last three sampling strategies. It was
created with these commands:

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,

k=1, m =2, n.mean = 2, r = 2, rule="k.of.m",
pi.type = "upper", conf.level = conf.level,
xlab = "SD Units Above Background", main = "")

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,
k=1, m=1, n.mean = 2, r = 2, rule="k.of.m",
pi.type = "upper", conf.level = conf.level, add = TRUE,
plot.col = 2, plot.lty = 2)

> plotPredIntNormSimultaneousTestPowerCurve (n = 25,
k=1, m=1, n.mean = 3, r = 2, rule="k.of.m",
pi.type = "upper", conf.level = conf.level, add = TRUE,
plot.col = 3, plot.lty = 3)
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> legend (0, 1, c("l-of-2, Order 2", "l-of-1, Order 3",
"l-of-1, Order 2"), col = c(1, 3, 2), 1lty = c(1, 3, 2),
lwd = 2, bty="n")
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Fig. 2.11 Power versus increase in concentration for various testing strategies based on
simultaneous prediction limits using the mean of two measures, with 100 wells, 20
chemicals, semi-annual sampling, and an annual SWFPR of 10 %

2.12 Summary

The first and most important step of any environmental study is to design
the sampling program.

Probability sampling or random sampling involves using a random
mechanism to select samples from the population. All statistical methods
used to quantify uncertainty assume some form of random sampling was
used to obtain the sample.

The Data Quality Objectives (DQO) process is a systematic planning tool
based on the scientific method. The last two steps involve trading off
limits on Type I and Type II errors and sample size.

You can use the EnvStats functions listed in Tables 2.1, 2.2, 2.4, and 2.6
(and in the help file Power and Sample Size) to estimate required samples
sizes for an environmental study.



Chapter 3
Looking at Data

3.1 Introduction

Once you have a collection of observations from your environmental study, you
should thoroughly examine the data in as many ways as possible and relevant.
When the first widely available commercial statistical software packages came out
in the 1960s, the emphasis was on statistical summaries of data, such as means,
standard deviations, and measures of skew and kurtosis. It is still true that “a picture
is worth a thousand words,” and no amount of summary or descriptive statistics
can replace a good graph to explain your data. John Tukey coined the acronym
EDA, which stands for Exploratory Data Analysis. Helsel and Hirsch (1992),
USEPA (2006a), and Millard et al. (2014) give a good overview of statistical and
graphical methods for exploring environmental data. Cleveland (1993, 1994) and
Chambers et al. (1983) are excellent general references for methods of graphing
data. This chapter discusses the functions available in ENVSTATs for producing
summary statistics and graphs to describe and look at environmental data.

Statistic or plot Function Output
Summary statistics summaryFull Summary statistics
summaryStats Summary statistics, p-values, and
confidence intervals
Strip chart stripChart Strip chart with confidence inter-
vals for mean or pseudo-median
Probability distribution =~ epdfPlot Empirical PDF plot
function (PDF) plot
Cumulative distribution ~ecdfPlot Empirical CDF plot
function (CDF) plots
cdfCompare Compare empirical CDF to a hy-
pothesized CDF, or compare two
empirical CDFs
Quantile-Quantile gqgPlot Q-Q plot comparing data to a the-
(Q-Q) plots oretical distribution or comparing

two data sets

qgPlotGestalt Numerous Q-Q plots based on a
specified distribution

Box-Cox boxcox Determine optimal Box-Cox
transformations transformation

Table 3.1 Functions in ENVSTATS for exploratory data analysis

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 63
DOI 10.1007/978-1-4614-8456-1 3, © Springer Science+Business Media New York 2013
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3.2 EDA Using ENVSTATS

R comes with numerous functions for producing summary statistics and graphs to
look at your data. Table 3.1 lists the additional functions available in ENVSTATS
for performing EDA.

Robust to
Statistic What it measures / how it is computed extreme
values?
Mean Center of distribution No
Sum of observations divided by sample size
Where the histogram balances
Trimmed mean Center of distribution Somewhat
Trim off extreme observations and compute mean
Where the trimmed histogram balances
Median Center of the distribution Very
Middle value or mean of middle values
Half of observations are less and half are greater
Geometric mean Center of distribution Yes
Exponentiated mean of log-transformed observations
Estimates true median for a lognormal distribution
Variance Spread of distribution No
Average of squared distances from the mean
Standard deviation Spread of distribution No
Square root of variance
In same units as original observations
Range Spread of distribution No
Maximum minus minimum
Interquartile range Spread of distribution Yes

Median absolute
deviation

Geometric standard
deviation

Coefficient of

variation

Skew

Kurtosis

75th percentile minus 25th percentile
Range of middle 50 % of data

Spread of distribution Yes
1.4826 x Median of distances from the median

Spread of distribution No
Exponentiated standard deviation of log-transformed

observations
Spread of distribution/center of distribution No

Standard deviation divided by mean
Sometimes multiplied by 100 and expressed as a
percentage

How the distribution leans No
(left, right, or centered)
Average of cubed distances from the mean

Peakedness of the distribution No
Average of quartic distances from the mean, then
subtract 3

Table 3.2 A description of commonly used summary statistics
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3.3 Summary Statistics

Summary statistics (also called descriptive statistics) are numbers that you can
use to summarize the information contained in a collection of observations.
Summary statistics are also called sample statistics because they are statistics
computed from a sample; they do not describe the whole population.

One way to classify summary or descriptive statistics is by what they measure:
location (central tendency), spread (variability), skew (long-tail in one direction),
kurtosis (peakedness), etc. Another way to classify summary statistics is by how
they behave when unusually extreme observations are present: sensitive versus
robust. Table 3.2 summarizes several kinds of descriptive statistics based on these
two classification schemes.

Millard et al. (2014) describe functions in R for computing summary statistics.
The ENVSTATS help topic Summary Statistics lists additional and/or modified func-
tions for computing summary statistics.

3.3.1 Summary Statistics for TcCB Concentrations

The guidance document USEPA (1994b) contains measures of 1,2,3,4-
Tetrachlorobenzene (TcCB) concentrations (ppb) from soil samples at a “Refer-
ence” site and a “Cleanup” area. The Cleanup area was previously contaminated
and we are interested in determining whether the cleanup process has brought the
level of TcCB back down to what you would find in soil typical of that particular
geographic region. In ENVSTATS, these data are stored in the data frame
EPA.94b.tccb.df.

> EPA.94b.tccb.df

TcCB.orig TcCB Censored Area
1 0.22 0.22 FALSE Reference
2 0.23 0.23 FALSE Reference
47 1.33 1.33 FALSE Reference
48 <0.09 0.09 TRUE Cleanup
123 51.97 51.97 FALSE Cleanup
124 168.64 168.64 FALSE Cleanup

There are 47 observations from the Reference site and 77 in the Cleanup area.
There is one observation in the Cleanup area that was coded as “ND,” which
stands for nondetect. This means that the concentration of TcCB for this soil
sample (if any was present at all) was so small that the procedure used to quantify
TcCB concentrations could not reliably measure the true concentration. For the
purpose of creating the data frame EPA . 94b.tcchb.df, we set the (unreported)
detection limit to the value of the smallest observation, which is 0.09. The column
TcCB.orig displays how the data were originally recorded, the column TcCB
contains the original observations, except that the nondetect value is set to the
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censoring level 0.09, the column Censored indicates whether the observation
was censored (i.e., reported as a nondetect), and the column Area indicates which
area the observation comes from.

The summary statistics for the TcCB data are shown in Sect. 1.11.2 of Chap. 1.
The summary statistics indicate that the observations for the Cleanup area are ex-
tremely skewed to the right: the medians for the two areas are about the same, but
the mean for the Cleanup area is much larger, indicating a few or more “outlying”
observations. This may be indicative of residual contamination that was missed
during the cleanup process. Figures 1.1, 1.2, and 1.3 in Sect. 1.11.3 display the
strip charts, histograms and boxplots for the log-transformed TcCB data.

For the remainder of this chapter, we will assume that you have attached the
data frame EPA. 94b. tccb.df to your search list with the command:

> attach (EPA. 94b.tccb.df)

3.4 Strip Charts

The R function stripchart creates one-dimensional scatterplots (also called
strip plots or strip charts). The EnvStats function stripChart is a modification
of stripchart that allows you to add confidence intervals for the mean or
pseudo-median of each group and also display the results of a hypothesis test that
the group means are all equal (confidence intervals are discussed in Chap. 5 and
hypothesis tests in Chap. 7). Figure 1.1 in Sect. 1.11.3 displays the strip charts for
the log-transformed TcCB data by area and includes confidence intervals for the
mean TcCB concentration in each area.

3.5 Empirical PDF Plots

Figures 1.2 and 1.3 in Sect. 1.11.3 show histograms and boxplots for the TcCB
data. Strip charts, histograms, and boxplots are all graphical tools used to give you
an idea of the shape of the underlying probability density function (pdf; see Chap.
4). Another graphical tool for this purpose is an empirical pdf plot (also called a
density plot), and you can use the EnvStats function epdfPlot to create these.
When a distribution is discrete and can only take on a finite number of values, the
empirical pdf plot is the same as the standard relative frequency histogram; that is,
each bar of the histogram represents the proportion of the sample equal to that par-
ticular number (or category). When a distribution is continuous, the function
epdfPlot calls the R function density to compute the estimated probability
density at a number of evenly spaced points between the minimum and maximum
values. Figure 3.1 shows the empirical pdf plot for the log-transformed Reference
area TcCB data superimposed on a relative frequency histogram. It was created
with these commands:

> log.TcCB <- log(TcCB[Area == "Reference'])
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> hist(log.TcCB, freq = FALSE, xlim = c(-2, 1),

col = "grey", xlab = "log [ TcCB (ppb) 1",
ylab = "Relative Frequency", main = "")
> epdfPlot (log.TcCB, epdf.col = "blue", add = TRUE)
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Fig. 3.1 Histogram with overlaid empirical pdf plot for log-transformed Reference area
TcCB data

3.6 Quantile (Empirical CDF) Plots

Loosely speaking, the pth quantile of a population is the (a) number such that a
fraction p of the population is less than or equal to this number. The pth quantile
is the same as the 100pth percentile; for example, the 0.5 quantile is the same as
the 50th percentile. For a population, a plot of the quantiles on the x-axis versus
the percentage or fraction of the population less than or equal to that number on
the y-axis is called a cumulative distribution function plot or cdf plot (we will
talk more about cumulative distribution functions in Chap. 4). The y-axis is usually
labeled as the cumulative probability or cumulative frequency.

When we have a sample of data from some population, we usually do not
know what percentiles our observations correspond to because we do not know the
true population percentiles, so we use the sample data to estimate them. A
quantile plot (also called an empirical cumulative distribution function plot or
empirical cdf plot) plots the ordered data (sorted from smallest to largest) on the
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x-axis versus the estimated cumulative probabilities on the y-axis (Chambers et al.
1983; Cleveland 1993. 1994; Helsel and Hirsch 1992). (Sometimes the x- and
y-axes are reversed.) The specific formulas that are used to estimate the cumula-
tive probabilities (also called the plotting positions) are discussed in Millard et al.
(2014).

3.6.1 Empirical CDFs for the TcCB Data

Figure 1.4 in Sect. 1.11.4 shows the quantile plot for the Reference area TcCB
data. Based on this plot, you can easily pick out the median as about 0.55 ppb and
the quartiles as about 0.4 and 0.75 ppb (compare these numbers to the ones listed
in Sect. 1.11.2). You can also see that the quantile plot quickly rises, then pretty
much levels off after about 0.8 ppb, which indicates that the data are skewed to the
right (see the histogram for the Reference area data in Fig. 1.2 in Sect. 1.11.3).
Helsel and Hirsch (1992) note that quantile plots, unlike histograms, do not
require you to figure out how to divide the data into classes, and, unlike boxplots,
all of the data are displayed in the graph.

Figure 1.5 in Sect. 1.11.4 shows the quantile plot for the Reference area TcCB
data with a fitted lognormal distribution. We see that the lognormal distribution
appears to fit these data quite well.

Figure 1.6 compares the empirical cdf for the Reference area with the empiri-
cal cdf for the Cleanup area for the log-transformed TcCB data. As we saw with
the histograms and boxplots, the Cleanup area has quite a few extreme values
compared to the reference area.

3.7 Probability Plots or Quantile-Quantile (Q-Q) Plots

A probability plot or quantile-quantile (Q-Q) plot is a graphical display invented
by Wilk and Gnanadesikan (1968) to compare a data set to a particular probability
distribution or to compare it to another data set. The idea is that if two population
distributions are exactly the same, then they have the same quantiles (percentiles),
so a plot of the quantiles for the first distribution versus the quantiles for the
second distribution will fall on the 01 line (i.e., the straight line y = x with intercept
0 and slope 1). If the two distributions have the same shape and spread but differ-
ent locations, then the plot of the quantiles will fall on the line y = a + x (parallel
to the 0—1 line) where a denotes the difference in locations. If the distributions
have different locations and differ by a multiplicative constant b, then the plot of
the quantiles will fall on the line y = a + bx (D’Agostino 1986a; Helsel and Hirsch
1992). Various kinds of differences between distributions will yield various kinds
of deviations from a straight line. In ENVSTATS, you can add a fitted
regression line, a robust regression line, or a 0—1 line to the Q-Q plot.

Instead of adding a fitted regression line to a Q-Q plot, another way to assess
deviation from linearity is to use a Tukey mean-difference Q-Q plot, also called an
m-d plot (Cleveland 1993). This is a plot of the differences between the quantiles
on the y-axis versus the average of the quantiles on the x-axis. If the two sets of
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quantiles come from the same parent distribution, then the points in an m-d plot
should fall roughly along the horizontal line y =0. If one set of quantiles come
from the same distribution with a shift in median, then the points in this plot
should fall along a horizontal line above or below the line y=0. If the parent
distributions of the quantiles differ in scale, then the points on this plot will fall at
an angle.

3.7.1 Q-0 Plots for the Normal and Lognormal Distribution

Figure 3.2 shows the normal Q-Q plot for the Reference area TcCB data, along
with a fitted regression line. In this figure you can see that the points do not tend
to fall on the line, but rather seem to make a U shape. This indicates that the
Reference area data are skewed to the right relative to a symmetrical, bell-shaped
normal distribution.

> gqgPlot (IT'cCB[Area == "Reference'"], add.line = TRUE,
points.col = "blue", ylab = "Quantiles of TcCB (ppb)",
main = "")

1.2

1.0

Quantiles of TcCB (ppb)
0.8
|
()

0.4
o
<]

0.2

Quantiles of Normal(mean = 0, sd = 1)

Fig. 3.2 Normal Q-Q plot for Reference area TcCB data

Figure 1.7 in Sect. 1.11.5 shows the normal Q-Q plot for the log-transformed
Reference area data, and Fig. 1.8 displays the corresponding Tukey mean-
difference Q-Q plot. Here you can see the points do tend to fall on the line,
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indicating that a lognormal distribution may be a good model for these data.
Compare these figures to Fig. 1.5.

An interesting feature of normal Q-Q plots is that if a sample of data comes
from a normal distribution, and the data are plotted against quantiles of a standard
normal distribution (with mean 0 and variance 1), then the intercept of the fitted
line estimates the mean of the population, and the slope of the fitted line estimates
the standard deviation (Nelson 1982; Cleveland 1993). For the fitted line in
Fig. 1.7, we can eyeball the intercept at about —0.6 and the slope at about 0.5.
The actual mean and standard deviation are —0.62 and 0.47, respectively.

3.7.2 Q-0 Plots for Other Distributions

Although they are not as commonly used as Q-Q plots for the normal and lognormal
distributions, you can easily create Q-Q plots for other distributions as well.
Figure 1.9 in Sect. 1.11.5 shows a gamma Q-Q plot for the reference area TcCB
data. As in Fig. 1.7, the points tend to fall on the line, indicating that a gamma
distribution may be a good model for these data as well.

As another example, the guidance document Statistical Analysis of Ground-
Water Monitoring Data at RCRA Facilities: Addendum to Interim Final Guidance
(USEPA 1992c¢) contains a data set of benzene concentrations (ppb) from water
samples collected over 6 months from six different background monitoring wells.
These data are stored in the data frame EPA. 92c.benzenel.df.

> EPA.92c.benzenel.df

Benzene.orig Benzene Censored Month Well

1 <2 2 T 1 1
2 <2 2 T 2 1
35 10 10 F 5 6
36 <2 2 T 6 6

Out of the 36 observations, 33 are reported as “<2”, and the other three
observations are 10, 12, and 15. The example in the guidance document proposes
to model these data as having come from a Poisson distribution, and sets each
nondetect to 1 ppb (half the detection limit). (Note: this guidance document has
been superseded by USEPA (2009), but we include this example here for illustrative
purposes.) Figures 3.3 and 3.4 show the Poisson Q-Q plots for these data, which
indicate that the assumption of a Poisson distribution is questionable: there are
too many observations with the value 1 (the nondetects), and the detected
observations are too large. In Fig. 3.3 we indicate multiple observations that have
the same (x, y) coordinates with the number of observations that have those
coordinates. In Fig. 3.4 we instead jitter all of the points.

To create the Poisson Q-Q plot shown in Fig. 3.3, type these commands:

> attach (EPA.92c.benzenel.df)

> Benzene [Censored] <- 1
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> gqPlot (Benzene, dist = "pois'", estimate.params = TRUE,
duplicate.points.method = "number'", add.line = TRUE,
gqg.line.type = "0-1", points.col = "blue", main = "")

To create the Poisson Q-Q plot shown in Fig. 3.4, type these commands:

> set.seed(721)

> gqPlot (Benzene, dist = "pois'", estimate.params = TRUE,
duplicate.points.method = "jitter", add.line = TRUE,
gqg.line.type = "0-1", points.col = "blue", main = "")

> detach ("EPA.92c.benzenel.df")

3.7.3 Using Q-Q Plots to Compare Two Data Sets

Besides using Q-Q plots or probability plots to assess whether a set of data appear
to come from a particular probability distribution, you can use a Q-Q plot to assess
whether two sets of data appear to have the same parent distribution (i.e., the same
shape but not necessarily the same location or scale). If the distributions have the
same shape (but not necessarily the same location or scale parameters), then the
plot will fall roughly on a straight line. If the distributions are exactly the same,
then the plot will fall roughly on the straight line y = x.

Figure 3.5 shows the Q-Q plot comparing the Cleanup and Reference areas for
the log-transformed TcCB data, along with the 0—1 line. It was created with these
commands:

> qqgPlot (log(TcCB[Area == "Reference"]),

log (TcCB[Area == "Cleanup"]), plot.pos.con = 0.375,

equal.axes = TRUE, add.line = TRUE,

gq.line.type = "0-1", points.col = "blue",

xlab = paste ("Quantiles of log [ TcCB (ppb) 1",
"for Reference Area"),

ylab = paste("Quantiles of log [ TcCB (ppb) ]",
"for Cleanup Area"), main = "")

In this figure you can see the points do not tend to fall on the 0—1 line, but instead
tend to fall along two different lines, both with a steeper slope than 1. Q-Q plots
that exhibit this kind of pattern indicate that one of the samples (the Cleanup area
data in this case) probably comes from a “mixture” distribution: some of the
observations come from a distribution similar in shape and scale to the Reference
area distribution, and some of the observations come from a distribution that is
shifted to the right and more spread out relative to the Reference area distribution
because of residual contamination.
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Fig. 3.5 Q-Q plot comparing log-transformed Cleanup and Reference area TcCB data

3.7.4 Building an Internal Gestalt for Q-Q Plots

Probability plots or Q-Q plots are a graphical, subjective way of assessing the
goodness-of-fit of a data set to a specified theoretical distribution. In order to be
able to assess the goodness-of-fit, you need to have an internal baseline image
(a gestalt) of what a “typical” Q-Q plot looks like when in fact the data come from
the specified distribution. You can use ENVSTATS to produce numerous Q-Q plots
to build up such an internal gestalt (see the help file for gqgPlotGestalt for
more information).

Figure 3.6 shows a set of four typical normal Q-Q plots based on a sample size
of n=10. It was created with these commands:

> set.seed (426)

> gqgPlotGestalt (num.pages = 1, add.line = TRUE,
points.col = "blue')

Note that with such a small number of observations, there can be a bit of spread
about the fitted regression line. Figure 3.7 shows a set of four typical Tukey
mean-difference Q-Q plots based on a sample size of n = 10.

> ggPlotGestalt (num.pages = 1, add.line = TRUE,
plot.type = "Tukey", estimate.params = TRUE,
points.col = "blue')
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3.8 Box-Cox Data Transformations and Q-Q Plots

Two common assumptions for several standard parametric hypothesis tests are:

1. The observations come from a normal distribution.
2. If several groups are involved, the variances are the same among all of
the groups.

A standard linear regression model makes the above assumptions, and also
assumes a linear relationship between the response variable and the predictor vari-
able or variables.

Often, especially with environmental data, the above assumptions do not hold
because the original data are skewed and/or they follow a distribution that is not
really shaped like a normal distribution. It is sometimes possible, however, to
transform the original data so that the transformed observations in fact come from
a normal distribution or close to a normal distribution. The transformation may
also induce homogeneity of variance and a linear relationship between the
response and predictor variable(s) (if this is relevant).

Sometimes, theoretical considerations indicate an appropriate transformation.
For example, count data often follow a Poisson distribution, and it can be shown
that taking the square root of observations from a Poisson distribution tends to
make these data look more bell-shaped (Johnson et al. 1992; Johnson and Wichern
2007; Zar 2010). A common example in the environmental field is that chemical
concentration data often appear to come from a lognormal distribution or some
other positively skewed distribution. In this case, taking the logarithm of the
observations often appears to yield normally distributed data. Usually, a data
transformation is chosen based on knowledge of the process generating the data,
as well as graphical tools such as quantile-quantile plots and histograms.

Although data analysts knew about using data transformations for several
years, Box and Cox (1964) presented a formalized method for deciding on a data
transformation. Given a random variable X from some distribution with only positive
values, the Box-Cox family of power transformations is defined as:

(1)
A

Y = G.1)

log(X) , A=1

, Az0

where A (lambda) denotes the power of the transformation and Y is assumed to
come from a normal distribution. This transformation is continuous in A. Note
that this transformation also preserves ordering. That is, if X; <X, then ¥; < Y.
Box and Cox (1964) proposed choosing the appropriate value of A based on
maximizing the likelihood function. Note that for non-zero values of A, instead of
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using the formula of Box and Cox in Eq. 3.1, you may simply use the power trans-
formation

Y=x" (3.2)

since these two equations differ only by a scale difference and origin shift, and the
essential character of the transformed distribution remains unchanged (Draper and
Smith 1998).

The value A =1 corresponds to no transformation. Values of A less than 1
shrink large values of X, and are therefore useful for transforming positively
skewed (right-skewed) data. Values of A larger than 1 inflate large values of X,
and are therefore useful for transforming negatively skewed (left-skewed) data
(Helsel and Hirsch 1992; Johnson and Wichern 2007). Commonly used values of
A include 0 (log transformation), 0.5 (square-root transformation), —1 (reciprocal),
and —0.5 (reciprocal root).

Transformations are not “tricks” used by the data analyst to hide what is going
on, but rather useful tools for understanding and dealing with data (Berthouex and
Brown 2002). Hoaglin (1988) discusses “hidden” transformations that are used
every day, such as the pH scale for measuring acidity. It is often recommend that
when dealing with several similar data sets, it is best to find a common transfor-
mation that works reasonably well for all the data sets, rather than using slightly
different transformations for each data set (Helsel and Hirsch 1992; Shumway et
al. 1989).

One problem with data transformations is that translating results on the trans-
formed scale back to the original scale is not always straightforward. Estimating
quantities such as means, variances, and confidence limits in the transformed scale
and then transforming them back to the original scale usually leads to biased and
inconsistent estimates (Gilbert 1987; van Belle et al. 2004). For example,
exponentiating the confidence limits for a mean based on log-transformed data
does not yield a confidence interval for the mean on the original scale. Instead,
this yields a confidence interval for the median. It should be noted, however, that
quantiles (percentiles) and rank-based procedures are invariant to monotonic
transformations (Helsel and Hirsch 1992).

You can use ENVSTATS to determine an “optimal” Box-Cox transformation,
based on one of three possible criteria:

e  Probability Plot Correlation Coefficient (PPCC)
° Shapiro-Wilk Goodness-of-Fit Test Statistic (W)
e  Log-Likelihood Function

You can also compute the value of the selected criterion for a range of values of
the transform power A.

Figure 3.8 displays a plot of the probability plot correlation coefficient versus
various values of the transform power A for the Reference area TcCB data. For
this data set, the PPCC reaches its maximum at about A = 0, which corresponds to
a log transformation. Besides plotting the objective function versus A, you can also
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generate Q-Q plots and Tukey mean-difference Q-Q plots for each of the values
of A.

PPCC
0.94 0.96
| |
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|
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|
o]

-2 -1 0 1 2
lambda

Fig. 3.8 Probability plot correlation coefficient versus Box-Cox transform power (A) for the
Reference area TcCB data

To create Figure 3.8, type these commands:

> boxcox.list <- boxcox (TcCB[Area == "Reference"])

> plot (boxcox.list, main = "")

To produce the nine Q-Q plots associated with each of the values of A, type:
> plot (boxcox.list, plot.type = "Q-Q0")

and to produce the nine Tukey mean-difference Q-Q plots type:

> plot (boxcox.list, plot.type = "Tukey")

To create all of the plots, you can type:

> plot (boxcox.list, plot.type = "AIl")

To print the results, type

> boxcox.list
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Results of Box-Cox Transformation

Objective Name: PPCC
Data: TcCB[Area == "Reference"]
Sample Size: 47
lambda PPCC
-2.0 0.9008498
-1.5 0.9366847
-1.0 0.9669707
-0.5 0.9871430
0.0 0.9932857
0.5 0.9839249
1.0 0.9608911
1.5 0.9284576
2.0 0.8914832

3.9 Summary

Summary or descriptive statistics can be classified by what they measure
(location, spread, skew, kurtosis, etc.) and also how they behave when
unusually extreme observations are present (sensitive versus robust).
Because environmental data usually involve measures of chemical con-
centrations, and concentrations cannot fall below 0, environmental data
often tend to be positively skewed.

Graphical displays are usually far superior to summary statistics for con-
veying information in a data set.

For conveying the distribution of univariate data, use strip plots, histo-
grams, density plots (also called empirical probability distribution func-
tion plots), boxplots, and quantile plots (also called empirical cumulative
distribution function plots).

To compare two data sets or to compare a data set to a theoretical proba-
bility distribution, use quantile-quantile (Q-Q) plots (also called probabil-
ity plots), and Tukey mean-difference Q-Q plots.

You can use Box-Cox transformations along with Q-Q plots to determine
a transformation that may satisfy the assumption of normality if this as-
sumption is necessary for a hypothesis test or confidence interval.

You can use the ENVSTATS functions listed in Table 3.1 to create sum-
mary statistics, strip charts with confidence intervals, empirical pdf plots,
empirical cdf plots, Q-Q plots, and determine “optimal” Box-Cox trans-
formations.



Chapter 4
Probability Distributions

4.1 Introduction

As we stated in Chap. 2, a population is defined as the entire collection of
measurements about which we want to make a statement, such as all possible
measurements of dissolved oxygen in a specific section of a stream within a
certain time period. Probability distributions are idealized mathematical models
that are used to model the variability inherent in a population. Certain probability
distributions come up again and again in environmental statistics. This chapter
discusses the functions available in ENVSTATS for plotting probability distributions,
computing quantities associated with these distributions, and generating random
numbers from these distributions. See Millard et al. (2014) for a more in-depth
discussion of probability distributions.

Table 4.1 lists the probability distributions available in R and ENVSTATS (see
the ENVSTATs help file Probability Distributions) and Fig. 4.1 displays examples
of the probability density functions for these probability distributions. Most of
these distributions are already available in R, but many have been added in
ENVSTATS. The help file for Distribution.df contains more extensive tables
that include the distribution name, abbreviation, type (continuous, discrete, finite
discrete, mixed), range (i.e., support), parameters, default values for the para-
meters, parameter ranges, and estimation methods available for the parameters.

Distribution name Abbreviation Parameter(s)

Beta beta shapel, shape2, ncp
Binomial binom size, prob

Cauchy cauchy location, scale

Chi* chi daf

Chi-square chisqg df, ncp

Empirical* emp

Exponential exp rate

Extreme value* evd location, scale

F f dfl, df2, ncp

Gamma gamma shape, scale or rate
Gamma (alternative gammaAlt mean, Ccv
parameterization)*

Table 4.1 Distribution abbreviations and parameters (*part of EnvStats)

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 79
DOI 10.1007/978-1-4614-8456-1_4, © Springer Science+Business Media New York 2013
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Distribution name Abbreviation Parameter(s)
Generalized gevd location, scale, shape
extreme value*
Geometric geom prob
Hypergeometric hyper m, n, k
Logistic logis location, scale
Lognormal lnorm meanlog, sdlog
Lognormal (alternative =~ lnormAlt mean, cv
parameterization)*
Lognormal mixture* lnormMix meanlogl, sdlogl,
meanlog2, sdlog2, p.mix
Lognormal mixture InormMixAlt meanl, sdl,
(alternative mean2, sd2,
parameterization)™* cv
3-Parameter lnorm3 meanlog, sdlog,
lognormal* threshold
Truncated lognormal* InormTrunc meanlog, sdlog,
min, max
Truncated lognormal InormAltTrunc mean, cv, min, max
(alternative
parameterization)*
Negative binomial nbinom size, prob
Normal norm mean, sd
Normal mixture* normMix meanl, sdl,
mean?2, sd2, p.mix
Truncated normal* normTrunc mean, sd, min, max
Pareto* pareto location, shape
Poisson pois lambda
Student’s t t df, ncp
Triangular* tri min, max, mode
Uniform unif min, max
Weibull weibull shape, scale
Wilcoxon rank sum wilcox m, n
Zero-modified zmlnorm meanlog, sdlog, p.zero
lognormal (delta)*
Zero-Modified zmlnormAlt mean, Cv, Pp.zero
Lognormal (delta)
(alternative
parameterization)*
Zero-modified zmnorm mean, sd, p.zero

normal*

Table 4.1 (continued). Distribution abbreviations and parameters (*part of EnvStats)
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Fig. 4.1 Probability distributions in R and ENVSTATS
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For each of these distributions, there are functions for computing the
probability density function (pdf), the cumulative distribution function (cdf),
quantiles, and random numbers. The form of the names of the functions are
dabb, pabb, gabb, and rabb, where abb denotes the abbreviation of the
distribution name (see column 2 of Table 4.1).
dnorm, pnorm, gnorm, and rnorm compute the pdf, cdf, quantiles, and random

numbers for the normal distribution.

Table 4.2 lists the functions available in R and ENVSTATS for plotting
probability distributions, computing quantities associated with these distributions,

and generating random numbers from these distributions.

o —

For example, the functions
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Function(s) Output

dabb, pabb, gabb Probability density, cumulative distribution function,
or quantiles for distribution with abbreviation abb

rabb Random numbers from distribution with abbreviation

simulateVector* abb

simulateMvMatrix* Multivariate random numbers from various
distributions based on user-specified rank correlation
matrix

pdfPlot* Plot of probability density function or cumulative

epdfPlot* distribution function

cdfPlot*

Table 4.2 Functions for probability distributions and random numbers (*part of ENVSTATS)

4.2 Probability Density Function (PDF)

A probability density function (pdf) is a mathematical formula that describes the
relative frequency of a random variable. Sometimes the picture of this formula is
called the pdf. If a random variable is discrete, its probability density function
is sometimes called a probability mass function, since it shows the “mass” of
probability at each possible value of the random variable.

