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Preface

A wide variety of evidence suggests that language is probabilistic. In lan-
guage comprehension and production, probabilities play a role in access,
disambiguation, and generation. In learning, probability plays a role in
segmentation and generalization. In phonology and morphology, proba-
bilities play a role in acceptability judgments and alternations. And in
syntax and semantics, probabilities play a role in the gradience of cate-
gories, syntactic well-formedness judgments, and interpretation. More-
over, probabilities play a key role in modeling language change and
language variation.

This volume systematically investigates the probabilistic nature of lan-
guage for a range of subfields of linguistics (phonology, morphology,
syntax, semantics, psycholinguistics, historical linguistics, and sociolin-
guistics), each covered by a specialist. The probabilistic approach to the
study of language may seem opposed to the categorical approach, which
has dominated linguistics for over 40 years. Yet one thesis of this book is
that the two apparently opposing views may in fact go very well together:
while categorical approaches focus on the endpoints of distributions of
linguistic phenomena, probabilistic approaches focus on the gradient
middle ground.

This book originated as the symposium ‘‘Probability Theory in Lin-
guistics,” held in Washington, D.C., as part of the Linguistic Society of
America meeting in January 2001. One outcome of the symposium was
the observation that probability theory allows researchers to change the
level of magnification when exploring theoretical and practical problems
in linguistics. Another was the sense that a handbook on probabilistic
linguistics, providing necessary background knowledge and covering the
various subfields of language, was badly needed. We hope this book will
fill that need.



viii Preface

We expect the book to be of interest to all students and researchers
of language, whether theoretical linguists, psycholinguists, historical lin-
guists, sociolinguists, or computational linguists. Because probability
theory has not formed part of the traditional linguistics curriculum, we
have included a tutorial on elementary probability theory and proba-
bilistic grammars, which provides the background knowledge for under-
standing the rest of the book. In addition, a glossary of probabilistic
terms is given at the end of the book.

We are most grateful to the authors, who have given maximal effort to
write the overview chapters on probabilistic approaches to the various
subfields of linguistics. We also thank the authors for their contribution
to the review process. We are grateful to Michael Brent for his contri-
bution to the original symposium and to Anne Mark for her excellent
editorial work. Finally, we would like to thank the editor, Thomas Stone,
for his encouragement and help during the processing of this book.

The editors of this book worked on three different continents (with the
South Pole equidistant from us all). We recommend this as a fabulously
efficient way to work. The book never slept.
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Chapter 1

Introduction Rens Bod, Jennifer Hay, and
Stefanie Jannedy

1.1 Probabilistic Linguistics

One of the foundations of modern linguistics is the maxim of categoricity:
language is categorical. Numbers play no role, or, where they do, they are
artifacts of nonlinguistic performance factors. Thus, while it is widely
recognized that real language can be highly variable, gradient, and rich in
continua, many linguists would argue that the competence that underlies
such “performance factors” consists of well-defined discrete categories
and categorical grammaticality criteria. Performance may be full of fuzzi-
ness, gradience, and continua, but linguistic competence is not.

However, a groundswell of recent results challenge the idea that lin-
guistic competence is categorical and discrete. While linguistic phenom-
ena such as phonological and morphological alternations and syntactic
well-formedness judgments tend to be modeled as categorical, it has
become increasingly clear that alternations and judgments display prop-
erties of continua and show markedly gradient behavior. Moreover, psy-
cholinguistic experiments demonstrate that speakers’ well-formedness
judgments of words and sentences are extremely well predicted by the
combined probabilities of their subparts.

While generative approaches to linguistics have evolved to capture
the endpoints of such distributions, there is growing interest in the rela-
tively unexplored gradient middle ground, and a growing realization that
concentrating on the extremes of continua leaves half the phenomena
unexplored and unexplained. The chapters in this book illustrate that one
need not discard the many insights of modern linguistics in order to
insightfully model this middle ground. On the contrary, a probabilistic
approach can push the boundaries of linguistic theory forward, by substan-
tially enriching the current state of knowledge. Probabilistic linguistics
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increases the range of data for which a theory can account, and for which
it must be accountable.

1.2 Motivating Probabilities

In recent years, a strong consensus has emerged that human cognition is
based on probabilistic processing. Jurafsky (this volume) outlines some
recent literature, and papers documenting the probabilistic underpinnings
of a wide range of cognitive processes appear in Rao, Olshausen, and
Lewicki 2002. The editors of that book praise the probabilistic approach
for its promise in modeling brain functioning and its ability to accurately
model phenomena ‘““from psychophysics to neurophysiology.”

However, the fact that probability theory is an increasingly useful and
important tool in cognitive science does not make it automatically suit-
able for modeling language. To be convinced of its suitability, readers
should rightly demand evidence that the language faculty itself displays
probabilistic properties. We briefly outline the nature of this evidence
below.

1.2.1 Variation

Language changes over time—a process that is usually echoed synchroni-
cally across age groups. Zuraw provides evidence that language change
can result from probabilistic inference on the part of listeners, and she
argues that probabilistic reasoning “could explain the maintenance of
lexical regularities over historical time” (sec. 5.5.1).

It is well accepted that language does not just vary across time—it is
inherently variable. There is no known case, for example, where analo-
gous phonemes have exactly the same implementation across two lan-
guages (Pierrehumbert).

Acquiring a language or dialect, then, involves not just identifying its
phonemes, but also learning the extremely subtle patterns of production
and allophony relevant to each phoneme in that language. Within a par-
ticular language, production patterns differ across individuals, depending
on aspects of identity (Mendoza-Denton, Hay, and Jannedy). Within
individuals, production patterns differ on the basis of stylistic factors such
as addressee, context, and topic, and this stylistic variation to a large
degree echoes the variation present across members of society. Knowl-
edge of variation, then, must form part of linguistic competence, since
individuals can manipulate their implementation of phonetic variants to
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portray linguistic and extralinguistic information. And individuals differ
not only in the specific variants they use in different contexts, but also in
the frequency with which they use them. Knowledge of variation must
involve knowledge of frequencies (Mendoza-Denton, Hay, and Jannedy).
And this, as it turns out, does not set it apart from other types of linguis-
tic knowledge.

1.2.2 Frequency

One striking clue to the importance of probabilities in language comes
from the wealth of frequency effects that pervade language representa-
tion, processing, and language change.

The chapters in this book document many ways in which frequency
permeates language. Frequent words are recognized faster than infre-
quent words, and there is a bias toward interpreting ambiguous words in
terms of their more frequent meanings (Jurafsky). Frequent words lead
leniting changes (Zuraw) and are more prone to reduction in speech
(Jurafsky; Mendoza-Denton, Hay, and Jannedy). Frequent combinations
of phonemes (Pierrehumbert) and structures (Manning) are perceived as
more grammatical, or well formed, than infrequent combinations. The
relative frequency of derived words and their bases affects the morpho-
logical decomposability of complex words (Baayen). These are just a few
of the many frequency effects discussed in this book that influence lan-
guage perception, production, and representation.

Frequency affects language processes, and so it must be represented
somewhere. The language-processing system tracks, records, and exploits
frequencies of various kinds of events.

We can best model many of these effects by making explicit the link
between frequency and probability. Probability theory provides well-
articulated methods for modeling frequency, and it provides researchers
with the tools to work not only with the frequency of events, but also with
the frequency of combinations of events. One can thus estimate the prob-
ability of complex events (such as sentences) by combining the proba-
bilities of their subparts.

The presence of frequency effects is not in itself sufficient to warrant
adopting a probabilistic view. It is conceivable that at least some of the
frequency effects outlined in this book could occur without any kind of
probabilistic effect. However, the presence of frequency effects does pro-
vide evidence that the basic building blocks of probability theory are
stored and exploited. Just as the complete absence of frequency effects
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would challenge the foundations of probabilistic linguistics, so their
overwhelming presence adds weight to the claim that the language faculty
is inherently probabilistic.

1.2.3 Gradience

Frequency effects provide one type of evidence for a probabilistic lin-
guistics. A stronger type of evidence comes from gradience. The chapters
in this book are filled with examples of continua and gradience. Here, we
outline just a few of these cases—phenomena that at first glance may ap-
pear categorical, but upon closer inspection show clear signs of gradience.
And probabilities are extremely well suited to capturing the notion of
gradience, as they lie in a continuum between 0 (reflecting impossibility)
and 1 (reflecting certainty).

1.2.3.1 Category Membership Pierrchumbert argues that phoneme
membership is gradient, with phonemes representing continuous proba-
bility distributions over phonetic space. Items that are central in such a
distribution are good examples of a particular phoneme; more peripheral
items are more marginal as members. And distributions may overlap.

Manning suggests that such an approach may also be appropriate for
modeling syntactic category membership, which also displays properties
of gradience. As a case study, he examines “marginal prepositions’ such
as concerning, considering, and following. He convincingly demonstrates
the gradient behavior of this class, which ranges from fully verbal to fully
prepositional, arguing that ““it seems that it would be useful to explore
modeling words as moving in a continuous space of syntactic category,
with dense groupings corresponding to traditional parts of speech” (sec.
8.4).

Categories are central to linguistic theory, but membership in these
categories need not be categorical. Probabilistic linguistics conceptualizes
categories as distributions. Membership in categories is gradient.

1.2.3.2 Well-Formedness Manning illustrates that, in corpus-based
searches, there is no well-defined distinction between sentences generally
regarded as ‘“grammatical” in the literature, and those regarded as un-
grammatical. Rather, what we see is a cline of well-formedness, wherein
some constructions are highly preferred, others are used less frequently,
and some are used not at all. The distinction drawn between grammatical
and ungrammatical is often somewhere in the middle of the cline, ruling
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out those constructions that tend to be less frequent as ‘““‘ungrammatical.”
However, nowhere in the cline is there a dramatic drop in frequency; in
fact, the cline can often be gradual, so that the decision where to draw the
distinction is relatively arbitrary. The difficulty of drawing such lines has
led to special notation in formal syntax, to represent questionable gram-
matical status (the question mark,?). But this middle territory has seldom
been the object of theory building, nor has it been incorporated into for-
mal models of syntax. Probabilistic linguistics seeks to account for the full
continuum between grammaticality and ungrammaticality.

The gradualness observed in corpus searches is also echoed in gramma-
ticality judgments: speakers do not find it a strange task to rate degrees
of acceptability or grammaticality, as we might expect if grammaticality
were categorical, rather than gradient.

Similarly, in the realm of phonology, Pierrehumbert summarizes com-
pelling evidence that the judged well-formedness of novel words is incon-
trovertibly gradient and can be predicted as a function of the probability
of the words’ subparts.

1.2.3.3 Morphological Productivity It is widely accepted that some
affixes are productive and can give rise to new words, whereas others
are unproductive—present in extant words, but not available for further
word formation. However, as Baayen discusses, not all affixes are equally
productive. Some word formation rules give rise to very few words,
whereas others are highly productive and spawn many new words. Mor-
phological productivity is a clearly gradient phenomenon. Understanding
and accurately modeling it, then, requires a theory of linguistics that can
predict degrees of productivity. Drawing a simple categorical distinction
between “‘productive” and “unproductive” is relatively stipulative and
captures only a small proportion of the facts.

1.2.3.4 Morphological Decomposition As both Baayen and Pierrehum-
bert discuss, word formation is not the only morphological process that
exhibits symptoms of gradience. Both authors summarize evidence that
morpheme boundaries, the very essence of morphology, are gradient—
that is, stronger in some complex words than in others. This gradience
arises from the role of decomposition in speech perception: complex
words that are often decomposed are represented with strong morpho-
logical boundaries, those that are seldom decomposed come to be rep-
resented with weak ones. Crucially, and as with all other examples
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discussed in this section, this gradience is not a simple matter of per-
formance—it has deep linguistic consequences.

1.2.3.5 The Argument/Adjunct Distinction Even syntactic roles may
be gradient. Manning argues against a categorical conception of the
argument/adjunct distinction, citing documented difficulties with cleanly
dividing verbal dependents into freely occurring adjuncts and sub-
categorized arguments. He suggests that one possibility for modeling the
observed gradience is to represent subcategorization information as “‘a
probability distribution over argument frames, with different verbal
dependents expected to occur with a verb with a certain probability” (sec.

8.3.1).

1.2.4 Acquisition

As outlined above, there is a wide range of evidence for gradience and
gradient effects in language. Modeling all such factors as artifacts of
“performance” would be a massive challenge and would likely constitute
serious hoop-jumping. One common reason for wanting to do so stems
from skepticism regarding the mind’s ability to acquire and store a com-
plex range of generalizations and frequencies. However, the chapters in
this book argue that adding probabilities to linguistics in fact makes the
acquisition problem easier, not harder.

As Gold (1967) demonstrated, formal languages cannot be learned
without negative evidence. Moreover, negative evidence is not readily
available to children. Together, these two facts are widely used as evi-
dence that language is special and largely innate, a line of reasoning
known as the “argument from the poverty of the stimulus.” Manning
outlines evidence that challenges this argument—most importantly, evi-
dence (dating from Horning 1969) that, unlike categorical grammars,
probabilistic grammars are learnable from positive evidence alone.

As outlined by Pierrechumbert, generalizations based on statistical
inference become increasingly robust as sample size increases. This holds
for both positive and negative generalizations: as the range and quantity
of data increase, statistical models are able to acquire negative evidence
with increasing certainty. Pierrehumbert also outlines several types of
results relating to the acquisition of phonemes and phonological general-
izations, which together provide strong evidence that acquisition involves
the continual updating of probability distributions.
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Many current models of language acquisition rely on probabilistic
models, and considerable evidence demonstrates that infants track prob-
abilities in order to tackle such difficult tasks as decomposing a speech
stream into words (Goodsitt, Morgan, and Kuhl 1993; Saffran, Newport,
and Aslin 1996a,b) and even into phrases (Saffran 2001). It is certainly
not the case that the use of probabilities complicates the learning task. On
the contrary, if the language faculty is probabilistic, the learning task is
considerably more achievable. Variability and continuity both enhance
learning.

1.2.5 Universals

Many phenomena or constraints are present in a great many languages,
reflecting universal tendencies of the language faculty. They are operative
to greater or lesser degrees in different languages and in some cases are
highly grammaticalized and categorical. Manning discusses one such case
in depth: the interaction of passive, person, and topicality. A categorical
formal framework does not enable us to fully capture the different degrees
to which constraints are operative in different languages. By contrast,
probabilistic linguistics does enable us to formally model such situations,
capturing both the ways in which languages are similar (operating under
similar constraints) and the ways in which they differ (the probabilities
associated with those constraints).

1.3 Probabilities Where?

Clearly, there is a need to integrate probabilities into linguistics—but
where? Taken together, the chapters in this book answer, “Everywhere.”
Probabilities are operative in acquisition (see, e.g., Manning; Pierrehum-
bert), perception (Zuraw; Baayen; Jurafsky), and production (Pierre-
humbert; Baayen; Jurafsky). Moreover, they are not merely a tool for
processing: linguistic representations are probabilistic (see, e.g., Pierre-
humbert; Baayen; Mendoza-Denton, Hay, and Jannedy), as are linguistic
constraints and well-formedness rules (Manning; Bod). Probabilities per-
meate the linguistic system.

Probabilities are relevant at multiple levels of representation (Pierre-
humbert) and can be calculated over arbitrarily complex, abstract repre-
sentations (Manning; Jurafsky). As Manning discusses, it is a common
misconception that probabilities can be recorded only over surface
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structure; indeed, there is no barrier to calculating probabilities over
hidden structure. Probabilistic linguistics does not abandon all the prog-
ress made by linguistics thus far; on the contrary, it integrates this
knowledge with a probabilistic perspective.

As Baayen and Pierrehumbert argue, probabilities of both types and
tokens play an important role. For example, the number of different
words a speaker has encountered containing a particular affix is impor-
tant (the types), as is the number of times the speaker has encountered
each of those words (tokens).

As Pierrehumbert discusses, linguistic constraints consist of statistically
robust generalizations. There are many theoretically possible constraints
that could be operative in language, but those that are effectively learned,
transmitted, and exploited are those that are statistically robust: they can
be learned from limited language exposure, and they can be successfully
learned by different individuals exposed to language in different ways
and to different extents. The robust generalizations are the linguistically
important ones.

Here we briefly review some of the many levels of representation that
show probabilistic properties.

As noted above, phonemes are probabilistic distributions over a con-
tinuous phonetic space (Pierrehumbert). Learning phonemes, and classi-
fying phonetic exemplars as specific phonemes, requires situating them
within the appropriate region in this phonetic space. Phoneme member-
ship is probabilistic.

Knowledge of phonotactics involves knowledge of co-occurrence
probabilities of phonemes. The well-formedness of a string of phonemes
is a function of “the frequency of the subparts and the specific way
in which they were combined” (Pierrehumbert, sec. 6.2). Such phono-
tactic probabilities are exploited in speech perception for segmentation,
and they affect well-formedness judgments, influence pronunciation, and
affect behavior in linguistic tasks such as creating blends. Phonotactics is
probabilistic.

Probabilities are also operative at the morpheme level. Some affixes are
much more productive than others; that is, probability of use varies, and
forms part of the speaker’s linguistic knowledge. Individuals’ choice
among competing affixes shows a strong bias toward the most probable
one, as measured by patterns of occurrence in related words (Baayen).
Affix choice is probabilistic.
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The processing and representation of words is strongly influenced by
lexical frequency: more probable and less probable words behave differ-
ently. This is true both of morphologically simple and of morphologically
complex words. The many realms in which word frequency manifests
itself include ambiguity resolution (Jurafsky), phoneme reduction (Juraf-
sky; Mendoza-Denton, Hay, and Jannedy; Pierrchumbert), language
change (Zuraw), and speed of access (Jurafsky). Word representations are
probabilistic.

Relationships between words also exhibit linguistically relevant proba-
bilities. The larger the number of word pairs that instantiate a general-
ization (or word sets that instantiate a paradigm), the more robust that
generalization is. Generalizations that are represented by a great many
words pairs tend to be highly salient and productive (Pierrehumbert).
Morphophonological relations between words are probabilistic.

Individuals also track co-occurrence probabilities of words (Jurafsky).
In comprehension, these influence processing time. In production, high-
frequency (or high-probability) word pairs are more phonetically re-
duced. Low-probability words (given the probability of surrounding
words) are more likely to attract a pitch accent. Word combinations are
probabilistic.

Verbs take different subcategorization frames with different fre-
quencies. The probability that a specific verb will take various specific
subcategorization frames affects ambiguity resolution (Jurafsky). More-
over, there is evidence that subcategorization displays properties of a
continuum (Manning). Syntactic subcategorization is probabilistic.

Jurafsky provides evidence that people track the probabilities of syn-
tactic structures. Frequently encountered sentences or sentence fragments
are more easily processed than infrequently encountered ones, even con-
trolling for lexical frequency and other relevant factors. And listeners
and readers are influenced by the likelihood of a specific structure or
word given previously encountered structure. This effect influences pro-
cessing time and is involved in disambiguation. Bod and Manning discuss
methods for the probabilistic combination of syntactic subtrees. Sentence
structure is probabilistic.

Cohen discusses cases in which supplementing truth-conditional se-
mantics with probability theory increases the explanatory power of the
model. These include the modeling of generics, frequency adverbs, con-
ditionals, and vague terms. He demonstrates clearly that the semantics of
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such words are probabilistic. He concludes by discussing prospects for a
fully probabilistic semantics, in which judgments of truth conditions are
replaced by judgments of probability. In such a semantics, the meaning of
a sentence would not be a function from possible worlds to truth values;
rather, it would be “a function from sets of possible worlds to proba-
bilities” (sec. 9.8). Such a theory, Cohen argues, would formally capture
the idea that “‘understanding the meaning of a sentence is the ability,
given a situation, to assess its probability.” Semantics too, then, may be
probabilistic.

In short, practically every level of representation provides robust evi-
dence for the involvement of probabilities.

1.4 Conclusion

Language displays all the hallmarks of a probabilistic system. Categories
and well-formedness are gradient, and frequency effects are everywhere.
We believe all evidence points to a probabilistic language faculty.
Knowledge of language should be understood not as a minimal set of
categorical rules or constraints, but as a (possibly redundant) set of gra-
dient rules, which may be characterized by a statistical distribution.
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Introduction to Elementary Rens Bod
Probability Theory and

Formal Stochastic Language

Theory

2.1 Introduction

For a book on probabilistic approaches to a scientific discipline, it may
seem unnecessary to start with an introduction to probability theory. The
reader interested in probabilistic approaches would usually have a work-
ing knowledge of probability theory and would directly read the more
specialized papers. However, the situation is somewhat different for lin-
guistics. Since probability theory does not form part of a traditional
linguistics curriculum, probabilistic linguistics may not be as accessible
as some other areas. This is further reinforced by the disciplinary gap
between probabilistic and categorical approaches, the first being domi-
nant in psycholinguistics and natural language processing, the second in
generative linguistics. One goal of this book is to show that these two
apparently opposing methodologies go very well together: while categor-
ical approaches focus on the endpoints of distributions of linguistic phe-
nomena, probabilistic approaches focus on the gradient middle ground.
That linguistic phenomena are gradient will not be discussed here, as
this is extensively shown in the other chapters. But to make these chap-
ters accessible to the linguistics community at large, there is a need to
explain the most important concepts from probability theory first. Any
additional concept that may be encountered later can be looked up in the
glossary. I will only assume that the reader has some elementary knowl-
edge of set theory (see Partee, ter Meulen, and Wall 1990 for a linguistic
introduction).

After a brief introduction to the basics of probability theory, I will
show how this working knowledge can be put into practice by developing
the concept of probabilistic grammar, which lies at the heart of proba-
bilistic linguistics. Since many different probabilistic grammars have been
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proposed in the literature, there is a need for a theory that creates some
order among them, just as Formal Language Theory creates order among
nonprobabilistic grammars. While T will only scratch the surface of a
Formal Stochastic Language Theory, 1 will show that probabilistic gram-
mars evoke their own stochastic hierarchies.!

2.2 'What Are Probabilities?

Historically, there have been two interpretations of probabilities: objecti-
vist and subjectivist. According to the objectivist interpretation, proba-
bilities are real aspects of the world that can be measured by relative
frequencies of outcomes of experiments. The subjectivist view, on the
other hand, interprets probabilities as degrees of belief or uncertainty of
an observer rather than as having any external significance. These two
contrasting interpretations are also referred to as frequentist versus
Bayesian (from Thomas Bayes, 1764). Whichever interpretation one pre-
fers, probabilities are numbers between 0 and 1, where 0 indicates im-
possibility and 1 certainty (percentages between 0% and 100% are also
used, though less commonly).

While the subjectivist relies on an observer’s judgment of a probability,
the objectivist measures a probability through an experiment or trial—the
process by which an observation is made. The collection of outcomes or
sample points for an experiment is usually referred to as the sample space
Q. An event is defined as any subset of Q. In other words, an event
may be any set of outcomes that result from an experiment. Under the
assumption that all outcomes for an experiment are equally likely, the
probability P of an event A can be defined as the ratio between the size of
A and the size of the sample space Q. Let |4| be the number of elements
in a set A; then

Pm):tﬂ. (1)

To start with a simple, nonlinguistic example, assume a fair die that is
thrown once. What is the chance of obtaining an even number? The
sample space of this trial is

Q=1{1,2,3,4,5,6}.

The event of interest is the subset containing all even outcomes. Let us
refer to this event as A4:
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A=1{2,4,6}.

Thus, the number of elements in A4 is 3, and the number of elements in Q
is 6; that is, |4| = 3 and |Q| = 6. Then the probability of A4 is
4] _3

(4) = Q6 5.

Let us now turn to a slightly more linguistic example. Assume a small
corpus consisting of 50 unambiguous words of which 25 are nouns, 20 are
verbs, and 5 are adjectives. Consider the experiment of randomly select-
ing a word W from this corpus. What is the probability of selecting a
verb? The sample space Q of this trial is the set of all words in the corpus.
The event of interest A4 is the set of verbs, which we may write as {W: W
is a verb}. So,

_ |4l {W: Wisaverb}| 20
el Q| 50

For the sake of brevity, we will often write P({verb}) instead of P({W:
W is a verb}). Thus,

P(A) = 4.

_ Hverb}| % B
P({verb}) = o s "
_ [{noun}| 25
P({noun}) = o 50 .5,
o _ |{adjective}| 5
P({adjective}) = o s ¢

Two important observations can now be made. First, note that the
probability of selecting either a verb or a noun or an adjective is equal to
1, since in that case the event of interest 4 is { W: W is any word}, which
is equal to the sample space Q, and thus P(4) = |Q|/|Q| = 1. This corre-
sponds to the intuition that the probability that something will be sam-
pled in this experiment is equal to 1.

Second, note that the sum of the probabilities of each event, {verb},
{noun}, and {adjective}, is also equal to 1; that is, 4+ .5+.1=1. If
events do not overlap, the probability of sampling either of them is equal
to the sum of their probabilities. This is known as the sum rule. For
example, the probability of selecting either a verb or a noun, usually writ-
ten as P({verb} u {noun}) or P({verb,noun}), is equal to 45/50 = .9,
which is also equal to the sum P({verb})+ P({noun})=.4+.5=.0.
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It is important to note that the event {verb, noun} does not refer to the
event of a word being in the class of words that can be both a noun
and a verb. As defined above, events are subsets of the sample space,
and {verb,noun} denotes the event of either a noun occurring or a verb
occurring.

These two properties just noted are actually the rules a so-called prob-
ability function should obey (in addition to the fact that it should range
over [0, 1]). The first rule says that a trial will always produce an event in
the event space. That is, the probability that something in the event space
will happen—namely, P(Q)—is 1:

P(Q) = 1. 2)

The second rule says that if two or more events do not overlap, the
probability that either event occurs is equal to the sum of their proba-
bilities. That is, for two disjoint events 4 and B,

P(A U B) = P(4) + P(B). (3)

As long as these rules hold, P is a probability function, also known as a
probability distribution. (There are some well-studied probability distri-
butions that appear later in this book, such as the binomial distribution
and the normal distribution. See the glossary for definitions.)

Note that rule (3) can be generalized to any number of events. That is,
for n disjoint events Ay, As, ..., Ay,

P(A1UA2U~~~UA,,):P(A1)+P(A2)+”~+P(An). (4)

The right-hand side of this sum rule is often conveniently abbreviated by
the sum sign X:

P(AyvAyu---UAy) =ZP(4)). (5)

Recall that under the frequentist interpretation, the probability of an
event is interpreted as its relative frequency in a series of experiments. A
classical result from statistics shows that the relative frequency of an
event converges to its true probability as the number of experiments
increases (Law of Large Numbers). Thus, if x is an outcome of some
experiment (e.g., throwing a die) and Count(x) is the number of
times x occurs in N repeated experiments, then the relative frequency
Count(x)/N converges to the probability of x if N goes to infinity. The
probability of x is also written as P(X = x), where X is called a random
variable (see also the glossary).
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2.3 Joint Probabilities and Conditional Probabilities

Let us now extend our notion of simple probability to that of joint prob-
ability. Joint probabilities are useful if we are interested in events that
contain more than one outcome. For example, in an experiment where we
randomly sample two words from the corpus described in section 2.1
(rather than just one word), what is the probability of an event consisting
of a noun and a verb—given that we sample with replacement?? We write
this probability as P({noun} n {verb}), or simply as P({noun}, {verb}).
We already computed the probabilities of sampling a noun and a verb
separately:

P({noun}) = .5,
P({verb}) = 4.

Intuitively, this amounts to saying that in 50% of the cases we sample
a noun, after which in 40% of the cases we sample a verb. This means
that we sample them jointly in 40% of 50% of the cases—that is, in
20% of the cases (in our experiment). Thus, intuitively, the joint proba-
bility of sampling a noun and a verb is equal to the product of the prob-
abilities of sampling them separately: P({noun}, {verb}) = P({noun}) x
P({verb}) = .5 x .4 = 2.3 We can do this simple multiplication because
we designed our experiment in such a way that sampling a verb is inde-
pendent of having sampled a noun.* We say that the events {noun} and
{verb} are independent. In general, for two independent events 4 and B,

P(A,B) = P(A) x P(B) if A and B are independent. (6)

It is often the case that two events are not independent, but dependent.
We could design an experiment where the probability of sampling a
verb changes if we know that we previously sampled a noun. This is for
instance the case in an experiment where we sample two consecutive
words. Suppose that in our corpus, 90% of the nouns are followed by
verbs. For such an experiment, the probability of sampling a verb given
that we first sampled a noun is thus .9 (rather than .4). This probability is
written as P({verb}|{noun}) and is called the conditional probability of a
verb given a noun. But now what is the probability of sampling a noun
and a verb in this particular experiment? We know that

P({noun}) = .5,
P({verb}|{noun}) = .9.
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That is, in 50% of the cases we sample a noun, after which in 90% of
the cases we sample a verb (in this experiment). This means that we
sample them jointly in 90% of 50% of the cases—that is, in 45% of the
cases. Thus, the joint probability P({noun}, {verb}) is equal to the prod-
uct P({noun}) x P({verb}|{noun}) = .5 x .9 = .45. In general, for two
events 4 and B,

P(A,B) = P(A) x P(B|A), (7)

which reads as ““The probability of 4 and B equals the probability of 4,
times the probability of B given 4.” Note that this formula generalizes
over formula (6): if the events 4 and B are independent, P(B|A) is equal
to P(B), and (7) reduces to (6). Formula (7) is generally known as the
multiplication rule or product rule. The product rule can also be written as
a general definition for conditional probability:

P(A,B)

P(B|A) =

It is important to realize that a conditional probability is itself a proba-
bility function, and its values sum up to 1 by varying what is on the left-
hand side of the bar in (8). Most textbooks on probability theory first
define the concept of conditional probability and then, from that, the
formula for joint probability. For the current exposition, it seemed more
intuitive to do this the other way round.

From (8), Bayes’ rule can be derived. First, we will rename the vari-
ables of (8):

P(E, H)

PUHIE) = =™

©)

where, in the context of Bayesian reasoning, P(H |E) usually reads as “the
probability of a hypothesis H given some evidence E.” Second, since set
intersection is commutative (i.e., 4 " B = B n A), the joint probability
P(E,H) is equal to P(H,E), and we can therefore write the right-hand
side of (9) also as P(H,E)/P(E), which according to (7) is equal to
P(H) x P(E|H)/P(E). Thus, (9) can be written as

P(H) x P(E|H)

P(H|E) = E)

(10)
This formula, known as Bayes’ rule, is useful if the conditional probabil-
ity P(H|E) is more difficult to compute than P(H) and P(E|H). The
probability P(H) is usually called the prior probability, while P(E|H) is
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called the posterior probability. We will see later in this book how Bayes’
rule can be applied to linguistic phenomena.

Turning back to the concept of joint probability, the product rule (7)
for two events can be generalized to multiple events. For example, the
joint probability of three events 4, B, and C'is

P(A4,B,C) = P(A) x P(B|4) x P(C|A,B), (11)

which reads as “The probability of 4, B, and C equals the probability of
A, times the probability of B given A, times the probability of C given A
and B.” The proof of (11) follows straightforwardly when we combine
the associative property of setintersection (i.e., AnBNC=An (BN C) =
(AnB)nC) with formula (7): P(4,B,C)= P(A4,(B,C)) = P(A) x
P(B,C|A) = P(A)x P(B|A) x P(C|A, B). Andfornevents A1, Ay, . .., Ay,
the multiplication rule becomes

P(Al,Az,...,An) = P(A]) X P(Az‘Al) X e X P(A,1|A1,A2,...,An,1),
(12)

which is also known as the chain rule. Remember that in an experiment

where the events A;, A,,...,A, are independent, formula (12) simply
reduces to
P(Al,Az,...,An):P(Al)XP(Az)X---XP(An). (13)

Sometimes, each event depends only on the immediately previous event,
in which case formula (12) reduces to

P(Al,Az,...,An) = P(A]) X P(Az‘Al) X e X P(A”|An,1). (14)

Formula (14) stands for what is more commonly known as a first-order
markov model, where each event depends only on the preceding event;
and formula (13) corresponds to a zero-order markov model. In general, a
k-th order markov model assumes that each event depends only on a fixed
number of k preceding events, where k is called the Zistory of the model.
For several decades, markov models were assumed to be inadequate for
linguistics because they were applied to word sequences (n-grams, such as
bigrams or trigrams) only, without taking into account the grammatical
structure of these sequences. Yet we will see in the following section that
formulas (12) through (14) can just as well be applied to grammatical
structures.

It is useful to introduce the product sign I, which abbreviates long
products (and is analogous to the sum sign X, which abbreviates
long sums). For example, (12) is often written as
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P(Ay, Az, ..., A,) =TI, P(Ai|A1, Az, ..., Ai—1). (15)
And (as with (13)), if the events are independent, (15) reduces to
P(Ay, Ay, ..., A,) =T1,P(A4;). (16)

It is important to understand the difference in use between the sum rule
in (4) and the product rule in (6) and (7). The sum rule describes the
probability that either event A or event B occurs in some experiment,
which is equal to the sum of their probabilities (provided that 4 and B are
disjoint®). The product rule, on the other hand, describes the probability
that both 4 and B occur as a joint event in an experiment where events
can have more than one outcome; and this probability is equal to the
product of the probabilities of 4 and B (or in the general case, to the
product of the probability of 4 and the conditional probability of B given
A).

2.4 Probabilistic Grammars

With these concepts from probability theory in mind, we can now look
at an example of actual linguistic interest: probabilistic grammars (also
called stochastic grammars). As the following chapters will show, proba-
bilistic grammars are used to describe the probabilistic nature of a vast
number of linguistic phenomena, such as phonological acceptability, mor-
phological alternations, syntactic well-formedness, semantic interpre-
tation, sentence disambiguation, and sociolinguistic variation.

One of the most widely used probabilistic grammars is the probabilistic
context-free grammar or PCFG (also called stochastic context-free gram-
mar). As an introduction to PCFGs, consider a simple example. Suppose
we have a very small corpus of phrase structure trees (also called a tree-
bank) consisting of only two surface trees for the sentences Mary hates
visiting relatives and John likes buzzing bees (figure 2.1). We will assume
that each tree in the treebank corresponds to the structure as it was per-
ceived for that sentence by some hypothetical natural language user.
(Some subcategorizations are omitted to keep the example simple.) Note
that the only difference between the two structures (apart from the words)
is the syntactic label covering the last two words of the sentences, which is
VP in the first sentence and NP in the second. By reading the rules off the
trees, we obtain the context-free grammar (CFG) implicit in these struc-
tures. Table 2.1 gives these rules together with their frequencies in the
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Figure 2.1

A treebank of two trees

Table 2.1
The rules implicit in the treebank of figure 2.1

Rule Frequency

S — NP VP
VP — V NP
VP — V VP
NP — V NP
NP — Mary
NP — John
NP — relatives
NP — bees
V — hates
V — likes

V — visiting

N

S )

V — buzzing
Total

—
AN




20 Bod

treebank. This table allows us to derive, for example, the probability of
the rule S — NP VP in the treebank—or, more precisely, the probability
of randomly selecting S — NP VP from among all rules in the treebank.
The rule S — NP VP occurs twice in a sample space of 14 rules; hence,
its probability is 2/14 = 1/7. However, usually we are interested not so
much in the probability of a single rule, but in the probability of a com-
bination of rules (i.e., a derivation) that generates a particular sentence.
The grammar derived from the treebank in table 2.1 generates an infinite
number of sentences, including Mary likes buzzing bees, Mary likes visit-
ing buzzing bees, Mary likes visiting buzzing visiting bees. Thus, although
these sentences are not in the treebank, they can be generated by pro-
ductively combining fragments from the treebank trees.® For example,
Mary likes buzzing bees can be generated by combining the rules from
table 2.1 that are shown in figure 2.2. This combination of rules, or deri-
vation, produces the tree structure in figure 2.3.”7 Note that the sentence
Mary likes buzzing bees is ambiguous. That is, it can also be generated by
combining the rules from table 2.1 that are shown in figure 2.4, which
produce the alternative tree structure in figure 2.5.

One application of probability theory is to provide a ranking of the
various tree structures for a sentence by means of their probabilities. How
can we determine the probabilities of the two structures in figures 2.3 and
2.5? Using the concepts from sections 2.2 and 2.3, we can view a tree
structure as an event containing the context-free rules in an experiment
that parses a particular sentence by a (leftmost) derivation. In this exper-
iment, we thus first select an S-rule from among all possible S-rules. We
then select the next rule among the rules that can be combined with the
previous rule (i.e., that start with the same category as the leftmost cate-
gory on the right-hand side of the previous rule), and we repeat this pro-
cess until only words remain. Note that this experiment is well defined
only if each rule can indeed be combined with the previous rule and if the
first rule starts with an S. Thus, the probability of the derivation corre-
sponding to the tree in figure 2.3 is the joint probability of selecting the
rules in table 2.2.

The probability of (1) can be computed by dividing the number of
occurrences of rule S — NP VP by the number of occurrences of all rules
that start with an S. There are two rules S — NP VP in the treebank, and
the total number of S-rules is also two (in fact, they coincide); thus, the
probability of (1) is 2/2 = 1. Note that this probability is actually the
conditional probability P(S — NP VP|S), and thus the sum of the condi-
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S — NP VP
NP — Mary
VP — V NP
V — likes
NP — V NP
V — buzzing
NP — bees

Figure 2.2
Treebank rules for deriving Mary likes buzzing bees

N\

NP VP
N
Mary \Y NP
IPZRN
likes v NP
buzzing bees
Figure 2.3

Tree structure generated by the rules in figure 2.2

tional probabilities of all rules given a certain nonterminal to be rewritten
is 1.

The probability of (2) is equal to 1/5 since the rule NP — Mary occurs
once among a total of five rules that start with an NP.

The probability of (3) is equal to 2/3 since the rule VP — V NP occurs
twice among a total of three rules that start with a VP.

