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Abstract

Industrial robots have long been used in production systems in order to improve
productivity, quality and safety in automated manufacturing processes. There are
significant implications for operator safety in the event of a robot malfunction or
failure, and an unforeseen robot stoppage, due to different reasons, has the potential
to cause an interruption in the entire production line, resulting in economic and
production losses. Condition monitoring (CM) is a type of maintenance inspection
technique by which an operational asset is monitored and the data obtained are
analysed to detect signs of degradation, diagnose the causes of faults and thus
reduce maintenance costs. So, the main focus of this research is to design and
develop an online, intelligent CM system based on wireless embedded technology
to detect and diagnose the most common faults in the transmission systems (gears
and bearings) of the industrial robot joints using vibration signal analysis.

To this end an old, but operational, PUMA 560 robot was utilized to synthesize a
number of different transmission faults in one of the joints (3—elbow), such as
backlash between the gear pair, gear tooth and bearing faults. A two-stage condition
monitoring algorithm is proposed for robot health assessment, incorporating fault
detection and fault diagnosis. Signal processing techniques play a significant role in
building any condition monitoring system, in order to determine fault–symptom
relationships, and detect abnormalities in robot health. Fault detection stage is based
on time-domain signal analysis and a statistical control chart (SCC) technique. For
accurate fault diagnosis in the second stage, a novel implementation of a
time-frequency signal analysis technique based on the discrete wavelet transform
(DWT) is adopted. In this technique, vibration signals are decomposed into eight
levels of wavelet coefficients and statistical features, such as standard deviation,
kurtosis and skewness, are obtained at each level and analysed to extract the most
salient feature related to faults; the artificial neural network (ANN) is then used for
fault classification. A data acquisition system based on National Instruments
(NI) software and hardware was initially developed for preliminary robot vibration
analysis and feature extraction. The transmission faults induced in the robot can
change the captured vibration spectra, and the robot’s natural frequencies were
established using experimental modal analysis, and also the fundamental fault
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frequencies for the gear transmission and bearings were obtained and utilized for
preliminary robot condition monitoring.

In addition to simulation of different levels of backlash fault, gear tooth and
bearing faults which have not been previously investigated in industrial robots, with
several levels of severity, were successfully simulated and detected in the robot’s
joint transmission. The vibration features extracted, which are related to the robot
healthy state and different fault types, using the data acquisition system were
subsequently used in building the SCC and ANN, which were trained using part
of the measured data set that represents the robot's operating range. Another set of
data, not used within the training stage, was then utilized for validation. The results
indicate the successful detection and diagnosis of faults using the key extracted
parameters. A wireless embedded system based on the ZigBee communication
protocol was designed for the application of the proposed CM algorithm in real
time, using an Arduino DUE as the core of the wireless sensor unit attached on the
robot arm. A Texas Instruments digital signal processor (TMS320C6713 DSK
board) was used as the base station of the wireless system on which the robot’s fault
diagnosis algorithm is run. To implement the two stages of the proposed CM
algorithm on the designed embedded system, software based on the C programming
language has been developed. To demonstrate the reliability of the designed
wireless CM system, experimental validations were performed, and high reliability
was shown in the detection and diagnosis of several seeded faults in the robot.

Optimistically, the established wireless embedded system could be envisaged for
fault detection and diagnostics on any type of rotating machine, with the monitoring
system realized using vibration signal analysis. Furthermore, with some modifica-
tions to the system’s hardware and software, different CM techniques, such as
acoustic emission (AE) analysis or motor current signature analysis (MCSA), can
be applied.

Keywords Condition monitoring � Industrial robot fault detection and diagnosis �
Experimental modal analysis � Embedded system � Wireless � Vibration signal
analysis � Wavelet transform � Statistical control chart � Artificial neural network
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Chapter 1
Introduction

Abstract This chapter provides the background to the research presented in this
thesis and outlines the motivation for and the rationale behind the study. The main
purposes of the different maintenance strategies available are described and con-
dition monitoring technique is discussed in detail and its main steps are explained.
Finally, the research aims and objectives are stated, and the structure of the thesis is
briefly described.

1.1 Background to Industrial Robotics

The robot institute of America (RIA) has defined the industrial robot as a repro-
grammable multifunctional manipulator designed to move material, parts, tools, or
specialized devices through variable programmed motions for the performance of a
variety of tasks (Spong et al. 2005). The mechanical structure of a standard
industrial robot is composed of number of links and joints. Links are the main
bodies that make the mechanism and are connected to each other by joints. The
kinematic chain of the robot is defined by the configuration of links and joints. The
number of joints identifies the number of manipulated degrees of freedom (DOF) of
a robot. The most common configuration of industrial robots is the six DOF with
serial kinematics and revolute joints, denoting that links are connected in series
through joints allowing for rotational movements.

Industrial robots are now commonly used in production systems in order to
improve productivity, quality and safety in automated manufacturing processes.
Many functions can be carried out by industrial robots and they represent the basic
building blocks of the production sector. Recent developments involve using robots
cooperatively with production line operatives, and they are now routinely used in
healthcare, nuclear plants, and other hazardous environments. Regardless of
application, there are significant implications for operator safety in the event of a
robot malfunction or failure, and the consequent downtime has a significant impact
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on productivity in manufacturing. As demonstrated by the applications shown in
Fig. 1.1, an unforeseen robot stoppage due to different reasons has the potential to
cause an interruption in the entire production line, resulting in economic and pro-
duction losses. Availability and maintainability, which can be defined as the
probability of a system operating satisfactorily in any time period and its capability
of being repaired, are therefore critical for industrial robots. Automated supervision
of the robot system is desirable as this can increase robot availability and main-
tainability and reduce operator effort. Currently, there are few commercially
available solutions that allow for the automated monitoring of the mechanical
components of the robot, thus the ability to continuously monitor the status and
condition of robots has become an important research topic in recent years and is
now receiving considerable attention. This is the main focus of the present study.
Additionally, advances in the fields of electronics and micro-electromechanical
technologies, where miniaturized and high-precision sensors and embedded pro-
cessors are readily available at affordable prices, has led to rapid developments in
the areas of mechanical systems and process monitoring. Not surprisingly, the
attention of the research community has shifted to focus on building remote and
automated condition monitoring (CM) solutions with lower number of sensors.

1.2 Industrial Robot Faults

The term fault is generally understood to mean an unpermitted variation of one or
more characteristic features of a system away from the normal, reasonable, and
standard behaviour (Isermann 2005). There are two types of fault that may occur in
machine plant systems. These can be categorized in terms of their behaviour over
time, and by their way they affect the system (Isermann 2005). The first type is
classified as an abrupt fault, which is a fault that occurs very suddenly in the

Robots doing a pick and place job                  Robots in the car manufacturing factory 

Fig. 1.1 Examples of industrial robot applications (http://www.gizmag.com; http://singularityhub.
com)
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system. This is difficult to predict and affects the operation of the system imme-
diately, as, for example, with a power supply drop. The second type is intermittent
faults. These are faults which affect the system at certain time intervals, and include
incipient faults which occur gradually over time. This fault type can be considered
to be an additive fault which is effectively added to the plant’s inputs, and changes
its parameters. These faults can be diagnosed before critical degradation takes
place, therefore, the interest in this thesis is limited to monitoring the second
category of faults.

Joints in industrial robot are commonly actuated by electrical motors. The per-
manent magnet servomotors are a popular choice to produce the driving force to
move the robot joints because of their easy operation and high power density and
performance (Halme 2006). In general, servomotors are electromechanical com-
ponents, whose faults can be originated from electrical, mechanical and from other
external reasons. Mechanical faults sources are bearing failures, movement in
winding, and rotor eccentricity, among others. For the electrical faults, overheating,
overloading, or short circuit will increase the resistance of components or break the
wires. These lead to decrease of rotor output power and extra power loss.

Also, in order to transform the motor power to the robot joints, mechanical
reduction gears in the transmission system are used. The power is then transmitted
from the input to the output shaft through the gear contacts and mesh. However, the
main fault mechanisms that may appear in the joint gearbox are basically the same
as that arising in the other types of gearboxes. The most common gear tooth failure
types are scuffing, cracking, macro and micro pitting, wear, bending fatigue,
fracture due to overload as well as backlash between mating teeth. Typically gear
faults initiate at a local point on the tooth surface and then progress until they lead
to gear wheel fracture. Moreover, since gears are normally supported on rolling
element bearings, faults in these bearings, such as wear in the inner or outer race,
represent another typical type of faults in the gear transmission. Due to the
importance of the moving parts in the robot, the focus in this thesis will be on
monitoring faults in gears and bearings of a robot’s gear transmission.

1.3 Overview of Maintenance Strategies

Maintenance can be defined as the combination of all technical and administrative
actions, including supervisory actions, intended to retain an item in, or restore it to,
a state in which it can perform a required function (ISO 14224:2004). It is per-
formed to keep equipment and systems running efficiently for at least the design life
of the components. Maintenance strategies can be divided into four different types
(Girdhar 2004) as shown in Fig. 1.2, as described below:

• Breakdown or run-to-failure maintenance: This is the oldest form of mainte-
nance, and its basic idea is to allow the machine to run until it fails, and then
conduct repairs. This is a good approach for machines when downtime is not
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important and does not have any significant effect on the production process.
This method can be associated with a high risk of catastrophic failure, unex-
pected shutdown, and high labour and maintenance costs. Additionally, it
increases health, safety, and environmental risks.

• Preventive or time-based maintenance: This is a set of scheduled maintenance
activities that are performed on machines at predetermined time intervals
regardless of their condition in order to prevent any deterioration in their
operating conditions. This technique is suitable for machines which do not run
continuously. However, time-based maintenance always requires parts in good
condition to be replaced along with those in a deteriorated condition. This may
triple the cost involved: the cost of the parts themselves, the maintenance cost,
and the downtime needed to replace those parts.

• Predictive or condition-based maintenance: This is a set of activities which are
performed only when a functional failure is identified. This approach depends
on continuous monitoring of changes in the physical condition of equipment
(signs of failure) in order to maximize its service life without increasing the risk
of failure.

• Proactive or prevention maintenance: This maintenance philosophy relies on
connecting all failures to their root causes. It is also called root cause failure
analysis (RCFA) as it uncovers the latent causes of any undesirable event in
the cvvmachine. Therefore, additional efforts are required to thoroughly

Fig. 1.2 Maintenance strategies (Girdhar 2004)
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investigate the cause of the failure and to determine appropriate approaches to
improve the reliability of the machine and prevent potential problems from
occurring repeatedly. The main disadvantage of proactive maintenance is that
knowledgeable and well-trained personnel are required along with the pro-
curement of specialized equipment.

1.4 Background to Condition-Based Monitoring
(Maintenance)

Condition monitoring (CM) was first developed for the American nuclear industry
in the 1960s (Wild 1994). It is termed online CM when it runs concurrently during
the normal operation of the system. If, however, the system needs to be run in a
particular manner, it is called offline CM. On- or off-line CM can be defined as a
type of maintenance inspection where an operational asset is monitored and the data
obtained is then analysed to detect signs of degradation, diagnose the causes of
faults, and also predict how long it can be safely or economically run (Beebe 2004).
The basis of CM is illustrated in Fig. 1.3 below.

The philosophy reflected by the above figure is that suitable parameters need to
be chosen which can be used as metrics to provide good and reliable indicators of
the internal condition of the system and its key components. Periodic measurements
are taken at appropriate time intervals to establish whether or not these parameters
remain within the repeatability band. The values of parameters will tend to lie
outside the repeatability band as system performance becomes degraded, eventually
leading to a fault occurring, and thus the state of the system can be established.

However, various monitoring techniques can be used to establish the status of a
machine, including vibration, acoustic emission, wear particles, and thermal mon-
itoring. One or more of these methods can be applied depending on the machine’s

Fig. 1.3 The principle of
condition monitoring (Beebe
2004)
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criticality and importance. CM is very important for different types of electrical and
mechanical machinery and equipment, and can provide many advantages such as:

1. Improved safety and the avoidance of unexpected catastrophic breakdown.
2. Improved reliability.
3. Improved product quality.
4. Increased operational machine life.
5. Increased machine productivity.
6. Reduced maintenance costs.

A general overview of CM is shown in Fig. 1.4 (Marwala 2012). It is essential to
employ appropriate sensors with data capturing devices to gather data from the
system. Examples of these devices include accelerometers, strain gauges and
microphones. Data analysis is carried out using different signal processing tech-
niques, for example, empirical mode decomposition (EMD), or wavelet or Fourier
transforms, with which to analyse the data obtained (Marwala 2012).

A specific feature extraction process is used to detect information about the
machine. Moreover, the features in the previous step will be interpreted in the next
stage (decision making process). In this stage many artificial intelligence tech-
niques, such as neural network or fuzzy logic, can be employed (Marwala 2012).
Once a decision is made, fault diagnosis is completed in the final step.

The prediction of the state of health of a machine or structure represents the main
aim of condition monitoring. There are five steps that can be used in the estimation
procedure as shown in Fig. 1.5 (Marwala 2012). The first step is the detection of
whether or not there is a fault in the machine. After that, the nature of the fault is
defined using fault classification techniques. The third step is applied to determine
the exact location of a fault, and then the degree of seriousness of the fault identified
in the fourth step. The final stage in the fault estimation procedure is the prediction
of the remaining useful life of the machine, which is the most inaccurate part of the
process (Beebe 2004). These are the ideal steps, but the exact procedure used
depends on the specific requirements and nature of the system concerned.

Data acquisition 
device

Data analysis 
device

Feature 
extraction

Decision making Condition 
diagnosis

Fig. 1.4 The procedure of the condition monitoring process (Marwala 2012)

Fault detection
Fault

classification Fault location
Fault

quantification
Remaing life 
estimation

Fig. 1.5 Machine state estimation (Marwala 2012)
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1.5 Challenges

Let us imagine that a six degree of freedom robot working in a factory involved in
car or aircraft manufacturing, as illustrated in Fig. 1.1. The main job of this robot
may be to manipulate a work piece, carrying a tool, or perform spot welding or
riveting, performed on the car or aircraft structure at different locations and at fixed
time intervals. Normally, such work is performed in a continuous or point-to-point
(intermittent) cycle according to a program stored in its control unit. Here the robot
arm that holds the tool will move along the desired path, waiting at predefined
points for the programmed operation to be achieved by the tool. Having finished the
cycle, the robot returns to its initial position, and at the subsequent start signal it
repeats the whole series of movements. This repetitive operation has to be
accomplished precisely and reliably over time. So, when the robot is first installed it
will do its job accurately and meticulously, but after a period of time the robot’s
performance might degrade. The main causes of degradation in its performance
may be because of wear in the robot joint’s transmission, or an electrical fault in the
motors which are fixed inside the robot joints (as discussed in Sect. 1.2).

Robot arms exhibit very complex dynamic behaviour, and different defects can
affect this behaviour. Also, their motion is completely different from that of rotating
machines (or other continuously moving machines), for which the majority of
present CM systems have been designed. However, in order for the robot to
complete the scenario described earlier, each joint in the robot body will move at
different angular speeds (and accelerations), needing different torques, and rotating
at different angles. When this motion is compared with that of rotating machines, it
can be noticed that the latter move at continuous and fixed speed, while the for-
mer’s movement is discrete and varying over time. Continuously rotating machines
emit continuous signals during their operation. Therefore, the CM system will be
relatively easy to implement as long as there is a continuous signal during any time
period. On the other hand, the signals emitted from the robot’s mechanical or
electrical parts will be transitory and last for a very short time. Consequently, the
challenge here is how to design a reliable and intelligent CM system to be able to
deal correctly with the transitory and non-stationary nature of the robot signals for
accurate fault detection and diagnosis. Therefore, the signals captured and features
extracted have to be analysed and classified in an appropriate way to provide an
unambiguous identification of a faulty robot part before a catastrophic failure
occurs.

1.6 Aims and Objectives

The majority of the previous research on industrial robots health monitoring is
focused on offline monitoring of a limited number of faults, such as backlash in
gears (Trendafilova and Van Brussel 2003; Lima et al. 2011; Slamani and Bonev
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2013), but does not diagnose the other gear and bearing faults, such as gear tooth
and inner (or outer) race bearing faults. Thus, the main aim of this research is to
design and develop an online and intelligent condition monitoring system based on
wireless embedded technology to detect and diagnose, in addition to backlash
faults, the most common faults that could be progressed in the transmission systems
(gears and bearings) of industrial robot joints. In the context of this research,
intelligence means the ability to automatically acquire signals, process them, extract
features, detect the fault and diagnose it and then displaying the result to the
operator. To achieve this, the following objectives have been identified:

• To undertake a critical review of recent and past research in the area of condition
monitoring and fault diagnosis, with an emphasis on their application to
industrial robots. To evaluate the performance of commonly utilized diagnostic
techniques in terms of their suitability for robot fault detection, and identify the
recent developments in the use of embedded systems in the field of condition
monitoring.

• To identify and diagnose the most common faults occurring in industrial robots
by using conventional condition monitoring techniques.

• To select appropriate signal processing and feature extraction techniques to deal
with the non-stationary nature of the signals from the robot.

• To perform frequency response function (FRF) analyses in order to establish the
dynamic characteristics of the robot used in this study.

• To design a data acquisition system, signal analysis, and feature extraction
software based on the selected signal processing and feature extraction
techniques.

• To develop an experimental procedure for the simulation of different fault
scenarios in the robot joints.

• To design an intelligent robot health assessment and fault classification system
to be uploaded later onto the embedded system.

• To design an intelligent embedded sensing system for both monitoring and
diagnostics. The device has to be wireless with a minimum number of sensors.

• To undertake a series of extensive experiments to validate the performance of
the proposed system, after which it can then be implemented on an industrial
application.

1.7 Outline of the Thesis

This Chapter provides background information about maintenance strategies and
CM. The motivation for conducting this work, its expected challenges, and the aims
and objectives of the study are then discussed. A review of previous and recent
research on CM techniques applied to different machinery, with an emphasis on
industrial robot condition monitoring, is presented in Chap. 2. Chapter 3 discusses
the proposed CM algorithm along with the advantages and disadvantages of the
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different signal processing techniques that have been employed previously for
machinery health monitoring. Then, suitable techniques based on the nature of the
signal emitted from the robot and the proposed CM algorithm are selected. The
dynamic characteristics of the PUMA 560 robot, as used in this study, are found by
performing modal analysis on the robot, and this is with a general overview about
the PUMA 560 robot are described in Chap. 4.

In Chap. 5 different faults that can occur in the transmission system of the robot
with their related frequencies are discussed, along with the design of a data
acquisition system based on National Instruments hardware and software, for
preliminary evaluation. The focus of Chap. 6 is on analysing the robot system by
simulating different types of faults in the robot. Then, features are extracted and
saved to be utilized later in the design of the intelligent condition based monitoring
(iCBM) system. The work in this chapter is based on the data acquisition system
design presented in the previous chapter. In Chap. 7 the iCBM system is designed
based on statistical control chart (SCC) and an artificial neural network (ANN). In
this chapter, the fundamental principles and application of these two methods are
also outlined.

Chapter 8 describes the procedure followed in the design of the wireless
embedded system used in this research and the evaluation techniques that were
undertaken in the selection process of its component. Chapter 9 then presents a
description of flowcharts of the embedded software prepared using the C pro-
gramming language and discusses the embedded system validation results. Finally,
the conclusions of the study along with a summary of the research contributions,
achievements and recommendations for future work are provided in Chap. 10.

References

Beebe, R. S. (2004). Predictive maintenance of pumps using condition monitoring. New York:
Elsevier Advanced Technology.

Girdhar, P. (2004). Practical machinery vibration analysis and predictive maintenance Oxford
Newnes. Oxford

Halme, J. (2006). Condition monitoring of a material handling industrial robot. In 19th
International congress, 2006 Lulea, Sweden.

Isermann, R. (2005). Model-based fault-detection and diagnosis—status and applications. Annual
Reviews in Control, 29, 71–85.

ISO 14224:2004. Petroleum and natural gas industries—Collection and exchange of reliability
and maintenance data for equipment. Geneva: International Organization for Standardization.

Lima, M. F. M., MacHado, J. A. T., & Crisóstomo, M. (2011). Experimental backlash study in
mechanical manipulators. Robotica, 29, 211–219.

Marwala, T. (2012). Condition monitoring using computational intelligence methods. London:
Springer.

Slamani, M., & Bonev, I. A. (2013). Characterization and experimental evaluation of gear
transmission errors in an industrial robot. Industrial Robot, 40, 441–449.

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2005). Robot modeling and control. New York:
Wiley.

1.7 Outline of the Thesis 9

http://dx.doi.org/10.1007/978-3-319-44932-6_4
http://dx.doi.org/10.1007/978-3-319-44932-6_5
http://dx.doi.org/10.1007/978-3-319-44932-6_6
http://dx.doi.org/10.1007/978-3-319-44932-6_7
http://dx.doi.org/10.1007/978-3-319-44932-6_8
http://dx.doi.org/10.1007/978-3-319-44932-6_9
http://dx.doi.org/10.1007/978-3-319-44932-6_10


Trendafilova, I., & Van Brussel, H. (2003). Condition monitoring of robot joints using statistical
and nonlinear dynamics tools. Meccanica, 38, 283–295.

Wild, P. (1994). Industrial sensors and applications for condition monitoring. London:
Mechanical Engineering Publications.

10 1 Introduction



Chapter 2
Literature Review

Abstract The thesis title reflects a number of themes, i.e. intelligent system,
embedded system, condition monitoring and industrial robot, and previous and
recent research in each theme needs to be studied thoroughly; however, there has
not been much researches in the field of robot condition monitoring. Thus the
purpose of this chapter is to evaluate the condition monitoring methods that have
been developed for different machinery with a view to applying the most appro-
priate one to robots and collectively helps to establish if there is a gap in the area of
industrial robot condition monitoring. This chapter will give and describe in its first
two sections the necessary background information about the various condition
monitoring approaches and techniques. Statistical and Artificial intelligence tech-
niques, such as artificial neural networks (ANN), fuzzy logic system (FLS), genetic
algorithm (GA), and support vector machine (SVM), which can be applied to
address the issues of fault detection and diagnosis, will also be reviewed. Then, the
principle of embedded systems and their application in condition monitoring is
reviewed in the third section. The last section of this chapter will discuss the work
done in robotics health monitoring and finally the research gap is addressed in the
summary section.

2.1 Condition Monitoring Approaches

In machines condition monitoring (CM), fault detection/diagnostic approaches can
be classified into two types, dependent on whether the diagnosis evaluation is based
on deterministic or stochastic information (e.g., historical, statistical parameters).
The first of which has been termed a model-based or “white box” approach, while
the second is known as data-driven or “black box” approach (Park and Zak 2003;
Kim 2010; Butler 2012). Sections 2.1.1 and 2.1.2 define the principles of these
approaches and present a brief overview of previous work based on them.
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2.1.1 Model-Based Approach

The model-based fault detection approach employs a mathematical model of the
system under observation, by assuming that a fault in the system will lead to
deterministic changes in the model parameters. The model-based approach relies on
comparing the model outputs with the actual system outputs to generate a residual
signal, and based upon the properties of the generated residual signal, potential fault
conditions are identified and useful information is extracted (Ding 2008). The basic
concept of a typical model-based fault detection approach is illustrated in Fig. 2.1.

As indicated in Fig. 2.1, there are two main stages in this approach, the first of
which generates the residual which is then passed to the residual evaluation stage.
Throughout the fault-free operation, the magnitude of the residual signal should be
approximately zero, indicating that the proposed model is accurately describing the
current behaviour of the system. If, however, the value of the residual signal
diverges from zero, appropriate processing and analysis techniques are applied to it
in order to obtain valuable features related to the present fault. The properly pro-
cessed residual signal is then forwarded to a decision logic routine to map the
behaviour of the residual signal onto a specific fault condition.

The most important aspect in the model-based approach for precise fault
detection is the requirement of an accurate and robust mathematical model of the
system under study. In such models since they are usually derived from first
principles, using ordinary differential equations, different elements of the model are
related to actual physical properties. Therefore, the main advantage of model-based
techniques is the capability of detecting unanticipated faults as well as the
replacement of hardware redundancy by analytical redundancy (Vachtsevanos et al.
2006). However, in many real world applications it is almost impractical to apply
model-based diagnostic approaches, since many physical processes are too complex
to develop accurate model. This will cause mismatch between the process and
model outputs which, in turn, lead to large error signals usually giving rise to false
alarms (Ding 2008).

Fig. 2.1 Model-based fault diagnosis flowchart (Ding 2008)
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A great amount of work have been undertaken to study the dynamic modelling
of, for example gears and bearings, for fault detection. Gears have wide industrial
application and unforeseen failures can be enormously damaging, and so research
into CM and fault diagnosis in gearboxes is very important. Parey et al. (2006)
propose a 6-degree-of-freedom dynamic model for a spur gear pair to simulate and
study the effect of lateral–torsional vibration combination on vibration response in
the presence of localized tooth defects. The model included two inertial masses
representing load and prime mover, two shafts, and bearings, as shown Fig. 2.2. To
analyse the simulated signals a multi-resolution signal processing technique was
used to break-down the vibration signal to multi-level. Then, statistical parameters
such as Crest factor and kurtosis were calculated from each level and utilized to
give an early detection of contact surface pitting. Recently, Liang et al. (2015) have
developed a dynamic model to simulate the vibration source signals for a planetary
gearbox in the healthy and the cracked tooth conditions. The signals were analysed
using time- and frequency-domain feature extraction techniques. For model veri-
fication experimental work was accomplished and the results were deemed
acceptable.

Bearings are of paramount importance in most types of machinery, and bearing
failure is one of the foremost causes of breakdown in machines. A generic scheme
for health monitoring of rolling element bearings was proposed by Jiang and Zhang
(2012). The approach incorporates vibration modelling and online fault dimension
estimation. Offline training was applied to obtain the parameters of the vibration
model. The trained model is then used online in parallel with a real system (in
service) to realize model-based fault detection and diagnosis. To address noise and
uncertainties problems associated with fault dimension estimation, an extended
Kalman filter was used to increase the accuracy of diagnosis. The proposed system
was validated on a case study of rolling element bearing health monitoring and
experimental results demonstrated the efficiency of the proposed method. An earlier

Motor

Gears
Load

Fig. 2.2 Schematic of
modelled spur gear pair
(Parey et al. 2006)
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paper introduced a dynamic modelling for a gearbox test rig to investigate the effect
of a defect in gears and bearings on the vibration signal (Sawalhi and Randall
2008). Two damage types in the gears, spalls and cracks, and inner race, outer race
and rolling elements faults in the bearings were adopted in this study. To detect
these faults, diagnostic techniques such as spectrum comparison, spectral kurtosis
analysis and envelope analysis were applied to the vibration signal for both
experimental and simulation work.

2.1.2 Data-Driven or Model-Free Approach

Data-driven approaches depend on the features extracted from the measured process
data for building a model that represents the process, and these are categorised into
two types; statistical based methods and those based on artificial intelligence
(AI) techniques (Jardine et al. 2006; Yadav and Kalra 2010). Within these cate-
gories, a huge range of techniques have been employed to handle a wide variety of
fault detection problems. The suitability for usage a data-driven monitoring strategy
is for processes in which an explicit mathematical model is difficult to construct
because of shortage of knowledge or information related to the process (Yadav and
Kalra 2010). In the following subsections, an overview of these methods and their
applications are presented.

2.1.2.1 Statistical Based Approaches

The concept of model-free based fault detection and diagnosis has stimulated the
interest of using novelty detection for condition monitoring, which focuses on
identifying any deviations between the features extracted from the recent measured
data and the data measured under normal (healthy) operating conditions. The fea-
tures obtained from a machine in its undamaged state will have a distribution with
an associated mean and variance. However, a variation in the mean and/or variance
will appear if the machine is damaged.

Statistical control charts (SCCs) provide a framework for monitoring the dis-
tribution of the features and detection if they are inconsistent with the past healthy
state, and any change in the distribution characteristics of the features will indicate
damage, termed outlier analysis. SCCs are one of the earliest statistical fault
detection techniques dating back to 1931 (Yadav and Kalra 2010). Starting with the
advent of Shewhart control charts for averaging, usually called X-bar ðXÞ chart,
which is normally used in combination with a range chart (R chart) or standard
deviation chart (S chart) (Montgomery and Runger 2014). Further modification to
Shewhart charts have resulted in cumulative sum (CUSUM) and the exponentially
weighted moving average (EWMA) charts in the early 1950s (Yadav and Kalra
2010). Because these charts are easy to construct, implement, and interpret, they
received a large acceptance in the field of machines and processes monitoring.
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Techniques based on SCCs can be classified to two approaches: the univariate and
multivariate approaches. In the former method each characteristic of interest is
monitored independently whereas in the latter the concurrent monitoring of char-
acteristics is accomplished, considering the correlation that may exist among the
various characteristics (Yadav and Kalra 2010; Kisić et al. 2013). Despite their
acceptance, the main disadvantage of control charts is that their purpose is for the
detection of damage, rather than its quantification and location.

Baydar et al. (2001) presented a multivariate statistical methodology for helical
gears monitoring. The gathered time-domain vibration signals were employed to
form a reference condition model using principle component analysis (PCA). The
T-square control chart, type of multivariate SCCs, was adopted as health condition
indicator. Researchers concluded that when tooth failures occur, the probability
density function (PDF) of the measured signal will change which gives good
indication about the health condition. Another paper applied two statistical tech-
niques for wind turbine gearbox CM (Zhang et al. 2012). The first technique was
based on data-mining algorithms used to build a statistical model for predicting the
jerk indicated by the vibration excitement of the gearbox. This model was utilized
in conjunction with experimentally captured vibration signal to produce residual
signals. Two control charts, X-bar and EWMA charts, were constructed to evaluate
the residual and fault prediction.

Another application, amongst others, of statistical control charts is for roller
bearings condition monitoring. Niknam et al. (2013) at University of Tennessee
investigate the use of CUSUM chart for detecting bearing failures, such as
unbalance, based on acoustic emission signal analysis. Similarly, Zhou et al. (2008)
presented an approach for in situ induction motor bearing fault detection by
combining noise cancellation and X-bar chart. In this work the motor current sig-
nature was analysed to extract features related to bearings deterioration. Two
control charts were developed based on Shewhart average chart to identify the
initial start point of the bearing defect (Wang and Zhang 2008). These charts are
named adaptive moving average chart, and adaptive Shewhart average level charts.
Based on these charts the researchers were able to produce warning and action
limits, as shown in Fig. 2.3. The findings of this study suggest that the adaptive
Shewhart average level chart overcomes the drawback of adaptive moving average
charts by working out the limits using all the bearings’ data.

More attractive applications of SCC are for induction motors and rotating shafts
health monitoring. García-Escudero et al. (2011) proposed a methodology for
incipient fault detection in induction motors. They used fast Fourier transform
(FFT) and wavelet transform (WT) signal processing techniques to detect signifi-
cant peaks in the captured current signal. Then, a quality control approach based on
multivariate T-square control chart was successfully applied to detect the pro-
gressive deterioration of the rotor cage. Another paper proposed the use of CUSMA
chart to monitor the misalignment in a rotating shaft (Sun and Chang 2004). The
gathered vibration signal was fitted with an autoregressive model and the residuals
between the fitted and observed vibration signals used as a monitored parameter.
Control chart limits were designed using the healthy baseline residual data. The
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results showed that this approach was capable of detecting both mean and variance
shifts and also indicate the fault severity.

2.1.2.2 Artificial Intelligence Based Approaches

Artificial intelligence (AI) can be defined as a “computerized approach that employs
knowledge, reasoning and/or self-learning to enable machines to perform tasks
which humans perform using their intelligence” (Heng 2009). In recent years, AI
techniques such as neural networks, fuzzy logic and support vector machines have
been widely developed to improve the accuracy and efficiency of fault detection and
the diagnosis of machines which can take over some menial and tedious tasks. The
intelligent detection and diagnosis begins after data has been collected and
important features extracted, as illustrated in Fig. 2.4. The following bulleted
sections summarize the fundamental concepts of these methods and their applica-
tions to the area of intelligent condition monitoring.

• Artificial Neural Network (ANN): An artificial neural network (ANN) is a
computational structure inspired by the data processing and learning ability of
biological neurons in the brain. It is composed of simple computation units
called neurons, which integrate the functionality of both memory and compu-
tation (Samarasinghe 2007; Dreyfus 2005). ANNs can be employed for a variety
of tasks, such as function approximation, classification, pattern recognition,
clustering, and forecasting (Samarasinghe 2007). For example, an ANN was
applied to fault detection and diagnosis in 4-stroke internal combustion engine

Fig. 2.3 Shewhart rms average chart for bearing fault detection (Wang and Zhang 2008)
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by depending on a minimum number of sensory data (Chandroth et al. 1999).
Cylinder pressure and vibration data were acquired from the engine. By using
features of the collected data, two sets of artificial neural nets were trained
separately. Experimental work was carried out using a twin cylinder diesel
engine, and it was demonstrated that it is possible to detect and diagnose the
most common component faults in the engine using either cylinder pressure or
vibration amplitude. Such a system would thus require fewer sensors. Neural
networks are commonly arranged in layers, and each layer has an array of
interconnected elements. Each element receives an input signal, manipulates it,
and then output signals are forwarded to the other connected elements in other
layers. There are many different forms of neural networks depending on their
connection patterns. However, the main classes of neural networks are the
feed-forward neural network, whose signal direction is from the input to output
layer without any feedback connection. That means the past signals are not used
for processing the new signals, as illustrated in Fig. 2.5a. The recurrent
(Feedback) Neural Network, which has a feedback connection, and utilizes past
signals for identifying the new features, Fig. 2.5b.

There has been significant interest in applying artificial neural networks to
identify and diagnose faults in machinery. Kudva et al. (1992) used multilayer
perceptron neural networks to deduce the size and location of damage in smart
structures using measured strain values at different locations. More recently, and in
contrast, Parhi and Dash (2011) applied the same technique for structural moni-
toring, but vibration signatures were used instead. Both studies achieved acceptable
levels of prediction of crack locations.

Lopes Jr et al. (2000) implemented impedance techniques and neural networks to
detect, locate, and characterize structural damage. The advantages of smart mate-
rials technology and the characteristics of neural network were combined in
proposing a self-diagnostic procedure. Experimental investigations were success-
fully carried out to locate and identify damage in a quarter-scale bridge section. It
was concluded that this technique can be applied to complex structures. In another
study, a 2-step neural network was used to design a predictive fault detection and
diagnosis model for the monitoring of nuclear power plants (Bae et al. 2006). The
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Fig. 2.4 Some of artificial intelligence techniques used for condition monitoring
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main role of the first network was to classify failure type, and then failure severity
was determined using the second network. The results showed that this model was
suitable for failure detection, but additional work was needed to increase its
accuracy. Another study conducted by Zhang et al. (2007) looked at fault diagnosis
in a steam turbine generator by applying of an integrated neural network based on
combined information. The aim of this method was to overcome the problem of
multi-failure mode diagnosis in a single neural sub-network, which normally
requires many learning samples. The preliminary diagnosis of faults was imple-
mented using one sub-neural network, after which the sub-neural networks were

(a) Feed-forward network 

(b) Recurrent network 

Fig. 2.5 The main categories
of artificial neural network
(Heng 2009)
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merged to yield the final decision. It was found that there are many advantages to
this approach as system accuracy and reliability are increased, and the uncertainty
of system information is reduced.

• Fuzzy Logic (FL): Fuzzy logic or fuzzy set theory is an important technique
first introduced by Zadeh in the 1960s to deal with vague, imprecise and
uncertain knowledge and data. It is especially suitable for systems with a
mathematical model which is difficult to drive. FL is composed of four elements
(Marwala 2012): a fuzzy set, which is applied to achieve a flexible represen-
tation of the elements in the fuzzy system; a membership function, which shows
the level of possibility that an object is an element of a certain class; logical
operators, which are used to find new fuzzy sets from the existing fuzzy sets;
and fuzzy rules, which show the conditional articulations used to perform the
input–output relationships of the system, which can include human descriptive
judgments such as:

IF speed is high THEN stopping-distance is long
IF speed is low THEN stopping-distance is short

Decisions in FL can be made with estimated values and incomplete information.
A decision might be changed at a later time when extra information is available, or
when it may not be correct. For instance, if the input parameter values of a system
might be ‘fuzzy’ or incomplete, the conclusions drawn will be incomplete or
incorrect as well (Munakata 2008). The major advantages of fuzzy systems are their
robustness and flexibility, since they are not restricted to a true or false approach, and
they are ideal where system information is limited and unclear (Lim 2009). The
application of fuzzy systems in CM has recently been studied in building reliable
monitoring systems. For example, Navarro et al. (2010) successfully designed a FL
system for monitoring of electric motor bearings. The researchers used more than
one signal to accurately detect bearing failures. These included vibration, stator
current, bearing frequency, and acoustic emission. In another paper, a computer
system-based fuzzy tool was developed to monitor an induction motor by measuring
its vibration signal (Janier and Fazrin Zaim Zaharia 2011). The information received
from the vibration sensors was used to determine whether or not faults had occurred
and actions would then take place to protect the motor from further damage.

Aliustaoglu et al. (2009) developed a fusion approach based on a two-stage
fuzzy system and sensor readings for tool wear monitoring. The machine acoustic
emission, thrust force, and vibration signals were used to drive the statistical
parameters by applying the first stage of the proposed approach, using a Mamdani
fuzzy model, as demonstrated in Fig. 2.6. The output values from the first stage
were taken as the input parameters of the second stage, which applies the
Takagi-Sugeno fuzzy model. Then, the final decision was made using the threshold
function and depending on the output values from the second stage as illustrate in
Fig. 2.7. The authors mentioned that the performance of this approach can be
improved by using electric motor current as a fourth input parameter to the fuzzy
system, in addition to using various classifiers.
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• Genetic Algorithm (GA): The genetic algorithm was first introduced by John
Holland in the early 1970s. It can be defined as a computational technique that
mimics the genetic processes of biological organisms in order to solve search
and optimization problems (Negnevitsky 2005; Munakata 2008; Marwala
2012). To apply a GA to any problem, several key steps have to be followed
(Goldberg 1989; Marwala 2012). Firstly, a number of possible individual
solutions containing a number of chromosomes are randomly generated. Then,
the fitness value of each individual current solution has to be computed, the
purpose of which is to evaluate the performance of each chromosome. Once the
fitness values have been calculated, a new population will be generated by
applying crossover and mutation operations to the individuals. When a con-
vergence criterion is reached, the algorithm stops; and if not, this process is
repeated from the second step.

Genetic algorithms have since been adopted in many different disciplines, such
as for automatic programming, missing-data estimation, finite-element analysis, and
condition monitoring (Marwala 2012). For example, GA was successfully applied
in the bearing monitoring process to select the most important features from a large
set of vibration signals (Jack and Nandi 2000), where in one set of experiments the
GA was capable of selecting a subset of six inputs from a set of 156 features. In a
similar study, a GA-based optimization method was applied to select the optimal

Fig. 2.6 First stage of proposed Fuzzy-sensor model (Aliustaoglu et al. 2009)

Fig. 2.7 Second stage of proposed Fuzzy-sensor model (Aliustaoglu et al. 2009)
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cutting conditions for each pass of a turning operation, with consideration given to
the effect of overall progressive tool wear on machining performance (Pal et al.
2011). The optimization process showed precisely that cutting parameters are not
constant when tool wear is taken into account, from which it was concluded that the
GA has very good classification accuracy. In other studies, a two-stage process was
utilized to detect structural damage (Chiang and Lai 1999; Moslem and Nafaspour
2002), where in the first stage the residual force method was applied to initially
locate damage. The GA was then used in the second stage to evaluate the damage in
the identified structure.

Differences in the natural frequencies of force vibration are most frequently
represented as a potential damage indicator (Ostachowicz et al. 2002). However,
changes in the first four frequencies have been used to identify the exact location
and magnitude of an added concentrated mass on a simply supported, isotropic
plate. A GA model was developed which showed good ability in finding the
accurate location and value of added mass. Meruane and Heylen (2011) have
presented a technique based on model properties and a GA to detect faults in a
tri-dimensional space-frame structure. Two damage scenarios were adapted in this
work to verify this technique. The findings showed that this method was capable of
detecting and quantifying three simultaneous instances of damages.

• Support Vector Machines (SVM): Support vector machines are a type of
artificial intelligence methodology applied mostly for the classification and
regression of data. SVMs were first introduced by Vapnik in the late 1990s and
are supervised learning methods derived from statistical learning theory, as in
most neural network systems. Supervised learning methods refer to machine
learning methods which try to generate a clear map between the inputs and
outputs in the training data. SVMs are suitable for two-class classification, but
there are a number of extensions which enable this technique to be used for
multi-class classification problems (Marwala 2012; Lim 2009).

SVMs have gained significant importance recently because of their superior
ability to generate an accurate representation of the relationship between the input
and output from a small amount of training information (Sharma 2008). For
example, if there is a two-class dataset, a SVM will classify them by finding a
separating plane that will divide the space containing the data. All points at each
side of the hyper-plane will belong to a specific class. The best separating plane can
be a linear boundary in the input feature space, however, in some cases a non-linear
boundary could be used to separate the target classes where a linear boundary might
not be able to separate them adequately, as shown in Fig. 2.8 (Fulcher 2006).

Nowadays, SVMs are applied in many research fields, such as biological
sequence analysis, text classification, data mining, facial recognition and mechan-
ical fault diagnosis, and the results are promising (Lim 2009; Zhang et al. 2009). In
terms of fault detection, SVMs have been applied to detect the location of damage
in rigid structures (Shimada and Mita 2005; Shimada et al. 2006). Changes in the
natural frequencies of the structure were used first as training data for the SVMs,
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and then to detect damage location. The main goal of this study was to reduce the
number of sensors used to collect important data from the structure. The authors
pointed out that this technique effectively decreased the possibility of incorrect
damage detection. A comparison study of artificial neural networks (ANNs) and
support vector machines (SVMs) has been presented which compares their per-
formance in gear fault detection (Samanta 2004). Vibration signals in the
time-domain were used in this research for feature extraction. Moreover, the
number of nodes in the hidden layer in the case of ANNs and kernel parameters in
the case of SVMs were optimized using GAs. The researchers used experimental
data for a known machine to train the ANNs and SVMs. The findings showed that
the classification accuracy of SVMs is better than that of ANNs without GA, and
the performance of both classifiers increased when GA was used. Additionally,
Zhong et al. (2010) used SVMs for the intelligent diagnosis of gearbox faults. An
experimental test rig was designed to simulate the most common faults occurring in
the gearbox, such as imbalance and misalignment. It was concluded that the SVMs
are able to precisely recognize different fault types and their severity.

A research study was conducted using SVMs technique to detect and classify of
faults in rolling bearings depending on vibration signals in the time-domain (Rojas
and Nandi 2006). Four bearing faults were simulated in this study: an inner race
fault, outer race fault, rolling element fault and cage fault. It was found that the
accuracy of SVMs is minimized if there is a limited amount of training data.
Furthermore, this technique has been utilized for the purpose of rotor failure
assessment (Yan et al. 2009). It was found that the SVM was reasonable and
effective assessment of machinery degradation especially in complicated operating
conditions since it does not have limits of input parameters, and the computational
required time is also short. On the other hand, Caccavale et al. (2009) reported that
“the main drawback of the SVMs is the absence of control over the number of data
points selected as SVs by the learning algorithm. This may lead to a heavy com-
putational load in the presence of a large number of training data”. From the above

(a) Linear separation (b) Nonlinear separation

Fig. 2.8 SVMs for data classification (Fulcher 2006)
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it can be concluded that SVMs for condition monitoring is still under development
and requires further investigation.

• Hybrid systems: A hybrid intelligent system is a combination of at least two of
the intelligent approaches mentioned previously to achieve more accurate results
and better performance. A hybrid system can combine the advantages of dif-
ferent technologies. The main concept of hybrid systems is to create new
approaches where the components complement each other’s weakness (Lim
2009; Negnevitsky 2005; Munakata 2008). Recently, there has been an explo-
sive growth in the use of hybrid intelligent systems in condition monitoring, in
particular, for instance, in Neural- and Genetic-Fuzzy systems.

Neural networks have the capabilities of learning, memorizing, and recognizing
patterns in a way the fuzzy systems do not. In contrast, the strength of fuzzy logic
lies in its ability to model the decision-making of humans. So, the synergetic
integration of neural networks and fuzzy logic can complement each other
(Munakata 2008; Negnevitsky 2005). A growing number of researchers have
constructed and examined different forms of neural-fuzzy or fuzzy-neural networks.
Yen and Meesad (2001) developed a classification algorithm based on fuzzy-neural
networks called the incremental learning fuzzy neural (ILFN) network. This tech-
nique has the capability of learning new information without forgetting old infor-
mation. The authors concluded that this approach in classification is better than
many recognized classifiers. Additionally, an evaluation study has been conducted
to discuss the usability of three artificial intelligence (AI) methods in lathe turning
tool wear estimation (Balazinski et al. 2002). These methods were the feed-forward
back-propagation neural network, a fuzzy decision support system, and neural
network-based-fuzzy inference system with moving consequents in If-Then rules.
All three methods gave similarly acceptable results, but there were differences in the
training time required. The neural network and fuzzy logic systems needed a
considerable amount of training data. On the other hand, the training time was very
short for the neural-fuzzy system, making it easy to optimize and use in industry.

In another study, a neural-fuzzy system was applied for the detection of faults in
alternating current (AC) motors (Sainz Palmero et al. 2005). This method was tested
using an AC motor, and 15 non-destructive fault types were generated. The results
showed good levels of detection and classification. Moreover, the knowledge
extracted by a fuzzy rule set had an acceptable degree of interpretability. A multiple
adaptive neural-fuzzy inference system (MANFIS) methodology has also been
applied to detect cracks in dynamic structures (Parhi and Dash 2011). The input
layer of the controller was the fuzzy layer and the other layers were neural layers.
The relative deviation of the first three frequencies and mode shapes were used as
inputs to the fuzzy layer, and the outputs of this layer were used as inputs to the
neural layer. The final findings from the use of this method were relative crack
depth and relative crack location, showing good agreement with experimental
results collected using an aluminium beam with transverse cracks.
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A genetic algorithm has a perfect machine learning capability and satisfactory
global search ability, whereas its drawback is chance-dependent outcomes and
lengthy computation time. When combined with the benefits of fuzzy logic men-
tioned earlier, it introduces flexible and robust inference methods under high pos-
sibility of imprecision and uncertainty. An improved artificial intelligence technique
called a genetic-fuzzy system (GFS) can be developed by the hybridization of a
genetic algorithm and fuzzy logic. The genetic-fuzzy system combines the learning
ability of the genetic algorithm with the uncertainty representation characteristics of
fuzzy logic (Munakata 2008; Pawar and Ganguli 2003).