4.2.1 Probability Density Function for Lognormal Distribution
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1.0

Density

0.5

T T T T 1
0.0 0.5 1.0 1.5 2.0

TcCB (ppb)

Fig. 4.2 Relative frequency (density) histogram of the Reference area TcCB data
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Figure 4.2 shows the relative frequency (density) histogram for the Reference area
TcCB data. It was created with these commands:

> with (EPA.94b.tcch.df ,

hist (TcCB[Area == "Reference'"], freq = FALSE,
xlim = ¢ (0, 2), xlab = "TcCB (ppb)",
col = "cyan", main = ""))

For each class (bar) of this histogram, the proportion of observations falling in that
class is equal to the area of the bar; that is, it is the width of the bar times the
height of the bar. If we could take many, many more samples and create relative
frequency histograms with narrower and narrower classes, we might end up with a
picture that looks like Fig. 4.3 which shows the probability density function of a
lognormal random variable with a mean of 0.6 and a coefficient of variation (CV)
of 0.5. For a continuous random variable, a probability distribution can be
thought of as what a density (relative frequency) histogram of outcomes would
look like if you could keep taking more and more samples and making the
histogram bars narrower and narrower. Figure 4.3 was created with this
command:

> pdfPlot (distribution = "lnormAlt",
param.list = 1list (mean = 0.6, cv = 0.5),
curve.fill.col = "cyan", main = "")
o |
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Fig. 4.3 Lognormal probability density function with a mean of 0.6 and a CV of 0.5
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The probability density function for the lognormal distribution shown in Fig. 4.3 is
given by:

-1 2
—| log(x)—p
! e202[ ] , x>0 @.1)

where

4.2)

t=0.5

and 0 and t denote the mean and coefficient of variation of the distribution, and p
and o denote the mean and standard deviation of the log-transformed random
variable. The values of the pdf evaluated at 0, 0.5, 1, 1.5, and 2, to three decimal
places, are given by:

> round(dlnormAlt (seq(0, 2, by = 0.5), mean=0.6, cv=0.5),
digits = 3)

[1] 0.000 1.670 0.355 0.053 0.009

4.2.2 Probability Density Function for a Gamma Distribution

As stated in Chap. 1, some EPA guidance documents (e.g., Singh et al. 2002;
Singh et al. 2010a, b) discourage using the assumption of a lognormal distribution
and recommend instead using a gamma distribution if it appears to fit the data.
Figure 4.4 shows the probability density function of a gamma random variable
with a mean of 0.6 and a coefficient of variation of 0.5 and was created with this
command:

> pdfPlot (distribution = "gammaAlt",
param.list = list(mean = 0.6, cv = 0.5), main = "")

The probability density function for the gamma distribution shown in Fig. 4.4 is
given by:
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()= )x"‘1 0, %20, £,0>0 (43)

where £ and O denote the shape and scale parameters, I'() denotes the gamma
function, and

p=k0

T= 1/\/;
4.4
n=0.6

t=0.5

where p and t denote the mean and coefficient of variation of the distribution.
The values of the pdf evaluated at 0, 0.5, 1, 1.5, and 2, to three decimal places, are
given by:

> round (dgammaAlt (seq(0, 2, by = 0.5), mean=0.6, cv=0.5),
digits = 3)

[1] 0.000 1.468 0.419 0.050 0.004

©

1.0

Relative Frequency

0.5

0.0

T T T T T
0.0 0.5 1.0 1.5 2.0

Value of Random Variable

Fig. 4.4 Gamma probability density function with a mean of 0.6 and a CV of 0.5
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4.3 Cumulative Distribution Function (CDF)

The cumulative distribution function (cdf) of a random variable X, sometimes
called simply the distribution function, is the function F such that

F(x)=Pr(X<x) (4.5)

for all values of x. That is, F(x) is the probability that the random variable X is
less than or equal to some number x. The cdf can also be defined or computed in
terms of the probability density function (pdf) fas

F(x)=Pr(X<x)= xj £ () dr (4.6)

4.3.1 Cumulative Distribution Function for Lognormal
Distribution

Figure 4.5 displays the cumulative distribution function for the lognormal random
variable whose pdf was shown in Fig. 4.3. It was created with this command:

> cdfPlot (distribution = "lnormAlt",
param.list = list(mean = 0.6, cv = 0.5), main = "")
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Fig. 4.5 Lognormal cumulative distribution function with a mean of 0.6 and a CV of 0.5
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The values of the cdf evaluated at 0, 0.5, 1, 1.5, and 2, to two decimal places, are
given by:

> round(plnormAlt (seq(0, 2, by = 0.5), mean=0.6, cv=0.5),
digits = 2)

[1] 0.00 0.44 0.91 0.99 1.00

4.4 Quantiles and Percentiles

Loosely speaking, the pth quantile of a population is the (a) number such that a
fraction p of the population is less than or equal to this number. The pth quantile
is the same as the 100pth percentile; for example, the 0.5 quantile is the same as
the 50th percentile.

Here is a more technical definition of a quantile. If X is a random variable
with some specified distribution, the pth quantile of the distribution of X, denoted
X, is a (the) number that satisfies:

Pr(X<xp) < p gPr(ngp) 4.7)

where p is a number between 0 and 1 (inclusive). If there is more than one
number that satisfies the above condition, the pth quantile of X is often taken to be
the average of the smallest and largest numbers that satisfy the condition. The R
functions for computing quantiles, however, return the smallest number that
satisfies the above condition.

If X is a continuous random variable, the pth quantile of X is simply defined as
the value such that the cdf of that value is equal to p:

Pr(XSxp):F(xp)zp (4.8)

The 100pth percentile is another name for the pth quantile. That is, the 100pth
percentile is the (a) number such that 100p % of the distribution lies below this number.

4.4.1 Quantiles for Lognormal Distribution

A plot of the cumulative distribution function makes it easy to visually pick out
important quantiles, such as the median (50th percentile) or the 95th percentile.
Looking at the cdf of the lognormal distribution shown in Fig. 4.5, the median
(50th percentile) is about 0.5 and the 95th percentile is about 1.1. To compute the
50th and 95th percentiles of this lognormal distribution, type this command:

> glnormAlt (c(0.5, 0.95), mean = 0.6, cv = 0.5)

[1] 0.5366563 1.1671907
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4.5 Generating Random Numbers

With the advance of modern computers, experiments and simulations that just a
couple of decades ago would have required an enormous amount of time to
complete using large-scale computers can now be easily carried out on personal
computers. Simulation is now an important tool in environmental statistics and all
fields of statistics in general.

For all of the distributions shown in Fig. 4.1, you can generate random
numbers (actually, pseudo-random numbers) from these distributions using R and
ENVSTATS. Chapter 9 discusses how random numbers are generated in R and
ENVSTATS, and how to use simulation to do environmental risk assessment.

4.5.1 Generating Random Numbers from a Univariate
Distribution

To generate five random numbers from the lognormal distribution shown in Figs
4.3 and 4.5, type these commands:

> set.seed(23)
> rlnormAlt (5, mean = 0.6, cv = 0.5)
[1] 0.5879416 0.4370390 0.8261428 1.2520279 0.8593145

Note that you do not have to call the function set.seed before you generate
random numbers. However, if you leave out the call to set . seed, the random
numbers you generate will not be the same as the ones shown here.

4.5.2 Generating Multivariate Normal Random Numbers

In R you can generate random observations from a multivariate normal
distribution using the function mvrnorm, which is part of the MASS package.
Consider a bivariate normal distribution with the following parameters:

B =(m.1p)=(5.10)

c=(01,065)=(1,3) (4.9)

1 05
05 1
where p denotes the vector of means, ¢ denotes the vector of standard deviations,

and p denotes the correlation matrix. The function mvrnorm requires you to

supply the covariance matrix, ¥, and the relationship between the covariance
matrix, the standard deviations, and correlation matrix is given by:

p
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o 0 o 0
T = p (4.10)
0 o 0 o
To generate three random observations from this bivariate distribution, type these
commands:
> library (MASS)
> set.seed (47)
> sd.vec <- c(1, 3)
> cor.mat <- matrix(c(1, 0.5, 0.5, 1), ncol = 2)

> cor.mat

[,11 [,2]
[1,] 1.0 0.5
[2,17 0.5 1.0

> cov.mat <- diag(sd.vec) $%*% cor.mat %*% diag(sd.vec)

> cov.mat

[,11 [,2]
[1,17 1.0 1.5
[2,17 1.5 9.0
> mvrnorm(n = 3, mu = c(5, 10), Sigma = cov.mat)
[,1] [,2]

[1,] 5.847172 16.01927
[2,] 5.477687 12.11412
[3,] 4.189215 10.72079

4.5.3 Generating Multivariate Observations Based on Rank
Correlations

In ENVSTATS, you can use the function simulateMvMatrix to generate
multivariate correlated observations where each variable has an arbitrary
distribution. For example, you can generate a multivariate observation (X1, X2)
where X1 comes from a normal distribution and X2 comes from a lognormal
distribution. As an example, suppose X1 follows a normal distribution with mean
5 and standard deviation 1, X2 follows a lognormal distribution with mean 10 and
CV 2, and we desire a rank correlation specified by p in Eq. 4.9. Here is a
command to generate three random observations from this bivariate distribution:
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> simulateMvMatrix(n = 3,
distributions = ¢ (X1 = "norm", X2 = "lnormAlt"),

param.list = 1list (X1

list (mean = 5, sd = 1),
X2 = 1list (mean = 10, cv = 2)),

cor.mat = matrix(c(1, 0.5, 0.5, 1), ncol=2), seed = 105)

[1,]
[2,]
[3,]

X1 X2

5.117840 1.595663
5.404491 7.100144
6.294479 6.055441

4.6 Summary

Figure 4.1 displays examples of the probability density functions for the
probability distributions available in R and ENVSTATS. Many of these
distributions are already available in R, and some have been added in
ENVSTATS.

Table 4.1 lists the probability distributions available in R and ENVSTATS,
along with their abbreviations and associated parameters. For each of
these distributions, you can compute the probability density function
(pdf), the cumulative distribution function (cdf), quantiles, and random
numbers. You can also plot the pdf and/or cdf.

Table 4.2 lists the functions available in ENVSTATS for plotting
probability distributions, computing quantities associated with these
distributions, and generating random numbers from these distributions.



Chapter 5

Estimating Distribution Parameters
and Quantiles

5.1 Introduction

In Chap. 2 we discussed the ideas of a population and a sample. Chapter 4
described probability distributions, which are used to model populations. Based
on using the graphical tools discussed in Chap. 3 to look at your data, and based
on your knowledge of the mechanism producing the data, you can model the data
from your sampling program as having come from a particular kind of probability
distribution. Once you decide on what probability distribution to use (if any), you
usually need to estimate the parameters associated with that distribution. For
example, you may need to compare the mean or 95th percentile of the concentration
of a chemical in soil, groundwater, surface water, or air with some fixed standard.
This chapter discusses the functions available in ENVSTATS for estimating distribu-
tion parameters and quantiles for various probability distributions, as well as
constructing confidence intervals (Cls) for these quantities. See Millard et al.
(2014) for a more in-depth discussion of this topic.

5.2 [Estimating Distribution Parameters

Table 4.1 lists the probability distributions available in R and ENVSTATS. For most
of these distributions, there are EnvStats functions for estimating the parameters
of these distributions (see the EnvStats help file Estimating Distribution Parameters
for a complete list). The form of the names of these functions is eabb, where
abb denotes the abbreviation of the distribution name (see column 2 of Table
4.1). For example, the function enorm estimates the mean and standard deviation
based on a set of observations assumed to come from a normal distribution, and
also optionally allows you to construct a confidence interval for the mean or
variance.

5.2.1 Estimating Parameters of a Normal Distribution

Recall that in Chap. 1 we saw that the Reference area TcCB data appeared to
come from a lognormal distribution. Here is the estimated mean and standard
deviation of the log-transformed data, along with a 95 % confidence interval for
the mean:

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 97
DOI 10.1007/978-1-4614-8456-1_5, © Springer Science+Business Media New York 2013
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> attach (EPA. 94b. tccb.df)

> enorm.list <- enorm(log(TcCB[Area == "Reference"]),
ci = TRUE))

> enorm.list

Results of Distribution Parameter Estimation

Assumed Distribution: Normal

Estimated Parameter(s): mean = -0.6195712
sd = 0.4679530

Estimation Method: mvue

Data: log (TcCB[Area == "Reference"])

Sample Size: 47

Confidence Interval for: mean

Confidence Interval Method: Exact

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = -0.7569673
UCL = -0.4821751

Note that calling the function enorm with the log-transformed data gives the
same results as calling the function elnorm with the untransformed data
(see Sect. 1.11.6). Figure 5.1 shows a density histogram of the log-transformed
Reference area TcCB data, along with the fitted normal distribution based on these
estimates. It was create with these commands:

> hist(log(TcCB[Area == "Reference'"]), freq = FALSE,
xlim = ¢(-2, 1), xlab = "log [ TcCB (ppb) 1",
ylim = ¢(0, 1), col = "cyan", main = "")

> params <- enorm.listSparameters

> pdfPlot (dist = "norm", param.list = as.list (params),
add = TRUE)
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Fig. 5.1 Histogram of log-transformed Reference area TcCB data with fitted normal
distribution

5.2.2 Estimating Parameters of a Lognormal Distribution

Rather than estimate parameters based on the log-transformed TcCB Reference
area data, we can estimate the parameters of the lognormal distribution based on
the original scale. For the untransformed Reference area TcCB data, the estimated
mean is 0.6 ppb and the estimated coefficient of variation is 0.49. Figure 5.2
shows a density histogram of the Reference area TcCB data, along with the fitted
lognormal distribution based on these estimates. The two-sided 95 % confidence
interval for the mean based on Land’s method is [0.52, 0.70] ppb.

> elnormAlt.list <- elnormAlt (TcCB[Area == "Reference"],
ci = TRUE)

> elnormAlt.list
Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): mean 0.5989072
cv = 0.4899539
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Estimation Method: mvue
Data: TcCB[Area == "Reference"]
Sample Size: 47
Confidence Interval for: mean
Confidence Interval Method: Land
Confidence Interval Type: two-sided
Confidence Level: 95%
Confidence Interval: LCL = 0.5243787
UCL = 0.7016992
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Fig. 5.2 Histogram of Reference area TcCB data with fitted lognormal distribution

To create Fig. 5.2, type these commands:

> hist (TcCB[Area == "Reference"], freq = FALSE,
xlim = ¢(0, 2), xlab = "TcCB (ppb)", ylim = c(0, 2),
col = "cyan", main = "")



5.2. Estimating Distribution Parameters 101

> params <- elnormAlt.listSparameters

> pdfPlot (dist = "InormAlt", param.list = as.list (params),
add = TRUE)

By default, the function elnormAlt uses the method of Land (1971, 1975) to
compute a confidence interval for the mean of a lognormal distribution. Although
Land’s method is exact (i.e., the confidence level is exact and does not depend on
asymptotic theory), it is computationally intensive. Zou et al. (2009) present a
simpler alternative method that appears to perform quite well even for small
sample sizes. They give an example using data on ambient air lead levels (ug/m®)
collected by the National Institute of Occupation Safety and Health (NIOSH) in
1989 that appear in Krishnamoorthy et al. (2006).

> sort (NIOSH.89.air.lead.vec)

[1] 6 7 8 15 29 48 61 80 110 120 200
[12] 350 380 1000 1400

> round (elnormAlt (NIOSH.89.air.lead.vec,
ci = TRUE)Sinterval$limits)

LCL UCL
117 4038

> round (elnormAlt (NIOSH.89.air.lead.vec, ci = TRUE,
ci.method = "zou'")SintervalSlimits)

LCL UCL
112 3873

Neither of these methods may prove satisfactory for small sample sizes because
the upper confidence limit can be much larger (e.g., an order of magnitude larger)
than the largest observation. Some authors (e.g., USEPA 1997d) erroneously
claim that using the bootstrap can overcome this problem. In fact, confidence
intervals for the mean of a lognormal distribution based on the bootstrap fail to
provide adequate coverage for small sample sizes (Millard et al. 2014).

5.2.3 Estimating Parameters of a Gamma Distribution

One way to avoid the problem of potentially large confidence limits associated
with an assumed lognormal distribution is to not assume a lognormal distribution
at all, but instead assume a gamma distribution if it makes sense, as recommended
by the EPA guidance documents Singh et al. (2002) and Singh et al. (2010a, b). In
Chap. 1 we saw that the gamma distribution appeared to be an adequate model for
the Reference area TcCB data (see Figs. 1.9 and 1.11). Using the egamma and
egammaAlt functions (Sect. 1.11.6), the estimated shape and scale parameters
are 4.9 and 0.1, respectively, the estimated mean and CV are 0.6 and 0.45, respec-
tively, and the 95 % confidence interval for the mean is [0.52, 0.68] ppb, compared
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with [0.52, 0.70] based on the assumption of a lognormal distribution. By default,
the confidence interval for the mean is based on the method of Kulkarni and
Powar (2010), which involves approximating the gamma distribution with a
normal distribution. See Millard et al. (2014) or the help files for details.

5.2.4 Estimating the Parameter of a Binomial Distribution

The guidance document Statistical Analysis of Ground-Water Monitoring Data at
RCRA Facilities: Addendum to Interim Final Guidance (USEPA 1992c¢) contains
observations on benzene concentrations (ppb) in groundwater from six back-
ground wells sampled monthly for 6 months. The data are stored in the data frame
EPA.92c.benzenel.df in ENVSTATS. Nondetect values are reported as “<2”
and of the 36 values, 33 are nondetects. Section 2.8.2 in Chap. 2 showed how to
use the EnvStats function ebinom to estimate the probability of observing a
nondetect value at any of the six wells as about 92 %, with the two-sided 95 %
confidence interval for the binomial proportion based on using the normal score
approximation with continuity correction as [76 %, 98 %].

5.3 Estimating Distribution Quantiles

We defined the pth quantile or the 100pth percentile of a distribution in Sect. 4.4
of Chap. 4. Quantiles or percentiles are sometimes used in environmental standards
and regulations (e.g., Berthouex and Brown 2002). For example, in order to
determine compliance, you may be required to estimate an extreme percentile
(e.g., the 95th percentile) for the “background level” distribution, and then com-
pare observations at compliance wells or remediated areas to this upper percentile
(or an upper confidence limit for this percentile). In the context of soil cleanup,
USEPA (1994b) has called this the “Hot-Measurement Comparison.” (There are
some major problems with this technique that are discussed in Millard et al. 2014.)

As another example, when monitoring groundwater around a RCRA landfill,
the site may be in compliance/assessment or corrective action monitoring for a
particular chemical constituent, where data are compared to a groundwater protec-
tion standard (GWPS). “In compliance/assessment, the comparison is made to
determine whether groundwater concentrations have increased above the compli-
ance standard. In corrective action, the test determines whether concentrations
have decreased below a clean-up criterion or compliance level. In compliance/
assessment monitoring, the lower confidence limit [LCL] is of primary interest,
while the upper confidence limit [UCL] is most important in corrective action,”
(USEPA 2009, pp. 21-1). The fixed compliance limit may be a maximum
concentration limit (MCL) or an alternate concentration limit (ACL). Most MCLs
and ACLs appear to represent long-term average levels, but sometimes they may
represent a limit that should be exceeded only a small fraction of the time, for
example, the 95th percentile of the distribution. In this case you need to com-
pare the 95th percentile of the distribution of the chemical’s concentration in the
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groundwater with the GWPS. Under compliance/assessment monitoring, if the
lower confidence limit for the specified percentile is greater than the GWPS, this
indicates the facility is out of compliance for that constituent. Under corrective
action monitoring, if the upper confidence limit for the specified percentile is /ess
than the GWPS, this indicates the facility appears to have cleaned up the contami-
nation and should be able to return to compliance/assessment monitoring.

In EnvStats, functions for estimating quantiles have names of the form
egabb, where abb denotes the abbreviation of the distribution name (see column
2 of Table 4.1). Some of these functions let you create confidence intervals for
quantiles as well. You can also estimate quantiles and create confidence intervals
for them nonparametrically using the function eqnpar. See the EnvStats help
file Estimating Distribution Quantiles for a complete list of functions.

5.3.1 Estimating Quantiles of a Normal Distribution

The guidance document Statistical Analysis of Groundwater Monitoring Data at
RCRA Facilities: Unified Guidance (USEPA 2009) contains an example on page
21-13 where aldicarb concentrations (ppb) at three compliance wells (four monthly
samples at each well) are to be compared against an MCL of 30 ppb. The MCL
should not be exceeded more than 5 % of the time. The data for this example are
stored in EPA.09.Ex.21.1.aldicarb.df.

> EPA.09.Ex.21.1.aldicarb.df

Month Well Aldicarb.ppb

1 1 Well.l 19.9
2 2 Well.l 29.6
3 3 Well.l 18.7
4 4 Well.l 24.2
5 1 Well.2 23.7
6 2 Well.2 21.9
7 3 Well.2 26.9
8 4 Well.2 26.1
9 1 Well.3 5.6
10 2 Well.3 3.3
11 3 Well.3 2.3
12 4 Well.3 6.9

First we assume the facility is in compliance/assessment monitoring, so we are
instructed to compute a one-sided lower 99 % confidence limit for the 95th per-
centile for each well and compare that to the GWPS. Here are the results for Well 1:

> attach (EPA.09.Ex.21.1.aldicarb.df)

> eqnorm (Aldicarb.ppb[Well == "well.1l"], p = 0.95, ci = TRUE,
ci.type = "lower'", conf.level = 0.99)
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Results of Distribution Parameter Estimation

Assumed Distribution: Normal
Estimated Parameter(s): mean = 23.10000
sd = 4.93491
Estimation Method: mvue
Estimated Quantile(s): 95'th %ile = 31.21720
Quantile Estimation Method: amle
Data: Aldicarb.ppb[Well == "Well.1l"]
Sample Size: 4
Confidence Interval for: 95'th %ile
Confidence Interval Method: Exact
Confidence Interval Type: lower
Confidence Level: 99%
Confidence Interval: LCL = 25.28550
UCL = Inf

To compute the LCL for all three wells at once, type this command:

> sapply (split (Aldicarb.ppb, Well), function(x) {
eqnorm(x, p = 0.95, ci = TRUE, ci.type = "lower",
conf.level = 0.99)SintervalSlimits["LCL"]})

Well.l.LCL Well.2.LCL Well.3.LCL
25.28550 25.66086 5.45563

Since none of the LCLs is above 30 ppb, no corrective action is needed. On the
other hand, if we assume the site is in corrective action monitoring, then we need
to compute the one-sided 99 % upper confidence limit for the 95th percentile and
compare that to the MCL:

> sapply (split (Aldicarb.ppb, Well), function(x) {
egnorm(x, p = 0.95, ci = TRUE, ci.type = "upper",
conf.level = 0.99)SintervalSlimits/["UCL"]})
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Well.l.UCL Well.2.UCL Well.3.UCL
67.92601 45.38336 23.61286

In this case there is evidence that corrective action is still needed at Wells 1 and 2
since the UCL is greater than 30 ppb. Of course, a major consideration in this
whole example is the very small sample size at each well (n = 4) used to compute
the intra-well confidence limit.

5.3.2 Estimating Quantiles of a Lognormal Distribution

The guidance document Statistical Analysis of Groundwater Monitoring Data at
RCRA Facilities: Unified Guidance (USEPA 2009) contains an example on page
17-17 of chrysene concentrations (ppb) from groundwater monitoring at two
background wells and three compliance wells (four monthly samples at each well).
In ENVSTATS these data are stored in EPA.09.Ex.17.3.chrysene.df.

> EPA.09.Ex.17.3.chrysene.df

Month Well Well.type Chrysene.ppb

1 1 Well.l Background 19.7
2 2 Well.l Background 39.2
3 3 Well.l Background 7.8
4 4 Well.l Background 12.8
5 1 Well.2 Background 10.2
6 2 Well.2 Background 7.2
7 3 Well.2 Background 16.1
8 4 Well.2 Background 5.7
9 1 Well.3 Compliance 68.0
10 2 Well.3 Compliance 48.9
11 3 Well.3 Compliance 30.1
12 4 Well.3 Compliance 38.1
13 1 Well.4 Compliance 26.8
14 2 Well.4 Compliance 17.7
15 3 Well.4 Compliance 31.9
16 4 Well.4 Compliance 22.2
17 1 Well.5 Compliance 47.0
18 2 Well.5 Compliance 30.5
19 3 Well.5 Compliance 15.0
20 4 Well.5 Compliance 23.4

In this example, we compute a 95 % upper confidence limit for the 95th per-
centile based on the data from the two background wells, and compare all of the
observations at the three compliance wells to this UCL to determine whether any
of them are out of compliance. The example in the guidance document shows that
a lognormal distribution appears to fit these data.

> attach (EPA.09.Ex.17.3.chrysene.df)
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> Chrysene <- Chrysene.ppb[Well.type == "Background"]

> eqglnorm(Chrysene, p = 0.95,

conf.level = 0.95)

= TRUE, ci.type = "upper",

Results of Distribution Parameter Estimation

Assumed Distribution:

Estimated Parameter(s):

Estimation Method:

Estimated Quantile(s):

Quantile Estimation Method:

Data:

Sample Size:

Confidence

Confidence

Confidence

Confidence

Confidence

Interval for:

Interval Method:

Interval Type:

Level:

Interval:

Lognormal

meanlog = 2.5085773
sdlog = 0.6279479

mvue

95'th %ile = 34.51727

amle

Chrysene

95'th %ile

Exact

upper

95%

LCL = 0.0000
UCL = 90.9247

Since none of the observations from the compliance wells exceed the UCL of
90.9 ppb, there is no evidence of contamination. Note that although this example
in the EPA guidance document is presented in the section on tolerance intervals in
that document, tolerance intervals (specifically B-content tolerance intervals) and
confidence intervals for percentiles are the same thing; see Millard et al. (2014)

for details.

5.3.3 Estimating Quantiles of a Gamma Distribution

Instead of assuming the chrysene data in the previous section comes from a
lognormal distribution, we could instead assume it comes from a gamma distribution.
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In this case, the estimated 95 % UCL of the 95th percentile is only 69.3 ppb
instead of 90.9, almost a 25 % reduction in the UCL!

> eqggamma (Chrysene, p = 0.95, ci = TRUE, ci.type = "upper"”,
conf.level = 0.95)

Results of Distribution Parameter Estimation

Assumed Distribution: Gamma

Estimated Parameter(s) : shape = 2.806929
scale = 5.286026

Estimation Method: mle

Estimated Quantile(s): 95'th %$ile = 31.74348

Quantile Estimation Method: Quantile(s) Based on

mle Estimators

Data: Chrysene
Sample Size: 8
Confidence Interval for: 95'th %ile
Confidence Interval Method: Exact using

Kulkarni & Powar (2010)
transformation to Normality
based on mle of 'shape'

Confidence Interval Type: upper

Confidence Level: 95%

Confidence Interval: LCL = 0.00000
UCL = 69.32425

5.3.4 Nonparametric Estimates of Quantiles

To estimate quantiles nonparametrically, all you need to do is estimate the cdf
nonparametrically using the empirical cdf, then use linear interpolation (if neces-
sary). Graphically, this just means connecting the points in the quantile plot by
straight lines, finding the value of p on the y-axis, and determining the correspond-
ing number on the x-axis. For example, looking at Fig. 1.4 in Sect. 1.11.4, we
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might estimate the median (i.e., p = 0.5) of the Reference area TcCB data to be
about 0.5 ppb (the actual value is 0.54 ppb).

One problem with estimating quantiles nonparametrically versus parametrically
is that you need many more observations to estimate extreme quantiles with good
precision. In fact, even though the quantile function in R allows you to estimate
any quantile for any sample size, in the case where say n = 10, it does not make
sense intuitively that we should be able to estimate anything less than the 10th
percentile or anything more than the 90th percentile with any kind of precision.
This characteristic becomes clear when we create nonparametric confidence inter-
vals for quantiles. On the other hand, an advantage to estimating quantiles
nonparametrically is that it is often easy to deal with censored values since all you
have to do is rank them.

Nonparametric confidence intervals for quantiles are based on the ranked data,
and usually the largest value is used for the upper confidence limit for a large
percentile, and the smallest value is used for the lower confidence limit for a small
percentile. The confidence level associated with these confidence intervals
depends on the sample size. For example, to compute the confidence levels asso-
ciated with a one-sided upper confidence interval for the 95th percentile based on
various sample sizes assuming the upper confidence limit is the maximum value,
type these commands:

> Sample.Size <- c(seq(5, 25, by = 5), 50, 75, 100)

> conf.level <- tolIntNparConfLevel (Sample.Size,
coverage = 0.95, ti.type = "upper")

> cbind(Sample.Size,
Confidence.Level = round (100 * conf.level))

Sample.Size Confidence.Level

(1,1 5 23
[2,] 10 40
[3,] 15 54
[4,] 20 64
[5,] 25 72
[6,] 50 92
[7,1 75 98
[8,] 100 99

You can see that a confidence level greater than 95 % cannot be achieved until the
sample size is larger than n =50. See Millard et al. (2014) for a detailed discus-
sion of estimating quantiles nonparametrically and constructing nonparametric
confidence intervals for quantiles.

The guidance document Statistical Analysis of Groundwater Monitoring Data
at RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on
page 21-21 where nitrate concentrations (mg/L) at a well that is used for drinking
water are to be compared against the infant-based, acute risk standard of 10 mg/L.
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The risk standard represents the upper 95th percentile limit on nitrate concentra-
tions and we want to be 95 % confident that the risk standard has not been violated.
First we assume the facility is in compliance/assessment monitoring, so we are
instructed to compute one-sided lower 95 % confidence limit for the 95th percen-
tile and compare it to the risk standard of 10 mg/L. The data for this example are
stored in EPA.09.Ex.21.6.nitrate.df.

> EPA.09.Ex.21.6.nitrate.df[, 1:3]

Sampling.Date Date Nitrate.mg.per.l.orig

1 7/28/1999 1999-07-28 <5.0
2 9/3/1999 1999-09-03 12.3
3 11/24/1999 1999-11-24 <5.0
4 5/3/2000 2000-05-03 <5.0
5 7/14/2000 2000-07-14 8.1
6 10/31/2000 2000-10-31 <5.0
7 12/14/2000 2000-12-14 11
8 3/27/2001 2001-03-27 35.1
9 6/13/2001 2001-06-13 <5.0
10 9/16/2001 2001-09-16 <5.0
11 11/26/2001 2001-11-26 9.3
12 3/2/2002 2002-03-02 10.3

Because the data contain censored observations, two additional columns were
added to indicate the numeric value and whether or not the observation was
censored:

> EPA.09.Ex.21.6.nitrate.df[, c(2, 4:5)]

Date Nitrate.mg.per.l Censored
1 1999-07-28 5.0 TRUE
2 1999-09-03 12.3 FALSE
3 1999-11-24 5.0 TRUE
4 2000-05-03 5.0 TRUE
5 2000-07-14 8.1 FALSE
6 2000-10-31 5.0 TRUE
7 2000-12-14 11.0 FALSE
8 2001-03-27 35.1 FALSE
9 2001-06-13 5.0 TRUE
10 2001-09-16 5.0 TRUE
11 2001-11-26 9.3 FALSE
12 2002-03-02 10.3 FALSE

For this data set, half of the values are nondetects, so estimating the median
nonparametrically is problematic and estimating percentiles less than 50 %
nonparametrically is not possible. We need to determine which ranked value to
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use for the lower confidence limit for the 95th percentile in order to achieve at
least 95 % confidence.

> Nitrate <- EPA.09.Ex.21.6.nitrate.df$ Nitrate.mg.per.1

> eqnpar (Nitrate, p = 0.95, ci = TRUE, ci.type = "lower",
approx.conf.level = 0.95)

Results of Distribution Parameter Estimation

Assumed Distribution: None
Estimated Quantile(s): 95'th %ile = 22.56
Quantile Estimation Method: Nonparametric
Data: Nitrate
Sample Size: 12
Confidence Interval for: 95'th %ile
Confidence Interval Method: exact
Confidence Interval Type: lower
Confidence Level: 88%
Confidence Limit Rank (s): 11
Confidence Interval: LCL = 12.3
UCL = Inf

In this example, by default, the EnvStats function egqnpar uses the 11th largest
value (12.3 mg/L) as the lower confidence limit, but this yields only an 88 %
confidence level. Using the 10th largest value yields a confidence level of 98 %:

> eqnpar (Nitrate, p = 0.95, ci = TRUE, ci.type = "lower",
lcl.rank = 10)

Results of Distribution Parameter Estimation

Assumed Distribution: None

Estimated Quantile(s): 95'th %ile = 22.56



5.3. Estimating Distribution Quantiles 111

Quantile Estimation Method: Nonparametric
Data: Nitrate
Sample Size: 12
Confidence Interval for: 95'th %ile
Confidence Interval Method: exact
Confidence Interval Type: lower
Confidence Level: 98%
Confidence Limit Rank(s) : 10
Confidence Interval: LCL = 11

UCL = Inf

Because the 10th largest value is 11 mg/L and this is larger than the acute risk
standard of 10 mg/L, we conclude there is evidence of contamination at the well.

If we assume the well was being remediated under corrective action monitor-
ing, the fixed standard would be compared against a one-sided upper confidence
limit for the 95th percentile. With a sample size of n = 12, using the largest value
as the upper confidence limit yields a confidence level of only 46 %:

> egnpar (Nitrate, p = 0.95, ci = TRUE, ci.type = "upper”,
approx.conf.level = 0.95)

Results of Distribution Parameter Estimation

Assumed Distribution: None

Estimated Quantile(s): 95'th %ile = 22.56
Quantile Estimation Method: Nonparametric
Data: Nitrate

Sample Size: 12

Confidence Interval for: 95'th %ile

Confidence Interval Method: exact
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Confidence Interval Type: upper
Confidence Level: 46%
Confidence Limit Rank(s) : 12
Confidence Interval: LCL = -Inf
UCL = 35.1

In order to achieve a confidence level of 95 %, we would need to have n =59
observations and all of the observations would need to be less than the fixed
standard of 10 mg/L in order for the well to return to compliance/assessment
monitoring:

> tolIntNparN (coverage = 0.95, ti.type = "upper",
conf.level = 0.95)

[1] 59

5.4 Summary

e  Whether you are conducting a preliminary, descriptive study of the
environment or monitoring the environment for contamination under a
specific regulation, you usually need to characterize the distribution of
whatever you are looking at (e.g., a chemical in the environment), which
involves estimating distribution parameters such as the mean, median,
standard deviation, 95th percentile, etc.

e You can use EnvStats functions of the form eabb (Where abb denotes the
abbreviation of the distribution name) for estimating distribution parame-
ters and optionally constructing confidence intervals. These functions are
listed in the help file Estimating Distribution Parameters.

e Functions for estimating quantiles and optionally constructing confidence
intervals for them have names of the form eqgabb. These functions are
listed in the help file Estimating Distribution Quantiles.

e One problem with estimating quantiles nonparametrically versus para-
metrically is that you need many more observations to estimate extreme
quantiles with good precision.



Chapter 6
Prediction and Tolerance Intervals

6.1 Introduction

Any activity that requires constant monitoring over time and the comparison of
new values to “background” or “standard” values creates a decision problem: if
the new values greatly exceed the background values, has a change really occurred,
or have the true underlying concentrations stayed the same and this is just a
“chance” event? Statistical tests are used as objective tools to decide whether a
change has occurred (although the choice of Type I error level and acceptable
power are subjective decisions). For a monitoring program that involves numer-
ous tests over time, figuring out how to balance the overall Type I error with the
power of detecting a change is not a trivial problem, but it is also a problem that
has been dealt with for a long time in the statistical literature under the heading of
“multiple comparisons.” Prediction intervals and tolerance intervals are two tools
that you can use to attempt to solve the multiple comparisons problem. This chapter
discusses the functions available in ENVSTATS for constructing prediction and
tolerance intervals. See Millard et al. (2014) for a more in-depth discussion of this
topic.