The probabilities of all rules in table 2.2 are given in table 2.3. Having
computed these probabilities, how can we now compute their joint prob-
ability? That is, are the rules to be taken as dependent or independent? In
other words, should we apply formula (12) or (13)? A crucial assumption
underlying PCFGs is that the rules in a derivation depend only on the
nonterminal to be expanded. And this is the assumption we followed in
computing the probabilities above by selecting each rule from among
the rules that start with the same nonterminal (i.e., we computed the con-
ditional probabilities P(S — NP VP|S), P(NP — Mary|NP), etc., rather
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S — NP VP
NP — Mary
VP —- V VP
V — likes
VP — V NP
V — buzzing
NP — bees

Figure 2.4
Treebank rules for deriving the alternative structure for Mary likes buzzing bees

S

NP VP
N

Mary \'% VP
VRN
likes v NP

buzzing bees
Figure 2.5

Tree structure generated by the rules in figure 2.4

Table 2.2
The probability of a derivation is the joint probability of selecting these rules

Event
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Table 2.3

The probabilities of the various rules in table 2.2

Event Probability

(1) selecting the rule S — NP VP from among the rules starting 1
with an S

(2) selecting the rule NP — Mary from among the rules starting 1/5
with an NP

(3) selecting the rule VP — V NP from among the rules starting 2/3
with a VP

(4) selecting the rule V — likes from among the rules starting 1/4
witha V

(5) selecting the rule NP — V NP from among the rules starting 1/5
with an NP

(6) selecting the rule V — buzzing from among the rules starting 1/4
witha V

(7) selecting the rule NP — bees from among the rules starting 1/5
with an NP

than the simple probabilities P(S — NP VP) and P(NP — Mary)).
Thus, for a PCFG, the probability of a rule is independent of the deriva-
tion it occurs in and so can be computed off-line. Table 2.4 gives the
PCFG probabilities for all rules that can be derived from the treebank
in figure 2.1. PCFGs can of course be defined independently of how the
rule probabilities are “learned.” A PCFG that extracts the probabilities
directly from a treebank, as shown above, is known as a treebank gram-
mar, a term coined by Charniak (1996).

Let us now turn back to the probability of the derivation for Mary likes
buzzing bees that generates the tree in figure 2.3. This can be computed
as the product of the probabilities in table 2.3, that is, 1 x 1/5 x 2/3 x
1/4x1/5%x1/4%x1/5=2/6,000=1/3,000. This probability is small,
reflecting the fact that the grammar produces derivations for infinitely
many sentences whose probabilities sum up to 1 only in the limit. But
what we are actually interested in is to compare the probability of this
derivation with the probability of the other derivation for Mary likes
buzzing bees (producing the tree in figure 2.5). The latter probability is
equal to 1x1/5x1/3x1/4x2/3x1/4x1/5=2/3,600=1/1,800.
Thus, the probability of the derivation producing the tree in figure 2.5 is
higher than the probability of the derivation producing the tree in figure
2.3. Although we must keep in mind that our sample space of two trees is
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Table 2.4
Probabilistic context-free grammar (PCFG) probabilities for the rules derived
from the treebank in figure 2.1

Rule PCFG probability
S — NP VP 1
VP — V NP 2/3
VP — V VP 1/3
NP — V NP 1/5
NP — Mary 1/5
NP — John 1/5
NP — relatives 1/5
NP — bees 1/5
V — hates 1/4
V — likes 1/4
V — visiting 1/4
V — buzzing 1/4

unrealistically small (most available treebanks contain 50,000 trees or
more), it is somewhat surprising that the tree in figure 2.5 has a higher
probability than the one in figure 2.3. We would expect the reverse:
since Mary likes buzzing bees differs by only one word from the treebank
sentence John likes buzzing bees but differs much more from the other
treebank sentence, Mary hates visiting relatives, we might expect a prob-
abilistic grammar to predict that the most probable tree for Mary likes
buzzing bees would be the same tree associated with John likes buzzing
bees, rather than the tree associated with Mary hates visiting relatives.
However, as noted, a crucial assumption underlying PCFGs is that their
rules are independent. It is easy to see that this assumption is wrong, even
for the subclass of natural language sentences that are in fact context free.
For example, the words buzzing and bees in the NP buzzing bees are
probabilistically dependent: that is, the probability of observing bees is
not equal to the probability of observing bees given that we have first
observed buzzing. But this dependency is not captured by a PCFG, since
it takes the rules V — buzzing and NP — bees to be independent. Thus,
while a CFG may suffice as a grammar formalism for defining the cate-
gorical properties for the context-free subset of sentences, its probabilistic
counterpart PCFG does not do the same job for the noncategorical prop-
erties of this context-free subset.
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Several alternative models have been proposed to redress the short-
comings of PCFGs. These alternative probabilistic extensions of CFGs
have resulted in probabilistic grammars that are provably stronger than
PCFGs (“stronger” will be explained more precisely in the next section).
One such grammar makes the probabilities of the rules dependent on the
previous rules used in a derivation, by effectively applying formula (12) to
the rules (Black et al. 1993). However, while such a history-based gram-
mar can thereby capture the dependency between buzzing and bees, it has
problems with dependencies between words that are separated by other
words, as for example in the sentence The old man died, where there is
a dependency between old and died but not between old and man or
between man and died. It cannot capture this dependency because the
rules are made dependent on directly preceding rules, and not on any
arbitrary previously used rule(s).

Another probabilistic grammar formalism, which has become quite
influential in the field of natural language processing, associates each
nonterminal of a context-free rule with its lexical head according to the
treebank tree (e.g., Collins 1996; Charniak 1997a). However, such a head-
lexicalized probabilistic grammar neglects dependencies that go beyond
simple headword dependencies, such as the one between nearest and to
in the ATIS® sentence Show the nearest airport to Denver. Since a head-
lexicalized probabilistic grammar considers nearest to be a non-headword
of the NP the nearest airport, it incorrectly disambiguates this sentence
(it assigns the highest probability to the tree where the PP to Denver is
attached to show, since the dependency between the headwords show and
to is more likely in the ATIS treebank than that between the headwords
airport and to). The shortcomings of head-lexicalized probabilistic gram-
mars are discussed more fully in Bod 2001b.

What we may learn from these different probabilistic formalisms is that
the probability of a whole (i.e., a tree) can be computed from the com-
bined probabilities of its parts, but that it is difficult to decide what the
relevant parts are. In a PCFG, the relevant parts are assumed to be the
simple CFG rules (clearly wrong), while in a head-lexicalized grammar,
the parts are assumed to be the rules enriched with their lexical heads
(also too limited). Another probabilistic grammar formalism, probabilistic
lexicalized tree-adjoining grammar (Schabes 1992; Resnik 1992), takes the
elementary trees of a tree-adjoining grammar as the relevant parts (see
Bod 1998 for a critique of this formalism).
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A treebank of two trees

Still another formalism generalizes over most other probabilistic
grammars. It does so by taking any subtree (of arbitrary size) as a part,
including the entire trees from a treebank. This formalism, known as
a Data-Oriented Parsing (DOP) model (Bod 1993, 1998), is formally
equivalent to a probabilistic tree substitution grammar. A DOP model
captures the previously mentioned problematic dependency between old
and died, or nearest and to, by a subtree that has the two relevant words
as its only lexical items. Moreover, a DOP model can capture arbitrary
fixed phrases and idiom chunks, such as to take advantage of. Note that a
DOP model reduces to a PCFG if the size of the subtrees is limited to the
smallest ones.

To see how a DOP model works, consider a simple example. Since the
number of subtrees tends to be quite large, we will use the tiny treebank
shown in figure 2.6. A total of 34 subtrees, shown in figure 2.7, can be
derived from this treebank (at least if we use one specific instantiation of
DOP, known as DOPI1; see Bod 1998). Notice that some subtrees
occur twice: a subtree may be extracted from different trees, and also
from a single tree if the same node configuration appears at different
positions.

These subtrees form the underlying grammar by which new sentences
are generated. Subtrees are combined using a node substitution operation
similar to the operation that combines context-free rules in a (P)CFG,
indicated by the symbol “o”. Given two subtrees 7" and U, the node sub-
stitution operation substitutes U on the leftmost nonterminal leaf node of
T, written as T o U. For example, the sentence Mary likes Susan can be
generated by combining three subtrees from figure 2.7 as shown in figure
2.8.
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v NP Mary V NP
likes likes Susan
Figure 2.8

Generating Mary likes Susan by combining subtrees from figure 2.6

Table 2.5
The probability of a derivation is the joint probability of selecting its subtrees

Event

(1) selecting the subtree [s NP [yp[v likes] NP]] from among the subtrees with
root label S,

(2) selecting the subtree [np Mary] from among the subtrees with root label NP,
(3) selecting the subtree [np Susan| from among the subtrees with root label NP.

The events involved in this derivation are listed in table 2.5. The prob-
ability of (1) is computed by dividing the number of occurrences of the
subtree [s NP [yp[v likes] NP]] in figure 2.7 by the total number of occur-
rences of subtrees with root label S: 1/20. The probability of (2) is equal
to 1/4, and the probability of (3) is also equal to 1/4.

The probability of the whole derivation is the joint probability of the
three selections in table 2.5. Since in DOP each subtree selection depends
only on the root label and not on the previous selections, the probability
of a derivation is, as in PCFG, the product of the probabilities of the
subtrees, in this case 1/20 x 1/4 x 1/4 =1/320. Although it is again
assumed that the parts of the probabilistic grammar are independent, this
assumption is not harmful in DOP, since if the treebank contains any
larger subtree that includes two (or more) smaller subtrees, it can directly
be used as a unit in a derivation, thereby taking into account the co-
occurrence of the smaller subtrees.

This brings us to another feature of DOP: the fact that different deri-
vations can produce the same tree. This so-called spurious ambiguity may
be irrelevant for nonprobabilistic grammars, but for probabilistic gram-
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PN
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NP VP Mary likes NP /VP\
\ NP Mary \Y NP
Susan likes Susan
Figure 2.9

A different derivation generated by combining subtrees from figure 2.6, yielding
the same parse for Mary likes Susan

S ° NP ° VP ° V o NP = S
AN /AN TN
NP VP Mary V NP likes Susan NP VP
VN
Mary V NP
|
likes Susan
Figure 2.10

Another derivation generated by combining subtrees from figure 2.6, yielding the
same parse for Mary likes Susan

mars it leads to a different probability model. For example, the tree
shown in figure 2.8 for the sentence Mary likes Susan can also be derived
by combining the subtrees shown in figure 2.9. The probability of this
derivation is equal to 1/20 x 1/4 x 1/2 = 1/160, which is different from
the probability of the derivation in figure 2.8, even though it produces the
same tree. And in fact there are many more derivations that produce this
tree, each with its own probability. The one shown in figure 2.10 is anal-
ogous to a PCFG derivation for Mary likes Susan, in that each subtree
exactly corresponds to a context-free rewrite rule. The probability of this
derivation is equal to 2/20 x 1/4 x2/8 x 1/2 x 1/4 = 1/1,280, which is
again different from the probabilities of the other two derivations gen-
erating this tree.

Thus, DOP does not exhibit a one-to-one correspondence between
derivation and tree, as PCFG does. Instead, there may be several distinct
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derivations for the same tree. The probability that a certain tree occurs is
then the probability that any of its derivations occurs. According to rule
(4), this amounts to saying that the probability of a tree is the sum of the
probabilities of its derivations (I leave the computation of the tree prob-
ability for Mary likes Susan to the reader). Intuitively this means that
in DOP, evidence for a tree accumulates: the more derivations a tree
has, the larger its probability tends to be. This means that if a tree can
be constructed (also) from large subtrees found in a treebank, it tends to
be ranked higher than a tree than can be constructed only from small
subtrees.

Note that if we are interested in the probability of generating a certain
sentence, we must sum up the probabilities of all different trees that gen-
erate that sentence—following the same reasoning as for the probability
of a tree. It can be shown that the sum of the probabilities of all sentences
generated by a DOP model is equal to 1 (following Chi and Geman
1998).

The DOP model outlined here, DOP1, is just one of many DOP models
that have been proposed (see Bod, Scha, and Sima’an 2002 for an over-
view). The distinctive features of the general DOP approach, when it was
proposed in Bod 1992, were that (1) it directly used sentence fragments as
a grammar, and (2) it did not impose constraints on the size of the frag-
ments. While (1) is now relatively uncontroversial in probabilistic natural
language processing (see Manning and Schiitze 1999), (2) has not been
generally adopted. Many models still work either with local trees, that is,
single-level rules with limited means of information percolation such as
headwords (e.g., Collins 1996; Charniak 1997a), or with restricted frag-
ments, as in probabilistic lexicalized tree-adjoining grammar, that do
not include nonlexicalized fragments (e.g., Schabes 1992; Chiang 2000).
However, the last few years have seen a shift toward using more and
larger treebank fragments. While initial extensions of PCFGs limited
fragments to the locality of headwords (e.g., Collins 1996; Eisner 1996),
later models have shown the importance of including context from higher
nodes in the tree (e.g., Johnson 1998b). The importance of including non-
headwords is now widely accepted (e.g., Goodman 1998; Collins 1999;
Charniak 2000). And Collins (2000, 176) argues for ‘“‘keeping track of
counts of arbitrary fragments within parse trees,” a proposal carried out
by Collins and Dufty (2001, 2002), who use exactly the same set of sen-
tence fragments that was proposed in the original DOP model (Bod
1992).
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From a linguistic point of view, the more interesting question is
whether language users store sentence fragments in memory, and if they
do, whether they store arbitrarily large fragments as the DOP model
proposes. Jurafsky (this volume) reports that people store not only lexical
items, but also frequent bigrams (two-word units), frequent phrases, and
even whole sentences. For the case of sentences, there is some evidence
that language users store not only idioms, but also simple high-frequency
sentences such as I love you and I don’t know (Jurafsky, this volume; Bod
2001a). The fact that language users store sentence fragments in memory
and that these fragments can range from two-word units to entire sen-
tences suggests that language users need not always generate or parse
sentences from scratch using the rules of the grammar, but that they can
productively reuse previously heard sentences and sentence fragments.
Yet there is no evidence so far that people memorize all fragments they
hear. Only high-frequency fragments seem to be stored. However, if the
language faculty has to learn which fragments will be stored, it will ini-
tially need to store everything (with the possibility of forgetting some
things, of course); otherwise, frequencies can never accumulate. This
results in a model that continuously and incrementally updates its frag-
ment memory given new input. We will see that such a model turns out to
be important for almost all subfields of (probabilistic) linguistics, ranging
from phonology to syntax and from psycholinguistics to sociolinguistics.

Another interesting linguistic question is whether DOP models are too
general. Since DOP models essentially store all sentences, they perhaps do
not provide sufficient constraints for defining the set of possible lan-
guages. Since this question is aptly dealt with by Manning (this volume),
I will not go into it here. Still another interesting linguistic question
is whether DOP models of the type outlined above are actually too con-
strained, since they have the generative power of context-free languages
(this follows from the node substitution operation for combining sub-
trees). Although context-free power may suffice for phonology (Pierre-
humbert, this volume) and morphology (Baayen, this volume), there are
syntactic phenomena, such as long-distance dependencies and cross-serial
dependencies, that are known to be beyond context free. Therefore, a
model that is inherently context free is deemed to be linguistically inade-
quate. In the last few years, various DOP models have been developed
whose generative capacity is richer than context free. These models are
based on linguistic representations that also allow for syntactic features,
functional categories, and semantic forms (see Bod and Kaplan 1998;
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Neumann 1998; Hoogweg 2002). Although a detailed description of these
models lies beyond the scope of this chapter, it should be noted that for
these richer DOP models as well, fragments of arbitrary size are indis-
pensable for predicting correct sentence structure (see Bod 1998; Way
1999; Bod and Kaplan 2002). Manning (this volume) examines some
other probabilistic extensions of non-context-free grammars.

2.5 Formal Stochastic Language Theory

We have seen that a DOP model (actually, a DOP1 model) generalizes
over a PCFG. But is DOP also probabilistically “richer” than a PCFG?
That is, is it impossible to create a PCFG for every DOP model? These
two questions lead us to ask how two probabilistic grammars can be
compared. First note that in comparing probabilistic grammars, we are
not interested in the traditional notion of generative capacity, since for
example DOP1, PCFG, history-based grammar, and head-lexicalized
grammar are all context free. Instead, we are interested in the probability
distributions that these probabilistic grammars define over sentences and
their trees.

Two central concepts in traditional Formal Language Theory are weak
equivalence and strong equivalence. Two grammars are said to be weakly
equivalent if they generate the same strings, and strongly equivalent if
they generate the same strings with the same trees. The set of strings
generated by a grammar G is also called the string language of G, while
the set of trees generated by G is called the tree language of G.

Analogously, the two central concepts in Formal Stochastic Language
Theory are weak stochastic equivalence and strong stochastic equivalence.
Two probabilistic grammars are said to be weakly stochastically equiva-
lent, if and only if they generate the same stochastic string language
(where the stochastic string language generated by a probabilistic gram-
mar G is the set of pairs {x, P(x))» where x is a string from the string
language generated by G and P(x) the probability of that string). Two
probabilistic grammars are said to be strongly stochastically equivalent if
and only if they generate the same stochastic tree language (where the
stochastic tree language generated by a probabilistic grammar G is the set
of pairs {x, P(x)) where x is a tree from the tree language generated by
G and P(x) the probability of that tree). Note that if two probabilistic
grammars are strongly stochastically equivalent, they are also weakly
stochastically equivalent.
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S S S
/\ /\ a
S b S b
a
t t t
Figure 2.11

A probabilistic tree substitution grammar consisting of three elementary trees

As an illustration of how Formal Stochastic Language Theory can be
used to compare different formalisms, we will investigate whether PCFG
and DOP are strongly stochastically equivalent (for some other compar-
isons, see Bod 1998; Carroll and Weir 2000). Since the instantiation of
DOP in this chapter is equal to a probabilistic tree substitution grammar
(PTSG), we will refer to this DOP model as a PTSG (in accordance with
Manning and Schiitze 1999, 446-448). Specifically, the question is, Is
there a PTSG for which there is a strongly equivalent PCFG but no
strongly stochastically equivalent PCFG? As can easily be shown, the
answer is yes. Consider the very simple PTSG G in figure 2.11 consisting
of three subtrees that are all assigned a probability of 1/3.° The string
language generated by G is {a,ab,abb,abbb,abbbb, ...}, which can be
abbreviated as {ab*}. The only PCFG G’ that is strongly equivalent to G
consists of the following productions:

(1) S— Sh
2) S—a

G’ would also be strongly stochastically equivalent to G if it assigned the
same probabilities to the parse trees in the tree language as those assigned
by G. Let us consider the probabilities of two trees generated by G—
specifically, the trees represented by #; and f3.1° The tree represented by
t3 has exactly one derivation, which consists of the subtree ¢3. The prob-
ability of generating this tree is hence equal to 1/3. The tree represented
by #; has two derivations: by selecting subtree ¢;, or by combining the
subtrees #, and #;. The probability of generating this tree is equal to
the sum of the probabilities of its two derivations; that is, 1/3 +
(1/3x1/3) =4/9.
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If G’ is strongly stochastically equivalent to G, it should assign the
probabilities 4/9 and 1/3 to (at least) the trees represented by #; and
t3, respectively. The tree #3 is exhaustively generated by production
(2); thus, the probability of this production should be equal to 1/3:
P(S — a) = 1/3. The tree ¢, is exhaustively generated by applying pro-
ductions (1) and (2); thus, the product of the probabilities of these pro-
ductions should be equal to 4/9: P(S — Sb) x P(S — a) =4/9. By
substitution, we get P(S — Sh) x 1/3 =4/9, from which we derive that
P(S — Sb) =4/3. This means that the probability of the production
S — Sb should be larger than 1, which is not allowed. Thus, G’ cannot be
made strongly stochastically equivalent to G.

This proof shows that there exists a PTSG for which there is no strongly
stochastically equivalent PCFG (even if it is strongly equivalent). On the
other hand, it can easily be shown that for every PCFG there exists a
strongly stochastically equivalent PTSG: for any rule in any PCFG, one
can create a minimal one-level subtree (with the same probability) cover-
ing exactly the corresponding rule.

Now, if for every PCFG there is a strongly stochastically equivalent
PTSG, but not vice versa, then the set of stochastic tree languages gen-
erated by the class of PCFGs is a proper subset of the set of stochastic tree
languages generated by the class of PTSGs. This is what it means to say
that PTSGs are “richer” than PCFGs.

The goal of this section has been to present a framework in which dif-
ferent probabilistic grammars can be compared. The importance of such
a comparison should not be underestimated. If we invent a new formal-
ism only to find out that for each grammar in this formalism we can
create a strongly stochastically equivalent PCFG, then we haven’t made
much progress. Thus, rather than being interested in a grammar’s place in
the Chomsky hierarchy (Chomsky 1959), we are often more interested in
its place in the stochastic hierarchy within one and the same class of the
Chomsky hierarchy.

2.6 Conclusion

Although the background knowledge outlined here (and in the glossary)
should suffice for understanding this book, this chapter only scratches
the surface of probability theory and probabilistic grammars. Important
topics it has not touched on include probabilistic regular grammars



Elementary Probability Theory 35

(which are equivalent to markov models), probabilistic attribute-value
grammars (which generalize over several richer probabilistic grammars),
and consistency requirements for probabilistic grammars (which turn
out to be particularly interesting for DOP models—see Bod 2000a; John-
son 2002). If the reader feels cheated and wants to see the full picture,
then I have achieved my goal. Excellent textbooks and overview articles
on probability theory and formal stochastic language theory are avail-
able, some of which are mentioned below.

The reader may wonder whether probability theory is really needed to
cope with gradience and frequency effects in language, or whether these
effects could just as well be accounted for by other approaches such as
Optimality Theory or connectionism. Then it is really time to dive into
the following chapters: probabilistic approaches nowadays cover the en-
tire spectrum of linguistics, and other approaches are increasingly turning
to probabilistic models, including Optimality Theory and connectionism.

2.7 Further Reading

There are many good introductory textbooks on probability theory and
statistics. A very accessible introduction is Moore and McCabe 1989,
which focuses on probability distributions. Other textbooks include Ross
2000 and Feller 1970, as well as (at a more advanced level) Breiman 1973
and Shao 1999. For an introduction from a Bayesian standpoint, see
DeGroot 1989. Krenn and Samuelsson 1997 offers a tutorial on proba-
bility theory from the viewpoint of natural language processing. Oakes
1998 gives an overview of the use of statistics in corpus linguistics. An
interesting survey on the emergence of probability in the history of
thought is Hacking 1975.

Probabilistic grammars were first studied outside linguistics: they were
used for pattern recognition (Grenander 1967), and mathematical prop-
erties of PCFGs were explored (Booth 1969). It was shown that PCFGs
can be learned from positive data alone (Horning 1969); this result turns
out to be quite important for probabilistic linguistics (see Manning, this
volume). One of the first papers that argues for PCFGs from a linguistic
standpoint is Suppes 1970. Manning and Schiitze 1999 gives a good
overview of the properties of PCFGs and discusses several enhancements.
Jurafsky and Martin 2000 explores the psycholinguistic relevance of
PCFGs. Chi and Geman 1998 shows that proper probability distributions



36 Bod

are obtained if the probabilities of the PCFG rules are estimated directly
from a treebank (as proposed in Bod 1993 and Charniak 1996).

An overview of probabilistic extensions of CFGs is included in Char-
niak 1997b, Bod 1998, 2001b, and Manning and Schiitze 1999. Proba-
bilistic grammars for languages richer than context free are developed in
Abney 1997, Bod and Kaplan 1998, Johnson et al. 1999, and elsewhere.
DOP models are discussed in Bod 1998 and Bod, Scha, and Sima’an
2002. Regarding the properties of various probability models for DOP,
see Bod 2000a, Bonnema 2002, Goodman 2002, and Johnson 2002.

Initial comparisons of different probabilistic grammars focused on their
stochastic string languages (e.g., Fu 1974; Levelt 1974; Wetherell 1980)
Bod 1993 distinguishes between weak and strong stochastic equivalence,
and Bod 1998 uses these concepts to compare different probabilistic
extensions of CFGs, suggesting a hierarchy of probabilistic grammars
within the classes of the Chomsky hierarchy. Abney, McAllester, and
Pereira 1999 investigates the exact relationship between probabilistic
grammars and probabilistic automata. Carroll and Weir 2000 demon-
strates the existence of a subsumption lattice of probabilistic grammars
with PCFG at the bottom and DOP at the top.

Notes

I wish to thank all coauthors of this book for their helpful feedback on this chap-
ter. I am especially grateful to Jennifer Hay and Chris Manning, whose extensive
comments were particularly useful.

1. The word stochastic is used as a synonym for probabilistic, but is especially
used when it refers to results generated by an underlying probability function.

2. In this book and in probabilistic linguistics in general, the word sampling
always refers to sampling with replacement.

3. Note that the probability of first sampling a verb and then a noun is also .2.
This is because set intersection is commutative: {noun} n {verb} = {verb} n
{noun} and therefore P({noun} n {verb}) = P({verb} n {noun}). This also
means that the probability of sampling a noun and a verb in any order is equal
to.24+.2=4

4. In this book, multiplications are often written without the multiplication sign.
Thus, P(A) x P(B) is also written as P(4)P(B).

5. If A and B are not disjoint, there is double counting, which means that the
counts of the intersection of 4 and B should be subtracted. Thus, for the general
case, P(4Au B) = P(A) + P(B) — P(An B).

6. This shows that the “Chomskyan myth” that finite corpora can only generate
finite numbers of sentences is fallacious.
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7. Without loss of generality, we will assume that a tree or a sentence is produced
by a leftmost derivation, where at each step the leftmost nonterminal is rewritten.

8. Air Travel Information System (see Marcus, Santorini, and Marcinkiewicz
1993).

9. This PTSG would correspond to a DOP model of which the subtrees are taken
from a treebank consisting only of tree ¢;.

10. Note that the trees #; and t; are both elements of the set of subtrees of G and
of the tree language generated by G.
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Chapter 3

Probabilistic Modeling in Dan Jurafsky
Psycholinguistics: Linguistic

Comprehension and

Production

Probability is not really about numbers, it is about the structure of reasoning.
—Glenn Shafer, cited in Pearl 1988

3.1 Introduction

It must certainly be accounted a paradox that probabilistic modeling is
simultaneously one of the oldest and one of the newest areas in psycho-
linguistics. Much research in linguistics and psycholinguistics in the 1950s
was statistical and probabilistic. But this research disappeared through-
out the *60s, *70s, and ’80s. In a highly unscientific survey (conducted by
myself) of six modern college textbooks and handbooks in psycholin-
guistics, not one mentions the word probability in the index.

This omission is astonishing when we consider that the input to lan-
guage comprehension is noisy, ambiguous, and unsegmented. In order to
deal with these problems, computational models of speech processing
have had to rely on probabilistic models for many decades. Computa-
tional techniques for processing of text, an input medium much less noisy
than speech, rely just as heavily on probability theory. Just to pick an
arbitrary indicator, 77% of the papers presented at the year 2000 confer-
ence of the Association for Computational Linguistics relied on proba-
bilistic models of language processing or learning.

Probability theory is certainly the best normative model for solving
problems of decision making under uncertainty. Perhaps, though, it is a
good normative model but a bad descriptive one. Even though probabil-
ity theory was originally invented as a cognitive model of human reason-
ing under uncertainty, perhaps people do not use probabilistic reasoning
in cognitive tasks like language production and comprehension. Perhaps
human language processing is simply a nonoptimal, nonrational process?
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In the last decade or so, a consensus has been emerging that human
cognition is in fact rational and relies on probabilistic processing. Seminal
work by Anderson (1990) gave Bayesian underpinnings to cognitive
models of memory, categorization, and causation. Probabilistic models
have cropped up in many areas of cognition, among them categorization
(Glymour and Cheng 1998; Rehder 1999; Tenenbaum 2000; Tenenbaum
and Griffiths 2001a,b).

Probabilistic models are also now finally being applied in psycholin-
guistics, drawing from early Bayesian-esque precursors in perception such
as Luce’s (1959) choice rule. What does it mean to claim that human
language processing is probabilistic? This claim has implications for lan-
guage comprehension, production, and learning.

Probability has been claimed to play three roles in language compre-
hension. First, consider the task of accessing linguistic structure from
the mental lexicon or grammar. Perhaps more probable structures are
accessed more quickly, or with less effort. Or perhaps they can merely
be accessed with less evidence than less probable structures. Second,
consider disambiguation. Ambiguity is ubiquitous in language compre-
hension: speech input is ambiguously segmented, words are syntactically
and semantically ambiguous, sentences are syntactically ambiguous, utter-
ances have ambiguous illocutionary force, and so on. Probability is one
of the factors that play a role in disambiguation: the more probable an
interpretation, the more likely it is to be chosen. Third, probability may
play a key role in explaining processing difficulty. Recent models of what
makes certain sentences difficult to process are based, at least in part, on
certain interpretations having particularly low probabilities, or on sudden
switches of probabilistic preference between alternative interpretations.
In this chapter, I will summarize models of all three of these roles for
probability in comprehension: access, disambiguation, and processing
difficulty.

The claim that human language processing is probabilistic also has
implications for production. Probability may play a role in accessing
structures from the mental lexicon or grammar. High-probability struc-
tures may be accessed faster, or more easily, or simply with more confi-
dence. Disambiguation, itself a phenomenon of comprehension, has a
correlate in production: choice. Given multiple possible structures a
speaker might say, probability may play a role in choosing among them.
I will give an overview of the experimental and modeling literature on
probabilistic production, although there is significantly less to summarize
here than there is for comprehension.
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Probability also plays a role in learning. Many models of how linguistic
structure is empirically induced rely on probabilistic and information-
theoretic models. I will not focus on learning here; instead, the interested
reader should turn to relevant papers such as Brent and Cartwright 1996;
Saffran, Aslin, and Newport 1996; Saffran, Newport, and Aslin 1996a,b;
Tenenbaum and Xu 2000; and Saffran 2001.

What probabilistic modeling offers psycholinguistics is a model of the
structure of evidential reasoning: a principled and well-understood algo-
rithm for weighing and combining evidence to choose interpretations in
comprehension, and to choose certain outcomes in production. Through-
out the chapter, I will make reference to Bayesian reasoning, and in par-
ticular to Bayes’ rule (equation (10) in chapter 2). Bayes’ rule gives us a
way to break down complex probabilities into ones that are easier to
operationalize and compute. Suppose we are trying to compute the prob-
ability of some interpretation i given some evidence e. Bayes’ rule states
that this probability can be broken down as follows:

Pleli)Pli)

P(ile) = Ple)

(1)
This says that we can compute the probability of an interpretation i given
evidence e by instead asking how likely the interpretation 7 is a priori, and
how likely the evidence e would be to occur if we knew the interpretation
was correct. Both of these are often easier to compute than P(i|e).

Probabilistic modeling has been applied to many areas of psycho-
linguistics: phonological processing, morphological processing, lexical
processing, syntactic processing, discourse processing. I will focus in
this chapter on lexical and syntactic processing. As for other areas of
processing, Baayen (this volume) covers processing with respect to mor-
phology and Pierrehumbert (this volume) touches on processing issues
in phonology. Regarding probabilistic work on dialogue and discourse
processing, see Jurafsky, in press.

3.2 Summary of Evidence for Probabilistic Knowledge

In this section, I will summarize evidence from psycholinguistic experi-
ments that bears on the use of frequency-based or probabilistic knowl-
edge in human language processing. The focus will be on lexical and
syntactic processing, both in comprehension and in production.

What kinds of experiments provide evidence for probabilistic model-
ing? First, I will summarize many experiments showing that frequencies
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of various linguistic structures play a role in processing: frequencies of
words, word pairs, lexical categories of words, subcategorization rela-
tions, and so on. Why should finding evidence for frequencies support
probabilistic models?

One reason is that relative frequency can play the role of prior proba-
bility in the computation of conditional probability. Recall from Bayes’
rule that the probability P(i|e) of some structure or interpretation i given
some evidence e can be computed as follows:

Ple|) P(i)

Plile) = =5 ()

This means that the conditional probability of an interpretation or struc-
ture i is directly related to the prior probability of i. Since the relative
frequency of i provides an easy way to estimate the prior probability of i,
the Bayesian model predicts that we should find frequency effects for
various kinds of structures.

But many complex structures are too rare for their probability to be
computed by counting the number of times they have occurred. Language
is creative, after all, and many large structures (like sentences) may only
occur once. In these cases, we would not expect to see evidence for the
frequency of these unique events.

In just these cases, however, probabilistic modeling gives us tools to
estimate the prior probability of these structures by making independence
assumptions, allowing us to estimate the probability of one large complex
object from the counts of many smaller objects. This, for example, is the
goal of probabilistic grammar formalisms like Data-Oriented Parsing and
stochastic context-free grammars. Since these models compute larger
structures and their probabilities by combining smaller structure and
their probabilities, probabilistic modeling suggests that the frequency of
smaller, more primitive structures should play a role in processing. This
once again predicts that we should find effects of various frequencies in
processing. I will explore some of these assumptions in more detail in
section 3.3.

In addition to evidence for frequencies, I will summarize evidence for
various kinds of conditional probabilities. In general, I will define the
probabilities of interest as the experiments are introduced.

3.2.1 Lexical Frequency
One of the earliest and most robust effects in psycholinguistics is the
word frequency effect. Word frequency plays a role in both the auditory
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and visual modalities, and in both comprehension and production. I will
summarize results of experiments in this area; but first, it’s important to
know how lexical frequency is measured.

3.2.1.1 Measuring Lexical Frequency Most studies since 1970 have
relied on word frequency statistics calculated from the Brown corpus
of American English, a 1-million word collection of samples from 500
written texts from different genres (newspapers, novels, nonfiction, aca-
demic prose, etc.), which was assembled at Brown University in 1963—64.
Kucera and Francis 1967 reports the frequency for each word-form in the
corpus, while Francis and Kucera 1982 uses a lemmatized and part-of-
speech tagged version of the Brown corpus to report frequencies for
lemmas (e.g., reporting both combined and distinct frequencies for go,
goes, going, went, and gone, and distinct frequencies for, say, table the
verb and table the noun).

From the very beginning of the field, it was clear that deriving fre-
quencies from corpora in this way was not unproblematic. It might seem
astonishing that the wide variety of frequency effects reported in the lit-
erature are based on using this one corpus. Indeed, the use of such cor-
pora to derive frequencies, either as a control factor or as an explicit part
of a probabilistic model, is problematic in three ways. First, consider that
a corpus is an instance of language production, but the frequencies
derived from corpora are often used to model or control experiments in
comprehension. While comprehension and production frequencies are
presumably highly correlated, there is no reason to expect them to be
identical. Second, the Brown corpus is a genre-stratified corpus. It con-
tains equal amounts of material from newspapers, fiction, academic
prose, and so on. But presumably a corpus designed for psychological
modeling of frequency would want to model the frequency with which an
individual hearer or speaker is exposed to (or uses) linguistic input. This
would require a much larger focus on spoken language, on news broad-
casts, and on magazines. Third, the Brown corpus dates from 1961; most
subjects in psycholinguistics experiments carried out today are college
undergraduates and weren’t even born in 1961; the frequencies that would
be appropriate to model their language capacity may differ widely from
Brown corpus frequencies.

I see these problems as introducing a very strong bias against finding
any effects of corpus frequencies in experimental materials. Nonetheless,
as we will see, strong and robust effects of corpus frequencies have been
found. One reason for this is that, as studies have long shown, frequencies
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from different corpora are very highly correlated (Howes and Solomon
1951). A more important reason is that most studies report only very
broad-grained frequencies, often using just three bins: high-frequency,
low-frequency, and other. Finally, studies are beginning to use larger and
more recent corpora and databases such as the CELEX lexical database
(based on a corpus of 18 million words) (Baayen, Piepenbrock, and
Gulikers 1995) and the British National Corpus (which has roughly 10
million tokens of tagged spoken English and 90 million tokens of written
English). These corpora are large enough to allow for the direct use of
unbinned frequencies (see, e.g., Allegre and Gordon 1999; de Jong et al.
2002; Baayen et al. 2002).

3.2.1.2 Lexical Frequency in Comprehension The earliest work study-
ing word frequency effects in comprehension seems to have been by
Howes and Solomon (1951), who used a tachistoscope to display a word
for longer and longer durations. They showed that the log frequency of a
word (as computed from corpora of over 4 million words) correlated
highly with the mean time subjects took to recognize the word; more fre-
quent words were recognized with shorter presentations. Later, the nam-
ing paradigm, in which subjects read a word out loud, was used to show
that high-frequency words are named more rapidly than low-frequency
words (Forster and Chambers 1973). The lexical decision paradigm, in
which subjects decide if a string of letters presented visually is a word
or not, has also been used to show that lexical decisions about high-
frequency words are made faster than decisions about low-frequency
words (Rubenstein, Garfield, and Millikan 1970; Whaley 1978; Balota
and Chumbley 1984). Again, these results are robust and have been
widely replicated. Frequency also plays a role in other on-line reading
measures such as fixation duration and gaze duration.

Similarly robust results have been found for auditory word recognition.
Howes (1957) first found results with speech that were similar to his
earlier results with vision: when presented with high- and low-frequency
words immersed in noise, subjects were better at identifying high- than
low-frequency ones. In an extension of this experiment, Savin (1963)
found that when subjects made recognition errors, they responded with
words that were higher in frequency than the words that were presented.
Grosjean (1980) used the gating paradigm, in which subjects hear more
and more of the waveform of a spoken word, to show that high-frequency
words are recognized earlier (i.e., given less of the speech waveform) than
low-frequency words. Tyler (1984) showed the same result for Dutch.
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Table 3.1

Lexically reduced vowels in high-frequency words. (After Fidelholz 1975.)
Reduced vowel [for] Full vowel [for]

Word Count per million Word Count per million
forget 148 forfend <1

forgive 40 forgo <1

In conclusion, the evidence shows that in both the visual and auditory
domains, high-frequency words are accessed more quickly, more easily,
and with less input signal than low-frequency words.