A genetic-fuzzy system has been utilized for damage detection in a cantilever
beam and helicopter blades (Pawar and Ganguli 2003). This method was used to
find the existence, location, and extent of damage. In order to calculate changes in
beam frequencies because of structural damage, a finite element model of a can-
tilever beam was applied. These changes in frequencies were used to generate the
fuzzy system, and rule-base and membership function optimized by a genetic
algorithm. It was concluded that this system allows easy rule generation for dif-
ferent structures. The same technique was used in a similar study by the same
research group to detect cracks in a thin-walled hollow circular cantilever beam,
which was made of composite material and used as part of a helicopter structure
(Pawar and Ganguli 2005). It was found that the effectiveness of this method
depends on the number of parameters, such as crack density and noise level.
Furthermore, it was observed that the genetic-fuzzy system showed reasonable
performance in damage detection and isolation.

Genetic algorithms have also been used for optimizing fuzzy system parameters.
This technique has been applied to monitor the performance of a cutting machine
(Gallova 2010). A simulation study was conducted along with experimental work
for result validation. The findings from the experimental work showed good
accuracy with theoretical results, and it was concluded that the proposed technique
is suitable for large-scale problems because of the ability of genetic algorithm to
extract the most effective features from a considerable number of parameters.
Furthermore, this hybrid technique has been used in medical diagnosis applications
to achieve correct disease classifications (Di Nuovo and Catania 2007). The
authors’ main aim of this study was to obtain an efficient diagnostic system and at
the same time reliable and easy for practitioners to use. The approach was applied to
three real-world benchmarks and compared with relevant work to show its
effectiveness.

2.2 Condition Monitoring Techniques

In the past few decades and with the development of sensing technologies, different
CM techniques have been utilized for the purpose of gears and bearings (or other
machines) health monitoring. These techniques, but not limited to, are vibration;
sonic emission; motor current; wear debris and lubricant analysis; and thermal
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monitoring. Each one of these techniques has its unique advantages and disad-
vantages and may suit one application but not another. For instance, wear debris
monitoring technique requires measuring and analysing the wear particles and
contaminants inside the used oil, and needs advanced and expensive laboratory
equipment, human expert inspection of the wear debris samples, and is very time
consuming (Ebersbach et al. 2006). In this section, a brief description of the first
three techniques with a review of previously and recently achieved work based on
them will be given, as they are the most applicable techniques to the work reported
in this thesis.

2.2.1 Vibration Condition Monitoring

When a defect is developed in a rotating machine while it is in operation, the result
is usually an increase in vibration level. Each component of a machine has its own
characteristic frequencies determined by its geometry and the rotational speed of the
machine. Therefore, by establishing the relationship between the measured fre-
quencies and expected defects, either by theoretical modelling of the machine or by
measurement, the defect along with its cause and severity can be determined by
performing a detailed vibration signal analysis. Vibration signals analysis has been
extensively used for machines fault detection and diagnosis in various industrial
applications (Gelman et al. 2011). Gear defect diagnosis based on the analysis of
vibration signals using multi-scale statistics was introduced by Loutridis (2008).
Experimental investigation to test the capability of this statistical technique was
carried out by analysing the vibration data recorded from a single stage gearbox
with a pair of spur gears. The fault was simulated on the gear by removing
approximately 10 % of the tooth material from the root. Wind turbine gearboxes are
one of the most important and fault-critical components in the turbines because of
the complicated alternating loads from wind turbulence. Empirical mode decom-
position (EMD) signal analysis technique has been used for analyzing the vibration
signal of a wind turbine gearbox (Teng et al. 2014), and intrinsic information from
the vibration signal of a field gearbox has been extract using EMD.

Huang et al. (2014) published a spur bevel gear fault diagnosis method based on
vibration signal analysis by employing wavelet analysis. To test the performance of
the proposed method, an experimental study was undertaken of two different faults
(tooth breakage and tooth surface wear) in the pinion gear. This paper analysed the
variations of gear fault vibration signal using time- and frequency-domain signal
analysis methods and then fault attributes were extracted using wavelet analysis.
Vibration signal analysis is widely used for planetary gearbox fault detection.
Recently, a research proposes two features, namely, accumulative amplitudes of
carrier orders and energy ratio based on difference spectra for gear and bearing
monitoring of a planetary gearbox (Lei et al. 2015). Vibration data acquired from a
gearbox test rig has been used to demonstrate the effectiveness of the proposed
features. The vibration data is measured under different motor speeds.
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A comparison has been made with those reported in the literature, and has been
reported that the proposed features are more successful than others in monitoring
and diagnosing gearbox faults.

Randall (2004) used the vibration signature of bearing faults to separate gear
from bearing signals in a helicopter gearbox. This technique was based on the
different statistical properties of bearings and gears, which were the main factors in
the fault diagnosis approach. An illustration was conducted using case history data
collected from the US, and Australian Navies. Shao and Nezu (2005) developed an
early bearing fault detection technique based on vibration signal de-noising. This
technique consists of an adaptive noise-cancelation filter and a wavelet-based
estimator. The researchers concluded that, using this method can improve the
signal-to-noise ratio when the signal is contaminated by noise and thus faults can be
detected efficiently.

A time-frequency analysis technique was adopted for real-time bearing fault
diagnosis and prognosis (Aliustaoglu et al. 2008). For frequency analysis, the Fast
Fourier transform (FFT) method was used, and experimental work carried out on
the bearing-shaft mechanism of an AC electric motor. A schematic diagram of the
experimental setup is shown in Fig. 2.9. A current sensor was fixed to the phase
line of the motor in order to measure the electric current passing through the driver
of the motor, while two accelerometers were placed on the bearing housing to

Fig. 2.9 Bearing fault diagnosis and prognosis system (Aliustaoglu et al. 2008)
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measure vibration. To analyze bearing status and the progress of any existing faults,
vibration and current data were gathered and digitized using a National Instruments
data acquisition card. A technique of envelope analysis was applied to separate the
modulation signal from the carrier frequency. The authors developed software to
perform signal processing task, and six types of defects were defined in this soft-
ware. The authors claimed that this technique is better than most other advanced
techniques, and it could be easily adopted for real-time bearing fault diagnosis.

2.2.2 Noise, Ultrasound and Acoustic Emission
(AE) Condition Monitoring Techniques

Acoustics is the study of the generation, propagation, and reception of sound that is
heard by a human being (Mohanty 2015). The sounds are classified as desirable or
undesirable, which is traditionally known as noise. Human ears are able to hear only
sound waves within a specific frequency range, which is known as the audible
frequency range (20 Hz to 20 kHz), whereas frequencies above 20 kHz are known
as ultrasonic. The acoustic emission (AE) technique deals with signals in the
high-frequency range from 100 kHz to 1 MHz (Stamboliska et al. 2015; Mohanty
2015).

Almost all machines under normal operating conditions emit sonic signatures
and any variation in these signatures can indicate the start of deterioration of some
components. An online gearbox monitoring system based on the LabView program
was developed by Wei et al. (2011). This system has the capability to analyze data
online and offline, and to query historical data. The authors concluded that the noise
detection system can effectively reflect the gearbox’s operation status, fault type and
location by using spectral analysis. They added that this technique has more
advantages than vibration measurement. However, the application of noise mea-
surements in CM is not practical because of the unpreventable noisy background
from other neighbouring machines operating in the site which reduces the accuracy
of fault detection.

An experimental study was conducted to compare the effectiveness of the
ultrasound and vibration measurement technique for the CM of low-speed bearings
(Kim et al. 2008). To precisely identify the presence and severity of defects from
measured signals, the researchers developed a type of signal processing analysis
called the peak ratio (PR), suggested by Shiroishi as shown in Eq. (2.1) (Shiroishi
et al. 1997):

PR ¼ N
Pn

j¼1 Pj
PN

k¼1 Sk
ð2:1Þ
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where, Pj is the amplitude value of the peak located at the defect frequency and
harmonics, Sk is the amplitude at any frequency, N is the number of points in the
spectrum, and n is the number of harmonics in the spectrum. The modified PR
(mPR) is shown in the following equation, and it depends on disparities between the
peak defect frequencies and the average value over the whole spectrum:

mPR ¼ 20 log10

Pn
j¼1 ðPj � AsÞ

As
ð2:2Þ

As ¼
Pb

k¼a Sk
ðb� aÞ ð2:3Þ

where, As is the average spectrum amplitude in the frequency band from a to b. It
was observed that the ultrasound technique was more effective than common
vibration measurements for fault detection. Recently, this opinion has been sup-
ported by another research group (Wei et al. 2011).

The AE technique has been increasingly used for condition monitoring of dif-
ferent machinery and structures. For example, Ogbonnah (2007) applied AE and
wavelet signal analysis techniques for gear fault diagnosis and prognosis. The result
of the gearbox health change over time was presented in statistical properties of
amplitude, and corresponding frequency and energy changes. A linear relationship
between AE amplitude, gearbox running time, and pit progression was shown in
this study. An intelligent health monitoring system for power transmission systems
(Onsy 2009), included fault prediction and classification, using AE, vibration and
oil debris analysis were combined using fuzzy logic. The aim of this was to monitor
two modes of gear fatigue failure; the progression of gear surface and bending
fatigue failure in helical gears. The progression of micro-pitting was monitored
using the AE average signal level, vibration signal root mean square (RMS), and the
mass of ferrous debris, whilst tooth-bending failure was monitored using the AE
peaks, the vibration kurtosis and oil debris mass rate.

As mentioned earlier the AE-based technique deals with signals in the
high-frequency range, and thus it requires much higher sampling rates than
vibration-based techniques. A comparative study for gearbox tooth damage level
diagnostics using AE and vibration measurements based on the same sampling rate
has been conducted recently (Qu et al. 2014). Partial tooth cut faults are seeded in a
gearbox test rig and experimentally tested in a laboratory. It was concluded that the
AE signals show more stable performance in fault detection, and reported that the
AE-based approach has the capability to differentiate gear tooth damage levels in
comparison with the vibration-based approach, since the vibration signals are easily
affected by mechanical resonance.
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2.2.3 Motor Current Signature Analysis

Motor current signal analysis (MCSA) offers a non-intrusive and alternative method
to detect mechanical faults through investigating electrical signatures. Provided
there is access to the current-carrying conductor to the motor, the drawn current by
the stator of the motor can be measured at distant locations from the motor; this
represents one of the advantageous of MCSA techniques, since there is no need to
mount any transducers or measuring equipment on or near the monitored machine.
The MCSA technique was limited to monitoring different faults on induction
motors (Kar and Mohanty 2006), including bearings faults.

Schoen et al. (1995) addressed the application of motor current spectral analysis
for rolling-element bearing damage detection in induction machines. The study,
first, reviewed and found the bearing characteristic frequencies and the modes of
failure associated with the construction of the bearings. Then, the relationship
between motor current and induced vibration, due to incipient bearing faults, was
considered and investigated. This was done by deriving the effects of different
bearing faults on the stator current spectrum. The experimental results verified the
predicted relationship between the vibration and current frequencies, and confirmed
that the stator current signature can be applied to detect the presence of a bearing
fault. Another study by Stack et al. (2004) developed a method for detecting
progressive motor bearing faults via stator current analysis. The method starts by
removing the significant frequency content that are irrelevant to bearing faults by
filtering the stator current. The filtered healthy current signal is then used to train an
autoregressive model to produce a baseline or reference model. When bearing
health is degraded, the deviation in spectral content from its baseline measurement
is increased. This increase in spectral deviation was then used as the fault index.
A CM technique based on statistical and numerical tools was suggested for
detecting the onset of faults in induction motors (García-Escudero et al. 2011).
The FFT was used to find the spectrum of the motor current, and a multi-resolution
technique using wavelet function was implemented on this spectrum in order to
detect the significant peaks. The researchers carried out an experimental study to
prove the effectiveness of this approach, concluding that it is very reliable and
convenient in detecting failures at their early stages, and it can also take into
account the presence of serious anomalous feature measurements.

Nowadays, however, many studies have concentrated on using MCSA for power
transmission systems condition monitoring as a replacement for typical monitoring
techniques. The MCSA was used as the basis for CM of a multi-stage gearbox by
using discrete wavelet transform (DWT) (Kar and Mohanty 2006). By observing
the FFT analysis of the captured signals it was concluded that the low frequencies
of vibration signatures have sidebands across line frequency of the motor current
whereas high frequencies of vibration signature were difficult to detect.
A suggestion of applying the discrete wavelet (DWT) to decompose the current
signal was made, followed by FFT analysis on some of the DWT results to trace the
sidebands of the high frequencies of vibration. In the experimental test rig the faults
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was artificially simulated on one of the gears by removing one tooth and then two
teeth, Fig. 2.10.

The electromagnetic motor torque estimation can give significant information
about the efficiency and health condition of an electromechanical system, and this
technique has recently been used for fault diagnosis of gears. The loss of lubrication
in a gearbox is considered as a gear failure due to its influences on the vibration and
on the electromagnetic estimated torque signatures. By using the electromagnetic
torque estimation technique this and other fault types, such as tooth breakage fault
in a high-ratio gear in cement kiln drives, have been identified (Kia et al. 2010;
Bogiatzidis et al. 2013). Initially, a theoretical validation through a modelling
approach to investigate how periodic impulse torque excitation affects the motor
current spectrum and how it is expected to be demonstrated at the motor electro-
magnetic torque has been fulfilled. The effectiveness of this technique has suc-
cessfully been demonstrated via experimental verification, and validated using
vibration signal measurement and analysis simultaneously with the electromagnetic
torque analysis.

Apart from aforementioned techniques, several non-destructive and contactless
condition monitoring methods have been developed for monitoring machine health
and compared with the traditional ones. For instance, a research group applied an
infrared thermo-graphic technique to monitor deep-grooved ball bearing with cir-
cular weights mounted on them and different lubrication states (Seo et al. 2011).
They compared the results from this method with those of the traditional vibration
spectrum analysis to evaluate the efficiency of the suggested method. Figure 2.11
shows the test rig, and the infrared camera (Silver 450 M from Cedip Corp). The
vibration analyzer shown in Fig. 2.11 was used for spectrum analysis, and the data
acquired using this technique was reported to be clearer than that derived using
vibration analysis technique.

Another study by Onsy et al. (2012) applied an image registration (IR) technique
for online health monitoring of gears system. The main aim of this study was

(a) One tooth removed (b) Two teeth removed 

Fig. 2.10 Simulated faults in the gears (Kar and Mohanty 2006)
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monitoring the progression of micro-pitting and surface scuffing failures.
A back-to-back gearbox was designed, and a variable speed electric motor used to
drive the system. To evaluate the state of health of this system, the failure index
(FI) was found by comparing captured images at different time intervals with
reference images taken before running the test. Figure 2.12 shows the values of
failure index for pinion and wheel gears versus number of cycles and it can be
concluded that the micro-pitting progressed gradually during testing. To check the
capability of this technique, the FI results computed using the IR technique were
correlated with vibration and oil debris analysis indicators measured for the same
test rig and the findings were considered promising.

(a) Infrared camera                                               (b) Vibration analyser 

Fig. 2.11 Test rig for comparison between the thermo-graphic and vibration analysis techniques
for bearing health monitoring (Seo et al. 2011)

Fig. 2.12 Failure index
(FI) values of geared system
(Onsy et al. 2012)
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2.3 Embedded Systems for Condition Monitoring
Applications

An embedded system consists of computer hardware with software embedded in it,
and has a set of specific functions to be performed, often in real-time. Embedded
devices can be used to control, monitor or assist in the operation of equipment,
machinery or plant. They differ from general purpose computers such as a personal
computer (PC) which are to be flexible enough to perform many different tasks and
to meet a wide range of user requirements. The prime differences between
embedded systems and PC computers are that the former often do not have displays
or keyboards, usually come within larger systems or machines, and have constraints
such as small memory, slow CPU or real-time response (Collins 2000).

Embedded systems are found in many applications, including modern cars,
airplanes, and mobile robots. Their main merits are low-cost, flexible structure,
steady performance, small size, low power consumption, high reliability and inte-
gration, and the ability to work in constricted spaces and tough environments
(Wang 2009; Sarrafzadeh et al. 2006). Basically, all embedded systems contain a
processor and software to execute instructions, and incorporate a memory to store
the executable code, as well as input and output devices. Sensors and probe devices
can be used to provide inputs, and outputs generally display the changes in the
physical world via wire or wireless communications links (M 2002).

Embedded systems are one of the most widely used types of device in many
current applications. One research study has described the applications of embed-
ded systems for diagnostic and treatment planning in health care applications for
patients with chronic diseases (Srovnal and Penhaker 2007), where the systems
have to be portable, non-intrusive, and low in weight and cost in order to be suitable
for use. This research also suggests that embedded home care systems could be
used as predictive diagnostic systems. Interestingly, proposed applications have
expanded to include home safety and environment (Zhai and Cheng 2011). In this
study an embedded system was designed to monitor smog percentage and gas
parameters, and to collect video information from within a house. Figure 2.13
shows the architecture of the proposed system, which basically contains two

Fig. 2.13 Embedded system
for household appliance
monitoring (Zhai and Cheng
2011)
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controllers (a main controller and an expansion module), and a number of different
sensors connected to them. In addition, this system has the ability to communicate
remotely with household appliances using a global mobile communications (GSM).

Recent years have witnessed a trend in using the embedded systems for machine
fault detection and diagnosis. Generally speaking, there are two categories of
embedded systems that can be used for industrial machinery condition monitoring;
these are discussed as follows.

2.3.1 Wired Systems

Health monitoring systems are typically fulfilled using wired embedded systems by
connecting communication cables directly between the processing and the
input/output units. Different varieties of such systems are available nowadays;
ranging from simple sensing devices that detect peak-acceleration or peak-strain
and inform the user when a certain threshold is exceeded to a more complex system
such as a piezoelectric accelerometer with a built-in charge amplifier connected
directly to a hand-held, single-channel fast Fourier transform (FFT) analyser. For
instance, a microcontroller-based data acquisition system integrated with an
accelerometer was used for a milling machine vibration monitoring (Zhang and
Chen 2008). The acquired data was sent to and analysed on a PC in real-time
manner utilizing software developed in Visual Basic. Time-domain and FFT signal
analyses methods were applied for feature extraction and visual interpretation was
relied for tool health assessment. Furthermore, a vibration faults simulation system,
which involves data acquisition and analysis using LabVIEW-based virtual
instrument technology, was proposed to serve as teaching equipment for mecha-
tronics students in the area of CM (Gani and Salami 2004). A test rig was developed
to simulate and study most common vibration fault signatures encountered in
rotating machines.

An embedded system which implements self-organizing maps using a neural
network has been applied to the online detection and classification of faults in
electromechanical valves used for flow control (Gonçalves et al. 2009). The aim
was to build a proactive maintenance scheme for these valves. A mathematical
model of the valve was used to train the map for the fault detection process, and
fault classification training was carried out by fault injection based on parameter
deviations using the same model. Throughout the online monitoring, the embedded
system works to find the best match between the current torque and position, and
their values which were calculated using the trained map. The embedded system
was prototyped using a Xilinx FPGA (Field programmable gate array) development
board. It was found that the embedded system is a hopeful solution for predictive
maintenance in these actuators. Cabal-Yepez et al. (2013) has presented a design
and implementation of an embedded system that utilizes reconfigurable hardware
based on FPGA. This system performs time-frequency signal analysis techniques,
such as short time Fourier transform (STFT) and discrete wavelet transform (DWT),
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on vibration signals captured from an industrial robot for the purpose of early
abnormalities diagnosis. To the best of the author knowledge, this paper is con-
sidered the only one which focuses in the area of industrial robotics CM based on
embedded system. However, there are several shortcomings in the paper, such as:
only backlash fault has been considered, lack of intelligence capability since it
cannot notify the operator if a fault has developed, and it relies on a wired
communication.

A smart sensor network based on Texas Instrument digital signal processor
(DSP) type TMS320F2812, AD7656 analogue-to-digital converter (ADC),
accelerometer and temperature sensor was used to establish an embedded system
for vehicle fault diagnosis (Lijun et al. 2010). The wavelet transform (WT) signal
analysis technique for feature extraction was implemented on the system. The
communication between the DSP and the other hardware peripherals was enabled
using a controller area network (CAN) bus, which is a communication standard
designed to permit microcontrollers and devices to communicate with each other in
applications without a host computer. Other successful utilizations of DSPs as an
embedded system are for medical diagnosis and gearbox vibration signals analysis
(Chen et al. 2009b; Lijun et al. 2010). WT was also applied in these two papers, but
on this occasion using a TMS320C6713 DSP.

It is clear that the digital signal processing and artificial intelligence algorithms
are very powerful and becoming more commonly employed as tools for solving
different monitoring problems. Traditionally, these algorithms are implemented
using PCs, dedicated DSP chips or FPGAs. These solutions are very efficient in this
matter but, on the other hand, they are expensive and large, as in the case of
implementing them on PCs. Thus, low cost microcontrollers, such as Arduino and
PIC microcontrollers, represent an alternative solution to implement these algo-
rithms. An example is the implementation of ANN on an inexpensive 8-bit PIC
microcontroller (Cotton et al. 2008; Tripathy et al. 2014; Rai and Rai 2013).
Marandu (2014) has designed an intelligent mechatronic system based on modern
version of PIC Microcontrollers, called dsPIC digital signal controller. It has been
used for online dental material testing and surface wear monitoring with vibration
signal capturing and analysis. LabVIEW software was used to design the graphical
user interface (GUI) to send and receive the data from the system. Limitations of
these controllers, however, are low memory and central processing unit
(CPU) performance.

2.3.2 Wireless Systems

Based on the concept of wireless sensor networks (WSNs), which comprise of a
number of battery-powered (or take advantage of nearby power supply if available)
sensor nodes, each of which contains different (or the same) sensors types to
monitor different variables and transmit the data wirelessly, embedded systems have
been extensively used for building different wireless condition monitoring systems.
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The typical sensor node should be small size, low power consumption and low cost.
WSN solutions are being increasingly employed in CM applications, for example in
vehicle fault diagnosis (Shukla et al. 2009). The system comprises a large number
of sensors able to communicate with each other through a wireless network, able to
get live data from the vehicle, such as oil temperature, wheel balance, and fuel
level. The embedded microprocessors gather the data and send them to an external
monitoring entity. Another paper has suggested an intelligent diagnosis system
combining WSN with a multi-agent system (MAS) (Wu et al. 2011); to satisfy the
needs for high sampling rates, high precision, high speed and large amounts of data
transmitted from mechanical equipment. The efficiency of the system for a coal
preparation plant was investigated, and its practicability was demonstrated.

Other applications of embedded system are found in structural health monitor-
ing. Rad and Shafai (2009) utilized wireless embedded sensors as a successful
alternative to fiber optics sensors to assess the state of the infrastructure of bridges
in North America. Wireless sensor networks have also shown sufficient potential in
data collection when they have been applied to monitor wind turbine blades (Taylor
et al. 2011). Here piezotronic accelerometers were used to pick up the signals from
blades in both healthy and damaged states, and the sensors were fixed at different
locations on the blades and wireless data acquisition utilized. Micro-electro-
mechanical-sensors (MEMS) have also been used for condition monitoring. For
example, a tiny and very light weight MEMS accelerometer has been mounted on a
rotor shaft to monitor its dynamic behavior (Elnady et al. 2011). The accelerometer
was connected to a wireless sensor node for the wireless transmission of vibration
signals, as shown in Fig. 2.14. Without any added imbalance and at different
rotating speeds, vibration measurements such as acceleration values were taken
with acceptable performance. It was reported that this technique assisted in
reducing the number of sensors needed to monitor the rotating parts.

An embedded system has been applied to helicopter gearbox monitoring (Qin
and Hu 2012), with the aim of designing a wireless sensor node fixed to the
planetary gears’ carrier in order to gather vibration signals to an external receiver
through the antenna which extends into the gearbox. The acquired signal was

Wireless sensor

Balance disc Rotor shaft

MEMS Accelerometer

Fig. 2.14 Vibration measurement using MEMS accelerometer (Elnady et al. 2011)
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analyzed using signal processing methods. An experimental system consisting of a
set of planetary gears built using one sun gear and four planetary gears was con-
structed, and four wireless sensor nodes were installed in the space between each
two neighboring gears.

Zigbee is a wireless protocol widely adopted in WSN because of its low cost,
low power consumption and applicability to create large scale networks. A research
study has implemented the envelope analysis algorithm for wireless bearing CM
based on vibration signals measurement (Feng et al. 2015), however, to overcome
the limitations of memory size and restricted computational capabilities in the
commercially available wireless nodes, the authors have used a 32-bit microcon-
troller type TM4C1233H6PM from Texas Instruments along with Zigbee wireless
module. The power consumption on the wireless node, which represents a con-
siderable problem in the WSN systems, has been reduced by processing the
acquired vibration signal on-board at the sensor node with the result communicated
to the recipient node. The hardware architecture of the proposed wireless moni-
toring systems is shown in Fig. 2.15.

Interestingly, the rapid developments in smartphones and portable devices have
changed the traditional way of using them. Researchers have developed a scalable
android application based on a smartphone to diagnose some types of fault in an
industrial air compressor (Verma et al. 2013). They mentioned that the developed
system is very reliable. Another paper has presented a remote monitoring system for
a rotating machine which can be run based on smartphone or PDA (personal digital
assistant) (Wanbin and Tse 2006). In this paper the developers put the capability of
informing the concerned user if a fault appears in the remotely monitored machine.
Similarly, a paper proposes a real-time method to perform the monitoring of

Fig. 2.15 Structure of the wireless bearing CM system (Feng et al. 2015)
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temperature, humidity, air quality and vibrations of operating machinery in a fac-
tory zone using smart phones (Lian et al. 2013). The integration of ZigBee and
Wi-Fi communication protocol were utilized to build the intelligent monitoring
system, Fig. 2.16. By using the ZigBee protocol, the sensors on the factory site
transport the real-time sensed data to an integrated embedded controller. The
embedded controller was constructed based on an open-source, 32-bit ARM core
Arduino Due module. This controller is able to instantly provide numerical results,
depending on the received and analysed data, to the smart phones of the factory
manager. However, this aspect of CM is lacking of exploration and needs to be
further investigated in order to be applied to different machines.

2.4 Applications of Condition Monitoring Techniques
in Industrial Robots

After reviewing the previously applied condition monitoring approaches and
techniques for a range of machinery, this section explores how these approaches
and techniques are applied to industrial robots health monitoring; and to survey the
state of the art research with a view to making existing gaps in this area clearer to
the readers and researchers. Unfortunately, there is very little (or no) published
information regarding the distribution of the robot fault types. Even if available, the
most recent one was published in 2000 and it is mainly related to the robot actuator
faults (Arvallo and Tesar 2000), and it does not include gearbox faults, which could
be a large proportion since robotic gearboxes are frequently overloaded and

Fig. 2.16 Intelligent embedded system for a factory monitoring
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experience direct effects of shocks. The author has contacted several robot manu-
facturers regarding this matter, but regrettably no one of these companies has
provided information, not surprisingly, since this might be something connected
with their reputation in the competitive market.

Industrial robots are extremely complex mechanism and hence the application of
condition monitoring for them differs from that of ‘simple’ rotating machinery. This
is basically due to the instantaneous change of geometrical configuration of the
robot arm. Previously in this chapter, it has mentioned that there are two approaches
to condition monitoring, which are model-based and model-free. Either of these
approaches or a combination of both has been adapted in industrial robot condition
monitoring. Filaretov et al. (1999) used a nonlinear model to address problems of
fault detection and isolation in complex systems, such as in robot manipulators.
Algebraic functions were implemented to design the nonlinear diagnostic observer,
which was able to dispense with the linearization in nonlinear models to avoid
model errors. The robot modeling was conducted using Matlab in discrete time. It
was shown that, despite the fact that the use of this model dispenses with lin-
earization, it does not allow some faults to be isolated. In another paper, a
model-based fault detection and isolation (FDI) scheme for rigid manipulators was
designed which depends on a suboptimal second-order sliding-mode (SOSM)
algorithm (Brambilla et al. 2008). In order to make the procedure of FDI possible,
an input signal estimator and output observers were adopted and SOSM was used to
design the input laws for the observers. Experimental work and theoretical simu-
lations were accomplished with a COMAU SMART3-S2 robot manipulator, and
the results showed that the scheme has a good ability to detect and identify faults.
On the other hand, the proposed scheme was not able to deal with multiple faults in
more than one actuator or sensor, and is also neglected elastic effects in the robot.

Another technique proposed for fault detection and isolation in robot manipu-
lators was based on a new simplified Euler-Lagrange (EL) equation capable of
reducing the complexity of the approach (Mohseni and Namvar 2009). The use of
this equation allowed the uncertainty in the manipulator’s gravity term to be han-
dled. Moreover, the effects of noise and an uncalibrated joint torque sensor could be
taken into account. Simulation was conducted using Matlab-Simulink environment
to illustrate the performance of this method. A study by Caccavale et al. (2009)
presented an approach based on support vector machines (SVM) to detect and
isolate fault in a robot’s actuators, using an available dynamic model of the
manipulator, and trained SVMs offline to compensate for unknown dynamics,
uncertainties and disturbances. Furthermore, a radial basis function network was
implemented to interpolate unknown actuator faults. Finally, an investigation was
performed experimentally using Comau SMART-3S industrial robot to check the
effectiveness of the approach.

A model-based fault diagnosis to detect actuator faults in a robot manipulator
was introduced by Capisani et al. (2010). Analytical redundancy was achieved
using higher order sliding mode unknown input observers (UIO). In addition, the
design of the input laws for the observers was based on the super-twisting second
order sliding mode control (SOSMC) approach. Simulation and experimental work
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was conducted on a COMAU SMART3-S2 with three links and three joints as
illustrated in Fig. 2.17. The results were compared with those of previously pro-
posed approach which depends on sub-optimal second order sliding mode control
(SOSMC). It was concluded that the super-twisting approach did not always pro-
vide good performance in terms of avoiding false alarms.

Because of the wear process in robot’s joints, the friction level will increase, and
a study has been conducted to consider the problem of wear estimation in standard
industrial robot joints (Bittencourt et al. 2011). A static friction model was used to
find the wear level and then this model was extended to take account of the effects
of wear. The resulting model illustrates the relationship between friction in the
joints and changes in speed, load, temperature and wear. As a result of the
experimental and theoretical work, a wear estimator was proposed which was able
to distinguish between wear effects under large temperature variations.

Because precise mathematical models for complex systems like a robot are
difficult to obtain, model-free methods based on AI or statistical approaches have
become prevalent choices for robot health monitoring. The backlash and looseness
in the power transmission system of a robot may cause torque variations. However,
the electric motor itself generates what is known as a back electromotive force
(EMF) when subjected to mechanical load making them acting as a torque trans-
ducer (Yuan et al. 2011). The torque variations measurements via current fluctua-
tions on robotic actuators have been applied for robot monitoring (Abdul and Liu
2008; Yuan et al. 2011). The advantage of this technique, as early mentioned, to the
robots health monitoring is that the motor current can remotely be measured along
the power cables utilizing standard current sensors without supplementary instru-
mentation on the robot.

Some reported robot fault diagnostic systems are based on acoustic signals
analysis. Such systems would have to be able to distinguish the correct information

Fig. 2.17 The SMART3-S2 robot (Capisani et al. 2010)
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from the ambient noise. Case-based reasoning and signal processing were adopted
to build an approach to diagnosis the faults in an industrial robot (Olsson et al.
2004). Wavelet analysis was applied to remove noise from the acoustic signals and
to extract the most relevant features, which were then sent to the classification
component, which uses case-based reasoning to identify the class of faults
according to the characteristic of the previous fault cases. Experimental work on an
industrial robot was used to assess the performance of this approach, and Fig. 2.18
shows a schematic diagram of the set-up.

A microphone was used to gather sound signals from the robot, and unwanted
noise was filtered out in a pre-processing step, after which the important sound
features were extracted, and their classification was performed based on previously
classified sound descriptions in the case library. The authors reported that “this
system is able to successfully diagnose faults in an industrial robot based on a low
number of previous examples”. The same principle was applied to an industrial
robot, but on this occasion the ANN was used for noise analysis and classification
(Yildirim and Eski 2010). Noise sensors with data acquisition hardware and feature
extraction software were used to prepare the training data for designing the
ANN-based noise fault detection of robot manipulator’s joints.

Different types of faults in robot transmission systems, such as bearing and gear
faults, can cause system degradations and thus lead to development of lost motion
(looseness). Vibration analysis algorithms, which rely on measured vibration signal
by an accelerometer, are often used and represent the vast majority of utilized
techniques for industrial robot health monitoring. Modal analysis, which can give
information concerning the dynamic characteristics of machines, involves machine
vibration measurement has previously been applied to assess the dynamic charac-
teristics or for fault detection of industrial robots or rotating machinery (Ma et al.
2007; Liguo et al. 2009). Experimental modal analysis was utilized to find the
dynamic characteristics of a PUMA 560 robot and use them to detect robots joint
faults (Bicker et al. 1989). An experimental programme was accomplished to
investigate the changes in the vibration spectra resulting from induced faults in the
transmission of the elbow joint on the robot. From the obtained results, the

Fig. 2.18 Fault diagnosis
steps (Olsson et al. 2004)
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researchers concluded that backlash can influence the vibration response of the
robot elements during normal operations. But, the slight change of peak amplitude
at some frequency bands for various backlash conditions was not reliable enough to
be used as a criterion for fault diagnosis. Also, at the reversal of motion, the
characteristics of backlash can be averaged out over the whole cycle if a conven-
tional spectrum analysis is used to process the vibration signatures. Consequently,
the distinct differences between the signatures for different fault conditions cannot
be identified accurately.

Recently, modal analysis of KUKA type milling robot has been carried out by
Claudiu et al. (2012). The researchers tried to evaluate the robot stiffness at three
different and most commonly applied working configurations, as in Fig. 2.19. The
first step in this research was to identify the robot self-excited frequencies using
impact testing (modal analysis). Then, vibration analysis was conducted first when
the robot moving, and after that whilst performing milling process. The result
showed that the robot configuration has a significant effect on its stiffness, and
therefore on its natural frequencies.

In another study of fault diagnosis in rigid link manipulators, an online learning
architecture with a neural network was used for fault detection and isolation by
monitoring the behavior of the system (Vemuri et al. 1998). A two-link robotic
system was used to show the capability of the neural network in fault diagnosis.
Results showed that the learning methodology which was used can provide a model
of a fault via analysis of input/output properties as well as detecting its occurrence.
A large backlash level in the robot’s joints represents a very serious problem. Pan
et al. (1998) used vibration signals during normal operation to diagnose
joint-backlash on a PUMA 762 industrial robot. Time-domain and frequency-
domain analyses were employed to identify features such as probability and den-
sity. Artificial neural networks were then used for pattern recognition. The exper-
imental work was performed as shown in Fig. 2.20. One accelerometer was fixed

Fig. 2.19 The experimental configuration for impact test (Claudiu et al. 2012)
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on the robot end effector to measure vibration responses. Additionally, different
levels of backlash were artificially contrived in joints 4 and 6 to validate this
method. It was pointed out that this technique could be applied in real working
environments, and moreover it was inexpensive as only one sensor was used to
detect the robot’s faults.

Artificial neural networks (ANNs) were used for residual generation and ana-
lyzing them in robotic manipulators (Terra and Tinós 2001). For residual analysis,
three types of ANN architectures were employed. The first is the radial basis
function network (RBFN), which uses position and velocity residuals to identify
faults. The second architecture also uses a RBFN, but it utilizes only the velocity
residual, and the third is a multilayer perceptron (MLP). A comprehensive simu-
lation study of the PUMA 560 yielded results collected from three joints. It was
concluded that the post-failure control of the mechanical manipulator in a hybrid
system framework could be included in this work.

Similarly, a technique using only one accelerometer mounted at the robot tip has
been applied for the online fault diagnosis in the 4 Degree of Freedom
(DOF) SCARA robot (Liu et al. 2009). The tip acceleration was calculated using a
dynamic model of the robot, and was used as a reference. By comparing the
experimental tip acceleration with the reference, the condition of the robot could be
identified. In contrast, another study used more than one sensor for robot joint
condition monitoring (Trendafilova and Van Brussel 2003). The objectives were to
extract the vital features directly from the measured acceleration signals, and to try
to specify defects by finding properties dependent on fault size. Signals were
analyzed from the robot joints without error, and subsequently from joints having
backlash, using nonlinear dynamics and statistical tools. The proposed system was
validated using three robot types: spherical robot arm; SCARA robot arm; revolute
robot arm, and on different joints. In order to simulate robot damage conditions,

Fig. 2.20 Schematic diagram of the experimental set-up (Pan et al. 1998)
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three levels of backlash (small, medium, and large) were generated in the joints by
implementing a variety of loads and adjusting the backlash screws. The authors
used the pattern recognition principle with nonlinear autoregressive (NAR) analysis
for the detection of defect from the data, and acceptable performance was
demonstrated. The same technique applied for fault quantification was less effec-
tive, however.

Halme (2006) studied the condition monitoring of servomotors and gears in an
industrial robot using performance criteria monitoring, which is a model-free
method. This study was implemented with a 6 DOF robot (type Fanue R-J2 M-6i)
utilized for material handling. This robot has a weighs 290 kg, and is capable of
moving 6 kg with a repeatability of ±0.1 mm in space. Acceleration, acoustic
emission, and sound sensors were used in order to monitor the accuracy of the
robot’s path. By comparing different vibration signatures with signals measured
over time, deviations in the performance of the robot could be found. However, this
method cannot represent an eclectic technique since it always needs to compare
signals with references measured at different times and from the same production
process.

Another research study used wavelet multi-resolution analysis (WMRA) coupled
with a neural network-based approach in order to diagnosis faults in an industrial
robot manipulator (Datta et al. 2007). A Matlab-Simulink environment was used to
monitor the neural network classifier for a robot used in semi-conductor fabrication.
It was concluded that the WMRA is excellent for data reduction and capturing the
important properties of signals, although it did not show good performance in
distinguishing some of the signals. On the other hand, two neural networks have
been used to propose an algorithm for the online monitoring of two-link manipu-
lators (Van et al. 2011). This approach focuses on identifying changes in robot
dynamics due to faults. It was noted that this technique was able to provide esti-
mates of fault characteristics.

2.5 Summary

The foregoing literature review has covered a variety of topics, approaches, and
techniques applied in the field of CM. The review has shown that two main cate-
gorizes of CM approaches are available: model-based and model-free approaches.
In model-based CM, a model of the system (or of how it is presumed to behave) is
created. Then, the predicted behaviour from this model is compared to the actual
behaviour of the machine and any detected significant deviations can be interpreted
as indications of faults. Accurate analytical models of industrial robots are often not
practicable and difficult to be constructed due to dynamic complexity of the robot
and unavoidable uncertainties (Verdonck et al. 2001). Accordingly, model-free
approaches based on statistical and artificial intelligence tools are going to be
considered for establishing the condition monitoring system of the robot.
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It has also been established that many different techniques of machine condition
monitoring, such as the analysis of vibration, acoustic emission, wear and thermal
measurements, are frequently used. Vibration and acoustic emission analysis rep-
resent the most important techniques that have commonly been applied to monitor
the status of industrial machines, and such methods have been widely studied by
researchers. Because of the high frequency range of the acoustic signals, CM
systems based on AE techniques require highly specialized, expensive sensors and
extremely high sampling rates, which means a considerable amount of data has to
be acquired in order to detect the exceptional events (Ogbonnah 2007; Randall
2011). Also, due to the acoustic signal attenuation during propagation, the AE
sensors need to be as close to the source as possible. In contrast, vibration signal
respond immediately to manifest itself if any change has appeared in the monitored
machine. Consequently, it provides an easy and cost-effective sensing technique to
detect faults in machines and for this reason it will be applied for CM of the robot.

Generally speaking, the vast majority of the literature focuses on finding a
monitoring system able to take minimum and precise measurements necessary from
machines, which can give clear indications of incipient fault modes in a minimum
time. Moreover, the issue of feature extraction from data gathered has been a point
of debate among many researchers. In short, to design a reliable condition moni-
toring system, sensors have to be chosen correctly in order to get accurate signals
from faulty parts, and appropriate signal analysis techniques have to be employed
since these have a significant impact on the sensitivity of the features extracted from
the signals captured.

Recently, the field of the condition monitoring of machines has moved from the
use of conventional to AI techniques. A wide variety of AI techniques have been
applied extensively in monitoring very complex and non-linear systems such as
industrial robots, where it is difficult to build accurate mathematical models of the
system. However, each of the AI techniques has strengths and weaknesses, and
many studies have concluded that combining multiple methods can give better
performance in many condition monitoring applications. Nevertheless, despite the
large amount of research conducted in the area of AI in condition monitoring, it is
still inadequate and requires significant investigation to be performed. Artificial
neural networks (ANNs) have broadly been applied in a number of real-world
problems of considerable importance and complexity and will be utilized in this
research, not only because of their ability to handle the highly non-linear rela-
tionships that exist between industrial robot parameters but also because they can
deal with large numbers of variables and provide general solutions with significant
predictive accuracy (Ogaji 2003).

In the majority of CM systems, with a special focus on industrial robots, it has
been noted that for signal acquisition, processing, storage and decision making, data
acquisition (DAQ) cards connected to PCs, as their main processing core, were
extensively used, which adds considerably to the cost of CM system. Recent
developments in electronics and computing have opened new horizons in the area
of condition monitoring, and embedded devices other promising solutions, and
have shown their practicality in fault detection and diagnosis processes in many of
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areas. The main aim of using embedded systems is to allow data analysis, which
includes feature extraction and diagnostics, to be carried out locally at field level
and transmitting the results wirelessly to the base station, which as a result will help
to overcome the need for wiring. Furthermore, it seems that there is a serious
shortage of studies applying the embedded devices in the industrial monitoring
field, and thus they need to be investigated thoroughly, both by researchers, as in
this thesis, and by interested companies.

The use of industrial robots has been rapidly increased in a wide range of
industrial applications. Therefore, the need for reliable fault detection and diagnosis
methods for industrial robots has been increased recently. Most faults in industrial
robots occur in their joints, since they have many mechanical and electromechanical
parts, such as gears and motors. However, in the above reviewed work in the area of
industrial robot CM it is noted that much of the work has been aimed directly at
detection of only backlash fault in the gear transmission system. This means that
other types of gear and bearing faults have not yet been fully investigated. In this
work, an effort to fill part of the gap in the subject of industrial robot CM by not
only detection the backlash fault but also other faults, such as gear tooth wear and
inner and outer race bearing faults, will be assessed using vibration signal analysis.

In summary, the endeavour of the work in this thesis is to build a wireless and
intelligent condition monitoring system for an industrial robot based on an
embedded system capable of performing signal capturing, analysis, feature
extraction, and then fault detection and diagnosis in real-time operation. The
adoption of this route is to try to contribute to the concept of factories-of-future in
the 21st century.
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Chapter 3
Signal Processing Techniques
for Condition Monitoring

Abstract Signal processing plays a significant role in building any condition
monitoring system. Many types of signals can be used in the condition monitoring
of machines, such as vibration signals as in this research; and processing these
signals in an appropriate way is crucial in extracting the most salient features related
to different fault types. A number of signal processing techniques can fulfil this
purpose, and the nature of the captured signal is a significant factor in the selection
of the appropriate technique. This chapter starts with a discussion of the proposed
robot condition monitoring algorithm. Then, a consideration of the signal pro-
cessing techniques which can be applied in condition monitoring is carried out to
identify their advantages and disadvantages, from which the time-domain and
discrete wavelet transform signal analysis are selected.

3.1 The Proposed Intelligent Condition
Monitoring Algorithm

Robots are required to perform a variety of different repetitive tasks and are as
designed programmable and configurable machines; and consequently the joints are
subjected to continuously varying loads and speeds. Therefore, designing a CM
system for a robot being adaptable for different robot tasks is challenging. In this
work, to achieve this, it is decided to conduct the robot CM using two stages, as
shown in Fig. 3.1. The first stage is only responsible for detection the fault and is
performed during the robot movement for accomplishing whatever the task. The
vibration signals are captured and features are extracted using time-domain signal
analysis technique (as explained later in this chapter). Then, the features are
analysed in order to select the most fault-sensitive one (Chap. 6). From the
extracted features that are related to the robot healthy state, threshold values are
calculated, in order to be used as a baseline reference, using the statistical control
chart (SCC) approach (Chap. 7), which is a technique by which a plant (or process)
is monitored to investigate whether or not the plant remain in control. The above
mentioned steps have to be done offline, before running the monitoring system and
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the purpose is to compute the threshold values. If the robot is reprogrammed for a
different task than the previous, the same steps are needed to be followed, in order
to establish different threshold values for the new task. During the online operation
the selected (most) fault-sensitive feature will be calculated and compared to the
reference thresholds. The result of the fault detection stage will report either the
robot is healthy or a fault is developing. If a fault is detected, the robot should be
stopped and the second stage of the CM system conducted. In the first stage, the
time-domain signal analysis and SCC have been selected because they are relatively
computationally easy to implement on the embedded electronic system and the fault
category is not known at this stage. From a practical point of view, stopping the
robot may affect the whole production line, thus the maintenance team in the factory
should find the appropriate time for taking the robot out of service for performing
the second stage of the CM system and also maintain it.

Start

Vibration signal capturing when 
the robot execute a repetitive task

Time-domain signal analysis to 
extract features related to the robot 

healthy and faulty conditions

Select the most fault sensitive 
feature

Offline computing of the threshold 
values using the SCC technique

Utilize the computed thresholds 
for online fault detection

If a fault is detected execute the 
fault diagnosis stage 

Vibration signal capturing when the 
robot moves one joint at a time

Multi-resolution signal analysis 
using DWT

Extract features that are related 
to the robot health state and 

different fault conditions

Offline design and training of an 
ANN for fault diagnosis

Utilize the designed ANN for 
online fault diagnosis 

Identification of the faulty joint 
and fault type

End

Fault detection stage Fault diagnosis stage 

Fig. 3.1 Descriptive flowchart for the proposed intelligent condition monitoring algorithm
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The aim of the second stage of the monitoring algorithm is to accurately identify
in which joint the fault has occurred and what is its type exactly, for example,
backlash, gear tooth wear or bearing fault. To achieve this, the robot will be
programmed to move each joint independently in a cyclic movement. The vibration
signals are captured and analysed, but this time using multi-resolution signal
analysis technique based on the discrete wavelet transform (DWT), since it has been
found very appropriate for non-stationary vibration signal analysis, which is the
case in industrial robots in which the speed and load on each joint is continuously
changing, and can assist in the precise diagnosis of faults, as discussed later. Then
the features related to the healthy state and different fault conditions are determined
and used for design and training an artificial fault classification system using the
artificial neural network (ANN) (Chap. 7). The established ANN is then employed
for online fault diagnosis (Chap. 9).