6.2 Prediction Intervals

A prediction interval for some population is an interval on the real line constructed
so that it will contain & future observations or averages from that population with
some specified probability (1—a)100 %, where o is some fraction between 0 and
1 (usually a is less than 0.5), and & is some pre-specified positive integer. Just as
for confidence intervals, the quantity (1—a)100 % is called the confidence coeffi-
cient or confidence level associated with the prediction interval. Table 6.1 lists
the functions available in ENVSTATSs for constructing prediction intervals.

The basic idea of a prediction interval is to assume a particular probability
distribution (e.g., normal, lognormal, etc.) for some process generating the data
(e.g., quarterly observations of chemical concentrations in groundwater), compute
sample statistics from a baseline sample, and then use these sample statistics to
construct a prediction interval, assuming the distribution of the data does not change
in the future (or if we are comparing one geographical area to another, we assume
the distribution of data from the comparison area is the same as the distribution of
data from the baseline area). If the future observation or observations do not fall
within the prediction interval, then this is evidence that the distribution has poten-
tially changed (e.g., contamination is present). For example, if X denotes a ran-
dom variable from some population, and we know what the population looks like,

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 113
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Distribution Function name Description
Normal predIntNorm Construct a prediction interval for
the next k observations or next k
means from a normal distribution
predIntNormK Compute the value of K for a pre-
diction interval for a normal distri-
bution
predIntNormSimultaneous Construct a simultaneous predic-
tion interval for the next  sam-
pling occasions based on a normal
distribution
predIntNormSimultaneousK Compute the value of X for a sim-
ultaneous prediction interval for
the next  sampling occasions
based on a normal distribution
Lognormal predIntLnorm Construct a prediction interval
predIntLnormAlt based on a lognormal distribution
predIntLnormSimultaneous Construct a simultaneous predic-
predIntLnormAltSimultaneous tion interval based on a lognormal
distribution
Gamma predIntGamma Construct a prediction interval
predIntGammaAlt based on a gamma distribution
predIntGammaSimultaneous Construct a simultaneous predic-
predIntGammaSimultaneousAlt  fion interval based on a gamma
distribution
Poisson predIntPois Construct a prediction interval for
the next k observations or sums
from a Poisson distribution
Nonparametric predIntNpar Construct a nonparametric predic-

tion interval for the next k of m ob-
servations

Table 6.1 Functions in ENVSTATS for constructing prediction intervals

(e.g., lognormal with a mean of 10 and a CV of 1), so we can compute the
quantiles of the population, then a (1—a)100 % two-sided prediction interval for
the next k = 1 observation of X is given by:

[ a2 a2 | ©.1)
where x, denotes the pth quantile of the distribution of X. Similarly, a

(1—0)100 % one-sided upper prediction interval for the next observation is given
by:
[0 314 ] 62)

and a (1—a)100 % one-sided /ower prediction interval for the next observation is
given by:

[x » o] (63)
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See Millard et al. (2014) for the corresponding equations for general values of k.

Usually the true distribution of X is unknown, so the values of the prediction
limits have to be estimated based on estimating the parameters of the distribution
of X. For the usual case when the exact distribution of X is unknown, a prediction
interval is thus a random interval; that is, the lower and upper bounds are random
variables computed based on sample statistics in the baseline sample. Prior to taking
one specific baseline sample, the probability that the prediction interval will contain
the next & observations is (1—a)100 %. Once a specific baseline sample is taken
and the prediction interval based on that sample is computed, the probability that
that prediction interval will contain the next k observations is not necessarily
(1=a)100 %, but it should be close to this value for a moderately large sample size.

Suppose an experiment is performed N times, and suppose that for each
experiment:

1. A sample is taken and a (1—a)100 % prediction interval for k=1 future
observation is computed.

2. One future observation is generated and compared to the prediction
interval.

Then the number of times a prediction interval generated in Step 1 above will con-
tain a future observation generated in step 2 above is a binomial random variable
with parameters n = N and p = 1 —a, that is, it follows a B(, 1—a) distribution.

0 -

Prediction Interval and Future Observation
5
|
+
*

1 1 1 1 1 1
0 20 40 60 80 100

Experiment Number

Fig. 6.1 Results of simulation experiment showing the 80 % prediction interval and one
future observation for 100 simulations
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Figure 6.1 shows the results of such a simulated experiment in which a random
sample of n =10 observations was taken from a N(5, 1) distribution and an 80 %
prediction interval for k = 1 future observation was constructed based on these 10
observations. Then one future observation was generated. The experiment was
repeated 100 times. In this case, the actual number of times the prediction interval
contained the future observation was 79.

It is important to note that if only one baseline sample is taken and only one
prediction interval for k=1 future observation is computed, then the number of
future observations out of a total of N future observations that will be contained in
that one prediction interval is a binomial random variable with parameters n = N
and p =1—a*, where a* depends on the true population parameters and the
computed bounds of the single prediction interval. For example, if we compute a
prediction interval for k= 1 future observation, assuming the data used to create
the prediction interval come from a N(5, 1) distribution and the prediction interval
is [2.54, 7.25], then the total number of N future observations that will be con-
tained in this prediction interval is a Binomial random variable with parameters
n=N and p = 0.98 since the probability that a single observation from a N(5, 1)
distribution will fall in the interval [2.54, 7.25] is 98 %.

A prediction interval is usually constructed as a bound on future individual
observations, but it can also be formulated as a bound on the mean of p future obser-
vations (or a bound on multiple future means). In a testing scenario, the comparison
rule for the test is then different: instead of requiring all of a set of p individual
values to fall within the prediction interval for the test to pass, only the average of
the p future values should not fall outside the prediction limit (USEPA 2009).

6.2.1 Prediction Intervals for a Normal Distribution

Prediction Intervals for Future Observations

The guidance document Statistical Analysis of Groundwater Monitoring Data at
RCRA Facilities: Unified Guidance (USEPA 2009) contains an example on page
18-9 where arsenic concentrations (ppb) are measured quarterly at a single well at
a solid waste landfill. The first 3 years of the sample represent the background
period and the fourth year is the compliance period. The data for this example are
stored in EPA.09.Ex.18.1.arsenic.df in ENVSTATS.

> EPA.09.Ex.18.1.arsenic.df

Year Sampling.Period Arsenic.ppb

1 1 Background 12.6
2 1 Background 30.8
3 1 Background 52.0
4 1 Background 28.1
5 2 Background 33.3
6 2 Background 44.0
7 2 Background 3.0
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8 2 Background 12.8
9 3 Background 58.1
10 3 Background 12.6
11 3 Background 17.6
12 3 Background 25.3
13 4 Compliance 48.0
14 4 Compliance 30.3
15 4 Compliance 42.5
16 4 Compliance 15.0

Combining all of the observations from the background period and assuming these
data come from a normal distribution, the exact one-sided upper 95 % prediction
limit for the next k = 4 future observations is 72.9 ppb:

> attach (EPA.09.Ex.18.1.arsenic.df)

> predIntNorm (Arsenic.ppb[Sampling.Period == "Background"],
k =4, pi.type = "upper'", conf.level = 0.95,
method = "exact")

Results of Distribution Parameter Estimation

Assumed Distribution: Normal

Estimated Parameter(s): mean = 27.51667
sd = 17.10119

Estimation Method: mvue

Data:

Arsenic.ppb[Sampling.Period == "Background"]

Sample Size: 12

Prediction Interval Method: exact

Prediction Interval Type: upper

Confidence Level: 95%

Number of Future Observations: 4

Prediction Interval: LPL = -Inf
UPL = 72.90375

and the one based on the Bonferroni method is 73.7 ppb:
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> predIntNorm (Arsenic.ppb[Sampling.Period == "Background"],
k =4, pi.type = "upper",
conf.level = 0.95)SintervalSlimits["UPL"]

UPL
73.67237

The four observed values of arsenic in year 4 (the compliance period) are all
below both of these prediction limits, so there is no evidence of contamination. Of
course, even if one or more observations during the compliance period had
exceeded the prediction limit, the evidence for “contamination” would depend on
the assumption that “background” conditions had not changed.

Prediction Intervals for Future Means

For normally-distributed data, for the same background sample size and false positive
rate, the power of the prediction limit for a future mean based on p future observa-
tions is generally higher than for a prediction limit for the next p individual future
observations (USEPA 2009). Chapter 2 discussed functions in EnvStats for com-
puting the power associated with a test based on prediction intervals. Figure 18—1
in USEPA (2009) demonstrates these power differences, and you can reproduce
these figures in EnvStats using the accompanying scripts (see Chap. 1 for infor-
mation on where these scripts are located).

USEPA (2009) contains an example on page 18—15 where chrysene concentra-
tions (ppb) are measured at two background wells and one compliance well. The
data for this example are stored in EPA.09.Ex.18.2.chrysene.df in
ENVSTATS.

> EPA.09.Ex.18.2.chrysene.df

Month Well Well.type Chrysene.ppb

1 1 Well.l Background 6.9
2 2 Well.l Background 27.3
3 3 Well.l Background 10.8
4 4 Well.l Background 8.9
5 1 Well.2 Background 15.1
6 2 Well.2 Background 7.2
7 3 Well.2 Background 48.4
8 4 Well.2 Background 7.8
9 1 Well.3 Compliance 68.0
10 2 Well.3 Compliance 48.9
11 3 Well.3 Compliance 30.1
12 4 Well.3 Compliance 38.1

Combining the observations from the two background wells and assuming
these data come from a lognormal distribution, the exact one-sided upper 99 %
prediction limit for the mean of the next four future log-transformed observations
is 3.85 log(ppb):
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> attach (EPA.09.Ex.18.2.chrysene.df)

> predIntNorm(log (Chrysene.ppb) [Well.type == "Background"],
n.mean = 4, k =1, pi.type = "upper'", conf.level = 0.99)

Results of Distribution Parameter Estimation

Assumed Distribution: Normal

Estimated Parameter(s): mean = 2.5533006
sd = 0.7060038

Estimation Method: mvue

Data:

log (Chrysene.ppb) [Well.type == "Background"]

Sample Size: 8

Prediction Interval Method: exact

Prediction Interval Type: upper

Confidence Level: 99%

Number of Future Averages: 1

Sample Size for Averages: 4

Prediction Interval: LPL = -Inf
UPL = 3.849427

(The exact method and the Bonferroni method are identical for one future observa-
tion or one future mean.) The mean of the log-transformed values at the compli-
ance well is 3.79 log(ppb), so there is no evidence of contamination.

> mean (log (Chrysene.ppb) [Well.type == "Compliance"])

[1] 3.788506

6.2.2 Prediction Intervals for a Lognormal Distribution

A prediction interval for a lognormal distribution is constructed by simply taking
the natural logarithm of the observations and constructing a prediction interval
based on the normal distribution, then exponentiating the prediction limits to
produce a prediction interval on the original scale of the data (Hahn and Meeker
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1991, p. 73). In fact, you can use any monotonic transformation of the observa-
tions that you think induces normality (e.g., a Box-Cox power transformation),
compute the prediction interval on the transformed scale, and then use the inverse
transformation on the prediction limits to produce a prediction interval on the
original scale. To construct a prediction interval for a lognormal distribution
using ENVSTATS, type commands similar to those shown in the previous section for
a normal distribution, except instead of using predIntNorm use the function
predIntLnormor predIntLnormAlt and the untransformed observations.

Prediction Intervals for Future Observations

We can use a prediction interval to compare the TcCB concentrations between
the Cleanup and Reference areas (see Figs. 1.1, 1.2, and 1.3 in Chap. 1). Based on
the data from the Background area, the one-sided upper 95 % prediction limit for

the next k=77 observations (there are 77 observations in the Cleanup area) is
2.68 ppb:

> attach (EPA. 94b. tccb.df)

> predIntLnorm(TcCB[Area == "Reference"], k =77,
method = "exact", pi.type = "upper'", conf.level = 0.95)

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s) : meanlog = -0.6195712
sdlog = 0.4679530

Estimation Method: mvue

Data: TcCB[Area == "Reference"]

Sample Size: 47

Prediction Interval Method: exact

Prediction Interval Type: upper

Confidence Level: 95%

Number of Future Observations: 77

Prediction Interval: LPL = 0.000000

UPL = 2.681076
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There are seven observations in the Cleanup area larger than 2.68:
> sum (TcCB[Area=="Cleanup"] > 2.68)
(11 7

so the prediction interval indicates residual contamination is present in the Cleanup
area. Note that both Student’s t-test and the Wilcoxon rank sum test do not yield a
significant difference between the two areas.

Prediction Intervals for Future Geometric Means

Revisiting the example from Sect. 6.2.1, instead of log-transforming the chrysene
data and using the function predIntNorm, we can use the original data and use
predIntLnorm. The exact one-sided upper 99 % prediction limit for the geo-
metric mean of the next four future observations is 47.0 ppb:

> attach (EPA.09.Ex.18.2.chrysene.df) #1f not attached

> predIntLnorm(Chrysene.ppb[Well.type == "Background"],
n.geomean = 4, k = 1, pi.type = "upper",
conf.level = 0.99)

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal
Estimated Parameter(s): meanlog = 2.5533006

sdlog = 0.7060038
Estimation Method: mvue
Data:

Chrysene.ppb[Well.type == "Background"]

Sample Size: 8
Prediction Interval Method: exact
Prediction Interval Type: upper
Confidence Level: 99%

Number of Future
Geometric Means: 1
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Sample Size for

Geometric Means: 4
Prediction Interval: LPL = 0.00000
UPL = 46.96613

The geometric mean of the values at the compliance well is 44.2 ppb, so there is
no evidence of contamination.

> geoMean (Chrysene.ppb[Well.type == "Compliance'"])

[1] 44.19034

6.2.3 Prediction Intervals for a Gamma Distribution

Following the suggestion of Singh et al. (2002; 2010a, b), instead of assuming a
lognormal distribution for the data in the examples of the previous section, we
could instead assume the data follow a gamma distribution. Prediction intervals
for a gamma distribution are constructed by using a power transformation to
approximate a normal distribution, computing the prediction interval for a normal
distribution based on the transformed data, then transforming the prediction
interval back to the original scale. Choices for what power transformation to use
to approximate normality include the power transformation of Kulkarni and Powar
(2010), the cube-root transformation (Wilson and Hilferty 1931; Krishnamoorthy
et al. 2008), and the fourth-root transformation (Hawkins and Wixley 1986). See
Millard et al. (2014) or the help file for predIntGamma for details

Prediction Intervals for Future Observations

For the first example that involves comparing the TcCB concentrations between
the Cleanup and Reference areas, based on the data from the Background area, the
one-sided upper 95 % prediction limit for the next k = 77 observations is 2.14 ppb
as compared to 2.68 ppb computed using a lognormal assumption:

> predIntGamma (TcCB[Area == "Reference"], k =77,
method = "exact", pi.type = "upper'", conf.level = 0.95)

Results of Distribution Parameter Estimation

Assumed Distribution: Gamma

Estimated Parameter(s): shape = 4.8659316
scale = 0.1230002

Estimation Method: mle

Data: TcCB[Area == "Reference"]
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47

exact using

Kulkarni & Powar (2010)
transformation to Normality
based on mle of 'shape'

Normal Transform Power: 0.246

Prediction Interval Type: upper

Confidence Level: 95%

Number of Future Observations: 77

Prediction Interval: LPL = 0.000000
UPL = 2.143873

Prediction Intervals for Future Transformed Means

For the second example involving chrysene concentrations (ppb) measured at two
background wells and one compliance well, combining the observations from the
two background wells and assuming these data come from a gamma distribution,
the exact one-sided upper 99 % prediction limit for the transformed mean of the
next four future observations is 45 ppb:

> predInt.list <- predIntGamma (
Chrysene.ppb[Well.type == "Background"], n.transmean = 4,
k =1, pi.type = "upper", conf.level = 0.99)

> predInt.list
Results of Distribution Parameter Estimation

Assumed Distribution: Gamma

Estimated Parameter(s): shape 2.127279
scale = 7.779891

Estimation Method: mle

Data:
Chrysene.ppb[Well.type == "Background"]

Sample Size: 8
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Prediction Interval Method: exact using
Kulkarni & Powar (2010)
transformation to Normality
based on mle of 'shape'

Normal Transform Power: 0.246
Prediction Interval Type: upper
Confidence Level: 99%

Number of Future
Transformed Means: 1

Sample Size for

Transformed Means: 4
Prediction Interval: LPL = 0.00000
UPL = 45.02989

Recall that in Sect. 6.2.2 when we assumed a lognormal distribution, we computed
the geometric mean for the compliance well; that is, we computed the mean based
on the log-transformed data and then transformed that mean back to the original
scale using the exponential function. Similarly, in this example we need to trans-
form the original data from the compliance well using the transformation that was
used to construct the prediction interval assuming a gamma distribution, compute
the mean based on these transformed data, then back-transform this mean to the
original scale.

> trans.power <- predInt.listSintervalSnormal.transform.power
> trans.power
[1] 0.246

> mean.of.trans <- mean(
Chrysene.ppb[Well.type == "Compliance"] *~ trans.power)

A

> mean.of.trans (1 / trans.power)

[1] 44.69182

Since 44.7 is less than the UPL of 45 ppb (just barely!), there is no evidence of
contamination. However, we will see in Chap. 7 that the goodness-of-fit test
rejects the hypothesis that the chrysene data at the background wells comes from a
gamma distribution, so the assumption of a gamma distribution is probably not
valid.
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6.2.4 Nonparametric Prediction Intervals

You can construct a prediction interval without making any assumption about the
distribution of the background data, except that the distribution is continuous.
This kind of prediction intervals is called a nonparametric prediction interval,
and it is based on the ranked data. Usually the prediction interval is based on the
maximum and/or the minimum of the background data, but it can be based on any
order statistics you choose. Of course, a nonparametric prediction interval still
requires the assumption that the distribution of future observations is the same
as the distribution of the observations used to create the prediction interval. See
Millard et al. (2014) for a detailed discussion.

Nonparametric Prediction Intervals for Future Observations

Table 6.2 illustrates the confidence levels associated with a one-sided upper
prediction interval for the next m = 3 observations, based on various sample sizes,
assuming the upper prediction limit is the maximum value.

Sample size (n) Confidence level (%)

62
10 77
15 83
20 87
25 89
50 94
75 96
100 97

Table 6.2 Confidence levels for one-sided upper nonparametric prediction interval for the
next m = 3 observations, based on using the maximum value as the upper prediction limit

The values for this table were created with the following commands:
> n <- c(seq(5, 20, by = 5), seq(25, 100, by = 25))

> round (100 *
predIntNparConfLevel (n = n, m = 3, pi.type = "upper"))

You can see that a confidence level greater than 95 % cannot be achieved until the
sample size is larger than n = 50.

Background Compliance

Month ~ Well1l  Well2  Well3 Well 4

1 <5 7 <5

2 <5 6.5 <5

3 8 <5 10.5 7.5

4 <5 6 <5 <5

5 9 12 <5 8

6 10 <5 9 14

Table 6.3 Trichloroethylene data (ppb) from groundwater monitoring wells



126 6. Prediction and Tolerance Intervals

USEPA (2009, pp.18-19) gives an example of constructing a nonparametric
prediction interval for the next m =4 monthly observations of trichloroethylene
concentrations (ppb) in groundwater at a downgradient well, based on observa-
tions from three background wells. These data are shown in Table 6.3 and stored
in the data frame EPA.09.Ex.18.3.TCE.df in ENVSTATS.

> EPA.09.Ex.18.3.TCE.df

Month Well Well.type TCE.ppb.orig TCE.ppb Censored

1 1 BW-1 Background <5 5.0 TRUE

2 BW-1 Background <5 5.0 TRUE
23 5 CW-4 Compliance 8 8.0 FALSE
24 6 CW-4 Compliance 14 14.0 FALSE

The three background wells were sampled once per month for 6 months. The
compliance well was only sampled in months 3—-6. The EPA guidance document
combines all of the observations from the three background wells (n = 18) and uses
the maximum value 12 as an upper prediction limit for the next m = 4 observations
at the compliance well. This produces an 82 % upper prediction interval.

> with(EPA.09.Ex.18.3.TCE.df,
predIntNpar (TCE.ppb[Well.type == "Background"], m = 4,
1lb = 0, pi.type = "upper"))

Results of Distribution Parameter Estimation

Assumed Distribution: None
Data:
TCE.ppb[Well.type == "Background"]
Sample Size: 18
Prediction Interval Method: Exact
Prediction Interval Type: upper
Confidence Level: 82%
Prediction Limit Rank(s): 18
Number of Future Observations: 4
Prediction Interval: LPL = O

UPL = 12
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Since one of the values from the compliance well lies above the upper prediction
limit, we might conclude there is evidence of contamination at the compliance
well, but we should keep in mind that given the way we constructed our prediction
interval, we would incorrectly declare contamination present when in fact it is not
present about 18 % (100-82 %) of the time. As USEPA (2009, pp. 18-19) states:
“Only additional background data and/or use of a retesting strategy would lower
the false positive rate.”

Nonparametric Prediction Intervals for a Single Future Median

Constructing a prediction interval for a future median of order 3 (i.e., three future
observations will be used to construct the median) is equivalent to constructing a
simultaneous prediction interval for the next 2 of 3 observations (see the Sect.
6.3). In general, a prediction interval for a future median of order m is equivalent
to a prediction interval for the next (m + 1)/2 of m observations as long as m is an
odd number.

Background Compliance

Month ~ Welll  Well2  Well 3 Well 4

1 <5 9.2 <5

2 <5 <5 5.4

3 7.5 <5 6.7

4 <5 6.1 <5

3 <5 8.0 <5

6 <5 5.9 <5 <5

7 6.4 <5 <5 7.8

3 6.0 <5 <5 10.4

Table 6.4 Xylene data (ppb) from groundwater monitoring wells

USEPA (2009, pp.18-21) gives an example of constructing a nonparametric
prediction interval for a future median of order 3 (i.e., three future observations
will be used to construct the median) using monthly observations of xylene
concentrations (ppb) in groundwater at a downgradient well, based on observa-
tions from three background wells. These data are stored in the data frame
EPA.09.Ex.18.4.xylene.df in ENVSTATS and shown in Table 6.4.

> EPA.09.Ex.18.4.xylene.df

Month Well Well.type Xylene.ppb.orig Xylene.ppb Censored

1 1 Well.l Background <5 5.0 TRUE
2 2 Well.l Background <5 5.0 TRUE
31 7 Well.4 Compliance 7.8 7.8 FALSE
32 8 Well.4 Compliance 10.4 10.4 FALSE

Combining all of the observations from the three background wells (n =24) and
using the maximum value 9.2 ppb as an upper prediction limit produces a 99 %
upper prediction interval for a future median of order 3.
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> with(EPA.09.Ex.18.4.xylene.df,
predIntNpar (Xylene.ppb[Well.type == "Background"], k = 2,
m =3, 1b = 0, pi.type = "upper")

Results of Distribution Parameter Estimation

Assumed Distribution: None
Data:
Xylene.ppb[Well.type == "Background"]
Sample Size: 24
Prediction Interval Method: Exact
Prediction Interval Type: upper
Confidence Level: 99%
Prediction Limit Rank(s): 24

Minimum Number of
Future Observations
Interval Should Contain: 2

Total Number of

Future Observations: 3
Prediction Interval: LPL = 0.0
UPL = 9.2

Since the median of the values at the compliance well is 7.8 ppb and therefore less
than the upper prediction limit, there is no evidence of contamination at the com-
pliance well, in spite of the fact that the maximum value at the compliance well is
greater than the upper prediction limit.

6.3 Simultaneous Prediction Intervals

Analyzing data from a groundwater monitoring program involves several difficul-
ties, including trying to control for natural spatial and temporal variability, and
sometimes dealing with nondetect values. One of the main statistical problems
that plague groundwater monitoring programs at hazardous and solid waste facili-
ties is the requirement of testing several wells and several constituents at each well
on each sampling occasion. The number of constituents monitored can range from
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around 5 to 60 or more, and some facilities may have as many as 150 monitoring
wells (Davis and McNichols 1999). This is an obvious multiple comparisons
problem, and the naive approach of using a prediction interval with a conventional
confidence level (e.g., 95 % or 99 %) for each comparison of a compliance well
with background for each chemical of concern leads to a very high probability of
at least one declaration of contamination on each sampling occasion, when in
fact no contamination has occurred at any of the wells at any time for any of the
chemicals of concern. This problem was pointed out several years ago by Millard
(1987a) and others.

Davis and McNichols (1987, 1994b, 1999) proposed simultaneous prediction
intervals as a way of controlling the site-wide false positive rate (SWFPR) while
maintaining adequate power to detect contamination in the groundwater. A simul-
taneous prediction interval with confidence level (1—a)100 % is a prediction
interval that will contain a specified number of future observations with probability
(1—0o)100 % for each of r future sampling occasions, where 7 is some pre-specified
positive integer. The quantity » may actually refer to » distinct future sampling
occasions in time, » distinct compliance wells sampled on one future sampling
occasion, or the product of the number of future sampling occasions and number
of wells. In any of these cases, it is assumed that the distribution of concentrations
is constant over all » “future sampling occasions.”

There are several ways to define a rule for a simultaneous prediction interval.
ENVSTATS includes functions for the following three rules:

e The k-of-m Rule. For the k-of-m rule, at least k£ of the next m future
observations will fall in the prediction interval with probability (1—a)100 %
on each of the r future sampling occasions. If observations are being
taken sequentially, for a particular sampling occasion (or monitoring
well), up to m observations may be taken, but once k& of the observations
fall within the prediction interval, sampling can stop. If m—(k—1) obser-
vations fall outside the prediction interval, then contamination is declared
to be present. For example, suppose we have » = 5 monitoring wells and
we want to use the 1-of-3 rule (i.e., k=1 and m =3). Then for the ith
monitoring well (i = 1, 2, 3, 4, 5), if the first observation is in the interval,
we can stop. If the first observation is outside the interval, we have to
wait a specified time (e.g., a few weeks), and take a second observation.
If the second observation is in the interval, we can stop. If the second
observation is outside the interval, then we have to wait a specified time
and take a third observation. If the third observation is in the interval, we
can stop. If the third observation is outside the interval, then contamina-
tion is declared to be present. (Note that in the case k=m and r=1, a
simultaneous prediction interval reduces to the simple prediction interval
we have already discussed in Sect. 6.2.)

e (California Rule. For the California rule, with probability (1—a)100 %,
for each of the » future sampling occasions, either the first observation
will fall in the prediction interval, or else all of the next m—1 observations
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will fall in the prediction interval. That is, if the first observation falls in
the prediction interval then sampling can stop. Otherwise, up to m—1
more observations must be taken (with a sufficient waiting time between
sampling occasions). If any of these subsequent m—1 observations falls
outside the interval, we declare contamination is present.

e Modified California Rule. For the Modified California rule, with proba-
bility (1—a)100 %, for each of the  future sampling occasions, either the
first observation will fall in the prediction interval, or else at least 2 out of
the next 3 observations will fall in the prediction interval. That is, if the
first observation falls in the prediction interval then sampling can stop.
Otherwise, up to 3 more observations must be taken (with a sufficient
waiting time between sampling occasions). If any two of these next three
observations fall into the interval then sampling can stop. Otherwise,
contamination is declared to be present.

Just as in the case of regular prediction intervals, instead of constructing intervals
for future observations, it is possible to construct simultaneous prediction intervals
for the mean or median of future observations.

Although simultaneous prediction intervals help us control the Type I error
rate (the probability of declaring contamination when it is not present) over r
future sampling occasions (or monitoring wells), we need to control the Type I error
rate over all future sampling occasions, all monitoring wells, and all constituents
(chemicals and physical properties) we monitor. USEPA (2009, Chap. 19) gives
guidelines for setting the confidence level in order to control the annual SWFPR
(o), and suggests setting the annual SWFPR to 10 % (USEPA 2009, pp. 6-4).

For parametric simultaneous prediction intervals, USEPA (2009) suggests
using a confidence level based on adjusting for the number of well-constituent pairs,
i.e., the number of monitoring wells (n,,) times the number of constituents (#.):

Confidence Level = (1 - a)l/("“"‘) 100% (6.4)

In this case, the number of future observations r is set to the number of evaluations
per year (ng), so for annual evaluations » = 1, semi-annual evaluations » = 2, etc.

For nonparametric simultaneous prediction intervals, for performing interwell
tests in which all monitoring wells are compared to the same background
data, USEPA (2009) suggests using a confidence level based on adjusting for the
number of constituents:

Confidence Level = (1 - a)l/n‘ 100% (6.5)

and setting the number of future sampling occasions 7 to the product of the number
of wells (n,) and the number of evaluations per year (nz). For performing
intrawell tests in which each monitoring well is compared to its own background
data, USEPA (2009) suggests using the confidence level defined in Eq. 6.4 above.
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6.3.1 Simultaneous Prediction Intervals for a Normal
Distribution

Using the background period arsenic data introduced in Sect. 6.2.1 and assuming
there are n,, =20 compliance wells to be monitored semi-annually (i.e., »=2), a
total of n.= 10 constituents (including arsenic), and negligible spatial variability
so that you can use interwell testing, we can construct 90 % upper simultaneous
prediction limits based on various rules. Here we will consider the 1-of-2 rule, the
1-0f-3 rule, the Modified California rule, and the 1-of-2 rule based on means of
order 2. Using Eq. 6.4, the confidence level is set to 99.94733%:

> nw <- 20

> nc <- 10

> conf.level <- (1 - 0.1)"(1 / (nc * nw))
> conf.level

[1] 0.9994733

Now use the background period arsenic data to construct the upper prediction limit
for each of the rules. For the 1-of-2 rule, the upper limit is 80.1 ppb:

> attach (EPA.09.Ex.18.1.arsenic.df) #If not already attached
> As.Bkgrd <- Arsenic.ppb[Sampling.Period == "Background"]

> predIntNormSimultaneous (As.Bkgrd, k =1, m = 2, r = 2,
rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)

Results of Distribution Parameter Estimation

Assumed Distribution: Normal

Estimated Parameter(s): mean = 27.51667
sd = 17.10119

Estimation Method: mvue

Data: As.Bkgrd

Sample Size: 12

Prediction Interval Method: exact

Prediction Interval Type: upper
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Confidence Level: 99.94733%

Minimum Number of

Future Observations

Interval Should Contain

(per Sampling Occasion): 1

Total Number of
Future Observations

(per Sampling Occasion): 2

Number of Future

Sampling Occasions: 2
Prediction Interval: LPL = -Inf
UPL = 80.09079

For the 1-0f-3 rule the limit is 65.3 ppb:

> predIntNormSimultaneous (As.Bkgrd, k =1, m = 3, r = 2,
rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)SintervalSlimits["UPL"]

UPL
65.29204

for the Modified California rule the limit is 71.1 ppb:

> predIntNormSimultaneous (As.Bkgrd, r = 2,
rule = "Modified.CA", pi.type = "upper”,
conf.level = conf.level)SintervalSlimits["UPL"]

UPL
71.11351

and for the 1-of-2 rule using means of order 2 the limit is 67.5 ppb:

> predIntNormSimultaneous (As.Bkgrd, n.mean = 2, k =1,
m=2, r =2, rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)Sinterval$Slimits["UPL"]

UPL
67.54322

Using the following commands, we can construct a data frame showing the
upper prediction limits for each of the rules, along with the power of detecting a
change in concentration of three standard deviations at any of the 20 compliance
wells during the course of a year, as well as the total number of potential samples
that may have to be taken.



6.3. Simultaneous Prediction Intervals 133

> n <- sum(!is.na(As.Bkgrd))

> rule.vec <- c("k.of.m", "k.of.m", "Modified.CA", "k.of.m")
> n.mean.vec <- c(1, 1, 1, 2)

> m.vec <- c(2, 3, 4, 2)

> n.rules <- length(rule.vec)

> UPL.vec <- rep(as.numeric(NA), n.rules)

> for(i in l:n.rules)
UPL.vec[1] <- predIntNormSimultaneous (As.Bkgrd,
n.mean = n.mean.vec([i], k =1, m = m.vec[i], r = 2,
rule = rule.vec[[i], pi.type = "upper",
conf.level = conf.level)SintervalSlimits["UPL"]

> Power.vec <- predIntNormSimultaneousTestPower (n = n,

k =1, m = m.vec, n.mean = n.mean.vec, r = 2,
rule = rule.vec, delta.over.sigma = 3,
pi.type = "upper", conf.level = conf.level)

> data.frame (Rule = rule.vec, k = rep(l, n.rules),
m = m.vec, N.Mean = n.mean.vec, UPL = round(UPL.vec, 1),
Power = round(Power.vec, 2),
Total.Samples = n.mean.vec * m.vec * r)

Rule k m N.Mean UPL Power Total.Samples

1 k.of.m 1 2 1 80.1 0.4¢6 4
2 k.of.m 1 3 1 65.3 0.70 6
3 Modified.CA 1 4 1 71.1 0.70 8
4 k.of.m 1 2 2 67.5 0.81 8

We can see that the 1-of-2 rule using means of order 2 gives the highest power
(81 %) for detecting a change in concentration of three standard deviations at any
of the 20 compliance wells during the course of a year, but it may potentially
involve taking up to eight samples during the course of the year, which might not
be feasible either in terms of avoiding temporal correlation or in terms of the time
and cost involved to collect so many samples. On the other hand, although the
1-of-2 rule for future single observations requires the least number of potential
samples, it has poor power (46 %).

6.3.2 Simultaneous Prediction Intervals for a Lognormal
Distribution

Just as for a standard prediction interval for a lognormal distribution, a simultaneous
prediction interval for a lognormal distribution is constructed by simply taking the
natural logarithm of the observations and constructing a simultaneous prediction
interval based on the normal distribution, then exponentiating the prediction limits
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to produce a simultancous prediction interval on the original scale of the data.
To construct a simultaneous prediction interval for a lognormal distribution
you can use the ENVSTATS functions predIntLnormSimultaneous or
predIntLnormAltSimultaneous.