3.2.1.3 Lexical Frequency in Production The effects of lexical fre-
quency on production have been measured via a number of tests, includ-
ing latency (the time to start producing a word), duration (the time from
word onset to word offset), phonological reduction (number of deleted or
reduced phonemes), rate of speech errors, and others.

The earliest studies focused on duration; indeed, lexical frequency
effects on duration in production have been remarked upon for over a
hundred years. Schuchardt (1885) noticed, for example, that more fre-
quent words tend to be shorter. Later, Fidelholz (1975) and Hooper
(1976) showed that frequent words such as forget are more likely to have
lexically reduced vowels (e.g., [for]) than less frequent words such as forgo
(e.g., [for]) (table 3.1).

While these early studies showing an effect of frequency on a word’s
phonological makeup are suggestive, they do not confirm that the effect
of frequency on lexical production is on-line and productive. It could be
that frequent words have reduced vowels and fewer phonemes because of
some diachronic fact statically reflected in the lexicon that is only related
to on-line production in a complex and indirect way.

To show that frequency plays an active and on-line role in language
production, it is necessary to examine the effect of frequency on some
dynamic process. One such process is phonological variation; thus, a
number of studies have examined whether frequency dynamically affects
variation in production. Bybee (2000) examined word-find /t/ and /d/ in a
corpus of spoken Chicano English. After excluding the extremely high
frequency words just, went, and and, she classified the remaining 2,000
word tokens into two bins, high-frequency (defined as more than 35
per million in the Brown corpus) and low-frequency (fewer than 35 per
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million). She showed that final /t/ and /d/ deletion rates were greater in
high-frequency words (54.5%) than in low-frequency words (34.3%). Hay
(2000) has shown that for complex words, the ratio of the frequency of
the derived word and the frequency of its base is an important predictor
of processing time.

Gregory et al. (2000) and Jurafsky et al. (2001) provided further evi-
dence that these frequency effects on reduction are on-line, by controlling
for a wide variety of contextual factors, and also by investigating the
effect of frequency on a word’s duration, in addition to its phonological
reduction. They examined the duration of words and the percentage of
final-consonant deletion in a 38,000-word phonetically transcribed sub-
corpus from the Switchboard corpus of American English telephone con-
versations (Godfrey, Holliman, and McDaniel 1992; Greenberg, Ellis,
and Hollenback 1996). They used multiple regression to control for con-
textual factors like segmental context, rate of speech, number of phones,
and word predictability.

They first confirmed Bybee’s results by analyzing 2,042 word tokens
whose full pronunciation ended in /t/ or /d/. After controlling for con-
textual factors, they found that these final obstruents are more likely to be
deleted in more frequent words. High-frequency words (at the 95th per-
centile of frequency) were 2.0 times more likely to have deleted final /t/ or
/d/ than low-frequency words (at the 5th percentile).

Gregory et al. (2000) and Jurafsky et al. (2001) also investigated the
effects of frequency on word duration, using 1,412 monosyllabic word
tokens ending in /t/ or /d/. They found a strong effect of word fre-
quency on duration. Overall, high-frequency words (at the 95th percen-
tile of frequency) were 18% shorter than low-frequency words (at the 5th
percentile).

Taken together, these results suggest that frequency plays an on-line
role in lexical production. Duration studies, however, may not be com-
pletely convincing. It is possible, for example, that high-frequency words
are stored with multiple phonological lexemes (Jurafsky et al. 2001) or
with very detailed phonetic information about the length of each phone in
each word (Pierrehumbert 2001b).

The most unambiguous evidence for frequency effects in production,
then, must come from latency. Oldfield and Wingfield (1965), for exam-
ple, showed an on-line effect of word frequency on latency of picture-
naming times. Presenting subjects with pictures, they found that pictures
with high-frequency names were named faster than pictures with low-
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frequency names. Wingfield (1968) showed that this effect must be caused
by word frequency rather than the frequency of pictured objects, by
showing that the effect was not replicated when subjects were asked to
recognize but not verbalize picture names. These results were also repli-
cated for Dutch by Jescheniak and Levelt (1994).

In conclusion, more frequent words are accessed more quickly (shorter
latency) and are articulated more quickly (shorter duration).

3.2.2 Frequency of Lexical Semantic Form and Lexical Category

Words are ambiguous in many ways. A word can have multiple senses
(bank can refer to a location alongside a river or a financial institution),
multiple lexical categories (table can be a noun or a verb), and multiple
morphological categories (searched can be a participle or a preterite).
These different categories of an ambiguous word vary in frequency; for
example, the word rable is more likely to be a noun than a verb. In this
section, I summarize experiments showing that the frequency of these
categories plays a role in processing.

A number of experiments have shown that the frequency of a particular
sense of an ambiguous word plays a role in comprehension. Simpson and
Burgess (1985), for example, studied lexical access in the visual domain.
Subjects were first presented with an ambiguous prime word (homograph)
that had a more frequent sense and a less frequent sense. Subjects then
performed lexical decision on targets that were associated with either
the more frequent or the less frequent meaning of the homograph
prime. Simpson and Burgess found that the more frequent meaning of the
homograph caused faster response latencies to related associates, sug-
gesting that the more frequent meaning is retrieved more quickly. This
result is robust and has been replicated with many paradigms, including
eye fixation times in reading and cross-modal priming. Evidence for the
use of word sense frequency in comprehension has also been reported
crosslinguistically—for example, in Chinese (Li and Yip 1996; Ahrens
1998).

The frequency of an ambiguous word’s syntactic category plays a role
in comprehension as well. One class of studies involves sentence process-
ing and human parsing. Gibson (1991) and Jurafsky (1992, 1996) suggest
that lexical category frequencies might play a role in the difficulty of
processing some garden path sentences. Fox example, (3) and (4) are
known to be difficult to process. Gibson suggests that (3) is difficult to
process because man is much more likely to be a verb than a noun, while
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Jurafsky suggests that (4) is difficult because of the lexical category pref-
erences of complex (more likely to be an adjective than a noun) and house
(more likely to be a noun than a verb):

(3) The old man the boats. (from Milne 1982)

(4) The complex houses married and single students and their families.
(from Jurafsky 1992, 1996)

Finally, morphological category frequencies play a role in compre-
hending ambiguous words. Words such as searched, scratched, proposed,
and selected are ambiguous between a participle and a preterite (simple
past) reading. For some of these words, the participle reading is more
frequent. For example, the percentage of participle readings for selected
(in the Brown corpus) is 89%, while the percentage for the simple past
readings is 11%. By contrast, the preferences are reversed for searched:
78% for simple past readings, and 22% for participle readings. Burgess
and Hollbach (1988) suggested that these lexical category probabilities
might play a role in disambiguation.

Trueswell (1996) investigated this hypothesis by embedding these verbs
in sentences that have a local ambiguity. Each sentence had an initial
word sequence like the room searched that was syntactically ambiguous
between a relative clause reading (compatible with the participle form)
and a main verb reading (compatible with the simple past). Trueswell
found that verbs with a frequency-based preference for the simple past
form caused readers to prefer the main clause interpretation (as measured
by longer reading time for a sentence like (5) that required the other
interpretation):

(5) The room searched by the police contained the missing weapon.

This suggests that the frequency with which the different morphological
categories of a verb occur plays a role in whether one syntactic parse is
preferred or not.

In summary, the frequencies of the semantic, syntactic, or morpholog-
ical categories associated with an ambiguous word play an important role
in comprehension. More frequent categories are accessed more quickly
and are preferred in disambiguation.

Rather surprisingly, given this robust effect of the frequency of lexical
semantic/syntactic category in comprehension, there may not be any such
effect in production. Instead, some studies have suggested that frequency
effects in lexical production are confined to the level of the word-form or
lexeme, rather than the semantic/syntactically defined lemma level.
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Both Dell (1990) and Jescheniak and Levelt (1994), for example,
studied whether word frequency effects in production take place at the
level of the semantic lemma or the phonological word-form. Finding an
effect of frequency for the semantic/syntactic lemma would be the corre-
late in lexical production of finding an effect of semantic sense or syntac-
tic category in comprehension. Dell (1990) used experimentally elicited
speech errors to study word frequency effects. Previous work had shown
that low-frequency words are more susceptible to phonological speech
errors than high-frequency words. Dell showed that some low-frequency
words are not susceptible to phonological speech errors: specifically, low-
frequency words (such as wee) with a high-frequency homophone (such as
we). In other words, a low-frequency word that shares a lexeme with a
high-frequency word exhibits some of the frequency properties of the
high-frequency word. One way to model this result is to store frequency
effects only at the lexeme level; the words we and wee would then share a
single frequency node.

Jescheniak and Levelt (1994) used a novel translation task to study
word frequency effects. Like Dell, they looked at homophones, in which
two distinct lemmas share one lexeme. If frequency effects are localized
at the lemma level, accessing a low-frequency lemma in production
should have slower latency than accessing a high-frequency lemma; but
if frequency effects are localized at the lexeme level, low-frequency and
high-frequency lemmas of the same homophone should have identical
latencies. This hypothesis cannot be tested with standard paradigms like
picture naming, since it is unlikely that both the high-frequency and
low-frequency senses of a word are picturable (e.g., neither we nor wee
is obviously picturable). Jescheniak and Levelt therefore used a novel
translation latency task: bilingual Dutch subjects were ask to produce the
Dutch translation for a visually presented English word, and the transla-
tion latency was recorded. For example, subjects saw the English word
bunch, whose Dutch translation is bos. The Dutch word bos has another
sense, forest. If frequencies are stored at the lexeme level, latencies to low-
frequency words like bunch/bos should match latencies to high-frequency
words. This is what Jescheniak and Levelt found. Latency to homo-
phones patterned like latency to high-frequency words, and not like
latency to low-frequency words.

One important caveat about Dell’s (1990) and Jescheniak and Levelt’s
(1994) results: they crucially rely on the assumption that lexical produc-
tion is modular. If lexical production is completely interactionist, fre-
quencies could be stored at the lemma level but activation could spread
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from the lemma, down to the lexeme, and back up to both lemmas,
allowing a low-frequency lemma to act like a high-frequency one. In
fact, this is exactly Dell’s proposal, and he built a nonmodular compu-
tational model to show that the idea is possible. The evidence for a lack
of a lemma effect, then, rests only on the evidence for a modular (non-
interactionist) model of lexical production.

To help resolve this dilemma, Jurafsky et al. (2001) proposed a differ-
ent, corpus-based methodology for studying frequency effects in produc-
tion. They examined the production of ambiguous words like 7o (which
can be an infinitive marker (We had to do it) or a preposition (I would
have gone to the store)) and that (which can be (at least) a complemen-
tizer, a pronoun, or a determiner). Again using the 38,000-word phoneti-
cally transcribed subcorpus from the Switchboard corpus of American
English telephone conversations, they measured the duration of the func-
tion words. They then used multiple regression to control for known
factors affecting duration, including rate of speech, segmental context,
contextual predictability, and so on, and to test for an effect of lemma
frequency on duration. They found that the different pronunciations and
durations of these words could be completely accounted for by other
factors such as pitch accent and contextual predictability. They found
no evidence that lemma frequency affected lexical production.

Thus, although the frequencies of the semantic, syntactic, or morpho-
logical categories associated with an ambiguous word play a role in
comprehension, preliminary studies suggest that they may not play a
similar role in production.

3.2.3 Neighboring Word-to-Word Probabilities

Having looked at frequency effects for single words, let us now turn to
evidence that frequency plays a role in more complex and structured
relationships between words and syntactic structure. A number of studies
show that the probabilistic relationships between neighboring words play
a role in both comprehension and production.

Some of these studies looked at raw frequency, while others looked at
various probabilistic measures. Researchers have investigated both the
conditional probability of a word given the previous word P(w;|w;_;) and
the joint probability of two words together P(w;_jw;). The joint proba-
bility of two words is generally estimated from the relative frequency of
the two words together in a corpus, normalized by the total number N of
word-pair tokens in the corpus (which is one more than the total number
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of words in the corpus):

Count(w;_1w;)

P(wi_yw;) = ~ . (6)

Some experiments use this normalized joint probability, while others
simply use the raw joint frequency.

Another common metric is the first-order markov relation: the condi-
tional probability of a word given the previous word (sometimes called
the transitional probability (Saffran, Aslin, and Newport 1996; Bush
1999). The conditional probability of a particular target word w; given a
previous word w;_; can be estimated from the number of times the two
words occur together Count(w;_1w;), divided by Count(w;_1), the total
number of times that the first word occurs:

C(wi—iwy)

P(wilwi—y) = Con )

()

MacDonald (1993) studied the effect of word-pair (joint) frequencies
on comprehension. Investigating the processing of a noun followed by a
word that is ambiguous between a noun and verb, such as the pair mira-
cle cures, she hypothesized that if the noun-noun pair was frequent (like
miracle cures), its interpretation would be biased toward the noun reading
of the second word. She predicted no such bias for infrequent noun-noun
pairs (like shrine cures). She confirmed this hypothesis by looking at
reading time just after the ambiguous word in sentences that were other-
wise biased toward a verb reading. For example, subjects spent more time
reading the word people in (9) than in (8), since the frequent noun-noun
phrase in (9) biases the reader toward the noun reading of cures, whereas
the word people is compatible only with the verb reading:

(8) The doctor refused to believe that the shrine cures people of many
fatal diseases ...

(9) The doctor refused to believe that the miracle cures people of many
fatal diseases . ..

Extending this study, McDonald, Shillcock, and Brew (2001) showed
using eye-tracking that bigram probability P(w;|w;_;) is a good predictor
of gaze duration on word w;. Bod (2000b, 2001a) showed in a recognition
task that this extends to structures larger than bigrams: frequent three-
word (subject-verb-object) sentences proved to be recognized more easily
and faster than infrequent three-word sentences.
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Table 3.2

Examples of word boundary coronals that are more or less likely to palatalize
High P(wi|wi_1) Low P(wj|w;_1)

More palatalized Less palatalized

did you at you

told you but you

would you good you

The psycholinguistic role of word-to-word frequencies or probabilities
has also been extensively studied in production. The production studies
have generally investigated the effect that frequency or probability given
neighboring words has on the phonetic form of a word. The main result is
that words in high-frequency word-pairs or high-probability word-pairs
are phonetically reduced in some way.

Krug (1998), for example, showed that cliticization is more common in
more frequent word-pairs. Bybee and Scheibman (1999) and Bush (1999)
found that word boundary coronals are more likely to be palatalized
between word sequences with high conditional probabilities, as shown in
table 3.2.

Gregory et al. (2000), Jurafsky et al. (2001), and Bell et al. (2001)
studied the effect of different kinds of probability on reduction. As
mentioned above, they used a phonetically transcribed portion of the
Switchboard telephone corpus of American English. They used multiple
regression to control for other factors affecting reduction, and looked
at more measures of predictability and more measures of reduction. In
particular, they looked at both the joint probability and conditional
probability of target words with both previous and following words.
Confirming earlier studies, they found that words that have a higher
probability given neighboring words are reduced. In particular, Gregory
et al. (2000) and Jurafsky et al. (2001) found that high-probability content
words are shorter in duration and more likely to have final /t/ or /d/
deleted. Jurafsky et al. (2001) and Bell et al. (2001) found that high-
probability function words are shorter and undergo more vowel reduction
and more coda deletion. All of the studies found more reduction in high-
probability words no matter how probability was defined (conditional
probability given the previous word or given the next word; joint proba-
bility with the previous word or with the next word).



Probabilistic Modeling in Psycholinguistics 53

Pan and Hirschberg (2000) have shown that conditional bigram prob-
ability correlates highly with location of pitch accent; specifically, pitch
accent is more likely to occur on low-probability words. Gregory (2001)
has extended this result by showing that conditional probability given
previous and following words is a significant predictor of pitch accent
even after controlling for other contextual factors such as position in the
intonation phrase, part of speech, and number of syllables.

In summary, the probability of a word given the previous or following
word plays a role in comprehension and production. Words with a high
joint or conditional probability given preceding or following words have
shorter durations in production. In comprehension, any ambiguous words
in a high-frequency word-pair are likely to be disambiguated consistently
with the category of the word-pair itself.

3.2.4 Syntactic Subcategorization Frequencies

Quite a bit of attention has been paid to the next type of probability we
will look at: the frequency of the different subcategorization frames of a
verb. For example, the verbs remember and suspect are both subcate-
gorized for either a direct object noun phrase or a sentential complement,
as in (10)—(13):

(10) The doctor remembered [np the idea].

(11) The doctor remembered [g that the idea had already been
proposed].

(12) The doctor suspected [np the idea].
(13) The doctor suspected [np that the idea would turn out not to work].

While both verbs allow both subcategorization frames, they do so with
different frequencies. Remembered is more frequently used with a noun
phrase complement, while suspected is more frequently used with a sen-
tential complement. These frequencies can be computed either from a
parsed or a transitivity-coded corpus (Merlo 1994; Roland and Jurafsky
1998) or by asking subjects to write sentences using the verbs (Connine
et al. 1984; Garnsey et al. 1997).

Since these frequencies are contingent on the verb, they are the
maximum likelihood estimate of the conditional probability of the sub-
categorization frame given the verb P(frame|verb). These conditional
probabilities have been shown to play a role in disambiguation. For
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example, the noun phrase the idea is ambiguous in the following sentence
prefix:

(14) The doctor suspected the idea ...

The idea could function as a direct object noun phrase complement of
suspected, or it could be the syntactic subject of an embedded sentential
complement. A wide variety of experiments shows that the verb’s “bias”
(its probabilistic preference for a subcategorization frame) influences
which of these two continuations subjects expect.

This idea of subcategorization bias was first suggested in a slightly dif-
ferent context by Fodor (1978), who predicted that a verb’s preference for
being transitive or intransitive could affect whether the human parser
hypothesizes a gap following the verb. Ford, Bresnan, and Kaplan (1982)
proposed a generalization of Fodor’s hypothesis: that each verb has
strengths for different subcategorization frames, that these strengths are
based on some combination of frequency and contextual factors, and that
these strength-based expectations are used throughout parsing. When
they tested this idea by asking subjects in an off-line experiment to per-
form a forced choice between two interpretations of an ambiguous utter-
ance, they found that some set of subcategorization strengths could be
used to predict the interpretation selected by the subjects.

Ford, Bresnan, and Kaplan (1982) did not actually test whether these
transitivity preferences were related to frequency in any way. Although
Jurafsky (1996) later confirmed that some of the preferences corre-
sponded to Brown corpus frequencies, this was not clear at the time Ford,
Bresnan, and Kaplan conducted their study; furthermore, the fact that
their experiment was off-line left open the possibility that semantic plau-
sibility or some other factor rather than subcategorization frequency was
playing the causal role. Clifton, Frazier, and Connine (1984) tested the
model more directly by using the frequency norms collected by Connine
et al. (1984) to show that a frequency-based interpretation of transitivity
preference predicted quicker understanding in filler-gap sentences, and
Tanenhaus, Stowe, and Carlson (1985) showed that anomalous fronted
direct objects required extra reading time at transitive-bias verbs, but not
intransitive-bias verbs.

Trueswell, Tanenhaus, and Kello (1993) extended these results to show
that these frequency-based subcategorization preferences play an on-line
role in the disambiguation of various syntactic ambiguities. One experi-
ment was based on cross-modal naming (so called because the stimulus
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is auditory while the target is orthographic). Subjects heard a sentence
prefix ending in either an S-bias verb (The old man suspected ...) or an
NP-bias verb (The old man remembered ...). They then had to read out
loud (“name”) the word him. Previous research had shown that naming
latencies are longer when the word being read is an ungrammatical or
unexpected continuation. In Trueswell, Tanenhaus, and Kello’s study,
naming latency to him was longer after S-bias verbs (The old man sus-
pected ... him) than after NP-bias verbs (The old man remembered . ..
him). This suggests that subjects preferred the more frequent frame of the
verb and were surprised when this preference was overturned, causing
longer naming latencies. Trueswell, Tanenhaus, and Kello also confirmed
these results with an eye-tracking study that focused on the difference in
reading times between sentences with and without the complementizer
that. Controlled first-pass reading times at the disambiguating verb
phrase were longer for NP-bias verbs but not for S-bias verbs, indicating
that subjects attached the postverbal noun phrase as a direct object for
NP-bias verbs but not for S-bias verbs.

MacDonald (1994) showed that the effect of subcategorization frame
frequency also plays a role in resolving a different kind of ambiguity:
main clause/relative clause (MC/RR) ambiguities. These ambiguities
have been the object of much study since Bever (1970) first pointed out
the difficulty of the garden path sentence in (15):

(15) The horse raced past the barn fell.

Until the word fell, this sentence is ambiguous between a reading in
which raced is a main verb and one in which it is a part of a reduced rel-
ative clause modifying the horse. The difficulty of the sentence is caused
by the fact that readers incorrectly select the main verb sense and then are
confused when they reach fell.

MacDonald (1994) suggested that the subcategorization frequencies
proposed by earlier researchers could play a role in explaining processing
difficulties in main verb/reduced relative ambiguities. Her test materials
used transitive-bias verbs like push and intransitive-bias verbs like move,
in sentences like these:

(16) The rancher could see that the nervous cattle pushed into the
crowded pen were afraid of the cowboys.

(17) The rancher could see that the nervous cattle moved into the
crowded pen were afraid of the cowboys.
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MacDonald found that corrected reading times in the disambiguation
region were afraid were longer for intransitive-bias verbs like move than
transitive-bias verbs like push.

Jennings, Randall, and Tyler (1997) extended Trueswell, Tanenhaus,
and Kello’s (1993) study on the effect of verb subcategorization bias on
disambiguation, using a similar cross-modal naming paradigm. One goal
of this study was to clear up some potential problems with Trueswell,
Tanenhaus, and Kello’s materials. But perhaps its most significant result
addressed an important issue that no previous research on the role of
frequency in syntactic disambiguation had addressed. Previous studies
had generally clustered their verb-bias frequency into two bins: high
transitive-bias versus low transitive-bias, or high S-bias versus low S-bias.
All previous results on syntactic disambiguation, then, were compatible
with a model in which subcategorization preferences were represented
as a ranked or ordered list, with no link to an actual frequency or proba-
bility. Jennings, Randall, and Tyler showed a correlation between the
strength of a verb’s bias and reading time at the target word. The stronger
the verb’s bias for one subcategorization frame over the other, the larger
the advantage they found in naming latency for the preferred over the
nonpreferred continuation.

Despite the many studies of subcategorization frequencies in compre-
hension, there are no equivalent studies in production. Of course, the fre-
quencies used to model the comprehension studies are derived from
production data. But there have been no production tests showing clearly
that verb-argument probability plays an active on-line role here, as op-
posed, say, to merely being correlated with semantics or world knowl-
edge. There is at least one suggestive study, by Stallings, MacDonald, and
O’Seaghdha (1998), who note a similarity between sentential comple-
ment-taking verbs and heavy-NP shift: in both cases, the verb and the
complement can be separated by other material (e.g., sentential comple-
ments can be separated from the verb by adverbial expressions: She said
the other day that ...). By contrast, direct objects cannot be separated in
this way from their verbs. In a production experiment based on this con-
trast, Stallings, MacDonald, and O’Seaghdha showed that verbs that can
take either sentential complements or noun phrase direct objects are more
likely to undergo heavy-NP shift than verbs that take only noun phrase
direct objects. They also showed that verbs that frequently undergo
heavy-NP shift elicit slower responses when placed in a nonshifted con-
text. They suggest that each verb is stored with a “shifting disposition”—
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Table 3.3
Brown corpus part-of-speech percentages for that. (From Juliano and Tanenhaus
1993.)

Determiner Complementizer
At start of sentence 35% 11%
After verb 6% 93%

a frequency-based preference for appearing contiguous with its arguments
or not.

In summary, the conditional probability of a subcategorization frame
given a verb plays a role in disambiguation in comprehension. The higher
the conditional probability of the frame, the more it will be preferred in
disambiguation. In production, the evidence is less conclusive and awaits
further study.

3.2.5 Conditional and Lexicalized Syntactic Frequencies

The subcategorization bias of a verb is a kind of conditional probability:
the probability of seeing a noun phrase or a sentence given the verb. A
number of experiments have found evidence that sentence comprehension
makes use of another kind of conditional probability: the probability of a
word or the probability of a lexical category conditioned on previous
context or on particular syntactic structure.

Juliano and Tanenhaus (1993) studied the role of the frequency of the
different lexical categories of that, which can be a determiner, a com-
plementizer, a pronoun, or an intensifier. Overall, the pronoun reading
of that is more frequent than any of the other readings. But Juliano
and Tanenhaus noticed that the frequencies of these different categories
depend on the syntactic context, as shown in table 3.3. Accordingly, they
conducted a self-paced reading study using sentences like those in (18)-
(21). In (19) and (21), that must be a complementizer, while in (18) and
(20), that must be a determiner. The word diplomat/s provides the dis-
ambiguating information (the plural is compatible only with the com-
plementizer reading).

(18) The lawyer insisted that experienced diplomat would be very helpful.

(19) The lawyer insisted that experienced diplomats would be very
helpful.

(20) That experienced diplomat would be very helpful to the lawyer.
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(21) That experienced diplomats would be very helpful made the lawyer
confident.

If subjects make use of the conditional probability of the part of speech
given the context, they should treat sentence-initial that as a determiner
and postverbal that as a complementizer. This would predict increased
reading time for the sentence-initial complementizer reading (21) and for
the postverbal determiner reading (18). Juliano and Tanenhaus found just
such an interaction: reading times for would were longer in (21) and (18)
and shorter in (19) and (20). Notice that the simple unconditioned use of
the different lexical-category frequencies for that would not predict this
interaction.

A second piece of evidence that probabilities conditioned on previous
structure are used in disambiguation comes from Trueswell, Tanenhaus,
and Kello’s (1993) experiment discussed above. Recall that these re-
searchers showed that cross-modal naming latency to him was longer
after hearing S-bias verbs (The old man suspected ... him) than after
hearing NP-bias verbs (The old man remembered ... him), a result that
supports the use of verb subcategorization frequencies in comprehension.
But in a separate analysis, Trueswell, Tanenhaus, and Kello also showed
that the longer naming latency after S-bias verbs is not uniform for all
S-bias verbs. It has often been noted that the complementizer that is
optional after some S-bias verbs. Trueswell, Tanenhaus, and Kello mea-
sured the frequency with which each S-bias verb occurred with an explicit
that, to compute the “that-preference’ for each verb. They found that this
that-preference correlated with the increased reading time: the more an
S-bias verb expected to be followed by that, the longer the latency on
naming Aim. Once again, this suggests that subjects are computing the
probability of hearing the that complementizer given previous structure
(in this case, the verb).

A third study supporting the idea of probabilities conditioned on pre-
vious structure was carried out by MacDonald (1993). Recall that Mac-
Donald was looking at the processing of a noun followed by a word that
can be either a noun or a verb, such as the pair miracle cures. She exam-
ined the frequency with which the first word occurs as the head of a noun
phrase versus the frequency with which it occurs as the modifier of a noun
phrase. For example, the noun warehouse appears in the Brown corpus
more often as a modifier, while corporation occurs more often as a head.
If subjects make use of this probability, they should treat nouns that are
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more frequently heads as complete noun phrases, parsing the following
word as a verb; nouns that are more likely to be modifiers should cause
the following word to be treated as a noun. MacDonald found that the
frequency with which a word occurs as a head versus modifier in the
Brown corpus did predict reading time difficulty on the word following
these bigrams.

In summary, the conditional probability of a word (like that) or a lex-
ical category (like determiner or complementizer) given previous words or
structure plays a role in disambiguation. Words or categories with higher
conditional probabilities are preferred.

3.2.6 Constructional Frequencies

The frequency effects described so far are all lexical in some way. Indeed,
the vast majority of frequency effects that have been studied involve lex-
ical structure. A small number of studies have looked for frequency
effects for larger (supralexical) structures, but the results are relatively
inconclusive.

For example, studying the effect of idiom frequency on word-by-word
reading of Dutch idioms, some of which had syntactic errors (such as
agreement errors) inserted in them, d’Arcais (1993) found that subjects
were able to locate the errors more quickly in frequently than in less fre-
quently occurring idioms.

A number of researchers have suggested that one factor contributing to
the difficulty of the main verb/reduced relative ambiguity is the relative
rarity of reduced relative clauses. In a norming study for an experiment
using 32 verbs, Tabossi et al. (1994) checked 772 sentences from the
Brown corpus containing -ed forms of the verbs. They found that the verb
occurred as part of a simple main clause in 37% of the sentences, a rela-
tive clause in 9%, and a reduced relative clause in 8%.

Jurafsky (1996), McRae, Spivey-Knowlton, and Tanenhaus (1998),
and Narayanan and Jurafsky (1998), among others, showed that
(various) models that include the corpus-based frequency of the main
clause versus reduced relative construction are able to model certain
reading time effects in main clause/reduced relative sentences such as (15),
repeated here as (22):

(22) The horse raced past the barn fell.

Jurafsky, for example, showed that the stochastic context-free grammar
(SCFG) probability for the main clause parse was significantly lower than
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the SCFG probability for the reduced relative parse because of two fac-
tors: first, the reduced relative construction includes one more SCFG rule,
and second, this SCFG rule introducing the reduced relative structure has
a very low probability.

A series of studies by Mitchell and colleagues (Mitchell 1994; Cuetos,
Mitchell, and Corley 1996) has focused on a model of disambiguation
called tuning. Tuning models claim that people tabulate every ambiguity
they encounter, together with the disambiguation decision. Future dis-
ambiguation decisions are based on choosing the most likely previously
chosen disambiguation for the ambiguity. Tuning models thus claim that
syntactically ambiguous sentences are resolved to whichever choice has
been made more often in the past. As a simplifying assumption, Mitchell
and colleagues assume that the frequency of this choice is isomorphic to
the total frequency of the structures in the language.

I discuss tuning models in this section because although such models
could hypothetically apply to any kind of disambiguation, all research so
far has focused on the frequency of two specific complex syntactic con-
structions. In particular, Cuetos, Mitchell, and Corley (1996) looked at
ambiguities like those in (23), where a relative clause who was on the bal-
cony can attach to either the first of two noun phrases (the servant) or the
second (the actress) (not counting the subject someone):

(23) Someone shot [xp, the servant] of [np, the actress] who was on the
balcony.

Figure 3.1 shows a simplified schematic of the two parse trees whose fre-
quency is being computed.

Cuetos, Mitchell, and Corley (1996) found crosslinguistic differences in
disambiguation preference between English and many other languages,

NP NP
NP]/\PP NP; PP RelClause
P/\NP p NP,
o‘f NP, RelClause o‘f
Figure 3.1

The tuning hypothesis predicts that frequencies are stored for these parses for
Someone shot the servant of the actress who was on the balcony, with attachment of
the relative clause to NP, (left) and NP, (right)
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including Spanish and Dutch. Supporting the tuning hypothesis, English
speakers preferred to attach relative clauses to NP,, and the NP, attach-
ment construction shown on the left of figure 3.1 was more common in a
corpus. Also supporting the hypothesis, Spanish speakers preferred to at-
tach relative clauses to NPy, and the NP; attachment shown on the right
of figure 3.1 was more frequent in a Spanish corpus. But more recent
studies have cast doubt on the link between the frequency of the two
constructions and the disambiguation decisions. Studies on three-site rel-
ative clause ambiguities in English have not found a link between corpus
frequency of these (very) complex constructions and disambiguation
preference (Gibson, Schiitze, and Salomon 1996). Another study found
that Dutch speakers preferred to attach relative clauses to NP;, but that
the NP, attachment construction shown on the left of figure 3.1 was more
common in a corpus (Mitchell and Brysbaert 1998).

Still other studies, however, have shown that human preferences do
match corpus preferences when the animacy of the NP; is held constant
(e.g., Desmet, Brysbaert, and Baecke, in press). Since corpora are used to
estimate frequencies in most probabilistic models, this is an important
result; I will return to this issue in section 3.4.3. But since this control
factor concerned the semantics of the noun phrases, it suggests that a
purely structure-frequency account of the tuning hypothesis cannot be
maintained.

It has also been shown (Bod 2000b, 2001a) that frequent three-word
(subject-verb-object) sentences (e.g., I like it) are recognized more easily
and quickly than infrequent three-word sentences (e.g., I keep it), even
after controlling for plausibility, word frequency, word complexity, and
syntactic structure. These results suggest that frequent sentences or at
least some structural aspects of these frequent sentences are stored in
memory.

In addition to studies of the complex structures posited by the tuning
hypothesis, which do not show strong evidence for frequency effects in
comprehension, there have been some studies on frequency effects for
simpler syntactic structure in production. Bates and Devescovi (1989)
performed a crosslinguistic series of production studies that attempted to
control for semantic and pragmatic factors. They found that relative
clauses, which are generally more frequent in Italian than in English,
occurred more frequently in Italian in their production study even after
these controls. They suggest that the frequency of the relative clause con-
struction in Italian may play a role in its being selected in production.
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In conclusion, while some studies seem to suggest that the frequency of
larger nonlexical syntactic structures plays a role in disambiguation, the
evidence is still preliminary and not very robust. None of the studies that
found an effect of nonlexical syntactic or idiom structure did so after
carefully controlling for lexical frequencies and two-word or three-word
frequencies. Although Bod’s (2001a) results clearly point to storage of
three-word chunks, it is not necessarily higher-level structure that is play-
ing a causal role. But of course complex constructions are much less
frequent than words, and so we expect frequency effects from larger con-
structions to be harder to find. This remains an important area for future
research.

3.27 Summary of Psycholinguistic Results on Frequency and Probability
Frequency plays a key role in both comprehension and production, but
solid evidence exists only for frequency related in some way to lexical
items, or to the relationship between lexical items and syntactic structure.

High-frequency words are recognized more quickly, with less sensory
input, and with less interference by neighbors than low-frequency words.
High-frequency words are produced with shorter latencies and shorter
durations than low-frequency words. Low-frequency words are more
subject to phonological speech errors.

The frequencies of various lexical categories a word belongs to play a
role in language processing. For words that are morphologically, syntac-
tically, or semantically ambiguous, the more frequent morphological
category, part of speech, or sense is accessed more quickly and is pre-
ferred in disambiguation. But this effect of lexical semantic/syntactic cate-
gory does not seem to extend to production.

The frequency of multiple-word structures plays a role in both com-
prehension and production. Frequent word-pairs or idioms are more
quickly accessed and/or preferred in disambiguation. Frequent word-
pairs or words that have a high markov bigram probability given neigh-
boring words are shorter in duration and phonologically more reduced.

Various kinds of conditional probabilities play a role in comprehension
and production. For verbs that have more than one possible syntactic
subcategorization, the more frequent subcategorization frame is preferred
in disambiguation. The probability that a verb appears separated from its
complement plays a role in production. For words that can belong to
more than one part of speech, the part of speech with higher conditional
probability given the preceding part of the sentence is preferred.
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Finally, a frequency effect for other, larger syntactic structures, while
not disproved, remains to be shown.

Although I have focused only on knowledge for which a frequency
effect has been found, many other kinds of knowledge of course play a
role in probabilistic evidence-combination. One of these is the relation-
ship between lexical and thematic knowledge. For example, animate
nouns are more likely to be agents, while inanimate nouns are more likely
to be patients; the word cop is more likely to be the agent of the verb
arrested than is the noun crook. Many studies have shown that this kind
of thematic role information plays a role in comprehension (Trueswell,
Tanenhaus, and Garnsey 1994; Garnsey et al. 1997; McRae, Spivey-
Knowlton, and Tanenhaus 1998).

3.3 Probabilistic Architectures and Models

Having shown that frequencies of linguistic structure, especially linguistic
structure related to lexical items, play a role in language processing, in
this section I turn to probabilistic architectures for modeling these fre-
quency effects. Practically all of these models address the process of
comprehension, most of them focusing on syntactic comprehension. I
will discuss a few preliminary directions toward probabilistic models of
production.

3.3.1 Constraint-Based Models

A large class of experimental and modeling work in sentence compre-
hension belongs to the constraint-based (sometimes constraint-based lexi-
calist) framework (Spivey-Knowlton, Trueswell, and Tanenhaus 1993;
MacDonald, Pearlmutter, and Seidenberg 1994; Trueswell and Tanen-
haus 1994; Trueswell, Tanenhaus, and Garnsey 1994; Spivey-Knowlton
and Sedivy 1995; McRae, Spivey-Knowlton, and Tanenhaus 1998;
Seidenberg and MacDonald 1999; Kim, Srinivas, and Trueswell 2002).
Specific models differ in various ways, but constraint-based models as
a class focus on the interactions of a large number of probabilistic con-
straints to compute parallel competing interpretations.

Much work in the constraint-based framework has focused on experi-
ments showing that certain frequency-based constraints play a role in sen-
tence processing, via either regression or full factorial analysis of reading
time data. Above, I summarized the results of a number of these experi-
ments on the roles of verb bias, collocation frequencies, and so on, in
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sentence comprehension. The constraint-based framework includes some
computational models in addition to experimental results. In general,
these are neural network models that take as input various frequency-
based and contextual features, which they combine via activation to
settle on a particular interpretation (Burgess and Lund 1994; Pearlmutter
et al. 1994; Spivey-Knowlton 1996; Tabor, Juliano, and Tanenhaus 1997;
Kim, Srinivas, and Trueswell 2002).