3.2 Basic Concepts of Signals

A signal can be defined as a function that describes a physical variable as it evolves
over time. Analogue signals, such as sound, noise, light and heat, represent the
majority of signals in nature. Variations in these signals are continuous over time
and the processing of analogue signals is called analogue signal processing (ASP).
By sampling such continuous signals at repeated time intervals using data acqui-
sition equipment, they can be converted into discrete format, and the processing of
the digital (discrete) signal is named digital signal processing. A discrete signal, on
the other hand, has values only at specific time periods. The benefits of converting
signals from analogue to discrete (digital) form are that it can avoid the degradation
and corruption of the signals. Knowing the type of signal to be analyzed has a
significant influence on the type of analytic technique chosen. Subsequently, it is
necessary to carefully inspect the various types of signal that are encountered in
practice. Thus, signals can be classified as shown in Fig. 3.2.

Signal

Deterministic 
signal

Aperiodic 
signal

Periodic signal

Non-deterministic 
(random) signal

Non-stationary 
random signal

Stationary 
random signal

Fig. 3.2 Schematic diagram of signal classification
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• Deterministic signal: If, after a suitable number of measurements, the signal
can be described by an analytical expression and its values can be predicted at
any time in the past and future, then it is called a deterministic signal, such as a
sinusoid. A deterministic signal may be classified as a periodic signal if the
change in the magnitude of the signal repeated at regular time intervals, and if
not it is termed an aperiodic signal (Figliola and Beasley 2011).

• Non-deterministic: Conversely, non-deterministic or random signals cannot be
described by a deterministic mathematical expression and they are more com-
plex than deterministic signals. By determining their statistical properties, ran-
dom signals can be broken down into stationary and non-stationary parts.
Therefore, if the statistical properties of the random signal do not change with
time, then it can be called a stationary signal, otherwise, it is named
non-stationary (Wilkinson 2008).

However, a majority of the signals emitted from industrial machines are non-
deterministic. And when a fault starts to appear in a machine the signals monitored
tend to non-stationary in nature. Therefore, a suitable signal processing technique
has to be applied to analyse this type of signal, as discussed in the coming sections.

3.3 Signal Analysis Techniques

After a signal is being captured, a large number of signal processing techniques can
be utilized to extract the most sensitive and interesting features concerning defects.
As a matter of fact, choosing the most suitable method for each specific task
represents a major challenge in condition monitoring. Signal processing techniques
are classified as using time domain, frequency domain, and time-frequency domain
methods. These methods are not totally independent, and in many situations they
complement each other. Some of the widely used signals processing techniques are
discussed in the following sub-sections to establish their suitability for robot fault
detection and diagnosis.

3.3.1 Time-Domain Signal Analysis Technique

The technique used in processing the signal can be classified as a time-domain
method if it processes a raw signal directly in the time domain without being
transformed into another domain, such as the frequency domain (Li 2006). It is
considered one of the cheapest and simplest approaches to implement for fault
detection. The purpose of time-domain analysis is to determine the statistical fea-
tures of the original signal by manipulating the series of discrete numbers. With this
technique, however, only the fault can be detected without diagnosing its source.
Statistical parameters such as peak value (PK), which represents the maximum
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amplitude in the signal regardless of sign, can be used to give useful information
about the hidden defects represented in the time domain signal. Some of these
parameters are illustrated as shown:

Root-mean-square (RMS) is defined as the square root of the average of the
sum of the squares of the signal samples, (Eq. 3.1). RMS can be used for measuring
the overall level of average power in the vibration signal (Lihui and Gao 2006; Kim
et al. 2007).

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

x½n�ð Þ2
" #vuut ð3:1Þ

where x[n] is the original sampled signal, N is the total number of samples, and n is
the sample index.

Crest factor (CF) is a non-dimensional parameters defined as the ratio of
maximum absolute value (or PK value) to the RMS value of the signal, and is given
by Lihui and Gao (2006), Kim et al. (2007)

CF ¼ PK
RMS

ð3:2Þ

CF is a normalized measurement of the amplitude of the signal which increases in
the presence of a small number of high amplitude peaks, such as in the case for
some types of local tooth damage in a gearbox. The sensitivity of CF to the changes
in the sharpness of the signal is much higher than the RMS value, and it is much
less likely to give false alarms than using the (PK) on its own (Engin et al. 1999).

Skewness (Sk) and Kurtosis (Ku) are also dimensionless parameters and
denote the statistical moments of the signal (Shin and Hammond 2008). The dis-
tribution shape of the signal can be described using the 3rd moment or skewness,
which is a gauge of symmetry of the probability density function (PDF) around its
mean. If the distribution is symmetric, its value is zero. The skewness becomes
negative if the distribution develops a longer tail left of the mean, and positive if the
other way around, indicating that something is going wrong in the monitored
system, as shown in Fig. 3.3 (Vachtsevanos et al. 2006). The 4th moment or
kurtosis represents a measure of the relative flatness or spikiness of a signal
compared to its normal state. Skewness and Kurtosis can be calculated using the
following equations:

Sk ¼
1
N

PN
n¼1 x½n� � �xð Þ3

r3
ð3:3Þ

Ku ¼
1
N

PN
n¼1 x½n� � �xð Þ4

r4
ð3:4Þ
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where �x and r are the signal mean and standard deviation, which represent the first
and second moment of the signal respectively, as given by:

�x ¼ 1
N

XN
n¼1

x½n� ð3:5Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

x½n� � �xð Þ2
vuut ð3:6Þ

Every signal distribution has different kurtosis values as shown in the Table 3.1
(Onsy 2009). The monitored signal usually shows a normal pattern with a kurtosis
value of approximately 3 if it is healthy. When a fault is developed in the system, the
kurtosis value increases indicating that the signal is no longer normally distributed,
and therefore, it is useful in identifying the machine nature (Marwala 2012).

A substantial number of papers have employed time-domain technique to
identify defects in many applications. Zhen and Zhang (2012) and Li and Frogley
(2013) utilized time-domain analysis to detect faults in wind turbine bearings and
gears respectively. Piezoelectric accelerometers and capacitive sensors were used to
acquire vibration signals from healthy and faulty bearings. Statistical parameters
include peak value, average, variance, RMS and kurtosis have been calculated for
the bearings and by comparing their results, the status of bearing has been found
easily. Although time-domain analysis has many advantages, including straight-
forward signal processing and simple calculations, it is relatively insensitive tool for
early stage fault detection and severely distributed defects if used without being
combined with other machine health evaluation techniques (Ghafari 2007). This
was verified in two other papers on bearing health monitoring (Williams et al. 2001;
Qiu et al. 2003), who concluded that most of the bearing fatigue time is consumed

Positively skewed Negatively skewed

Fig. 3.3 Positive and negative skewness (Vachtsevanos et al. 2006)

Table 3.1 Kurtosis values
for different signal
distribution

Type of signal distribution Ku

Normal-peak *3

Flatter than normal <3

Sharper >3
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during the development of material accumulative damage, whereas the period of
crack propagation and development is comparatively short. The time available for
initiating a maintenance action before a catastrophic failure after confirming a
defect will be very short if this traditional technique is used.

In contrast, Tseng et al. (2014) and Kamiel et al. (2015) have shown that
utilizing the statistical process control (or statistical control chart) techniques
combined with the time-domain features have effectively improved the fault
detection process, but could not diagnose it. Thus, as it was mentioned previously
that the first stage is in charge of only detecting the fault, so the combination of
time-domain signal analysis with SCC will be applied at this stage.

3.3.2 Frequency-Domain Signal Analysis Technique

In most applications, signal representation in the time domain is not the most
appropriate, since much of the relevant information is hidden in the frequency
content of the signal. Frequency or spectral analysis provides additional information
about time series data, and can be used to explain the spectra of frequencies which
exist in the signal. The parameters of frequency domain analysis are more reliable in
damage diagnosis than time domain parameters. However, time-domain signals can
be represented by a family of complex exponents with infinite time duration using
Fourier transforms (FTs). Additionally, any given time-domain signal can be
written as a function of all of the frequencies present within it using Fourier
transforms, which allows analysts to concentrate on all or specific frequencies. This
is achieved by representing a time-domain signal x(t) by sinusoidal components
with infinite time duration (He 2001; Kehtarnavaz 2008), which are given by:

Xðf Þ ¼
Z 1

�1
xðtÞ e�j2pftdt ð3:7Þ

where X(f) is the transformed signal, f is frequency, and t is time. To regenerate the
time domain signal back from the frequency domain signal, an inverse Fourier
transform has to be applied:

xðtÞ ¼
Z 1

�1
Xðf Þ ej2pftdf ð3:8Þ

However, the continuous-time Fourier transform can only be applied to signals of
continuous time and infinite duration. Additionally, in most applications, signals are
commonly acquired and sampled at a specific frequency, which is called the
sampling frequency (fs), and converted into a set of digital data points, and therefore
it is necessary to use the discrete version of the Fourier transform (DFT) (He 2001;
Kehtarnavaz 2008), which is:
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X½k� ¼
XN�1

n¼0

x½n� e�j 2pnk=Nð Þ ð3:9Þ

x½n� ¼ 1
N

XN�1

k¼0

X½k� ej 2pnk=Nð Þ ð3:10Þ

where X[k] and x[n] denote discrete frequency and time signal respectively, k and
n represent the frequency and time indices, and N represents the total number of
points that are equally spaced.

To perform the DFT, a large number of complex computations are involved. This
is a computationally intensive process and not practical when performing real-time
signal analysis. Thus, an algorithm that is able to perform rapid calculation of the
DFT by greatly reducing the number of computations was developed in the early
1960s (Mohanty 2015). This algorithm is known as the fast Fourier transform
(FFT) and commonly used in industry for analysing the data. The FFT algorithm
requires the time domain sequence to x[n] have a length of data points equal to the
power of 2; which means that 2m samples are required where m is a positive integer
(Mohanty 2015). Generally speaking, the FFT is a useful technique for transforming
difficult operations into very simple ones, and for analysing stationary signals, which
have spectral content that does not change over time. Also, in many signal pro-
cessing applications, the Fourier transform represents an adequate analytic method.

However, the Fourier technique can become less effective and inefficient if the
analysed signal is non-stationary and transitory, with characteristics that change
over time, due to its constant time and frequency resolutions (Tse et al. 2004;
Al-Badour et al. 2011). Furthermore, it has a major drawback that when it is used in
transforming the signal from the time domain to the frequency domain, all of the
information belonging to time will be lost (Al-Badour et al. 2011). Nevertheless,
provided that the signals are stationary, the task of distinguishing faulty from
normal conditions based on the FFT can be accurately achieved. This is performed
by investigating particular estimated frequencies related to some component in the
machine, such as gears or bearings. If a fault has developed in these components,
the amplitude of these particular frequencies will change or some sideband fre-
quencies will be distributed around them. Therefore, many fault diagnosis studies
using this technique have been published, having been successfully applied for the
condition monitoring of electrical motors, cutting tools, bearings and gears
(Iorgulescu et al. 2009; Ngolah et al. 2011; Hsieh et al. 2012).

Industrial robots, on the other hand, are required to function under a wide range of
joint speeds and variable loading within a large working area and varying joint
articulation. Also, the typical cycle of robot motion starts with an acceleration from
the initial position, then moving at constant speed, and finally deceleration towards
the end position, which means movement at a time-varying speed (Bicker et al. 1989;
Pan et al. 1998). This motionmakes the robot a highly non-linear dynamic system and
introduces the non-stationary phenomenon in the captured vibration signal, and this

60 3 Signal Processing Techniques for Condition Monitoring



will be more complicated if a fault is progressed in the robot. Using a conventional
FFT signal analysis technique to process such signals with transiently nature is not
feasible for accurate robot fault diagnosis in second stage. Therefore, several methods
of signal processing have been developed to cope with this category of signals, such
as joint time-frequency techniques, as discussed in the following section.

3.3.3 Time-Frequency Signal Analysis Technique

The signals from faulty parts have a non-stationary nature. However, if the fre-
quency component of the non-stationary signals is calculated using the Fourier
transform, the results will represent the frequency composition averaged over the
duration of the signal (Sawicki et al. 2009). Consequently, the characteristics of the
transient signal cannot be described adequately using the Fourier transform, how-
ever, time-frequency analysis has been investigated and applied for the fault
diagnosis of machinery because of its capability of signal representation in both the
frequency and time domains (Sawicki et al. 2009; Al-Badour et al. 2011). This
unique feature of time-frequency analysis techniques means that it is suitable for
non-stationary signals. Moreover, time-frequency methods can give interesting
information with regard to energy distribution over frequency bands. A number of
techniques of time-frequency analysis, such as the short time Fourier transform and
wavelet transforms, have been used for fault detection and diagnosis. These tech-
niques will now be discussed to identify the main differences between them and
select the best to be used at the diagnosis stage.

3.3.3.1 Short Time Fourier Transform

To overcome the limitations of the Fourier transform technique, Gabor introduced a
windowing technique in 1946 known as the short time Fourier transform (STFT).
The STFT algorithm is based on the division of the signal into small portionswhich are
assumed to be stationary. Then, a window function is located at the start of the signal
andmultiplied together. After that, the Fourier transformwill be taken for the result of

Fig. 3.4 Signal analysed by
STFT (Gao and Yan 2011)
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this product. Next, this window function is moved to a new segment of the signal and
the above-mentioned process is repeated. This sequence is repeated until the end of the
signal is reached (Al Kazzaz and Singh 2003). As a result, the STFT outlines the
time-domain signal into a two-dimensional time-frequency representation. This can
be mathematically expressed and graphically revealed as follow (Fig. 3.4)

STFTðt; f Þ ¼
Z1

�1
xðtÞ:gðt � sÞ e�j2pftdt ð3:11Þ

STFTðt; f Þ is the Fourier transform of the signal x(t) which has already been
windowed by the window function g(t) with respect to the time shift variable τ.
Various window types, with each one employed for a particular application, have
been developed over the past decades. For instance, the Hann and Hamming
windows are utilized for analysing random and narrowband signals (Gao and Yan
2011), whereas a Gaussian window is exploited for analysing transient signals.
Selection of the window function has a direct influence on the time and frequency
resolutions of the analysed signal. Generally, superior separation of the essential
components within a signal can be achieved if high resolution in the time and
frequency domains is used. To illustrate the difference between FFT and STFT a
LabVIEW programme, designed by Kehtarnavaz (2008) was used, in which three
forms of signals were combined to produce a non-stationary signal with 512-input

Fig. 3.5 The difference between FFT and STFT for a non-stationary signal
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points. The forms of the combined signals are a chirp signal with linearly
decreasing frequency from 200 to 120 Hz, a sinusoidal signal of 75 Hz, and an
impulse signal located at the 256th sample and having amplitude of 2. The com-
posite signal and its FFT and STFT are shown in the Fig. 3.5.

From Fig. 3.5 it can be observed that in the FFT spectrum graph there is one
major peak at 75 Hz, and also there is an indication of presence of a signal from
120 to 200 Hz. However, the impulse signal, which has short time duration, cannot
be recognized in the spectrum, although it can clearly be observed in the STFT
graph at 0.5 s, which shows the spectrogram for a time increment of 1 s and a
rectangular window of width 48 points. Although the STFT provides both the
frequency spectrum and the time evolution of the signal, it does have a major
drawback: it has a fixed resolution with respect to the time window size at all
frequencies, and can be explained as follows.

When the FFT is used it can be noticed that there is no time resolution, but on
the other hand the frequency resolution is very high. The reason for this high
resolution is related to the fact that the window function used in FFT covers the
entire time interval from �1. Conversely, the frequency resolution when the STFT
is implemented becomes poorer than the resolution given in the FFT, since the
window function has a finite length and therefore only a small segment of the signal
will be covered. In order to increase the frequency resolution, the window function
has to be wide enough, but that will lead to missing time information as well as
violating the stationarity assumption which requires the window to be very small.

(a) 24 points (b) 48 points

(c) 64 point (d) 128 point

Fig. 3.6 STFT with different window widths
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Accordingly, there is a trade-off relationship between time and frequency in the
STFT. A wide window gives good frequency resolution but poorer time resolution
and vice versa (Polikar 1996). This is well illustrated in the Fig. 3.6 below
depending on the above analysed signal.

3.3.3.2 Wavelet Transforms

The wavelet transform (WT) was introduced to overcome the resolution limitation of
the STFT. The main difference between the WT and the STFT is that the former has
varying window lengths, and represents the signal as a sum of wavelets at different
scales (Debdas et al. 2011). To clearly understand the differences among the
time-frequency resolution of the DFT, STFT and WT, their time-frequency mapping
is compared in Fig. 3.7, from which it can be seen that, and as stated earlier, the DFT
allows extraction only of the frequency content of a signal and any information
concerning time-localization of the frequency components is eliminated. The area of
each rectangular box in both STFT and WT has a fixed value (Rajbhandari 2009).
However, in the STFT the window has fixed dimensions in both time and frequency
axes which offer a constant time-frequency resolution. In WT the window dimen-
sions are not constant, and when the height of the box is greater this corresponds to
wide frequency bandwidth, which leads to low frequency resolution, but on the other
hand the time resolution is improved. Similarly, if the width is greater, a long time
duration is covered providing coarser time resolution in contrast to better frequency
resolution. So, the WT behaves rather like a mathematical microscope, as con-
densing the wavelet corresponds to increasing the magnification of the microscope,
which increases more of the signal detail (Rajbhandari 2009).

Complex sinusoids are used in the Fourier transform for signal decomposing,
whereas in wavelet analysis a mother wavelet function is utilized. In Fourier
analysis sines and cosines are used to fit the signal in order to generate a set of
coefficients, however, in wavelet analysis the mother wavelet is fitted on the signal
and then the inner product between the analysed signal and a series of daughter
wavelets is performed. The daughter wavelets are generated by scaling and shifting
the mother wavelet by controlling the scaling (s) and shifting (τ) parameters.

(a) DFT (b) STFT (c) WT

Fig. 3.7 Time-Frequency signal mapping (Kehtarnavaz 2008)
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Scaling the mother wavelet is equivalent to stretching or dilating it; although the
wavelet is squashed in the vertical axis if it is stretched horizontally, this is to ensure
that the energy content in the scaled wavelet is equal to the original mother wavelet
(Leavey et al. 2003). In the shifting step, the wavelet is moved along the X-axis
until it covers the analysed signal entirely, which can be expressed mathematically
as follows (Rajbhandari 2009):

WTðs; sÞ ¼ 1ffiffi
s

p
Zþ1

�1
xðtÞw t � s

s

� �
dt ð3:12Þ

where WTðs; sÞ is the wavelet transform of the signal xðtÞ and wðtÞ is the mother
wavelet (or the transforming function).

The mother wavelet differs from the infinite sine and cosine functions, as it has a
finite start and finish. Mathematically, it can be said that the mother wavelet has
“compact support” (Harpen 1998), the importance of which appears in that when
the mother wavelet fit to the signal, a localised result will be obtained rather than a
global result. A series of coefficients that vary with time will be extracted instead of
getting a single coefficient for each sine and cosine as in Fourier analysis, and
consequently the wavelet decomposition can accommodate the local and sharp
changes in the monitored signal; thus it is suitable for those signals whose spectral
content changes over time. Accordingly, it represents the most appropriate method
that can be applied for analysing the expected robot vibration signal for precise fault
diagnosis and hence it will be adopted in this study.

3.4 Discrete Wavelet Transform (DWT)

The above Eq. (3.12) is called the continuous wavelet transform (CWT) and offers
greater accuracy in signal analysis; however, theoretically it is infinitely redundant,
which means a significant amount of unnecessary information is produced when it
is implemented, and such it is impractical (Giaouris et al. 2006). The redundancy
problem is a result of the continuous scaling and shifting of the mother wavelet.
This increases the required computational time, power and memory, making the
CWT impractical in many situations, particularly when applying real-time wavelet
analysis on an embedded system which is the case here. To reduce required power
and time it is appropriate to remove any unnecessary information and reduce the
number of wavelets without loss of the essential information. The discrete wavelet
transform (DWT) was developed to achieve this, in which the mother wavelet is not
continuously scaled and shifted, but is instead only at discrete steps along the
signals. By using DWT, the original signal is often decomposed into several signals
each with a specific frequency band each of which can be handled as an inde-
pendent signal on which separate analysis can be implemented. The strength of the
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DWT is that filters with different cut-off frequencies are utilized to analyse the
signal at different scales. First, the signal is passed through a high-pass (HP) filter to
analyse high frequencies, and then it is passed through a low-pass (LP) filter to
analyses low frequencies. Using digital techniques such as this, a time-scale rep-
resentation of a digital signal can be obtained.

Another type of wavelet analysis called complex wavelet transform and is
represented by the dual-tree complex wavelet transform. It is an alternate,
complex-valued extension and enhancement to the standard DWT, and has
important properties that provides multiresolution, sparse representation and the
capability to reduce the aliasing effects, which is caused by the overlap of
opposing-frequency pass-bands of the wavelet filters (Loutas and Kostopoulos
2012; Qu et al. 2016). Two parallel DWTs with different low-pass and high-pass
filters in each scale are used for decomposition and reconstruction in the dual-tree
implementation. The two DWTs use two different sets of filters, with each satisfying
the perfect reconstruction condition. However, the drawback of this transform is
that it is exhibits redundancy compared to the standard DWT at the expense of extra
computational power; therefore, it was not considered in this study due to the
expected computational limitation of the embedded system.

3.4.1 Multi-resolution Analysis Using DWT

Generally speaking, by using the DWT, a multi-resolution analysis can be per-
formed at different frequency bands with different resolutions by decomposing the
time domain signal (Debdas et al. 2011; Sawicki et al. 2009). Two sets of functions
are employed in the DWT, called the wavelet function and the scaling function,
which are associated with the HP and LP filters respectively. At the first level, the
original signal x[n] is decomposed by passing it through both of these filters and
emerges as two signals, each one having the same number of samples as the original
signal, and are termed as coefficients. In order to keep the total number of coeffi-
cients in the produced filtered signals equal to the original signal samples they are
then down-sampled by a factor of 2, by keeping only one sample out of two
successive samples. Thus, the extracted signal coefficients from the HP filter and
after down sampling are called the detail coefficients of the first level (cD1). These
coefficients contain the high frequency information of the original signal, whilst, the
coefficients that are extracted from the LP filter and after the down sampling process
are called the approximation coefficients of the first level (cA1). The low frequency
information of the signal is hidden in these coefficients. This can be expressed
mathematically as (Vivas et al. 2013):

cD1½k� ¼
X

n
x½n� * h ½2k � n� ð3:13Þ
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cA1½k� ¼
X
n

x½n� * g ½2k � n� ð3:14Þ

where h ½n� and g ½n� are the high- and low-pass filters respectively. After obtaining
the first level of decomposition, the above procedure can be repeated again to
decompose cA1 into another approximation and detail coefficients, as articulated in
Eqs. 3.15 and 3.16 (Vivas et al. 2013). This procedure can be continued succes-
sively until a pre-defined certain level up to which the decomposition is required to
be found.

cD1½k� ¼
X
n

cAl�1½n� * h ½2k � n� ð3:15Þ

cA1½k� ¼
X
n

cAl�1½n� * g ½2k � n� ð3:16Þ

where cD1½k� and cA1½k� are the DWT coefficients at level l, and cAl�1½n� is the
approximate coefficient at level l − 1.

At each decomposition level, the corresponding detail and approximation
coefficients have specific frequency bandwidths given by 0� Fs=2lþ 1

� �
for the

approximation coefficients cAl and Fs=2lþ 1 � Fs=2l
� �

for the detailed one cDl

where Fs is the sampling frequency (Sawicki et al. 2009; Vivas et al. 2013).
However, at every level, the filtering and down-sampling will result in half the
number of samples (half the time resolution) and half the frequency band (double
the frequency resolution). Also, due to the consecutive down sampling by 2, the
total number of samples in the analysed signal must be a power of 2 (Ghods and
Lee 2014). By concatenating all coefficients starting from the last level of
decomposition, the DWT of the original signal is then produced, and it will have the
same number of samples as the original signal. A schematic diagram illustrates how
the multi-level decomposition is performed shown in Fig. 3.8. The number of
decomposition levels is identified by the lowest frequency band needed to be traced,

Level 1

Level 2

Level l

Fig. 3.8 Multi-level signal decomposition using DWT
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and a higher number of decomposition levels are required if very low frequency
band is investigated. However, the highest decomposition level that can be achieved
is up to that the individual details consist of a single sample (Misiti et al. 1997).

Once the approximation and detail coefficients are computed to different levels
of decomposition, it becomes possible to reconstruct the approximation and detail
signals at each level, in order to extract features, such as standard deviation and
mean, related to the frequency bands in each level. Each signal, however, will have
the same number of samples as the original signal but with a definite frequency
band. This can be achieved by up-sampling the approximation (or details) coeffi-
cients by two, since they were produced previously by down sampling by 2, and
then passing them through high- and low-pass synthesis filters. For instance, to
reconstruct the approximation signal of the first level (A1), just the approximation
coefficients at this level are required and a vector of zeros is feed in place of the
detail coefficients. Similarly, the first-level detail signal (D1) can be constructed
using the analogous process. The concept of signal synthesising is illustrated in
Fig. 3.9.

3.4.2 Selection the Optimum Mother Wavelet

There are available a number of commonly used wavelet families for performing
the DWT. Any discussion of wavelets starts with Haar wavelet, which is the first,
simplest, and resembles a step function. However, to find the optimum wavelet
function for this research, a survey has been conducted to uncover the different
types of mother wavelets researchers have used for the purpose of fault diagnosis.
Some examples of common wavelets families previously used are Daubechies
(dbN), Coiflet (coifN) and Symlets (symN) (Fig. 3.10), where N is the order number
in the wavelet family (Sawicki et al. 2009; Elbarghathi et al. 2012). The N value
also identifies the number of filter coefficients in each wavelet order; for instance,
the wavelet dbN and symN have 2 N coefficients in each order. Generally, the use of
different wavelets to analyze the same signal would lead to different results, and to
date no generic theoretical procedure has been published describing on how to

Fig. 3.9 Reconstruction the approximation and detail signals with zero padding
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select the optimum wavelet family (Kankar et al. 2011; Karthikeyan et al. 2012;
Loutas and Kostopoulos 2012).

The selection in many cases is achieved by trial and error. Indeed, the wavelet
function is considered appropriate for analyzing the signal under study if there is a
significant similarity between the signal and mother wavelet (Ngui et al. 2013), and
based on this several quantitative methods have been proposed to measure the
similarity between the signal and the mother wavelet. For example, Bouzid (2013)
has proposed calculating the cross correlation coefficient between the signal and the
mother wavelet. The wavelet that maximises this coefficient considered as the
optimum mother wavelet. So, an important question now raised is which wavelet
family should be utilized for analyzing the robot vibration signals in the second stage.

From the reviewed work it has been observed that the majority of researchers are
performing either off- or on-line condition monitoring using PC platforms. In this
case there is no need for concern about computers’ memory or processing power,
since they are designed for conducting daunting tasks such as this. In this research,
however, it is intended to achieve on chip wavelet analysis in conjunction with
intelligent fault classification system, and thus the above mentioned factors need to be
carefully considered. Therefore, the number of wavelet’s filters coefficients in each
order of specific wavelet family has to be counted. Some wavelet functions, such as
db10 or sym7, have many coefficients in their filters, which will raise the execution
time required for real-time wavelet analysis because of the increased computational
burden on the embedded system. Also, higher order wavelet function will generate
higher number of coefficients from the analysed signals that may case exceed the
available system memory (Chen et al. 2009; Loutas and Kostopoulos 2012).

The mother wavelet selection has been limited to the lower order families and
hence there is no need to apply further quantitative methods as the remaining

Fig. 3.10 Examples of mother wavelets
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options are very few. Daubechies and Symelet families are recognized as very
effective in vibration signal analysis and have various wavelet orders, thus, in this
project Daubechies’s second order (db2), which is the same as Symelet’s second
order (sym2), has been selected. It has four filter coefficients and Fig. 3.11 shows
the low and high pass decomposition and synthesis filters extracted from the Matlab
software. Extracted features using this wavelet showed high sensitivity to different
robot faults, as will be explained later in Chap. 6.

3.5 Summary

In this chapter, an intelligent condition monitoring algorithm composed of two
stages that can be used for robot fault detection (first stage) and diagnosis (second
stage) has been proposed. An outline of three conventional signal analysis tech-
niques that are commonly utilized in developing condition monitoring systems has
been provided, in order to choose the appropriate techniques for the robot fault
detection and diagnosis; these techniques are time-domain, frequency-domain and
joined time-frequency domain. The advantages and disadvantages along with a
brief theoretical background for each method were discussed. Time-domain anal-
ysis represents the simplest signal processing technique; it can provide an efficient
fault detection performance if it is used with other fault evaluation methods.
Subsequently this will be used in combination with statistical control chart
(SCC) technique in the first stage for robot fault detection.

Frequency-domain signal analysis based on fast Fourier transform (FFT) is a
valuable and widely used technique for analysing signals that have spectral content

Fig. 3.11 Filter coefficients of Daubechies order 2 (db2) mother wavelet
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that do not change over time (stationary signals), but its effectiveness is reduced if
applied for analysing signals that have characteristics which change over time
(non-stationary signals). The limitations in Fourier transform have been overcome
by using time-frequency signal analysis techniques such as short time Fourier
transform (STFT) and wavelet transform (WT). The main advantage of these
techniques over the Fourier transform is their ability in revealing the non-stationary
and random components within the signals of interest. However, STFT is based on
fixed window size which means it has fixed resolution for all the frequencies in the
signal, which is not appropriate when a non-stationary signal is investigated.

Wavelet transform represents an efficient method of time-frequency analysis and
was introduced to surmount the drawback of the STFT, since it uses variable
window size to get high frequency resolution at low frequencies and high time
resolution at high frequencies. By applying wavelet analysis, the signal can be
analyzed down to its sub-band frequencies and it is increasingly being utilized for
fault diagnosis. Hence, it will be adapted in this thesis for analyzing the robot
transitory vibration signals in order to diagnose the fault in the second stage. Thus,
more focus has been placed on examining the practical use of the WT as an efficient
signal processing technique for health monitoring. The differences between the
continuous wavelet transform (CWT) and the discrete wavelet transform (DWT) are
discussed and it was concluded that DWT is more appropriate to be implemented,
along the with intelligent classification system, using an embedded system. Before
it is applied using the embedded system a preliminary robot vibration analysis will
be undertaken in Chap. 6, in order to extract the salient signal features and use them
for designing the intelligent embedded system.

References

Al Kazzaz, S. A. S., & Singh, G. K. (2003). Experimental investigations on induction machine
condition monitoring and fault diagnosis using digital signal processing techniques. Electric
Power Systems Research, 65, 197–221.

Al-Badour, F., Sunar, M., & Cheded, L. (2011). Vibration analysis of rotating machinery using
time-frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing,
25, 2083–2101.

Bicker, R., Daadbin, A., & Rosinski, J. (1989). The monitoring of vibration in industrial robots. In
ASME 12th Biennial Conference on Mechanical Vibration and Noise, 1989.

Bouzid, O. M. (2013). In-situ health monitoring for wind turbine blade using acoustic wireless
sensor networks at low sampling rates. PhD Thesis, Newcastle University.

Chen, C. Y., Ke, M. D., & Kuo, C. D. (2009). Continuous wavelet transformation the wavelet
implemented on a DSP chip for EEG monitoring. 3633–3636.

Debdas, S., Quereshi, M. F., Reddy, A., Chandrakar, D., & Pansari, D. (2011). A Wavelet based
multiresolution analysis for real time condition monitoring of AC machine using vibration
analysis. International Journal of Scientific and Engineering Research, 2.

Elbarghathi, F., Wang, T., Zhen, D., Gu, F., & Ball, A. (2012). Two stage helical gearbox fault
detection and diagnosis based on continuous wavelet transformation of time synchronous
averaged vibration signals. Journal of Physics: Conference Series, 364.

3.5 Summary 71

http://dx.doi.org/10.1007/978-3-319-44932-6_6


Engin, S. N., Gulez, K., & Badi, M. N. M. (1999). Advanced signal processing techniques for fault
diagnostics—a review. Mathematical and Computational Applications, 4, 121–136.

Figliola, R. S., & Beasley, D. E. (2011). Theory and design for mechanical measurements. New
York: Wiley.

Gao, R. X., & Yan, R. (2011). From fourier transform to wavelet transform: A historical
perspective. Wavelets: Springer.

Ghafari, S. H. (2007). A fault diagnosis system for rotary machinery supported by rolling element
bearings. Waterloo: Doctor of Philosophy.

Ghods, A., & Lee, H. H. (2014). A frequency-based approach to detect bearing faults in induction
motors using discrete wavelet transform. In Proceedings of the IEEE International Conference
on Industrial Technology (pp. 121–125).

Giaouris, D., Zahawi, B., El-Murr, G., & Pickert, V. (2006) Application of wavelet transformation
for the identification of high frequency spurious signals in step down DC–DC converter circuits
experiencing intermittent chaotic patterns. In The 3rd IET International Conference on Power
Electronics, Machines and Drives (pp. 394–397), 4–6 April 2006.

Harpen, M. D. (1998). An introduction to wavelet theory and application for the radiological
physicist. Medical Physics, 25, 1985–1993.

He, J. (2001). Modal analysis, Oxford Boston. OxfordBoston: Butterworth-Heinemann.
Hsieh, W. H., Lu, M. C., & Chiou, S. J. (2012). Application of backpropagation neural network for

spindle vibration-based tool wear monitoring in micro-milling. International Journal of
Advanced Manufacturing Technology, 61, 53–61.

Iorgulescu, M., Beloiu, R., & Cazacu, D. (2009). Vibration monitoring for electrical equipment
faults detection using fast fourier transform. 2009. 34–38.

Kamiel, B., McKee, K., Entwistle, R., Mazhar, I., & Howard, I. (2015). Multi fault diagnosis of the
centrifugal pump using the wavelet transform and principal component analysis. Mechanisms
and Machine Science, 555–566.

Kankar, P. K., Sharma, S. C., & Harsha, S. P. (2011). Fault diagnosis of ball bearings using
continuous wavelet transform. Applied Soft Computing Journal, 11, 2300–2312.

Karthikeyan, P., Murugappan, M., & Yaacob, S. (2012). ECG signal denoising using wavelet
thresholding techniques in human stress assessment. International Journal on Electrical
Engineering and Informatics, 4, 306–319.

Kehtarnavaz, N. (2008). Digital signal processing system design: LabVIEW-based hybrid
programming. Amsterdam: Elsevier.

Kim, E. Y., Tan, A. C. C., Yang, B.-S., & Kosse1, V. (2007). Experimental study on condition
monitoring of low speed bearings: Time domain analysis. In 5th Australasian Congress on
Applied Mechanics.

Leavey, C. M., James, M. N., Summerscales, J., & Sutton, R. (2003). An introduction to wavelet
transforms: A tutorial approach. Insight: Non-Destructive Testing and Condition Monitoring,
45, 344–353.

Li, C. J. (2006). Signal processing in manufacturing monitoring. Condition monitoring and
control for intelligent manufacturing. London: Springer.

Li, R., & Frogley, M. (2013). On-line fault detection in wind turbine transmission system using
adaptive filter and robust statistical features. International Journal of Prognostics and Health
Management, 4.

Lihui, W., & Gao, R. X. (2006). Condition monitoring and control for intelligent manufacturing.
London: Springer.

Loutas, T., & Kostopoulos, V. (2012). Utilising the wavelet transform in condition-based
maintenance: A review with applications. In BALEANU, D. (ed.).

Marwala, T. (2012). Condition monitoring using computational intelligence methods. London:
Springer.

Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J.-M. (1997). Wavelet toolbox for use with
MATLAB, MathWorks.

Mohanty, A. R. (2015). Machinery condition monitoring: Principles and practices. London:
Taylor & Francis Group.

72 3 Signal Processing Techniques for Condition Monitoring



Ngolah, C. F., Morden, E., & Wang, Y. (2011). An intelligent fault recognizer for rotating
machinery via remote characteristic vibration signal detection. 2011. 135–143.

Ngui, W. K., Leong, M. S., Hee, L. M., & Abdelrhman, A. M. (2013). Wavelet analysis: Mother
wavelet selection methods. Applied Mechanics and Materials.

Onsy, A. (2009). Intelligent health monitoring of power transmission systems. Ph.D Thesis,
Newcastle upon Tyne.

Pan, M. C., Van Brussel, H., & Sas, P. (1998). Intelligent joint fault diagnosis of industrial robots.
Mechanical Systems and Signal Processing, 12, 571–588.

Polikar, R. (1996). The wavelet tutorial. United States: Rowan University.
Qiu, H., Lee, J., Lin, J., & Yu, G. (2003). Robust performance degradation assessment methods for

enhanced rolling element bearing prognostics. Advanced Engineering Informatics, 17,
127–140.

Qu, J., Zhang, Z., & Gong, T. (2016). A novel intelligent method for mechanical fault diagnosis
based on dual-tree complex wavelet packet transform and multiple classifier fusion.
Neurocomputing, 171, 837–853.

Rajbhandari, S. (2009). Application of wavelets and artificial neural network for indoor optical
wireless communication systems. PhD PhD Thesis, University of Northumbria at Newcastle.

Sawicki, J. T., Sen, A. K., & Litak, G. (2009). Multiresolution wavelet analysis of the dynamics of
a cracked rotor. International Journal of Rotating Machinery, 2009.

Shin, K., & Hammond, J. K. (2008). Fundamentals of signal processing for sound and vibration
engineers. New York: Wiley.

Tse, P. W., Yang, W. X., & Tam, H. Y. (2004). Machine fault diagnosis through an effective exact
wavelet analysis. Journal of Sound and Vibration, 277, 1005–1024.

Tseng, C. L., Wang, S. Y., Lin, S. C., Chou, J. H., & Chen, K. F. (2014). A diagnostic system for
speed-varying motor rotary faults. Mathematical Problems in Engineering, 2014.

Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis
and prognostic for engineering systems. New York: Wiley.

Vivas, E. L. A., Garcia-Gonzalez, A., Figueroa, I., & Fuentes, R. Q. (2013). Discrete wavelet
transform and ANFIS classifier for brain-machine interface based on EEG. In 2013 6th
International Conference on Human System Interactions, HSI 2013 (pp. 137–144), 2013.

Wilkinson, M. R. (2008). Condition monitoring for offshore wind turbines Eng. D., University of
Newcastle upon Tyne.

Williams, T., Ribadeneira, X., Billington, S., & Kurfess, T. (2001). Rolling element bearing
diagnostics in run-to-failure lifetime testing. Mechanical Systems and Signal Processing, 15,
979–993.

Zhen, C., & Zhang, Y. (2012). Fault diagnosis for wind turbines based on vibration signal analysis.

References 73



Chapter 4
PUMA 560 Robot and Its Dynamic
Characteristics

Abstract This chapter describes the PUMA 560 industrial robotic system that will
be used as the demonstrator throughout this project; highlighting its main com-
ponents and how they interact with each other. VAL II is a programming language
utilized with the used robotic system, hence, included in this chapter is a brief
synopsis of some of the important VAL II commands that are needed to programme
the robot, referent to the project. In order to design a reliable monitoring system for
any machine, some of its characteristics have to be known, such as machine natural
frequencies. Thus, the robot natural frequencies are obtained and utilized for pre-
liminary health evaluation and fault detection. To obtain these frequencies an
experimental modal analysis (EMA) is performed, which consists of: exciting the
robot and then measuring what is called frequency response function
(FRF) between the excitation and response. The FRF measurement is normally
achieved using specific software to find the natural frequencies from it. Explanation
of the EMA theory and how FRFs are calculated, used measurement equipment and
software setup for the experiments are also discussed in this chapter.

4.1 PUMA 560 Industrial Robot—General Overview

The PUMA 560 robotic manipulator, produced by Unimate, is an old (>25 years),
but functional, multi-joint robot and was used in this project, due to the availability
of the spare parts that are required for simulation of the different faults (as discussed
in Chap. 5). It is a PC controlled, serial manipulator designed for use in industrial
applications, and has six revolute joints/degree of freedom (DOF) with three major
axis of motion (X, Y, and Z) and resembles the human arm in function. Each of the
robot’s joints is actuated by a DC brushed permanent magnet servo motor.
Positioning of the end effector, which is normally a device fixed at the end of the
robotic arm, is achieved by the coordination of the first three joints, which are
named: waist (joint 1), shoulder (joint 2) and elbow (joint 3), allowing the robot to
move the end effector into any position with maximum reach of 1 m. Orientation of
the end effector is important when it approaches its final position and this is
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achieved using three wrist joints (4, 5 and 6) where the tool can be independently
manoeuvred. This gives the robot six degrees of freedom, as shown in Fig. 4.1
where the name of each joint with its maximum range of rotating is indicated.
Electromagnetic brakes are equipped with the first three joints (waist, shoulder, and
elbow), which lock the motors to prevent collapsing when the power is removed
from the robot (Potgieter et al. 2005).

The control unit of the PUMA 560 is the most important part of the robotic
system, it controls all operations of the manipulator and any connected device.
There is two-way communication to each of the joints motors where sensory
information on position and speed is fed back to the control unit; outputs are sent to
the motors relative to the task’s requirements. External digital input/output ports are
available allowing other sensors and actuators to be controlled from this unit. There
are a number of ways to position and orientate the manipulator end effector; but
generally, one method is used at a time. Connected to the robot control unit is a
teach pendant used to manoeuvre the robot around the workspace via different
modes. In joint mode, each individual motor can be driven one at a time, produces
rotational motion of the limbs in clockwise or anticlockwise direction. In world
mode the end effector is moved in a straight line along X, Y and Z axes, relative to
the world coordinates, which are fixed on the base of the robot, or moving tool
coordinates. Once the operator is satisfied with the end effector position and ori-
entation, then this can be stored within the control unit memory by giving it a code
name.

Forearm
Trunk

Shoulder

Upper arm

Fig. 4.1 PUMA 560 robot member representations (Rutherford 2012)
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All the operations running through the control unit are programmed using
VAL II programming language, which was developed for PUMA robots. Complex
programs can be developed by combining some commands, such as ‘wait’ and
‘move’, with conditional statements such as ‘if-then-else’. A simple VAL II pro-
gramme below demonstrates this; the function of each line in the programme is
shown in the {} brackets, but would not be included when writing a VAL
programme.

1 SPEED 20 ALWAYS {Set the arm speed to 20% monitor speed}
2 OPENI {Open gripper jaws}
3 IF SIG (1001) == 1 THEN {If input signal 1 equal to 1 then…}
4 MOVE PICK {Move to position Pick}
5 CLOSIE {Close gripper jaws}
6 MOVE PLACE {Move to position Place}
7 ELSE {If signal 1 not equal to 1…}
8 MOVE EMPTY {Move to position Empty}
9 END {End of the program}

To enable real-time control, VAL II has the ability to interface with external
devices. Through the available I/O module, the control unit may issue commands to
the devices or accept data from them. The module is organised as a set of 32 output
lines (OX) and 32 input lines (WX), with each line having its own address. To
monitor an input line the address must be preceded by 10 in the programme code
(see line 3 in the above code). High and low voltages on the lines are considered by
the system as logic 1 and 0 respectively. This facility has been used in this thesis.

4.2 Modal Analysis

Modal analysis is a technique to estimate the natural frequencies of dynamic
structures and their associated mode shapes. It can be performed using two
approaches: computationally and experimentally. In the first method, which is also
known as the analytical (or theoretical) modal analysis, the dynamic behaviour
(natural frequencies and mode shapes) of the structure is obtained from its math-
ematical model through the numerical analysis. Finite element modelling (FEM) is
commonly utilized to investigate the dynamic behaviour of structures. For instant, a
research was undertaken to theoretically study the dynamic characteristic of KUKA
robot (Pupăză et al. 2014). The three dimensional robot modelling was done using
computer aided design (CAD) software and the modal analysis was performed
using ANSYS FEM software. Other research was also applied modal analysis
approach based on ANSYS software for gearbox fault diagnosis (Liguo et al. 2009).

In the experimental model analysis (EMA), also recognized as modal testing, an
appropriate external excitation force is applied to the structure, and simultaneously
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the structure vibration response is measured and analysed to extract the modal
parameters. The relationship between the input and output (the excitation and
response) is described using what is known as the frequency response function
(FRF), as discussed in the following section. There are two commonly applied
excitation methods in modal analysis; the impact type by using an instrumented
hammer with a force transducer at its tip, and the random (or sinusoidal) excitation
type by using an electromagnetic shaker driven by a signal generator. In term of its
uses, Elosegui (1994) conducted an experimental modal analysis of a PUMA 560
robot with the main aim is to find its natural frequencies. In the area of structural
health monitoring (SHM), modal analysis has been effectively used to study the
effects of a crack in a structure on its natural frequencies (El-Kafrawy 2011). The
researcher applied experimental and theoretical modal analysis to validate the
results.

In this chapter EMA will be applied to determine the natural frequencies of the
PUMA robot. These frequencies can be utilized for condition monitoring of the
robot, as their values are subject to change if a fault is present in the system; this is
discussed in Chap. 6. However, to obtain all the robot’s natural frequencies, this
test was accomplished with the robot in different configurations and in three axes
(X, Y and Z), as explained later.

4.2.1 Frequency Response Function (FRF)

Frequency response function (FRF) is defined as the ratio between the system
response to its excitation force, and represents the outcome of the modal analysis. It
can be calculated by dividing the Fourier transform of the response x(t) on the
Fourier transform of the excitation y(t), as shown (Mohanty 2015).

Hðf Þ ¼ Xðf Þ
Yðf Þ ð4:1Þ

where Hðf Þ is the FRF and Xðf Þ and Yðf Þ are the FFT of the x(t) and y(t),
respectively. However, to obtain a noise-free result the FRF can be estimated by
dividing the cross-power spectrum of excitation and response ðSxyðf ÞÞ on the
auto-power spectrum of the excitation ðSyyðf ÞÞ, as follow.

Hðf Þ ¼ ðSxyðf ÞÞ
ðSyyðf ÞÞ ð4:2Þ

where Sxyðf Þ and Syyðf Þ can be formulated in Eqs. 4.3 and 4.4 below, t is the
measured time record, and X� is the complex conjugate of Xðf Þ.
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Sxyðf Þ ¼ 1
t
X�ðf ÞYðf Þ ð4:3Þ

Sxxðf Þ ¼ 1
t
X�ðf ÞXðf Þ ð4:4Þ

The peaks in the FRF correspond to the natural frequencies of the system. Thus,
to find the natural frequencies of the PUMA 560 robot, an experimental modal
analysis will be performed to find the FRF. In this test the robot will be excited in
X, Y and Z directions, using an impact hammer, which is easier to excite the robot’s
natural frequencies and by using it the robot does not need to be mounted on a
shaker (Brandt 2011); the responses from the robot in the three axes are then
captured using an accelerometer. This analysis can be accomplished using different
dedicated, commercially available data acquisition systems for vibration and modal
analysis, along with their driver software. From the peaks of the established FRF
the robot’s natural frequencies can be extracted. The amplitudes associated with the
natural frequencies represent the energy required to excite these modes.