USEPA (2009) contains an example on page 19-17 in which sulfate concen-
trations (mg/l) are to be monitored at n,, = 50 compliance wells on a semi-annual
basis. There are n.= 10 constituents total (including sulfate), and negligible
spatial variability so that you can use interwell testing. Because the regulating
authority will only allow up to two resamples per exceedence of the background
concentration limit, we cannot consider a 1-of-4 or Modified California rule. Here
we will look at the 1-0of-2 and 1-of-3 plan. The n =25 background sulfate obser-
vations are stored in the data frame EPA.09.Ex.19.1.sulfate.df in
EnvStats:

> EPA.09.Ex.19.1.sulfate.df[ , -(2:4)]

Well Date Sulfate.mg.per.l log.Sulfate.mg.per.l
1 GW-01 1999-07-08 63.0 4.143135

GW-01 1999-09-12 51.0 3.931826
3 GW-01 1999-10-16 60.0 4.094345
23 GW-09 2000-10-24 85.5 4.448516
24 GW-09 2002-12-01 188.0 5.236442
25 GW-09 2003-03-24 150.0 5.010635

A check for normality of the pooled background sulfate measurements indicates a
log transformation is appropriate. Using Eq. 6.4, the confidence level is set to
99.97893 %:

> nw <- 50

> nc <- 10

> conf.level <- (1 - 0.1)"(1 / (nc * nw))
> conf.level

[1] 0.9997893

We can compare the power of detecting a change in concentration of three standard
deviations (on the log scale) at any of the 50 compliance wells during the course
of a year for the 1-of-2 rule versus the 1-of-3 rule:

> predIntNormSimultaneousTestPower (n = 25, k =1, m = 2:3,
r =2, rule = "k.of.m", delta.over.sigma = 3,
pi.type = "upper", conf.level = conf.level)

[1] 0.5776416 0.8023368

Since the power of the 1-of-3 test is much better than the 1-of-2 test, we will
compute the upper prediction limit based on the 1-of-3 test.
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> with(EPA.09.Ex.19.1.sulfate.df,
predIntLnormSimultaneous (Sulfate.mg.per.1,
k=1, m=3, r =2, rule = "k.of.m", pi.type = "upper”,
conf.level = conf.level))

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): meanlog = 4.3156194
sdlog = 0.3756697

Estimation Method: mvue

Data: Sulfate.mg.per.1l

Sample Size: 25

Prediction Interval Method: exact

Prediction Interval Type: upper

Confidence Level: 99.97893%

Minimum Number of

Future Observations

Interval Should Contain

(per Sampling Occasion): 1

Total Number of
Future Observations

(per Sampling Occasion): 3

Number of Future

Sampling Occasions: 2
Prediction Interval: LPL = 0.0000
UPL = 159.5497

So for each of the semi-annual sampling occasions and each of the 50 compliance
wells, if a sulfate concentration is greater than 159.5 mg/1 for the first sample, then
you need to re-sample and compare again to 159.5 mg/l. If the first re-sample is
above this limit you need to take a second re-sample. If the second re-sample is
also above this limit, then you can declare contamination.
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6.3.3 Simultaneous Prediction Intervals for a Gamma
Distribution

Again, following the suggestion of Singh et al. (2002, 2010a, b), instead of assuming
a lognormal distribution for the data in the example of the previous section, we
could instead assume the data follow a gamma distribution. A goodness-of-fit test
indicates the pooled background sulfate measurements fit a gamma distribution.
The upper prediction limit based on the 1-of-3 test is 153.2 mg/l as compared to
159.5 g/l assuming a lognormal distribution:

> with (EPA.09.Ex.19.1.sulfate.df,
predIntGammaSimultaneous (Sulfate.mg.per.1,
k=1, m=3, r =2, rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)SintervalSlimits["UPL"]

UPL
153.3232

6.3.4 Simultaneous Nonparametric Prediction Intervals

Chou and Owen (1986) developed the theory for nonparametric simultaneous
prediction limits for various rules, including the 1-of-m rule. Their theory, however,
does not cover the California or Modified California rules, and uses an r-fold
summation involving a minimum of 2" terms. Davis and McNichols (1994b,
1999) extended the results of Chou and Owen (1986) to include the California and
Modified California rule, and developed algorithms that involve summing far
fewer terms.

Like a standard nonparametric prediction interval, a simultaneous nonparametric
prediction interval is based on the order statistics from the sample. For a one-sided
upper simultaneous nonparametric prediction interval, the upper prediction limit is
usually the largest observation in the background data, but it could be the next
largest or any other order statistic. Similarly, for a one-sided lower simultaneous
nonparametric prediction interval, the lower prediction limit is usually the smallest
observation. Simultaneous nonparametric prediction intervals can also be extended
to the case of predicting future medians instead of future observations.

Event BG-1 BG-2 BG-3 BG4 CW-1 CW-2

1 0.21 <0.2 <0.2 <0.2 0.22 0.36
2 <0.2 <0.2 0.23 0.25 0.20 0.41
3 <0.2 <0.2 <0.2 0.28 <0.2 0.28
4 <0.2 0.21 0.23 <0.2 0.25 0.45
5 <0.2 <0.2 0.24 <0.2 0.24 0.43
6 <0.2 0.54

Table 6.5 Mercury data (ppb) from groundwater monitoring wells

USEPA (2009) contains an example on page 19-33 in which mercury concen-
trations (ppb) are to be monitored at n,, = 10 compliance wells on an annual basis.
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There are n.=35 constituents total (including mercury), and negligible spatial
variability so that you can use interwell testing. Table 6.5 shows the n =20
background observations (collected from four different wells), along with data
from two of the 10 compliance wells. These data are stored in the data frame
EPA.09.Ex.19.5.mercury.df in ENVSTATS.

> EPA.09.Ex.19.5.mercury.df

Event Well Well.type Mercury.ppb.orig Mercury.ppb Censored

1 1 BG-1 Background 0.21 0.21 FALSE
2 2 BG-1 Background <.2 0.20 TRUE
35 5 CW-2 Compliance 0.43 0.43 FALSE
36 6 CW-2 Compliance 0.54 0.54 FALSE

Because there are so many non-detect values, we need to use a nonparametric
approach. Using Eq. 6.5, the confidence level is set to 97.91484 %, and the
corresponding per-test Type I error rate is 2.085164 %:

> nc <- 5

> conf.level <- (1 - 0.1)"(1 / nc)
> conf.level

[1] 0.9791484

> alpha <- 1 - conf.level

> alpha

[1] 0.02085164

The number of future sampling occasions r is set to the product of the number of
compliance wells and the number of evaluations per year:

> nw <- 10
> ne <- 1
> r <- nw * ne

Now we need to determine which sampling plans will yield a per-test Type I error
less than or equal to the required 2.1 % level. Here we will consider six candidate
rules:

1) 1-of:2
2) 1-0f3
3) 1-of-4

4) Modified California

5) 1-of-1 for the median of 3 future values. (This plan is equivalent to the
2-o0f-3 plan for single observations.)

6) 1-of-2 for the median of 3 future values.
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and we will consider using the maximum, second largest, or third largest value of
the background data as the upper simultaneous prediction limit (i.c., a total of 18
candidate sampling plans). First we will create some data objects that store
information about the six different rules:

> rule.vec <- c(rep("k.of.m", 3), "Modified.CA",
rep("k.of.m", 2))

> k.vec <- rep(1l, 6)

> m.vec <- c(2:4, 4, 1, 2)

> n.median.vec <- c(rep(1, 4), rep(3, 2))
> n.plans <- length (rule.vec)

Next we’ll compute the per-test Type I error associated with using the maximum
value of the background data as the upper simultaneous prediction limit:

> n <- 20

> alpha.vec.Max <- 1 - predIntNparSimultaneousConfLevel (
n = n, n.median = n.median.vec, k = k.vec, m = m.vec,

r = r, rule = rule.vec, pi.type = "upper")

Next we’ll compute the per-test Type 1 error associated with using the second
largest and third largest value of the background data as the upper simultaneous
prediction limit. The code for this looks just like the code above, except that we
set the argument n.plus.one.minus.upl.rank equal to 2 or 3:

> alpha.vec.2nd <- 1 - predIntNparSimultaneousConfLevel (
n = n, n.median = n.median.vec, k = k.vec, m = m.vec,

r = r, rule = rule.vec, pi.type = "upper",
n.plus.one.minus.upl.rank = 2)

> alpha.vec.3rd <- 1 - predIntNparSimultaneousConfLevel (
n = n, n.median = n.median.vec, k = k.vec, m = m.vec,

r = r, rule = rule.vec, pi.type = "upper",
n.plus.one.minus.upl.rank = 3)

Now create a data frame listing all 18 of the plans, their associated per-test Type I
error rate, and their associated upper prediction limit:

> attach (EPA.09.Ex.19.5.mercury.df)

> Bkgd.Hg.Sorted <- sort (Mercury.ppb[
Well.type == "Background"], decreasing = TRUE)
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> Candidate.Plans.df <- data.frame (Rule = rep(rule.vec, 3), k
= rep(k.vec, 3), m = rep(m.vec, 3),
Median.n = rep(n.median.vec, 3), Order.Statistic =
rep(c("Max", "2nd", "3rd"), each = n.plans),
Achieved.alpha = round(c(alpha.vec.Max, alpha.vec.Znd,
alpha.vec.3rd), 4),
BG.Limit = rep(Bkgd.Hg.Sorted[1:3], each = n.plans))

> Candidate.Plans.df

Rule k m Median.n Order.Statistic Achieved.alpha BG.Limit
1 k.of.m 1 2 1 Max 0.0395 0.28
2 k.of.m 1 3 1 Max 0.0055 0.28
3 k.of.m 1 4 1 Max 0.0009 0.28
4 Modified.CA 1 4 1 Max 0.0140 0.28
5 k.of.m 1 1 3 Max 0.0961 0.28
6 k.of.m 1 2 3 Max 0.0060 0.28
7 k.of.m 1 2 1 2nd 0.1118 0.25
8 k.of.m 1 3 1 2nd 0.0213 0.25
9 k.of.m 1 4 1 2nd 0.0046 0.25
10 Modified.CA 1 4 1 2nd 0.0516 0.25
11 k.of.m 1 1 3 2nd 0.2474 0.25
12 k.of.m 1 2 3 2nd 0.0268 0.25
13 k.of.m 1 2 1 3rd 0.2082 0.24
14 k.of.m 1 3 1 3rd 0.0516 0.24
15 k.of.m 1 4 1 3rd 0.0135 0.24
16 Modified.CA 1 4 1 3rd 0.1170 0.24
17 k.of.m 1 1 3 3rd 0.4166 0.24
18 k.of.m 1 2 3 3rd 0.0709 0.2

Eliminate plans that do not achieve the required per-test Type I error rate of 2.1 %:
> index <- Candidate.Plans.df$Achieved.alpha <= alpha
> Candidate.Plans.df <- Candidate.Plans.df[index, ]

> Candidate.Plans.df

Rule k m Median.n Order.Statistic Achieved.alpha BG.Limit
2 k.of.m 1 3 1 Max 0.0055 0.28
3 k.of.m 1 4 1 Max 0.0009 0.28
4 Modified.CA 1 4 1 Max 0.0140 0.28
6 k.of.m 1 2 3 Max 0.0060 0.28
9 k.of.m 1 4 1 2nd 0.0046 0.25
15 k.of.m 1 4 1 3rd 0.0135 0.24

For the plans based on predicting individual observations, the ones that achieve
the required per-test Type I error level are the 1-of-3 and the Modified California
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using the maximum background value, and the 1-of-4 using the maximum, second
largest, or third largest background value. For plans based on predicting medians,
only the 1-of-2 plan using the maximum background level meets the required
per-test Type I error rate.

Looking at the six final candidate plans above and comparing them to the data
for the two compliance wells in Table 6.5, we see that the first compliance well
passes for each of the six plans since the first observed value is 0.22 ppb which is
less than the upper simultaneous prediction limit for all of the plans. The second
compliance well only passes for the first two plans and fails the last four.

One step that we did not perform yet was to look at the power of each plan
(something that normally is done prior to choosing a specific plan to use and prior
to actually comparing compliance well data to the upper prediction limit). In
order to compute power, you need to make an assumption about the distribution of
the background data. Here we will assume a normal distribution and compute the
power of detecting a change in concentration of three standard deviations at any of
the 10 compliance wells during the course of a year, as well as the total number of
potential samples that may have to be taken.

> Power.vec <- predIntNparSimultaneousTestPower (n = n,
n.median = Candidate.Plans.df[, "Median.n"],
k = Candidate.Plans.df[, "k"],
m = Candidate.Plans.df[, "m"], r = r,
rule = as.character (Candidate.Plans.df[, "Rule"]),
n.plus.one.minus.upl.rank = match (Candidate.Plans.df/,

"Order.Statistic"] , c("Max", "2nd", "3rd")),

delta.over.sigma = 3, pi.type = "upper", r.shifted =1,
distribution = "norm", method = "approx")

> data.frame (Candidate.Plans.df[, c("Rule", "k", "m",
"Median.n", "Order.Statistic")],
Power = round(Power.vec, 2), Total.Samples =
Candidate.Plans.dfSMedian.n * Candidate.Plans.dfSm * ne)

Rule k m Median.n Order.Statistic Power Total.Samples
2 k.of.m 1 3 1 Max 0.65 3
3 k.of.m 1 4 1 Max 0.58 4
4 Modified.CA 1 4 1 Max 0.81 4
6 k.of.m 1 2 3 Max 0.91 6
9 k.of.m 1 4 1 2nd 0.78 4
15 k.of.m 1 4 1 3rd 0.87 4

The first two plans (under which the second compliance well passed) have the
lowest power. The plan with the highest power, the 1-of-2 for medians of order 3,
also requires the most potential resampling.
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6.4 Tolerance Intervals

A tolerance interval for some population is an interval on the real line constructed
so as to contain 3100 % of the population (i.e., 3100 % of all future observations),
where 0 <3 <1 (usually B is bigger than 0.5). The quantity 3100 % is called the
coverage. (Note: Do not confuse our use of the symbol 3 here with the probability
of a Type II error. The symbol 3 is used here to be consistent with previous litera-
ture on tolerance intervals.) Table 6.6 lists the functions available in ENVSTATS for
constructing tolerance intervals.

Distribution Function name Description
Gamma tolIntGamma Construct a tolerance interval for a gamma
tolIntGammaAlt distribution
Normal tolIntNorm Construct a tolerance interval for a normal
distribution
tolIntNormK Compute the value of K for a tolerance interval for a
normal distribution
Lognormal tolIntLnorm Construct a tolerance interval for a lognormal distri-
tolIntLnormAlt bution
Poisson tolIntPois Construct a tolerance interval for a Poisson distribu-
tion
Nonparametric tolIntNpar Construct a nonparametric tolerance interval

Table 6.6 Functions in ENVSTATS for constructing tolerance intervals

As with a prediction interval, the basic idea of a tolerance interval is to assume
a particular probability distribution (e.g., normal, lognormal, etc.) for some
process generating the data (e.g., quarterly observations of chemical concentra-
tions in groundwater), compute sample statistics from a baseline sample, and then
use these sample statistics to construct a tolerance interval, assuming the distribu-
tion of the data does not change in the future. For example, if X denotes a random
variable from some population, and we know what the population looks like (e.g.,
N(10, 2)) so we can compute the quantiles of the population, then a 100 %
two-sided tolerance interval is given by:

[x1—[3/2 > Xp/2 ] (6.6)

where x, denotes the pth quantile of the distribution of X. Similarly, a $100 %
one-sided upper tolerance interval is given by:

[ —w, xg ] (6.7)
and a 100 % one-sided lower tolerance interval is given by:
[ x5, ] (6.8)

Note that in the case when the distribution of X is known, a 100 % tolerance
interval is exactly the same as a (1—a)100 % prediction interval for k=1 future
observation, where B = 1—a (see Eq. 6.1, 6.2, and 6.3).
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Usually the true distribution of X is unknown, so the values of the tolerance
limits have to be estimated based on estimating the parameters of the distribution
of X. In this case, a tolerance interval is a random interval; that is, the lower
and/or upper bounds are random variables computed based on sample statistics in
the baseline sample. Given this uncertainty in the bounds, there are two ways to
construct tolerance intervals (Guttman 1970):

e A [content tolerance interval with confidence level (1—a)100 % is
constructed so that it contains at least 100 % of the population (i.e., the
coverage is at least 100 %) with probability (1—a)100 %.

e A fexpectation tolerance interval is constructed so that it contains on av-
erage 3100 % of the population (i.e., the average coverage is $100 %).

A B-expectation tolerance interval with coverage B100 % is equivalent to a
prediction interval for k=1 future observation with associated confidence level
100 %. Note that there is no explicit confidence level associated with a
B-expectation tolerance interval. If a B-expectation tolerance interval is treated as
a PB-content tolerance interval, the confidence level associated with this tolerance
interval is usually around 50 % (e.g., Guttman 1970). Thus, a B-content tolerance
interval with coverage 3100 % will usually be wider than a f-expectation toler-
ance interval with the same coverage if the confidence level associated with the
B-content tolerance interval is more than 50 %.

It can be shown (e.g., Conover 1980) that an upper confidence interval for the
pth quantile with confidence level (1—a)100 % is equivalent to an upper B-content
tolerance interval with coverage 100p % and confidence level (1—a)100 %.
Also, a lower confidence interval for the pth quantile with confidence level
(1—=a)100 % is equivalent to a lower B-content tolerance interval with coverage
100(1—p) % and confidence level (1—0)100 %.

Tolerance intervals have long been applied to quality control and life testing
problems. In environmental monitoring, USEPA has in the past proposed using
tolerance intervals in at least two different ways: compliance-to-background
comparisons and compliance-to-fixed standard comparisons. However, current
guidance (USEPA 2009) recommends using prediction intervals or confidence
intervals in place of tolerance intervals except in the case when concentrations at
compliance wells need to be compared to a groundwater protection standard
(GWPS) and background concentrations are themselves above the GWPS (see
USEPA 2009, pp. 646, 7-21).

6.4.1 Tolerance Intervals for a Normal Distribution

Section 5.3.1 contains an example in which an MCL of 30 ppb for aldicarb should
not be exceeded more than 5 % of the time. Using the data from three groundwa-
ter monitoring compliance wells (four monthly samples at each well) stored in
EPA.09.Ex.21.1.aldicarb.df, first we assume the facility is in compli-
ance/assessment monitoring, so we compute a lower 99 % confidence limit for the
95th percentile for the distribution at each of the three compliance wells, yielding
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25.3, 25.7, and 5.5 ppb. This is equivalent to computing a lower B-content
tolerance limit with coverage 5 % and associated confidence level of 99 %. Here
are the results for the first well:

> Aldicarb <- EPA.09.Ex.21.1.aldicarb.df$Aldicarb.ppb
> Well <- EPA.09.Ex.21.1.aldicarb.dfSwell

> tolIntNorm (Aldicarb[Well == "Well.1"], coverage = 0.05,
ti.type = "lower", conf.level = 0.99)

Results of Distribution Parameter Estimation

Assumed Distribution: Normal
Estimated Parameter(s): mean = 23.10000
sd = 4.93491
Estimation Method: mvue
Data: Aldicarb[Well == "Well.1l"]
Sample Size: 4
Tolerance Interval Coverage: 5%
Coverage Type: content
Tolerance Interval Method: Exact
Tolerance Interval Type: lower
Confidence Level: 99%
Tolerance Interval: LTL = 25.28550
UTL = Inf
Here are the results for wells 2 and 3:
> tolIntNorm (Aldicarb[Well = ="Well.2"], coverage = 0.05,

ti.type = "lower",
conf.level = 0.99)S%intervalSlimits["LTL"]

LTL
25.66086
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> tolIntNorm(Aldicarb[Well == "well.3"], coverage = 0.05,
ti.type = "lower",
conf.level = 0.99)SintervalS$Slimits["LTL"]

LTL
5.45563

Instead of calling tol IntNorm three separate times, you can instead just use the
following single command:

> sapply (split (Aldicarb, Well), function(x) {
tolIntNorm(x, coverage = 0.05, ti.type = "lower",
conf.level = 0.99)S%intervalS$Slimits/["LTL"]})

Well.1l.LTL Well.2.LTL Well.3.LTL
25.28550 25.66086 5.45563

Since none of the LTLs is above the 30 ppb MCL, no corrective action is needed.
In the second part of the example, however, we assume the site is in corrective
action monitoring, and we compute the one-sided 99 % upper confidence limit for
the 95th percentile and compare that to the MCL. This is equivalent to computing
an upper B-content tolerance limit with coverage 95 % and associated confidence
level of 99 %.

> sapply (split (Aldicarb, Well), function(x) {
tolIntNorm(x, coverage = 0.95, ti.type = "upper",
conf.level = 0.99)SintervalSlimits["UTL"]})

Well.l.UTL Well.2.UTL Well.3.UTL
67.92601 45.38336 23.61286

In this case there is evidence that corrective action is still needed at Wells 1 and 2
since the UTL is greater than 30 ppb. Of course, a major problem in this whole
example is the very small sample size at each well (n =4) used to compute the
intra-well tolerance limit.

6.4.2 Tolerance Intervals for a Lognormal Distribution

In Sect. 6.2.2 we computed a prediction interval to compare the TcCB concentra-
tions between the Cleanup and Reference areas (see Figs. 1.1, 1.2, and 1.3 in Sect.
1.11.3). Based on the data from the Background area, the one-sided upper 95 %
prediction limit for the next k =77 observations (there are 77 observations in the
Cleanup area) is 2.68 ppb. There are seven observations in the Cleanup area larger
than 2.68, so the prediction interval indicates residual contamination is present in
the Cleanup area.

Some guidance documents suggest constructing a one-sided upper tolerance
interval based on the Reference area and comparing all of the observations
from the Cleanup area to the upper tolerance limit. This is sometimes called the
“Hot-Measurement Comparison” (USEPA 1994b). Millard et al. (2014) explain
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why this method should never be used because you do not know the true Type 1
error rate. In this case, the one-sided upper 95 % B-content tolerance limit with
associated confidence level 95 % is 1.42 ppb (versus 2.68 ppb for the upper
prediction limit).

> with (EPA. 94b. tcch.df,
tolIntLnorm (TcCB[Area == "Reference"], coverage = 0.95,
ti.type = "upper", conf.level = 0.95))

Results of Distribution Parameter Estimation

Assumed Distribution: Lognormal

Estimated Parameter(s): meanlog = -0.6195712
sdlog = 0.4679530

Estimation Method: mvue

Data: TcCB[Area == "Reference"]

Sample Size: 47

Tolerance Interval Coverage: 95%

Coverage Type: content

Tolerance Interval Method: Exact

Tolerance Interval Type: upper

Confidence Level: 95%

Tolerance Interval: LTL = 0.000000

UTL = 1.424970

Example 17-3 of USEPA (2009, p. 17-17) presents a similar example using
groundwater monitoring data on chrysene concentrations from two background
wells and three compliance wells. In EnvStats theses data are stored in
EPA.09.Ex.17.3.chrysene.df.

> EPA.09.Ex.17.3.chrysene.df

Month Well Well.type Chrysene.ppb
1 1 Well.l Background 19.7
2 2 Well.l Background 39.2
3 3 Well.l Background 7.8
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18 2 Well.5 Compliance 30.5
19 3 Well.5 Compliance 15.0
20 4 Well.5 Compliance 23.4

A check on the distribution of the background well concentrations indicates the
data are right-skewed and can be modeled with a lognormal distribution. The
one-sided upper 95 % B-content tolerance limit with associated confidence level
95 % is 90.9 ppb, and since none of the concentrations at the compliance wells is
larger than this there is no evidence of contamination. Again, this method should
never be used because you do not know the true Type I error rate.

> with(EPA.09.Ex.17.3.chrysene.df,
tolIntLnorm (Chrysene.ppb[Well.type == "Background"],
coverage = 0.95, ti.type = "upper",
conf.level = 0.95))SintervalSlimits/["UTL"]

UTL
90.9247

6.4.3 Tolerance Intervals for a Gamma Distribution

You can use the EnvStats functions tolIntGamma or tolIntGammaAlt
to construct tolerance intervals assuming a gamma distribution. The upper 95 %
tolerance interval based on the Reference area TcCB data is 1.33 ppb, as opposed
to is 1.42 ppb assuming a lognormal distribution:

> with (EPA.94b.tcch.df,
tolIntGamma (TcCB[Area == "Reference"],
coverage = 0.95, ti.type = "upper",
conf.level = 0.95))SintervalSlimits/["UTL"]

UTL
1.325023

6.4.4 Nonparametric Tolerance Intervals

You can construct tolerance intervals without making any assumption about the
distribution of the background data, except that the distribution is continuous.
These kinds of tolerance intervals are called nonparametric tolerance intervals.
Of course, nonparametric tolerance intervals still require the assumption that the
distribution of future observations is the same as the distribution of the observa-
tions used to create the tolerance interval. Just as for nonparametric prediction
intervals, nonparametric tolerance intervals are based on the ranked data.

Example 17-4 of USEPA (2009, pp. 17-21) contains copper concentration data
from three background wells and two compliance wells as shown in Table 6.7
below:
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Background Compliance
Month ~ Well 1 Well 2 Well 3 Well 4 Well 5
1 <5 9.2 <5
2 <5 <5 5.
3 7.5 <5 6.
4 <5 6.1 <5
5 <5 8.0 <5 6.2 <5
6 <5 5.9 <5 <5 <5
7 6.4 <5 <5 7.8 5.6
8 6.0 <5 <5 10.4 <5

Table 6.7 Copper concentrations (ppb) from groundwater monitoring wells

In EnvStats these data are stored in EPA.09.Ex.17.4.copper.df:

> EPA.09.Ex.17.4.copper.df

Month Well

1 1 Well.
2 2 Well.

3 Well.
38 6 Well.
39 7 Well.
40 8 Well.

1
1
1

5
5
5

Well.type Copper.ppb.orig Copper.ppb Censored

Background
Background
Background

Compliance
Compliance

Compliance

<5
<5
7.5

<5
5.6
<5

5.0 TRUE
5.0 TRUE
7.5 FALSE
5.0 TRUE
5.6 FALSE
5.0 TRUE
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Because of the large percentage of non-detects, a nonparametric approach is used.
In this example the 95 % confidence upper tolerance limit is computed using the
maximum value of the background wells (i.e., 9.2 ppb) with the idea that this limit
will be used as a threshold value for concentrations observed in the two com-
pliance wells (i.e., if any concentrations at the compliance wells exceed this
limit, this indicates there may be contamination in the groundwater). This is the
“Hot-Measurement Comparison,” and as already discussed above there are some
major problems with this technique.

> with(EPA.09.Ex.17.4.copper.df,

tolIntNpar (Copper.ppb[Well. type

conf.level

"Background"],

= 0.95, ti.type = "upper", 1b = 0)

Results of Distribution Parameter Estimation

Assumed Distribution: None
Data:

Copper.ppb[Well.type == "Background"]
Sample Size: 24



148 6. Prediction and Tolerance Intervals

Tolerance Interval Coverage: 88.26538%
Coverage Type: content
Tolerance Interval Method: Exact
Tolerance Interval Type: upper
Confidence Level: 95%
Tolerance Limit Rank(s) : 24
Tolerance Interval: LTL = 0.0
UTL = 9.2

There is evidence of possible contamination at Well 4 because of the one value
greater than 9.2 ppb. However, the coverage associated with a nonparametric
tolerance interval based on n =24 observations is only 88 %, so the probability of
a Type I error using this method is 12 %. In order to obtain coverage of at least
95 %, you would need 59 background samples:

> tolIntNparN(ti.type = "upper", coverage = 0.95,
conf.level = 0.95)

[1] 59

6.5 Summary

e Any activity that requires comparing new values to “background” or
“standard” values creates a decision problem: if the new values greatly
exceed the background or standard value, is this evidence of a true differ-
ence (i.e., is there contamination)?

e  Statistical tests are used as objective tools to decide whether a change has
occurred. For a monitoring program that involves numerous tests over
time, figuring out how to balance the overall Type I error with the power
of detecting a change is a multiple comparisons problem.

e  Prediction intervals and tolerance intervals are two tools that you can use
to attempt to solve the multiple comparisons problem.

e Table 6.1 lists the functions available in ENVSTATS for constructing
prediction intervals.

e Table 6.6 lists the functions available in ENVSTATS for constructing
tolerance intervals.



Chapter 7
Hypothesis Tests

7.1 Introduction

If you are comparing chemical concentrations between a background area and a
potentially contaminated area, how different do the concentrations in these two
areas have to be before you decide that the potentially contaminated area is in fact
contaminated? In the last chapter we showed how to use prediction and tolerance
intervals to try to answer this question. There are other kinds of hypothesis tests
you can use as well. R contains several functions for performing classical
statistical hypothesis tests, such as t-tests, analysis of variance, linear regression,
nonparametric tests, quality control procedures, and time series analysis (see the R
documentation and help files). ENVSTATS contains modifications of some of these
functions (e.g., summaryStats and stripChart), as well as functions for
statistical tests that are not included in R but that are used in environmental
statistics, such as the Shapiro-Francia goodness-of-fit test, Kendall’s seasonal test
for trend, and the quantile test for a shift in the tail of the distribution (see the help
file Hypothesis Tests). This chapter discusses these functions. See Millard et al. (2014)
for a more in-depth discussion of hypothesis tests.

7.2 Goodness-of-Fit Tests

Most commonly used parametric statistical tests assume the observations in the
random sample come from a normal population. In fact, the usual assumptions are
that the observations are independent, the variance of the distribution is constant,
and the distribution is normal. These three assumptions are listed in decreasing
importance with respect to maintaining the assumed Type I error (van Belle 2008;
Millard et al. 2014). So how do you know whether the assumption of a normal
distribution is valid? We saw in Chap. 3 how to make a visual assessment of this
assumption using Q-Q plots. Another way to verify this assumption is with a
goodness-of-fit test, which lets you specify what kind of distribution you think the
data come from and then compute a test statistic and a p-value.

A goodness-of-fit test may be used to test the null hypothesis that the data
come from a specific distribution, such as “the data come from a normal
distribution with mean 10 and standard deviation 2,” or to test the more general
null hypothesis that the data come from a particular family of distributions, such
as “the data come from a lognormal distribution.” Goodness-of-fit tests are
mostly used to test the latter kind of hypothesis, since in practice we rarely know
or want to specify the parameters of the distribution.

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 149
DOI 10.1007/978-1-4614-8456-1 7, © Springer Science+Business Media New York 2013
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In practice, goodness-of-fit tests may be of limited use for very large or very
small sample sizes. Almost any goodness-of-fit test will reject the null hypothesis
of the specified distribution if the number of observations is very large, since
“real” data are never distributed according to any theoretical distribution (Conover
1980). On the other hand, with only a very small number of observations, no test
will be able to determine whether the observations appear to come from the
hypothesized distribution or some other totally different looking distribution.

Function Description

gofTest Shapiro-Wilk, Shapiro-Francia, probability plot correlation
coefficient (PPCC), and zero-skew goodness-of-fit tests for a
normal, lognormal, three-parameter lognormal, zero-modified
normal, or zero-modified lognormal (delta) distribution

Wilk-Shapiro test for a uniform [0, 1] distribution

Shapiro-Wilk type test for any continuous distribution
available in EnvStats

PPCC goodness-of-fit test for extreme value distribution

Kolmogorov-Smirnov goodness-of-fit test to compare a
sample with a specified probability distribution or to compare
two samples

Chi-square goodness-of-fit test for a specified probability
distribution

gofGroupTest Shapiro-Wilk, Shapiro-Francia, and PPCC goodness-of-fit
tests for normality for two or more groups

gofCensoredTest  Shapiro-Wilk, Shapiro-Francia, and PPCC goodness-of-fit
tests for normality for censored data

Table 7.1 Functions in ENVSTATS for goodness-of-fit tests

Table 7.1 shows the functions available in EnvStats for performing goodness-
of-fit tests. The function gofTest lets you perform the one-sample Shapiro-
Wilk, Shapiro-Francia, or probability plot correlation coefficient (PPCC)
goodness-of-fit test for normality. You can also use this function to determine
whether a set of observations appears to come from a lognormal, three-parameter
lognormal, zero-modified normal, or zero-modified lognormal (delta) distribution.
In addition, you can perform a Shapiro-Wilk type test to test for any continuous
distribution that is available in EnvStats (see the help file for Distribution.df).
This function also lets you perform the one-sample PPCC test for the extreme
value distribution, as well as the Kolmogorov-Smirnov and chi-square goodness-
of-fit tests to compare a sample with any specified probability distribution. The
function gofGroupTest lets you test the assumption of normality for several
groups of data simultaneously while controlling the overall Type I error.
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The function gofCensoredTest lets you test the assumption of normality
based on censored data, and the discussion of this function is deferred until the
next chapter. There are specific printing and plotting methods associated with the
results of gofTest, gofGroupTest, and gofCensoredTest.

7.2.1 One-Sample Goodness-of-Fit Tests for Normality

In Chaps. 1 and 3 we saw that the Reference area TcCB data appear to come from
a lognormal distribution based on a histogram (Fig. 1.2), an empirical cdf plot
(Fig. 1.5), a normal Q-Q plot (Fig. 1.7), a Tukey mean-difference Q-Q plot
(Fig. 1.8), and a plot of the probability plot correlation coefficient (PPCC) versus
A for a variety of Box-Cox transformations (Fig. 3.7). In Sect. 1.11.7 we showed
the results of using the Shapiro-Wilk test to test the adequacy of the lognormal
distribution. Here we will formally test whether the Reference area TcCB data
appear to come from a normal distribution versus a lognormal distribution, and in
the call to gofTest for testing lognormality we will specify using the alternative
parameterization of the lognormal distribution (i.e., estimating the mean and CV
of the original distribution).