I have chosen one of these models to describe, the competition-
integration model of Spivey-Knowlton (1996), because it has been most
completely implemented; because it, more than other such models, is
clearly intended to be probabilistic; and because it has been widely tested
against experimental results from a number of reading time studies
(McRae, Spivey-Knowlton, and Tanenhaus 1998; Spivey and Tanenhaus
1998; Tanenhaus, Spivey-Knowlton, and Hanna 2000). The input to this
model is a set of probabilistic features like the bias for main clauses versus
reduced relatives, the verb’s preference for participle versus preterite, the
contextual support for a particular interpretation, and so on. Some input
features are derived from frequencies; others come from rating studies.
All features are then normalized to estimate a probabilistic input feature
varying between 0 and 1. The model uses a neural network, shown in
figure 3.2, to combine these constraints to support alternative interpreta-
tions in parallel. Each syntactic alternative is represented by a prebuilt
localist node in a network; thus, the network models only the dis-
ambiguation process itself rather than the generation or construction of
syntactic alternatives. The alternatives compete until one passes an acti-
vation threshold.

Each interpretation receives activation from the constraints, which is
then fed back to the constraint nodes within each cycle of competition.
The algorithm first normalizes each pair of constraints. Let C;, be the
activation of the ith constraint node connected to the ath interpretation
node. C/, will be the normalized activation; the activation of each con-
straint thus ranges from 0 to 1:

Ci/u = Ci7a .
’ Z[, Ciﬁa
The activation I, from the constraints to interpretation « is a weighted
sum of the activations of the constraints, where w; is the weight on
constraint i

(24)
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Main clause bias

Thematic fit Verb tense/voice
of initial NP
P(MC)
Patient
rating
Agent Reduced Past
rating relative Tense
Main
Agent clause PC
rating support
Other RR
roles support
RR
Thematic fit support By bias
of agent noun

Main verb bias

Figure 3.2
A schematic of the competition-integration model. (From McRae, Spivey-
Knowlton, and Tanenhaus 1998.)

IL=> wixCl, (25)
i

Finally, the interpretations send positive feedback to the constraints:
Ci,(z = Cl'/,a + Ia X Wi X Ci/,a' (26)

These three steps are iterated until one interpretation reaches criterion.
Reading time is modeled as a linear function of the number of cycles it
takes an interpretation to reach criterion.

This model accounts for reading time data in a number of experiments
on disambiguation of main verb/reduced relative ambiguities (McRae,
Spivey-Knowlton, and Tanenhaus 1998; Spivey and Tanenhaus 1998;
Tanenhaus, Spivey-Knowlton, and Hanna 2000). Let us look at McRae,
Spivey-Knowlton, and Tanenhaus’s (1998) study, which included two
experiments. The first was a sentence completion experiment. For each
verb in their study, McRae, Spivey-Knowlton, and Tanenhaus had sub-
jects complete four sentence fragments like these:
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The crook arrested

The crook arrested by

The crook arrested by the

The crook arrested by the detective

For each fragment, they measured the proportion of reduced relative
clause completions. They then showed that combining a number of prob-
abilistic factors via the competition-integration model correctly predicted
the completion preferences for main clauses versus reduced relatives.

McRae, Spivey-Knowlton, and Tanenhaus (1998) also showed that the
thematic fit of a subject with the verb plays a role in reading time. Con-
sider the difference between good agents for arrested (e.g., cop: The cop
arrested . ..) and good patients for arrested (e.g., crook). Figure 3.3 shows
that controlled human reading time for good agents like cop gets longer
after reading the by phrase (requiring cop to be a patient), while con-
trolled reading time for good patients like crook gets shorter.! McRae,
Spivey-Knowlton, and Tanenhaus again showed that the competition-
integration model predicts this reading time difference.
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Increased reading times (compared to
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The cop/crook arrested by the detective

‘—-—Good agent —= Good patient ‘

Figure 3.3
Corrected self-paced reading times for words in these regions. (From figure 6 of
McRae, Spivey-Knowlton, and Tanenhaus 1998.)
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3.3.2 Rational and Utility-Based Probabilistic Models

3.3.2.1 The Competition Model There are remarkable similarities be-
tween some of the earliest and some very recent probabilistic models of
sentence processing. They all attempt to combine the ideas of probability
with utility, cost, or other ideas of rationality in processing.

The competition model (MacWhinney, Bates, and Kliegl 1984; Mac-
Whinney and Bates 1989) may have been the first probabilistic model of
sentence processing. Its goal is to map from the “formal” level (surface
forms, syntactic constructions, prosodic forms, etc.) to the “functional”
level (meanings, intentions). Since input is ambiguous and noisy, the
model assumes that the sentence processor relies in a probabilistic manner
on various surface cues for building the correct functional structures. The
model focuses on how these cues probabilistically combine to suggest
different interpretations, and on how these probabilities differ from lan-
guage to language. Consider the problem of assigning agent and patient
roles to noun phrases in an input sentence. An English-speaking compre-
hender relies heavily on word order cues in making this mapping, while a
German speaker relies more heavily on morphological (case) cues.

The competition model formalizes the notion of cues via cue validity,
which is generally defined in this model as a combination of cue avail-
ability and cue reliability. Consider the task of identifying an interpreta-
tion i given a cue ¢. Cue availability is defined by Bates and MacWhinney
(1989) as the ratio of the cases in which the cue is available to the total
number of cases in a domain. Probabilistically, we can think of this as an
estimate of the prior probability of a cue. Cue reliability is defined by
Bates and MacWhinney as the ratio of cases in which a cue leads to the
correct conclusion to the number of cases in which it is available. Proba-
bilistically, this relative frequency is the maximum likelihood estimate of
P(i|c). If cue availability and cue reliability are combined by multiplica-
tion, as suggested by McDonald (1986), then cue validity v(c, i) of cue
¢ for interpretation i works out to be the joint probability of cue and
interpretation:

v(c, i) = availability(c) x reliability(c) = P(c¢) x P(i|c) = P(c,i). (27)
The competition framework views cue validity as an objectively correct

value for the usefulness of a cue in a language, derived from corpora and
studies of multiple speakers. Cue strength is the subjective property of a
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single human language user, the probability that the language user
attaches to a given piece of information relative to some goal or meaning.
This use of joint probability as a measure of cue strength seems to be
equivalent to the cue strength used in memory models like SAM (Search
of Associative Memory) (Raaijmakers and Shiffrin 1981; Gillund and
Shiffrin 1984).

How do cues combine to support an interpretation? McDonald and
MacWhinney (1989) formalize cue combination by assuming that the
contribution of each cue toward an interpretation is independent and that
cue strengths vary between 0 and 1. Given these assumptions, they pro-
pose the following equation for cue combination, where 4 and B are
interpretations and C is the set of all cues ¢; ... ¢,.

P(4|C) = LI PAle:) . (28)
[L; P(Alei) +T1; P(Ble)

The numerator in (28) factors the probability P(A|C) into separate terms
P(A|c;) for each of the individual cues ¢;, while the denominator acts as a
normalizing term. Multiplying the factors of the individual cues ¢; implies
that they are independent (recall equation (6) in chapter 2). Assuming
that the contribution of each cue is independent is a simplifying assump-
tion that resembles the “naive Bayes” independence assumption often
used in the categorization literature.

The competition model also considers another kind of validity in addi-
tion to cue validity: conflict validity. Conflict validity is based on how
useful a cue is in a competition situation. It is defined (Bates and Mac-
Whinney 1989) as the number of competition situations in which a cue
leads to a correct interpretation divided by the number of competition
situations in which that cue participates. Thus, the absolute frequency or
validity of a cue is not as important as how useful the cue is in dis-
ambiguation situations. Conflict validity is thus related to the idea of dis-
criminative training in machine learning, and to the tuning hypothesis
that ambiguities are resolved to whichever interpretation has been chosen
more frequently in the past (Mitchell 1994; Cuetos, Mitchell, and Corley
1996).

Finally, the competition model also considers factors related to the cost
of a cue. For example, certain cues may be difficult to perceive (“‘per-
ceivability cost”), or holding them until they are integrated may use up
short-term memory (“‘assignability costs”).



Probabilistic Modeling in Psycholinguistics 69

3.3.2.2 Rational Models Anderson (1990) proposed a rational model
for human cognitive processing. The rational framework claims that
human cognitive processing makes optimal use of limited resources to
solve cognitive problems. The optimal solution to many problems of
decision given noisy data and limited resources is known to be proba-
bilistic. Anderson thus applies a probabilistic formulation of his rational
model to the task of modeling human memory and categorization. In the
course of doing this, he shows how his model explains some results in
lexical access.

Anderson assumes that a rational system for retrieving memory would
retrieve memory structures serially ordered by their probabilities of being
needed p, and would consider the gain G associated with retrieving the
correct target and the cost C of retrieving the item. Such a memory
should stop retrieving items when

pG < C. (29)

Anderson shows that by making certain strong independence assump-
tions, it is possible to produce a relatively straightforward equation for
P(A|H4&Q), the probability that memory trace 4 is needed, conditional
on some history H4 of its being relevant in the past, and context Q. Let i
range over elements that make up the context Q. Anderson gives the fol-
lowing equation:

P(A|H,&0) = P(A|H) « [[ 2
ieQ

(30)

Equation (30) says that we can estimate the posterior probability that 4 is
needed from two terms: a term representing A’s past history (how fre-
quent it was and how often it was needed) and a term representing the
ratio of the conditional probabilities of the cues given that the structure is
relevant or not relevant. Anderson proposes that an increase in need
probability P(A4|H 4&Q) maps monotonically into higher recall probabil-
ity and faster latency (reaction time). He shows that his model predicts
a number of basic results in recall rates and latencies, including some
results in lexical processing. For example, his model predicts the result
that low-frequency words are better recognized than high-frequency
words (Kintsch 1970). This sketch of equation (30) and the model has
been necessarily but unfortunately brief; the interested reader should turn
to Anderson 1990.
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Chater, Crocker, and Pickering (1998) apply Anderson’s rational
model to sentence processing. They first propose that the goal of the
human parser is to maximize the probability of obtaining the globally
correct parse. Extending Anderson’s serial model of memory, they
assume that as each word is input, the parser considers all possible parses
in series. But they suggest that ordering these parses just by their proba-
bilities may not be optimal. A parse that seems (locally) to be optimal
may turn out to be the wrong parse. A serial parser would garden-path
at this point, then have to backtrack and reanalyze a sentence. They
therefore suggest that an optimal parser would need to include the cost
of this backtracking in its algorithm for choosing a parse to follow
at points of ambiguity. In particular, they suggest that it is important
to balance the probability of a hypothesis, how long it would take to
settle on the hypothesis (i.e., follow it and build the parse tree), and
how long it would take to escape from the hypothesis (test and reject
it). Given this assumption, they show that a serial parser should first
consider the hypothesis H; with the highest value of the following func-
tion f of H;:

1

f(Hl) = P(H,) X P(settle H[) X 1= P(escape Hz) .

(31)

This proposal—that the function f', rather than unaugmented probability
D, is the utility function maximized by the human parser—is an intriguing
claim about sentence processing that remains to be tested.

3.3.3 Markov Models of Lexical Category Preference

The previous sections motivated the use of probabilities as a tool for
ranking interpretations or actions taken by the human comprehension
mechanism. Let us turn now to the details of some probabilistic models.
This section and the next two describe increasingly sophisticated proba-
bilistic models of lexical category and syntactic disambiguation: hidden
markov models, stochastic context-free grammars, and Bayesian belief
networks. All of these are instances of what are often called graphical
models (Jordan 1999).

Corley and Crocker (1996, 2000) focus on the problem of lexical cate-
gory disambiguation as part of human sentence processing. They propose
that human lexical category disambiguation can be modeled by a hidden
markov model (HMM) part-of-speech tagging algorithm (or a variant of
the HMM algorithm known as the Church tagger—Church 1988).
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Table 3.4
Hidden markov model tag probabilities for race. (From Jurafsky and Martin
2000.)

Words P([i‘l,‘_l)P(Wl‘M‘) P
to/INF race/VERB P(Verb|InfTo) x P(race[Verb) .00001
to/INF race/NOUN P(Noun|InfTo) x P(race|Noun) .000007

HMM taggers are used to compute the probability of a sequence of
part-of-speech tags given a sequence of words. For example, given the
sequence of words in (32), a tagger would produce the series of tags
in (33):

(32) the miracle cures
(33) Det Noun Noun

HMM taggers rely on a very simple intuition: given a word, choose its
most likely tag in context. They operationalize “most likely” by using
only two probabilistic sources of knowledge: the probability of a word
given a lexical category tag P(w;|t;) and the probability of one lexical
category tag following another P(#|t;_1).

For example, the word race can be a verb or a noun. The noun is vastly
more frequent; but verbs are more common after the infinitive marker zo.
Table 3.4 (taken from Jurafsky and Martin 2000, with probabilities from
the combined Brown and Switchboard corpora) shows that an HMM
tagger correctly chooses the part of speech verb in the context to race.

HMM taggers actually produce the most likely sequence of tags 7"
for an entire sentence or sequence of words of length n rather than just
for a single word 7;. We can use the function argmax, f(x), which returns
the x that maximizes f(x), to write the equation for what the tagger is
maximizing:

' = argmax P(1]|w}). (34)
Iz

This equation can be rewritten by Bayes’ rule (chapter 2, equation (10)),

as

POo|) P(1})

P(wy) (35)

{' = argmax
tn
1

Since an HMM tagger is choosing the most likely tag sequence for a fixed
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Table 3.5
Corley and Crocker’s (1996) probability computation for hidden markov model
tagger on data from Juliano and Tanenhaus 1993

Part of
Context speech P(ti|ti—1)P(wilt;) P
Sentence-initial Comp P(Comp|#)P(that|Comp) .0003
Det P(Det|#)P(that|Det) .0011
Following verb Comp P(Comp|Verb)P(that|Comp) .023
Det P(Det|Verb)P(that|Det) .00051

set of words w{', we can drop the denominator term, producing

1" = argmax P(w]|t])P(t}). (36)
’1"

The HMM tagger makes two large simplifying assumptions: first,
that the probability of a word depends only on its own tag, and not any
neighboring tags; and second, that the words are independent of each
other. This results in the following equation by which a bigram tagger
estimates the most probable tag sequence:

= argmax P(tfw]) = H P(wi|t)P(ti|ti-1). (37)
l

Corley and Crocker (1996, 2000) show that this probabilistic model
accounts for a number of the psycholinguistic results discussed above.
For example, they model Juliano and Tanenhaus’s (1993) finding that
subjects seem to treat sentence-initial that as a determiner, but postverbal
that as a complementizer. Table 3.5 shows that the HMM probabilities
predict a determiner reading sentence-initially, but a complementizer
reading after a verb. Corley and Crocker also show that their tagging
model accounts for three other results on lexical category disambiguation.

3.3.4 Stochastic Context-Free Grammars

Jurafsky (1996) proposed a probabilistic model for syntactic disam-
biguation. His probabilistic parser kept multiple interpretations of an
ambiguous sentence, ranking each interpretation by its probability. The
probability of an interpretation was computed by multiplying two prob-
abilities: the stochastic context-free grammar (SCFG) “prefix”” probabil-
ity of the currently seen portion of the sentence, and the ‘“‘valence”
(syntactic/semantic subcategorization) probability for each verb.
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A stochastic context-free grammar, first proposed by Booth (1969),
associates each rule in a context-free grammar with the conditional prob-
ability that the left-hand side expands to the right-hand side. For exam-
ple, the probability of two of the expansions of the nonterminal NP,
computed from the Brown corpus, is

[.42] NP — Det N,
[.16] NP — Det Adj N.

Jurafsky’s model was on-line, using the left-corner probability algo-
rithm of Jelinek and Lafferty (1991) and Stolcke (1995) to compute the
SCFG probability for any initial substring (or “prefix”) of a sentence.

Subcategorization probabilities in the model were also computed from
the Brown corpus. For example, the verb keep has a probability of .81 of
being bivalent (keep something in the fridge) and a probability of .19 of
being monovalent (keep something).

While the model kept multiple interpretations, it was not fully parallel.
Low-probability parses were pruned via beam search. Beam search is an
algorithm for searching for a solution in a problem space that only looks
at the best few candidates at a time. The name derives from the metaphor
of searching with a flashlight; only things that lie within the beam of the
light are retained. The use of beam search in the algorithm, rather than
full parallel search, means that the model predicts extra reading time (the
strong garden path effect) when the correct parse has been pruned away
and the rest of the sentence is no longer interpretable without reanalysis.

Jurafsky (1996) showed that this model could account for a number of
psycholinguistic results regarding parse preferences and garden path sen-
tences. For example, the corpus-based subcategorization and SCFG
probabilities for keep and other verbs like discuss correctly modeled the
preferences for these verbs in the off-line forced-choice experiment carried
out by Ford, Bresnan, and Kaplan (1982). The SCFG grammar also
correctly modeled the misanalysis of garden path sentences like (38), by
claiming that the correct parse (in which houses is a verb) gets pruned:

(38) The complex houses married and single students and their families.

Finally, the combination of SCFG probability and subcategorization
probability modeled the garden path effect for preferentially transitive
verbs like race and the weaker garden path effect for preferential intran-
sitive verbs like find:
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(39) The horse raced past the barn fell.
(40) The bird found in the room died.

In summary, Jurafsky’s (1996) parser has the advantages of a clean,
well-defined probabilistic model, the ability to model the changes in prob-
ability word by word, a parallel processing architecture that can model
both lexical and syntactic processing, accurate modeling of parse pref-
erence, and a probabilistic beam search architecture that explains difficult
garden path sentences. The model has many disadvantages, however.
First, it only makes very coarse-grained reading time predictions; it pre-
dicts extra reading time at difficult garden path sentences, because the
correct parse falls out of the parser’s beam width. It does not make
fine-grained reading time predictions of any kind. In addition, although
the description of the model claims that the interpreter can combine prob-
abilistic information of any sort, the model as described specifies only
SCFG and subcategorization probabilities. Finally, the model has been
tested on only a handful of examples.

Crocker and Brants (2000) propose a probabilistic model of sentence
processing that is similar to Jurafsky’s (1996) but that, unlike Jurafsky’s,
is designed to have wide coverage and efficient scalability. Their incre-
mental cascaded markov model (ICMM) is based on the broad-coverage
statistical parsing techniques of Brants (1999). ICMM is a maximum
likelihood model, which combines stochastic context-free grammars with
HMMs, generalizing the HMM/SCFG hybrids of Moore et al. (1995).
The original nonincremental version of the model constructs a parse tree
layer by layer, first at the preterminal (lexical category) nodes of the parse
tree, then at the next higher layer in the tree, and so on. In the incremen-
tal version of the model, information is propagated up the layers of the
model after reading each word. Each markov model layer consists of a
series of nodes corresponding to phrasal (syntactic) categories like NP or
AdvP, with transitions corresponding to trigram probabilities of these
categories. The output probabilities of each layer are structures whose
probabilities are assigned by a stochastic context-free grammar. Figure
3.4 shows a part of the first markov model layer for one sentence. Each
markov model layer acts as a probabilistic filter, in that only the highest-
probability nonterminal sequences are passed up from each layer to the
next higher layer. The trigram transition probabilities and SCFG output
probabilities are trained on a treebank.
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Part of the first markov model layer for one sentence. (From Crocker and Brants
2000.) The letter ¢ indicates the subtrees generated by the stochastic context-
free grammar. For example, P(#|NP) is the conditional probability of the subtree
NN — company given the NP.

Crocker and Brants’s (2000) model accounts for a number of experi-
mental results on human parsing. For example, because the ICMM is a
generalization of Corley and Crocker’s (1996) model, it handles the same
lexical category effects described in the previous section, including Juliano
and Tanenhaus’s (1993) conditional probability effect of that.

The ICMM also models a finding by Pickering, Traxler, and Crocker
(2000), who were looking at disambiguation of the role of noun phrases
like his goals in NP/S ambiguities like the following:

(41) The athlete realized [np his goals] at the Olympics.
(42) The athlete realized [s[np his goals] were out of reach].

Realize is an S-bias verb. Nonetheless, Pickering, Traxler, and Crocker
showed that readers must be considering the NP interpretation of his
goals. They did this by creating pairs of sentences with sentential com-
plements. In one sentence, (43), the noun phrase potential was a plausible
direct object for realize. In the other sentence, (44), the noun phrase /er
exercises was not a plausible direct object:

(43) The young athlete realized her potential one day might make her a
world-class sprinter.

(44) The young athlete realized her exercises one day might make her a
world-class sprinter.

Pickering, Traxler, and Crocker showed that reading time was delayed on
the phrase might make her after the implausible direct object her exercises



76 Jurafsky

but not after the plausible direct object her potential. In order to be influ-
enced by the plausibility of the direct object, the human parser must be
building the direct object interpretation, despite the S-bias of the verb
realized.

Crocker and Brants (2000) use the structure of the SCFG to model this
result. Sentential complements involve one more SCFG rule than direct
objects (the rule VP — S). The probability of the sentential complement
will thus be lower than it would be otherwise; since probabilities are less
than 1, multiplying by an additional rule lowers the probability of a
parse. Thus, Crocker and Brants’s model predicts that the probability of
the direct object reading of (42) is actually higher than the probability
of the sentential complement reading.

Like Jurafsky (1996) and Crocker and Brants (2000), Hale (2001) pro-
poses to model human sentence processing via a probabilistic parser
based on SCFG probabilities. But Hale’s model offers an important new
contribution: much more fine-grained predictions about parsing difficulty
and hence reading time. Hale proposes that the cognitive effort needed to
integrate the next word into a parse is related to how surprising or un-
expected that word is. The surprisal of a word is an alternate term in
information theory for the word’s information value (Attneave 1959),
which can be computed by the negative log of its probability:

h(w;) = —log P(w;). (45)

Thus, Hale’s proposal is that reading times at a word are a function of the
amount of information in the word. A word that is surprising or infor-
mative (has a large negative log probability and hence a large positive
information content) will cause extended reading times and hence a
garden path sentence.

How should the probability P(w;) be estimated? This is of course a
cognitive modeling question; the appropriate probability is whatever
people can be shown to use. Hale proposes to use a simple syntax-based
probability metric: the conditional SCFG probability of the word given
the parse tree of the preceding prefix.

The conditional probability of a word given the previous structure can
be computed from an SCFG by using the prefix probability. Recall that
the prefix probability is the probability of an initial substring of a sen-
tence given the grammar. Unlike computing the probability of an entire
sentence, computing the probability of a prefix is somewhat complex,
since it involves summing over the probability of all possible recursive
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structures before the parser knows exactly how many recursions will be
seen. Jelinek and Lafferty (1991) show how this prefix probability can be
computed, and Stolcke (1995) shows how this computation can be inte-
grated into a probabilistic Earley parser. If o; represents the prefix prob-
ability of words wow; ...w;, then the conditional probability of a new
word given all the previous words is

Pwy...w;) o

(46)

Pwilwi,wy.o owj ) =————"—<= .
(wiw, w2 1) Plwy...wisy) oy
Hale’s proposal is that reading times at a word will be proportional to the
information value assigned by this probability, or

2%

h(w;) = —log _— (47)
i1

Hale actually gives a different but equally valid way of thinking about
this equation. He proposes that the cognitive effort needed for parsing
any sequence of words is proportional to the total probability of all the
structural analyses that are incompatible with that sequence. That is,
cognitive effort, and particularly the garden path effect, occurs wherever
the parser disconfirms potential parses that together comprise a large
probability mass. The simplest way to measure the amount of probability
mass that is disconfirmed is to look at the amount of probability mass in
the prefix leading up to the previous word that is no longer in the prefix
leading up to the current word, which is the difference between o; and
oi—1.

Hale shows that his model predicts the large increases in reading time
corresponding to two well-known cases of processing difficulty: reduced
relative clauses and subject-object asymmetries. First, he shows that the
surprise at the word fell is very high in the reduced relative garden path
sentence (48) by hand-building a mini context-free grammar for the rules
in the sentence and setting the probabilities from a sample of the Penn
Treebank. Figure 3.5 shows the prediction of extra surprise, hence extra
reading time at fell.

(48) The horse raced past the barn fell.

Hale’s model predicts a large increase in reading time at fell because
the probability of fell is extremely low. In this sense, Jurafsky’s (1996)
pruning-based model is just a special case of Hale’s. Jurafsky’s model
predicts extra reading time because the probability of fell is zero; the
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Hale’s (2001) prediction of reading time based on surprise values computed from
a simple stochastic context-free grammar

potential parse that could have incorporated fell was pruned away. Hale’s
model is thus able to make more fine-grained reading time predictions
than Jurafsky’s.

These more fine-grained predictions can be seen in Hale’s probabilistic
explanation for a second source of processing difficulty: subject-object
relative asymmetry. Many researchers had noticed that object relative
clauses (49) are more difficult to parse than subject relative clauses (50);
see Gibson 1998 for a summary of previous research (and a nonproba-
bilistic model):

(49) The man who you saw saw me.
(50) The man who saw you saw me.

Figure 3.6 shows the reading time predictions of Hale’s model; note that
the object relative has a much higher maximum (and mean) surprisal than
the subject relative.

In summary, probabilistic models of human parsing based on markov
models and stochastic context-free grammars use the SCFG or HMM
probability to predict which parse of an ambiguous sentence a human
will prefer. These models also make some predictions about timecourse.
Jurafsky (1996) and Crocker and Brants (2000) use the beam search par-
adigm to prune low-probability interpretations, hence predicting longer
reading time when the next word is compatible only with a parse that has
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Hale’s (2001) prediction of reading time based on surprise values computed from
a simple stochastic context-free grammar for («) object relatives and (b) subject
relatives

already been pruned. Hale (2001) offers more fine-grained predictions
about reading time, predicting an increase in reading time for surprising
or unexpected words, as measured by parse probability.

3.3.5 Bayesian Belief Networks

As noted at the outset, the goal of probabilistic modeling in language
processing is to solve the problem of choosing among possible alter-
natives in comprehension and production, given only incomplete and
noisy evidence. The models summarized so far go a long way toward this
goal. The competition and constraint satisfaction models both focus on
the use of multiple probabilistic or frequency-based cues. The markov
and SCFG models just described extend this use of probabilistic cues to
show how some of these cues can be combined in a probabilistically cor-
rect manner; in particular, they focus on how independence assumptions,
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like the assumptions of SCFGs, can be used to combine syntactic proba-
bilities in a structured and motivated way.

In this section, I introduce a more general framework for combining
probabilistic knowledge: the Bayesian belief network. Bayesian belief
networks are data structures that represent probability distributions over
a collection of random variables. A network consists of a directed acyclic
graph, in which nodes represent random variables (unknown quantities)
and the edges between nodes represent causal influences between the
variables. The strengths of these influences are quantified by conditional
probabilities; thus, for each variable node A that can take values a; .. . a,,
with parents Bj ... B,, there is an attached conditional probability table
p(A = Cl]|Bl = bx, . 7Bn = bz), p(A = a2|Bl = bx7 e ,Bn = bz), and so
on. The table expresses the probabilities with which the variable 4 can
take on its different values, given the values of the parent variables. The
structure of the network reflects conditional independence relations be-
tween variables, which allow the joint distribution to be decomposed into
a product of conditional distributions. The Bayesian network thus allows
us to break down the computation of the joint probability of all the evi-
dence into many simpler computations.

Recall that the advantage of a Bayesian approach to language pro-
cessing is that it gives a model of what probability to assign to a particu-
lar belief, and of how beliefs should be updated in the light of new
evidence. Bayesian belief networks are thus on-line models; for example,
if we are estimating the probabilities of multiple possible interpretations
of an ambiguous utterance, the network will allow us to compute the pos-
terior probability of each interpretation as each piece of evidence arrives.
In addition, the use of a Bayesian belief network as a probabilistic esti-
mator allows us to incorporate any kind of evidence: syntactic, semantic,
discourse. This in turn allows us to capture the syntactic probabilities
captured by graphical models like HMMs and SCFGs, while augmenting
them with other probabilities, all in an on-line manner.

Jurafsky (1996) suggested that access and disambiguation of linguistic
knowledge follow an evidential Bayesian model, though he gave only the
briefest sketch of what the model should look like. Narayanan and
Jurafsky (1998, 2002) followed up on this proposal by implementing a
Bayesian model of syntactic parsing and disambiguation.

In this model, each interpretation of an ambiguous input is assigned
a probability by combining multiple probabilistic sources of evidence,
such as SCFG probabilities, syntactic and thematic subcategorization
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A belief network combining stochastic context-free grammar probabilities (syn)
with subcategorization, thematic (#4m), and other lexical probabilities to represent
support for the main clause (MC) and reduced relative (RR) interpretations of a
sample input. (From Narayanan and Jurafsky 1998.)

probabilities, and other contextual probabilities using a Bayesian belief
network.

For example, after seeing the first few words of a main clause/reduced
relative ambiguous sentence (The horse raced), the Bayesian model
assigns probabilities to both the main clause (MC) and reduced relative
(RR) interpretations using the belief network sketched in figure 3.7. This
particular belief network combines multiple sources of probabilistic evi-
dence, such as the subcategorization probability of the verb raced, the
probability that horse is the semantic theme of a racing event, and the
syntactic probability that a noun phrase will include a reduced relative
clause, computed using SCFG probabilities.

This network is actually composed of two subnetworks, one computing
the SCFG probabilities and one computing the lexical and thematic
probabilities. The SCFG probabilities can be directly computed by the
first subnetwork; the conditional independence assumptions in a stochas-
tic context-free parse of a sentence can be translated into the conditional
independence statements entailed by a Bayesian network. Figure 3.8 illus-
trates the belief network representations that correspond to the SCFG
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Figure 3.8
Pieces of belief networks corresponding to two stochastic context-free grammar
parses for the prefix The witness examined . ..

parses for the main clause and reduced relative interpretations of an am-
biguous prefix like The witness examined.

Figure 3.9 gives the structure of the Bayesian network that computes
lexical and thematic support for the two interpretations. The model re-
quires conditional probability distributions specifying each verb’s prefer-
ence for different argument structures, as well as its preference for
different tenses. Narayanan and Jurafsky (2002) also compute proba-
bilities from the semantic fit between head nouns (like crook or cop) and
semantic roles (agent or patient) for a given predicate (like arrested) by
normalizing the preferences given by McRae, Spivey-Knowlton, and
Tanenhaus (1998). Thus, the probabilities include

P(agent|subject = crook, verb = arrested),
P(patient|subject = crook, verb = arrested),
P(transitive|verb = arrested),

P(preterite| verb = arrested),

and so on. As shown in figure 3.9, the MC and RR interpretations require
the conjunction of specific values corresponding to tense, semantic fit,
and argument structure features. Note that only the RR interpretation re-
quires the transitive argument structure.

In some cases, as with the SCFG, we have relatively complete models
of the independence assumptions between probabilities. In other cases, as
with thematic and syntactic probabilities, we do not yet have a good idea
what the exact causal relationship is between probabilities. The simplest
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Figure 3.9
The belief network that represents lexical and thematic support for the two inter-
pretations shown in figure 3.8 (4 = agent, T = theme)

thing to do in such cases is to assume the probabilities are independent
and to multiply them. Figure 3.7 shows that Narayanan and Jurafsky
(1998) make a somewhat weaker assumption by using the noisy-and
model (Pearl 1988) in computing the conjunctive impact of the lexical/
thematic and syntactic support to compute the probabilities for the MC
and RR interpretations. A noisy-and model assumes that whatever
inhibits a specific source (syntactic) from indicating support for an
interpretation is independent of mechanisms that inhibit other sources
(lexical) from indicating support for the same interpretation. This assump-
tion, called the assumption of exception independence, is used widely
with respect to both disjunctive (noisy-or) and conjunctive sources. In
the case of the RR and MC interpretations, as each piece of new evi-
dence is introduced by reading new words, the posterior support for the
different interpretations is computed using the following equation:

P(MC)=1—-P(-MC)=1— P(~MC|Syn, Lex, Thm)
=1— (P(-MC|Syn) x P(-MC|Lex, Thm)
P(RR) =1— P(—=RR) =1— P(=RR|Syn, Lex, Thm)
=1— (P(—=RR|Syn) x P(-RR|Lex, Thm). (51)

Let’s walk through the model word by word as it assigns probabilities
to the different parses of the initial prefix of three sentences:
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The main clause/reduced relative (MC/RR) posterior probability ratio for raced
falls above the threshold and the reduced relative interpretation is pruned. For
found and carried, both interpretations are active in the disambiguating region.
(From Narayanan and Jurafsky 1998.)

(52) The horse raced past . ..
(53) The horse carried past ...
(54) The horse found in . ..

Previous research has found that (52) causes a severe garden path
effect, while (53) and (54) do not (Pritchett 1988; Gibson 1991). Naraya-
nan and Jurafsky’s (1998) approach models this garden path effect via
the beam search assumption of Jurafsky (1996); interpretations whose
probability falls outside the beam width of the best interpretation are
pruned. Figure 3.10 shows the relevant posterior probabilities for the
example The horse raced past the barn fell and the replacement of raced
by carried or found at different stages of the input, expressed in terms of
the probability of the MC interpretation to the RR interpretation, or the
MC/RR ratio.

At the first point in the graph, the network expresses the probability
ratio after seeing the phrase the horse. The network is thus computing the
following probabilities:
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P(MC, S — NP ..., NP — Det N, Det — the, N — horse|the, horse),

P(RR,S —NP...,NP— NP..., NP — Det N, Det — the,
N — horse|the, horse).

Next, the word raced appears, and the network computes the new poste-
rior probability ratio given this new information:

P(MC, S — NP VP, NP — Det N, Det — the, N — horse, VP — V .. .|
V — raced, Vform, Agent|Vform = preterite, subject = “horse”,
verb = race);

P(RR, S — NP VP, NP — NP VP, NP — Det N, Det — the,
N — horse, VP — V ..., V — raced, Vform, Agent|Vform = participle,
subject = “horse”, verb = race).

As shown in figure 3.10, Narayanan and Jurafsky’s (1998) model pre-
dicts that the MC/RR ratio exceeds the threshold immediately after the
verb raced is accessed (MC/RR & 387 >» 5), leading to the pruning of the
RR interpretation. In the other cases, while the MC/RR ratio is tempo-
rarily rising, it never overshoots the threshold, allowing both the MC and
RR interpretations to be active throughout the ambiguous region.

Narayanan and Jurafsky (2002) tested their (1998) data further, by
modeling both sentence completion probabilities and reading time data
on 24 sentences from McRae, Spivey-Knowlton, and Tanenhaus 1998.
They also included in the model new probabilities taken from McRae,
Spivey-Knowlton, and Tanenhaus’s study that allow conditioning on the
identity of the preposition. Finally, they extended the model’s reading
time predictions by predicting an increase in reading time whenever an
input word causes the best interpretation to drop in probability enough to
switch in rank with another interpretation.

The first experiment modeled by Narayanan and Jurafsky (2002)
was the sentence completion experiment conducted by McRae, Spivey-
Knowlton, and Tanenhaus (1998), summarized above. Narayanan and
Jurafsky showed that the same factors integrated by McRae, Spivey-
Knowlton, and Tanenhaus using the competition-integration model can
instead be integrated by the Bayesian network shown in figures 3.8 and
3.9.

Figure 3.11 shows the human fragment completion preferences and
the probabilities the model assigned to the RR and MC completions.
The Bayesian model’s results correspond closely to the human judgments
about whether a specific ambiguous verb was used in the MC or RR
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Figure 3.11

The main clause/reduced relative (MC/RR) posterior probability ratio for sen-
tence completion after each word, from the Bayesian model (Narayanan and
Jurafsky, in press) and human completion data (McRae, Spivey-Knowlton, and
Tanenhaus 1998)

construction. As in McRae, Spivey-Knowlton, and Tanenhaus 1998, the
data show that thematic fit clearly influenced the sentence completion
task. The probabilistic account further captured the fact that at the by
phrase, the posterior probability of producing an RR interpretation
increased sharply; thematic fit and other factors influenced both the
sharpness and the magnitude of the increase.

Narayanan and Jurafsky (2002) also modeled aspects of on-line read-
ing experiments from McRae, Spivey-Knowlton, and Tanenhaus 1998
discussed above. Recall that the latter authors showed that controlled
human reading time for good agents for arrested (e.g., cop) gets longer
after reading the by phrase (requiring cop to be a patient), while con-
trolled reading time for good patients (e.g., crook) gets shorter.
Narayanan and Jurafsky’s (1998) model predicts this larger effect from
the fact that the most probable interpretation for the good agent case
flips from the MC to the RR interpretation in this region. No such flip
occurs for the good patient case.

Figure 3.12(a) shows that the good patient results already have an MC/
RR ratio of less than one (the RR interpretation is superior), while a flip
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(a) Main clause/reduced relative ratio for the ambiguous region showing a flip for
the good agent case at the word the, as the ratio goes below 1, but no such flip
for the good patient case. (b)) P(MC) and P(RR) for the good agent cases alone.
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occurs for the good agent sentences (from the initial state where MC/
RR > 1 to the final state where MC/RR < 1). Whereas figure 3.12(a)
shows MC/RR ratios for different initial NPs, figure 3.12(b) focuses just
on the good agent case and breaks the MC and RR probabilities into two
separate lines, showing the crossing point where the flip occurs.

3.3.6 Probabilistic Modeling of Production

We have now looked at the architectures of many probabilistic models of
comprehension. In production, by contrast, there seem to be no worked-
out probabilistic models. Perhaps the main cause of this, as Harald
Baayen (personal communication) points out, is that obtaining proba-
bilities for production studies is difficult, because it is so difficult to con-
trol the circumstances that will prompt a subject to coin a particular
sentence. In any case, modern models of lexical production such as those
developed by Levelt, Roelofs, and Meyer (1999), Dell (1986), and Dell et
al. (1997)—indeed most models, back to Morton’s (1969) seminal logogen
model—are based on some idea of activation that is tied in some way to
frequency. In a logogen-style model, a high-frequency word has a lower
activation threshold and hence is quicker to access. In other models, fre-
quency instead plays its role via the weights on links that pass activation
into a word node. In any case, Bates and Devescovi (1989) proposed that
this sort of frequency-based activation model also be used to model syn-
tactic frequency effects. In their model, given a semantic input, the pro-
duction system allows various possible syntactic constructions and lexical
realizations to compete for access. Frequency and function both play a
role in ranking these competing realizations. Evidence for this role of
syntactic frequency comes from the study by Bates and Devescovi (1989)
discussed in section 3.2.6, which showed that in a controlled production
study, relative clauses occurred far more often in Italian production than
English production. They suggest that the frequency of relative clauses in
Italian may play a direct role in their being chosen in production.