4.2.2 Coherence

In modal analysis it is important to check if the captured response is from the
impact force or if it is noise. To this end the correlation between the response and
the excitation signals can be checked. This will also help in identifying where to
locate the accelerometer on the robot to get an accurate modal result. Accordingly,
for data quality assessment, the coherence function in the frequency domain
ðc2xyðf ÞÞ can be used, which shows how much the output is connected to the input.
Its value ranges from zero to one, where a value of one corresponds to a perfect
correlation between the impact and the output signal and there is no influence of
noise, whereas zero means no coherency. The coherence between the input and
response signals can be calculated with the following formula (Mohanty 2015):

c2xyðf Þ ¼
S2xyðf Þ

Sxxðf Þ * Syyðf Þ ð4:5Þ

4.2.3 Description of the Measuring Equipment

In the EMA measuring equipment provides the required input and output data. To
give a better understanding of the experiments, the measuring equipment, which
consists of: an impact hammer, an accelerometer and a dynamic signal analyser, are
described in this section.
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Impact hammer: this device produce an impulsive excitation force that causes
the structure to vibrate followed by free decay of vibration. The hammer contains a
force sensor mounted on its striking face to measure how much force is applied to
the structure. The force sensor contains a piezoelectric crystal that generates charge
as a result of the deformation in its shape, due to the impact applied. Usually the
impact hammer has a hole at its striking head for using a variety of impact tips (soft,
medium, and hard) and also a removable extra mass secured on the other side to
increase the input force magnitude. The main functions of the tip are to transfer the
force of the impact to the sensor and also to protect sensor face from damage.
Selecting a suitable tip type is very important for accurate modal analysis; however,
the hardness of the impact tip and the added extra mass to the hammer influence the
excitation frequency bandwidth. A hammer with a hard tip excites a wide frequency
spectrum bandwidth, whereas a soft-tipped hammer generates concentrated exci-
tation energy in a low frequency band. Here a PCB integrated circuit piezoelectric
(ICP) impact hammer model 086C03 that has its own built in charge amplifier has
been used. Its sensitivity is 2.25 mV/N and its mass and length are 160 g and
216 mm, respectively. The hammer can be connected to the data acquisition
analyser through a standard BNC jack connector.

Accelerometer: the dynamic response from the structure, due to the applied
impact, is measured using a piezoelectric accelerometer, accelerometers are the
most popular and most commonly used in modal analysis applications, which their
working principle is also based on the deformation in the shape of the piezoelectric
crystal. A single axis ICP accelerometer type PCB 352C68 has been utilized to
measure the acceleration from the robot in different axes. The integrated amplifiers
in the accelerometer and impact hammer are directly fed from the signal analyser.
This accelerometer has a standard sensitivity of 100 mV/g and measurement range
is 0.5 Hz–10 kHz. The accelerometer comes with a standard stud mount, which
would require drilling and semi-permanent attachment to the robot arm. In order to
avoid drilling the arm, the accelerometers were mounted using an additional
bracket, which is attached to the mounting stud on the accelerometer. This
bracket allows for wax or any other adhesives to be applied to the bottom of the
accelerometer in order to affix it without modifying the tested structure.

Data Physics Quattro analyser: for data acquisition, the Data Physics Quattro,
which is a USB powered vibration and sound analyser, has been used. This analyser
offers 4 channels analogue input up to 54 kHz, and can be connected to a laptop
using USB 2.0. The analyser samples the voltage signals coming from the
accelerometer and the force transducer and converts them into equivalent acceler-
ation and force depending on the sensitivity information of the sensors; also, it has
the capability to power ICP sensors. For vibration signal acquisition and analysis
the SignalCalc 240 from Data Physics Corp, which is especially designed to work
with the Data Physics Quattro analyser, has been used. The experimental setup for
this analysis is shown in Fig. 4.2. The datasheets for all aforementioned devices are
provided in Appendix A.
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4.3 Experimental Considerations

A robust result from the EMA depends on number of factors, including, but not
limited to, the used testing equipment, setting of the utilized dynamic signal
analyser software and the skill of the person doing the experiments. The following
subsections discuss some of parameters that need to be considered prior to con-
ducting the modal testing.

4.3.1 Settings of SignalCalc ACE Software

The frequency resolution, which is coupled with the number of measurement lines,
represents the first parameter to be set in the software. Higher frequency resolution
implies longer time, more data, and large data size; thus a compromise needs to be
made. For this analysis, the number of spectral lines has been set to 6400 lines.
Hence, by using the following equations the frequency resolution ðDFÞ can be
determined.

DF ¼ 2:56 � fmax
N

ð4:6Þ

DF ¼ fs
N

ð4:7Þ

Data Physics 
Analyser

The accelerometer 
mounted on the 
established best 

location

Z 
Y

X

Impact hammer

Fig. 4.2 The experimental set up
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where fmax is the maximum frequency, which is assumed to be known and its value
is set based on the number of modes to be captured, N is the number of samples,
and fs is the sampling frequency. The sampling frequency in SignalCalc software is
always given by:

fs ¼ 2:56 � fmax ð4:8Þ

The trigger also has to be set correctly, which refers to the source that initiates
the data collection process. Many options can be set in the software, but the most
appropriate for this analysis is the input option where the impact force from the
hammer acts as input to trigger the data acquisition at each impact, after which
N samples are acquired. To increase the accuracy of FRF measurement, the effects
of random errors has to be reduced. These errors can be because of the contami-
nated noise or induced by the person who is doing the experiments. However,
averaging the measurements represents a very useful method to get reliable results.
So, after the signals are captured the software then computes the auto- and
cross-power spectra, and adds them to a cumulated average. Different types of
averaging, such as peak hold, exponential, and stable, can be set up in the software.
In this analysis a stable averaging method is used; by which a pre-set number of
constituents are summed, each one is weighted with equal importance and then the
average is automatically normalized to the number of constituents recently acquired
(Data Physics Corporation 2006). The software also has the capability of halting
after the time-domain signal has been collected, but before being included in the
average, for a manual investigation process where the user can decided whether to
include or reject the current impact in the averaging.

The response signal from the test is a free decay that has to approach zero within
the observation time interval; however, a leakage in the signals may occur if the
measured signals do not decay to zero. Therefore, to minimize the effects of
leakage, the measured signals are multiplied by a window function before they are
transformed to the frequency domain. The software has different window types, but
for transit signals the appropriate one is the rectangular window (Data Physics
Corporation 2006). Since the impulse signal excites the structure for a very short
time period, it is important to make sure that the entire impulse and response signals
are captured. In SignalCalc software a pre-trigger delay can be specified, which
allows the analyser to begin data sampling before the trigger point occurs. A plastic
hammer tip is chosen, as it was found that this delivers adequate energy to excite
frequencies within the bounds of interest. Finally, the person doing the experiment
has to ensure that the impact axis is parallel to the accelerometer axis, and also there
is no double hit, which may occur due to the structure flexibility that bounce back at
the hammer (Brandt 2011).
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4.3.2 Measurement System Calibration

Calibration can be conducted in one of several ways. Comparison with a reference
standard device, that is considered to be more precise than the instrument being
calibrated, represents the most common calibration approach (Mohanty 2015).
However, the accelerometer used here was purchased specifically for this research
and was already calibrated, whereas the impact hammer and Data Physics analyser
were several years old. Thus, to test the measurement system accuracy prior to
utilize it on the robot, modal analysis was performed to find the natural frequencies
of simple cantilever beam test rig. The idea of this procedure is to mathematically
calculate the first four natural frequencies of the beam, based on the beam theory
(Wahab 2008), and then compare them with the experimentally established ones
from the test rig. As observed in Table 4.1, the experimental and theoretical results
are identical, presenting a maximum percentage discrepancy of 1.26 % at the 4th
mode. The small differences between the result can be attributed to that the theo-
retically calculated frequencies are based on an assumption that one end of the
cantilever beam is properly fixed, but in practice this may not be always the case
due to the flexibility and damping in the support.

4.3.3 Coherency Checking

In order to have a reliable result from the hardware and software the selection of
response measuring position should be made properly. After conducting the funda-
mental experimental settings and validation, it remained to check if the
signal-to-noise ratio (SNR) is sufficient; established by examining the coherence
function that is measured from different accelerometer locations. A pre-modal
analysis testing was carried out to investigate the best accelerometer location. The
coherence assessment has been done for three different accelerometer’s locations
which are near to the robot wrist, elbow, and shoulder, as these locations contain the
robot’s gears so the response will properly propagated through them giving good
signal-to-noise ratio. The accelerometer was also attached to the robot’s links, but it
was found that the noise percentage in the captured signal was very high, and the
coherence was very low. Some of results of coherence function are shown in Fig. 4.3.

Table 4.1 Comparison between the experimental and theoretical natural frequencies of a
cantilever beam

Mode Theoretically Experimentally Error between theoretical
and experimental result %

1 64 64.06 0.09

2 400.9 400 0.22

3 1122.4 1120.31 0.18

4 2199.66 2171.8 1.26
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From the results it was observed that, in comparison to the elbow and shoulder
locations, when the sensor is located at the first location (near to the wrist as shown
in the experimental set up in Fig. 4.2) the coherence gets very high. Also, in
selecting the best position to put the accelerometer not only has the coherence to be
checked, but also the number of excited modes from that position; the higher the
number of modes the better the accelerometer location is. Thus, from the prelim-
inary result it was established that a higher number of modes were captured when
the accelerometer near to the arm wrist, and therefore will be used. Generally, if a
structure is excited in a point located farther from the sensor, the coherence will be
very poor; therefore, the point of impact has also been selected carefully.

4.4 Results of FRF Analysis

Since the arm robots are configurable machines, they have different structural
stiffnesses for different configurations; and consequently some frequencies appear
in one configuration and not in another. So, the FRF analysis was carried out when
the robot in four different configurations and when the accelerometer is near to the
wrist, which is the best established response capturing location. These configura-
tions represent the standard configurations of this robot, as shown in the Fig. 4.4. In
the first one the upper arm is horizontal and the forearm is hanging down; the
second is called stretch where the entire arm is straight and horizontal; third is the
robot zero position, which is same as the first configuration just the forearm is up,
and the last one is known as the ready position where the arm is straight and vertical
(Corke 2011).

Before conducting the modal testing it was observed that there is a dithering
problem in the robot structure when the arm power is on and does not move. This
can be related to the joint motors which produce the required torques to hold the
arm static. An FFT analysis was accomplished to investigate if the robot control
system excites some natural frequencies or not; it was established that there are no
significant frequencies that need to be considered in the spectrum. Furthermore,
before achieving modal analysis on the robot structure, the FRF was established in
the base of the robot, to find its natural frequencies and monitor them if they will be
excited when the robot arm is impacted. However, the base natural frequencies
were discovered to be very high in comparison to the robot arm frequencies, and
therefore they were not detected when the robot excited.

To measure the FRF for the robot in X, Y and Z axes, first the accelerometer was
put in-line with X-axis and the test was conducted, after which it was fixed parallel
to Y- and Z-axes and the FRF procedure was performed, respectively. Every time
the test was performed, the impact direction was keen to be in-line with the
accelerometer, in order to excite just the frequencies in the direction of interest as
the displacement is being maximized in that direction. Also, prior to doing the final
tests several trials were performed in order to locate the best excitation point that
gives the best coherence between the input and response; and was found that it is

4.3 Experimental Considerations 85



best to hit the structure at the elbow (joint 3) area. The Fig. 4.5 shows the FRF
results when the robot in configuration 1. The extracted natural frequencies from the
FRF analysis when the robot in different configurations are shown in the Table 4.2.

From the above table it can be seen that some frequencies appear in one con-
figuration and not in another; for instance, the frequency 356.25 Hz can be

Configuration 1  Configuration 2

Configuration 3 Configuration 4

Z
Y

X

Z
Y

X

Z
Y

X
Z

Y

X

Fig. 4.4 The tested robot configurations
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observed only when the robot in the first and forth configuration, while the
414.4 Hz frequency was detected only in the first configuration. In contrast, other
frequencies, such as 12.5, 66.87 and 86 Hz, emerged in all of the tested configu-
rations. Due to the torsional stiffness of the transmission systems industrial robots
have flexible joints, and the effect of this flexibility accompanied with the gravity
field is clearly present in X and Z axes, where higher number of lower natural
frequencies are excited especially in the first three configurations; in these con-
figurations fewer frequencies were excited in Y-axis, as it is outside the effect of
joints flexibility and gravity field. In the fourth configuration fewer frequencies
were stimulated in Z-axis, since the applied torque due to the robot mass will be
neglected as the centres of the arm and mass are coincident. It can be concluded that
the technique of using different robot configurations has helped in extracting most
of the robot natural frequencies. The order (sequence) of the frequencies will be
selected depending on their emersion in the table and from lower to higher fre-
quency, regardless of the configuration since during performing a task the robot
configuration is changing instantaneously, exciting different frequencies. Also, to
validate the results, the natural frequencies from Elosegui (1994) research, which
used the same robot but different excitation method and configuration, have been
utilized for comparison, as shown in Table 4.3.

It can be seen from Table 4.3 that a higher number of frequencies are excited in
the current study with acceptable correlation between the results. The difference
between the results may be because of the excitation method, the method of
mounting the robot on the ground, the robot configuration in the previous study or
the age of the robot. The robot used here is very old in comparison to the same
robot model in 1994. It has been observed from previous research conducted in the
area of robot modal analysis, the robots have been configured in arbitrary positions,
and their natural frequencies extracted. The disadvantages of that are: firstly not all

Table 4.3 Estimated robot natural frequencies compared to another paper result

Mode Estimated
natural
frequencies
(Hz)

PUMA 560
natural
frequencies from
(Elosegui 1994)

Mode Estimated
natural
frequencies
(Hz)

PUMA 560
natural
frequencies from
(Elosegui 1994)

1 9 5.46 10 86 80.32

2 12.5 12.67 11 97.5 –

3 17.19 – 12 110.6 –

4 20 20.12 13 115.6 –

5 27.37 25.23 14 130.6 –

6 35 – 15 197.5 158.69

7 42.2 40.14 16 356.25 –

8 53.75 51.08 17 414.25 –

9 66.87 67.21 – – –
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the robot’s natural frequencies will be extracted, these natural frequencies might be
not accurate, and finally it will be difficult for other researchers to obtain the same
results from the same analysis on the same robot. Consequently, after doing this
test, it can be said that the frequency response analysis can be undertaken easily by
using the above procedure to find the natural frequencies of any robot.

4.5 Summary

A general overview of the used PUMA 560 robot along with its VAL programming
language was introduced in the first section of this chapter, followed by the
background to experimental modal analysis (EMA) and how it can be employed to
extract the system natural frequencies, including the use of frequency response
analysis for fault detection. The test equipment, setup of the data acquisition
software and measurement system calibration was explained. Considerations, such
as finding the best locations to excite the robot and measure the vibration response
on the robot structure, were discussed. To correctly identify the robot natural fre-
quencies modal analysis was carried out with the robot in four different configu-
rations. The established frequencies were compared with the results of another
research study, which utilized the same robot model but different experimental
setup, and an acceptable correlation between both results was observed, giving
some confidence in the current findings. These frequencies may be applied for robot
fault detection as it will be investigated in the coming chapters. The procedure
developed in this chapter could be adopted to establish the dynamic characteristics
of other industrial robots.
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Chapter 5
Robot Hardware, Transmission Faults
and Data Acquisition

Abstract In this chapter joint three of the PUMA 560 robot was selected to
simulate different transmission faults. The mechanical construction of this joint was
comprehensively assessed to establish its assembly/disassembly. A discussion
about different types of faults that may appear in the joint’s gears and bearings is
also included, and the physical simulation of several faults, with different severities,
in the gearbox of the selected joint are presented. For vibration analysis a suitable
accelerometer needs to be selected, and where to locate and attach it on the robot are
important, therefore an optimum accelerometer location will be identified and fixed.
Data acquisition software based on LabVIEW graphical programming and Matlab
was designed using National Instrument hardware.

In this chapter joint three of the PUMA 560 robot was selected to simulate different
transmission faults. The mechanical construction of this joint was comprehensively
assessed to establish its assembly/disassembly. A discussion about different types of
faults that may appear in the joint’s gears and bearings is also included, and the
physical simulation of several faults, with different severities, in the gearbox of the
selected joint are presented. For vibration analysis a suitable accelerometer needs to
be selected, and where to locate and attach it on the robot are important, therefore
an optimum accelerometer location will be identified and fixed. Data acquisition
software based on LabVIEW graphical programming and Matlab was designed
using National Instrument hardware.

5.1 Mechanical Construction of the PUMA 560 Elbow
Joint (3)

As stated in Chap. 4, each joint in the robot is actuated by a DC brushed motor and
a transmission gearbox; and consequently faults can progress in different compo-
nents of these joints. However, due to the limited time of the PhD study only one of
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(a) Schematic diagram of joint 3 (Elbow joint)
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Fig. 5.1 a Schematic diagram of joint 3 (Elbow joint) b arrangement of the bevel and spur gears
in joint 3
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the robot joints (joint 3—elbow) is considered for simulating different fault types on
the PUMA 560 robot.

From the literature it has been established that the elbow joint (joint 3) is the
most critical joint in the PUMA robot, and consists of two-stage gear train system.
The mechanical construction of this joint is illustrated in Fig. 5.1. The gear train is
housed in the end of the upper arm and connected via a drive shaft and compliant
couplings to a DC motor housed at the top of the upper arm (Fig. 5.1a). The flexible
couplings are there to ensure a smooth transmission of motion while permitting
some mechanical misalignment and relative movement between the motor and the
gear train. A bevel pinion on the input shaft meshes with a bevel wheel fixed on one
end of an idler shaft, Fig. 5.1b. A spur pinion at the other end of the idler shaft
engages with a spur wheel fixed to the forearm, which rotates the forearm around
the elbow axis. A number of bearings are used to carry the input and idler shafts.
Also, there are two external bearings used to support the forearm in the upper arm.

5.2 Gears General Overview

A wide range of types and sizes of gears are used for different machinery. Gears
usually operate in pairs; allow power to be transmitted from one shaft to the other
without slippage and the direction and speed of rotation of the driven shaft to be
changed. The pair gears may have the same or different teeth number; the gear with
higher teeth number is called the wheel or gear, while the one with fewer teeth is the
pinion. Speed of rotation is increased when the gear drives the pinion and decreased
when the pinion drives the gear. Thus, the speed ratio is given by:

speed ratio ¼ number of gear teeth
number of pinion teeth

ð5:1Þ

The most common frequencies associated with gears are known as gear mesh
frequencies. These frequencies are calculated depending on the number of teeth and
the rotational speed as in the equation:

Gear mesh frequency ¼ gear speed � no: of teeth ð5:2Þ

The main gear types are demonstrated in Fig. 5.2. To transmit power between
two parallel shafts spur gears, which have teeth cut parallel to the shaft, are used.
These gears produce only radial forces on their bearings and no axial forces
(Radzevich 2012). Helical gears are similar to spur gears but their teeth are cut at a
helix angle, which ensures the load is transferred progressively along the length of
the tooth and distributed over a larger tooth area than in spur gears. Both axial and
radial forces are imposed on the bearings of helical gears, due to their teeth not
being parallel to the carrying shaft. Bevel gears are conical in shape and commonly
used for transmitting power between intersecting shafts; most often the angle
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between shafts is 90°. Bevel gears also impose both axial and radial forces on their
bearing. Teeth in bevel gears can be straight or cut in spiroid to produce spiral bevel
gears, which are smoother and quieter in operation than the straight bevels. Worm
gears allow power transmission between two perpendicular shafts. They are
screw-like gears and usually meshed with spur or helical gears.

Generally, typical quality requirements for the majority of industrial gears are:
high efficiency, low backlash, large reduction in few steps, low friction, high tor-
sional stiffness and low weight (Pettersson 2008). All the gears used in the PUMA
560 robot are of type spur and bevel gears. The number of teeth and speed ratios in
joint 3 are presented in Table 5.1.

(a) Spur gears (b) Helical gears

(c) Bevel gears (d) Worm gears

Fig. 5.2 Main gear types (Childs 2014)
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5.3 Transmission Error in Gears

Transmission error (TE) is defined as “the difference between the actual position of
the output gear and the position it would occupy if the gear drive were perfect”
(Welbourn 1979). TE is considered to have a very strong correlation to resulting
gear vibration and noise (Hiroaki and Nader 2012; Henriksson 2009). Several
different techniques and instruments have been previously used to measure gears
transmission errors, such as strain gauge on the drive shaft, torsional vibration
transducers, magnetic signal methods, tachometers, rotary encoders systems and
tangential accelerometers. The TE concept is illustrated in Fig. 5.3, and its value
can be calculated using Eq. 5.3 (Hiroaki and Nader 2012).

TE ¼ hgear � Rpinion

Rgear
hpinion

� �
ð5:3Þ

where hgear, hpinion and Rpinion, Rgear are angular displacements and pitch circle
radiuses of pinion and gear, respectively. Theoretically, when two gears mesh, the
rotation of the output gear would be a function of the gear ratio and input rotation, if
these two gears have perfect involutes and an infinite stiffness. However, gears will

Table 5.1 Number of teeth
in the gears of joint 3

Parameter First stage
(bevel gears)

Second stage
(spur gear)

Pinion Wheel Pinion Wheel

Number of teeth 13 96 11 80

Speed ratio 7.38 7.27

Transmission 

Error 

Rgear 

Gear

Pinion

Rpinion 

Actual measured rotation of gear

Fig. 5.3 Explanation of transmission error
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normally not have a perfect involute shape because of unpremeditated modifica-
tions, such as manufacturing errors, and intended shape modifications.
Additionally, there will be a motion error of the output gear relative to the input
gear due to finite gear mesh stiffness. In short, there are three main sources for TE:
the elastic deformation of the gears and associated components, gear geometrical
errors and mounting errors (Hiroaki and Nader 2012). Also, varying gear mesh
stiffness, unequal load distribution at gear mesh and changeable loads at the
meshing position caused by output loads are another sources for TE (Ibrahim 2011).

5.3.1 Mounting Errors

In this sub-section the mounting errors that may occur in the transmission system of
joint 3 will be discussed, however, these errors can be generalized for other gear-
boxes. In order to introduce some faults in the robot gearbox, as will be explained
later in this chapter, the transmission in the elbow joint was dismantled. In addition
to unavoidable transmission errors, mounting errors are possible if the gears are not
correctly installed on reassembly, and thus care is required.

Gears mesh problems, such as poor teeth contact, high noise and vibration,
cannot be avoided if at least one of the mating gears is not correctly mounted, and,
factors, including misalignment of shafts, clearances in bearings and eccentricities
further influence the contact pattern of the gear teeth. For example, in Fig. 5.4
which is a schematic diagram for joint 3 gearbox, if the centre distance between the
spur gear pair decreases, the backlash value also decreases, and may result in
interference which will prevent the gears from rotating properly. Furthermore, the
accuracy of the two parallel axes will be composed of a parallelism error and a shaft
offset error, which will influence the tooth contact in the tooth rotating direction.

For spur (and helical) gears, as explained previously, the best mesh for a gear set
normally requires only correct adjustment of the centre distance and shafts paral-
lelism and no further adjustment is needed. However, because the bevel gears are
conical they can be assembled in an almost infinite number of positions and in spite
of these positions that may satisfy the desired backlash value, they may still perform
poorly. This makes the challenge of bevel gears adjustment quite complicated. In
the practice all types of bevel gears have an optimum position defined by the conic
intersection, which provides the optimum transmission performance. The manu-
facturer determines this position by running a number of tests for each individual
gear pair, using marking blue, and permanently indicates it on the gear surface, to
ensure smooth running and optimum load distribution between mating bevel gears;
and also parameters, such as axial mounting position, shaft angle, and shaft offset,
have to be taken in the consideration.

Bevel gear mounting distance (as shown in Fig. 5.4) is “the distance from a
locating surface on the back of one gear to the centreline of a mating gear”
(Wasilewski 1994). This represents the most important parameter for proper
operation, and normally its optimum value can be established experimentally by
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undertaking a number of gear rotations to find the best contact pattern. In most
bevel gear pairs, the pinion mounting position has a larger effect on the contact
pattern than the wheel position (Wasilewski 1994), and two types of error (positive
and negative) are associated with mounting distances as illustrated in Fig. 5.5
(Kohara-Gear-Industry 2015). When the error is positive, the pinion contact pattern
will move towards the tooth root, while the contact of the mating gear will move
toward the top of the tooth. Conversely, the contact of the pinion will move toward
the top and that of the gear will move toward the root if the mounting distance of
the pinion has a negative error. These errors can be corrected by axial adjustment of
the pinion and wheel gears. However, mounting distance error will cause a change
in backlash; positive error increases backlash whilst negative backlash decreases it.

Figure 5.6 shows another category of mounting errors called shaft angle errors.
If the shaft angle error is positive, the tooth contact will move toward the toe end,
while the tooth contact will move toward the heel end if the shaft angle error is
negative (Fig. 5.6a). Shaft alignment or offset error occurs if the pinion axis does
not intersect with the gear axis; however, a crossed contact will be produced if the
gears have an offset error, as shown in Fig. 5.6b.
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Fig. 5.4 Schematic diagram for the bevel and spur gear sets in joint 3
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5.4 Common Gear Faults

The main fault types in a robot gear are similar to those occurring in gearboxes
(Halme 2006). When a gear is working under high load conditions, failures tend to
occur, localised faults in gears tend to develop rapidly once initiated; and the earlier
identification of a gear failure gives a clear indication about potential problems in
the system prior to failure. A summary of the main gear failures is provided for
completeness.

Pinion Gear

Negative error 

Pinion 

Gear

Pinion 

Positive error 

Pinion Gear

Gear

Fig. 5.5 Positive and negative mounting distance error

(a) Shaft angle error (b) Offset errors

Error 

Error 

Negative shaft 

angle error 

Positive Shaft 

angle error 

Fig. 5.6 Shaft angle and offset errors in bevel gears
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5.4.1 Backlash in Gears Pair

Backlash is defined as “the clearance between the non-working flanks of the teeth of
a gear pair when the working flanks are in contact” (British-Standard 2007). High
backlash between gears teeth can lead to reduction in system stability, high impact
force and generate undesired vibration and noise, which together will decrease the
accuracy and repeatability of the robot. However, it is not recommended to totally
eliminate backlash between gear teeth, as it is essential to avoid interference
between the mating gears and to provide better lubrication of the tooth surfaces.
Two methods can be followed to achieve the desired clearance, the first of which is
to reduce the tooth thickness and the second method, which is the most common, is
to adjust the centre distance between the shaft axes of the meshed gears in spur and
helical gears, or by adjusting the mounting distance in bevel gears, as explained
earlier in Sect. 5.3.1 (Sommer 2011; Wasilewski 1994). This can be achieved by
using anti-backlash gears, precise mechanical design, which is the case in the robot
under study.

Later in this chapter, in addition to the backlash fault, joint 3 requires disas-
sembling in order to simulate other kinds of faults in the gears and bearings.
Information related to centre distance in the spur gears and mounting distance of
bevel gears are not provided by the manufacturer, and the degree of backlash that
gives the best gear mesh in spur and bevel gear sets has not been provided. The
robot manual does not include procedure of re-installing these gears makes the
problem of resetting these gears back very complex, since the mentioned param-
eters are vital for gear mesh adjustment. To overcome this problem, a considerable
amount of time was spent practicing assembling joint 3 using a spare faulty robot.

5.4.2 Scuffing

If the oil-film between the gear teeth breaks down, scuffing failure, which is a mode
of tooth surface failure, will occur, and allowing metal to metal contact leading to a
localized welding. Overloading, misalignment and high operating temperature are
considered the main causes of disruption of the oil-film. When the scuffing occurs,
the tooth surfaces will appear slightly rough, dull, and torn in the direction of
sliding (Yeýilyurt 1997), as shown in Fig. 5.7.

5.4.3 Abrasive Wear

The presence of hard material, such as fine metal particles or sand, in the lubricant
leads to abrasive wear. During the normal operation of the meshed gears, the teeth

5.4 Common Gear Faults 101



are separated from each other by a thin oil-film, however, if a particle with
dimension larger than the thickness of the oil-film and hardness near or above the
hardness of the gear tooth surface passes through the mesh, the tooth surfaces will
be affected. The resulting damage is seen as grooves on the tooth surfaces in the
direction of sliding (Smith 1983; Yeýilyurt 1997).

5.4.4 Pitting or Surface Fatigue

Pitting is a surface fatigue failure happens when the contact stresses exceed the
fatigue tolerance limit and is indicated by the development of cavities in the contact
zone of the gear teeth, as shown in Fig. 5.8. After a certain period of operation with
repeated variation of load, surface fatigue cracks (or pitting cracks) will be initiated.
These cracks propagate until they intersect other surface cracks, and finally a small
area of metal on the tooth surface will spall off. After that, pitting will spread
rapidly on the tooth surface as the remaining healthy areas must carry the extra load
which is previously supported by the damaged areas.

5.4.5 Tooth Breakage

All gears failures which have been discussed up to now represent progressive
failure types. That means during the progression of the failure the gear set will
continue transmitting the power. However, tooth fracture is the most insidious
mode of gear failure and leads to either impairment of the drive system or instant

Fig. 5.7 Scuffing in gear
teeth (www.novexa.com)
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loss of serviceability. Bending fatigue represents the most common cause of gear
tooth fracture. That is because of the cyclic bending stress, introduced during power
transmission process due to repetitive loading. However, when this stress exceeds
the yield strength of the gear material at the critical section, near the tooth root, a
small crack will initiate and then propagates rapidly until part (or the entire tooth)
breaks off. As a result, the remaining part of the tooth will have to withstand a
greater cyclic loading, and is susceptible to further breakage (Radzevich 2012).

5.5 Rolling Bearings General Overview

Rolling element bearings represent the most commonly used component for min-
imizing the friction between stationary and moving parts of any rotating machine.
Depending on the shape of the rolling elements, bearings can be classified into
either ball or roller bearings (Juvinall and Marshek 2012). The main components in
all types of rolling element bearings are the rolling elements, an inner ring/race, an
outer ring/race, and a cage. The inner race is usually mounted on the rotating shaft
of the machine and so it will be in rotation with the shaft, while the outer race is
usually mounted on the stationary housing of the machine and does not rotate; and
this is the case in joint 3 of the robot. The raceways in the inner and outer race in
which the rolling elements are moving will have different forms depending on the
shape of the rolling elements (ball or roller). The cage is used to keep the rolling
elements separated at equal distances and thus prevents undesired contact and from
rubbing against each other. The load in bearings is transferred via the rolling

Fig. 5.8 Gear tooth pitting
(www.novexa.com)
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elements, and in ball bearings is transferred via the balls over a very limited point
contact area between the inner and outer races. Consequently they are carrying
lower radial load capacity than that of the roller bearings, where the rollers transfer
the load via a line contact with the raceways. Rolling bearing are also further
classified based on their load carrying capability into: radial bearings whereby the
load is primarily carried radially; thrust or axial-contact bearings whereby the loads
is only carried axially; and angular-contact bearings which carry combined axial
and radial loads (Juvinall and Marshek 2012). However, all the bearings in joint 3
of the robot are of type deep-groove ball bearings; this type of bearings can support
radial load as well as axial load (Harnoy 2002). The bearings types and their
components are illustrated in Fig. 5.9.

5.6 Common Rolling Bearing Faults

Faults in bearings can occur at two different stages and because of different reasons.
Factors such as inappropriate design, misalignment, overload, or contact corrosion
represent the most common causes that may develop distributed faults, such as
roughness and waviness, at the early stage of their service life. In the second stage
due to wear, fatigue or intrusion of contamination material localized faults, such as
pits and spalls, will be progressed. Table 5.2 provides a description and images of
some common bearing faults, however, a comprehensive evaluation of different
rolling bearing faults with their cases can be found in a book authored by Harris
and Kotzalas (2007a) and on the Emerson Company website (http://www.
emersonbearing.com/technical-toolbox).

(a) Deep groove ball bearing (b) Roller bearing (c) Thrust bearing

Inner race 

Outer race 

Rolling 
element 

Cage 

Fig. 5.9 Different types of rolling bearings (Harris and Kotzalas 2007b)
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Table 5.2 Fault types in rolling bearings (Harris and Kotzalas 2007a)

Fault type and description Fault photo

Corrosion pitting (rusting): this fault happens if
there is a moisture or corrosive material in or
enters the lubricant making it no longer provides
adequate protection.

Pitting due to electric current passing through the
bearing: this fault happens in applications that use
electric motor, as in the robots. Electrical current
may pass through the bearing if it is not
electrically insulated. This will lead to generation
of tiny pits; progression of them, due to
continuous operation, causing corrugation of the
surfaces

Indentations: this can be developed because of
mechanical shocks, hard particle contaminates that
may enter to the free space in the baring and then
get trapped between the rolling elements and
raceways, or due to assemble misalignment.

Micro-pitting: if the lubricant film between the
contacting surfaces in rolling bearings is
insufficiently thick, the surface asperities come
into contact with each other leading to high
frictional shear stress on the surface. This will
cause plastic flow of surface material and so pits
on the surface.

Surface-initiated fatigue: cracks on the surface of
contact will occur if the cyclic stress exceeds the
endurance strength limit of the material. The
cracks will propagate until they meet leading to
remove tiny spall from the surface.
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5.7 Rolling Bearing Characteristic Frequencies

If a fault is progressed in any of the four main bearing components due to any of the
failure mechanisms, a high-level short duration impulsive force is experienced each
time one of the balls rolls over the flaw, and causes the natural frequencies of the
bearing components to become excited each time (Shrivastava and Wadhwani
2012). Because of this phenomenon, a unique frequency characteristic is generated
for each of the bearing components depending on whether the fault exists on the
outer raceway, inner raceway or on the rolling element. These frequencies can be
employed for detection of bearing faults and they are calculated based on the
bearing’s geometry and rotational speed (kinematic considerations). These fre-
quencies can indicate what component is failing in the bearing; therefore, the
calculation is very useful. The mathematical analysis for calculating these fre-
quencies is presented in this section, but the specific values will be calculated in the
next chapter. These frequencies are commonly used for the health evaluation of
rotating machines; therefore, the purpose for reproducing them here is initially to
explore if it is possible to detect them on the robot using time-frequency signal
analysis and secondly for preliminary robot health evolution. Figure 5.10 below
shows the different positions of localized defects in rolling bearings.

Consider a rolling bearing mounted on a rotating shaft with a general configu-
ration and both outer and inner races rotating (Fig. 5.11) at constant speeds ωo and
ωi, respectively. The different fault frequencies that may occur in any rolling ele-
ment bearing system are found using Eqs. 5.4–5.7. These equations assume pure
rolling contact, rollers are equal in diameter and no slippage between the bearings
and load producing shaft (Randall 2011).

Inner race faultRolling element fault

Outer race fault

Fig. 5.10 The main types of faults in bearings
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Though, the fundamental train (or cage) frequency (FTF) and ball spin frequency
(BSF), which are related to the faults in the cage and rolling elements, are:

FTF ¼ 1
2
� xi 1� Bd � cos a

Pd

� �
þxo 1þ Bd � cos a

Pd

� �� �
ð5:4Þ

BSF ¼ Pd

2 � Bd
ðxi � xoÞ 1� B2

d � cos2 a
P2
d

� �
ð5:5Þ

where Pd is the pitch diameter, Bd is the ball diameter, and a is the contact angle.
The frequency at which any rolling element passes a specific point on one of the
races is called the ball pass frequency. So, the ball pass frequency of outer race
(BPFO) and the ball pass frequency of inner race (BPFI) are:

BPFO ¼ Nb

2
� ðxi � xoÞ � 1� Bd � cos a

Pd

� �
ð5:6Þ

BPFI ¼ Nb

2
� ðxi � xoÞ � 1þ Bd � cos a

Pd

� �
ð5:7Þ

where Nb is the number of rolling elements. However, for most of applications
including this robot, the outer race is fixed in the housing (i.e. xo ¼ 0) and the inner
race rotates at the same speed as the shaft. To compute these frequencies, the
specifications of the robot’s bearings are needed; thus they are presented in
Table 5.3.

Inner race

Outer race

Cage

Ball

α
ωo 

ωi

Fig. 5.11 General bearings configuration
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5.8 Fault Simulation in the Robot

It is accepted that the best way to introduce a fault in the robot is by operating the
robot to execute a specific task for a considerable amount of time until a fault is
developed. This method, however, has not been followed in this work primarily
because it may resulting other joints of the robot failing. Secondly, it is time
consuming in a time restricted study. The faults that will be introduced here are not
truly representational of real faults in the robot, since in a practical situation the
majority of faults in gears and bearings are progressive. However, this methodology
has important advantages such as different types of fault can be produced in dif-
ferent components of the joint 3 gearbox and the degree of fault severity can be
controlled. Three types of common gearbox faults are introduced in joint 3 of the
robot; how these faults are simulated and their location in the gearbox are discussed
in the following subsections.

5.8.1 Backlash Fault Simulation

The input and idler shafts in joint 3 are carried inside the robot structure using
hollow and eccentric shafts. There are three slots on the surfaces of these hollow
shafts, as shown in the Fig. 5.12, utilized to adjust the backlash in the bevel and
spur gears pair. Two of these slots, diametrically positioned, are used for changing
the centre distance in the spur gear pair and for changing the mounting distance of
bevel wheel gear, and are used to varying the backlash in each gear set. These
changes can be achived by using adapted grub-screws which fit into the slots. The
circumfrentional slot in the two shafts is used to adjust these gears axially to control
the contact pattern between meshed gears, and is acomplished using an eccentric
grub-screw, shwon in Fig. 5.12.

Three levels of backlash were introduced in the spur gears, starting from very
high level (large clearance between the gears = 0.92 mm), then intermediate level
(small clearance = 0.8 mm) and interference (0.56 mm), where in the healthy

Table 5.3 Robot’s bearings specification

Parameter Input shaft bearings Idler shaft bearings

Outer diameter (D) (mm) 24 28

Bore diameter (d) (mm) 9 12

Width (B) (mm) 7 8

Inner race diameter (d1) (mm) 14.4 17

Outer race diameter (D1) (mm) 19.8 23.2

Ball diameter (mm) 3.4 4.75

Pitch diameter (mm) 17.1 20.1

Number of balls 7 8
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condition the backlash is 0.68 mm. It was found that a total of approximately five
grub-screw turns are required to move from high backlash level to interference
level. Also, depending on the shaft and grub-screw dimensions, simple calculations
was done and established that every one screw turn is roughly equivalent to
increasing or decreasing the backlash by 0.072 mm. This is an important finding,
since it helps to get a preliminarily indication about the number of turns required to
simulate different backlash values in this thesis as will be shown in the coming
chapters. The interference case should not develop during the normal operation of
the robots, but it could occur if the gear mesh are assembled/adjusted incorrectly
after maintenance. The optimum backlash setting was first recorded before intro-
ducing any fault type on the robot, using a dial-gauge indicator, as shown in
Fig. 5.13, and each time the backlash value is calibrated with respect to this opti-
mum value using the same measurement technique (Bicker et al. 1989).

Diametrical
grub-screw

Axial movement 
grub-screwBevel pinion

Spur pinion

Bevel wheel

The axial movement 
grub-screw and slots

Input shaft top view

Input shaft

Idler shaft top view 

Idler shaft

Eccentric 
hollow shafts

Fig. 5.12 Input and idler shafts and their backlash adjustment grub-screws
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5.8.2 Gear Tooth Fault Simulation

Four different severities of fault are artificially simulated on the pinion bevel of the
first stage in the gearbox with only one fault present at a time. The pinion bevel is a
very small gear (Fig. 5.14); therefore, the fault simulation was difficult to achieve
using specialized machines; so, faults were created manually with the help of a
skilful technician using a miniature Dremel drill. The pinion bevel gear was
selected for faults simulation and not one from the other gears is explained as
follow.

In general, the small size of pinions make their teeth weaker in shape than the
gear teeth and also they will be subjected to a larger number of accumulated fatigue
cycles (Radzevich 2012). As a result, in practice they are more susceptible to
damage than the wheels. Moreover, from experience it has been concluded that
dismantling and reassembly of the entire joint 3 of the robot can be accomplished,
but the correct mesh between mating gears is not guaranteed. This also was advised
in the robot user manual, whereby the manufacturer suggested contacting them if a
serious backlash problem has developed. Unfortunately, the manufacturer does no
longer support or produce industrial robots. Thus, it was considered better to

Dial gauge

Joint 3

Fig. 5.13 Robot backlash
measurement (Bicker et al.
1989)
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introduce the faults in the bevel pinion as it is easy to dismantle and reassemble
with correct meshing with the bevel wheel. All faults have been introduced onto the
same gear and on the same tooth, and each time a fault introduced, the bevel pinion

(a) Healthy gear

(b) Tooth wear

(c) 25% tooth removed

(d) 50% tooth removed 

(e) Tooth completely removed

Fig. 5.14 Pinion bevel tooth faults
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must be taken out from the robot, modified and then installed back for robot testing,
data collocation and analysis. Firstly, simulation of wear on the entire tooth flanks is
introduced, and the other three faults types involve removing a percentage from the
tooth depth, i.e. in the second fault the tooth depth is reduced by a 25 %, then by a
50 %, and finally the whole tooth is completely removed in the last stage. These
faults can be seen on Fig. 5.14.

5.8.2.1 Effect of Gear Faults on Vibration Severity on the Robot

It is anticipated that the level of vibration will increase when gear backlash or tooth
faults are introduced, because this will decrease the contact ratio between the
meshed gears, which is defined as the average number of teeth in contact as the
gears rotate together (Juvinall and Marshek 2012). To understand the effects of
simulated faults on the contact ratio, it is paramount to see how this ratio is cal-
culated and based on which parameters. For this purpose, a schematic diagram of
two meshed gears is presented below (Figure 5.15).

The addendum and dedendum are the radial distances of a tooth from the pitch
circle to the top and bottom of the tooth, respectively. The total height of the tooth
is known as the whole depth. So, the contact ratio can be computed as (Juvinall and
Marshek 2012):

Contact ratio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ap � r2bp

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ag � r2bg

q
� C sin ;

Pc cos ; ð5:8Þ

where rap and rbg are the addendum radii of the mating pinion and gear respectively
(the addendum radius is defined as the distance from the tops of the teeth of a gear
to the gear centre); rbp and rbg are the base circle radii of the mating pinion and gear

Fig. 5.15 Schematic diagram
of two mating (spur) gears
(Qu et al. 2014)
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(the base radius is defined as distance from the base circle to the gear centre); C is
the distance between the centres of the mating gears; ; is the pressure angle; Pc is
the circular pitch of the pinion gear, known as the distance measured on the cir-
cumference of the pitch circle from a point of one tooth to the corresponding point
on the next tooth. More detailed calculation and concepts regarding gears can be
found in (Juvinall and Marshek 2012).

Generally, the operation of the gears will be smoother and quieter with greater
contact ratio, while they are susceptible to interference if it is reduced. As previ-
ously discussed if the backlash is increased, the centre distance (C) between the
gears is increased too and vice versa, so it can be inferred from Eq. 5.8 that
increasing the backlash will decrease the contact ratio and thus high noise and
vibration may result from the robot. By contrast, an excessive decrease of backlash,
i.e. interference, can also lead to an increase level of vibration. Furthermore, sim-
ulating a tooth cut on the pinion gear will cause a decrease in the term r2ap � r2bp
until it reaches zero when the tooth is completely removed; and it is obvious from
the equation that the deeper the cut the smaller the contact ratio, giving rise to
higher the backlash and greater noise and vibration at this point of mesh.

5.8.3 Bearing Fault Simulation

In Fig. 5.1b (see page 90), it can be observed that the input shaft is supported on
two bearings of the same type. The one located on the right, adjacent to the bevel
pinion, is used for the bearing faults simulation. From the figure it may also be
concluded that the applied load on these two bearings is not equally distributed; so,
for future studies researchers can investigate the influence of the faulty bearing
location on fault detectability. Fortunately, after dismantling the robot joint it was
found that identical bearings are still available and a number of NSK bearings type
N609 were purchased and utilized for faults seeding.

Two fault types are created in the bearing, inner and outer races faults, using an
electrical discharge machining (EDM) technique. However, due to the small size of
the bearing, it was not possible to dismantle the bearing, in order to introduce a ball
fault, without damaging it, which also affects the fault size controllability of the
inner race. The seeded inner race fault has 1 mm width, extending along the bearing
width and as deep as the thickness of the inner race. Faults of two degrees of
severity are introduced on the outer race of the bearing. Both of them are circular in
shape, extended along the outer race thickness and have 1 mm and 2 mm diame-
ters, respectively. The purpose of this variation in the outer race fault size is to test
the proposed system in distinguishing the severity of different bearing faults.
Figure 5.16 shows the healthy and the three faulty bearings.
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5.9 Data Acquisition Hardware for Preliminary Vibration
Analysis

To study the robot vibration behaviour when it is healthy and with different faults
simulated, a preliminary vibration signals capturing and analysis set-up was carried
out. The vibration signals will be acquired using the selected hardware discussed in
the following subsections, and the gathered signals are analysed using software
designed based on LabVIEW graphical programing (deliberated in Sect. 5.10). The
result of this preliminary analysis will be presented in the following chapter and will
also be used in Chap. 7 as an aid to designing the intelligent condition monitoring
system.

5.9.1 Accelerometer

Accelerometers are electromechanical devices that convert the mechanical signals,
such as vibration and force, to electrical signals, and are an extensively used for
fault detection in many machines because of their accuracy, robustness and sen-
sitivity. Selecting an appropriate accelerometer and the way it is mounted on a
machine are significant factors in determining the success of any condition moni-
toring program. Misleading data can be produced if an unsuitable accelerometer is
selected for the machine under study or an appropriate one is mounted in an
incorrect location on the machine. The major parameters which need to be

Healthy bearing

Inner race fault

1mm hole in 
the outer race

2mm hole in 
the outer race

Fig. 5.16 Healthy bearing and three faulty bearings with different fault types
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considered for accelerometer selection are (Sinha 2014): sensitivity, range, band-
width, frequency resolution, reliability, accuracy, operation environment and cost.

MEMS (Micro-electro-mechanical-sensors) accelerometers compared with the
conventional piezoelectric accelerometers, consume less power, are small in size,
light weight, low cost and can achieve good performance (Albarbar et al. 2008).
Consequently, they are more suitable for an embedded system design, and will be
used with the designed embedded system described later. However, a variety of
MEMS accelerometers are commercially available. After taking the all-important
technical requirements in the consideration, the ADXL001 MEMS accelerometer
has been chosen.