> attach (EPA. 94b. tccb.df)

> TcCB.Ref <- TcCB[Area == "Reference"]
> sw.list.norm <- gofTest (TcCB.Ref)

> sw.list.norm

Results of Goodness-of-Fit Test

Test Method: Shapiro-Wilk GOF

Hypothesized Distribution: Normal

Estimated Parameter(s) : mean = 0.5985106
sd = 0.2836408

Estimation Method: mvue

Data: TcCB.Ref

Sample Size: 47

Test Statistic: W = 0.9176408

Test Statistic Parameter: n = 47
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P-value: 0.002768207

Alternative Hypothesis: True cdf does not equal the
Normal Distribution.

> sw.list.lnormAlt <- gofTest (TcCB.Ref, dist = "lnormAIt")

> sw.list.lnormAlt

Results of Goodness-of-Fit Test

Test Method: Shapiro-Wilk GOF

Hypothesized Distribution: Lognormal

Estimated Parameter(s): mean = 0.5989072
cv = 0.4899539

Estimation Method: mvue

Data: TcCB.Ref

Sample Size: 47

Test Statistic: W= 0.978638

Test Statistic Parameter: n = 47

P-value: 0.5371935

Alternative Hypothesis: True cdf does not equal the

Lognormal Distribution.

The p-value for the test of normality (p = 0.003) clearly indicates that we should
not assume the Reference area TcCB data come from a normal distribution, but
the assumption of a lognormal distribution appears to be adequate (p = 0.54).
Figures 7.1 and 7.2 show companion plots for the results of the Shapiro-Wilk tests
for normality and lognormality, respectively. These plots include the observed
distribution overlaid with the fitted distribution, the observed and fitted CDF, the
normal Q-Q plot, and the results of the hypothesis test. They were created with
these commands:

> plot(sw.list.norm)

> plot(sw.list.lnormAlt)
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You can use the plot. type argument to specify particular plots. For example,
to generate a Tukey Mean-Difference Q-Q plot for the test of normality, you
would type:

> plot(sw.list.norm, plot.type = "Tukey")

7.2.2 Testing Several Groups for Normality

If you have several sets of observations you want to test for normality, you may
encounter the multiple comparisons problem. For example, regulations for
monitoring groundwater at hazardous and solid waste sites may require per-
forming statistical analyses even when there are only small sample sizes at each
monitoring well. As we noted above, goodness-of-fit tests are not very useful
with small sample sizes; there is simply not enough information to determine
whether the data appear to come from the hypothesized distribution or not.
Gibbons (1994) suggests pooling the measures from several upgradient wells to
establish “background.” Due to spatial variability, the wells may have different
means and variances, yet you would like to test the assumption of a normal
distribution for the chemical concentration at each of the upgradient wells.

Wilk and Shapiro (1968) suggest two different test statistics for the problem of
testing the normality of K separate groups, using the results of the Shapiro-Wilk
test applied to random samples from each of the K groups. Both test statistics are
functions of the K p-values that result from performing the test on each of the K
samples. Under the null hypothesis that all K samples come from normal
distributions, the p-values represent a random sample from a uniform distribution
on the interval [0,1]. Since these two test statistics are based solely on the
p-values, they are really meta-analysis statistics (Fisher and van Belle 1993), and
can be applied to the problem of combining the results from K independent
hypothesis tests, where the hypothesis tests are not necessarily goodness-of-fit
tests. You can use the function gofGroupTest for performing group tests for
normality.

Example 10-4 of USEPA (2009, pp. 10-20) involves looking at observations
of nickel concentrations (ppb) collected over 5 months at 4 monitoring wells.
These data are stored in the data frame EPA.09.Ex.10.1.nickel.df.

> EPA.09.Ex.10.1.nickel.df

Month Well Nickel.ppb

1 1 Well.l 58.8
2 3 Well.l 1.0
19 8 Well.4 10.0
20 10 Well.4 637.0

Figure 7.3 displays the observations for each well, and Fig. 7.4 displays the log-
transformed observations, created with these commands:
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logso[ Nickel (ppb) ]
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> stripChart (Nickel.ppb ~ Well, col = 1:4,
data = EPA.09.Ex.10.1.nickel.df, show.ci = FALSE,
ylab = "Nickel (ppb)")

> stripChart (logl0O(Nickel.ppb) ~ Well, col = 1:4, data =
EPA.09.Ex.10.1.nickel.df, show.ci = FALSE,
ylab = expression(paste(log[10], "[ Nickel (ppb) 1")))

First we will use the Shapiro-Wilk group test to test the null hypotheses that the
observations at each well represent a sample from some kind of normal
distribution, but the population means and/or variances may differ between wells.

> sw.list <- gofGroupTest (Nickel.ppb ~ Well,
data = EPA.09.Ex.10.1.nickel.df)

> sw.list

Results of Group Goodness-of-Fit Test

Test Method: Wilk-Shapiro GOF (Normal Scores)
Hypothesized Distribution: Normal
Data: Nickel.ppb
Grouping Variable: Well
Data Source: EPA.09.Ex.10.1.nickel.df
Number of Groups: 4
Sample Sizes: Well.l =5
Well.2 =5
Well.3 =5
Well.4 =5
Test Statistic: z (G) = -3.658696

P-values for

Individual Tests: Well.l = 0.03510747
Well.2 = 0.02385344
Well.3 = 0.01120775
Well.4 = 0.10681461

P-value for
Group Test: 0.0001267509
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Alternative Hypothesis: At least one group
does not come from a
Normal Distribution.
Now we’ll do the same test but assume a lognormal distribution:
> sw.log.list <- gofGroupTest (Nickel.ppb ~ Well,
data = EPA.09.Ex.10.1.nickel.df, dist = "lnorm")
> sw.log.list
Results of Group Goodness-of-Fit Test
Test Method: Wilk-Shapiro GOF (Normal Scores)
Hypothesized Distribution: Lognormal
Data: Nickel.ppb
Grouping Variable: Well
Data Source: EPA.09.Ex.10.1.nickel.df
Number of Groups: 4
Sample Sizes: Well.l =5
Well.2 =5
Well.3 =5
Well.4 =5
Test Statistic: z (G) = 0.240172

P-values for

Individual Tests: Well.l = 0.6898164
Well.2 = 0.6700394
Well.3 = 0.3208299
Well.4 = 0.5041375

P-value for

Group Test: 0.5949015

Alternative Hypothesis: At least one group

does not come from a
Lognormal Distribution.
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Figures 7.5 and 7.6 display the companion plots for each of the hypotheses we
tested. They were created with these commands:

> plot(sw.list)
> plot(sw.log.list)

There is clear evidence that the raw concentrations do not come from normal
distributions, but the assumption of lognormal distributions appears to be
adequate.

7.2.3 One-Sample Goodness-of-Fit Tests for Other Distributions

Section 1.11.7 in Chap. 1 showed how to test for the assumption of a gamma
distribution for the Reference Area TcCB data. In general, you can perform a
goodness-of-fit test for any continuous distribution available in EnvStats by using
the dist argument to gofTest.

Three other commonly used goodness-of-fit tests are the Kolmogorov-Smirnov
goodness-of-fit test (Zar 2010), the chi-square goodness-of-fit test (Zar 2010), and
the probability plot correlation coefficient (PPCC) goodness-of-fit test (Filliben
1975; Vogel 1986). The function gofTest uses the Kolmogorov-Smirnov and
chi-square tests built into R (i.e., ks.test and chisqg.test). ENVSTATS also
adds the PPCC test for the extreme value distribution. The help file for gofTest
contains more detailed information and examples.

In Chap. 3, Sect. 3.7.2, we created a Q-Q plot to determine whether a set of
benzene concentrations appear to come from a Poisson distribution. Out of the 36
observations, 33 are reported as “<2”, and these observations were set to half the
detection limit (i.e., 1). We can use the chi-square goodness-of-fit test to formally
test whether these data appear to come from a Poisson distribution. When using
the chi-square test to test whether data appear to come from a discrete distribution,
you have to supply the vector of cut points that define the bins you want to use.
Each bin is defined as all values greater than the lower cut point and less than or
equal to the upper cut point. Here we will use the cut points —1, 0, 2, and oo,
which correspond to bins that hold 14 %, 55 %, and 31 % of the distribution based
on the estimated parameter A = 1.94.

> attach (EPA.92c.benzenel.df)
> Benzene [Censored] <- 1
> table (Benzene)

Benzene
1 10 12 15
33 1 1 1

> lambda.hat <- epois (Benzene)Sparameters
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> lambda.hat
lambda
1.944444
> ppois(c(-1, 0, 2, Inf), lambda = lambda.hat)

[1] 0.0000000 0.1430667 0.6917097 1.0000000

> diff (ppois(c(-1, 0, 2, Inf), lambda = lambda.hat))
[1] 0.1430667 0.5486431 0.3082903

> chisqg.list <- gofTest (Benzene, test = "chisq",
dist = "pois", cut.points = c(-1, 0, 2, Inf))

> chisqg.list

Results of Goodness-of-Fit Test

Test Method: Chi-square GOF
Hypothesized Distribution: Poisson

Estimated Parameter(s): lambda = 1.944444
Estimation Method: mle/mme/mvue

Data: Benzene

Sample Size: 36

Test Statistic: Chi-square = 19.94695

Test Statistic Parameter: df =1

P-value: 7.962074e-06

Alternative Hypothesis: True cdf does not equal the

Poisson Distribution.

The p-value is essentially 0, so we have evidence that the assumption of a Poisson
distribution is not valid. Figure 7.7 shows companion plots to the test, created
with this command:

> plot(chisqg.list)
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Goodness-of-Fit Results for Benzene

Histogram for Benzene with Empirical CDF for Benzene (solid line)
Fitted Poisson Distribution ° with Fitted Poisson CDF (dashed line)
@ —
=} o @] |
o ©
> c |
o © [ -
g o 2ol |
L o |
w 5 [OR -—
o ° 2 ol
2 1 o |
8 o 2
e H = ST :
= Vl71_ e Bl ] fe] ol
© T T T 1 © T T T T T T T
0 5 10 15 2 4 6 8 10 12 14
Benzene Order Statistics for Benzene and
Poisson(lambda=1.9) Distribution
Q-Q Plot for Benzene Fitted to .
Poisson Distribution, with 0-1 Line Chi-square GOF
w |
- ° Hypothesized .
Distribution: Poisson
[}
S ° Estimated Parametrs: lambda = 1.9
g 4 ° Data: Benzene
% Sample Size: 36
38 Test Statistic: Chi-square = 20
E 5
§ Test Statistic Parameter: df=1
© P-value: 8e-06
o o0 00
o4
T T T T
0 5 10 15

Quantiles of Poisson(lambda = 1.9)

Fig. 7.7 Companion plots for chi-square goodness-of-fit test of Poisson distribution for
benzene concentrations
7.2.4  Two-Sample Goodness-of-Fit Test to Compare Samples

You can use the Kolmogorov-Smirnov test to test whether two sets of
observations appear to come from the exact same distribution. In Chap. 3, Sect.
3.7.3, we created a Q-Q plot comparing the Reference area and Cleanup area
TcCB concentrations based on the log-transformed data. The Kolmogorov-
Smirnov test yields a p-value of 0.013, so there is evidence that these two
distributions differ (Fig. 7.8).

> attach (EPA. 94b.tccb.df)
> log.TcCB.ref <- log(TcCB[Area=="Reference"])
> log.TcCB.clean <- log(TcCB[Area=="Cleanup"])

> ks.list <- gofTest(x = log.TcCB.ref, y = log.TcCB.clean,
test = "ks")

> ks.list
Results of Goodness-of-Fit Test

Test Method: 2-Sample K-S GOF
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7.3 One-, Two-, and k-Sample Comparison Tests

Frequently in environmental studies, we are interested in comparing con-
centrations to a standard, or comparing concentrations between two or more areas
(e.g., background versus potentially contaminated). R comes with several built-in
functions for performing standard hypothesis tests for one-, two-, and k-sample
comparisons (e.g., Student’s t-test, analysis of variance, etc.). Table 7.2 lists
additional functions available in ENVSTATS for comparing samples. See the help
files and Millard et al. (2014) for more detailed discussion of these functions.
In this section we’ll give examples of using the summaryStats and stripChart
functions to perform 2- and k-sample comparisons, as well as an example of
performing Chen’s modified t-test, and comparing a linear rank test with the
quantile test.

Comparison  Function Description
Type
Location summaryStats Summary statistics,

p-values, and confidence
intervals for mean or
pseudo-median
stripChart Strip chart with
confidence intervals for
mean or pseudo-median
chenTTest Chen’s modified one-

sample or paired t-test for
skewed data

oneSamplePermutationTest Fisher’s one-sample
permutation test for
location

twoSamplePermutationTestLocation Two-sample or paired

permutation test to
compare locations

signTest Sign test for one-sample
or paired data
twoSampleLinearRankTest Two-sample linear rank test
Quantile quantileTest Quantile test for a shift in
the tail
Proportion twoSamplePermutationTestProportion Two-sample or paired

permutation test to
compare proportions

Variance varTest One-sample chi-square
test on variance, or two-
sample F test for equal
variances

varGroupTest Levene’s or Bartlett’s test
for equal variances among
k populations

Table 7.2 Functions in ENVSTATS for comparison tests
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7.3.1 Two- and k-Sample Comparisons for Location

The EnvStats function summaryStats not only displays basic summary
statistics in a nice format, but it also allows you to perform standard tests for two-
sample or k-sample comparisons. In Chap. 1 we looked at summary statistics and
plots comparing the TcCB data in the Reference and Cleanup areas. Here we’ll
perform some hypothesis tests to compare the concentrations in these two
areas. Here are the standard two-sample t-test results for the log-transformed
concentrations:

> summaryStats (log(TcCB) ~ Area, data = EPA.94b.tccb.df,
digits = 2, p.value = TRUE, stats.in.rows = TRUE)

Cleanup Reference Combined

N 77 47 124

Mean -0.55 -0.62 -0.57
SD 1.36 0.47 1.11
Median -0.84 -0.62 -0.72
Min -2.41 -1.51 -2.41
Max 5.13 0.29 5.13
p.value.between 0.73
95%.LCL.between -0.48
95%.UCL.between 0.34

In Chap. 1 we noted that most of the observations in the Cleanup area are
comparable to (or even smaller than) the observations in the Reference area, but
there are a few very large “outliers” in the Cleanup area. By default, when the
argument p.value is set to TRUE and there are two groups, the p-value is based
on Student’s t-test assuming equal variances (which is not the default behavior of
the built in R function t.test). In this example the standard deviation in the
Cleanup area is more than twice the standard deviation in the Reference area, so
now we’ll perform the test allowing for different variances in the two groups:

> summaryStats (log(TcCB) ~ Area, data = EPA.94b.tcch.df,
digits = 2, p.value = TRUE, stats.in.rows = TRUE,
test.arg.list = list(var.equal = FALSE))

Cleanup Reference Combined

N 77 47 124

Mean -0.55 -0.62 -0.57
SD 1.36 0.47 1.11
Median -0.84 -0.62 -0.72
Min -2.41 -1.51 -2.41
Max 5.13 0.29 5.13
Welch.p.value.between 0.67
95%.LCL.between -0.41

95%.UCL.between 0.26
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Even allowing for different variances, the t-test does not provide evidence of a
difference in the mean value between the two areas. When there are more than
two groups, by default a standard analysis of variance F-test is performed. Instead
of performing the t-test or F-test, you can set test="nonparametric" to
perform the Wilcoxon or Kruskal-Wallis rank sum test.

In Chap. 1 we used the function stripChart to produce one-dimensional
scatterplots of the log-transformed TcCB data by area, along with confidence
intervals for the means (Fig. 1.1). You can also display the results of testing for a
difference between the two means (Fig. 7.9):

> stripChart (log(TcCB) ~ Area, data = EPA.94b.tccbh.df,
col = c("red", "blue"), p.value = TRUE,
ylab = "Log [ TcCB (ppb) ]")

t-test p-value = 0.726; 95% Cl for Difference in Means: [-0.5, 0.3]

Mean=-0.5 Mean=-0.6
SD =14 SD =05

o

oo
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Fig. 7.9 One-dimensional scatterplots, 95 % confidence intervals for the means, and results
of Student’s t-test comparing TcCB concentrations at Reference and Cleanup areas

As with summaryStats, when you set p.value=TRUE in the call to
stripChart and there are two groups, the standard two-sample t-test is per-
formed, and when there are more than two groups a standard analysis of variance
F-test is performed. Setting test="nonparametric" will compute the
Wilcoxon or Kruskal-Wallis rank sum test instead.
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7.3.2 Chen’s Modified One-Sample t-Test for Skewed Data

Student’s t-test, Fisher’s one-sample permutation test, and the Wilcoxon signed
rank test all assume that the underlying distribution is symmetric about its mean.
Chen (1995b) developed a modified t-statistic for performing a one-sided test of
hypothesis on the mean of a skewed distribution. For the case of a positively
skewed distribution, her test can be applied to the upper one-sided alternative
hypothesis (i.e., Hy: n < o vs. H,: u> o). For the case of a negatively skewed
distribution, her test can be applied to the lower one-sided alternative hypothesis
(i.e., Hy: p>po vs. H,;: p<pg). Since environmental data are usually positively
skewed, her test would usually be applied to the case of testing the upper one-
sided hypothesis.

The guidance document Calculating Upper Confidence Limits for Exposure
Point Concentrations at Hazardous Waste Sites (USEPA 2002d, Exhibit 9, p. 16)
contains an example of 60 observations from an exposure unit (Fig. 7.10). In
ENVSTATS these data are stored in the vector EPA.02d.Ex.9.mg.per.L.vec.

> hist (EPA.02d.Ex.9.mg.per.L.vec, col = "cyan",
xlab = "Concentration (mg/L)", main = "")
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Fig. 7.10 Concentrations at exposure unit from Exhibit 9 of USEPA (2002d)

The Shapiro-Wilk goodness-of-fit test rejects the null hypothesis of a normal
distribution and a lognormal distribution.
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> gofTest (EPA.02d.Ex.9.mg.per.L.vec) Sp.value

[1] 2.496781le-12

> gofTest (EPA.02d.Ex.9.mg.per.L.vec, dist = "lnorm")Sp.value
[1] 3.349035e-09

In this example we will use Chen’s modified t-test to test the null hypothesis that
the average concentration is less than 30 mg/L versus the alternative that it is
greater than 30 mg/L.

> chenTTest (EPA.02d.Ex.9.mg.per.L.vec, mu = 30)

Results of Hypothesis Test

Null Hypothesis: mean = 30
Alternative Hypothesis: True mean is greater than 30
Test Name: One-sample t-Test

Modified for
Positively-Skewed Distributions
(Chen, 1995)

Estimated Parameter(s): mean = 34.566667
sd = 27.330598
skew = 2.365778
Data: EPA.02d.Ex.9.mg.per.L.vec
Test Statistic: t = 1.574075
Test Statistic Parameter: df = 59
P-values: Z = 0.05773508
t = 0.06040889

Avg. of z and t = 0.05907199

Confidence Interval for: mean
Confidence Interval Method: Based on z
Confidence Interval Type: Lower

o

Confidence Level: 95%
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Confidence Interval: LCL = 29.82
UCL = Inf

The estimated mean, standard deviation, and skew are 35, 27, and 2.4, res-
pectively. The p-value is 0.06, and the lower 95 % confidence interval is [29.8, o).
Depending on what you use for your Type I error rate, you may or may not want
to reject the null hypothesis.

The presentation of Chen’s (1995b) method in USEPA (2002d) and Singh et
al. (2010b, p. 52) is incorrect for two reasons: it is based on an intermediate
formula instead of the actual statistic that Chen proposes, and it uses the inter-
mediate formula to computer an upper confidence limit for the mean when the
sample data are positively skewed. As explained above, for the case of positively
skewed data, Chen’s method is appropriate to test the upper one-sided alternative
hypothesis that the population mean is greater than some specified value, and a
one-sided upper alternative corresponds to creating a one-sided lower confidence
limit, not an upper confidence limit (see, for example, Millard and Neerchal 2001,
p-371).

7.3.3  Two-Sample Linear Rank Tests and the Quantile Test

The Wilcoxon rank sum test is an example of a two-sample linear rank test.
A linear rank test can be written as follows:

n
L=>a(Ry;) (7.1)
i=1

where n; denotes the number of observations in group 1, R;; denotes the rank of
the ith observation in group 1, and a() is some function that is called the score
Sfunction. A linear rank test is based on the sum of the scores for group 1. For the
Wilcoxon rank sum test, the function a() is simply the identity function. Other
functions may work better at detecting a small shift in location, depending on
the shape of the underlying distributions. See the ENvSTATS help file for
twoSampleLinearRankTest for more information.

The Wilcoxon rank sum test and other linear rank tests for shifts in location are
all designed to detect a shift in the whole distribution of group 1 relative to the
distribution of group 2. Sometimes, we may be interested in detecting a difference
between the two distributions where only a portion of the distribution of group 1 is
shifted relative to the distribution of group 2. The mathematical notation for this
kind of shift is:

F(t) = (1-¢) /(1) + eF(t) , —o<t<o (7.2)

where F denotes the cumulative distribution function (cdf) of group 1, F, denotes
the cdf of group 2, and € denotes a fraction between 0 and 1. In the statistical
literature, the distribution of group 1 is sometimes called a “contaminated”
distribution, because it is the same as the distribution of group 2, except it is
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partially contaminated with another distribution. If the distribution of group 1 is
partially shifted to the right of the distribution of group 2, F3 denotes a cdf such
that

F(t) < FK(1) , —o<t<o (7.3)

with a strict inequality for at least one value of 7. If the distribution of group 1 is
partially shifted to the left of the distribution of group 2, F; denotes a cdf such that

F(t) 2 F(1) , —o<t<o (7.4)

with a strict inequality for at least one value of 7.

The quantile test is a two-sample rank test to detect a shift in a proportion of
one population relative to another population (Johnson et al. 1987). Under the
null hypothesis, the two distributions are the same. If the alternative hypothesis
is that the distribution of group 1 is partially shifted to the right of the distribution
of group 2, the test combines the observations, ranks them, and computes &, which
is the number of observations from group 1 out of the r largest observations. The
test rejects the null hypothesis if & is too large.

In Chap. 1, Sect. 1.11.9, we compared the Reference area and Cleanup area
TcCB concentrations using both the Wilcoxon rank sum test and the quantile test.
The Wilcoxon rank sum test yields a p-value of 0.88, whereas the quantile test
yields a p-value of 0.01. These results are not surprising, considering the
histograms of the data shown in Fig. 1.2 in Sect. 1.11.3.

7.4 Testing for Serial Correlation

You can test for the presence of serial correlation in a time series or set of resi-
duals from a linear fit using the ENVSTATS function serialCorrelationTest.
You can test for the presence of lag-one serial correlation using either the rank von
Neumann ratio test, the normal approximation based on the Yule-Walker estimate
of lag-one correlation, or the normal approximation based on the MLE of lag-one
correlation. Only the last method, however, allows for missing values in the time
series. See the help file for serialCorrelationTest and Millard et al.
(2014) for examples of testing for serial correlation.

7.5 Testing for Trend

Often in environmental studies we are interested in assessing the presence or
absence of a long term trend. A parametric test for trend involves fitting a linear
model that includes some measure of time as one of the predictor variables, and
possibly allowing for serially correlated errors in the model. The Mann-Kendall
test for trend (Mann 1945) is a nonparametric test for trend that does not assume
normally distributed errors. Hirsch et al. (1982) introduced a modification of this
test they call the seasonal Kendall test. This test allows for seasonality and
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possibly serially correlated observations as well. Parametric and nonparametric
tests for trend are described in detail in Millard et al. (2014). Table 7.3 lists the
functions available in ENVSTATS for nonparametric tests for trend.

Function Description

kendallTrendTest Nonparametric test for monotonic trend based on
Kendall’s tau statistic

kendallSeasonalTrendTest Nonparametric test for monotonic trend within each

season based on Kendall’s tau statistic. Allows for
serial correlation as well

Table 7.3 Functions in ENVSTATS for nonparametric tests for trend

7.5.1 Testing for Trend in the Presence of Seasons

Figure 7.11 displays monthly estimated total phosphorus mass (mg) within a water
column at station CB3.3e for the 5-year time period October 1984—September
1989 from a study on phosphorus concentration conducted in the Chesapeake Bay
(Neerchal and Brunenmeister 1993). In ENVSTATS these data are stored in the data
frame Total.P.df.

Total P (mg)

1985 1986 1987 1988 1989

Time

Fig. 7.11 Monthly estimated total phosphorus mass (mg) within a water column at station
CB3.3e in the Chesapeake Bay
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> Total.P.df

CB3.1 CB3.3e Month Year
1 5.6330 2.30034 Oct 1984
2 3.6457 1.81900 Nov 1984

59 6.8030 3.75360 Aug 1989
60 6.2471 2.41853 Sep 1989
Figure 7.11 was created with these commands:

> with(Total.P.df, plot(CB3.3e, type = "o", xaxt = "n",
xlab = "Time", ylab = "Total P (mg)"))

> with(Total.P.df, axis(l, at = (l:length(CB3.3e)) [
Month == "Jan"], labels = Year[Month == "Jan"]))
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These data display seasonal variation, so we need to account for this while

testing for trend. Here are the results of the seasonal Kendall test for trend:

> kendallSeasonalTrendTest (CB3.3e ~ Month + Year,
data = Total.P.df)

Results of Hypothesis Test

Null Hypothesis: All 12 values of tau = 0

Alternative Hypothesis: The seasonal taus are not all equal

(Chi-Square Heterogeneity Test)

At least one seasonal tau != 0

and all non-zero tau's have the

same sign (z Trend Test)

Test Name: Seasonal Kendall Test for Trend

(with continuity correction)

Estimated Parameter (s): tau -0.3333333
slope = -0.2312000
intercept = 346.5468681

Estimation Method: tau: Weighted Average of

Seasonal Estimates
slope: Hirsch et al.'s
Modification of

Thiel/Sen Estimator

intercept: Median of
Seasonal Estimates

Data: y = CB3.3e
season = Month
year = Year

Data Source: Total.P.df
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Sample Sizes:

Test Statistics:

Test Statistic Parameter:

P-values:

Confidence

Confidence

Confidence

Confidence

Confidence

Interval for:

Interval Method:

Interval Type:
Level:

Interval:

Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep

Total =

Chi-Square (Het)
z (Trend)

df =

Chi-Square (Het)
z (Trend)

slope

Il
[IE, NE IE IC, IEINE, NE, I NC, NE IE )|

|
o

4.480000
-2.757716

11

0.953720141
0.005820666

Gilbert's Modification of
Theil/Sen Method

two-sided

95%

LCL =
UCL =

-0.36162682
-0.05569319

The estimated annual trend is —0.23 mg/year, i.e., a yearly decrease in total
phosphorus. The p-value associated with the seasonal Kendall test for trend is
p =0.0006, indicating this is statistically significant. The two-sided 95 % con-
fidence interval for the trend is [—0.36, —0.06]. The chi-square test for hetero-
geneity (i.e., is the trend different for different seasons?) yields a p-value of 0.95,
so there is no evidence of different amounts of trend within different seasons.

7.6 Summary

e R contains

several functions for performing classical statistical

hypothesis tests, such as t-tests, analysis of variance, linear regression,
nonparametric tests, quality control procedures, and time series analysis
(see the R documentation and help files).

e ENVSTATS contains functions for some statistical tests that are not
included in R but that are often used in environmental statistics

e Table 7.1 lists functions available in ENVSTATS for performing goodness-
of-fit tests.
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Table 7.2 lists functions available in ENVSTATS for performing one-, two-
and k-sample comparison tests.

You can test for the presence of serial correlation in a time series or
set of residuals from a linear fit using the ENVSTATS function
serialCorrelationTest.

Table 7.3 lists the functions available in ENVSTATS for performing
nonparametric tests for trend.



Chapter 8

Censored Data

8.1 Introduction

Often in environmental data analysis values are reported simply as being “below
detection limit” along with the stated detection limit (e.g., Helsel 2012; Porter
et al. 1988; USEPA 1992c¢, 2001, 2002a, d, 2009; Singh et al. 2002, 2006, 2010b).
A sample of data contains censored observations if some of the observations are
reported only as being below or above some censoring level. Although this results
in some loss of information, we can still use data that contain nondetects for
graphical and statistical analyses. Statistical methods for dealing with censored
data have a long history in the fields of survival analysis and life testing (e.g.,
Hosmer et al. 2008; Kleinbaum and Klein 2011; Nelson 2004). In this chapter, we
will discuss how to create graphs, estimate distribution parameters and quantiles,
construct prediction and tolerance intervals, perform goodness-of-fit tests, and
compare distributions using censored data. See Helsel (2012) and Millard et al.
(2014) for a more in-depth discussion of analyzing environmental censored data.

8.2 Classification of Censored Data

There are four major ways to classify censored data: truncated versus censored,
left versus right versus double, single versus multiple (progressive), and censored
Type I versus censored Type II (Cohen 1991). Most environmental data sets with
nondetect values are either Type I left singly censored or Type I left multiply
censored.

A sample of N observations is left singly censored (also called singly censored
on the left) if ¢ observations are known only to fall below a known censoring level
T, while the remaining n (n = N—c) uncensored observations falling above T are
fully measured and reported.

A sample is singly censored (e.g., singly left censored) if there is only one
censoring level 7. A sample is multiply censored or progressively censored (e.g.,
multiply left censored) if there are several censoring levels 73, 75, ..., T,, where
I'<T,<..<T,

A censored sample has been subjected to Type I censoring if the censoring
level(s) is(are) known in advance, so that given a fixed sample size N, the number
of censored observations ¢ (and hence the number of uncensored observations r)
is a random outcome. Type I censored samples are sometimes called time-
censored samples (Nelson 1982).

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 175
DOI 10.1007/978-1-4614-8456-1 8, © Springer Science+Business Media New York 2013
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8.3 Functions for Censored Data

Table 8.1 lists the functions available in ENVSTATS for analyzing censored data.

Function Description

ppointsCensored Compute plotting positions based on censored data

ecdfPlotCensored Empirical CDF based on censored data

cdfCompareCensored Compare an empirical CDF to a hypothesized CDF, or
compare two CDFs, based on censored data

ggPlotCensored Q-Q plot based on censored data

boxcoxCensored Determine an optimal Box-Cox transformation based
on censored data

eabbCensored Estimate the parameters of the distribution with the

abbreviation abb based on censored data, and optionally
construct a confidence interval for the parameters

egnormCensored Estimate the quantiles of the normal or lognormal
eqglnormCensored distribution based on censored data, and optionally

construct a confidence interval for a quantile
tolIntNormCensored Create a tolerance interval for the normal or lognormal
tolIntLnormCensored distribution based on censored data
gofTestCensored Shapiro-Wilk, Shapiro-Francia, and PPCC goodness-

of-fit tests for normality for censored data
twoSamplelLinear Two-sample linear rank test based on censored data

RankTestCensored

Table 8.1 Functions in ENVSTATS for analyzing censored data

8.4 Graphical Assessment of Censored Data

In Chap. 3 we illustrated several ways of creating graphs for a single variable,
including histograms, quantile (empirical cdf) plots, and probability (Q-Q) plots.
When you have censored data, creating a histogram is not necessarily straight-
forward (especially with multiply censored data), but you can create quantile plots
and probability plots, as well as determine “optimal” Box-Cox transformations
(see Table 8.1).

8.4.1 Quantile (Empirical CDF) Plots for Censored Data

In Chap. 3 we explained that a quantile plot (also called an empirical cumulative
distribution function plot or empirical cdf plot) plots the ordered data (the empirical
quantiles) on the x-axis versus the estimated cumulative probabilities (or plotting
positions) on the y-axis. Various formulas for the plotting positions are given in
Millard et al. (2014) and the help file for ecdfPlot. When you have censored
data, the formulas for the plotting positions must be modified. For right-censored
data, various formulas for the plotting positions are given by Kaplan and Meier
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(1958), Nelson (1972), and Michael and Schucany (1986). For left-censored data,
formulas for the plotting positions are given by Michael and Schucany (1986),
Hirsch and Stedinger (1987), USEPA (2009), and Helsel (2012).

When you have Type I left-censored data with only one censoring level, and
all of the uncensored observations are larger than the censoring level, the compu-
tation of the plotting positions is straightforward because it is easy to order the
uncensored observations. When you have one or more uncensored observations with
values less than one or more of the censoring levels, then the computation of the
plotting positions becomes a bit trickier. The help file for ppointsCensored
in ENVSTATS gives a detailed explanation of the formulas for the plotting positions
for censored data.