In addition, Stallings, MacDonald, and O’Seaghdha (1998) and Ro-
land and Jurafsky (2001) suggest that various conditional probabilities
relating to a verb’s subcategorization frame play a role in production.
The experiment by Stallings, MacDonald, and O’Seaghdha summa-
rized in section 3.2.4 suggests that each verb is stored with a “‘shifting
disposition”—a frequency-based preference for whether it expects to
appear contiguous with its arguments or not. Stallings, MacDonald, and
O’Seaghdha suggest that this preference plays an on-line role in choosing
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an interpretation in production. Roland and Jurafsky suggest that a verb
subcategorization probability is stored with the verb lemma and used in
production to select among alternative subcategorizations.

3.3.7 Conclusion

I have sketched, at a surface level, a number of probabilistic models of
comprehension. Most models focus on ambiguity, showing that human
preference for one interpretation of an ambiguous input can be predicted
by the probability of that interpretation. The rational models extend this
idea to investigate the role of cost and utility in disambiguation prefer-
ences. Finally, the most recent work has begun to explore a more fine-
grained relationship between probability and processing time.

3.4 Potential Challenges to and Confusions about Probabilistic Models

In this section, I discuss some commonly encountered challenges to prob-
abilistic models and introduce some frequently asked questions.

3.4.1 Surely You Don’t Believe That People Have Little Symbolic
Bayesian Equations in Their Heads?
No, probabilistic modeling of human language processing does not imply
that little Bayesian equations are somehow symbolically dancing around
in the head of a speaker. This misguided conception gives rise to a com-
mon objection to probabilistic models of language processing: that it
seems hard to believe that people are “doing complex math in their
heads.”

Rather, many probabilistic modelers assume that probability theory is
a good model of language processing at what Marr (1982) called the
“computational level”: it characterizes the input-output properties of the
computations that the mind must somehow be doing. How this model is
realized at lower levels (of “implementation” or ““algorithm”) is an inter-
esting question that unfortunately cannot be addressed here (though see
some discussion in Baayen, this volume). The most common assumption,
however, is that probability is realized either as an activation level of
some mental structure or as a distributed pattern of activation. Stored
frequencies or probabilities can thus be encoded either as resting activa-
tion levels or as weights on connections. It is well known that the link
between neural network or connectionist models and probabilistic ones is
close (see, e.g., McClelland 1998). Other realizations of probabilistic



90 Jurafsky

models are possible, however, such as the exemplar models of phonology
developed by Pierrehumbert (2001b) and others.

It is important to mention an alternative possible relation between
probabilistic models and neural networks or other activation-based
models, suggested by Ariel Cohen (personal communication)—namely,
that probabilistic models are simply wrong, and that neural network or
connectionist models are a better and more explanatory model of human
language processing. Unfortunately, very little research has focused on
discriminating between probabilistic models and connectionist models.
Deciding whether probabilistic models are merely a higher-level descrip-
tion of connectionist models, or whether the two are mutually exclusive
alternatives, remains a key problem for future research.

3.4.2 Are Probabilistic Models Always Nonmodular?

Frequency-based, constraint-based, and probabilistic models have often
been opposed to models that exhibit Fodorian modularity (Fodor 1983),
or models based on rich linguistic structure. While any individual model
may make any particular confluence of claims, there is no necessary
link between probability and antimodularity. The probabilistic models
discussed in this chapter are generally models of the probability of
something—generally the probability of a certain linguistic structure, as
computed by humans in the course of linguistic processing. This fact
should make it clear that these probabilistic models are not meant to
argue for ““using numbers instead of linguistic structure” or “random
number generators in people’s heads” (to cite two more standard but
misguided objections to probabilistic models). Some of the probabilistic
models sketched in this chapter are modular (e.g., the one proposed in
Crocker and Brants 2000); others are nonmodular. Some involve “‘emer-
gent” structure; others involve explicit structure. Furthermore, the use
of probability says nothing about whether many and varied proba-
bilistic constraints are used immediately, as most probabilistic researchers
believe, or after a delay of a few milliseconds, as some psycholinguists
have argued in offering the garden path and construal models.

3.4.3 But Corpus Frequencies Don’t Match Norming Study Frequencies

The probabilities in the models described here are generally estimated
from corpus frequencies. A number of researchers have noticed that these
corpus frequencies do not always match the frequencies derived from
various psychological experiments. This mismatch might suggest that
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frequency-based models are not psychologically plausible. Recall, for
example, the work of Gibson, Schiitze, and Salomon (1996) on English
and Mitchell and Brysbaert (1998) on Dutch, which suggested that
attachment preferences differ between corpora and production experi-
ments. Desmet, Brysbaert, and Baecke (in press) showed that, at least
in Dutch, this difference disappears when the animacy of the NPs is
controlled.

Other such mismatches have been reported, however. For example,
Merlo (1994) compared verb subcategorization frequencies computed
from corpora with frequencies computed from psychological norming
studies. In a kind of psychological norming study called a ‘“‘sentence pro-
duction” study, subjects are asked to write a sentence using a particular
verb. Transitivity biases are then computed from a collection of such
sentences. Merlo found that transitivity preferences in a corpus of Wall
Street Journal and DARPA Air Travel Information System sentences
differed from transitivity preferences in norming studies such as Connine
et al.’s (1984).

Roland and Jurafsky (2001) followed up on Merlo’s research by look-
ing at the causes of subcategorization differences between corpora such as
the Brown corpus and subcategorization norming studies such as Con-
nine et al.’s (1984). Their analysis suggests that most of the differ-
ences between these verb subcategorization frequencies came from two
factors. The first factor is word sense: different corpora tend to use dif-
ferent senses, and different senses tend to have different subcategorization
biases. The second factor is discourse and genre effects: for example, the
single-sentence production tasks were much less likely to display passives,
zero anaphora, and other discourse-related phenomena than natural cor-
pus sentences. Roland et al. (2000) extended this study, examining the
subcategorization probabilities for 69 verbs. They found that after con-
trolling for verb sense, the binned subcategorization probabilities (high,
medium, and low transitive bias) for each verb were relatively stable
across corpora.

What are the implications for probabilistic models? Roland and Juraf-
sky (2001) and Roland (2001) proposed that the locus of verb sub-
categorization probabilities is the semantic lemma rather than the lexeme,
and suggested that the frequency of a particular verb subcategorization
in a corpus is a product of multiple factors. In particular, in lexical pro-
duction, lexical subcategorization probabilities, which are stored at the
semantic lemma level, might be combined with other probabilistic influ-
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ences from discourse and genre to produce the subcategorization patterns
observed in corpora.

Thus, the mismatch between corpus frequencies and psychological
norming studies is to be expected. These are essentially two different
kinds of production studies, with different constraints on the production
process. A probabilistic model of production that is correctly conditioned
on sense, genre, and other factors would correctly model the different
observed frequencies for these two kinds of corpora.

3.4.4 Maybe Frequency Is Just an Epiphenomenon

Another common objection to probabilistic and other frequency-based
models is that frequency is only an epiphenomenon of other structural
factors. One such claim relates to the processing of unaccusative and
unergative verbs in English. Unaccusative verbs (bloom, melt, blush, etc.)
and unergative verbs (race, slide, sail, etc.) are both typically intransitive,
but have been modeled as differing in underlying lexical-syntactic form:

Unergatives NP [vp V] (external argument, no internal argument)
Unaccusatives [vp V NP/CP] (internal argument, no external ar-

gument)

Both unaccusative and unergative verbs generally alternate with a caus-
ative transitive form (e.g., unaccusative melt can be both intransitive and
transitive). Kegl (1995) has claimed that unaccusatives are particularly
hard for agrammatic aphasics to process. Her argument is based on
a study of an agrammatic aphasic subject, whose productions showed
a significant absence of unaccusatives when compared with those of a
matched control. Kegl’s explanation is that unaccusatives are like pas-
sives in involving traces, which are claimed to be generally difficult for
agrammatic aphasics to process (Grodzinsky 2000).

An alternative explanation might be based on frequency: as Gahl et al.
(in press) have suggested, the comprehension difficulty of a verb might
vary with its frequency-based subcategorization bias, and unaccusative
verbs could occur more frequently in their intransitive than in their tran-
sitivized form. Gahl et al. tested this hypothesis with eight aphasic sub-
jects using a plausibility-in-comprehension task, with both transitive and
intransitive sentences. A given sentence thus either matched or didn’t
match the transitivity bias of the verb. Gahl et al. predicted that a sen-
tence should be easier to understand if its structure matches the tran-
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sitivity bias of its verb, and they predicted that there was no reason to
expect unaccusatives to act like passives. They found that unaccusatives
as a whole were much easier for their aphasic subjects to understand than
passives, that unaccusatives as a whole were not harder than unergatives,
and that in general sentences were easier when their syntactic structures
matched the subcategorization frequency bias of the verb. Thus, process-
ing of unaccusatives was influenced by frequency bias, rather than by
structural problems with traces.

Another claim that structure rather than frequency causes processing
difficulty comes from Stevenson and Merlo (1997), who noticed that the
causativized form of unergative verbs (see (52a)) is more difficult to pro-
cess than the causativized form of unaccusative verbs (see (52b)).

(52) a. Causativized unergatives
The students advanced to the next grade had to study very hard.
The clipper sailed to Portugal carried a crew of eight.
The ship glided past the harbor guards was laden with treasure.

b. Causativized unaccusatives

The witch melted in The Wizard of Oz was played by a famous
actress.
The oil poured across the road made driving treacherous.

Stevenson and Merlo were extending a proposal of Hale and Keyser
(1993), in which verbs project their phrasal syntax in the lexicon.
Stevenson and Merlo proposed that causativized (transitive) forms
of unergatives are more complex than causativized (transitive) forms of
unaccusatives, in terms of number of nodes and number of binding rela-
tions. This complexity, together with limitations on creating and binding
empty nodes, caused Stevenson’s (1994) parser to be unable to activate
the structure needed to parse transitivized unergatives, hence explaining
the garden path effect.

But an alternative explanation for the garden path effect relies on the
subcategorization frequency biases discussed earlier. As Stevenson and
Merlo (1997) and Gahl (1999) show, unergative verbs like race have a
huge intransitive bias, and unaccusatives have a slight causative/transitive
bias, if anything (see table 3.6, and see Gahl 1999 for further details of the
comparison).

A frequency explanation for the difficulty of these garden path sen-
tences also has the advantage of explaining gradient effects. Filip et al.
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Table 3.6

Transitivity counts for unergative versus unaccusative verbs (From Gahl 1999.)
Transitive Intransitive

Unergative 2,869 13% 19,194 87%

Unaccusative 17,352 54% 14,817 46%

(2002), for example, have shown that some unergatives are easier to
understand in reduced relative clauses than others, which would be diffi-
cult to explain with a purely structural model.

The fact that frequency might be the psychological actor rather than
structural factors in this instance does not mean that structural, semantic,
or functional factors might not often be the causal force that is gram-
maticalized via frequency. Thus, it is crucial to continue to investi-
gate semantic or functional factors like those proposed by Stevenson and
Merlo (1997).

3.5 Conclusion

What is the state of knowledge about probabilistic modeling in 2002? We
know that the frequency of many kinds of linguistic structure plays a role
in processing. The strongest evidence for this role, however, exists only
for frequency related in some way to lexical items or to the relationship
between lexical items and syntactic structure. The role of probabilities
in nonlexical syntactic structure, while assumed in many probabilistic
models, rests on very little psychological evidence. This is perhaps un-
surprising, since the psychological evidence for constituency itself is so
weak. Nonetheless, understanding the role of frequency of larger struc-
tures is an important unsolved problem.

As for models, it is clear that probabilistic models of linguistic pro-
cessing are still in their infancy. Most models include only a very small
number of probabilistic factors and make wildly unjustified assumptions
about conditional independence. Furthermore, there is a dearth of work
exploring the crucial relationship between the neural network models,
which focus on emergence, distributional evidence, and the details of
input features, and Bayesian models, which focus on the mathematics of
evidence combination and independence assumptions. Nonetheless, some
conclusions are already possible. Probabilistic models do a good job of
selecting the preferred interpretation of ambiguous input and are starting
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to make headway in predicting the timecourse of this disambiguation
process.

Many unsolved problems remain. How exactly should prior probabil-
ities be estimated from corpora? What exactly is the relationship between
probability and reading or production time? We know that this relation-
ship is logarithmic, but little about how or why.

The constraints of space and time have made this survey of proba-
bilistic work in psycholinguistics unfortunately brief. I have given short
shrift to the role of frequency in recall, to the role of phonological and
orthographic neighborhood frequencies in processing, and, most distress-
ing, to the vast connectionist literature that is so closely related to proba-
bilistic modeling. Alas, those areas will have to await another survey.

Notes

Many thanks to the editors, Susanne Gahl, Alan Bell, and Ariel Cohen, and spe-
cial thanks to Harald Baayen for help and detailed comments above and beyond
the call of duty. An early version of this chapter was given as a talk at the
AMLAP 2001 conference in Saarbriicken; particular thanks to Matt Crocker,
Don Mitchell, and Brian McElree for helpful comments. Of course, all remaining
errors are my own.

1. Controlled reading times are computed by subtracting reading times for
reduced relative clauses from those for unreduced relative clauses.
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Chapter 4

Probabilistic Sociolinguistics: Norma Mendoza-Denton,
Beyond Variable Rules Jennifer Hay, and Stefanie
Jannedy

4.1 Overview

In this chapter we outline issues facing quantitative approaches in con-
temporary variationist sociolinguistic theory, surveying trends that led
scholars (1) to reject intuitive and categorical descriptions of language
data and (2) to use frequency-based and probabilistic approaches to the
modeling of language variation. We discuss the importance of linguistic
and social contexts in the description of variable linguistic behavior by
analyzing our data on the monophthongization of the diphthong /ay/ in
the speech of the popular African-American talk show host Oprah
Winfrey. We compare VARBRUL (variable rule-based logit analysis)
results with CART (classification and regression trees) results to high-
light the strengths and weaknesses of different tools in the modeling of
probabilistic phenomena. Implications for the theory of sociolinguistic
variation and for models of cognition are emphasized throughout. We
advocate a usage-based account for both linguistic processes and social
identity construction. Such an account allows for the continuous and
incremental updating of mental representations on the basis of new input,
and it synergistically captures advances in probabilistic linguistics and
in social identity construction theory. Social identities are transmitted
simultaneously with linguistic structures, and as such they represent
dynamic processes, continuously negotiated in interaction.

4.2 Background and History
4.2.1 Introduction

The study of sociolinguistic variation has faced different problems from
other fields of linguistics. While other branches of quantitative linguistics
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have competed with schools of intuitive and categorical thinking (Bod,
this volume), sociolinguists have always started from empirical premises.
The very first statistically sophisticated studies that were conducted in a
modern sociolinguistic framework laid the foundation for debates on sta-
tistical modeling within this field. Past debates within sociolinguistics
have included the search for a unified statistical model and tools (Bic-
kerton 1971; Sankoff and Rousseau 1974); the interpretation of correla-
tional statistics linking social structure to linguistic forms, especially in
the field of language and gender (Eckert 1989; Labov 1990; Cameron
1990); and the positing of alternative models for the diffusion of change
through a population, such as the implicational scale versus quantitative
model debate (Bickerton 1973; Romaine 1985; Rousseau 1989; see sum-
mary in Rickford 2001). Several of these debates have accorded privileged
status to questions of how to model the mathematics of sociolinguistics,
while paying short shrift to cognitive issues of the mental representation
of linguistic categories and of social processes. Recent work by Mendoza-
Denton (2001) and Eckert (1999) has pointed out that advances within
social theory and the evolution of understanding of sociolinguistic pro-
cesses challenge researchers to move beyond viewing social categories as
static, relegating them to simple decisions made by the analyst prior to
data analysis. Primary questions now surfacing are: How do social cate-
gories emerge from the distribution of data? How do abstractions such as
ethnicity and gender emerge from the many different ways that speakers
have of fashioning themselves as classed, gendered, or ethnic social
agents? Although some of the current methods (such as VARBRUL and
CART) constrain researchers in selecting discrete variables within socio-
demographic categories (coding tokens for age, ethnicity), we propose
utilizing a variety of techniques (including discourse and conversation
analysis) to more closely examine specific instances of variables and the
contexts of their use to determine how social meaning is constructed.

Exemplar theory, a frequency-based model emerging in areas such as
phonology and morphology (Pierrehumbert, this volume), can lead the
way to unification with social-theoretic understandings of the role of
innovative social actors in communities of practice. In exemplar theory,
categories are not preexisting, but are established as dynamic (continu-
ously and incrementally updated) generalizations of linguistic data over
increasingly abstract domains. The robustness of the categories depends
on frequency of the input that can be classified under that category, and
on the recency of the stimulus.
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There is a groundswell of evidence that much social information is
carried in moment-to-moment performances by key individuals—icons
—in local communities (Eckert 1999; Labov 2001; Mendoza-Denton
2001; Schilling-Estes 2001). Performances by these social brokers in
the linguistic marketplace are subject to the same cognitive constraints
of robustness and frequency that underlie other areas of symbolic
manipulation.

After reviewing some of the early sociolinguistic literature on variation
and on the variable rules framework, we present an extended example
analyzing a socially iconic speaker—Oprah Winfrey—with two statistical
modeling techniques, supplemented with discourse analysis, showing how
her use of specific variants contributes to the construction of her linguistic
style.

4.2.2 Against Intuition

Sociolinguistics explores the social correlations of patterns of human lin-
guistic behavior at all levels of grammar, ranging from phonology and
syntax to semantics and discourse. The quantification of performance
data to explore and explain speakers’ linguistic competence in social
situations has been a staple of the sociolinguistic paradigm. Unlike the
methods used in some other areas of linguistics, those deployed by socio-
linguists are empirical in nature and require the modeling of quantitative
patterns to draw conclusions about speaker competence. It is not assumed
that linguistic innovation, nuances in speech patterns, or variants of lex-
ical choice are in free variation. Rather, they are manifestations of the
subtle patterning and interaction of linguistic and social competence.

A speaker has choices to make when selecting which words to use in
crafting a sentence, whether to release a word-final stop, or whether to
raise a high vowel to display more extreme formant values. These choices
carry social meaning at the moment of utterance, and the gradual cumu-
lative steps of innovators may lead to category shifts with the power to
rearrange entire linguistic systems. Through the analysis of historical
records we gain insight into the succession of linguistic changes, such as
those precipitated by the English Great Vowel Shift. Historical evidence
and contemporary recordings can be used to show the gradualness of
these changes, the lexical diffusion of their carrier items through the pop-
ulation, and their continuing consequences in current structural reorga-
nizations, such as the Northern Cities Chain Shift in the United States
(Eckert 1989; Labov 2001).



100 Mendoza-Denton, Hay, and Jannedy

Sociolinguistics is concerned with capturing not only patterns of
change, but also variation across speakers of different speech commu-
nities, among speakers in a single speech community, and in the speech of
individuals. Variability follows the twin constraints of (1) being condi-
tioned by language-internal factors and (2) participating in processes of
social semiosis—a dual meaning-making system par excellence. Because
there is little room in generative linguistic frameworks to explore and
explain either noncategorical changes or stable variation, much work in
that vein has been devoted to describing the endpoints of changes, vari-
ability being dismissed as randomness or noise. Categorical descriptions
of language data ignore the triggers and mechanisms of variability, their
social motivation, and the productivity of such linguistic patterns.

As far back as 1937, Bronislaw Malinowski outlined a view of the
essential dilemma facing linguistics:

. whether the science of language will become primarily an empirical study,
carried out on living human beings within the context of their practical activities,
or whether it will remain largely confined to deductive arguments ... (1937, 63)

This chapter will argue that current quantitative models of language
behavior may still benefit from further investigation precisely of the form
that Malinowski advocated: carried out on living individuals in the course
of practical activity, shedding light on both linguistic form and questions
of social structure.

Hymes exhorted his linguistic contemporaries to take up research in a
nascent field called sociolinguistics, the goal of which was to ““identify
rules, patterns, purposes, and consequences of language use, and to
account for their interrelations” (1974, 71). The definitional core of this
field was and remains a theoretical concern for the interrelationship and
the codependence between components of linguistic structure and of
social structure. Why is this inherently a probabilistic problem? Socio-
linguists commonly understand the linguistic variable as “‘a construct that
unites a class of fluctuating variants within a language set” (Wolfram
1991, 23), reflecting a decision point at which a speaker chooses between
alternative ways of saying the same thing.

The central probabilistic sociolinguistic questions then become: What
factors affect a speaker’s decision to use one variant over another? How
can we best model the simultaneous influence of these linguistic and social
factors at that particular decision point? How does the use of a particular
linguistic variant reflect social membership? And what can the distribu-
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tion of alternative forms in the social landscape reveal about the internal
synchronic and diachronic workings of linguistic structure?

We take the multiple determination of variables as a given: it is not
only the internal organization of linguistic structure (i.e., phonological
context) that shapes variation, but also social settings and characteristics
of speakers, all operating in concert and reflected in language (cf. Bay-
ley’s (2001) principle of multiple causation).

Labov (1966, 1972) showed that through the frequencies of the various
phonetic manifestations of underlying phonological /r/, New Yorkers
displayed finely tuned linguistic performance reflecting social classes, eth-
nic groups, and even such subjective factors as the level of formality
in the speech situation. Rhoticity, the presence or absence of a pro-
nounced syllable-coda /r/, varied in predictable and replicably measur-
able ways. However disparate their informal production, New Yorkers
demonstrated their orientation to the current rhotic standard by exhibit-
ing variation wherein formal speech was always more rhotic than informal
speech, across all social classes and across all “styles” (word list, reading
passage, formal interview, unstructured interview). Figure 4.1 illustrates
class stratification in New York City as reflected in a linguistic variable.
The vertical axis represents a phonological index for (r), where 100 would
reflect a completely r-ful dialect and 0 would reflect a completely r-less
one. The interview contexts that appear on the horizontal axis are
designed to elicit increasingly careful, standardized speech. This figure
shows that as the formality of the context increases, from casual speech
through minimal pairs, so does the production of rhotic speech across all
social groups. No group is categorically r-ful or r-less, and all groups
exhibit a finely grained pattern of linguistic behavior that indicates con-
sciousness of the r-ful form as the prestigeful target. On the basis of their
collective orientation toward the same prestigeful targets across different
variables—Labov studied (r), (th), and (-ing)—these randomly sampled
New Yorkers could be classified as a single speech community. In the
production arena, social differences are shown in patterns of variation. In
the perceptual arena, social inferences are drawn from the architecture of
variation.

Labov’s (1966, 1972) study precipitated a scientific paradigm shift in
the study of language and society. Since then, much sociolinguistic work
has been carried out using the methodology of the sociolinguistic inter-
view, a structured oral interview protocol that was originally designed to
be administered to a large, randomly sampled, stratified urban population
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Class stratification of a linguistic variable in the process of change: (r) in guard,
car, beer, beard, board, and so on. SEC (socioeconomic class) scale: 0-1, lower
class; 2-4, working class; 5-6, 7-8, lower middle class; 9, upper middle class. A,
casual speech; B, careful speech; C, reading style; D, word lists; D', minimal pairs.
(From Labov 1972, 114.)

of the sort studied by sociologists. Indeed, Labov’s innovative interview
method was first undertaken as part of a sociological survey of New York
City. Soon thereafter, in the 1960s and 1970s, large-scale, quantitative
studies began in other urban areas. Such studies aimed to model different
strata of speech communities by including large numbers of speakers,
varying with respect to age, ethnicity, socioeconomic status, and gender.
Modern sociolinguistics is firmly grounded in the belief that language
change is propelled by social variation, where innovative speakers push
the envelope of preexisting changes, simultaneously abstracting from and
constrained by structural linguistic factors. Linguistic facts that appear
synchronically categorical—the lack of grammatical gender agreement in
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English, for instance—appear from a diachronic perspective as the end-
point of a change that has been carried through to completion. Much of
the motivation for presenting data on age-graded, style-based, or gen-
dered stratification is to support claims of changes in progress. Indeed,
the old notion of “free variation” has been entirely replaced in socio-
linguistics by the notion of a change in progress, where the variable in
question is assumed to be part of a system in flux, and the task of the
sociolinguist is to identify, from a naturalistic sample, which is the con-
servative usage, which is (are) the innovative usage(s), who the innovators
are, and what structural constraints they face.

To date, hundreds of urban studies in the United States and around the
world have applied some version of the sociolinguistic interview method-
ology (though it is not without its problems—see Wolfson 1976; Briggs
1986), eliciting informal speech by asking interviewees what their child-
hood games were like, whether they have ever come close to death, and
what kinds of changes they have experienced in their lifetimes (for a de-
tailed explanation of the design of a sociolinguistic interview, see Feagin
2001). This method has proved remarkably productive and has served
in creating finely stratified models of the speech of urban populations.
This particular area of inquiry has come to be called urban dialectology,
and here we cite but a few recent examples: Silva-Corvalan 1989 for
Santiago, Chile; Thibault and Daveluy 1989, Thibault and Sankoff 1993
for Montreal, Canada; Tagliamonte 1999 for York, U.K.; Kontra and
Varadi 1997 for Budapest, Hungary; Lennig 1978 for Paris, France;
Trudgill 1974, 1988 for Norwich, U.K.; Horvath 1985 for Sydney, Aus-
tralia; Rickford 1986 for Guyana; Haeri 1998 for Cairo, Egypt; and
Labov, Ash, and Boberg, in press, for 145 cities in the United States
alone, where sociolinguistic interview methodology and minimal pair
elicitation have been combined to produce The Atlas of North American
English.

4.2.3 Beginning with Frequency

Some of the first studies of language variation were done on socio-
linguistic interview corpora, using frequency-based information to locate
patterning in the production of linguistic variables. For instance, Wolf-
ram (1974, 202) investigated linguistic contact among African-American
and Puerto Rican speakers in New York City by examining their rates of
monophthongization of /ay/. Monophthongization of /ay/ is understood
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Table 4.1

Percentages of monophthongized /ay/ tokens in the speech of African-American
speakers (AA), Puerto Rican speakers with extensive African-American contacts
(PR/AA), and Puerto Rican speakers with limited African-American contacts
(PR). (Adapted from Wolfram 1974.)

AA PR/AA PR
No./Total 190/247 104/148 261/657
% monophthongized 76.9 70.3 39.7

to be an African-American English feature typically not present in
Euro-American dialects in the northern United States such as that of
New York City. Wolfram hypothesized that linguistic influence from
African-Americans was the source of greater frequencies of mono-
phthongization among Puerto Rican speakers with extensive contacts in
the African-American community, as compared to those with limited
contacts (see table 4.1). Although this brief example does not fully
portray the complexity of Wolfram’s findings, we will borrow it to help
illustrate two extended points, one sociolinguistic-methodological and
one mathematical.

First, in appealing to social explanations for the patterning of linguistic
data, and to ensure their validity and replicability, students of variation
begin by thoroughly investigating the social categories extant in a given
community. Often this takes the form of prolonged ethnographic, partic-
ipant observation fieldwork within the community in question. This par-
ticular feature of investigative inquiry minimizes the observer’s paradox
and creates a number of close connections between sociolinguistics and
qualitative social sciences such as anthropology. In this case, Wolfram
based his categorization on participant observation in addition to a fol-
low-up interview designed to probe aspects of social contact between the
African-American and Puerto Rican communities. Note that his cate-
gories go beyond census-based ‘“‘ethnic” categories, instead reflecting
associative groups in the community.

Second, the reasons behind quantitative variationists’ shift in the
direction of probabilistic approaches are also apparent in this example.
Looking at the distribution of the variants in table 4.1 is not enough, for
instance, to determine the comparability of the distribution of linguistic
contextual factors in the interviews of different associative groups, or
whether the contributions by subvariants within the variables are compa-
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rable (Wolfram 1991, 25). Consider as examples of possible disparities
two imaginary conditions: (1) that the distribution in the above case
could be the result of a particularly frequent discourse marker that carries
the monophthongized realization of the variable in question (such as /ike
[la:k]); and (2) that such a marker is unevenly distributed in the speech
community, with one of the groups using it much more frequently than
the others. In such a case, we would have an irrecoverable distributional
anomaly in the data, and the comparison of marginals (raw percentages)
would be misleading. Providing frequency counts for each particular
phonological context runs into a similar problem, since there are different
numbers of total tokens in each group, and contexts before /k/ would be
overrepresented in one group versus the other, causing a similar skew in
those data.

And yet the following questions remain: Is the skew resulting from
unevenly distributed linguistic contexts an artifact of the data collection
method? Why do sociolinguistic data require collection methods different
from those used in collecting other linguistic data? Couldn’t all the
distributional anomalies be easily avoided if the researcher controlled
contexts and used laboratory elicitation? Part of the challenge of socio-
linguistics is to take up the Malinowskian question introduced at the
beginning of this chapter: shall we study language as a static entity, as it
may occur word by word in isolation, or shall we study it as it unfolds in
vivo, minimizing the effects of the laboratory and of the interviewer as
much as possible?

The construction of a sample of naturally occurring speech is a differ-
ent enterprise from the construction of a random sample in a demo-
graphic study, or of an experimental paradigm that can control exact
numbers of presentations of stimuli, repetitions, ordering of contexts, and
so on. Sociolinguistic data differ from census or experimental psychology
data in that it is usually impossible to predict how often the relevant
phenomenon will occur in the flow of naturally occurring conversation.
Contributions to numerical skew and unreliability of pure proportional
information and frequency counts may include the following:

1. Unevenly populated speaker categories. These may emerge because
of distributional facts about the subject population, including rates of
response in a door-to-door interview situation, or nature and number of
participants in a naturalistic speech activity. Investigating a talk show
situation such as The Oprah Winfrey Show, with a female talk show host
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and a preponderance of female guests, easily illustrates such difficulties.
These demographic difficulties as well as the time-intensiveness of tran-
scription lead researchers to rely on a small sample size for speakers and
to concentrate on collecting relatively long speech samples from each
speaker, the standard length of a sociolinguistic interview being at least
an hour.

2. Widely disparate frequency of forms. Certain variants of the variable
in question may be possible but rare in naturalistic discourse. For exam-
ple, Matsuda’s (1993) study of analogical leveling found that some of
the target variants of the potential forms of vowel-stem verbs seldom
occurred in Tokyo Japanese discourse, with a frequency of four or five
tokens per 90-minute interview. By its very design, the sociolinguistic inter-
view is structured but not controlled, and additional methods may have
to be devised (Matsuda’s solution was to deploy ingeniously worded ques-
tions designed to elicit the elusive constructions (1993, 7)).

3. High proportion of empty cells. This is an extension of point 2, but
often a mathematically fatal condition for certain kinds of statistical
models (i.e., analysis of variance, chi-square) that demand controlled
data. For example, phrases that appear to be possible in the combina-
torics of generative syntax may be pragmatically restricted or may simply
be unattested in the data set.

These factors contribute to the poor fit of sociolinguistic data to summary
statistics such as percentages, and to analyses such as sum-of-squares
approximations, setting the stage for multivariate probabilistic methods.

4.3 Incorporating Probability into Sociolinguistics

4.3.1 What Is/Was a Variable Rule?

Shortly following his first sociolinguistic studies of New York City,
Labov (1969) proposed the variable rule. Working within the rule-based
framework used in Chomsky and Halle’s (1968) The Sound Pattern of
English, Labov introduced the variable rule by distinguishing it from the
categorical rule and

associat[ing] with each variable rule a specific quantity ¢ which denotes the pro-
portion of cases in which the rule applies as part of the structure of the rule itself.
This proportion is the ratio of cases in which the rule actually does apply to the
total population of utterances in which the rule can possibly apply, as defined by
the specified environment. The quantity ¢ [in a variable rule] thus ranges between
0 and 1; for all categorical rules ... it follows that ¢ = 1. (1969, 738)
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This quantitative extension of the categorical rule framework was fol-
lowed by a mathematical model developed by Cedergren and Sankoff
(1974) and Sankoff and Labov (1979).

A new family of notational conventions accompanied the positing of
this new theoretical possibility. One of the best-studied variables in socio-
linguistics is word-final -#/-d deletion (e.g., [wes| for west), a common
process that displays morphophonological, class-stratified variability in
all English dialects. Variable rules soon ceased to be written with specific
frequencies, because depending on a speaker’s level of formality or social
class the researcher would get differing frequency information, though the
ordering and strength of constraints was similar for speakers in the same
speech community (Fasold 1991). Thus, the constraints were assigned
Greek alphabet letters in order of strength (x being the strongest). The
following variable rule describes -z/-d deletion in Wolfram’s data (Fasold
1991, 4; based on Wolfram 1974):

(1) [d] = <G> /[ —pstress]) {—p#) _ ## {—aV)

This rule states that word-final [d] optionally deletes when it is (1) in
an unstressed syllable, (2) not a suffix, or (3) not followed by a vowel.
Deletion is most likely when condition (3), the strongest constraint, is
met.

Ordering the constraints is helpful, but it cannot fully describe which
choice in the set will be used by a speaker as a member of a particular
group. A probabilistic model can be derived to evaluate the contributing
influences of each variable constraint. The VARBRUL family of statisti-
cal programs was originally developed by Rousseau and Sankoff (1978a)
specifically to deal with the quantitative modeling of sociolinguistic data
displaying the complexities described above. It is important to keep in
mind the distinction between the variable rule theoretical framework for
understanding sociolinguistic variation and the VARBRUL family of
statistical programs, which is still used despite relative agnosticism by
practitioners about what it actually models (Fasold 1991).

4.3.2 A Variable Rule Is Not a Generative Rule

The theoretical proposal of variable rules was immediately viewed with
skepticism by generative grammarians and castigated in a series of arti-
cles, notable among which is Kay and McDaniel 1979. Here we examine
the nature of this debate and its implications for underlying cognitive
structures.
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Although Labov, Cedergren, and Sankoff did not see the introduction
of variable rules as a major departure from the concept of rules in lin-
guistic theory, Kay and McDaniel argued that the variable rule was in
fact such a radical departure that it leads to a conceptual muddle in so
far as its proponents think they are working within the generative frame-
work™ (1979, 152). To illustrate, Kay and McDaniel borrowed Chom-
sky’s hypothetical context-sensitive rules for a simple natural language.
Here rule (2b) is optional:

(2) a. S—ab
b. ab — aSh

These rules generate the set of all strings in a language where n instances
of a are followed by n instances of b, as in {ab, aabb, aaabbb, . ..}. Within
this framework, there are different kinds of rules: obligatory rules like
(2a), and optional rules like (2b) that specify more than one possibility in
the derivation and allow for the generation of infinite sets of sentences
with fixed rules. In terms of the hypothetical language above, a third
optional context-sensitive rule might be posited, yielding strings such as
{acbb, aacbbb, . . .}

Ba—c/___b

This rule is already extremely close to being a variable rule in the sense
introduced by Labov (1969). The only difference is that in addition to
having contextual information, a variable rule has frequency information,
and where (3) can be stated as “Realize a as ¢ in the context before b
sometimes,” a variable rule might be stated as “Realize ¢ as ¢ in the
context before b 69% of the time, when conditioned by the following
variables ...” Kay and McDaniel argued that the leap from “sometimes”
to a specific frequency is unwarranted, since ““[the frequency with which
a sentence is produced as an utterance (token) is completely irrelevant.
Hence a ‘rule’ which is concerned with predicting token frequencies is not
a rule of (generative) grammar” (1979, 153). Kay and McDaniel noted
with alarm the break and incompatibility between the categorical nature
of rules in closed, discrete, deductive-inferential systems and the gradient
quality of the new variable rules, based on open-ended, continuous, and
inductive-inferential systems (Romaine 1985; Givon 1979). But what are the
different cognitive implications in these two representational statements?

Sankoff argued that “the formal models of grammatical theory have
discrete structures of an algebraic, algorithmic and/or logical nature”
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(1985, 75), allowing speakers to make a choice between two or more
equivalencies (e.g., allophones) that might carry the same denotation. He
continued, “By allowing a degree of randomness into the choice between
such alternates, the grammatical formalisms are converted into proba-
bilistic models of linguistic performance.” Here, Romaine argued, is pre-
cisely where the chasm lies: generative grammars “do not generate true
sentences or actual utterances, which are then checked against some cor-
pus; they generate correct sentences. ... In the most general terms, this
type of grammar is a set of devices which check derivations for well-
formedness™ (1985, 59). Much like the laws of abstract algebra or sub-
atomic physics, which cannot be tested against a corpus, so the aim of
linguistic grammars is not to compare their output to naturalistic speech.
Romaine further argued that if one were to truly extend the generative
framework, a central characteristic of a sociolinguistic grammar would
have to be sociolinguistic well-formedness. This sensitivity to social con-
text is already about utterances in the world, and by its very violation of
the principles of abstract derivation described above, it fatally fails to
conform to the notion of what is meant as the object of description of a
generative grammar.

Sankoff did not see variable rules as claiming a particular type of
ontological status for the surface output they describe (Sankoff 1988), and
yet Labov stated, “We can say that the kinds of solutions offered to
problems such as consonant cluster simplification, copula deletion, and
negative concord represent abstract relations of linguistic elements that
are deeply embedded in the data. It is reasonable to suppose that they are
more than the constructions of the analyst, they are the properties of
language itself” (1972, 259). This does not necessarily imply that Labov
believed in exact isomorphism between models and the phenomena
described by the models, as Romaine suggested (1985, 65), but it does
point to the possibility of understanding variable rules in two different
ways: as a building block in a progressively more exact description of
how humans cognitively organize language (Labov), or simply as a sta-
tistical “display tool” (Fasold 1991), which sociolinguists may use to dis-
cern the various influences in their data.