– The AXDL001 Accelerometer

The ADXL001 is a MEMS based, single-axis accelerometer developed by
Analog Devices. It provides a high performance, wide bandwidth of 22 kHz, and is
small in size. The ADXL001 operates on a 3.3 V or 5 V supply, and outputs an
analogue voltage, which allows the direct connection of the accelerometer output to
the analogue input pins on a data acquisition device (DAQ) or a microcontroller.
The accelerometer is available in 3 full-scale dynamic ranges of ±70, ±250, and
±500 g. For this work the ±70 g range was deemed appropriate. An evaluation
board is specifically designed by Analog device for this accelerometer making it
easier to use. To prevent anti-aliasing, the evaluation board provides a user con-
figurable low-pass filter on the accelerometer output. Moreover, due to stress, over
acceleration or fabrication errors MEMS accelerometer can develop flaws; and
fortunately, ADXL001 accelerometer like other MEMS accelerometer has a build in
self-test pin, which can be used to test both the electrical circuit and the mechanical
structure of the accelerometer. Figure 5.17 illustrates the single axis ADXL001.

(a) Schematic diagram of ADXL001
evaluation board

(b)  ADXL001 on its evaluation board

Fig. 5.17 ADXL001 accelerometer and its evaluation board (http://www.analog.com)
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5.9.1.1 Optimum Position of the Accelerometer

A review of previous research which has been conducted in the area of industrial
robots fault detection, most researchers position the sensors at different locations on
the robot without giving a reason. To detect operational abnormalities in a machine,
the sensors should be located as close as possible to expected damage locations,
although there are instance where the damage is more recognizable at other loca-
tions on the machine (Farrar and Worden 2013). Prior to acquiring the data for fault
detection, it was crucial to locate the most sensitive positions on the robot. In order
to achieve this, a test based on computation of root mean square (RMS) value of the
captured vibration signals has been accomplished. Three locations distributed over
the robot’s structure were selected, as illustrated in Fig. 5.22 (note end chapter).
The procedure for this test can be explained as follows.

The accelerometer was attached on the first location on the robot, adjacent to the
wrist, and the robot was programmed to move joint 1 in a cyclic movement at
different speeds, and the RMS value of the captured signal, which was measured in
the direction orthogonal to the axis of rotation, was computed. After that, joint 2
was moved cyclically and also with different speeds and RMS values calculated.
This procedure was repeated for all the robot joints. The accelerometer was then
relocated to the second (and then the third) position and the same procedure carried
out to compute the RMS values. A comparison of the computed RMS values was
made and results for joints 2 and 3 are shown in Fig. 5.18. The other joint results
are presented in Appendix B.1. The presented results here are when the
accelerometer on the three selected locations and joint 2 and 3 moving at three
different speeds. After evaluating all the results, it was concluded that the best
location to affix the accelerometer is location one, which is consistent with the
established best accelerometer location for modal testing in Chap. 4, and thus it will
be used throughout this thesis.

5.9.1.2 Mounting of the Accelerometers

After highlighting the most sensitive accelerometer place on the robot it was felt
unnecessary to locate an accelerometer on each of the robot’s joints. Furthermore,
using just one accelerometer was not considered sufficient, since when the robot is
performing a general task its joints are rotating around different axes, therefore, the
accelerometer may be more sensitive to specific joints than others yielding the
monitoring system unreliable. For this reason, it was decided to fix three ADXL001
accelerometers in an orthogonal configuration to measure the vibration in X, Y, and
Z directions using a purpose designed aluminium adapter, as shown in Fig. 5.19.
This will reduce the length of wiring on the robot and make the embedded system
more compact. To fix this adapter correctly on the robot for accurate pick-up of
vibration signals, three common mounting techniques were assessed (Girdhar
2004).
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Fig. 5.18 RMS values when the accelerometer on different locations and the robot moving
different joints at different speeds

Fig. 5.19 Designed 3 axis accelerometer adapter
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Stud mounting—this technique requires a stud to be mounted on the robot
surface by drilling and screwing. This is the preferred technique for permanent
mounting and gives the best frequency response because the accelerometer and the
robot fused together by virtue of the high fastening force of the stud. However, it
was not possible to drill into the robot because there is a gear under the established
optimum accelerometer location. Magnetic, double sided adhesive tape or beeswax
—these methods are conventionally used for temporary measurements, but are not
recommended for permanent monitoring because their frequency responses, even
when expertly attached, are usually well below that of equivalent stud or adhesive
mounted accelerometers. The magnetic mounting method cannot be used in this
study as the robot has an aluminium structure. The third adopted technique, which
was used here, is adhesive mounting—in this method, the adapter is glued using an
appropriate adhesive material such as superglue.

The selected accelerometer was calibrated against the used conventional
piezoelectric accelerometer in Chap. 4. The accelerometers are attached to the robot
and the Data Physic Quattro analyser along with SignalCalc ACE software was
employed for signal capturing and analysis. The selected accelerometer showed
very good performance in comparison with the piezoelectric one; the calculated
correlation factor between the captured two signals is 0.92 which indicates the two
signals are very similar. The results, including time/frequency spectra, are given in
Appendix B.2.

5.9.2 Data Acquisition Card (DAQ)

The Data Physics Quattro analyser was used for the preliminary robot vibration
analysis; however it cannot be interfaced to Matlab or LabVIEW in order to achieve
real-time data acquisition and analysis, which will slow down the process of signals
analysis and features extraction. Data acquisition cards (DAQs) are designed to
acquire data from sensor/transducers by converting the physical analogue signals
into digital form and rescaling them into physical quantities according to their
sensitivities. DAQ card is always connected to a computer that has a control
software and data storage space. The used DAQ card is type NI USB-6009 from
National Instruments. It has 14-bit resolution analogue-to-digital converter
(ADC) with 8 analogue input channels and also 2 analogue output channels. The
maximum sampling rate of this card is 48 KS/s per channel. In addition to number
of digital input/output channels the card has 1 digital input channel can be con-
figured either a digital trigger or an event counter. The communication between the
NI USB-6009 and PC is established through USB interface. The pins layout and
description of this DAQ card are attached in Appendix B.3.

To synchronize the data acquisition process with the start of the robot movement
a triggering signal from the robot controller was used to trigger the DAQ card. The
input/output module in the robot controller and in conjunction with a relay
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set allows the user, through the use of various VAL commands, to control external
equipment by switching one (or more) of the output lines, or by responding to any
one or combination of the outside events that can be represented as on/off states.
The control signal from the robot is an analogue, so to convert it to a digital format,
either 0 or 1, a Schmitt trigger circuit was built. Schmitt trigger is an integrated
circuit (IC) that converts an analog input signal to a digital output signal when it
exceeds a certain threshold. Figure 5.20 shows schematic of the output relay
connected to the Schmitt trigger circuit; it contains a diode to prevent any damaged
that may be caused by back electromagnetic field (EMF). Normally, the output
signals are sent via a voltage supply. To put any output signal on/off is simply using
these commands inVAL language

Signal 1 for on

Signal −1 for off

The trigger output was fed into the digital trigger input in the DAQ card (Blum
2013). A Schmitt trigger IC type 74HC14 is used; six seprated Schmitt triggers are
included in this chip, however only one is needed in this work (more details about
this IC is provided in Appendix B.4). This circuit will also be used for triggering the
embedded system later.

Input signal 
from the robot 

controller

Triggering signal to the DAQ card

2.5 V From DAQ card

4.7 μF10 kΩ 

220 Ω 

 DAQ 
card

Input Output

DC
Output
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supply (+)

Drive
Circuit

INV OR 
NON-INV

LOGIC
Logic

COM (-)

GND

+

_

Relay circuit in the robot controller 

Power
supply

Schmitt trigger

Fig. 5.20 Electronic triggering circuit using Schmitt trigger IC

5.9 Data Acquisition Hardware for Preliminary Vibration Analysis 119



5.10 Vibration Data Acquisition and Analysis Software

The data acquisition software sustains the connection between the DAQ card and the
host computer, as well as controlling the data gathering process, and includes basic
data analysis tools, including time-domain and DWT signal analysis. In terms of data
acquisition and analysis in this project, LabVIEW development environment, which
is a graphical programming environment from National Instruments used for mea-
surement, test, and control systems development, was selected. It provides built-in
libraries for advanced analysis and data visualization and can be integrated with a
large number of hardware interface devices. Additional capabilities have been
provided by LabVIEW, such as the interface with Matlab and C language, which
makes graphical programming in LabVIEW more flexible; Matlab software has
many specialized, efficient, and easy to use toolboxes, including the wavelet analysis
toolbox used in this study and its many options help to accomplish DWT analysis,
such as specifying the number of decomposition levels and selecting a suitable
wavelet family. Thus by combining the capabilities of Matlab in data processing and
the advantages of LabVIEW graphical programming, the developed data acquisition
software will have improved capability and greater flexibility.

The LabVIEW programs are called virtual instruments or VIs. Each VI has three
main components which are the front panel (or user interface), the block diagram
(or programming interface) and the icon/connector pane. Programming in
LabVIEW consists of placing express VIs, specifically designed for measurement
and analysis, standard VIs and functions or other programmed elements, such as
nodes, terminals, and wires, on the block diagram. A block diagram sample from
the prepared LabVIEW code is shown in the Fig. 5.21; the full prepared code is
provided in Appendix B.5.

The LabVIEW block diagram begins with a for loop, used to control the
repetitive execution of the code a predefined number of times (top–left). The DAQ
Assistant (centre–left) is an express VI that communicates directly with the 14-bit
ADC DAQ card (NI USB-6009) which acquires the analogue measurement signal,
in this case is from the accelerometer (s). The DC component of the data signal is
subsequently removed, which appears in the signals either because of the elec-
tronics associated with the sensor hardware or due to the amplitude of zero fre-
quency component (Chaudhury et al. 2014). This is achieved by computing the
median of the time-domain signals using the median finding function, which is then
subtracted. The result is then scaled using the accelerometer sensitivity in V/g, to
convert them to acceleration values. A DWT analysis is then performed using the
Matlab wavelet toolbox (large central block), which is imported into LabView as a
Matlab script file (MEX function). For an accurate wavelet analysis a number of
parameters in the Matlab code have to be tuned properly, such as which wavelet
family, and number of decomposition levels, using wavedec command. The
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command waverec is utilized to return the different components of the decomposed
signal from the wavelet coefficients. Researchers who want to accomplish feature
extraction using wavelets are advised to read in detail the wavelet toolbox user
guide (Misiti et al. 2001). In this research an 8-level wavelet analysis has been
applied, as it provided better indication of the robot health (discussed in the fol-
lowing chapter). Following completion of the DWT analysis the statistical features
are computed from each signal and saved in text files; these features are utilized in
designing the neural network for the fault diagnosis stage (second stage). LabVIEW
code for performing the FFT was also incorporated and used concurrently with the
wavelet transform code, in order to carry out preliminary evaluation of the bearing
and gear frequencies by investigating the frequency spectrum of the sub-signals
produced from the wavelet transform.

5.11 The Experimental Set-up

Figure 5.22 shows the experimental set up for preliminary vibration analysis and
feature extraction. The selected and tested accelerometer locations are also shown in
the figure. The chosen accelerometers are affixed at the optimum accelerometer
location (location 1). To power the accelerometers a separate power supply was
used, however, power from the microcontroller will be used with the embedded

Fig. 5.21 Part from the prepared LabVIEW code
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system. The outputs of the accelerometers are fed to NI DAQ card. Signal from the
robot controller is inputted to the triggering circuit and output of the triggering
circuit is connected to the digital trigger pin in the card. The card is interfaced to a
PC with the LabVIEW software installed.

5.12 Summary

Joint 3 of the robot was selected in order to simulate different faults in the robot.
A detailed description about the mechanical construction of the selected joint along
with the different errors that may accompany the power transmission system has
been carried out to understand the faults simulation process in the robot. Also,
several different possible fault types, such as backlash between gear pair, gear tooth
and bearing faults, which may occur in the robot have been assessed, with various
severity levels. An appropriate accelerometer was chosen, and the best accelerometer
location identified. An aluminium adapter to carry three accelerometers was
designed, and accelerometer calibration has been verified. A data acquisition system
based on National Instruments (NI) software and hardware has been designed.
Hybrid programming, combining LabVIEW graphical programming with Matlab
textural programming was effective in developing the signal monitoring and feature
extraction system, around which the robot vibration signal capturing and analysis
software was constructed.

Z Y

X 

Location 1 and the 

three accelerometers 

NI DAQ card Power supply 

Triggering circuit  

PC with Data acquisition software 

Location 2 

Location 3 

Fig. 5.22 The experimental set-up
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Chapter 6
Robot Vibration Analysis and Feature
Extraction

Abstract Using the data acquisition system and experimental set-up shown in
Chap. 5, robot vibration with different health conditions are analysed in this chapter.
The previously simulated faults in the gears and bearings are introduced in the
robot. Based on the proposed robot CM algorithm, which consists of two stages,
fault detection and fault diagnosis (as explained in Chap. 3), the vibration analysis
presented in this chapter is also performed in two stages. The first stage is when the
robot is executing a pick and place task and the second stage involves the robot
moving one joint at a time. The effect of different fault types and severities on the
robot vibration was investigated and the most effective vibration features are
extracted, to be used in the following chapter.

Using the data acquisition system and experimental set-up shown in Chap. 5, robot
vibration with different health conditions are analysed in this chapter. The previ-
ously simulated faults in the gears and bearings are introduced in the robot. Based
on the proposed robot CM algorithm, which consists of two stages, fault detection
and fault diagnosis (as explained in Chap. 3), the vibration analysis presented in this
chapter is also performed in two stages. The first stage is when the robot is exe-
cuting a pick and place task and the second stage involves the robot moving one
joint at a time. The effect of different fault types and severities on the robot
vibration was investigated and the most effective vibration features are extracted, to
be used in the following chapter.

6.1 Pick and Place Task

In order to mimic a standard robot task, the robot was programmed to undertake a
simple pick and place sequence, as shown in Fig. 6.1. The robot is required to swap
the yellow and red ball positions and vice versa. This is achieved by first moving
the red ball to the empty position (3) and then moving the yellow ball to position
(1) where the red ball was, after which the robot picks up the red ball again and
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places it at (2). The executed code to perform this task, which is written in VAL
programming language, is attached in Appendix C.1.

Z

X Y

Position 2

Position  1

 Position 3 
(empty)

Fig. 6.1 Ball swapping task (Robot CAD drawing from: https://grabcad.com/)

(a) Position 1 (b) Position 2 (c) Position 3 

Fig. 6.2 Robot configurations at different balls locations
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As the faults are introduced in joint 3 of the robot, the task requires joint 3 to
move extensively during the described cycle, to examine the effect of the simulated
faults on the resulting vibration excitation. The robot configurations when it reaches
these positions are simulated using the robotics toolbox for Matlab and presented in
Fig. 6.2. It should be pointed out that all other joints, particularly joints 1 and 2, are
involved in this task, and therefore, the captured vibration signature will be made of
a combination of signals from different joints motors and gearboxes.

6.2 Robot Fault Detection Whilst Executing Pick
and Place Task

For faster robot health evaluation and due to the limitation of the embedded system,
this stage has to be simple and reliable, since its purpose is just to report if the robot is
healthy or faulty, regardless of the fault type and location, and needs to be gener-
alized to any robot tasks. Thus the warning limits (thresholds), which are discussed
and computed in the next chapter, have to be easily calculated and configured in the
CM system. In practise this task may need to be conducted by a technician with
limited knowledge, and for this reason the signal analysis technique is based on
time-domain analysis, as it is simple, straightforward as well as good approach for
fault detection if it is combined with statistical control charts (Chap. 3).

As mentioned in Chap. 3 is time-domain signal analysis has some limitations in
terms of early fault detection and is not robust in fault identification (diagnosis).
However, it has been found that extracting the most sensitive feature from the
time-domain signal and utilizing it in computing the threshold values (Chap. 7)
using a statistical control chart (SCC) helps in overcoming the early fault detection
limit. The previously simulated faults are introduced in the robotic system and it is
programmed to perform the ball swapping task repeatedly to complete a predefined
number of cycles. Vibration signals from the three axes of measurements are
captured at a sampling frequency of 383 Hz with sample size equal to 4096. This
frequency is four times higher than the 11th natural frequency of the robot and the
highest frequency that may appear in the system, based on the established joint 3
frequencies presented later in this chapter, and fulfils the sampling theory that
requests the sampling frequency to be at least two times higher than the highest
system frequency (Mohanty 2015). Each time the robot repeat cycle starts, the robot
controller sends a trigger signal to the DAQ card through the Schmitt trigger circuit,
to synchronize the signal capture with the robot movement.

The raw vibration signals captured under different fault types and severity are
extracted from the LabVIEW software front VI panel. Several features from the
time-domain signals, such as root mean square (RMS), standard deviation (STD),
and kurtosis, are extracted. A comparison of these features, to investigate which is
the most faults sensitive one, was accomplished. The sensitive feature must be
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normally distributed, as this is a condition that has to be met in order to calculate the
threshold values using SCC, as will be discussed in Chap. 7. The STD feature,
which is normally used as a measure of extent of variation of the processed data and
has the same units as the data, was found to be the most faults sensitive, and
normally distributed one; and hence it was selected for comparison among fault
severities.

6.2.1 Backlash Fault Simulation Results

The vibration signals from the robot with the backlash faults introduced are shown
in Fig. 6.3. As mentioned previously, three backlash levels are simulated (high,
small and interference). The figure presents the time-domain vibration signals from
the robot, when it is healthy and with the three backlash levels, after removing the
DC component by computing and subtracting the median from each set of data in
LabVIEW code. Limited interpretation of Fig. 6.3 is only possible; however,
always vibration of multi-stage gearboxes, as in the robotic system, is very complex
and composed of different frequencies, including gear mesh, bearings, and
running-speed frequencies. The vibration severity is also connected with the excited
resonance frequencies of the robot. The high speed of the robot gears causes cyclic
excitation of these resonances, leading to some periodic fluctuations with amplitude
proportional to the fault severity. This can clearly be seen in X-axis signals (the first
column in Fig. 6.3), which were influenced the most by backlash, while signals in
the other two axes were less affected. The high amplitude components present in the
signals were observed when the robot changes the rotating direction of the joints.
This is leading to developing number of impact between the mating pairs, due to the
contact force between teeth. In the interference case the backlash was completely
removed, so the impact effect is eliminated between mating gears but the gears are
overloaded on the other hand.

It was anticipated that by increasing the backlash the vibration level would
increase in the robot, but the opposite has been found. This can clearly be seen by
comparing the vibration signals produced with different backlash levels to the
healthy robot condition, especially the X-axis signals. It can be seen, for instance, in
the case of higher backlash that the amplitudes of vibration signals are lower than
those of the healthy case; this also corresponds with the results of research pub-
lished by Bicker et al. (1989). The amplitudes of vibration increase when the
backlash level is reduced, until the increase becomes more significant in the
interference case. Although the presence of backlash in the transmission system can
cause a transient impact at the reversal of motion, which will lead to an undesirable
level of vibration, high backlash between gears will allow more lubricating grease
to enter between the mating teeth leading to damping of the vibration. Whereas, the
tight gear mesh leads to the lubricant being squeezed out of the mating teeth and the
system heats up due to friction between the teeth, resulting in increased vibration.
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To further establish the backlash effect and also to compute sets of STD values
from the time-domain data to be used in developing and testing of an SCC in
Chap. 7, the robot was programmed to execute the pick and place task one hundred
times and the STD value for each repetition was calculated; this procedure was
conducted at each backlash level. These results are presented in Fig. 6.4 for each of
the X-Y-Z axes. The calculated STDs from the high backlash case show the lowest

(a) Healthy robot

(b) High backlash

(c) Small backlash 

(d) Interference backlash

Fig. 6.3 Vibration signals from the accelerometers at different backlash level in the robot gearbox
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Fig. 6.4 Standard deviation for healthy and with different backlash levels robot
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values for all 3 axes; while in the interference case the STD values are the highest. It
was observed that the initial STD value in the interference case is always low in
comparison to the subsequent values, which is attributed to the lubricant being
squeezed out of the gear mesh, reducing the effective damping during the initial
cycles on start up. The X-axis shows high STD values than those for both Y and Z,
and there is a significant variation between the interference and high backlash
conditions when compared with the normal and small backlash conditions which
have quite similar magnitudes.

Generally, the STD results when the backlash fault was simulated, and even with
the other fault types as shown in the following sub-sections, show that the X-axis
vibration is the best to be utilized for monitoring the effect of fault development in
the robot, as the different faults can be clearly discriminated. However, the Y- and
Z-axis could exhibit higher vibration levels if the robot executes different tasks that
involve a different sequence of movements or if a fault is progressed in the other
joints. Because of this, the vibration in all three axes has to be considered, in order
to achieve reliable fault detection. Thus, the resultant value of the X-Y-Z standard
deviations will be computed by taking the square root of the sum of the squares of
the three STDs, and this will be used as the fault indicator. Figure 6.5 shows the
resultant STD values for the robot when it is healthy and with the three backlash
levels. Clear differences can be realized amongst the four trends related to robot
health conditions and, as in Fig. 6.4, the high backlash conditions show lower
resultant STDs whereas they are the highest in the interference condition.

6.2.2 Gear Tooth Fault Simulation Results

The time-domain vibration signals with four different types of gear tooth faults in
the pinion bevel, which are tooth wear, 25 % tooth cut, 50 % tooth cut and full
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Fig. 6.5 Resultant STD for healthy and with different backlash levels robot
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(a) Healthy robot

(b) Gear tooth wear

(c) 25% tooth removed

(d) 50% tooth removed

(e) Full tooth removed

Fig. 6.6 Vibration signals from the accelerometers at different gear tooth faults
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Fig. 6.7 Standard deviation for healthy and with different gear fault robot
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tooth removed respectively, are shown in Fig. 6.6. Prior to capturing the data when
wear fault was introduced, the robot was run for a short time to allow the gearbox to
dynamically settle. As in the previous set of backlash tests the X-axis is the most
sensitive to any change in the robot’s condition, although the trends are very
similar. Looking at the signal from the faulty robot (X-axis) it can be observed that
the amplitude is higher than that of the healthy robot. Secondly, the amplitudes
increase as the tooth fault becomes severer, as expected; due to the reduction in the
contact ratio associated with the tooth cut introduces higher vibration during gear
mesh. Furthermore, the impulses in the signals are more prominent when the tooth
is completely removed. This can attributed to the adjacent tooth contacting the
mating tooth earlier than it would with an ideal geometry.

As mentioned earlier the excessive clearance between gears allows improved
lubrication (grease) which will increase damping and reduce vibration. Whilst the
same is true here, except that the impact intensity is much higher when there is a
tooth cut leading to a high vibration level which increases the computed STD and
thus the resultant STD values, as shown in Figs. 6.7 and 6.8. A clear discrimination
can be established amongst the four gear tooth faults and the healthy condition of
the robot for all three axes of measurement. The STD values are ranging from the
lowest trend, when the robot is healthy, to the highest which is when a full tooth
removed. These trends are well separated in the X-axis, but a bit compressed in the
Y- and Z-axis, and have reduced magnitudes; however, a clear separation among
the four cases was got using the resultant STD, Fig. 6.8.

6.2.3 Bearing Fault Simulation Results

An inner race and two levels of outer race bearing faults have been simulated. The
purpose of simulation two fault severities in the outer race (as mentioned in Chap. 5)
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Fig. 6.8 Resultant STD for healthy and with different gear fault robot
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is to test the effect of the different sizes of bearing faults on the captured vibration
signals. The time-domain signals when these faults introduced along with the
extracted STD values are presented in Figs. 6.9, 6.10 and 6.11, respectively. Each
time a rolling element passes the inner or outer race defect, the collision between the
rolling element and fault generate an impulse and excites the vibration resonance of

(a) Healthy robot

(b) Inner race bearing fault

(c) 1 mm hole in the bearing outer race

(d) 2 mm hole in the bearing outer race

Fig. 6.9 Vibration signals from the accelerometers at different bearing faults

6.2 Robot Fault Detection Whilst Executing Pick and Place Task 135



1009080706050403020101

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

No. of cycle

ST
D

 (g
)

Healthy robot
Inner race fault
Outer race 1mm
Outer race 2mm

(a) X-axis

1009080706050403020101

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

No. of cycle

ST
D

 (g
)

Healthy robot
Inner race fault
Outer race 1mm
Outer race 2mm

(c) Z-axis

1009080706050403020101

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

No. of cycle

ST
D

 (g
)

Healthy robot
Inner race fault
Outer race 1mm
Outer race 2mm

(b) Y-axis

Fig. 6.10 Standard deviation for healthy and with different bearing fault robot
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the bearing and the robot structure. This is also true when gear faults are simulated,
but since the faulty bearing is supporting the pinion bevel and due to the tangential,
radial and axial forces generated by the meshed gears the excited vibration signals
have higher amplitudes. This clearly can be seen from the calculated STD values in
Figs. 6.10 and 6.11.

When a fault occurs in the inner race or in one of the rolling elements the
properties of the induced impulses will change, since the impacts occur at different
angular positions as the bearing components rotate. On the other hand, with the
outer race defect the excited transient modes do not vary, since the angular position
of the defect is fixed at each impact. This is apparent in the signals captured from
the two different outer race fault severities in Fig. 6.9; where both faults have the
same signal patterns but with different amplitude levels (higher when the fault size
is bigger).

6.3 Robot Fault Diagnosis

The previous section was focused on studying the effect of different faults on the
vibration level of the robot, with the aim to extract features sensitive to the robot
health condition when it is executing a repetitive task using a simple signal analysis
technique. This can be utilized with different robot tasks for differentiating between
the healthy and faulty conditions irrespective of fault types and locations. However,
the next logical step after detecting a fault is to extract features that can be
employed to identify which joint has the fault and its type (fault diagnosis), which is
the second stage of the proposed CM algorithm and will be the focus of the
remainder of this chapter.

To perform this step, each joint should be considered separately by programming
the robot to cyclically rotate one joint at a time. For this purpose and since the faults
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Fig. 6.11 Resultant STD for healthy and with different bearing fault robot
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are simulated in joint 3, the robot was programmed to oscillate over its full range of
movement (270°) as shown in Fig. 6.12, as some of the robot faults may exhibit
direction-dependent symptoms (Datta et al. 2007). This is also in order to relate the
produced vibration to the moving joint’s transmission components such as gears
and bearings. The output from the three accelerometers will be captured and
analysed using the DWT signal analysis technique (discussed in Chap. 3) based on
the prepared LabVIEW code; from which features are obtained and utilized later (in
Chap. 7) in designing the ANN for faults classification. The signals are captured
over the entire movement cycle using a sampling frequency of 1031 Hz. The DAQ
device needs to be triggered by the robot controller at the start of the movement for
synchronization. The following VAL code is used to achieve the cyclic joint
movement.

1 SIGNAL 1 {To activate output line 1 to trigger the DAQ device}
2 DRIVE 3, −270, 100 {Move joint 3 downward by 270° at 100 % of the motor

speed}
3 DRIVE 3, 270, 100 {Move joint 3 upward by 270° at 100 % of the motor

speed}
4 SIGNAL −1 {To put the output signal from port 1 off}
5 DELAY. 1E−03 {Delay 1/10,000 s}

Z

X Y

270o

Forearm

Fig. 6.12 Robot configuration for the fault diagnosis stage (Robot CAD drawing from: https://
grabcad.com/)
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6.3.1 Signal Analysis Using DWT

The multi-resolution DWT analysis was applied using the selected mother wavelet,
db2. To conduct the DWT analysis, a suitable number of decomposition levels
needs to be selected, however, the number is influenced by the lowest frequency
bands that needed to be traced as well as the number of samples in the gathered
signal; where for a signal of size N, the maximum decomposition level is
(Abo-Zahhad 2011). Since the number of sample in the captured signal is 4096 so a
maximum of 12-level of decomposition can be reached. If the number of decom-
position levels of the DWT becomes higher, the extracted frequency band gets
lower. Note that the greater the number of decomposition levels the more power
and memory is required in the designed embedded system (which is discussed later
in Chap. 8). Therefore, it has been decided to depend on the expected lowest fault
frequency that may be presented in the signal in selection the decomposition levels.

To calculate the frequencies that are related to joint 3, the mathematical equa-
tions and gears and bearing specification presented in the previous chapter are used.
The only missing parameter in these equations is the speed of each component.
Therefore, the robot’s forearm speed of movement has to be known in order to
establish the speeds of the other mechanical parts in joint 3. As mentioned, in the
experimental work the robot is programmed to move just joint 3 in a cyclic motion
within its full range of movement. So, the acceleration signal in the Z-axis has been
captured and then by using the numerical integration the forearm speed was
obtained. This speed represents the speed of the wheel spur gear and, by using the
gear ratios, the other speeds and subsequently the frequencies, are derived. These
frequencies are shown in Table 6.1.

From the above table can be seen that the lowest fault frequency that may appear
is in the bearing of the second stage (the bearing on the idler shaft), which is
indicated by bold in the table. As a result, eight decomposition levels are found to
be sufficient for analysing the robot vibration signal; Table 6.2 shows the

Table 6.1 Joint 3 gears and bearings frequencies

Parameter Gear frequencies

Bevel gears (first stage) Spur gear (second stage)

Mesh frequency (Hz) 95.7 10.96

Shafts frequencies (Hz)

Input shaft 7.356

Idler shaft 1

Bearings frequencies

Bearing in the first stage (Hz) Bearing in the second stage (Hz)

FTF 2.94 0.38
BPFO 20.62 3.04

BPFI 30.86 4.93

BSF 17.76 2
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decomposition levels and their associated frequency ranges (referred to Chap. 3 to
see how these frequency bands are computed).

6.3.2 Result of the DWT Analysis

Selected results of the multi-resolution signal analysis using DWT extracted from
the LabVIEW code are shown in Figs. 6.13, 6.14 and 6.15. These figures represent
the analysed signals from the three accelerometers when the severest two fault
categorizes, a full gear tooth removed and 2 mm hole in the bearing outer race
faults, are introduced in the robot. The remainder of the results when other fault
types simulated are included in Appendix C.2. In the above mentioned figures there
are 10 sub-figures for each measurement axis; the first sub-figure is the original
signal before the DWT is applied, while the rest are the eight constructed
sub-signals from the detail coefficients (D1, D2, D3, D4, D5, D6, D7, and D8), and
one from the approximation coefficient (A8), where each one contains a specific
frequency band presented in the upper left corner of each sub-figure.

Generally, accelerometers provide mixed information about vibration and
movement acceleration in the robot (Rodriguez-Donate et al. 2010). The vibration
signal is made up of high frequencies, whereas movement acceleration signals are
associated with low frequencies (Rodriguez-Donate et al. 2010). In the original
signals in Figs. 6.13, 6.14 and 6.15 can be seen that the Y- and Z-axis signals are
highly affected by the robot movement, while there is a little (or no) effect in the
X-axis signal, due to the main robot movement is in Z-axis and so the angular
acceleration, due to the forearm rotation, will have an effect on the captured signal
in Z-axis. Also, as a result of the angular movement of the forearm, a centripetal
acceleration is generated in Y direction effecting Y-axis signal. However, after
conducting the DWT on the original signals and by investigating the produced
sub-signals it was concluded that the approximation signals (A8) in the three axes
are mostly related to the robot movement and not to its vibration components.
Consequently, the approximation signals do not carry any useful information
regarding robot faults and are not considered important in the present work.

Table 6.2 Frequency bands
associated with each level of
decomposition

Level Signal Frequency range (Hz)

D1 Detail signals 257.75–515.5

D2 128.8–257.75

D3 64.43–128.87

D4 32.21–64.43

D5 16.1–32.21

D6 8.05–16.1

D7 4.02–8.05

D8 2.01–4.02

A8 Approximation signal 0–2.01
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However, extracting the robot movement acceleration using DWT could be
employed in future work to estimate the kinematics of the industrial robots
(Rodriguez-Donate et al. 2010).

Comparing the corresponding time domain signals from the three axes when
gear tooth and bearing faults were simulated (or when other different fault types are
introduced), it can be concluded that it is not easy to recognize significant variations
between them, however, by looking at the generated sub-signals from the three axes
can be observed that there are clear differences amongst their amplitudes. It is
noticed that the produced sub-signals in Y-axis when different fault conditions are

(a) Full gear tooth removed (b) Outer race 2mm hole

Fig. 6.13 DWT analysis of the X-axis vibration signals from the robot arm when different faults
simulated (auto scaled)
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having the lowest amplitudes comparing to sub-signals in X- and Z-axes.
Nevertheless, the amplitude in Y-axis signal may get significant if a fault is
developed in other parts of joint 3 or in another joint. The reversal of motion can be
obviously seen in the Z-axis response (Fig. 6.15) where the higher amplitudes are in
the waveform. The high amplitudes at the reversal of motion are due to the impact
phenomenon resulting from the backlash, which must be present in the gearbox
even when the robot is healthy but within the acceptable range.

When a gear tooth fault introduced was noticed that D3 becomes more sensitive
to the fault, since it covers the frequency band corresponding to the bevel gear mesh

(a) Full gear tooth removed (b) Outer race 2mm hole

Fig. 6.14 DWT analysis of the Y-axis vibration signals from the robot arm when different faults
simulated (auto scaled)
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frequency, which is 95.7 Hz, (Fig. 6.13a, 6.14 and 6.15a). Similarly, it is antici-
pated that D6 will become peaked if a fault is simulated in the spur gear pair, as
spur gear mesh frequency is within D6 frequency band. From Table 6.2 can be seen
that the ball pass frequency of the outer race (BPFO), which is calculated to be
20.62 Hz, is inside the frequency range of detail signal D5, and is prominent from
the signals that contain outer race bearing fault in Figs. 6.13b 6.14 and 6.15b where
distinct impulses are evident in comparison to D5 signals when a gear tooth fault
introduced. Meanwhile, another detail signal is affected if the inner race fault is
simulated, but here will also be D5, since BPFI is within the same frequency band

(a) Full gear tooth removed (b) Outer race 2mm hole

Fig. 6.15 DWT analysis of the Z-axis vibration signals from the robot arm when different faults
simulated (auto scaled)
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of BPFO. However, it can be observed that the appearance of spikes (or impulses)
in the detail signals are not periodic and not throughout the whole signal time as in
the rotating machinery. This can be attributed to the variation in joint rotation
speed, changing from zero to maximum forth and back. Analysis of the signals
from the three axis accelerometers and combining the results can help to avoid
uncertainty in fault diagnosis if only one accelerometer is used, since the fault
signature can be efficiently detected in one or two axes than others.

6.3.3 Feature Extraction from the DWT Result

The sub-signals from the DWT analysis could be directly used as inputs for the
classifier, which will be the ANN. However, feeding huge amounts of data, rep-
resented by 4096 samples from each sub-signal, into the classifier will make the
classification process more complex; keeping in mind that the proposed fault
detection and diagnosis system is going to be implemented on an embedded
electronic system with limited memory and processing power. To overcome this
limitation, a post processing stage is needed to take out significant parameters from
the sub-signals, called the feature extraction stage, and will significantly reduce the
data set size required to be passed to the classifier for correct fault diagnosis.

Based on this, several statistical functions are calculated, e.g. the RMS, STD,
and kurtosis, applied to the detail signals from the three axes of measurement, since
approximation signals are neglected, as discussed earlier. Also, the features are
extracted in real-time after the data is captured and DWT analysis is applied using
LabVIEW code. The statistical features extracted from different detail signals are
always varied, as each signal contains information related to a specific frequency
band. If all computed features are used for fault classification, this will also involve
significant amount of data for the classifier. Thus, as in the fault detection stage,
only the most sensitive feature was utilized, namely the STD value. Therefore, 8
STD features from each axis signal are obtained, and by joining all features from
the three axis signals together the input vector to the classifier will be constituted
from 24 features.

Figures 6.16, 6.17 and 6.18 show the computed SDTs from the eight detail
signals from accelerometer axes X, Y, and Z. Figure 6.16 presents the results from
simulating different backlash levels as well as the result extracted from the detail
signals of the robot healthy condition, while Figs. 6.17 and 6.18 present the STD
values for gear and bearing faults, respectively. First, it can be observed that the
STD values when backlash faults are present in the robot are lower in comparison to
gear and bearing faults. In particular the high backlash case records the smallest
STDs at all detail levels among the healthy and other backlash cases and this is
similar in all the three axes. These values are increased by reducing the backlash
until they become significantly high when the backlash is completely removed
(interference case). This, as discussed in Sect. 6.2.1, is attributed to vibration
damping due to entering the lubricant grease between the mating teeth when
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Fig. 6.16 Standard deviation (STD) in all 8 detail signals when backlash faults simulated
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Fig. 6.17 Standard deviation (STD) in all 8 detail signals when gear tooth faults simulated
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Fig. 6.18 Standard deviation (STD) in all 8 detail signals when bearing faults simulated
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excessive clearance between them and squeeze it when they are interfered.
The STD vectors at healthy and other backlash levels are clearly separated in
X-axis, and also clear separation is shown up to D5 in Z-axis, while they are almost
squeezed together in Y-axis.

Mainly, in gear and bearing faults the STD vectors in Y-axis are also squeezed
except at higher frequency bands (D1–D3) they are a bit diverged. This is agreed
with what have been noticed when at different faults the detail signals in Y-axis are
investigated and concluded that their amplitudes are lower than other axes and
obvious differentiation cannot be recognized (Fig. 6.14). However, the Y-axis
results will not be ignored and will be included in the input vectors to the classifier,
as sure the STDs in Y-axis will give a clear indication about a fault if it is
developed, for example, in other joints or parts.

When bearing and gear faults are seeded in the robot the STD values in X- and
Z-axis are increased as the fault severity increased; this is also identical with the
increase of the detail signals amplitudes due to the same reason. Moreover, the STD
vectors in these cases are well separated except at the lower frequency bands from
D6 to D8, since their frequency ranges are not affect by the simulated faults.
However, may the reader is asking why the differences among the STD vectors in
X- and Z-axis are very obvious at higher frequency bands; well this can be related
to the stimulated gear and bearings higher harmonics due to the simulated faults.
Generally speaking, if the STD vectors are very well isolated, the problem of fault
classification will be easier when ANN is used, the false diagnosis rate is reduced,
and also the designed ANN will be of small size helping in lowering the required
processing power and memory of the embedded system.

6.4 Fault Diagnosis Using Combined DWT and FFT

The other technique of using DWT in fault diagnosis is instead of extraction sta-
tistical features from each constructed detail signal, the FFT is conducted on each
frequency band to establish the excited frequency spectra (Kar and Mohanty 2006),
with the idea being to incorporate the advantages of both of these signal processing
tools. In DWT specific frequency bands are extracted, and the FFT is used to
estimate the frequency spectra within these bands, and in combining DWT-FFT the
frequency spectrum of the signal which can be zoomed, without affecting the FFT
frequency resolution. Moreover, by using this technique the same frequency res-
olution with reduced number of data length can be obtained. To extract the fre-
quency spectrum in each decomposition level the DWT is applied first to the time
domain signal. Next, an FFT is performed on the generated coefficients, which
yields the zoomed frequency spectra where the fault frequency can be identified
with significant increase in the fundamental component, leading to enhancing the
detectability of the fault frequency component. Then, the frequencies in these
spectra are analysed and compared to baseline frequencies; any deviation in the
computed frequencies from the baseline ones or appearing some sidebands or
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harmonics frequencies related to the baseline frequencies are an indication of a fault
development in the system. Knowing which frequency is deviating or the generated
sidebands or harmonics related to which frequency in the machine components, the
faults can be diagnosed.

In this section, the FFT has been taken for each frequency band produced from
the three axes of measurement and for different robot faults. This was also done
when just joint 3 is moving, in order to be able to link the calculated frequencies to
the mechanical components (gears and bearings) in this joint. The excited fre-
quencies at each level are then investigated in more detail to explore their rela-
tionship to the joint components, and their relationship to the robot natural
frequencies. This can be established by comparing them with the obtained natural
frequencies of the robot in Chap. 4 and calculated baseline frequencies described in
Sect. 6.3.1. For this purpose, a separate sheet containing the frequencies and har-
monics of all gears and bearings in joint 3 as well as the natural frequencies of the
robot has been prepared and used in this investigation. LabVIEW code for per-
forming the Fourier transform was also developed and used concurrently with the
wavelet transform code. Also, it should be noted that these two codes are run in
real-time while the robot is running, which means that online robot health moni-
toring can be achieved on the robot (or any other machines) by just using the signal
acquisition hardware and the prepared code, but with some restrictions due to the
long cabling.

The results of the FFT can be observed in the three-dimensional plots of the
frequencies produced in all levels and in the three axes using Matlab software, as
shown in Fig. 6.19. This figure is for the bearing faults seeded in the robot; the
corresponding figures simulating the other faults can be found in Appendix C.3.
The top row (a) in all of these figures represents the frequency spectra of the detail
signals (frequency bands) for the healthy robot. In these figures each level includes
a specific frequency range, i.e. high frequencies are included in level 1 and as the
level order get higher the frequency contents of that level becomes lower. It can be
noticed that it is not possible to determine any substantial variation across the
frequency spectra in the Y-axis, for any of the different fault conditions. This may
however not be the case if any of the other robot joints are cycled individually.
Significant differences can be observed in the spectra of the X and Z axes for joint 3
in Fig. 6.19, at levels 4–6, and also for the backlash faults, which is shown
Appendix C.3, Fig. C.16. By comparing the minimum backlash (interference) case
with the high backlash (clearance) case, it can be seen that many frequencies appear
within the case of interference whilst there are very few excited frequencies at lower
backlash. The tight mesh between bevel gears increases the mechanical stiffness,
making components’ harmonics appear in the frequency spectrum, and the excited
frequencies with high backlash have lower amplitudes in comparison with the
healthy and interference cases, most likely due to increased damping.

In the spectra of gear fault simulation case (see Appendix C.3, Fig. C.17) the
amplitudes of the higher levels (D1–D3) show significant variation to the healthy
condition and get noticeably higher as the gear tooth fault gets more severe. The
increased amplitude level is likely due to the increased force of the impact as the
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(b) 1mm inner race bearing fault

(c) 1mm outer race bearing fault

(a) Healthy robot

Fig. 6.19 Frequency spectrum of each detail signal in the X, Y and Z axes in healthy and different
bearing faults cases
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tooth cut gets deeper. These levels are specifically affected at the bevel gear mesh
frequency (95.7 Hz), at which the impact is happening, and its harmonics, which
are situated within the frequency bands of D1–D3, as illustrated in Table 6.2. In the
case of bearing faults (Fig. 6.19), in addition to the variations in the spectra of level
4 and 5 in the X-axis detail signals, a significant difference from the healthy case
can be observed in level 6 spectrum. Moreover, detail signals that contain higher
frequency bands, such as D1 and D2 show considerable change with the presence
of a fault especially in the Z axis. Whereas the variations in the spectra of levels 4, 5
and 6 could be attributed to the BPFI and BPFO of the bearing, which are located in
the frequency band of level 5 (16.1–32.21 Hz); whilst the changes in the higher
levels, or any other levels, could also be related to either bearings and gears har-
monics or to the excited natural frequencies of the robot.

Figure 6.20 shows enlarged images of the X-axis spectra in level 5, extracted
from Fig. 6.19. It can be seen that the 4th and 15th harmonics of the input and idler
shafts respectively are present in the robot healthy condition and in all bearing fault
conditions. The presence of these harmonics can be reasoned to the intended
misalignment between the shaft transforming the power from the joint 3 motor and
gearbox input shaft. Also, due to the eccentric design of the housings of the input
and idler shafts of joint 3 gearbox. Just the mentioned harmonics are detected;
however, the frequency itself or its higher or lower harmonics may be recognized in
the spectra of higher or lower levels. Interestingly, the 6th natural frequency of the
robot (35 Hz) has appeared in all three bearing faults, therefore it can be considered
as one of the bearing defect indicators; hence, other natural frequencies presented in
other levels could also be used as indicators.

When the inner race bearing fault is simulated in the robot, the BPFI of the faulty
bearing (30.86 Hz) is easily recognized in the related spectrum (Fig. 6.20b). Also,
in this spectrum the 9th harmonic of the FTF (2.94 Hz) is detected, although it is
not detected in the other fault conditions. The 3rd natural frequency of the robot

(d) 2mm outer race bearing fault

Fig. 6.19 (continued)
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(a) Healthy robot 

(b) 1mm inner race bearing fault

(c) 1mm outer race bearing fault

Fig. 6.20 Level 5 and in X-axis frequency spectrum in healthy and different bearing faults cases
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(17.19 Hz) has also been identified. Again, in addition to the BPFI of the faulty
bearing, the 3rd robot natural frequency can be used as an indicator for inner race
fault for the bearing in the input shaft. If the bearing fault is in its outer race, the
BPFO will emerge in the spectrum, as observed in Fig. 6.20c, d at 20.62 Hz, with
two sideband frequencies. The amplitude of BPFO is increased a little when the
hole diameter in the outer race is increased, and the left sideband and the 15th
harmonic of the idler shaft are substantially amplified, reflecting the fault harshness.
In addition to the detection of the sideband frequencies, the 2nd harmonic of BPFO
is also detected in both outer race fault severities. In term of the robot natural
frequencies the 5th natural frequency (27.37 Hz), along with the 6th, has appeared
with outer race faults; thus, it can be employed as an indicator for outer race fault
for the bearing in the input shaft.

Whilst this study not previously been reported on a robot, but on rotating
machines, it was initially thought that it would not be possible to detect frequencies
related to bearing and gears of the robot, primarily because the non-stationarity
nature of the robot vibration signals and secondly the lack of the available infor-
mation regarding the robot gearboxes (see Chap. 5). However, after repeated
practicing of dismantling/assembling the robot joint 3 all required information
related to the gears and bearings was acquired. Then, by applying the combined
DWT-FFT technique the evidence suggested that this technique can be utilized for
monitoring and detecting changes in frequencies related to the different mechanical
components of the robot. However, this technique might be not suitable for online
fault detection, since the stimulated frequencies in each level need to be carefully
examined and may lead to fault identification taking longer time and much effort.
As a result, for the purpose of designing an intelligent condition based monitoring
(iCBM) system for the robot based on an embedded system, the route of extracting
statistical features from the detail signals produced from DWT analysis will be
followed; since these features have shown clear changes when faults are developed,
making it possible for the ANN classifier to categorize them after training (Chap. 7).

(d) 2mm outer race bearing fault

Fig. 6.20 (continued)
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6.5 Summary

The PUMA 560 robot has been programed to execute a handling task that mimics
one of its real tasks for number of times and with different faults seeded on joint 3
(elbow). Vibration signals from the three axes accelerometer were captured while
the robot was performing this task. These signals were analysed and statistical
features were extracted from them. The signals standard deviations (STDs) were
used to distinguish between the healthy and faulty robot conditions, as it was found
to be the best fault sensitive feature. The obtained STDs from the healthy signals
will be utilized in the forthcoming chapter to establish the threshold limits that can
be applied in order to realise just the abnormality development in the robot without
the fault’s location and type.

In the second stage, which is the fault diagnosis stage, the robot has been
programed to oscillate just joint 3, where the faults were simulated, over its full
range of movement. Also, three axes vibration measurement and analysis was
carried out, but this time using the discrete wavelet transform (DWT). DWT rep-
resents an efficient time-frequency analysis method. By applying wavelet analysis,
the signal can be analysed down to its sub-band frequencies. An eight level wavelet
analysis was performed on each axis signal and the STD was computed from each
of the produced sub-signals. The extracted STD features from the signals in the
three axes will be employed, after concatenating them, as an input vector to the
neural network classifier for fault diagnosis in the next chapter.