Silver concentrations (ug/L)

<0.1 <0.1 0.1 0.1 <0.2 <0.2 <0.2 <0.2 0.2
<0.3 <0.5 0.7 0.8 <1 <1 <1 <1 <1
<1 <1 <1 <1 <1 1 1 1 1.2
1.4 1.5 <2 2 2 2 2 <2.5 2.7
3.2 4.4 <5 <5 <5 <5 5 <6 <10
<10 <10 <10 <10 10 <20 <20 <20 <25
90 560

Table 8.2 Silver concentrations from an interlab comparison (Helsel and Cohn 1988)

Table 8.2 displays 56 silver concentrations (pg/L) from an interlab comparison
that include 34 values below one of 12 detection limits (Helsel and Cohn 1988).
These data are stored in the data frame Helsel.Cohn.88.silver.df in
EnvStats. Figure 8.1 displays the empirical cdf plot for the silver data. This plot
indicates the data are extremely skewed to the right. This is not surprising since
looking at the data in the table we see that all of the observations are less than
25 ng/L except for two that are 90 and 560 pg/L. Figure 8.2 displays the quantile
plot based on the log-transformed observations. In both of these plots, the upside-
down triangles indicate the censoring levels of observations that have been
censored. The figures were created with these commands:

> with (Helsel.Cohn.88.silver.df,
ecdfPlotCensored (Ag, Censored,
xlab = expression (paste("Ag (", mu, "g/L)",
sep = "")), include.cen = TRUE))

> with (Helsel.Cohn.88.silver.df,
ecdfPlotCensored(log.Ag, Censored,
xlab = expression (paste("log [ Ag (", mu, "g/L) 1",
sep = "")), include.cen = TRUE))



178 8. Censored Data

e |
Y[
©
24
y
=
JERR
[<
o ¥
o
= ¥
©
> ¥
£ o
3
(]
v
N
g
o
S+
T T T T T T
0 100 200 300 400 500
Ag (ug/L)

Fig. 8.1 Empirical cdf plot of the silver data using the method of Michael and Schucany
(1986)
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Fig. 8.2 Empirical cdf plot of the log-transformed silver data
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8.4.2 Comparing an Empirical and Hypothesized CDF
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Fig. 8.3 Empirical cdf of the silver data with a fitted lognormal distribution
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Fig. 8.4 Empirical cdf of the log-transformed silver data with a fitted normal distribution
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Figure 8.3 compares the empirical cdf of the silver data with a lognormal cdf,
where the parameters for the lognormal distribution are estimated from the data
(see the Sect. 8.5 later in this chapter). Figure 8.4 compares the log-transformed
silver data with a normal distribution. The figures were created with these com-
mands:

> with (Helsel.Cohn.88.silver.df,
cdfCompareCensored (Ag, Censored, distribution = "lnorm",
xlab = expression(paste("Ag (", mu, "g/L)", sep = ""))))

> with (Helsel.Cohn.88.silver.df,
cdfCompareCensored (log (Ag), Censored, distribution="norm",
xlab = expression(paste("log [ Ag (", mu, "g/L) ]",
sep = ""))))

The plots appear to show that the lognormal distribution provides an adequate fit
to these data but the Shapiro-Francia goodness-of-fit test for lognormality yields a
p-value of 0.03 (see the Sect. 8.9.1 later in this chapter).

8.4.3 Comparing Two Empirical CDFs

Table 8.3 displays copper concentrations (ug/L) in shallow groundwater samples
from two different geological zones in the San Joaquin Valley, California (Millard
and Deverel 1988). The alluvial fan data include four different detection limits
and the basin trough data include five different detection limits. In ENVSTATS the-
se data are stored in the data frame Millard.Deverel.88.df. Figure 8.5
compares the empirical cdf of copper concentrations from the alluvial fan zone
with those from the basin trough zone. This plot shows that the two distributions
are fairly similar in shape and location.

Zone Copper (ug/L)
Alluvial fan <l <1 <1 <1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 3 3 3
3 3 3 4 4 4 <5 <5 <5 <5 b
<5 <5 <5 5 5 5 7 7 7 8 9
<10 <10 <10 10 11 12 16 <20 <20 20 NA
NA NA
Basin trough <1l <1 1 1 1 1 1 1 1 <2 <2
2 2 2 2 3 3 3 3 3 3 3
3 4 4 4 4 4 <5 <5 <5 <5 b
5 6 6 8 9 9 <10 <10 <10 <10 12
14 <15 15 17 23 NA

Table 8.3 Copper concentrations in shallow groundwater in two geological zones

> attach (Millard.Deverel.88.df)

> Cu.Alluvial <- Cu[Zone == "Alluvial.Fan'"]
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> Cu.Alluvial.cen <- Cu.censored[Zone == "Alluvial.Fan'"]
> Cu.Basin <- Cu[Zone == "Basin.Trough"]
> Cu.Basin.cen <- Cu.censored[Zone == "Basin.Trough"]

> cdfCompareCensored (Cu.Alluvial, censored = Cu.Alluvial.cen,
y = Cu.Basin, y.censored = Cu.Basin.cen)
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Order Statistics for Cu.Alluvial and Cu.Basin

Fig. 8.5 Empirical CDFs of copper concentrations in the alluvial fan and basin trough zones

8.4.4 Q-Q Plots for Censored Data

In Chap. 3 we explained that a probability plot (also called a quantile-quantile or
Q-Q plot) plots the ordered data (the empirical quantiles) on the y-axis versus the
corresponding quantiles from the assumed theoretical probability distribution on
the x-axis, where the quantiles from the assumed distribution are computed based
on the plotting positions. As is the case for empirical cdf plots, when you have
censored data, the formulas for the plotting positions must be modified.

Table 8.4 presents artificial TcCB concentrations based on the Reference area
TcCB data presented in Sect. 1.11.1 of Chap. 1. For this data set, the concentra-
tions of TcCB less than 0.5 ppb have been recoded as “<0.5,” so there are 19
censored observations, 28 uncensored observations, and a total sample size of 47.
In ENVSTATS these data are stored in the data frame Modified.TcCB.df.
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TcCB concentrations (ppb)

<0.5 <0.
<0.5 <0.
<0.5 <0
0.56 0.
0.69 0
0.89 1.

5 <0.5 <0.
5 <0.5 <0.
.5 <0.5 0.
56 0.57 0
.72 0.74 0
11 1.13 1

5
5
5
.57
.76
.14

<0.5 <0.
<0.5 <0
0.5 0
0.6 0
0.79 0
1.14 1

5
.5
.51
.62
.81
.2

<0.
<0.
0.

0.
0.
1.

5
5
52
63
82
33

<0.5

<0.5
0.54
0.67
0.84

Table 8.4 Modified Reference area TcCB concentrations

Figure 8.6 shows the normal Q-Q plot for the log-transformed modified TcCB
data, created with this command:

> with (Modified.

distribution ="Ilnorm", add.line = TRUE,

points.col

Quantiles of Log [ TcCB ]

= "plue”))

T T
2 -1

T T
0 1

Quantiles of Normal(mean = 0, sd = 1)

TcCB.df, ggPlotCensored(TcCB, Censored,

Fig. 8.6 Normal Q-Q plot for the log-transformed singly left-censored TcCB data of Table
8.4 based on the method of Michael and Schucany (1986)

This plot indicates that the lognormal distribution appears to provide an adequate
fit to these data. This is not surprising since we already saw in Fig. 1.6 in Sect.
1.11.4 that a lognormal distribution provides a good fit to the original data.

The method that ggPlotCensored uses for computing quantiles is deter-
mined by the argument prob.method. The default value of prob.method is
Both Helsel (2012)

"michael-schucany" (Michael and Schucany 1986).
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and USEPA (2009) suggest two other methods: one based on Kaplan-Meier esti-
mates and one based on regression on order statistics (ROS). Setting the value of
prob.method to "kaplan-meier" uses the standard method of Kaplan-
Meier, and when prob.method equals "kaplan-meier with max" the
estimated cumulative probability associated with the maximum value is set to
(n—0.375)/(n + 0.25) rather than 1, where n denotes the sample size, i.e., the Blom
plotting position, so that the point associated with the maximum value can be dis-
played. The ROS method is also discussed below in Sect. 8.5. Other possible
values of prob.method include "nelson" (for right-censored data only) and
"hirsch-stedinger". See the help file for gqgPlotCensored for details.

8.4.5 Box-Cox Transformations for Censored Data

In Chap. 3 we discussed using Box-Cox transformations as a way to satisfy
normality assumptions for standard statistical tests, and also sometimes to satisfy
the linear assumption and/or the constant variance in the errors assumption for
a standard linear regression model. We also discussed three possible criteria to
use to decide on the power of the transformation: the probability plot correlation
coefficient (PPCC), the Shapiro-Wilk goodness-of-fit test statistic, and the log-
likelihood function. This idea can be extended to the case of censored data (e.g.,
Shumway et al. 1989). See the help file for boxcoxCensored for details.

PPCC
0.97 0.98
1 1

0.96
1
o

0.95
1

Fig. 8.7 Probability plot correlation coefficient versus Box-Cox transform power (A) for the
singly censored TcCB data of Table 8.4
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Figure 8.7 displays a plot of the probability plot correlation coefficient versus
various values of the transform power A for the singly censored TcCB data shown
in Table 8.4, created with these commands:

> boxcox.list <- with (Modified.TcCB.df,
boxcoxCensored (TcCB, Censored))

> plot (boxcox.1ist)

For these data, the PPCC reaches its maximum between about A = 0 (log transfor-
mation) and A = 0.5 (square-root transformation). We saw a similar pattern for the
original Reference area TcCB data in Fig. 3.8 in Sect. 3.8, although in that figure
the maximum appeared at about A = 0.

8.5 Estimating Distribution Parameters

In Chap. 5 we illustrated how to use ENVSTATS to estimate distribution parameters
and quantiles, and also create confidence intervals for these quantities. Methods
for estimating parameters include maximum likelihood, method of moments, and
minimum variance unbiased. It is fairly straightforward to extend maximum likeli-
hood estimation to the case of censored data (e.g., Cohen 1991; Schneider 1986).
More recently, researchers in the environmental field have proposed alternative
methods of computing estimates and confidence intervals in addition to the classical
ones such as maximum likelihood estimation. See Helsel (2012) and Millard et al.
(2014) for details.

8.5.1 The Normal and Lognormal Distribution
Estimating Parameters

The function enormCensored estimates the mean and standard deviation of
a normal distribution based on Type I censored data, and optionally constructs a
confidence interval for the mean. The function elnormCensored does the
same thing assuming a lognormal distribution and estimating the mean and stand-
ard deviation on the log-scale. These functions both take an argument called
method that determines what estimation method is used. Table 8.5 lists the esti-
mation methods available along with references. The half censoring level method
(method="half.cen.level") in which left-censored observations are set to
half the value of the censoring level associated with that observation is included
only for historical reasons and should never be used (e.g., Helsel 2012), except
perhaps in simulations to show how poorly it performs!

Chapter 15 of USEPA (2009) gives several examples of estimating the mean
and standard deviation of a lognormal distribution on the log-scale using manga-
nese concentrations (ppb) in groundwater at five background wells. In EnvStats
these data are stored in the data frame EPA.09.Ex.15.1.manganese.df.
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> EPA.09.Ex.15.1.manganese.df
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Sample Well Manganese.Orig.ppb Manganese.ppb Censored
1 1 Well.l <5 5.0 TRUE
2 2 Well.1l 12.1 12.1 FALSE
24 4 Well.5 8.4 8.4 FALSE
25 5 Well.5 <2 2.0 TRUE
> longToWide (EPA.09.Ex.15.1.manganese.df,

"Manganese.Orig.ppb", "Sample", "Well",

paste.row.name = TRUE)

Well.l Well.2 Well.3 Well.4 Well.5

Sample.1l <5 <5 <5 6.3 17.9
Sample.2 12.1 7.7 5.3 11.9 22.7
Sample.3 16.9 53.6 12.6 10 3.3
Sample. 4 21.6 9.5 106.3 <2 8.4
Sample.5 <2 45.9 34.5 77.2 <2
Value of method Common name References

mle

bcmle

qg.reg

gg.reg.w.cen.level

impute.w.qq.reg

impute.w.qgqg.reg.w.
cen.level

impute.w.mle

iterative.impute.w.

qg.reg
m.est

half.cen.level

Maximum likelihood estimator
(MLE)

Bias-corrected MLE

Q-Q regression.

Also called probability plot
method, and regression on or-
der statistics (ROS).

Q-Q regression

with censoring level
Imputation with Q-Q Regres-
sion. Also called robust re-
gression on order statistics
(Robust ROS)

Impute with Q-Q regression
with censoring level

Impute with MLE

Iterative imputation with
Q-Q regression
Robust M estimation

Half censoring level

Cohen (1959, 1991)

Saw (1961b), Schneider
(1986), Haas and Scheff
(1990), Bain and Engelhardt
(1991)

Nelson (1982), Gilbert (1987),
Hass and Scheff (1990), Travis
and Land (1990), Helsel and
Hirsch (1992)

El-Shaarawi (1989)

Hashimoto and Trussell
(1983), Gilliom and Helsel
(1986), El-Shaarawi (1989),
Helsel (2012)

El-Shaarawi (1989)

El-Shaarawi (1989)
Gleit (1985)

Korn and Tyler (2001)

Gleit (1985), Haas and Scheff
(1990), El-Shaarawi and
Esterby (1992)

Table 8.5 Available methods for estimating the parameters of a normal distribution based
on censored data using the functions enormCensored or elnormCensored
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Here we will estimate the mean and standard deviation using the MLE, Q-Q
regression (also called parametric regression on order statistics or ROS; e.g.,
USEPA 2009 and Helsel 2012), and imputation with Q-Q regression (also called
robust ROS). The command to estimate the parameters using the MLE method is:

> with(EPA.09.Ex.15.1.manganese.df,
elnormCensored (Manganese.ppb, Censored))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Lognormal

Censoring Side: left

Censoring Level (s) : 25

Estimated Parameter(s) : meanlog = 2.215905
sdlog = 1.356291

Estimation Method: MLE

Data: Manganese.ppb

Censoring Variable: Censored

Sample Size: 25

Percent Censored: 24%

The commands to estimate the parameters based on Q-Q regression (ROS) and
imputation with Q-Q regression (robust ROS) are, respectively:

> with(EPA.09.Ex.15.1.manganese.df,
elnormCensored (Manganese.ppb, Censored,
method = "ggq.reg"))

> with(EPA.09.Ex.15.1.manganese.df,
elnormCensored (Manganese.ppb, Censored,
method = "impute.w.qq.reg"))

The estimated mean and standard deviation are 2.29 and 1.28 ppb based on Q-Q
regression, and 2.30 and 1.24 ppb based on imputation with Q-Q regression.

As explained in Sect. 8.4.4, the method used to estimate quantiles for
a Q-Q plot is determined by the argument prob.method. For the functions
enormCensored and elnormCensored, for any estimation method that
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involves Q-Q regression, the default value of prob.method is "hirsch-
stedinger" and the default value for the plotting position constant is
plot.pos.con=0.375. Both Helsel (2012) and USEPA (2009) also use the
Hirsch-Stedinger probability method but set the plotting position constant to O.
In this case the estimated mean and standard deviation are 2.28 and 1.26 ppb.

> with(EPA.09.Ex.15.1.manganese.df,
elnormCensored (Manganese.ppb, Censored,
method = "impute.w.qq.reg", plot.pos.con = 0))

Computing a Confidence Interval for the Mean

The functions enormCensored and elnormCensored take an argument
called ci.method that determines what method is used to construct a confidence
interval for the mean. Table 8.6 lists the available methods along with references.

Value of ci.method Common name References
profile.likelihood Profile likelihood Venzon and
Moolgavkar (1988)
normal.approx Normal approximation Cohen (1959, 1991)
normal .approx.w.cov Normal approximation using Schneider (1986)

variance-covariance of pa-
rameter estimates

bootstrap Bootstrap Efron and Tibshirani (1993)
gpa Generalized pivotal quantity Schmee et al. (1985),
Krishnamoorthy and
Mathew (2009)

Table 8.6 Available methods for constructing a confidence interval for the mean of a
normal distribution based on censored data

Here is the command to produce a 95 % confidence interval for the mean of the
manganese data using the MLE method to estimate the parameters and the profile
likelihood method to produce the confidence interval:

> with(EPA.09.Ex.15.1.manganese.df,
elnormCensored (Manganese.ppb, Censored, ci = TRUE))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Lognormal
Censoring Side: left

Censoring Level (s) : 25
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Estimated Parameter(s):

Estimation Method:

meanlog
sdlog

MLE

2.215905
= 1.356291

Data: Manganese.ppb
Censoring Variable: Censored
Sample Size: 25
Percent Censored: 24%
Confidence Interval for: meanlog
Confidence Interval Method: Profile Likelihood
Confidence Interval Type: two-sided
Confidence Level: 95%
Confidence Interval: LCL = 1.595062

UCL = 2.771197

8.5.2 The Lognormal Distribution (Original Scale)

Value of method

Common name

References

mle

bcmle

qmvue

impute.w.qq.reg

impute.w.qgg.reg.w.
cen.level

impute.w.mle

half.cen.level

Maximum likelihood estimator
(MLE)
Bias-corrected MLE

Quasi-minimum variance un-
biased estimator (QMVUE)

Imputation with Q-Q regres-
sion. Also called robust re-
gression on order statistics
(robust ROS)

Impute with Q-Q regression
with censoring level

Impute with MLE
Half censoring level

Cohen (1959, 1991)

El-Shaarawi (1989)

Gilliom and Helsel (1986),
Newman et al. (1989), Cohn
etal. (1989)

Hashimoto and Trussell
(1983), Gilliom and Helsel
(1986), El-Shaarawi (1989),
Helsel (2012)

El-Shaarawi (1989)

El-Shaarawi (1989)

Gleit (1985), Haas and Scheff
(1990), El-Shaarawi and
Esterby (1992)

Table 8.7 Available methods for estimating the parameters of a lognormal distribution
based on censored data using the function elnormAltCensored
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The function elnormAltCensored estimates the mean and coefficient of
variation of a lognormal distribution on the original scale. Table 8.7 shows the
available estimation methods (as for the normal distribution, the half censoring
level method should only be used in simulations to show how poorly it performs),
and Table 8.8 shows the methods available for constructing a confidence interval
for the mean on the original scale.

Value of ci.method Common name References
profile.likelihood Profile likelihood Venzon and

Moolgavkar (1988)
cox Extension of Cox’s method to El-Shaarawi (1989)

censored data

delta Delta method Shumway et al. (1989)
normal.approx Normal approximation Cohen (1959, 1991)
bootstrap Bootstrap Efron and Tibshirani (1993)

Table 8.8 Available methods for constructing a confidence interval for the mean of
a lognormal distribution based on censored data

In Sect. 5.2.2 we estimated the mean TcCB concentration in the Reference
area as 0.6 ppb and the CV as 0.49, assuming the data come from a lognormal dis-
tribution. We also computed a two-sided 95% confidence intervals for the mean
as [0.52, 0.70]. There are 47 uncensored observations in this data set. The modi-
fied TcCB data shown in Table 8.4 include 19 censored observations. Using these
data, the estimated mean and CV are 0.61 and 0.46 based on the maximum likeli-
hood method, and the two-sided 95 % confidence interval for the mean is [0.53,
0.70] based on the profile likelihood method.

> with (Modified.TcCB.df,
elnormAltCensored (TcCB, Censored, ci = TRUE))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Lognormal

Censoring Side: left

Censoring Level (s) : 0.5

Estimated Parameter(s): mean = 0.6082981
cv = 0.4645955

Estimation Method: MLE
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Data: TcCB

Censoring Variable: Censored

Sample Size: 47

Percent Censored: 40.42553%

Confidence Interval for: mean

Confidence Interval Method: Profile Likelihood

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = 0.5292601
UCL = 0.7032881

8.5.3 The Gamma Distribution

The function egammaCensored estimates the shape and scale parameters of a
gamma distribution based on censored data, while the function
egammaAltCensored estimates the mean and coefficient of variation. Cur-
rently the only available method of estimation for these functions is maximum
likelihood estimation. Methods for constructing a confidence interval for the
mean include the normal approximation, bootstrap, and profile likelihood. Here is
the command to estimate the mean and CV and create a 95% confidence interval
for the mean using the modified TcCB data shown in Table 8.4:

> with (Modified.TcCB.df,
egammaAltCensored (TcCB, Censored, ci = TRUE))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Gamma
Censoring Side: left

Censoring Level (s) : 0.5
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Estimated Parameter(s): mean = 0.5981132
cv = 0.4739765

Estimation Method: MLE

Data: TcCB

Censoring Variable: Censored

Sample Size: 47

Percent Censored: 40.42553%

Confidence Interval for: mean

Confidence Interval Method: Profile Likelihood

Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = 0.5127789

UCL = 0.6895852

In this case, the estimated mean and CV and the confidence interval for the mean
are nearly identical to the values we saw in the previous section when we assumed
a lognormal distribution.

8.5.4 Estimating the Mean Nonparametrically

Formulas for the mean and the variance of the mean based on right-censored data
using the Kaplan-Meier estimate of the survival function are well known from the
survival analysis literature (e.g., Lee and Wang 2003). Helsel (2012) discusses
adapting these formulas for left-censored data as well in order to estimate the
mean nonparametrically and also to construct a confidence interval for the mean
based on a normal approximation. (He also notes you should not use this method
for left-censored data if there is only one censoring level since it is then equivalent
to substituting the detection limit for the censored observations.) You can imple-
ment these methods in EnvStats using the enparCensored function.

Following Example 15-1 in USEPA (2009, p. 15-10), we’ll use the manganese
data introduced in Sect. 8.5.1 to nonparametrically estimate the mean on the log-
scale and create a 95 % confidence interval for the mean:
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> with(EPA.09.Ex.15.1.manganese.df,
enparCensored (log (Manganese.ppb), Censored, ci = TRUE))

Results of Distribution Parameter Estimation

Based on Type I Censored Data

Assumed Distribution:

Censoring Side:

Censoring Level (s):

Estimated Parameter(s):

Estimation Method:

Data:

Censoring Variable:

Sample Size:

Percent Censored:

Confidence Interval for:

Confidence Interval Method:

Confidence Interval Type:

Confidence Level:

Confidence Interval:

The estimated mean and standard deviation, as well as the confidence interval for
the mean, are not too different from the results based on assuming a lognormal
distribution that were shown in Sect. 8.5.1 Of course, if you are estimating the
mean nonparametrically, there is no reason to use a log transformation to attempt
to induce normality; here is the command to estimate the mean and standard

deviation on the original scale:

None

left

0.6931472 1.6094379
mean = 2.3092890
sd = 1.1816102
se.mean = 0.1682862
Kaplan-Meier

log (Manganese.ppb)
Censored

25

24%

mean

Normal Approximation

two-sided

95%

LCL 1.979454
UCL = 2.639124
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> with(EPA.09.Ex.15.1.manganese.df,
enparCensored (Manganese.ppb, Censored, ci = TRUE))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: None

Censoring Side: left

Censoring Level (s): 2 5

Estimated Parameter(s): mean = 19.867000
sd = 25.317737

se.mean = 4.689888

Estimation Method: Kaplan-Meier

Data: Manganese.ppb
Censoring Variable: Censored

Sample Size: 25

Percent Censored: 24%

Confidence Interval for: mean

Confidence Interval Method: Normal Approximation
Confidence Interval Type: two-sided

Confidence Level: 95%

Confidence Interval: LCL = 10.67499

UCL = 29.05901

8.6 Estimating Distribution Quantiles

In Chap. 5 we illustrated how to estimate and construct confidence intervals
for population quantiles or percentiles, both parametrically and nonparametrically.
In this section we will discuss how to do this with censored data.
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8.6.1 Parametric Estimates of Quantiles

A parametric estimate of a quantile is a function of the estimated distribution pa-
rameters (e.g., mean and standard deviation). The same is true for a confidence
interval for the quantile. To estimate a quantile in the presence of censored obser-
vations, you can simply use the same formula for estimating the quantile as for
complete data, but estimate the distribution parameters using formulas that are
appropriate for censored data (e.g., USEPA 2009; Helsel 2012). If you use maxi-
mum likelihood estimation for the distribution parameters, then the resulting esti-
mate of the quantile is also a maximum likelihood estimate. Estimates of
quantiles based on other kinds of estimates of the distribution parameters (e.g.,
ROS, robust ROS, Kaplan-Meier, etc.) should have similar properties, but this is
an area that requires further research. Also, it is not clear how well this method
works for producing accurate confidence intervals for a quantile. An alternative
method for constructing a parametric confidence interval for a quantile that has
been shown to perform fairly well is based on generalized pivotal quantities or
GPQs (Krishnamoorthy and Mathew 2009).

The Normal and Lognormal Distribution

The EnvStats functions egnormCensored and eglnormCensored allow
you to estimate quantiles and construct intervals for them assuming a normal or
lognormal distribution, respectively. You can construct confidence intervals by
using the standard formulas for complete data and substituting in estimates of the
mean and standard deviation based on an appropriate formula for censored data,
or you can use the GPQ method.

Using the Reference area TcCB concentrations of Table 1.1 in Sect. 1.11.1, the
estimated 90th percentile is 0.98 ppb, assuming these data come from a lognormal
distribution. Also, the two-sided 95 % confidence interval for the 90th percentile
is [0.84, 1.22]. If instead we use the modified TcCB concentrations shown in
Table 8.4, the estimated 90th percentile is 0.97 using the MLE, and the two-sided
95 % confidence interval for the 90th percentile is [0.84, 1.19] using the standard
formula for complete data but plugging in the MLEs for the mean and standard
deviation, so in this case censoring does not have a large effect on the estimate or
confidence interval.

> with (Modified.TcCB.df,
eglnormCensored (TcCB, Censored, p = 0.9, ci = TRUE))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Lognormal

Censoring Side: left



Censoring Level (s):

Estimated Parameter(s):

Estimation Method:

Estimated Quantile(s):

Quantile Estimation Method:

Data:

Censoring Variable:

Sample Size:

Percent Censored:

Confidence Interval for:

Assumed Sample Size:

Confidence Interval Method:

Confidence Interval Type:

Confidence Level:

Confidence Interval:
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0.5
meanlog = -0.5948115
sdlog = 0.4420888
MLE

90'th %ile = 0.9721435

Quantile (s) Based on
MLE Estimators

TcCB

Censored

47

40.42553%

90'th %ile

47

Exact for
Complete Data

two-sided

95%

LCL = 0.8362336
UCL 1.1911067

To estimate the quantile based on distribution parameters estimated using imputa-
tion with Q-Q regression (robust ROS), and to compute the confidence interval us-
ing the method of generalized pivotal quantities, type this command:

> with (Modified.TcCB.df, eglnormCensored(TcCB, Censored,
p = 0.9, method = "impute.w.qq.reg", ci = TRUE,

ci.method = "gpqg", seed

47))
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Results of Distribution Parameter Estimation

Based on Type I Censored Data

Assumed Distribution:

Censoring Side:

Censoring Level (s):

Estimated Parameter(s):

Estimation Method:

Estimated Quantile(s):

Quantile Estimation Method:

Data:

Censoring Variable:

Sample Size:

Percent Censored:

Confidence Interval for:

Confidence Interval Method:

Number of Monte Carlos:

Confidence Interval Type:

Confidence Level:

Confidence Interval:

Lognormal

left

meanlog = -0.6098130
0.4604909

sdlog

Imputation with
0-0Q Regression (ROS)

90'th %ile = 0.980522
Quantile (s) Based on
Imputation with

Q0-Q Regression (ROS) Estimators
TcCB

Censored

47

40.42553%

90'th %ile

Generalized Pivotal Quantity
1000

two-sided

95%

LCL = 0.8462989
UCL 1.2525365
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The argument seed lets you set the seed for the random number generator used in
the Monte Carlo trials so you can reproduce the exact same results shown here.
Note that by default the GPQ method of constructing the confidence interval uses
only 1,000 Monte Carlo trials, whereas Krishnamoorthy and Mathew (2009)
suggest using 10,000 Monte Carlo trials.

Other Distributions

All of the available functions for estimating quantiles based on complete data (see
Sect. 5.3) accept objects that are the result of distribution parameter estimation, so
you can estimate distribution parameters based on censored data and supply these
results to functions that estimate quantiles based on complete data. (However, as
previously stated, it is not clear how well this method performs.) For example,
here is the command to estimate the 90th percentile using the modified TcCB
concentrations shown in Table 8.4 and assuming the data come from a gamma
distribution:

> egamma.list <- with (Modified.TcCB.df,
egammaCensored (TcCB, Censored))

> eggamma (egamma.list, p = 0.9)

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Gamma

Censoring Side: left

Censoring Level (s): 0.5

Estimated Parameter(s): shape = 4.4512947

scale = 0.1343684

Estimation Method: MLE
Estimated Quantile(s): 90'th %ile = 0.9779156
Quantile Estimation Method: Quantile(s) Based on

MLE Estimators

Data: TcCB

Censoring Variable: Censored



198 8. Censored Data

Sample Size: 47

Percent Censored: 40.42553%

8.6.2 Nonparametric Estimates of Quantiles

We saw in Chap. 5 that nonparametric estimates and confidence intervals for
population percentiles are simply functions of the ordered observations. Thus, for
left censored data, you can still estimate quantiles and create one-sided upper con-
fidence intervals as long as there are enough uncensored observations that can be
ordered in a logical way, just as we did in Sect. 5.3.4 using the nitrate data.

8.7 Prediction Intervals

In Chap. 6 we illustrated how to construct parametric and nonparametric predic-
tion intervals. In this section we will discuss how to do this with censored data.

8.7.1 Parametric Prediction Intervals

Just as for parametric estimates of a quantile, a parametric prediction interval is a
function of the estimated distribution parameters. To construct a parametric pre-
diction interval in the presence of censored observations, you can simply use the
same formula as for complete data, but estimate the distribution parameters using
formulas that are appropriate for censored data (e.g., USEPA 2009; Helsel 2012).
Again, it is not clear how well this method works for producing accurate predic-
tion intervals; this is an area that requires further research.

All of the available functions for constructing prediction intervals based on
complete data (see Sect. 6.2) accept objects that are the result of distribution pa-
rameter estimation, so you can estimate distribution parameters based on censored
data and supply these results to functions that compute prediction intervals based
on complete data. For example, in Sect. 6.2.4, we constructed a 95 % upper non-
parametric prediction interval for the next k£ =4 future monthly trichloroethylene
concentrations (ppb) in groundwater at a compliance well using the data from
three background wells shown in Table 6.3. Here are the commands to produce a
parametric version of this prediction interval assuming a normal distribution:

> enorm.list <- with(EPA.09.Ex.18.3.TCE.df,

enormCensored (TCE.ppb[Well.type == "Background"],
Censored[Well.type == "Background"]))
> predIntNorm(enorm.list, k = 4, pi.type = "upper",

conf.level = 0.95, method = "exact")
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Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Normal
Censoring Side: left
Censoring Level (s): 5
Estimated Parameter(s): mean = 5.297871
sd = 3.981489
Estimation Method: MLE
Data: TCE.ppb[Well.type == “Background”]
Censoring Variable: Censored[Well.type == “Background”]
Sample Size: 18
Percent Censored: 50%
Assumed Sample Size: 18
Prediction Interval Method: exact
Prediction Interval Type: upper
Confidence Level: 95%
Number of Future Observations: 4
Prediction Interval: LPL = -Inf

UPL = 15.2453

Note that although the prediction interval method in the returned object has the
value "exact", it is not in fact exact because the prediction interval is based on
censored, rather than complete, data. Because half of the observations are cen-
sored, it is difficult to determine with say the function ggPlotCensored
whether these data appear to fit a normal, lognormal, or some other distribution.
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8.7.2 Nonparametric Prediction Intervals

We saw in Chap. 6 that nonparametric prediction intervals are simply functions of
the ordered observations. Thus, for left censored data, you can still create nonpara-
metric prediction intervals as long as there are enough uncensored observations
that can be ordered in a logical way, just as we did in Sect. 6.2.4 with the trichloro-
ethylene and xylene data and in Sect. 6.3.4 with the mercury data.

8.8 Tolerance Intervals

In Chap. 6 we illustrated how to construct parametric and nonparametric tolerance
intervals. In this section we will discuss how to do this with censored data

8.8.1 Parametric Tolerance Intervals

Just as for parametric estimates of a quantile, a parametric tolerance interval is a
function of the estimated distribution parameters. To construct a parametric toler-
ance interval in the presence of censored observations, you can simply use the
same formula as for complete data, but estimate the distribution parameters using
formulas that are appropriate for censored data (e.g., USEPA 2009; Helsel 2012).
Again, it is not clear how well this method works for producing accurate tolerance
intervals; this is an area that requires further research. An alternative method for
constructing parametric tolerance intervals that has been shown to perform fairly
well is based on generalized pivotal quantities or GPQs (Krishnamoorthy and
Mathew 2009).

The functions tolIntNormCensored and tolIntLnormCensored
allow you to construct tolerance intervals assuming a normal or lognormal
distribution, respectively. You can construct tolerance intervals by using the
standard formulas for complete data and substituting in estimates of the mean and
standard deviation based on an appropriate formula for censored data, or you can
use the GPQ method.

In Chap. 6, Sect. 6.4.2, we constructed a one-sided upper tolerance limit based
on using the Reference area TcCB data presented in Sect. 1.11.1 of Chap. 1 and
assuming a lognormal distribution. The tolerance limit was a 95 % [-content
tolerance limit with associated confidence level of 95 % and had the value
1.42 ppb. For the singly censored data set shown in Table 8.4, this limit becomes
1.38 ppb based on using MLEs to estimate the mean and standard deviation and
using the formula for the tolerance interval that assumes complete data. In this
case there is very little difference between the limits based on the complete data
versus those based on the censored data. Here is the command to construct the
tolerance limit using the standard formula for complete data but plugging in the
MLEs for the mean and standard deviation:

> with (Modified.TcCB.df,
tolIntLnormCensored (TcCB, Censored, ti.type = "upper"))
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Results of Distribution Parameter Estimation

Based on Type I Censored Data

Assumed Distribution:

Censoring Side:

Censoring Level (s):

Estimated Parameter(s):

Estimation Method:

Data:

Censoring Variable:

Sample Size:

Percent Censored:

Assumed Sample Size:

Tolerance Interval Coverage:

Coverage Type:

Tolerance Interval Method:

Tolerance Interval Type:

Confidence Level:

Tolerance Interval:

Lognormal

left

-0.6931472

meanlog = -0.5948115
0.4420888

sdlog

MLE

TcCB

censored

47

40.42553%

47

95%

content

Exact for
Complete Data

upper

95%

LTL 0.000000
UTL = 1.384159

To construct the tolerance interval based on distribution parameters estimated us-
ing imputation with Q-Q regression (robust ROS), and using the method of gener-
alized pivotal quantities, type this command:
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> with (Modified.TcCB.df, tolIntLnormCensored(TcCB, Censored,
ti.type = "upper", method = "impute.w.qq.reg",
ti.method = "gpg", seed = 47))

Results of Distribution Parameter Estimation
Based on Type I Censored Data

Assumed Distribution: Lognormal

Censoring Side: left

Censoring Level (s): -0.6931472

Estimated Parameter(s): meanlog = -0.6098130
sdlog = 0.4604909

Estimation Method: Imputation with

Q-0 Regression (ROS)

Data: TcCB

Censoring Variable: censored

Sample Size: 47

Percent Censored: 40.42553%

Tolerance Interval Coverage: 95%

Coverage Type: content

Tolerance Interval Method: Generalized Pivotal Quantity

Number of Monte Carlos: 1000

Tolerance Interval Type: upper

Confidence Level: 95%

Tolerance Interval: LTL = 0.000000
UTL = 1.492929
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8.8.2 Nonparametric Tolerance Intervals

We saw in Chap. 6 that nonparametric tolerance intervals are simply functions of
the ordered observations. Thus, for left censored data, you can still create nonpara-
metric tolerance intervals as long as there are enough uncensored observations that
can be ordered in a logical way, just as we did in Sect. 6.4.4 with the copper data.