While during the 1970s much of the debate over variable rules revolved
around challenges from generative theoreticians and increasing refine-
ments in the mathematical model, urban dialectology scholarship from
the 1980s onward split in two directions: one that adopted variable rules
as a modus operandi and applied them in different sociolinguistic contexts
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and to larger linguistic domains such as syntax (Weiner and Labov 1983;
Rickford et al. 1995) and discourse (Vincent 1991); and one that chal-
lenged the use of variable rules altogether because of the perceived lack
of a coherent stance on the nature of representation (Gazdar 1976;
Sterelny 1983), or over the issue of whether percentages can be part
of a speaker’s knowledge of the language (Bickerton 1971; Butters 1971,
1972, later reversed in Butters 1990). Other challenges have arisen with
the charge that because of their reliance on aggregate data, variable
rules obscure information about individual performance (Itkonen 1983;
Bickerton 1971; for a refutation see Guy 1980). Especially as generative
linguists have moved away from rule-based frameworks and toward
constraint-based frameworks like Optimality Theory and the Minimalist
Program, most sociolinguists have been less inclined to make statements
about the psychological reality of variable rules (Fasold 1991).

Fasold (1991, 10) observes that variable rules are designed to make ob-
jectivist predictions about the frequencies with which certain rules would
apply under certain contextual conditions. However, we must also con-
sider possible subjectivist probabilistic interpretations—choice models—
of variable rules such as that espoused by van Hout (1984).

4.3.3 The VARBRUL Program

As a family of computer programs developed specifically to deal with the
data of sociolinguistic variation, the VARBRUL programs are similar to
logistic regression models. Practitioners working within the VARBRUL
framework use the criterion of maximum likelihood estimation for deter-
mining how well a model with a given set of factors fits the data. The full
details of the mathematical development of VARBRUL and its relation-
ship to the variable rule framework appear in Cedergren and Sankoff
1974; Rousseau and Sankoff 1978a,b; Sankoff 1985, 1988; Sankoff and
Labov 1979 (a reply to Kay and McDaniel 1979); and Rousseau 1989.
Detailed instructions for employing the software are available in Young
and Bayley 1996.

Binary logistic regression is also available in most modern statistics
packages. It either goes by a name such as “logistic regression” (e.g.,
LOGISTIC in SAS, or Binary Logistic in SPSS) or can be implemented
within a generalized linear model (e.g., GENMOD in SAS, or glm in
S-Plus), by selecting a link function of “logit” and/or distribution of
“binomial.” One difference between VARBRUL and commercially
available alternatives is the form of reporting of the coefficients, or
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“weights,” assigned to the selected independent variables. VARBRUL
reports weights as probabilities, whereas other programs report them in
logit form (i.e., as natural log of an odds). VARBRUL probabilities
range between 0 and 1, with values below .5 indicating a disfavoring
effect and values above .5 indicating a favoring effect. Corresponding
logit values range between negative infinity and positive infinity, and
when p is .5, the logit is 0. While no upper or lower bound exists for the
logit, it is undefined when p equals exactly 1 or 0 (see discussion in Knoke
and Bohrnstedt 1994, 334). Probability weights can be transformed into
logit values by taking the log odds; that is, logit = log,.(p'/(1 — p')). For
further discussion of the logit function, see Manning, this volume, and
Zuraw, this volume.

The formulas for the logistic or generalized linear model of
VARBRUL in use today are as follows. Formula (1) is the generalized
linear model:

logL =W+ Wi +wr+ -+ w,, (1)
l-p

where wy is an input weight and w; ...w, are contextual factor weights.
Log(p/(1 — p)) is the logit function, while log stands for the natural log-
arithm (with base e).

For each n, w, is equivalent to log(p,/(1 — p,)). Thus, (1) is equivalent
to

logL = log P +log P + log LENE, I
l—p 1-po 1-p 1 —p

Dn
+ log(1 Pn)7 (2)

where py is an input probability and p; ... p, are contextual probabilities.
And since log xy = log x + log y, (2) is also equivalent to (3), one of
the most currently used multiplicative equivalents of (1):

V4 Po 14! D2 Pn
log| —— ) =1o * * Ko x . 3
g<1—17> g<1—Po l—p1 1—p 1—Pn) ()

VARBRUL estimates the contextual factor probabilities by combin-
ing the input probability (po, the likelihood that this variable “rule”
may apply in the overall data set, regardless of any contextual in-
fluences) with the specific factor weights for all the factors included in the
model.
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Using a technique based on the dynamic clustering of Diday and col-
leagues (Sankoff 1985; Bochi et al. 1980), Rousseau (1978, 1989) further
developed the log likelihood test, a procedure that tests whether a con-
straint has an effect that is significantly different from another in its con-
straint family. This test partitions the data into subsets and compares the
difference between the log likelihoods of the subsets, comparing them to
an analysis of the data without any partitions. From this test, it is possi-
ble to arrive at the optimal likelihood analysis as well as the optimal
number of factors within each factor group.

4.4 Stylin’ Oprah: A Case Study Exercise in Probabilistic Sociolinguistics

This section will illustrate the use of the VARBRUL program with an
extended example drawn from our work on the speech of the Ameri-
can daytime TV talk show host Oprah Winfrey. We will begin with a
description of the larger project and then discuss the application of the
VARBRUL program to our data.

4.4.1 Data and Analysis

Our work attempts to describe variation in the speech of Oprah Winfrey.
Style shifting (intraspeaker variation) in Winfrey’s speech has been
observed by other analysts and has been characterized as a device to
appeal to a cross-section of viewers; most analyses in the literature have
centered on topic and lexical choice (Lippi-Green 1997; Peck 1994).

Winfrey herself is originally from Kosciusko, Mississippi. She spent
all of her language acquisition years in the U.S. South, attending high
school and college (and beginning her broadcasting career at the age of
19) in Nashville, Tennessee. She later moved to Baltimore and then to
Chicago where she currently hosts her show. We may then expect that
in her speech she would draw from two overlapping repertoires: re-
gional African-American English phonological features of the U.S. South
and the supraregional speech variety that is normative in commercial
broadcasting.

We suspected context-dependent style shifting at the sociophonetic
level in Winfrey’s speech and have thus far analyzed some early results on
monophthongization of /ay/ (Hay, Jannedy, and Mendoza-Denton 1999;
Hay, Mendoza-Denton, and Jannedy 2000). We call the phenomenon
monophthongization simply for the sake of convenience. It is not our
intent here to investigate which variant is underlying, the monophthongal
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or the diphthongal one, but merely to posit that Winfrey’s speech does
vary, and that it does so in a patterned way. We do not assume an
abstract representation for the phoneme /ay/; rather, we assume a distri-
bution that encompasses the range from fully monophthongized to fully
diphthongized forms.

Style shifting has been shown to be sensitive to many elements of the
speech situation, including addressees, topics, referees, and even over-
hearers (Mendoza-Denton 1999). Rickford and McNair-Knox (1994)
found that syntactic and phonological features of African-American Ver-
nacular English covaried in the speech of an African-American teenage
girl (Foxy) along two axes: Foxy’s speech changed depending on whether
her interlocutor was African-American or European-American, and
depending on whether the topic was school-related or non-school-related
(friendships and recreation). A similar result suggesting a strong unity of
“styles” correlating with topics was found by the California Style Col-
lective (1993), who looked at sociophonetic, prosodic, and discourse-
marking features and their co-occurrence patterns in the speech of a
Euro-American California teenager, nicknamed Trendy. Trendy’s index
of innovative features, like Foxy’s, correlated with school topics, and
even with subtopics, such as descriptions of individual groups of people
within the social landscape of her school.

In our study, we have isolated samples of The Oprah Winfrey Show
where Winfrey is talking into the camera or to a television studio audi-
ence, without a specific interlocutor. The lack of a specific addressee is
crucial: this is the closest we can come in this naturally occurring situa-
tion to controlling for the effects of specific interlocutors. Concentrating
on the absent persons to whom Winfrey refers in the various segments
(who happen to be both topics and referees in this case) allows us to code
the segments “about” a referee under a single code and to include the
characteristics of these referees as our independent variables.

Most of the segments we coded were short passages describing a par-
ticular guest or brief announcements of upcoming shows. For instance,
the following transcribed segment, all coded as keyed to the referee “Tina
Turner,” includes five examples of /ay/ (my, wildest, Friday, night, trying):

But let me tell you about tomorrow’s show. Tina Turner, we’re following Tina
around the country, Tina Turner made one of my wildest dreams come true, and
you’re gonna get to see it tomorrow, that’s Friday. Actually last night, we were
onstage dancing with Tina Turner. There’s a brief look at our rehearsal: that’s me,
trying to keep in step with Miss Tina, you’ll see that on tomorrow’s show, it’s
great fun. (The Oprah Winfrey Show, May 2, 1997)
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It is important here to note that our codings for individual referees are
not strictly codings of referents but codings of global referee-as-topic.
Thus, in this instance, the coding of the vowel in the first person pronoun
my is keyed to the referee “Tina Turner,” on the basis of prior findings
about the importance of topics in the organization of variation (Rickford
and McNair-Knox 1994).

A probabilistic model of sociophonetic-level behavior seeks to under-
stand each instance of dependent variable /ay/ as a decision point for
the speaker. Following the analogy of Preston (1991), the speaker must
decide how to flip the variable coin: whether to pronounce the phono-
logical diphthong /ay/ with a diphthongal phonetic realization [ay], a
monophthongal one [a:], or something in between. For the purposes of
reporting these results, we will look at the monophthongal realization as
the surface variant we are trying to model. We begin with an input weight
of .32 for the data set from this speaker (the likelihood that the mon-
ophthongal variant will occur across all contexts in her speech), since the
monophthongal variant occurs about 32% of the time. Various indepen-
dent variables such as situational characteristics, variables in the linguistic
context, or characteristics of the referee will weight each particular “coin
toss” in one direction or another. We attempt to account for factors
that may modify this input weight and affect monophthongal realization
either by promoting it or inhibiting it. In investigating whether Winfrey
will choose to monophthongize /ay/ (if indeed this process can be char-
acterized as residing solely in the speaker’s choice space), the question we
mean to ask through the use of probabilistic methodology is: What possi-
ble social or linguistic factors, or their combination, influence this choice?
Possible factors might be sociodemographic characteristics of the referee
(in this case the African-American singer Tina Turner), the phonological
and prosodic environments of the segment, or the frequency of the
carrier lexical item. To test these questions, we coded the data with factors
that include both the linguistic or “internal” and referee-sociological or
“external” factors.

We coded 229 words containing /ay/ taken from discontinuous selec-
tions of approximately six hours of The Oprah Winfrey Show, from seg-
ments that aired in the 199697 season. We examined tokens by means of
both auditory and acoustic criteria. Two phonetically trained listeners
performed an auditory analysis of the data: a token was coded as mon-
ophthongized if and only if the listeners agreed on the classification. To
provide acoustic verification of the auditory analysis, the vowel quality
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was coded on the basis of spectrographic displays: each token in the
data set was labeled either as a monophthong or as a diphthong from
wide-band spectrograms. Although monophthongization of /ay/ is a
continuous phonetic phenomenon, for the purpose of data entry into the
VARBRUL program it must be treated as discrete: preferably as a binary
variable, ternary variables being possible but necessitating collapse into
the most predictive binary set. This limitation is one of the disadvantages
of using VARBRUL analysis when treating continuous variables. Its
implications are considerable and will be discussed at length in the
next sections, where we compare VARBRUL analysis with other possible
analyses.

We were able to distinguish three auditory possibilities for the realiza-
tion of /ay/: fully diphthongized, fully monophthongized, and somewhere
in between. Statistical analyses were carried out for two possible group-
ings of the tokens in the data set: one that considered only the fully
monophthongal tokens as monophthongs, and one that considered both
the slightly monophthongal and the fully monophthongal tokens in one
category. According to these analyses, the most predictive and consistent
results emerged with the latter grouping. Of the 229 tokens of /ay/ in our
sample, 32% (74/229) were monophthongized according to the more
inclusive definition, and 68% (155/229) were diphthongs. Since the diph-
thongal realization of /ay/ is normative in the standard language of the
media, it is noteworthy that one-third of the tokens were monophthongal.

All the factor groups initially tested in this analysis are listed in table
4.2; statistically significant results, with raw frequencies and probability
weights, are reported in table 4.3.

4.4.2 Explanation of Factor Groups and Results

The data were analyzed using Goldvarb Version 2.0 (Rand and Sankoff
1990), a variable rule program for the Macintosh computer. Both the
application and its documentation are available online at (http://www.
CRM.UMontreal.CA/~sankoff/GoldVarb_Eng.html}.

Widely accepted by sociolinguists, the VARBRUL family of programs
of which Goldvarb is a member utilizes the maximum likelihood estimate
(Sankoft 1988) discussed above. Goldvarb computes probability weights
that are expressed as likelihoods, with a probability weight of .5 neither
favoring nor disfavoring application of the process in question. Probabil-
ity weights between .5 and 1 favor the process more strongly the closer
they are to the asymptotic 1, while probability weights between .5 and 0



Table 4.2

Variables, factor groups, and factors tested in study of monophthongization in the
speech of Oprah Winfrey

Variable status

Factor groups

Factors

Dependent
variable

Independent
variables
(linguistic/
internal)

Independent
variables
(social/external)

Variable
interactions
(social/linguistic)

monophthongal vs.

diphthongal /ay/

preceding phonetic
context

following phonetic
context

word class

frequency in corpus

log-converted
CELEX frequency

referee gender

referee ethnicity

individual referee

ethnicity and
frequency

diphthongized
slight monophthongization
full monophthongization

voiced obstruents

voiceless obstruents

nasals

liquids

vowels/glides

voiced obstruents

voiceless obstruents

nasals

liquids

vowels/glides

open

closed

infrequent = occurring < 5 times in
corpus

frequent = occurring > 5 times in
corpus

unattested < log 2

between log 2 and log 4

between log 4 and log 6

between log 6 and log 8

between log 8 and log 10
between log 10 and log 12

<log 12

male

female

indeterminate or inanimate
African-American

zero referee
non-African-American

18 individual referees (see appendix)
were given separate codes; “other”
category was also used

African-American infrequent

(< log 10)

African-American frequent
non-African-American infrequent
non-African-American frequent
zero infrequent

zero frequent
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disfavor the application of the process more strongly the closer they are
to asymptotic 0.

VARBRUL analysis makes the mathematical assumption of an ideal
data set with crosscutting factor effects but without significant inter-
actions, where all the factors are independent of one another (Sankoff
1988, 4-19). However, certain factors in this data set are extremely likely
to display collinearity. In practice, then, many factors (like word class
and raw frequency), being highly correlated, could not appropriately be
run together. As a result, only factors that could be assumed to be fairly
independent of each other were run together. It is widely believed that
social factors may show a high degree of correlation (Bayley 2001), but
researchers think that it is relatively rare to find correlations across inter-
nal and external variables. Labov (2001, 84) states:

A full assessment of the effects of intersecting social parameters, and a complete
account of sociolinguistic structure, is only possible with multivariate analysis. A
multivariate approach was first introduced into sociolinguistic studies in the form
of the variable rule program (Rand and Sankoff 1990). It was motivated not by
the need to analyze external, social factors, but rather to deal with the language-
internal configuration of internal, linguistic constraints on variation (Cedergren
and Sankoff 1974). The basic fact about internal factors that the variable rule
program continually displays is that they operate independently of each other
(Sankoff and Labov 1979). However it was realized from the outset that social
factors are typically not independent. Though it is convenient and useful to in-
corporate external and internal factors in the same analysis, a considerable
amount of information can be lost in the typical VARBRUL analysis of speech
communities.

Including both internal and external factors is crucial to our data, how-
ever, since we found an interaction between lexical frequency calculated
on the CELEX database (Baayen et al. 1995), presumably a purely lin-
guistic variable, and ethnicity of referee, a social variable. The results
presented in table 4.3 are explained by factor group below.

4.4.2.1 Preceding Phonetic Context and Following Phonetic Context
We coded the immediately surrounding phonetic context of each /ay/
token within and across syllables and words, utilizing categories that
have been shown in the literature to affect monophthongization in both
African-American and Euro-American U.S. South populations.

Coding monophthongization according to a sonority hierarchy (Selkirk
1984) follows widely accepted methodology outlined by Hazen (2001).
We included two other categories as well: vowel/glide and pause. Sev-
eral studies (Thomas 1995; Schilling-Estes 1996; Wolfram, Hazen, and
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Voiceless Voiced Nasal Vowel/Glide Liquid
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Figure 4.2

VARBRUL weights for following phonetic category as a predictor of mono-
phthongization. Values above 0.5 favor monophthongization, values below 0.5
disfavor.

Schilling-Estes 1999) have shown that the expected descending order
of following phonetic environments favoring monophthongization for
African-Americans is liquids > nasals > voiced obstruents > voiceless
obstruents. Our data for following phonetic context fit the expected pat-
tern, with probability weights as follows (see also figure 4.2): liquids
.804 > vowel/glide .799 > nasal .436 > voiced obstruent .384 > voiceless
obstruent .320. In this data set, following voiceless and voiced obstruent
contexts heavily disfavored the expression of monophthongal /ay/, while
a following nasal neither disfavored nor favored the process. Only liquid
and vowel/glide following contexts strongly promoted the expression of
monophthongized variants. Because Euro-American U.S. Southerners
exhibit a different pattern, with high rates of monophthongization before
voiced obstruents, we believe that Winfrey’s use of /ay/ is indexical of
variation in the African-American community.

Preceding phonetic context was not a significant predictor of variation
in this data set and was discarded in the final analysis.

4.4.2.2 Word Class As with other reductive processes (Wright 1997),
monophthongization may apply at different rates among words depend-
ing on their frequency. In an earlier analysis, we tested lexical frequency
within the Oprah Winfrey corpus and found that it was highly correlated
with monophthongization (Hay, Jannedy, and Mendoza-Denton 1999).
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Frequency can be a difficult metric to use because it may be partly con-
founding a linguistic factor: whether a word belongs to a closed class or
an open class. To test this confound, we coded open and closed classes
separately from frequency. When run by itself as the only independent
variable, word class is highly significant in predicting the patterning of
our data. Open class words disfavored the monophthongization process
with a probability weight of .397, while closed class words favored it
with a weight of .643 (log likelihood = —137.896, p < .001). Although
both word frequency and word class were significant on their own, the
most predictive model of the data was found by using the log-converted
CELEX frequency category (see section 4.4.2.4).

4.4.2.3 Raw Frequency in the Corpus One issue when trying to use
lexical frequency as a predictive factor in the study of a naturally occur-
ring sample is whether to use the word frequency of the sample itself or
some independent metric of word frequency in the language as a whole
(because the sample might not be representative of the speaker’s overall
repertoire). In our case, words that were very frequent in the sample were
words like style (from a segment of The Oprah Winfrey Show called “The
House of Style”) and wild (the descriptor of Tina Turner’s “Wildest
Dreams” tour).

As a first step toward assessing the importance of frequency, we used
the raw frequency within our corpus and divided the words into ““fre-
quent” (>5 occurrences in the sample) and “infrequent” (all other
words). This distinction also yielded significant results: infrequent words
disfavored monophthongization with a probability weight of .329, while
frequent words slightly favored it with a weight of .589 (log like-
lihood = —138.474, p < .001). Although significant on its own, raw fre-
quency in this corpus was overshadowed by the log-converted CELEX
frequency, which contributed more substantially in fitting the model to
the data.

4.4.2.4 Log-Converted CELEX Frequency Another frequency metric
that we used was frequency in the English language according to the
CELEX corpus. The CELEX database (Baayen et al. 1995) from the
Max Planck Institute for Psycholinguistics in Nijmegen incorporates
the 17.9-million token COBUILD/Birmingham corpus, and in addition
represents more than 90,000 lemmas from dictionary entries. All the
sources for CELEX are textual, about 15% coming from U.S. authors.
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Despite the differences (oral vs. textual, U.S. vs. composite) between our
raw frequency corpus and the CELEX corpus, CELEX codings were
better able to account for variation in our data. This strongly suggests
that the processes at work in the patterning of our data transcend these
particular instances of The Oprah Winfrey Show and may well be operat-
ing in other contexts as well.

The CELEX ordinal frequency ranking for each token was converted
to a log-based frequency code because there is good evidence that humans
process frequency information in a logarithmic manner. That is, a fre-
quency difference occurring among the lower frequencies carries more
weight than a frequency difference of equal magnitude occurring among
the higher frequencies. Since VARBRUL requires discrete independent
variables, in order to input the data we created a five-way log value split
that provided a near-perfect cline of influence in which the most fre-
quent words (> log 12) strongly favored monophthongization (probability
weight .734), while the least frequent words (< log 6) strongly disfavored
it (probability weight .063) (see figure 4.3). A binary (median) log value
division was also devised. Words of frequency < log10 strongly dis-
favored monophthongization (probability weight .370), while words of
frequency > log 10 favored it (probability weight .642) (see figure 4.4).
We used the binary division to code for interactions between word fre-
quency and ethnicity.

0.8
0.7 |
0.6 -
0.5 —
0.4 —
0.3 —
0.2 —
0.1 —

/1

<log 6 log 6 - log 8 - log 10 - >log 12
log 8 log 10 log 12

VARBRUL probability weight
o

Figure 4.3

VARBRUL weights for lexical frequency as a predictor of monophthongization:
results for log-converted CELEX frequency. Values above 0.5 favor mono-
phthongization, values below 0.5 disfavor.
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4.4.2.5 Individual Referee To investigate the possibility that Winfrey
was treating each referee in an idiosyncratic or individualized way, and
not according to gender or ethnicity, we also assigned segments codes
that referred to people individually. Nineteen referee codes (including
“other” for segments that were not about particular people) were used
(the full list is given in the appendix). The “other” code was used pri-
marily when Winfrey spoke straight into the camera without a specific
addressee. These segments fulfilled our requirement that the speech have
no specific interlocutor, and they included a segment called ““Gratitude
Moments,” where Winfrey spoke about her favorite things, one where she
spoke about her birthday, and one where she warned the audience about
getting scammed (robbed). One of our initial hypotheses was that the
individual codes would be important predictors of variation. However, it
was not borne out in the VARBRUL results and was eliminated. In our
later analysis using CART trees, the individual codes became an impor-
tant factor.

4.4.2.6 Referee Gender So-called external or social variables that we
coded in the corpus included the referee’s gender. By itself, again, gender
was significant, but not when included in a statistical run with any other
factor. Codings for this factor included male, female, and “other,”” used
for situations where the referent did not have a gender or where gender

0.7

0.6

0.5

0.4

0.3
0.2

0.1

VARBRUL probability weight

O T 1
<log 10 >log 10

Figure 4.4

VARBRUL weights for lexical frequency as a predictor of monophthongization:
results for log-converted CELEX frequency (cutoff at median). Values above 0.5
favor monophthongization, values below 0.5 disfavor.
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could not be determined. Oddly enough, there were no statistically sig-
nificant differences between rates of monophthongization for female and
male referees (both of these were neutral, f: 468, m: .435), while the
“other” category showed a markedly favoring effect, o: .730 (log like-
lihood = —139.252, p < .01).

4.4.2.7 Referee Ethnicity The ethnicity of the referee was the most
important factor group (first selected in the Goldvarb step-up/step-down
procedure) in modeling the monophthongization of /ay/. We coded ref-
eree ethnicity according to three categories: African-American referees
(strongly favoring monophthongization; probability weight .622); non-
African-American referees (strongly disfavoring; .336); and zero referee,
which favored monophthongization more strongly (.7) than the other
categories. These weights are shown in figure 4.5. However, it was also
clear from our analysis that ethnicity of referee also interacted strongly
with word frequency. And VARBRUL assumes that the different factors
included in a single analysis act independently of one another.

4.4.2.8 Ethnicity and Frequency One solution to the problem of
assuming factor group independence in VARBRUL is to create an inde-
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Figure 4.5
VARBRUL weights for ethnicity of referee as a predictor of monophthongiza-
tion. Values above 0.5 favor monophthongization, values below 0.5 disfavor.
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pendent factor group that combines the interacting factors into discrete
possibilities in order to isolate their effects (Bayley 2001). We did this by
creating an additional interaction factor group that combined the six
possibilities resulting from the interaction of two frequency categories
(frequent vs. infrequent words; i.e., > log 10 vs. < log10 in the binary
CELEX coding) and three ethnicity categories (African-American, non-
African-American, and zero referee). Our results were most puzzling:
they showed a significant interaction in what we had originally coded as
two separate predictive factor groups. When combined, the ethnicity of
referee/binary CELEX frequency factor group was intriguingly arranged
thus (see also figure 4.6): [no ref, infrequent .783 > African-American,
frequent .781 > no ref, infrequent .725 >] non-African-American, fre-
quent .576 > African-American, infrequent .437 > non-African-Ameri-
can, infrequent .177. The bracketing around the first three factors
indicates that according to the difference-in-log-likelihoods test (Rous-
seau 1989), these factors are not statistically significantly different from
each other and should be collapsed. They are shown separately here for
expository reasons.

0.9
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0.7

0.6
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0.4

0.3
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0 T T T T T

No ref, Af-Am, No ref, Other ref, Af-Am, Other ref,

infreq freq freq freq infreq infreq
Factors combining ethnicity and frequency codings
Figure 4.6
VARBRUL weights for the interaction between referee ethnicity and lexical fre-

quency as a predictor of monophthongization. Values above 0.5 favor mono-
phthongization, values below 0.5 disfavor.
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Initially, we found this result—that either a frequent or an infrequent
word with a zero referee was as likely to lead to monophthongization as
a frequent word with an African-American referee—difficult to explain,
especially since there is such a strong distinction in likelihood of mon-
ophthongization between African-American and non-African-American
referees. What could this mean? Colleagues have suggested to us that zero
referee might be Winfrey’s baseline style, and that this might be close to a
style used for African-American referees. And, as discussed below, much
of the zero referee section included frequent self-reference, specifically
using the words I and my. Of course, self-referring words are also fre-
quent words, so it is difficult to disentangle the two effects and precisely
identify the locus of the observed patterns. Because the two predictors are
highly correlated with one another, one cannot simply include them both
in a logistic regression, to see which one is the stronger predictor. The
technique we have used assumes strict independence among the factors.
In the next section, we explain how we set about investigating the self-
reference effect. For now, we return to the interaction between ethnicity
of referee and lexical frequency.

From the interaction of frequency and ethnicity of referee, given our
understanding of frequent words as the carriers of style (Hay, Jannedy,
and Mendoza-Denton 1999) we expected frequency to have a much big-
ger effect in speech relating to African-American referees (where frequent
words should be prone to monophthongization for both stylistic and
articulatory reasons) than in speech relating to non-African-American
referees (for whom we expect some canceling out of the articulatory
tendency to monophthongize frequent words, given that the stylistic
setting favors diphthongs). In fact, our results show the opposite: word
frequency has a much bigger effect for non-African-American referees
than for African-American referees. Upon closer examination, we be-
lieve this result does not necessarily contradict our assumptions about
frequency and style; rather, it reflects an asymptote for this type of vari-
ation. When referencing African-Americans and using frequent words,
Winfrey reaches the limit of her range of variation. VARBRUL proba-
bility weights around .78 set the upper bound of monophthongization
that can be found in Winfrey’s speech. Essentially, there is a ceiling
effect, indicating that in no speech situation will she go beyond her per-
sonal maximum of variation (even just doubling her rate for infrequent
words with African-American referees would overshoot this asymptote).
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Frequency thus has the biggest effect within the subset of the data that
is not otherwise prone to monophthongization (non-African-American
referees), while referee ethnicity has the biggest effect within the subset
that is not otherwise prone to monophthongization (the infrequent
words).

4.4.2.9 Self-Reference, Style, and the Use of Qualitative Analysis To
disentangle the effects of lexical frequency and ethnicity, we inspected the
show transcripts and found specialized discourse patterns in the use of the
highly frequent words I and my. The segments coded as ‘““zero referee”
consisted largely of Winfrey self-disclosing to her audience. The segments
“House of Style,” “My Favorite Things,” and “Oprah’s Birthday” are
frequently self-referring. This self-disclosure feature of Winfrey’s televi-
sion persona—and the genre of daytime talk shows in general—has
received a great deal of attention from scholars (Shattuc 1997; Masciar-
otte 1991). In terms of our data, a style of conversational engagement
through self-disclosure means that Winfrey talks about her own past
encounters with the people to whom she refers, sharing her personal his-
tory in great detail. Guests she knows well elicit more self-reference, so
that a short segment on Michael Jordan, with whom Winfrey has a
famously close relationship, included 8 self-referring tokens out of 17
/ay/ tokens, or 47% of the tokens for that segment. The segment “My
Favorite Things/Birthday Presents” included 23/35 or 65% self-referring
tokens. A segment about Mia Farrow, by contrast, included only 1/20 or
5% self-referring tokens.

The use of highly frequent words as stylistic devices in the genre of talk
show hosting may boost overall perceptual saliency of the variable and
make it a good candidate for the display of speaker style. Other examples
of highly frequent words used as iconic displays of speaker and group
style can be found in Mendoza-Denton 1997 and California Style Col-
lective 1993.

When included in a VARBRUL run with ethnicity and with following
phonetic context only, self-referring words joined these factors in a set
that best predicted variation in the data. Self-referring words correlated
positively with monophthongization, exhibiting VARBRUL weights very
similar to those of the zero referee category; non-self-referring words had
probability weight .398, while self-referring words had weight .680 (log
likelihood = —109.428, p < .001) (see figure 4.7).
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Figure 4.7
VARBRUL weights for self-reference as a predictor of monophthongization.
Values above 0.5 favor monophthongization, values below 0.5 disfavor.

We believe both frequency and self-reference are playing a role in the
aggregate data set. The observed frequency effects are spread throughout
the whole frequency range (see table 4.3, where frequency effects were
significant even when split into five frequency categories), and so they
cannot be attributed only to self-reference. However, it is consistent
with the observed discourse patterns to hypothesize that Winfrey’s self-
referring speech might be particularly prone to monophthongization—
although, as explained above, because of the collinearity of the factors
this is best investigated qualitatively. Precisely disentangling the relative
contribution of frequency and self-reference would require a larger data
set and remains a task for future work.

4.4.3 An Alternative to VARBRUL: Classification and Regression Trees
(CART)

In this section, we briefly explore the patterns in our data further, using a
different statistical approach.

The construction of classification trees is essentially a type of variable
selection. Such trees are a valuable tool for exploratory data analysis and
can handle missing values or empty cells with ease, tree construction
being based on the cases that do not have missing values. Classification
trees are an attractive method of data exploration because they handle
interactions between variables automatically. They also have the advan-
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tage of being completely nonparametric. No assumptions are made about
the underlying distribution of the data. These features make them less
powerful for detecting patterns in data, but fairly reliable in terms of the
patterns found.

Classification trees do assume that the effect being modeled is orga-
nized into discrete factors. An analogous class of models, regression trees,
deals with continuous data.

Foundational literature on classification and regression trees includes
Morgan and Sonquist 1963, Morgan and Messenger 1973, and Breiman
et al. 1984. A good practical guide for their implementation in S-Plus can
be found in Venables and Ripley 1994.

A classification tree begins with the data to be analyzed and then
attempts to split it into two groups (here, one that maximizes monoph-
thongization, and one that minimizes it). Ideal splits minimize varia-
tion within categories and maximize variation across categories. All
possible classifications of the independent variables are attempted. Tree
construction works one step at a time, so once the first split is achieved,
an optimal split is sought for each resultant node. The particular tech-
nique used here (that implemented in S-Plus/R) allows only binary splits.
At any given node, the maximum reduction of deviance over all possible
splits is used to identify the best split. This process continues until either
the number of cases reaching each leaf is small or the leaf is sufficiently
homogenous relative to the root node.

This process often grows a tree that overclassifies the data. That is, a
tree may fit a particular data set extremely well, but may be unlikely to
generalize if new data points are added to the analysis. A selection pro-
cess can then be used (akin to the stepwise procedure used in multiple
regression) to determine which divisions should appropriately be included
in the model and which are best discarded—a process known as tree
pruning (Breiman et al. 1984). There are a number of different methods
for choosing where to prune the tree (i.e., for deciding which nodes can
best be removed).

One method of tree pruning uses a process of cross-validation. The
data set is divided into subsets, and separate trees are grown on the basis
of each subset. The trees based on each subset of the data can then be
compared with one another. As Venables and Ripley (1994, 44) explain,
“Suppose we split the training set into 10 (roughly) equally sized parts.
We can then use 9 to grow the tree and test it on the tenth. This can be
done in 10 ways, and we can average the results.” This process returns an
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averaged deviance for trees of each possible size. In the analysis presented
below, we used this cross-validation technique—pruning the tree to the
smallest tree size with the minimum deviance. This represents a fairly
conservative approach to tree building.

When we attempted to build a tree based on the monophthongization
data, we allowed for the possible contribution of the following variables:
the individual identity, ethnicity, and gender of the referee; the class and
frequency of the word; the preceding and following phonetic environ-
ment. Of these, only two remained in the pruned tree: the identity of the
individual and the following phonetic environment. Because each branch
of the tree deals with successively smaller sets of data, a fairly large data
set is required to establish the coexisting significance of a sizable number
of contributing factors. The power of this technique is therefore slightly
limited when dealing with small data sets—especially if these data sets
display much variability.

The pruned tree is shown in figure 4.8. The first and most important
split is between segments where Winfrey is talking about Tina Turner,
Will Smith, Halle Berry, or no one in particular (group (c)), and all other
segments. In the former four instances, she was much more likely to
monophthongize /ay/ (60% of tokens) than in all others (17%).

These two nodes split further into two subcases. The left branch splits
into two more sets of individuals: those who strongly discourage mon-
ophthongization (group (a): 2%) and those who are more likely to lead
to monophthongization (group (b): 23%). Finally, among group (c) the
classification algorithm detects a significant effect of the following envi-
ronment: monophthongization is more likely preceding liquids and nasals
than other phonological segments.

Other variables were included in the full tree (lexical frequency is the
next factor to appear), but did not survive the pruning process. Because a
classification tree looks for patterns in progressively smaller sets of data,
we would likely need a much bigger data set than we currently have in
order for it to reveal the full range of complexity in our data. Those fac-
tors that do survive the pruning process, however, are ones in which we
can have extreme confidence.

The classification algorithm divides individuals into three groups. No
African-American referee appears in group (a), 3 African-American ref-
erees appear in group (b) (3/8, 38%), and the individuals identified in
group (c) are all African-American and are grouped together with the
zero referee cases.
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monophthongs
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monophthongs

Halle Berry
Tina Turner
Will Smith

Zero referee

©
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monophthongs

23%
monophthongs
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monophthongs

36%
monophthongs

Cindy Crawford
Celine Dion George Clooney
Daisy Fuentes Jackie Onassis
Delma Heyn Bill Cosby
Roseanne Barr Mia Farrow Before Before
Brooke Shields Steven Spielberg obstruents liquids
Lauren Hutton Michael Jordan vowels/glides nasals
Kathy Lee Giftord African-American guest
(@ (b)

Figure 4.8
CART classification tree for monophthongization

This “individual identity” variable therefore echoes the effects of eth-
nicity, while imbuing it with an added level of subtlety. It could perhaps
be seen as organizing people into groups according to the nature of
Winfrey’s involvement with them—ethnicity being one component of this
(though probably not a binary component), and other dimensions of sol-
idarity perhaps also playing a role. Because the classification tree is an
excellent tool for revealing significant groupings in data, it can be used
to reveal natural groupings of individuals, which (as inspection of the
groups reveals) could not be replicated by any combination of standard
social variables.

4.4.4 The Oprah Winfrey Data: Summary

4.4.4.1 Analysis Techniques Using a relatively small data set, we have
shown how inferences can be derived from it in different ways. What we
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hope to have demonstrated with this exercise is that different types of
analysis can assist in the interpretation of results. In our case, we used
two types of quantitative analysis (VARBRUL and CART) as well as
qualitative analysis (looking at patterns of self-reference). Two basic
results emerge unambiguously from our study: Winfrey’s style shifting is
partially conditioned by the ethnicity of the person she is referring to, and
partially by the following phonetic environment.

Subtler nuances of the data—the role of lexical frequency, the presence
of interaction effects, the emergence of natural groupings of individuals—
are highlighted differently by the different statistical techniques we used.

Each technique has drawbacks. Since classification trees are local opti-
mizers, once an initial split is made it is impossible to ask what the overall
effect of a second factor is, given the first one. And in order to examine
the effect of a large number of variables using a classification tree, a large
data set is required. VARBRUL is not well equipped to easily explore
possible interactions, nor is it equipped to deal with continuous depen-
dent or independent variables, although these limitations can be over-
come by the use of logistic regression in commercially available statistics
packages.

The VARBRUL program effectively implements a binomial stepwise
regression analysis. It models a binomial outcome, using discrete factors.
In this sense, it is an appropriate tool to use in the formulation of variable
rules as they were originally conceptualized—rules that predict which of
two discrete outcomes will occur on the basis of discrete factors, such as
the gender or ethnicity of the speaker (or in the case of our data, the ref-
eree) or the identity of the phoneme that precedes or follows. Continuous
independent factors can be built into the model, by breaking them up into
discrete groupings—a technique that imposes artificial category bound-
aries on the factor.