Another technique for industrial robot fault detection and diagnosis was also
investigated in this chapter. It is based on combining the capabilities of the DWT
and the fast Fourier transform (FFT). FFT is a useful technique for analysing the
spectral content of a stationary signal, but it is inefficient in analysing
non-stationary and transitory fault signals, which is the case in industrial robots.
Wavelet analysis represents an efficient method of non-stationary signal analysis.
Thus, by considering the advantages of these two signal analysis techniques, a
wavelet–Fourier signal analysis system has been applied. As a result, the proposed
technique has shown its ability in detecting changes in frequencies related to the
natural frequencies and different mechanical components of the robot. However, it
will not be applied using the embedded system. The technique based on feature
extraction from the vibration signals will be invested alongside the embedded
system.
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Chapter 7
Intelligent Condition Monitoring
System Design

Abstract As explained previously that the condition monitoring system being
developed consists of two stages, namely fault detection and fault diagnosis. These
two stages will be designed based on statistical (control charts) and artificial
intelligence (neural network) techniques. This chapter discusses the main principles
of the used techniques, describes the design steps for the proposed intelligent CM
system, and presents the results of its performance testing. The extracted standard
deviation features, in Chap. 6, that are related to the robot healthy and different fault
conditions will be used here for design and testing of these two stages.

7.1 Fault Detection Stage

The fault detection stage will be applied when the industrial robot is carrying out its
scheduled task, such as the pick and place task (Chap. 6), and a statistical control
chart (SCC) technique is used for fault detection. This stage is used to warn the
maintenance operative if any degradation in the robot’s health is developing. In this
section the concept of SCC and how the control limits can be estimated are first
explained, and then the normality requirement in the resultant STD values extracted
in Chap. 6, which will be used to construct a control chart for robot fault detection,
is elaborated. Selection of an appropriate control chart and its design steps and
performance testing are also discussed.

7.1.1 Principle of Control Charts

Control charts are a statistical tool for graphically displaying a quality characteristic
plotted against the sample number (or time) with a centre line and two (upper and
lower) control limits (Montgomery and Runger 2014), as illustrated in Fig. 7.1.
Control charts represent one of the most important and widely applied methods for
detection of abnormal process operations based on process variables such as
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dimensions, temperature, vibration and forces etc. They provide a clear differenti-
ation between changes that are a result of unpredictable disturbances in the system
and changes that occur as a result of a system fault.

When control charts are being used for health monitoring of any machine,
despite how well it is designed and maintained, some amount of inherent or natural
variability will always be presented (Kisić et al. 2013). This natural variability,
which is usually referenced to as background noise, is the cumulative effect of many
small and unavoidable causes. However, from the statistical quality control point of
view, a system that has this natural variability is often called a stable system and
in-control (Kisić et al. 2013). On the other hand, if the variability in the monitored
parameter is large enough when compared to the background noise, this is said due
to assignable causes and represents an unacceptable level of system performance. In
this case, the sources of variability are not part of the natural causes and commonly
entitled special causes; a system that is operating in the presence of special causes
is said to be an out-of-control.

The conventional control chart is composed of three horizontal lines; a centre
line (CL) that represents the average value of the quality characteristic corre-
sponding to the in-control state; and two other lines named the upper control limit
(UCL) and the lower control limit (LCL) as shown in Fig. 7.1. These control limits
are chosen so that if the process is in-control, nearly all of the sample points will fall
between them. It is common practise to connect the sample points on the control
chart with straight-line segments since it is easier to visualize how the sequence of
points has evolved over time. However, even if all the points fall inside the control
limits, but behave in a systematic or non-random manner, then this could be an
indication that the process is out of control. If the process is in control, the plotted
points should fall in an essentially random pattern.

Upper control limit (UCL)

Centre line 
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Lower control limit (LCL)

Sample number (or time)
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Fig. 7.1 A conventional
control chart (Montgomery
and Runger 2014)
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7.1.2 Control Chart Limits

The choice of control limits is one of the critical decisions to be made when
designing a control chart, and is connected to the risk of faulty prediction of being
in or out of control. Fundamentally, there is a close similarity between the prin-
ciples of the control chart and hypothesis testing. By applying the control chart
technique, continuous hypothesis testing is carried out through the progress of the
process. For a normally distributed process, the null hypothesis (H0) is that the
treated sample mean is equal to the reference (healthy) process mean, while the
alternative hypothesis (H1) assumes that the treated sample mean does not equal the
reference mean. The H0 hypothesis refers to that the monitored parameter is in a
good condition and the process should continue, whereas H1 indicates that there is a
problem and actions should be taken. However, two types of error can occur during
the fault prediction process using control charts (or hypothesis testing), these are
called type I and type II errors (Montgomery and Runger 2014; Kisić et al. 2013).
A type I error occurs when a point falls outside the control limits, indicating an
out-of-control condition when there is no obvious cause presented (reject the null
hypothesis H0 when it is true). Whereas a type II error results if a point falls within
the control limits when the process is actually out of control (fail to reject the null
hypothesis H0 when it is false). Therefore, the risk of type I error is decreased by
moving the control limits further from the centre line. Widening the control limits,
however, will also increase the risk of type II error. However, the opposite effect
occurs if the control limits are shifted closer to the centre line. The general math-
ematical formulation for a control chart is

CL ¼ lw ð7:1Þ

UCL ¼ lw þ krw ð7:2Þ

LCL ¼ lw � krw ð7:3Þ

where W is a sample statistic that measures some quality characteristic of interest,
and lw and rw are its mean and standard deviation, respectively, while k represents
the distance of the control limits from the CL, expressed in standard deviation units.
The common practice is to make the UCL and LCL equal three standard deviations
(three-sigma) from the CL of the monitored data, i.e. k = 3. By using three-sigma
control limits it is assumed that the distribution of the quality characteristics is
approximately normally distributed. Then, by doing so it is presumed that while the
system is in statistical control, nearly 99.7 % of the points will fall within the
control limits (Montgomery and Runger 2014; Khan 2013). In this way, a good
balance is made between type I and II errors. In addition to the three-sigma limits,
additional warning limits can be utilized. These are named the inner limits, usually
placed at two-sigma (El-Din et al. 2006).
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7.1.3 Normality Distribution Test

The fundamental approach upon which the control chart algorithms depend
assumes that the data are normally distributed; thus, before constructing the control
chart, it is required to test the normality of the feature of interest extracted when the
system is healthy (Montgomery and Runger 2014; Khan 2013; El-Din et al. 2006).
In this project the normality of the healthy features that are extracted from the robot
while it executes the repetitive task in Chap. 6 were studied using graphical tech-
niques to assess whether or not the data are consistent with the normal distribution.
These are the histogram, which is a bar graph plot of data and represents an
approximation to a probability density function, and the normal probability plot.
The vertical axis of a histogram represents the data type frequency, while in the
normal probability plot it signifies the cumulative probabilities scale. Meanwhile
the horizontal axes in both plots are the values of the variable. At the centre of the
normal probability plot, a line of normal probability is drawn passing through the
mean of the variable and the 50 % cumulative probability. If most of the data points
are placed on this line, the data is considered to be normally distributed. However,
if the points appear in a curvature shape, then the indication is that the data are not
normally distributed. To achieve this and to calculate the upper and lower control
limits, as will be explained later, the Minitab 17 statistical package has been used.
By carrying out the normality test on all the features extracted from the robot
healthy condition, such as the resultant mean and kurtosis, has been found that the
resultant standard deviation (STD) feature is the only normally distributed one, as
shown in Fig. 7.2.

Generally, the histogram compares the data to the normal probability curve
generated from the mean and standard deviation of the data, as shown in Fig. 7.2
(left), which is indicating a bell-shape distribution. The majority of the data points
in the normal probability plot, Fig. 7.2 (right), correlate with a straight line except
for a few at either end, moreover, the normal distributed line pass through the
intersection of the mean and its 50 % cumulative probability. Thus, it can be
concluded that the resultant STD feature is a good approximation to a normal
distribution, thus it will be used for designing the control chart.
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Fig. 7.2 Histogram (left) and normal probability (right) plots for the resultant standard deviation
feature extracted from the robot healthy condition
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7.1.4 Control Chart Design

As mentioned in the literature review (Chap. 2) the most commonly used control
charts are: Shewhart, cumulative sum (CUSUM), exponentially weighted moving
average (EWMA), which are called univariate charts, and T-square control chart,
which is one of multivariate control charts. Shewhart control charts are the most
popular charts used for process monitoring, and can be easily implemented on
microcontrollers since they do not require a lot of computational effort; and for this
reason will be used here, based on the following discussion.

It is a standard practice when a variable is monitored using Shewhart charts that
both the mean and the variability of the variable are considered. The mean of a
variable is monitored with the X-bar ðXÞ chart and the variability of the variable is
monitored using a range chart (R-chart) or a standard deviation chart (S-chart). The
X-bar chart informs whether the process is stable with respect to its healthy level,
whereas the R- and S-chart provide information regarding the variability of the
process and if it is stable over time or not. Significant shifting of the mean and the
unusual large variability are indications of special causes or a fault starting to
develop in the robot, and which subsequently have to be evaluated using the second
stage of the condition monitoring system (Fault diagnosis stage). The R-chart is
relatively insensitive to small or moderate shifts for small sample size (Montgomery
and Runger 2014), thus, in a situation that demands tight control of process vari-
ability, moderately large sample sizes will be required, and the S-chart should be
used.

The control limits of the mean and standard deviation charts are derived from the
healthy features, using simple calculations, after dividing each data set into sub-
groups (samples) of ten observations each. The population mean ðxÞ and standard
deviation ð�sÞ can then be estimated based on these data, having m preliminary
samples, each of size n, with ith sample mean �xið Þ and standard deviation sið Þ, as
shown:

x ¼ 1
m

Xm
i¼1

�xi ð7:4Þ

�s ¼ 1
m

Xm
i¼1

si ð7:5Þ

The upper and lower control limits and centre line of X chart are given by:

UCLx ¼ xþ 3
�s

c4
ffiffiffi
n

p ð7:6Þ

CLx ¼ x ð7:7Þ
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LCLx ¼ x� 3
�s

c4
ffiffiffi
n

p ð7:8Þ

And the upper and lower control limits and centre line of S-chart are:

UCLs ¼ �sþ 3
�s
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c24

q
ð7:9Þ

CLs ¼ �s ð7:10Þ

LCLs ¼ �s� 3
�s
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c24

q
ð7:11Þ

where c4 is a tabulated constant depends on the sample size and can be found in
(Montgomery and Runger 2014). Minitab results for the S-charts, based on the
resultant STD data from the healthy robot are presented in Fig. 7.3. It can be seen
from the charts that all the points are randomly distributed and within the control
limits which means the robot is healthy. The established values of control limits will
be incorporated in the designed embedded system in the following chapter for
online robot fault detection.
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7.1.5 Performance Testing of the Designed Control Charts

Before using the established control charts limits with the embedded system it is
important to perform offline testing to confirm that they are able to distinguish
between a healthy and a faulty robot. To achieve this first a number of healthy
samples have been captured from the accelerometers when the robot executes its
programmed sequence. These samples are previously unseen when the control
charts first designed. Because it is difficult to introduce a fault in the robot while it is
running and also it not recommended allowing the robot working for a long time
until it is degraded, different controlled backlash levels have been introduced at
periodic intervals when the robot is stopped. First, the backlash is increased
(clearance) and then reduced gradually until it is removed totally (interference).
With each backlash level the robot is programmed to execute the repetitive task,
described in Chap. 6, a number of times and the resultant standard deviation of each
cycle signal calculated using LabVIEW programme. The extracted features for all
backlash levels (and healthy state) are tested against the control limits and plotted
on the same graph, for clarity, using Minitab software as shown in Fig. 7.4.

The red colour markers indicate out-of-control samples. From these figures
significant differences amongst the backlash levels compared to the healthy state of
the robot can be noticed, particularly on the means of the standard deviation ðxÞ in
the X-bar chart, however these differences cannot be distinguished clearly in S-chart
graph which monitor the variability of the standard deviation. Accordingly it is
concluded that it is justifiable to rely on only the X-bar chart for the robot fault
detection, whereas the S-chart will be ignored when the embedded system code is
constructed. From these charts it can clearly be seen that most features related to
robot’s unhealthy state either exceed the control limits, as in the high backlash and
interference cases, or on the same side above or below the centre line, as in case of
small backlash; while, the healthy features are randomly distributed. Also, as
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indicated by X-bar charts, when the backlash level is increased the means of
standard deviation of the samples are decreased. In contrast, the opposite occurs
when the interference is introduced to the mating gears. This is attributed to the
grease lubricant in the transmission system, as discussed previously in Chap. 6.

There are ten rule-of-thumb associated with control charts used to signal the
presence of an abnormality in the process, called the Western Electric Company
rules, or run rules (Montgomery and Runger 2014). These rules also have negative
effect if all of them are applied, since they greatly increase the number of false
alarms (Montgomery and Runger 2014; El-Din et al. 2006). Thus, few of them are
going to be utilized here for the robot fault detection. Such as the robot is con-
sidered in abnormal condition if three (or more) successive points fall outside the
control limits or the points are in a non-random arrangement. The non-random
arrangement, for example, is characterised by a run of eight consecutive points on
one side of the centre line or six points in a row steadily increasing or decreasing.
However, these rules can be applied as warning alarms before serious fault is taken
place. This type of test can be used by the robots manufacturers for checking the
backlash level before putting the robots in the service. Also, the designed chart has
been tested with other types of faults, such as bearings and gears, and very good
performance has been shown.

7.2 Fault Diagnosis Stage

After the fault and its severity are detected and estimated in the first stage of the
monitoring system, its type and location need to be identified for the operator and
maintenance engineers. To achieve this, an artificial neural network (ANN) will be
designed using the features extracted in the previous chapter when the robot
cyclically runs just joint 3. This section will first present the main idea of the ANN,
and then the design steps are discussed. In addition to its accuracy in fault diag-
nosis, the size of the designed ANN is the most important considered parameter,
since the designed ANN in this chapter has to be uploaded onto an embedded
system with limited memory size and computational effort. Consequently, features
related to different health cases of the robot will be used to evaluate the accuracy of
the designed ANN.

7.2.1 Biological and Artificial Neurons

The structure of the artificial neuron is inspired by the concept of a biological
neuron shown in Fig. 7.5. Basically, it is a processing element in the nervous
system of the brain that receives and combines signals from other similar neurons
through thousands of input paths called dendrites.
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Each input signal (electrical in nature), flowing through a dendrite, propagates
through a synapse or synaptic junction. The junction is an infinitesimal small gap in
the dendrite which is filled with a neurotransmitter fluid that either retards or
accelerates the propagation of the signal. Signals from many dendrites are accu-
mulated in the soma (or nucleus), and then nonlinearly modified at the output before
flowing to other neurons through the branches of axon as illustrated in Fig. 7.5.

The model of an artificial neuron closely matches the biological neuron and has a
summation type of structure that consists of several layers of artificial neurons
designed to emulate the biological neurons. Each input signal (continuous variable
or discrete pulses) flows through a gain or weight, called a synaptic weight or
connection strength and can be positive or negative, integer or non-integer.
Figure 7.6 illustrates a typical representation of an artificial neuron, with connection
weights.

Where x1; x2; x3. . .xn represent the input vector to the neuron with associated
weights w1;w2;w3. . .wn. The bias, b, (sometimes called threshold) is often con-
nected to the neuron and it introduces an offset to the transfer function so that even

Fig. 7.5 Structure of the
biological neuron
(Negnevitsky 2005)
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if the input were zero the neurons would still have an output (Lim 2009). Typically,
the bias is set to a value of 1. However, the input to the neuron, which is called net,
will be the summation of the multiplied inputs with their corresponding weights,
and can be written as

net ¼
Xn
i¼1

wixi ¼ w1x1 þw2x2 þw3x3 þ � � � þwnxn þ b ð7:12Þ

where n is the number of inputs to the neuron. The resultant net is then passed
through an activation function ðf ðnetÞÞ to produce the output which can be repre-
sented as

Y ¼ f ðnetÞ ¼ f
Xn
i¼1

wixi

 !
ð7:13Þ

7.2.2 Activation Functions

The internal inputs sum of the perceptron has to pass through an activation function,
sometimes called the transfer function, which can be linear or nonlinear. If a linear
function is used, that will not contribute to a non-linear transformation within a
layered structure. However, utilizing the non-linear activation functions allows
mapping of non-linear input-output of the neural network. Table 7.1 summarizes
and describes the most common types of activation functions.

The sigmoidal and tansigmoidal functions are commonly used in systems that
are nonlinear, such as fault detection systems. Both of these functions are differ-
entiable. As discussed earlier, the nonlinear activation function contributes to the
nonlinear transfer characteristics of a neuron which permits nonlinear input-output
mapping of ANN. However, with linear activation function, this nonlinearity is lost.

7.2.3 Neural Network Architectures

A neural network is composed of a large number of simple and interconnected
computational neurons. These neurons are connected by links that have associated
weights. The weights between neurons refer to the significance of the input to each
neuron. Normally, either raw data or output from neurons represents the input to
other neurons. However, neural networks come in many forms and accordingly
there is no generally accepted definition, and the structure of the connections
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between neurons and the computation it performs vary between the different neural
models. ANNs are generally classified as feed-forward, e.g. the multilayer per-
ceptron neural network (MLPN), and feedback (or recurrent) types, such as
Hopfield network, as discussed in the literature review chapter (Chap. 2). In the
feed-forward class, the signals travel only in the direction from the input to the
output, whereas in recurrent neural network (RNN), the signals can flow in the
forward as well as backward or lateral direction. However, the main characteristic
of a neural network is that, when the training process is performed well, the
mapping formed by the network can show its capability for generalization beyond
the training data and not to memorise the training data. The majority of fault
diagnosis applications utilizing ANNs utilize a feed-forward architecture, with the
MLPN being most popular. A description of this topology is presented in the next
section as it adopted for use in this thesis.

Table 7.1 Activation functions types

Name Graphical
representation

Mathematical
representation

Description

Linear
function

Y ¼ net The output is equal to the
neuron weighted input

Step
Y ¼ 1; If net� 0

0; If net\0

�
In these cases, the output is
hard limited depending on the
sign of the net

Sign
Y ¼ þ 1; If net� 0

�1; If net\0

�

Sigmoid Y = 1
1þe�net The net neuron will be

mapped into values between
+1 and 0

Tansigmoidal Y = tanh(net)

¼ 1� eð�netÞ

1þ eð�netÞ

The net neuron will be
mapped into values between
+1 and −1
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7.2.4 Multilayer Perceptron Neural Network

In the multilayer perceptron network (MLPN) or multilayer feed-forward neural
network, the input signal is propagated on a layer-by-layer basis through the net-
work in a forward direction, as illustrated in Fig. 7.7, and there are no connections
between the neurons in the same layer. The data flows into the network through the
input layer, passes through one or more hidden layer(s) and finally flows out of the
network through the output layer. Although the network classification will be better
when a large number of layers and neurons are used, increased layers and neurons
result in a convergence problem and a longer training time (Negnevitsky 2005).

The MLPN is a nonlinear model consisting of number of neurons organized into
multiple layers, forming a mapping between the input and the output, adjusted by
the weights. The complexity of the MLPN network can be changed from an almost
linear model to a highly nonlinear model by varying the number of layers, the
number of neurons in each layer, and the values of the weights. The network thus
has a simple interpretation as a form of input-output model. Parameter estimation of
the model is carried out with a training algorithm, which uses the training data to
gradually optimize the parameters (weights and biases) in the MLPN network. The
training algorithm is implemented using a search method to estimate the values for
the MLPN parameters.

7.2.5 Learning Techniques

The neural network mimics the human brain in learning through training and data
storage. Basically, there are three main groups of learning or training algorithms.

Supervised learning: In supervised learning the system will be informed about
the exact output vector (Munakata 2008; Negnevitsky 2005), and the difference
between the network output and correct (desired) output is calculated as shown in

Fig. 7.7 Two hidden layers multilayer perceptron (Negnevitsky 2005)
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Fig. 7.8. The weights are changed according to a specific formula. This method can
be compared to learning under the supervision of a teacher, who knows what
contents have to be learned to get the desired output. In this technique the weights
and biases of the network are initially chosen arbitrarily, and then during the
training procedure these being updated to reduce the differences between the
desired and estimated output. Tasks that fall within the paradigm of supervised
learning are pattern recognition, which is also known as classification, and
regression (or function approximation).

Unsupervised learning: It is also called self-supervised learning, and in this
technique the desired final vector is not identified, but instead the network’s weights
and biases are updated in response to the network input only (Munakata 2008;
Negnevitsky 2005). In the training process, a number of different input patterns are
fed to the neural network, and the network discovers significant features in these
patterns and learns how to classify them into appropriate categories. Figure 7.9
shows the principle of the unsupervised learning algorithm.

Reinforcement learning: In this technique, a teacher though available, does not
present the expected answer but only designates if the computed output is correct or
not (Munakata 2008; Negnevitsky 2005). The delivered information helps the
network in its learning process, and the computed correct answer will be rewarded
and a penalty applied to the incorrect answer.

The supervised learning method is used for the intended application, as both the
input (standard deviation features extracted from the wavelet details) and output
(desired target) training sets are available.

Network
Input vector Network output _

Desired 
output

+

Fig. 7.8 Supervised learning
scheme

Network
Input vector Network output

Fig. 7.9 Unsupervised
learning scheme
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7.2.6 Training the MLPN

The back-propagation training algorithm takes its name from its procedure and
represents the most commonly used algorithm. The training can be accomplished
when the input and target data pairs are presented to the network which implies a
supervised learning process. The computations in the back-propagation training
algorithm are passed forward from the input to output layer, and the computed
errors are fed backwards through the network, as shown in Fig. 7.10.

The main steps of back-propagation training of a MLPN can be summarised as
in the following (Negnevitsky 2005). First, the weights and biases are randomly
initialised in order to start the training process. Then, the network takes the input
vector of features x ¼ x1; x2; . . .xn½ � and computes the output y ¼ y1; y2; . . .yl½ � and
compares it with the target output t ¼ t1; t2; . . .tl½ � to calculate the error (E). This
error signal is then back propagated in order to adjust the network’s weights and
improve its performance, such that the error decreases. Back-propagation training,
based on a gradient descent method for numerical optimization, is the most widely
used method for feed forward networks. It uses the computed error for updating the
weights of the network. There are several forms for error measurements e.g.
summed squared error (SSE) (Fernando 2014). The most commonly used one is the
mean square error (MSE), which is the SSE of all targets minus outputs, divided by
the number of outputs, which is used here:

E ¼ MSE ¼ SSE
l

¼ 1
l

Xl
k¼1

tk � ykð Þ2 ð7:14Þ

Fig. 7.10 An example of back-propagation training algorithm (Negnevitsky 2005)
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where l is the total number of output neurons. After the error being calculated, each
weight parameter is updated by an amount proportional to the negative gradient of
the error measured with respect to that weight parameter (Eq. 7.15). This process
starts at the output layer of the network and works backwards to the hidden layer
and then to the first layer.

DWjk ¼ �g
@E
@Wjk

ð7:15Þ

The factor g is called the learning rate which is a positive constant less than unity
and determines the magnitude of the change in weight values (Negnevitsky 2005),
and must be selected before starting the training. A very small learning rate leads to
a very slow learning process. In contrast, if the learning rate is made larger, the
resulting increased changes in the weights may cause instability giving rise to an
oscillating behaviour (Negnevitsky 2005). It is worth mentioning that the frequency
of weight updating can be performed in incremental mode or batch mode (Fernando
2014). In incremental mode, training sets are presented to the ANN one at a time,
and the error is calculated for each input set and back-propagated to adjust and
update the weights before the next set is passed. While in the batch mode, all
training patterns are presented to the ANN, and all produced errors are accumulated
and averaged over the entire training patterns. By using this averaged error, the
weights are then updated. This means the updating process of weights occur only
after each epoch, and the training process stops when the gradient of the MSE stops
decreasing. However, in the training process it is not possible to get the MSE to
decrease to exactly zero, so the objective is to get it down below some minimum
value, usually (MSEmin ˂ 10−2) (Mazumdar 2006). If the evaluation criteria satisfy
the specifications, the training will be stopped. In contrast, if the error is not low
enough, the weights keep modifying until the error satisfies the requirements or the
maximum number of iterations are achieved.

Since the inception of back-propagation learning technique there were a number
of improvements suggested on improving the speed of convergence (Fernando
2014). Some of these techniques, for example, the conjugate gradient or
Levenberg-Marquardt techniques are numerical optimization methods; however,
they follow the back-propagation process to update the weights of the network, and
thus are still referred to as back-propagation techniques. The used data for training
the ANN normally comes in a different range; therefore normalisation of the data is
needed to avoid high values from being too dominant and to suppress the influence
of the smaller ones (Subbaraj and Kannapiran 2014; Pandya et al. 2012), this also
will prevent weights from becoming too large which can lead numerical overflow.
So, if all of the input data is normalized to be between 0 and 1 or −1 and 1, then the
ANN will give equal priority to all inputs. In this thesis the data will be normalized
between 0 and 1 using the following equation:
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xn ¼ x� xmin
xmax � xmin

ð7:16Þ

where, xn is the normalized value, and xmin and xmax are the minimum and maxi-
mum values among all values of the data. After the training is completed and new
input data sets have to be evaluated, which have to be normalised too as the
network has been trained in this way. Also, the output results from the network
need to be denormalised using the inverse of the normalization function.

7.2.7 Setting Up the MLPN

To model the nonlinear characteristics of the robot fault conditions, as in the work
here, there are some issues regarding the number of hidden layers, number of
neurons in each layer, and also the activation functions in the hidden and output
layers need to be considered. This also because the designed neural network will be
programmed on the designed embedded system (Chap. 8). However, the number of
input neurons depends on the number of measurements or the number of features
extracted from each sensor signal. In this work, the input features to the network are
the standard deviation values of the detail signals of the wavelet analysis (D1–D8)
extracted in the previous chapter, since the last level of approximation coefficient
(A8) does not give useful information regarding robot fault (also as explained in the
previous chapter). Therefore, the number of features will be 8 from each sensor
(axis) signal with a total of 24 values (from the three axes) input to the network. The
number of the robot health conditions to be classified, of which there are ten fault
types will be explained in the following section, identify the required number of
neurons in the output layer. Consequently, the number of MLPN input and output
neurons are fixed.

For any nonlinear system identification problem, at least one hidden layer is
required (Negnevitsky 2005). Generally, the computational effort and time of the
network increases with increasing the number of layers and neurons in each layers
of the network. Likewise, if the network size is too large, it will be difficult to
programme on the embedded system since it requires significant amount of
memory. Therefore, a trade-off between the computational effort and efficiency of
the neural network and the number of the hidden layers is required. Thus, one
hidden layer is proposed. Additionally, a nonlinear, differentiable activation func-
tion for the hidden layer is needed (Mazumdar 2006). For this purpose, the sig-
moidal activation function has been utilized, since it is suitable for applications
whose desired output is between 0 and 1, which is the case in this research (Pandya
et al. 2012). Also, a linear function, which is normally used in the input and output
layers, was used in the output layer. The only variable then remaining is the number
of neurons in the hidden layer. The appropriate selection of the number of hidden
neurons is based on a balance between output accuracy and network size.
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Generally, there is no explicit mathematical or theoretical foundation to deter-
mine the best number of hidden layers and neurons in each hidden layer without
training several networks and estimating the error of each network. Having too
many neurons in the hidden layer may result in a low training error but again the
network size and computation time will increase. There are several books and
articles that offer a “rule of thumb” to select the optimal number of hidden neurons
in the hidden layer to be a starting point, for example:

• The size of the hidden layer should be somewhere between the input layer size
and the output layer size (Heaton 2008).

• The number of neurons in the hidden layer should never be more than ×2 the
number of neurons in the input layer (Heaton 2008).

• The number of hidden neurons should be 2/3 the size of the input layer, plus the
size of the output layer (Heaton 2008).

• Number of neurons in the hidden layer should equal 2× input neurons plus 1
(Sivanandam et al. 2006).

Also, another possibility is by starting with a small number of neurons and
gradually increasing them until little or no improvement is observed in the network
performance. It is possible to establish the optimal number of neurons in the hidden
layer as explained in the following section.

7.2.8 Design of a MLPN for Fault Diagnosis

Matlab’s neural network toolbox was utilized to design and test the network, based
on the supervised, back-propagation learning technique. Many functions are pro-
vided by the toolbox for designing, training, visualizing and simulating the pro-
posed neural networks, and numerous built-in functions for common neural
network applications such as pattern recognition and clustering are included.
Furthermore, the code for these functions can easily be modified to suit specific
requirements. The block diagram in Fig. 7.11 shows the main design steps for the
ANN. Some of these steps are adjusted manually before running the prepared
Matlab code, such as identifying the network structure, activation functions and
number of epoch, whereas others are performed automatically based on the code
sequence, i.e. data loading and normalization, and weights and biases initialization.

The neural network input feature vectors consisting of one group representing
the healthy state as well as ten groups for different fault types. These groups include
three backlash levels: high, small and interference; pinion bevel gear faults: tooth
wear, 25 % tooth removed, 50 % tooth removed and full tooth removed; and input
shaft bearing faults: inner race fault, and light (1 mm hole) and severe (2 mm hole)
faults in the outer race. The data sets sizes of 100 samples for each health condition
are used to train the network. After setting the network structure and loading the
data, the weights and biases of the network are initialized depending on Matlab’s
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random number generation function. The function dividerand was used to divide
the data into three subsets; training, validation and testing sets with ratios of 70, 15
and 15 %, respectively. The parameters used for the network are shown in
Table 7.2. Additionally, the training can stop according to any one of the criteria of
mean square error (MSE), the number of epochs of training or minimum perfor-
mance gradient reaches certain value set as shown in Table 7.2.

However, as mentioned in Sect. 7.2.6 the performance of the MLP network can
be enhanced if an appropriate back-propagation training function is selected. The
neural network toolbox provides many back-propagation training algorithms, with
their corresponding Matlab functions are listed in Table 7.3. There are a lot of
mathematical equations and discussion behind them and will not be reflected here,
since many books and papers have covered them in detail. The literature claims that
the Levenberg-Marquardt algorithm is the best training method in the neural net-
work toolbox (Fernando 2014; Gadoue 2009; Ba-Razzouk et al. 1997). Therefore,
before finding the optimal number of neurons in the hidden layer, it was decided to
training the network on the basis of 24-25-11 neurons architecture against every
back-propagation algorithm to identify the best one. In each case, the MSE of the

Determine the network structure

Start

Determine the activation functions, training algorithm,
learning rate, gradient, MSE and number of epoch

Load the input and output data

Normalize the input and output data

Initialize the weights and biases matrixes

Separate the data sets to training and testing sets

Train the network with training data Test the network with testing data

Trained Network

Stop

Fig. 7.11 Block diagram of ANN design steps
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test set has been taken as a performance evaluation criterion as illustrated in
Fig. 7.12.

The results show strong evidence in the superiority of trainbfg (BFGS
quasi-Newton), trainlm (Levenberg-Marquardt) algorithms, followed by traincgp
(Polak-Ribiére Conjugate Gradient), with the trainbr, traingda, traingdx and
traingdm algorithms performing the worst. As the BFGS Quasi-Newton performs
the best amongst all other algorithms, it will be selected for designing the neural
network.

Now, to find the optimal number of hidden neurons trial and error testing is
performed. However, based on the number of input and output neurons and the
rules of thumb presented in Sect. 7.2.7, the starting number of neurons of 11–24
(rule 1), less than 48 (rule 2), 27 (rule 3) and 49 (rule 4) are adopted at the
beginning of training. Also, it is tried to avoid the large number of neurons due to

Table 7.2 The used parameters for designing the neural network

Number of input layer neurons 24

Number of hidden layer neurons To be identified

Number of output layer neurons 11

Number of hidden layers 1

Hidden layer activation function Sigmoid

Output layer activation function Linear

Training algorithm To be identified

Learning rate 0.05

MSE stopping criteria 10e−4

Minimum performance gradient 10e−5

Maximum number of epoch 50,000

Table 7.3 List of the tested back-propagation training algorithms

Algorithm Function in matlab

Gradient descent traingd

One step secant trainoss

Polak-Ribiére conjugate gradient traincgp

Fletcher-Powell conjugate gradient traincgf

Conjugate gradient with Powell/Beale restarts traincgb

Scaled conjugate gradient trainscg

BFGS quasi-Newton trainbfg

Resilient back-propagation trainrp

Levenberg-Marquardt trainlm

Bayesian regularization trainbr

Gradient descent with adaptive learning rate traingda

Variable learning rate gradient descent traingdx

And gradient descent with momentum traingdm
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the limitation that might be faced in the embedded system as discussed earlier in
this chapter. Therefore, after many trials it was found the optimum number of
neurons that gives a compromise solution for the robot fault diagnosis problem is
17. The ANN learning process and the performance plot is depicted in Fig. 7.13,
which shows that the training with 487 epochs met the MSE stopping criteria (MSE
less than 10E-4). Furthermore, it was established that the correlation coefficient
(R) between the actual and desired (target) outputs has a value above 0.99 for the
training, testing and validation data sets, which is indicative of a strong relationship
between the outputs and targets of ANN. Thus, this network will be implemented
for robot fault diagnosis stage.
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Fig. 7.12 Variation of the MSE for different training algorithms

Fig. 7.13 The ANN training process and performance plot
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7.2.9 Performance Testing of the Designed ANN

With the ANN’s design satisfying the requirements and the training completed, its
performance needs to be tested using sets of data not previously presented to the
network, and however, the well-trained network must be able to show its capability
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Fig. 7.14 The designed ANN network performance testing with unseen healthy and faulty data
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in classifying the unseen data samples. The ANN has been trained in a way that
produced results from the first neuron in the output layer of the ANN representing
the healthy operating condition of the robot, while the remaining ten neurons (of the
eleventh) are mapped to represent the ten simulated faults on the robot, and thus a
value of 1 for each output neuron is considered the target value. For instance, for
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the healthy case, the only output neuron that would have a value of 1 is the first one,
therefore, it will be [1,0,0,0,0,0,0,0,0,0,0]. The second neuron would take a value of
1 if the first fault type (gear interference) is presented and thus the outputs will be
[0,1,0,0,0,0,0,0,0,0,0], and so on with the other fault types.

To test the network, a total of 220 unseen data samples were used. The first 20
samples represent the healthy condition of the robot while the remainder of the
samples are divided into ten groups of 20 samples each, corresponding to different
robot faults. A selection of the test results are presented in Fig. 7.14, whereas the
rest can be found in Appendix D. The tests showed that the network efficiency in
term of its capability in classifying the eleven different types of the robot health
situation is 100 %, and the ANN design can differentiate the different faults of the
robot with very good accuracy when confronted with unseen data.

7.3 Summary

The development of the intelligent CM system has been presented in this chapter.
The system is divided into two main stages; the fault detection and fault diagnosis
stages. The fault detection stage is based on SCC while the diagnosis stage is on
ANN. The extracted features (from Chap. 6), using the designed data acquisition
system based on LabVIEW software, from different operating condition of the robot
were utilized to design the intelligent CM system. Minitab software has been used
to establish the control (threshold) limits in the fault detection stage, and then to test
its ability to detect variations in the robot health. The SCC showed very good
capability in detecting changes.

To design an appropriate ANN and then evaluate its performance for the fault
diagnosis in the second stage, code has been developed based on Matlab neural
network toolbox. The ANN has been trained to distinguish among different types of
fault in the robot. A significant level of accuracy in fault diagnosis the ANN has
been obtained and the percentage of correct classification was approximately
100 %. The designed CM system will then be written in other programming lan-
guages, C language for example, to be downloaded on an embedded system. This
will be discussed in the coming chapters.
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Chapter 8
Embedded System Design

Abstract The previous chapter concentrated on the design of the fault detection
and diagnosis system based on SCC and ANN respectively; based on the extracted
features described in Chap. 6. In this chapter the implementation of the proposed
robot health monitoring system using an embedded system is discussed. A short
overview of the currently available embedded systems for condition monitoring
applications is provided, to evaluate their appropriateness for the work here. Then, a
systematic methodology has been followed for the electronic hardware, which
makes up the embedded monitoring system, selection process by investigating the
available options in the market and suitability for this project. The configuration of
several parameters of the developed embedded system is discussed and results
presented, and the final system enclosure and installation described.

8.1 Rationale

As discussed in the previous chapters the proposed intelligent condition monitoring
algorithm is made up of two stages, namely fault detection and fault diagnosis. The
first stage incorporates SCC for fault detection, while diagnosis stage utilizes the
DWT for signal analysis followed by statistical feature extraction; the extracted
features are then passed to the ANN classifier for fault classification. A wired data
acquisition system together with signal analysis and feature extraction software was
initially developed based on National Instrument hardware and software, con-
structed and tested on a PC. With some modification the designed system could be
easily adopted for health monitoring of different robots or machines. However, the
main aim of this work is to develop an embedded system for real-time imple-
mentation of the proposed CM algorithm.

By thoroughly examining the proposed CM system it can be seen that the key
steps are: signal acquisition, feature extraction for fault detection stage, fault
detection by applying the SCC technique, conducting the signal analysis using
DWT and also feature capture for the fault diagnosis stage, and finally performing
the fault classification using ANN. Each one of these steps requires a substantial
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computational effort, particularly the DWT and ANN, since they involve a large
numbers of mathematical operations. For this reason and also due to the
non-availability of high performance, low-cost, compact size processor boards it is
not feasible to implement the full two-stage system on a single processor board.
Therefore, it was decided to apply the first stage data acquisition and fault detection
utilizing a small, low-cost board that can be attached to and move with the robot
arm, while implementation of the fault diagnosis stage (DWT and ANN) on another
high-performance board remote from the robot arm and interfaced to a PC for
reporting the robot health condition. The communication between these two boards
was established wirelessly; this has raised the concept of wireless sensor network
(WSN) in this project. The board on the robot together with the three accelerom-
eters is called the end device (or the sensor node), whereas the board connected to
the PC is called the base station. This chapter discusses the requirements and design
for building a wireless embedded system, and component selection.

8.2 Available Wireless Sensor Network Modules

Wireless sensor networks (WSNs) are comprised of a scalable number of dis-
tributable, lightweight wireless modules termed nodes. Each node is equipped with
sensing, computing, and communication capability. The nodes are organized in the
network with one configured as a coordinator (or base station) (Faludi 2011). The
coordinator represents the network controller and is responsible for setting up and
maintaining the network, which should be connected to a reliable, uninterrupted
power source, and requires to be interfaced to a PC for further data processing and
visualization. Another configuration of the wireless devices is a router which can
send, receive and route the information; networks may have multiple router nodes,
which act as a messenger for communications between other widely separated
devices. An end device is the third possible configuration of the nodes, which
always needs a router or coordinator to communicate with. It cannot work as a
messenger between any other devices and can only transmit data to the devices that
is connected to. Generally, wireless network can be composed of one coordinator,
multiple end devices, and no routers.

Different wireless modules serve different purposes are available in the market,
including the TelosB and Waspmote modules, shown in Fig. 8.1. These modules
are required to be low cost and low power consumption, and are designed with
limited memory size and restricted computational capabilities (Feng et al. 2015), i.e.
the Waspmote module has only 8 KB (kilo bytes) random access memory (RAM),
128 KB program flash memory and an 8-bit processor running at 8 MHz. These
modules are not powerful enough for real-time implementation of digital signal
processing or intelligent algorithms, such as DWT and ANN; thus, it was decided to
develop wireless modules capable of handling the tasks of the proposed condition
monitoring system (fault detection and diagnosis).
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8.3 Wireless Sensor Network Topologies

A wireless network topology indicates how the wireless sensor nodes are linked to
each other and to the base station/coordinator. There are four main types of WSN
topologies, as shown in Fig. 8.2 (Faludi 2011). The simplest one is the Pair
topology, which basically has two nodes where one node must be a coordinator
while the other one is configured to work as an end device or a router. The second
network configuration is Star topology, in this network many end nodes commu-
nicate with a central coordinator and do not communicate with each other directly.
The coordinator routes the received messages between the nodes as requested.

A Mesh network arrangement consists of one coordinator node, and in addition
to end nodes there are number of router nodes. Also, the end nodes can be con-
nected to the coordinator or routers and the routers can communicate with each
other as well as with the coordinator. The last topology is Cluster tree network
which is similar to mesh network. Here, the end nodes are clustered around the
coordinator or each router and the routers do not communicate with each other;
instead, they pass the messages along to the coordinator and the coordinator sends
them as required. In this research, the topology best suited is Pair network, since
only one sensor node and base station are used for robot monitoring; for future
work may be more than one sensor node can be employed for health monitoring of
more than a robot simultaneously and in that case the Star, or other networks should
be utilized.

(a) TelosB module [http://www.willow.co.uk]      (b) Waspmote module [http://www.libelium.com]

Fig. 8.1 Some examples of the available wireless sensor modules
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8.4 Design of the Sensor Node (End Device)

The sensor node, as depicted in Fig. 8.3, is an embedded system usually outfitted
with a microcontroller unit (MCU) [or digital signal processor (DSP)], radio fre-
quency (RF) transceiver, power supply, and memory along with various sensors
and actuator depending on the application. The microcontroller with memory to
store the data acts as the central computing and controlling device of the sensor
node. The radio transceiver module, which allows two-way radio communication
between several nodes in order to distribute the information, represents the com-
munication subsystem of the node. The power supply subsystem is in charge of
powering the whole sensor node, and is normally composed of batteries, which
offer an easily available, low cost, and high capacity source of power, and have
become companion with sensor nodes.

Fig. 8.2 Wireless network topologies (Faludi 2011)

Fig. 8.3 Wireless sensor
node hardware architecture
(Yang 2014)
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In this work, one node will be fixed on the robot arm and will be in charge of
performing the first stage of the proposed monitoring system, which is collecting
vibration signals, execute preliminary evaluation of the robot health (fault detec-
tion), and then sending the information to the base station. So, in addition to good
computational capabilities, the node has to be of light weight and small size, easily
attached and does not add extra loading on the robot arm. Powering of the node is
one of the most critical points in building any wireless node, since from practical
point of view it is not convenient to replace batteries on the nodes of a WSN at short
intervals. The node has to be of a reasonable price and easy to produce, for future
expansion of the embedded wireless CM system. The previously selected
accelerometers in Chap. 5 represent the sensor part of the sensor node, and in this
section the selection of the microcontroller, wireless protocol, transceiver and the
power supply source of the node is discussed. However, the proposed design
methodology is not limited for industrial robots and could be utilized for health
monitoring of different machines.

8.4.1 Microcontroller Selection

A microcontroller unit (MCU) is a programmable device that combines electronics
components, include central processing unit (CPU), memory and peripheral devi-
ces, integrated into a single chip (Emilio 2015). There are two families of micro-
controllers: CISC (Complex Instruction Set Computer) and RISC (Reduced
Instruction Set Computer). CISC is characterized by a single bus between the CPU
and memory, which means a single memory for both data and instructions, and is
commonly known as Von Neuman architecture. Because of this, it involves more
than one machine cycle for the execution of each instruction; this constitutes the
disadvantage of this family. RISC microcontrollers, on the other hand, are the
Harvard architecture, which provides the program and data memory physically
separated from each other, two separate buses between the CPU and data-memory,
and between the CPU and program memory.

The microcontroller to be utilized in a sensor node is responsible for the
acquisition, processing, compression, recording and storage of data. There are a
considerable number of microcontroller boards produced by different companies
available, and key requirements that need to be taken into a count when selecting a
microcontroller for constructing a sensing node are energy consumption, cost,
processing speed, memory size, physical size and support for peripherals. The
selected microcontroller must have a fast, high resolution analogue to digital
converter (ADC) with at least three input channels, one for each of the three single
axis MEMS accelerometers. The sampling frequency of the ADC has to be fast
enough to cover the highest sampling frequency used for capturing the vibration
signals from the accelerometers in the fault diagnosis stage, which was 1031 Hz.
So, in order to select an appropriate microcontroller to be used in the sensor node, a
comprehensive evaluation of the available products has been performed. Several
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microcontroller families from, for example, Microchip, Arduino, and Texas
Instruments companies have been assessed. The Arduino was found to be well
suited for this project, as it meets the requirements and also has a large community
support which makes the development process simpler.

Arduino offer several microcontroller models with different characteristics. The
main differences between these models are the type of processor, the number of
inputs and outputs ports, and the capacity of memory. Arduino controllers are
relatively efficient, consume less power, cheap, and suitable for use in a harsh
environment. To reduce the number of available Arduino options it was decided to
look at Arduino boards that have high specification and meet the desired require-
ments, such as DUE and Intel Galileo, which is a new board designed to be
compatible with Arduino hardware and software and is based on Intel architecture.
The Intel Galileo board was thoroughly tested, but despite the high functionality it
was established that the signal capturing process takes very long time in order to
capture 4096 samples from one analogue input channel; as a result was rejected.
The Arduino DUE board was tested and found to be more than capable for this
work in terms of signal capturing speed, processing speed, memory size, power
consumption and, of course, cost.

The Arduino DUE (Fig. 8.4) is an open-source, single-board microcontroller
based on a 32-bit, RISC, Atmel SAM3X8E ARM Cortex-M3 processor. It offers a
relatively small size form, measuring 101.6 × 53.3 mm, and compatibility with
most of the standard Arduino shields. The Arduino DUE board has an 84 MHz
clock frequency, USB connection, four UARTs (Universal asynchronous
receiver/transmitter) serial ports, a power jack, a reset button, and an erase button.
There is a 12-bit resolution analogue to digital convertor (ADC) built in inside the
processor with 1 MSPS (mega samples per second) sampling frequency and 12
input channels. The board comes with 512 KB flash memory, and 96 KB of

Fig. 8.4 Arduino DUE microcontroller board (https://www.arduino.cc)
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SRAM. Whilst other Arduino boards accept up to 5 V on I/O pins, the Arduino Due
board is based on 3.3 V on the I/O pins, fortunately, the selected accelerometer can
work using 3.3 or 5 V which makes the connection of the accelerometer to the
board does not require any conditioning circuit.