8.9 Hypothesis Tests

In this section we discuss how to perform hypothesis tests in the presence of
censored data.

8.9.1 Goodness-of-Fit Tests

Royston (1993) extended both the Shapiro-Francia and Shapiro-Wilk goodness-of-
fit tests to the case of singly censored data. He also provides a method of compu-
ting p-values for these statistics based on tables given in Verrill and Johnson
(1988). Although Verrill and Johnson (1988) produced their tables based on Type
IT censoring, Royston’s (1993) approximation to the p-value of these tests should
be fairly accurate for Type I censored data as well. The Shapiro-Francia and
PPCC tests are also easily extendible to the case of multiply censored data, but it
is not known how well Royston’s method of computing p-values works in this
case. The ENvSTATs function gofTestCensored performs goodness-of-fit
tests for censored data using Royson’s method; see the help file for details.

We noted in Chap. 7 that goodness-of-fit tests are of limited value for small
sample sizes because there is usually not enough information to distinguish be-
tween different kinds of distributions. This also holds true even for moderate
sample sizes if you have data with a moderate amount of censored observations, as
the next example shows.

In Sect. 7.2.1 we showed that goodness-of-fit tests for the Reference area
TcCB data indicated that the normal distribution was not appropriate, but that
a lognormal distribution appeared to adequately model the data. In this example
we will perform the same tests but use the modified TcCB data of Table 8.4. The
Shapiro-Wilk test for normality yields a p-value of 0.35 and the test for
lognormality yields a p-value of 0.43. Figures 8.8 and 8.9 show companion plots
for the tests for normality and lognormality, respectively. Compare these figures
to Figs. 7.1 and 7.2. We see that unlike the case with complete data, here censor-
ing 40 % of the observations leaves us unable to distinguish between a normal and
lognormal distribution.

> sw.list.norm <- with (Modified.TcCB.df,
gofTestCensored (TcCB, Censored))

> sw.list.norm
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Results of Goodness-of-Fit Test
Based on Type I Censored Data

Test Method: Shapiro-Wilk GOF
(Singly Censored Data)

Hypothesized Distribution: Normal

Censoring Side: left

Censoring Level (s): 0.5

Estimated Parameter(s): mean = 0.5580721
sd = 0.3371722

Estimation Method: MLE

Data: TcCB

Censoring Variable: Censored

Sample Size: 47

Percent Censored: 40.4%

Test Statistic: W = 0.9625386

Test Statistic Parameters: N = 47.0000000
DELTA = 0.4042553

P-value: 0.3469034

Alternative Hypothesis: True cdf does not equal the

Normal Distribution.

> sw.list.lnorm <- with (Modified.TcCB.df,
gofTestCensored (TcCB, Censored, dist = "lnorm"))

> sw.list.lnorm
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Results of Goodness-of-Fit Test
Based on Type I Censored Data

Test Method: Shapiro-Wilk GOF
(Singly Censored Data)

Hypothesized Distribution: Lognormal

Censoring Side: left

Censoring Level (s): 0.5

Estimated Parameter(s): meanlog = -0.5948115
sdlog = 0.4420888

Estimation Method: MLE

Data: TcCB

Censoring Variable: Censored

Sample Size: 47

Percent Censored: 40.4%

Test Statistic: W = 0.9667591

Test Statistic Parameters: N = 47.0000000
DELTA = 0.4042553

P-value: 0.4298383

Alternative Hypothesis: True cdf does not equal the

Lognormal Distribution.

To plot the results of these tests as shown in Figs. 8.8 and 8.9, type these
commands.

> plot(sw.list.norm)

> plot(sw.list.Inorm)
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Results of Shapiro-Wilk GOF (Singly Censored Data) Test

for TcCB

Histogram for TcCB
with Fitted Normal Distribution

Empirical CDF for TcCB (solid line)
with Fitted Normal CDF (dashed line)
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Fig. 8.8 Companion plots for the Shapiro-Wilk test for normality for the singly censored
Reference area TcCB data

Results of Shapiro-Wilk GOF (Singly Censored Data) Test
for TcCB

Histogram for TcCB
with Fitted Lognormal Distribution

Empirical CDF for TcCB (solid line)
with Fitted Lognormal CDF (dashed line)
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Fig. 8.9 Companion plots for the Shapiro-Wilk test for lognormality for the singly censored
Reference area TcCB data
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8.9.2 Nonparametric Tests to Compare Two Groups

In Sect. 7.3 of Chap. 7 we discussed various hypothesis tests to compare locations
(central tendency) between two groups, including the Wilcoxon rank sum test,
other linear rank tests, and the quantile test. In the presence of censored observa-
tions, you can still use a linear rank test (e.g., the Wilcoxon rank sum test) or
quantile test as long as there are enough uncensored observations that can be
ordered in a logical way. For example, if both samples are singly censored with
the same censoring level and all uncensored observations are greater than the
censoring level, then all censored observations receive the lowest ranks and are
considered tied observations. Actually you can use linear rank tests even with
multiply censored data as well.

We stated in Chap. 7 that the Wilcoxon rank sum test is a particular kind of
linear rank test. Several authors have proposed extensions of the Wilcoxon rank
sum test to the case of singly or multiply censored data, mainly in the context of
survival analysis (e.g., Breslow 1970; Cox 1972; Gehan 1965; Mantel 1966; Peto
and Peto 1972; Prentice 1978). Prentice (1978) showed how all of these proposed
tests are extensions of a linear rank test to the case of censored observations. As
for the case of complete data, different linear rank tests use different score func-
tions, and some may be better than others at detecting a small shift in location,
depending upon the true underlying distribution.

Prentice and Marek (1979), Latta (1981), and Millard and Deverel (1988)
studied the behavior of several linear rank tests for censored data. For details, see
the help file for twoSampleLinearRankTestCensored.

In Sect. 8.4.3 we compared the empirical cumulative distribution functions of
copper concentrations in the alluvial fan and basin trough zones (see Table 8.3 and
Fig. 8.5). The plot indicates the distributions of concentrations are fairly similar.
The two-sample linear rank test based on normal scores and a hypergeometric
variance yields a p-value of 0.2, indicating no significant difference. To perform
the two-sample linear rank test to compare copper concentrations, type these
commands.

> attach (Millard.Deverel.88.df)

> Cu.AF <- Cu[Zone=="Alluvial.Fan"]

> Cu.AF.cen <- Cu.censored[Zone=="Alluvial.Fan"]
> Cu.BT <- Cu[Zone=="Basin.Trough"]

> Cu.BT.cen <- Cu.censored[Zone=="Basin.Trough'"]

> twoSampleLinearRankTestCensored (Cu.AF, Cu.AF.cen,
Cu.BT, Cu.BT.cen, test = "normal.scores.Z2",
var = "hypergeometric")
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Results of Hypothesis Test
Based on Censored Data

Null Hypothesis:

Alternative Hypothesis:
one t

Test Name:

Censoring Side:

Censoring Level (s)

Data:

Censoring Variable:

Number NA/NaN/Inf's Removed:

Sample Sizes:

Percent Censored:

Test Statistics:

P-value:

Fy(t) = Fx(t)

Fy(t) != Fx(t) for at least

Two-Sample Linear Rank Test:
Normal Scores Test Using

Prentice Survival Estimator
on Prentice and Marek (1979)
with Hypergeometric Variance

left

15 10 20
y =12 510 15

b
Il

x = Cu.AF
y = Cu.BT

x = Cu.AF.cen
y = Cu.BT.cen

x =3
y =1
nx = 65
ny = 49

= 26.2%
y = 28.6%
nu = -5.119320
var.nu = 16.020363
Z = -1.279016
0.2008913
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8.10 Summary

A sample of data contains censored observations if some of the observa-
tions are reported only as being below or above some censoring level.
Environmental data often contain values reported as “less-than-detection-
limit”.

Table 8.1 lists functions available in ENVSTATsS for analyzing censored
data.



Chapter 9

Monte Carlo Simulation and Risk
Assessment

9.1 Introduction

In the first eight chapters of this book we have discussed several statistical tools
for looking at data, modeling probability distributions, estimating distribution para-
meters and quantiles, constructing prediction and tolerance intervals, comparing
two or more groups, and testing for trend. All of our examples have concentrated
on assessing how much chemical is in the environment and comparing chemical
concentrations to “background.” But given that chemicals are in the environment,
what happens when people or other living organisms are exposed to these chemicals?

Of course, “chemicals” in the environment are part of our everyday lives: they
are in the food we eat, the water we drink, the air we breathe. Some are natural
and others are synthetic, having been added either on purpose or as a by-product
of a manufacturing process. There is no doubt that the chemical revolution of
twentieth century has improved our lives immensely. But we have also learned
that some chemicals that improved some facet of our lives can have devastating
consequences on our health and environment.

Several government agencies are charged with evaluating the potential health
and ecological effects of environmental toxicants. Based on their assessments,
these agencies set standards for acceptable concentration levels of these toxicants
in air, water, soil, food, etc. The process of modeling exposure to a toxicant and
predicting health or ecological effects is termed risk assessment, and probabilistic
risk assessment uses probability distributions to characterize variability or uncer-
tainty in risk estimates.

Risk assessment is a process where science, politics, and psychology all
intersect. Not surprisingly, it is also a field full of controversy. References dis-
cussing risk assessment and the concept of risk include Byrd and Cothern (2000),
Everitt (2008), Hallenbeck (1993), Laudan (1997), Lewis (1990), Lundgren and
McMakin (2009), Neely (1994), Ostrom and Wilhelmsen (2012), Robson and
Toscano (2007), Rodricks (2007), Suter et al. (2000), Suter (2007), USEPA
(1992g, 1997a, b, c, 1999, 2001, 2005), Vose (2008), and Walsh (1996). In
addition, the US Environmental Protection Agency has a web site dedicated to the
topic of environmental risk assessment: www.epa.gov/risk. In this chapter, we
will introduce basic mathematical models used in risk assessment and talk about
how to use ENVSTATs and R to perform Monte Carlo simulation and probabilistic
risk assessment (see Millard et al. 2014, for a more in-depth discussion of these
topics).

S.P. Millard, EnvStats: An R Package for Environmental Statistics, 211
DOI 10.1007/978-1-4614-8456-1_9, © Springer Science+Business Media New York 2013
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9.2 Overview

Human and ecological risk assessment involves characterizing the exposure to a
toxicant for one or several populations, quantifying the relationship between
exposure (dose) and health or ecological effects (response), determining the risk
(probability) of a health or ecological effect given the observed level(s) of expo-
sure, and characterizing the uncertainty associated with the estimated risk
(Hallenbeck 1993). Risk assessment is an enormous field of research and practice.
The merits and disadvantages of particular exposure models (including fate and
transport models) and dose-response models are not discussed in this chapter.
Several journals, textbooks, and web sites are dedicated to risk assessment (see
Introduction).

In the past, estimates of risk were often based solely on setting values of the
input variables (e.g., body weight, dose, etc.) to particular point estimates and
producing a single point estimate of risk, with little, if any, quantification of the
uncertainty associated with the estimated risk. More recently, several practitioners
have advocated “probabilistic” risk assessment, in which the input variables are
considered random variables, so the result of the risk assessment is a probability
distribution for predicted risk or exposure.

Usually, the equation describing risk or exposure is so complicated that it is
not feasible to determine the output distribution using analytical methods, so the
distribution of risk or exposure is derived via Monte Carlo simulation. This chapter
discusses the concepts of Monte Carlo simulation, sensitivity and uncertainty
analysis, and risk assessment, and shows you how to use ENVSTATS and R to
perform probabilistic risk assessment.

9.3 Monte Carlo Simulation

Monte Carlo simulation is a method of investigating the distribution of a random
variable by simulating random numbers (Gentle 1985). Usually, the random vari-
able of interest, say Y, is some function of one or more other random variables:

Y =h(X)=h(X,X5,....X}) (9.1)

For example, ¥ may be an estimate of the median of a population with a Cauchy
distribution, in which case the vector of random variables X represents k& inde-
pendent and identically distributed observations from some particular Cauchy dis-
tribution. As another example, ¥ may be the incremental lifetime cancer risk due
to ingestion of soil contaminated with benzene (Thompson et al. 1992; Hamed and
Bedient 1997). In this case the random vector X may represent observations from
several kinds of distributions that characterize exposure and dose-response, such
as benzene concentration in the soil, soil ingestion rate, average body weight, the
cancer potency factor for benzene, etc. These distributions may or may not be
assumed to be independent of one another (Smith et al. 1992; Bukowski et al. 1995).

Sometimes the input variables X;, X, ..., X, are called input parameters. This
terminology can be confusing, however, since the input variables are often random
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variables and therefore have distribution parameters associated with their proba-
bility distributions (e.g., mean and standard deviation for a normally distributed
input variable).

Sometimes the distribution of Y in Eq. 9.1 can be derived analytically based on
statistical theory (Springer 1979; Slob 1994). Often, however, the function /4 is
complicated and/or the elements of the random vector X involve several kinds of
probability distributions, making it difficult or impossible to derive the exact dis-
tribution of Y. In this case, Monte Carlo simulation can be used to approximate
the distribution of Y. Monte Carlo simulation is often used in risk assessment,
specifically in sensitivity and uncertainty analysis.

Monte Carlo simulation involves creating a large number of realizations of the
random vector X, say n, and computing Y for each of the n realizations of X. The
resulting distribution of Y, or some characteristic of this distribution (e.g., the
mean), is then assumed to be “close” to the true distribution or distribution charac-
teristic of Y. The adequacy of the approximation depends on a number of factors,
including how well the mathematical relationship described in Eq. 9.1 reflects the
true relationship between Y and X, how well the specified distribution of X reflects
its true distribution (including any possible dependencies between the individual
elements of X), and how many Monte Carlo samples or trials (n) are created.
Usually, Monte Carlo simulation involves generating random numbers from some
specified theoretical probability distribution, such as a normal, lognormal, beta,
etc. When the simulation is done based on an empirical distribution, this is also
called bootstrapping (Efron and Tibshirani 1993).

Various sources indicate that the term “Monte Carlo” comes from the code
name of a World War II era project at Los Alamos Laboratories, although they
differ on exactly who coined the term (Anderson 1986; Gentle 1985; Hayes 1993;
Rubinstein 1981; Rugen and Callahan 1996). The code name comes from the
casino in Monaco with the same name. References that address the issues of how
to properly perform and report the results of a Monte Carlo simulation study
include Burmaster and Anderson (1994), Hoaglin and Andrews (1975), Law
(2006), and Vose (2008).

9.3.1 Simulating the Distribution of the Sum of Two Normal
Random Variables

Suppose X, and X, are two independent standard normal random variables. Then
the distribution of

Y:h(X],Xz):Xl"er (92)

is normal with a mean of 0 and a variance of 2. Suppose, however, that we do not
know how to derive the distribution of Y. We can use Monte Carlo simulation to
investigate the shape of the distribution of Y, as well as compute characteristics of
the distribution (e.g., mean, median, standard deviation, quantiles, etc.)

Figure 9.1 displays the empirical and true distribution of Y, where the empiri-
cal distribution of Y was derived by using Monte Carlo simulation with 100 trials.
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That is, for each trial, two random numbers from a standard normal distribution
were generated and added together. Figure 9.2 displays the empirical distribution
based on 10,000 trials along with the true distribution. Table 9.1 displays some
summary statistics for the two empirical distributions and compares them with the
true population values. As we increase the number of Monte Carlo trials, the
simulated distribution tends to get “closer” to the true distribution. This is called
the Law of Large Numbers.

Empirical Empirical Population

Parameter (100) (10,000) N(0,2)
Mean 0.12 0.03 0
Standard deviation 1.46 1.43 1.41
Sth percentile -2.10 -2.32 -2.33
95th percentile 2.97 2.41 2.33

Table 9.1 Comparison of empirical and population summary statistics

To generate the empirical distribution of the sum of two independent standard
normal random variables based on 100 and 10,000 Monte Carlo trials, type these
commands:

> df.100 <-data.frame (simulateMvMatrix(n = 100, seed = 20))
> y.100 <- with(df.100, Var.l + Var.Z2)

> df.10000 <- data.frame(
simulateMvMatrix(n = 10000, seed = 20)

> df.10000 <- with(df.10000, Var.1l + Var.Z2)

(You can also use the function mvrnom in the MASS package to create multivariate
normal random numbers.) To create Fig. 9.1, type these commands:

> hist(y.100, freq = FALSE, col = '"cyan",
xlab = expression (paste("y =", X[1], " + ", X[2])),
ylab = "Relative Frequency", main = "")

> pdfPlot (param.list = list(mean = 0, sd = sqrt(2)),
add = TRUE, pdf.lwd = 3)

To create Fig. 9.2 type these commands:

> hist(y.10000, freq = FALSE, breaks = 75, col = "cyan",
xlab = expression (paste("y =", X[(1], " + ", X[2])),
ylab = "Relative Frequency", main = "")

> pdfPlot (param.list = list(mean = 0, sd = sqrt(2)),
add = TRUE, pdf.lwd = 3)
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Fig. 9.1 Empirical and theoretical distribution of the sum of two independent N(0,1)
random variables based on 100 Monte Carlo trials
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Fig. 9.2 Empirical and theoretical distribution of the sum of two independent N(0,1)
random variables based on 10,000 Monte Carlo trials
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9.4 Generating Random Numbers

A random number is a realization of a random variable, say X. For many people,
the term random number initially conjures up an image of somehow choosing an
integer between a specified lower and upper bound (e.g., 1 and 10), where each
number is equally likely to be chosen. In that case, the random variable X is a dis-
crete uniform random variable with probability density (mass) function given by:

1

f(x):Pr(X:x):E ; x=1,2,...,10 9.3)
In general, a random number can be a realization of a random variable from any
kind of probability distribution (e.g., uniform, normal, lognormal, gamma, empirical,

etc.)

9.4.1 Generating Random Numbers from a Uniform Distribution

The R function runif generates pseudo-random numbers from a (continuous)
uniform distribution. Random number generation in R is documented in the help
file Random. The default generator is a Mersenne-Twister (Matsumoto and
Nishimura 1998). References that discuss generating pseudo-random numbers
include Barry (1996), Hayes (1993), Kennedy and Gentle (1980), Law (2006),
Ripley (1981), and Rubinstein (1981).

Pseudo-random number generators start with an initial seed, and then appear to
generate random numbers, although these numbers are actually generated by a
deterministic mechanism. Each time you generate a set of random numbers, the
value of the seed changes. If you start with the same seed, you will get the same
sequence of pseudo-random numbers. You can use the R function set . seed to
set the seed of the random number generator.

The period of a random number generator is the number of random numbers
that can be generated before the sequence repeats itself. The period of the default
generator in R is 2'**7 — 1 (about 10%°*).

9.4.2 Generating Random Numbers from an Arbitrary
Distribution

As we saw in Chap. 4, the R and ENVSTATsS functions of the form rabb (where
abb denotes the abbreviation of the distribution) generate random numbers from
several theoretical probability distributions. For example, the function rnorm
generates random numbers from a normal distribution.

To generate random numbers for a specified probability distribution, most
computer software programs use the inverse transformation method (Law 2006;
Rubinstein 1981; Vose 2008). Suppose the random variable U has a U[0,1] distri-
bution, that is, a uniform distribution over the interval [0,1]. Let Fy denote the
cumulative distribution function (cdf) of the specified probability distribution.
Then the random variable X defined by:
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X =Fy' (U) (9.4)

has the specified distribution, where the quantity F,}l denotes the inverse of the

cdf function Fy. Thus, to generate a set of random numbers from any distribution,
all you need is a set of random numbers from a U[0,1] distribution and a function
that computes the inverse of the cdf function for the specified distribution. Figure
9.3 illustrates the inverse transformation method for a standard normal distribu-
tion, with U = 0.8. In this case, the random number generated is ®'(0.8), which
is 0.8416212.

1.0

0.8

Cumulative Frequency
04 0.6
|

0.2
I

0.0

Value of Random Variable

Fig. 9.3 Example of the inverse transformation method of generating a random number
from the standard normal distribution

9.4.3 Latin Hypercube Sampling

Latin Hypercube sampling, sometimes abbreviated LHS, is a method of sampling
from a probability distribution (one random variable) or a joint probability distri-
bution (several random variables) that ensures all portions of the probability
distribution are represented in the sample. It was introduced in the published liter-
ature by McKay et al. (1979). Other references include Iman and Conover (1980,
1982), and Vose (2008). Latin Hypercube sampling is an extension of quota
sampling, and when applied to the joint distribution of £ random variables, can be
viewed as a k-dimensional extension of Latin square sampling, thus the name
(McKay et al. 1979).
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Latin Hypercube sampling was introduced to overcome the following problem
in Monte Carlo simulation based on simple random sampling (SRS). Suppose we
want to generate random numbers from a specified distribution. If we use simple
random sampling, there is a low probability of getting very many observations in
an area of low probability of the distribution. For example, if we generate n
observations from the distribution, the probability that none of these observations
falls into the upper 98th percentile of the distribution is 0.98". So, for example,
there is a 13 % chance that out of 100 random numbers none will fall at or above
the 98th percentile. If we are interested in reproducing the shape of the distribu-
tion, we will need a very large number of observations to ensure that we can
adequately characterize the tails of the distribution (Vose 2008).

Latin Hypercube sampling was developed in the context of using computer
models that required enormous amounts of time to run and for which only a
limited number of Monte Carlo simulations could be implemented. In cases
where it is fairly easy to generate tens of thousands of Monte Carlo trials, Latin
Hypercube sampling may or may not offer any real advantage.

Latin Hypercube sampling works as follows for a single probability distribution.
If we want to generate n random numbers from the distribution, the distribution is
divided into » intervals of equal probability 1/n. A random number is then gener-
ated from each of these intervals. For k£ independent probability distributions,
LHS is applied to each distribution, and the resulting random numbers are
matched at random to produce » random vectors of dimension k.

Relative Frequency
0.2 0.3 0.4

0.1

0.0

Value of Random Variable

Fig. 9.4 N(0, 1) probability density with four equal-probability intervals
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Fig. 9.5 N(0, 1) cumulative distribution with four equal-probability intervals
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Fig. 9.6 Visual explanation of generating four random numbers from a N(0, 1) distribution
using Latin Hypercube sampling
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Figures 9.4, 9.5, and 9.6 illustrate Latin Hypercube sampling for a sample size
of n = 4, assuming a standard normal distribution. Figure 9.4 shows the four
equal-probable intervals for a standard normal distribution in terms of the proba-
bility density function, and Fig. 9.5 shows the same thing in terms of the cumula-
tive distribution function. Figure 9.6 shows how Latin Hypercube sampling is
accomplished using the inverse transformation method for generating random
numbers. In this case, the interval [0,1] is divided into the four intervals [0, 0.25],
[0.25, 0.5], [0.5, 0.75], and [0.75, 1]. Next, a uniform random number is generat-
ed within each of these intervals. For this example, the four numbers generated
are (to two decimal places) 0.04, 0.35, 0.70, and 0.89. Finally, the standard normal
random numbers associated with the inverse cumulative distribution function of
the four uniform random numbers are computed: —1.75, —0.39, 0.52 and 1.23.

9.4.4 Example of Simple Random Sampling versus Latin
Hypercube Sampling

Figure 9.7 displays a histogram of 50 observations based on a simple random
sample from a standard normal distribution. Figure 9.8 displays the same thing
based on a Latin Hypercube sample. You can see that the form of the histogram
constructed with the Latin Hypercube sample more closely resembles the true
underlying distribution.
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Fig. 9.7 Results of simple random sampling from a N(0, 1) distribution
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Fig. 9.8 Results of Latin Hypercube sampling from a N(0, 1) distribution

The EnvStats function simulateVector lets you generate random numbers
from any of the built-in probability distributions in R and EnvStats using either
simple random sampling or Latin hypercube sampling. To create Figs. 9.7 and 9.8
type these commands:

> x.srs <- simulateVector (50, seed = 798)

> hist(x.srs, freq = FALSE, breaks = 15, ylim = c(0, 0.7),
col = "cyan", xlab = "50 Random Numbers Based on SRS",
ylab = "Relative Frequency", main = "")

\4

pdfPlot (add = TRUE, pdf.lwd = 3)

> x.1lhs <- simulateVector (50, seed
sample.method = "LHS")

798,

> hist(x.lhs, freq = FALSE, breaks = 15, ylim = c(0, 0.4),
col = "cyan", xlab = "50 Random Numbers Based on LHS",
ylab = "Relative Frequency", main = "")

\4

pdfPlot (add = TRUE, pdf.lwd = 3)
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9.4.5 Properties of Latin Hypercube Sampling

Let Y denote the outcome variable for one trial of a Monte Carlo simulation, and
suppose Y is a function of & independent random variables as shown in Eq. 9.1
above. McKay et al. (1979) consider the class of estimators of the form

1 n
T=T(¥)=T(%. Y. Y, ) = =3 (%) ©5)
i=1

where g is an arbitrary function. This class of estimators includes the mean, the
rth sample moment, and the empirical cumulative distribution function. Setting

t=E[T(Y)] (9.6)

McKay et al. (1979) show that under LHS, T is an unbiased estimator of t, and
also, if # in Eq. 9.1 is monotonic in each of its arguments and g is monotonic, then
the variance of 7 under LHS is less than or equal to the variance of 7 under SRS.

Stein (1987) shows that the variance of the sample mean of Y under LHS is
asymptotically less than the variance of the sample mean under simple random
sampling whether or not the function 4 is monotonic in its arguments. Unfortu-
nately, for most cases of LHS, the formula for the true variance of the sample
mean is difficult to derive, and thus a good estimate of true variance is not available.
Using the usual formula of dividing the sample variance by the sample size will
usually overestimate the true variance of the sample mean.

Iman and Conover (1980) and Stein (1987) suggest producing several inde-
pendent Latin Hypercube samples, say N, and for each Latin Hypercube sample
computing the sample mean based on the n observations within that sample; they
call this method replicated Latin Hypercube sampling. You can then estimate the
variance of the sample mean by computing the usual sample variance of these N
sample means. Note that this method can be applied to any quantity of interest,
such as the median, 95th percentile, etc.

9.4.6 Generating Correlated Multivariate Random Numbers

Often, the input variables in a Monte Carlo simulation are known to be correlated,
such as body weight and dermal area. If all of the input variables are normally
distributed or all of them are lognormally distributed, you can easily generate
correlated random numbers using the function mvrnom in the R package MASS.
However, if the different input variables have different kinds of distributions, it is
not straightforward how to generate correlated random variables. The EnvStats
function simulateMvMatrix uses the method of Iman and Conover (1982) to
allow you to generate a random sample or Latin Hypercube sample of correlated
random variables from multiple types of distributions using rank correlations.
USEPA (2001, p. B-27) presents an example of a Monte Carlo simulation
with correlated input variables for estimating the distribution in a certain human
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population of daily intake over a 30-year period of a chemical found in fish. The
equation used to model chemical intake is given by:
CF xIRx FIx EF x ED

Intake = 9.7)
BW x AT

and Table 9.2 displays the descriptions and assumed values or distributions for the
input variables. The parameters for the lognormal distributions refer to the mean
and standard deviation for the untransformed variable. The averaging time (47) is
simply the exposure duration multiplied by 365 days/year.

Variable Description Units Point estimate or PDF

CF Concentration in fish ug/kg 25

IR Fish ingestion rate kg/meal Lognormal (0.16, 0.07)
FI Fraction ingestion from source unitless 1.0

EF Exposure frequency meals/year Lognormal (35.5, 25.0)
ED Exposure duration years 30

BW Body weight kg 70

AT Averaging time days 10,950

Table 9.2 Input variables, point estimates, and distributions for Eq. 9.7

To reproduce this example, first we will create a function for intake:

> Intake.fcn <- function(CF = 25, IR, FI = 1, EF, ED = 30,
BW = 70, AT = ED * 365)
{ (CF * IR * FI * EF * ED) / (BW * AT) }

Next we will perform 5,000 Monte Carlo simulations of intake using Latin
Hypercube sampling for each of four different scenarios of rank correlation
between the input variables /R and EF: 0, 0.1, 0.5, and 0.9.

> cors <- c(0, 0.1, 0.5, 0.9)

> Intake.mat <- matrix(as.numeric (NA), nrow = 5000, ncol = 4,
dimnames = 1ist (NULL, paste("Cor", cors, sep = ".")))

> for(j in 1:4) A
IR.EF.df <- data.frame (simulateMvMatrix (5000,
distributions = c¢ (IR = "lnormAlt", EF = "lnormAlt"),
param.list = 1ist (IR = list(mean = 0.16, cv = 0.07/0.16),
EF = list(mean = 35.5, cv = 25/35.5)),
cor.mat = matrix(c(l, cors[[j], cors[j], 1), ncol = 2),
sample.method = "LHS", seed = 428))

Intake.mat[, j] <- with(IR.EF.df,
Intake.fcn (IR = IR, EF = EF))
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Finally, here are the summary statistics showing the mean and the 50th, 95th and
97.5th percentiles for each scenario. Note that intake is in units of ug/(kg-day),
however USEPA (2001) reports the results of the simulation in units of pg/day, so
we will multiply our results by 70 kg (the assumed body weight).

> Results.mat <- 70 * apply(Intake.mat, 2,
function (x) c(Mean = mean (x),
quantile (x, probs = c(0.5, 0.95, 0.975))))

> round (Results.mat, 2)

Cor.0 Cor.0.1 Cor.0.5 Cor.0.9

Mean 0.39 0.40 0.45 0.49
50% 0.29 0.29 0.29 0.29
95% 1.04 1.10 1.32 1.57
97.5% 1.33 1.42 1.77 2.17

Note that these results differ from the results presented in USEPA (2001) by about
a factor of 1/4. As USEPA (2001) points out, positive rank correlations have little
effect on the median of the distribution for intake but tend to widen the tails of the
distribution.

9.5 Uncertainty and Sensitivity Analysis

Uncertainty analysis and sensitivity analysis are terms used to describe various
methods of characterizing the behavior of a complex mathematical/computer
model. The model in Eq. 9.1 above is different from most conventional statistical
models, where the form of the model is:

Y=h(X)+e 9.8)

(e.g., linear regression models, generalized linear models, nonlinear regression
models, etc.). In Eq. 9.8, the vector X is assumed to be set or observed at fixed
values, and for fixed values of X the response variable Y deviates about its mean
value according to the distribution of the error term e. This kind of model is
useful when we are interested in the specific relationship between Y and X, and we
want to predict the value of Y for a specified value of X. Furthermore, this kind of
model is fit using paired observations of ¥ and X.

In Eq. 9.1, Y is assumed to be observed without error, that is, the value of Y is
deterministic for a set value of X. The output variable Y, however, is a random
variable when some or all of the input variables X, X, ..., X, are random
variables. This kind of model is useful when we are interested in describing the
distribution of Y taken over all possible (read as “reasonable and realistic™)
combinations of the input variables. Furthermore, paired observations of ¥ and X
are usually not available to validate this kind of model, hence, there is some
amount of unquantifiable uncertainty associated with this kind of model.
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Uncertainty analysis involves describing the variability or distribution of
values of the output variable Y that is due to the collective variation in the input
variables X (Iman and Helton 1988). This description usually involves graphical
displays such as histograms, empirical density plots, and empirical cdf plots, as
well as summary statistics such as the mean, median, standard deviation, coefficient
of variation, 95th percentile, etc.

Sensitivity analysis involves determining how the distribution of Y changes
with changes in the individual input variables. It is used to identify which input
variables contribute the most to the variation or uncertainty in the output variable
Y (Iman and Helton 1988). Sensitivity analysis is also used in a broader sense to
determine how changing the distributions of the input variables and/or their
assumed correlations or even changing the form of the model affects the output
(Thompson et al. 1992; Smith et al. 1992; Cullen 1994; Shlyakhter 1994;
Bukowski et al. 1995; Hamed and Bedient 1997; USEPA 1997a).

9.5.1 Important Versus Sensitive Parameters

X; Important (Thus Sensitive)

X4

X, Not Sensitive (Thus Not Important)

X2

X3 Not Important

X3

Fig. 9.9 Three examples of the concepts of “important” and “sensitive” parameters
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Two useful concepts associated with sensitivity analysis are important parameters
(variables) and sensitive parameters (variables) (Crick et al. 1987 as cited in
Hamby 1994). Sensitive parameters have a substantial influence on the resulting
distribution of the output variable Y, that is, small changes in the value of a sensitive
parameter result in substantial changes in Y. Important parameters have some
amount of uncertainty and/or variability associated with them and this variability
contributes substantially to the resulting variability in the output variable Y.

Figure 9.9 illustrate these two concepts for the simple case of three input
variables. The top plot is an example of an important variable. An important
variable is always sensitive. The middle plot is an example of a variable that is
not sensitive, and hence not important. The bottom plot is an example of a variable
that is not important. This variable may not be sensitive like the one in the middle
plot, or it may be sensitive like the one in the top plot but it is not important
because of its limited variability.