And yet monophthongization is not really discrete. Different degrees of
monophthongization (or diphthongization) exist, and Winfrey exploits
the full range of this continuum in her performance of style. Winfrey does
not shift between discrete styles (an “African-American referee,”” a “non-
African-American referee,” and a “self-disclosure” style); rather, she
seamlessly navigates a range of continuous stylistic dimensions, and the
degree to which she employs monophthongization signals (together with
many other variables) where she is positioned in stylistic space. Mon-
ophthongization is not discrete, ethnicity is not discrete, nor is lexical
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frequency. And yet we impose boundaries on all of these in order to
simplify our analysis and detect statistical patterns that will shed light on
language and on society.

We believe one challenge for the future of probability theory in socio-
linguistics is to move beyond the limitation of discrete categorization
and to work toward understanding how gradient, continuous linguistic
variables are conditioned by both categorical and continuous social
and linguistic factors. Such analyses have begun to appear, notably Ber-
dan’s (1996) study of second language acquisition, where he used the
logistic regression module in SPSS to model time as a continuous inde-
pendent factor. Sudbury and Hay (in press) also model continuous inde-
pendent factors (time and frequency) in their analysis of rhoticity and
/r/-sandhi.

Modeling and understanding the combination of continuous and dis-
crete factors in predicting gradient implementation of sociolinguistic
variables will be a major challenge in the future of probability theory in
sociolinguistics—one that will require an adjustment in the way data are
collected and analyzed, and in the statistical techniques used to explore
the patterns of variability within those data.

As illustrated in our Oprah Winfrey data analysis, if one of the pre-
dictor variables in the hypothesized model is continuous (such as lexical
frequency or age), VARBRUL is unable to model it as a continuous
predictor; instead, the researcher must break it up into a number of dis-
crete sets. This does not tend to be a feature of more general imple-
mentations of logistic regression, which can unproblematically model
continuous variables. Thus, as discussed by Berdan (1996) and Bayley
(2001), the VARBRUL implementation may not be the most appropriate
for data sets that involve one or more important continuous independent
variables.

And while it is possible to encode interactions in VARBRUL by cre-
ating hybrid categories (see, e.g., Sankoff and Labov 1979, 204; also the
example in section 4.4.2.8), this solution is not straightforward, and it
requires that the researcher identify the possible interaction in advance.
Other implementations of logistic regression tend to allow possible inter-
action effects to be explored in a more straightforward way. Sigley (2001)
tested for the presence of interactions in seven previously reported data
sets and found that about 26% of pairwise tests produced significant
interactions. He argues that interaction effects are widespread and are
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potentially just as important as main effects when modeling (socio)-
linguistic variation. For further discussion of problems associated with
interactions in VARBRUL, see Young and Yandell 1999 and Bayley
2001.

Another major challenge for sociolinguistics lies in finding appropri-
ately sophisticated frameworks with which to understand the patterns
that probabilistic analyses reveal—frameworks with adequate insight and
explanatory power. The patterns revealed by our Oprah Winfrey study
need explanation in many areas. Here we address just two: What are the
cognitive patterns and processes through which such patterns of intra-
speaker variation arise? And what are the social mechanisms and con-
structs that condition the observed behavior?

4.44.2 The Cognitive: What Is Variation? Our analysis of Winfrey’s
monophthongization patterns gives a good indication of their character-
istics. Her orientation toward the person she is talking about (an impor-
tant component of which is the person’s ethnicity) affects the likelihood
(and probably the degree) of monophthongization. Monophthongization
is further influenced by the phonetic environment and by the lexical fre-
quency of the word it appears in.

So what are the cognitive implications of these findings? What is
Winfrey doing when she style-shifts? Models of speech production do not
currently account for sociophonetic variation, even though this is a large
part of what people do when they produce speech. One component of
speech is clearly the continuous signaling of social identity and orienta-
tion. In order to satisfactorily begin to model this process, sociolinguists
and those who work on speech will need to combine efforts.

One promising interpretation is that producing a phoneme (or word)
involves the activation of a distribution of phonetically detailed remem-
bered examples that characterize that phoneme (or word). More proto-
typical or central exemplars will be easiest to access, because of their
central status in the distribution; and particularly frequent examples
will also be easy to access, because of their high resting activation level.
Exemplar theories of speech production and perception have been devel-
oped by, among others, Pierrehumbert (2001a, in press) for production
and Johnson (1997b,c) for perception. Exemplar models are promising
candidates for modeling sociophonetic effects because they do not treat
variation as noise; on the contrary, variation is central and is inherently
coded in lexical representations. Such models would appear to provide a
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natural explanation for the involvement of lexical frequency in style
shifting, as well as for why intraindividual style shifting echoes the inter-
individual social distribution of variables to which a speaker has been
exposed (Bell 1984).

In Pierrehumbert’s (2001a) implementation of exemplar theory, the
selection of a phonetic target is modeled as random selection from a
cloud of exemplars associated with the appropriate category. This models
many social effects well, because “although social and stylistic factors
may select for different parts of the exemplar cloud in different situations,
the aggregate behavior of the system over all situations may be modeled
as a repeated random sampling from the entire aggregate of exemplars”
(Pierrehumbert 2001a, 145). Pierrehumbert demonstrates how a model
with fully remembered exemplars can account for the fact that frequent
words lead historical leniting changes and can model the timecourse of
certain types of phonological merger.

The implementation is modified in Pierrehumbert, in press, so that
production does not involve the specific selection of an exemplar, but
rather can be heavily biased by activated exemplars. Exemplars are
weighted and can be activated to different degrees in different contexts.
Weighting can be affected by sociostylistic register and by contextual and
attentional factors.

Goldinger (2000), Kirchner (in press), and Bybee (2001) also advocate
exemplar-based models for speech production. And results reported by
Goldinger (1997), Niedzielski (1999), Strand and Johnson (1996), and
Whalen and Sheffert (1997), among others, provide strong evidence
that social and speaker-specific information is not only stored, but also
actively exploited in speech perception. Such results are highly consistent
with models that include an exemplar-based level of representation, and
they are very difficult to account for in models in which detailed exem-
plars are not stored.

Docherty and Foulkes (2000) have attempted to situate a discussion of
sociophonetic variation in an exemplar model of lexical representation.
Such a model accounts nicely for other patterns of variance such as
coarticulation, connected speech processes, background noise effects, and
intra- and interspeaker variability, and so, as Docherty and Foulkes point
out, this seems a natural place to start. One of their central questions is
“how phonology stands in the face of the variable aspects of a speaker’s
performance ...” (p. 112). It would certainly seem that modeling socio-
phonetic variation would be a crucial test of the degree to which any
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model of phonetic or phonological production and perception succeeds.
However, it is not just models of speech that could benefit from such an
understanding. Sociolinguists’ understanding of the factors that are
involved in style shifting, both linguistic and social, and the potential and
possible ways in which they interact, would be deeply enriched by a clear
understanding of the mechanisms through which this variation is repre-
sented and produced.

Resolving the nature of the cognitive status of probability distributions
found in sociolinguistic studies would certainly make researchers’ under-
standing and modeling of these phenomena more sophisticated and open
new doors for analysis and explanation. By embedding studies of lan-
guage variation in an understanding of language perception, production,
and reproduction, researchers can start to consider how the observed
probability distributions may come about, and how they might propa-
gate, spread, and be manipulated in different social contexts for different
social ends.

4.4.4.3 The Social: What Is Style? In the exemplar-theoretic view out-
lined above, social information that is interpretable by a listener is auto-
matically stored with the exemplar, made more robust with repetition,
and crucially linked to the actual instances of use of a particular variant.
The proposal that linguistic categories, targets, and patterns are gradually
built up through incremental experience with speech is entirely compati-
ble with a view of the social world that relies on gradually built up social
categories that emerge from the experiences that surround individuals as
social actors. Just as there are no preset categories in phonology, and
phonemes are abstracted from statistical patterning of the input (see
Pierrehumbert, this volume, for extensive supporting evidence), so are
social patterns abstracted and recovered from the same input.

We underscore the importance of interpretability by the listener.
Within both the linguistic and the social world, young learners or foreign
language speakers may not be equipped to fully understand the cate-
gory composition of the stimuli to which they are exposed. It is only
with repeated exposure that a child or a nonnative speaker can develop
a robust enough model to incorporate and interpret new examples.

Because the development of an exemplar-based model proceeds exam-
ple by example, it is important to look not only at overall distributions
and gross statistical generalizations, but also at the micropatterning of
individual instances. Understanding the flow of on-line discourse and its
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relationship to robustness for both linguistic and social categories is an
urgent task for sociolinguistics. Earlier, we mentioned that many of the
social categories that researchers assume as given are not discrete, but
may be treated as discrete for the purposes of statistical convenience. By
supplementing statistical methods with qualitative analysis, we have
exemplified one possible way to investigate how categories are built up in
naturalistic contexts.

4.5 Conclusion

The use of probabilistic methods has led to important breakthroughs in
sociolinguistics and has played an extremely important role in shaping the
study of language variation and change. An important challenge for the
future will be to move toward a more unified understanding of how sub-
tle, gradient patterns of variation affect and are affected by cognitive,
linguistic, and social structures, while always remembering that choices
made for the analyst’s convenience (such as treating monophthongization
or ethnicity as binomial variables) are not pure mirrors of discrete cate-
gories in the world. We believe that the strongest theory of the interaction
of language and society is a probabilistic theory, yet we encourage prob-
abilistic sociolinguistic scholars to go beyond current methods: uncollapse
what has been collapsed, and look for finer-grained social-theoretic
explanations within what is uncovered in aggregate patterning.

Appendix

This appendix lists the different referees for the segments analyzed. Individ-
uals were coded as “African-American” or “non-African-American.” The ‘“‘zero
referee” cases involve segments in which the discourse is not focused on a specific
individual.

Roseanne Barr, F actor
Halle Berry, F actor
George Clooney, M actor
Bill Cosby, M actor
Cindy Crawford, F model
Celine Dion, F musician
Mia Farrow, F actor
Daisy Fuentes, F actor
Kathy Lee Gifford, F actor
Delma Heyn, F writer
Lauren Hutton, F actor

non-African-American
African-American

non-African-American
African-American

non-African-American
non-African-American
non-African-American
non-African-American
non-African-American
non-African-American
non-African-American
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Michael Jordan, M basketball player
Jackie Onassis, F celebrity

Brooke Shields, F actor

Will Smith, M actor/musician

Steven Spielberg, M movie director
Tina Turner, F musician

F Guest who dreams of having a house
“Gratitude Moments”

“Oprah’s Birthday”

“How to Avoid Getting Scammed”

“House to Style”” (how to have more of it)

“Oprah’s Favorite Things”

Note

Mendoza-Denton, Hay, and Jannedy

African-American
non-African-American
non-African-American
African-American
non-African-American
African-American
African-American
zero referee

zero referee

zero referee

zero referee

zero referee

The authors would like to acknowledge Rens Bod, Janet Pierrehumbert, and Kie
Zuraw for extensive comments and suggestions. Malcah Yeager-Dror provided
helpful guidance and Matt Loughren helped with references. All errors and omis-

sions remain our own.



Chapter 5

Probability in Language Kie Zuraw
Change

5.1 Introduction

Why do languages change? If children are able to infer surrounding
adults’ grammatical systems from their utterances, and if adults adjust
their lexicons and perhaps grammars to achieve better communication
with their interlocutors, any linguistic innovations that might somehow
arise should be quickly stamped out. This is a combination of Weinreich,
Labov, and Herzog’s (1968) ““actuation problem” (how and why does a
particular change occur at a particular time?) and what we might call
the “‘continuation problem’: what sustains the momentum of a change,
causing an innovation to increase in frequency, to spread from word
to word, or to spread from speaker to speaker, rather than stalling or
receding?

Any answer to the continuation problem must rely on a probabilistic
model of the language faculty. If the rise in frequency of an innova-
tion results from snowballing mislearnings, we require a model of how
learners respond to their variable environment. If the rise in frequency
results from individuals’ adopting the speech patterns of some social
group, we require a probabilistic model of the speech community, in
which individuals probabilistically and incrementally update their gram-
mars and lexicons in response to interlocutors’ behavior. Moreover, when
the rise in frequency of an innovation involves variation within individ-
uals, as we can often see that it does in written records, we require a prob-
abilistic model of language representation and/or use. Otherwise, we
have no way of representing the difference between a generation whose
members use a new variant 20% of the time and a generation whose mem-
bers use a new variant 40% of the time.
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The fact that language change happens seems to demand a proba-
bilistic view of the language faculty, in phonology, morphology, syntax,
semantics, processing, acquisition, and the social use of language. The
probabilistically oriented study of language change therefore relies on
probabilistic models of all the areas of linguistics discussed in this book.

This chapter surveys the role of probability in the study of language
change. Section 5.2 describes the use of probabilistic tools in establishing
language relatedness through vocabulary comparison, an important task
when historical and textual records are lacking and inferences about lan-
guage change must be drawn from the ways in which related languages
differ. Section 5.3 examines how the frequencies of linguistic traits change
over time in the historical record, and how the timecourse of a change can
shed light on its motivation and on the continuation problem. Section 5.4
discusses the role that the frequencies of lexical items and constructions
play in their susceptibility to change, and what this can tell us about the
synchronic effects of frequency. Section 5.5 asks how language change is
directly molded by probabilistic behavior on the part of its participants—
speakers, hearers, and learners.

5.2 Probability as a Tool for Investigating Language Relatedness

An important task in historical linguistics is establishing which linguistic
changes are possible or probable (the “constraints problem” of Wein-
reich, Labov, and Herzog 1968). In many cases, we can look to syn-
chronic variation to tell us which changes are in progress in a particular
language (see Labov 1994). In rare cases, we have written records of
change within a language. But the vast majority of language changes that
have taken place in human history have left no trace either in synchronic
variation or in the written record. The only way to discover them is
through comparison of related languages: if we can reconstruct a proto-
phoneme *p, for example, that became b in some context in a daughter
language, then we know that the change from p to b in that context is a
possible one; if we find many such cases, then we know that the change is
a common one. Moreover, once we have established by reconstruction
that a change took place, we can use synchronic evidence to answer ques-
tions such as how regular the change was and which types of exceptions
were allowed to persist.

But how are we to know if two languages are related in the first place,
so that an attempt at reconstruction makes any sense? A common method
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for establishing the relatedness of languages is to compare their vocab-
ularies. A list of words is collected for each language, based on a standard
list of 100 or 200 meanings (e.g., the lists proposed in Swadesh 1952,
1955) that are expected to have a name in every language. If the lan-
guages are related, we expect to find either similarities between the sounds
of words with identical or similar meanings (e.g., if the word for meaning
i begins with a labial consonant in language A4, then the word for mean-
ing i begins with a labial consonant in language B too) or consistent cor-
respondences between them (e.g., wherever we see a ¢ in language A,
there is a k in the corresponding word of language B). Because reflexes of
a protophoneme can differ considerably in daughter languages, consistent
correspondences are a more appropriate criterion for languages that are
not known to be closely related.! The more frequent and consistent the
correspondences are, the more likely it is that the two languages are con-
nected, whether through descent from a common ancestor or perhaps
through borrowing.?

The mathematical challenge in using this method is, how sure can we
be that the similarities or correspondences found are not merely due to
chance? It turns out that the degree of similarity or correspondence nec-
essary to establish relatedness is greater than we might intuit. Ringe
(1992) gives a detailed and highly accessible demonstration of this fact
using randomly generated and real word-lists. Ringe’s method is flawed,
as discussed below, but he makes an important point: even though a par-
ticular event may be very unlikely to occur by chance, it may be an
instantiation of a larger class of events one or more of which is relatively
likely to occur.

Suppose, for example, that we hypothesize that two languages are
related, and our criterion for relatedness is similarity (rather than regular
correspondence). If we find that the word for eye begins with ¢ in both
languages, that is a piece of evidence in favor of the hypothesis, but how
striking is it? How likely is it to have occurred by chance if the two lan-
guages were not related? The probability that language 4’s and language
B’s words for eye should both begin with ¢ by chance is equal to the pro-
portion of words in language A4 that begin with ¢ (4,) times the propor-
tion of words in language B that begin with ¢ (B,). If, in each language,
only 5% of words begin with ¢, then 4,B, = .0025, a low probability. But
this is a misleading result: the hypothesis being tested is not that both
languages’ words for eye begin with ¢, but that the languages’ vocab-
ularies are similar. The probability we should be interested in is the
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probability that at least one pair of words on the list would begin with the
same sound by chance; this probability will depend on the phoneme dis-
tributions in the two languages, but will be much, much higher than
.0025. For example, if each language has the same 20 phonemes, each
occurring word-initially 5 times in a list of 100 meanings, the chance of
obtaining at least one match is nearly 100%.

Because this issue has caused so much confusion in the literature (see
Manaster Ramer and Hitchcock 1996 for an attempt to sort out one
exchange), it is worth belaboring. Manaster Ramer and Hitchcock call
the confusion of a specific event with the class to which it belongs the
“birthday fallacy”: the chance that two randomly chosen people share the
birthday of February 1 is small (1 in 365? = 133,225), but the chance that
they merely share the same birthday is much greater (1 in 365).®> Choos-
ing a specific date when calculating the probability of a shared birthday is
analogous to requiring a correspondence to involve a particular sound or
pair of sounds, or to occur in a particular word.

The same issue arises when we seek correspondences across multiple
languages, as suggested by Greenberg and colleagues (Greenberg 1987;
Greenberg and Ruhlen 1992). A correspondence seen in any two lan-
guages out of a group of, say, 15 languages is not as significant as a cor-
respondence seen in a comparison between just two languages, because

15
there are ( )
occurred, rather than just 1.* As Baxter and Manaster Ramer (1996)
argue, it should be possible to determine the number of matches across
a set of n languages that would be as significant as a match in a two-
language comparison, but the determination becomes much more
complicated when, for example, each language participating in the cor-
respondence is required to be from a different family (Manaster Ramer
and Hitchcock 1996).

Considering just the simpler case of a comparison between two lan-
guages, what we would like to do is determine how different a contingency
table is from what would be expected by chance. The contingency table
5.1 represents how often each word-initial consonant (or ¢ for vowel-
initial words) in a list of 100 English words corresponds to each word-
initial consonant in the German word with the same meaning. For
example, there are 4 words that begin with w in English and with v
(orthographic w) in German. We could construct similar tables for any

) = 105 pairs in which such a correspondence could have



Probability in Language Change

Sum
14
10

pf
0
0
0
0
0

ts
0
0
0
0
0

German

s
b
h
%]
n

Observed values for initial-consonant correspondences in English and German. (From Ringe 1992, 22-23.)

Table 5.1
English

12

143

103

11

Total
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other type of correspondence we were interested in, such as medial con-
sonants or consonant-vowel sequences.

If the two languages were not related, we would expect to see, on
average, the values shown in table 5.2, which preserves the row and col-
umn totals of table 5.1 but eliminates any row-column interaction. In
a given case, the numbers will differ from those in table 5.2 (mini-
mally, they must be integers), so our question is, how unusual is it for a
chance-generated table to deviate from table 5.2 as strongly as table 5.1
does?

Ringe proposes calculating the probability, for each cell, that the
number of observed matches or more would be seen by chance, by sum-
ming binomials. That is, he proposes that the probability of finding
exactly one match of x in language 4 with y in language B in a list of 100
words is the product of three numbers: 4.8, (the probability that a par-
ticular pair shows the correspondence), (1 — AXBJ,)99 (the probability that
the 99 other pairs do not), and 100 (the number of places in the list where
a matching pair could be found). Similarly, the probability of finding
exactly two such pairs would be 4,B,%- (1 — AXBy)98 -9,900. To calcu-
late the probability of finding » or more matches, we would sum the
probabilities of finding # through 100 matches:

%(AxBy)i (1= 4By (190) "

p l
i=n

For A, = B, = .05 and n = 3, this sum is .20—in other words, at least
one correspondence between x and y is a fairly likely event.

The problem with Ringe’s method, as pointed out by Baxter and
Manaster Ramer (1996), is that it wrongly assumes that the probability of
seeing a correspondence in one word-pair is independent of whether the
same correspondence occurs in another pair. 4, and B, are based on fre-
quencies within the chosen word-list. Suppose that 4, = B, = .05: there
are five instances of initial 7 in each language’s word-list. If the words for
eye begin with ¢ in both languages, then the chance that the words for
cheek will also both begin with ¢ is lowered, because there is one fewer ¢
left in the pool from which cheek can draw its initial consonant. The
probability that the words for cheek would begin with ¢ in both languages
is now not (5/100) - (5/100) = .0025, but (4/99) - (4/99) = .0016. The
values to be summed are not binomials as shown in (1), but hyper-
geometrics, which are unwieldy for numbers as high as 100.
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How, then, can we accurately determine whether a table like table 5.1
is significantly different from the average table we would expect to see
if the two languages were not at all related? Statistics such as y? give
a measure of how different an observed contingency table is from
the expected table,® but in order to determine the significance of that
difference—how likely it would be to arise by chance—we must rely on
lookup tables that are inappropriate to the task. Lookup tables for the
distribution of y2, for example, assume that the data points are inde-
pendent and that expected cell values are relatively high (expected fre-
quencies of at least five in each cell)—much too high for a table with
dozens of cells and only 100 instances to go around.

Kessler (2001) proposes an ingenious solution to the inapplicability of
standard lookup tables, similar in spirit to Oswalt’s (1970) shift test,® but
much more robust. We want to know the distribution of values of 2, or
some other measure of skewedness, if languages A and B are not related,
so that we can see how unusual the observed value of y2 is. If 4 and B are
not at all related, and if we have excluded from the word-list words sub-
ject to sound symbolism and onomatopoeia, then any lineup of 4’s words
with B’s should be equally likely—the particular lineup that occurs in
reality is the result of mere chance. Thus, the universe of possible ar-
rangements that should occur by chance, while preserving the individual
phoneme distribution of each language, is well represented by keeping the
order of A’s list constant and permuting B’s list in all possible ways. If
we calculate > for each such permutation, we obtain the distribution of
7%. We can compare the value of y? obtained for the actual word-list to
this distribution: if it is larger than 99% of the y? values in the distribu-
tion, then we know that a contingency table as skewed as the one we
obtained will occur only 1% of the time if the two languages are unre-
lated.

In practice, however, we cannot consider all permutations of B’s list.
For a list of 100 words, there are astronomically many permutations:
100! ~ 9.3 x 1037, This is too many to consider, even for a computer.
Kessler’s solution is to instead randomly generate some large number of
permutations to get a close estimate of how often the resulting x> values
are greater or smaller than the observed one. The more permutations
sampled, the more accurate the count; Kessler uses 10,000 permutations.
The same method can be used for any other measure: Kessler considers
R?, the sum of the square of each cell entry (minus one if nonzero); vari-
ous breakdowns by phonetic feature; and matching phoneme sequences
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rather than individual phonemes. For Kessler’s example data, R> seems
to work best.

The problem of determining whether a language resemblance is
stronger than would be expected by chance is a tractable one, then, at
least in simple cases such as correspondences between phonemes. As all
the authors cited here agree, however, establishing relatedness is only a
starting point. These statistical methods do not replace the work of
establishing which words are cognates, determining the contextual deter-
minants of sound changes that lead to inexact correspondences, or
reconstructing protoforms. They do, however, give us a tool with which
to determine how striking an apparently striking connection really is, so
that we can decide whether an attempt at reconstruction is warranted.

5.3 Changes in Probabilities over Time

Language change appears to take place gradually, with innovations being
used at different rates in different parts of the speech community and in
different linguistic or social contexts, and with an innovation’s overall
rate of use rising gradually, often over centuries (though see discussion of
Shi 1989 below). Changes in observed probabilities in the historical rec-
ord can give evidence for the nature of the linguistic system underlying
variable linguistic behavior, the nature and proximal cause of a particular
change, and the way in which changes take hold and spread.

5.3.1 Correlations in Rate of Change

Suppose that a language is observed to undergo a gradual change from
an SOV (subject-object-verb) word order to an SVO order; that in texts
from intermediate stages, the innovative order is found more frequently in
main clauses than in subordinate clauses; and that in the intermediate
stages, variation is observed even within each individual writer. How
should the linguistic system of an individual living during the middle
stages be represented? If it is a grammar that encodes separately the
probabilities of employing SOV or SVO in various contexts, then the
innovative word order may spread at quite unrelated rates in main and
subordinate clauses. If, however, the difference between SOV and SVO is
controlled by a single parameter in the grammar—whose setting can be
probabilistic to allow variation—and it is some orthogonal force (stylis-
tic, perhaps) that prefers SOV in subordinate clauses, then although the
frequency of use of the innovative order may differ according to clausal
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context, the rates of change of those contextual frequencies should be the
same, assuming that orthogonal forces remain constant. This is the con-
stant rate hypothesis, proposed by Kroch (1989): because changes occur
at the level of abstract grammatical parameters, they spread at the same
rate in every context, although the base frequencies of use in each context
may differ for external reasons.

Kroch and colleagues have tested the constant rate hypothesis by
modeling S-shaped language changes with a logistic function. It has long
been observed (e.g., Osgood and Sebeok 1954; Weinreich, Labov, and
Herzog 1968; Bailey 1973) that language change takes an S-shaped
course: a new variant appears rarely for a long time, then quickly
increases in frequency; finally, the rate of change slows as the frequency
approaches its maximum (100% in the case of a total replacement of the
earlier form). There are several mathematical functions that produce an
S-like shape. Kroch chooses the logistic function because every logistic
function has associated with it a slope, and therefore the slopes of fre-
quency changes that should be linked, according to the constant rate
hypothesis, can be compared.

The logistic function takes the form in (2),” where P, interpreted here
as the probability of seeing some variant in some context that it could
potentially occupy, is a function of ¢, time:

1
= 1+ e—k—st®

2)

Simple algebra transforms (2) into (3), where now the logistic transform,
or logit, (In(P/(1 — P))), is a linear function of #, with a slope (steepness)
s and an intercept (initial value) k:®

P
lnl_P—k—Ht. (3)

When frequency changes over time are plotted for the same innovation
in different contexts, the logit for each context should have approximately
the same slope under the constant rate hypothesis, although they may
have different intercepts. Figure 5.1 illustrates two logistic functions
whose logits have the same slope, but different intercepts, and one that
has a different slope.

The constant rate hypothesis can also be tested using the multivariate
analysis performed by the VARBRUL program (see Mendoza-Denton,
Hay, and Jannedy, this volume). VARBRUL represents the logit as the
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Three logistic functions. The solid and dotted lines have the same logit slope (0.5),
but different logit intercepts (2 and 0, respectively); the dashed line has the same
logit intercept as the dotted line (0), but a different logit slope (0.3).

sum of some contextual weights, representing the positive and negative
effects of various features of the context, plus a base rate of use, in this
case a linear function f of time:

P

1
"TCp

=f(t)+a+ay+a3+--- (Kroch 1989, 6) (4)

If the values of the a; do not change as  changes, then the contribution
of the context is constant over time, and only the base rate of use of the
innovative variant changes.

Kroch and colleagues have found evidence for the constant rate
hypothesis in several cases of language change. Kroch (1989) illustrates
how the results of Noble (1985), Oliveira e Silva (1982), and Fontaine
(1985) support the constant rate hypothesis in the replacement of posses-
sive have by have got in British English, the rise of the definite article
in Portuguese possessive noun phrases, and the loss of verb-second in
French, respectively. Kroch (1989) also reanalyzes Ellegard’s (1953) data
on the rise of periphrastic do in English. Pintzuk (1995) has found that
Old English I'-initial Infl rose in frequency at the same rate in main and
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subordinate clauses, and Santorini (1993) reports that the rise of a similar
I’-initial Infl phenomenon in early Yiddish proceeded at the same rate
with both simple and complex verbs, although in this case the intercepts
of the logits are also similar, so we cannot be sure that the simple and
complex verbs represent two truly different contexts.

These findings suggest that syntactic and morphosyntactic changes do
indeed occur at some abstract level of the grammar, affecting all contexts
equally, and subject only to independent influences on various contexts.
Tabor (1994), using a very different model of grammar, essentially agrees,
but views constant rate effects as a special case of frequency linkage
effects—related changes proceeding at related, though not necessarily
identical, rates.

Tabor’s model of (morphosyntactic) language change uses a connec-
tionist network to learn associations between words and the contexts in
which they tend to occur and among words that tend to occur in similar
contexts. Words, represented by input nodes, are connected to intermedi-
ate hidden-layer nodes; words that are strongly associated to the same
hidden-layer nodes act as clusters somewhat like traditional grammatical
categories (e.g., Noun, Verb), although cluster membership is a gradient
property, so that a single word may belong to different clusters to differ-
ent degrees. Hidden-layer nodes are connected to each other, to represent
sequential information, and to output nodes, representing behaviors in
various syntactic constructions. How strongly a word is associated to
some syntactic behavior is therefore mediated by the hidden units and
thereby by the behavior of cluster-mates.

If a network that has been trained on a corpus is exposed to an altered
version of the original training data (representing an externally motivated
shift in frequency), it adjusts its connection weights in response, but not
only those aspects of the language that changed in the training data will
be affected: aspects of the language that were strongly linked to the
changed aspects will be affected also. In particular, if the frequency with
which some word occurs in some context changes in the training data, the
network will adjust the word’s association strengths with the hidden units
in response, thereby altering the word’s indirect association to other
words; as a consequence, other aspects of the word’s behavior will also
change, under the influence of the word’s new cluster-mates.® At the same
time, the network must adjust associations between the word’s strongly
associated hidden units and the output units, so that the behavior of other
words that were strongly associated to the same hidden units will change
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too. This is where frequency linkage effects come from in Tabor’s model:
a change in one aspect of the language drags along with it changes in
other aspects of the language.

Frequency linkage of the constant-rate variety will be observed when
two words or constructions have the same distribution (or nearly so)
before the change begins. Tabor demonstrates with an abstract example:
two nouns, N1 and N2, behave similarly along five binary contextual
dimensions, C1 through C5 (e.g., if C1 is what possessive verb the nouns
appear as the object of, they might appear as the object of have 96% of
the time and as the object of have got 4% of the time). A third noun, N3,
behaves like N1 and N2 along dimension CI1, but shows different fre-
quencies on the other four dimensions. A network is trained on a corpus
with these properties, then retrained on a corpus that is the same except
that N2 undergoes a frequency change in Cl1, from choosing option A 4%
of the time to choosing it 100% of the time; no examples of N1 and N3
are given for C1 in the new corpus. The point of the experiment is to
observe how the frequencies for N1’s and N3’s choosing option A in C1
change as the network approaches the desired frequency for N2’s choos-
ing option A in CI1. The slope of the logit for how often N1 exhibits
option A in CI is almost identical to the slope of the logit for N2, but
N3’s slope is much shallower. Because N3 does not share N2’s properties
as well as N1 does, N3 is not “dragged along” as much as N1 is. Thus,
for Tabor, constancy of rate is gradient; he would predict that SVO
would spread at the same rate in main and subordinate clauses to the
extent that the behavior of main and subordinate clauses is otherwise
similar.

It remains to be seen whether any convincing cases of demonstrably
partial frequency linkage exist. Tabor argues that the rise of English
periphrastic do is such a case, but Kroch (1989) proposes that certain
syntactic assumptions can explain why the slopes for some of the contexts
for do are unequal. If clear cases can be found, then we have evidence
that language change is indeed abstract, occurring at the level of struc-
tures and categories, but that structures and categories can be fuzzy and
membership in them gradient.

5.3.2 Reanalysis and Frequency Change

Besides bearing on the abstractness of language change, rates of use over
time can shed light on the relationship between reanalysis and frequency.
It seems clear in many cases of morphological, syntactic, and semantic
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change that some word or construction has been reanalyzed; that is, its
behavior has changed in a radical way, indicating that it has joined a
different grammatical category. For example, be going to, which once
obligatorily indicated motion toward, is now used as an all-purpose
future marker in English.

How and why does reanalysis occur? In the (otherwise very different)
models of Lightfoot (1991) and Tabor (1994), reanalysis results from fre-
quency shifts that encourage or even force learners to assign a new struc-
tural analysis to a form because of the contexts in which it appears.
Others argue that reanalysis is a prerequisite for syntactic change: only
after two structural options become available can one rise in frequency.
Santorini (1993) and Pintzuk (1995), for example, argue that in Yiddish
and English, respectively, the availability of an I’-initial position for Infl
in both main and subordinate clauses occurs at the beginning of the
rise in frequency of medial Infl, not at the end (the alternative analysis
is that in the early stages, clause-medial Infl results from movement, and
not until later is Infl reanalyzed as potentially I’-initial). In these two cases,
the argument for the availability of I'-initial Infl at the early stages is
mainly a syntactic one, but it also has a probabilistic element. Surface
nonfinal Infl could be the result of base-generated I’-initial Infl or base-
generated I’-final Infl, with rightward movement of other constituents.
Santorini and Pintzuk both argue that the rate of such rightward move-
ments observed in unambiguous contexts is too low to account for the
relatively high rate of nonfinal Infl. Therefore, I'-initial Infl must have
been used at least some of the time at the early stages of the change,
before it became very frequent.

Frisch (1994) presents another case in which evidence that reanalysis
precedes syntactic change comes from frequencies over time. In Middle
English, not acted like a sentence-level adverb: it could appear preverbally
or postverbally, much like modern never; it carried an emphatic meaning;
and it alone was not sufficient to indicate negation (ne was instead the
usual marker of nonemphatic negation).

(5) bat Jesuss nohht ne wollde Ben boren nowwhar i pe land, ...
that Jesus not NEG would be born nowhere in the land
‘That Jesus did not (at all) want to be born anywhere in the land, ...
(Frisch 1994, 189; Ormulum I: 122)

It is standardly proposed (Kroch 1989; Pollock 1989; Shanklin 1990;
Roberts 1993) that not was reanalyzed as a sentential negator, losing its
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preverbal position and emphatic meaning, because the phonological loss
of the clitic ne eventually forced not to be so interpreted. Frisch demon-
strates, however, that the loss of preverbal not was well underway before
the loss of ne began.'® Frisch argues, therefore, that a semantic reanalysis
of not as nonemphatic, allowing it to occupy the specifier position of
NegP rather than a sentence-level adverb position, caused ne to become
redundant and be lost. With ne gone, not was free to occupy either the
specifier or the head of NegP.

An important assumption is that the rate of adverbial use of not in
ambiguous cases can be extrapolated from the behavior of the unambig-
uous sentence adverb never. Never is preverbal 16% of the time, and dur-
ing the first 70 years of Middle English, not has the same distribution.
Frisch presents the following formulas:

number of preverbal not = 0.16 x total number of adverbial not, (6)
total number of adverbial not = number of preverbal not/0.16. (7)

Assuming that the rate at which true sentence-level adverbs appear
preverbally is constant at 16% throughout the period, Frisch obtains an
estimate of how often not is used adverbially from 1150 to 1500. The key
finding is that this percentage falls drastically before the percentage of
negative sentences containing ne begins to drop much at all.

We have, then, cases in which reanalysis appears to occur at the
beginning of a frequency shift, rather than at the end. Does this contra-
dict Tabor’s claim that frequency shift leads to gradient reanalysis, in
which a word begins to belong more and more to a different cluster,
gradually taking on properties of that cluster? Perhaps not: in Tabor’s
model, reanalysis and frequency shifts can be gradual and mutually
reinforcing. If Tabor’s model were extended to include semantics, an in-
creasing use of not in nonemphatic contexts (a typical case of semantic
bleaching) could cause not to be gradually reanalyzed as a nonemphatic
negator. The more strongly it was so recategorized, the less often it would
appear preverbally. Reanalysis would thus follow one frequency shift,
and precipitate another: frequency shifts affect probabilistic learners and
in turn are affected by probabilistic speakers.

5.3.3 The Timecourse of Language Change

As mentioned above, it has long been observed that language change
proceeds along an S-shaped curve. Why should change begin and end
slowly? If changes spread from speaker to speaker, the rate of spreading
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depends on the number of interactions between a speaker who has the
new variant and one who has the old variant. There will be few such ex-
changes at first, because there are few speakers who have the new variant,
and few such exchanges at the end, because there are few remaining
speakers to whom the change has not yet spread (Bloomfield 1933). When
there is variation within individuals, as there is in nearly all studies of
historical texts, the picture is more complicated, because there are no
speakers with 100% use of the new variant at first. We must assume that
speakers can slightly increment their use of a variant and that some force
(such as group identification or learnability) encourages the change to
continue in one direction. The remainder of this section discusses some
attempts to derive S-shaped language change mathematically, with lim-
ited success.

But first, a cautionary note, based on Shi’s (1989) findings. Shi argues
that a gradual, S-shaped change that appears to have taken place over
1,000 years is actually an abrupt change that was completed in at most
200 years. The illusion of gradualness comes from the persistence of clas-
sical style in modern texts. Shi tracks the rise of the aspectual particle /e in
Mandarin, which derives from the classical verb liao ‘finish’. When the
number of uses of le per 1,000 characters is tracked for a corpus from
the pre-tenth to the twentieth century, the rate of use rises slowly from the
tenth to the twelfth century, then rises quickly until the seventeenth cen-
tury, and continues to rise slowly (though unevenly) to the present.

Shi finds, however, that /e seems to be inhibited by classical verbs and
hypothesizes that avoidance of /e by more recent writers is merely an
attempt to emulate classical style. Shi uses occurrences of the sentence-
final copula or interjective ye as an index of classicalness. Classical texts
have approximately 8 occurrences of ye per 1,000 characters, so if there
are n occurrences of ye per 1,000 characters in a text, there are approxi-
mately n/8 classical characters per actual character in the text; the rest
can be considered vernacular. When the number of /es per 1,000 vernac-
ular characters is plotted, the picture is very different from when raw
character count was used: there is now a sharp rise in use of /e from the
tenth to the twelfth century, and the rate of /e use has not risen since.
Shi’s study points out an important potentially distorting effect of the
unavoidable use of written records: even when a change is abrupt, the
conservatism of written styles may cause it to appear gradual.