8.4.2 Wireless Technology Selection

Communication devices are used to exchange data between the nodes of wireless
networks. The advances in wireless applications have led companies to develop
different types of wireless standard. These standards are usually classified by their
capabilities and properties, and designed to suit different applications, such as fault
detection or human health monitoring. In this section, three widely used wireless
network technologies are discussed, in order to investigate their pros and cons and
also to select the appropriate technology for the work here. These technologies are
(Giannoulis et al. 2013):

IEEE802.11x

The IEEE802.11x family of standards are meant for wireless local area network
(WLAN), which is also known as Wireless Fidelity (Wi-Fi). There are four gener-
ations of Wi-Fi products available which are IEEE 802.11a/b/g/n, operate in high
frequency, unlicensed Industrial, Scientific, and Medical (ISM) radio bands ranging
from 2.4 to 5 GHz. Typically, it is adapted for relatively high bandwidth and high
data transfer rate, ranges from as low as 1 MBPS (megabyte per second) to over 50
MBPS, and commonly used for mobile computing devices, such as laptops. With the
use of a standard antenna the transmission range can be up to 300 ft, and it can be
significantly improved by utilizing a directional high gain antenna. Although the data
transmission and rate ranges are enough for wireless sensor network application, the
power requirement generally limited its usage in wireless sensor application.

Bluetooth (IEEE802.15.1)

Bluetooth is lower power than IEEE802.11, has an operating frequency 2.4 GHz
within the ISM band, and represents a personal area network (PAN) standard. It is
specifically aimed to serve applications that require short range communication,
such as data transfer between computers and other peripheral devices like keyboards
or cell phone to replace wire connectivity. Bluetooth supports star network topology,
and can enable up to seven remote nodes to communicate with a single base station.
However, in addition to its short range application and scalability problem (low
number of nodes per network), the other disadvantages of Bluetooth are high power
consumption and nodes that need a long time to be synchronized with the network
when returning from sleep mode, and which increases the average system power.

8.4 Design of the Sensor Node (End Device) 187



IEEE802.15.4/ZigBee

The IEEE802.15.4 standard was designed for low data rate transmissions, low cost,
and low power consumption wireless personal area networks (WPAN). In terms of
communication range, this standard can be considered as a middle ground solution
between IEE802.11 (Wi-Fi) and IEEE802.15.1 (Bluetooth), and supports multiple
transmission frequencies, multiple data rates, and two topologies, star and
point-to-point (pair topology), which makes it a flexible standard. It operates in the
unlicensed ISM bands at 868 MHz in Europe, 915 MHz in the USA and 2.4 GHz
worldwide, with data rates 20, 40 and 250 Kbps (kilo bit per second), respectively.

ZigBee is a standard designed by the ZigBee Alliance, which is an association of
companies working together to enable reliable, cost-effective, and low-power
wireless network. It is based on IEEE802.15.4 standard which means that ZigBee
can take full advantage of this standard. In addition it can accommodate multiple
networks topologies like star, point-to-point, and mesh networks. Also, a ZigBee
network can have at most 65,000 nodes, making it a very scalable standard.
Because of the aforementioned features, the ZigBee standard has been adopted in
many wireless sensor network applications, and will be the best candidate for the
work described in this thesis. Additionally, ZigBee modules are nowadays available
in the market in small size with very affordable prices.

8.4.3 ZigBee Module Selection

There are many parameters which need to be considered when selecting a ZigBee
module, these include power consumption, operating frequency, flexibility, cov-
erage range, the module and testing costs, and the compatibility with the micro-
controller unit. However, many certified semiconductor companies, such as Texas
Instruments, Freescal, Digi International, are providing successful design for
ZigBee products. After revising the available products the XBee module from Digi
International has been selected, as it meets the above mentioned requirements, is
compatible with the selected Arduino board, and includes other factor, i.e. previous
successful experience, popularity, and available development resources.

XBee is a trade name from Digi international, and it is a wireless module
designed for applications that require reduced data communication while having
long range capabilities with less power consumption. XBee modules come in dif-
ferent formats for different kinds of application. There are two types of XBee
modules, series 1 (s1) and series 2 (s2). As shown in Table 8.1, XBee s2 consumes
slightly less power and has a better range than the s1. The XBee s1 and s2 are
pin-for-pin compatible, but based on different chipsets and running different pro-
tocols. The s1 module uses the IEEE 802.15.4 standard protocol, while the s2
module relies on ZigBee protocol. Furthermore, both series come in two different
transmission powers, regular and Pro. The regular version is simply called XBee,
and is less expensive than Pro version; the Pro version uses more power and is
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slightly larger than the regular version, but, on the other hand, has a longer com-
munication range. The XBee s2 (Fig. 8.5) has been selected for this research, as it
provides good in-door range, good data rate, low-energy consumption, better
receiver sensitivity and it supports mesh and tree networks. This makes the system
scalable and reliable for future development.

XBee modules can be attached to DUE using a wireless shield (Fig. 8.5)
designed for easy connection to the XBee. The shield acts as a daughter board and
is attached on top of the DUE. It has an optional on-board micro SD-card con-
nection capability for serving data on a card over the network. In the shield there is
an on-board switch labelled ‘serial select’, which determines how the wireless
shield’s serial communication connects to the serial communication between the
microcontroller and the USB-to-serial chip on the Arduino board. The switch
allows two settings which are Micro and USB; in Micro mode, the XBee module
will communicate with the microcontroller and the sent data from the microcon-
troller will be transmitted to the computer through USB as well as being sent

Table 8.1 Comparison
between XBee s2 and s2

Specifications XBee
s1

XBee
s2

Indoor range (m) 30 40

Outdoor range (m) 100 120

Frequency band (GHz) 2.4 2.4

Transmit power (mW) 1 2

Supply voltage (V) 2.8–3.4 2.8–3.6

Data rate (Kbps) (kilo bit per second) 250 250

Transmit current (mA) 45 40

Receive current (mA) 50 40

Receiver sensitivity (dbm) −92 −96

XBee socket Serial select switch

SD card 
socket

Fig. 8.5 XBee module and the wireless shield for Arduino (https://www.sparkfun.com; https://
www.arduino.cc)
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wirelessly by the wireless module, but the microcontroller will not be pro-
grammable via USB in this mode. In USB mode, the microcontroller on the board is
bypassed and the module can communicate directly with the computer, and helps in
utilizing the Arduino’s USB-to-Serial connection to configure the XBee modules.

8.4.4 Antenna Type

XBee modules must have an antenna to send and receive signals, of which there are
four different types offered on XBee s2, namely whip, chip, U.FL, and RPSMA, as
illustrated Fig. 8.6 (Faludi 2011). The wire (or whip) and chip antennas come
pre-connected to the XBee modules, while the U.FL and RPSMA are derivatives of
the connector types, offering chip with connectors on the board. The wire antenna is
a single piece of wire that protrudes from the XBee and provides an omnidirectional
radiation, which implies the maximum transmission distance in all directions is the
same if the antenna is oriented in upright direction perpendicular on the module.

The chip antenna is a flat ceramic chip that is mounted on the XBee. The form of
signal radiation by this antenna is heart-shaped or cardioid, which means that the
signal will be attenuated in many directions. However, because the chip antenna is
nearly flush, that makes it a suitable choice for any sensor that needs to be located in
a small space. It is also robust compared to the whip antenna which is subjected to
mechanical stress.

In some application the XBee module needs to be fitted inside a metal box; in
which case a U.FL antenna has to be used. This type of antennas has a very small

Fig. 8.6 Types of antenna
(Faludi 2011)
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connector on the module and to achieve the physical connection to the external
antenna an adapter cable is used. The advantage of this option is the XBee module
can be enclosed in a casing and the antenna mounted on the outside of the case.
Similarly, the RPSMA connector is a different type of socket from the U.FL con-
nector. It is bigger and mounted directly to the XBee without a connecting cable.
These last two options are more expensive.

Generally, an external antenna allows better signal transmission and reception,
and a larger range. The indoor range of the selected XBee module is only 40 m and
sometimes noise in the medium distort the signals and shortening the range.
Therefore, it was decided to utilize an external antenna type RPSMA on the
coordinator module (Base station), and either chip or whip or RPSMA antenna on
the sensor node, depending on the transmission range tests which will be performed
later in this chapter.

8.4.5 Power Source Selection

Rechargeable batteries are commonly employed as a power source for the wireless
sensor nodes. Several characteristics should be considered when choosing a battery
for a wireless sensor node. The most important of these attributes are energy
density, charge/discharge cycle, size, self-discharge rate and cost. There is no any
battery technology that meets all these criteria, so a compromise must be made.
Each battery type has its advantages and disadvantages with a wireless sensor node.
The most common rechargeable batteries types are: lead acid, nickel-cadmium
(Ni-Cd), nickel-metal hydride (Ni-Mh), lithium-ion (Li-Ion), and lithium-ion
polymer (Li-Po). The comparison of the different types of batteries can be seen in
Table 8.2 (Buchmann 2003).

Lithium-based batteries are technically more advanced, most widely used and
fastest growing energy sources. Comparing to the other three battery types, Li-Ion
and Li-Po have higher specific energy densities and offer a lower self-discharge rate
than both Ni-Cd and Ni-Mh, with only lead acid having a lower rate. Lithium-Po
batteries are similar to Lithium-Ion however with a different type of electrolyte
used, and furthermore offer the advantage of being very thin and light weight, thus
allowing them to be easily included in sensor nodes while occupying very little
space. In this regard, a Turnigy Li-Po battery (Fig. 8.7) has been chosen as a power

Table 8.2 Comparison among rechargeable batteries

Specifications Lead
acid

Nickel-cadmium Nickel-metal
hydride

Lithium-ion Lithium-ion
polymer

Energy density
(Wh/kg)

30–50 45–80 60–120 110–160 100–130

Charge/discharge
cycle

200–300 1500 300–500 500–1000 300–500

Self-discharge/month 5 % 20 % 30 % 10 % *10 %
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source for the wireless node. The battery has an energy capacity at
7.4 V/1000 mAh (1 h continuously working at 7.4 V with 1 A discharge current)
with weight 62 g and size 74 × 35 × 13 mm, which can fit easily in the node
enclosure as shown later.

8.5 Design of the Base Station Node

The base station architecture is the same as of the wireless sensor node with some
differentiation in the selected components, configurations and the tasks entrusted to
it, and it includes the network coordinator connected to the central processing unit
which in turn is interfaced to a PC. This unit is responsible for implementing the
second stage of the condition monitoring algorithm. The received signals from the
sensing units will be analysed in this station using the DWT based on the selected
wavelet family (db2) and decomposition levels. Then, the features are extracted and
utilized as input vector to the designed ANN, which responsible for robot health
diagnosis depending on feature classification. The result of analysis will be trans-
mitted to the PC to report the robot’s health situation to the operator. However,
wavelet transform and neural network are computationally demanding algorithms
and require a processor with quite advanced processing characteristics. Therefore, it
was decided to apply theses computational processes on a digital signal processor
(DSP), as it has features designed to support high-performance, repetitive, and
numerically intensive tasks. The radio transceiver and its antenna type have been
previously discussed.

Fig. 8.7 Lithium-ion polymer (Li-Po) battery
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8.5.1 Digital Signal Processor (DSP) Selection

A DSP is a microprocessor characterized by high computational power, specifically
designed and optimized to efficiently handle a variety of complex mathematical
operations such as digital signal processing tasks (Dargie and Poellabauer 2010).
Selecting a suitable digital signal processor (DSP) is an important issue in real-time
signal processing, as a processor may be well suitable to some applications, but it is an
inappropriate choice for others. The main aspects of selecting a DSP are as follows:
arithmetic format, memory size, speed, data bus as well as the support for peripherals,
such as ADC, depending on the requirements of the case study (Emilio 2015).

In terms of arithmetic format, DSPs are divided into two categories, fixed point
and floating point, which refer to the format used to store and manipulate numbers
within the devices. The numbers in the fixed point DSPs are represented as positive
or negative integers in a fixed range; and they are generally cheaper, faster, con-
sume less power, but produce higher quantization error or noise (Kehtarnavaz 2008;
Emilio 2015). This noise reduces the signal to noise ratio of the system, as it will be
added to the signal. Additionally, with fixed point DSPs the signal has to be scaled
to avoid the overflow problem, which is a case where the result of an arithmetic
operation exceeds the capacity of the register used to hold that result (Kuo et al.
2006), and therefore extra code has to be written. In contrast, floating point DSPs
have the capability to represent the numbers by the combination of a mantissa (or a
fractional part) and an exponent part; thus are easier to program, have a higher
dynamic range, a shorter development cycle, and a better precision. Because
floating point DSPs have high dynamic range for numeric calculation the overflow
problem does not need to be considered, but, on the other hand, they are more
expensive and consume higher power than fixed-point ones (Smith 1999).

The RISC architecture is adapted in most DSPs and they can execute multiple
instructions in parallel, resulting in fast operations. On- and off-chip (external)
memory sizes are considered another key factor when evaluating a DSP processor.
However, most DSPs provide several kilobytes of fast on-chip SRAM, which allows
the core processor fast access without wait states. The on-chip storage capacity is not
always sufficient to hold the program’s code and data; in such a case, an external
memory interface can be used to connect the DSP to an external memory.

A key measure of the appropriateness of the DSP is its execution speed and data
width. The most common way to evaluate the DSP speed is to measure the required
amount of time to execute the fastest instruction on the processor. Therefore,
floating point devices can be specified by MFLOPS (millions of floating point
operations per second), and MIPS (millions of instructions per second) to specify
fixed point devices (Kuo et al. 2006). The size of data bus has a significant effect on
the chip size, the pin numbers required for the packages and the size of external
memory device that can be connected to the DSP. A DSP with larger data word size
is the best choice for the application that needs more precision. Most floating point
DSPs use 32-bits/word data bus, while in fixed-point DSP 16 bits/word data size is
the most common.
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Depending on the above specifications, the search task is concentrated on the
large semiconductor companies such as Texas Instruments, Analog devices. Many
different types of chips and evaluation boards can be found listed on these com-
panies’ webpages. However, it is time consuming looking through every chip’s data
sheet; fortunately, the companies have grouped their products by different appli-
cation fields, such as imaging, video, and industrial. In the industrial field, which is
related to this research, the semiconductor companies have delivered some appli-
cation notes for signal processing, where some microprocessors are recommended.
As a first step in the selection procedure, all the suitable microprocessors in the list
are checked to establish if there is a corresponding evaluation board, because of the
limited time available. Eight evaluation boards are nominated, and listed in
Table 8.3. The power consumption and physical size of the DSPs are not consid-
ered here, since the base station will be interfaced to the PC. Also, in this work an
ADC is not required on the base station, as it will receive the signals directly from
the sensor node via the wireless link; however the resolution and number of
channels of the ADC are included in the table for comparison purposes and for the
benefit of other researchers.

Table 8.3 provides a succinct summary of the key details of the investigated
boards. If the price criterion is used, the second (STM32F103RB) or third
(TMS320F28335) options in the table would be selected. However, the issue with
the second (and first) one is fixed-point DSP, while TMS320F28335 is mainly
designed for control application. The last option in the table is the fastest and more
powerful one, but in contrast is the most expensive. Therefore, TMS320C6713
Development Starter Kit (DSK), which has been in production for approximately
ten years but is still available and useful (Wright et al. 2013), was selected for its
very good specifications and rich set of peripherals (as discussed in the following
subsection). It is very prevalent in laboratories and extensive information and
support are available from other users on the Internet, helping in speeding of the
development process. For brevity, this board will be referred as C6713 DSK or just
DSK throughout the thesis where is needed.

8.5.2 TMS320C6713 DSK

The C6713 DSK, which is manufactured by Spectrum Digital for Texas
Instruments (Wright et al. 2013), is a powerful, relatively cost-effective develop-
ment board with the necessary hardware and software for real-time applications.
The DSK board, with an approximate size of 127 × 203 mm is shown in Fig. 8.8.
It is provided with a 225 MHz (4.4 ns cycle time) TMS320C6713 floating point
DSP chip based on the VLIW (very long instruction word) architecture, which is
very well suited for numerically intensive and multifunction applications as it uses
multiple functional units to execute multiple parallel instructions (Kehtarnavaz
2008). The DSP chip is capable of delivering up to 1800 million instructions per
second (MIPS) and 1350 million floating-point operations per second (MFLOPS).
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The C6713 DSK includes 16 MB of synchronous dynamic random access
memory (SDRAM) and 256 KB of flash memory. It also has interfaces to analogue
audio signals through an on-board AIC23 codec and four 3.5 mm audio, but will
not be used in this project. The board also incorporated a 32-bit external memory
interface (EMIF), on which external memories and other devices can be connected,
and a 16-bit host port interface (HPI) through which a host processor can directly

Table 8.3 Investigated DSP boards

DSP evaluation
board

CPU type CPU
speed

ADC
No. of channels
Max. resolution
Max. sampling freq.

Memory
capacity

Price

Explorer 16 Starter
Kit
Microchip

16-bit
Fixed-point

40 MHz 32 channels
configurable as 10-bit,
1.1 MSPS
or
12bit, 0.5 MSPS

256 KB
Flash
30 KB
SRAM

$130

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_
PAGE&nodeId=1406&dDocName=en024858

STM32F103RB
Development
Board
STMicroelectronics

32-bit
Fixed-point

72 MHz 16 Channels
12-bit
1 MSPS

32–
128 KB
Flash
6–20 KB
SRAM

$70

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1031/
LN1565/PF164487

TMS320F28335
Experimenter Kit
Texas Instruments

32-bit
Floating-point

150 MHz 16 Channels
12-bit
12.5 MSPS

256 KB
Flash
34 KB
SARAM

$99

http://www.ti.com/tool/tmdsdock28335

TMS320C6713
Development Kit
Texas Instruments

32-bit
Floating-point

255 MHz TLV320AIC23
Audio codec

256 KB
Flash
16 MB
SDRAM

$395

http://www.ti.com/tool/tmdsdsk6713

56F8037EVM
Freescale

16-bit
Fixed-point

32 MHz 16 Channels
12-bit
2.67 MSPS

64 KB
Flash
4 KB
RAM

$199

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?
code=MC56F8037EVM&fsrch=1

Zoom™
OMAP-L138
eXperimenter Kit

32-bit
Fixed-point

375 MHz TLV320AIC3106
Audio codec

8 MB
Flash
128 KB
SDRAM

$495

http://www.logicpd.com/products/system-on-modules/zoom-
omap-l138-experimenter-kit/
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access the DSP memory. There are four LEDs (light-emitting diodes) and DIP (dual
in-line package) switches on the board that can be read from a program and pro-
vides the user with an interactive feedback interface. A complex programmable
logic device (CPLD) is employed to implement logic that ties the board components
together. The CPLD has a register based user interface that lets the user configure
the board by reading and writing to its registers.

The C6713 DSK processor contains an enhanced direct memory access (EDMA)
controller, which is a highly efficient data transfer engine that serves the purpose of
releasing the DSP from data transfer between the DSP and its external peripherals or
between the on-chip peripherals and the memory. The C6713 DSK has two 32-bit
timers that can serve a variety of purposes, such as timing and counting events,
generating pulses, interrupting the CPU and sending synchronization events to the
EDMA controller. A joint test action group (JTAG) emulator that can directly access
the register and memory state of the DSP chip through a standardised JTAG interface
port is included on the C6713 DSK, allowing on-board programming and debugging.

8.5.3 Daughter Card Interface

The three expansion connectors, peripherals, memory, and HPI, can be used for
integrating plug-in daughter cards with the DSK. The daughter cards can obtain

Fig. 8.8 Texas instrument C6713 DSK (http://www.dsprelated.com)
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power directly from the DSK, as each connector includes multiple ground, +5, and
+3.3 V power signals. The peripheral expansion connector additionally provides
both +12 and −12 V to the daughter cards. To expand the capability of the
C6713 DSK to achieve the suitability for this project, the DSK_COMM4 daughter
card (Fig. 8.9) was used. The DSK_COMM4 is a multichannel communication
daughter card designed to operate with some of the Texas Instruments DSKs from
C6x family, such as C6713 DSK. The basic configuration of this card from the
vendor includes a USB interface capability of up to 1 MB/s, two RS-232 UART
channels, eight digital outputs, and eight digital inputs. Also, there are two optional
UART channels on the board can be inhabited with either RS-232 or RS-422 or
XBee radio transceivers.

Two of the DSK peripheral connectors (external memory interface and external
peripheral interface) must be utilized for a memory mapped integration of the
DSK_COMM4 board to the C6713 DSK platform. Moreover, the daughter card
itself can come with pass-through connectors, if requested, to allow stacking of
other daughter cards if needed. One XBee module (the coordinator) is installed on
this card and only one digital input channel is needed, to receive the triggering
signal from the robot controller by which the DSP is triggered to start processing
the received data. This card is delivered with XBee s1 wireless module soldered on
it and as discussed earlier the XBee s2 is going to be used in this project, therefore,
a minor modification was achieved on the card by de-soldering the on-board
wireless module and putting a socket that allows installing and de-installing the
XBee s2 module without soldering/de-soldering.

Fig. 8.9 DSK_COMM4 communication daughter card (http://www.educationaldsp.com/
stockproduct_dsk_comm4.htm)
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8.6 XBee Modules Configuration

In order to allow the transceiver modules on the sensor node and base station to talk
to each other, they have to be correctly configured individually, by utilizing specific
software, before using them in a network. The configuration includes various
aspects such as classification of the node (coordinator, router or end device), net-
work ID, destination address and so on. X-CTU (XBee configuration and testing
utility) is windows-based application software developed by Digi and represents the
official configuration software for XBee modules (Faludi 2011). Many versions of
firmware can be selected and written into a ZigBee module via RS232 or USB port,
depending on the used interface board. Figure 8.10 shows the layout of X-CTU
software and its four main tabs.

The PC settings tab is used to find the port through which the XBee module has
been connected and also to help the user to select the XBee module for configu-
ration from a range of plugged in devices. The range test tab is utilized to perform a
wireless communication coverage range test, as will be explained later in this
chapter. Terminal tab is used to open the X-CTU terminal window, which can be
used to read the data being received by the connected module. The modem con-
figuration tab allows changing the firmware version, writing the firmware setting to

Fig. 8.10 Layout of the
X-CTU configuration
software
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the module, as well as setting the module as a coordinator, router or an end device
by using its three sub-tabs drop-down menus named modem XBee and function set,
respectively, as illustrated in Fig. 8.12. The Firmware is instructions programmed
in the module’s memory which controls the device and provides several instructions
on how the devices can communicate with other hardware.

However, to configure the XBee modules using this software, it is necessary to
interface the XBee to the computer. For this purpose, the XBIB-U-DEV develop-
ment kit (Fig. 8.11) from Digi International was employed, and will be utilized later
for the coverage range test. The configuration progress includes two stages, coor-
dinator configuration and end device configuration. In practise, when these modules
are configured, the coordinator automatically scans to select a communication
channel and it always listening to the end device and receive the incoming data
which it sends to the DSP board for processing.

The firmware type XB24-B, which supports the full functionality of ZigBee
protocol, is selected from modem sub-tab in the modem configuration tab for both
coordinator and end device, and the latest version of this firmware is required to be
downloaded on the modules. The firmware supports coordinator, router and end
device configurations. The configured parameters are listed in Table 8.4 and the
screenshots showing the configuration of both modules are as shown in Fig. 8.12.
The function set sub-tab was used to configure the functions that the XBee modules
provide, which are as a coordinator and an end device. However, all used XBee
modules (here just two) must have the same personal area network (PAN) ID and
baud rate e.g. 1234 and 19,200. The destination address high (DH) and low
(DL) for the coordinator should be the same as the serial high (SH) and serial low

RSSI indicator

Loopback 
jumper

Send and receive 
LED indicators

DC barrel plug: 6-20V

Fig. 8.11 XBIB-U-DEV adapter for XBee configuration
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(SL) of the end device and vice versa, and which can be found written on the back
side of the XBee modules. The node identifier is a user configurable text name that
can be set to easily identify a module. Accordingly, by clicking the write button in
the modem configuration tab, these settings will be downloaded on the connected
module.

Table 8.4 The configured parameters in the XBee modules

Parameters to be
configured

Setting

Coordinator End device

Firmware ZNET 2.5
COORDINATOR AT

ZNET 2.5 ROUTER/END
DEVICE AT

Firmware version 1047 1220

PAN ID 1234 1234

Destination address high
(DH)

13A200 13A200

Destination address low
(DL)

409C8E69 40AC1682

Node identifier Coordinator End device

Baud rate 19,200 19,200

Other parameters Default Default

(a) Coordinator configuration                           (b) End device configuration

Fig. 8.12 XBee modules configuration using X-CTU
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8.7 Coverage Range Test

The purpose of this test is to study the effects of antenna type and XBee transmit
power on the actual coverage range and communication quality between the base
station and the sensor node under real working conditions. The optimum config-
uration parameters will be the outcome of this study, and the received signal
strength indicator (RSSI), which is defined as the signal strength level of a wireless
device measured in (dBm) of the last received packet (Dargie and Poellabauer
2010), is used. A loop-back test using X-CTU software is performed to investigate
the relationship between RSSI and the distance for a point-to-point communication
when different configurations are introduced. Figure 8.13 shows the screenshots of
range test in X-CTU, it provides the RSSI indication bar in dBm where −40 dBm
represents the strongest signal received by the module and −104 dBm is the
weakest. The range test procedure was carried out as follows.

The coordinator module is connected to PC and sends a packet of data to a
remote module. Each of the coordinator and remote module are installed on a
XBIB-U-DEV kit, as it has a feature to perform a loop-back test as shown
beforehand in Fig. 8.11. The remote module will send the received packet directly
back to the coordinator module and the X-CTU estimates the value of the RSSI
based on the last received packet by the coordinator module, and shows it in dBm
(Piyare and Lee 2013). “Packet delay”, “Data packets number” and “Data received

Receive tab

Transmit tab 

The 
transmitted 

data

Received signal 
strength indicator

Data packet size

Number of data 
packets

Fig. 8.13 Range test screenshot
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timeout” are parameters by which a wide range of scenarios can be simulated, and
also, the data size that is needed to be sent during the experiments can be controlled
using “Create data” tab.

8.7.1 Test’s Scenarios and Result

Two scenarios were accomplished in this study and in both the base station node is
equipped with RPSMA antenna type, and powered from the PC. The distance
between the two modules starts at 5 m and is then increased in 5 m steps until the
wireless connectivity was lost. Throughout the experiments, a 24 KB data size
(typical size of the measured vibration signals) was created by the X-CTU software
and transmitted by the coordinator to the sensor node 10 times; every time the RSSI
was measured and then the averaged RSSI value computed and used for compar-
ison. All the experiments were carried out in an indoor environment, in the Robotics
Lab in the Stephenson Building at Newcastle University.

The first test was to establish the optimum antenna type for the sensor node. In
this test, chip, wire and RPSMA antenna types were equipped with the sensor node
alternately and each time the RSSI is measured at different distances. However,
there are five power levels at which the XBee module transmits the information, and
they correspond to −8 (the lowest), −4, −2, 0 and 2 dBm (the highest) respectively.
The power level can be set through the configuration modem tab of the X-CTU, and
the nodes can be configured to communicate at different baud rates ranging from the
lowest 1200 bps (bit per second) to the highest 230,400 bps. In this scenario the
modules were set to communicate at 19,200 bps baud rate, since experimentally it
was established that it is the highest one that can be used with the specified data size
without loss of information, and the highest power level, in order to investigate the
effect of just the antenna type.

Three categories of antennas were investigated, chip, wire and RSPM, as the
U.FL is very similar to RPSMA. The results are presented in Fig. 8.14, and it can
be observed that the measured RSSI values decreased as the distance is increased,
due to the depletion of the wave energy as it propagates longer. The fluctuations in
the RSSI values can be correlated with the presence of reflection and multipath
phenomena because of the walls and interference from Wi-Fi routers located in the
building (Piyare and Lee 2013). Before conducting this test it was expected that the
RSSI of the chip and wire antennas would be lower than that of RPSMA antenna, as
can clearly be seen in Fig. 8.14. In the case of wire or chip antenna (when the RSSI
is low) the full number of data packet were not received back by the coordinator;
this is illustrated in Fig. 8.14, where just 7 packets were captured (indicated by
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good in the figure) and 3 lost (indicated by bad) for the wire antenna. Based on
these results, the RPSMA antenna will be used, since it records the highest RSSI
particularly at longer distances.

Next, after establishing the optimum antenna, the second scenario was per-
formed to investigate the effect of the power transmitting levels. There are many
parameters that affect the power consumed by the XBee modules. Operation modes,
such as transmitting and receiving, draw different amount of currents, and therefore
their power consumption is different. Furthermore, as mentioned earlier, the mod-
ules can work at different transmitting power levels and by increasing the power
level the consumed current will increase. There is no problem with power con-
sumption in the base station node as it will be powered from the main power supply
plug in the practical conditions, but the consumed power in sensor node needs to be
optimised. The point now is to carry out a test to measure the RSSI considering the
effect of transmit power levels with existing RPSMA antenna and at the same baud
rate as previously.

The findings of this test are illustrated in Fig. 8.15; it is apparent that increasing
the transmitting power has improved the transmit performance, but that will
increase the power consumption level. Fortunately, it was indicated that all trans-
mitted packets of data were received back by the coordinator when the sensor node
transmit power was in the medium level; and consequently the device was set to
send the data at this power level. As stated in the XBee s2 datasheet and shown
previously in Table 8.1 that the indoor range is approximately 40 m, which was
found to be the case according to the results obtained from both experiments. The
transmitted data packets were fully received up to 40 m with RSPMA antenna and
medium power level, whereas the RSSI and data packets drop significantly when
the distance is increased beyond this limit.
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Fig. 8.14 Measured RSSI values versus distance with different antenna types
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8.8 Final System Hardware

To protect the wireless node and base station from dust and other contaminants,
enclosures have to be used. Available enclosures for the Arduino DUE and
C6713 DSK, are designed to enclose just the boards (with the daughter card in the
case of the DSK) without the other connected peripherals such as the sensors,
triggering circuit, battery, XBee shield and the antennas; thus, it was necessary to
look for alternatives.

Metal or plastic boxes are commonly used for creating custom-built enclosures
for embedded equipment. For this purpose, a 179 × 86 × 51 mm plastic box, for
the wireless node, and a 250 × 250 × 100 mm aluminium box, for the base station,
were purchased and modified. Bolts were used to fix the Arduino microcontroller
and the C6713 DSK to the base of their boxes. Small rectangle and circular cuts
were made on the base and right side of the sensor node box, to allow attaching the
sensors adapter to the robot using super glue, and the antenna, via the wireless
shield, and power supply port, from the battery, to the microcontroller, as shown in
Fig. 8.16. A double sided adhesive tape at the bottom of the battery was utilized to
affix it on the box.

The base station should be located next to a host PC, for reporting the analysis
results and also to permit control of the entire monitoring system through the user
interface. Therefore, holes were machined into the base station box walls for the
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Fig. 8.15 Measured RSSI values versus distance at different transmit power levels
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USB, RS232 and power ports as well as for the antenna and the wire that trans-
mitting the signal from the robot controller to the Schmitt trigger circuit (Fig. 8.17).
The sensor node was attached to the robot using two cable ties; this along with the
final embedded system layout is depicted in Fig. 8.18.

Li-Po battery

Accelerometers 

Arduino board 
with XBee shield

Fig. 8.16 Wireless sensor node hardware

Schmitt trigger circuit 

Power jack, 

USB and 

RS232 ports 

Signal from 

the robot 

controller 

C6713 DSK with 

DSK_COMM4 

daughter card 

Fig. 8.17 Base station hardware
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8.9 Summary

This chapter has detailed the design approach and hardware selection requirements
based on the proposed condition monitoring algorithm. The Arduino DUE was
selected as being appropriate as a core of the wireless sensor unit. The wireless
capability was put on the DUE board using Arduino wireless shield. A Texas
Instrument C6713 DSK board, which is based on a floating point digital signal
processor chip, was chosen as the base station of the wireless network, because of
its advantageous processing features. To enable the wireless communication on the
base station a daughter card, entitled DSK_COMM4 has been utilized.

A comparison between the existing wireless technologies like Wi-Fi, Bluetooth
and ZigBee was presented and it was established that the ZigBee wireless trans-
mission consumes less power and is very reliable when it operates within the rec-
ommended range. The XBee wireless module, which is based on ZigBee protocol,
was employed to establish the communication between the sensor node and the base
station. Configuration of the XBee transceivers for both sensor node and base station
was crucial in the implementation of wireless networks. The configuration method of
the XBee transceivers in addition to several experiments to test the transmission
range and to select the optimum antenna type and transmitting power on the sensor
node were carried out. Enclosures for the sensor node and base station hardware
were developed relying on commercially available boxes, and then the final system
installation illustrated. In the next chapter, development of the embedded software,
description of the system operation and the implementation result will be discussed.

(a) Embedded system installation                                   (b)  Embedded system layout 

Base station

Wireless 
node

Fig. 8.18 Designed embedded system installation and layout
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Chapter 9
Embedded Software Design, System
Testing and Validation

Abstract In general, the embedded system design is broken down into two main
parts, hardware and software. In Chap. 8 the selection of the required components
for developing the wireless embedded system has been discussed, this chapter
describes the programming of the proposed robot condition monitoring algorithm
on the developed hardware. The software tools used to build the embedded system
code are first discussed, and the flow chart of the developed code for implementing
the proposed robot condition monitoring algorithm described; the main steps of this
code are also explained. To validate the embedded system functionalities in signal
capturing, analysis, fault detection and diagnosis the system were tested and the
results presented.

9.1 Wireless Node Software Development Tool

Arduino microcontrollers are programmed using an open source Arduino pro-
gramming language, which is based on C/C++ and contains a specific set of
structures created to teach core programming and computing concepts through
electronics to nonprogrammers (Faludi 2011). An integrated development envi-
ronment (IDE) makes it possible to write code for the boards which can be
downloaded directly from the Arduino website. The Arduino IDE is split into three
major parts (as shown in Fig. 9.1): a toolbar across the top of the window contains
seven buttons that control the program behaviour; the white area in the centre is
where the code can be entered and modified; the black section (text console) in the
bottom of the window is where the code status messages and used memory appear,
which helps in code debugging (Fig. 9.2).

The code is commonly known as a sketch in the Arduino programming com-
munity, and includes two blocks: setup and loop. The setup block runs only once
each time the Arduino is started or restarted, and allows configuration of Arduino
parameters such as pin modes, communication setup, etc. The core of most Arduino
programs is the loop function; it runs continuously as long as the Arduino board is
powered. The development environment also includes a serial monitor to monitor
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the serial communication of the board when a program is run, making testing of the
program easier, and there is no need to use the wireless communication each time
the code is tested. However, to create a simple program that would run on an
Arduino board implies writing and saving a sketch within the IDE. The written
sketch is then converted to C and compiled to produce a binary code which the
microcontroller on the Arduino board will be able to execute. The binary code is
uploaded to the Arduino board via a USB connection.

9.2 Base Station Software Development Tools

A set of code development tools are accompanied with the C6713 DSK for
application development, including Code Composer Studio (CCS or CCStudio)
integrated development environment (IDE), a highly optimising C compiler and the
DSP/BIOS kernel (Kehtarnavaz 2008). CCS is an IDE package made by Texas

Code area 

Serial monitor

Text console

IDE toolbar 

Fig. 9.1 Arduino IDE

Fig. 9.2 A screenshot from the serial communication software
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Instruments (TI) for developing embedded applications on their processor families
such as TMS320C6x. It has a user friendly graphical environment for building and
debugging C and assembly codes on a variety of TI processors. A number of
debugging features are available in CCS IDE, including setting break and probe
points to stream data to and from the target DSP, watching variables using watch
window tool, viewing memory and registers, and graphing capabilities.

In traditional code debugging processes, the target processor is normally stopped
and a snapshot of the processor state is examined. This is, however, not an efficient
method to test for real-time glitches. The CCS complements the traditional techniques
using the so-called DSP/BIOS feature, which provides mechanisms to analyse an
application program as it is running on the target DSPwithout stopping the processor.
The TMS320C6x DSP family has also a feature of real-time communication with the
host PC; this can be performed using real-time data exchange (RTDX). The RTDX
property allows users to transfer the data from PC down to a DSK board and vice
versa, as well as data analysis in real time again without stopping the program
execution on the target. This data exchange occurs via the universal serial bus
(USB) port emulating the joint test action group (JTAG) connection.

TI provides several optimized software libraries to implement algorithms on the
C6713 DSPs. The chip support library (CSL) has been used in this project, which
can be configured within the DSP/BIOS configuration tool. This library provides a
set of C-language interface functions that simplify the configuration and initializa-
tion of on-chip peripherals such as the EMIF, DMA, serial ports and timers, which
reduces time-consuming manual configurations. This also helps in configuring the
DSP peripherals for the daughter card interface. A free version of the CCS is
available, but it is code-size limited. Fortunately, the DSK comes with CCS version
3.1 accompanied with a free license. In the CCS, code is written in C language (with
extension.c) which is compiled by the C compiler to produce an assembly source file
(with extension.asm) (Kehtarnavaz 2008). The assembler is utilized to convert an
assembly file into a machine language object file (with extension.obj). The linker
combines object files and object libraries as input to produce an executable file (with
extension.out), which can then be uploaded on the DSP board.

9.3 Designed Embedded Software

The embedded system code is divided to work on the base station and wireless node.
The code on the wireless node (written using Arduino programming language) is
responsible for conducting the first stage of condition monitoring (fault detection),
while the base station code was written using CCS environment and responsible for
fault diagnosis stage. The flowcharts of these two codes are shown in Figs. 9.3, 9.4
and 9.5, respectively. Both codes start by initialization and setting up the needed
hardware, such as input/output pins, timers and other communication peripherals. In
addition to the fault diagnosis stage implementation, the base station is also in charge
of controlling the whole embedded system. However, in each of the sensor node and
base station codes there is a main programme and a sub-programme (subroutine),
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which is normally outside the flow of the main programme with extra functionality
and called by the main program to achieve a specific task. When the embedded
system runs, the main programs in both nodes will enter an infinite loop waiting for
an interrupt or required parameters to be provided in order to execute their sub-
routines. When the subroutines finish executing, they return the result back to the
main programme, which then carry out the rest of the queued tasks.

In the base station main programme (Fig. 9.3) two parameters are needed to be set
before it starts executing. These are operation mode and awake node; the operation
mode is holding which stage of the CM the embedded system will implement first,
and helps in changing to fault diagnosis stage once a fault is detected. If the operation
mode is set equal to 1, the embedded system will implement the fault detection stage,
otherwise, 2 the fault diagnosis stage is performed. It can be set via the user interface,
where the base station is communicating with the host computer via the serial
channel B on the DSP board, using the letter F for first stage and S for second stage.
The awake node variable is used to put the wireless node in an idle mode to wake it
up when required, which helps in reducing the power consumption in the sensor
node. This variable can be set manually or automatically, based on specific time
period, from the user interface. In the default condition the sensor node is awake,
however, if it receives the character D (for Disable) from the base station, the sensor
node will idle; it can be enable again if character E (for Enable) is received.

When the system is initialised the wireless node sends amessage to the base station
telling it that it is awake and waiting to receive the desired sampling frequency (FS)
for the first stage signal capture, as shown in Fig. 9.5 which presents the flowchart of
the sensor node programme. This stage is configurable to accommodate different
robot tasks not just the pick and place task (described in Chap. 6). Figure 9.2 is a
screenshot from the ‘hyper terminal’ used to communicate with the base station for
presenting the analysis data from the embedded system. It was essential to setup the
ADC to allow the sampling rate to be easily changed, using the on-chip Timer 3
module. Timers are one of the most important peripherals on embedded processors,
e.g. as a counter that is incremented or decremented at the fixed time intervals.

On the base station side, for the first stage of operation the user must enter the
sampling frequency to the wireless node. The second stage fault diagnosis is per-
formed at a fixed speed for the joint therefore the sampling frequency is pre-set. If the
embedded system is put in the first mode, the received trigger signal from the robot is
translated to the ASCII character A and to B if the second mode is selected; these are
then transferred to the sensor node. In the first mode the sensor node executes the
first stage of the monitoring system, so the signals from the three axis accelerometers
(X, Y and Z) will be captured by calling the subroutine code in the sensor node
programme, as shown in Fig. 9.5. The captured signals are saved in three buffers (1,
2 and 3 respectively). In the main programme of the sensor node (Fig. 9.5) the STD
value for each signal and the resultant STD value are computed; the latter is then
pipelined into a vector array of 10 elements size. When the array is full, the control
chart algorithm is implemented, and after a successive number of counts if they are
(collectively) normally distributed within the control limits the robot is considered
healthy; otherwise, there is an indication of a fault. The analysis result is then sent to
the base station. If the sensor node indicates development of a fault in the robot, the
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Fig. 9.3 Flow diagram of the main programme running on the base station
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base station transmits a signal to the robot controller to terminate task execution (see
Fig. 9.4). This is achieved via the VAL code for the pick and place task, described in
Chap. 6, using a subroutine named check (Appendix C.1) responsible for checking if
the first line input on the input/output module is high or low (1 or 0). When the input
signal is high, the programme will stop the robot and send a message to inform the
operator that a fault has been detected.

Reception of the letter B on the sensor node indicates that the second stage has
begun executing. At this level the sensor node will also capture the three
accelerometer signals, but does not process them, instead forwards them to the base
station, on which an interrupt service routine (see flowchart in Fig. 9.4) will be
called. When the system is switched from the fault detection to diagnosis mode the
sensor node sends a ‘clear’ command before transmitting the sample buffers, to
inform the subroutine to delete any remaining samples if the fault detection cycle is
incomplete, to prevent misdiagnosis of a fault. After receiving the requisite number
of accelerometers samples, the wavelet transform is implemented, features are
extracted and then passed to the neural network for classification; and the result sent
to the host computer for visualization.

The base station programme is significantly more computationally intensive than
the sensor node programme, since the DWT and ANN are algorithms processed,
requiring a great amount of data, that has raised dynamic memory issues with the
DSP board, due to the significant memory size required to store the DWT filter
coefficients and the weights and biases of the designed ANN. To solve this issue, it
was necessary to change several memory parameters using DSP/BIOS configuration
tools. As a result, in the memory section manager (MEM), the IRAMwas changed to
SDRAM, which allows the use of additional memory to deal with large DWT
decomposition levels and appropriate ANN architecture for accurate fault diagnosis.

9.4 Overview of the Developed Base Station Code

The integration and management of files for generating and running an executable
file in the CCS code development process begins with the creation of what is called
a ‘project’, which involves multiple source files, libraries, memory maps, and
special command files. However, before executing any code on the base station, the
C6713 DSK has to be initialized. The version of CCS supplied with the
C6713 DSK has been configured to automatically load the general extension lan-
guage (GEL) file ‘DSK6713.gel’, which defines the memory map, sets some
CPLD (complex programmable logic device) registers to configure components on
the DSK board, and initializes the EMIF (external memory interface) for the
memory on the board, while the developed program do the remaining initialization.
Different header files, such as the chip support library (CSL) which contains C
functions and macros for configuring and interfacing with all the C6713 on-chip
peripherals and CPU interrupt controller and the DSK_COMM4 file that can be
used to configure the interface of the DSK_COMM4 daughter card to the DSK
board, are added to the project, at the beginning, using the ‘#include’ directive,
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which is normally utilized to insert the contents of another file into the developed
project. Also, to keep the prepared code as small as possible and easy to follow, two
functions named DWT.c and ANN.c were developed as separate files and included
into the main code by setting the search path, as shown.

In the main code, a function was developed to send a character via the RS232 to
the user interface, which uses the second UART channel on the C6713 DSK. It takes
a single ASCII character as an input and writes it to the UART output register; the
UART then starts transmitting this character. For correct transmission without losing
information a Wait()function is used to insert a small delay after each character.

void sendChar(char x)
{UART_THR2 = x; Wait () ;}

A similar function called void sendCharXBEE(char x) was employed to
send a character via the XBee to the wireless node, using the third UART channel.
To send string, which is defined as a sequence of characters, through the RS232 or
the wireless module two functions were developed based on sendChar and
sendCharXBEE functions. They loop through an array of characters (i.e. a string),
sending one character at a time until they hit the “null terminator” (‘\0’), which is a
special character that marks the end of a string where the null terminator itself is not
sent, as shown below.

void sendString(char *x)
{int i = 0; while (x[i] ! = ‘\0’) sendChar(x[i ++]);}

Another two functions were developed to process the received information
through the RS232 and XBee module. The first one is used for switching between
the stages of the CM algorithm (fault detection or diagnosis) via the user interface
whereas the second is employed to process the received data from the wireless
node. After initialization and selection the required stage, the code execution waits
within an infinite while loop until an interrupt occurs. The C6713 DSK has twelve
interrupts (INT4–INT15), with INT4 having the highest and INT15 the lowest
priority, and are employed for monitoring the occurrence of different events. INT4
was used for monitoring the trigger signal from the robot controller. The base
station listens to the wireless node, after sending the triggering signal, until it
receives the entire three accelerometer data packet and then executes the DWT.c
and ANN.c functions, as follow:

DWT (samples, features);
ANN (features, results);
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where ‘samples’ are the vector array of the received data packet and represents
the input to the DWT function, ‘features’ are the extracted features from the wavelet
analysis and ‘results’ are the output of the ANN. Lastly, the execution returns
from interrupt to the while loop and then waits for the next interrupt to occur.

9.5 Overview of the Developed Sensor Node Code

Most Arduino code is based on using libraries to provide auxiliary functions that
can be utilized in the main sketch. The computational algorithms of the developed
code for the wireless node were written using functions, which allows their
insertion into the main script by just naming the function and referencing the data
used in the calculation. The three accelerometer outputs are connected directly to
Arduino analog inputs A0, A2, and A4 pins, which are declared with their types at
the start of the code as shown in the sample code below. The control chart limits
(upper, lower and centre line) are then declared, along with three buffers of sizes
4096, one for each axis of the accelerometer. The buffers are used to store the
captured data for the fault detection algorithm and are also transmitted to the base
station for the fault diagnosis stage.
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As mentioned earlier the void setup()call only runs one time immediately
the Arduino board is switch on or initialised. The data communication baud-rate
between the Arduino board and the XBee is specified using Serial.begin()
function, and messages are then transmitted to the base station using the Serial.
print()function, which informs the user that the node is awake and the operation
mode (fault detection or diagnosis) needs to be selected. The Arduino reads the
analog voltages from the accelerometers and then digitalizes them using the internal
ADC. The resolution of the ADC in the Arduino DUE comes preconfigured to only
output 10 bit, however, it can be changed to 12 bit using the
analogReadResolution(bits)function.

The changeSamplingFrequency(FREQ1_Hz)is a function that was
developed to change the sampling frequency depending of the selected mode.
A timer interrupt, using the timer 3 module on Arduino DUE, was utilized for
reading the signals from the accelerometers, using the analogRead()function as
shown in the following code.