9.5.2  Uncertainty Versus Variability

The terms uncertainty and variability have specific meanings in the risk assess-
ment literature that do not necessarily match their meanings in the statistical
literature or everyday language. The term variability refers to the inherent hetero-
geneity of a particular variable (parameter). For example, there is natural variation
in body weight and height between individuals in a given population. The term
uncertainty refers to a lack of knowledge about specific parameters, models, or
factors (Morgan and Henrion 1990; Hattis and Burmaster 1994; Rowe 1994;
Bogen 1995; USEPA 1997a, 2001). Uncertainty can be classified into three broad
categories:

e  Parameter uncertainty. Uncertainty in the point estimates or distribution
parameters used to estimate variables of the model. For example, we
may be uncertain about the true distribution of exposure to a toxic chemical
in a population (parameter uncertainty due to lack of data, measurement
errors, sampling errors, systematic errors, etc.).

e  Model uncertainty. Uncertainty in the adequacy of the model. We may
be uncertain how well our model of incremental lifetime cancer risk
reflects reality (model uncertainty due to simplification of the process,
misspecification of the model structure, model misuse, use of inappropriate
surrogate variables, etc.),

e Scenario uncertainty. Uncertainty regarding missing or incomplete
information to fully define what we are modeling (e.g., exposure). For
example, we may be uncertain about whether a chemical is even present
at a site of concern (scenario uncertainty due to descriptive errors, aggre-
gation errors, errors in professional judgment, incomplete analysis, etc.).

We can usually reduce uncertainty through further measurement or study. We
cannot reduce variability, since it is inherent in the variable. Note that in the risk
assessment literature, measurement error contributes to uncertainty; we can
decrease uncertainty by decreasing measurement error. In the statistical literature,
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measurement error is one component of the variance of a random variable. Note
that a parameter (input variable) may have little or no variability associated with
it, yet still have uncertainty associated with it (e.g., the speed of light is constant,
but we only know its value to a given number of decimal places).

The terms wuncertainty and uncertainty analysis should not be confused.
Uncertainty analysis characterizes the distribution of the output variable Y. The
output variable Y varies due to the fact that the input variables are random varia-
bles. The distributions of the input random variables reflect both variability
(inherent heterogeneity) and uncertainty (lack of knowledge).

9.5.3 Sensitivity Analysis Methods

Sensitivity analysis methods can be classified into three groups: one-at-a-time
deviations from a baseline case, factorial design and response surface modeling,
and Monte Carlo simulation (Hamby 1994). Each of these kinds of sensitivity
analysis is briefly discussed below. For more detailed information, see Vose
(2008), USEPA (2001), and Millard et al. (2014). Several studies indicate that
using Monte Carlo simulation in conjunction with certain sensitivity measures
usually provides the best method of determining sensitivity of the parameters.

One-at-a-Time Deviations from a Baseline Case

These sensitivity analysis methods include differential analysis and measures of
change in output to change in input. Differential analysis is simply approximating
the variance of the output variable Y at a particular value of the input vector X
(called the baseline case) by using a first-order Taylor series expansion (Kotz and
Johnson 1985, Volume 8; Downing et al. 1985; Seiler 1987; Iman and Helton
1988; Hamby 1994). This approximating equation for the variance of Y is useful
for quantifying the proportion of variability in Y that is accounted for by each
input variable. Unfortunately, the approximation is usually good only in a small
region close to the baseline case, and the relative contribution of each input variable
to the variance of Y may differ dramatically for differently chosen baseline cases.
Also, differential analysis requires the calculation of partial derivatives, which
may or may not be a simple task, depending on the complexity of the input
function 4 in Eq. 9.1.

Measures of change in output to change in input include the ratio of percent
change in Y to percent change in X; (Hamby 1994), the ratio of percent change in ¥
to change in JX; in units of the standard deviation of X; (Hamby 1994; Finley and
Paustenbach 1994), the percent change in Y as X; ranges from its minimum to
maximum value (Hamby 1994), and spider plots, which are plots of Y versus
percent change in X;, or Y versus percentiles of X; (Vose 2008).

Factorial Design and Response Surface Modeling

The concepts of factorial designs and response surfaces come from the field of
experimental design (Box et al. 1978). In the context of sensitivity analysis for
computer models, n distinct values of the input vector X are chosen (usually
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reflecting the possible ranges and medians of each of the k input variables), and
the model output Y is recorded for each of these input values. Then a multiple
linear regression model (a response surface) is fit to these data. The fitted model
is called the fitted response surface, and this response surface is used as a
replacement for the computer model (Downing et al. 1985; Iman and Helton 1988;
Hamby 1994). The sensitivity analysis is based on the fitted response surface.
The reason for using a response surface to replace the actual model output is that
some computer models are, or used to be, very costly to run, whereas computing
output based on a response surface is relatively inexpensive.

One way to rank the importance of the variables in the response surface is to
simply compare the magnitudes of the estimated coefficients. The estimated
coefficients, however, depend on the units of the predictor variables in the model,
so some sources suggest using standardized regression coefficients (Iman and
Helton 1988; Hamby 1994). The standardized regression coefficients are simply
the coefficients that are obtained from fitting the response surface model based on
the “standardized” output variable and the “standardized” predictor (input) variables.
That is, for each variable, each observation is replaced by subtracting the mean
(for that variable) from the observation and dividing by the standard deviation (for
that variable).

A big problem with using standardized coefficients to determine the impor-
tance of predictor variables is that they depend on the range of the predictor varia-
bles (Weisberg 1985). So, for example, the variable Xj; in Fig. 9.9 above may be
very important but it has a very limited range and therefore does not contribute to
very much variation in Y.

Iman and Helton (1988) compared uncertainty and sensitivity analysis of several
models based on differential analysis, factorial design with a response surface
model, and Monte Carlo simulation using Latin Hypercube sampling. The main
outcome they looked at for uncertainty analysis was estimating the cumulative
distribution function. They found that the models were too mathematically complex
to be adequately represented by a response surface. Also, the results of differen-
tial analysis gave widely varying results depending on the values chosen for the
baseline case. The method based on Monte Carlo simulation gave the best results.

Monte Carlo Simulation

Monte Carlo simulation is used to produce a distribution of Y values based on
generating a large number of values of the input vector X according to the joint
distribution of X. There are several possible ways to produce a distribution for Y,
including varying all of the input parameters (variables) simultaneously, varying
one parameter at a time while keeping the others fixed at baseline values, or varying
the parameters in one group while keeping the parameters in the other groups at
fixed baseline values. Sensitivity methods that can be used with Monte Carlo
simulation results include the following:

e Histograms, Empirical CDF Plots, Percentiles of OQutput. A simple
graphical way to assess the effect of different input variables or groups of
input variables on the distribution of Y is to look at how the histogram
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and empirical cdf of Y change as you vary one parameter at a time or vary
parameters by groups (Thompson et al. 1992). Various quantities such as
the mean, median, 95th percentile, etc. can be displayed on these plots as
well.

Scatterplots. Another simple graphical way to assess the effect of
different input variables on the distribution of Y and their relationship to
each other is to look at pair-wise scatterplots.

Correlations and Partial Correlations. A quantitative measure of
the relationship between Y and an individual input variable X; is the
correlation between these two variables, computed based on varying all
parameters simultaneously (Saltelli and Marivoet 1990; Hamby 1994).
Vose (2008) suggests using tornado charts, which are simply horizontal
barcharts displaying the values of the correlations. Individual correla-
tions are hard to interpret when some or most of the input variables are
highly related to one another. One way to get around this problem is to
look at partial correlation coefficients. See Millard et al. (2014) for more
information.

Change in Output to Change in Input. Any of the types of measures
that are described above under the section One-at-a-Time Deviations
from a Baseline Case can be adapted to the results of a Monte Carlo
simulation. Additional measures include relative deviation, in which you
vary one parameter at a time and compute the coefficient of variation
(CV) of Y for each case, and relative deviation ratio, in which you vary
one parameter at a time and compute the ratio of the CV of Y to the CV
of X; (Hamby 1994).

Response Surface. This methodology that was described above in the
section Factorial Design and Response Surface Modeling can be adapted
to the results of a Monte Carlo simulation. In this case, use the model
input and output to fit a regression equation (possibly stepwise) and then
use standardized coefficients to rank the input variables (Iman and Helton
1988; Saltelli and Marivoet 1990).

Comparing Groupings within Input Distributions Based on Parti-
tioning the Output Distribution. One final method of sensitivity analysis
that has been used with Monte Carlo simulation is to divide the distribution
of the output variable Y into two or more groups, and then to compare the
distributions of an input variable that has been split up based on these
groupings (Saltelli and Marivoet 1990; Hamby 1994; Vose 2008). For
example, you could divide the distribution of an input variable X; into
two groups based on whether the values yielded a value of Y below the
median of Y or above the median of Y. You could then compare the
distributions of these two groups, compare these distributions with a
goodness-of-fit test, or compare the means or medians of these distribu-
tions with the t-test or Wilcoxon rank sum test. A significant difference
between the two distributions is an indication that the input variable is
important in determining the distribution of Y.
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9.5.4 Uncertainty Analysis Methods

A specific model such as Eq. 9.1 with specific joint distributions of the input
variables leads to a specific distribution of the output variable. The process of
describing the distribution of the output variable is called uncertainty analysis
(Iman and Helton 1988). This description usually involves graphical displays
such as histograms, empirical distribution plots, and empirical cdf plots, as well as
summary statistics such as the mean, median, standard deviation, coefficient of
variation, 95th percentile, etc.

Sometimes the distribution of Y in Eq. 9.1 can be derived analytically based on
statistical theory (Springer 1979; Slob 1994). For example, if the function 4
describes a combination of products and ratios, and all of the input variables have
a lognormal distribution, then the output variable Y has a lognormal distribution as
well, since products and ratios of lognormal random variables have lognormal
distributions. Many risk models, however, include several kinds of distributions
for the input variables, and some risk models are not easily described in a closed
algebraic form. In these cases, the exact distribution of Y can be difficult or
almost impossible to derive analytically.

The rest of this section briefly describes some methods of uncertainty analysis
based on Monte Carlo simulation. For more information on uncertainty analysis,
see Vose (2008), USEPA (2001), and Millard et al. (2014).

Quantifying Uncertainty with Monte Carlo Simulation

When the distribution of Y cannot be derived analytically, it can usually be
estimated via Monte Carlo simulation. Given this simulated distribution, you can
construct histograms or empirical density plots and empirical cdf plots, as well as
compute summary statistics. You can also compute confidence bounds for specific
quantities, such as percentiles. These confidence bounds are based on the assump-
tion that the observed values of Y are randomly selected based on simple random
sampling. When Latin Hypercube sampling is used to generate input variables
and hence the output variable Y, the statistical theory for confidence bounds based
on simple random sampling is not truly applicable (Easterling 1986; Iman and
Helton 1991; Stein 1987). Most of the time, confidence bounds that assume
simple random sampling but are applied to the results of Latin Hypercube sam-
pling will probably be too wide.

Quantifying Uncertainty by Repeating the Monte Carlo Simulation

One way around the above problem with Latin Hypercube sampling is to use
replicated Latin Hypercube sampling, that is, repeat the Monte Carlo simulation
numerous times, say &, so that you have a collection of N empirical distributions
of Y, where each empirical distribution is based on n observations of the input
vector X. You can then use these N replicate distributions to assess the variability
of the sample mean, median, 95th percentile, empirical cdf, etc.

A simpler process is to repeat the simulation just twice and compare the values
of certain distribution characteristics, such as the mean, median, 5th, 10th, 90th
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and 95th percentiles, and also to graphically compare the two empirical cdf plots.
If the values between the two simulations are within a small percentage of each
other, then you can be fairly confident about characterizing the distribution of the
output variable. Iman and Helton (1991) did this for a very complex risk assess-
ment for a nuclear power plant and found a remarkable agreement in the empirical
cdf’s. Thompson et al. (1992) did the same thing for a risk assessment for incre-
mental lifetime cancer risk due to ingestion or dermal contact with soil contami-
nated with benzene.

You may also want to compare the results of the original simulation with a
simulation that uses say twice as many Monte Carlo trials (e.g., Thompson et al.,
1992). Barry (1996) warns that if the moments of the simulated distribution do
not appear to stabilize with an increasing number of Monte Carlo trials, this can
mean that they do not exist. For most risk models, however, the true distributions
of any random variables involved in a denominator in Eq. 9.1 are bounded above
0, so the moments will exist. If a random variable involved in the denominator
has a mean or median that is close to 0, it is important to use a bounded or truncated
distribution to assure the random variable stays sufficiently far away from 0.

Quantifying Uncertainty Based on Modeling Distribution
Parameter Uncertainty

To account for the uncertainty in specifying the distribution of the input variables,
some authors suggest using mixture distributions to describe the distributions of
the input variables (e.g., Hoffman and Hammonds 1994; Burmaster and Wilson
1996; Vose 2008). For each input variable, a distribution is specified for the
parameter(s) of the input variable’s distribution. Some authors call random varia-
bles with this kind of distribution second-order random variables (e.g., Burmaster
and Wilson 1996). Vose (2008) calls this second-order fitting. USEPA (2001)
distinguishes between one-dimensional Monte Carlo analysis (1-D MCA) in
which some or all of the input variables are characterized by probability distribu-
tions with fixed parameters versus two-dimensional Monte Carlo analysis (2-D
MCA) in which one or more parameters for some of the probability distributions
are not fixed but themselves random variables from some specified distribution.

For example we may assume the first input variable comes from a lognormal
distribution with a certain mean and coefficient of variation (CV). The mean is
unknown to a certain degree, and so we may specify that the mean comes from a
uniform distribution with a given set of upper and lower bounds. We can also
specify a distribution for the CV. In this case, the Monte Carlo simulation can be
broken down into two stages. In the first stage, a set of parameters is generated
for each input distribution. In the second stage, n realizations of the input vector X
are generated based on this one set of distribution parameters. This two-stage
process is repeated N times, so that you end up with N different empirical distribu-
tions of the output variable Y, and each empirical distribution is based on n
observations of the input vector X.
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For a fixed number of Monte Carlo trials nN, the optimal combination of » and
N will depend on how the distribution of the output variable Y changes relative to
variability in the input distribution parameter(s) versus variability in the input
variables themselves. For example, if the distribution of Y is very sensitive to
changes in the input distribution parameters, then N should be large relative to n.
On the other hand, if the distribution of Y is relatively insensitive to the values of
the parameters of the input distributions, but varies substantially with the values of
the input variables, then N may be small relative to n.

9.5.5 Caveat

An important point to remember is that no matter how complex the mathematical
model in Eq. 9.1 is, or how extensive the uncertainty and sensitivity analyses are,
there is always the question of how well the mathematical model reflects reality.
The only way to attempt to answer this question is with data collected directly on
the input and output variables. Often, however, it is not possible to do this, which
is why the model was constructed in the first place.

For example, in order to attempt to directly verify a model for incremental
lifetime cancer risk for a particular exposed population within a particular
geographical region, you have to collect data on lifetime exposure for each person
and the actual proportion of people who developed that particular cancer within
their lifetime, accounting for competing risks as well, and compare these data to
similar data collected on a proper control population. A controlled experiment
that involves exposing a random subset of a particular human population to a toxin
and following the exposed and control group throughout their lifetimes for the
purpose of a risk assessment is not possible to perform for several reasons, including
ethical and practical ones. Rodricks (2007) is an excellent text that discusses the
complexities of risk assessment based on animal bioassay and epidemiological
studies.

9.6 Risk Assessment

This section discusses the concepts and practices involved in risk assessment, and
gives examples of how to use ENVSTATS to perform probabilistic risk assessment.

9.6.1 Definitions

It will be helpful to start by defining common terms and concepts used in risk
assessment.

Risk

The common meaning of the term risk when used as a noun is “the chance of
injury, damage, or loss.” Thus, risk is a probability, since “chance” is another
term for “probability.”
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Risk Assessment

Risk assessment is the practice of gathering and analyzing information in order to
predict future risk. Risk assessment has been commonly used in the fields of
insurance, engineering, and finance for quite some time. In the last couple of
decades it has been increasingly applied to the problems of predicting human
health and ecological effects from exposure to toxicants in the environment (e.g.,
Hallenbeck 1993; Suter 2007). In this chapter, the term risk assessment is applied
in the context of human health and ecological risk assessment.

The basic model that is often used as the foundation for human health and
ecological risk assessment is:

Risk = Dose x Pr(Effect per Unit Dose)

(9.9)
= Intake x CSF

That is, the risk of injury (the effect) to an individual is equal to the amount of
toxicant the individual absorbs (the dose or intake) times the probability of the
effect occurring for a single unit of the toxicant. If the effect is some form of
cancer, the second term on the right-hand side of Eq. 9.9 is often called the cancer
slope factor (abbreviated CSF) or the cancer potency factor (abbreviated CPF).

The first term on the right-hand side of Eq. 9.9, the dose, is estimated by iden-
tifying sources of the toxicant and quantifying their concentrations, identifying
how these sources will expose an individual to the toxicant (via fate and transport
models), quantifying the amount of exposure an individual will receive, and
estimating how much toxicant the individual will absorb at various levels of
exposure. Sometimes the dose represents the amount of toxicant absorbed over a
lifetime, and sometimes it represents the amount absorbed over a shorter period of
time.

The second term on the right-hand side of Eq. 9.9, the probability of an effect
(CSF or CPF), is estimated from a dose-response curve, a model that relates the
probability of the effect to the dose received. Dose-response curves are developed
from controlled laboratory experiments on animals or other organisms, and/or
from epidemiological studies of human populations (Hallenbeck 1993; Piegorsch
and Bailer 2005).

Risk assessment involves four major steps (Hallenbeck 1993; USEPA 1995c,
2005; Piegorsch and Bailer 2005):

e Hazard Identification. Describe the effects (if any) of the toxicant on
laboratory animals, humans, and/or wildlife species, based on document-
ed studies. Describe the quality and relevance of the data from these
studies. Describe what is known about how the toxicant produces these
effects. Describe the uncertainties and subjective choices or assumptions
associated with determining the degree of hazard of the toxicant.

e Dose-Response Assessment. Describe what is known about the biological
mechanism that causes the health or ecological effect. Describe what
data, models, and extrapolations have been used to develop the dose-
response curve for laboratory animals, humans, and/or wildlife species.
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Describe the routes and levels of exposure used in the studies to deter-
mine the dose-response curve, and compare them to the expected routes
and levels of exposure in the population(s) of concern. Describe the
uncertainties and subjective choices or assumptions associated with char-
acterizing the dose-response relationship.

e Exposure Assessment. Identify the sources of environmental exposure
to the population(s) of concern. Describe what is known about the prin-
cipal paths, patterns, and magnitudes of exposure. Determine average
and “high end” levels of exposure. Describe the characteristics of the
populations that are potentially exposed. Determine how many members
of the population are likely to be exposed. Describe the uncertainties and
subjective choices or assumptions associated with characterizing the
exposure for the population of concern.

e Risk Characterization. Incorporate all of the information from the
hazard identification, dose-response assessment, and exposure assess-
ment steps into a single assessment of the overall risk of the toxicant.
Usually some form of Eq. 9.9 is used to estimate the risk for a particular
population of concern. Both sensitivity analysis and uncertainty analysis
should be applied to the risk assessment model to quantify the uncertainty
associated with the estimated risk. USEPA (2005, p. 5-1) states: “The
risk characterization includes a summary for the risk manager in a
nontechnical discussion that minimizes the use of technical terms. It is
an appraisal of the science that informs the risk manager in public health
decisions, as do other decision-making analyses of economic, social, or
technology issues.”

Risk Assessment Versus Risk Characterization

USEPA (1995c¢) distinguishes between the process of risk assessment and risk
characterization. Risk characterization is the summarizing step of risk assess-
ment that integrates all of the information from the risk assessment, including
uncertainty and sensitivity analyses and a discussion of uncertainty versus varia-
bility, to form an overall conclusion about the risk. Risk assessment is the tool
that a risk assessor uses to produce a risk characterization. A risk characterization
is the product that is delivered to the risk assessor’s client: the risk manager.

Risk Management

Risk management is the process of using information from risk characterizations
(calculated risks), perceived risks, regulatory policies and statutes, and economic
and social analyses in order to make and justify a decision (USEPA 1995c¢). If the
risk manager decides that the risk is not acceptable, he or she will order or
recommend some sort of action to decrease the risk. If the risk manager decides
that the risk poses minimal danger to the population of concern, he or she may
recommend that no further action is needed at the present time.
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Because the risk manager is the client of the risk assessor, the risk manager
must be involved in the risk assessment process from the start, helping to deter-
mine the scope and endpoints of the risk assessment (USEPA 1995c). Also, the
risk manager must interact with the risk assessor throughout the risk assessment
process, so that he or she may take responsibility for critical decisions. The risk
manager, however, must be careful not to let non-scientific (e.g., political) issues
influence the risk assessment. Non-scientific issues are dealt with at the risk
management stage, not the risk assessment stage.

Risk Communication

USEPA (1995¢) defines risk communication as exchanging information with the
public. While the communication of risk from the risk assessor to the risk manag-
er is accomplished through risk characterization, the communication of risk
between the risk manager (or representatives of his or her agency) and the public
is accomplished through risk communication. The risk characterization will
probably include highly technical information, while risk communication should
concentrate on communicating basic ideas of risk to the public.

9.6.2 Building a Risk Assessment Model

Usually some form of Eq. 9.9 is used to estimate the risk for a particular popula-
tion of concern. The form of the two terms on the right-hand side of Eq. 9.9 may
be very complex. Estimation of dose involves identifying sources of exposure,
postulating pathways of exposure from these sources, estimating exposure concen-
trations, and estimating the resulting dose for a given exposure. Estimation of
dose-response involves using information from controlled laboratory experiments
on animals and/or epidemiological studies. Given a set of dose-response data,
there are several possible statistical models that can be used to fit these data,
including tolerance distribution models, mechanistic models, linear-quadratic-
exponential models, and time-to-response models (Hallenbeck 1993).

Probably the biggest controversy in risk assessment involves the extrapolation
of dose-response data from high-dose to low-dose and from one species to another
(e.g., between mice and humans). Rodricks (2007) discusses these problems in
detail. An example of this problem is the case of saccharin, which was shown in
the late 1970s to produce bladder tumors in male rats that were fed extremely
large concentrations of the chemical. These studies led the FDA to call for a ban
on saccharin, but Congress placed a moratorium on the ban that was renewed
periodically. A little over two decades later, the National Institute of Environmental
Health Sciences stated that new studies show “no clear association” between
saccharin and human cancer (7he Seattle Times, Tuesday, May 16, 2000) and took
saccharin off of its list of cancer-causing chemicals.
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Many risk assessment models have the general form:

Risk = Dose x Pr(Effect per Unit Dose)
(9.10)
= h(Xl,Xz,...,Xk) x CPF

That is, the risk is assumed to be proportional to dose, and the dose term is a func-
tion of several input variables. For example, USEPA (2001) uses the following
equation for chronic daily intake:

C x IR x EF x ED

Intake = 9.11)
BW x AT

where C is the chemical concentration, /R is the ingestion or contact rate, EF is the
exposure frequency, ED is the exposure duration, BW is body weight, and AT
is the averaging time (equal to exposure duration x 365 days/year for
non-carcinogens and 70 years x 365 days/year for carcinogens).

Usually, many of the input variables and sometimes the cancer potency factor
(CPF) in Eq. 9.10 are themselves assumed to be random variables because they
exhibit inherent heterogeneity (variability) within the population (e.g., body
weight, fluid intake, etc.), and because there is a certain amount of uncertainty
associated with their values. The choice of what distribution to use for each of the
input variables is based on a combination of available data and expert judgment.
USEPA (2001, pp. 1-13) states that a convenient aid to understanding the Monte
Carlo approach to risk assessment is to think of each iteration as representing a
single individual, and the collection of iterations as representing the population.
Thus, “Each iteration of a Monte Carlo simulation should represent a plausible
combination of input values (i.e., exposure and toxicity variables), which may
require using bounded or truncated probability distributions ...”

9.6.3 Example: Quantifying Variability and Parameter
Uncertainty

USEPA (2001, pp. 3-13) presents an example of quantifying variability and
parameter uncertainty in a probabilistic risk assessment involving exposure to a
chemical via soil ingestion (obviously based on an example from Thompson et al.,
1992). The risk equation is given by:

C x IR x CF x EF x ED

Risk = x CSF, .,
BW x AT

(9.12)

and Table 9.3 displays the descriptions and assumed values or distributions for the
input variables for four different cases. Two sources of variability are quantified:
(1) inter-individual variability in exposure frequency (EF), characterized by a
triangular distribution, and (2) inter-individual variability in exposure duration
(ED), characterized by a truncated lognormal distribution. In addition, two
sources of uncertainty are presented: (1) a point estimate for soil and dust inges-
tion rate (/R), intended to characterize the reasonable maximum exposure (RME),
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and (2) an upper truncation limit of the lognormal distribution for £D, intended to
represent a plausible upper bound for the exposed population.

Variabl Descrinti 1-D MCA 2-D MCA
artable eseription Case 1 Case 2 Case 3 Case 4
C Concentration 500 500 500 500
(mg/kg)
IR Ingestion Uniform
rate (mg/day) 50 100 200 min = 50
max =200
CF Conversion
factor (kg/mg) le-6 le-6 le-6 le-6
EF Exposure Triangular Triangular Triangular Triangular
frequency Min = 200 Min =200 Min =200 min =200
(days/year) Mode = 250 Mode = 250 Mode =250  mode =250
Max =350 Max =350 Max =350 max = 350
ED Exposure Truncated Truncated Truncated Truncated
duration lognormal lognormal lognormal lognormal
(years) Mean =9 Mean =9 Mean =9 Mean =9
cv=10/9 cv=10/9 cv=10/9 cv=10/9
Max =26 Max =33 Max = 40 Max ~ uniform
Min =26
Max =40
BW Body
weight (kg) 70 70 70 70
AT Averaging 25,550 25,550 25,550 25,550
time (days)
CSF Cancer slope
factor le-1 le-1 le-1 le-1
(mg/kg-day) '

Table 9.3 Input variables, point estimates, and distributions for Eq. 9.12

The first three cases involve one-dimensional Monte Carlo Analysis (1-D
MCA) in which the input variables EF' and ED have associated triangular and
truncated lognormal probability distributions, respectively, with fixed parameters
within each case. The value of the point estimate for /R varies between Case 1, 2,
and 3, as does the value of the parameter “max” in the truncated lognormal distri-
bution for ED. The fourth case involves two-dimensional Monte Carlo analysis
(2-D MCA) in which the parameter “max” in the truncated lognormal distribution
for ED is itself allowed to vary according to a uniform distribution. Note also that
the variable /R now has an associated probability distribution in this case

For Cases 1-3, simulations were run with 10,000 iterations and Latin Hyper-
cube sampling. Figure 9.10 shows the results of these simulations by plotting
the empirical cdf for each case. Each simulation used a different combination of
plausible estimates of the reasonable maximum exposure (RME) value for /R and
the upper truncation limit for ED, as discussed above. The results provide a
bounding estimate on the risk distribution given these two sources of uncertainty.
The 95th percentile risk, highlighted as an example of the RME risk estimate, may
range from approximately 7.2 x 10 ®and 3.4 x 10°°.
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For Case 4, the 2-D MCA was performed by first generating 250 random
values of the “max” parameter of the truncated lognormal distribution for ED
using Latin Hypercube sampling (250 iterations of the outer loop representing
uncertainty), and then for each of these 250 values, 2,000 iterations of the inner
loop (representing variability) were run. Figure 9.11 shows the 250 empirical cdf
plots; you can see that for this scenario the uncertainty in the “max” parameter
has a very small effect on distribution of risk compared to the differences in the
distribution of risk we saw in Cases 1-3.

To create Fig. 9.10, type these commands:

> Risk.fcn <- function(C = 500, IR, CF = le-6, EF, ED,
Bw = 70, AT = 25550, CSF = 0.1) {
CSF * (C * IR * CF * EF * ED) / (BW * AT)
}

> IR.vec <- c (50, 100, 200)

> ED.max <- c (26, 33, 40)

> Risk.mat <- matrix(as.numeric (NA), nrow = 10000, ncol = 3)
> set.seed(398)

> for(j in 1:3) |

EF <- simulateVector(n = 10000, distribution = "tri",
param.list = list(min = 200, mode = 250, max = 350),
sample.method = "LHS")

ED <- simulateVector(n = 10000, distribution =
"InormTruncAlt", param.list = list(mean = 9, cv = 10/9,
min = 0, max = ED.max[j]), sample.method = "LHS")

Risk.mat[, j] <- Risk.fcn(IR = IR.vec[j], EF = EF,

ED = ED)

}
> ecdfPlot (logl0O(Risk.mat([, 1]), xlim = c(-7, -4),

ecdf.col = "green", xlab = "Risk", xaxt = "n", main = "")
> axis(l, at = -7:-4, labels = paste("le", -7:-4, sep = ""))
> ecdfPlot (logl0O(Risk.mat[, 2]), ecdf.col = "blue",

add = TRUE)

> ecdfPlot (logl0O(Risk.mat[, 3]), ecdf.col = "red",
add = TRUE)

> usr <- par("usr")
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\%

legend(x = usr([l], y = 0.9, legend = paste('"Case", 1:3),
col = c("green", "blue", "red"), lty =1, 1lwd = 3,
bty = "p u)

> abline(h = 0.95, 1ty = 3)
> text(x = -6.5, y = 0.97, "95th %'ile")

> bounds <- apply(Risk.mat[, c(1, 3)], 2, quantile,
probs = 0.95)

> logl0.bounds <- 1ogl0 (bounds)

> segments (x0 = loglO.bounds, x1 = logl0.bounds,
y0 =0, yl = 0.95, 1ty = 2)

> text(x = loglO.bounds, y = usr[3]/2, signif (bounds, 2))

> arrows (x0 = loglO.bounds[1], x1 = loglO.bounds([Z2],
y0 =0.2, yl = 0.2, code = 3)

> text(x = mean(loglO.bounds), y = 0.1,
"Range of\nUncertainty")

To create Fig. 9.11, type these commands:

> Risk.mat.4 <- matrix(as.numeric (NA), nrow = 2000,

ncol = 250)

> ED.max <- simulateVector (250, distribution = "unif",
param.list = list(min = 26, max = 40),
sample.method = "LHS", seed = 322, sort = TRUE)

> for(j in 1:250) {
IR <- simulateVector (2000, distribution = "unif",
param.list = list(min = 50, max = 200),
sample.method = "LHS")
EF <- simulateVector(n = 2000, distribution = "tri'",
param.list = list(min = 200, mode = 250, max = 350),
sample.method = "LHS")
ED <- simulateVector(n = 2000,
distribution = "InormTruncAlt",
param.list = list(mean = 9, cv = 10/9, min = 0,
max = ED.max[7]), sample.method = "LHS")

Risk.mat.4[, j] <- Risk.fen(IR = IR, EF = EF, ED = ED)
}
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> ecdfPlot (logl0O(Risk.mat.4([, 1]), xlim = c(-7, -4),
ecdf.col = 1, xlab = "Risk", xaxt = "n", main = "")

> axis (1, at = -7:-4, labels = paste("le", -7:-4, sep = ""))

> for(j in 2:250) |
ecdfPlot (logl0O(Risk.mat.4[, j]), ecdf.col = j, add = TRUE)

}

See USEPA (2001), Vose (2008), and Millard et al. (2014) for more examples of
probabilistic risk assessment.

9.7 Summary

Human and ecological risk assessment involves characterizing the
exposure to a toxicant for one or several populations, quantifying the
relationship between exposure (dose) and health or ecological effects
(response), determining the risk (probability) of a health or ecological
effect given the observed level(s) of exposure, and characterizing the
uncertainty associated with the estimated risk.

In the past, estimates of risk were often based solely on setting values of
the input variables (e.g., body weight, dose, etc.) to particular point
estimates and producing a single point estimate of risk, with little, if any,
quantification of the uncertainty associated with the estimated risk. More
recently, several practitioners have advocated ‘“probabilistic” risk
assessment, in which the input variables are considered random variables,
so the result of the risk assessment is a probability distribution for
predicted risk or exposure.

You can use R and ENVSTATS to perform Monte Carlo simulation and
probabilistic risk assessment. ENVSTATS includes functions for both
simple random sampling (SRS) and Latin Hypercube sampling (LHS), as
well as for generating random vectors from arbitrary distributions with a
specified rank correlation matrix.

Most risk assessment models follow the form of Egs. 9.1 and 9.10, where
the output variable (risk or exposure) is a function of several input
variables, and some or all of the input variables are considered to be
random variables.

Uncertainty analysis involves describing the variability or distribution of
values of the output variable that is due to the collective variation in the
input variables. This description usually involves graphical displays such
as histograms, empirical density plots, and empirical cdf plots, as well
as summary statistics such as the mean, median, standard deviation,
coefficient of variation, 95th percentile, etc.

Sensitivity analysis involves determining how the distribution of the
output variable changes with changes in the individual input variables. It
is used to identify which input variables contribute the most to the variation
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or uncertainty in the output variable. Sensitivity analysis is also used in a
broader sense to determine how changing the distributions of the input
variables and/or their assumed correlations or even changing the form of
the model affects the output.

Variability refers to the inherent heterogeneity of a particular variable
(parameter). For example, there is natural variation in body weight and
height between individuals in a given population. Uncertainty refers to a
lack of knowledge about specific parameters, models, or factors. We can
usually reduce uncertainty through further measurement or study. We
cannot reduce variability, since it is inherent in the variable.

Sensitivity analysis methods include one-at-a-time deviations from a
baseline case, factorial design and response surface modeling, and Monte
Carlo simulation.

Uncertainty analysis methods include describing the empirical distribu-
tion of risk, repeating the simulation using a different set of random
numbers, and using mixture distributions.

An important point to remember is that no matter how complex the
mathematical model in Egs. 9.1 or 9.10, or how extensive the uncertainty
and sensitivity analyses, there is always the question of how well
the mathematical model reflects reality. The only way to attempt to
answer this question is with data collected directly on the input and
output variables.
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