Assuming, however, that the S-shaped model is accurate (though it
may appear artificially stretched in the written record), are there any
models that can derive it? Manning (this volume), points out that sto-
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chastic Optimality Theory (Boersma 1998; Boersma and Hayes 2001)
predicts S-shaped change if one constraint rises or falls at a constant rate
through the grammar. In stochastic Optimality Theory, surface forms are
chosen according to their satisfaction of constraints whose rankings are
normally distributed. Change is therefore slow when constraints’ distri-
butions overlap only at the outer edges, accelerates as the centers of the
bell curves begin to overlap, and slows as the distributions again overlap
only at the edges. The mechanism by which the grammar is transmitted
from generation to generation in such a way that a change in ranking is
persistent and linear is not known, however. The following paragraphs
review some attempts at achieving S-shaped change through modeling
transmission of the grammar from adults to children over time.

Niyogi and Berwick (1995) present an abstract simulation of language
change that does derive a logistic function for change, among other pos-
sibilities. In Niyogi and Berwick’s model, different members of the popu-
lation use different grammars, and learners must decide which grammar
to adopt. (Admittedly, this is an unrealistic assumption, as it predicts
no variation within individuals.) Each grammar is a series of n binary
parameters, and the distribution of sentences produced by each grammar
is uniform (all well-formed sentences are equally likely). Learners set
parameters on the basis of examples, permanently and without tracking
probabilities. Because the learner has limited opportunity to adjust its
grammar, mislearning is likely, especially if many utterances are ambigu-
ous, making even homogeneous populations potentially unstable.

Learning proceeds as follows in Niyogi and Berwick’s model. The
learner draws at random two utterances by members of the surrounding
population. If the second trigger utterance unambiguously supports one
parameter setting, the learner chooses that setting. If only the first trigger
is unambiguous, the learner chooses that setting. And if both triggers are
ambiguous, the learner makes an unbiased choice at random. In other
words, the critical period is just two utterances, and if they conflict, the
more recent utterance prevails.

Niyogi and Berwick investigate by simulation the case of three param-
eters governing constituent order (yielding eight possible grammars) and
find that the distribution of grammars sometimes changes according to a
logistic function (S-shaped curve) that varies in steepness. But with some
starting distributions and maturation times, the function is not logistic:
rapid change can occur right away (the initial tail of the S is cut off), or
the function may fall off toward the end rather than continuing to
approach an asymptote.
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Niyogi and Berwick apply their model to the change from Old French
verb-second (V2) to Modern French SVO, using the five binary param-
eters suggested by Clark and Roberts (1993) to yield 32 possible gram-
mars. If learning time is limited, so that the younger generation does not
have full opportunity to acquire the older generation’s grammar, then in
simulations even a population that begins homogeneously V2 shifts away
from V2, though the change is slow and does not proceed very far. But
when even small numbers of SVO speakers are included in the initial
population (perhaps representing foreign speakers), there is relatively
rapid loss of V2.1

Niyogi and Berwick’s model is deterministic if the population of agents
is infinite (and generations do not overlap). Extending the investigation to
cases in which the population is finite and small, Briscoe (2000) finds that
the results are quite different. For example, if two competing grammars
are initially equally distributed and produce equal proportions of ambig-
uous sentences, in the infinite-population model the two grammars should
remain in balance: half the learners will adopt one, and half will adopt
the other. In a finite population, however, the probability that exactly
half the learners will adopt one grammar on any given trial is low (just as
the probability is low that exactly half of a finite number of coin tosses
will come up heads). Therefore, one grammar will probably gain ground
over the other. As one grammar becomes much more common than the
other, however, it becomes less and less likely that it can maintain its
advantage. At the extreme, if a grammar is used by 100% of the popula-
tion, as long as there are some unambiguous sentences, some learners will
learn the other grammar. Even a moderate bias such as 75%-25% is
untenable if there is a high proportion of ambiguous sentences: if 75% of
the population uses grammar 4, with 50% of sentences from each gram-
mar being ambiguous, and there are 100 learners, the probability that 75
or more of the learners will adopt 4 is only .07. Grammar A begins to
lose ground, then, falling toward 50%, which we have already seen is
itself an unstable state. The proportions of the two grammars will there-
fore oscillate endlessly.

Clearly, a realistic and complete model of how changes spread remains
to be implemented.

5.4 The Role of Frequency in Language Change

We have seen the importance of changes in frequency over time. The
individual frequencies of linguistic items also appear to play an important
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role in language change. Words’ frequencies affect their susceptibility to
phonological, morphological, and morphosyntactic change. This fact
reinforces the findings elsewhere in this book that not all lexical items are
treated alike and that the strength of lexical entries is gradient. These
differing strength values are important in the lexical (word-to-word)
spread of linguistic innovations.

5.4.1 Frequency and Phonological Erosion

Bybee (1994; see also Bybee 2001) proposes that a usage-based model of
phonology can account for two relationships between word frequency
and phonological change: frequent lexical items are the first to adopt
automatic, phonetic rules, and the last to abandon nonphonetic rules.
By “phonetic rules” Bybee means rules, like American English flapping,
that involve minimal articulatory or acoustic change. Nonphonetic rules
include morphologically conditioned rules, like stress in Spanish verbs or
English noun-verb pairs, and lexical generalizations, like the English sing-
sang-sung and ring-rang-rung patterns.

An important assumption for Bybee in explaining the effect of
frequency on susceptibility to phonetic changes is that lexical representa-
tions do not include only the idiosyncratic aspects of a word. Redun-
dancies and phonetic detail are also included, so that different words
may be reliably associated with slightly different patterns of articulatory
timing and other subphonemic properties.

Phonetic rules tend to spread gradually through the lexicon, affecting
frequent words to a greater extent. For example, in Hooper 1976, Bybee
found that medial schwa deletion was most advanced in frequent words
like every (it is nearly obligatory) and less advanced in less frequent words
like artillery (it is nearly forbidden). In Bybee’s usage-based model, this is
because lexical entries are updated by speakers and/or listeners every time
they are used. If schwa deletion has some probability of applying every
time a word is used, then there is a related probability that the word’s
lexical entry will be updated to reflect the change. Because there is no
reverse rule of “schwa restoration,” once the strength of the schwa in a
lexical entry is reduced, it cannot later increase; it can only stay where it is
or reduce further. The more often a word is used, the more chances it has
to drift irreversibly toward schwa deletion. Thus, highly frequent words
are the innovators in phonetic change.

Pierrehumbert (2001a; see also this volume), in developing an
exemplar-theory-based model of production, derives this finding quanti-
tatively. In exemplar theory, categories are represented mentally as clouds
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of remembered tokens (projected onto a similarity map) that are typically
densest in the middle. Highly similar tokens are grouped into a single
exemplar, whose strength is augmented when tokens are added to the
group (and, countervailingly, decays over time). An incoming stimulus is
classified according to the number of exemplars from each category that
are similar to it, with a weighting in favor of stronger exemplars. Cate-
gories are produced by choosing an exemplar at random, but with a
preference for stronger exemplars, and with some amount of noise added,
so that the actual production may differ slightly from the exemplar
chosen. Pierrehumbert shows that when exemplars are chosen in this way
and the resulting tokens added to memory, the exemplar cloud gradually
becomes more diffuse, but its center does not shift.

When a persistent bias (motivated by some external force) is added,
however, drift does occur. If there is a tendency for productions to be
slightly hypoarticulated with respect to the exemplar chosen for produc-
tion (i.e., the articulatory gesture is reduced in magnitude), the center
of the exemplar cloud gradually shifts toward hypoarticulation. For
example, if an exemplar is chosen whose articulatory effort along some
dimension is 0.9, it may be produced with 0.89 effort instead. The 0.89
token is then added as an exemplar, and if it is chosen in a later produc-
tion, it may be pronounced with 0.88 effort, and so on.

The shift increases as the number of productions of the category
increases. This means that if individual words have their own exemplar
clouds, then words that are used more often shift more rapidly, as Bybee
predicts. Pierrehumbert further shows how an infrequent category that is
subject to lenition (or any other persistent bias) is absorbed into a fre-
quent category that is not subject to lenition.

Bybee argues that frequent words are more subject to phonetic rules for
an additional reason: phonetic rules tend to be lenition rules, involving
reduced articulatory gestures. Frequent words are more likely to be used
in prosodically unemphasized positions, which are associated with less
articulatory effort. This is because a frequent word is likely to be used
more than once in a discourse, and subsequent occurrences of a word in a
discourse tend to be less emphasized prosodically than the first occurrence
(Fowler and Housum 1987). In addition, frequent words or constructions
are more likely to become semantically bleached (see Bybee, in press,
discussed below) and thus less likely to be the carrier of important dis-
course information that is subject to prosodic emphasis.

Frequent words’ lexical entries are thus doubly subject to a phonetic
rule when that rule is lenitive: not only does the word’s more frequent use
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give it more opportunities to undergo the change, but the word’s tendency
to occur in repetitive or semantically bleached contexts disproportion-
ately subjects it to lenition.

5.4.2 Frequency and Nonphonetic Rules

Highly frequent words are conservative, however, when it comes to non-
phonetic rules like the English irregular past tenses (Hooper 1976) or
English noun-verb stress shifts (Phillips 1998, 2001):'? when the language
begins to lose or gain a rule, they are the last words to change.!® There
are two reasons for this. The first reason is the competition between
irregulars (residual archaic forms) and regulars (the innovative form).
This competition proceeds differently in different models of regulars and
irregulars, but in every case an irregular requires a strong lexical entry in
order to resist regularizing. Under the dual-mechanism model of Pinker
and Prince (1994), for example, listed irregular words and regular mor-
phological rules compete in the brain: irregular, listed sang competes with
regular, synthesized sing+ed. If the lexical entry of an irregular word is
not strong enough, it may not be accessed in time or with enough cer-
tainty to win the competition, and the regular pronunciation will win. In
a model such as Albright and Hayes’s (2000) that encodes both regular
and irregular patterns in the grammar, the competition is between very
specific irregular rules and more general regular rules; in a connectionist
model, it is between patterns in associative memory (Rumelhart and
McClelland 1986a; Daugherty and Seidenberg 1994).

Frequent words’ lexical entries are strong from frequent use and rein-
forcement and thus will tend to beat out synthesized, regular pronuncia-
tions, whether the pressure for those pronunciations comes from the
grammar or from elsewhere in the lexicon. Infrequent words’ lexical
entries, on the other hand, may not be strong enough to win reliably.

The second, related reason for the retention of nonproductive rules in
frequent words concerns transmission from one generation to the next.
Infrequent irregulars may fail to be transmitted to the next generation—if
a word is too infrequent, the child may never encounter it—and the
younger generation will apply regular rules to the word. An abstract
simulation performed by Kirby (2001) confirms that this mechanism can
have the observed effect. Although the population in Kirby’s simulation
begins with no lexicon at all, as a lexicon begins to develop, it is only the
most frequent words that are able to retain an irregular form; words that
are too infrequent to be reliably transmitted fall under a regular compo-
sitional rule.
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5.4.3 Frequency and the Undertransmission of Morphosyntax

The instability of infrequent irregulars is one type of ‘“‘undertransmis-
sion.” Richards (1997) has studied a more drastic type of undertrans-
mission in the morphosyntactic realm that leads to a change not just in
particular lexical items, but in the whole grammatical system. Richards
compares the word order and verbal morphology of current speakers of
Lardil, an Australian language, to data collected by Hale from speakers
in the 1960s. Lardil is being replaced in everyday use by English, but
Richards argues that the changes observed in Lardil are due not to the
linguistic influence of English, but to the scarcity of Lardil data available
to learners. (Richards’s arguments rest on syntactic sensitivities of the
changes that would not be expected if the language were merely adopting
English morphosyntax.)

The morphological difference between “Old Lardil” and “New Lardil”
that Richards discusses is the frequent absence of inflection on objects in
New Lardil (the syntactic difference is the resulting rigidification of word
order). Richards’s explanation is that in Old Lardil, certain phonological
rules could delete object suffixes. New Lardil learners exposed to these
apparently unsuffixed forms, and not exposed to enough overtly suffixed
forms to learn that suffix deletion is phonologically conditioned, might
conclude that overt suffixes alternate freely with null suffixes.

In analyzing the behavior of particular nouns and pronouns, Richards
finds that the pronoun on which inflection was most often produced had a
highly irregular paradigm in Old Lardil. The pronoun on which inflection
was least often produced had a more regular paradigm. Richards suggests
that although regular morphophonological rules have been lost in New
Lardil because of insufficient evidence, individual lexical entries exhibit-
ing idiosyncratic inflection have been retained when frequent enough.
Similarly, Richards finds that the regular morphophonological rules of
verb augmentation have been lost, but that certain (presumably) irregular
verbs forms of Old Lardil have been retained. High frequency, then, can
allow a word to retain various idiosyncratic properties in the face of a
more general language change.

5.4.4 Frequency and Grammaticalization

Frequency may also have an effect on which words or morphemes will
undergo morphosyntactic change. Grammaticalization, the process by
which content morphemes or morpheme sequences become function ele-
ments, tends to be correlated with an increase in frequency (see Traugott
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and Heine 1991, Hopper and Traugott 1993, for overviews and many
case studies of grammaticalization). Is this increase merely the result of
grammaticalization, as the morpheme becomes needed in more contexts,
or could it also be a cause?

Bybee (in press) argues that it can. Bybee traces the evolution of En-
glish can from a content word meaning ‘have mental ability/knowledge’
to a function word meaning ‘possibility exists’. Following Haiman (1994),
Bybee views grammaticalization as a form of ritualization, whereby rep-
etition of a frequent act (in this case, the uttering of a word or construc-
tion) bleaches the act of its significance, reduces its (phonological) form,
and allows it to become associated to a wider range of meanings. Bybee
shows how cunnan, the ancestor of can, which first took only noun phrase
objects, began to take as its object the infinitives of verbs relating to intel-
lectual states and activities, communication, and skills. Bybee argues that
because cunnan with a noun phrase object was already common, addi-
tional mental verbs began to be added to “‘bolster the meaning,” creating
seemingly redundant expressions like cunnan ongitan ‘know how to under-
stand’. This use of cunnan further weakened it semantically: presumably,
a learner who encounters the phrase cunnan ongitan is likely to attribute
all the meaning to ongitan and treat cunnan as merely grammatical.

The token frequency of can increased greatly from Old to Middle
English, partly as can came to be used with a larger number of verbs,
partly as some of the can+VERB combinations became more frequent.
The increase in both type and token frequency, Bybee argues, further
bleached can semantically, and its verbal objects expanded to include
emotional states, nonmental states, verbs that take as object another
person, verbs indicating an action (rather than merely a skill). A few
instances of inanimate subjects also began to occur. Eventually, as the
‘possibility’ meaning became more common, the use of inanimate subjects
increased. Thus, increasing frequency and semantic bleaching reinforce
each other.

Bybee further notes (citing crosslinguistic findings in Bybee, Perkins,
and Pagliuca 1991, 1994) that grammaticalized morphemes tend to be
shorter and more phonologically fused with surrounding material, for
reasons discussed above: frequent morphemes (including grammatical
morphemes) are more susceptible to erosive lenition rules, which can
cause loss and overlap of gestures. Bybee proposes that the units of lexi-
cal storage are not only morphemes or words, but also highly fre-
quent phrases or sequences. When grammatical morphemes enter into
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high-frequency sequences such as going to, those sequences too are sub-
ject to erosion (gonna). As these sequences gain their own lexical repre-
sentations, they can also develop idiosyncratic meanings and syntactic
functions.

Tabor’s (1994) connectionist model, described above, similarly views
frequency as a driver of syntactic change. Tabor focuses not on the over-
all type or token frequency of a lexical item, but on the frequency with
which it occurs in a particular context. Tabor performed a series of
experiments, simulating real changes that occurred in English, in which a
network was trained on a corpus, then trained on a frequency-altered
version of that corpus, and a word or sequence of words consequently
changed its categorical affiliation, exhibiting new behaviors that were
previously ungrammatical (i.e., below some probability threshold). The
cases simulated include the rise of periphrastic do, the development of sort
of/kind of as a degree modifier, and the development of be going to as a
future auxiliary.

Tabor, like Bybee, argues that the changes in frequency that often pre-
cede a reanalysis can be the cause of the reanalysis: the more a word
appears in the same context as words from some other category, the more
it is pushed to take on the characteristics of that category. For example,
in the sort of/kind of case, sentences like (8) would have been parsed only
as (8a) until the nineteenth century (‘It was a type of dense rock’), but can
currently also be parsed as (8b) (‘It was a somewhat dense rock’). Tabor
argues that a high frequency for sentences like (8)—where sort of/kind
of is followed by an adjective+noun and therefore appears in a position
that the degree modifies quite or rather also can appear in—caused sort
of/kind of to become affiliated with the degree modifiers and there-
fore become able to appear in unambiguously degree-modifying contexts,
like (9).

(8) It was a sort/kind of dense rock. (Tabor 1994, 137)
a. It was [np a [n[n sort/kind] [pp of [np dense rock]]]].
b. It was [np @ [n/[Adip[DegMod SOTt/kind of | [aqj dense]] rock]].

(9) We are sort/kind of hungry. (Tabor 1994, 137)

Tabor finds a sharp rise in the late eighteenth century in how often sort
oflkind of is followed by an adjective (crucially, preceding the rise of
sentences like (9)). The simulation showed that increasing the frequency
of <a sort/kind of Adj N} noun phrases does lead unambiguously degree-
modified utterances like (9) to rise above the threshold of grammati-
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cality (i.e., become more frequent than a near-grammatical control
sentence type that is never attested in the corpus and does not become
more likely over the course of the training) and continue to rise in fre-
quency. Thus, again we see that reanalysis and frequency change are
mutually reinforcing.

5.5 Language Agents in a Probabilistic Environment

Speaker-hearer interactions, whether involving adults, children, or a
combination, are the atoms of language change. What we call a language
change is not a single event, but a high-level description of millions of
individual interactions over time, with early interactions influencing later
ones. If a participant, child or adult, comes away from an interaction
with her grammar or lexicon slightly changed, then her altered behavior
in a subsequent interaction may cause a change in the grammar of her
interlocutor, and so on.

The mathematics of a model built up from many probabilistic inter-
actions of agents can be unwieldy, however. Rather than trying to calcu-
late directly how the system will behave, researchers often use computer
simulation as an experimental tool. Artificial agents with the desired
properties and behaviors are left to interact and change, and the results
observed. Through such simulations, the effects of probabilistic learning
and behavior on language change can be explored, and we can determine
under what conditions a change will continue or accelerate, and under
what conditions variation is stable.'*

5.5.1 The Adoption of New Words

Elsewhere (Zuraw 2000), in presenting a model of exceptions and regu-
larities in the phonological grammar, I show that listeners’ probabilistic
updating of their lexicons can shape the integration of new words into a
language. The puzzle I attempted to address is that even though there is a
resistance to applying semiproductive phonology to new words, as words
become integrated into the lexicon they begin to undergo semiproductive
phonology at rates similar to those found in the established lexicon.

In the proposed model, semiproductive phonology is encoded in a sto-
chastic optimality-theoretic grammar (see Boersma 1998; Boersma and
Hayes 2001) by low-ranking markedness constraints. Existing words’
behavior is determined by high-ranking faithfulness constraints that
require the preservation of idiosyncratic properties encoded in lexical
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Figure 5.2
Rates of nasal coalescence in the native Tagalog lexicon, broken down by stem-
initial consonant

entries. These constraints do not apply to new words, however, because
those words lack lexical entries. The “subterranean” constraints emerge,
therefore, to determine the pronunciation of new words.

The example examined in greatest depth is Tagalog nasal coalescence,
which fuses a prefix-final nasal with a stem-initial obstruent.

(10) Stem Nasal-coalesced
bakat ‘mark, scar’ mamakat ‘to leave a scar’
Stem Prefixed but not nasal-coalesced

bajani ‘hero, helper’ mambajani ‘to offer cooperation’

As shown in figure 5.2, nasal coalescence appears to be distributed in
the lexicon according to a pattern—voiceless obstruents are much more
likely than voiced to undergo it, and obstruents with fronter places of
articulation are somewhat more likely than those with backer places to
undergo it—but the pronunciation of individual words is unpredictable
and must be memorized. [ argue that words with nasal-coalescing prefixes
(or at least some of them) have their own lexical entries, and thus high-
ranking faithfulness constraints against coalescing, splitting, or inserting
segments within a lexical entry ensure that they are pronounced correctly.
An additional constraint, USELISTED, which prefers inputs to be a single
lexical entry, ensures that if a lexical entry exists, it is used as the basis for
evaluating faithfulness.

When no lexical entry exists, as when a prefixed form is created for the
first time, USELISTED cannot be satisfied, and the faithfulness constraints
do not apply, so it falls to low-ranked constraints to decide probabilisti-
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cally whether nasal coalescence should apply. I further assume that the
strength of a lexical entry grows gradually as instances of the word are
encountered, and that a lexical entry with strength of 0.5, for example, is
available for use only half the time. Thus, in 50% of utterances, USE-
Listep and the faithfulness constraints will enforce the memorized
pronunciation of such a half-strength word, but in the other 50% of
utterances, the lower-ranked constraints will decide, because the lexical
entry has not been accessed.

Boersma’s (1998) Gradual Learning Algorithm is shown to be able to
learn the distribution of nasal coalescence from exposure to the lexicon
and encode that distribution in the ranking of subterrancan constraints,
preferring nasal coalescence on voiceless obstruents and dispreferring
nasal coalescence on back obstruents (crosslinguistic motivations are
suggested for both). The behavior of the resulting grammar in generat-
ing and assigning acceptability ratings to new morphologically complex
words is shown to be a fair match to experimental results with speakers.
The part of the model that I will describe here concerns the grammar and
lexicon’s effects on the adoption of new words by the speech community.

The grammar is biased against applying semiproductive phonology to
new words (this is just the definition of semiproductivity in this model: an
unfaithful mapping from input to output is productive to the extent that
the ranking values in the grammar allow it to apply to new words). This
is consistent with experiments in several languages, finding that speakers
are reluctant to apply semiproductive phonology to new words; although
various aspects of the experimental design can increase apparent produc-
tivity, it is always less than what might be expected from looking at the
lexicon (Bybee and Pardo 1981; Eddington 1996; Albright, Andrade, and
Hayes 2001; Suzuki, Maye, and Ohno 2000). It has also been observed in
many cases, however, that words eventually tend to conform to existing
lexical patterns after they have been in the vocabulary for some time. In
the Tagalog case, prefixed forms of Spanish loan-stems undergo nasal
coalescence at rates similar to those seen in the native vocabulary, as
shown in figure 5.3. This phenomenon seems counterintuitive, if we
expect that the more frequent pronunciation early in a word’s life (i.e.,
without nasal coalescence) should take over and become the conven-
tionalized pronunciation as the word establishes a lexical entry in the
minds of speakers.

I propose that the solution lies in probabilistic interactions between
speakers and hearers, specifically in probabilistic reasoning on the part of
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Figure 5.3
Rates of nasal coalescence in Spanish loan-stems

the listener. Because morphologically complex words can be either drawn
directly from their own lexical entries or formed synthetically by mor-
pheme concatenation, the listener must decide whether a morphologically
complex word that she hears was lexical or synthesized for her interlocu-
tor, assuming that she wants to maintain a lexicon that is similar to her
interlocutor’s. For example, if a listener hears mambulo, she must guess
whether the speaker was using a lexicalized word mambulo or merely
concatenating the prefix maN- with the stem bulo. Factors that should
enter into the calculation include how strong the listener’s own lexical
entry for the word is (if she has one at all) and how likely it is that a lex-
icalized or concatenated input, respectively, would produce the observed
pronunciation. The listener can apply Bayes’ rule:

P(synthesized | pronunciation)

P(pronunciation|synthesized) - P(synthesized)

= 11
P(pronunciation) ’ (1)
P(lexicalized | pronunciation)
_ P(pronunciation|lexicalized) - P(lexicalized) (12)

P(pronunciation)

The grammar influences that calculation, because the probabilities
P(pronunciation|synthesized) and P(pronunciation|lexicalized) depend on
the grammar. P(pronunciation|lexicalized) is always close to one, because
of the high-ranking faithfulness constraints. P(pronunciation|synthesized)
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is higher for non-nasal-coalesced pronunciations than for nasal-coalesced
pronunciations—recall that the grammar somewhat disfavors nasal co-
alescence on new words. Therefore, there is a bias toward classifying
non-nasal-coalesced words as synthesized and nasal-coalesced words as
lexical. Intuitively, the low productivity of a phonological rule encourages
speakers to interpret words that do display the rule as exceptional and
therefore listed.

The lexicon also influences the calculation, by contributing to P(syn-
thesized) and P(lexicalized). P(synthesized) depends on the construction’s
productivity, determined by how many morphologically and semantically
eligible words participate in the construction. P(lexicalized) depends on
the candidate word’s similarity to existing words. Thus, pronunciations
that are similar to existing, lexicalized words (e.g., nasal-coalesced voice-
less front obstruents and non-nasal-coalesced voiced back obstruents) are
more likely to be interpreted as lexical.

If a hearer does decide that a word was lexicalized for her interlocutor,
she will create a weak lexical entry for it. The existence of this weak lex-
ical entry means that when it is the hearer’s turn to speak, she has some
small probability of using it. The bias toward recording nasal-coalesced
words as lexical, especially when they resemble existing nasal-coalesced
words (and ignoring non-nasal-coalesced words as synthesized) results
in stronger lexical entries for nasal-coalesced pronunciations, which in
turn results in an increase in the number of nasal-coalesced productions,
leading to further strengthening of lexical entries for nasal-coalesced
pronunciations.

The model was implemented in a computer simulation with 10 agents
of varying ages who from time to time “die” and are replaced by agents
with empty lexicons. To avoid undue influence from young speakers with
immature lexicons, in each speaker-hearer interaction the hearer proba-
bilistically decides, as a function of the speaker’s age, whether to let her
lexicon be affected by the speaker’s utterance.' Different pronunciations
for the same word (nasal-coalesced and not) do not directly compete, but
if they are not reinforced, lexical entries decay.'® Therefore, if two pro-
nunciations remain prevalent, agents can have two strong pronunciations
for the same word. This is a desirable result, because there are certain
nasal-coalesced words whose pronunciation is variable within speakers.
But if one pronunciation becomes much more common than the other,
the lexical entry for the uncommon pronunciation will gradually decay.
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Figure 5.4
Rates of nasal coalescence in new words in a simulated speech community

The result of the simulations, shown in figure 5.4, was that new words
were incorporated into the lexicon in a pattern similar to that seen among
Spanish stems (though somewhat more extreme—this could be because
some of the Spanish-derived words have not been in use long enough
for their pronunciations to reach their final state). That is, for voiceless
obstruents, the final rate of nasal coalescence is nearly 100%; for front,
voiced obstruents, it is around 50%; and for back, voiced obstruents, it is
close to 0%.

Probabilistic reasoning by adults, then, could explain the mainte-
nance of lexical regularities over historical time. Such reasoning requires
speakers to have a probabilistic grammar, so that there is variation in the
treatment of new words, and it requires listeners to have access, whether
direct or indirect, to the statistical characteristics of the lexicon.

5.5.2 Learners’ Response to the Probabilistic Environment

If language change is a shift in the distribution of competing variants,
what causes that distribution to change from one generation to the next?
Why don’t children mimic the frequencies of their elders? We have seen
that in some cases—generally cases of morphosyntactic change—the shift
in frequency appears to reflect a reanalysis (e.g., Frisch’s not case, Tabor’s
sort of case): younger speakers use a construction at a different rate be-
cause they assign a different interpretation to it. In other cases—gener-
ally cases of phonological change—younger speakers may use the older
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or the newer variant according to the requirements of the social setting
(i.e., formal vs. informal), indicating that they control a grammar that is
qualitatively similar to their elders’, but that assigns different probabil-
ities to different variants. Biber and Finegan (1989) argue that stylistic
shifts in written English over the last four centuries similarly reflect socio-
logical, rather than structural, motivations.

Another possible source of frequency shift that has been proposed is
the conflict between frequency and learnability: some variable situations
could be inherently unstable, depending on learners’ bias in dealing with
ambiguous utterances. Yang (2000) and Briscoe (1999) both explore this
idea within a principles-and-parameters framework (Chomsky 1981b),
where acquisition is the process of parameter setting.

For Yang, no parameters are preset—all settings must be learned. The
learner has a finite number of grammars to choose from, each having an
associated weight that the learner maintains.!” In each learning trial, the
learner receives an input sentence and probabilistically selects one gram-
mar, with higher-weighted grammars more likely to be chosen. If the
grammar selected can parse the sentence, then the learner augments its
weight and decrements the weight of the other grammars. If the grammar
selected cannot parse the sentence, then the learner decrements its weight
and augments the weights of all the other grammars.

The final weight that each grammar will attain depends in part on the
distribution of grammars among the adults providing the learning data,
but also on how many ambiguous sentences occur and what the learner
does with them. For example, adults using a V2 grammar will produce a
high proportion of sentences that are compatible with an SVO grammar.

Yang shows how this system can cause a drift in grammar proba-
bilities. Suppose that the learning environment contains two grammars G;
and Gj, and that a proportion a of G;’s sentences are incompatible with G;
(this is G;’s advantage—the proportion of Gj-generated sentences that
unambiguously lead the learner to strengthen the weight of G;), and a
proportion f of G;’s sentences are incompatible with G; (G;’s advantage).
These proportions vary according to the specifics of the grammars and
according to the likelihood of various utterances; for example, the likeli-
hood that an unambiguously V2 sentence is uttered given a V2 grammar
may be quite different from the likelihood that an unambiguously SVO
sentence is uttered given an SVO grammar. At generation #, the linguistic
environment contains some proportion p of adult utterances from G; and
some proportion ¢ of adult utterances from G; (p + ¢ = 1).
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The probability that grammar G; will have its weight incremented
in any learning trial is ap, and the probability that G; will have its
weight incremented is fg. The learners will therefore tend to converge
on new weights p’ = ap/(ap + fq) for G; and ¢’ = fq/(op + fq) for G;.
This means that the weights have been learned unfaithfully (p’ # p and
q' # q), except in the special case of o = f5.

For Gj to overtake Gj, g needs to grow at p’s expense. This means that
p'/q' < p/q (the ratio of p to ¢ decreases), or, coalescing the equations
for p’ and ¢’ obtained above, op/fiqg < p/q, or a < f: G;’s advantage must
be smaller than G;’s. Yang examined corpora in two case studies to see if
o < f does indeed cause G; to overtake G;.

The first case study was the change from Old French’s V2 grammar to
Modern French’s SVO grammar. The SVO grammar must have gen-
erated more sentences not analyzable as V2 (i.e., SXVO and XSVO sen-
tences) than the V2 grammar generated sentences not analyzable as SVO
(i.e., XVSO and OVS sentences). Certain sentences would have been am-
biguous: SVO, SVOX, SVXO. To get an idea of how many unambiguous
sentences an SVO grammar would generate, Yang looked at modern
SVO English and found that 10% of sentences are SXVO or XSVO
(SVO’s advantage). Looking at modern V2 languages, Yang found that
the combined proportion of XVSO and OVS sentences (V2’s advantage)
is 30%. If these advantages also held for competing SVO and V2 gram-
mars in transitional French, then SVO should not have been able to
overtake V2. Yang proposes that the solution lies in Old French’s null-
subjecthood: null-subject XVS sentences would be produced XV, which is
also compatible with an SVO analysis (the XV sentence would be inter-
preted as XSV). Taking null subjects into account, V2’s advantage is only
5%—18%. If it fell below about 10%, then SVO would begin to take over.

The second case study was the change from V2 in Middle English to
SVO in Modern English. The problem is similar to that in the French
case: why would SVO take over? Yang proposes that the answer here is
Middle English’s pronominal proclitics, which resulted in some XSVO
and OSV sentences (“V3”’). When cliticization waned and these pronouns
had to be reanalyzed as real DPs, the V3 sentences would have been
compatible only with an SVO grammar, adding to its advantage.

In Briscoe’s (1999) model, the instability of a variable grammar comes
not from the frequency of ambiguous sentences, but from the (over-
turnable) presetting of certain parameter values.'® On the one hand, a
more frequent variant has more opportunities to shape the learner’s
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grammar; but on the other hand, the more learnable variant—the one
that uses more default parameter settings—has an advantage from the
start. Briscoe simulates changes in word order, using a generalized Cate-
gorial Grammar framework, in which the syntactic rules are weighted so
that different well-formed sentences have different probabilities of being
uttered under a particular grammar. The parameters of the grammar
include the default head-complement order, the order of subject and verb,
the order of verb and object, and several others.

Certain parameter settings are associated with prior probabilities,
intended to reflect innate markedness. Parameter settings are changed
only when the learner’s current grammar fails to parse an incoming sen-
tence. The learner tries changing some settings, and if this makes the
input sentence parsable, those potential new settings are strengthened,
though not adopted right away. If the strength of a setting exceeds a
threshold value, the new setting is adopted, though it can be changed
back if contrary evidence is encountered later. Even after a setting is
adopted, its strength continues to be updated; this determines how easy it
will be to reverse the setting later. Thus, during learning each parameter
has an innate prior probability, a posterior probability derived from
learning, and a current setting.

Briscoe’s approach differs from Yang’s in that, although the learner
keeps several grammars under consideration, only one grammar is used at
a time, and thus individual adults’ outputs will not be variable. The
learner chooses the most probable grammar according to Bayes’ rule.
Letting g be a grammar, G the space of possible grammars, and ¢z, a trig-
gering input (= the set of sentences seen so far), the probability of a
grammar g given a triggering input ¢, is given in (13):

Plg) - Ptalg)

P(g € G‘tn) = P(Z,I)

(13)
The prior probability of P(g) is equal to the product of the probabilities
of all its parameter settings. P(#,|g), the probability that a given grammar
produces the set of sentences seen, is derived from the rule weights of each
grammar. The denominator P(z,) of (13) is unimportant, because it is the
same in all grammars being compared. The grammar that the learner uses
to try to parse incoming sentences, and that the learner will use when
speaking, is simply the most probable g € G.

Briscoe’s model, like Yang’s, is sensitive to the amount of overlap in
triggers (e.g., surface SVO as evidence for either an SVO grammar or a
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V2 grammar). Briscoe found that in a population of mainly SOV+V2-
speaking adults (“German”) and some SVO-speaking adults, learners
reliably converged to SOV+V2 as long as the percentage of unambigu-
ously SVO triggers did not exceed 15% (the number depends on the
strength of the default settings, if any).!® If the percentage exceeded 15%,
a drift toward SVO could begin.

The learner’s response to a variable environment is crucial to language
change. But in order to ensure that learners do not merely replicate the
frequencies around them, there must be some persistent bias at work,
whether it comes from social motivations, from learnability, or from
ambiguity.

5.5.3 Language Change under Competing Forces

We have seen several forces that may be at work in probabilistic language
change: innate parameter settings, frequencies of ambiguous utterances,
frequencies of individual lexical items or constructions, variation due to
language or dialect contact. In real cases of language change, however, it
can be difficult to tease apart these factors to determine which are neces-
sary or sufficient triggers for various changes. As Dras, Harrison, and
Kapicioglu (2001) note, simulation studies provide a way to perform dia-
chronic experiments on language, altering the strength of each force and
observing the effects.

Few such simulations have been undertaken that attempt to model real
changes, but this line of inquiry seems promising. This section concludes
by reviewing preliminary results from one simulation project (Dras, Har-
rison, and Kapicioglu 2001) that investigated the effects of various forces
on changes in vowel harmony. Dras, Harrison, and Kapicioglu collected
corpus data on Old Turkic—in which 100% of words were harmonic for
palatality and backness—and several of its descendants, from the ninth
century to the present. Some of the contemporary languages have main-
tained very high rates of harmony, while others’ rates of harmony have
fallen drastically. Dras, Harrison, and Kapicioglu identified internal and
external factors that could affect rates of vowel harmony—vowel co-
articulation, inherent markedness of certain vowels, consonantal effects,
merger of vowels (collapsing harmony pairs), the introduction of dishar-
monic loanwords, and language contact—and modeled several of them.?°
Agents in the simulation exchanged words with randomly selected neigh-
bors, updating their lexical entries to reflect what they had heard. When
speaking, an agent might mispronounce a word or coarticulation; when
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listening, an agent might mishear, ignore a coarticulation, or adjust an
interlocutor’s pronunciation before adding it to the lexicon. Agents
might also mutate their lexical entries at an agent-specific rate; if a vowel
was to be mutated, there was an agent-specific probability that it would
be made harmonic.

If factors favoring harmony were strong enough, harmony could
increase, following roughly an S-shaped curve. Dras, Harrison, and
Kapicioglu found that vowel merger alone was not sufficient to eliminate
harmony, nor was the addition of disharmonic loanwords. Though the
authors emphasize that their results are preliminary and that the model
needs to be enriched with several more factors, this study shows a prom-
ising direction for future work: using probabilistic simulation tools and
real historical data to model the effects of a variety of internal and exter-
nal factors on language change. Such simulations should help us deter-
mine which factors, alone or in conjunction, are strong enough to cause
and continue language change.

5.6 Conclusion

Many linguists are interested in language change because of what it can
tell us about synchronic language. For example, the types of reanalysis
that are common may tell us about the learning mechanism, and the way
a change spreads through the speech community may tell us about the
social function of language.

Because the study of language change draws on all areas of linguistics,
and particularly on probabilistic approaches to all areas of linguistics,
the study of language change also has something to contribute to the
study of probabilistic linguistics: models of synchronic acquisition, repre-
sentation, and use of language must be consistent with observed dia-
chronic facts.

We have seen that the probabilistic behavior of learners, speakers, and
listeners can shape language change and that simulation studies can help
us explore how this happens. Simulation studies can also support or
undermine models of how agents represent and use lin