The void loop()section contains code that runs forever as long as the Arduino
is on. In this section (see below), the control chart algorithm is performed using the
function testResult. The operation mode in the wireless node can be changed
depending on the received character from the base station. If (c == ‘a’), the fault
detection stage (opmode = 1) is selected while the fault diagnosis stage
(opmode = 1) is selected if (c == ‘b’). The function Serial.available
() returns the number of received characters (or bytes) that have been buffered in
the Arduino’s incoming serial port; whenever it is greater than zero, the board will
read the characters. The Serial.read()reads and returns the next character that
is available in the serial port. A function was also developed to compute the
medians of the captured data signals which was then subtracted to null the DC
offset, as discussed in the developed data acquisition system (see Chap. 5). The
function works by taking the samples of each signal, sorting them in ascending
order, returning the central value, and then subtracts it.
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9.6 Embedded System Testing and Result

Prior to deploying the intelligent embedded condition monitoring system software,
the major components were tested and validated, these include the captured
vibration signals and the fault detection implemented on the sensor node, and the
DWT and ANN realized on the base station. The testing was performed by setting
up the system for real-time robot vibration analysis. The established results from the
NI data acquisition system (Chap. 5), which were used for constructing both stages
of the proposed CM system, are re-called here for comparison with their peer results
generated by the embedded system, to establish the accuracy of the prepared C
codes, as discussed in the following subsections.

9.6.1 Wireless Signal Capturing

The NI 6009 DAQ device used for building the preliminary data acquisition and
analysis system has 14-bit resolution; the extracted robot vibration features using
this system were utilized in Chap. 7 for designing the intelligent condition based
monitoring (iCBM) system. Whereas the Arduino DUE board used in the sensor
node has only 12-bit ADC resolution, means that 2-bit less than the used NI DAQ.
Thus, it was important, as the first step of testing the designed embedded system, to
establish if the produced accuracy of the signal capture using the DUE board, with
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respect to NI DAQ, is reasonable. Significant differences between signals are not
preferred, as it could lead to increase rate of false fault detection and diagnosis.

Generally, ADCs transform analogue signal, after sampling at a constant time
interval, produces a discrete signal in both time and amplitude; known as the
quantization process. Conveniently, an n-bit ADC will assign a finite number of
amplitude levels corresponding to discrete values of input signals between the range
of 0 and the full-scale value of the sensor output. Mathematically, if an ADC has a
range of 12-bit resolution, 4096 different values (where 212 = 4096) of the input
voltage can be represented. Thus, a 12-bit ADC with a maximum input range of
3.3 V, which is the case here, the resolution would be (approximately)
3.3/4096 = 0.8 mV. Similarly, for the same voltage range, a 14-bit ADC resolution
is 3.3/214 = 0.2 mV. Concluding that the higher the resolution, the larger the
number of divisions the range is broken into and the smaller the detectable voltage
change, while with low resolution ADC some information will be lost.

The result of the healthy signals comparisons for each of the three axes of
measurements is presented in Fig. 9.6. Signals from both NI DAQ and
Arduino DUE are compared with the robot executing the pick and place task, using
the same sampling frequency (383 Hz). The time-domain signals are associated
with their probability distributions, to find out if the signal distortion, due to the
reduced resolution in Arduino, has skewed the distribution of the signals. It can be

(a) Signals from theNI DAQ (b) Signals from Arduino DUE
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Fig. 9.6 Time-domain signals from the X, Y and Z accelerometers captured using NI 6009 DAQ
and Arduino DUE board

9.6 Embedded System Testing and Result 221



seen that the embedded system signals are identical with NI DAQ signals, and
normally distributed. Also, the lost information from the signals does not affect their
extracted statistical features significantly, as shown in Table 9.1. It can be observed
that the signals from the Arduino are having slightly higher amplitudes, also the
other statistical features, i.e. the standard deviation (STD) and root mean square
(RMS). This could be attributed to attaching the sensor node to the robot structure,
which cannot be avoided, making the system capturing extra vibration from the
robot, while this is not the case when the NI DAQ has been used. Nevertheless, it
was concluded that the signals captured using the Arduino DUE board have very
reasonable accuracy, and thus it is expected that by employing the DUE board the
desired credibility level of the designed robot health monitoring system can be
achieved.

9.6.2 Validation of the Fault Detection Stage Based
on Embedded System

In Chap. 7 the resultant standard deviation control chart was tested offline using
unseen data, here it is tested under real-time conditions, whilst running on the
wireless sensor node. The testing was done when the robot is in the healthy state
and with different backlash levels, while it executes its repetitive task (as described
in Chap. 6). As in the offline test the robot was stopped periodically in order to
introduce different backlash levels. The result of the test is shown in Fig. 9.7. In this
test extra limits are added, these shall be called the upper and lower warning limits
(UWL and LWL) respectively, equal to CL ± 2σ (Montgomery and Runger 2014),
where σ is the standard deviation of the samples used for constructing the control
chart, and can be used to give an early indication about the robot health
deterioration.

Table 9.1 Statistical features extracted from time-domain signals captured using NI 6009 DAQ
and Arduino DUE board

Axis of
measurement

Used ADC STD (g) RMS (g) Maximum (g) Minimum (g)

X NI DAQ 0.62613 0.626 3.18387 −2.50729

Arduino
DUE

0.6636 0.664 3.5530 −2.5378

Y NI DAQ 0.45126 0.448 1.39296 −1.67155

Arduino
DUE

0.50545 0.506 1.63550 −1.91748

Z NI DAQ 0.52054 0.521 1.79090 −2.30827

Arduino
DUE

0.57752 0.578 1.52271 −2.42505
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From the figure it can be seen that the extracted features for the low and
interference backlash cases are outside the control limit; this is a very obvious
indication of a fault in the robot. In the small backlash level it is observed that all
the STD features are inside the warning limits, on the same side below the centre
line. This is also an indication of a fault, based on the fourth rule of the Western
Electric Company rules (Montgomery and Runger 2014), which states that a run of
eight (or more) consecutive points on one side of the centre line (Chap. 7). Samples
of the healthy case are randomly distributed inside the warning limits, indicating a
healthy condition. Occasional some non-consecutive points fall outside the control
limits or one of successive faulty points located within the control limits, these are
marked in black ellipses in the figure and is due to the intrinsic variation within the
calculated features (Montgomery and Runger 2014). In addition to the rule of eight
consecutive points (mentioned above), if there are three or more successive points
exceeding the warning limits or six points in a row steadily increasing or
decreasing, a fault development in the robot is considered. These three rules are
applied in the embedded system for the early robot fault detection.

To simulate faults similar to the natural fault development standard, by which a
machine deteriorates gradually from its healthy condition, it would have been better
if the backlash fault could be developed progressively while the robot is executing
the pick and place task, which currently cannot be achieved. One possible idea is to
fix a controlled device to the backlash adjustment grub-screws on the robot and
programme it to increase or decrease the backlash level concurrently during the robot
task execution. However, this is out of the scope of this research, but could be
applied in future work. Thus, in this work to present something similar to gradual
deterioration fault, first from the robot healthy condition the backlash was changed
(increased or decreased) and ten measurement points were taken; then the power was
disconnected from the robot arm and also the backlash was changed and another ten
points were captured. Each time the grub-screw was turned by a quarter turn, where
each turn is equivalent to change the backlash by 0.072 mm (Chap. 5). Figure 9.8
shows the captured result when the robot was healthy (backlash = 0.68 mm) and the

Fig. 9.7 Fault detection result from the designed embedded system
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backlash progressively increased (each time by 0.018 mm) until the excessive
backlash is reached (backlash = 0.92 mm), while Fig. 9.9 presents the result of
decreasing the backlash (also each time by 0.018 mm) starting from the robot
healthy condition until gears interference was introduced (backlash = 0.56 mm).
A total of 140 points were captured in the case of backlash increasing, whereas 80
points were captured in the case of backlash decreasing (Figs. 9.8 and 9.9), as a
higher number of steps are required to obtain excessive backlash than obtaining the
gear interference.

It can be clearly seen from these figures that the resultant STD values are
gradually decreased, as the backlash is increased, and increased, as the backlash is
decreased. Obviously, the resultant STD values indicated by the samples 1–30 in
Fig. 9.8 and to 20 in Fig. 9.9 are randomly distributed around the centre line (CL),
signalling a healthy robot condition. This is, however, at the healthy backlash
range, which is a little higher or lower 0.68 mm (Chap. 5). In both cases when a
fault was detected, which was at sample 38 in Fig. 9.8 (as eight consecutive points

Fig. 9.8 Fault detection result from the designed embedded system when the backlash was
gradually increased

Fig. 9.9 Fault detection result from the designed embedded system when the backlash was
gradually decreased
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under the CL) and sample 23 in Fig. 9.9 (as three consecutive points above the
UWL), the embedded system showed a message flagging that a fault was detected,
Fig. 9.10. It can be concluded that the designed control chart is sensitive enough to
the small changes in the backlash level.

As stated previously the sampling frequency in the fault detection stage is
383 Hz, therefore the time required to capture three signals, each with 4096 sam-
ples for the three accelerometers is about 10.7 s. Based on the developed control
chart, to obtain one data point 10 signals from each axis must be collected in order
to calculate the resultant standard deviation; thus, the time required is 107 s
(≈1.8 min). However, to apply the stated fault detection rules at least 10 points
should be computed, in order to apply the fault detection rules, and therefore the
total time required for the entire fault detection process is approximately 18 min.

9.6.3 Validation of DWT Based on Embedded System

After ensuring that the captured and wirelessly received signals on the DSP board
(or base station) are correct, it is important to validate the DWT signal analysis. The
developed C code for DWT analysis was downloaded on the base station and the
robot was programmed to perform the cyclic rotation task of joint 3 (Chap. 6). The
received signals on the base station are analysed in a real-time manner, then, the
break point and watch window debugging tools in CCS IDE were utilized to save
the gathered signals to a text file for offline analysis. These signals were analysed
using the Matlab wavelet toolbox; the result of DWT from DSP and Matlab for
X-axis signal is depicted in Fig. 9.11.

The sub-band signals produce by Matlab and DSP board are highly correlated
with each other. This is readily apparent in D1, D2, D3 sub-bands and even D4, due

Fig. 9.10 A screenshot from the serial communication software indicating detection of a fault in
the robot
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Fig. 9.11 DWT analysis result using Matlab and designed embedded system
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to the significant frequency contents at the higher levels of analysis. Matlab uses
higher precision and accuracy; however, the DWT analysis based DSP exhibits
certain errors with respect to the DWT based Matlab. The difference between each
level signals is evaluated using the root-mean-square error (RMSE), which is also
indicated in Fig. 9.11. However, the difference appears negligible and can be
ignored, indicating a correct and accurate DWT implementation on the base station.

9.6.4 Validation of the Designed ANN Based on Embedded
System

As mentioned earlier in the thesis, once the wavelet analysis is done, the standard
deviation feature for each decomposition level is calculated, and a vector of 24
element (8 from each axis signal) is passed to the fault diagnosis stage. The
designed ANN using Matlab software for fault classification (discussed in Chap. 7)
is realized in the embedded system. The established network structure (number of
layers and neurons in each layer) and weight matrices are adapted for developing
the C code for ANN to be operating in the based station. The ANN code was
successfully built and downloaded, along with DWT code, on the DSP board; and
has to be tested before use. Actually, testing the ANN means testing the entire fault
diagnosis stage, as this is based on DWT analysis and ANN fault classification.

The wireless node was attached to the robot; and the robot ‘healthy’ condition
and the backlash faults (high, small and interference) were tested, as in the fault
detection stage. To verify the system capability in classifying the gear and bearing
faults the vibration signals related to these faults, which were captured using the
developed LabVIEW data acquisition software (Chap. 6), are re-called here. These
signals were sent wirelessly from the sensor node to the base station in order to be
classified. It was stated when the ANN was designed (Chap. 7) that the output layer
contains 11 neurons, and that each one indicates a specific robot fault type, except
the first one, which is related to the robot healthy condition. In order for the signal
classification consider to be correct the output of just one node must be 1 (or close
to 1) and the remaining nodes are zero (or close to zero) depending on the robot
health condition. The result of this validation is presented in Fig. 9.12, where the
X-axis is the neuron’s order and Y-axis its output value. It can be seen that when
the robot is healthy the output of the first neuron is 1 and the others are close to
zero, and the same is true with other faults. For each fault condition, the embedded
system was tested many times and the classification success rate was found close to
100 %.
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9.7 Sensor Node Power Consumption Analysis

Rechargeable batteries represent a finite energy source, and they need to be charged
time to time or replaced as their functioning life deteriorates. These disadvantages
will increase the maintain cost of a wireless node, and also the maintenance
problem becomes more complex if sensor nodes are used in remote locations. In
general, the consumed power in wireless sensor nodes is determined by the hard-
ware platform features and the programme that runs within the node. In this work
the designed embedded system will be executing the fault detection stage most of
the time and if a fault is detected the diagnosis stage is executed one time, therefore,
the sensor node power consumption analysis was done at just the fault detection
stage.

To monitor the consumed current on the sensor node, a multi-meter device has
been placed in series between the power source (the battery) and Arduino power
jack. A simple LabVIEW code was prepared to record the drawn current that
required for calculating one resultant STD. It was found that the average demanded
current is 116.6 mA, meaning that the node will run continuously for up to 8.5 h;
this has come from dividing the used battery current capacity, which is 1000 mAh,
on the established average consumed current. However, this is not a very long time
for prospective industrial wireless system.

To overcome the issue of powering wireless systems, some researchers have
developed energy harvesting system to scavenge energy from the available ambient
sources, such as solar and vibration energy, to either power the sensor node or as an
auxiliary powering system to charge the battery when it gets discharged (Li et al.
2013; Zhang et al. 2014). Investing the solar energy for power supply to the node in

Neuron order in the output layer

N
eu

ro
n 

ou
tp

ut

Fig. 9.12 Embedded system fault classification result
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this work is not possible, as the required solar panel would be too big size and thus
cannot be fixed on the robot. However, for future work, robot movement energy
could be invested in building a small energy harvesting system for the wireless
sensor node. On the other hand, since the embedded system could be manufactured
and sold as a part from the robot system, for future development some arrangements
might be considered in the design of the robotic system in order to power the node
from the robot controller.

9.8 Summary

In this chapter the available software development tools for the proposed embedded
system hardware were deliberated. The designed software was divided into two
parts, as the proposed condition monitoring algorithm; the first part was imple-
mented on the sensor node and mainly responsible for robot health assessment and
fault detection based on the designed control chart (Chap. 7). The second part of the
code involves the fault diagnosis stage, which relies on the proposed wavelet family
for signal analysis (Chap. 3) and the developed ANN for extracted feature classi-
fication (Chap. 7). Arduino IDE and CCS studio software, which are based on C
language, were utilized for programming the sensor node and base station,
respectively.

In order to demonstrate the validation of the developed wireless embedded
system, captured vibration data were compared to their peers in Chap. 6. The three
backlash levels were then introduced in the robot and the embedded system showed
successful robot health change detection. The DWT analysis of the wirelessly
received signals on the base station was examined to investigate the developed code
correctness and accuracy; the results showed very high correlation with Matlab
results. In terms of fault diagnosis, the system has proved high capability in clas-
sifying the seeded faults. However, it would be better if a wider range of real
defects were considered; due to the time required to develop such defects the
investigation of the full range of possible defects which might occur would have
been beyond the scope of this research.

Optimistically, the established wireless embedded system, with a little modifi-
cation on the code if required, can be envisaged for fault detection and diagnostic
for any machine that its monitoring system is realized on vibration signal analysis.
Also, with some modification on the system hardware, especially the sensor node
hardware, or the software different condition monitoring techniques, such as
acoustic emission or motor current signature analysis, can be applied.
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Chapter 10
Conclusions and Future Work

Abstract This work has been carried out to design an online, intelligent health
monitoring system for an industrial robot based on embedded electronic technol-
ogy. Throughout the journey of this research a large amount of effort and time was
employed to achieve this aim using a systematic and logical approach. In this
chapter, the research work that has been described in this thesis is concluded and
the limitations of the study are discussed. A summary of the main scientific con-
tributions and achievements in the thesis are presented, followed by a discussion of
the potential directions for further research in terms of both extending and devel-
opment of the present work to make it more suitable for practical applications.

10.1 Conclusions

This research has been based on a mechatronics approach, by which different fields
are integrated into an application. Throughout this thesis, a preliminary summary to
conclude the isolated findings was integrated at the end of each chapter; however,
this section is devoted to summarising the entire thesis, discussing the important
conclusions and the links between the chapters.

In the first chapter the necessary background related to industrial robots and their
fault categories and the available maintenance strategies, with focus on condition
based maintenance, was provided. Also, the main challenges that were expected to
be faced during the development process of the robot condition monitoring
(CM) system along with the study aims and objectives were discussed. A thorough
review of previous and contemporary research in the state of the art was conducted
in Chap. 2 to investigate and evaluate the exiting condition monitoring approaches
and techniques. A model-free (or data-driven) approach using vibration monitoring
techniques was selected for robot health monitoring, due to the difficulty of con-
structing an accurate analytical model for the robot and also its capability in
developing high performance CM systems. Furthermore, the statistical and artificial
intelligence tools that have been commonly utilized in developing model-free CM
systems were reviewed in this chapter.

© Springer International Publishing Switzerland 2017
A.A. Jaber, Design of an Intelligent Embedded System for Condition
Monitoring of an Industrial Robot, Springer Theses,
DOI 10.1007/978-3-319-44932-6_10

231

http://dx.doi.org/10.1007/978-3-319-44932-6_2


Due to the complexity of the robot dynamic behaviour, as it is completely
different from the behaviour of rotating machines for which most of CM systems
were developed, and to fulfil the aim of creating an intelligent robot health moni-
toring system that is able to detect progression of a fault and then diagnose it, a
two-stage CM algorithm was proposed (Chap. 3), composed of fault detection and
fault diagnosis stages. The first stage is responsible for detection of the fault,
regardless of its location and type, when the robot is executing a repetitive task. The
diagnosis stage is responsible for locating where the fault is and its type; it is
performed when the robot runs one joint at a time in a cyclic motion. To accomplish
this, different signal processing techniques, which usually have an important role in
analysing the captured signals and then extracting features in any CM applications,
were evaluated (Chap. 3). The decision was, taking into account the implementa-
tion of the selected techniques in the designed embedded system in Chap. 8, to use
the time-domain signal analysis in conjunction with statistical control chart
(SCC) in the fault detection stage and the time-frequency domain analysis, based on
discrete wavelet transform (DWT), along with artificial neural network (ANN) in
the diagnosis stage. The time-domain signal analysis and SCC were selected for the
first stage because they do not required a lot of computational effort and also the
fault type is not known in this stage, so just signalling the progression of a fault was
important. The DWT and ANN were used in the second stage due to the capability
of DWT in detecting the transitory nature in vibration signals, which is very
common in the presence of a fault, and the high performance of the ANN in solving
various classification problems.

The background information on PUMA 560 robot mechanical construction,
methods of control and programming was provided in Chap. 4, along with an
experimental modal analysis (EMA) carried out to find the robot natural frequen-
cies. The theory behind the EMA and the used hardware and software to accom-
plish it has been presented. The experiments showed that the robot arm
configurations significantly affect the emergence of these frequencies. The estab-
lished frequencies were compared with the results of other research and acceptable
correlation was found. The usage of these frequencies in preliminary robot con-
dition monitoring was evaluated, as presented in Chap. 6, and that introducing of a
fault in the robot will excite some of the robot natural frequencies, therefore they
could be utilized for robot health monitoring.

In general, several transmission fault types that could be progressed in gears and
bearings were investigated along with their characteristic frequencies in Chap. 5. In
the literature concerning industrial robot fault diagnosis it was established that the
majority of them are focusing on gear backlash faults diagnosis, implying there are
essential shortcomings in the diagnosis of other types of transmission faults, such as
gear tooth wear and breakage and inner and outer race bearing faults. Thus, it was
decided to fill part of this gap by simulating different levels of gear and bearing
faults; however, due to the time limitation only one joint (the elbow) of the robot
was selected to seed the fault.
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To study the robot vibration signals when different faults are presented a pre-
liminary data acquisition system was developed using the capabilities of LabVIEW
and Matlab in signal capturing and analysis (Chap. 5). The selected signal pro-
cessing techniques (time-domain and DWT) were implemented in the developed
system. Initially, different levels of backlash (high, small and interference) were
simulated; after that dismantling and reassembling the selected joint was practiced
and the bevel pinion and one of the bearings used to support the input shaft were
used to seed the gear and bearing faults, which are (as shown in Chap. 5) tooth
wear, 25 % tooth removed, 50 % tooth removed, tooth completely removed, a
rectangular slot with 1 mm width in the inner race, 1 mm hole in the outer race and
2 mm in the outer race.

Three single axis, MEMS type accelerometers were utilized to measure the robot
vibration in three axes (X, Y and Z). The optimum location that can be used to affix
the accelerometers on the robot was justified and found to be close to the robot
wrist. Sensor mounting methods were deliberated and an aluminium adapter was
designed to hold the accelerometers in an orthogonal configuration; attached on the
identified location using cyanoacrylate adhesive. The vibration analysis was con-
ducted with the robot executing a simple and repetitive pick and place task, which
mimics one of its common robot operation, and then when the robot programmed to
cyclically rotate just joint 3. Programming of the robot was achieved using its
dedicated control language named VAL II; the developed VAL II codes are pre-
sented in Appendix C. The measured vibration and extracted features that are
related to different health conditions were discussed in Chap. 6. It was established
that as the backlash increased the robot vibration level decreased, attributed to the
damping effect of the grease lubricant, and vice versa. On the other hand, as the
gear tooth or bearing fault severity increased the vibration level is increased as a
result.

Using the established robot natural frequencies and the estimated gears and
bearing fault frequencies an approach based on combining the capabilities of the
DWT and the Fast Fourier transform (FFT) was investigated for the robot fault
detection and diagnosis, as discussed in Chap. 6. Although this approach has shown
good ability in detecting the changes in frequencies related to the natural fre-
quencies and gears and bearings it was not applied in the designed embedded
system, as it is more suitable for offline condition monitoring. The basis and theory
behind the SCC and ANN were presented in Chap. 7; the Shewhart average level
chart and multilayer perceptron neural network (MLPN) were selected. Then, based
on the extracted features from the robot vibration when it is healthy and with
different seeded faults were used to design the SCC and ANN; a test procedure was
accomplished and the results were discussed and found that very reasonable per-
formance was shown in fault detection and classification.

A wireless embedded system was developed for online implementation of the
proposed intelligent robot health monitoring algorithm. It comprised two parts: the
sensor node for vibration signal acquisition and conducting the fault detection
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analysis, and the base station for controlling the embedded system operation and
implementing the diagnosis stage. As presented in Chap. 8, several commercially
available proprietary electronic components employed in embedded system
development were evaluated, in order to identify and select the main embedded
processors. A low-cost Arduino DUE microcontroller was selected as the core of
the sensor node, whereas the DSK C6713 digital signal processor board from Texas
Instruments was utilized in the base station. To power the sensor node a lithium-ion
polymer (Li-Po) rechargeable battery was used. Other auxiliary electronics, such as
a wireless shield for Arduino and DSK_COMM4 board for the DSK C6713, were
used to integrate the wireless capability in the developed system. Evaluation of
different wireless technologies, include Wi-Fi, Bluetooth and ZigBee, was also
undertaken; it was established that ZigBee is the best candidate, as it has a feasible
communication range, cost-effective and low-power technology. Embedded code
based on the C programming language was designed to apply the developed CM
algorithm using the developed wireless embedded system; a discussion and the flow
charts that explain the main steps and working concept of the code were realized in
Chap. 9. Also, in the same chapter the results of system testing and validation was
deliberated and very good performance was realized. In this respect it is felt that the
main aims and objectives of the thesis have been achieved.

On the other hand, as previously stated the fault detection stage was designed to
be able to detect the fault in any of the robot parts regardless of location, which was
made possible using the SCC approach, however, the ANN was trained to diagnosis
only a limited number of faults in only joint 3; this represents one of the developed
system limitations. Other issue was faced is the limited power supply source that
was used with the designed wireless node, as the battery powering method was
found lasting for limited period of time (approximately 8.5 h). Also, integrating
such a long antenna (RPSMA) on the sensor node could lead to interaction between
the sensor node and the robot working environment in the practical field. The issue
of limited memory size of the DSK C6713 board was an obstacle in developing a
big size ANN, which could bound the design of (at least) a semi-comprehensive
robot condition monitoring system.

10.2 Contribution to Knowledge

The research described in this thesis has made the following main contributions
towards the state of the art in condition monitoring systems:

1. An intelligent condition monitoring algorithm based on vibration analysis of an
industrial robot for fault detection and diagnosis has been proposed, and which
combines the use of a statistical control chart with time-domain signal analysis
for detecting a fault, and the use of an artificial neural network with the discrete
wavelet transform for diagnosing the specific fault type. The algorithm can be
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implemented when the robot is in an operational state and undertaking any given
task, and not for a specific task, as in previous research.

2. The design and development of an embedded micro-processor system, based on
wireless communication, for online implementation of the intelligent condition
monitoring algorithm, described above. A wireless sensor node, with integral
accelerometers, was developed and attached to the robot arm for data acquisition
and fault detection. A base station was also developed, which can be interfaced
to a PC, for presenting the results of the analysis, and for fault diagnosis.

3. The implementation of a discrete wavelet transform with statistical feature
extraction for the robot fault diagnosis is also considered to be novel. In this
method, the vibration signals are first decomposed into eight levels of wavelet
coefficients. Then different statistical parameters, such as the standard deviation
and root mean square for each level are calculated and analysed in order to select
the one sensitive to specific features. The standard deviation parameter was
found to be the most fault sensitive and thus selected as a quantitative feature to
be extracted from the wavelet analysis and subsequently used to recognize the
onset of faults in the robot joint transmissions.

4. The simulation of different faults types in the robot joints was also considered to
be a novel development. In addition to variances in different levels of backlash,
which is the most common type of fault studied by previous researchers, gear
tooth and bearing faults with several levels of severity were successfully
introduced and detected in the robot transmission. The simulation of gear tooth
and bearing faults in industrial robot transmissions is considered to be rather
challenging which is why these have not been reported before in the previous
research. A considerable amount of time was devoted to practicing the
dismantling/assembly of the elbow joint of an industrial robot to permit the
simulation of these faults.

5. The adverse effects of backlash faults were highlighted in the robot. Generally,
in rotating machinery the increase of backlash in pairs of mating gears will
increase the vibration level, however, it was found that in the robot used in thus
study an increase in backlash was consistent with decreasing vibration ampli-
tudes. This was attributed to the copious amounts of grease lubricant entering
between the mating teeth at increased backlash levels leading to damping of the
vibration, whereas with reduced backlash levels the lubricant is effectively
squeezed out of the mating teeth giving rise to a much stiffer dynamic system.

10.3 Summary of Achievements

The following provides a list of the summary of achievements attained during the
execution of this study:
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1. An extensive literature review was undertaken to establish the recent trends in
the condition monitoring algorithms that are applied to a wide range of rotating
machinery, with an emphasis on industrial robots.

2. The different signal processing techniques that can be applied in condition
monitoring systems were extensively assessed, and their differences and suit-
ability for the application in this study were evaluated. A time-domain signal
analysis approach was adopted in the detection stage and the time-frequency
analysis based on discrete wavelet transform used in the diagnosis stage.

3. A frequency response function analysis, using experimental modal analysis, was
carried out to establish the robot natural frequencies.

4. A data acquisition system for online vibration signal capturing, analysis and
feature extraction was developed using National Instrument hardware (NI 6009)
and software (LabVIEW) in conjunction with Matlab software.

5. Preliminary vibration analysis, when the robot is healthy and with different
faults introduced, was conducted, and important features were extracted.
Preliminary robot fault detection and diagnosis based on the extracted features
and robot natural frequencies was carried out.

6. The design, training and testing of the proposed control chart and neural net-
work for fault detection and diagnosis were successfully achieved. In this
regard, the extracted features using the developed data acquisition system were
utilized.

7. The design of a sophisticated embedded software suite, using C programming
language, was developed, upon which both stages of the proposed condition
monitoring algorithm were implemented on the designed embedded system.

8. An extensive series of tests were conducted on a ‘healthy’ robot, and subse-
quently when a fault was introduced to evaluate the performance and effec-
tiveness of the designed embedded condition monitoring system.

10.4 Recommendations for Future Work

Having achieved the main objectives, there are still some potential challenges
remaining that needed to be overcome in order to implement the developed mon-
itoring system into widespread industrial application and thus the total success of
the research is achieved. For future development of this work the following rec-
ommendations should be considered:

Recommendations for future experimental work

1. The investigated faults were mainly related to the elbow joint transmission
(gears and bearings). Other categories of faults related to this joint motor, such
as motor bearings, stator and rotor faults, or faults in the other joints of the
robot form a logical direction to further extend the capabilities of the designed
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embedded-based health monitoring system. Also, the examined faults scenarios
were simple, as only one fault is seeded at a time; however complex scenarios
could be studied by combining multiple fault types at the same time.

2. In the present study, due to the limitation of time accelerated fault types were
seeded in the joint gearbox. For future research, the algorithm could be
extended to monitor the progressive development of faults in the robot trans-
mission. This can be achieved by allowing the robot to operate for a consid-
erable time period and the vibration level is monitored. Otherwise, a control
device that can be connected to the backlash adjustment grub-screws and allow
the progressive increase or decrease of the gear backlash while the robot is
running could be developed.

3. Use different type of condition monitoring techniques, such as acquiring the
acoustic emission signal, motor current signal, noise signal… etc., or com-
bining two (or more) techniques together, such as vibration with online motor
current analysis, for robot health monitoring, which could be conducted using
hall-effect sensors attached to the motor power cables.

4. The proposed condition monitoring approach was developed to monitor a rather
old, but operational, PUMA 560 robot, and thus it follows that more experi-
mental work is needed to further evaluate its reliability in fault detection and
diagnosis with the robot executing a variety of different tasks. Also, it should be
tested on another PUMA 560 robot in order to verify that it can confidently be
utilized with this model of robots. Of course it would be much more appropriate
if the designed system is generalised for any industrial robot model, however, a
considerable effort and time are needed to investigate the required scientific
analysis methods, and the appropriate approaches for hardware and software
development.

5. Only one robot was monitored throughout this study, therefore, the hardware
and software could be developed to accommodate monitoring of more than a
robot. This can be achievable by building and using more than one wireless
sensor node and updating the designed embedded software to be able to
communicate with more than one sensor node.

Recommendations for improving the condition monitoring algorithm

6. The designed control chart in this thesis, which is of a univariate type, Shewhart
average level chart, has a weakness that is relatively insensitive to small shift in
population mean, since a large number of plotted values are required to detect
the change (Montgomery and Runger 2014). To overcome this problem, more
advanced univariate control charts, such as the cumulative sum (CUSUM) and
the exponentially weighted moving average (EWMA) could be designed. These
charts have better performance for detecting small shifts than Shewhart chart, as
they allow each plotted point depends not only on the most recent subgroup
average but also on some of the other subgroup averages.

7. Another significant problem with control chart is that it assumes that the
monitored system behaviour is steady-state (or static) and ignores the influence
of the dynamic effect, meaning that the intended or unintended shift in the
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process mean or variance when the system is still healthy. A possible solution
for this problem would be to explore other approaches that could help in
developing control charts with adaptive limits that can follow system dynamics
in the sense that big variation from central line, which is consequence of system
dynamics and not system fault, is treated as a normal operation mode (Kisić
et al. 2013).

8. The control chart was utilized to monitor only one quality character, which is
the resultant standard deviation of the captured vibration signals, to detect the
progression of a fault. As a future work, however, multivariate control charts,
which provide simultaneous monitoring of several correlated variables and
superior to univariate charts monitoring (El-Din et al. 2006), are needed for
developing more robust fault detection stage.

9. In this study, the implemented neural network for fault diagnosis uses
supervised-learning algorithm for training the network, meaning that the net-
work has to be given the historical information corresponding to input (ex-
tracted features related to different fault types) and output (identities of faults).
However, the major drawback of this learning method is that only faults that are
included in the training data can be diagnosed. Thus, to build a comprehensive
fault diagnosis stage, the historical data of all possible robot fault types must be
available for training, which in practice is extremely difficult. As an extension
to the present work, unsupervised-learning can be used to handle this issue.

10. Although the designed ANN has shown high classification capability, it seems
that there is still a significant scope for research in AI techniques, aiming to
simplify the complex nonlinear systems and realizing cost effective hardware.
Beside others, support vector machines, fuzzy logic and practical swarm
optimization should be investigated and their suitability to be applied on an
embedded system with an expanded number of the classified fault categorizes
established.

11. To reduce the effect of the progressed fault in the robotic system performance
and in order to allow the robot to operate as long as possible before a catas-
trophic failure is taken place a fault tolerant control (FTC) system should be
developed; which is defined as a control system that should be performed
immediately after a successful detection of a fault and it possess the ability to
maintain the desirable performance and stability properties while accommo-
dating a safe component failures (Ding 2014)..

12. The main problem that was faced during the deployment of the designed
intelligent condition monitoring system on the embedded system was the
limited memory size of the base station digital signal processor. This was
mostly due to the size of the designed neural network for fault classification,
which is strongly connected with number of the neurons in the input, hidden
and output layers which in turn associated with the input features and output
fault identities. However, the neurons number in the output layer cannot be
changed, as it depends on the number of classified faults, instead statistical
techniques could be utilized to reduce the size of the input vector. As an
example, the principle component analysis (PCA) could be applied to reduce
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the input data dimensionality so that only the more essential information is
retained.

13. Other time-frequency signal analysis techniques should be tried and the sen-
sitivity of extracted features to the seeded fault analysed. These techniques
include, but not limited to, discrete wavelet packet transform (DWPT), which is
a continuation to DWT by which the detail information of the signal is further
decomposed, and empirical mode decomposition (EMD), which is a numerical
approximation algorithm designed to extract the intrinsic oscillatory compo-
nents of a signal (Yan 2015). The efficiency of these methods in terms of
sensitivity to fault, processing speed and required computational effort could be
compared with the used DWT and the best is selected.

14. A realistic mathematical model that allows simulation of different fault sever-
ities and considers the different sources of uncertainties present in practice, such
as joint flexibility, torque ripple, temperature and speed and load variations,
could be developed for the joint gearbox. This will help in understanding the
induced vibration signals under different healthy and faulty conditions.

Recommendations for embedded system development

15. The use of a restricted power supply and the consequent requirement of peri-
odic battery replacement represent the main issue with the developed wireless
sensor node. To defeat this limitation, energy harvesting approaches show
promising technology for powering wireless systems, which makes them more
independent. Several possible solutions could be integrated with developed
sensor node, for example, electrical energy can be produced by harvesting the
ambient vibrations using magnetostrictive material (Chalasani and Conrad
2008), or using ambient RF energy to remotely power the wireless unit (Bouzid
2013).

16. The used Arduino and DSK C6713 boards have superfluous peripherals. Thus,
to make the proposed embedded system suitable for industrial applications the
wireless sensor node and the base station are required to be miniaturised, for
ease of development and installation. This can be achieved by integrating the
antenna, processor, power supply and the other required components in a single
board; this would contribute in lowering the cost of the complete system and
reduce the weight, size and power consumption, especially for the sensor node.

17. It would also be much better if the embedded system is consolidated into a
single design specific electronic board (attached to the robot) that has the
capability to implement both stages of the condition monitoring algorithm and
communicating wirelessly with a PC, for data transmitting. For example a small
size embedded device with high hardware and computational specifications
from National Instruments called myRIO (www.ni.com/myrio), or any other
device with a higher specification, could be utilized to for this purpose.

18. In the fault detection stage the control chart was developed offline depending on
the extracted features from healthy time-domain vibration signals that were
captured while the robot performing the pick and place task. However, if the
robot is programmed to achieve different task, or as it is recommended that the
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control limits should be re-estimated between time to time even if the robot is
healthy (Montgomery and Runger 2014), the upper and lower control limits of
the chart must be re-computed again based on the feature extracted from the
newly captured vibration signals. This process is time consuming, thus it is very
important that the capability of online control chart design is developed on the
designed wireless sensor node.

19. For the fault diagnosis stage in Chap. 7, the weights and the biases for the ANN
were determined using offline training performed in Matlab; which were then
downloaded on the embedded system. However, for real time application
would be more practical if an online training strategy by which the ANN
parameters are adjusted in the DSP board itself. This would make the training
process easier and the adoption of other fault types on the embedded system is
simpler.

20. Programming embedded systems using C language was found to be a
non-trivial task especially for a researcher with very little experience in pro-
gramming. As a result, a lot of challenges were encountered during the
embedded software development, specifically with the development of the base
station software using the CCS IDE. However, it would be preferable if instead
of writing lines of code in text-based programming, the user simply uses
graphical programming languages, as they offer an interactive and a more
intuitive approach toward building embedded systems in a relatively short
amount of time, by which blocks from different libraries are grabbed and placed
into the workspace and connected with arrows. Both Arduino and DSK C6713
can be interfaced to Simulink and LabVIEW, therefore in future it is very
crucial that this approach is investigated and adopted for designing embedded
systems.

21. The developed embedded system should be interfaced to a user-friendly
graphical user interface (GUI) that provides an intuitive environment to guide
the user through the steps of operating the embedded system and has clear
indicators that assist in easy interpretation of the vibration analysis result even
for non-expert maintenance technicians. Furthermore, it could be integrated
with the capability to remotely communicate with mobile platforms, such as
mobile phones and PDAs, via sending messages/emails that enable the concern
users to be aware of the robot working condition. The GUI can be designed
based on LabVIEW or Matlab software, however, they are expensive and a
licence is required. Instead, Visual Basic programming could be adopted, which
is free and readily compatible with Microsoft Windows programs.
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Appendix A
Datasheets of the Used Equipment in EMA

A.1 ICP Impact Hammer Model 086c0
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A.2 ICP Accelerometer Model 352c68
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A.3 Data Physics Quattro Analyser
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Appendix B
Setting up the Preliminary Data
Acquisition System

B.1 RMS of Time-Domain Signals for Selection the Best
Accelerometer Location

RMS values when the accelerometer on different locations and the robot moving different joints at
different speeds
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B.2 Calibration Result of the MEMS Accelerometer Against
the Piezoelectric One

Time-domain signals

Frequency-domain signals
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B.3 NI USB-6009 DAQ Card Pins Layout and Description

Signal Name Reference Direction Description

GND – – Ground—The reference point for the single-ended
analog input measurements, analog output voltages,
digital signals, +5 VDC supply, and +2.5 VDC at the
I/O connector, and the bias current return point for
differential mode measurements

AI〈0–7〉 Varies Input Analog Input Channels 0 to 7—For single-ended
measurements, each signal is an analog input voltage
channel. For differential measurements, AI 0 and AI 4
are the positive and negative inputs of differential
analog input channel 0. The following signal pairs also
form differential input channels: AI〈1, 5〉, AI〈2, 6〉, and
AI〈3, 7〉. Refer to the Analog Input section for more
information

AO〈0, 1〉 GND Output Analog Output Channels 0 and 1—Supplies the
voltage output of AO channel 0 or AO channel 1. Refer
to the Analog Output section for more information

P0〈0–7〉 GND Input or
Output

Port 0 Digital I/O Channels 0 to 7—You can
individually configure each signal as an input or
output. Refer to the Digital I/O section for more
information

P1〈0–3〉 GND Input or
Output

Port 1 Digital I/O Channels 0 to 3—You can
individually configure each signal as an input or
output. Refer to the Digital I/O section for more
information

(continued)
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(continued)

Signal Name Reference Direction Description

PFI 0 GND Input PFI 0—This pin is configurable as either a digital
trigger or an event counter input. Refer to the PFI 0
section for more information

+2.5 V GND Output +2.5 V External Reference—Provides a reference for
wrap-back testing. Refer to the +2.5 V External
Reference section for more information

+5 V GND Output +5 V Power Source—Provides +5 V power up to
200 mA. Refer to the +5 V Power Source section for
more information
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B.4 Used Schmitt Trigger Datasheet
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B.5 Develop LabVIEW Data Acquisition
and Analysis Software
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Appendix C
VAL II Programme and Result
of the DWT and FFT

C.1 VAL II Program for Pick and Place Task

Below is the pick and place VAL II program which was used in this thesis. The
operation was to swap the positions of two snooker balls. The programme contain a
subroutine that is executed to check if the external input signal is on, in order to halt
any more execution of the programme.

The main programme:

1 SIGNAL 1 {Turn the output signal on to trigger the embedded
system}

2 APPRO p1, 100 {Moves to 100 mm above position 1}
3 MOVE p1 {Moves robot so gripper positioned to pick up the red ball}
4 DELAY 0.1 {Delay of 100 ms}
5 CLOSEI {Closes gripper}
6 DELAY 0.1 {Delay of 100 ms}
7 DEPART 100 {Moves to 100 mm above position 1}
8 APPRO p3, 100 {Moves to 100 mm above position 3}:
9 MOVE p3 {Moves robot so gripper positioned to release the red ball}
10 DELAY 0.1 {Delay of 100 ms}
11 OPENI {Opens gripper}
12 DELAY 0.1 {Delay of 100 ms}
13 DEPART 100 {Moves to 100 mm above position 3}
14 APPRO p2, 100 {Moves to 100 mm above position 2}
15 MOVE p2 {Moves robot so gripper positioned to pick up the yellow

ball}
16 DELAY 0.1 {Delay of 100 ms}
17 CLOSEI {Closes gripper}
18 DELAY 0.1 {Delay of 100 ms}
19 DEPART 100 {Moves to 100 mm above position 2}
20 APPRO p1, 100 {Moves to 100 mm above position 1}
21 MOVE p1 {Moves robot so gripper positioned to release the yellow

ball}
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22 DELAY 0.1 {Delay of 100 ms}
23 OPENI {Opens gripper}
24 DELAY 0.1 {Delay of 100 ms}
25 DEPART 100 {Moves to 100 mm above position 1}
26 APPRO p3, 100 {Moves to 100 mm above position 3}
27 MOVE p3 {Moves robot so gripper positioned to pick up the red ball}
28 DELAY 0.1 {Delay of 100 ms}
29 CLOSEI {Closes gripper}
30 DELAY 0.1 {Delay of 100 ms}
31 DEPART 100 {Moves to 100 mm above position 3}
32 APPRO p2, 100 {Moves to 100 mm above position 2
33 MOVE p2 {Moves robot so gripper positioned to release the red ball}
34 DELAY 0.1 {Delay of 100 ms}
35 OPENI {Opens gripper}
36 DELAY 0.1 {Delay of 100 ms}
37 DEPART 100 {Moves to 100 mm above position 2}
38 SIGNAL -1 {Turn the output signal off}
39 DELAY 0.1 {Delay of 100 ms}
40 CALL Check {Starts Check subroutine checking for external input

signal}
41 END {The programme finished}

External signal check subroutine:

1 IF SIG(1001)==1 THEN {Check if the external signal on the input 1 is
high}

2 TYPE fault detected {Print fault-detected on the operator}
3 Halt {Stop the programme execution}
4 END {End of the subroutine programme}
5 RETURN {Returns to the main programme}

C.2 Result of the DWT analysis for different fault types

See Figs. C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, C.11, C.12, C.13, C.14
and C.15.
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(a) Healthy robot (b)  High backlash

Fig. C.1 DWT analysis of the X-axis vibration signals from the robot arm when it is healthy and
high backlash fault simulated (auto scaled)
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(a) Healthy robot (b) High backlash

Fig. C.2 DWT analysis of the Y-axis vibration signals from the robot arm when it is healthy and
high backlash fault simulated (auto scaled)
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(a) Healthy robot (b) High backlash

Fig. C.3 DWT analysis of the Z-axis vibration signals from the robot arm when it is healthy and
high backlash fault simulated (auto scaled)
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(a) Small backlash (b)  Interference backlash

Fig. C.4 DWT analysis of the X-axis vibration signals from the robot arm when small and
interference backlash faults simulated (auto scaled)
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(a) Small backlash (b)  Interference backlash

Fig. C.5 DWT analysis of the Y-axis vibration signals from the robot arm when small and
interference backlash faults simulated (auto scaled)
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(a) Small backlash (b)  Interference backlash

Fig. C.6 DWT analysis of the Z-axis vibration signals from the robot arm when small and
interference backlash faults simulated (auto scaled)
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(a) Tooth wear (b)  25% tooth removed 

Fig. C.7 DWT analysis of the X-axis vibration signals from the robot arm when gear tooth wear
and 25 % removed faults simulated (auto scaled)
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(a) Tooth wear (b)  25% tooth cut

Fig. C.8 DWT analysis of the Y-axis vibration signals from the robot arm when gear tooth wear
and 25 % removed faults simulated (auto scaled)

266 Appendix C: VAL II Programme and Result of the DWT and FFT



(a) Tooth wear (b) 25% tooth cut

Fig. C.9 DWT analysis of the Z-axis vibration signals from the robot arm when gear tooth wear
and 25 % removed faults simulated (auto scaled)
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(a) 50% tooth cut         (b) Full tooth removed

Fig. C.10 DWT analysis of the X-axis vibration signals from the robot arm when 50 % and full
gear tooth removed faults simulated (auto scaled)
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(a) 50% tooth cut                           (b) Full tooth removed

Fig. C.11 DWT analysis of the Y-axis vibration signals from the robot arm when 50 % and full
gear tooth removed faults simulated (auto scaled)

Appendix C: VAL II Programme and Result of the DWT and FFT 269



(a) 50% tooth cut                                                   (b)  Full tooth removed

Fig. C.12 DWT analysis of the Z-axis vibration signals from the robot arm when 50 % and full
gear tooth removed faults simulated (auto scaled)
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(b) 1mm outer race bearing fault(a) Inner race bearing fault           

Fig. C.13 DWT analysis of the X-axis vibration signals from the robot arm when inner race and
1mm hole in the outer race bearing faults simulated (auto scaled)
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(a) Inner race bearing fault                             (b) 1mm outer race bearing fault

Fig. C.14 DWT analysis of the Y-axis vibration signals from the robot arm when inner race and
1mm hole in the outer race bearing faults simulated (auto scaled)
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(a) Inner race bearing fault                              (b) 1mm outer race bearing fault

Fig. C.15 DWT analysis of the Z-axis vibration signals from the robot arm when inner race and
1 mm hole in the outer race bearing faults simulated (auto scaled)
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C.3 FFT Result of DWT Details for Different Fault Types

See Figs. C.16 and C.17.

(a) Healthy robot

(b) High backlash

(c) Small backlash

c

(d) Interference backlash

Fig. C.16 Frequency spectrum of each detail signal in the X, Y and Z axes in healthy and
backlash fault cases
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(a) Healthy robot 

(b) Gear tooth wear 

(c) 25% gear tooth removed 

(d) 50% gear tooth removed 

(e) Full gear tooth removed

Fig. C.17 Frequency spectrum of each detail signal in the X, Y and Z axes in healthy and gear
tooth fault cases
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Appendix D
Performance Testing Result
of the Designed ANN

See Fig. D.1.
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(a) 25% gear tooth removed

(b) 50% gear tooth removed

(c) Gear tooth completely removed
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Fig. D.1 The designed ANN network performance testing with unseen healthy and faulty data
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(d) Inner race bearing fault

(e) 1 mm hole in the bearing outer race

(f) 2 mm hole in the bearing outer race
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Fig. D.1 (continued)
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